blob: 2bf026b840861d0bdd2b734cc77edccda8bca77a [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drh8b2f49b2001-06-08 00:21:52 +000012** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drhe53831d2007-08-17 01:14:38 +0000115#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000116
117#ifdef SQLITE_DEBUG
118/*
drh0ee3dbe2009-10-16 15:05:18 +0000119**** This function is only used as part of an assert() statement. ***
120**
121** Check to see if pBtree holds the required locks to read or write to the
122** table with root page iRoot. Return 1 if it does and 0 if not.
123**
124** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000125** Btree connection pBtree:
126**
127** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128**
drh0ee3dbe2009-10-16 15:05:18 +0000129** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000130** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000131** the corresponding table. This makes things a bit more complicated,
132** as this module treats each table as a separate structure. To determine
133** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000134** function has to search through the database schema.
135**
drh0ee3dbe2009-10-16 15:05:18 +0000136** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000137** hold a write-lock on the schema table (root page 1). This is also
138** acceptable.
139*/
140static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
145){
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
149
drh0ee3dbe2009-10-16 15:05:18 +0000150 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000151 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000152 ** Return true immediately.
153 */
danielk197796d48e92009-06-29 06:00:37 +0000154 if( (pBtree->sharable==0)
155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000156 ){
157 return 1;
158 }
159
drh0ee3dbe2009-10-16 15:05:18 +0000160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
164 */
165 if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){
166 return 1;
167 }
168
danielk197796d48e92009-06-29 06:00:37 +0000169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000177 if( pIdx->tnum==(int)iRoot ){
178 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000179 }
180 }
181 }else{
182 iTab = iRoot;
183 }
184
185 /* Search for the required lock. Either a write-lock on root-page iTab, a
186 ** write-lock on the schema table, or (if the client is reading) a
187 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
188 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
189 if( pLock->pBtree==pBtree
190 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
191 && pLock->eLock>=eLockType
192 ){
193 return 1;
194 }
195 }
196
197 /* Failed to find the required lock. */
198 return 0;
199}
drh0ee3dbe2009-10-16 15:05:18 +0000200#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000201
drh0ee3dbe2009-10-16 15:05:18 +0000202#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000203/*
drh0ee3dbe2009-10-16 15:05:18 +0000204**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000205**
drh0ee3dbe2009-10-16 15:05:18 +0000206** Return true if it would be illegal for pBtree to write into the
207** table or index rooted at iRoot because other shared connections are
208** simultaneously reading that same table or index.
209**
210** It is illegal for pBtree to write if some other Btree object that
211** shares the same BtShared object is currently reading or writing
212** the iRoot table. Except, if the other Btree object has the
213** read-uncommitted flag set, then it is OK for the other object to
214** have a read cursor.
215**
216** For example, before writing to any part of the table or index
217** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000218**
219** assert( !hasReadConflicts(pBtree, iRoot) );
220*/
221static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
222 BtCursor *p;
223 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
224 if( p->pgnoRoot==iRoot
225 && p->pBtree!=pBtree
226 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
227 ){
228 return 1;
229 }
230 }
231 return 0;
232}
233#endif /* #ifdef SQLITE_DEBUG */
234
danielk1977da184232006-01-05 11:34:32 +0000235/*
drh0ee3dbe2009-10-16 15:05:18 +0000236** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000237** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000238** SQLITE_OK if the lock may be obtained (by calling
239** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000240*/
drhc25eabe2009-02-24 18:57:31 +0000241static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000242 BtShared *pBt = p->pBt;
243 BtLock *pIter;
244
drh1fee73e2007-08-29 04:00:57 +0000245 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000246 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
247 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000248 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000249
danielk19775b413d72009-04-01 09:41:54 +0000250 /* If requesting a write-lock, then the Btree must have an open write
251 ** transaction on this file. And, obviously, for this to be so there
252 ** must be an open write transaction on the file itself.
253 */
254 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
255 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
256
drh0ee3dbe2009-10-16 15:05:18 +0000257 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000258 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000259 return SQLITE_OK;
260 }
261
danielk1977641b0f42007-12-21 04:47:25 +0000262 /* If some other connection is holding an exclusive lock, the
263 ** requested lock may not be obtained.
264 */
drhc9166342012-01-05 23:32:06 +0000265 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000266 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
267 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000268 }
269
danielk1977e0d9e6f2009-07-03 16:25:06 +0000270 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
271 /* The condition (pIter->eLock!=eLock) in the following if(...)
272 ** statement is a simplification of:
273 **
274 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
275 **
276 ** since we know that if eLock==WRITE_LOCK, then no other connection
277 ** may hold a WRITE_LOCK on any table in this file (since there can
278 ** only be a single writer).
279 */
280 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
281 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
282 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
283 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
284 if( eLock==WRITE_LOCK ){
285 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000286 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000287 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000288 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000289 }
290 }
291 return SQLITE_OK;
292}
drhe53831d2007-08-17 01:14:38 +0000293#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000294
drhe53831d2007-08-17 01:14:38 +0000295#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000296/*
297** Add a lock on the table with root-page iTable to the shared-btree used
298** by Btree handle p. Parameter eLock must be either READ_LOCK or
299** WRITE_LOCK.
300**
danielk19779d104862009-07-09 08:27:14 +0000301** This function assumes the following:
302**
drh0ee3dbe2009-10-16 15:05:18 +0000303** (a) The specified Btree object p is connected to a sharable
304** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000305**
drh0ee3dbe2009-10-16 15:05:18 +0000306** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000307** with the requested lock (i.e. querySharedCacheTableLock() has
308** already been called and returned SQLITE_OK).
309**
310** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
311** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000312*/
drhc25eabe2009-02-24 18:57:31 +0000313static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000314 BtShared *pBt = p->pBt;
315 BtLock *pLock = 0;
316 BtLock *pIter;
317
drh1fee73e2007-08-29 04:00:57 +0000318 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000319 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
320 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000321
danielk1977e0d9e6f2009-07-03 16:25:06 +0000322 /* A connection with the read-uncommitted flag set will never try to
323 ** obtain a read-lock using this function. The only read-lock obtained
324 ** by a connection in read-uncommitted mode is on the sqlite_master
325 ** table, and that lock is obtained in BtreeBeginTrans(). */
326 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
327
danielk19779d104862009-07-09 08:27:14 +0000328 /* This function should only be called on a sharable b-tree after it
329 ** has been determined that no other b-tree holds a conflicting lock. */
330 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000331 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000332
333 /* First search the list for an existing lock on this table. */
334 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
335 if( pIter->iTable==iTable && pIter->pBtree==p ){
336 pLock = pIter;
337 break;
338 }
339 }
340
341 /* If the above search did not find a BtLock struct associating Btree p
342 ** with table iTable, allocate one and link it into the list.
343 */
344 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000345 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000346 if( !pLock ){
347 return SQLITE_NOMEM;
348 }
349 pLock->iTable = iTable;
350 pLock->pBtree = p;
351 pLock->pNext = pBt->pLock;
352 pBt->pLock = pLock;
353 }
354
355 /* Set the BtLock.eLock variable to the maximum of the current lock
356 ** and the requested lock. This means if a write-lock was already held
357 ** and a read-lock requested, we don't incorrectly downgrade the lock.
358 */
359 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000360 if( eLock>pLock->eLock ){
361 pLock->eLock = eLock;
362 }
danielk1977aef0bf62005-12-30 16:28:01 +0000363
364 return SQLITE_OK;
365}
drhe53831d2007-08-17 01:14:38 +0000366#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000367
drhe53831d2007-08-17 01:14:38 +0000368#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000369/*
drhc25eabe2009-02-24 18:57:31 +0000370** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000371** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000372**
drh0ee3dbe2009-10-16 15:05:18 +0000373** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000374** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000375** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000376*/
drhc25eabe2009-02-24 18:57:31 +0000377static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000378 BtShared *pBt = p->pBt;
379 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000380
drh1fee73e2007-08-29 04:00:57 +0000381 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000382 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000383 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000384
danielk1977aef0bf62005-12-30 16:28:01 +0000385 while( *ppIter ){
386 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000387 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000388 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000389 if( pLock->pBtree==p ){
390 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000391 assert( pLock->iTable!=1 || pLock==&p->lock );
392 if( pLock->iTable!=1 ){
393 sqlite3_free(pLock);
394 }
danielk1977aef0bf62005-12-30 16:28:01 +0000395 }else{
396 ppIter = &pLock->pNext;
397 }
398 }
danielk1977641b0f42007-12-21 04:47:25 +0000399
drhc9166342012-01-05 23:32:06 +0000400 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000401 if( pBt->pWriter==p ){
402 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000403 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000404 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000405 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000406 ** transaction. If there currently exists a writer, and p is not
407 ** that writer, then the number of locks held by connections other
408 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000409 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000410 **
drhc9166342012-01-05 23:32:06 +0000411 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000412 ** be zero already. So this next line is harmless in that case.
413 */
drhc9166342012-01-05 23:32:06 +0000414 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000415 }
danielk1977aef0bf62005-12-30 16:28:01 +0000416}
danielk197794b30732009-07-02 17:21:57 +0000417
danielk1977e0d9e6f2009-07-03 16:25:06 +0000418/*
drh0ee3dbe2009-10-16 15:05:18 +0000419** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000420*/
danielk197794b30732009-07-02 17:21:57 +0000421static void downgradeAllSharedCacheTableLocks(Btree *p){
422 BtShared *pBt = p->pBt;
423 if( pBt->pWriter==p ){
424 BtLock *pLock;
425 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000426 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000427 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
428 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
429 pLock->eLock = READ_LOCK;
430 }
431 }
432}
433
danielk1977aef0bf62005-12-30 16:28:01 +0000434#endif /* SQLITE_OMIT_SHARED_CACHE */
435
drh980b1a72006-08-16 16:42:48 +0000436static void releasePage(MemPage *pPage); /* Forward reference */
437
drh1fee73e2007-08-29 04:00:57 +0000438/*
drh0ee3dbe2009-10-16 15:05:18 +0000439***** This routine is used inside of assert() only ****
440**
441** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000442*/
drh0ee3dbe2009-10-16 15:05:18 +0000443#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000444static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000445 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000446}
447#endif
448
danielk197792d4d7a2007-05-04 12:05:56 +0000449/*
dan5a500af2014-03-11 20:33:04 +0000450** Invalidate the overflow cache of the cursor passed as the first argument.
451** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000452*/
drh036dbec2014-03-11 23:40:44 +0000453#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000454
455/*
456** Invalidate the overflow page-list cache for all cursors opened
457** on the shared btree structure pBt.
458*/
459static void invalidateAllOverflowCache(BtShared *pBt){
460 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000461 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000462 for(p=pBt->pCursor; p; p=p->pNext){
463 invalidateOverflowCache(p);
464 }
465}
danielk197796d48e92009-06-29 06:00:37 +0000466
dan5a500af2014-03-11 20:33:04 +0000467#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000468/*
469** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000470** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000471** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000472**
473** If argument isClearTable is true, then the entire contents of the
474** table is about to be deleted. In this case invalidate all incrblob
475** cursors open on any row within the table with root-page pgnoRoot.
476**
477** Otherwise, if argument isClearTable is false, then the row with
478** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000479** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000480*/
481static void invalidateIncrblobCursors(
482 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000483 i64 iRow, /* The rowid that might be changing */
484 int isClearTable /* True if all rows are being deleted */
485){
486 BtCursor *p;
487 BtShared *pBt = pBtree->pBt;
488 assert( sqlite3BtreeHoldsMutex(pBtree) );
489 for(p=pBt->pCursor; p; p=p->pNext){
drh036dbec2014-03-11 23:40:44 +0000490 if( (p->curFlags & BTCF_Incrblob)!=0 && (isClearTable || p->info.nKey==iRow) ){
danielk197796d48e92009-06-29 06:00:37 +0000491 p->eState = CURSOR_INVALID;
492 }
493 }
494}
495
danielk197792d4d7a2007-05-04 12:05:56 +0000496#else
dan5a500af2014-03-11 20:33:04 +0000497 /* Stub function when INCRBLOB is omitted */
drheeb844a2009-08-08 18:01:07 +0000498 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000499#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000500
drh980b1a72006-08-16 16:42:48 +0000501/*
danielk1977bea2a942009-01-20 17:06:27 +0000502** Set bit pgno of the BtShared.pHasContent bitvec. This is called
503** when a page that previously contained data becomes a free-list leaf
504** page.
505**
506** The BtShared.pHasContent bitvec exists to work around an obscure
507** bug caused by the interaction of two useful IO optimizations surrounding
508** free-list leaf pages:
509**
510** 1) When all data is deleted from a page and the page becomes
511** a free-list leaf page, the page is not written to the database
512** (as free-list leaf pages contain no meaningful data). Sometimes
513** such a page is not even journalled (as it will not be modified,
514** why bother journalling it?).
515**
516** 2) When a free-list leaf page is reused, its content is not read
517** from the database or written to the journal file (why should it
518** be, if it is not at all meaningful?).
519**
520** By themselves, these optimizations work fine and provide a handy
521** performance boost to bulk delete or insert operations. However, if
522** a page is moved to the free-list and then reused within the same
523** transaction, a problem comes up. If the page is not journalled when
524** it is moved to the free-list and it is also not journalled when it
525** is extracted from the free-list and reused, then the original data
526** may be lost. In the event of a rollback, it may not be possible
527** to restore the database to its original configuration.
528**
529** The solution is the BtShared.pHasContent bitvec. Whenever a page is
530** moved to become a free-list leaf page, the corresponding bit is
531** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000532** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000533** set in BtShared.pHasContent. The contents of the bitvec are cleared
534** at the end of every transaction.
535*/
536static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
537 int rc = SQLITE_OK;
538 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000539 assert( pgno<=pBt->nPage );
540 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000541 if( !pBt->pHasContent ){
542 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000543 }
544 }
545 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
546 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
547 }
548 return rc;
549}
550
551/*
552** Query the BtShared.pHasContent vector.
553**
554** This function is called when a free-list leaf page is removed from the
555** free-list for reuse. It returns false if it is safe to retrieve the
556** page from the pager layer with the 'no-content' flag set. True otherwise.
557*/
558static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
559 Bitvec *p = pBt->pHasContent;
560 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
561}
562
563/*
564** Clear (destroy) the BtShared.pHasContent bitvec. This should be
565** invoked at the conclusion of each write-transaction.
566*/
567static void btreeClearHasContent(BtShared *pBt){
568 sqlite3BitvecDestroy(pBt->pHasContent);
569 pBt->pHasContent = 0;
570}
571
572/*
drh138eeeb2013-03-27 03:15:23 +0000573** Release all of the apPage[] pages for a cursor.
574*/
575static void btreeReleaseAllCursorPages(BtCursor *pCur){
576 int i;
577 for(i=0; i<=pCur->iPage; i++){
578 releasePage(pCur->apPage[i]);
579 pCur->apPage[i] = 0;
580 }
581 pCur->iPage = -1;
582}
583
584
585/*
drh980b1a72006-08-16 16:42:48 +0000586** Save the current cursor position in the variables BtCursor.nKey
587** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000588**
589** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
590** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000591*/
592static int saveCursorPosition(BtCursor *pCur){
593 int rc;
594
595 assert( CURSOR_VALID==pCur->eState );
596 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000597 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000598
599 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000600 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000601
602 /* If this is an intKey table, then the above call to BtreeKeySize()
603 ** stores the integer key in pCur->nKey. In this case this value is
604 ** all that is required. Otherwise, if pCur is not open on an intKey
605 ** table, then malloc space for and store the pCur->nKey bytes of key
606 ** data.
607 */
drh4c301aa2009-07-15 17:25:45 +0000608 if( 0==pCur->apPage[0]->intKey ){
drhf49661a2008-12-10 16:45:50 +0000609 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000610 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000611 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000612 if( rc==SQLITE_OK ){
613 pCur->pKey = pKey;
614 }else{
drh17435752007-08-16 04:30:38 +0000615 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000616 }
617 }else{
618 rc = SQLITE_NOMEM;
619 }
620 }
danielk197771d5d2c2008-09-29 11:49:47 +0000621 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000622
623 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000624 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000625 pCur->eState = CURSOR_REQUIRESEEK;
626 }
627
danielk197792d4d7a2007-05-04 12:05:56 +0000628 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000629 return rc;
630}
631
632/*
drh0ee3dbe2009-10-16 15:05:18 +0000633** Save the positions of all cursors (except pExcept) that are open on
634** the table with root-page iRoot. Usually, this is called just before cursor
drh980b1a72006-08-16 16:42:48 +0000635** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
636*/
637static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
638 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000639 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000640 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000641 for(p=pBt->pCursor; p; p=p->pNext){
drh138eeeb2013-03-27 03:15:23 +0000642 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
643 if( p->eState==CURSOR_VALID ){
644 int rc = saveCursorPosition(p);
645 if( SQLITE_OK!=rc ){
646 return rc;
647 }
648 }else{
649 testcase( p->iPage>0 );
650 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000651 }
652 }
653 }
654 return SQLITE_OK;
655}
656
657/*
drhbf700f32007-03-31 02:36:44 +0000658** Clear the current cursor position.
659*/
danielk1977be51a652008-10-08 17:58:48 +0000660void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000661 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000662 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000663 pCur->pKey = 0;
664 pCur->eState = CURSOR_INVALID;
665}
666
667/*
danielk19773509a652009-07-06 18:56:13 +0000668** In this version of BtreeMoveto, pKey is a packed index record
669** such as is generated by the OP_MakeRecord opcode. Unpack the
670** record and then call BtreeMovetoUnpacked() to do the work.
671*/
672static int btreeMoveto(
673 BtCursor *pCur, /* Cursor open on the btree to be searched */
674 const void *pKey, /* Packed key if the btree is an index */
675 i64 nKey, /* Integer key for tables. Size of pKey for indices */
676 int bias, /* Bias search to the high end */
677 int *pRes /* Write search results here */
678){
679 int rc; /* Status code */
680 UnpackedRecord *pIdxKey; /* Unpacked index key */
drhb4139222013-11-06 14:36:08 +0000681 char aSpace[200]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000682 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000683
684 if( pKey ){
685 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000686 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
687 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
688 );
danielk19773509a652009-07-06 18:56:13 +0000689 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000690 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000691 if( pIdxKey->nField==0 ){
692 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
693 return SQLITE_CORRUPT_BKPT;
694 }
danielk19773509a652009-07-06 18:56:13 +0000695 }else{
696 pIdxKey = 0;
697 }
698 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000699 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000700 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000701 }
702 return rc;
703}
704
705/*
drh980b1a72006-08-16 16:42:48 +0000706** Restore the cursor to the position it was in (or as close to as possible)
707** when saveCursorPosition() was called. Note that this call deletes the
708** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000709** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000710** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000711*/
danielk197730548662009-07-09 05:07:37 +0000712static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000713 int rc;
drh1fee73e2007-08-29 04:00:57 +0000714 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000715 assert( pCur->eState>=CURSOR_REQUIRESEEK );
716 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000717 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000718 }
drh980b1a72006-08-16 16:42:48 +0000719 pCur->eState = CURSOR_INVALID;
drh4c301aa2009-07-15 17:25:45 +0000720 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
drh980b1a72006-08-16 16:42:48 +0000721 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000722 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000723 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000724 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh9b47ee32013-08-20 03:13:51 +0000725 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
726 pCur->eState = CURSOR_SKIPNEXT;
727 }
drh980b1a72006-08-16 16:42:48 +0000728 }
729 return rc;
730}
731
drha3460582008-07-11 21:02:53 +0000732#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000733 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000734 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000735 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000736
drha3460582008-07-11 21:02:53 +0000737/*
738** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000739** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000740** at is deleted out from under them.
741**
742** This routine returns an error code if something goes wrong. The
drh86dd3712014-03-25 11:00:21 +0000743** integer *pHasMoved is set as follows:
744**
745** 0: The cursor is unchanged
746** 1: The cursor is still pointing at the same row, but the pointers
747** returned by sqlite3BtreeKeyFetch() or sqlite3BtreeDataFetch()
748** might now be invalid because of a balance() or other change to the
749** b-tree.
750** 2: The cursor is no longer pointing to the row. The row might have
751** been deleted out from under the cursor.
drha3460582008-07-11 21:02:53 +0000752*/
753int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
754 int rc;
755
drh86dd3712014-03-25 11:00:21 +0000756 if( pCur->eState==CURSOR_VALID ){
757 *pHasMoved = 0;
758 return SQLITE_OK;
759 }
drha3460582008-07-11 21:02:53 +0000760 rc = restoreCursorPosition(pCur);
761 if( rc ){
drh86dd3712014-03-25 11:00:21 +0000762 *pHasMoved = 2;
drha3460582008-07-11 21:02:53 +0000763 return rc;
764 }
drh9b47ee32013-08-20 03:13:51 +0000765 if( pCur->eState!=CURSOR_VALID || NEVER(pCur->skipNext!=0) ){
drh86dd3712014-03-25 11:00:21 +0000766 *pHasMoved = 2;
drha3460582008-07-11 21:02:53 +0000767 }else{
drh86dd3712014-03-25 11:00:21 +0000768 *pHasMoved = 1;
drha3460582008-07-11 21:02:53 +0000769 }
770 return SQLITE_OK;
771}
772
danielk1977599fcba2004-11-08 07:13:13 +0000773#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000774/*
drha3152892007-05-05 11:48:52 +0000775** Given a page number of a regular database page, return the page
776** number for the pointer-map page that contains the entry for the
777** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000778**
779** Return 0 (not a valid page) for pgno==1 since there is
780** no pointer map associated with page 1. The integrity_check logic
781** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000782*/
danielk1977266664d2006-02-10 08:24:21 +0000783static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000784 int nPagesPerMapPage;
785 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000786 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000787 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000788 nPagesPerMapPage = (pBt->usableSize/5)+1;
789 iPtrMap = (pgno-2)/nPagesPerMapPage;
790 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000791 if( ret==PENDING_BYTE_PAGE(pBt) ){
792 ret++;
793 }
794 return ret;
795}
danielk1977a19df672004-11-03 11:37:07 +0000796
danielk1977afcdd022004-10-31 16:25:42 +0000797/*
danielk1977afcdd022004-10-31 16:25:42 +0000798** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000799**
800** This routine updates the pointer map entry for page number 'key'
801** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000802**
803** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
804** a no-op. If an error occurs, the appropriate error code is written
805** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000806*/
drh98add2e2009-07-20 17:11:49 +0000807static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000808 DbPage *pDbPage; /* The pointer map page */
809 u8 *pPtrmap; /* The pointer map data */
810 Pgno iPtrmap; /* The pointer map page number */
811 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000812 int rc; /* Return code from subfunctions */
813
814 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000815
drh1fee73e2007-08-29 04:00:57 +0000816 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000817 /* The master-journal page number must never be used as a pointer map page */
818 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
819
danielk1977ac11ee62005-01-15 12:45:51 +0000820 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000821 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000822 *pRC = SQLITE_CORRUPT_BKPT;
823 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000824 }
danielk1977266664d2006-02-10 08:24:21 +0000825 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000826 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000827 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000828 *pRC = rc;
829 return;
danielk1977afcdd022004-10-31 16:25:42 +0000830 }
danielk19778c666b12008-07-18 09:34:57 +0000831 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000832 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000833 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000834 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000835 }
drhfc243732011-05-17 15:21:56 +0000836 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000837 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000838
drh615ae552005-01-16 23:21:00 +0000839 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
840 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000841 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000842 if( rc==SQLITE_OK ){
843 pPtrmap[offset] = eType;
844 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000845 }
danielk1977afcdd022004-10-31 16:25:42 +0000846 }
847
drh4925a552009-07-07 11:39:58 +0000848ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000849 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000850}
851
852/*
853** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000854**
855** This routine retrieves the pointer map entry for page 'key', writing
856** the type and parent page number to *pEType and *pPgno respectively.
857** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000858*/
danielk1977aef0bf62005-12-30 16:28:01 +0000859static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000860 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000861 int iPtrmap; /* Pointer map page index */
862 u8 *pPtrmap; /* Pointer map page data */
863 int offset; /* Offset of entry in pointer map */
864 int rc;
865
drh1fee73e2007-08-29 04:00:57 +0000866 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000867
danielk1977266664d2006-02-10 08:24:21 +0000868 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000869 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000870 if( rc!=0 ){
871 return rc;
872 }
danielk19773b8a05f2007-03-19 17:44:26 +0000873 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000874
danielk19778c666b12008-07-18 09:34:57 +0000875 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000876 if( offset<0 ){
877 sqlite3PagerUnref(pDbPage);
878 return SQLITE_CORRUPT_BKPT;
879 }
880 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000881 assert( pEType!=0 );
882 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000883 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000884
danielk19773b8a05f2007-03-19 17:44:26 +0000885 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000886 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000887 return SQLITE_OK;
888}
889
danielk197785d90ca2008-07-19 14:25:15 +0000890#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000891 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000892 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000893 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000894#endif
danielk1977afcdd022004-10-31 16:25:42 +0000895
drh0d316a42002-08-11 20:10:47 +0000896/*
drh271efa52004-05-30 19:19:05 +0000897** Given a btree page and a cell index (0 means the first cell on
898** the page, 1 means the second cell, and so forth) return a pointer
899** to the cell content.
900**
901** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000902*/
drh1688c862008-07-18 02:44:17 +0000903#define findCell(P,I) \
drh3def2352011-11-11 00:27:15 +0000904 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +0000905#define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I)))))
906
drh43605152004-05-29 21:46:49 +0000907
908/*
drh93a960a2008-07-10 00:32:42 +0000909** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000910** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000911*/
912static u8 *findOverflowCell(MemPage *pPage, int iCell){
913 int i;
drh1fee73e2007-08-29 04:00:57 +0000914 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000915 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000916 int k;
drh2cbd78b2012-02-02 19:37:18 +0000917 k = pPage->aiOvfl[i];
drh6d08b4d2004-07-20 12:45:22 +0000918 if( k<=iCell ){
919 if( k==iCell ){
drh2cbd78b2012-02-02 19:37:18 +0000920 return pPage->apOvfl[i];
drh43605152004-05-29 21:46:49 +0000921 }
922 iCell--;
923 }
924 }
danielk19771cc5ed82007-05-16 17:28:43 +0000925 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000926}
927
928/*
929** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000930** are two versions of this function. btreeParseCell() takes a
931** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000932** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000933**
934** Within this file, the parseCell() macro can be called instead of
danielk197730548662009-07-09 05:07:37 +0000935** btreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000936*/
danielk197730548662009-07-09 05:07:37 +0000937static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000938 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000939 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000940 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000941){
drhf49661a2008-12-10 16:45:50 +0000942 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000943 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000944
drh1fee73e2007-08-29 04:00:57 +0000945 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000946
drh43605152004-05-29 21:46:49 +0000947 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000948 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000949 n = pPage->childPtrSize;
950 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000951 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000952 if( pPage->hasData ){
drh13c77bf2013-08-21 15:52:22 +0000953 assert( n==0 );
954 n = getVarint32(pCell, nPayload);
drh79df1f42008-07-18 00:57:33 +0000955 }else{
956 nPayload = 0;
957 }
drh1bd10f82008-12-10 21:19:56 +0000958 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000959 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000960 }else{
drh79df1f42008-07-18 00:57:33 +0000961 pInfo->nData = 0;
962 n += getVarint32(&pCell[n], nPayload);
963 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000964 }
drh72365832007-03-06 15:53:44 +0000965 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000966 pInfo->nHeader = n;
drh0a45c272009-07-08 01:49:11 +0000967 testcase( nPayload==pPage->maxLocal );
968 testcase( nPayload==pPage->maxLocal+1 );
drh79df1f42008-07-18 00:57:33 +0000969 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000970 /* This is the (easy) common case where the entire payload fits
971 ** on the local page. No overflow is required.
972 */
drh41692e92011-01-25 04:34:51 +0000973 if( (pInfo->nSize = (u16)(n+nPayload))<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +0000974 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000975 pInfo->iOverflow = 0;
drh6f11bef2004-05-13 01:12:56 +0000976 }else{
drh271efa52004-05-30 19:19:05 +0000977 /* If the payload will not fit completely on the local page, we have
978 ** to decide how much to store locally and how much to spill onto
979 ** overflow pages. The strategy is to minimize the amount of unused
980 ** space on overflow pages while keeping the amount of local storage
981 ** in between minLocal and maxLocal.
982 **
983 ** Warning: changing the way overflow payload is distributed in any
984 ** way will result in an incompatible file format.
985 */
986 int minLocal; /* Minimum amount of payload held locally */
987 int maxLocal; /* Maximum amount of payload held locally */
988 int surplus; /* Overflow payload available for local storage */
989
990 minLocal = pPage->minLocal;
991 maxLocal = pPage->maxLocal;
992 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000993 testcase( surplus==maxLocal );
994 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +0000995 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000996 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000997 }else{
drhf49661a2008-12-10 16:45:50 +0000998 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000999 }
drhf49661a2008-12-10 16:45:50 +00001000 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +00001001 pInfo->nSize = pInfo->iOverflow + 4;
1002 }
drh3aac2dd2004-04-26 14:10:20 +00001003}
danielk19771cc5ed82007-05-16 17:28:43 +00001004#define parseCell(pPage, iCell, pInfo) \
danielk197730548662009-07-09 05:07:37 +00001005 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
1006static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001007 MemPage *pPage, /* Page containing the cell */
1008 int iCell, /* The cell index. First cell is 0 */
1009 CellInfo *pInfo /* Fill in this structure */
1010){
danielk19771cc5ed82007-05-16 17:28:43 +00001011 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +00001012}
drh3aac2dd2004-04-26 14:10:20 +00001013
1014/*
drh43605152004-05-29 21:46:49 +00001015** Compute the total number of bytes that a Cell needs in the cell
1016** data area of the btree-page. The return number includes the cell
1017** data header and the local payload, but not any overflow page or
1018** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +00001019*/
danielk1977ae5558b2009-04-29 11:31:47 +00001020static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1021 u8 *pIter = &pCell[pPage->childPtrSize];
1022 u32 nSize;
1023
1024#ifdef SQLITE_DEBUG
1025 /* The value returned by this function should always be the same as
1026 ** the (CellInfo.nSize) value found by doing a full parse of the
1027 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1028 ** this function verifies that this invariant is not violated. */
1029 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +00001030 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001031#endif
1032
1033 if( pPage->intKey ){
1034 u8 *pEnd;
1035 if( pPage->hasData ){
1036 pIter += getVarint32(pIter, nSize);
1037 }else{
1038 nSize = 0;
1039 }
1040
1041 /* pIter now points at the 64-bit integer key value, a variable length
1042 ** integer. The following block moves pIter to point at the first byte
1043 ** past the end of the key value. */
1044 pEnd = &pIter[9];
1045 while( (*pIter++)&0x80 && pIter<pEnd );
1046 }else{
1047 pIter += getVarint32(pIter, nSize);
1048 }
1049
drh0a45c272009-07-08 01:49:11 +00001050 testcase( nSize==pPage->maxLocal );
1051 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001052 if( nSize>pPage->maxLocal ){
1053 int minLocal = pPage->minLocal;
1054 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001055 testcase( nSize==pPage->maxLocal );
1056 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001057 if( nSize>pPage->maxLocal ){
1058 nSize = minLocal;
1059 }
1060 nSize += 4;
1061 }
shane75ac1de2009-06-09 18:58:52 +00001062 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001063
1064 /* The minimum size of any cell is 4 bytes. */
1065 if( nSize<4 ){
1066 nSize = 4;
1067 }
1068
1069 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +00001070 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001071}
drh0ee3dbe2009-10-16 15:05:18 +00001072
1073#ifdef SQLITE_DEBUG
1074/* This variation on cellSizePtr() is used inside of assert() statements
1075** only. */
drha9121e42008-02-19 14:59:35 +00001076static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +00001077 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001078}
danielk1977bc6ada42004-06-30 08:20:16 +00001079#endif
drh3b7511c2001-05-26 13:15:44 +00001080
danielk197779a40da2005-01-16 08:00:01 +00001081#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001082/*
danielk197726836652005-01-17 01:33:13 +00001083** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001084** to an overflow page, insert an entry into the pointer-map
1085** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001086*/
drh98add2e2009-07-20 17:11:49 +00001087static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001088 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001089 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001090 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001091 btreeParseCellPtr(pPage, pCell, &info);
drhfa67c3c2008-07-11 02:21:40 +00001092 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +00001093 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001094 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001095 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001096 }
danielk1977ac11ee62005-01-15 12:45:51 +00001097}
danielk197779a40da2005-01-16 08:00:01 +00001098#endif
1099
danielk1977ac11ee62005-01-15 12:45:51 +00001100
drhda200cc2004-05-09 11:51:38 +00001101/*
drh72f82862001-05-24 21:06:34 +00001102** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001103** end of the page and all free space is collected into one
1104** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001105** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001106*/
shane0af3f892008-11-12 04:55:34 +00001107static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001108 int i; /* Loop counter */
1109 int pc; /* Address of a i-th cell */
drh43605152004-05-29 21:46:49 +00001110 int hdr; /* Offset to the page header */
1111 int size; /* Size of a cell */
1112 int usableSize; /* Number of usable bytes on a page */
1113 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001114 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001115 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001116 unsigned char *data; /* The page data */
1117 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001118 int iCellFirst; /* First allowable cell index */
1119 int iCellLast; /* Last possible cell index */
1120
drh2af926b2001-05-15 00:39:25 +00001121
danielk19773b8a05f2007-03-19 17:44:26 +00001122 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001123 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001124 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001125 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001126 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001127 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001128 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001129 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001130 cellOffset = pPage->cellOffset;
1131 nCell = pPage->nCell;
1132 assert( nCell==get2byte(&data[hdr+3]) );
1133 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001134 cbrk = get2byte(&data[hdr+5]);
1135 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1136 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001137 iCellFirst = cellOffset + 2*nCell;
1138 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001139 for(i=0; i<nCell; i++){
1140 u8 *pAddr; /* The i-th cell pointer */
1141 pAddr = &data[cellOffset + i*2];
1142 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001143 testcase( pc==iCellFirst );
1144 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001145#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001146 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001147 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1148 */
1149 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001150 return SQLITE_CORRUPT_BKPT;
1151 }
drh17146622009-07-07 17:38:38 +00001152#endif
1153 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001154 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001155 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001156#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1157 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001158 return SQLITE_CORRUPT_BKPT;
1159 }
drh17146622009-07-07 17:38:38 +00001160#else
1161 if( cbrk<iCellFirst || pc+size>usableSize ){
1162 return SQLITE_CORRUPT_BKPT;
1163 }
1164#endif
drh7157e1d2009-07-09 13:25:32 +00001165 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001166 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001167 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001168 memcpy(&data[cbrk], &temp[pc], size);
1169 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001170 }
drh17146622009-07-07 17:38:38 +00001171 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001172 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001173 data[hdr+1] = 0;
1174 data[hdr+2] = 0;
1175 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001176 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001177 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001178 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001179 return SQLITE_CORRUPT_BKPT;
1180 }
shane0af3f892008-11-12 04:55:34 +00001181 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001182}
1183
drha059ad02001-04-17 20:09:11 +00001184/*
danielk19776011a752009-04-01 16:25:32 +00001185** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001186** as the first argument. Write into *pIdx the index into pPage->aData[]
1187** of the first byte of allocated space. Return either SQLITE_OK or
1188** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001189**
drh0a45c272009-07-08 01:49:11 +00001190** The caller guarantees that there is sufficient space to make the
1191** allocation. This routine might need to defragment in order to bring
1192** all the space together, however. This routine will avoid using
1193** the first two bytes past the cell pointer area since presumably this
1194** allocation is being made in order to insert a new cell, so we will
1195** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001196*/
drh0a45c272009-07-08 01:49:11 +00001197static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001198 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1199 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1200 int nFrag; /* Number of fragmented bytes on pPage */
drh0a45c272009-07-08 01:49:11 +00001201 int top; /* First byte of cell content area */
1202 int gap; /* First byte of gap between cell pointers and cell content */
1203 int rc; /* Integer return code */
drh00ce3942009-12-06 03:35:51 +00001204 int usableSize; /* Usable size of the page */
drh43605152004-05-29 21:46:49 +00001205
danielk19773b8a05f2007-03-19 17:44:26 +00001206 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001207 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001208 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001209 assert( nByte>=0 ); /* Minimum cell size is 4 */
1210 assert( pPage->nFree>=nByte );
1211 assert( pPage->nOverflow==0 );
drh00ce3942009-12-06 03:35:51 +00001212 usableSize = pPage->pBt->usableSize;
1213 assert( nByte < usableSize-8 );
drh43605152004-05-29 21:46:49 +00001214
1215 nFrag = data[hdr+7];
drh0a45c272009-07-08 01:49:11 +00001216 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1217 gap = pPage->cellOffset + 2*pPage->nCell;
drh5d433ce2010-08-14 16:02:52 +00001218 top = get2byteNotZero(&data[hdr+5]);
drh7157e1d2009-07-09 13:25:32 +00001219 if( gap>top ) return SQLITE_CORRUPT_BKPT;
drh0a45c272009-07-08 01:49:11 +00001220 testcase( gap+2==top );
1221 testcase( gap+1==top );
1222 testcase( gap==top );
1223
danielk19776011a752009-04-01 16:25:32 +00001224 if( nFrag>=60 ){
drh0a45c272009-07-08 01:49:11 +00001225 /* Always defragment highly fragmented pages */
1226 rc = defragmentPage(pPage);
1227 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001228 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001229 }else if( gap+2<=top ){
danielk19776011a752009-04-01 16:25:32 +00001230 /* Search the freelist looking for a free slot big enough to satisfy
1231 ** the request. The allocation is made from the first free slot in
drhf7b54962013-05-28 12:11:54 +00001232 ** the list that is large enough to accommodate it.
danielk19776011a752009-04-01 16:25:32 +00001233 */
1234 int pc, addr;
1235 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
drh00ce3942009-12-06 03:35:51 +00001236 int size; /* Size of the free slot */
1237 if( pc>usableSize-4 || pc<addr+4 ){
1238 return SQLITE_CORRUPT_BKPT;
1239 }
1240 size = get2byte(&data[pc+2]);
drh43605152004-05-29 21:46:49 +00001241 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001242 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001243 testcase( x==4 );
1244 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001245 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +00001246 /* Remove the slot from the free-list. Update the number of
1247 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001248 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +00001249 data[hdr+7] = (u8)(nFrag + x);
drh00ce3942009-12-06 03:35:51 +00001250 }else if( size+pc > usableSize ){
1251 return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00001252 }else{
danielk1977fad91942009-04-29 17:49:59 +00001253 /* The slot remains on the free-list. Reduce its size to account
1254 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001255 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001256 }
drh0a45c272009-07-08 01:49:11 +00001257 *pIdx = pc + x;
1258 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001259 }
drh9e572e62004-04-23 23:43:10 +00001260 }
1261 }
drh43605152004-05-29 21:46:49 +00001262
drh0a45c272009-07-08 01:49:11 +00001263 /* Check to make sure there is enough space in the gap to satisfy
1264 ** the allocation. If not, defragment.
1265 */
1266 testcase( gap+2+nByte==top );
1267 if( gap+2+nByte>top ){
1268 rc = defragmentPage(pPage);
1269 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001270 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001271 assert( gap+nByte<=top );
1272 }
1273
1274
drh43605152004-05-29 21:46:49 +00001275 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001276 ** and the cell content area. The btreeInitPage() call has already
1277 ** validated the freelist. Given that the freelist is valid, there
1278 ** is no way that the allocation can extend off the end of the page.
1279 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001280 */
drh0a45c272009-07-08 01:49:11 +00001281 top -= nByte;
drh43605152004-05-29 21:46:49 +00001282 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001283 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001284 *pIdx = top;
1285 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001286}
1287
1288/*
drh9e572e62004-04-23 23:43:10 +00001289** Return a section of the pPage->aData to the freelist.
1290** The first byte of the new free block is pPage->aDisk[start]
1291** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001292**
1293** Most of the effort here is involved in coalesing adjacent
1294** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001295*/
shanedcc50b72008-11-13 18:29:50 +00001296static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001297 int addr, pbegin, hdr;
drh0a45c272009-07-08 01:49:11 +00001298 int iLast; /* Largest possible freeblock offset */
drh9e572e62004-04-23 23:43:10 +00001299 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001300
drh9e572e62004-04-23 23:43:10 +00001301 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001302 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drhc046e3e2009-07-15 11:26:44 +00001303 assert( start>=pPage->hdrOffset+6+pPage->childPtrSize );
drhfcd71b62011-04-05 22:08:24 +00001304 assert( (start + size) <= (int)pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001305 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001306 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001307
drhc9166342012-01-05 23:32:06 +00001308 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001309 /* Overwrite deleted information with zeros when the secure_delete
1310 ** option is enabled */
1311 memset(&data[start], 0, size);
1312 }
drhfcce93f2006-02-22 03:08:32 +00001313
drh0a45c272009-07-08 01:49:11 +00001314 /* Add the space back into the linked list of freeblocks. Note that
danielk197730548662009-07-09 05:07:37 +00001315 ** even though the freeblock list was checked by btreeInitPage(),
1316 ** btreeInitPage() did not detect overlapping cells or
drhb908d762009-07-08 16:54:40 +00001317 ** freeblocks that overlapped cells. Nor does it detect when the
1318 ** cell content area exceeds the value in the page header. If these
1319 ** situations arise, then subsequent insert operations might corrupt
1320 ** the freelist. So we do need to check for corruption while scanning
1321 ** the freelist.
drh0a45c272009-07-08 01:49:11 +00001322 */
drh43605152004-05-29 21:46:49 +00001323 hdr = pPage->hdrOffset;
1324 addr = hdr + 1;
drh0a45c272009-07-08 01:49:11 +00001325 iLast = pPage->pBt->usableSize - 4;
drh35a25da2009-07-08 15:14:50 +00001326 assert( start<=iLast );
drh3aac2dd2004-04-26 14:10:20 +00001327 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drh35a25da2009-07-08 15:14:50 +00001328 if( pbegin<addr+4 ){
shanedcc50b72008-11-13 18:29:50 +00001329 return SQLITE_CORRUPT_BKPT;
1330 }
drh3aac2dd2004-04-26 14:10:20 +00001331 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001332 }
drh0a45c272009-07-08 01:49:11 +00001333 if( pbegin>iLast ){
shanedcc50b72008-11-13 18:29:50 +00001334 return SQLITE_CORRUPT_BKPT;
1335 }
drh3aac2dd2004-04-26 14:10:20 +00001336 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001337 put2byte(&data[addr], start);
1338 put2byte(&data[start], pbegin);
1339 put2byte(&data[start+2], size);
shane36840fd2009-06-26 16:32:13 +00001340 pPage->nFree = pPage->nFree + (u16)size;
drh9e572e62004-04-23 23:43:10 +00001341
1342 /* Coalesce adjacent free blocks */
drh0a45c272009-07-08 01:49:11 +00001343 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001344 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001345 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001346 assert( pbegin>addr );
drhfcd71b62011-04-05 22:08:24 +00001347 assert( pbegin <= (int)pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001348 pnext = get2byte(&data[pbegin]);
1349 psize = get2byte(&data[pbegin+2]);
1350 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1351 int frag = pnext - (pbegin+psize);
drh0a45c272009-07-08 01:49:11 +00001352 if( (frag<0) || (frag>(int)data[hdr+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001353 return SQLITE_CORRUPT_BKPT;
1354 }
drh0a45c272009-07-08 01:49:11 +00001355 data[hdr+7] -= (u8)frag;
drhf49661a2008-12-10 16:45:50 +00001356 x = get2byte(&data[pnext]);
1357 put2byte(&data[pbegin], x);
1358 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1359 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001360 }else{
drh3aac2dd2004-04-26 14:10:20 +00001361 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001362 }
1363 }
drh7e3b0a02001-04-28 16:52:40 +00001364
drh43605152004-05-29 21:46:49 +00001365 /* If the cell content area begins with a freeblock, remove it. */
1366 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1367 int top;
1368 pbegin = get2byte(&data[hdr+1]);
1369 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001370 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1371 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001372 }
drhc5053fb2008-11-27 02:22:10 +00001373 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001374 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001375}
1376
1377/*
drh271efa52004-05-30 19:19:05 +00001378** Decode the flags byte (the first byte of the header) for a page
1379** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001380**
1381** Only the following combinations are supported. Anything different
1382** indicates a corrupt database files:
1383**
1384** PTF_ZERODATA
1385** PTF_ZERODATA | PTF_LEAF
1386** PTF_LEAFDATA | PTF_INTKEY
1387** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001388*/
drh44845222008-07-17 18:39:57 +00001389static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001390 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001391
1392 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001393 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001394 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001395 flagByte &= ~PTF_LEAF;
1396 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001397 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001398 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1399 pPage->intKey = 1;
1400 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001401 pPage->maxLocal = pBt->maxLeaf;
1402 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001403 }else if( flagByte==PTF_ZERODATA ){
1404 pPage->intKey = 0;
1405 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001406 pPage->maxLocal = pBt->maxLocal;
1407 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001408 }else{
1409 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001410 }
drhc9166342012-01-05 23:32:06 +00001411 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001412 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001413}
1414
1415/*
drh7e3b0a02001-04-28 16:52:40 +00001416** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001417**
1418** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001419** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001420** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1421** guarantee that the page is well-formed. It only shows that
1422** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001423*/
danielk197730548662009-07-09 05:07:37 +00001424static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001425
danielk197771d5d2c2008-09-29 11:49:47 +00001426 assert( pPage->pBt!=0 );
1427 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001428 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001429 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1430 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001431
1432 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001433 u16 pc; /* Address of a freeblock within pPage->aData[] */
1434 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001435 u8 *data; /* Equal to pPage->aData */
1436 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001437 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001438 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001439 int nFree; /* Number of unused bytes on the page */
1440 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001441 int iCellFirst; /* First allowable cell or freeblock offset */
1442 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001443
1444 pBt = pPage->pBt;
1445
danielk1977eaa06f62008-09-18 17:34:44 +00001446 hdr = pPage->hdrOffset;
1447 data = pPage->aData;
1448 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001449 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1450 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001451 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001452 usableSize = pBt->usableSize;
1453 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
drh3def2352011-11-11 00:27:15 +00001454 pPage->aDataEnd = &data[usableSize];
1455 pPage->aCellIdx = &data[cellOffset];
drh5d433ce2010-08-14 16:02:52 +00001456 top = get2byteNotZero(&data[hdr+5]);
danielk1977eaa06f62008-09-18 17:34:44 +00001457 pPage->nCell = get2byte(&data[hdr+3]);
1458 if( pPage->nCell>MX_CELL(pBt) ){
1459 /* To many cells for a single page. The page must be corrupt */
1460 return SQLITE_CORRUPT_BKPT;
1461 }
drhb908d762009-07-08 16:54:40 +00001462 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001463
shane5eff7cf2009-08-10 03:57:58 +00001464 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001465 ** of page when parsing a cell.
1466 **
1467 ** The following block of code checks early to see if a cell extends
1468 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1469 ** returned if it does.
1470 */
drh0a45c272009-07-08 01:49:11 +00001471 iCellFirst = cellOffset + 2*pPage->nCell;
1472 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001473#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001474 {
drh69e931e2009-06-03 21:04:35 +00001475 int i; /* Index into the cell pointer array */
1476 int sz; /* Size of a cell */
1477
drh69e931e2009-06-03 21:04:35 +00001478 if( !pPage->leaf ) iCellLast--;
1479 for(i=0; i<pPage->nCell; i++){
1480 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001481 testcase( pc==iCellFirst );
1482 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001483 if( pc<iCellFirst || pc>iCellLast ){
1484 return SQLITE_CORRUPT_BKPT;
1485 }
1486 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001487 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001488 if( pc+sz>usableSize ){
1489 return SQLITE_CORRUPT_BKPT;
1490 }
1491 }
drh0a45c272009-07-08 01:49:11 +00001492 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001493 }
1494#endif
1495
danielk1977eaa06f62008-09-18 17:34:44 +00001496 /* Compute the total free space on the page */
1497 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001498 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001499 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001500 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001501 if( pc<iCellFirst || pc>iCellLast ){
dan4361e792009-08-14 17:01:22 +00001502 /* Start of free block is off the page */
danielk1977eaa06f62008-09-18 17:34:44 +00001503 return SQLITE_CORRUPT_BKPT;
1504 }
1505 next = get2byte(&data[pc]);
1506 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001507 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1508 /* Free blocks must be in ascending order. And the last byte of
drhf2f105d2012-08-20 15:53:54 +00001509 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001510 return SQLITE_CORRUPT_BKPT;
1511 }
shane85095702009-06-15 16:27:08 +00001512 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001513 pc = next;
1514 }
danielk197793c829c2009-06-03 17:26:17 +00001515
1516 /* At this point, nFree contains the sum of the offset to the start
1517 ** of the cell-content area plus the number of free bytes within
1518 ** the cell-content area. If this is greater than the usable-size
1519 ** of the page, then the page must be corrupted. This check also
1520 ** serves to verify that the offset to the start of the cell-content
1521 ** area, according to the page header, lies within the page.
1522 */
1523 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001524 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001525 }
shane5eff7cf2009-08-10 03:57:58 +00001526 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001527 pPage->isInit = 1;
1528 }
drh9e572e62004-04-23 23:43:10 +00001529 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001530}
1531
1532/*
drh8b2f49b2001-06-08 00:21:52 +00001533** Set up a raw page so that it looks like a database page holding
1534** no entries.
drhbd03cae2001-06-02 02:40:57 +00001535*/
drh9e572e62004-04-23 23:43:10 +00001536static void zeroPage(MemPage *pPage, int flags){
1537 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001538 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001539 u8 hdr = pPage->hdrOffset;
1540 u16 first;
drh9e572e62004-04-23 23:43:10 +00001541
danielk19773b8a05f2007-03-19 17:44:26 +00001542 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001543 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1544 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001545 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001546 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001547 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001548 memset(&data[hdr], 0, pBt->usableSize - hdr);
1549 }
drh1bd10f82008-12-10 21:19:56 +00001550 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001551 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001552 memset(&data[hdr+1], 0, 4);
1553 data[hdr+7] = 0;
1554 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001555 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001556 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00001557 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001558 pPage->aDataEnd = &data[pBt->usableSize];
1559 pPage->aCellIdx = &data[first];
drh43605152004-05-29 21:46:49 +00001560 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001561 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1562 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001563 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001564 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001565}
1566
drh897a8202008-09-18 01:08:15 +00001567
1568/*
1569** Convert a DbPage obtained from the pager into a MemPage used by
1570** the btree layer.
1571*/
1572static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1573 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1574 pPage->aData = sqlite3PagerGetData(pDbPage);
1575 pPage->pDbPage = pDbPage;
1576 pPage->pBt = pBt;
1577 pPage->pgno = pgno;
1578 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1579 return pPage;
1580}
1581
drhbd03cae2001-06-02 02:40:57 +00001582/*
drh3aac2dd2004-04-26 14:10:20 +00001583** Get a page from the pager. Initialize the MemPage.pBt and
1584** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001585**
1586** If the noContent flag is set, it means that we do not care about
1587** the content of the page at this time. So do not go to the disk
1588** to fetch the content. Just fill in the content with zeros for now.
1589** If in the future we call sqlite3PagerWrite() on this page, that
1590** means we have started to be concerned about content and the disk
1591** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001592*/
danielk197730548662009-07-09 05:07:37 +00001593static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001594 BtShared *pBt, /* The btree */
1595 Pgno pgno, /* Number of the page to fetch */
1596 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00001597 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00001598){
drh3aac2dd2004-04-26 14:10:20 +00001599 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001600 DbPage *pDbPage;
1601
drhb00fc3b2013-08-21 23:42:32 +00001602 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00001603 assert( sqlite3_mutex_held(pBt->mutex) );
dan11dcd112013-03-15 18:29:18 +00001604 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00001605 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001606 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001607 return SQLITE_OK;
1608}
1609
1610/*
danielk1977bea2a942009-01-20 17:06:27 +00001611** Retrieve a page from the pager cache. If the requested page is not
1612** already in the pager cache return NULL. Initialize the MemPage.pBt and
1613** MemPage.aData elements if needed.
1614*/
1615static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1616 DbPage *pDbPage;
1617 assert( sqlite3_mutex_held(pBt->mutex) );
1618 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1619 if( pDbPage ){
1620 return btreePageFromDbPage(pDbPage, pgno, pBt);
1621 }
1622 return 0;
1623}
1624
1625/*
danielk197789d40042008-11-17 14:20:56 +00001626** Return the size of the database file in pages. If there is any kind of
1627** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001628*/
drhb1299152010-03-30 22:58:33 +00001629static Pgno btreePagecount(BtShared *pBt){
1630 return pBt->nPage;
1631}
1632u32 sqlite3BtreeLastPage(Btree *p){
1633 assert( sqlite3BtreeHoldsMutex(p) );
1634 assert( ((p->pBt->nPage)&0x8000000)==0 );
1635 return (int)btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001636}
1637
1638/*
danielk197789bc4bc2009-07-21 19:25:24 +00001639** Get a page from the pager and initialize it. This routine is just a
1640** convenience wrapper around separate calls to btreeGetPage() and
1641** btreeInitPage().
1642**
1643** If an error occurs, then the value *ppPage is set to is undefined. It
1644** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001645*/
1646static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00001647 BtShared *pBt, /* The database file */
1648 Pgno pgno, /* Number of the page to get */
1649 MemPage **ppPage, /* Write the page pointer here */
drhb00fc3b2013-08-21 23:42:32 +00001650 int bReadonly /* PAGER_GET_READONLY or 0 */
drhde647132004-05-07 17:57:49 +00001651){
1652 int rc;
drh1fee73e2007-08-29 04:00:57 +00001653 assert( sqlite3_mutex_held(pBt->mutex) );
drhb00fc3b2013-08-21 23:42:32 +00001654 assert( bReadonly==PAGER_GET_READONLY || bReadonly==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00001655
danba3cbf32010-06-30 04:29:03 +00001656 if( pgno>btreePagecount(pBt) ){
1657 rc = SQLITE_CORRUPT_BKPT;
1658 }else{
drhb00fc3b2013-08-21 23:42:32 +00001659 rc = btreeGetPage(pBt, pgno, ppPage, bReadonly);
drh29f2bad2013-12-09 01:04:54 +00001660 if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
danba3cbf32010-06-30 04:29:03 +00001661 rc = btreeInitPage(*ppPage);
1662 if( rc!=SQLITE_OK ){
1663 releasePage(*ppPage);
1664 }
danielk197789bc4bc2009-07-21 19:25:24 +00001665 }
drhee696e22004-08-30 16:52:17 +00001666 }
danba3cbf32010-06-30 04:29:03 +00001667
1668 testcase( pgno==0 );
1669 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00001670 return rc;
1671}
1672
1673/*
drh3aac2dd2004-04-26 14:10:20 +00001674** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001675** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001676*/
drh4b70f112004-05-02 21:12:19 +00001677static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001678 if( pPage ){
1679 assert( pPage->aData );
1680 assert( pPage->pBt );
drhda8a3302013-12-13 19:35:21 +00001681 assert( pPage->pDbPage!=0 );
drhbf4bca52007-09-06 22:19:14 +00001682 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1683 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001684 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda8a3302013-12-13 19:35:21 +00001685 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001686 }
1687}
1688
1689/*
drha6abd042004-06-09 17:37:22 +00001690** During a rollback, when the pager reloads information into the cache
1691** so that the cache is restored to its original state at the start of
1692** the transaction, for each page restored this routine is called.
1693**
1694** This routine needs to reset the extra data section at the end of the
1695** page to agree with the restored data.
1696*/
danielk1977eaa06f62008-09-18 17:34:44 +00001697static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001698 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001699 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001700 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001701 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001702 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001703 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001704 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001705 /* pPage might not be a btree page; it might be an overflow page
1706 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001707 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001708 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001709 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001710 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001711 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001712 }
drha6abd042004-06-09 17:37:22 +00001713 }
1714}
1715
1716/*
drhe5fe6902007-12-07 18:55:28 +00001717** Invoke the busy handler for a btree.
1718*/
danielk19771ceedd32008-11-19 10:22:33 +00001719static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001720 BtShared *pBt = (BtShared*)pArg;
1721 assert( pBt->db );
1722 assert( sqlite3_mutex_held(pBt->db->mutex) );
1723 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1724}
1725
1726/*
drhad3e0102004-09-03 23:32:18 +00001727** Open a database file.
1728**
drh382c0242001-10-06 16:33:02 +00001729** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00001730** then an ephemeral database is created. The ephemeral database might
1731** be exclusively in memory, or it might use a disk-based memory cache.
1732** Either way, the ephemeral database will be automatically deleted
1733** when sqlite3BtreeClose() is called.
1734**
drhe53831d2007-08-17 01:14:38 +00001735** If zFilename is ":memory:" then an in-memory database is created
1736** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001737**
drh33f111d2012-01-17 15:29:14 +00001738** The "flags" parameter is a bitmask that might contain bits like
1739** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00001740**
drhc47fd8e2009-04-30 13:30:32 +00001741** If the database is already opened in the same database connection
1742** and we are in shared cache mode, then the open will fail with an
1743** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1744** objects in the same database connection since doing so will lead
1745** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001746*/
drh23e11ca2004-05-04 17:27:28 +00001747int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00001748 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00001749 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001750 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001751 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001752 int flags, /* Options */
1753 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001754){
drh7555d8e2009-03-20 13:15:30 +00001755 BtShared *pBt = 0; /* Shared part of btree structure */
1756 Btree *p; /* Handle to return */
1757 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1758 int rc = SQLITE_OK; /* Result code from this function */
1759 u8 nReserve; /* Byte of unused space on each page */
1760 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001761
drh75c014c2010-08-30 15:02:28 +00001762 /* True if opening an ephemeral, temporary database */
1763 const int isTempDb = zFilename==0 || zFilename[0]==0;
1764
danielk1977aef0bf62005-12-30 16:28:01 +00001765 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00001766 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00001767 */
drhb0a7c9c2010-12-06 21:09:59 +00001768#ifdef SQLITE_OMIT_MEMORYDB
1769 const int isMemdb = 0;
1770#else
1771 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00001772 || (isTempDb && sqlite3TempInMemory(db))
1773 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00001774#endif
1775
drhe5fe6902007-12-07 18:55:28 +00001776 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00001777 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00001778 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00001779 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
1780
1781 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
1782 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
1783
1784 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
1785 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00001786
drh75c014c2010-08-30 15:02:28 +00001787 if( isMemdb ){
1788 flags |= BTREE_MEMORY;
1789 }
1790 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
1791 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
1792 }
drh17435752007-08-16 04:30:38 +00001793 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001794 if( !p ){
1795 return SQLITE_NOMEM;
1796 }
1797 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001798 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001799#ifndef SQLITE_OMIT_SHARED_CACHE
1800 p->lock.pBtree = p;
1801 p->lock.iTable = 1;
1802#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001803
drh198bf392006-01-06 21:52:49 +00001804#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001805 /*
1806 ** If this Btree is a candidate for shared cache, try to find an
1807 ** existing BtShared object that we can share with
1808 */
drh4ab9d252012-05-26 20:08:49 +00001809 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00001810 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
danielk1977adfb9b02007-09-17 07:02:56 +00001811 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001812 char *zFullPathname = sqlite3Malloc(nFullPathname);
drh30ddce62011-10-15 00:16:30 +00001813 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhff0587c2007-08-29 17:43:19 +00001814 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00001815 if( !zFullPathname ){
1816 sqlite3_free(p);
1817 return SQLITE_NOMEM;
1818 }
drhafc8b7f2012-05-26 18:06:38 +00001819 if( isMemdb ){
1820 memcpy(zFullPathname, zFilename, sqlite3Strlen30(zFilename)+1);
1821 }else{
1822 rc = sqlite3OsFullPathname(pVfs, zFilename,
1823 nFullPathname, zFullPathname);
1824 if( rc ){
1825 sqlite3_free(zFullPathname);
1826 sqlite3_free(p);
1827 return rc;
1828 }
drh070ad6b2011-11-17 11:43:19 +00001829 }
drh30ddce62011-10-15 00:16:30 +00001830#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00001831 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1832 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001833 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001834 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00001835#endif
drh78f82d12008-09-02 00:52:52 +00001836 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001837 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00001838 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00001839 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001840 int iDb;
1841 for(iDb=db->nDb-1; iDb>=0; iDb--){
1842 Btree *pExisting = db->aDb[iDb].pBt;
1843 if( pExisting && pExisting->pBt==pBt ){
1844 sqlite3_mutex_leave(mutexShared);
1845 sqlite3_mutex_leave(mutexOpen);
1846 sqlite3_free(zFullPathname);
1847 sqlite3_free(p);
1848 return SQLITE_CONSTRAINT;
1849 }
1850 }
drhff0587c2007-08-29 17:43:19 +00001851 p->pBt = pBt;
1852 pBt->nRef++;
1853 break;
1854 }
1855 }
1856 sqlite3_mutex_leave(mutexShared);
1857 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001858 }
drhff0587c2007-08-29 17:43:19 +00001859#ifdef SQLITE_DEBUG
1860 else{
1861 /* In debug mode, we mark all persistent databases as sharable
1862 ** even when they are not. This exercises the locking code and
1863 ** gives more opportunity for asserts(sqlite3_mutex_held())
1864 ** statements to find locking problems.
1865 */
1866 p->sharable = 1;
1867 }
1868#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001869 }
1870#endif
drha059ad02001-04-17 20:09:11 +00001871 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001872 /*
1873 ** The following asserts make sure that structures used by the btree are
1874 ** the right size. This is to guard against size changes that result
1875 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001876 */
drhe53831d2007-08-17 01:14:38 +00001877 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1878 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1879 assert( sizeof(u32)==4 );
1880 assert( sizeof(u16)==2 );
1881 assert( sizeof(Pgno)==4 );
1882
1883 pBt = sqlite3MallocZero( sizeof(*pBt) );
1884 if( pBt==0 ){
1885 rc = SQLITE_NOMEM;
1886 goto btree_open_out;
1887 }
danielk197771d5d2c2008-09-29 11:49:47 +00001888 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00001889 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00001890 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00001891 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00001892 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1893 }
1894 if( rc!=SQLITE_OK ){
1895 goto btree_open_out;
1896 }
shanehbd2aaf92010-09-01 02:38:21 +00001897 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00001898 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001899 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001900 p->pBt = pBt;
1901
drhe53831d2007-08-17 01:14:38 +00001902 pBt->pCursor = 0;
1903 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00001904 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00001905#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00001906 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00001907#endif
drhb2eced52010-08-12 02:41:12 +00001908 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00001909 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1910 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001911 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001912#ifndef SQLITE_OMIT_AUTOVACUUM
1913 /* If the magic name ":memory:" will create an in-memory database, then
1914 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1915 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1916 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1917 ** regular file-name. In this case the auto-vacuum applies as per normal.
1918 */
1919 if( zFilename && !isMemdb ){
1920 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1921 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1922 }
1923#endif
1924 nReserve = 0;
1925 }else{
1926 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00001927 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00001928#ifndef SQLITE_OMIT_AUTOVACUUM
1929 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1930 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1931#endif
1932 }
drhfa9601a2009-06-18 17:22:39 +00001933 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001934 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001935 pBt->usableSize = pBt->pageSize - nReserve;
1936 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001937
1938#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1939 /* Add the new BtShared object to the linked list sharable BtShareds.
1940 */
1941 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00001942 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00001943 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00001944 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00001945 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001946 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001947 if( pBt->mutex==0 ){
1948 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001949 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001950 goto btree_open_out;
1951 }
drhff0587c2007-08-29 17:43:19 +00001952 }
drhe53831d2007-08-17 01:14:38 +00001953 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001954 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1955 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001956 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001957 }
drheee46cf2004-11-06 00:02:48 +00001958#endif
drh90f5ecb2004-07-22 01:19:35 +00001959 }
danielk1977aef0bf62005-12-30 16:28:01 +00001960
drhcfed7bc2006-03-13 14:28:05 +00001961#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001962 /* If the new Btree uses a sharable pBtShared, then link the new
1963 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001964 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001965 */
drhe53831d2007-08-17 01:14:38 +00001966 if( p->sharable ){
1967 int i;
1968 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001969 for(i=0; i<db->nDb; i++){
1970 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001971 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1972 if( p->pBt<pSib->pBt ){
1973 p->pNext = pSib;
1974 p->pPrev = 0;
1975 pSib->pPrev = p;
1976 }else{
drhabddb0c2007-08-20 13:14:28 +00001977 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001978 pSib = pSib->pNext;
1979 }
1980 p->pNext = pSib->pNext;
1981 p->pPrev = pSib;
1982 if( p->pNext ){
1983 p->pNext->pPrev = p;
1984 }
1985 pSib->pNext = p;
1986 }
1987 break;
1988 }
1989 }
danielk1977aef0bf62005-12-30 16:28:01 +00001990 }
danielk1977aef0bf62005-12-30 16:28:01 +00001991#endif
1992 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001993
1994btree_open_out:
1995 if( rc!=SQLITE_OK ){
1996 if( pBt && pBt->pPager ){
1997 sqlite3PagerClose(pBt->pPager);
1998 }
drh17435752007-08-16 04:30:38 +00001999 sqlite3_free(pBt);
2000 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002001 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002002 }else{
2003 /* If the B-Tree was successfully opened, set the pager-cache size to the
2004 ** default value. Except, when opening on an existing shared pager-cache,
2005 ** do not change the pager-cache size.
2006 */
2007 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2008 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2009 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002010 }
drh7555d8e2009-03-20 13:15:30 +00002011 if( mutexOpen ){
2012 assert( sqlite3_mutex_held(mutexOpen) );
2013 sqlite3_mutex_leave(mutexOpen);
2014 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002015 return rc;
drha059ad02001-04-17 20:09:11 +00002016}
2017
2018/*
drhe53831d2007-08-17 01:14:38 +00002019** Decrement the BtShared.nRef counter. When it reaches zero,
2020** remove the BtShared structure from the sharing list. Return
2021** true if the BtShared.nRef counter reaches zero and return
2022** false if it is still positive.
2023*/
2024static int removeFromSharingList(BtShared *pBt){
2025#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002026 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002027 BtShared *pList;
2028 int removed = 0;
2029
drhd677b3d2007-08-20 22:48:41 +00002030 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002031 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002032 sqlite3_mutex_enter(pMaster);
2033 pBt->nRef--;
2034 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002035 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2036 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002037 }else{
drh78f82d12008-09-02 00:52:52 +00002038 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002039 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002040 pList=pList->pNext;
2041 }
drh34004ce2008-07-11 16:15:17 +00002042 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002043 pList->pNext = pBt->pNext;
2044 }
2045 }
drh3285db22007-09-03 22:00:39 +00002046 if( SQLITE_THREADSAFE ){
2047 sqlite3_mutex_free(pBt->mutex);
2048 }
drhe53831d2007-08-17 01:14:38 +00002049 removed = 1;
2050 }
2051 sqlite3_mutex_leave(pMaster);
2052 return removed;
2053#else
2054 return 1;
2055#endif
2056}
2057
2058/*
drhf7141992008-06-19 00:16:08 +00002059** Make sure pBt->pTmpSpace points to an allocation of
2060** MX_CELL_SIZE(pBt) bytes.
2061*/
2062static void allocateTempSpace(BtShared *pBt){
2063 if( !pBt->pTmpSpace ){
2064 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002065
2066 /* One of the uses of pBt->pTmpSpace is to format cells before
2067 ** inserting them into a leaf page (function fillInCell()). If
2068 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2069 ** by the various routines that manipulate binary cells. Which
2070 ** can mean that fillInCell() only initializes the first 2 or 3
2071 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2072 ** it into a database page. This is not actually a problem, but it
2073 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2074 ** data is passed to system call write(). So to avoid this error,
2075 ** zero the first 4 bytes of temp space here. */
2076 if( pBt->pTmpSpace ) memset(pBt->pTmpSpace, 0, 4);
drhf7141992008-06-19 00:16:08 +00002077 }
2078}
2079
2080/*
2081** Free the pBt->pTmpSpace allocation
2082*/
2083static void freeTempSpace(BtShared *pBt){
2084 sqlite3PageFree( pBt->pTmpSpace);
2085 pBt->pTmpSpace = 0;
2086}
2087
2088/*
drha059ad02001-04-17 20:09:11 +00002089** Close an open database and invalidate all cursors.
2090*/
danielk1977aef0bf62005-12-30 16:28:01 +00002091int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002092 BtShared *pBt = p->pBt;
2093 BtCursor *pCur;
2094
danielk1977aef0bf62005-12-30 16:28:01 +00002095 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002096 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002097 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002098 pCur = pBt->pCursor;
2099 while( pCur ){
2100 BtCursor *pTmp = pCur;
2101 pCur = pCur->pNext;
2102 if( pTmp->pBtree==p ){
2103 sqlite3BtreeCloseCursor(pTmp);
2104 }
drha059ad02001-04-17 20:09:11 +00002105 }
danielk1977aef0bf62005-12-30 16:28:01 +00002106
danielk19778d34dfd2006-01-24 16:37:57 +00002107 /* Rollback any active transaction and free the handle structure.
2108 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2109 ** this handle.
2110 */
drh0f198a72012-02-13 16:43:16 +00002111 sqlite3BtreeRollback(p, SQLITE_OK);
drhe53831d2007-08-17 01:14:38 +00002112 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002113
danielk1977aef0bf62005-12-30 16:28:01 +00002114 /* If there are still other outstanding references to the shared-btree
2115 ** structure, return now. The remainder of this procedure cleans
2116 ** up the shared-btree.
2117 */
drhe53831d2007-08-17 01:14:38 +00002118 assert( p->wantToLock==0 && p->locked==0 );
2119 if( !p->sharable || removeFromSharingList(pBt) ){
2120 /* The pBt is no longer on the sharing list, so we can access
2121 ** it without having to hold the mutex.
2122 **
2123 ** Clean out and delete the BtShared object.
2124 */
2125 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002126 sqlite3PagerClose(pBt->pPager);
2127 if( pBt->xFreeSchema && pBt->pSchema ){
2128 pBt->xFreeSchema(pBt->pSchema);
2129 }
drhb9755982010-07-24 16:34:37 +00002130 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002131 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002132 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002133 }
2134
drhe53831d2007-08-17 01:14:38 +00002135#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002136 assert( p->wantToLock==0 );
2137 assert( p->locked==0 );
2138 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2139 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002140#endif
2141
drhe53831d2007-08-17 01:14:38 +00002142 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002143 return SQLITE_OK;
2144}
2145
2146/*
drhda47d772002-12-02 04:25:19 +00002147** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002148**
2149** The maximum number of cache pages is set to the absolute
2150** value of mxPage. If mxPage is negative, the pager will
2151** operate asynchronously - it will not stop to do fsync()s
2152** to insure data is written to the disk surface before
2153** continuing. Transactions still work if synchronous is off,
2154** and the database cannot be corrupted if this program
2155** crashes. But if the operating system crashes or there is
2156** an abrupt power failure when synchronous is off, the database
2157** could be left in an inconsistent and unrecoverable state.
2158** Synchronous is on by default so database corruption is not
2159** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002160*/
danielk1977aef0bf62005-12-30 16:28:01 +00002161int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2162 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002163 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002164 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002165 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002166 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002167 return SQLITE_OK;
2168}
2169
drh18c7e402014-03-14 11:46:10 +00002170#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002171/*
dan5d8a1372013-03-19 19:28:06 +00002172** Change the limit on the amount of the database file that may be
2173** memory mapped.
2174*/
drh9b4c59f2013-04-15 17:03:42 +00002175int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002176 BtShared *pBt = p->pBt;
2177 assert( sqlite3_mutex_held(p->db->mutex) );
2178 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002179 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002180 sqlite3BtreeLeave(p);
2181 return SQLITE_OK;
2182}
drh18c7e402014-03-14 11:46:10 +00002183#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002184
2185/*
drh973b6e32003-02-12 14:09:42 +00002186** Change the way data is synced to disk in order to increase or decrease
2187** how well the database resists damage due to OS crashes and power
2188** failures. Level 1 is the same as asynchronous (no syncs() occur and
2189** there is a high probability of damage) Level 2 is the default. There
2190** is a very low but non-zero probability of damage. Level 3 reduces the
2191** probability of damage to near zero but with a write performance reduction.
2192*/
danielk197793758c82005-01-21 08:13:14 +00002193#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002194int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002195 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002196 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002197){
danielk1977aef0bf62005-12-30 16:28:01 +00002198 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002199 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002200 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002201 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002202 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002203 return SQLITE_OK;
2204}
danielk197793758c82005-01-21 08:13:14 +00002205#endif
drh973b6e32003-02-12 14:09:42 +00002206
drh2c8997b2005-08-27 16:36:48 +00002207/*
2208** Return TRUE if the given btree is set to safety level 1. In other
2209** words, return TRUE if no sync() occurs on the disk files.
2210*/
danielk1977aef0bf62005-12-30 16:28:01 +00002211int sqlite3BtreeSyncDisabled(Btree *p){
2212 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002213 int rc;
drhe5fe6902007-12-07 18:55:28 +00002214 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002215 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002216 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002217 rc = sqlite3PagerNosync(pBt->pPager);
2218 sqlite3BtreeLeave(p);
2219 return rc;
drh2c8997b2005-08-27 16:36:48 +00002220}
2221
drh973b6e32003-02-12 14:09:42 +00002222/*
drh90f5ecb2004-07-22 01:19:35 +00002223** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002224** Or, if the page size has already been fixed, return SQLITE_READONLY
2225** without changing anything.
drh06f50212004-11-02 14:24:33 +00002226**
2227** The page size must be a power of 2 between 512 and 65536. If the page
2228** size supplied does not meet this constraint then the page size is not
2229** changed.
2230**
2231** Page sizes are constrained to be a power of two so that the region
2232** of the database file used for locking (beginning at PENDING_BYTE,
2233** the first byte past the 1GB boundary, 0x40000000) needs to occur
2234** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002235**
2236** If parameter nReserve is less than zero, then the number of reserved
2237** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002238**
drhc9166342012-01-05 23:32:06 +00002239** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002240** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002241*/
drhce4869f2009-04-02 20:16:58 +00002242int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002243 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002244 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002245 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002246 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002247 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002248 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002249 return SQLITE_READONLY;
2250 }
2251 if( nReserve<0 ){
2252 nReserve = pBt->pageSize - pBt->usableSize;
2253 }
drhf49661a2008-12-10 16:45:50 +00002254 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002255 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2256 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002257 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002258 assert( !pBt->pPage1 && !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002259 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002260 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002261 }
drhfa9601a2009-06-18 17:22:39 +00002262 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002263 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002264 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002265 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002266 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002267}
2268
2269/*
2270** Return the currently defined page size
2271*/
danielk1977aef0bf62005-12-30 16:28:01 +00002272int sqlite3BtreeGetPageSize(Btree *p){
2273 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002274}
drh7f751222009-03-17 22:33:00 +00002275
drha1f38532012-10-01 12:44:26 +00002276#if defined(SQLITE_HAS_CODEC) || defined(SQLITE_DEBUG)
dan0094f372012-09-28 20:23:42 +00002277/*
2278** This function is similar to sqlite3BtreeGetReserve(), except that it
2279** may only be called if it is guaranteed that the b-tree mutex is already
2280** held.
2281**
2282** This is useful in one special case in the backup API code where it is
2283** known that the shared b-tree mutex is held, but the mutex on the
2284** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2285** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002286** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002287*/
2288int sqlite3BtreeGetReserveNoMutex(Btree *p){
2289 assert( sqlite3_mutex_held(p->pBt->mutex) );
2290 return p->pBt->pageSize - p->pBt->usableSize;
2291}
drha1f38532012-10-01 12:44:26 +00002292#endif /* SQLITE_HAS_CODEC || SQLITE_DEBUG */
dan0094f372012-09-28 20:23:42 +00002293
danbb2b4412011-04-06 17:54:31 +00002294#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh7f751222009-03-17 22:33:00 +00002295/*
2296** Return the number of bytes of space at the end of every page that
2297** are intentually left unused. This is the "reserved" space that is
2298** sometimes used by extensions.
2299*/
danielk1977aef0bf62005-12-30 16:28:01 +00002300int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002301 int n;
2302 sqlite3BtreeEnter(p);
2303 n = p->pBt->pageSize - p->pBt->usableSize;
2304 sqlite3BtreeLeave(p);
2305 return n;
drh2011d5f2004-07-22 02:40:37 +00002306}
drhf8e632b2007-05-08 14:51:36 +00002307
2308/*
2309** Set the maximum page count for a database if mxPage is positive.
2310** No changes are made if mxPage is 0 or negative.
2311** Regardless of the value of mxPage, return the maximum page count.
2312*/
2313int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002314 int n;
2315 sqlite3BtreeEnter(p);
2316 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2317 sqlite3BtreeLeave(p);
2318 return n;
drhf8e632b2007-05-08 14:51:36 +00002319}
drh5b47efa2010-02-12 18:18:39 +00002320
2321/*
drhc9166342012-01-05 23:32:06 +00002322** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2323** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002324** setting after the change.
2325*/
2326int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2327 int b;
drhaf034ed2010-02-12 19:46:26 +00002328 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002329 sqlite3BtreeEnter(p);
2330 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002331 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2332 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002333 }
drhc9166342012-01-05 23:32:06 +00002334 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002335 sqlite3BtreeLeave(p);
2336 return b;
2337}
danielk1977576ec6b2005-01-21 11:55:25 +00002338#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002339
2340/*
danielk1977951af802004-11-05 15:45:09 +00002341** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2342** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2343** is disabled. The default value for the auto-vacuum property is
2344** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2345*/
danielk1977aef0bf62005-12-30 16:28:01 +00002346int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002347#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002348 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002349#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002350 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002351 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002352 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002353
2354 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002355 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002356 rc = SQLITE_READONLY;
2357 }else{
drh076d4662009-02-18 20:31:18 +00002358 pBt->autoVacuum = av ?1:0;
2359 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002360 }
drhd677b3d2007-08-20 22:48:41 +00002361 sqlite3BtreeLeave(p);
2362 return rc;
danielk1977951af802004-11-05 15:45:09 +00002363#endif
2364}
2365
2366/*
2367** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2368** enabled 1 is returned. Otherwise 0.
2369*/
danielk1977aef0bf62005-12-30 16:28:01 +00002370int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002371#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002372 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002373#else
drhd677b3d2007-08-20 22:48:41 +00002374 int rc;
2375 sqlite3BtreeEnter(p);
2376 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002377 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2378 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2379 BTREE_AUTOVACUUM_INCR
2380 );
drhd677b3d2007-08-20 22:48:41 +00002381 sqlite3BtreeLeave(p);
2382 return rc;
danielk1977951af802004-11-05 15:45:09 +00002383#endif
2384}
2385
2386
2387/*
drha34b6762004-05-07 13:30:42 +00002388** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002389** also acquire a readlock on that file.
2390**
2391** SQLITE_OK is returned on success. If the file is not a
2392** well-formed database file, then SQLITE_CORRUPT is returned.
2393** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002394** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002395*/
danielk1977aef0bf62005-12-30 16:28:01 +00002396static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002397 int rc; /* Result code from subfunctions */
2398 MemPage *pPage1; /* Page 1 of the database file */
2399 int nPage; /* Number of pages in the database */
2400 int nPageFile = 0; /* Number of pages in the database file */
2401 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002402
drh1fee73e2007-08-29 04:00:57 +00002403 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002404 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002405 rc = sqlite3PagerSharedLock(pBt->pPager);
2406 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002407 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002408 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002409
2410 /* Do some checking to help insure the file we opened really is
2411 ** a valid database file.
2412 */
drhc2a4bab2010-04-02 12:46:45 +00002413 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002414 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002415 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002416 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002417 }
2418 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002419 u32 pageSize;
2420 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002421 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002422 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002423 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002424 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002425 }
dan5cf53532010-05-01 16:40:20 +00002426
2427#ifdef SQLITE_OMIT_WAL
2428 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002429 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002430 }
2431 if( page1[19]>1 ){
2432 goto page1_init_failed;
2433 }
2434#else
dane04dc882010-04-20 18:53:15 +00002435 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002436 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002437 }
dane04dc882010-04-20 18:53:15 +00002438 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002439 goto page1_init_failed;
2440 }
drhe5ae5732008-06-15 02:51:47 +00002441
dana470aeb2010-04-21 11:43:38 +00002442 /* If the write version is set to 2, this database should be accessed
2443 ** in WAL mode. If the log is not already open, open it now. Then
2444 ** return SQLITE_OK and return without populating BtShared.pPage1.
2445 ** The caller detects this and calls this function again. This is
2446 ** required as the version of page 1 currently in the page1 buffer
2447 ** may not be the latest version - there may be a newer one in the log
2448 ** file.
2449 */
drhc9166342012-01-05 23:32:06 +00002450 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002451 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002452 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002453 if( rc!=SQLITE_OK ){
2454 goto page1_init_failed;
2455 }else if( isOpen==0 ){
2456 releasePage(pPage1);
2457 return SQLITE_OK;
2458 }
dan8b5444b2010-04-27 14:37:47 +00002459 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002460 }
dan5cf53532010-05-01 16:40:20 +00002461#endif
dane04dc882010-04-20 18:53:15 +00002462
drhe5ae5732008-06-15 02:51:47 +00002463 /* The maximum embedded fraction must be exactly 25%. And the minimum
2464 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2465 ** The original design allowed these amounts to vary, but as of
2466 ** version 3.6.0, we require them to be fixed.
2467 */
2468 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2469 goto page1_init_failed;
2470 }
drhb2eced52010-08-12 02:41:12 +00002471 pageSize = (page1[16]<<8) | (page1[17]<<16);
2472 if( ((pageSize-1)&pageSize)!=0
2473 || pageSize>SQLITE_MAX_PAGE_SIZE
2474 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002475 ){
drh07d183d2005-05-01 22:52:42 +00002476 goto page1_init_failed;
2477 }
2478 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002479 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002480 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002481 /* After reading the first page of the database assuming a page size
2482 ** of BtShared.pageSize, we have discovered that the page-size is
2483 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2484 ** zero and return SQLITE_OK. The caller will call this function
2485 ** again with the correct page-size.
2486 */
2487 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002488 pBt->usableSize = usableSize;
2489 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002490 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002491 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2492 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002493 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002494 }
danecac6702011-02-09 18:19:20 +00002495 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002496 rc = SQLITE_CORRUPT_BKPT;
2497 goto page1_init_failed;
2498 }
drhb33e1b92009-06-18 11:29:20 +00002499 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002500 goto page1_init_failed;
2501 }
drh43b18e12010-08-17 19:40:08 +00002502 pBt->pageSize = pageSize;
2503 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002504#ifndef SQLITE_OMIT_AUTOVACUUM
2505 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002506 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002507#endif
drh306dc212001-05-21 13:45:10 +00002508 }
drhb6f41482004-05-14 01:58:11 +00002509
2510 /* maxLocal is the maximum amount of payload to store locally for
2511 ** a cell. Make sure it is small enough so that at least minFanout
2512 ** cells can will fit on one page. We assume a 10-byte page header.
2513 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002514 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002515 ** 4-byte child pointer
2516 ** 9-byte nKey value
2517 ** 4-byte nData value
2518 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002519 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002520 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2521 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002522 */
shaneh1df2db72010-08-18 02:28:48 +00002523 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2524 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2525 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2526 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002527 if( pBt->maxLocal>127 ){
2528 pBt->max1bytePayload = 127;
2529 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002530 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002531 }
drh2e38c322004-09-03 18:38:44 +00002532 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002533 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002534 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002535 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002536
drh72f82862001-05-24 21:06:34 +00002537page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002538 releasePage(pPage1);
2539 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002540 return rc;
drh306dc212001-05-21 13:45:10 +00002541}
2542
drh85ec3b62013-05-14 23:12:06 +00002543#ifndef NDEBUG
2544/*
2545** Return the number of cursors open on pBt. This is for use
2546** in assert() expressions, so it is only compiled if NDEBUG is not
2547** defined.
2548**
2549** Only write cursors are counted if wrOnly is true. If wrOnly is
2550** false then all cursors are counted.
2551**
2552** For the purposes of this routine, a cursor is any cursor that
2553** is capable of reading or writing to the databse. Cursors that
2554** have been tripped into the CURSOR_FAULT state are not counted.
2555*/
2556static int countValidCursors(BtShared *pBt, int wrOnly){
2557 BtCursor *pCur;
2558 int r = 0;
2559 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00002560 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
2561 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00002562 }
2563 return r;
2564}
2565#endif
2566
drh306dc212001-05-21 13:45:10 +00002567/*
drhb8ca3072001-12-05 00:21:20 +00002568** If there are no outstanding cursors and we are not in the middle
2569** of a transaction but there is a read lock on the database, then
2570** this routine unrefs the first page of the database file which
2571** has the effect of releasing the read lock.
2572**
drhb8ca3072001-12-05 00:21:20 +00002573** If there is a transaction in progress, this routine is a no-op.
2574*/
danielk1977aef0bf62005-12-30 16:28:01 +00002575static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002576 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00002577 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00002578 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002579 assert( pBt->pPage1->aData );
2580 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2581 assert( pBt->pPage1->aData );
2582 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002583 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002584 }
2585}
2586
2587/*
drhe39f2f92009-07-23 01:43:59 +00002588** If pBt points to an empty file then convert that empty file
2589** into a new empty database by initializing the first page of
2590** the database.
drh8b2f49b2001-06-08 00:21:52 +00002591*/
danielk1977aef0bf62005-12-30 16:28:01 +00002592static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002593 MemPage *pP1;
2594 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002595 int rc;
drhd677b3d2007-08-20 22:48:41 +00002596
drh1fee73e2007-08-29 04:00:57 +00002597 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002598 if( pBt->nPage>0 ){
2599 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002600 }
drh3aac2dd2004-04-26 14:10:20 +00002601 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002602 assert( pP1!=0 );
2603 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002604 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002605 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002606 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2607 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00002608 data[16] = (u8)((pBt->pageSize>>8)&0xff);
2609 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00002610 data[18] = 1;
2611 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002612 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2613 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002614 data[21] = 64;
2615 data[22] = 32;
2616 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002617 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002618 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00002619 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00002620#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002621 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002622 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002623 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002624 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002625#endif
drhdd3cd972010-03-27 17:12:36 +00002626 pBt->nPage = 1;
2627 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002628 return SQLITE_OK;
2629}
2630
2631/*
danb483eba2012-10-13 19:58:11 +00002632** Initialize the first page of the database file (creating a database
2633** consisting of a single page and no schema objects). Return SQLITE_OK
2634** if successful, or an SQLite error code otherwise.
2635*/
2636int sqlite3BtreeNewDb(Btree *p){
2637 int rc;
2638 sqlite3BtreeEnter(p);
2639 p->pBt->nPage = 0;
2640 rc = newDatabase(p->pBt);
2641 sqlite3BtreeLeave(p);
2642 return rc;
2643}
2644
2645/*
danielk1977ee5741e2004-05-31 10:01:34 +00002646** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002647** is started if the second argument is nonzero, otherwise a read-
2648** transaction. If the second argument is 2 or more and exclusive
2649** transaction is started, meaning that no other process is allowed
2650** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002651** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002652** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002653**
danielk1977ee5741e2004-05-31 10:01:34 +00002654** A write-transaction must be started before attempting any
2655** changes to the database. None of the following routines
2656** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002657**
drh23e11ca2004-05-04 17:27:28 +00002658** sqlite3BtreeCreateTable()
2659** sqlite3BtreeCreateIndex()
2660** sqlite3BtreeClearTable()
2661** sqlite3BtreeDropTable()
2662** sqlite3BtreeInsert()
2663** sqlite3BtreeDelete()
2664** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002665**
drhb8ef32c2005-03-14 02:01:49 +00002666** If an initial attempt to acquire the lock fails because of lock contention
2667** and the database was previously unlocked, then invoke the busy handler
2668** if there is one. But if there was previously a read-lock, do not
2669** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2670** returned when there is already a read-lock in order to avoid a deadlock.
2671**
2672** Suppose there are two processes A and B. A has a read lock and B has
2673** a reserved lock. B tries to promote to exclusive but is blocked because
2674** of A's read lock. A tries to promote to reserved but is blocked by B.
2675** One or the other of the two processes must give way or there can be
2676** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2677** when A already has a read lock, we encourage A to give up and let B
2678** proceed.
drha059ad02001-04-17 20:09:11 +00002679*/
danielk1977aef0bf62005-12-30 16:28:01 +00002680int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002681 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002682 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002683 int rc = SQLITE_OK;
2684
drhd677b3d2007-08-20 22:48:41 +00002685 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002686 btreeIntegrity(p);
2687
danielk1977ee5741e2004-05-31 10:01:34 +00002688 /* If the btree is already in a write-transaction, or it
2689 ** is already in a read-transaction and a read-transaction
2690 ** is requested, this is a no-op.
2691 */
danielk1977aef0bf62005-12-30 16:28:01 +00002692 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002693 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002694 }
dan56c517a2013-09-26 11:04:33 +00002695 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00002696
2697 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00002698 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002699 rc = SQLITE_READONLY;
2700 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002701 }
2702
danielk1977404ca072009-03-16 13:19:36 +00002703#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002704 /* If another database handle has already opened a write transaction
2705 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002706 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002707 */
drhc9166342012-01-05 23:32:06 +00002708 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
2709 || (pBt->btsFlags & BTS_PENDING)!=0
2710 ){
danielk1977404ca072009-03-16 13:19:36 +00002711 pBlock = pBt->pWriter->db;
2712 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002713 BtLock *pIter;
2714 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2715 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002716 pBlock = pIter->pBtree->db;
2717 break;
danielk1977641b0f42007-12-21 04:47:25 +00002718 }
2719 }
2720 }
danielk1977404ca072009-03-16 13:19:36 +00002721 if( pBlock ){
2722 sqlite3ConnectionBlocked(p->db, pBlock);
2723 rc = SQLITE_LOCKED_SHAREDCACHE;
2724 goto trans_begun;
2725 }
danielk1977641b0f42007-12-21 04:47:25 +00002726#endif
2727
danielk1977602b4662009-07-02 07:47:33 +00002728 /* Any read-only or read-write transaction implies a read-lock on
2729 ** page 1. So if some other shared-cache client already has a write-lock
2730 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002731 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2732 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002733
drhc9166342012-01-05 23:32:06 +00002734 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
2735 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00002736 do {
danielk1977295dc102009-04-01 19:07:03 +00002737 /* Call lockBtree() until either pBt->pPage1 is populated or
2738 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2739 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2740 ** reading page 1 it discovers that the page-size of the database
2741 ** file is not pBt->pageSize. In this case lockBtree() will update
2742 ** pBt->pageSize to the page-size of the file on disk.
2743 */
2744 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002745
drhb8ef32c2005-03-14 02:01:49 +00002746 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00002747 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00002748 rc = SQLITE_READONLY;
2749 }else{
danielk1977d8293352009-04-30 09:10:37 +00002750 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002751 if( rc==SQLITE_OK ){
2752 rc = newDatabase(pBt);
2753 }
drhb8ef32c2005-03-14 02:01:49 +00002754 }
2755 }
2756
danielk1977bd434552009-03-18 10:33:00 +00002757 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002758 unlockBtreeIfUnused(pBt);
2759 }
danf9b76712010-06-01 14:12:45 +00002760 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002761 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002762
2763 if( rc==SQLITE_OK ){
2764 if( p->inTrans==TRANS_NONE ){
2765 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002766#ifndef SQLITE_OMIT_SHARED_CACHE
2767 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00002768 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00002769 p->lock.eLock = READ_LOCK;
2770 p->lock.pNext = pBt->pLock;
2771 pBt->pLock = &p->lock;
2772 }
2773#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002774 }
2775 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2776 if( p->inTrans>pBt->inTransaction ){
2777 pBt->inTransaction = p->inTrans;
2778 }
danielk1977404ca072009-03-16 13:19:36 +00002779 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00002780 MemPage *pPage1 = pBt->pPage1;
2781#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002782 assert( !pBt->pWriter );
2783 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00002784 pBt->btsFlags &= ~BTS_EXCLUSIVE;
2785 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00002786#endif
dan59257dc2010-08-04 11:34:31 +00002787
2788 /* If the db-size header field is incorrect (as it may be if an old
2789 ** client has been writing the database file), update it now. Doing
2790 ** this sooner rather than later means the database size can safely
2791 ** re-read the database size from page 1 if a savepoint or transaction
2792 ** rollback occurs within the transaction.
2793 */
2794 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
2795 rc = sqlite3PagerWrite(pPage1->pDbPage);
2796 if( rc==SQLITE_OK ){
2797 put4byte(&pPage1->aData[28], pBt->nPage);
2798 }
2799 }
2800 }
danielk1977aef0bf62005-12-30 16:28:01 +00002801 }
2802
drhd677b3d2007-08-20 22:48:41 +00002803
2804trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002805 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002806 /* This call makes sure that the pager has the correct number of
2807 ** open savepoints. If the second parameter is greater than 0 and
2808 ** the sub-journal is not already open, then it will be opened here.
2809 */
danielk1977fd7f0452008-12-17 17:30:26 +00002810 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2811 }
danielk197712dd5492008-12-18 15:45:07 +00002812
danielk1977aef0bf62005-12-30 16:28:01 +00002813 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002814 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002815 return rc;
drha059ad02001-04-17 20:09:11 +00002816}
2817
danielk1977687566d2004-11-02 12:56:41 +00002818#ifndef SQLITE_OMIT_AUTOVACUUM
2819
2820/*
2821** Set the pointer-map entries for all children of page pPage. Also, if
2822** pPage contains cells that point to overflow pages, set the pointer
2823** map entries for the overflow pages as well.
2824*/
2825static int setChildPtrmaps(MemPage *pPage){
2826 int i; /* Counter variable */
2827 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002828 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002829 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002830 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002831 Pgno pgno = pPage->pgno;
2832
drh1fee73e2007-08-29 04:00:57 +00002833 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00002834 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002835 if( rc!=SQLITE_OK ){
2836 goto set_child_ptrmaps_out;
2837 }
danielk1977687566d2004-11-02 12:56:41 +00002838 nCell = pPage->nCell;
2839
2840 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002841 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002842
drh98add2e2009-07-20 17:11:49 +00002843 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00002844
danielk1977687566d2004-11-02 12:56:41 +00002845 if( !pPage->leaf ){
2846 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00002847 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002848 }
2849 }
2850
2851 if( !pPage->leaf ){
2852 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00002853 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002854 }
2855
2856set_child_ptrmaps_out:
2857 pPage->isInit = isInitOrig;
2858 return rc;
2859}
2860
2861/*
drhf3aed592009-07-08 18:12:49 +00002862** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2863** that it points to iTo. Parameter eType describes the type of pointer to
2864** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00002865**
2866** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2867** page of pPage.
2868**
2869** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2870** page pointed to by one of the cells on pPage.
2871**
2872** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2873** overflow page in the list.
2874*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002875static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002876 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002877 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002878 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002879 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002880 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002881 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002882 }
danielk1977f78fc082004-11-02 14:40:32 +00002883 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002884 }else{
drhf49661a2008-12-10 16:45:50 +00002885 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002886 int i;
2887 int nCell;
2888
danielk197730548662009-07-09 05:07:37 +00002889 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002890 nCell = pPage->nCell;
2891
danielk1977687566d2004-11-02 12:56:41 +00002892 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002893 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002894 if( eType==PTRMAP_OVERFLOW1 ){
2895 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00002896 btreeParseCellPtr(pPage, pCell, &info);
drhe42a9b42011-08-31 13:27:19 +00002897 if( info.iOverflow
2898 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
2899 && iFrom==get4byte(&pCell[info.iOverflow])
2900 ){
2901 put4byte(&pCell[info.iOverflow], iTo);
2902 break;
danielk1977687566d2004-11-02 12:56:41 +00002903 }
2904 }else{
2905 if( get4byte(pCell)==iFrom ){
2906 put4byte(pCell, iTo);
2907 break;
2908 }
2909 }
2910 }
2911
2912 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002913 if( eType!=PTRMAP_BTREE ||
2914 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002915 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002916 }
danielk1977687566d2004-11-02 12:56:41 +00002917 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2918 }
2919
2920 pPage->isInit = isInitOrig;
2921 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002922 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002923}
2924
danielk1977003ba062004-11-04 02:57:33 +00002925
danielk19777701e812005-01-10 12:59:51 +00002926/*
2927** Move the open database page pDbPage to location iFreePage in the
2928** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00002929**
2930** The isCommit flag indicates that there is no need to remember that
2931** the journal needs to be sync()ed before database page pDbPage->pgno
2932** can be written to. The caller has already promised not to write to that
2933** page.
danielk19777701e812005-01-10 12:59:51 +00002934*/
danielk1977003ba062004-11-04 02:57:33 +00002935static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002936 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002937 MemPage *pDbPage, /* Open page to move */
2938 u8 eType, /* Pointer map 'type' entry for pDbPage */
2939 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002940 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00002941 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00002942){
2943 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2944 Pgno iDbPage = pDbPage->pgno;
2945 Pager *pPager = pBt->pPager;
2946 int rc;
2947
danielk1977a0bf2652004-11-04 14:30:04 +00002948 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2949 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002950 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002951 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002952
drh85b623f2007-12-13 21:54:09 +00002953 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002954 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2955 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002956 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002957 if( rc!=SQLITE_OK ){
2958 return rc;
2959 }
2960 pDbPage->pgno = iFreePage;
2961
2962 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2963 ** that point to overflow pages. The pointer map entries for all these
2964 ** pages need to be changed.
2965 **
2966 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2967 ** pointer to a subsequent overflow page. If this is the case, then
2968 ** the pointer map needs to be updated for the subsequent overflow page.
2969 */
danielk1977a0bf2652004-11-04 14:30:04 +00002970 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002971 rc = setChildPtrmaps(pDbPage);
2972 if( rc!=SQLITE_OK ){
2973 return rc;
2974 }
2975 }else{
2976 Pgno nextOvfl = get4byte(pDbPage->aData);
2977 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00002978 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00002979 if( rc!=SQLITE_OK ){
2980 return rc;
2981 }
2982 }
2983 }
2984
2985 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2986 ** that it points at iFreePage. Also fix the pointer map entry for
2987 ** iPtrPage.
2988 */
danielk1977a0bf2652004-11-04 14:30:04 +00002989 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00002990 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002991 if( rc!=SQLITE_OK ){
2992 return rc;
2993 }
danielk19773b8a05f2007-03-19 17:44:26 +00002994 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002995 if( rc!=SQLITE_OK ){
2996 releasePage(pPtrPage);
2997 return rc;
2998 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002999 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003000 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003001 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003002 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003003 }
danielk1977003ba062004-11-04 02:57:33 +00003004 }
danielk1977003ba062004-11-04 02:57:33 +00003005 return rc;
3006}
3007
danielk1977dddbcdc2007-04-26 14:42:34 +00003008/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003009static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003010
3011/*
dan51f0b6d2013-02-22 20:16:34 +00003012** Perform a single step of an incremental-vacuum. If successful, return
3013** SQLITE_OK. If there is no work to do (and therefore no point in
3014** calling this function again), return SQLITE_DONE. Or, if an error
3015** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003016**
dan51f0b6d2013-02-22 20:16:34 +00003017** More specificly, this function attempts to re-organize the database so
3018** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003019**
dan51f0b6d2013-02-22 20:16:34 +00003020** Parameter nFin is the number of pages that this database would contain
3021** were this function called until it returns SQLITE_DONE.
3022**
3023** If the bCommit parameter is non-zero, this function assumes that the
3024** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3025** or an error. bCommit is passed true for an auto-vacuum-on-commmit
3026** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003027*/
dan51f0b6d2013-02-22 20:16:34 +00003028static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003029 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003030 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003031
drh1fee73e2007-08-29 04:00:57 +00003032 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003033 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003034
3035 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003036 u8 eType;
3037 Pgno iPtrPage;
3038
3039 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003040 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003041 return SQLITE_DONE;
3042 }
3043
3044 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3045 if( rc!=SQLITE_OK ){
3046 return rc;
3047 }
3048 if( eType==PTRMAP_ROOTPAGE ){
3049 return SQLITE_CORRUPT_BKPT;
3050 }
3051
3052 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003053 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003054 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003055 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003056 ** truncated to zero after this function returns, so it doesn't
3057 ** matter if it still contains some garbage entries.
3058 */
3059 Pgno iFreePg;
3060 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003061 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003062 if( rc!=SQLITE_OK ){
3063 return rc;
3064 }
3065 assert( iFreePg==iLastPg );
3066 releasePage(pFreePg);
3067 }
3068 } else {
3069 Pgno iFreePg; /* Index of free page to move pLastPg to */
3070 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003071 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3072 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003073
drhb00fc3b2013-08-21 23:42:32 +00003074 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003075 if( rc!=SQLITE_OK ){
3076 return rc;
3077 }
3078
dan51f0b6d2013-02-22 20:16:34 +00003079 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003080 ** is swapped with the first free page pulled off the free list.
3081 **
dan51f0b6d2013-02-22 20:16:34 +00003082 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003083 ** looping until a free-page located within the first nFin pages
3084 ** of the file is found.
3085 */
dan51f0b6d2013-02-22 20:16:34 +00003086 if( bCommit==0 ){
3087 eMode = BTALLOC_LE;
3088 iNear = nFin;
3089 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003090 do {
3091 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003092 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003093 if( rc!=SQLITE_OK ){
3094 releasePage(pLastPg);
3095 return rc;
3096 }
3097 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003098 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003099 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003100
dane1df4e32013-03-05 11:27:04 +00003101 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003102 releasePage(pLastPg);
3103 if( rc!=SQLITE_OK ){
3104 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003105 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003106 }
3107 }
3108
dan51f0b6d2013-02-22 20:16:34 +00003109 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003110 do {
danielk19773460d192008-12-27 15:23:13 +00003111 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003112 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3113 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003114 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003115 }
3116 return SQLITE_OK;
3117}
3118
3119/*
dan51f0b6d2013-02-22 20:16:34 +00003120** The database opened by the first argument is an auto-vacuum database
3121** nOrig pages in size containing nFree free pages. Return the expected
3122** size of the database in pages following an auto-vacuum operation.
3123*/
3124static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3125 int nEntry; /* Number of entries on one ptrmap page */
3126 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3127 Pgno nFin; /* Return value */
3128
3129 nEntry = pBt->usableSize/5;
3130 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3131 nFin = nOrig - nFree - nPtrmap;
3132 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3133 nFin--;
3134 }
3135 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3136 nFin--;
3137 }
dan51f0b6d2013-02-22 20:16:34 +00003138
3139 return nFin;
3140}
3141
3142/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003143** A write-transaction must be opened before calling this function.
3144** It performs a single unit of work towards an incremental vacuum.
3145**
3146** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003147** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003148** SQLITE_OK is returned. Otherwise an SQLite error code.
3149*/
3150int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003151 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003152 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003153
3154 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003155 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3156 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003157 rc = SQLITE_DONE;
3158 }else{
dan51f0b6d2013-02-22 20:16:34 +00003159 Pgno nOrig = btreePagecount(pBt);
3160 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3161 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3162
dan91384712013-02-24 11:50:43 +00003163 if( nOrig<nFin ){
3164 rc = SQLITE_CORRUPT_BKPT;
3165 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003166 rc = saveAllCursors(pBt, 0, 0);
3167 if( rc==SQLITE_OK ){
3168 invalidateAllOverflowCache(pBt);
3169 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3170 }
dan51f0b6d2013-02-22 20:16:34 +00003171 if( rc==SQLITE_OK ){
3172 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3173 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3174 }
3175 }else{
3176 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003177 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003178 }
drhd677b3d2007-08-20 22:48:41 +00003179 sqlite3BtreeLeave(p);
3180 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003181}
3182
3183/*
danielk19773b8a05f2007-03-19 17:44:26 +00003184** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003185** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003186**
3187** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3188** the database file should be truncated to during the commit process.
3189** i.e. the database has been reorganized so that only the first *pnTrunc
3190** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003191*/
danielk19773460d192008-12-27 15:23:13 +00003192static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003193 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003194 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00003195 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003196
drh1fee73e2007-08-29 04:00:57 +00003197 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003198 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003199 assert(pBt->autoVacuum);
3200 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003201 Pgno nFin; /* Number of pages in database after autovacuuming */
3202 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003203 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003204 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003205
drhb1299152010-03-30 22:58:33 +00003206 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003207 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3208 /* It is not possible to create a database for which the final page
3209 ** is either a pointer-map page or the pending-byte page. If one
3210 ** is encountered, this indicates corruption.
3211 */
danielk19773460d192008-12-27 15:23:13 +00003212 return SQLITE_CORRUPT_BKPT;
3213 }
danielk1977ef165ce2009-04-06 17:50:03 +00003214
danielk19773460d192008-12-27 15:23:13 +00003215 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003216 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003217 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003218 if( nFin<nOrig ){
3219 rc = saveAllCursors(pBt, 0, 0);
3220 }
danielk19773460d192008-12-27 15:23:13 +00003221 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003222 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003223 }
danielk19773460d192008-12-27 15:23:13 +00003224 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003225 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3226 put4byte(&pBt->pPage1->aData[32], 0);
3227 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003228 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003229 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003230 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003231 }
3232 if( rc!=SQLITE_OK ){
3233 sqlite3PagerRollback(pPager);
3234 }
danielk1977687566d2004-11-02 12:56:41 +00003235 }
3236
dan0aed84d2013-03-26 14:16:20 +00003237 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003238 return rc;
3239}
danielk1977dddbcdc2007-04-26 14:42:34 +00003240
danielk1977a50d9aa2009-06-08 14:49:45 +00003241#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3242# define setChildPtrmaps(x) SQLITE_OK
3243#endif
danielk1977687566d2004-11-02 12:56:41 +00003244
3245/*
drh80e35f42007-03-30 14:06:34 +00003246** This routine does the first phase of a two-phase commit. This routine
3247** causes a rollback journal to be created (if it does not already exist)
3248** and populated with enough information so that if a power loss occurs
3249** the database can be restored to its original state by playing back
3250** the journal. Then the contents of the journal are flushed out to
3251** the disk. After the journal is safely on oxide, the changes to the
3252** database are written into the database file and flushed to oxide.
3253** At the end of this call, the rollback journal still exists on the
3254** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003255** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003256** commit process.
3257**
3258** This call is a no-op if no write-transaction is currently active on pBt.
3259**
3260** Otherwise, sync the database file for the btree pBt. zMaster points to
3261** the name of a master journal file that should be written into the
3262** individual journal file, or is NULL, indicating no master journal file
3263** (single database transaction).
3264**
3265** When this is called, the master journal should already have been
3266** created, populated with this journal pointer and synced to disk.
3267**
3268** Once this is routine has returned, the only thing required to commit
3269** the write-transaction for this database file is to delete the journal.
3270*/
3271int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3272 int rc = SQLITE_OK;
3273 if( p->inTrans==TRANS_WRITE ){
3274 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003275 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003276#ifndef SQLITE_OMIT_AUTOVACUUM
3277 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003278 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003279 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003280 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003281 return rc;
3282 }
3283 }
danbc1a3c62013-02-23 16:40:46 +00003284 if( pBt->bDoTruncate ){
3285 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3286 }
drh80e35f42007-03-30 14:06:34 +00003287#endif
drh49b9d332009-01-02 18:10:42 +00003288 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003289 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003290 }
3291 return rc;
3292}
3293
3294/*
danielk197794b30732009-07-02 17:21:57 +00003295** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3296** at the conclusion of a transaction.
3297*/
3298static void btreeEndTransaction(Btree *p){
3299 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003300 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003301 assert( sqlite3BtreeHoldsMutex(p) );
3302
danbc1a3c62013-02-23 16:40:46 +00003303#ifndef SQLITE_OMIT_AUTOVACUUM
3304 pBt->bDoTruncate = 0;
3305#endif
danc0537fe2013-06-28 19:41:43 +00003306 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003307 /* If there are other active statements that belong to this database
3308 ** handle, downgrade to a read-only transaction. The other statements
3309 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003310 downgradeAllSharedCacheTableLocks(p);
3311 p->inTrans = TRANS_READ;
3312 }else{
3313 /* If the handle had any kind of transaction open, decrement the
3314 ** transaction count of the shared btree. If the transaction count
3315 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3316 ** call below will unlock the pager. */
3317 if( p->inTrans!=TRANS_NONE ){
3318 clearAllSharedCacheTableLocks(p);
3319 pBt->nTransaction--;
3320 if( 0==pBt->nTransaction ){
3321 pBt->inTransaction = TRANS_NONE;
3322 }
3323 }
3324
3325 /* Set the current transaction state to TRANS_NONE and unlock the
3326 ** pager if this call closed the only read or write transaction. */
3327 p->inTrans = TRANS_NONE;
3328 unlockBtreeIfUnused(pBt);
3329 }
3330
3331 btreeIntegrity(p);
3332}
3333
3334/*
drh2aa679f2001-06-25 02:11:07 +00003335** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003336**
drh6e345992007-03-30 11:12:08 +00003337** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003338** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3339** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3340** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003341** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003342** routine has to do is delete or truncate or zero the header in the
3343** the rollback journal (which causes the transaction to commit) and
3344** drop locks.
drh6e345992007-03-30 11:12:08 +00003345**
dan60939d02011-03-29 15:40:55 +00003346** Normally, if an error occurs while the pager layer is attempting to
3347** finalize the underlying journal file, this function returns an error and
3348** the upper layer will attempt a rollback. However, if the second argument
3349** is non-zero then this b-tree transaction is part of a multi-file
3350** transaction. In this case, the transaction has already been committed
3351** (by deleting a master journal file) and the caller will ignore this
3352** functions return code. So, even if an error occurs in the pager layer,
3353** reset the b-tree objects internal state to indicate that the write
3354** transaction has been closed. This is quite safe, as the pager will have
3355** transitioned to the error state.
3356**
drh5e00f6c2001-09-13 13:46:56 +00003357** This will release the write lock on the database file. If there
3358** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003359*/
dan60939d02011-03-29 15:40:55 +00003360int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003361
drh075ed302010-10-14 01:17:30 +00003362 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003363 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003364 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003365
3366 /* If the handle has a write-transaction open, commit the shared-btrees
3367 ** transaction and set the shared state to TRANS_READ.
3368 */
3369 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003370 int rc;
drh075ed302010-10-14 01:17:30 +00003371 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003372 assert( pBt->inTransaction==TRANS_WRITE );
3373 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003374 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003375 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003376 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003377 return rc;
3378 }
danielk1977aef0bf62005-12-30 16:28:01 +00003379 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003380 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003381 }
danielk1977aef0bf62005-12-30 16:28:01 +00003382
danielk197794b30732009-07-02 17:21:57 +00003383 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003384 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003385 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003386}
3387
drh80e35f42007-03-30 14:06:34 +00003388/*
3389** Do both phases of a commit.
3390*/
3391int sqlite3BtreeCommit(Btree *p){
3392 int rc;
drhd677b3d2007-08-20 22:48:41 +00003393 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003394 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3395 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003396 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003397 }
drhd677b3d2007-08-20 22:48:41 +00003398 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003399 return rc;
3400}
3401
drhc39e0002004-05-07 23:50:57 +00003402/*
drhfb982642007-08-30 01:19:59 +00003403** This routine sets the state to CURSOR_FAULT and the error
3404** code to errCode for every cursor on BtShared that pBtree
3405** references.
3406**
3407** Every cursor is tripped, including cursors that belong
3408** to other database connections that happen to be sharing
3409** the cache with pBtree.
3410**
3411** This routine gets called when a rollback occurs.
3412** All cursors using the same cache must be tripped
3413** to prevent them from trying to use the btree after
3414** the rollback. The rollback may have deleted tables
3415** or moved root pages, so it is not sufficient to
3416** save the state of the cursor. The cursor must be
3417** invalidated.
3418*/
3419void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3420 BtCursor *p;
drh0f198a72012-02-13 16:43:16 +00003421 if( pBtree==0 ) return;
drhfb982642007-08-30 01:19:59 +00003422 sqlite3BtreeEnter(pBtree);
3423 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003424 int i;
danielk1977be51a652008-10-08 17:58:48 +00003425 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003426 p->eState = CURSOR_FAULT;
drh4c301aa2009-07-15 17:25:45 +00003427 p->skipNext = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003428 for(i=0; i<=p->iPage; i++){
3429 releasePage(p->apPage[i]);
3430 p->apPage[i] = 0;
3431 }
drhfb982642007-08-30 01:19:59 +00003432 }
3433 sqlite3BtreeLeave(pBtree);
3434}
3435
3436/*
drhecdc7532001-09-23 02:35:53 +00003437** Rollback the transaction in progress. All cursors will be
3438** invalided by this operation. Any attempt to use a cursor
3439** that was open at the beginning of this operation will result
3440** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003441**
3442** This will release the write lock on the database file. If there
3443** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003444*/
drh0f198a72012-02-13 16:43:16 +00003445int sqlite3BtreeRollback(Btree *p, int tripCode){
danielk19778d34dfd2006-01-24 16:37:57 +00003446 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003447 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003448 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003449
drhd677b3d2007-08-20 22:48:41 +00003450 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00003451 if( tripCode==SQLITE_OK ){
3452 rc = tripCode = saveAllCursors(pBt, 0, 0);
3453 }else{
3454 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00003455 }
drh0f198a72012-02-13 16:43:16 +00003456 if( tripCode ){
3457 sqlite3BtreeTripAllCursors(p, tripCode);
3458 }
danielk1977aef0bf62005-12-30 16:28:01 +00003459 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003460
3461 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003462 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003463
danielk19778d34dfd2006-01-24 16:37:57 +00003464 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003465 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003466 if( rc2!=SQLITE_OK ){
3467 rc = rc2;
3468 }
3469
drh24cd67e2004-05-10 16:18:47 +00003470 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003471 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003472 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00003473 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003474 int nPage = get4byte(28+(u8*)pPage1->aData);
3475 testcase( nPage==0 );
3476 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3477 testcase( pBt->nPage!=nPage );
3478 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003479 releasePage(pPage1);
3480 }
drh85ec3b62013-05-14 23:12:06 +00003481 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003482 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003483 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00003484 }
danielk1977aef0bf62005-12-30 16:28:01 +00003485
danielk197794b30732009-07-02 17:21:57 +00003486 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003487 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003488 return rc;
3489}
3490
3491/*
danielk1977bd434552009-03-18 10:33:00 +00003492** Start a statement subtransaction. The subtransaction can can be rolled
3493** back independently of the main transaction. You must start a transaction
3494** before starting a subtransaction. The subtransaction is ended automatically
3495** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003496**
3497** Statement subtransactions are used around individual SQL statements
3498** that are contained within a BEGIN...COMMIT block. If a constraint
3499** error occurs within the statement, the effect of that one statement
3500** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003501**
3502** A statement sub-transaction is implemented as an anonymous savepoint. The
3503** value passed as the second parameter is the total number of savepoints,
3504** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3505** are no active savepoints and no other statement-transactions open,
3506** iStatement is 1. This anonymous savepoint can be released or rolled back
3507** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003508*/
danielk1977bd434552009-03-18 10:33:00 +00003509int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003510 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003511 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003512 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003513 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00003514 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00003515 assert( iStatement>0 );
3516 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003517 assert( pBt->inTransaction==TRANS_WRITE );
3518 /* At the pager level, a statement transaction is a savepoint with
3519 ** an index greater than all savepoints created explicitly using
3520 ** SQL statements. It is illegal to open, release or rollback any
3521 ** such savepoints while the statement transaction savepoint is active.
3522 */
3523 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003524 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003525 return rc;
3526}
3527
3528/*
danielk1977fd7f0452008-12-17 17:30:26 +00003529** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3530** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003531** savepoint identified by parameter iSavepoint, depending on the value
3532** of op.
3533**
3534** Normally, iSavepoint is greater than or equal to zero. However, if op is
3535** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3536** contents of the entire transaction are rolled back. This is different
3537** from a normal transaction rollback, as no locks are released and the
3538** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003539*/
3540int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3541 int rc = SQLITE_OK;
3542 if( p && p->inTrans==TRANS_WRITE ){
3543 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003544 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3545 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3546 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003547 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003548 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00003549 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
3550 pBt->nPage = 0;
3551 }
drh9f0bbf92009-01-02 21:08:09 +00003552 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003553 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00003554
3555 /* The database size was written into the offset 28 of the header
3556 ** when the transaction started, so we know that the value at offset
3557 ** 28 is nonzero. */
3558 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00003559 }
danielk1977fd7f0452008-12-17 17:30:26 +00003560 sqlite3BtreeLeave(p);
3561 }
3562 return rc;
3563}
3564
3565/*
drh8b2f49b2001-06-08 00:21:52 +00003566** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003567** iTable. If a read-only cursor is requested, it is assumed that
3568** the caller already has at least a read-only transaction open
3569** on the database already. If a write-cursor is requested, then
3570** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003571**
3572** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003573** If wrFlag==1, then the cursor can be used for reading or for
3574** writing if other conditions for writing are also met. These
3575** are the conditions that must be met in order for writing to
3576** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003577**
drhf74b8d92002-09-01 23:20:45 +00003578** 1: The cursor must have been opened with wrFlag==1
3579**
drhfe5d71d2007-03-19 11:54:10 +00003580** 2: Other database connections that share the same pager cache
3581** but which are not in the READ_UNCOMMITTED state may not have
3582** cursors open with wrFlag==0 on the same table. Otherwise
3583** the changes made by this write cursor would be visible to
3584** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003585**
3586** 3: The database must be writable (not on read-only media)
3587**
3588** 4: There must be an active transaction.
3589**
drh6446c4d2001-12-15 14:22:18 +00003590** No checking is done to make sure that page iTable really is the
3591** root page of a b-tree. If it is not, then the cursor acquired
3592** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003593**
drhf25a5072009-11-18 23:01:25 +00003594** It is assumed that the sqlite3BtreeCursorZero() has been called
3595** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003596*/
drhd677b3d2007-08-20 22:48:41 +00003597static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003598 Btree *p, /* The btree */
3599 int iTable, /* Root page of table to open */
3600 int wrFlag, /* 1 to write. 0 read-only */
3601 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3602 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003603){
danielk19773e8add92009-07-04 17:16:00 +00003604 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003605
drh1fee73e2007-08-29 04:00:57 +00003606 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003607 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003608
danielk1977602b4662009-07-02 07:47:33 +00003609 /* The following assert statements verify that if this is a sharable
3610 ** b-tree database, the connection is holding the required table locks,
3611 ** and that no other connection has any open cursor that conflicts with
3612 ** this lock. */
3613 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003614 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3615
danielk19773e8add92009-07-04 17:16:00 +00003616 /* Assert that the caller has opened the required transaction. */
3617 assert( p->inTrans>TRANS_NONE );
3618 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3619 assert( pBt->pPage1 && pBt->pPage1->aData );
3620
drhc9166342012-01-05 23:32:06 +00003621 if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){
danielk197796d48e92009-06-29 06:00:37 +00003622 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003623 }
drhb1299152010-03-30 22:58:33 +00003624 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00003625 assert( wrFlag==0 );
3626 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00003627 }
danielk1977aef0bf62005-12-30 16:28:01 +00003628
danielk1977aef0bf62005-12-30 16:28:01 +00003629 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003630 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003631 pCur->pgnoRoot = (Pgno)iTable;
3632 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003633 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003634 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003635 pCur->pBt = pBt;
drh4c417182014-03-31 23:57:41 +00003636 assert( wrFlag==0 || wrFlag==BTCF_WriteFlag );
3637 pCur->curFlags = wrFlag;
drha059ad02001-04-17 20:09:11 +00003638 pCur->pNext = pBt->pCursor;
3639 if( pCur->pNext ){
3640 pCur->pNext->pPrev = pCur;
3641 }
3642 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003643 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00003644 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003645}
drhd677b3d2007-08-20 22:48:41 +00003646int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003647 Btree *p, /* The btree */
3648 int iTable, /* Root page of table to open */
3649 int wrFlag, /* 1 to write. 0 read-only */
3650 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3651 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003652){
3653 int rc;
3654 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003655 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003656 sqlite3BtreeLeave(p);
3657 return rc;
3658}
drh7f751222009-03-17 22:33:00 +00003659
3660/*
3661** Return the size of a BtCursor object in bytes.
3662**
3663** This interfaces is needed so that users of cursors can preallocate
3664** sufficient storage to hold a cursor. The BtCursor object is opaque
3665** to users so they cannot do the sizeof() themselves - they must call
3666** this routine.
3667*/
3668int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00003669 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00003670}
3671
drh7f751222009-03-17 22:33:00 +00003672/*
drhf25a5072009-11-18 23:01:25 +00003673** Initialize memory that will be converted into a BtCursor object.
3674**
3675** The simple approach here would be to memset() the entire object
3676** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3677** do not need to be zeroed and they are large, so we can save a lot
3678** of run-time by skipping the initialization of those elements.
3679*/
3680void sqlite3BtreeCursorZero(BtCursor *p){
3681 memset(p, 0, offsetof(BtCursor, iPage));
3682}
3683
3684/*
drh5e00f6c2001-09-13 13:46:56 +00003685** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003686** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003687*/
drh3aac2dd2004-04-26 14:10:20 +00003688int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003689 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003690 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003691 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003692 BtShared *pBt = pCur->pBt;
3693 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003694 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003695 if( pCur->pPrev ){
3696 pCur->pPrev->pNext = pCur->pNext;
3697 }else{
3698 pBt->pCursor = pCur->pNext;
3699 }
3700 if( pCur->pNext ){
3701 pCur->pNext->pPrev = pCur->pPrev;
3702 }
danielk197771d5d2c2008-09-29 11:49:47 +00003703 for(i=0; i<=pCur->iPage; i++){
3704 releasePage(pCur->apPage[i]);
3705 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003706 unlockBtreeIfUnused(pBt);
dan5a500af2014-03-11 20:33:04 +00003707 sqlite3DbFree(pBtree->db, pCur->aOverflow);
danielk1977cd3e8f72008-03-25 09:47:35 +00003708 /* sqlite3_free(pCur); */
3709 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003710 }
drh8c42ca92001-06-22 19:15:00 +00003711 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003712}
3713
drh5e2f8b92001-05-28 00:41:15 +00003714/*
drh86057612007-06-26 01:04:48 +00003715** Make sure the BtCursor* given in the argument has a valid
3716** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003717** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003718**
3719** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003720** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003721**
3722** 2007-06-25: There is a bug in some versions of MSVC that cause the
3723** compiler to crash when getCellInfo() is implemented as a macro.
3724** But there is a measureable speed advantage to using the macro on gcc
3725** (when less compiler optimizations like -Os or -O0 are used and the
3726** compiler is not doing agressive inlining.) So we use a real function
3727** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003728*/
drh9188b382004-05-14 21:12:22 +00003729#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003730 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003731 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003732 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003733 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003734 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
dan7df42ab2014-01-20 18:25:44 +00003735 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003736 }
danielk19771cc5ed82007-05-16 17:28:43 +00003737#else
3738 #define assertCellInfo(x)
3739#endif
drh86057612007-06-26 01:04:48 +00003740#ifdef _MSC_VER
3741 /* Use a real function in MSVC to work around bugs in that compiler. */
3742 static void getCellInfo(BtCursor *pCur){
3743 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003744 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003745 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drh036dbec2014-03-11 23:40:44 +00003746 pCur->curFlags |= BTCF_ValidNKey;
drh86057612007-06-26 01:04:48 +00003747 }else{
3748 assertCellInfo(pCur);
3749 }
3750 }
3751#else /* if not _MSC_VER */
3752 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003753#define getCellInfo(pCur) \
3754 if( pCur->info.nSize==0 ){ \
3755 int iPage = pCur->iPage; \
drh036dbec2014-03-11 23:40:44 +00003756 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
3757 pCur->curFlags |= BTCF_ValidNKey; \
danielk197771d5d2c2008-09-29 11:49:47 +00003758 }else{ \
3759 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003760 }
3761#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003762
drhea8ffdf2009-07-22 00:35:23 +00003763#ifndef NDEBUG /* The next routine used only within assert() statements */
3764/*
3765** Return true if the given BtCursor is valid. A valid cursor is one
3766** that is currently pointing to a row in a (non-empty) table.
3767** This is a verification routine is used only within assert() statements.
3768*/
3769int sqlite3BtreeCursorIsValid(BtCursor *pCur){
3770 return pCur && pCur->eState==CURSOR_VALID;
3771}
3772#endif /* NDEBUG */
3773
drh9188b382004-05-14 21:12:22 +00003774/*
drh3aac2dd2004-04-26 14:10:20 +00003775** Set *pSize to the size of the buffer needed to hold the value of
3776** the key for the current entry. If the cursor is not pointing
3777** to a valid entry, *pSize is set to 0.
3778**
drh4b70f112004-05-02 21:12:19 +00003779** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003780** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00003781**
3782** The caller must position the cursor prior to invoking this routine.
3783**
3784** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00003785*/
drh4a1c3802004-05-12 15:15:47 +00003786int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003787 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003788 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3789 if( pCur->eState!=CURSOR_VALID ){
3790 *pSize = 0;
3791 }else{
3792 getCellInfo(pCur);
3793 *pSize = pCur->info.nKey;
drh72f82862001-05-24 21:06:34 +00003794 }
drhea8ffdf2009-07-22 00:35:23 +00003795 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003796}
drh2af926b2001-05-15 00:39:25 +00003797
drh72f82862001-05-24 21:06:34 +00003798/*
drh0e1c19e2004-05-11 00:58:56 +00003799** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00003800** cursor currently points to.
3801**
3802** The caller must guarantee that the cursor is pointing to a non-NULL
3803** valid entry. In other words, the calling procedure must guarantee
3804** that the cursor has Cursor.eState==CURSOR_VALID.
3805**
3806** Failure is not possible. This function always returns SQLITE_OK.
3807** It might just as well be a procedure (returning void) but we continue
3808** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00003809*/
3810int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003811 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003812 assert( pCur->eState==CURSOR_VALID );
3813 getCellInfo(pCur);
3814 *pSize = pCur->info.nData;
3815 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00003816}
3817
3818/*
danielk1977d04417962007-05-02 13:16:30 +00003819** Given the page number of an overflow page in the database (parameter
3820** ovfl), this function finds the page number of the next page in the
3821** linked list of overflow pages. If possible, it uses the auto-vacuum
3822** pointer-map data instead of reading the content of page ovfl to do so.
3823**
3824** If an error occurs an SQLite error code is returned. Otherwise:
3825**
danielk1977bea2a942009-01-20 17:06:27 +00003826** The page number of the next overflow page in the linked list is
3827** written to *pPgnoNext. If page ovfl is the last page in its linked
3828** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003829**
danielk1977bea2a942009-01-20 17:06:27 +00003830** If ppPage is not NULL, and a reference to the MemPage object corresponding
3831** to page number pOvfl was obtained, then *ppPage is set to point to that
3832** reference. It is the responsibility of the caller to call releasePage()
3833** on *ppPage to free the reference. In no reference was obtained (because
3834** the pointer-map was used to obtain the value for *pPgnoNext), then
3835** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003836*/
3837static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003838 BtShared *pBt, /* The database file */
3839 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003840 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003841 Pgno *pPgnoNext /* OUT: Next overflow page number */
3842){
3843 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003844 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003845 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003846
drh1fee73e2007-08-29 04:00:57 +00003847 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003848 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003849
3850#ifndef SQLITE_OMIT_AUTOVACUUM
3851 /* Try to find the next page in the overflow list using the
3852 ** autovacuum pointer-map pages. Guess that the next page in
3853 ** the overflow list is page number (ovfl+1). If that guess turns
3854 ** out to be wrong, fall back to loading the data of page
3855 ** number ovfl to determine the next page number.
3856 */
3857 if( pBt->autoVacuum ){
3858 Pgno pgno;
3859 Pgno iGuess = ovfl+1;
3860 u8 eType;
3861
3862 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3863 iGuess++;
3864 }
3865
drhb1299152010-03-30 22:58:33 +00003866 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003867 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003868 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003869 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003870 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003871 }
3872 }
3873 }
3874#endif
3875
danielk1977d8a3f3d2009-07-11 11:45:23 +00003876 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00003877 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00003878 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00003879 assert( rc==SQLITE_OK || pPage==0 );
3880 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00003881 next = get4byte(pPage->aData);
3882 }
danielk1977443c0592009-01-16 15:21:05 +00003883 }
danielk197745d68822009-01-16 16:23:38 +00003884
danielk1977bea2a942009-01-20 17:06:27 +00003885 *pPgnoNext = next;
3886 if( ppPage ){
3887 *ppPage = pPage;
3888 }else{
3889 releasePage(pPage);
3890 }
3891 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003892}
3893
danielk1977da107192007-05-04 08:32:13 +00003894/*
3895** Copy data from a buffer to a page, or from a page to a buffer.
3896**
3897** pPayload is a pointer to data stored on database page pDbPage.
3898** If argument eOp is false, then nByte bytes of data are copied
3899** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3900** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3901** of data are copied from the buffer pBuf to pPayload.
3902**
3903** SQLITE_OK is returned on success, otherwise an error code.
3904*/
3905static int copyPayload(
3906 void *pPayload, /* Pointer to page data */
3907 void *pBuf, /* Pointer to buffer */
3908 int nByte, /* Number of bytes to copy */
3909 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3910 DbPage *pDbPage /* Page containing pPayload */
3911){
3912 if( eOp ){
3913 /* Copy data from buffer to page (a write operation) */
3914 int rc = sqlite3PagerWrite(pDbPage);
3915 if( rc!=SQLITE_OK ){
3916 return rc;
3917 }
3918 memcpy(pPayload, pBuf, nByte);
3919 }else{
3920 /* Copy data from page to buffer (a read operation) */
3921 memcpy(pBuf, pPayload, nByte);
3922 }
3923 return SQLITE_OK;
3924}
danielk1977d04417962007-05-02 13:16:30 +00003925
3926/*
danielk19779f8d6402007-05-02 17:48:45 +00003927** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00003928** for the entry that the pCur cursor is pointing to. The eOp
3929** argument is interpreted as follows:
3930**
3931** 0: The operation is a read. Populate the overflow cache.
3932** 1: The operation is a write. Populate the overflow cache.
3933** 2: The operation is a read. Do not populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00003934**
3935** A total of "amt" bytes are read or written beginning at "offset".
3936** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003937**
drh3bcdfd22009-07-12 02:32:21 +00003938** The content being read or written might appear on the main page
3939** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00003940**
dan5a500af2014-03-11 20:33:04 +00003941** If the current cursor entry uses one or more overflow pages and the
3942** eOp argument is not 2, this function may allocate space for and lazily
3943** popluates the overflow page-list cache array (BtCursor.aOverflow).
3944** Subsequent calls use this cache to make seeking to the supplied offset
3945** more efficient.
danielk1977da107192007-05-04 08:32:13 +00003946**
3947** Once an overflow page-list cache has been allocated, it may be
3948** invalidated if some other cursor writes to the same table, or if
3949** the cursor is moved to a different row. Additionally, in auto-vacuum
3950** mode, the following events may invalidate an overflow page-list cache.
3951**
3952** * An incremental vacuum,
3953** * A commit in auto_vacuum="full" mode,
3954** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003955*/
danielk19779f8d6402007-05-02 17:48:45 +00003956static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003957 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003958 u32 offset, /* Begin reading this far into payload */
3959 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003960 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003961 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003962){
3963 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003964 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003965 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003966 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003967 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003968 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00003969#ifdef SQLITE_DIRECT_OVERFLOW_READ
3970 int bEnd; /* True if reading to end of data */
3971#endif
drh3aac2dd2004-04-26 14:10:20 +00003972
danielk1977da107192007-05-04 08:32:13 +00003973 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003974 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003975 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003976 assert( cursorHoldsMutex(pCur) );
drha38c9512014-04-01 01:24:34 +00003977 assert( eOp!=2 || offset==0 ); /* Always start from beginning for eOp==2 */
danielk1977da107192007-05-04 08:32:13 +00003978
drh86057612007-06-26 01:04:48 +00003979 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003980 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003981 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
drh4c417182014-03-31 23:57:41 +00003982#ifdef SQLITE_DIRECT_OVERFLOW_READ
dan9bc21b52014-03-20 18:56:35 +00003983 bEnd = (offset+amt==nKey+pCur->info.nData);
drh4c417182014-03-31 23:57:41 +00003984#endif
danielk1977da107192007-05-04 08:32:13 +00003985
drh3bcdfd22009-07-12 02:32:21 +00003986 if( NEVER(offset+amt > nKey+pCur->info.nData)
danielk19770d065412008-11-12 18:21:36 +00003987 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3988 ){
danielk1977da107192007-05-04 08:32:13 +00003989 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003990 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003991 }
danielk1977da107192007-05-04 08:32:13 +00003992
3993 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003994 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003995 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003996 if( a+offset>pCur->info.nLocal ){
3997 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003998 }
dan5a500af2014-03-11 20:33:04 +00003999 rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004000 offset = 0;
drha34b6762004-05-07 13:30:42 +00004001 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004002 amt -= a;
drhdd793422001-06-28 01:54:48 +00004003 }else{
drhfa1a98a2004-05-14 19:08:17 +00004004 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004005 }
danielk1977da107192007-05-04 08:32:13 +00004006
4007 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004008 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004009 Pgno nextPage;
4010
drhfa1a98a2004-05-14 19:08:17 +00004011 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004012
drha38c9512014-04-01 01:24:34 +00004013 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4014 ** Except, do not allocate aOverflow[] for eOp==2.
4015 **
4016 ** The aOverflow[] array is sized at one entry for each overflow page
4017 ** in the overflow chain. The page number of the first overflow page is
4018 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4019 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004020 */
drh036dbec2014-03-11 23:40:44 +00004021 if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004022 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
dan5a500af2014-03-11 20:33:04 +00004023 if( nOvfl>pCur->nOvflAlloc ){
4024 Pgno *aNew = (Pgno*)sqlite3DbRealloc(
4025 pCur->pBtree->db, pCur->aOverflow, nOvfl*2*sizeof(Pgno)
4026 );
4027 if( aNew==0 ){
4028 rc = SQLITE_NOMEM;
4029 }else{
4030 pCur->nOvflAlloc = nOvfl*2;
4031 pCur->aOverflow = aNew;
4032 }
4033 }
4034 if( rc==SQLITE_OK ){
4035 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
drh036dbec2014-03-11 23:40:44 +00004036 pCur->curFlags |= BTCF_ValidOvfl;
danielk19772dec9702007-05-02 16:48:37 +00004037 }
4038 }
danielk1977da107192007-05-04 08:32:13 +00004039
4040 /* If the overflow page-list cache has been allocated and the
4041 ** entry for the first required overflow page is valid, skip
4042 ** directly to it.
4043 */
drh036dbec2014-03-11 23:40:44 +00004044 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 && pCur->aOverflow[offset/ovflSize] ){
danielk19772dec9702007-05-02 16:48:37 +00004045 iIdx = (offset/ovflSize);
4046 nextPage = pCur->aOverflow[iIdx];
4047 offset = (offset%ovflSize);
4048 }
danielk1977da107192007-05-04 08:32:13 +00004049
4050 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4051
danielk1977da107192007-05-04 08:32:13 +00004052 /* If required, populate the overflow page-list cache. */
drh036dbec2014-03-11 23:40:44 +00004053 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
danielk1977da107192007-05-04 08:32:13 +00004054 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
4055 pCur->aOverflow[iIdx] = nextPage;
4056 }
danielk1977da107192007-05-04 08:32:13 +00004057
danielk1977d04417962007-05-02 13:16:30 +00004058 if( offset>=ovflSize ){
4059 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004060 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004061 ** data is not required. So first try to lookup the overflow
4062 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004063 ** function.
drha38c9512014-04-01 01:24:34 +00004064 **
4065 ** Note that the aOverflow[] array must be allocated because eOp!=2
4066 ** here. If eOp==2, then offset==0 and this branch is never taken.
danielk1977d04417962007-05-02 13:16:30 +00004067 */
drha38c9512014-04-01 01:24:34 +00004068 assert( eOp!=2 );
4069 assert( pCur->curFlags & BTCF_ValidOvfl );
4070 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004071 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004072 }else{
danielk1977da107192007-05-04 08:32:13 +00004073 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004074 }
danielk1977da107192007-05-04 08:32:13 +00004075 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004076 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004077 /* Need to read this page properly. It contains some of the
4078 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004079 */
danf4ba1092011-10-08 14:57:07 +00004080#ifdef SQLITE_DIRECT_OVERFLOW_READ
4081 sqlite3_file *fd;
4082#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004083 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004084 if( a + offset > ovflSize ){
4085 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004086 }
danf4ba1092011-10-08 14:57:07 +00004087
4088#ifdef SQLITE_DIRECT_OVERFLOW_READ
4089 /* If all the following are true:
4090 **
4091 ** 1) this is a read operation, and
4092 ** 2) data is required from the start of this overflow page, and
4093 ** 3) the database is file-backed, and
4094 ** 4) there is no open write-transaction, and
4095 ** 5) the database is not a WAL database,
dan9bc21b52014-03-20 18:56:35 +00004096 ** 6) all data from the page is being read.
danf4ba1092011-10-08 14:57:07 +00004097 **
4098 ** then data can be read directly from the database file into the
4099 ** output buffer, bypassing the page-cache altogether. This speeds
4100 ** up loading large records that span many overflow pages.
4101 */
dan5a500af2014-03-11 20:33:04 +00004102 if( (eOp&0x01)==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004103 && offset==0 /* (2) */
dan9bc21b52014-03-20 18:56:35 +00004104 && (bEnd || a==ovflSize) /* (6) */
danf4ba1092011-10-08 14:57:07 +00004105 && pBt->inTransaction==TRANS_READ /* (4) */
4106 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
4107 && pBt->pPage1->aData[19]==0x01 /* (5) */
4108 ){
4109 u8 aSave[4];
4110 u8 *aWrite = &pBuf[-4];
4111 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004112 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004113 nextPage = get4byte(aWrite);
4114 memcpy(aWrite, aSave, 4);
4115 }else
4116#endif
4117
4118 {
4119 DbPage *pDbPage;
dan11dcd112013-03-15 18:29:18 +00004120 rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage,
dan5a500af2014-03-11 20:33:04 +00004121 ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004122 );
danf4ba1092011-10-08 14:57:07 +00004123 if( rc==SQLITE_OK ){
4124 aPayload = sqlite3PagerGetData(pDbPage);
4125 nextPage = get4byte(aPayload);
dan5a500af2014-03-11 20:33:04 +00004126 rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
danf4ba1092011-10-08 14:57:07 +00004127 sqlite3PagerUnref(pDbPage);
4128 offset = 0;
4129 }
4130 }
4131 amt -= a;
4132 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004133 }
drh2af926b2001-05-15 00:39:25 +00004134 }
drh2af926b2001-05-15 00:39:25 +00004135 }
danielk1977cfe9a692004-06-16 12:00:29 +00004136
danielk1977da107192007-05-04 08:32:13 +00004137 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004138 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004139 }
danielk1977da107192007-05-04 08:32:13 +00004140 return rc;
drh2af926b2001-05-15 00:39:25 +00004141}
4142
drh72f82862001-05-24 21:06:34 +00004143/*
drh3aac2dd2004-04-26 14:10:20 +00004144** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004145** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004146** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004147**
drh5d1a8722009-07-22 18:07:40 +00004148** The caller must ensure that pCur is pointing to a valid row
4149** in the table.
4150**
drh3aac2dd2004-04-26 14:10:20 +00004151** Return SQLITE_OK on success or an error code if anything goes
4152** wrong. An error is returned if "offset+amt" is larger than
4153** the available payload.
drh72f82862001-05-24 21:06:34 +00004154*/
drha34b6762004-05-07 13:30:42 +00004155int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004156 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004157 assert( pCur->eState==CURSOR_VALID );
4158 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4159 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4160 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004161}
4162
4163/*
drh3aac2dd2004-04-26 14:10:20 +00004164** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004165** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004166** begins at "offset".
4167**
4168** Return SQLITE_OK on success or an error code if anything goes
4169** wrong. An error is returned if "offset+amt" is larger than
4170** the available payload.
drh72f82862001-05-24 21:06:34 +00004171*/
drh3aac2dd2004-04-26 14:10:20 +00004172int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004173 int rc;
4174
danielk19773588ceb2008-06-10 17:30:26 +00004175#ifndef SQLITE_OMIT_INCRBLOB
4176 if ( pCur->eState==CURSOR_INVALID ){
4177 return SQLITE_ABORT;
4178 }
4179#endif
4180
drh1fee73e2007-08-29 04:00:57 +00004181 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004182 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004183 if( rc==SQLITE_OK ){
4184 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004185 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4186 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004187 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004188 }
4189 return rc;
drh2af926b2001-05-15 00:39:25 +00004190}
4191
drh72f82862001-05-24 21:06:34 +00004192/*
drh0e1c19e2004-05-11 00:58:56 +00004193** Return a pointer to payload information from the entry that the
4194** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004195** the key if index btrees (pPage->intKey==0) and is the data for
4196** table btrees (pPage->intKey==1). The number of bytes of available
4197** key/data is written into *pAmt. If *pAmt==0, then the value
4198** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004199**
4200** This routine is an optimization. It is common for the entire key
4201** and data to fit on the local page and for there to be no overflow
4202** pages. When that is so, this routine can be used to access the
4203** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004204** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004205** the key/data and copy it into a preallocated buffer.
4206**
4207** The pointer returned by this routine looks directly into the cached
4208** page of the database. The data might change or move the next time
4209** any btree routine is called.
4210*/
drh2a8d2262013-12-09 20:43:22 +00004211static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004212 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004213 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004214){
danielk197771d5d2c2008-09-29 11:49:47 +00004215 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004216 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004217 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004218 assert( cursorHoldsMutex(pCur) );
drh2a8d2262013-12-09 20:43:22 +00004219 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh86dd3712014-03-25 11:00:21 +00004220 assert( pCur->info.nSize>0 );
4221#if 0
drhd16546d2013-11-25 21:41:24 +00004222 if( pCur->info.nSize==0 ){
drhfe3313f2009-07-21 19:02:20 +00004223 btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
4224 &pCur->info);
4225 }
drh86dd3712014-03-25 11:00:21 +00004226#endif
drh2a8d2262013-12-09 20:43:22 +00004227 *pAmt = pCur->info.nLocal;
4228 return (void*)(pCur->info.pCell + pCur->info.nHeader);
drh0e1c19e2004-05-11 00:58:56 +00004229}
4230
4231
4232/*
drhe51c44f2004-05-30 20:46:09 +00004233** For the entry that cursor pCur is point to, return as
4234** many bytes of the key or data as are available on the local
4235** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004236**
4237** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004238** or be destroyed on the next call to any Btree routine,
4239** including calls from other threads against the same cache.
4240** Hence, a mutex on the BtShared should be held prior to calling
4241** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004242**
4243** These routines is used to get quick access to key and data
4244** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004245*/
drh501932c2013-11-21 21:59:53 +00004246const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004247 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004248}
drh501932c2013-11-21 21:59:53 +00004249const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004250 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004251}
4252
4253
4254/*
drh8178a752003-01-05 21:41:40 +00004255** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004256** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004257**
4258** This function returns SQLITE_CORRUPT if the page-header flags field of
4259** the new child page does not match the flags field of the parent (i.e.
4260** if an intkey page appears to be the parent of a non-intkey page, or
4261** vice-versa).
drh72f82862001-05-24 21:06:34 +00004262*/
drh3aac2dd2004-04-26 14:10:20 +00004263static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00004264 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004265 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00004266 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00004267 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004268
drh1fee73e2007-08-29 04:00:57 +00004269 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004270 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004271 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004272 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004273 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4274 return SQLITE_CORRUPT_BKPT;
4275 }
drhb00fc3b2013-08-21 23:42:32 +00004276 rc = getAndInitPage(pBt, newPgno, &pNewPage,
drh036dbec2014-03-11 23:40:44 +00004277 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0);
drh6019e162001-07-02 17:51:45 +00004278 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004279 pCur->apPage[i+1] = pNewPage;
4280 pCur->aiIdx[i+1] = 0;
4281 pCur->iPage++;
4282
drh271efa52004-05-30 19:19:05 +00004283 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004284 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
danielk1977bd5969a2009-07-11 17:39:42 +00004285 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004286 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004287 }
drh72f82862001-05-24 21:06:34 +00004288 return SQLITE_OK;
4289}
4290
danbb246c42012-01-12 14:25:55 +00004291#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004292/*
4293** Page pParent is an internal (non-leaf) tree page. This function
4294** asserts that page number iChild is the left-child if the iIdx'th
4295** cell in page pParent. Or, if iIdx is equal to the total number of
4296** cells in pParent, that page number iChild is the right-child of
4297** the page.
4298*/
4299static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4300 assert( iIdx<=pParent->nCell );
4301 if( iIdx==pParent->nCell ){
4302 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4303 }else{
4304 assert( get4byte(findCell(pParent, iIdx))==iChild );
4305 }
4306}
4307#else
4308# define assertParentIndex(x,y,z)
4309#endif
4310
drh72f82862001-05-24 21:06:34 +00004311/*
drh5e2f8b92001-05-28 00:41:15 +00004312** Move the cursor up to the parent page.
4313**
4314** pCur->idx is set to the cell index that contains the pointer
4315** to the page we are coming from. If we are coming from the
4316** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004317** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004318*/
danielk197730548662009-07-09 05:07:37 +00004319static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004320 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004321 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004322 assert( pCur->iPage>0 );
4323 assert( pCur->apPage[pCur->iPage] );
danbb246c42012-01-12 14:25:55 +00004324
4325 /* UPDATE: It is actually possible for the condition tested by the assert
4326 ** below to be untrue if the database file is corrupt. This can occur if
4327 ** one cursor has modified page pParent while a reference to it is held
4328 ** by a second cursor. Which can only happen if a single page is linked
4329 ** into more than one b-tree structure in a corrupt database. */
4330#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004331 assertParentIndex(
4332 pCur->apPage[pCur->iPage-1],
4333 pCur->aiIdx[pCur->iPage-1],
4334 pCur->apPage[pCur->iPage]->pgno
4335 );
danbb246c42012-01-12 14:25:55 +00004336#endif
dan6c2688c2012-01-12 15:05:03 +00004337 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
danbb246c42012-01-12 14:25:55 +00004338
danielk197771d5d2c2008-09-29 11:49:47 +00004339 releasePage(pCur->apPage[pCur->iPage]);
4340 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004341 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004342 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh72f82862001-05-24 21:06:34 +00004343}
4344
4345/*
danielk19778f880a82009-07-13 09:41:45 +00004346** Move the cursor to point to the root page of its b-tree structure.
4347**
4348** If the table has a virtual root page, then the cursor is moved to point
4349** to the virtual root page instead of the actual root page. A table has a
4350** virtual root page when the actual root page contains no cells and a
4351** single child page. This can only happen with the table rooted at page 1.
4352**
4353** If the b-tree structure is empty, the cursor state is set to
4354** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4355** cell located on the root (or virtual root) page and the cursor state
4356** is set to CURSOR_VALID.
4357**
4358** If this function returns successfully, it may be assumed that the
4359** page-header flags indicate that the [virtual] root-page is the expected
4360** kind of b-tree page (i.e. if when opening the cursor the caller did not
4361** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4362** indicating a table b-tree, or if the caller did specify a KeyInfo
4363** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4364** b-tree).
drh72f82862001-05-24 21:06:34 +00004365*/
drh5e2f8b92001-05-28 00:41:15 +00004366static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004367 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004368 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004369
drh1fee73e2007-08-29 04:00:57 +00004370 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004371 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4372 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4373 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4374 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4375 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004376 assert( pCur->skipNext!=SQLITE_OK );
4377 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004378 }
danielk1977be51a652008-10-08 17:58:48 +00004379 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004380 }
danielk197771d5d2c2008-09-29 11:49:47 +00004381
4382 if( pCur->iPage>=0 ){
drh4e8fe3f2013-12-06 23:25:27 +00004383 while( pCur->iPage ) releasePage(pCur->apPage[pCur->iPage--]);
dana205a482011-08-27 18:48:57 +00004384 }else if( pCur->pgnoRoot==0 ){
4385 pCur->eState = CURSOR_INVALID;
4386 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004387 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004388 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
drh036dbec2014-03-11 23:40:44 +00004389 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0);
drh4c301aa2009-07-15 17:25:45 +00004390 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004391 pCur->eState = CURSOR_INVALID;
4392 return rc;
4393 }
danielk1977172114a2009-07-07 15:47:12 +00004394 pCur->iPage = 0;
drhc39e0002004-05-07 23:50:57 +00004395 }
danielk197771d5d2c2008-09-29 11:49:47 +00004396 pRoot = pCur->apPage[0];
4397 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00004398
4399 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4400 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4401 ** NULL, the caller expects a table b-tree. If this is not the case,
4402 ** return an SQLITE_CORRUPT error.
4403 **
4404 ** Earlier versions of SQLite assumed that this test could not fail
4405 ** if the root page was already loaded when this function was called (i.e.
4406 ** if pCur->iPage>=0). But this is not so if the database is corrupted
4407 ** in such a way that page pRoot is linked into a second b-tree table
4408 ** (or the freelist). */
4409 assert( pRoot->intKey==1 || pRoot->intKey==0 );
4410 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4411 return SQLITE_CORRUPT_BKPT;
4412 }
danielk19778f880a82009-07-13 09:41:45 +00004413
danielk197771d5d2c2008-09-29 11:49:47 +00004414 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004415 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004416 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00004417
drh4e8fe3f2013-12-06 23:25:27 +00004418 if( pRoot->nCell>0 ){
4419 pCur->eState = CURSOR_VALID;
4420 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00004421 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004422 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004423 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004424 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004425 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004426 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004427 pCur->eState = CURSOR_INVALID;
drh8856d6a2004-04-29 14:42:46 +00004428 }
4429 return rc;
drh72f82862001-05-24 21:06:34 +00004430}
drh2af926b2001-05-15 00:39:25 +00004431
drh5e2f8b92001-05-28 00:41:15 +00004432/*
4433** Move the cursor down to the left-most leaf entry beneath the
4434** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004435**
4436** The left-most leaf is the one with the smallest key - the first
4437** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004438*/
4439static int moveToLeftmost(BtCursor *pCur){
4440 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004441 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004442 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004443
drh1fee73e2007-08-29 04:00:57 +00004444 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004445 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004446 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4447 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4448 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004449 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004450 }
drhd677b3d2007-08-20 22:48:41 +00004451 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004452}
4453
drh2dcc9aa2002-12-04 13:40:25 +00004454/*
4455** Move the cursor down to the right-most leaf entry beneath the
4456** page to which it is currently pointing. Notice the difference
4457** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4458** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4459** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004460**
4461** The right-most entry is the one with the largest key - the last
4462** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004463*/
4464static int moveToRightmost(BtCursor *pCur){
4465 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004466 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004467 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004468
drh1fee73e2007-08-29 04:00:57 +00004469 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004470 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004471 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004472 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004473 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004474 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00004475 }
drhd677b3d2007-08-20 22:48:41 +00004476 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00004477 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00004478 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004479 pCur->curFlags &= ~BTCF_ValidNKey;
drhd677b3d2007-08-20 22:48:41 +00004480 }
danielk1977518002e2008-09-05 05:02:46 +00004481 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004482}
4483
drh5e00f6c2001-09-13 13:46:56 +00004484/* Move the cursor to the first entry in the table. Return SQLITE_OK
4485** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004486** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004487*/
drh3aac2dd2004-04-26 14:10:20 +00004488int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004489 int rc;
drhd677b3d2007-08-20 22:48:41 +00004490
drh1fee73e2007-08-29 04:00:57 +00004491 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004492 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004493 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004494 if( rc==SQLITE_OK ){
4495 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004496 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004497 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004498 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004499 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004500 *pRes = 0;
4501 rc = moveToLeftmost(pCur);
4502 }
drh5e00f6c2001-09-13 13:46:56 +00004503 }
drh5e00f6c2001-09-13 13:46:56 +00004504 return rc;
4505}
drh5e2f8b92001-05-28 00:41:15 +00004506
drh9562b552002-02-19 15:00:07 +00004507/* Move the cursor to the last entry in the table. Return SQLITE_OK
4508** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004509** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004510*/
drh3aac2dd2004-04-26 14:10:20 +00004511int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004512 int rc;
drhd677b3d2007-08-20 22:48:41 +00004513
drh1fee73e2007-08-29 04:00:57 +00004514 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004515 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004516
4517 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00004518 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00004519#ifdef SQLITE_DEBUG
4520 /* This block serves to assert() that the cursor really does point
4521 ** to the last entry in the b-tree. */
4522 int ii;
4523 for(ii=0; ii<pCur->iPage; ii++){
4524 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4525 }
4526 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4527 assert( pCur->apPage[pCur->iPage]->leaf );
4528#endif
4529 return SQLITE_OK;
4530 }
4531
drh9562b552002-02-19 15:00:07 +00004532 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004533 if( rc==SQLITE_OK ){
4534 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00004535 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004536 *pRes = 1;
4537 }else{
4538 assert( pCur->eState==CURSOR_VALID );
4539 *pRes = 0;
4540 rc = moveToRightmost(pCur);
drh036dbec2014-03-11 23:40:44 +00004541 if( rc==SQLITE_OK ){
4542 pCur->curFlags |= BTCF_AtLast;
4543 }else{
4544 pCur->curFlags &= ~BTCF_AtLast;
4545 }
4546
drhd677b3d2007-08-20 22:48:41 +00004547 }
drh9562b552002-02-19 15:00:07 +00004548 }
drh9562b552002-02-19 15:00:07 +00004549 return rc;
4550}
4551
drhe14006d2008-03-25 17:23:32 +00004552/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004553** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004554**
drhe63d9992008-08-13 19:11:48 +00004555** For INTKEY tables, the intKey parameter is used. pIdxKey
4556** must be NULL. For index tables, pIdxKey is used and intKey
4557** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004558**
drh5e2f8b92001-05-28 00:41:15 +00004559** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004560** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004561** were present. The cursor might point to an entry that comes
4562** before or after the key.
4563**
drh64022502009-01-09 14:11:04 +00004564** An integer is written into *pRes which is the result of
4565** comparing the key with the entry to which the cursor is
4566** pointing. The meaning of the integer written into
4567** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004568**
4569** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004570** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004571** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004572**
4573** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004574** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004575**
4576** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004577** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004578**
drha059ad02001-04-17 20:09:11 +00004579*/
drhe63d9992008-08-13 19:11:48 +00004580int sqlite3BtreeMovetoUnpacked(
4581 BtCursor *pCur, /* The cursor to be moved */
4582 UnpackedRecord *pIdxKey, /* Unpacked index key */
4583 i64 intKey, /* The table key */
4584 int biasRight, /* If true, bias the search to the high end */
4585 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004586){
drh72f82862001-05-24 21:06:34 +00004587 int rc;
dan3b9330f2014-02-27 20:44:18 +00004588 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00004589
drh1fee73e2007-08-29 04:00:57 +00004590 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004591 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004592 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004593 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004594
4595 /* If the cursor is already positioned at the point we are trying
4596 ** to move to, then just return without doing any work */
drh036dbec2014-03-11 23:40:44 +00004597 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
danielk197771d5d2c2008-09-29 11:49:47 +00004598 && pCur->apPage[0]->intKey
4599 ){
drhe63d9992008-08-13 19:11:48 +00004600 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004601 *pRes = 0;
4602 return SQLITE_OK;
4603 }
drh036dbec2014-03-11 23:40:44 +00004604 if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004605 *pRes = -1;
4606 return SQLITE_OK;
4607 }
4608 }
4609
dan1fed5da2014-02-25 21:01:25 +00004610 if( pIdxKey ){
4611 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
drha1f7c0a2014-03-28 03:12:48 +00004612 pIdxKey->isCorrupt = 0;
dan3b9330f2014-02-27 20:44:18 +00004613 assert( pIdxKey->default_rc==1
4614 || pIdxKey->default_rc==0
4615 || pIdxKey->default_rc==-1
4616 );
drh13a747e2014-03-03 21:46:55 +00004617 }else{
drhb6e8fd12014-03-06 01:56:33 +00004618 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00004619 }
4620
drh5e2f8b92001-05-28 00:41:15 +00004621 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004622 if( rc ){
4623 return rc;
4624 }
dana205a482011-08-27 18:48:57 +00004625 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
4626 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
4627 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00004628 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004629 *pRes = -1;
dana205a482011-08-27 18:48:57 +00004630 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004631 return SQLITE_OK;
4632 }
danielk197771d5d2c2008-09-29 11:49:47 +00004633 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004634 for(;;){
drhec3e6b12013-11-25 02:38:55 +00004635 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00004636 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004637 MemPage *pPage = pCur->apPage[pCur->iPage];
drhec3e6b12013-11-25 02:38:55 +00004638 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00004639
4640 /* pPage->nCell must be greater than zero. If this is the root-page
4641 ** the cursor would have been INVALID above and this for(;;) loop
4642 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004643 ** would have already detected db corruption. Similarly, pPage must
4644 ** be the right kind (index or table) of b-tree page. Otherwise
4645 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004646 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004647 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004648 lwr = 0;
4649 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00004650 assert( biasRight==0 || biasRight==1 );
4651 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drhd793f442013-11-25 14:10:15 +00004652 pCur->aiIdx[pCur->iPage] = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00004653 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00004654 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004655 i64 nCellKey;
drhec3e6b12013-11-25 02:38:55 +00004656 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drhd172f862006-01-12 15:01:15 +00004657 if( pPage->hasData ){
drh9b2fc612013-11-25 20:14:13 +00004658 while( 0x80 <= *(pCell++) ){
4659 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
4660 }
drhd172f862006-01-12 15:01:15 +00004661 }
drha2c20e42008-03-29 16:01:04 +00004662 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00004663 if( nCellKey<intKey ){
4664 lwr = idx+1;
4665 if( lwr>upr ){ c = -1; break; }
4666 }else if( nCellKey>intKey ){
4667 upr = idx-1;
4668 if( lwr>upr ){ c = +1; break; }
4669 }else{
4670 assert( nCellKey==intKey );
drh036dbec2014-03-11 23:40:44 +00004671 pCur->curFlags |= BTCF_ValidNKey;
drhec3e6b12013-11-25 02:38:55 +00004672 pCur->info.nKey = nCellKey;
drhd793f442013-11-25 14:10:15 +00004673 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00004674 if( !pPage->leaf ){
4675 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00004676 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00004677 }else{
4678 *pRes = 0;
4679 rc = SQLITE_OK;
4680 goto moveto_finish;
4681 }
drhd793f442013-11-25 14:10:15 +00004682 }
drhebf10b12013-11-25 17:38:26 +00004683 assert( lwr+upr>=0 );
4684 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00004685 }
4686 }else{
4687 for(;;){
4688 int nCell;
drhec3e6b12013-11-25 02:38:55 +00004689 pCell = findCell(pPage, idx) + pPage->childPtrSize;
4690
drhb2eced52010-08-12 02:41:12 +00004691 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00004692 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00004693 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00004694 ** varint. This information is used to attempt to avoid parsing
4695 ** the entire cell by checking for the cases where the record is
4696 ** stored entirely within the b-tree page by inspecting the first
4697 ** 2 bytes of the cell.
4698 */
drhec3e6b12013-11-25 02:38:55 +00004699 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00004700 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00004701 /* This branch runs if the record-size field of the cell is a
4702 ** single byte varint and the record fits entirely on the main
4703 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00004704 testcase( pCell+nCell+1==pPage->aDataEnd );
dan3833e932014-03-01 19:44:56 +00004705 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey, 0);
danielk197711c327a2009-05-04 19:01:26 +00004706 }else if( !(pCell[1] & 0x80)
4707 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4708 ){
4709 /* The record-size field is a 2 byte varint and the record
4710 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00004711 testcase( pCell+nCell+2==pPage->aDataEnd );
dan3833e932014-03-01 19:44:56 +00004712 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey, 0);
drhe51c44f2004-05-30 20:46:09 +00004713 }else{
danielk197711c327a2009-05-04 19:01:26 +00004714 /* The record flows over onto one or more overflow pages. In
4715 ** this case the whole cell needs to be parsed, a buffer allocated
4716 ** and accessPayload() used to retrieve the record into the
4717 ** buffer before VdbeRecordCompare() can be called. */
4718 void *pCellKey;
4719 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004720 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004721 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004722 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004723 if( pCellKey==0 ){
4724 rc = SQLITE_NOMEM;
4725 goto moveto_finish;
4726 }
drhd793f442013-11-25 14:10:15 +00004727 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan5a500af2014-03-11 20:33:04 +00004728 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
drhec9b31f2009-08-25 13:53:49 +00004729 if( rc ){
4730 sqlite3_free(pCellKey);
4731 goto moveto_finish;
4732 }
dan3833e932014-03-01 19:44:56 +00004733 c = xRecordCompare(nCell, pCellKey, pIdxKey, 0);
drhfacf0302008-06-17 15:12:00 +00004734 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00004735 }
drha1f7c0a2014-03-28 03:12:48 +00004736 assert( pIdxKey->isCorrupt==0 || c==0 );
drhbb933ef2013-11-25 15:01:38 +00004737 if( c<0 ){
4738 lwr = idx+1;
4739 }else if( c>0 ){
4740 upr = idx-1;
4741 }else{
4742 assert( c==0 );
drh64022502009-01-09 14:11:04 +00004743 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004744 rc = SQLITE_OK;
drhd793f442013-11-25 14:10:15 +00004745 pCur->aiIdx[pCur->iPage] = (u16)idx;
drha1f7c0a2014-03-28 03:12:48 +00004746 if( pIdxKey->isCorrupt ) rc = SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00004747 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004748 }
drhebf10b12013-11-25 17:38:26 +00004749 if( lwr>upr ) break;
4750 assert( lwr+upr>=0 );
4751 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00004752 }
drh72f82862001-05-24 21:06:34 +00004753 }
drhb07028f2011-10-14 21:49:18 +00004754 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00004755 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004756 if( pPage->leaf ){
drhec3e6b12013-11-25 02:38:55 +00004757 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhbb933ef2013-11-25 15:01:38 +00004758 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00004759 *pRes = c;
4760 rc = SQLITE_OK;
4761 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00004762 }
4763moveto_next_layer:
4764 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004765 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004766 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004767 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004768 }
drhf49661a2008-12-10 16:45:50 +00004769 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00004770 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00004771 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00004772 }
drh1e968a02008-03-25 00:22:21 +00004773moveto_finish:
drhd2022b02013-11-25 16:23:52 +00004774 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004775 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhe63d9992008-08-13 19:11:48 +00004776 return rc;
4777}
4778
drhd677b3d2007-08-20 22:48:41 +00004779
drh72f82862001-05-24 21:06:34 +00004780/*
drhc39e0002004-05-07 23:50:57 +00004781** Return TRUE if the cursor is not pointing at an entry of the table.
4782**
4783** TRUE will be returned after a call to sqlite3BtreeNext() moves
4784** past the last entry in the table or sqlite3BtreePrev() moves past
4785** the first entry. TRUE is also returned if the table is empty.
4786*/
4787int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004788 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4789 ** have been deleted? This API will need to change to return an error code
4790 ** as well as the boolean result value.
4791 */
4792 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004793}
4794
4795/*
drhbd03cae2001-06-02 02:40:57 +00004796** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004797** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004798** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004799** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00004800**
4801** The calling function will set *pRes to 0 or 1. The initial *pRes value
4802** will be 1 if the cursor being stepped corresponds to an SQL index and
4803** if this routine could have been skipped if that SQL index had been
4804** a unique index. Otherwise the caller will have set *pRes to zero.
4805** Zero is the common case. The btree implementation is free to use the
4806** initial *pRes value as a hint to improve performance, but the current
4807** SQLite btree implementation does not. (Note that the comdb2 btree
4808** implementation does use this hint, however.)
drh72f82862001-05-24 21:06:34 +00004809*/
drhd094db12008-04-03 21:46:57 +00004810int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004811 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004812 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004813 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004814
drh1fee73e2007-08-29 04:00:57 +00004815 assert( cursorHoldsMutex(pCur) );
drh8c4d3a62007-04-06 01:03:32 +00004816 assert( pRes!=0 );
drhe39a7322014-02-03 14:04:11 +00004817 assert( *pRes==0 || *pRes==1 );
drh9b47ee32013-08-20 03:13:51 +00004818 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhf66f26a2013-08-19 20:04:10 +00004819 if( pCur->eState!=CURSOR_VALID ){
drh036dbec2014-03-11 23:40:44 +00004820 invalidateOverflowCache(pCur);
drhf66f26a2013-08-19 20:04:10 +00004821 rc = restoreCursorPosition(pCur);
4822 if( rc!=SQLITE_OK ){
drh9b47ee32013-08-20 03:13:51 +00004823 *pRes = 0;
drhf66f26a2013-08-19 20:04:10 +00004824 return rc;
4825 }
4826 if( CURSOR_INVALID==pCur->eState ){
4827 *pRes = 1;
4828 return SQLITE_OK;
4829 }
drh9b47ee32013-08-20 03:13:51 +00004830 if( pCur->skipNext ){
4831 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
4832 pCur->eState = CURSOR_VALID;
4833 if( pCur->skipNext>0 ){
4834 pCur->skipNext = 0;
4835 *pRes = 0;
4836 return SQLITE_OK;
4837 }
drhf66f26a2013-08-19 20:04:10 +00004838 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00004839 }
danielk1977da184232006-01-05 11:34:32 +00004840 }
danielk1977da184232006-01-05 11:34:32 +00004841
danielk197771d5d2c2008-09-29 11:49:47 +00004842 pPage = pCur->apPage[pCur->iPage];
4843 idx = ++pCur->aiIdx[pCur->iPage];
4844 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00004845
4846 /* If the database file is corrupt, it is possible for the value of idx
4847 ** to be invalid here. This can only occur if a second cursor modifies
4848 ** the page while cursor pCur is holding a reference to it. Which can
4849 ** only happen if the database is corrupt in such a way as to link the
4850 ** page into more than one b-tree structure. */
4851 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004852
drh271efa52004-05-30 19:19:05 +00004853 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004854 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00004855 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004856 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004857 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh9b47ee32013-08-20 03:13:51 +00004858 if( rc ){
4859 *pRes = 0;
4860 return rc;
4861 }
drh5e2f8b92001-05-28 00:41:15 +00004862 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004863 *pRes = 0;
4864 return rc;
drh72f82862001-05-24 21:06:34 +00004865 }
drh5e2f8b92001-05-28 00:41:15 +00004866 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004867 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004868 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004869 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004870 return SQLITE_OK;
4871 }
danielk197730548662009-07-09 05:07:37 +00004872 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004873 pPage = pCur->apPage[pCur->iPage];
4874 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004875 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004876 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004877 rc = sqlite3BtreeNext(pCur, pRes);
4878 }else{
4879 rc = SQLITE_OK;
4880 }
4881 return rc;
drh8178a752003-01-05 21:41:40 +00004882 }
4883 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004884 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004885 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004886 }
drh5e2f8b92001-05-28 00:41:15 +00004887 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004888 return rc;
drh72f82862001-05-24 21:06:34 +00004889}
drhd677b3d2007-08-20 22:48:41 +00004890
drh72f82862001-05-24 21:06:34 +00004891
drh3b7511c2001-05-26 13:15:44 +00004892/*
drh2dcc9aa2002-12-04 13:40:25 +00004893** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004894** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004895** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004896** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00004897**
4898** The calling function will set *pRes to 0 or 1. The initial *pRes value
4899** will be 1 if the cursor being stepped corresponds to an SQL index and
4900** if this routine could have been skipped if that SQL index had been
4901** a unique index. Otherwise the caller will have set *pRes to zero.
4902** Zero is the common case. The btree implementation is free to use the
4903** initial *pRes value as a hint to improve performance, but the current
4904** SQLite btree implementation does not. (Note that the comdb2 btree
4905** implementation does use this hint, however.)
drh2dcc9aa2002-12-04 13:40:25 +00004906*/
drhd094db12008-04-03 21:46:57 +00004907int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004908 int rc;
drh8178a752003-01-05 21:41:40 +00004909 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004910
drh1fee73e2007-08-29 04:00:57 +00004911 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00004912 assert( pRes!=0 );
drhe39a7322014-02-03 14:04:11 +00004913 assert( *pRes==0 || *pRes==1 );
drh9b47ee32013-08-20 03:13:51 +00004914 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drh036dbec2014-03-11 23:40:44 +00004915 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl);
drhf66f26a2013-08-19 20:04:10 +00004916 if( pCur->eState!=CURSOR_VALID ){
4917 if( ALWAYS(pCur->eState>=CURSOR_REQUIRESEEK) ){
4918 rc = btreeRestoreCursorPosition(pCur);
drh9b47ee32013-08-20 03:13:51 +00004919 if( rc!=SQLITE_OK ){
4920 *pRes = 0;
4921 return rc;
4922 }
drhf66f26a2013-08-19 20:04:10 +00004923 }
4924 if( CURSOR_INVALID==pCur->eState ){
4925 *pRes = 1;
4926 return SQLITE_OK;
4927 }
drh9b47ee32013-08-20 03:13:51 +00004928 if( pCur->skipNext ){
4929 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
4930 pCur->eState = CURSOR_VALID;
4931 if( pCur->skipNext<0 ){
4932 pCur->skipNext = 0;
4933 *pRes = 0;
4934 return SQLITE_OK;
4935 }
drhf66f26a2013-08-19 20:04:10 +00004936 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00004937 }
danielk1977da184232006-01-05 11:34:32 +00004938 }
danielk1977da184232006-01-05 11:34:32 +00004939
danielk197771d5d2c2008-09-29 11:49:47 +00004940 pPage = pCur->apPage[pCur->iPage];
4941 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004942 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004943 int idx = pCur->aiIdx[pCur->iPage];
4944 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004945 if( rc ){
drh9b47ee32013-08-20 03:13:51 +00004946 *pRes = 0;
drhd677b3d2007-08-20 22:48:41 +00004947 return rc;
4948 }
drh2dcc9aa2002-12-04 13:40:25 +00004949 rc = moveToRightmost(pCur);
4950 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004951 while( pCur->aiIdx[pCur->iPage]==0 ){
4952 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004953 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004954 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004955 return SQLITE_OK;
4956 }
danielk197730548662009-07-09 05:07:37 +00004957 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004958 }
drh271efa52004-05-30 19:19:05 +00004959 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004960 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00004961
4962 pCur->aiIdx[pCur->iPage]--;
4963 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004964 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004965 rc = sqlite3BtreePrevious(pCur, pRes);
4966 }else{
4967 rc = SQLITE_OK;
4968 }
drh2dcc9aa2002-12-04 13:40:25 +00004969 }
drh8178a752003-01-05 21:41:40 +00004970 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004971 return rc;
4972}
4973
4974/*
drh3b7511c2001-05-26 13:15:44 +00004975** Allocate a new page from the database file.
4976**
danielk19773b8a05f2007-03-19 17:44:26 +00004977** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004978** has already been called on the new page.) The new page has also
4979** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004980** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004981**
4982** SQLITE_OK is returned on success. Any other return value indicates
4983** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004984** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004985**
drh82e647d2013-03-02 03:25:55 +00004986** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00004987** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004988** attempt to keep related pages close to each other in the database file,
4989** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004990**
drh82e647d2013-03-02 03:25:55 +00004991** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
4992** anywhere on the free-list, then it is guaranteed to be returned. If
4993** eMode is BTALLOC_LT then the page returned will be less than or equal
4994** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
4995** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00004996*/
drh4f0c5872007-03-26 22:05:01 +00004997static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00004998 BtShared *pBt, /* The btree */
4999 MemPage **ppPage, /* Store pointer to the allocated page here */
5000 Pgno *pPgno, /* Store the page number here */
5001 Pgno nearby, /* Search for a page near this one */
5002 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005003){
drh3aac2dd2004-04-26 14:10:20 +00005004 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005005 int rc;
drh35cd6432009-06-05 14:17:21 +00005006 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005007 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005008 MemPage *pTrunk = 0;
5009 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005010 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005011
drh1fee73e2007-08-29 04:00:57 +00005012 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005013 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005014 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005015 mxPage = btreePagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00005016 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005017 testcase( n==mxPage-1 );
5018 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005019 return SQLITE_CORRUPT_BKPT;
5020 }
drh3aac2dd2004-04-26 14:10:20 +00005021 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005022 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005023 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005024 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
5025
drh82e647d2013-03-02 03:25:55 +00005026 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005027 ** shows that the page 'nearby' is somewhere on the free-list, then
5028 ** the entire-list will be searched for that page.
5029 */
5030#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005031 if( eMode==BTALLOC_EXACT ){
5032 if( nearby<=mxPage ){
5033 u8 eType;
5034 assert( nearby>0 );
5035 assert( pBt->autoVacuum );
5036 rc = ptrmapGet(pBt, nearby, &eType, 0);
5037 if( rc ) return rc;
5038 if( eType==PTRMAP_FREEPAGE ){
5039 searchList = 1;
5040 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005041 }
dan51f0b6d2013-02-22 20:16:34 +00005042 }else if( eMode==BTALLOC_LE ){
5043 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005044 }
5045#endif
5046
5047 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5048 ** first free-list trunk page. iPrevTrunk is initially 1.
5049 */
danielk19773b8a05f2007-03-19 17:44:26 +00005050 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005051 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005052 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005053
5054 /* The code within this loop is run only once if the 'searchList' variable
5055 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005056 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5057 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005058 */
5059 do {
5060 pPrevTrunk = pTrunk;
5061 if( pPrevTrunk ){
5062 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005063 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00005064 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005065 }
drhdf35a082009-07-09 02:24:35 +00005066 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005067 if( iTrunk>mxPage ){
5068 rc = SQLITE_CORRUPT_BKPT;
5069 }else{
drhb00fc3b2013-08-21 23:42:32 +00005070 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005071 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005072 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005073 pTrunk = 0;
5074 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005075 }
drhb07028f2011-10-14 21:49:18 +00005076 assert( pTrunk!=0 );
5077 assert( pTrunk->aData!=0 );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005078
drh93b4fc72011-04-07 14:47:01 +00005079 k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005080 if( k==0 && !searchList ){
5081 /* The trunk has no leaves and the list is not being searched.
5082 ** So extract the trunk page itself and use it as the newly
5083 ** allocated page */
5084 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005085 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005086 if( rc ){
5087 goto end_allocate_page;
5088 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005089 *pPgno = iTrunk;
5090 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5091 *ppPage = pTrunk;
5092 pTrunk = 0;
5093 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005094 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005095 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00005096 rc = SQLITE_CORRUPT_BKPT;
5097 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005098#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005099 }else if( searchList
5100 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5101 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005102 /* The list is being searched and this trunk page is the page
5103 ** to allocate, regardless of whether it has leaves.
5104 */
dan51f0b6d2013-02-22 20:16:34 +00005105 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005106 *ppPage = pTrunk;
5107 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005108 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005109 if( rc ){
5110 goto end_allocate_page;
5111 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005112 if( k==0 ){
5113 if( !pPrevTrunk ){
5114 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5115 }else{
danf48c3552010-08-23 15:41:24 +00005116 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5117 if( rc!=SQLITE_OK ){
5118 goto end_allocate_page;
5119 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005120 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5121 }
5122 }else{
5123 /* The trunk page is required by the caller but it contains
5124 ** pointers to free-list leaves. The first leaf becomes a trunk
5125 ** page in this case.
5126 */
5127 MemPage *pNewTrunk;
5128 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005129 if( iNewTrunk>mxPage ){
5130 rc = SQLITE_CORRUPT_BKPT;
5131 goto end_allocate_page;
5132 }
drhdf35a082009-07-09 02:24:35 +00005133 testcase( iNewTrunk==mxPage );
drhb00fc3b2013-08-21 23:42:32 +00005134 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005135 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005136 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005137 }
danielk19773b8a05f2007-03-19 17:44:26 +00005138 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005139 if( rc!=SQLITE_OK ){
5140 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005141 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005142 }
5143 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5144 put4byte(&pNewTrunk->aData[4], k-1);
5145 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005146 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005147 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005148 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005149 put4byte(&pPage1->aData[32], iNewTrunk);
5150 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005151 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005152 if( rc ){
5153 goto end_allocate_page;
5154 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005155 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5156 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005157 }
5158 pTrunk = 0;
5159 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5160#endif
danielk1977e5765212009-06-17 11:13:28 +00005161 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005162 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005163 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005164 Pgno iPage;
5165 unsigned char *aData = pTrunk->aData;
5166 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005167 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005168 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005169 if( eMode==BTALLOC_LE ){
5170 for(i=0; i<k; i++){
5171 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005172 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005173 closest = i;
5174 break;
5175 }
5176 }
5177 }else{
5178 int dist;
5179 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5180 for(i=1; i<k; i++){
5181 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5182 if( d2<dist ){
5183 closest = i;
5184 dist = d2;
5185 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005186 }
5187 }
5188 }else{
5189 closest = 0;
5190 }
5191
5192 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005193 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005194 if( iPage>mxPage ){
5195 rc = SQLITE_CORRUPT_BKPT;
5196 goto end_allocate_page;
5197 }
drhdf35a082009-07-09 02:24:35 +00005198 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005199 if( !searchList
5200 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5201 ){
danielk1977bea2a942009-01-20 17:06:27 +00005202 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005203 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005204 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5205 ": %d more free pages\n",
5206 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005207 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5208 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005209 if( closest<k-1 ){
5210 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5211 }
5212 put4byte(&aData[4], k-1);
drhb00fc3b2013-08-21 23:42:32 +00005213 noContent = !btreeGetHasContent(pBt, *pPgno) ? PAGER_GET_NOCONTENT : 0;
5214 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005215 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005216 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005217 if( rc!=SQLITE_OK ){
5218 releasePage(*ppPage);
5219 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005220 }
5221 searchList = 0;
5222 }
drhee696e22004-08-30 16:52:17 +00005223 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005224 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005225 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005226 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005227 }else{
danbc1a3c62013-02-23 16:40:46 +00005228 /* There are no pages on the freelist, so append a new page to the
5229 ** database image.
5230 **
5231 ** Normally, new pages allocated by this block can be requested from the
5232 ** pager layer with the 'no-content' flag set. This prevents the pager
5233 ** from trying to read the pages content from disk. However, if the
5234 ** current transaction has already run one or more incremental-vacuum
5235 ** steps, then the page we are about to allocate may contain content
5236 ** that is required in the event of a rollback. In this case, do
5237 ** not set the no-content flag. This causes the pager to load and journal
5238 ** the current page content before overwriting it.
5239 **
5240 ** Note that the pager will not actually attempt to load or journal
5241 ** content for any page that really does lie past the end of the database
5242 ** file on disk. So the effects of disabling the no-content optimization
5243 ** here are confined to those pages that lie between the end of the
5244 ** database image and the end of the database file.
5245 */
drhb00fc3b2013-08-21 23:42:32 +00005246 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate)) ? PAGER_GET_NOCONTENT : 0;
danbc1a3c62013-02-23 16:40:46 +00005247
drhdd3cd972010-03-27 17:12:36 +00005248 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5249 if( rc ) return rc;
5250 pBt->nPage++;
5251 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005252
danielk1977afcdd022004-10-31 16:25:42 +00005253#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005254 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005255 /* If *pPgno refers to a pointer-map page, allocate two new pages
5256 ** at the end of the file instead of one. The first allocated page
5257 ** becomes a new pointer-map page, the second is used by the caller.
5258 */
danielk1977ac861692009-03-28 10:54:22 +00005259 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005260 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5261 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drhb00fc3b2013-08-21 23:42:32 +00005262 rc = btreeGetPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005263 if( rc==SQLITE_OK ){
5264 rc = sqlite3PagerWrite(pPg->pDbPage);
5265 releasePage(pPg);
5266 }
5267 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005268 pBt->nPage++;
5269 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005270 }
5271#endif
drhdd3cd972010-03-27 17:12:36 +00005272 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5273 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005274
danielk1977599fcba2004-11-08 07:13:13 +00005275 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhb00fc3b2013-08-21 23:42:32 +00005276 rc = btreeGetPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00005277 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005278 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005279 if( rc!=SQLITE_OK ){
5280 releasePage(*ppPage);
5281 }
drh3a4c1412004-05-09 20:40:11 +00005282 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005283 }
danielk1977599fcba2004-11-08 07:13:13 +00005284
5285 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005286
5287end_allocate_page:
5288 releasePage(pTrunk);
5289 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00005290 if( rc==SQLITE_OK ){
5291 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
5292 releasePage(*ppPage);
dan7df42ab2014-01-20 18:25:44 +00005293 *ppPage = 0;
danielk1977b247c212008-11-21 09:09:01 +00005294 return SQLITE_CORRUPT_BKPT;
5295 }
5296 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00005297 }else{
5298 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00005299 }
drh93b4fc72011-04-07 14:47:01 +00005300 assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) );
drh3b7511c2001-05-26 13:15:44 +00005301 return rc;
5302}
5303
5304/*
danielk1977bea2a942009-01-20 17:06:27 +00005305** This function is used to add page iPage to the database file free-list.
5306** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005307**
danielk1977bea2a942009-01-20 17:06:27 +00005308** The value passed as the second argument to this function is optional.
5309** If the caller happens to have a pointer to the MemPage object
5310** corresponding to page iPage handy, it may pass it as the second value.
5311** Otherwise, it may pass NULL.
5312**
5313** If a pointer to a MemPage object is passed as the second argument,
5314** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005315*/
danielk1977bea2a942009-01-20 17:06:27 +00005316static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5317 MemPage *pTrunk = 0; /* Free-list trunk page */
5318 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5319 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5320 MemPage *pPage; /* Page being freed. May be NULL. */
5321 int rc; /* Return Code */
5322 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005323
danielk1977bea2a942009-01-20 17:06:27 +00005324 assert( sqlite3_mutex_held(pBt->mutex) );
5325 assert( iPage>1 );
5326 assert( !pMemPage || pMemPage->pgno==iPage );
5327
5328 if( pMemPage ){
5329 pPage = pMemPage;
5330 sqlite3PagerRef(pPage->pDbPage);
5331 }else{
5332 pPage = btreePageLookup(pBt, iPage);
5333 }
drh3aac2dd2004-04-26 14:10:20 +00005334
drha34b6762004-05-07 13:30:42 +00005335 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005336 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005337 if( rc ) goto freepage_out;
5338 nFree = get4byte(&pPage1->aData[36]);
5339 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005340
drhc9166342012-01-05 23:32:06 +00005341 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005342 /* If the secure_delete option is enabled, then
5343 ** always fully overwrite deleted information with zeros.
5344 */
drhb00fc3b2013-08-21 23:42:32 +00005345 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00005346 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005347 ){
5348 goto freepage_out;
5349 }
5350 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005351 }
drhfcce93f2006-02-22 03:08:32 +00005352
danielk1977687566d2004-11-02 12:56:41 +00005353 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005354 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005355 */
danielk197785d90ca2008-07-19 14:25:15 +00005356 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005357 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005358 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005359 }
danielk1977687566d2004-11-02 12:56:41 +00005360
danielk1977bea2a942009-01-20 17:06:27 +00005361 /* Now manipulate the actual database free-list structure. There are two
5362 ** possibilities. If the free-list is currently empty, or if the first
5363 ** trunk page in the free-list is full, then this page will become a
5364 ** new free-list trunk page. Otherwise, it will become a leaf of the
5365 ** first trunk page in the current free-list. This block tests if it
5366 ** is possible to add the page as a new free-list leaf.
5367 */
5368 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005369 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005370
5371 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00005372 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005373 if( rc!=SQLITE_OK ){
5374 goto freepage_out;
5375 }
5376
5377 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005378 assert( pBt->usableSize>32 );
5379 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005380 rc = SQLITE_CORRUPT_BKPT;
5381 goto freepage_out;
5382 }
drheeb844a2009-08-08 18:01:07 +00005383 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005384 /* In this case there is room on the trunk page to insert the page
5385 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005386 **
5387 ** Note that the trunk page is not really full until it contains
5388 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5389 ** coded. But due to a coding error in versions of SQLite prior to
5390 ** 3.6.0, databases with freelist trunk pages holding more than
5391 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5392 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005393 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005394 ** for now. At some point in the future (once everyone has upgraded
5395 ** to 3.6.0 or later) we should consider fixing the conditional above
5396 ** to read "usableSize/4-2" instead of "usableSize/4-8".
5397 */
danielk19773b8a05f2007-03-19 17:44:26 +00005398 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005399 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005400 put4byte(&pTrunk->aData[4], nLeaf+1);
5401 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005402 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005403 sqlite3PagerDontWrite(pPage->pDbPage);
5404 }
danielk1977bea2a942009-01-20 17:06:27 +00005405 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005406 }
drh3a4c1412004-05-09 20:40:11 +00005407 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005408 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005409 }
drh3b7511c2001-05-26 13:15:44 +00005410 }
danielk1977bea2a942009-01-20 17:06:27 +00005411
5412 /* If control flows to this point, then it was not possible to add the
5413 ** the page being freed as a leaf page of the first trunk in the free-list.
5414 ** Possibly because the free-list is empty, or possibly because the
5415 ** first trunk in the free-list is full. Either way, the page being freed
5416 ** will become the new first trunk page in the free-list.
5417 */
drhb00fc3b2013-08-21 23:42:32 +00005418 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00005419 goto freepage_out;
5420 }
5421 rc = sqlite3PagerWrite(pPage->pDbPage);
5422 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005423 goto freepage_out;
5424 }
5425 put4byte(pPage->aData, iTrunk);
5426 put4byte(&pPage->aData[4], 0);
5427 put4byte(&pPage1->aData[32], iPage);
5428 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5429
5430freepage_out:
5431 if( pPage ){
5432 pPage->isInit = 0;
5433 }
5434 releasePage(pPage);
5435 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005436 return rc;
5437}
drhc314dc72009-07-21 11:52:34 +00005438static void freePage(MemPage *pPage, int *pRC){
5439 if( (*pRC)==SQLITE_OK ){
5440 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5441 }
danielk1977bea2a942009-01-20 17:06:27 +00005442}
drh3b7511c2001-05-26 13:15:44 +00005443
5444/*
drh3aac2dd2004-04-26 14:10:20 +00005445** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00005446*/
drh3aac2dd2004-04-26 14:10:20 +00005447static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00005448 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005449 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005450 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005451 int rc;
drh94440812007-03-06 11:42:19 +00005452 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005453 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005454
drh1fee73e2007-08-29 04:00:57 +00005455 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00005456 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005457 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005458 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005459 }
drhe42a9b42011-08-31 13:27:19 +00005460 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00005461 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00005462 }
drh6f11bef2004-05-13 01:12:56 +00005463 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005464 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005465 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005466 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5467 assert( ovflPgno==0 || nOvfl>0 );
5468 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005469 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005470 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005471 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005472 /* 0 is not a legal page number and page 1 cannot be an
5473 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5474 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005475 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005476 }
danielk1977bea2a942009-01-20 17:06:27 +00005477 if( nOvfl ){
5478 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5479 if( rc ) return rc;
5480 }
dan887d4b22010-02-25 12:09:16 +00005481
shaneh1da207e2010-03-09 14:41:12 +00005482 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005483 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5484 ){
5485 /* There is no reason any cursor should have an outstanding reference
5486 ** to an overflow page belonging to a cell that is being deleted/updated.
5487 ** So if there exists more than one reference to this page, then it
5488 ** must not really be an overflow page and the database must be corrupt.
5489 ** It is helpful to detect this before calling freePage2(), as
5490 ** freePage2() may zero the page contents if secure-delete mode is
5491 ** enabled. If this 'overflow' page happens to be a page that the
5492 ** caller is iterating through or using in some other way, this
5493 ** can be problematic.
5494 */
5495 rc = SQLITE_CORRUPT_BKPT;
5496 }else{
5497 rc = freePage2(pBt, pOvfl, ovflPgno);
5498 }
5499
danielk1977bea2a942009-01-20 17:06:27 +00005500 if( pOvfl ){
5501 sqlite3PagerUnref(pOvfl->pDbPage);
5502 }
drh3b7511c2001-05-26 13:15:44 +00005503 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005504 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005505 }
drh5e2f8b92001-05-28 00:41:15 +00005506 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005507}
5508
5509/*
drh91025292004-05-03 19:49:32 +00005510** Create the byte sequence used to represent a cell on page pPage
5511** and write that byte sequence into pCell[]. Overflow pages are
5512** allocated and filled in as necessary. The calling procedure
5513** is responsible for making sure sufficient space has been allocated
5514** for pCell[].
5515**
5516** Note that pCell does not necessary need to point to the pPage->aData
5517** area. pCell might point to some temporary storage. The cell will
5518** be constructed in this temporary area then copied into pPage->aData
5519** later.
drh3b7511c2001-05-26 13:15:44 +00005520*/
5521static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005522 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005523 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005524 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005525 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005526 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005527 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005528){
drh3b7511c2001-05-26 13:15:44 +00005529 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005530 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005531 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005532 int spaceLeft;
5533 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005534 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005535 unsigned char *pPrior;
5536 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005537 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005538 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005539 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005540 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005541
drh1fee73e2007-08-29 04:00:57 +00005542 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005543
drhc5053fb2008-11-27 02:22:10 +00005544 /* pPage is not necessarily writeable since pCell might be auxiliary
5545 ** buffer space that is separate from the pPage buffer area */
5546 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5547 || sqlite3PagerIswriteable(pPage->pDbPage) );
5548
drh91025292004-05-03 19:49:32 +00005549 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005550 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005551 if( !pPage->leaf ){
5552 nHeader += 4;
5553 }
drh8b18dd42004-05-12 19:18:15 +00005554 if( pPage->hasData ){
drh7599d4a2013-12-09 00:47:11 +00005555 nHeader += putVarint32(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005556 }else{
drhb026e052007-05-02 01:34:31 +00005557 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005558 }
drh6f11bef2004-05-13 01:12:56 +00005559 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
danielk197730548662009-07-09 05:07:37 +00005560 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005561 assert( info.nHeader==nHeader );
5562 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005563 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005564
5565 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005566 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005567 if( pPage->intKey ){
5568 pSrc = pData;
5569 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005570 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005571 }else{
danielk197731d31b82009-07-13 13:18:07 +00005572 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5573 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005574 }
drhf49661a2008-12-10 16:45:50 +00005575 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005576 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005577 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005578 }
drh6f11bef2004-05-13 01:12:56 +00005579 *pnSize = info.nSize;
5580 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005581 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005582 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005583
drh3b7511c2001-05-26 13:15:44 +00005584 while( nPayload>0 ){
5585 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005586#ifndef SQLITE_OMIT_AUTOVACUUM
5587 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005588 if( pBt->autoVacuum ){
5589 do{
5590 pgnoOvfl++;
5591 } while(
5592 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5593 );
danielk1977b39f70b2007-05-17 18:28:11 +00005594 }
danielk1977afcdd022004-10-31 16:25:42 +00005595#endif
drhf49661a2008-12-10 16:45:50 +00005596 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005597#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005598 /* If the database supports auto-vacuum, and the second or subsequent
5599 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005600 ** for that page now.
5601 **
5602 ** If this is the first overflow page, then write a partial entry
5603 ** to the pointer-map. If we write nothing to this pointer-map slot,
5604 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00005605 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00005606 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005607 */
danielk19774ef24492007-05-23 09:52:41 +00005608 if( pBt->autoVacuum && rc==SQLITE_OK ){
5609 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00005610 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00005611 if( rc ){
5612 releasePage(pOvfl);
5613 }
danielk1977afcdd022004-10-31 16:25:42 +00005614 }
5615#endif
drh3b7511c2001-05-26 13:15:44 +00005616 if( rc ){
drh9b171272004-05-08 02:03:22 +00005617 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005618 return rc;
5619 }
drhc5053fb2008-11-27 02:22:10 +00005620
5621 /* If pToRelease is not zero than pPrior points into the data area
5622 ** of pToRelease. Make sure pToRelease is still writeable. */
5623 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5624
5625 /* If pPrior is part of the data area of pPage, then make sure pPage
5626 ** is still writeable */
5627 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5628 || sqlite3PagerIswriteable(pPage->pDbPage) );
5629
drh3aac2dd2004-04-26 14:10:20 +00005630 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005631 releasePage(pToRelease);
5632 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005633 pPrior = pOvfl->aData;
5634 put4byte(pPrior, 0);
5635 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005636 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005637 }
5638 n = nPayload;
5639 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005640
5641 /* If pToRelease is not zero than pPayload points into the data area
5642 ** of pToRelease. Make sure pToRelease is still writeable. */
5643 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5644
5645 /* If pPayload is part of the data area of pPage, then make sure pPage
5646 ** is still writeable */
5647 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5648 || sqlite3PagerIswriteable(pPage->pDbPage) );
5649
drhb026e052007-05-02 01:34:31 +00005650 if( nSrc>0 ){
5651 if( n>nSrc ) n = nSrc;
5652 assert( pSrc );
5653 memcpy(pPayload, pSrc, n);
5654 }else{
5655 memset(pPayload, 0, n);
5656 }
drh3b7511c2001-05-26 13:15:44 +00005657 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005658 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005659 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005660 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005661 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005662 if( nSrc==0 ){
5663 nSrc = nData;
5664 pSrc = pData;
5665 }
drhdd793422001-06-28 01:54:48 +00005666 }
drh9b171272004-05-08 02:03:22 +00005667 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005668 return SQLITE_OK;
5669}
5670
drh14acc042001-06-10 19:56:58 +00005671/*
5672** Remove the i-th cell from pPage. This routine effects pPage only.
5673** The cell content is not freed or deallocated. It is assumed that
5674** the cell content has been copied someplace else. This routine just
5675** removes the reference to the cell from pPage.
5676**
5677** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005678*/
drh98add2e2009-07-20 17:11:49 +00005679static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00005680 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00005681 u8 *data; /* pPage->aData */
5682 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00005683 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00005684 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00005685
drh98add2e2009-07-20 17:11:49 +00005686 if( *pRC ) return;
5687
drh8c42ca92001-06-22 19:15:00 +00005688 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005689 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005690 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005691 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005692 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00005693 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00005694 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00005695 hdr = pPage->hdrOffset;
5696 testcase( pc==get2byte(&data[hdr+5]) );
5697 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00005698 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00005699 *pRC = SQLITE_CORRUPT_BKPT;
5700 return;
shane0af3f892008-11-12 04:55:34 +00005701 }
shanedcc50b72008-11-13 18:29:50 +00005702 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00005703 if( rc ){
5704 *pRC = rc;
5705 return;
shanedcc50b72008-11-13 18:29:50 +00005706 }
drh14acc042001-06-10 19:56:58 +00005707 pPage->nCell--;
drh9bb7c4f2013-12-09 01:58:11 +00005708 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
drhc314dc72009-07-21 11:52:34 +00005709 put2byte(&data[hdr+3], pPage->nCell);
drh43605152004-05-29 21:46:49 +00005710 pPage->nFree += 2;
drh14acc042001-06-10 19:56:58 +00005711}
5712
5713/*
5714** Insert a new cell on pPage at cell index "i". pCell points to the
5715** content of the cell.
5716**
5717** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005718** will not fit, then make a copy of the cell content into pTemp if
5719** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00005720** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00005721** in pTemp or the original pCell) and also record its index.
5722** Allocating a new entry in pPage->aCell[] implies that
5723** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005724**
5725** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5726** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005727** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005728** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005729*/
drh98add2e2009-07-20 17:11:49 +00005730static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00005731 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005732 int i, /* New cell becomes the i-th cell of the page */
5733 u8 *pCell, /* Content of the new cell */
5734 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005735 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00005736 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
5737 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00005738){
drh383d30f2010-02-26 13:07:37 +00005739 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00005740 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005741 int end; /* First byte past the last cell pointer in data[] */
5742 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005743 int cellOffset; /* Address of first cell pointer in data[] */
5744 u8 *data; /* The content of the whole page */
danielk19774dbaa892009-06-16 16:50:22 +00005745 int nSkip = (iChild ? 4 : 0);
5746
drh98add2e2009-07-20 17:11:49 +00005747 if( *pRC ) return;
5748
drh43605152004-05-29 21:46:49 +00005749 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhb2eced52010-08-12 02:41:12 +00005750 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 );
drh2cbd78b2012-02-02 19:37:18 +00005751 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
5752 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00005753 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00005754 /* The cell should normally be sized correctly. However, when moving a
5755 ** malformed cell from a leaf page to an interior page, if the cell size
5756 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5757 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5758 ** the term after the || in the following assert(). */
5759 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00005760 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005761 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005762 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005763 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005764 }
danielk19774dbaa892009-06-16 16:50:22 +00005765 if( iChild ){
5766 put4byte(pCell, iChild);
5767 }
drh43605152004-05-29 21:46:49 +00005768 j = pPage->nOverflow++;
drh2cbd78b2012-02-02 19:37:18 +00005769 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
5770 pPage->apOvfl[j] = pCell;
5771 pPage->aiOvfl[j] = (u16)i;
drh14acc042001-06-10 19:56:58 +00005772 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005773 int rc = sqlite3PagerWrite(pPage->pDbPage);
5774 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00005775 *pRC = rc;
5776 return;
danielk19776e465eb2007-08-21 13:11:00 +00005777 }
5778 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005779 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005780 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005781 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005782 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005783 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00005784 if( rc ){ *pRC = rc; return; }
drhc314dc72009-07-21 11:52:34 +00005785 /* The allocateSpace() routine guarantees the following two properties
5786 ** if it returns success */
5787 assert( idx >= end+2 );
drhfcd71b62011-04-05 22:08:24 +00005788 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00005789 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005790 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005791 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005792 if( iChild ){
5793 put4byte(&data[idx], iChild);
5794 }
drh8f518832013-12-09 02:32:19 +00005795 memmove(&data[ins+2], &data[ins], end-ins);
drh43605152004-05-29 21:46:49 +00005796 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005797 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005798#ifndef SQLITE_OMIT_AUTOVACUUM
5799 if( pPage->pBt->autoVacuum ){
5800 /* The cell may contain a pointer to an overflow page. If so, write
5801 ** the entry for the overflow page into the pointer map.
5802 */
drh98add2e2009-07-20 17:11:49 +00005803 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00005804 }
5805#endif
drh14acc042001-06-10 19:56:58 +00005806 }
5807}
5808
5809/*
drhfa1a98a2004-05-14 19:08:17 +00005810** Add a list of cells to a page. The page should be initially empty.
5811** The cells are guaranteed to fit on the page.
5812*/
5813static void assemblePage(
5814 MemPage *pPage, /* The page to be assemblied */
5815 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005816 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005817 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005818){
5819 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005820 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005821 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005822 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5823 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5824 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005825
drh43605152004-05-29 21:46:49 +00005826 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005827 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfcd71b62011-04-05 22:08:24 +00005828 assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt)
5829 && (int)MX_CELL(pPage->pBt)<=10921);
drhc5053fb2008-11-27 02:22:10 +00005830 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005831
5832 /* Check that the page has just been zeroed by zeroPage() */
5833 assert( pPage->nCell==0 );
drh5d433ce2010-08-14 16:02:52 +00005834 assert( get2byteNotZero(&data[hdr+5])==nUsable );
danielk1977fad91942009-04-29 17:49:59 +00005835
drh3def2352011-11-11 00:27:15 +00005836 pCellptr = &pPage->aCellIdx[nCell*2];
danielk1977fad91942009-04-29 17:49:59 +00005837 cellbody = nUsable;
5838 for(i=nCell-1; i>=0; i--){
drh61d2fe92011-06-03 23:28:33 +00005839 u16 sz = aSize[i];
danielk1977fad91942009-04-29 17:49:59 +00005840 pCellptr -= 2;
drh61d2fe92011-06-03 23:28:33 +00005841 cellbody -= sz;
danielk1977fad91942009-04-29 17:49:59 +00005842 put2byte(pCellptr, cellbody);
drh61d2fe92011-06-03 23:28:33 +00005843 memcpy(&data[cellbody], apCell[i], sz);
drhfa1a98a2004-05-14 19:08:17 +00005844 }
danielk1977fad91942009-04-29 17:49:59 +00005845 put2byte(&data[hdr+3], nCell);
5846 put2byte(&data[hdr+5], cellbody);
5847 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005848 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005849}
5850
drh14acc042001-06-10 19:56:58 +00005851/*
drhc3b70572003-01-04 19:44:07 +00005852** The following parameters determine how many adjacent pages get involved
5853** in a balancing operation. NN is the number of neighbors on either side
5854** of the page that participate in the balancing operation. NB is the
5855** total number of pages that participate, including the target page and
5856** NN neighbors on either side.
5857**
5858** The minimum value of NN is 1 (of course). Increasing NN above 1
5859** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5860** in exchange for a larger degradation in INSERT and UPDATE performance.
5861** The value of NN appears to give the best results overall.
5862*/
5863#define NN 1 /* Number of neighbors on either side of pPage */
5864#define NB (NN*2+1) /* Total pages involved in the balance */
5865
danielk1977ac245ec2005-01-14 13:50:11 +00005866
drh615ae552005-01-16 23:21:00 +00005867#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005868/*
5869** This version of balance() handles the common special case where
5870** a new entry is being inserted on the extreme right-end of the
5871** tree, in other words, when the new entry will become the largest
5872** entry in the tree.
5873**
drhc314dc72009-07-21 11:52:34 +00005874** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00005875** a new page to the right-hand side and put the one new entry in
5876** that page. This leaves the right side of the tree somewhat
5877** unbalanced. But odds are that we will be inserting new entries
5878** at the end soon afterwards so the nearly empty page will quickly
5879** fill up. On average.
5880**
5881** pPage is the leaf page which is the right-most page in the tree.
5882** pParent is its parent. pPage must have a single overflow entry
5883** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005884**
5885** The pSpace buffer is used to store a temporary copy of the divider
5886** cell that will be inserted into pParent. Such a cell consists of a 4
5887** byte page number followed by a variable length integer. In other
5888** words, at most 13 bytes. Hence the pSpace buffer must be at
5889** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005890*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005891static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5892 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005893 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005894 int rc; /* Return Code */
5895 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005896
drh1fee73e2007-08-29 04:00:57 +00005897 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005898 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005899 assert( pPage->nOverflow==1 );
5900
drh5d433ce2010-08-14 16:02:52 +00005901 /* This error condition is now caught prior to reaching this function */
mistachkin5f070c72012-10-18 10:35:19 +00005902 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005903
danielk1977a50d9aa2009-06-08 14:49:45 +00005904 /* Allocate a new page. This page will become the right-sibling of
5905 ** pPage. Make the parent page writable, so that the new divider cell
5906 ** may be inserted. If both these operations are successful, proceed.
5907 */
drh4f0c5872007-03-26 22:05:01 +00005908 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005909
danielk1977eaa06f62008-09-18 17:34:44 +00005910 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005911
5912 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00005913 u8 *pCell = pPage->apOvfl[0];
danielk19776f235cc2009-06-04 14:46:08 +00005914 u16 szCell = cellSizePtr(pPage, pCell);
5915 u8 *pStop;
5916
drhc5053fb2008-11-27 02:22:10 +00005917 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005918 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5919 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00005920 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00005921
5922 /* If this is an auto-vacuum database, update the pointer map
5923 ** with entries for the new page, and any pointer from the
5924 ** cell on the page to an overflow page. If either of these
5925 ** operations fails, the return code is set, but the contents
5926 ** of the parent page are still manipulated by thh code below.
5927 ** That is Ok, at this point the parent page is guaranteed to
5928 ** be marked as dirty. Returning an error code will cause a
5929 ** rollback, undoing any changes made to the parent page.
5930 */
5931 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005932 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
5933 if( szCell>pNew->minLocal ){
5934 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005935 }
5936 }
danielk1977eaa06f62008-09-18 17:34:44 +00005937
danielk19776f235cc2009-06-04 14:46:08 +00005938 /* Create a divider cell to insert into pParent. The divider cell
5939 ** consists of a 4-byte page number (the page number of pPage) and
5940 ** a variable length key value (which must be the same value as the
5941 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005942 **
danielk19776f235cc2009-06-04 14:46:08 +00005943 ** To find the largest key value on pPage, first find the right-most
5944 ** cell on pPage. The first two fields of this cell are the
5945 ** record-length (a variable length integer at most 32-bits in size)
5946 ** and the key value (a variable length integer, may have any value).
5947 ** The first of the while(...) loops below skips over the record-length
5948 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005949 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005950 */
danielk1977eaa06f62008-09-18 17:34:44 +00005951 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005952 pStop = &pCell[9];
5953 while( (*(pCell++)&0x80) && pCell<pStop );
5954 pStop = &pCell[9];
5955 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5956
danielk19774dbaa892009-06-16 16:50:22 +00005957 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00005958 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
5959 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00005960
5961 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005962 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5963
danielk1977e08a3c42008-09-18 18:17:03 +00005964 /* Release the reference to the new page. */
5965 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005966 }
5967
danielk1977eaa06f62008-09-18 17:34:44 +00005968 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005969}
drh615ae552005-01-16 23:21:00 +00005970#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005971
danielk19774dbaa892009-06-16 16:50:22 +00005972#if 0
drhc3b70572003-01-04 19:44:07 +00005973/*
danielk19774dbaa892009-06-16 16:50:22 +00005974** This function does not contribute anything to the operation of SQLite.
5975** it is sometimes activated temporarily while debugging code responsible
5976** for setting pointer-map entries.
5977*/
5978static int ptrmapCheckPages(MemPage **apPage, int nPage){
5979 int i, j;
5980 for(i=0; i<nPage; i++){
5981 Pgno n;
5982 u8 e;
5983 MemPage *pPage = apPage[i];
5984 BtShared *pBt = pPage->pBt;
5985 assert( pPage->isInit );
5986
5987 for(j=0; j<pPage->nCell; j++){
5988 CellInfo info;
5989 u8 *z;
5990
5991 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00005992 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00005993 if( info.iOverflow ){
5994 Pgno ovfl = get4byte(&z[info.iOverflow]);
5995 ptrmapGet(pBt, ovfl, &e, &n);
5996 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
5997 }
5998 if( !pPage->leaf ){
5999 Pgno child = get4byte(z);
6000 ptrmapGet(pBt, child, &e, &n);
6001 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6002 }
6003 }
6004 if( !pPage->leaf ){
6005 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6006 ptrmapGet(pBt, child, &e, &n);
6007 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6008 }
6009 }
6010 return 1;
6011}
6012#endif
6013
danielk1977cd581a72009-06-23 15:43:39 +00006014/*
6015** This function is used to copy the contents of the b-tree node stored
6016** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6017** the pointer-map entries for each child page are updated so that the
6018** parent page stored in the pointer map is page pTo. If pFrom contained
6019** any cells with overflow page pointers, then the corresponding pointer
6020** map entries are also updated so that the parent page is page pTo.
6021**
6022** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00006023** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00006024**
danielk197730548662009-07-09 05:07:37 +00006025** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00006026**
6027** The performance of this function is not critical. It is only used by
6028** the balance_shallower() and balance_deeper() procedures, neither of
6029** which are called often under normal circumstances.
6030*/
drhc314dc72009-07-21 11:52:34 +00006031static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
6032 if( (*pRC)==SQLITE_OK ){
6033 BtShared * const pBt = pFrom->pBt;
6034 u8 * const aFrom = pFrom->aData;
6035 u8 * const aTo = pTo->aData;
6036 int const iFromHdr = pFrom->hdrOffset;
6037 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00006038 int rc;
drhc314dc72009-07-21 11:52:34 +00006039 int iData;
6040
6041
6042 assert( pFrom->isInit );
6043 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00006044 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00006045
6046 /* Copy the b-tree node content from page pFrom to page pTo. */
6047 iData = get2byte(&aFrom[iFromHdr+5]);
6048 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6049 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6050
6051 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00006052 ** match the new data. The initialization of pTo can actually fail under
6053 ** fairly obscure circumstances, even though it is a copy of initialized
6054 ** page pFrom.
6055 */
drhc314dc72009-07-21 11:52:34 +00006056 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00006057 rc = btreeInitPage(pTo);
6058 if( rc!=SQLITE_OK ){
6059 *pRC = rc;
6060 return;
6061 }
drhc314dc72009-07-21 11:52:34 +00006062
6063 /* If this is an auto-vacuum database, update the pointer-map entries
6064 ** for any b-tree or overflow pages that pTo now contains the pointers to.
6065 */
6066 if( ISAUTOVACUUM ){
6067 *pRC = setChildPtrmaps(pTo);
6068 }
danielk1977cd581a72009-06-23 15:43:39 +00006069 }
danielk1977cd581a72009-06-23 15:43:39 +00006070}
6071
6072/*
danielk19774dbaa892009-06-16 16:50:22 +00006073** This routine redistributes cells on the iParentIdx'th child of pParent
6074** (hereafter "the page") and up to 2 siblings so that all pages have about the
6075** same amount of free space. Usually a single sibling on either side of the
6076** page are used in the balancing, though both siblings might come from one
6077** side if the page is the first or last child of its parent. If the page
6078** has fewer than 2 siblings (something which can only happen if the page
6079** is a root page or a child of a root page) then all available siblings
6080** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00006081**
danielk19774dbaa892009-06-16 16:50:22 +00006082** The number of siblings of the page might be increased or decreased by
6083** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00006084**
danielk19774dbaa892009-06-16 16:50:22 +00006085** Note that when this routine is called, some of the cells on the page
6086** might not actually be stored in MemPage.aData[]. This can happen
6087** if the page is overfull. This routine ensures that all cells allocated
6088** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00006089**
danielk19774dbaa892009-06-16 16:50:22 +00006090** In the course of balancing the page and its siblings, cells may be
6091** inserted into or removed from the parent page (pParent). Doing so
6092** may cause the parent page to become overfull or underfull. If this
6093** happens, it is the responsibility of the caller to invoke the correct
6094** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00006095**
drh5e00f6c2001-09-13 13:46:56 +00006096** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00006097** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00006098** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00006099**
6100** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00006101** buffer big enough to hold one page. If while inserting cells into the parent
6102** page (pParent) the parent page becomes overfull, this buffer is
6103** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00006104** a maximum of four divider cells into the parent page, and the maximum
6105** size of a cell stored within an internal node is always less than 1/4
6106** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6107** enough for all overflow cells.
6108**
6109** If aOvflSpace is set to a null pointer, this function returns
6110** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00006111*/
mistachkine7c54162012-10-02 22:54:27 +00006112#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6113#pragma optimize("", off)
6114#endif
danielk19774dbaa892009-06-16 16:50:22 +00006115static int balance_nonroot(
6116 MemPage *pParent, /* Parent page of siblings being balanced */
6117 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00006118 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00006119 int isRoot, /* True if pParent is a root-page */
6120 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00006121){
drh16a9b832007-05-05 18:39:25 +00006122 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00006123 int nCell = 0; /* Number of cells in apCell[] */
6124 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00006125 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00006126 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00006127 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00006128 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00006129 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00006130 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00006131 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00006132 int usableSpace; /* Bytes in pPage beyond the header */
6133 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00006134 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00006135 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00006136 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00006137 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00006138 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00006139 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00006140 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00006141 u8 *pRight; /* Location in parent of right-sibling pointer */
6142 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00006143 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
6144 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00006145 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00006146 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00006147 u8 *aSpace1; /* Space for copies of dividers cells */
6148 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00006149
danielk1977a50d9aa2009-06-08 14:49:45 +00006150 pBt = pParent->pBt;
6151 assert( sqlite3_mutex_held(pBt->mutex) );
6152 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00006153
danielk1977e5765212009-06-17 11:13:28 +00006154#if 0
drh43605152004-05-29 21:46:49 +00006155 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00006156#endif
drh2e38c322004-09-03 18:38:44 +00006157
danielk19774dbaa892009-06-16 16:50:22 +00006158 /* At this point pParent may have at most one overflow cell. And if
6159 ** this overflow cell is present, it must be the cell with
6160 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00006161 ** is called (indirectly) from sqlite3BtreeDelete().
6162 */
danielk19774dbaa892009-06-16 16:50:22 +00006163 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00006164 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00006165
danielk197711a8a862009-06-17 11:49:52 +00006166 if( !aOvflSpace ){
6167 return SQLITE_NOMEM;
6168 }
6169
danielk1977a50d9aa2009-06-08 14:49:45 +00006170 /* Find the sibling pages to balance. Also locate the cells in pParent
6171 ** that divide the siblings. An attempt is made to find NN siblings on
6172 ** either side of pPage. More siblings are taken from one side, however,
6173 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00006174 ** has NB or fewer children then all children of pParent are taken.
6175 **
6176 ** This loop also drops the divider cells from the parent page. This
6177 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00006178 ** overflow cells in the parent page, since if any existed they will
6179 ** have already been removed.
6180 */
danielk19774dbaa892009-06-16 16:50:22 +00006181 i = pParent->nOverflow + pParent->nCell;
6182 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00006183 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00006184 }else{
dan7d6885a2012-08-08 14:04:56 +00006185 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00006186 if( iParentIdx==0 ){
6187 nxDiv = 0;
6188 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00006189 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00006190 }else{
dan7d6885a2012-08-08 14:04:56 +00006191 assert( bBulk==0 );
danielk19774dbaa892009-06-16 16:50:22 +00006192 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00006193 }
dan7d6885a2012-08-08 14:04:56 +00006194 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00006195 }
dan7d6885a2012-08-08 14:04:56 +00006196 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00006197 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
6198 pRight = &pParent->aData[pParent->hdrOffset+8];
6199 }else{
6200 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
6201 }
6202 pgno = get4byte(pRight);
6203 while( 1 ){
dan11dcd112013-03-15 18:29:18 +00006204 rc = getAndInitPage(pBt, pgno, &apOld[i], 0);
danielk19774dbaa892009-06-16 16:50:22 +00006205 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00006206 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00006207 goto balance_cleanup;
6208 }
danielk1977634f2982005-03-28 08:44:07 +00006209 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00006210 if( (i--)==0 ) break;
6211
drh2cbd78b2012-02-02 19:37:18 +00006212 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
6213 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006214 pgno = get4byte(apDiv[i]);
6215 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6216 pParent->nOverflow = 0;
6217 }else{
6218 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
6219 pgno = get4byte(apDiv[i]);
6220 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6221
6222 /* Drop the cell from the parent page. apDiv[i] still points to
6223 ** the cell within the parent, even though it has been dropped.
6224 ** This is safe because dropping a cell only overwrites the first
6225 ** four bytes of it, and this function does not need the first
6226 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00006227 ** later on.
6228 **
drh8a575d92011-10-12 17:00:28 +00006229 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00006230 ** the dropCell() routine will overwrite the entire cell with zeroes.
6231 ** In this case, temporarily copy the cell into the aOvflSpace[]
6232 ** buffer. It will be copied out again as soon as the aSpace[] buffer
6233 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00006234 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00006235 int iOff;
6236
6237 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00006238 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00006239 rc = SQLITE_CORRUPT_BKPT;
6240 memset(apOld, 0, (i+1)*sizeof(MemPage*));
6241 goto balance_cleanup;
6242 }else{
6243 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
6244 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
6245 }
drh5b47efa2010-02-12 18:18:39 +00006246 }
drh98add2e2009-07-20 17:11:49 +00006247 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006248 }
drh8b2f49b2001-06-08 00:21:52 +00006249 }
6250
drha9121e42008-02-19 14:59:35 +00006251 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00006252 ** alignment */
drha9121e42008-02-19 14:59:35 +00006253 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00006254
drh8b2f49b2001-06-08 00:21:52 +00006255 /*
danielk1977634f2982005-03-28 08:44:07 +00006256 ** Allocate space for memory structures
6257 */
danielk19774dbaa892009-06-16 16:50:22 +00006258 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00006259 szScratch =
drha9121e42008-02-19 14:59:35 +00006260 nMaxCells*sizeof(u8*) /* apCell */
6261 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00006262 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00006263 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00006264 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00006265 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00006266 rc = SQLITE_NOMEM;
6267 goto balance_cleanup;
6268 }
drha9121e42008-02-19 14:59:35 +00006269 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00006270 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00006271 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00006272
6273 /*
6274 ** Load pointers to all cells on sibling pages and the divider cells
6275 ** into the local apCell[] array. Make copies of the divider cells
mistachkind5578432012-08-25 10:01:29 +00006276 ** into space obtained from aSpace1[] and remove the divider cells
drhb6f41482004-05-14 01:58:11 +00006277 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00006278 **
6279 ** If the siblings are on leaf pages, then the child pointers of the
6280 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00006281 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00006282 ** child pointers. If siblings are not leaves, then all cell in
6283 ** apCell[] include child pointers. Either way, all cells in apCell[]
6284 ** are alike.
drh96f5b762004-05-16 16:24:36 +00006285 **
6286 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
6287 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00006288 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006289 leafCorrection = apOld[0]->leaf*4;
6290 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00006291 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006292 int limit;
6293
6294 /* Before doing anything else, take a copy of the i'th original sibling
6295 ** The rest of this function will use data from the copies rather
6296 ** that the original pages since the original pages will be in the
6297 ** process of being overwritten. */
6298 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
6299 memcpy(pOld, apOld[i], sizeof(MemPage));
6300 pOld->aData = (void*)&pOld[1];
6301 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
6302
6303 limit = pOld->nCell+pOld->nOverflow;
drh68f2a572011-06-03 17:50:49 +00006304 if( pOld->nOverflow>0 ){
6305 for(j=0; j<limit; j++){
6306 assert( nCell<nMaxCells );
6307 apCell[nCell] = findOverflowCell(pOld, j);
6308 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6309 nCell++;
6310 }
6311 }else{
6312 u8 *aData = pOld->aData;
6313 u16 maskPage = pOld->maskPage;
6314 u16 cellOffset = pOld->cellOffset;
6315 for(j=0; j<limit; j++){
6316 assert( nCell<nMaxCells );
6317 apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j);
6318 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6319 nCell++;
6320 }
6321 }
danielk19774dbaa892009-06-16 16:50:22 +00006322 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00006323 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00006324 u8 *pTemp;
6325 assert( nCell<nMaxCells );
6326 szCell[nCell] = sz;
6327 pTemp = &aSpace1[iSpace1];
6328 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00006329 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006330 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00006331 memcpy(pTemp, apDiv[i], sz);
6332 apCell[nCell] = pTemp+leafCorrection;
6333 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00006334 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00006335 if( !pOld->leaf ){
6336 assert( leafCorrection==0 );
6337 assert( pOld->hdrOffset==0 );
6338 /* The right pointer of the child page pOld becomes the left
6339 ** pointer of the divider cell */
6340 memcpy(apCell[nCell], &pOld->aData[8], 4);
6341 }else{
6342 assert( leafCorrection==4 );
6343 if( szCell[nCell]<4 ){
6344 /* Do not allow any cells smaller than 4 bytes. */
6345 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00006346 }
6347 }
drh14acc042001-06-10 19:56:58 +00006348 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00006349 }
drh8b2f49b2001-06-08 00:21:52 +00006350 }
6351
6352 /*
drh6019e162001-07-02 17:51:45 +00006353 ** Figure out the number of pages needed to hold all nCell cells.
6354 ** Store this number in "k". Also compute szNew[] which is the total
6355 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00006356 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00006357 ** cntNew[k] should equal nCell.
6358 **
drh96f5b762004-05-16 16:24:36 +00006359 ** Values computed by this block:
6360 **
6361 ** k: The total number of sibling pages
6362 ** szNew[i]: Spaced used on the i-th sibling page.
6363 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
6364 ** the right of the i-th sibling page.
6365 ** usableSpace: Number of bytes of space available on each sibling.
6366 **
drh8b2f49b2001-06-08 00:21:52 +00006367 */
drh43605152004-05-29 21:46:49 +00006368 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00006369 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00006370 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00006371 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00006372 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00006373 szNew[k] = subtotal - szCell[i];
6374 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00006375 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00006376 subtotal = 0;
6377 k++;
drh9978c972010-02-23 17:36:32 +00006378 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00006379 }
6380 }
6381 szNew[k] = subtotal;
6382 cntNew[k] = nCell;
6383 k++;
drh96f5b762004-05-16 16:24:36 +00006384
6385 /*
6386 ** The packing computed by the previous block is biased toward the siblings
6387 ** on the left side. The left siblings are always nearly full, while the
6388 ** right-most sibling might be nearly empty. This block of code attempts
6389 ** to adjust the packing of siblings to get a better balance.
6390 **
6391 ** This adjustment is more than an optimization. The packing above might
6392 ** be so out of balance as to be illegal. For example, the right-most
6393 ** sibling might be completely empty. This adjustment is not optional.
6394 */
drh6019e162001-07-02 17:51:45 +00006395 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00006396 int szRight = szNew[i]; /* Size of sibling on the right */
6397 int szLeft = szNew[i-1]; /* Size of sibling on the left */
6398 int r; /* Index of right-most cell in left sibling */
6399 int d; /* Index of first cell to the left of right sibling */
6400
6401 r = cntNew[i-1] - 1;
6402 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00006403 assert( d<nMaxCells );
6404 assert( r<nMaxCells );
danf64cc492012-08-08 11:55:15 +00006405 while( szRight==0
6406 || (!bBulk && szRight+szCell[d]+2<=szLeft-(szCell[r]+2))
6407 ){
drh43605152004-05-29 21:46:49 +00006408 szRight += szCell[d] + 2;
6409 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00006410 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00006411 r = cntNew[i-1] - 1;
6412 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00006413 }
drh96f5b762004-05-16 16:24:36 +00006414 szNew[i] = szRight;
6415 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00006416 }
drh09d0deb2005-08-02 17:13:09 +00006417
danielk19776f235cc2009-06-04 14:46:08 +00006418 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00006419 ** a virtual root page. A virtual root page is when the real root
6420 ** page is page 1 and we are the only child of that page.
drh2f32fba2012-01-02 16:38:57 +00006421 **
6422 ** UPDATE: The assert() below is not necessarily true if the database
6423 ** file is corrupt. The corruption will be detected and reported later
6424 ** in this procedure so there is no need to act upon it now.
drh09d0deb2005-08-02 17:13:09 +00006425 */
drh2f32fba2012-01-02 16:38:57 +00006426#if 0
drh09d0deb2005-08-02 17:13:09 +00006427 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh2f32fba2012-01-02 16:38:57 +00006428#endif
drh8b2f49b2001-06-08 00:21:52 +00006429
danielk1977e5765212009-06-17 11:13:28 +00006430 TRACE(("BALANCE: old: %d %d %d ",
6431 apOld[0]->pgno,
6432 nOld>=2 ? apOld[1]->pgno : 0,
6433 nOld>=3 ? apOld[2]->pgno : 0
6434 ));
6435
drh8b2f49b2001-06-08 00:21:52 +00006436 /*
drh6b308672002-07-08 02:16:37 +00006437 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00006438 */
drheac74422009-06-14 12:47:11 +00006439 if( apOld[0]->pgno<=1 ){
drh9978c972010-02-23 17:36:32 +00006440 rc = SQLITE_CORRUPT_BKPT;
drheac74422009-06-14 12:47:11 +00006441 goto balance_cleanup;
6442 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006443 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00006444 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00006445 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00006446 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00006447 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00006448 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006449 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00006450 nNew++;
danielk197728129562005-01-11 10:25:06 +00006451 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00006452 }else{
drh7aa8f852006-03-28 00:24:44 +00006453 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00006454 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00006455 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00006456 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00006457 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00006458
6459 /* Set the pointer-map entry for the new sibling page. */
6460 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006461 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006462 if( rc!=SQLITE_OK ){
6463 goto balance_cleanup;
6464 }
6465 }
drh6b308672002-07-08 02:16:37 +00006466 }
drh8b2f49b2001-06-08 00:21:52 +00006467 }
6468
danielk1977299b1872004-11-22 10:02:10 +00006469 /* Free any old pages that were not reused as new pages.
6470 */
6471 while( i<nOld ){
drhc314dc72009-07-21 11:52:34 +00006472 freePage(apOld[i], &rc);
danielk1977299b1872004-11-22 10:02:10 +00006473 if( rc ) goto balance_cleanup;
6474 releasePage(apOld[i]);
6475 apOld[i] = 0;
6476 i++;
6477 }
6478
drh8b2f49b2001-06-08 00:21:52 +00006479 /*
drhf9ffac92002-03-02 19:00:31 +00006480 ** Put the new pages in accending order. This helps to
6481 ** keep entries in the disk file in order so that a scan
6482 ** of the table is a linear scan through the file. That
6483 ** in turn helps the operating system to deliver pages
6484 ** from the disk more rapidly.
6485 **
6486 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00006487 ** n is never more than NB (a small constant), that should
6488 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00006489 **
drhc3b70572003-01-04 19:44:07 +00006490 ** When NB==3, this one optimization makes the database
6491 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00006492 */
6493 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006494 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006495 int minI = i;
6496 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00006497 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00006498 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00006499 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006500 }
6501 }
6502 if( minI>i ){
drhf9ffac92002-03-02 19:00:31 +00006503 MemPage *pT;
drhf9ffac92002-03-02 19:00:31 +00006504 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00006505 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00006506 apNew[minI] = pT;
6507 }
6508 }
danielk1977e5765212009-06-17 11:13:28 +00006509 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00006510 apNew[0]->pgno, szNew[0],
6511 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
6512 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
6513 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
6514 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
6515
6516 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6517 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00006518
drhf9ffac92002-03-02 19:00:31 +00006519 /*
drh14acc042001-06-10 19:56:58 +00006520 ** Evenly distribute the data in apCell[] across the new pages.
6521 ** Insert divider cells into pParent as necessary.
6522 */
6523 j = 0;
6524 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00006525 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00006526 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00006527 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00006528 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00006529 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00006530 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00006531 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00006532
danielk1977ac11ee62005-01-15 12:45:51 +00006533 j = cntNew[i];
6534
6535 /* If the sibling page assembled above was not the right-most sibling,
6536 ** insert a divider cell into the parent page.
6537 */
danielk19771c3d2bf2009-06-23 16:40:17 +00006538 assert( i<nNew-1 || j==nCell );
6539 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00006540 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00006541 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00006542 int sz;
danielk1977634f2982005-03-28 08:44:07 +00006543
6544 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00006545 pCell = apCell[j];
6546 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00006547 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00006548 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00006549 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00006550 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00006551 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00006552 ** then there is no divider cell in apCell[]. Instead, the divider
6553 ** cell consists of the integer key for the right-most cell of
6554 ** the sibling-page assembled above only.
6555 */
drh6f11bef2004-05-13 01:12:56 +00006556 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00006557 j--;
danielk197730548662009-07-09 05:07:37 +00006558 btreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00006559 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00006560 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00006561 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00006562 }else{
6563 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00006564 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00006565 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00006566 ** bytes, then it may actually be smaller than this
danielk197730548662009-07-09 05:07:37 +00006567 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006568 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006569 ** insertCell(), so reparse the cell now.
6570 **
6571 ** Note that this can never happen in an SQLite data file, as all
6572 ** cells are at least 4 bytes. It only happens in b-trees used
6573 ** to evaluate "IN (SELECT ...)" and similar clauses.
6574 */
6575 if( szCell[j]==4 ){
6576 assert(leafCorrection==4);
6577 sz = cellSizePtr(pParent, pCell);
6578 }
drh4b70f112004-05-02 21:12:19 +00006579 }
danielk19776067a9b2009-06-09 09:41:00 +00006580 iOvflSpace += sz;
drhe22e03e2010-08-18 21:19:03 +00006581 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006582 assert( iOvflSpace <= (int)pBt->pageSize );
drh98add2e2009-07-20 17:11:49 +00006583 insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
danielk1977e80463b2004-11-03 03:01:16 +00006584 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006585 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006586
drh14acc042001-06-10 19:56:58 +00006587 j++;
6588 nxDiv++;
6589 }
6590 }
drh6019e162001-07-02 17:51:45 +00006591 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006592 assert( nOld>0 );
6593 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006594 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006595 u8 *zChild = &apCopy[nOld-1]->aData[8];
6596 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006597 }
6598
danielk197713bd99f2009-06-24 05:40:34 +00006599 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6600 /* The root page of the b-tree now contains no cells. The only sibling
6601 ** page is the right-child of the parent. Copy the contents of the
6602 ** child page into the parent, decreasing the overall height of the
6603 ** b-tree structure by one. This is described as the "balance-shallower"
6604 ** sub-algorithm in some documentation.
6605 **
6606 ** If this is an auto-vacuum database, the call to copyNodeContent()
6607 ** sets all pointer-map entries corresponding to database image pages
6608 ** for which the pointer is stored within the content being copied.
6609 **
6610 ** The second assert below verifies that the child page is defragmented
6611 ** (it must be, as it was just reconstructed using assemblePage()). This
6612 ** is important if the parent page happens to be page 1 of the database
6613 ** image. */
6614 assert( nNew==1 );
6615 assert( apNew[0]->nFree ==
6616 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6617 );
drhc314dc72009-07-21 11:52:34 +00006618 copyNodeContent(apNew[0], pParent, &rc);
6619 freePage(apNew[0], &rc);
danielk197713bd99f2009-06-24 05:40:34 +00006620 }else if( ISAUTOVACUUM ){
6621 /* Fix the pointer-map entries for all the cells that were shifted around.
6622 ** There are several different types of pointer-map entries that need to
6623 ** be dealt with by this routine. Some of these have been set already, but
6624 ** many have not. The following is a summary:
6625 **
6626 ** 1) The entries associated with new sibling pages that were not
6627 ** siblings when this function was called. These have already
6628 ** been set. We don't need to worry about old siblings that were
6629 ** moved to the free-list - the freePage() code has taken care
6630 ** of those.
6631 **
6632 ** 2) The pointer-map entries associated with the first overflow
6633 ** page in any overflow chains used by new divider cells. These
6634 ** have also already been taken care of by the insertCell() code.
6635 **
6636 ** 3) If the sibling pages are not leaves, then the child pages of
6637 ** cells stored on the sibling pages may need to be updated.
6638 **
6639 ** 4) If the sibling pages are not internal intkey nodes, then any
6640 ** overflow pages used by these cells may need to be updated
6641 ** (internal intkey nodes never contain pointers to overflow pages).
6642 **
6643 ** 5) If the sibling pages are not leaves, then the pointer-map
6644 ** entries for the right-child pages of each sibling may need
6645 ** to be updated.
6646 **
6647 ** Cases 1 and 2 are dealt with above by other code. The next
6648 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6649 ** setting a pointer map entry is a relatively expensive operation, this
6650 ** code only sets pointer map entries for child or overflow pages that have
6651 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006652 MemPage *pNew = apNew[0];
6653 MemPage *pOld = apCopy[0];
6654 int nOverflow = pOld->nOverflow;
6655 int iNextOld = pOld->nCell + nOverflow;
drh2cbd78b2012-02-02 19:37:18 +00006656 int iOverflow = (nOverflow ? pOld->aiOvfl[0] : -1);
danielk19774dbaa892009-06-16 16:50:22 +00006657 j = 0; /* Current 'old' sibling page */
6658 k = 0; /* Current 'new' sibling page */
drhc314dc72009-07-21 11:52:34 +00006659 for(i=0; i<nCell; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006660 int isDivider = 0;
6661 while( i==iNextOld ){
6662 /* Cell i is the cell immediately following the last cell on old
6663 ** sibling page j. If the siblings are not leaf pages of an
6664 ** intkey b-tree, then cell i was a divider cell. */
drhb07028f2011-10-14 21:49:18 +00006665 assert( j+1 < ArraySize(apCopy) );
drhec739302012-08-14 18:43:39 +00006666 assert( j+1 < nOld );
danielk19774dbaa892009-06-16 16:50:22 +00006667 pOld = apCopy[++j];
6668 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6669 if( pOld->nOverflow ){
6670 nOverflow = pOld->nOverflow;
drh2cbd78b2012-02-02 19:37:18 +00006671 iOverflow = i + !leafData + pOld->aiOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006672 }
6673 isDivider = !leafData;
6674 }
6675
6676 assert(nOverflow>0 || iOverflow<i );
drh2cbd78b2012-02-02 19:37:18 +00006677 assert(nOverflow<2 || pOld->aiOvfl[0]==pOld->aiOvfl[1]-1);
6678 assert(nOverflow<3 || pOld->aiOvfl[1]==pOld->aiOvfl[2]-1);
danielk19774dbaa892009-06-16 16:50:22 +00006679 if( i==iOverflow ){
6680 isDivider = 1;
6681 if( (--nOverflow)>0 ){
6682 iOverflow++;
6683 }
6684 }
6685
6686 if( i==cntNew[k] ){
6687 /* Cell i is the cell immediately following the last cell on new
6688 ** sibling page k. If the siblings are not leaf pages of an
6689 ** intkey b-tree, then cell i is a divider cell. */
6690 pNew = apNew[++k];
6691 if( !leafData ) continue;
6692 }
danielk19774dbaa892009-06-16 16:50:22 +00006693 assert( j<nOld );
6694 assert( k<nNew );
6695
6696 /* If the cell was originally divider cell (and is not now) or
6697 ** an overflow cell, or if the cell was located on a different sibling
6698 ** page before the balancing, then the pointer map entries associated
6699 ** with any child or overflow pages need to be updated. */
6700 if( isDivider || pOld->pgno!=pNew->pgno ){
6701 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006702 ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006703 }
drh98add2e2009-07-20 17:11:49 +00006704 if( szCell[i]>pNew->minLocal ){
6705 ptrmapPutOvflPtr(pNew, apCell[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006706 }
6707 }
6708 }
6709
6710 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006711 for(i=0; i<nNew; i++){
6712 u32 key = get4byte(&apNew[i]->aData[8]);
6713 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006714 }
6715 }
6716
6717#if 0
6718 /* The ptrmapCheckPages() contains assert() statements that verify that
6719 ** all pointer map pages are set correctly. This is helpful while
6720 ** debugging. This is usually disabled because a corrupt database may
6721 ** cause an assert() statement to fail. */
6722 ptrmapCheckPages(apNew, nNew);
6723 ptrmapCheckPages(&pParent, 1);
6724#endif
6725 }
6726
danielk197771d5d2c2008-09-29 11:49:47 +00006727 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006728 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6729 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006730
drh8b2f49b2001-06-08 00:21:52 +00006731 /*
drh14acc042001-06-10 19:56:58 +00006732 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006733 */
drh14acc042001-06-10 19:56:58 +00006734balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006735 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006736 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006737 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006738 }
drh14acc042001-06-10 19:56:58 +00006739 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006740 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006741 }
danielk1977eaa06f62008-09-18 17:34:44 +00006742
drh8b2f49b2001-06-08 00:21:52 +00006743 return rc;
6744}
mistachkine7c54162012-10-02 22:54:27 +00006745#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6746#pragma optimize("", on)
6747#endif
drh8b2f49b2001-06-08 00:21:52 +00006748
drh43605152004-05-29 21:46:49 +00006749
6750/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006751** This function is called when the root page of a b-tree structure is
6752** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006753**
danielk1977a50d9aa2009-06-08 14:49:45 +00006754** A new child page is allocated and the contents of the current root
6755** page, including overflow cells, are copied into the child. The root
6756** page is then overwritten to make it an empty page with the right-child
6757** pointer pointing to the new page.
6758**
6759** Before returning, all pointer-map entries corresponding to pages
6760** that the new child-page now contains pointers to are updated. The
6761** entry corresponding to the new right-child pointer of the root
6762** page is also updated.
6763**
6764** If successful, *ppChild is set to contain a reference to the child
6765** page and SQLITE_OK is returned. In this case the caller is required
6766** to call releasePage() on *ppChild exactly once. If an error occurs,
6767** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006768*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006769static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6770 int rc; /* Return value from subprocedures */
6771 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00006772 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00006773 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006774
danielk1977a50d9aa2009-06-08 14:49:45 +00006775 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006776 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006777
danielk1977a50d9aa2009-06-08 14:49:45 +00006778 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6779 ** page that will become the new right-child of pPage. Copy the contents
6780 ** of the node stored on pRoot into the new child page.
6781 */
drh98add2e2009-07-20 17:11:49 +00006782 rc = sqlite3PagerWrite(pRoot->pDbPage);
6783 if( rc==SQLITE_OK ){
6784 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00006785 copyNodeContent(pRoot, pChild, &rc);
6786 if( ISAUTOVACUUM ){
6787 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00006788 }
6789 }
6790 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006791 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006792 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006793 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006794 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006795 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6796 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6797 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006798
danielk1977a50d9aa2009-06-08 14:49:45 +00006799 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6800
6801 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00006802 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
6803 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
6804 memcpy(pChild->apOvfl, pRoot->apOvfl,
6805 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00006806 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006807
6808 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6809 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6810 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6811
6812 *ppChild = pChild;
6813 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006814}
6815
6816/*
danielk197771d5d2c2008-09-29 11:49:47 +00006817** The page that pCur currently points to has just been modified in
6818** some way. This function figures out if this modification means the
6819** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006820** routine. Balancing routines are:
6821**
6822** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006823** balance_deeper()
6824** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006825*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006826static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006827 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006828 const int nMin = pCur->pBt->usableSize * 2 / 3;
6829 u8 aBalanceQuickSpace[13];
6830 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006831
shane75ac1de2009-06-09 18:58:52 +00006832 TESTONLY( int balance_quick_called = 0 );
6833 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006834
6835 do {
6836 int iPage = pCur->iPage;
6837 MemPage *pPage = pCur->apPage[iPage];
6838
6839 if( iPage==0 ){
6840 if( pPage->nOverflow ){
6841 /* The root page of the b-tree is overfull. In this case call the
6842 ** balance_deeper() function to create a new child for the root-page
6843 ** and copy the current contents of the root-page to it. The
6844 ** next iteration of the do-loop will balance the child page.
6845 */
6846 assert( (balance_deeper_called++)==0 );
6847 rc = balance_deeper(pPage, &pCur->apPage[1]);
6848 if( rc==SQLITE_OK ){
6849 pCur->iPage = 1;
6850 pCur->aiIdx[0] = 0;
6851 pCur->aiIdx[1] = 0;
6852 assert( pCur->apPage[1]->nOverflow );
6853 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006854 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006855 break;
6856 }
6857 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6858 break;
6859 }else{
6860 MemPage * const pParent = pCur->apPage[iPage-1];
6861 int const iIdx = pCur->aiIdx[iPage-1];
6862
6863 rc = sqlite3PagerWrite(pParent->pDbPage);
6864 if( rc==SQLITE_OK ){
6865#ifndef SQLITE_OMIT_QUICKBALANCE
6866 if( pPage->hasData
6867 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00006868 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00006869 && pParent->pgno!=1
6870 && pParent->nCell==iIdx
6871 ){
6872 /* Call balance_quick() to create a new sibling of pPage on which
6873 ** to store the overflow cell. balance_quick() inserts a new cell
6874 ** into pParent, which may cause pParent overflow. If this
6875 ** happens, the next interation of the do-loop will balance pParent
6876 ** use either balance_nonroot() or balance_deeper(). Until this
6877 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6878 ** buffer.
6879 **
6880 ** The purpose of the following assert() is to check that only a
6881 ** single call to balance_quick() is made for each call to this
6882 ** function. If this were not verified, a subtle bug involving reuse
6883 ** of the aBalanceQuickSpace[] might sneak in.
6884 */
6885 assert( (balance_quick_called++)==0 );
6886 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6887 }else
6888#endif
6889 {
6890 /* In this case, call balance_nonroot() to redistribute cells
6891 ** between pPage and up to 2 of its sibling pages. This involves
6892 ** modifying the contents of pParent, which may cause pParent to
6893 ** become overfull or underfull. The next iteration of the do-loop
6894 ** will balance the parent page to correct this.
6895 **
6896 ** If the parent page becomes overfull, the overflow cell or cells
6897 ** are stored in the pSpace buffer allocated immediately below.
6898 ** A subsequent iteration of the do-loop will deal with this by
6899 ** calling balance_nonroot() (balance_deeper() may be called first,
6900 ** but it doesn't deal with overflow cells - just moves them to a
6901 ** different page). Once this subsequent call to balance_nonroot()
6902 ** has completed, it is safe to release the pSpace buffer used by
6903 ** the previous call, as the overflow cell data will have been
6904 ** copied either into the body of a database page or into the new
6905 ** pSpace buffer passed to the latter call to balance_nonroot().
6906 */
6907 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
dan428c2182012-08-06 18:50:11 +00006908 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, pCur->hints);
danielk1977a50d9aa2009-06-08 14:49:45 +00006909 if( pFree ){
6910 /* If pFree is not NULL, it points to the pSpace buffer used
6911 ** by a previous call to balance_nonroot(). Its contents are
6912 ** now stored either on real database pages or within the
6913 ** new pSpace buffer, so it may be safely freed here. */
6914 sqlite3PageFree(pFree);
6915 }
6916
danielk19774dbaa892009-06-16 16:50:22 +00006917 /* The pSpace buffer will be freed after the next call to
6918 ** balance_nonroot(), or just before this function returns, whichever
6919 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006920 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00006921 }
6922 }
6923
6924 pPage->nOverflow = 0;
6925
6926 /* The next iteration of the do-loop balances the parent page. */
6927 releasePage(pPage);
6928 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006929 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006930 }while( rc==SQLITE_OK );
6931
6932 if( pFree ){
6933 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006934 }
6935 return rc;
6936}
6937
drhf74b8d92002-09-01 23:20:45 +00006938
6939/*
drh3b7511c2001-05-26 13:15:44 +00006940** Insert a new record into the BTree. The key is given by (pKey,nKey)
6941** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006942** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006943** is left pointing at a random location.
6944**
6945** For an INTKEY table, only the nKey value of the key is used. pKey is
6946** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006947**
6948** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00006949** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00006950** been performed. seekResult is the search result returned (a negative
6951** number if pCur points at an entry that is smaller than (pKey, nKey), or
6952** a positive value if pCur points at an etry that is larger than
6953** (pKey, nKey)).
6954**
drh3e9ca092009-09-08 01:14:48 +00006955** If the seekResult parameter is non-zero, then the caller guarantees that
6956** cursor pCur is pointing at the existing copy of a row that is to be
6957** overwritten. If the seekResult parameter is 0, then cursor pCur may
6958** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00006959** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006960*/
drh3aac2dd2004-04-26 14:10:20 +00006961int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006962 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006963 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006964 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006965 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006966 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00006967 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00006968){
drh3b7511c2001-05-26 13:15:44 +00006969 int rc;
drh3e9ca092009-09-08 01:14:48 +00006970 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00006971 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006972 int idx;
drh3b7511c2001-05-26 13:15:44 +00006973 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006974 Btree *p = pCur->pBtree;
6975 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006976 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006977 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006978
drh98add2e2009-07-20 17:11:49 +00006979 if( pCur->eState==CURSOR_FAULT ){
6980 assert( pCur->skipNext!=SQLITE_OK );
6981 return pCur->skipNext;
6982 }
6983
drh1fee73e2007-08-29 04:00:57 +00006984 assert( cursorHoldsMutex(pCur) );
drh036dbec2014-03-11 23:40:44 +00006985 assert( (pCur->curFlags & BTCF_WriteFlag)!=0 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00006986 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00006987 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6988
danielk197731d31b82009-07-13 13:18:07 +00006989 /* Assert that the caller has been consistent. If this cursor was opened
6990 ** expecting an index b-tree, then the caller should be inserting blob
6991 ** keys with no associated data. If the cursor was opened expecting an
6992 ** intkey table, the caller should be inserting integer keys with a
6993 ** blob of associated data. */
6994 assert( (pKey==0)==(pCur->pKeyInfo==0) );
6995
danielk19779c3acf32009-05-02 07:36:49 +00006996 /* Save the positions of any other cursors open on this table.
6997 **
danielk19773509a652009-07-06 18:56:13 +00006998 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00006999 ** example, when inserting data into a table with auto-generated integer
7000 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
7001 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00007002 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00007003 ** that the cursor is already where it needs to be and returns without
7004 ** doing any work. To avoid thwarting these optimizations, it is important
7005 ** not to clear the cursor here.
7006 */
drh4c301aa2009-07-15 17:25:45 +00007007 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7008 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007009
drhd60f4f42012-03-23 14:23:52 +00007010 if( pCur->pKeyInfo==0 ){
drhe0670b62014-02-12 21:31:12 +00007011 /* If this is an insert into a table b-tree, invalidate any incrblob
7012 ** cursors open on the row being replaced */
drhd60f4f42012-03-23 14:23:52 +00007013 invalidateIncrblobCursors(p, nKey, 0);
drhe0670b62014-02-12 21:31:12 +00007014
7015 /* If the cursor is currently on the last row and we are appending a
7016 ** new row onto the end, set the "loc" to avoid an unnecessary btreeMoveto()
7017 ** call */
drh036dbec2014-03-11 23:40:44 +00007018 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0 && pCur->info.nKey==nKey-1 ){
drhe0670b62014-02-12 21:31:12 +00007019 loc = -1;
7020 }
drhd60f4f42012-03-23 14:23:52 +00007021 }
7022
drh4c301aa2009-07-15 17:25:45 +00007023 if( !loc ){
7024 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
7025 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00007026 }
danielk1977b980d2212009-06-22 18:03:51 +00007027 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00007028
danielk197771d5d2c2008-09-29 11:49:47 +00007029 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00007030 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00007031 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00007032
drh3a4c1412004-05-09 20:40:11 +00007033 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
7034 pCur->pgnoRoot, nKey, nData, pPage->pgno,
7035 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00007036 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00007037 allocateTempSpace(pBt);
7038 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00007039 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00007040 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00007041 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00007042 assert( szNew==cellSizePtr(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00007043 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00007044 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00007045 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00007046 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00007047 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00007048 rc = sqlite3PagerWrite(pPage->pDbPage);
7049 if( rc ){
7050 goto end_insert;
7051 }
danielk197771d5d2c2008-09-29 11:49:47 +00007052 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00007053 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007054 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00007055 }
drh43605152004-05-29 21:46:49 +00007056 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00007057 rc = clearCell(pPage, oldCell);
drh98add2e2009-07-20 17:11:49 +00007058 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00007059 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00007060 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00007061 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00007062 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00007063 }else{
drh4b70f112004-05-02 21:12:19 +00007064 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00007065 }
drh98add2e2009-07-20 17:11:49 +00007066 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00007067 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00007068
mistachkin48864df2013-03-21 21:20:32 +00007069 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00007070 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00007071 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00007072 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00007073 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007074 ** Previous versions of SQLite called moveToRoot() to move the cursor
7075 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00007076 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
7077 ** set the cursor state to "invalid". This makes common insert operations
7078 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00007079 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007080 ** There is a subtle but important optimization here too. When inserting
7081 ** multiple records into an intkey b-tree using a single cursor (as can
7082 ** happen while processing an "INSERT INTO ... SELECT" statement), it
7083 ** is advantageous to leave the cursor pointing to the last entry in
7084 ** the b-tree if possible. If the cursor is left pointing to the last
7085 ** entry in the table, and the next row inserted has an integer key
7086 ** larger than the largest existing key, it is possible to insert the
7087 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00007088 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007089 pCur->info.nSize = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007090 if( rc==SQLITE_OK && pPage->nOverflow ){
drh036dbec2014-03-11 23:40:44 +00007091 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00007092 rc = balance(pCur);
7093
7094 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00007095 ** fails. Internal data structure corruption will result otherwise.
7096 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
7097 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007098 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00007099 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00007100 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007101 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00007102
drh2e38c322004-09-03 18:38:44 +00007103end_insert:
drh5e2f8b92001-05-28 00:41:15 +00007104 return rc;
7105}
7106
7107/*
drh4b70f112004-05-02 21:12:19 +00007108** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00007109** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00007110*/
drh3aac2dd2004-04-26 14:10:20 +00007111int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00007112 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00007113 BtShared *pBt = p->pBt;
7114 int rc; /* Return code */
7115 MemPage *pPage; /* Page to delete cell from */
7116 unsigned char *pCell; /* Pointer to cell to delete */
7117 int iCellIdx; /* Index of cell to delete */
7118 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00007119
drh1fee73e2007-08-29 04:00:57 +00007120 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00007121 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007122 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00007123 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00007124 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7125 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
7126
danielk19774dbaa892009-06-16 16:50:22 +00007127 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
7128 || NEVER(pCur->eState!=CURSOR_VALID)
7129 ){
7130 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00007131 }
danielk1977da184232006-01-05 11:34:32 +00007132
danielk19774dbaa892009-06-16 16:50:22 +00007133 iCellDepth = pCur->iPage;
7134 iCellIdx = pCur->aiIdx[iCellDepth];
7135 pPage = pCur->apPage[iCellDepth];
7136 pCell = findCell(pPage, iCellIdx);
7137
7138 /* If the page containing the entry to delete is not a leaf page, move
7139 ** the cursor to the largest entry in the tree that is smaller than
7140 ** the entry being deleted. This cell will replace the cell being deleted
7141 ** from the internal node. The 'previous' entry is used for this instead
7142 ** of the 'next' entry, as the previous entry is always a part of the
7143 ** sub-tree headed by the child page of the cell being deleted. This makes
7144 ** balancing the tree following the delete operation easier. */
7145 if( !pPage->leaf ){
drhe39a7322014-02-03 14:04:11 +00007146 int notUsed = 0;
drh4c301aa2009-07-15 17:25:45 +00007147 rc = sqlite3BtreePrevious(pCur, &notUsed);
7148 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00007149 }
7150
7151 /* Save the positions of any other cursors open on this table before
7152 ** making any modifications. Make the page containing the entry to be
7153 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00007154 ** entry and finally remove the cell itself from within the page.
7155 */
7156 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7157 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007158
7159 /* If this is a delete operation to remove a row from a table b-tree,
7160 ** invalidate any incrblob cursors open on the row being deleted. */
7161 if( pCur->pKeyInfo==0 ){
7162 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
7163 }
7164
drha4ec1d42009-07-11 13:13:11 +00007165 rc = sqlite3PagerWrite(pPage->pDbPage);
7166 if( rc ) return rc;
7167 rc = clearCell(pPage, pCell);
drh98add2e2009-07-20 17:11:49 +00007168 dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
drha4ec1d42009-07-11 13:13:11 +00007169 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00007170
danielk19774dbaa892009-06-16 16:50:22 +00007171 /* If the cell deleted was not located on a leaf page, then the cursor
7172 ** is currently pointing to the largest entry in the sub-tree headed
7173 ** by the child-page of the cell that was just deleted from an internal
7174 ** node. The cell from the leaf node needs to be moved to the internal
7175 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00007176 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00007177 MemPage *pLeaf = pCur->apPage[pCur->iPage];
7178 int nCell;
7179 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
7180 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00007181
danielk19774dbaa892009-06-16 16:50:22 +00007182 pCell = findCell(pLeaf, pLeaf->nCell-1);
7183 nCell = cellSizePtr(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00007184 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007185
danielk19774dbaa892009-06-16 16:50:22 +00007186 allocateTempSpace(pBt);
7187 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00007188
drha4ec1d42009-07-11 13:13:11 +00007189 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00007190 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
7191 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00007192 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00007193 }
danielk19774dbaa892009-06-16 16:50:22 +00007194
7195 /* Balance the tree. If the entry deleted was located on a leaf page,
7196 ** then the cursor still points to that page. In this case the first
7197 ** call to balance() repairs the tree, and the if(...) condition is
7198 ** never true.
7199 **
7200 ** Otherwise, if the entry deleted was on an internal node page, then
7201 ** pCur is pointing to the leaf page from which a cell was removed to
7202 ** replace the cell deleted from the internal node. This is slightly
7203 ** tricky as the leaf node may be underfull, and the internal node may
7204 ** be either under or overfull. In this case run the balancing algorithm
7205 ** on the leaf node first. If the balance proceeds far enough up the
7206 ** tree that we can be sure that any problem in the internal node has
7207 ** been corrected, so be it. Otherwise, after balancing the leaf node,
7208 ** walk the cursor up the tree to the internal node and balance it as
7209 ** well. */
7210 rc = balance(pCur);
7211 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
7212 while( pCur->iPage>iCellDepth ){
7213 releasePage(pCur->apPage[pCur->iPage--]);
7214 }
7215 rc = balance(pCur);
7216 }
7217
danielk19776b456a22005-03-21 04:04:02 +00007218 if( rc==SQLITE_OK ){
7219 moveToRoot(pCur);
7220 }
drh5e2f8b92001-05-28 00:41:15 +00007221 return rc;
drh3b7511c2001-05-26 13:15:44 +00007222}
drh8b2f49b2001-06-08 00:21:52 +00007223
7224/*
drhc6b52df2002-01-04 03:09:29 +00007225** Create a new BTree table. Write into *piTable the page
7226** number for the root page of the new table.
7227**
drhab01f612004-05-22 02:55:23 +00007228** The type of type is determined by the flags parameter. Only the
7229** following values of flags are currently in use. Other values for
7230** flags might not work:
7231**
7232** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
7233** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00007234*/
drhd4187c72010-08-30 22:15:45 +00007235static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00007236 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007237 MemPage *pRoot;
7238 Pgno pgnoRoot;
7239 int rc;
drhd4187c72010-08-30 22:15:45 +00007240 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00007241
drh1fee73e2007-08-29 04:00:57 +00007242 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007243 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007244 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00007245
danielk1977003ba062004-11-04 02:57:33 +00007246#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00007247 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00007248 if( rc ){
7249 return rc;
7250 }
danielk1977003ba062004-11-04 02:57:33 +00007251#else
danielk1977687566d2004-11-02 12:56:41 +00007252 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00007253 Pgno pgnoMove; /* Move a page here to make room for the root-page */
7254 MemPage *pPageMove; /* The page to move to. */
7255
danielk197720713f32007-05-03 11:43:33 +00007256 /* Creating a new table may probably require moving an existing database
7257 ** to make room for the new tables root page. In case this page turns
7258 ** out to be an overflow page, delete all overflow page-map caches
7259 ** held by open cursors.
7260 */
danielk197792d4d7a2007-05-04 12:05:56 +00007261 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00007262
danielk1977003ba062004-11-04 02:57:33 +00007263 /* Read the value of meta[3] from the database to determine where the
7264 ** root page of the new table should go. meta[3] is the largest root-page
7265 ** created so far, so the new root-page is (meta[3]+1).
7266 */
danielk1977602b4662009-07-02 07:47:33 +00007267 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00007268 pgnoRoot++;
7269
danielk1977599fcba2004-11-08 07:13:13 +00007270 /* The new root-page may not be allocated on a pointer-map page, or the
7271 ** PENDING_BYTE page.
7272 */
drh72190432008-01-31 14:54:43 +00007273 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00007274 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00007275 pgnoRoot++;
7276 }
7277 assert( pgnoRoot>=3 );
7278
7279 /* Allocate a page. The page that currently resides at pgnoRoot will
7280 ** be moved to the allocated page (unless the allocated page happens
7281 ** to reside at pgnoRoot).
7282 */
dan51f0b6d2013-02-22 20:16:34 +00007283 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00007284 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00007285 return rc;
7286 }
danielk1977003ba062004-11-04 02:57:33 +00007287
7288 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00007289 /* pgnoRoot is the page that will be used for the root-page of
7290 ** the new table (assuming an error did not occur). But we were
7291 ** allocated pgnoMove. If required (i.e. if it was not allocated
7292 ** by extending the file), the current page at position pgnoMove
7293 ** is already journaled.
7294 */
drheeb844a2009-08-08 18:01:07 +00007295 u8 eType = 0;
7296 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00007297
danf7679ad2013-04-03 11:38:36 +00007298 /* Save the positions of any open cursors. This is required in
7299 ** case they are holding a reference to an xFetch reference
7300 ** corresponding to page pgnoRoot. */
7301 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00007302 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00007303 if( rc!=SQLITE_OK ){
7304 return rc;
7305 }
danielk1977f35843b2007-04-07 15:03:17 +00007306
7307 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00007308 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007309 if( rc!=SQLITE_OK ){
7310 return rc;
7311 }
7312 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00007313 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
7314 rc = SQLITE_CORRUPT_BKPT;
7315 }
7316 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00007317 releasePage(pRoot);
7318 return rc;
7319 }
drhccae6022005-02-26 17:31:26 +00007320 assert( eType!=PTRMAP_ROOTPAGE );
7321 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00007322 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00007323 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00007324
7325 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00007326 if( rc!=SQLITE_OK ){
7327 return rc;
7328 }
drhb00fc3b2013-08-21 23:42:32 +00007329 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007330 if( rc!=SQLITE_OK ){
7331 return rc;
7332 }
danielk19773b8a05f2007-03-19 17:44:26 +00007333 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00007334 if( rc!=SQLITE_OK ){
7335 releasePage(pRoot);
7336 return rc;
7337 }
7338 }else{
7339 pRoot = pPageMove;
7340 }
7341
danielk197742741be2005-01-08 12:42:39 +00007342 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00007343 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00007344 if( rc ){
7345 releasePage(pRoot);
7346 return rc;
7347 }
drhbf592832010-03-30 15:51:12 +00007348
7349 /* When the new root page was allocated, page 1 was made writable in
7350 ** order either to increase the database filesize, or to decrement the
7351 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
7352 */
7353 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00007354 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00007355 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00007356 releasePage(pRoot);
7357 return rc;
7358 }
danielk197742741be2005-01-08 12:42:39 +00007359
danielk1977003ba062004-11-04 02:57:33 +00007360 }else{
drh4f0c5872007-03-26 22:05:01 +00007361 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00007362 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00007363 }
7364#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007365 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00007366 if( createTabFlags & BTREE_INTKEY ){
7367 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
7368 }else{
7369 ptfFlags = PTF_ZERODATA | PTF_LEAF;
7370 }
7371 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00007372 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00007373 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00007374 *piTable = (int)pgnoRoot;
7375 return SQLITE_OK;
7376}
drhd677b3d2007-08-20 22:48:41 +00007377int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
7378 int rc;
7379 sqlite3BtreeEnter(p);
7380 rc = btreeCreateTable(p, piTable, flags);
7381 sqlite3BtreeLeave(p);
7382 return rc;
7383}
drh8b2f49b2001-06-08 00:21:52 +00007384
7385/*
7386** Erase the given database page and all its children. Return
7387** the page to the freelist.
7388*/
drh4b70f112004-05-02 21:12:19 +00007389static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00007390 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00007391 Pgno pgno, /* Page number to clear */
7392 int freePageFlag, /* Deallocate page if true */
7393 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00007394){
danielk1977146ba992009-07-22 14:08:13 +00007395 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00007396 int rc;
drh4b70f112004-05-02 21:12:19 +00007397 unsigned char *pCell;
7398 int i;
dan8ce71842014-01-14 20:14:09 +00007399 int hdr;
drh8b2f49b2001-06-08 00:21:52 +00007400
drh1fee73e2007-08-29 04:00:57 +00007401 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00007402 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00007403 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00007404 }
7405
dan11dcd112013-03-15 18:29:18 +00007406 rc = getAndInitPage(pBt, pgno, &pPage, 0);
danielk1977146ba992009-07-22 14:08:13 +00007407 if( rc ) return rc;
dan8ce71842014-01-14 20:14:09 +00007408 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00007409 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00007410 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00007411 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007412 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007413 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007414 }
drh4b70f112004-05-02 21:12:19 +00007415 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00007416 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007417 }
drha34b6762004-05-07 13:30:42 +00007418 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00007419 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007420 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00007421 }else if( pnChange ){
7422 assert( pPage->intKey );
7423 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00007424 }
7425 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00007426 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00007427 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00007428 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00007429 }
danielk19776b456a22005-03-21 04:04:02 +00007430
7431cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00007432 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00007433 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007434}
7435
7436/*
drhab01f612004-05-22 02:55:23 +00007437** Delete all information from a single table in the database. iTable is
7438** the page number of the root of the table. After this routine returns,
7439** the root page is empty, but still exists.
7440**
7441** This routine will fail with SQLITE_LOCKED if there are any open
7442** read cursors on the table. Open write cursors are moved to the
7443** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00007444**
7445** If pnChange is not NULL, then table iTable must be an intkey table. The
7446** integer value pointed to by pnChange is incremented by the number of
7447** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00007448*/
danielk1977c7af4842008-10-27 13:59:33 +00007449int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00007450 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00007451 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00007452 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007453 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00007454
drhc046e3e2009-07-15 11:26:44 +00007455 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00007456
drhc046e3e2009-07-15 11:26:44 +00007457 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00007458 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
7459 ** is the root of a table b-tree - if it is not, the following call is
7460 ** a no-op). */
7461 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00007462 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00007463 }
drhd677b3d2007-08-20 22:48:41 +00007464 sqlite3BtreeLeave(p);
7465 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007466}
7467
7468/*
drh079a3072014-03-19 14:10:55 +00007469** Delete all information from the single table that pCur is open on.
7470**
7471** This routine only work for pCur on an ephemeral table.
7472*/
7473int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
7474 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
7475}
7476
7477/*
drh8b2f49b2001-06-08 00:21:52 +00007478** Erase all information in a table and add the root of the table to
7479** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00007480** page 1) is never added to the freelist.
7481**
7482** This routine will fail with SQLITE_LOCKED if there are any open
7483** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00007484**
7485** If AUTOVACUUM is enabled and the page at iTable is not the last
7486** root page in the database file, then the last root page
7487** in the database file is moved into the slot formerly occupied by
7488** iTable and that last slot formerly occupied by the last root page
7489** is added to the freelist instead of iTable. In this say, all
7490** root pages are kept at the beginning of the database file, which
7491** is necessary for AUTOVACUUM to work right. *piMoved is set to the
7492** page number that used to be the last root page in the file before
7493** the move. If no page gets moved, *piMoved is set to 0.
7494** The last root page is recorded in meta[3] and the value of
7495** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00007496*/
danielk197789d40042008-11-17 14:20:56 +00007497static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00007498 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00007499 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00007500 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00007501
drh1fee73e2007-08-29 04:00:57 +00007502 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007503 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00007504
danielk1977e6efa742004-11-10 11:55:10 +00007505 /* It is illegal to drop a table if any cursors are open on the
7506 ** database. This is because in auto-vacuum mode the backend may
7507 ** need to move another root-page to fill a gap left by the deleted
7508 ** root page. If an open cursor was using this page a problem would
7509 ** occur.
drhc046e3e2009-07-15 11:26:44 +00007510 **
7511 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00007512 */
drhc046e3e2009-07-15 11:26:44 +00007513 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00007514 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
7515 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00007516 }
danielk1977a0bf2652004-11-04 14:30:04 +00007517
drhb00fc3b2013-08-21 23:42:32 +00007518 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00007519 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00007520 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00007521 if( rc ){
7522 releasePage(pPage);
7523 return rc;
7524 }
danielk1977a0bf2652004-11-04 14:30:04 +00007525
drh205f48e2004-11-05 00:43:11 +00007526 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00007527
drh4b70f112004-05-02 21:12:19 +00007528 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00007529#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00007530 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007531 releasePage(pPage);
7532#else
7533 if( pBt->autoVacuum ){
7534 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00007535 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007536
7537 if( iTable==maxRootPgno ){
7538 /* If the table being dropped is the table with the largest root-page
7539 ** number in the database, put the root page on the free list.
7540 */
drhc314dc72009-07-21 11:52:34 +00007541 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007542 releasePage(pPage);
7543 if( rc!=SQLITE_OK ){
7544 return rc;
7545 }
7546 }else{
7547 /* The table being dropped does not have the largest root-page
7548 ** number in the database. So move the page that does into the
7549 ** gap left by the deleted root-page.
7550 */
7551 MemPage *pMove;
7552 releasePage(pPage);
drhb00fc3b2013-08-21 23:42:32 +00007553 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007554 if( rc!=SQLITE_OK ){
7555 return rc;
7556 }
danielk19774c999992008-07-16 18:17:55 +00007557 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007558 releasePage(pMove);
7559 if( rc!=SQLITE_OK ){
7560 return rc;
7561 }
drhfe3313f2009-07-21 19:02:20 +00007562 pMove = 0;
drhb00fc3b2013-08-21 23:42:32 +00007563 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00007564 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007565 releasePage(pMove);
7566 if( rc!=SQLITE_OK ){
7567 return rc;
7568 }
7569 *piMoved = maxRootPgno;
7570 }
7571
danielk1977599fcba2004-11-08 07:13:13 +00007572 /* Set the new 'max-root-page' value in the database header. This
7573 ** is the old value less one, less one more if that happens to
7574 ** be a root-page number, less one again if that is the
7575 ** PENDING_BYTE_PAGE.
7576 */
danielk197787a6e732004-11-05 12:58:25 +00007577 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00007578 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
7579 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00007580 maxRootPgno--;
7581 }
danielk1977599fcba2004-11-08 07:13:13 +00007582 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
7583
danielk1977aef0bf62005-12-30 16:28:01 +00007584 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007585 }else{
drhc314dc72009-07-21 11:52:34 +00007586 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007587 releasePage(pPage);
7588 }
7589#endif
drh2aa679f2001-06-25 02:11:07 +00007590 }else{
drhc046e3e2009-07-15 11:26:44 +00007591 /* If sqlite3BtreeDropTable was called on page 1.
7592 ** This really never should happen except in a corrupt
7593 ** database.
7594 */
drha34b6762004-05-07 13:30:42 +00007595 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00007596 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00007597 }
drh8b2f49b2001-06-08 00:21:52 +00007598 return rc;
7599}
drhd677b3d2007-08-20 22:48:41 +00007600int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
7601 int rc;
7602 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00007603 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00007604 sqlite3BtreeLeave(p);
7605 return rc;
7606}
drh8b2f49b2001-06-08 00:21:52 +00007607
drh001bbcb2003-03-19 03:14:00 +00007608
drh8b2f49b2001-06-08 00:21:52 +00007609/*
danielk1977602b4662009-07-02 07:47:33 +00007610** This function may only be called if the b-tree connection already
7611** has a read or write transaction open on the database.
7612**
drh23e11ca2004-05-04 17:27:28 +00007613** Read the meta-information out of a database file. Meta[0]
7614** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00007615** through meta[15] are available for use by higher layers. Meta[0]
7616** is read-only, the others are read/write.
7617**
7618** The schema layer numbers meta values differently. At the schema
7619** layer (and the SetCookie and ReadCookie opcodes) the number of
7620** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00007621*/
danielk1977602b4662009-07-02 07:47:33 +00007622void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007623 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007624
drhd677b3d2007-08-20 22:48:41 +00007625 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007626 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007627 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007628 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007629 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007630
danielk1977602b4662009-07-02 07:47:33 +00007631 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007632
danielk1977602b4662009-07-02 07:47:33 +00007633 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7634 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007635#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00007636 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
7637 pBt->btsFlags |= BTS_READ_ONLY;
7638 }
danielk1977003ba062004-11-04 02:57:33 +00007639#endif
drhae157872004-08-14 19:20:09 +00007640
drhd677b3d2007-08-20 22:48:41 +00007641 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007642}
7643
7644/*
drh23e11ca2004-05-04 17:27:28 +00007645** Write meta-information back into the database. Meta[0] is
7646** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007647*/
danielk1977aef0bf62005-12-30 16:28:01 +00007648int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7649 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007650 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007651 int rc;
drh23e11ca2004-05-04 17:27:28 +00007652 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007653 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007654 assert( p->inTrans==TRANS_WRITE );
7655 assert( pBt->pPage1!=0 );
7656 pP1 = pBt->pPage1->aData;
7657 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7658 if( rc==SQLITE_OK ){
7659 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007660#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007661 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007662 assert( pBt->autoVacuum || iMeta==0 );
7663 assert( iMeta==0 || iMeta==1 );
7664 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007665 }
drh64022502009-01-09 14:11:04 +00007666#endif
drh5df72a52002-06-06 23:16:05 +00007667 }
drhd677b3d2007-08-20 22:48:41 +00007668 sqlite3BtreeLeave(p);
7669 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007670}
drh8c42ca92001-06-22 19:15:00 +00007671
danielk1977a5533162009-02-24 10:01:51 +00007672#ifndef SQLITE_OMIT_BTREECOUNT
7673/*
7674** The first argument, pCur, is a cursor opened on some b-tree. Count the
7675** number of entries in the b-tree and write the result to *pnEntry.
7676**
7677** SQLITE_OK is returned if the operation is successfully executed.
7678** Otherwise, if an error is encountered (i.e. an IO error or database
7679** corruption) an SQLite error code is returned.
7680*/
7681int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7682 i64 nEntry = 0; /* Value to return in *pnEntry */
7683 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00007684
7685 if( pCur->pgnoRoot==0 ){
7686 *pnEntry = 0;
7687 return SQLITE_OK;
7688 }
danielk1977a5533162009-02-24 10:01:51 +00007689 rc = moveToRoot(pCur);
7690
7691 /* Unless an error occurs, the following loop runs one iteration for each
7692 ** page in the B-Tree structure (not including overflow pages).
7693 */
7694 while( rc==SQLITE_OK ){
7695 int iIdx; /* Index of child node in parent */
7696 MemPage *pPage; /* Current page of the b-tree */
7697
7698 /* If this is a leaf page or the tree is not an int-key tree, then
7699 ** this page contains countable entries. Increment the entry counter
7700 ** accordingly.
7701 */
7702 pPage = pCur->apPage[pCur->iPage];
7703 if( pPage->leaf || !pPage->intKey ){
7704 nEntry += pPage->nCell;
7705 }
7706
7707 /* pPage is a leaf node. This loop navigates the cursor so that it
7708 ** points to the first interior cell that it points to the parent of
7709 ** the next page in the tree that has not yet been visited. The
7710 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7711 ** of the page, or to the number of cells in the page if the next page
7712 ** to visit is the right-child of its parent.
7713 **
7714 ** If all pages in the tree have been visited, return SQLITE_OK to the
7715 ** caller.
7716 */
7717 if( pPage->leaf ){
7718 do {
7719 if( pCur->iPage==0 ){
7720 /* All pages of the b-tree have been visited. Return successfully. */
7721 *pnEntry = nEntry;
7722 return SQLITE_OK;
7723 }
danielk197730548662009-07-09 05:07:37 +00007724 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00007725 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7726
7727 pCur->aiIdx[pCur->iPage]++;
7728 pPage = pCur->apPage[pCur->iPage];
7729 }
7730
7731 /* Descend to the child node of the cell that the cursor currently
7732 ** points at. This is the right-child if (iIdx==pPage->nCell).
7733 */
7734 iIdx = pCur->aiIdx[pCur->iPage];
7735 if( iIdx==pPage->nCell ){
7736 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7737 }else{
7738 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7739 }
7740 }
7741
shanebe217792009-03-05 04:20:31 +00007742 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007743 return rc;
7744}
7745#endif
drhdd793422001-06-28 01:54:48 +00007746
drhdd793422001-06-28 01:54:48 +00007747/*
drh5eddca62001-06-30 21:53:53 +00007748** Return the pager associated with a BTree. This routine is used for
7749** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007750*/
danielk1977aef0bf62005-12-30 16:28:01 +00007751Pager *sqlite3BtreePager(Btree *p){
7752 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007753}
drh5eddca62001-06-30 21:53:53 +00007754
drhb7f91642004-10-31 02:22:47 +00007755#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007756/*
7757** Append a message to the error message string.
7758*/
drh2e38c322004-09-03 18:38:44 +00007759static void checkAppendMsg(
7760 IntegrityCk *pCheck,
7761 char *zMsg1,
7762 const char *zFormat,
7763 ...
7764){
7765 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007766 if( !pCheck->mxErr ) return;
7767 pCheck->mxErr--;
7768 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007769 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007770 if( pCheck->errMsg.nChar ){
7771 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007772 }
drhf089aa42008-07-08 19:34:06 +00007773 if( zMsg1 ){
drha6353a32013-12-09 19:03:26 +00007774 sqlite3StrAccumAppendAll(&pCheck->errMsg, zMsg1);
drhf089aa42008-07-08 19:34:06 +00007775 }
7776 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7777 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00007778 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00007779 pCheck->mallocFailed = 1;
7780 }
drh5eddca62001-06-30 21:53:53 +00007781}
drhb7f91642004-10-31 02:22:47 +00007782#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007783
drhb7f91642004-10-31 02:22:47 +00007784#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00007785
7786/*
7787** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
7788** corresponds to page iPg is already set.
7789*/
7790static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7791 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7792 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
7793}
7794
7795/*
7796** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
7797*/
7798static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7799 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7800 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
7801}
7802
7803
drh5eddca62001-06-30 21:53:53 +00007804/*
7805** Add 1 to the reference count for page iPage. If this is the second
7806** reference to the page, add an error message to pCheck->zErrMsg.
7807** Return 1 if there are 2 ore more references to the page and 0 if
7808** if this is the first reference to the page.
7809**
7810** Also check that the page number is in bounds.
7811*/
danielk197789d40042008-11-17 14:20:56 +00007812static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007813 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007814 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007815 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007816 return 1;
7817 }
dan1235bb12012-04-03 17:43:28 +00007818 if( getPageReferenced(pCheck, iPage) ){
drh2e38c322004-09-03 18:38:44 +00007819 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007820 return 1;
7821 }
dan1235bb12012-04-03 17:43:28 +00007822 setPageReferenced(pCheck, iPage);
7823 return 0;
drh5eddca62001-06-30 21:53:53 +00007824}
7825
danielk1977afcdd022004-10-31 16:25:42 +00007826#ifndef SQLITE_OMIT_AUTOVACUUM
7827/*
7828** Check that the entry in the pointer-map for page iChild maps to
7829** page iParent, pointer type ptrType. If not, append an error message
7830** to pCheck.
7831*/
7832static void checkPtrmap(
7833 IntegrityCk *pCheck, /* Integrity check context */
7834 Pgno iChild, /* Child page number */
7835 u8 eType, /* Expected pointer map type */
7836 Pgno iParent, /* Expected pointer map parent page number */
7837 char *zContext /* Context description (used for error msg) */
7838){
7839 int rc;
7840 u8 ePtrmapType;
7841 Pgno iPtrmapParent;
7842
7843 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7844 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007845 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007846 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7847 return;
7848 }
7849
7850 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7851 checkAppendMsg(pCheck, zContext,
7852 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7853 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7854 }
7855}
7856#endif
7857
drh5eddca62001-06-30 21:53:53 +00007858/*
7859** Check the integrity of the freelist or of an overflow page list.
7860** Verify that the number of pages on the list is N.
7861*/
drh30e58752002-03-02 20:41:57 +00007862static void checkList(
7863 IntegrityCk *pCheck, /* Integrity checking context */
7864 int isFreeList, /* True for a freelist. False for overflow page list */
7865 int iPage, /* Page number for first page in the list */
7866 int N, /* Expected number of pages in the list */
7867 char *zContext /* Context for error messages */
7868){
7869 int i;
drh3a4c1412004-05-09 20:40:11 +00007870 int expected = N;
7871 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007872 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007873 DbPage *pOvflPage;
7874 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007875 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007876 checkAppendMsg(pCheck, zContext,
7877 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007878 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007879 break;
7880 }
7881 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007882 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007883 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007884 break;
7885 }
danielk19773b8a05f2007-03-19 17:44:26 +00007886 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007887 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007888 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007889#ifndef SQLITE_OMIT_AUTOVACUUM
7890 if( pCheck->pBt->autoVacuum ){
7891 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7892 }
7893#endif
drh43b18e12010-08-17 19:40:08 +00007894 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007895 checkAppendMsg(pCheck, zContext,
7896 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007897 N--;
7898 }else{
7899 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007900 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007901#ifndef SQLITE_OMIT_AUTOVACUUM
7902 if( pCheck->pBt->autoVacuum ){
7903 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7904 }
7905#endif
7906 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007907 }
7908 N -= n;
drh30e58752002-03-02 20:41:57 +00007909 }
drh30e58752002-03-02 20:41:57 +00007910 }
danielk1977afcdd022004-10-31 16:25:42 +00007911#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007912 else{
7913 /* If this database supports auto-vacuum and iPage is not the last
7914 ** page in this overflow list, check that the pointer-map entry for
7915 ** the following page matches iPage.
7916 */
7917 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007918 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007919 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7920 }
danielk1977afcdd022004-10-31 16:25:42 +00007921 }
7922#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007923 iPage = get4byte(pOvflData);
7924 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007925 }
7926}
drhb7f91642004-10-31 02:22:47 +00007927#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007928
drhb7f91642004-10-31 02:22:47 +00007929#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007930/*
7931** Do various sanity checks on a single page of a tree. Return
7932** the tree depth. Root pages return 0. Parents of root pages
7933** return 1, and so forth.
7934**
7935** These checks are done:
7936**
7937** 1. Make sure that cells and freeblocks do not overlap
7938** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007939** NO 2. Make sure cell keys are in order.
7940** NO 3. Make sure no key is less than or equal to zLowerBound.
7941** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007942** 5. Check the integrity of overflow pages.
7943** 6. Recursively call checkTreePage on all children.
7944** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007945** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007946** the root of the tree.
7947*/
7948static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007949 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007950 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00007951 char *zParentContext, /* Parent context */
7952 i64 *pnParentMinKey,
7953 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00007954){
7955 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007956 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007957 int hdr, cellStart;
7958 int nCell;
drhda200cc2004-05-09 11:51:38 +00007959 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007960 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007961 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007962 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007963 char *hit = 0;
shaneh195475d2010-02-19 04:28:08 +00007964 i64 nMinKey = 0;
7965 i64 nMaxKey = 0;
drh5eddca62001-06-30 21:53:53 +00007966
drh5bb3eb92007-05-04 13:15:55 +00007967 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007968
drh5eddca62001-06-30 21:53:53 +00007969 /* Check that the page exists
7970 */
drhd9cb6ac2005-10-20 07:28:17 +00007971 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007972 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007973 if( iPage==0 ) return 0;
7974 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
drhb00fc3b2013-08-21 23:42:32 +00007975 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh2e38c322004-09-03 18:38:44 +00007976 checkAppendMsg(pCheck, zContext,
7977 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007978 return 0;
7979 }
danielk197793caf5a2009-07-11 06:55:33 +00007980
7981 /* Clear MemPage.isInit to make sure the corruption detection code in
7982 ** btreeInitPage() is executed. */
7983 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00007984 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007985 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007986 checkAppendMsg(pCheck, zContext,
danielk197730548662009-07-09 05:07:37 +00007987 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007988 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007989 return 0;
7990 }
7991
7992 /* Check out all the cells.
7993 */
7994 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007995 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007996 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007997 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007998 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007999
8000 /* Check payload overflow pages
8001 */
drh5bb3eb92007-05-04 13:15:55 +00008002 sqlite3_snprintf(sizeof(zContext), zContext,
8003 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00008004 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00008005 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00008006 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00008007 if( !pPage->intKey ) sz += (int)info.nKey;
shaneh195475d2010-02-19 04:28:08 +00008008 /* For intKey pages, check that the keys are in order.
8009 */
8010 else if( i==0 ) nMinKey = nMaxKey = info.nKey;
8011 else{
8012 if( info.nKey <= nMaxKey ){
8013 checkAppendMsg(pCheck, zContext,
8014 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
8015 }
8016 nMaxKey = info.nKey;
8017 }
drh72365832007-03-06 15:53:44 +00008018 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00008019 if( (sz>info.nLocal)
8020 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
8021 ){
drhb6f41482004-05-14 01:58:11 +00008022 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00008023 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
8024#ifndef SQLITE_OMIT_AUTOVACUUM
8025 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00008026 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00008027 }
8028#endif
8029 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00008030 }
8031
8032 /* Check sanity of left child page.
8033 */
drhda200cc2004-05-09 11:51:38 +00008034 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008035 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00008036#ifndef SQLITE_OMIT_AUTOVACUUM
8037 if( pBt->autoVacuum ){
8038 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
8039 }
8040#endif
shaneh195475d2010-02-19 04:28:08 +00008041 d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00008042 if( i>0 && d2!=depth ){
8043 checkAppendMsg(pCheck, zContext, "Child page depth differs");
8044 }
8045 depth = d2;
drh5eddca62001-06-30 21:53:53 +00008046 }
drh5eddca62001-06-30 21:53:53 +00008047 }
shaneh195475d2010-02-19 04:28:08 +00008048
drhda200cc2004-05-09 11:51:38 +00008049 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008050 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00008051 sqlite3_snprintf(sizeof(zContext), zContext,
8052 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008053#ifndef SQLITE_OMIT_AUTOVACUUM
8054 if( pBt->autoVacuum ){
shaneh195475d2010-02-19 04:28:08 +00008055 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00008056 }
8057#endif
shaneh195475d2010-02-19 04:28:08 +00008058 checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00008059 }
drh5eddca62001-06-30 21:53:53 +00008060
shaneh195475d2010-02-19 04:28:08 +00008061 /* For intKey leaf pages, check that the min/max keys are in order
8062 ** with any left/parent/right pages.
8063 */
8064 if( pPage->leaf && pPage->intKey ){
8065 /* if we are a left child page */
8066 if( pnParentMinKey ){
8067 /* if we are the left most child page */
8068 if( !pnParentMaxKey ){
8069 if( nMaxKey > *pnParentMinKey ){
8070 checkAppendMsg(pCheck, zContext,
8071 "Rowid %lld out of order (max larger than parent min of %lld)",
8072 nMaxKey, *pnParentMinKey);
8073 }
8074 }else{
8075 if( nMinKey <= *pnParentMinKey ){
8076 checkAppendMsg(pCheck, zContext,
8077 "Rowid %lld out of order (min less than parent min of %lld)",
8078 nMinKey, *pnParentMinKey);
8079 }
8080 if( nMaxKey > *pnParentMaxKey ){
8081 checkAppendMsg(pCheck, zContext,
8082 "Rowid %lld out of order (max larger than parent max of %lld)",
8083 nMaxKey, *pnParentMaxKey);
8084 }
8085 *pnParentMinKey = nMaxKey;
8086 }
8087 /* else if we're a right child page */
8088 } else if( pnParentMaxKey ){
8089 if( nMinKey <= *pnParentMaxKey ){
8090 checkAppendMsg(pCheck, zContext,
8091 "Rowid %lld out of order (min less than parent max of %lld)",
8092 nMinKey, *pnParentMaxKey);
8093 }
8094 }
8095 }
8096
drh5eddca62001-06-30 21:53:53 +00008097 /* Check for complete coverage of the page
8098 */
drhda200cc2004-05-09 11:51:38 +00008099 data = pPage->aData;
8100 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00008101 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00008102 if( hit==0 ){
8103 pCheck->mallocFailed = 1;
8104 }else{
drh5d433ce2010-08-14 16:02:52 +00008105 int contentOffset = get2byteNotZero(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00008106 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
shane5780ebd2008-11-11 17:36:30 +00008107 memset(hit+contentOffset, 0, usableSize-contentOffset);
8108 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00008109 nCell = get2byte(&data[hdr+3]);
8110 cellStart = hdr + 12 - 4*pPage->leaf;
8111 for(i=0; i<nCell; i++){
8112 int pc = get2byte(&data[cellStart+i*2]);
drh9b78f792010-08-14 21:21:24 +00008113 u32 size = 65536;
drh2e38c322004-09-03 18:38:44 +00008114 int j;
drh8c2bbb62009-07-10 02:52:20 +00008115 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00008116 size = cellSizePtr(pPage, &data[pc]);
8117 }
drh43b18e12010-08-17 19:40:08 +00008118 if( (int)(pc+size-1)>=usableSize ){
danielk19777701e812005-01-10 12:59:51 +00008119 checkAppendMsg(pCheck, 0,
shaneh195475d2010-02-19 04:28:08 +00008120 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00008121 }else{
8122 for(j=pc+size-1; j>=pc; j--) hit[j]++;
8123 }
drh2e38c322004-09-03 18:38:44 +00008124 }
drh8c2bbb62009-07-10 02:52:20 +00008125 i = get2byte(&data[hdr+1]);
8126 while( i>0 ){
8127 int size, j;
8128 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
8129 size = get2byte(&data[i+2]);
8130 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
8131 for(j=i+size-1; j>=i; j--) hit[j]++;
8132 j = get2byte(&data[i]);
8133 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
8134 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
8135 i = j;
drh2e38c322004-09-03 18:38:44 +00008136 }
8137 for(i=cnt=0; i<usableSize; i++){
8138 if( hit[i]==0 ){
8139 cnt++;
8140 }else if( hit[i]>1 ){
8141 checkAppendMsg(pCheck, 0,
8142 "Multiple uses for byte %d of page %d", i, iPage);
8143 break;
8144 }
8145 }
8146 if( cnt!=data[hdr+7] ){
8147 checkAppendMsg(pCheck, 0,
drh8c2bbb62009-07-10 02:52:20 +00008148 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00008149 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00008150 }
8151 }
drh8c2bbb62009-07-10 02:52:20 +00008152 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00008153 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00008154 return depth+1;
drh5eddca62001-06-30 21:53:53 +00008155}
drhb7f91642004-10-31 02:22:47 +00008156#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008157
drhb7f91642004-10-31 02:22:47 +00008158#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008159/*
8160** This routine does a complete check of the given BTree file. aRoot[] is
8161** an array of pages numbers were each page number is the root page of
8162** a table. nRoot is the number of entries in aRoot.
8163**
danielk19773509a652009-07-06 18:56:13 +00008164** A read-only or read-write transaction must be opened before calling
8165** this function.
8166**
drhc890fec2008-08-01 20:10:08 +00008167** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00008168** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00008169** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00008170** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00008171*/
drh1dcdbc02007-01-27 02:24:54 +00008172char *sqlite3BtreeIntegrityCheck(
8173 Btree *p, /* The btree to be checked */
8174 int *aRoot, /* An array of root pages numbers for individual trees */
8175 int nRoot, /* Number of entries in aRoot[] */
8176 int mxErr, /* Stop reporting errors after this many */
8177 int *pnErr /* Write number of errors seen to this variable */
8178){
danielk197789d40042008-11-17 14:20:56 +00008179 Pgno i;
drh5eddca62001-06-30 21:53:53 +00008180 int nRef;
drhaaab5722002-02-19 13:39:21 +00008181 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00008182 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00008183 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00008184
drhd677b3d2007-08-20 22:48:41 +00008185 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00008186 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00008187 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00008188 sCheck.pBt = pBt;
8189 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00008190 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00008191 sCheck.mxErr = mxErr;
8192 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00008193 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00008194 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00008195 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00008196 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00008197 return 0;
8198 }
dan1235bb12012-04-03 17:43:28 +00008199
8200 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
8201 if( !sCheck.aPgRef ){
drh1dcdbc02007-01-27 02:24:54 +00008202 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00008203 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00008204 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00008205 }
drh42cac6d2004-11-20 20:31:11 +00008206 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00008207 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh32055c22012-12-12 14:30:03 +00008208 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drhb9755982010-07-24 16:34:37 +00008209 sCheck.errMsg.useMalloc = 2;
drh5eddca62001-06-30 21:53:53 +00008210
8211 /* Check the integrity of the freelist
8212 */
drha34b6762004-05-07 13:30:42 +00008213 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
8214 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00008215
8216 /* Check all the tables.
8217 */
danielk197789d40042008-11-17 14:20:56 +00008218 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00008219 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00008220#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008221 if( pBt->autoVacuum && aRoot[i]>1 ){
8222 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
8223 }
8224#endif
shaneh195475d2010-02-19 04:28:08 +00008225 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
drh5eddca62001-06-30 21:53:53 +00008226 }
8227
8228 /* Make sure every page in the file is referenced
8229 */
drh1dcdbc02007-01-27 02:24:54 +00008230 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00008231#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00008232 if( getPageReferenced(&sCheck, i)==0 ){
drh2e38c322004-09-03 18:38:44 +00008233 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00008234 }
danielk1977afcdd022004-10-31 16:25:42 +00008235#else
8236 /* If the database supports auto-vacuum, make sure no tables contain
8237 ** references to pointer-map pages.
8238 */
dan1235bb12012-04-03 17:43:28 +00008239 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00008240 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00008241 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
8242 }
dan1235bb12012-04-03 17:43:28 +00008243 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00008244 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00008245 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
8246 }
8247#endif
drh5eddca62001-06-30 21:53:53 +00008248 }
8249
drh64022502009-01-09 14:11:04 +00008250 /* Make sure this analysis did not leave any unref() pages.
8251 ** This is an internal consistency check; an integrity check
8252 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00008253 */
drh64022502009-01-09 14:11:04 +00008254 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00008255 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00008256 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00008257 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00008258 );
drh5eddca62001-06-30 21:53:53 +00008259 }
8260
8261 /* Clean up and report errors.
8262 */
drhd677b3d2007-08-20 22:48:41 +00008263 sqlite3BtreeLeave(p);
dan1235bb12012-04-03 17:43:28 +00008264 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00008265 if( sCheck.mallocFailed ){
8266 sqlite3StrAccumReset(&sCheck.errMsg);
8267 *pnErr = sCheck.nErr+1;
8268 return 0;
8269 }
drh1dcdbc02007-01-27 02:24:54 +00008270 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00008271 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
8272 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00008273}
drhb7f91642004-10-31 02:22:47 +00008274#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00008275
drh73509ee2003-04-06 20:44:45 +00008276/*
drhd4e0bb02012-05-27 01:19:04 +00008277** Return the full pathname of the underlying database file. Return
8278** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00008279**
8280** The pager filename is invariant as long as the pager is
8281** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00008282*/
danielk1977aef0bf62005-12-30 16:28:01 +00008283const char *sqlite3BtreeGetFilename(Btree *p){
8284 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00008285 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00008286}
8287
8288/*
danielk19775865e3d2004-06-14 06:03:57 +00008289** Return the pathname of the journal file for this database. The return
8290** value of this routine is the same regardless of whether the journal file
8291** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00008292**
8293** The pager journal filename is invariant as long as the pager is
8294** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00008295*/
danielk1977aef0bf62005-12-30 16:28:01 +00008296const char *sqlite3BtreeGetJournalname(Btree *p){
8297 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00008298 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00008299}
8300
danielk19771d850a72004-05-31 08:26:49 +00008301/*
8302** Return non-zero if a transaction is active.
8303*/
danielk1977aef0bf62005-12-30 16:28:01 +00008304int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00008305 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00008306 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00008307}
8308
dana550f2d2010-08-02 10:47:05 +00008309#ifndef SQLITE_OMIT_WAL
8310/*
8311** Run a checkpoint on the Btree passed as the first argument.
8312**
8313** Return SQLITE_LOCKED if this or any other connection has an open
8314** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00008315**
dancdc1f042010-11-18 12:11:05 +00008316** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00008317*/
dancdc1f042010-11-18 12:11:05 +00008318int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00008319 int rc = SQLITE_OK;
8320 if( p ){
8321 BtShared *pBt = p->pBt;
8322 sqlite3BtreeEnter(p);
8323 if( pBt->inTransaction!=TRANS_NONE ){
8324 rc = SQLITE_LOCKED;
8325 }else{
dancdc1f042010-11-18 12:11:05 +00008326 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00008327 }
8328 sqlite3BtreeLeave(p);
8329 }
8330 return rc;
8331}
8332#endif
8333
danielk19771d850a72004-05-31 08:26:49 +00008334/*
danielk19772372c2b2006-06-27 16:34:56 +00008335** Return non-zero if a read (or write) transaction is active.
8336*/
8337int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00008338 assert( p );
drhe5fe6902007-12-07 18:55:28 +00008339 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00008340 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00008341}
8342
danielk197704103022009-02-03 16:51:24 +00008343int sqlite3BtreeIsInBackup(Btree *p){
8344 assert( p );
8345 assert( sqlite3_mutex_held(p->db->mutex) );
8346 return p->nBackup!=0;
8347}
8348
danielk19772372c2b2006-06-27 16:34:56 +00008349/*
danielk1977da184232006-01-05 11:34:32 +00008350** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00008351** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00008352** purposes (for example, to store a high-level schema associated with
8353** the shared-btree). The btree layer manages reference counting issues.
8354**
8355** The first time this is called on a shared-btree, nBytes bytes of memory
8356** are allocated, zeroed, and returned to the caller. For each subsequent
8357** call the nBytes parameter is ignored and a pointer to the same blob
8358** of memory returned.
8359**
danielk1977171bfed2008-06-23 09:50:50 +00008360** If the nBytes parameter is 0 and the blob of memory has not yet been
8361** allocated, a null pointer is returned. If the blob has already been
8362** allocated, it is returned as normal.
8363**
danielk1977da184232006-01-05 11:34:32 +00008364** Just before the shared-btree is closed, the function passed as the
8365** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00008366** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00008367** on the memory, the btree layer does that.
8368*/
8369void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
8370 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00008371 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00008372 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00008373 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00008374 pBt->xFreeSchema = xFree;
8375 }
drh27641702007-08-22 02:56:42 +00008376 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00008377 return pBt->pSchema;
8378}
8379
danielk1977c87d34d2006-01-06 13:00:28 +00008380/*
danielk1977404ca072009-03-16 13:19:36 +00008381** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
8382** btree as the argument handle holds an exclusive lock on the
8383** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00008384*/
8385int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00008386 int rc;
drhe5fe6902007-12-07 18:55:28 +00008387 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00008388 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00008389 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
8390 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00008391 sqlite3BtreeLeave(p);
8392 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00008393}
8394
drha154dcd2006-03-22 22:10:07 +00008395
8396#ifndef SQLITE_OMIT_SHARED_CACHE
8397/*
8398** Obtain a lock on the table whose root page is iTab. The
8399** lock is a write lock if isWritelock is true or a read lock
8400** if it is false.
8401*/
danielk1977c00da102006-01-07 13:21:04 +00008402int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00008403 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00008404 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00008405 if( p->sharable ){
8406 u8 lockType = READ_LOCK + isWriteLock;
8407 assert( READ_LOCK+1==WRITE_LOCK );
8408 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00008409
drh6a9ad3d2008-04-02 16:29:30 +00008410 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00008411 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008412 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00008413 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008414 }
8415 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00008416 }
8417 return rc;
8418}
drha154dcd2006-03-22 22:10:07 +00008419#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00008420
danielk1977b4e9af92007-05-01 17:49:49 +00008421#ifndef SQLITE_OMIT_INCRBLOB
8422/*
8423** Argument pCsr must be a cursor opened for writing on an
8424** INTKEY table currently pointing at a valid table entry.
8425** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00008426**
8427** Only the data content may only be modified, it is not possible to
8428** change the length of the data stored. If this function is called with
8429** parameters that attempt to write past the end of the existing data,
8430** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00008431*/
danielk1977dcbb5d32007-05-04 18:36:44 +00008432int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00008433 int rc;
drh1fee73e2007-08-29 04:00:57 +00008434 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00008435 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +00008436 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +00008437
danielk1977c9000e62009-07-08 13:55:28 +00008438 rc = restoreCursorPosition(pCsr);
8439 if( rc!=SQLITE_OK ){
8440 return rc;
8441 }
danielk19773588ceb2008-06-10 17:30:26 +00008442 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
8443 if( pCsr->eState!=CURSOR_VALID ){
8444 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00008445 }
8446
dan227a1c42013-04-03 11:17:39 +00008447 /* Save the positions of all other cursors open on this table. This is
8448 ** required in case any of them are holding references to an xFetch
8449 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00008450 **
8451 ** Note that pCsr must be open on a BTREE_INTKEY table and saveCursorPosition()
8452 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
8453 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00008454 */
drh370c9f42013-04-03 20:04:04 +00008455 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
8456 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00008457
danielk1977c9000e62009-07-08 13:55:28 +00008458 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00008459 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00008460 ** (b) there is a read/write transaction open,
8461 ** (c) the connection holds a write-lock on the table (if required),
8462 ** (d) there are no conflicting read-locks, and
8463 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00008464 */
drh036dbec2014-03-11 23:40:44 +00008465 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +00008466 return SQLITE_READONLY;
8467 }
drhc9166342012-01-05 23:32:06 +00008468 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
8469 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008470 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
8471 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00008472 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00008473
drhfb192682009-07-11 18:26:28 +00008474 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00008475}
danielk19772dec9702007-05-02 16:48:37 +00008476
8477/*
dan5a500af2014-03-11 20:33:04 +00008478** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +00008479*/
dan5a500af2014-03-11 20:33:04 +00008480void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +00008481 pCur->curFlags |= BTCF_Incrblob;
danielk19772dec9702007-05-02 16:48:37 +00008482}
danielk1977b4e9af92007-05-01 17:49:49 +00008483#endif
dane04dc882010-04-20 18:53:15 +00008484
8485/*
8486** Set both the "read version" (single byte at byte offset 18) and
8487** "write version" (single byte at byte offset 19) fields in the database
8488** header to iVersion.
8489*/
8490int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
8491 BtShared *pBt = pBtree->pBt;
8492 int rc; /* Return code */
8493
dane04dc882010-04-20 18:53:15 +00008494 assert( iVersion==1 || iVersion==2 );
8495
danb9780022010-04-21 18:37:57 +00008496 /* If setting the version fields to 1, do not automatically open the
8497 ** WAL connection, even if the version fields are currently set to 2.
8498 */
drhc9166342012-01-05 23:32:06 +00008499 pBt->btsFlags &= ~BTS_NO_WAL;
8500 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00008501
8502 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00008503 if( rc==SQLITE_OK ){
8504 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00008505 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00008506 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00008507 if( rc==SQLITE_OK ){
8508 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8509 if( rc==SQLITE_OK ){
8510 aData[18] = (u8)iVersion;
8511 aData[19] = (u8)iVersion;
8512 }
8513 }
8514 }
dane04dc882010-04-20 18:53:15 +00008515 }
8516
drhc9166342012-01-05 23:32:06 +00008517 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00008518 return rc;
8519}
dan428c2182012-08-06 18:50:11 +00008520
8521/*
8522** set the mask of hint flags for cursor pCsr. Currently the only valid
8523** values are 0 and BTREE_BULKLOAD.
8524*/
8525void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){
8526 assert( mask==BTREE_BULKLOAD || mask==0 );
8527 pCsr->hints = mask;
8528}