blob: 32a375d3dc4a693e3769ed3ab2c67ae50a31bd04 [file] [log] [blame]
drh4f26d6c2004-05-26 23:25:30 +00001/*
2** 2004 May 26
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
13** This file contains code use to manipulate "Mem" structure. A "Mem"
14** stores a single value in the VDBE. Mem is an opaque structure visible
15** only within the VDBE. Interface routines refer to a Mem using the
16** name sqlite_value
17*/
18#include "sqliteInt.h"
drh4f26d6c2004-05-26 23:25:30 +000019#include "vdbeInt.h"
20
drh75fd0542014-03-01 16:24:44 +000021#ifdef SQLITE_DEBUG
22/*
23** Check invariants on a Mem object.
24**
25** This routine is intended for use inside of assert() statements, like
26** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
27*/
28int sqlite3VdbeCheckMemInvariants(Mem *p){
drhd3b74202014-09-17 16:41:15 +000029 /* If MEM_Dyn is set then Mem.xDel!=0.
drha0024e62017-07-27 15:53:24 +000030 ** Mem.xDel might not be initialized if MEM_Dyn is clear.
drhc91b2fd2014-03-01 18:13:23 +000031 */
32 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
drhc91b2fd2014-03-01 18:13:23 +000033
drh722246e2014-10-07 23:02:24 +000034 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we
35 ** ensure that if Mem.szMalloc>0 then it is safe to do
36 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
37 ** That saves a few cycles in inner loops. */
drh1eda9f72014-09-19 22:30:49 +000038 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );
39
drh74eaba42014-09-18 17:52:15 +000040 /* Cannot be both MEM_Int and MEM_Real at the same time */
41 assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) );
42
drha0024e62017-07-27 15:53:24 +000043 if( p->flags & MEM_Null ){
44 /* Cannot be both MEM_Null and some other type */
drh9d67afc2018-08-29 20:24:03 +000045 assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 );
drha0024e62017-07-27 15:53:24 +000046
47 /* If MEM_Null is set, then either the value is a pure NULL (the usual
48 ** case) or it is a pointer set using sqlite3_bind_pointer() or
49 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be
50 ** set.
51 */
52 if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){
53 /* This is a pointer type. There may be a flag to indicate what to
54 ** do with the pointer. */
55 assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
56 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
57 ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 );
58
59 /* No other bits set */
60 assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype
61 |MEM_Dyn|MEM_Ephem|MEM_Static))==0 );
62 }else{
63 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn,
64 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */
65 }
66 }else{
67 /* The MEM_Cleared bit is only allowed on NULLs */
68 assert( (p->flags & MEM_Cleared)==0 );
69 }
drhe2bc6552017-04-17 20:50:34 +000070
drh17bcb102014-09-18 21:25:33 +000071 /* The szMalloc field holds the correct memory allocation size */
72 assert( p->szMalloc==0
73 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) );
drhc91b2fd2014-03-01 18:13:23 +000074
75 /* If p holds a string or blob, the Mem.z must point to exactly
76 ** one of the following:
77 **
78 ** (1) Memory in Mem.zMalloc and managed by the Mem object
79 ** (2) Memory to be freed using Mem.xDel
peter.d.reid60ec9142014-09-06 16:39:46 +000080 ** (3) An ephemeral string or blob
drhc91b2fd2014-03-01 18:13:23 +000081 ** (4) A static string or blob
82 */
drh17bcb102014-09-18 21:25:33 +000083 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
drhc91b2fd2014-03-01 18:13:23 +000084 assert(
drh17bcb102014-09-18 21:25:33 +000085 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
drhc91b2fd2014-03-01 18:13:23 +000086 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
87 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
88 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
89 );
90 }
drh75fd0542014-03-01 16:24:44 +000091 return 1;
92}
93#endif
94
drh563ddbe2018-02-01 15:57:00 +000095#ifdef SQLITE_DEBUG
96/*
97** Check that string value of pMem agrees with its integer or real value.
98**
99** A single int or real value always converts to the same strings. But
100** many different strings can be converted into the same int or real.
101** If a table contains a numeric value and an index is based on the
102** corresponding string value, then it is important that the string be
103** derived from the numeric value, not the other way around, to ensure
104** that the index and table are consistent. See ticket
105** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for
106** an example.
107**
108** This routine looks at pMem to verify that if it has both a numeric
109** representation and a string representation then the string rep has
110** been derived from the numeric and not the other way around. It returns
111** true if everything is ok and false if there is a problem.
112**
113** This routine is for use inside of assert() statements only.
114*/
115int sqlite3VdbeMemConsistentDualRep(Mem *p){
116 char zBuf[100];
117 char *z;
118 int i, j, incr;
119 if( (p->flags & MEM_Str)==0 ) return 1;
120 if( (p->flags & (MEM_Int|MEM_Real))==0 ) return 1;
121 if( p->flags & MEM_Int ){
122 sqlite3_snprintf(sizeof(zBuf),zBuf,"%lld",p->u.i);
123 }else{
124 sqlite3_snprintf(sizeof(zBuf),zBuf,"%!.15g",p->u.r);
125 }
126 z = p->z;
127 i = j = 0;
128 incr = 1;
129 if( p->enc!=SQLITE_UTF8 ){
130 incr = 2;
131 if( p->enc==SQLITE_UTF16BE ) z++;
132 }
133 while( zBuf[j] ){
134 if( zBuf[j++]!=z[i] ) return 0;
135 i += incr;
136 }
137 return 1;
138}
139#endif /* SQLITE_DEBUG */
drh75fd0542014-03-01 16:24:44 +0000140
drh4f26d6c2004-05-26 23:25:30 +0000141/*
danielk1977bfd6cce2004-06-18 04:24:54 +0000142** If pMem is an object with a valid string representation, this routine
143** ensures the internal encoding for the string representation is
144** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
drh4f26d6c2004-05-26 23:25:30 +0000145**
danielk1977bfd6cce2004-06-18 04:24:54 +0000146** If pMem is not a string object, or the encoding of the string
147** representation is already stored using the requested encoding, then this
148** routine is a no-op.
drh4f26d6c2004-05-26 23:25:30 +0000149**
150** SQLITE_OK is returned if the conversion is successful (or not required).
151** SQLITE_NOMEM may be returned if a malloc() fails during conversion
152** between formats.
153*/
drhb21c8cd2007-08-21 19:33:56 +0000154int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
mistachkinef593f22013-03-07 06:42:53 +0000155#ifndef SQLITE_OMIT_UTF16
danielk19772c336542005-01-13 02:14:23 +0000156 int rc;
mistachkinef593f22013-03-07 06:42:53 +0000157#endif
drh9d67afc2018-08-29 20:24:03 +0000158 assert( !sqlite3VdbeMemIsRowSet(pMem) );
drhb27b7f52008-12-10 18:03:45 +0000159 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
160 || desiredEnc==SQLITE_UTF16BE );
drhc07df4c2017-09-21 01:04:30 +0000161 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
drh4f26d6c2004-05-26 23:25:30 +0000162 return SQLITE_OK;
163 }
drhb21c8cd2007-08-21 19:33:56 +0000164 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh6c626082004-11-14 21:56:29 +0000165#ifdef SQLITE_OMIT_UTF16
166 return SQLITE_ERROR;
167#else
danielk197700fd9572005-12-07 06:27:43 +0000168
169 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
170 ** then the encoding of the value may not have changed.
171 */
drhb27b7f52008-12-10 18:03:45 +0000172 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
danielk197700fd9572005-12-07 06:27:43 +0000173 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
174 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
175 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
danielk19772c336542005-01-13 02:14:23 +0000176 return rc;
drh6c626082004-11-14 21:56:29 +0000177#endif
drh4f26d6c2004-05-26 23:25:30 +0000178}
179
drheb2e1762004-05-27 01:53:56 +0000180/*
drh6ff74272019-02-08 15:59:20 +0000181** Make sure pMem->z points to a writable allocation of at least n bytes.
danielk1977a7a8e142008-02-13 18:25:27 +0000182**
drhb0e77042013-12-10 19:49:00 +0000183** If the bPreserve argument is true, then copy of the content of
184** pMem->z into the new allocation. pMem must be either a string or
185** blob if bPreserve is true. If bPreserve is false, any prior content
186** in pMem->z is discarded.
danielk1977a7a8e142008-02-13 18:25:27 +0000187*/
drh322f2852014-09-19 00:43:39 +0000188SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
drh75fd0542014-03-01 16:24:44 +0000189 assert( sqlite3VdbeCheckMemInvariants(pMem) );
drh9d67afc2018-08-29 20:24:03 +0000190 assert( !sqlite3VdbeMemIsRowSet(pMem) );
drh575fad62016-02-05 13:38:36 +0000191 testcase( pMem->db==0 );
danielk1977a7a8e142008-02-13 18:25:27 +0000192
drhb0e77042013-12-10 19:49:00 +0000193 /* If the bPreserve flag is set to true, then the memory cell must already
dan2b9ee772012-03-31 09:59:44 +0000194 ** contain a valid string or blob value. */
drhb0e77042013-12-10 19:49:00 +0000195 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
196 testcase( bPreserve && pMem->z==0 );
dan2b9ee772012-03-31 09:59:44 +0000197
drh17bcb102014-09-18 21:25:33 +0000198 assert( pMem->szMalloc==0
199 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) );
drh762dffa2017-09-20 18:47:51 +0000200 if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){
drh4c6463c2017-04-10 20:27:54 +0000201 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
202 bPreserve = 0;
203 }else{
204 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
205 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
206 }
207 if( pMem->zMalloc==0 ){
208 sqlite3VdbeMemSetNull(pMem);
209 pMem->z = 0;
210 pMem->szMalloc = 0;
211 return SQLITE_NOMEM_BKPT;
212 }else{
213 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
danielk1977a7a8e142008-02-13 18:25:27 +0000214 }
danielk19775f096132008-03-28 15:44:09 +0000215
drh762dffa2017-09-20 18:47:51 +0000216 if( bPreserve && pMem->z ){
217 assert( pMem->z!=pMem->zMalloc );
danielk19775f096132008-03-28 15:44:09 +0000218 memcpy(pMem->zMalloc, pMem->z, pMem->n);
219 }
drhc91b2fd2014-03-01 18:13:23 +0000220 if( (pMem->flags&MEM_Dyn)!=0 ){
221 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
danielk19775f096132008-03-28 15:44:09 +0000222 pMem->xDel((void *)(pMem->z));
223 }
224
225 pMem->z = pMem->zMalloc;
drhc91b2fd2014-03-01 18:13:23 +0000226 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
drhb0e77042013-12-10 19:49:00 +0000227 return SQLITE_OK;
danielk1977a7a8e142008-02-13 18:25:27 +0000228}
229
230/*
drh322f2852014-09-19 00:43:39 +0000231** Change the pMem->zMalloc allocation to be at least szNew bytes.
232** If pMem->zMalloc already meets or exceeds the requested size, this
233** routine is a no-op.
234**
235** Any prior string or blob content in the pMem object may be discarded.
drha5476e92014-09-19 04:42:38 +0000236** The pMem->xDel destructor is called, if it exists. Though MEM_Str
237** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null
238** values are preserved.
drh322f2852014-09-19 00:43:39 +0000239**
240** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
241** if unable to complete the resizing.
242*/
243int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
danb4738dd2019-01-23 20:31:56 +0000244 assert( CORRUPT_DB || szNew>0 );
drh722246e2014-10-07 23:02:24 +0000245 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 );
drh1eda9f72014-09-19 22:30:49 +0000246 if( pMem->szMalloc<szNew ){
drh322f2852014-09-19 00:43:39 +0000247 return sqlite3VdbeMemGrow(pMem, szNew, 0);
248 }
drh1eda9f72014-09-19 22:30:49 +0000249 assert( (pMem->flags & MEM_Dyn)==0 );
drh322f2852014-09-19 00:43:39 +0000250 pMem->z = pMem->zMalloc;
drha5476e92014-09-19 04:42:38 +0000251 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real);
drh322f2852014-09-19 00:43:39 +0000252 return SQLITE_OK;
253}
254
255/*
drh97397a72017-09-20 17:49:12 +0000256** It is already known that pMem contains an unterminated string.
257** Add the zero terminator.
258*/
259static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){
260 if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
261 return SQLITE_NOMEM_BKPT;
262 }
263 pMem->z[pMem->n] = 0;
264 pMem->z[pMem->n+1] = 0;
265 pMem->flags |= MEM_Term;
266 return SQLITE_OK;
267}
268
269/*
drh1eda9f72014-09-19 22:30:49 +0000270** Change pMem so that its MEM_Str or MEM_Blob value is stored in
271** MEM.zMalloc, where it can be safely written.
drheb2e1762004-05-27 01:53:56 +0000272**
273** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
274*/
drhdab898f2008-07-30 13:14:55 +0000275int sqlite3VdbeMemMakeWriteable(Mem *pMem){
drhb21c8cd2007-08-21 19:33:56 +0000276 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh9d67afc2018-08-29 20:24:03 +0000277 assert( !sqlite3VdbeMemIsRowSet(pMem) );
drh8aaf7bc2016-09-20 01:19:18 +0000278 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){
279 if( ExpandBlob(pMem) ) return SQLITE_NOMEM;
280 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){
drh97397a72017-09-20 17:49:12 +0000281 int rc = vdbeMemAddTerminator(pMem);
282 if( rc ) return rc;
danielk1977a7a8e142008-02-13 18:25:27 +0000283 }
drheb2e1762004-05-27 01:53:56 +0000284 }
drhbd6789e2015-04-28 14:00:02 +0000285 pMem->flags &= ~MEM_Ephem;
286#ifdef SQLITE_DEBUG
287 pMem->pScopyFrom = 0;
288#endif
danielk1977a7a8e142008-02-13 18:25:27 +0000289
drhf4479502004-05-27 03:12:53 +0000290 return SQLITE_OK;
drheb2e1762004-05-27 01:53:56 +0000291}
292
293/*
drhfdf972a2007-05-02 13:30:27 +0000294** If the given Mem* has a zero-filled tail, turn it into an ordinary
drhb026e052007-05-02 01:34:31 +0000295** blob stored in dynamically allocated space.
296*/
danielk1977246ad312007-05-16 14:23:00 +0000297#ifndef SQLITE_OMIT_INCRBLOB
drhb21c8cd2007-08-21 19:33:56 +0000298int sqlite3VdbeMemExpandBlob(Mem *pMem){
drhff535a22016-09-20 01:46:15 +0000299 int nByte;
300 assert( pMem->flags & MEM_Zero );
drha0024e62017-07-27 15:53:24 +0000301 assert( pMem->flags&MEM_Blob );
drh9d67afc2018-08-29 20:24:03 +0000302 assert( !sqlite3VdbeMemIsRowSet(pMem) );
drhff535a22016-09-20 01:46:15 +0000303 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
danielk1977a7a8e142008-02-13 18:25:27 +0000304
drhff535a22016-09-20 01:46:15 +0000305 /* Set nByte to the number of bytes required to store the expanded blob. */
306 nByte = pMem->n + pMem->u.nZero;
307 if( nByte<=0 ){
308 nByte = 1;
drhb026e052007-05-02 01:34:31 +0000309 }
drhff535a22016-09-20 01:46:15 +0000310 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
311 return SQLITE_NOMEM_BKPT;
312 }
313
314 memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
315 pMem->n += pMem->u.nZero;
316 pMem->flags &= ~(MEM_Zero|MEM_Term);
drhb026e052007-05-02 01:34:31 +0000317 return SQLITE_OK;
318}
danielk1977246ad312007-05-16 14:23:00 +0000319#endif
drhb026e052007-05-02 01:34:31 +0000320
drhb026e052007-05-02 01:34:31 +0000321/*
drhb63388b2014-08-27 00:50:11 +0000322** Make sure the given Mem is \u0000 terminated.
323*/
324int sqlite3VdbeMemNulTerminate(Mem *pMem){
325 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
326 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) );
327 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 );
328 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){
329 return SQLITE_OK; /* Nothing to do */
330 }else{
331 return vdbeMemAddTerminator(pMem);
332 }
333}
334
335/*
danielk197713073932004-06-30 11:54:06 +0000336** Add MEM_Str to the set of representations for the given Mem. Numbers
337** are converted using sqlite3_snprintf(). Converting a BLOB to a string
338** is a no-op.
drheb2e1762004-05-27 01:53:56 +0000339**
drhbd9507c2014-08-23 17:21:37 +0000340** Existing representations MEM_Int and MEM_Real are invalidated if
341** bForce is true but are retained if bForce is false.
danielk197713073932004-06-30 11:54:06 +0000342**
343** A MEM_Null value will never be passed to this function. This function is
344** used for converting values to text for returning to the user (i.e. via
345** sqlite3_value_text()), or for ensuring that values to be used as btree
346** keys are strings. In the former case a NULL pointer is returned the
peter.d.reid60ec9142014-09-06 16:39:46 +0000347** user and the latter is an internal programming error.
drheb2e1762004-05-27 01:53:56 +0000348*/
drhbd9507c2014-08-23 17:21:37 +0000349int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
drheb2e1762004-05-27 01:53:56 +0000350 int fg = pMem->flags;
danielk1977a7a8e142008-02-13 18:25:27 +0000351 const int nByte = 32;
drheb2e1762004-05-27 01:53:56 +0000352
drhb21c8cd2007-08-21 19:33:56 +0000353 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
danielk1977def0fec2007-05-10 15:37:52 +0000354 assert( !(fg&MEM_Zero) );
drheb2e1762004-05-27 01:53:56 +0000355 assert( !(fg&(MEM_Str|MEM_Blob)) );
danielk197713073932004-06-30 11:54:06 +0000356 assert( fg&(MEM_Int|MEM_Real) );
drh9d67afc2018-08-29 20:24:03 +0000357 assert( !sqlite3VdbeMemIsRowSet(pMem) );
drhea598cb2009-04-05 12:22:08 +0000358 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
drh3d4501e2008-12-04 20:40:10 +0000359
drheb2e1762004-05-27 01:53:56 +0000360
drh322f2852014-09-19 00:43:39 +0000361 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
drh2a1df932016-09-30 17:46:44 +0000362 pMem->enc = 0;
mistachkinfad30392016-02-13 23:43:46 +0000363 return SQLITE_NOMEM_BKPT;
danielk1977a7a8e142008-02-13 18:25:27 +0000364 }
365
drhbd9507c2014-08-23 17:21:37 +0000366 /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
danielk197713073932004-06-30 11:54:06 +0000367 ** string representation of the value. Then, if the required encoding
368 ** is UTF-16le or UTF-16be do a translation.
369 **
370 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
371 */
drh8df447f2005-11-01 15:48:24 +0000372 if( fg & MEM_Int ){
danielk1977a7a8e142008-02-13 18:25:27 +0000373 sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
drh8df447f2005-11-01 15:48:24 +0000374 }else{
375 assert( fg & MEM_Real );
drh74eaba42014-09-18 17:52:15 +0000376 sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r);
drheb2e1762004-05-27 01:53:56 +0000377 }
drh7301e772018-10-31 20:52:00 +0000378 assert( pMem->z!=0 );
379 pMem->n = sqlite3Strlen30NN(pMem->z);
danielk197713073932004-06-30 11:54:06 +0000380 pMem->enc = SQLITE_UTF8;
danielk1977a7a8e142008-02-13 18:25:27 +0000381 pMem->flags |= MEM_Str|MEM_Term;
drhbd9507c2014-08-23 17:21:37 +0000382 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real);
drhb21c8cd2007-08-21 19:33:56 +0000383 sqlite3VdbeChangeEncoding(pMem, enc);
drhbd9507c2014-08-23 17:21:37 +0000384 return SQLITE_OK;
drheb2e1762004-05-27 01:53:56 +0000385}
386
387/*
drhabfcea22005-09-06 20:36:48 +0000388** Memory cell pMem contains the context of an aggregate function.
389** This routine calls the finalize method for that function. The
390** result of the aggregate is stored back into pMem.
drh90669c12006-01-20 15:45:36 +0000391**
392** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
393** otherwise.
drhabfcea22005-09-06 20:36:48 +0000394*/
drh90669c12006-01-20 15:45:36 +0000395int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
drh9d9c41e2017-10-31 03:40:15 +0000396 sqlite3_context ctx;
397 Mem t;
398 assert( pFunc!=0 );
399 assert( pFunc->xFinalize!=0 );
400 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
401 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
402 memset(&ctx, 0, sizeof(ctx));
403 memset(&t, 0, sizeof(t));
404 t.flags = MEM_Null;
405 t.db = pMem->db;
406 ctx.pOut = &t;
407 ctx.pMem = pMem;
408 ctx.pFunc = pFunc;
409 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
410 assert( (pMem->flags & MEM_Dyn)==0 );
411 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
412 memcpy(pMem, &t, sizeof(t));
413 return ctx.isError;
drhabfcea22005-09-06 20:36:48 +0000414}
415
dan9a947222018-06-14 19:06:36 +0000416/*
417** Memory cell pAccum contains the context of an aggregate function.
418** This routine calls the xValue method for that function and stores
419** the results in memory cell pMem.
420**
421** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK
422** otherwise.
423*/
dan67a9b8e2018-06-22 20:51:35 +0000424#ifndef SQLITE_OMIT_WINDOWFUNC
dan86fb6e12018-05-16 20:58:07 +0000425int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){
426 sqlite3_context ctx;
427 Mem t;
428 assert( pFunc!=0 );
429 assert( pFunc->xValue!=0 );
430 assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef );
431 assert( pAccum->db==0 || sqlite3_mutex_held(pAccum->db->mutex) );
432 memset(&ctx, 0, sizeof(ctx));
433 memset(&t, 0, sizeof(t));
434 t.flags = MEM_Null;
435 t.db = pAccum->db;
drh8f26da62018-07-05 21:22:57 +0000436 sqlite3VdbeMemSetNull(pOut);
dan86fb6e12018-05-16 20:58:07 +0000437 ctx.pOut = pOut;
438 ctx.pMem = pAccum;
439 ctx.pFunc = pFunc;
440 pFunc->xValue(&ctx);
441 return ctx.isError;
442}
dan67a9b8e2018-06-22 20:51:35 +0000443#endif /* SQLITE_OMIT_WINDOWFUNC */
dan9a947222018-06-14 19:06:36 +0000444
drhabfcea22005-09-06 20:36:48 +0000445/*
drh8740a602014-09-16 20:05:21 +0000446** If the memory cell contains a value that must be freed by
drh0725cab2014-09-17 14:52:46 +0000447** invoking the external callback in Mem.xDel, then this routine
448** will free that value. It also sets Mem.flags to MEM_Null.
drh12b7c7d2014-08-25 11:20:27 +0000449**
drh0725cab2014-09-17 14:52:46 +0000450** This is a helper routine for sqlite3VdbeMemSetNull() and
451** for sqlite3VdbeMemRelease(). Use those other routines as the
452** entry point for releasing Mem resources.
danielk19775f096132008-03-28 15:44:09 +0000453*/
drh0725cab2014-09-17 14:52:46 +0000454static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
danielk19775f096132008-03-28 15:44:09 +0000455 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
drh0725cab2014-09-17 14:52:46 +0000456 assert( VdbeMemDynamic(p) );
drh2d36eb42011-08-29 02:49:41 +0000457 if( p->flags&MEM_Agg ){
458 sqlite3VdbeMemFinalize(p, p->u.pDef);
459 assert( (p->flags & MEM_Agg)==0 );
drh0725cab2014-09-17 14:52:46 +0000460 testcase( p->flags & MEM_Dyn );
461 }
462 if( p->flags&MEM_Dyn ){
drhc91b2fd2014-03-01 18:13:23 +0000463 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
drh2d36eb42011-08-29 02:49:41 +0000464 p->xDel((void *)p->z);
danielk19775f096132008-03-28 15:44:09 +0000465 }
drh6b478bc2014-09-16 21:54:11 +0000466 p->flags = MEM_Null;
danielk19775f096132008-03-28 15:44:09 +0000467}
468
469/*
drh12b7c7d2014-08-25 11:20:27 +0000470** Release memory held by the Mem p, both external memory cleared
471** by p->xDel and memory in p->zMalloc.
472**
473** This is a helper routine invoked by sqlite3VdbeMemRelease() in
drh0725cab2014-09-17 14:52:46 +0000474** the unusual case where there really is memory in p that needs
475** to be freed.
drh12b7c7d2014-08-25 11:20:27 +0000476*/
drh0725cab2014-09-17 14:52:46 +0000477static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
drh12b7c7d2014-08-25 11:20:27 +0000478 if( VdbeMemDynamic(p) ){
drh0725cab2014-09-17 14:52:46 +0000479 vdbeMemClearExternAndSetNull(p);
drh12b7c7d2014-08-25 11:20:27 +0000480 }
drh17bcb102014-09-18 21:25:33 +0000481 if( p->szMalloc ){
drhdbd6a7d2017-04-05 12:39:49 +0000482 sqlite3DbFreeNN(p->db, p->zMalloc);
drh17bcb102014-09-18 21:25:33 +0000483 p->szMalloc = 0;
drh12b7c7d2014-08-25 11:20:27 +0000484 }
485 p->z = 0;
486}
487
488/*
drh0725cab2014-09-17 14:52:46 +0000489** Release any memory resources held by the Mem. Both the memory that is
490** free by Mem.xDel and the Mem.zMalloc allocation are freed.
drh8740a602014-09-16 20:05:21 +0000491**
drh0725cab2014-09-17 14:52:46 +0000492** Use this routine prior to clean up prior to abandoning a Mem, or to
493** reset a Mem back to its minimum memory utilization.
494**
495** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
496** prior to inserting new content into the Mem.
drhf4479502004-05-27 03:12:53 +0000497*/
danielk1977d8123362004-06-12 09:25:12 +0000498void sqlite3VdbeMemRelease(Mem *p){
drh75fd0542014-03-01 16:24:44 +0000499 assert( sqlite3VdbeCheckMemInvariants(p) );
drh17bcb102014-09-18 21:25:33 +0000500 if( VdbeMemDynamic(p) || p->szMalloc ){
drh0725cab2014-09-17 14:52:46 +0000501 vdbeMemClear(p);
drh7250c542013-12-09 03:07:21 +0000502 }
drhf4479502004-05-27 03:12:53 +0000503}
504
505/*
drhd8c303f2008-01-11 15:27:03 +0000506** Convert a 64-bit IEEE double into a 64-bit signed integer.
drhde1a8b82013-11-26 15:45:02 +0000507** If the double is out of range of a 64-bit signed integer then
508** return the closest available 64-bit signed integer.
drhd8c303f2008-01-11 15:27:03 +0000509*/
drhb808d772017-04-01 11:59:36 +0000510static SQLITE_NOINLINE i64 doubleToInt64(double r){
drh52d14522010-01-13 15:15:40 +0000511#ifdef SQLITE_OMIT_FLOATING_POINT
512 /* When floating-point is omitted, double and int64 are the same thing */
513 return r;
514#else
drhd8c303f2008-01-11 15:27:03 +0000515 /*
516 ** Many compilers we encounter do not define constants for the
517 ** minimum and maximum 64-bit integers, or they define them
518 ** inconsistently. And many do not understand the "LL" notation.
519 ** So we define our own static constants here using nothing
520 ** larger than a 32-bit integer constant.
521 */
drh0f050352008-05-09 18:03:13 +0000522 static const i64 maxInt = LARGEST_INT64;
523 static const i64 minInt = SMALLEST_INT64;
drhd8c303f2008-01-11 15:27:03 +0000524
drhde1a8b82013-11-26 15:45:02 +0000525 if( r<=(double)minInt ){
drhd8c303f2008-01-11 15:27:03 +0000526 return minInt;
drhde1a8b82013-11-26 15:45:02 +0000527 }else if( r>=(double)maxInt ){
528 return maxInt;
drhd8c303f2008-01-11 15:27:03 +0000529 }else{
530 return (i64)r;
531 }
drh52d14522010-01-13 15:15:40 +0000532#endif
drhd8c303f2008-01-11 15:27:03 +0000533}
534
535/*
drh6a6124e2004-06-27 01:56:33 +0000536** Return some kind of integer value which is the best we can do
537** at representing the value that *pMem describes as an integer.
538** If pMem is an integer, then the value is exact. If pMem is
539** a floating-point then the value returned is the integer part.
540** If pMem is a string or blob, then we make an attempt to convert
peter.d.reid60ec9142014-09-06 16:39:46 +0000541** it into an integer and return that. If pMem represents an
drh347a7cb2009-03-23 21:37:04 +0000542** an SQL-NULL value, return 0.
drh6a6124e2004-06-27 01:56:33 +0000543**
drh347a7cb2009-03-23 21:37:04 +0000544** If pMem represents a string value, its encoding might be changed.
drheb2e1762004-05-27 01:53:56 +0000545*/
drhb808d772017-04-01 11:59:36 +0000546static SQLITE_NOINLINE i64 memIntValue(Mem *pMem){
547 i64 value = 0;
548 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
549 return value;
550}
drh6a6124e2004-06-27 01:56:33 +0000551i64 sqlite3VdbeIntValue(Mem *pMem){
drhb21c8cd2007-08-21 19:33:56 +0000552 int flags;
553 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drhea598cb2009-04-05 12:22:08 +0000554 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
drhb21c8cd2007-08-21 19:33:56 +0000555 flags = pMem->flags;
drh6fec0762004-05-30 01:38:43 +0000556 if( flags & MEM_Int ){
drh3c024d62007-03-30 11:23:45 +0000557 return pMem->u.i;
drh6fec0762004-05-30 01:38:43 +0000558 }else if( flags & MEM_Real ){
drh74eaba42014-09-18 17:52:15 +0000559 return doubleToInt64(pMem->u.r);
drh6fec0762004-05-30 01:38:43 +0000560 }else if( flags & (MEM_Str|MEM_Blob) ){
drh9339da12010-09-30 00:50:49 +0000561 assert( pMem->z || pMem->n==0 );
drhb808d772017-04-01 11:59:36 +0000562 return memIntValue(pMem);
drheb2e1762004-05-27 01:53:56 +0000563 }else{
drh6a6124e2004-06-27 01:56:33 +0000564 return 0;
drheb2e1762004-05-27 01:53:56 +0000565 }
drh6a6124e2004-06-27 01:56:33 +0000566}
567
568/*
drh6a6124e2004-06-27 01:56:33 +0000569** Return the best representation of pMem that we can get into a
570** double. If pMem is already a double or an integer, return its
571** value. If it is a string or blob, try to convert it to a double.
572** If it is a NULL, return 0.0.
drheb2e1762004-05-27 01:53:56 +0000573*/
drhb808d772017-04-01 11:59:36 +0000574static SQLITE_NOINLINE double memRealValue(Mem *pMem){
575 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
576 double val = (double)0;
577 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
578 return val;
579}
drh6a6124e2004-06-27 01:56:33 +0000580double sqlite3VdbeRealValue(Mem *pMem){
drhb21c8cd2007-08-21 19:33:56 +0000581 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drhea598cb2009-04-05 12:22:08 +0000582 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
danielk1977f93bbbe2004-05-27 10:30:52 +0000583 if( pMem->flags & MEM_Real ){
drh74eaba42014-09-18 17:52:15 +0000584 return pMem->u.r;
drh6a6124e2004-06-27 01:56:33 +0000585 }else if( pMem->flags & MEM_Int ){
drh3c024d62007-03-30 11:23:45 +0000586 return (double)pMem->u.i;
drheb2e1762004-05-27 01:53:56 +0000587 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
drhb808d772017-04-01 11:59:36 +0000588 return memRealValue(pMem);
drheb2e1762004-05-27 01:53:56 +0000589 }else{
shanefbd60f82009-02-04 03:59:25 +0000590 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
591 return (double)0;
drheb2e1762004-05-27 01:53:56 +0000592 }
drh6a6124e2004-06-27 01:56:33 +0000593}
594
595/*
drh1fcfa722018-02-26 15:27:31 +0000596** Return 1 if pMem represents true, and return 0 if pMem represents false.
597** Return the value ifNull if pMem is NULL.
598*/
599int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){
600 if( pMem->flags & MEM_Int ) return pMem->u.i!=0;
601 if( pMem->flags & MEM_Null ) return ifNull;
602 return sqlite3VdbeRealValue(pMem)!=0.0;
603}
604
605/*
drh8df447f2005-11-01 15:48:24 +0000606** The MEM structure is already a MEM_Real. Try to also make it a
607** MEM_Int if we can.
608*/
609void sqlite3VdbeIntegerAffinity(Mem *pMem){
drh74eaba42014-09-18 17:52:15 +0000610 i64 ix;
drh8df447f2005-11-01 15:48:24 +0000611 assert( pMem->flags & MEM_Real );
drh9d67afc2018-08-29 20:24:03 +0000612 assert( !sqlite3VdbeMemIsRowSet(pMem) );
drhb21c8cd2007-08-21 19:33:56 +0000613 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drhea598cb2009-04-05 12:22:08 +0000614 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
drhefe3d652008-01-11 00:06:10 +0000615
drh74eaba42014-09-18 17:52:15 +0000616 ix = doubleToInt64(pMem->u.r);
drh94c3a2b2009-06-17 16:20:04 +0000617
618 /* Only mark the value as an integer if
619 **
620 ** (1) the round-trip conversion real->int->real is a no-op, and
621 ** (2) The integer is neither the largest nor the smallest
622 ** possible integer (ticket #3922)
623 **
drhe74871a2009-08-14 17:53:39 +0000624 ** The second and third terms in the following conditional enforces
625 ** the second condition under the assumption that addition overflow causes
drhde1a8b82013-11-26 15:45:02 +0000626 ** values to wrap around.
drh94c3a2b2009-06-17 16:20:04 +0000627 */
drh74eaba42014-09-18 17:52:15 +0000628 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
629 pMem->u.i = ix;
630 MemSetTypeFlag(pMem, MEM_Int);
drh8df447f2005-11-01 15:48:24 +0000631 }
632}
633
drh8a512562005-11-14 22:29:05 +0000634/*
635** Convert pMem to type integer. Invalidate any prior representations.
636*/
637int sqlite3VdbeMemIntegerify(Mem *pMem){
drhb21c8cd2007-08-21 19:33:56 +0000638 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh9d67afc2018-08-29 20:24:03 +0000639 assert( !sqlite3VdbeMemIsRowSet(pMem) );
drhea598cb2009-04-05 12:22:08 +0000640 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
641
drh3c024d62007-03-30 11:23:45 +0000642 pMem->u.i = sqlite3VdbeIntValue(pMem);
drh3d4501e2008-12-04 20:40:10 +0000643 MemSetTypeFlag(pMem, MEM_Int);
drh8a512562005-11-14 22:29:05 +0000644 return SQLITE_OK;
645}
drh8df447f2005-11-01 15:48:24 +0000646
647/*
drh8a512562005-11-14 22:29:05 +0000648** Convert pMem so that it is of type MEM_Real.
649** Invalidate any prior representations.
drh6a6124e2004-06-27 01:56:33 +0000650*/
651int sqlite3VdbeMemRealify(Mem *pMem){
drhb21c8cd2007-08-21 19:33:56 +0000652 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drhea598cb2009-04-05 12:22:08 +0000653 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
654
drh74eaba42014-09-18 17:52:15 +0000655 pMem->u.r = sqlite3VdbeRealValue(pMem);
drh3d4501e2008-12-04 20:40:10 +0000656 MemSetTypeFlag(pMem, MEM_Real);
drh8a512562005-11-14 22:29:05 +0000657 return SQLITE_OK;
658}
659
drhd15046a2018-01-23 17:33:42 +0000660/* Compare a floating point value to an integer. Return true if the two
661** values are the same within the precision of the floating point value.
662**
663** For some versions of GCC on 32-bit machines, if you do the more obvious
664** comparison of "r1==(double)i" you sometimes get an answer of false even
665** though the r1 and (double)i values are bit-for-bit the same.
666*/
667static int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){
668 double r2 = (double)i;
669 return memcmp(&r1, &r2, sizeof(r1))==0;
670}
671
drh8a512562005-11-14 22:29:05 +0000672/*
673** Convert pMem so that it has types MEM_Real or MEM_Int or both.
674** Invalidate any prior representations.
drh4b5db5a2010-01-21 01:53:07 +0000675**
676** Every effort is made to force the conversion, even if the input
677** is a string that does not look completely like a number. Convert
678** as much of the string as we can and ignore the rest.
drh8a512562005-11-14 22:29:05 +0000679*/
680int sqlite3VdbeMemNumerify(Mem *pMem){
drh93518622010-09-30 14:48:06 +0000681 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){
drh84d4f1a2017-09-20 10:47:10 +0000682 int rc;
drh93518622010-09-30 14:48:06 +0000683 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
684 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh84d4f1a2017-09-20 10:47:10 +0000685 rc = sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc);
686 if( rc==0 ){
drh93518622010-09-30 14:48:06 +0000687 MemSetTypeFlag(pMem, MEM_Int);
688 }else{
drh84d4f1a2017-09-20 10:47:10 +0000689 i64 i = pMem->u.i;
690 sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
drhd15046a2018-01-23 17:33:42 +0000691 if( rc==1 && sqlite3RealSameAsInt(pMem->u.r, i) ){
drh84d4f1a2017-09-20 10:47:10 +0000692 pMem->u.i = i;
693 MemSetTypeFlag(pMem, MEM_Int);
694 }else{
695 MemSetTypeFlag(pMem, MEM_Real);
696 }
drh93518622010-09-30 14:48:06 +0000697 }
drhcd7b46d2007-05-16 11:55:56 +0000698 }
drh93518622010-09-30 14:48:06 +0000699 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 );
drh27fe1c32016-09-09 20:23:59 +0000700 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero);
drhf4479502004-05-27 03:12:53 +0000701 return SQLITE_OK;
drh4f26d6c2004-05-26 23:25:30 +0000702}
703
704/*
drh4169e432014-08-25 20:11:52 +0000705** Cast the datatype of the value in pMem according to the affinity
706** "aff". Casting is different from applying affinity in that a cast
707** is forced. In other words, the value is converted into the desired
708** affinity even if that results in loss of data. This routine is
709** used (for example) to implement the SQL "cast()" operator.
710*/
711void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){
712 if( pMem->flags & MEM_Null ) return;
713 switch( aff ){
drh05883a32015-06-02 15:32:08 +0000714 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */
drh4169e432014-08-25 20:11:52 +0000715 if( (pMem->flags & MEM_Blob)==0 ){
716 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
717 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
drhda5c6242016-10-05 15:02:00 +0000718 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob);
drh4169e432014-08-25 20:11:52 +0000719 }else{
720 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob);
721 }
722 break;
723 }
724 case SQLITE_AFF_NUMERIC: {
725 sqlite3VdbeMemNumerify(pMem);
726 break;
727 }
728 case SQLITE_AFF_INTEGER: {
729 sqlite3VdbeMemIntegerify(pMem);
730 break;
731 }
732 case SQLITE_AFF_REAL: {
733 sqlite3VdbeMemRealify(pMem);
734 break;
735 }
736 default: {
737 assert( aff==SQLITE_AFF_TEXT );
738 assert( MEM_Str==(MEM_Blob>>3) );
739 pMem->flags |= (pMem->flags&MEM_Blob)>>3;
740 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
741 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
742 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
743 break;
744 }
745 }
746}
747
drhd3b74202014-09-17 16:41:15 +0000748/*
749** Initialize bulk memory to be a consistent Mem object.
750**
751** The minimum amount of initialization feasible is performed.
752*/
753void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
754 assert( (flags & ~MEM_TypeMask)==0 );
755 pMem->flags = flags;
756 pMem->db = db;
drh17bcb102014-09-18 21:25:33 +0000757 pMem->szMalloc = 0;
drhd3b74202014-09-17 16:41:15 +0000758}
759
drh4169e432014-08-25 20:11:52 +0000760
761/*
drh4f26d6c2004-05-26 23:25:30 +0000762** Delete any previous value and set the value stored in *pMem to NULL.
drh0725cab2014-09-17 14:52:46 +0000763**
764** This routine calls the Mem.xDel destructor to dispose of values that
765** require the destructor. But it preserves the Mem.zMalloc memory allocation.
766** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
767** routine to invoke the destructor and deallocates Mem.zMalloc.
768**
769** Use this routine to reset the Mem prior to insert a new value.
770**
771** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
drh4f26d6c2004-05-26 23:25:30 +0000772*/
773void sqlite3VdbeMemSetNull(Mem *pMem){
drh6b478bc2014-09-16 21:54:11 +0000774 if( VdbeMemDynamic(pMem) ){
drh0725cab2014-09-17 14:52:46 +0000775 vdbeMemClearExternAndSetNull(pMem);
drh6b478bc2014-09-16 21:54:11 +0000776 }else{
777 pMem->flags = MEM_Null;
dan165921a2009-08-28 18:53:45 +0000778 }
drh4f26d6c2004-05-26 23:25:30 +0000779}
drha3cc0072013-12-13 16:23:55 +0000780void sqlite3ValueSetNull(sqlite3_value *p){
781 sqlite3VdbeMemSetNull((Mem*)p);
782}
drh4f26d6c2004-05-26 23:25:30 +0000783
784/*
drhb026e052007-05-02 01:34:31 +0000785** Delete any previous value and set the value to be a BLOB of length
786** n containing all zeros.
787*/
788void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
789 sqlite3VdbeMemRelease(pMem);
danielk1977a7a8e142008-02-13 18:25:27 +0000790 pMem->flags = MEM_Blob|MEM_Zero;
drhb026e052007-05-02 01:34:31 +0000791 pMem->n = 0;
drh98640a32007-06-07 19:08:32 +0000792 if( n<0 ) n = 0;
drh8df32842008-12-09 02:51:23 +0000793 pMem->u.nZero = n;
danielk1977def0fec2007-05-10 15:37:52 +0000794 pMem->enc = SQLITE_UTF8;
drh0725cab2014-09-17 14:52:46 +0000795 pMem->z = 0;
drhb026e052007-05-02 01:34:31 +0000796}
797
798/*
drh9bd038f2014-08-27 14:14:06 +0000799** The pMem is known to contain content that needs to be destroyed prior
800** to a value change. So invoke the destructor, then set the value to
801** a 64-bit integer.
802*/
803static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
drh0725cab2014-09-17 14:52:46 +0000804 sqlite3VdbeMemSetNull(pMem);
drh9bd038f2014-08-27 14:14:06 +0000805 pMem->u.i = val;
806 pMem->flags = MEM_Int;
807}
808
809/*
drh4f26d6c2004-05-26 23:25:30 +0000810** Delete any previous value and set the value stored in *pMem to val,
811** manifest type INTEGER.
812*/
drheb2e1762004-05-27 01:53:56 +0000813void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
drh9bd038f2014-08-27 14:14:06 +0000814 if( VdbeMemDynamic(pMem) ){
815 vdbeReleaseAndSetInt64(pMem, val);
816 }else{
817 pMem->u.i = val;
818 pMem->flags = MEM_Int;
819 }
drh4f26d6c2004-05-26 23:25:30 +0000820}
821
drha0024e62017-07-27 15:53:24 +0000822/* A no-op destructor */
drh92011842018-05-26 16:00:26 +0000823void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); }
drha0024e62017-07-27 15:53:24 +0000824
drh3a96a5d2017-06-30 23:09:03 +0000825/*
826** Set the value stored in *pMem should already be a NULL.
827** Also store a pointer to go with it.
828*/
drh22930062017-07-27 03:48:02 +0000829void sqlite3VdbeMemSetPointer(
830 Mem *pMem,
831 void *pPtr,
832 const char *zPType,
833 void (*xDestructor)(void*)
834){
drh3a96a5d2017-06-30 23:09:03 +0000835 assert( pMem->flags==MEM_Null );
drha0024e62017-07-27 15:53:24 +0000836 pMem->u.zPType = zPType ? zPType : "";
drh22930062017-07-27 03:48:02 +0000837 pMem->z = pPtr;
drha0024e62017-07-27 15:53:24 +0000838 pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term;
839 pMem->eSubtype = 'p';
840 pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor;
drh3a96a5d2017-06-30 23:09:03 +0000841}
842
drh7ec5ea92010-01-13 00:04:13 +0000843#ifndef SQLITE_OMIT_FLOATING_POINT
drh4f26d6c2004-05-26 23:25:30 +0000844/*
845** Delete any previous value and set the value stored in *pMem to val,
846** manifest type REAL.
847*/
drheb2e1762004-05-27 01:53:56 +0000848void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
drh0725cab2014-09-17 14:52:46 +0000849 sqlite3VdbeMemSetNull(pMem);
850 if( !sqlite3IsNaN(val) ){
drh74eaba42014-09-18 17:52:15 +0000851 pMem->u.r = val;
drh53c14022007-05-10 17:23:11 +0000852 pMem->flags = MEM_Real;
drh53c14022007-05-10 17:23:11 +0000853 }
drh4f26d6c2004-05-26 23:25:30 +0000854}
drh7ec5ea92010-01-13 00:04:13 +0000855#endif
drh4f26d6c2004-05-26 23:25:30 +0000856
drh9d67afc2018-08-29 20:24:03 +0000857#ifdef SQLITE_DEBUG
858/*
859** Return true if the Mem holds a RowSet object. This routine is intended
860** for use inside of assert() statements.
861*/
862int sqlite3VdbeMemIsRowSet(const Mem *pMem){
863 return (pMem->flags&(MEM_Blob|MEM_Dyn))==(MEM_Blob|MEM_Dyn)
864 && pMem->xDel==sqlite3RowSetDelete;
865}
866#endif
867
drh4f26d6c2004-05-26 23:25:30 +0000868/*
drh3d4501e2008-12-04 20:40:10 +0000869** Delete any previous value and set the value of pMem to be an
870** empty boolean index.
drh9d67afc2018-08-29 20:24:03 +0000871**
872** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation
873** error occurs.
drh3d4501e2008-12-04 20:40:10 +0000874*/
drh9d67afc2018-08-29 20:24:03 +0000875int sqlite3VdbeMemSetRowSet(Mem *pMem){
drh3d4501e2008-12-04 20:40:10 +0000876 sqlite3 *db = pMem->db;
drh9d67afc2018-08-29 20:24:03 +0000877 RowSet *p;
drh3d4501e2008-12-04 20:40:10 +0000878 assert( db!=0 );
drh9d67afc2018-08-29 20:24:03 +0000879 assert( !sqlite3VdbeMemIsRowSet(pMem) );
drh4c8555f2009-06-25 01:47:11 +0000880 sqlite3VdbeMemRelease(pMem);
drh9d67afc2018-08-29 20:24:03 +0000881 p = sqlite3RowSetInit(db);
882 if( p==0 ) return SQLITE_NOMEM;
883 pMem->z = (char*)p;
884 pMem->flags = MEM_Blob|MEM_Dyn;
885 pMem->xDel = sqlite3RowSetDelete;
886 return SQLITE_OK;
drh3d4501e2008-12-04 20:40:10 +0000887}
888
889/*
drh023ae032007-05-08 12:12:16 +0000890** Return true if the Mem object contains a TEXT or BLOB that is
891** too large - whose size exceeds SQLITE_MAX_LENGTH.
892*/
893int sqlite3VdbeMemTooBig(Mem *p){
drhfa4a4b92008-03-19 21:45:51 +0000894 assert( p->db!=0 );
drh023ae032007-05-08 12:12:16 +0000895 if( p->flags & (MEM_Str|MEM_Blob) ){
896 int n = p->n;
897 if( p->flags & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +0000898 n += p->u.nZero;
drh023ae032007-05-08 12:12:16 +0000899 }
drhbb4957f2008-03-20 14:03:29 +0000900 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
drh023ae032007-05-08 12:12:16 +0000901 }
902 return 0;
903}
904
drh2b4ded92010-09-27 21:09:31 +0000905#ifdef SQLITE_DEBUG
906/*
peter.d.reid60ec9142014-09-06 16:39:46 +0000907** This routine prepares a memory cell for modification by breaking
drh2b4ded92010-09-27 21:09:31 +0000908** its link to a shallow copy and by marking any current shallow
909** copies of this cell as invalid.
910**
911** This is used for testing and debugging only - to make sure shallow
912** copies are not misused.
913*/
drhe4c88c02012-01-04 12:57:45 +0000914void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
drh2b4ded92010-09-27 21:09:31 +0000915 int i;
916 Mem *pX;
drh9f6168b2016-03-19 23:32:58 +0000917 for(i=0, pX=pVdbe->aMem; i<pVdbe->nMem; i++, pX++){
drh2b4ded92010-09-27 21:09:31 +0000918 if( pX->pScopyFrom==pMem ){
drh8d7b2122018-06-11 13:10:45 +0000919 /* If pX is marked as a shallow copy of pMem, then verify that
920 ** no significant changes have been made to pX since the OP_SCopy.
921 ** A significant change would indicated a missed call to this
922 ** function for pX. Minor changes, such as adding or removing a
923 ** dual type, are allowed, as long as the underlying value is the
924 ** same. */
drh58773a52018-06-12 13:52:23 +0000925 u16 mFlags = pMem->flags & pX->flags & pX->mScopyFlags;
drh8d7b2122018-06-11 13:10:45 +0000926 assert( (mFlags&MEM_Int)==0 || pMem->u.i==pX->u.i );
927 assert( (mFlags&MEM_Real)==0 || pMem->u.r==pX->u.r );
928 assert( (mFlags&MEM_Str)==0 || (pMem->n==pX->n && pMem->z==pX->z) );
929 assert( (mFlags&MEM_Blob)==0 || sqlite3BlobCompare(pMem,pX)==0 );
930
931 /* pMem is the register that is changing. But also mark pX as
932 ** undefined so that we can quickly detect the shallow-copy error */
933 pX->flags = MEM_Undefined;
drh2b4ded92010-09-27 21:09:31 +0000934 pX->pScopyFrom = 0;
935 }
936 }
937 pMem->pScopyFrom = 0;
938}
939#endif /* SQLITE_DEBUG */
940
danielk19775f096132008-03-28 15:44:09 +0000941
drh023ae032007-05-08 12:12:16 +0000942/*
drhfebe1062004-08-28 18:17:48 +0000943** Make an shallow copy of pFrom into pTo. Prior contents of
drha05a7222008-01-19 03:35:58 +0000944** pTo are freed. The pFrom->z field is not duplicated. If
drhfebe1062004-08-28 18:17:48 +0000945** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
946** and flags gets srcType (either MEM_Ephem or MEM_Static).
drh4f26d6c2004-05-26 23:25:30 +0000947*/
drh14e06742015-06-17 23:28:03 +0000948static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){
949 vdbeMemClearExternAndSetNull(pTo);
950 assert( !VdbeMemDynamic(pTo) );
951 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType);
952}
drhfebe1062004-08-28 18:17:48 +0000953void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
drh9d67afc2018-08-29 20:24:03 +0000954 assert( !sqlite3VdbeMemIsRowSet(pFrom) );
drh035e5632014-09-16 14:16:31 +0000955 assert( pTo->db==pFrom->db );
drh14e06742015-06-17 23:28:03 +0000956 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; }
danielk19775f096132008-03-28 15:44:09 +0000957 memcpy(pTo, pFrom, MEMCELLSIZE);
dan5fea9072010-03-05 18:46:12 +0000958 if( (pFrom->flags&MEM_Static)==0 ){
danielk1977a7a8e142008-02-13 18:25:27 +0000959 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
drhfebe1062004-08-28 18:17:48 +0000960 assert( srcType==MEM_Ephem || srcType==MEM_Static );
961 pTo->flags |= srcType;
962 }
963}
964
965/*
966** Make a full copy of pFrom into pTo. Prior contents of pTo are
967** freed before the copy is made.
968*/
drhb21c8cd2007-08-21 19:33:56 +0000969int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
danielk1977a7a8e142008-02-13 18:25:27 +0000970 int rc = SQLITE_OK;
danielk1977a7a8e142008-02-13 18:25:27 +0000971
drh9d67afc2018-08-29 20:24:03 +0000972 assert( !sqlite3VdbeMemIsRowSet(pFrom) );
drh0725cab2014-09-17 14:52:46 +0000973 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
danielk19775f096132008-03-28 15:44:09 +0000974 memcpy(pTo, pFrom, MEMCELLSIZE);
975 pTo->flags &= ~MEM_Dyn;
danielk19775f096132008-03-28 15:44:09 +0000976 if( pTo->flags&(MEM_Str|MEM_Blob) ){
977 if( 0==(pFrom->flags&MEM_Static) ){
978 pTo->flags |= MEM_Ephem;
979 rc = sqlite3VdbeMemMakeWriteable(pTo);
danielk19779172fd82008-02-14 15:31:52 +0000980 }
danielk1977a7a8e142008-02-13 18:25:27 +0000981 }
982
drh71c697e2004-08-08 23:39:19 +0000983 return rc;
drh4f26d6c2004-05-26 23:25:30 +0000984}
985
drheb2e1762004-05-27 01:53:56 +0000986/*
danielk1977369f27e2004-06-15 11:40:04 +0000987** Transfer the contents of pFrom to pTo. Any existing value in pTo is
drhfebe1062004-08-28 18:17:48 +0000988** freed. If pFrom contains ephemeral data, a copy is made.
989**
drh643167f2008-01-22 21:30:53 +0000990** pFrom contains an SQL NULL when this routine returns.
danielk1977369f27e2004-06-15 11:40:04 +0000991*/
drh643167f2008-01-22 21:30:53 +0000992void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
drhb21c8cd2007-08-21 19:33:56 +0000993 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
994 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
995 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
danielk19775f096132008-03-28 15:44:09 +0000996
997 sqlite3VdbeMemRelease(pTo);
danielk197713073932004-06-30 11:54:06 +0000998 memcpy(pTo, pFrom, sizeof(Mem));
danielk197713073932004-06-30 11:54:06 +0000999 pFrom->flags = MEM_Null;
drh17bcb102014-09-18 21:25:33 +00001000 pFrom->szMalloc = 0;
danielk1977369f27e2004-06-15 11:40:04 +00001001}
1002
1003/*
drheb2e1762004-05-27 01:53:56 +00001004** Change the value of a Mem to be a string or a BLOB.
danielk1977a7a8e142008-02-13 18:25:27 +00001005**
1006** The memory management strategy depends on the value of the xDel
1007** parameter. If the value passed is SQLITE_TRANSIENT, then the
1008** string is copied into a (possibly existing) buffer managed by the
1009** Mem structure. Otherwise, any existing buffer is freed and the
1010** pointer copied.
drh9a65f2c2009-06-22 19:05:40 +00001011**
1012** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
1013** size limit) then no memory allocation occurs. If the string can be
1014** stored without allocating memory, then it is. If a memory allocation
1015** is required to store the string, then value of pMem is unchanged. In
1016** either case, SQLITE_TOOBIG is returned.
drheb2e1762004-05-27 01:53:56 +00001017*/
drh4f26d6c2004-05-26 23:25:30 +00001018int sqlite3VdbeMemSetStr(
1019 Mem *pMem, /* Memory cell to set to string value */
1020 const char *z, /* String pointer */
1021 int n, /* Bytes in string, or negative */
drheb2e1762004-05-27 01:53:56 +00001022 u8 enc, /* Encoding of z. 0 for BLOBs */
danielk1977d8123362004-06-12 09:25:12 +00001023 void (*xDel)(void*) /* Destructor function */
drh4f26d6c2004-05-26 23:25:30 +00001024){
danielk1977a7a8e142008-02-13 18:25:27 +00001025 int nByte = n; /* New value for pMem->n */
drh0a687d12008-07-08 14:52:07 +00001026 int iLimit; /* Maximum allowed string or blob size */
drh8df32842008-12-09 02:51:23 +00001027 u16 flags = 0; /* New value for pMem->flags */
danielk1977a7a8e142008-02-13 18:25:27 +00001028
drhb21c8cd2007-08-21 19:33:56 +00001029 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh9d67afc2018-08-29 20:24:03 +00001030 assert( !sqlite3VdbeMemIsRowSet(pMem) );
danielk1977a7a8e142008-02-13 18:25:27 +00001031
1032 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
drh4f26d6c2004-05-26 23:25:30 +00001033 if( !z ){
danielk1977a7a8e142008-02-13 18:25:27 +00001034 sqlite3VdbeMemSetNull(pMem);
drh4f26d6c2004-05-26 23:25:30 +00001035 return SQLITE_OK;
1036 }
danielk1977a7a8e142008-02-13 18:25:27 +00001037
drh0a687d12008-07-08 14:52:07 +00001038 if( pMem->db ){
1039 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
1040 }else{
1041 iLimit = SQLITE_MAX_LENGTH;
1042 }
danielk1977a7a8e142008-02-13 18:25:27 +00001043 flags = (enc==0?MEM_Blob:MEM_Str);
1044 if( nByte<0 ){
1045 assert( enc!=0 );
drh8fd38972008-02-19 15:44:09 +00001046 if( enc==SQLITE_UTF8 ){
drhb32c18b2017-08-21 02:05:22 +00001047 nByte = 0x7fffffff & (int)strlen(z);
drh8fd38972008-02-19 15:44:09 +00001048 }else{
drh0a687d12008-07-08 14:52:07 +00001049 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
drh8fd38972008-02-19 15:44:09 +00001050 }
danielk1977a7a8e142008-02-13 18:25:27 +00001051 flags |= MEM_Term;
drh4f26d6c2004-05-26 23:25:30 +00001052 }
danielk1977d8123362004-06-12 09:25:12 +00001053
danielk1977a7a8e142008-02-13 18:25:27 +00001054 /* The following block sets the new values of Mem.z and Mem.xDel. It
1055 ** also sets a flag in local variable "flags" to indicate the memory
1056 ** management (one of MEM_Dyn or MEM_Static).
1057 */
1058 if( xDel==SQLITE_TRANSIENT ){
drh16d7e872019-02-08 17:28:20 +00001059 u32 nAlloc = nByte;
danielk1977a7a8e142008-02-13 18:25:27 +00001060 if( flags&MEM_Term ){
1061 nAlloc += (enc==SQLITE_UTF8?1:2);
1062 }
drh0793f1b2008-11-05 17:41:19 +00001063 if( nByte>iLimit ){
1064 return SQLITE_TOOBIG;
1065 }
drh722246e2014-10-07 23:02:24 +00001066 testcase( nAlloc==0 );
1067 testcase( nAlloc==31 );
1068 testcase( nAlloc==32 );
drh16d7e872019-02-08 17:28:20 +00001069 if( sqlite3VdbeMemClearAndResize(pMem, (int)MAX(nAlloc,32)) ){
mistachkinfad30392016-02-13 23:43:46 +00001070 return SQLITE_NOMEM_BKPT;
danielk1977a7a8e142008-02-13 18:25:27 +00001071 }
1072 memcpy(pMem->z, z, nAlloc);
danielk1977a7a8e142008-02-13 18:25:27 +00001073 }else{
1074 sqlite3VdbeMemRelease(pMem);
1075 pMem->z = (char *)z;
drh16d7e872019-02-08 17:28:20 +00001076 if( xDel==SQLITE_DYNAMIC ){
1077 pMem->zMalloc = pMem->z;
1078 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
1079 }else{
1080 pMem->xDel = xDel;
1081 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
1082 }
danielk1977a7a8e142008-02-13 18:25:27 +00001083 }
danielk1977d8123362004-06-12 09:25:12 +00001084
danielk1977a7a8e142008-02-13 18:25:27 +00001085 pMem->n = nByte;
1086 pMem->flags = flags;
1087 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
drh4f26d6c2004-05-26 23:25:30 +00001088
drh6c626082004-11-14 21:56:29 +00001089#ifndef SQLITE_OMIT_UTF16
danielk1977a7a8e142008-02-13 18:25:27 +00001090 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
mistachkinfad30392016-02-13 23:43:46 +00001091 return SQLITE_NOMEM_BKPT;
drh4f26d6c2004-05-26 23:25:30 +00001092 }
danielk1977a7a8e142008-02-13 18:25:27 +00001093#endif
1094
drh9a65f2c2009-06-22 19:05:40 +00001095 if( nByte>iLimit ){
1096 return SQLITE_TOOBIG;
1097 }
1098
drhf4479502004-05-27 03:12:53 +00001099 return SQLITE_OK;
drh4f26d6c2004-05-26 23:25:30 +00001100}
1101
1102/*
drhd5788202004-05-28 08:21:05 +00001103** Move data out of a btree key or data field and into a Mem structure.
drhcb3cabd2016-11-25 19:18:28 +00001104** The data is payload from the entry that pCur is currently pointing
drhd5788202004-05-28 08:21:05 +00001105** to. offset and amt determine what portion of the data or key to retrieve.
drhcb3cabd2016-11-25 19:18:28 +00001106** The result is written into the pMem element.
drhd5788202004-05-28 08:21:05 +00001107**
drh2a2a6962014-09-16 18:22:44 +00001108** The pMem object must have been initialized. This routine will use
1109** pMem->zMalloc to hold the content from the btree, if possible. New
1110** pMem->zMalloc space will be allocated if necessary. The calling routine
1111** is responsible for making sure that the pMem object is eventually
1112** destroyed.
drhd5788202004-05-28 08:21:05 +00001113**
1114** If this routine fails for any reason (malloc returns NULL or unable
1115** to read from the disk) then the pMem is left in an inconsistent state.
1116*/
drhf1aabd62015-06-17 01:31:28 +00001117static SQLITE_NOINLINE int vdbeMemFromBtreeResize(
1118 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
1119 u32 offset, /* Offset from the start of data to return bytes from. */
1120 u32 amt, /* Number of bytes to return. */
drhf1aabd62015-06-17 01:31:28 +00001121 Mem *pMem /* OUT: Return data in this Mem structure. */
1122){
1123 int rc;
1124 pMem->flags = MEM_Null;
drh53d30dd2019-02-04 21:10:24 +00001125 if( sqlite3BtreeMaxRecordSize(pCur)<offset+amt ){
1126 return SQLITE_CORRUPT_BKPT;
1127 }
drh24ddadf2017-09-22 12:52:31 +00001128 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){
drhcb3cabd2016-11-25 19:18:28 +00001129 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z);
drhf1aabd62015-06-17 01:31:28 +00001130 if( rc==SQLITE_OK ){
drh24ddadf2017-09-22 12:52:31 +00001131 pMem->z[amt] = 0; /* Overrun area used when reading malformed records */
drh63d16322017-09-20 18:07:50 +00001132 pMem->flags = MEM_Blob;
drhf1aabd62015-06-17 01:31:28 +00001133 pMem->n = (int)amt;
1134 }else{
1135 sqlite3VdbeMemRelease(pMem);
1136 }
1137 }
1138 return rc;
1139}
drhd5788202004-05-28 08:21:05 +00001140int sqlite3VdbeMemFromBtree(
1141 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
drh501932c2013-11-21 21:59:53 +00001142 u32 offset, /* Offset from the start of data to return bytes from. */
1143 u32 amt, /* Number of bytes to return. */
drhd5788202004-05-28 08:21:05 +00001144 Mem *pMem /* OUT: Return data in this Mem structure. */
1145){
danielk19774b0aa4c2009-05-28 11:05:57 +00001146 char *zData; /* Data from the btree layer */
drh501932c2013-11-21 21:59:53 +00001147 u32 available = 0; /* Number of bytes available on the local btree page */
danielk19774b0aa4c2009-05-28 11:05:57 +00001148 int rc = SQLITE_OK; /* Return code */
drhd5788202004-05-28 08:21:05 +00001149
drh5d1a8722009-07-22 18:07:40 +00001150 assert( sqlite3BtreeCursorIsValid(pCur) );
drhd3b74202014-09-17 16:41:15 +00001151 assert( !VdbeMemDynamic(pMem) );
drh5d1a8722009-07-22 18:07:40 +00001152
danielk19774b0aa4c2009-05-28 11:05:57 +00001153 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
1154 ** that both the BtShared and database handle mutexes are held. */
drh9d67afc2018-08-29 20:24:03 +00001155 assert( !sqlite3VdbeMemIsRowSet(pMem) );
drha7c90c42016-06-04 20:37:10 +00001156 zData = (char *)sqlite3BtreePayloadFetch(pCur, &available);
drh61fc5952007-04-01 23:49:51 +00001157 assert( zData!=0 );
drhd5788202004-05-28 08:21:05 +00001158
drh2b53e002013-11-21 19:05:04 +00001159 if( offset+amt<=available ){
drhd5788202004-05-28 08:21:05 +00001160 pMem->z = &zData[offset];
1161 pMem->flags = MEM_Blob|MEM_Ephem;
drh5f1d5362014-03-04 13:18:23 +00001162 pMem->n = (int)amt;
drh8740a602014-09-16 20:05:21 +00001163 }else{
drhcb3cabd2016-11-25 19:18:28 +00001164 rc = vdbeMemFromBtreeResize(pCur, offset, amt, pMem);
drhd5788202004-05-28 08:21:05 +00001165 }
1166
danielk1977a7a8e142008-02-13 18:25:27 +00001167 return rc;
drhd5788202004-05-28 08:21:05 +00001168}
1169
drh6c9f8e62014-08-27 03:28:50 +00001170/*
1171** The pVal argument is known to be a value other than NULL.
1172** Convert it into a string with encoding enc and return a pointer
1173** to a zero-terminated version of that string.
1174*/
drh3b335fc2014-10-07 16:59:22 +00001175static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
drh6c9f8e62014-08-27 03:28:50 +00001176 assert( pVal!=0 );
1177 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1178 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
drh9d67afc2018-08-29 20:24:03 +00001179 assert( !sqlite3VdbeMemIsRowSet(pVal) );
drh6c9f8e62014-08-27 03:28:50 +00001180 assert( (pVal->flags & (MEM_Null))==0 );
1181 if( pVal->flags & (MEM_Blob|MEM_Str) ){
drh34d04d62017-01-05 07:58:29 +00001182 if( ExpandBlob(pVal) ) return 0;
drh6c9f8e62014-08-27 03:28:50 +00001183 pVal->flags |= MEM_Str;
drh6c9f8e62014-08-27 03:28:50 +00001184 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){
1185 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
1186 }
1187 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
1188 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
1189 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
1190 return 0;
1191 }
1192 }
1193 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
1194 }else{
1195 sqlite3VdbeMemStringify(pVal, enc, 0);
1196 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
1197 }
1198 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
1199 || pVal->db->mallocFailed );
1200 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
drh563ddbe2018-02-01 15:57:00 +00001201 assert( sqlite3VdbeMemConsistentDualRep(pVal) );
drh6c9f8e62014-08-27 03:28:50 +00001202 return pVal->z;
1203 }else{
1204 return 0;
1205 }
1206}
1207
danielk19774e6af132004-06-10 14:01:08 +00001208/* This function is only available internally, it is not part of the
1209** external API. It works in a similar way to sqlite3_value_text(),
1210** except the data returned is in the encoding specified by the second
1211** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1212** SQLITE_UTF8.
drh7d9bd4e2006-02-16 18:16:36 +00001213**
1214** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1215** If that is the case, then the result must be aligned on an even byte
1216** boundary.
danielk19774e6af132004-06-10 14:01:08 +00001217*/
drhb21c8cd2007-08-21 19:33:56 +00001218const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
danielk1977bfd6cce2004-06-18 04:24:54 +00001219 if( !pVal ) return 0;
drhb21c8cd2007-08-21 19:33:56 +00001220 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
drh7d9bd4e2006-02-16 18:16:36 +00001221 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
drh9d67afc2018-08-29 20:24:03 +00001222 assert( !sqlite3VdbeMemIsRowSet(pVal) );
drh6c9f8e62014-08-27 03:28:50 +00001223 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){
drh563ddbe2018-02-01 15:57:00 +00001224 assert( sqlite3VdbeMemConsistentDualRep(pVal) );
drh6c9f8e62014-08-27 03:28:50 +00001225 return pVal->z;
1226 }
danielk19774e6af132004-06-10 14:01:08 +00001227 if( pVal->flags&MEM_Null ){
danielk19774e6af132004-06-10 14:01:08 +00001228 return 0;
1229 }
drh6c9f8e62014-08-27 03:28:50 +00001230 return valueToText(pVal, enc);
danielk19774e6af132004-06-10 14:01:08 +00001231}
1232
drh6a6124e2004-06-27 01:56:33 +00001233/*
1234** Create a new sqlite3_value object.
1235*/
drh17435752007-08-16 04:30:38 +00001236sqlite3_value *sqlite3ValueNew(sqlite3 *db){
danielk197726783a52007-08-29 14:06:22 +00001237 Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
danielk19774e6af132004-06-10 14:01:08 +00001238 if( p ){
1239 p->flags = MEM_Null;
drhb21c8cd2007-08-21 19:33:56 +00001240 p->db = db;
danielk19774e6af132004-06-10 14:01:08 +00001241 }
1242 return p;
1243}
1244
drh6a6124e2004-06-27 01:56:33 +00001245/*
danaf2583c2013-08-15 18:43:21 +00001246** Context object passed by sqlite3Stat4ProbeSetValue() through to
1247** valueNew(). See comments above valueNew() for details.
danielk1977aee18ef2005-03-09 12:26:50 +00001248*/
danaf2583c2013-08-15 18:43:21 +00001249struct ValueNewStat4Ctx {
1250 Parse *pParse;
1251 Index *pIdx;
1252 UnpackedRecord **ppRec;
1253 int iVal;
1254};
1255
1256/*
1257** Allocate and return a pointer to a new sqlite3_value object. If
1258** the second argument to this function is NULL, the object is allocated
1259** by calling sqlite3ValueNew().
1260**
1261** Otherwise, if the second argument is non-zero, then this function is
1262** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1263** already been allocated, allocate the UnpackedRecord structure that
drh96f4ad22015-03-12 21:02:36 +00001264** that function will return to its caller here. Then return a pointer to
danaf2583c2013-08-15 18:43:21 +00001265** an sqlite3_value within the UnpackedRecord.a[] array.
1266*/
1267static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
drh1435a9a2013-08-27 23:15:44 +00001268#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
danaf2583c2013-08-15 18:43:21 +00001269 if( p ){
1270 UnpackedRecord *pRec = p->ppRec[0];
1271
1272 if( pRec==0 ){
1273 Index *pIdx = p->pIdx; /* Index being probed */
1274 int nByte; /* Bytes of space to allocate */
1275 int i; /* Counter variable */
drhd2694612013-11-04 22:04:17 +00001276 int nCol = pIdx->nColumn; /* Number of index columns including rowid */
danaf2583c2013-08-15 18:43:21 +00001277
danb5f68b02013-12-03 18:26:56 +00001278 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
danaf2583c2013-08-15 18:43:21 +00001279 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
1280 if( pRec ){
drh2ec2fb22013-11-06 19:59:23 +00001281 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
danaf2583c2013-08-15 18:43:21 +00001282 if( pRec->pKeyInfo ){
drha485ad12017-08-02 22:43:14 +00001283 assert( pRec->pKeyInfo->nAllField==nCol );
drh2ec2fb22013-11-06 19:59:23 +00001284 assert( pRec->pKeyInfo->enc==ENC(db) );
danb5f68b02013-12-03 18:26:56 +00001285 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
danaf2583c2013-08-15 18:43:21 +00001286 for(i=0; i<nCol; i++){
1287 pRec->aMem[i].flags = MEM_Null;
danaf2583c2013-08-15 18:43:21 +00001288 pRec->aMem[i].db = db;
1289 }
1290 }else{
drhdbd6a7d2017-04-05 12:39:49 +00001291 sqlite3DbFreeNN(db, pRec);
danaf2583c2013-08-15 18:43:21 +00001292 pRec = 0;
1293 }
1294 }
1295 if( pRec==0 ) return 0;
1296 p->ppRec[0] = pRec;
1297 }
1298
1299 pRec->nField = p->iVal+1;
1300 return &pRec->aMem[p->iVal];
1301 }
drh4f991892013-10-11 15:05:05 +00001302#else
1303 UNUSED_PARAMETER(p);
1304#endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
danaf2583c2013-08-15 18:43:21 +00001305 return sqlite3ValueNew(db);
dan7a419232013-08-06 20:01:43 +00001306}
1307
drh6a6124e2004-06-27 01:56:33 +00001308/*
dan18bf8072015-03-11 20:06:40 +00001309** The expression object indicated by the second argument is guaranteed
1310** to be a scalar SQL function. If
1311**
1312** * all function arguments are SQL literals,
drhe3a73072015-09-05 19:07:08 +00001313** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
dancdcc11d2015-03-11 20:59:42 +00001314** * the SQLITE_FUNC_NEEDCOLL function flag is not set,
dan18bf8072015-03-11 20:06:40 +00001315**
1316** then this routine attempts to invoke the SQL function. Assuming no
1317** error occurs, output parameter (*ppVal) is set to point to a value
1318** object containing the result before returning SQLITE_OK.
1319**
1320** Affinity aff is applied to the result of the function before returning.
1321** If the result is a text value, the sqlite3_value object uses encoding
1322** enc.
1323**
1324** If the conditions above are not met, this function returns SQLITE_OK
1325** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
1326** NULL and an SQLite error code returned.
1327*/
1328#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1329static int valueFromFunction(
1330 sqlite3 *db, /* The database connection */
1331 Expr *p, /* The expression to evaluate */
1332 u8 enc, /* Encoding to use */
1333 u8 aff, /* Affinity to use */
1334 sqlite3_value **ppVal, /* Write the new value here */
1335 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1336){
1337 sqlite3_context ctx; /* Context object for function invocation */
1338 sqlite3_value **apVal = 0; /* Function arguments */
1339 int nVal = 0; /* Size of apVal[] array */
1340 FuncDef *pFunc = 0; /* Function definition */
1341 sqlite3_value *pVal = 0; /* New value */
1342 int rc = SQLITE_OK; /* Return code */
dancdcc11d2015-03-11 20:59:42 +00001343 ExprList *pList = 0; /* Function arguments */
dan18bf8072015-03-11 20:06:40 +00001344 int i; /* Iterator variable */
1345
drh96f4ad22015-03-12 21:02:36 +00001346 assert( pCtx!=0 );
1347 assert( (p->flags & EP_TokenOnly)==0 );
1348 pList = p->x.pList;
1349 if( pList ) nVal = pList->nExpr;
drh80738d92016-02-15 00:34:16 +00001350 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0);
dan18bf8072015-03-11 20:06:40 +00001351 assert( pFunc );
drhe3a73072015-09-05 19:07:08 +00001352 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0
dan18bf8072015-03-11 20:06:40 +00001353 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
1354 ){
1355 return SQLITE_OK;
1356 }
1357
1358 if( pList ){
1359 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal);
1360 if( apVal==0 ){
mistachkinfad30392016-02-13 23:43:46 +00001361 rc = SQLITE_NOMEM_BKPT;
dan18bf8072015-03-11 20:06:40 +00001362 goto value_from_function_out;
1363 }
1364 for(i=0; i<nVal; i++){
1365 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]);
drha9e03b12015-03-12 06:46:52 +00001366 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out;
dan18bf8072015-03-11 20:06:40 +00001367 }
1368 }
1369
1370 pVal = valueNew(db, pCtx);
1371 if( pVal==0 ){
mistachkinfad30392016-02-13 23:43:46 +00001372 rc = SQLITE_NOMEM_BKPT;
dan18bf8072015-03-11 20:06:40 +00001373 goto value_from_function_out;
1374 }
1375
dan3df30592015-03-13 08:31:54 +00001376 assert( pCtx->pParse->rc==SQLITE_OK );
dan18bf8072015-03-11 20:06:40 +00001377 memset(&ctx, 0, sizeof(ctx));
1378 ctx.pOut = pVal;
1379 ctx.pFunc = pFunc;
drh2d801512016-01-14 22:19:58 +00001380 pFunc->xSFunc(&ctx, nVal, apVal);
dan18bf8072015-03-11 20:06:40 +00001381 if( ctx.isError ){
1382 rc = ctx.isError;
drh96f4ad22015-03-12 21:02:36 +00001383 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
dan18bf8072015-03-11 20:06:40 +00001384 }else{
1385 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
drh96f4ad22015-03-12 21:02:36 +00001386 assert( rc==SQLITE_OK );
1387 rc = sqlite3VdbeChangeEncoding(pVal, enc);
dan18bf8072015-03-11 20:06:40 +00001388 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){
1389 rc = SQLITE_TOOBIG;
dan3df30592015-03-13 08:31:54 +00001390 pCtx->pParse->nErr++;
dan18bf8072015-03-11 20:06:40 +00001391 }
1392 }
dan3df30592015-03-13 08:31:54 +00001393 pCtx->pParse->rc = rc;
dan18bf8072015-03-11 20:06:40 +00001394
1395 value_from_function_out:
1396 if( rc!=SQLITE_OK ){
dan18bf8072015-03-11 20:06:40 +00001397 pVal = 0;
1398 }
drha9e03b12015-03-12 06:46:52 +00001399 if( apVal ){
1400 for(i=0; i<nVal; i++){
1401 sqlite3ValueFree(apVal[i]);
1402 }
drhdbd6a7d2017-04-05 12:39:49 +00001403 sqlite3DbFreeNN(db, apVal);
dan18bf8072015-03-11 20:06:40 +00001404 }
dan18bf8072015-03-11 20:06:40 +00001405
1406 *ppVal = pVal;
1407 return rc;
1408}
1409#else
1410# define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
1411#endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1412
1413/*
danaf2583c2013-08-15 18:43:21 +00001414** Extract a value from the supplied expression in the manner described
1415** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1416** using valueNew().
1417**
1418** If pCtx is NULL and an error occurs after the sqlite3_value object
1419** has been allocated, it is freed before returning. Or, if pCtx is not
1420** NULL, it is assumed that the caller will free any allocated object
1421** in all cases.
danielk1977aee18ef2005-03-09 12:26:50 +00001422*/
drha7f4bf32013-10-14 13:21:00 +00001423static int valueFromExpr(
danaf2583c2013-08-15 18:43:21 +00001424 sqlite3 *db, /* The database connection */
1425 Expr *pExpr, /* The expression to evaluate */
1426 u8 enc, /* Encoding to use */
1427 u8 affinity, /* Affinity to use */
1428 sqlite3_value **ppVal, /* Write the new value here */
1429 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
danielk1977aee18ef2005-03-09 12:26:50 +00001430){
1431 int op;
1432 char *zVal = 0;
1433 sqlite3_value *pVal = 0;
drh93518622010-09-30 14:48:06 +00001434 int negInt = 1;
1435 const char *zNeg = "";
drh0e1f0022013-08-16 14:49:00 +00001436 int rc = SQLITE_OK;
danielk1977aee18ef2005-03-09 12:26:50 +00001437
drh42735c72016-09-29 19:27:16 +00001438 assert( pExpr!=0 );
drh94fa9c42016-02-27 21:16:04 +00001439 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft;
drh01f6b2d2017-12-06 20:50:08 +00001440#if defined(SQLITE_ENABLE_STAT3_OR_STAT4)
dan7ac2d482017-11-27 17:56:14 +00001441 if( op==TK_REGISTER ) op = pExpr->op2;
drh01f6b2d2017-12-06 20:50:08 +00001442#else
1443 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
1444#endif
danielk1977aee18ef2005-03-09 12:26:50 +00001445
drh96f4ad22015-03-12 21:02:36 +00001446 /* Compressed expressions only appear when parsing the DEFAULT clause
1447 ** on a table column definition, and hence only when pCtx==0. This
1448 ** check ensures that an EP_TokenOnly expression is never passed down
1449 ** into valueFromFunction(). */
1450 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );
1451
drh4169e432014-08-25 20:11:52 +00001452 if( op==TK_CAST ){
1453 u8 aff = sqlite3AffinityType(pExpr->u.zToken,0);
1454 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
drhec3e4f72014-08-25 21:11:01 +00001455 testcase( rc!=SQLITE_OK );
1456 if( *ppVal ){
drh4169e432014-08-25 20:11:52 +00001457 sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8);
1458 sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8);
1459 }
1460 return rc;
1461 }
1462
drh93518622010-09-30 14:48:06 +00001463 /* Handle negative integers in a single step. This is needed in the
1464 ** case when the value is -9223372036854775808.
1465 */
1466 if( op==TK_UMINUS
1467 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
1468 pExpr = pExpr->pLeft;
1469 op = pExpr->op;
1470 negInt = -1;
1471 zNeg = "-";
1472 }
1473
danielk1977aee18ef2005-03-09 12:26:50 +00001474 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
danaf2583c2013-08-15 18:43:21 +00001475 pVal = valueNew(db, pCtx);
drh33e619f2009-05-28 01:00:55 +00001476 if( pVal==0 ) goto no_mem;
1477 if( ExprHasProperty(pExpr, EP_IntValue) ){
drh93518622010-09-30 14:48:06 +00001478 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
drh33e619f2009-05-28 01:00:55 +00001479 }else{
drh93518622010-09-30 14:48:06 +00001480 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
drh33e619f2009-05-28 01:00:55 +00001481 if( zVal==0 ) goto no_mem;
1482 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
1483 }
drh05883a32015-06-02 15:32:08 +00001484 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){
drhe3b9bfe2009-05-05 12:54:50 +00001485 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
danielk1977aee18ef2005-03-09 12:26:50 +00001486 }else{
drhe3b9bfe2009-05-05 12:54:50 +00001487 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
1488 }
drh93518622010-09-30 14:48:06 +00001489 if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str;
drhe3b9bfe2009-05-05 12:54:50 +00001490 if( enc!=SQLITE_UTF8 ){
drh0e1f0022013-08-16 14:49:00 +00001491 rc = sqlite3VdbeChangeEncoding(pVal, enc);
danielk1977aee18ef2005-03-09 12:26:50 +00001492 }
1493 }else if( op==TK_UMINUS ) {
drh93518622010-09-30 14:48:06 +00001494 /* This branch happens for multiple negative signs. Ex: -(-5) */
drh6e3bccd2017-06-13 04:31:54 +00001495 if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx)
danad45ed72013-08-08 12:21:32 +00001496 && pVal!=0
1497 ){
drh93518622010-09-30 14:48:06 +00001498 sqlite3VdbeMemNumerify(pVal);
drh74eaba42014-09-18 17:52:15 +00001499 if( pVal->flags & MEM_Real ){
1500 pVal->u.r = -pVal->u.r;
1501 }else if( pVal->u.i==SMALLEST_INT64 ){
1502 pVal->u.r = -(double)SMALLEST_INT64;
1503 MemSetTypeFlag(pVal, MEM_Real);
drhd50ffc42011-03-08 02:38:28 +00001504 }else{
1505 pVal->u.i = -pVal->u.i;
1506 }
drh93518622010-09-30 14:48:06 +00001507 sqlite3ValueApplyAffinity(pVal, affinity, enc);
danielk1977aee18ef2005-03-09 12:26:50 +00001508 }
drh9b3eb0a2011-01-21 14:37:04 +00001509 }else if( op==TK_NULL ){
danaf2583c2013-08-15 18:43:21 +00001510 pVal = valueNew(db, pCtx);
drhb1aa0ab2011-02-18 17:23:23 +00001511 if( pVal==0 ) goto no_mem;
drhe0568d62016-12-09 00:15:17 +00001512 sqlite3VdbeMemNumerify(pVal);
danielk1977aee18ef2005-03-09 12:26:50 +00001513 }
1514#ifndef SQLITE_OMIT_BLOB_LITERAL
1515 else if( op==TK_BLOB ){
1516 int nVal;
drh33e619f2009-05-28 01:00:55 +00001517 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
1518 assert( pExpr->u.zToken[1]=='\'' );
danaf2583c2013-08-15 18:43:21 +00001519 pVal = valueNew(db, pCtx);
danielk1977f150c9d2008-10-30 17:21:12 +00001520 if( !pVal ) goto no_mem;
drh33e619f2009-05-28 01:00:55 +00001521 zVal = &pExpr->u.zToken[2];
drhb7916a72009-05-27 10:31:29 +00001522 nVal = sqlite3Strlen30(zVal)-1;
1523 assert( zVal[nVal]=='\'' );
drhca48c902008-01-18 14:08:24 +00001524 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
drh633e6d52008-07-28 19:34:53 +00001525 0, SQLITE_DYNAMIC);
danielk1977aee18ef2005-03-09 12:26:50 +00001526 }
1527#endif
drh8cdcd872015-03-16 13:48:23 +00001528#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
drh96f4ad22015-03-12 21:02:36 +00001529 else if( op==TK_FUNCTION && pCtx!=0 ){
dan18bf8072015-03-11 20:06:40 +00001530 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
1531 }
drh8cdcd872015-03-16 13:48:23 +00001532#endif
drh3bc43152018-04-18 11:35:35 +00001533 else if( op==TK_TRUEFALSE ){
danc2ea77e2019-01-25 17:26:59 +00001534 pVal = valueNew(db, pCtx);
1535 if( pVal ){
1536 pVal->flags = MEM_Int;
1537 pVal->u.i = pExpr->u.zToken[4]==0;
1538 }
drh3bc43152018-04-18 11:35:35 +00001539 }
dan18bf8072015-03-11 20:06:40 +00001540
danielk1977aee18ef2005-03-09 12:26:50 +00001541 *ppVal = pVal;
drh0e1f0022013-08-16 14:49:00 +00001542 return rc;
danielk1977aee18ef2005-03-09 12:26:50 +00001543
1544no_mem:
drh84a6c852017-12-13 23:47:55 +00001545#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1546 if( pCtx==0 || pCtx->pParse->nErr==0 )
1547#endif
1548 sqlite3OomFault(db);
drh633e6d52008-07-28 19:34:53 +00001549 sqlite3DbFree(db, zVal);
danaf2583c2013-08-15 18:43:21 +00001550 assert( *ppVal==0 );
drh1435a9a2013-08-27 23:15:44 +00001551#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
danaf2583c2013-08-15 18:43:21 +00001552 if( pCtx==0 ) sqlite3ValueFree(pVal);
drh1435a9a2013-08-27 23:15:44 +00001553#else
1554 assert( pCtx==0 ); sqlite3ValueFree(pVal);
1555#endif
mistachkinfad30392016-02-13 23:43:46 +00001556 return SQLITE_NOMEM_BKPT;
danielk1977aee18ef2005-03-09 12:26:50 +00001557}
1558
1559/*
dan87cd9322013-08-07 15:52:41 +00001560** Create a new sqlite3_value object, containing the value of pExpr.
1561**
1562** This only works for very simple expressions that consist of one constant
1563** token (i.e. "5", "5.1", "'a string'"). If the expression can
1564** be converted directly into a value, then the value is allocated and
1565** a pointer written to *ppVal. The caller is responsible for deallocating
1566** the value by passing it to sqlite3ValueFree() later on. If the expression
1567** cannot be converted to a value, then *ppVal is set to NULL.
1568*/
1569int sqlite3ValueFromExpr(
1570 sqlite3 *db, /* The database connection */
1571 Expr *pExpr, /* The expression to evaluate */
1572 u8 enc, /* Encoding to use */
1573 u8 affinity, /* Affinity to use */
1574 sqlite3_value **ppVal /* Write the new value here */
1575){
drh42735c72016-09-29 19:27:16 +00001576 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0;
dan87cd9322013-08-07 15:52:41 +00001577}
1578
drh1435a9a2013-08-27 23:15:44 +00001579#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
dan8ad169a2013-08-12 20:14:04 +00001580/*
1581** The implementation of the sqlite_record() function. This function accepts
1582** a single argument of any type. The return value is a formatted database
1583** record (a blob) containing the argument value.
1584**
1585** This is used to convert the value stored in the 'sample' column of the
1586** sqlite_stat3 table to the record format SQLite uses internally.
1587*/
1588static void recordFunc(
1589 sqlite3_context *context,
1590 int argc,
1591 sqlite3_value **argv
1592){
1593 const int file_format = 1;
drhbe37c122015-10-16 14:54:17 +00001594 u32 iSerial; /* Serial type */
dan8ad169a2013-08-12 20:14:04 +00001595 int nSerial; /* Bytes of space for iSerial as varint */
drhbe37c122015-10-16 14:54:17 +00001596 u32 nVal; /* Bytes of space required for argv[0] */
dan8ad169a2013-08-12 20:14:04 +00001597 int nRet;
1598 sqlite3 *db;
1599 u8 *aRet;
1600
drh4f991892013-10-11 15:05:05 +00001601 UNUSED_PARAMETER( argc );
drhbe37c122015-10-16 14:54:17 +00001602 iSerial = sqlite3VdbeSerialType(argv[0], file_format, &nVal);
dan8ad169a2013-08-12 20:14:04 +00001603 nSerial = sqlite3VarintLen(iSerial);
dan8ad169a2013-08-12 20:14:04 +00001604 db = sqlite3_context_db_handle(context);
1605
1606 nRet = 1 + nSerial + nVal;
drh575fad62016-02-05 13:38:36 +00001607 aRet = sqlite3DbMallocRawNN(db, nRet);
dan8ad169a2013-08-12 20:14:04 +00001608 if( aRet==0 ){
1609 sqlite3_result_error_nomem(context);
1610 }else{
1611 aRet[0] = nSerial+1;
drh2f2b2b82014-08-22 18:48:25 +00001612 putVarint32(&aRet[1], iSerial);
drha9ab4812013-12-11 11:00:44 +00001613 sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial);
dan8ad169a2013-08-12 20:14:04 +00001614 sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT);
drhdbd6a7d2017-04-05 12:39:49 +00001615 sqlite3DbFreeNN(db, aRet);
dan8ad169a2013-08-12 20:14:04 +00001616 }
1617}
1618
1619/*
1620** Register built-in functions used to help read ANALYZE data.
1621*/
1622void sqlite3AnalyzeFunctions(void){
drh80738d92016-02-15 00:34:16 +00001623 static FuncDef aAnalyzeTableFuncs[] = {
dan8ad169a2013-08-12 20:14:04 +00001624 FUNCTION(sqlite_record, 1, 0, 0, recordFunc),
1625 };
drh80738d92016-02-15 00:34:16 +00001626 sqlite3InsertBuiltinFuncs(aAnalyzeTableFuncs, ArraySize(aAnalyzeTableFuncs));
dan8ad169a2013-08-12 20:14:04 +00001627}
1628
drh0288b212014-06-28 16:06:44 +00001629/*
1630** Attempt to extract a value from pExpr and use it to construct *ppVal.
1631**
1632** If pAlloc is not NULL, then an UnpackedRecord object is created for
1633** pAlloc if one does not exist and the new value is added to the
1634** UnpackedRecord object.
1635**
1636** A value is extracted in the following cases:
1637**
1638** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1639**
1640** * The expression is a bound variable, and this is a reprepare, or
1641**
1642** * The expression is a literal value.
1643**
1644** On success, *ppVal is made to point to the extracted value. The caller
1645** is responsible for ensuring that the value is eventually freed.
1646*/
danb0b82902014-06-26 20:21:46 +00001647static int stat4ValueFromExpr(
1648 Parse *pParse, /* Parse context */
1649 Expr *pExpr, /* The expression to extract a value from */
1650 u8 affinity, /* Affinity to use */
drh0288b212014-06-28 16:06:44 +00001651 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */
danb0b82902014-06-26 20:21:46 +00001652 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1653){
1654 int rc = SQLITE_OK;
1655 sqlite3_value *pVal = 0;
1656 sqlite3 *db = pParse->db;
1657
1658 /* Skip over any TK_COLLATE nodes */
1659 pExpr = sqlite3ExprSkipCollate(pExpr);
1660
drh7df74752017-06-26 14:46:05 +00001661 assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE );
danb0b82902014-06-26 20:21:46 +00001662 if( !pExpr ){
1663 pVal = valueNew(db, pAlloc);
1664 if( pVal ){
1665 sqlite3VdbeMemSetNull((Mem*)pVal);
1666 }
drh7df74752017-06-26 14:46:05 +00001667 }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
danb0b82902014-06-26 20:21:46 +00001668 Vdbe *v;
1669 int iBindVar = pExpr->iColumn;
1670 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
drh7df74752017-06-26 14:46:05 +00001671 if( (v = pParse->pReprepare)!=0 ){
danb0b82902014-06-26 20:21:46 +00001672 pVal = valueNew(db, pAlloc);
1673 if( pVal ){
1674 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
drh169dd922017-06-26 13:57:49 +00001675 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
danb0b82902014-06-26 20:21:46 +00001676 pVal->db = pParse->db;
1677 }
1678 }
1679 }else{
1680 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc);
1681 }
1682
1683 assert( pVal==0 || pVal->db==db );
1684 *ppVal = pVal;
1685 return rc;
1686}
1687
dan87cd9322013-08-07 15:52:41 +00001688/*
dan87cd9322013-08-07 15:52:41 +00001689** This function is used to allocate and populate UnpackedRecord
1690** structures intended to be compared against sample index keys stored
1691** in the sqlite_stat4 table.
1692**
dand66e5792016-08-03 16:14:33 +00001693** A single call to this function populates zero or more fields of the
1694** record starting with field iVal (fields are numbered from left to
1695** right starting with 0). A single field is populated if:
dan87cd9322013-08-07 15:52:41 +00001696**
1697** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1698**
1699** * The expression is a bound variable, and this is a reprepare, or
1700**
1701** * The sqlite3ValueFromExpr() function is able to extract a value
1702** from the expression (i.e. the expression is a literal value).
1703**
dand66e5792016-08-03 16:14:33 +00001704** Or, if pExpr is a TK_VECTOR, one field is populated for each of the
1705** vector components that match either of the two latter criteria listed
1706** above.
1707**
1708** Before any value is appended to the record, the affinity of the
1709** corresponding column within index pIdx is applied to it. Before
1710** this function returns, output parameter *pnExtract is set to the
1711** number of values appended to the record.
dan87cd9322013-08-07 15:52:41 +00001712**
1713** When this function is called, *ppRec must either point to an object
1714** allocated by an earlier call to this function, or must be NULL. If it
1715** is NULL and a value can be successfully extracted, a new UnpackedRecord
1716** is allocated (and *ppRec set to point to it) before returning.
1717**
1718** Unless an error is encountered, SQLITE_OK is returned. It is not an
1719** error if a value cannot be extracted from pExpr. If an error does
1720** occur, an SQLite error code is returned.
1721*/
dan7a419232013-08-06 20:01:43 +00001722int sqlite3Stat4ProbeSetValue(
1723 Parse *pParse, /* Parse context */
dan87cd9322013-08-07 15:52:41 +00001724 Index *pIdx, /* Index being probed */
1725 UnpackedRecord **ppRec, /* IN/OUT: Probe record */
dan7a419232013-08-06 20:01:43 +00001726 Expr *pExpr, /* The expression to extract a value from */
dand66e5792016-08-03 16:14:33 +00001727 int nElem, /* Maximum number of values to append */
dan7a419232013-08-06 20:01:43 +00001728 int iVal, /* Array element to populate */
dand66e5792016-08-03 16:14:33 +00001729 int *pnExtract /* OUT: Values appended to the record */
dan7a419232013-08-06 20:01:43 +00001730){
dand66e5792016-08-03 16:14:33 +00001731 int rc = SQLITE_OK;
1732 int nExtract = 0;
danb0b82902014-06-26 20:21:46 +00001733
dand66e5792016-08-03 16:14:33 +00001734 if( pExpr==0 || pExpr->op!=TK_SELECT ){
1735 int i;
1736 struct ValueNewStat4Ctx alloc;
dan7a419232013-08-06 20:01:43 +00001737
dand66e5792016-08-03 16:14:33 +00001738 alloc.pParse = pParse;
1739 alloc.pIdx = pIdx;
1740 alloc.ppRec = ppRec;
1741
1742 for(i=0; i<nElem; i++){
1743 sqlite3_value *pVal = 0;
drhfc7f27b2016-08-20 00:07:01 +00001744 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0);
dand66e5792016-08-03 16:14:33 +00001745 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i);
1746 alloc.iVal = iVal+i;
1747 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal);
1748 if( !pVal ) break;
1749 nExtract++;
1750 }
1751 }
1752
1753 *pnExtract = nExtract;
danb0b82902014-06-26 20:21:46 +00001754 return rc;
1755}
dan87cd9322013-08-07 15:52:41 +00001756
danb0b82902014-06-26 20:21:46 +00001757/*
1758** Attempt to extract a value from expression pExpr using the methods
1759** as described for sqlite3Stat4ProbeSetValue() above.
1760**
1761** If successful, set *ppVal to point to a new value object and return
1762** SQLITE_OK. If no value can be extracted, but no other error occurs
1763** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1764** does occur, return an SQLite error code. The final value of *ppVal
1765** is undefined in this case.
1766*/
1767int sqlite3Stat4ValueFromExpr(
1768 Parse *pParse, /* Parse context */
1769 Expr *pExpr, /* The expression to extract a value from */
1770 u8 affinity, /* Affinity to use */
1771 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1772){
1773 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal);
1774}
1775
drh0288b212014-06-28 16:06:44 +00001776/*
1777** Extract the iCol-th column from the nRec-byte record in pRec. Write
1778** the column value into *ppVal. If *ppVal is initially NULL then a new
1779** sqlite3_value object is allocated.
1780**
1781** If *ppVal is initially NULL then the caller is responsible for
1782** ensuring that the value written into *ppVal is eventually freed.
1783*/
danb0b82902014-06-26 20:21:46 +00001784int sqlite3Stat4Column(
1785 sqlite3 *db, /* Database handle */
1786 const void *pRec, /* Pointer to buffer containing record */
1787 int nRec, /* Size of buffer pRec in bytes */
1788 int iCol, /* Column to extract */
1789 sqlite3_value **ppVal /* OUT: Extracted value */
1790){
mistachkined5e7722018-08-17 21:14:28 +00001791 u32 t = 0; /* a column type code */
drh0288b212014-06-28 16:06:44 +00001792 int nHdr; /* Size of the header in the record */
1793 int iHdr; /* Next unread header byte */
1794 int iField; /* Next unread data byte */
mistachkined5e7722018-08-17 21:14:28 +00001795 int szField = 0; /* Size of the current data field */
drh0288b212014-06-28 16:06:44 +00001796 int i; /* Column index */
1797 u8 *a = (u8*)pRec; /* Typecast byte array */
1798 Mem *pMem = *ppVal; /* Write result into this Mem object */
1799
1800 assert( iCol>0 );
1801 iHdr = getVarint32(a, nHdr);
1802 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT;
1803 iField = nHdr;
1804 for(i=0; i<=iCol; i++){
1805 iHdr += getVarint32(&a[iHdr], t);
1806 testcase( iHdr==nHdr );
1807 testcase( iHdr==nHdr+1 );
1808 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT;
1809 szField = sqlite3VdbeSerialTypeLen(t);
1810 iField += szField;
1811 }
1812 testcase( iField==nRec );
1813 testcase( iField==nRec+1 );
1814 if( iField>nRec ) return SQLITE_CORRUPT_BKPT;
danb0b82902014-06-26 20:21:46 +00001815 if( pMem==0 ){
drh0288b212014-06-28 16:06:44 +00001816 pMem = *ppVal = sqlite3ValueNew(db);
mistachkinfad30392016-02-13 23:43:46 +00001817 if( pMem==0 ) return SQLITE_NOMEM_BKPT;
danb0b82902014-06-26 20:21:46 +00001818 }
drh0288b212014-06-28 16:06:44 +00001819 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem);
1820 pMem->enc = ENC(db);
1821 return SQLITE_OK;
dan7a419232013-08-06 20:01:43 +00001822}
1823
dan87cd9322013-08-07 15:52:41 +00001824/*
1825** Unless it is NULL, the argument must be an UnpackedRecord object returned
1826** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1827** the object.
1828*/
dan7a419232013-08-06 20:01:43 +00001829void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
1830 if( pRec ){
1831 int i;
drha485ad12017-08-02 22:43:14 +00001832 int nCol = pRec->pKeyInfo->nAllField;
dan7a419232013-08-06 20:01:43 +00001833 Mem *aMem = pRec->aMem;
1834 sqlite3 *db = aMem[0].db;
dandd6e1f12013-08-10 19:08:30 +00001835 for(i=0; i<nCol; i++){
drhcef25842015-04-20 13:59:18 +00001836 sqlite3VdbeMemRelease(&aMem[i]);
dan7a419232013-08-06 20:01:43 +00001837 }
drh2ec2fb22013-11-06 19:59:23 +00001838 sqlite3KeyInfoUnref(pRec->pKeyInfo);
drhdbd6a7d2017-04-05 12:39:49 +00001839 sqlite3DbFreeNN(db, pRec);
dan7a419232013-08-06 20:01:43 +00001840 }
1841}
dan7a419232013-08-06 20:01:43 +00001842#endif /* ifdef SQLITE_ENABLE_STAT4 */
1843
drh4f26d6c2004-05-26 23:25:30 +00001844/*
1845** Change the string value of an sqlite3_value object
1846*/
1847void sqlite3ValueSetStr(
drh17435752007-08-16 04:30:38 +00001848 sqlite3_value *v, /* Value to be set */
1849 int n, /* Length of string z */
1850 const void *z, /* Text of the new string */
1851 u8 enc, /* Encoding to use */
1852 void (*xDel)(void*) /* Destructor for the string */
drh4f26d6c2004-05-26 23:25:30 +00001853){
drhb21c8cd2007-08-21 19:33:56 +00001854 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
drh4f26d6c2004-05-26 23:25:30 +00001855}
1856
1857/*
1858** Free an sqlite3_value object
1859*/
1860void sqlite3ValueFree(sqlite3_value *v){
1861 if( !v ) return;
danielk1977a7a8e142008-02-13 18:25:27 +00001862 sqlite3VdbeMemRelease((Mem *)v);
drhdbd6a7d2017-04-05 12:39:49 +00001863 sqlite3DbFreeNN(((Mem*)v)->db, v);
drh4f26d6c2004-05-26 23:25:30 +00001864}
1865
1866/*
drh591909c2015-06-25 23:52:48 +00001867** The sqlite3ValueBytes() routine returns the number of bytes in the
1868** sqlite3_value object assuming that it uses the encoding "enc".
1869** The valueBytes() routine is a helper function.
drh4f26d6c2004-05-26 23:25:30 +00001870*/
drh591909c2015-06-25 23:52:48 +00001871static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){
1872 return valueToText(pVal, enc)!=0 ? pVal->n : 0;
1873}
drhb21c8cd2007-08-21 19:33:56 +00001874int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
drh4f26d6c2004-05-26 23:25:30 +00001875 Mem *p = (Mem*)pVal;
drh591909c2015-06-25 23:52:48 +00001876 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 );
1877 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){
1878 return p->n;
1879 }
1880 if( (p->flags & MEM_Blob)!=0 ){
drhb026e052007-05-02 01:34:31 +00001881 if( p->flags & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +00001882 return p->n + p->u.nZero;
drhb026e052007-05-02 01:34:31 +00001883 }else{
1884 return p->n;
1885 }
drh4f26d6c2004-05-26 23:25:30 +00001886 }
drh591909c2015-06-25 23:52:48 +00001887 if( p->flags & MEM_Null ) return 0;
1888 return valueBytes(pVal, enc);
drh4f26d6c2004-05-26 23:25:30 +00001889}