blob: b077d27d9e3b3f25890d84f078b1d58cd32b3539 [file] [log] [blame]
dan7c246102010-04-12 19:00:29 +00001/*
drh7ed91f22010-04-29 22:34:07 +00002** 2010 February 1
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
drh027a1282010-05-19 01:53:53 +000013** This file contains the implementation of a write-ahead log (WAL) used in
14** "journal_mode=WAL" mode.
drh29d4dbe2010-05-18 23:29:52 +000015**
drh7ed91f22010-04-29 22:34:07 +000016** WRITE-AHEAD LOG (WAL) FILE FORMAT
dan97a31352010-04-16 13:59:31 +000017**
drh7e263722010-05-20 21:21:09 +000018** A WAL file consists of a header followed by zero or more "frames".
drh027a1282010-05-19 01:53:53 +000019** Each frame records the revised content of a single page from the
drh29d4dbe2010-05-18 23:29:52 +000020** database file. All changes to the database are recorded by writing
21** frames into the WAL. Transactions commit when a frame is written that
22** contains a commit marker. A single WAL can and usually does record
23** multiple transactions. Periodically, the content of the WAL is
24** transferred back into the database file in an operation called a
25** "checkpoint".
26**
27** A single WAL file can be used multiple times. In other words, the
drh027a1282010-05-19 01:53:53 +000028** WAL can fill up with frames and then be checkpointed and then new
drh29d4dbe2010-05-18 23:29:52 +000029** frames can overwrite the old ones. A WAL always grows from beginning
30** toward the end. Checksums and counters attached to each frame are
31** used to determine which frames within the WAL are valid and which
32** are leftovers from prior checkpoints.
33**
drhcd285082010-06-23 22:00:35 +000034** The WAL header is 32 bytes in size and consists of the following eight
dan97a31352010-04-16 13:59:31 +000035** big-endian 32-bit unsigned integer values:
36**
drh1b78eaf2010-05-25 13:40:03 +000037** 0: Magic number. 0x377f0682 or 0x377f0683
drh23ea97b2010-05-20 16:45:58 +000038** 4: File format version. Currently 3007000
39** 8: Database page size. Example: 1024
40** 12: Checkpoint sequence number
drh7e263722010-05-20 21:21:09 +000041** 16: Salt-1, random integer incremented with each checkpoint
42** 20: Salt-2, a different random integer changing with each ckpt
dan10f5a502010-06-23 15:55:43 +000043** 24: Checksum-1 (first part of checksum for first 24 bytes of header).
44** 28: Checksum-2 (second part of checksum for first 24 bytes of header).
dan97a31352010-04-16 13:59:31 +000045**
drh23ea97b2010-05-20 16:45:58 +000046** Immediately following the wal-header are zero or more frames. Each
47** frame consists of a 24-byte frame-header followed by a <page-size> bytes
drhcd285082010-06-23 22:00:35 +000048** of page data. The frame-header is six big-endian 32-bit unsigned
dan97a31352010-04-16 13:59:31 +000049** integer values, as follows:
50**
dan3de777f2010-04-17 12:31:37 +000051** 0: Page number.
52** 4: For commit records, the size of the database image in pages
dan97a31352010-04-16 13:59:31 +000053** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +000054** 8: Salt-1 (copied from the header)
55** 12: Salt-2 (copied from the header)
drh23ea97b2010-05-20 16:45:58 +000056** 16: Checksum-1.
57** 20: Checksum-2.
drh29d4dbe2010-05-18 23:29:52 +000058**
drh7e263722010-05-20 21:21:09 +000059** A frame is considered valid if and only if the following conditions are
60** true:
61**
62** (1) The salt-1 and salt-2 values in the frame-header match
63** salt values in the wal-header
64**
65** (2) The checksum values in the final 8 bytes of the frame-header
drh1b78eaf2010-05-25 13:40:03 +000066** exactly match the checksum computed consecutively on the
67** WAL header and the first 8 bytes and the content of all frames
68** up to and including the current frame.
69**
70** The checksum is computed using 32-bit big-endian integers if the
71** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72** is computed using little-endian if the magic number is 0x377f0682.
drh51b21b12010-05-25 15:53:31 +000073** The checksum values are always stored in the frame header in a
74** big-endian format regardless of which byte order is used to compute
75** the checksum. The checksum is computed by interpreting the input as
76** an even number of unsigned 32-bit integers: x[0] through x[N]. The
drhffca4302010-06-15 11:21:54 +000077** algorithm used for the checksum is as follows:
drh51b21b12010-05-25 15:53:31 +000078**
79** for i from 0 to n-1 step 2:
80** s0 += x[i] + s1;
81** s1 += x[i+1] + s0;
82** endfor
drh7e263722010-05-20 21:21:09 +000083**
drhcd285082010-06-23 22:00:35 +000084** Note that s0 and s1 are both weighted checksums using fibonacci weights
85** in reverse order (the largest fibonacci weight occurs on the first element
86** of the sequence being summed.) The s1 value spans all 32-bit
87** terms of the sequence whereas s0 omits the final term.
88**
drh7e263722010-05-20 21:21:09 +000089** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90** WAL is transferred into the database, then the database is VFS.xSync-ed.
drhffca4302010-06-15 11:21:54 +000091** The VFS.xSync operations serve as write barriers - all writes launched
drh7e263722010-05-20 21:21:09 +000092** before the xSync must complete before any write that launches after the
93** xSync begins.
94**
95** After each checkpoint, the salt-1 value is incremented and the salt-2
96** value is randomized. This prevents old and new frames in the WAL from
97** being considered valid at the same time and being checkpointing together
98** following a crash.
99**
drh29d4dbe2010-05-18 23:29:52 +0000100** READER ALGORITHM
101**
102** To read a page from the database (call it page number P), a reader
103** first checks the WAL to see if it contains page P. If so, then the
drh73b64e42010-05-30 19:55:15 +0000104** last valid instance of page P that is a followed by a commit frame
105** or is a commit frame itself becomes the value read. If the WAL
106** contains no copies of page P that are valid and which are a commit
107** frame or are followed by a commit frame, then page P is read from
108** the database file.
drh29d4dbe2010-05-18 23:29:52 +0000109**
drh73b64e42010-05-30 19:55:15 +0000110** To start a read transaction, the reader records the index of the last
111** valid frame in the WAL. The reader uses this recorded "mxFrame" value
112** for all subsequent read operations. New transactions can be appended
113** to the WAL, but as long as the reader uses its original mxFrame value
114** and ignores the newly appended content, it will see a consistent snapshot
115** of the database from a single point in time. This technique allows
116** multiple concurrent readers to view different versions of the database
117** content simultaneously.
118**
119** The reader algorithm in the previous paragraphs works correctly, but
drh29d4dbe2010-05-18 23:29:52 +0000120** because frames for page P can appear anywhere within the WAL, the
drh027a1282010-05-19 01:53:53 +0000121** reader has to scan the entire WAL looking for page P frames. If the
drh29d4dbe2010-05-18 23:29:52 +0000122** WAL is large (multiple megabytes is typical) that scan can be slow,
drh027a1282010-05-19 01:53:53 +0000123** and read performance suffers. To overcome this problem, a separate
124** data structure called the wal-index is maintained to expedite the
drh29d4dbe2010-05-18 23:29:52 +0000125** search for frames of a particular page.
126**
127** WAL-INDEX FORMAT
128**
129** Conceptually, the wal-index is shared memory, though VFS implementations
130** might choose to implement the wal-index using a mmapped file. Because
131** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132** on a network filesystem. All users of the database must be able to
133** share memory.
134**
135** The wal-index is transient. After a crash, the wal-index can (and should
136** be) reconstructed from the original WAL file. In fact, the VFS is required
137** to either truncate or zero the header of the wal-index when the last
138** connection to it closes. Because the wal-index is transient, it can
139** use an architecture-specific format; it does not have to be cross-platform.
140** Hence, unlike the database and WAL file formats which store all values
141** as big endian, the wal-index can store multi-byte values in the native
142** byte order of the host computer.
143**
144** The purpose of the wal-index is to answer this question quickly: Given
145** a page number P, return the index of the last frame for page P in the WAL,
146** or return NULL if there are no frames for page P in the WAL.
147**
148** The wal-index consists of a header region, followed by an one or
149** more index blocks.
150**
drh027a1282010-05-19 01:53:53 +0000151** The wal-index header contains the total number of frames within the WAL
danad3cadd2010-06-14 11:49:26 +0000152** in the the mxFrame field.
153**
154** Each index block except for the first contains information on
155** HASHTABLE_NPAGE frames. The first index block contains information on
156** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
157** HASHTABLE_NPAGE are selected so that together the wal-index header and
158** first index block are the same size as all other index blocks in the
159** wal-index.
160**
161** Each index block contains two sections, a page-mapping that contains the
162** database page number associated with each wal frame, and a hash-table
drhffca4302010-06-15 11:21:54 +0000163** that allows readers to query an index block for a specific page number.
danad3cadd2010-06-14 11:49:26 +0000164** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
165** for the first index block) 32-bit page numbers. The first entry in the
166** first index-block contains the database page number corresponding to the
167** first frame in the WAL file. The first entry in the second index block
168** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
169** the log, and so on.
170**
171** The last index block in a wal-index usually contains less than the full
172** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
173** depending on the contents of the WAL file. This does not change the
174** allocated size of the page-mapping array - the page-mapping array merely
175** contains unused entries.
drh027a1282010-05-19 01:53:53 +0000176**
177** Even without using the hash table, the last frame for page P
danad3cadd2010-06-14 11:49:26 +0000178** can be found by scanning the page-mapping sections of each index block
drh027a1282010-05-19 01:53:53 +0000179** starting with the last index block and moving toward the first, and
180** within each index block, starting at the end and moving toward the
181** beginning. The first entry that equals P corresponds to the frame
182** holding the content for that page.
183**
184** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
185** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
186** hash table for each page number in the mapping section, so the hash
187** table is never more than half full. The expected number of collisions
188** prior to finding a match is 1. Each entry of the hash table is an
189** 1-based index of an entry in the mapping section of the same
190** index block. Let K be the 1-based index of the largest entry in
191** the mapping section. (For index blocks other than the last, K will
192** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
193** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
drh73b64e42010-05-30 19:55:15 +0000194** contain a value of 0.
drh027a1282010-05-19 01:53:53 +0000195**
196** To look for page P in the hash table, first compute a hash iKey on
197** P as follows:
198**
199** iKey = (P * 383) % HASHTABLE_NSLOT
200**
201** Then start scanning entries of the hash table, starting with iKey
202** (wrapping around to the beginning when the end of the hash table is
203** reached) until an unused hash slot is found. Let the first unused slot
204** be at index iUnused. (iUnused might be less than iKey if there was
205** wrap-around.) Because the hash table is never more than half full,
206** the search is guaranteed to eventually hit an unused entry. Let
207** iMax be the value between iKey and iUnused, closest to iUnused,
208** where aHash[iMax]==P. If there is no iMax entry (if there exists
209** no hash slot such that aHash[i]==p) then page P is not in the
210** current index block. Otherwise the iMax-th mapping entry of the
211** current index block corresponds to the last entry that references
212** page P.
213**
214** A hash search begins with the last index block and moves toward the
215** first index block, looking for entries corresponding to page P. On
216** average, only two or three slots in each index block need to be
217** examined in order to either find the last entry for page P, or to
218** establish that no such entry exists in the block. Each index block
219** holds over 4000 entries. So two or three index blocks are sufficient
220** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
221** comparisons (on average) suffice to either locate a frame in the
222** WAL or to establish that the frame does not exist in the WAL. This
223** is much faster than scanning the entire 10MB WAL.
224**
225** Note that entries are added in order of increasing K. Hence, one
226** reader might be using some value K0 and a second reader that started
227** at a later time (after additional transactions were added to the WAL
228** and to the wal-index) might be using a different value K1, where K1>K0.
229** Both readers can use the same hash table and mapping section to get
230** the correct result. There may be entries in the hash table with
231** K>K0 but to the first reader, those entries will appear to be unused
232** slots in the hash table and so the first reader will get an answer as
233** if no values greater than K0 had ever been inserted into the hash table
234** in the first place - which is what reader one wants. Meanwhile, the
235** second reader using K1 will see additional values that were inserted
236** later, which is exactly what reader two wants.
237**
dan6f150142010-05-21 15:31:56 +0000238** When a rollback occurs, the value of K is decreased. Hash table entries
239** that correspond to frames greater than the new K value are removed
240** from the hash table at this point.
dan97a31352010-04-16 13:59:31 +0000241*/
drh29d4dbe2010-05-18 23:29:52 +0000242#ifndef SQLITE_OMIT_WAL
dan97a31352010-04-16 13:59:31 +0000243
drh29d4dbe2010-05-18 23:29:52 +0000244#include "wal.h"
245
drh73b64e42010-05-30 19:55:15 +0000246/*
drhc74c3332010-05-31 12:15:19 +0000247** Trace output macros
248*/
drhc74c3332010-05-31 12:15:19 +0000249#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
drh15d68092010-05-31 16:56:14 +0000250int sqlite3WalTrace = 0;
drhc74c3332010-05-31 12:15:19 +0000251# define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
252#else
253# define WALTRACE(X)
254#endif
255
dan10f5a502010-06-23 15:55:43 +0000256/*
257** The maximum (and only) versions of the wal and wal-index formats
258** that may be interpreted by this version of SQLite.
259**
260** If a client begins recovering a WAL file and finds that (a) the checksum
261** values in the wal-header are correct and (b) the version field is not
262** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
263**
264** Similarly, if a client successfully reads a wal-index header (i.e. the
265** checksum test is successful) and finds that the version field is not
266** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
267** returns SQLITE_CANTOPEN.
268*/
269#define WAL_MAX_VERSION 3007000
270#define WALINDEX_MAX_VERSION 3007000
drhc74c3332010-05-31 12:15:19 +0000271
272/*
drh73b64e42010-05-30 19:55:15 +0000273** Indices of various locking bytes. WAL_NREADER is the number
274** of available reader locks and should be at least 3.
275*/
276#define WAL_WRITE_LOCK 0
277#define WAL_ALL_BUT_WRITE 1
278#define WAL_CKPT_LOCK 1
279#define WAL_RECOVER_LOCK 2
280#define WAL_READ_LOCK(I) (3+(I))
281#define WAL_NREADER (SQLITE_SHM_NLOCK-3)
282
dan97a31352010-04-16 13:59:31 +0000283
drh7ed91f22010-04-29 22:34:07 +0000284/* Object declarations */
285typedef struct WalIndexHdr WalIndexHdr;
286typedef struct WalIterator WalIterator;
drh73b64e42010-05-30 19:55:15 +0000287typedef struct WalCkptInfo WalCkptInfo;
dan7c246102010-04-12 19:00:29 +0000288
289
290/*
drh286a2882010-05-20 23:51:06 +0000291** The following object holds a copy of the wal-index header content.
292**
293** The actual header in the wal-index consists of two copies of this
294** object.
drh9b78f792010-08-14 21:21:24 +0000295**
296** The szPage value can be any power of 2 between 512 and 32768, inclusive.
297** Or it can be 1 to represent a 65536-byte page. The latter case was
298** added in 3.7.1 when support for 64K pages was added.
dan7c246102010-04-12 19:00:29 +0000299*/
drh7ed91f22010-04-29 22:34:07 +0000300struct WalIndexHdr {
dan10f5a502010-06-23 15:55:43 +0000301 u32 iVersion; /* Wal-index version */
302 u32 unused; /* Unused (padding) field */
dan71d89912010-05-24 13:57:42 +0000303 u32 iChange; /* Counter incremented each transaction */
drh4b82c382010-05-31 18:24:19 +0000304 u8 isInit; /* 1 when initialized */
305 u8 bigEndCksum; /* True if checksums in WAL are big-endian */
drh9b78f792010-08-14 21:21:24 +0000306 u16 szPage; /* Database page size in bytes. 1==64K */
dand0aa3422010-05-31 16:41:53 +0000307 u32 mxFrame; /* Index of last valid frame in the WAL */
dan71d89912010-05-24 13:57:42 +0000308 u32 nPage; /* Size of database in pages */
309 u32 aFrameCksum[2]; /* Checksum of last frame in log */
310 u32 aSalt[2]; /* Two salt values copied from WAL header */
311 u32 aCksum[2]; /* Checksum over all prior fields */
dan7c246102010-04-12 19:00:29 +0000312};
313
drh73b64e42010-05-30 19:55:15 +0000314/*
315** A copy of the following object occurs in the wal-index immediately
316** following the second copy of the WalIndexHdr. This object stores
317** information used by checkpoint.
318**
319** nBackfill is the number of frames in the WAL that have been written
320** back into the database. (We call the act of moving content from WAL to
321** database "backfilling".) The nBackfill number is never greater than
322** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
323** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
324** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
325** mxFrame back to zero when the WAL is reset.
326**
327** There is one entry in aReadMark[] for each reader lock. If a reader
328** holds read-lock K, then the value in aReadMark[K] is no greater than
drhdb7f6472010-06-09 14:45:12 +0000329** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
330** for any aReadMark[] means that entry is unused. aReadMark[0] is
331** a special case; its value is never used and it exists as a place-holder
332** to avoid having to offset aReadMark[] indexs by one. Readers holding
333** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
334** directly from the database.
drh73b64e42010-05-30 19:55:15 +0000335**
336** The value of aReadMark[K] may only be changed by a thread that
337** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
338** aReadMark[K] cannot changed while there is a reader is using that mark
339** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
340**
341** The checkpointer may only transfer frames from WAL to database where
342** the frame numbers are less than or equal to every aReadMark[] that is
343** in use (that is, every aReadMark[j] for which there is a corresponding
344** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
345** largest value and will increase an unused aReadMark[] to mxFrame if there
346** is not already an aReadMark[] equal to mxFrame. The exception to the
347** previous sentence is when nBackfill equals mxFrame (meaning that everything
348** in the WAL has been backfilled into the database) then new readers
349** will choose aReadMark[0] which has value 0 and hence such reader will
350** get all their all content directly from the database file and ignore
351** the WAL.
352**
353** Writers normally append new frames to the end of the WAL. However,
354** if nBackfill equals mxFrame (meaning that all WAL content has been
355** written back into the database) and if no readers are using the WAL
356** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
357** the writer will first "reset" the WAL back to the beginning and start
358** writing new content beginning at frame 1.
359**
360** We assume that 32-bit loads are atomic and so no locks are needed in
361** order to read from any aReadMark[] entries.
362*/
363struct WalCkptInfo {
364 u32 nBackfill; /* Number of WAL frames backfilled into DB */
365 u32 aReadMark[WAL_NREADER]; /* Reader marks */
366};
drhdb7f6472010-06-09 14:45:12 +0000367#define READMARK_NOT_USED 0xffffffff
drh73b64e42010-05-30 19:55:15 +0000368
369
drh7e263722010-05-20 21:21:09 +0000370/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
371** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
372** only support mandatory file-locks, we do not read or write data
373** from the region of the file on which locks are applied.
danff207012010-04-24 04:49:15 +0000374*/
drh73b64e42010-05-30 19:55:15 +0000375#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo))
376#define WALINDEX_LOCK_RESERVED 16
drh026ac282010-05-26 15:06:38 +0000377#define WALINDEX_HDR_SIZE (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)
dan7c246102010-04-12 19:00:29 +0000378
drh7ed91f22010-04-29 22:34:07 +0000379/* Size of header before each frame in wal */
drh23ea97b2010-05-20 16:45:58 +0000380#define WAL_FRAME_HDRSIZE 24
danff207012010-04-24 04:49:15 +0000381
dan10f5a502010-06-23 15:55:43 +0000382/* Size of write ahead log header, including checksum. */
383/* #define WAL_HDRSIZE 24 */
384#define WAL_HDRSIZE 32
dan97a31352010-04-16 13:59:31 +0000385
danb8fd6c22010-05-24 10:39:36 +0000386/* WAL magic value. Either this value, or the same value with the least
387** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
388** big-endian format in the first 4 bytes of a WAL file.
389**
390** If the LSB is set, then the checksums for each frame within the WAL
391** file are calculated by treating all data as an array of 32-bit
392** big-endian words. Otherwise, they are calculated by interpreting
393** all data as 32-bit little-endian words.
394*/
395#define WAL_MAGIC 0x377f0682
396
dan97a31352010-04-16 13:59:31 +0000397/*
drh7ed91f22010-04-29 22:34:07 +0000398** Return the offset of frame iFrame in the write-ahead log file,
drh6e810962010-05-19 17:49:50 +0000399** assuming a database page size of szPage bytes. The offset returned
drh7ed91f22010-04-29 22:34:07 +0000400** is to the start of the write-ahead log frame-header.
dan97a31352010-04-16 13:59:31 +0000401*/
drh6e810962010-05-19 17:49:50 +0000402#define walFrameOffset(iFrame, szPage) ( \
danbd0e9072010-07-07 09:48:44 +0000403 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \
dan97a31352010-04-16 13:59:31 +0000404)
dan7c246102010-04-12 19:00:29 +0000405
406/*
drh7ed91f22010-04-29 22:34:07 +0000407** An open write-ahead log file is represented by an instance of the
408** following object.
dance4f05f2010-04-22 19:14:13 +0000409*/
drh7ed91f22010-04-29 22:34:07 +0000410struct Wal {
drh73b64e42010-05-30 19:55:15 +0000411 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
drhd9e5c4f2010-05-12 18:01:39 +0000412 sqlite3_file *pDbFd; /* File handle for the database file */
413 sqlite3_file *pWalFd; /* File handle for WAL file */
drh7ed91f22010-04-29 22:34:07 +0000414 u32 iCallback; /* Value to pass to log callback (or 0) */
drh85a83752011-05-16 21:00:27 +0000415 i64 mxWalSize; /* Truncate WAL to this size upon reset */
dan13a3cb82010-06-11 19:04:21 +0000416 int nWiData; /* Size of array apWiData */
drh88f975a2011-12-16 19:34:36 +0000417 int szFirstBlock; /* Size of first block written to WAL file */
dan13a3cb82010-06-11 19:04:21 +0000418 volatile u32 **apWiData; /* Pointer to wal-index content in memory */
drhb2eced52010-08-12 02:41:12 +0000419 u32 szPage; /* Database page size */
drh73b64e42010-05-30 19:55:15 +0000420 i16 readLock; /* Which read lock is being held. -1 for none */
drh4eb02a42011-12-16 21:26:26 +0000421 u8 syncFlags; /* Flags to use to sync header writes */
dan55437592010-05-11 12:19:26 +0000422 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
drh73b64e42010-05-30 19:55:15 +0000423 u8 writeLock; /* True if in a write transaction */
424 u8 ckptLock; /* True if holding a checkpoint lock */
drh66dfec8b2011-06-01 20:01:49 +0000425 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
danf60b7f32011-12-16 13:24:27 +0000426 u8 truncateOnCommit; /* True to truncate WAL file on commit */
drhd992b152011-12-20 20:13:25 +0000427 u8 syncHeader; /* Fsync the WAL header if true */
drh374f4a02011-12-17 20:02:11 +0000428 u8 padToSectorBoundary; /* Pad transactions out to the next sector */
drh73b64e42010-05-30 19:55:15 +0000429 WalIndexHdr hdr; /* Wal-index header for current transaction */
dan3e875ef2010-07-05 19:03:35 +0000430 const char *zWalName; /* Name of WAL file */
drh7e263722010-05-20 21:21:09 +0000431 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
drhaab4c022010-06-02 14:45:51 +0000432#ifdef SQLITE_DEBUG
433 u8 lockError; /* True if a locking error has occurred */
434#endif
dan7c246102010-04-12 19:00:29 +0000435};
436
drh73b64e42010-05-30 19:55:15 +0000437/*
dan8c408002010-11-01 17:38:24 +0000438** Candidate values for Wal.exclusiveMode.
439*/
440#define WAL_NORMAL_MODE 0
441#define WAL_EXCLUSIVE_MODE 1
442#define WAL_HEAPMEMORY_MODE 2
443
444/*
drh66dfec8b2011-06-01 20:01:49 +0000445** Possible values for WAL.readOnly
446*/
447#define WAL_RDWR 0 /* Normal read/write connection */
448#define WAL_RDONLY 1 /* The WAL file is readonly */
449#define WAL_SHM_RDONLY 2 /* The SHM file is readonly */
450
451/*
dan067f3162010-06-14 10:30:12 +0000452** Each page of the wal-index mapping contains a hash-table made up of
453** an array of HASHTABLE_NSLOT elements of the following type.
454*/
455typedef u16 ht_slot;
456
457/*
danad3cadd2010-06-14 11:49:26 +0000458** This structure is used to implement an iterator that loops through
459** all frames in the WAL in database page order. Where two or more frames
460** correspond to the same database page, the iterator visits only the
461** frame most recently written to the WAL (in other words, the frame with
462** the largest index).
463**
464** The internals of this structure are only accessed by:
465**
466** walIteratorInit() - Create a new iterator,
467** walIteratorNext() - Step an iterator,
468** walIteratorFree() - Free an iterator.
469**
470** This functionality is used by the checkpoint code (see walCheckpoint()).
471*/
472struct WalIterator {
473 int iPrior; /* Last result returned from the iterator */
drhd9c9b782010-12-15 21:02:06 +0000474 int nSegment; /* Number of entries in aSegment[] */
danad3cadd2010-06-14 11:49:26 +0000475 struct WalSegment {
476 int iNext; /* Next slot in aIndex[] not yet returned */
477 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
478 u32 *aPgno; /* Array of page numbers. */
drhd9c9b782010-12-15 21:02:06 +0000479 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */
danad3cadd2010-06-14 11:49:26 +0000480 int iZero; /* Frame number associated with aPgno[0] */
drhd9c9b782010-12-15 21:02:06 +0000481 } aSegment[1]; /* One for every 32KB page in the wal-index */
danad3cadd2010-06-14 11:49:26 +0000482};
483
484/*
dan13a3cb82010-06-11 19:04:21 +0000485** Define the parameters of the hash tables in the wal-index file. There
486** is a hash-table following every HASHTABLE_NPAGE page numbers in the
487** wal-index.
488**
489** Changing any of these constants will alter the wal-index format and
490** create incompatibilities.
491*/
dan067f3162010-06-14 10:30:12 +0000492#define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000493#define HASHTABLE_HASH_1 383 /* Should be prime */
494#define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000495
danad3cadd2010-06-14 11:49:26 +0000496/*
497** The block of page numbers associated with the first hash-table in a
dan13a3cb82010-06-11 19:04:21 +0000498** wal-index is smaller than usual. This is so that there is a complete
499** hash-table on each aligned 32KB page of the wal-index.
500*/
dan067f3162010-06-14 10:30:12 +0000501#define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
dan13a3cb82010-06-11 19:04:21 +0000502
dan067f3162010-06-14 10:30:12 +0000503/* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
504#define WALINDEX_PGSZ ( \
505 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
506)
dan13a3cb82010-06-11 19:04:21 +0000507
508/*
509** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
dan067f3162010-06-14 10:30:12 +0000510** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
dan13a3cb82010-06-11 19:04:21 +0000511** numbered from zero.
512**
513** If this call is successful, *ppPage is set to point to the wal-index
514** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
515** then an SQLite error code is returned and *ppPage is set to 0.
516*/
517static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
518 int rc = SQLITE_OK;
519
520 /* Enlarge the pWal->apWiData[] array if required */
521 if( pWal->nWiData<=iPage ){
drh519426a2010-07-09 03:19:07 +0000522 int nByte = sizeof(u32*)*(iPage+1);
dan13a3cb82010-06-11 19:04:21 +0000523 volatile u32 **apNew;
shaneh8a300f82010-07-02 18:15:31 +0000524 apNew = (volatile u32 **)sqlite3_realloc((void *)pWal->apWiData, nByte);
dan13a3cb82010-06-11 19:04:21 +0000525 if( !apNew ){
526 *ppPage = 0;
527 return SQLITE_NOMEM;
528 }
drh519426a2010-07-09 03:19:07 +0000529 memset((void*)&apNew[pWal->nWiData], 0,
530 sizeof(u32*)*(iPage+1-pWal->nWiData));
dan13a3cb82010-06-11 19:04:21 +0000531 pWal->apWiData = apNew;
532 pWal->nWiData = iPage+1;
533 }
534
535 /* Request a pointer to the required page from the VFS */
536 if( pWal->apWiData[iPage]==0 ){
dan8c408002010-11-01 17:38:24 +0000537 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
538 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
539 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM;
540 }else{
541 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
542 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
543 );
drh66dfec8b2011-06-01 20:01:49 +0000544 if( rc==SQLITE_READONLY ){
545 pWal->readOnly |= WAL_SHM_RDONLY;
546 rc = SQLITE_OK;
dan4edc6bf2011-05-10 17:31:29 +0000547 }
dan8c408002010-11-01 17:38:24 +0000548 }
dan13a3cb82010-06-11 19:04:21 +0000549 }
danb6d2f9c2011-05-11 14:57:33 +0000550
drh66dfec8b2011-06-01 20:01:49 +0000551 *ppPage = pWal->apWiData[iPage];
dan13a3cb82010-06-11 19:04:21 +0000552 assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
553 return rc;
554}
555
556/*
drh73b64e42010-05-30 19:55:15 +0000557** Return a pointer to the WalCkptInfo structure in the wal-index.
558*/
559static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000560 assert( pWal->nWiData>0 && pWal->apWiData[0] );
561 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
562}
563
564/*
565** Return a pointer to the WalIndexHdr structure in the wal-index.
566*/
567static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
568 assert( pWal->nWiData>0 && pWal->apWiData[0] );
569 return (volatile WalIndexHdr*)pWal->apWiData[0];
drh73b64e42010-05-30 19:55:15 +0000570}
571
dan7c246102010-04-12 19:00:29 +0000572/*
danb8fd6c22010-05-24 10:39:36 +0000573** The argument to this macro must be of type u32. On a little-endian
574** architecture, it returns the u32 value that results from interpreting
575** the 4 bytes as a big-endian value. On a big-endian architecture, it
576** returns the value that would be produced by intepreting the 4 bytes
577** of the input value as a little-endian integer.
578*/
579#define BYTESWAP32(x) ( \
580 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
581 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
582)
dan64d039e2010-04-13 19:27:31 +0000583
dan7c246102010-04-12 19:00:29 +0000584/*
drh7e263722010-05-20 21:21:09 +0000585** Generate or extend an 8 byte checksum based on the data in
586** array aByte[] and the initial values of aIn[0] and aIn[1] (or
587** initial values of 0 and 0 if aIn==NULL).
588**
589** The checksum is written back into aOut[] before returning.
590**
591** nByte must be a positive multiple of 8.
dan7c246102010-04-12 19:00:29 +0000592*/
drh7e263722010-05-20 21:21:09 +0000593static void walChecksumBytes(
danb8fd6c22010-05-24 10:39:36 +0000594 int nativeCksum, /* True for native byte-order, false for non-native */
drh7e263722010-05-20 21:21:09 +0000595 u8 *a, /* Content to be checksummed */
596 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
597 const u32 *aIn, /* Initial checksum value input */
598 u32 *aOut /* OUT: Final checksum value output */
599){
600 u32 s1, s2;
danb8fd6c22010-05-24 10:39:36 +0000601 u32 *aData = (u32 *)a;
602 u32 *aEnd = (u32 *)&a[nByte];
603
drh7e263722010-05-20 21:21:09 +0000604 if( aIn ){
605 s1 = aIn[0];
606 s2 = aIn[1];
607 }else{
608 s1 = s2 = 0;
609 }
dan7c246102010-04-12 19:00:29 +0000610
drh584c7542010-05-19 18:08:10 +0000611 assert( nByte>=8 );
danb8fd6c22010-05-24 10:39:36 +0000612 assert( (nByte&0x00000007)==0 );
dan7c246102010-04-12 19:00:29 +0000613
danb8fd6c22010-05-24 10:39:36 +0000614 if( nativeCksum ){
615 do {
616 s1 += *aData++ + s2;
617 s2 += *aData++ + s1;
618 }while( aData<aEnd );
619 }else{
620 do {
621 s1 += BYTESWAP32(aData[0]) + s2;
622 s2 += BYTESWAP32(aData[1]) + s1;
623 aData += 2;
624 }while( aData<aEnd );
625 }
626
drh7e263722010-05-20 21:21:09 +0000627 aOut[0] = s1;
628 aOut[1] = s2;
dan7c246102010-04-12 19:00:29 +0000629}
630
dan8c408002010-11-01 17:38:24 +0000631static void walShmBarrier(Wal *pWal){
632 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
633 sqlite3OsShmBarrier(pWal->pDbFd);
634 }
635}
636
dan7c246102010-04-12 19:00:29 +0000637/*
drh7e263722010-05-20 21:21:09 +0000638** Write the header information in pWal->hdr into the wal-index.
639**
640** The checksum on pWal->hdr is updated before it is written.
drh7ed91f22010-04-29 22:34:07 +0000641*/
drh7e263722010-05-20 21:21:09 +0000642static void walIndexWriteHdr(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000643 volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
644 const int nCksum = offsetof(WalIndexHdr, aCksum);
drh73b64e42010-05-30 19:55:15 +0000645
646 assert( pWal->writeLock );
drh4b82c382010-05-31 18:24:19 +0000647 pWal->hdr.isInit = 1;
dan10f5a502010-06-23 15:55:43 +0000648 pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
dan4280eb32010-06-12 12:02:35 +0000649 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
650 memcpy((void *)&aHdr[1], (void *)&pWal->hdr, sizeof(WalIndexHdr));
dan8c408002010-11-01 17:38:24 +0000651 walShmBarrier(pWal);
dan4280eb32010-06-12 12:02:35 +0000652 memcpy((void *)&aHdr[0], (void *)&pWal->hdr, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +0000653}
654
655/*
656** This function encodes a single frame header and writes it to a buffer
drh7ed91f22010-04-29 22:34:07 +0000657** supplied by the caller. A frame-header is made up of a series of
dan7c246102010-04-12 19:00:29 +0000658** 4-byte big-endian integers, as follows:
659**
drh23ea97b2010-05-20 16:45:58 +0000660** 0: Page number.
661** 4: For commit records, the size of the database image in pages
662** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +0000663** 8: Salt-1 (copied from the wal-header)
664** 12: Salt-2 (copied from the wal-header)
drh23ea97b2010-05-20 16:45:58 +0000665** 16: Checksum-1.
666** 20: Checksum-2.
dan7c246102010-04-12 19:00:29 +0000667*/
drh7ed91f22010-04-29 22:34:07 +0000668static void walEncodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000669 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000670 u32 iPage, /* Database page number for frame */
671 u32 nTruncate, /* New db size (or 0 for non-commit frames) */
drh7e263722010-05-20 21:21:09 +0000672 u8 *aData, /* Pointer to page data */
dan7c246102010-04-12 19:00:29 +0000673 u8 *aFrame /* OUT: Write encoded frame here */
674){
danb8fd6c22010-05-24 10:39:36 +0000675 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000676 u32 *aCksum = pWal->hdr.aFrameCksum;
drh23ea97b2010-05-20 16:45:58 +0000677 assert( WAL_FRAME_HDRSIZE==24 );
dan97a31352010-04-16 13:59:31 +0000678 sqlite3Put4byte(&aFrame[0], iPage);
679 sqlite3Put4byte(&aFrame[4], nTruncate);
drh7e263722010-05-20 21:21:09 +0000680 memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
dan7c246102010-04-12 19:00:29 +0000681
danb8fd6c22010-05-24 10:39:36 +0000682 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000683 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000684 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
dan7c246102010-04-12 19:00:29 +0000685
drh23ea97b2010-05-20 16:45:58 +0000686 sqlite3Put4byte(&aFrame[16], aCksum[0]);
687 sqlite3Put4byte(&aFrame[20], aCksum[1]);
dan7c246102010-04-12 19:00:29 +0000688}
689
690/*
drh7e263722010-05-20 21:21:09 +0000691** Check to see if the frame with header in aFrame[] and content
692** in aData[] is valid. If it is a valid frame, fill *piPage and
693** *pnTruncate and return true. Return if the frame is not valid.
dan7c246102010-04-12 19:00:29 +0000694*/
drh7ed91f22010-04-29 22:34:07 +0000695static int walDecodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000696 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000697 u32 *piPage, /* OUT: Database page number for frame */
698 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
dan7c246102010-04-12 19:00:29 +0000699 u8 *aData, /* Pointer to page data (for checksum) */
700 u8 *aFrame /* Frame data */
701){
danb8fd6c22010-05-24 10:39:36 +0000702 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000703 u32 *aCksum = pWal->hdr.aFrameCksum;
drhc8179152010-05-24 13:28:36 +0000704 u32 pgno; /* Page number of the frame */
drh23ea97b2010-05-20 16:45:58 +0000705 assert( WAL_FRAME_HDRSIZE==24 );
706
drh7e263722010-05-20 21:21:09 +0000707 /* A frame is only valid if the salt values in the frame-header
708 ** match the salt values in the wal-header.
709 */
710 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
drh23ea97b2010-05-20 16:45:58 +0000711 return 0;
712 }
dan4a4b01d2010-04-16 11:30:18 +0000713
drhc8179152010-05-24 13:28:36 +0000714 /* A frame is only valid if the page number is creater than zero.
715 */
716 pgno = sqlite3Get4byte(&aFrame[0]);
717 if( pgno==0 ){
718 return 0;
719 }
720
drh519426a2010-07-09 03:19:07 +0000721 /* A frame is only valid if a checksum of the WAL header,
722 ** all prior frams, the first 16 bytes of this frame-header,
723 ** and the frame-data matches the checksum in the last 8
724 ** bytes of this frame-header.
drh7e263722010-05-20 21:21:09 +0000725 */
danb8fd6c22010-05-24 10:39:36 +0000726 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000727 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000728 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
drh23ea97b2010-05-20 16:45:58 +0000729 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
730 || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
dan7c246102010-04-12 19:00:29 +0000731 ){
732 /* Checksum failed. */
733 return 0;
734 }
735
drh7e263722010-05-20 21:21:09 +0000736 /* If we reach this point, the frame is valid. Return the page number
737 ** and the new database size.
738 */
drhc8179152010-05-24 13:28:36 +0000739 *piPage = pgno;
dan97a31352010-04-16 13:59:31 +0000740 *pnTruncate = sqlite3Get4byte(&aFrame[4]);
dan7c246102010-04-12 19:00:29 +0000741 return 1;
742}
743
dan7c246102010-04-12 19:00:29 +0000744
drhc74c3332010-05-31 12:15:19 +0000745#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
746/*
drh181e0912010-06-01 01:08:08 +0000747** Names of locks. This routine is used to provide debugging output and is not
748** a part of an ordinary build.
drhc74c3332010-05-31 12:15:19 +0000749*/
750static const char *walLockName(int lockIdx){
751 if( lockIdx==WAL_WRITE_LOCK ){
752 return "WRITE-LOCK";
753 }else if( lockIdx==WAL_CKPT_LOCK ){
754 return "CKPT-LOCK";
755 }else if( lockIdx==WAL_RECOVER_LOCK ){
756 return "RECOVER-LOCK";
757 }else{
758 static char zName[15];
759 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
760 lockIdx-WAL_READ_LOCK(0));
761 return zName;
762 }
763}
764#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
765
766
dan7c246102010-04-12 19:00:29 +0000767/*
drh181e0912010-06-01 01:08:08 +0000768** Set or release locks on the WAL. Locks are either shared or exclusive.
769** A lock cannot be moved directly between shared and exclusive - it must go
770** through the unlocked state first.
drh73b64e42010-05-30 19:55:15 +0000771**
772** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
773*/
774static int walLockShared(Wal *pWal, int lockIdx){
drhc74c3332010-05-31 12:15:19 +0000775 int rc;
drh73b64e42010-05-30 19:55:15 +0000776 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000777 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
778 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
779 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
780 walLockName(lockIdx), rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000781 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000782 return rc;
drh73b64e42010-05-30 19:55:15 +0000783}
784static void walUnlockShared(Wal *pWal, int lockIdx){
785 if( pWal->exclusiveMode ) return;
786 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
787 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
drhc74c3332010-05-31 12:15:19 +0000788 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
drh73b64e42010-05-30 19:55:15 +0000789}
790static int walLockExclusive(Wal *pWal, int lockIdx, int n){
drhc74c3332010-05-31 12:15:19 +0000791 int rc;
drh73b64e42010-05-30 19:55:15 +0000792 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000793 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
794 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
795 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
796 walLockName(lockIdx), n, rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000797 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000798 return rc;
drh73b64e42010-05-30 19:55:15 +0000799}
800static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
801 if( pWal->exclusiveMode ) return;
802 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
803 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
drhc74c3332010-05-31 12:15:19 +0000804 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
805 walLockName(lockIdx), n));
drh73b64e42010-05-30 19:55:15 +0000806}
807
808/*
drh29d4dbe2010-05-18 23:29:52 +0000809** Compute a hash on a page number. The resulting hash value must land
drh181e0912010-06-01 01:08:08 +0000810** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
811** the hash to the next value in the event of a collision.
drh29d4dbe2010-05-18 23:29:52 +0000812*/
813static int walHash(u32 iPage){
814 assert( iPage>0 );
815 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
816 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
817}
818static int walNextHash(int iPriorHash){
819 return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
danbb23aff2010-05-10 14:46:09 +0000820}
821
dan4280eb32010-06-12 12:02:35 +0000822/*
823** Return pointers to the hash table and page number array stored on
824** page iHash of the wal-index. The wal-index is broken into 32KB pages
825** numbered starting from 0.
826**
827** Set output variable *paHash to point to the start of the hash table
828** in the wal-index file. Set *piZero to one less than the frame
829** number of the first frame indexed by this hash table. If a
830** slot in the hash table is set to N, it refers to frame number
831** (*piZero+N) in the log.
832**
dand60bf112010-06-14 11:18:50 +0000833** Finally, set *paPgno so that *paPgno[1] is the page number of the
834** first frame indexed by the hash table, frame (*piZero+1).
dan4280eb32010-06-12 12:02:35 +0000835*/
836static int walHashGet(
dan13a3cb82010-06-11 19:04:21 +0000837 Wal *pWal, /* WAL handle */
838 int iHash, /* Find the iHash'th table */
dan067f3162010-06-14 10:30:12 +0000839 volatile ht_slot **paHash, /* OUT: Pointer to hash index */
dan13a3cb82010-06-11 19:04:21 +0000840 volatile u32 **paPgno, /* OUT: Pointer to page number array */
841 u32 *piZero /* OUT: Frame associated with *paPgno[0] */
842){
dan4280eb32010-06-12 12:02:35 +0000843 int rc; /* Return code */
dan13a3cb82010-06-11 19:04:21 +0000844 volatile u32 *aPgno;
dan13a3cb82010-06-11 19:04:21 +0000845
dan4280eb32010-06-12 12:02:35 +0000846 rc = walIndexPage(pWal, iHash, &aPgno);
847 assert( rc==SQLITE_OK || iHash>0 );
dan13a3cb82010-06-11 19:04:21 +0000848
dan4280eb32010-06-12 12:02:35 +0000849 if( rc==SQLITE_OK ){
850 u32 iZero;
dan067f3162010-06-14 10:30:12 +0000851 volatile ht_slot *aHash;
dan4280eb32010-06-12 12:02:35 +0000852
dan067f3162010-06-14 10:30:12 +0000853 aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
dan4280eb32010-06-12 12:02:35 +0000854 if( iHash==0 ){
dand60bf112010-06-14 11:18:50 +0000855 aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
dan4280eb32010-06-12 12:02:35 +0000856 iZero = 0;
857 }else{
858 iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
dan4280eb32010-06-12 12:02:35 +0000859 }
860
dand60bf112010-06-14 11:18:50 +0000861 *paPgno = &aPgno[-1];
dan4280eb32010-06-12 12:02:35 +0000862 *paHash = aHash;
863 *piZero = iZero;
dan13a3cb82010-06-11 19:04:21 +0000864 }
dan4280eb32010-06-12 12:02:35 +0000865 return rc;
dan13a3cb82010-06-11 19:04:21 +0000866}
867
dan4280eb32010-06-12 12:02:35 +0000868/*
869** Return the number of the wal-index page that contains the hash-table
870** and page-number array that contain entries corresponding to WAL frame
871** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
872** are numbered starting from 0.
873*/
dan13a3cb82010-06-11 19:04:21 +0000874static int walFramePage(u32 iFrame){
875 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
876 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
877 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
878 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
879 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
880 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
881 );
882 return iHash;
883}
884
885/*
886** Return the page number associated with frame iFrame in this WAL.
887*/
888static u32 walFramePgno(Wal *pWal, u32 iFrame){
889 int iHash = walFramePage(iFrame);
890 if( iHash==0 ){
891 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
892 }
893 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
894}
danbb23aff2010-05-10 14:46:09 +0000895
danca6b5ba2010-05-25 10:50:56 +0000896/*
897** Remove entries from the hash table that point to WAL slots greater
898** than pWal->hdr.mxFrame.
899**
900** This function is called whenever pWal->hdr.mxFrame is decreased due
901** to a rollback or savepoint.
902**
drh181e0912010-06-01 01:08:08 +0000903** At most only the hash table containing pWal->hdr.mxFrame needs to be
904** updated. Any later hash tables will be automatically cleared when
905** pWal->hdr.mxFrame advances to the point where those hash tables are
906** actually needed.
danca6b5ba2010-05-25 10:50:56 +0000907*/
908static void walCleanupHash(Wal *pWal){
drhff828942010-06-26 21:34:06 +0000909 volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */
910 volatile u32 *aPgno = 0; /* Page number array for hash table */
911 u32 iZero = 0; /* frame == (aHash[x]+iZero) */
dan067f3162010-06-14 10:30:12 +0000912 int iLimit = 0; /* Zero values greater than this */
913 int nByte; /* Number of bytes to zero in aPgno[] */
914 int i; /* Used to iterate through aHash[] */
danca6b5ba2010-05-25 10:50:56 +0000915
drh73b64e42010-05-30 19:55:15 +0000916 assert( pWal->writeLock );
drhffca4302010-06-15 11:21:54 +0000917 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
918 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
919 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
drh9c156472010-06-01 12:58:41 +0000920
dan4280eb32010-06-12 12:02:35 +0000921 if( pWal->hdr.mxFrame==0 ) return;
922
923 /* Obtain pointers to the hash-table and page-number array containing
924 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
925 ** that the page said hash-table and array reside on is already mapped.
926 */
927 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
928 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
929 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
930
931 /* Zero all hash-table entries that correspond to frame numbers greater
932 ** than pWal->hdr.mxFrame.
933 */
934 iLimit = pWal->hdr.mxFrame - iZero;
935 assert( iLimit>0 );
936 for(i=0; i<HASHTABLE_NSLOT; i++){
937 if( aHash[i]>iLimit ){
938 aHash[i] = 0;
danca6b5ba2010-05-25 10:50:56 +0000939 }
danca6b5ba2010-05-25 10:50:56 +0000940 }
dan4280eb32010-06-12 12:02:35 +0000941
942 /* Zero the entries in the aPgno array that correspond to frames with
943 ** frame numbers greater than pWal->hdr.mxFrame.
944 */
shaneh5eba1f62010-07-02 17:05:03 +0000945 nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
dand60bf112010-06-14 11:18:50 +0000946 memset((void *)&aPgno[iLimit+1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +0000947
948#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
949 /* Verify that the every entry in the mapping region is still reachable
950 ** via the hash table even after the cleanup.
951 */
drhf77bbd92010-06-01 13:17:44 +0000952 if( iLimit ){
danca6b5ba2010-05-25 10:50:56 +0000953 int i; /* Loop counter */
954 int iKey; /* Hash key */
955 for(i=1; i<=iLimit; i++){
dand60bf112010-06-14 11:18:50 +0000956 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
danca6b5ba2010-05-25 10:50:56 +0000957 if( aHash[iKey]==i ) break;
958 }
959 assert( aHash[iKey]==i );
960 }
961 }
962#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
963}
964
danbb23aff2010-05-10 14:46:09 +0000965
drh7ed91f22010-04-29 22:34:07 +0000966/*
drh29d4dbe2010-05-18 23:29:52 +0000967** Set an entry in the wal-index that will map database page number
968** pPage into WAL frame iFrame.
dan7c246102010-04-12 19:00:29 +0000969*/
drh7ed91f22010-04-29 22:34:07 +0000970static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
dan4280eb32010-06-12 12:02:35 +0000971 int rc; /* Return code */
drhff828942010-06-26 21:34:06 +0000972 u32 iZero = 0; /* One less than frame number of aPgno[1] */
973 volatile u32 *aPgno = 0; /* Page number array */
974 volatile ht_slot *aHash = 0; /* Hash table */
dance4f05f2010-04-22 19:14:13 +0000975
dan4280eb32010-06-12 12:02:35 +0000976 rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
977
978 /* Assuming the wal-index file was successfully mapped, populate the
979 ** page number array and hash table entry.
dan7c246102010-04-12 19:00:29 +0000980 */
danbb23aff2010-05-10 14:46:09 +0000981 if( rc==SQLITE_OK ){
982 int iKey; /* Hash table key */
dan4280eb32010-06-12 12:02:35 +0000983 int idx; /* Value to write to hash-table slot */
drh519426a2010-07-09 03:19:07 +0000984 int nCollide; /* Number of hash collisions */
dan7c246102010-04-12 19:00:29 +0000985
danbb23aff2010-05-10 14:46:09 +0000986 idx = iFrame - iZero;
dan4280eb32010-06-12 12:02:35 +0000987 assert( idx <= HASHTABLE_NSLOT/2 + 1 );
988
989 /* If this is the first entry to be added to this hash-table, zero the
990 ** entire hash table and aPgno[] array before proceding.
991 */
danca6b5ba2010-05-25 10:50:56 +0000992 if( idx==1 ){
shaneh5eba1f62010-07-02 17:05:03 +0000993 int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
dand60bf112010-06-14 11:18:50 +0000994 memset((void*)&aPgno[1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +0000995 }
danca6b5ba2010-05-25 10:50:56 +0000996
dan4280eb32010-06-12 12:02:35 +0000997 /* If the entry in aPgno[] is already set, then the previous writer
998 ** must have exited unexpectedly in the middle of a transaction (after
999 ** writing one or more dirty pages to the WAL to free up memory).
1000 ** Remove the remnants of that writers uncommitted transaction from
1001 ** the hash-table before writing any new entries.
1002 */
dand60bf112010-06-14 11:18:50 +00001003 if( aPgno[idx] ){
danca6b5ba2010-05-25 10:50:56 +00001004 walCleanupHash(pWal);
dand60bf112010-06-14 11:18:50 +00001005 assert( !aPgno[idx] );
danca6b5ba2010-05-25 10:50:56 +00001006 }
dan4280eb32010-06-12 12:02:35 +00001007
1008 /* Write the aPgno[] array entry and the hash-table slot. */
drh519426a2010-07-09 03:19:07 +00001009 nCollide = idx;
dan6f150142010-05-21 15:31:56 +00001010 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
drh519426a2010-07-09 03:19:07 +00001011 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
drh29d4dbe2010-05-18 23:29:52 +00001012 }
dand60bf112010-06-14 11:18:50 +00001013 aPgno[idx] = iPage;
shaneh5eba1f62010-07-02 17:05:03 +00001014 aHash[iKey] = (ht_slot)idx;
drh4fa95bf2010-05-22 00:55:39 +00001015
1016#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1017 /* Verify that the number of entries in the hash table exactly equals
1018 ** the number of entries in the mapping region.
1019 */
1020 {
1021 int i; /* Loop counter */
1022 int nEntry = 0; /* Number of entries in the hash table */
1023 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
1024 assert( nEntry==idx );
1025 }
1026
1027 /* Verify that the every entry in the mapping region is reachable
1028 ** via the hash table. This turns out to be a really, really expensive
1029 ** thing to check, so only do this occasionally - not on every
1030 ** iteration.
1031 */
1032 if( (idx&0x3ff)==0 ){
1033 int i; /* Loop counter */
1034 for(i=1; i<=idx; i++){
dand60bf112010-06-14 11:18:50 +00001035 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
drh4fa95bf2010-05-22 00:55:39 +00001036 if( aHash[iKey]==i ) break;
1037 }
1038 assert( aHash[iKey]==i );
1039 }
1040 }
1041#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
dan7c246102010-04-12 19:00:29 +00001042 }
dan31f98fc2010-04-27 05:42:32 +00001043
drh4fa95bf2010-05-22 00:55:39 +00001044
danbb23aff2010-05-10 14:46:09 +00001045 return rc;
dan7c246102010-04-12 19:00:29 +00001046}
1047
1048
1049/*
drh7ed91f22010-04-29 22:34:07 +00001050** Recover the wal-index by reading the write-ahead log file.
drh73b64e42010-05-30 19:55:15 +00001051**
1052** This routine first tries to establish an exclusive lock on the
1053** wal-index to prevent other threads/processes from doing anything
1054** with the WAL or wal-index while recovery is running. The
1055** WAL_RECOVER_LOCK is also held so that other threads will know
1056** that this thread is running recovery. If unable to establish
1057** the necessary locks, this routine returns SQLITE_BUSY.
dan7c246102010-04-12 19:00:29 +00001058*/
drh7ed91f22010-04-29 22:34:07 +00001059static int walIndexRecover(Wal *pWal){
dan7c246102010-04-12 19:00:29 +00001060 int rc; /* Return Code */
1061 i64 nSize; /* Size of log file */
dan71d89912010-05-24 13:57:42 +00001062 u32 aFrameCksum[2] = {0, 0};
dand0aa3422010-05-31 16:41:53 +00001063 int iLock; /* Lock offset to lock for checkpoint */
1064 int nLock; /* Number of locks to hold */
dan7c246102010-04-12 19:00:29 +00001065
dand0aa3422010-05-31 16:41:53 +00001066 /* Obtain an exclusive lock on all byte in the locking range not already
1067 ** locked by the caller. The caller is guaranteed to have locked the
1068 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1069 ** If successful, the same bytes that are locked here are unlocked before
1070 ** this function returns.
1071 */
1072 assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1073 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1074 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1075 assert( pWal->writeLock );
1076 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1077 nLock = SQLITE_SHM_NLOCK - iLock;
1078 rc = walLockExclusive(pWal, iLock, nLock);
drh73b64e42010-05-30 19:55:15 +00001079 if( rc ){
1080 return rc;
1081 }
drhc74c3332010-05-31 12:15:19 +00001082 WALTRACE(("WAL%p: recovery begin...\n", pWal));
drh73b64e42010-05-30 19:55:15 +00001083
dan71d89912010-05-24 13:57:42 +00001084 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +00001085
drhd9e5c4f2010-05-12 18:01:39 +00001086 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
dan7c246102010-04-12 19:00:29 +00001087 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001088 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001089 }
1090
danb8fd6c22010-05-24 10:39:36 +00001091 if( nSize>WAL_HDRSIZE ){
1092 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
dan7c246102010-04-12 19:00:29 +00001093 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
drh584c7542010-05-19 18:08:10 +00001094 int szFrame; /* Number of bytes in buffer aFrame[] */
dan7c246102010-04-12 19:00:29 +00001095 u8 *aData; /* Pointer to data part of aFrame buffer */
1096 int iFrame; /* Index of last frame read */
1097 i64 iOffset; /* Next offset to read from log file */
drh6e810962010-05-19 17:49:50 +00001098 int szPage; /* Page size according to the log */
danb8fd6c22010-05-24 10:39:36 +00001099 u32 magic; /* Magic value read from WAL header */
dan10f5a502010-06-23 15:55:43 +00001100 u32 version; /* Magic value read from WAL header */
drhfe6163d2011-12-17 13:45:28 +00001101 int isValid; /* True if this frame is valid */
dan7c246102010-04-12 19:00:29 +00001102
danb8fd6c22010-05-24 10:39:36 +00001103 /* Read in the WAL header. */
drhd9e5c4f2010-05-12 18:01:39 +00001104 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
dan7c246102010-04-12 19:00:29 +00001105 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001106 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001107 }
1108
1109 /* If the database page size is not a power of two, or is greater than
danb8fd6c22010-05-24 10:39:36 +00001110 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1111 ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1112 ** WAL file.
dan7c246102010-04-12 19:00:29 +00001113 */
danb8fd6c22010-05-24 10:39:36 +00001114 magic = sqlite3Get4byte(&aBuf[0]);
drh23ea97b2010-05-20 16:45:58 +00001115 szPage = sqlite3Get4byte(&aBuf[8]);
danb8fd6c22010-05-24 10:39:36 +00001116 if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1117 || szPage&(szPage-1)
1118 || szPage>SQLITE_MAX_PAGE_SIZE
1119 || szPage<512
1120 ){
dan7c246102010-04-12 19:00:29 +00001121 goto finished;
1122 }
shaneh5eba1f62010-07-02 17:05:03 +00001123 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
drhb2eced52010-08-12 02:41:12 +00001124 pWal->szPage = szPage;
drh23ea97b2010-05-20 16:45:58 +00001125 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
drh7e263722010-05-20 21:21:09 +00001126 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
drhcd285082010-06-23 22:00:35 +00001127
1128 /* Verify that the WAL header checksum is correct */
dan71d89912010-05-24 13:57:42 +00001129 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
dan10f5a502010-06-23 15:55:43 +00001130 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
dan71d89912010-05-24 13:57:42 +00001131 );
dan10f5a502010-06-23 15:55:43 +00001132 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1133 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1134 ){
1135 goto finished;
1136 }
1137
drhcd285082010-06-23 22:00:35 +00001138 /* Verify that the version number on the WAL format is one that
1139 ** are able to understand */
dan10f5a502010-06-23 15:55:43 +00001140 version = sqlite3Get4byte(&aBuf[4]);
1141 if( version!=WAL_MAX_VERSION ){
1142 rc = SQLITE_CANTOPEN_BKPT;
1143 goto finished;
1144 }
1145
dan7c246102010-04-12 19:00:29 +00001146 /* Malloc a buffer to read frames into. */
drh584c7542010-05-19 18:08:10 +00001147 szFrame = szPage + WAL_FRAME_HDRSIZE;
1148 aFrame = (u8 *)sqlite3_malloc(szFrame);
dan7c246102010-04-12 19:00:29 +00001149 if( !aFrame ){
drh73b64e42010-05-30 19:55:15 +00001150 rc = SQLITE_NOMEM;
1151 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001152 }
drh7ed91f22010-04-29 22:34:07 +00001153 aData = &aFrame[WAL_FRAME_HDRSIZE];
dan7c246102010-04-12 19:00:29 +00001154
1155 /* Read all frames from the log file. */
1156 iFrame = 0;
drh584c7542010-05-19 18:08:10 +00001157 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
dan7c246102010-04-12 19:00:29 +00001158 u32 pgno; /* Database page number for frame */
1159 u32 nTruncate; /* dbsize field from frame header */
dan7c246102010-04-12 19:00:29 +00001160
1161 /* Read and decode the next log frame. */
drhfe6163d2011-12-17 13:45:28 +00001162 iFrame++;
drh584c7542010-05-19 18:08:10 +00001163 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
dan7c246102010-04-12 19:00:29 +00001164 if( rc!=SQLITE_OK ) break;
drh7e263722010-05-20 21:21:09 +00001165 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
drhf694aa62011-12-20 22:18:51 +00001166 if( !isValid ) break;
drhfe6163d2011-12-17 13:45:28 +00001167 rc = walIndexAppend(pWal, iFrame, pgno);
danc7991bd2010-05-05 19:04:59 +00001168 if( rc!=SQLITE_OK ) break;
dan7c246102010-04-12 19:00:29 +00001169
1170 /* If nTruncate is non-zero, this is a commit record. */
1171 if( nTruncate ){
dan71d89912010-05-24 13:57:42 +00001172 pWal->hdr.mxFrame = iFrame;
1173 pWal->hdr.nPage = nTruncate;
shaneh1df2db72010-08-18 02:28:48 +00001174 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00001175 testcase( szPage<=32768 );
1176 testcase( szPage>=65536 );
dan71d89912010-05-24 13:57:42 +00001177 aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1178 aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
dan7c246102010-04-12 19:00:29 +00001179 }
1180 }
1181
1182 sqlite3_free(aFrame);
dan7c246102010-04-12 19:00:29 +00001183 }
1184
1185finished:
dan576bc322010-05-06 18:04:50 +00001186 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001187 volatile WalCkptInfo *pInfo;
1188 int i;
dan71d89912010-05-24 13:57:42 +00001189 pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1190 pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
drh7e263722010-05-20 21:21:09 +00001191 walIndexWriteHdr(pWal);
dan3dee6da2010-05-31 16:17:54 +00001192
drhdb7f6472010-06-09 14:45:12 +00001193 /* Reset the checkpoint-header. This is safe because this thread is
dan3dee6da2010-05-31 16:17:54 +00001194 ** currently holding locks that exclude all other readers, writers and
1195 ** checkpointers.
1196 */
drhdb7f6472010-06-09 14:45:12 +00001197 pInfo = walCkptInfo(pWal);
1198 pInfo->nBackfill = 0;
1199 pInfo->aReadMark[0] = 0;
1200 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
daneb8763d2010-08-17 14:52:22 +00001201
1202 /* If more than one frame was recovered from the log file, report an
1203 ** event via sqlite3_log(). This is to help with identifying performance
1204 ** problems caused by applications routinely shutting down without
1205 ** checkpointing the log file.
1206 */
1207 if( pWal->hdr.nPage ){
1208 sqlite3_log(SQLITE_OK, "Recovered %d frames from WAL file %s",
1209 pWal->hdr.nPage, pWal->zWalName
1210 );
1211 }
dan576bc322010-05-06 18:04:50 +00001212 }
drh73b64e42010-05-30 19:55:15 +00001213
1214recovery_error:
drhc74c3332010-05-31 12:15:19 +00001215 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
dand0aa3422010-05-31 16:41:53 +00001216 walUnlockExclusive(pWal, iLock, nLock);
dan7c246102010-04-12 19:00:29 +00001217 return rc;
1218}
1219
drha8e654e2010-05-04 17:38:42 +00001220/*
dan1018e902010-05-05 15:33:05 +00001221** Close an open wal-index.
drha8e654e2010-05-04 17:38:42 +00001222*/
dan1018e902010-05-05 15:33:05 +00001223static void walIndexClose(Wal *pWal, int isDelete){
dan8c408002010-11-01 17:38:24 +00001224 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
1225 int i;
1226 for(i=0; i<pWal->nWiData; i++){
1227 sqlite3_free((void *)pWal->apWiData[i]);
1228 pWal->apWiData[i] = 0;
1229 }
1230 }else{
1231 sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1232 }
drha8e654e2010-05-04 17:38:42 +00001233}
1234
dan7c246102010-04-12 19:00:29 +00001235/*
dan3e875ef2010-07-05 19:03:35 +00001236** Open a connection to the WAL file zWalName. The database file must
1237** already be opened on connection pDbFd. The buffer that zWalName points
1238** to must remain valid for the lifetime of the returned Wal* handle.
dan3de777f2010-04-17 12:31:37 +00001239**
1240** A SHARED lock should be held on the database file when this function
1241** is called. The purpose of this SHARED lock is to prevent any other
drh181e0912010-06-01 01:08:08 +00001242** client from unlinking the WAL or wal-index file. If another process
dan3de777f2010-04-17 12:31:37 +00001243** were to do this just after this client opened one of these files, the
1244** system would be badly broken.
danef378022010-05-04 11:06:03 +00001245**
1246** If the log file is successfully opened, SQLITE_OK is returned and
1247** *ppWal is set to point to a new WAL handle. If an error occurs,
1248** an SQLite error code is returned and *ppWal is left unmodified.
dan7c246102010-04-12 19:00:29 +00001249*/
drhc438efd2010-04-26 00:19:45 +00001250int sqlite3WalOpen(
drh7ed91f22010-04-29 22:34:07 +00001251 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
drhd9e5c4f2010-05-12 18:01:39 +00001252 sqlite3_file *pDbFd, /* The open database file */
dan3e875ef2010-07-05 19:03:35 +00001253 const char *zWalName, /* Name of the WAL file */
dan8c408002010-11-01 17:38:24 +00001254 int bNoShm, /* True to run in heap-memory mode */
drh85a83752011-05-16 21:00:27 +00001255 i64 mxWalSize, /* Truncate WAL to this size on reset */
drh7ed91f22010-04-29 22:34:07 +00001256 Wal **ppWal /* OUT: Allocated Wal handle */
dan7c246102010-04-12 19:00:29 +00001257){
danef378022010-05-04 11:06:03 +00001258 int rc; /* Return Code */
drh7ed91f22010-04-29 22:34:07 +00001259 Wal *pRet; /* Object to allocate and return */
dan7c246102010-04-12 19:00:29 +00001260 int flags; /* Flags passed to OsOpen() */
dan7c246102010-04-12 19:00:29 +00001261
dan3e875ef2010-07-05 19:03:35 +00001262 assert( zWalName && zWalName[0] );
drhd9e5c4f2010-05-12 18:01:39 +00001263 assert( pDbFd );
dan7c246102010-04-12 19:00:29 +00001264
drh1b78eaf2010-05-25 13:40:03 +00001265 /* In the amalgamation, the os_unix.c and os_win.c source files come before
1266 ** this source file. Verify that the #defines of the locking byte offsets
1267 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1268 */
1269#ifdef WIN_SHM_BASE
1270 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1271#endif
1272#ifdef UNIX_SHM_BASE
1273 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1274#endif
1275
1276
drh7ed91f22010-04-29 22:34:07 +00001277 /* Allocate an instance of struct Wal to return. */
1278 *ppWal = 0;
dan3e875ef2010-07-05 19:03:35 +00001279 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
dan76ed3bc2010-05-03 17:18:24 +00001280 if( !pRet ){
1281 return SQLITE_NOMEM;
1282 }
1283
dan7c246102010-04-12 19:00:29 +00001284 pRet->pVfs = pVfs;
drhd9e5c4f2010-05-12 18:01:39 +00001285 pRet->pWalFd = (sqlite3_file *)&pRet[1];
1286 pRet->pDbFd = pDbFd;
drh73b64e42010-05-30 19:55:15 +00001287 pRet->readLock = -1;
drh85a83752011-05-16 21:00:27 +00001288 pRet->mxWalSize = mxWalSize;
dan3e875ef2010-07-05 19:03:35 +00001289 pRet->zWalName = zWalName;
drhd992b152011-12-20 20:13:25 +00001290 pRet->syncHeader = 1;
drh374f4a02011-12-17 20:02:11 +00001291 pRet->padToSectorBoundary = 1;
dan8c408002010-11-01 17:38:24 +00001292 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
dan7c246102010-04-12 19:00:29 +00001293
drh7ed91f22010-04-29 22:34:07 +00001294 /* Open file handle on the write-ahead log file. */
danddb0ac42010-07-14 14:48:58 +00001295 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
danda9fe0c2010-07-13 18:44:03 +00001296 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
dan50833e32010-07-14 16:37:17 +00001297 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
drh66dfec8b2011-06-01 20:01:49 +00001298 pRet->readOnly = WAL_RDONLY;
dan50833e32010-07-14 16:37:17 +00001299 }
dan7c246102010-04-12 19:00:29 +00001300
dan7c246102010-04-12 19:00:29 +00001301 if( rc!=SQLITE_OK ){
dan1018e902010-05-05 15:33:05 +00001302 walIndexClose(pRet, 0);
drhd9e5c4f2010-05-12 18:01:39 +00001303 sqlite3OsClose(pRet->pWalFd);
danef378022010-05-04 11:06:03 +00001304 sqlite3_free(pRet);
1305 }else{
drh4eb02a42011-12-16 21:26:26 +00001306 int iDC = sqlite3OsDeviceCharacteristics(pRet->pWalFd);
drhd992b152011-12-20 20:13:25 +00001307 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
drhcb15f352011-12-23 01:04:17 +00001308 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1309 pRet->padToSectorBoundary = 0;
1310 }
danef378022010-05-04 11:06:03 +00001311 *ppWal = pRet;
drhc74c3332010-05-31 12:15:19 +00001312 WALTRACE(("WAL%d: opened\n", pRet));
dan7c246102010-04-12 19:00:29 +00001313 }
dan7c246102010-04-12 19:00:29 +00001314 return rc;
1315}
1316
drha2a42012010-05-18 18:01:08 +00001317/*
drh85a83752011-05-16 21:00:27 +00001318** Change the size to which the WAL file is trucated on each reset.
1319*/
1320void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1321 if( pWal ) pWal->mxWalSize = iLimit;
1322}
1323
1324/*
drha2a42012010-05-18 18:01:08 +00001325** Find the smallest page number out of all pages held in the WAL that
1326** has not been returned by any prior invocation of this method on the
1327** same WalIterator object. Write into *piFrame the frame index where
1328** that page was last written into the WAL. Write into *piPage the page
1329** number.
1330**
1331** Return 0 on success. If there are no pages in the WAL with a page
1332** number larger than *piPage, then return 1.
1333*/
drh7ed91f22010-04-29 22:34:07 +00001334static int walIteratorNext(
1335 WalIterator *p, /* Iterator */
drha2a42012010-05-18 18:01:08 +00001336 u32 *piPage, /* OUT: The page number of the next page */
1337 u32 *piFrame /* OUT: Wal frame index of next page */
dan7c246102010-04-12 19:00:29 +00001338){
drha2a42012010-05-18 18:01:08 +00001339 u32 iMin; /* Result pgno must be greater than iMin */
1340 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
1341 int i; /* For looping through segments */
dan7c246102010-04-12 19:00:29 +00001342
drha2a42012010-05-18 18:01:08 +00001343 iMin = p->iPrior;
1344 assert( iMin<0xffffffff );
dan7c246102010-04-12 19:00:29 +00001345 for(i=p->nSegment-1; i>=0; i--){
drh7ed91f22010-04-29 22:34:07 +00001346 struct WalSegment *pSegment = &p->aSegment[i];
dan13a3cb82010-06-11 19:04:21 +00001347 while( pSegment->iNext<pSegment->nEntry ){
drha2a42012010-05-18 18:01:08 +00001348 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
dan7c246102010-04-12 19:00:29 +00001349 if( iPg>iMin ){
1350 if( iPg<iRet ){
1351 iRet = iPg;
dan13a3cb82010-06-11 19:04:21 +00001352 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
dan7c246102010-04-12 19:00:29 +00001353 }
1354 break;
1355 }
1356 pSegment->iNext++;
1357 }
dan7c246102010-04-12 19:00:29 +00001358 }
1359
drha2a42012010-05-18 18:01:08 +00001360 *piPage = p->iPrior = iRet;
dan7c246102010-04-12 19:00:29 +00001361 return (iRet==0xFFFFFFFF);
1362}
1363
danf544b4c2010-06-25 11:35:52 +00001364/*
1365** This function merges two sorted lists into a single sorted list.
drhd9c9b782010-12-15 21:02:06 +00001366**
1367** aLeft[] and aRight[] are arrays of indices. The sort key is
1368** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following
1369** is guaranteed for all J<K:
1370**
1371** aContent[aLeft[J]] < aContent[aLeft[K]]
1372** aContent[aRight[J]] < aContent[aRight[K]]
1373**
1374** This routine overwrites aRight[] with a new (probably longer) sequence
1375** of indices such that the aRight[] contains every index that appears in
1376** either aLeft[] or the old aRight[] and such that the second condition
1377** above is still met.
1378**
1379** The aContent[aLeft[X]] values will be unique for all X. And the
1380** aContent[aRight[X]] values will be unique too. But there might be
1381** one or more combinations of X and Y such that
1382**
1383** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]]
1384**
1385** When that happens, omit the aLeft[X] and use the aRight[Y] index.
danf544b4c2010-06-25 11:35:52 +00001386*/
1387static void walMerge(
drhd9c9b782010-12-15 21:02:06 +00001388 const u32 *aContent, /* Pages in wal - keys for the sort */
danf544b4c2010-06-25 11:35:52 +00001389 ht_slot *aLeft, /* IN: Left hand input list */
1390 int nLeft, /* IN: Elements in array *paLeft */
1391 ht_slot **paRight, /* IN/OUT: Right hand input list */
1392 int *pnRight, /* IN/OUT: Elements in *paRight */
1393 ht_slot *aTmp /* Temporary buffer */
1394){
1395 int iLeft = 0; /* Current index in aLeft */
1396 int iRight = 0; /* Current index in aRight */
1397 int iOut = 0; /* Current index in output buffer */
1398 int nRight = *pnRight;
1399 ht_slot *aRight = *paRight;
dan7c246102010-04-12 19:00:29 +00001400
danf544b4c2010-06-25 11:35:52 +00001401 assert( nLeft>0 && nRight>0 );
1402 while( iRight<nRight || iLeft<nLeft ){
1403 ht_slot logpage;
1404 Pgno dbpage;
1405
1406 if( (iLeft<nLeft)
1407 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1408 ){
1409 logpage = aLeft[iLeft++];
1410 }else{
1411 logpage = aRight[iRight++];
1412 }
1413 dbpage = aContent[logpage];
1414
1415 aTmp[iOut++] = logpage;
1416 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1417
1418 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1419 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1420 }
1421
1422 *paRight = aLeft;
1423 *pnRight = iOut;
1424 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1425}
1426
1427/*
drhd9c9b782010-12-15 21:02:06 +00001428** Sort the elements in list aList using aContent[] as the sort key.
1429** Remove elements with duplicate keys, preferring to keep the
1430** larger aList[] values.
1431**
1432** The aList[] entries are indices into aContent[]. The values in
1433** aList[] are to be sorted so that for all J<K:
1434**
1435** aContent[aList[J]] < aContent[aList[K]]
1436**
1437** For any X and Y such that
1438**
1439** aContent[aList[X]] == aContent[aList[Y]]
1440**
1441** Keep the larger of the two values aList[X] and aList[Y] and discard
1442** the smaller.
danf544b4c2010-06-25 11:35:52 +00001443*/
dan13a3cb82010-06-11 19:04:21 +00001444static void walMergesort(
drhd9c9b782010-12-15 21:02:06 +00001445 const u32 *aContent, /* Pages in wal */
dan067f3162010-06-14 10:30:12 +00001446 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
1447 ht_slot *aList, /* IN/OUT: List to sort */
drha2a42012010-05-18 18:01:08 +00001448 int *pnList /* IN/OUT: Number of elements in aList[] */
1449){
danf544b4c2010-06-25 11:35:52 +00001450 struct Sublist {
1451 int nList; /* Number of elements in aList */
1452 ht_slot *aList; /* Pointer to sub-list content */
1453 };
drha2a42012010-05-18 18:01:08 +00001454
danf544b4c2010-06-25 11:35:52 +00001455 const int nList = *pnList; /* Size of input list */
drhff828942010-06-26 21:34:06 +00001456 int nMerge = 0; /* Number of elements in list aMerge */
1457 ht_slot *aMerge = 0; /* List to be merged */
danf544b4c2010-06-25 11:35:52 +00001458 int iList; /* Index into input list */
drh7d113eb2010-06-26 20:00:54 +00001459 int iSub = 0; /* Index into aSub array */
danf544b4c2010-06-25 11:35:52 +00001460 struct Sublist aSub[13]; /* Array of sub-lists */
drha2a42012010-05-18 18:01:08 +00001461
danf544b4c2010-06-25 11:35:52 +00001462 memset(aSub, 0, sizeof(aSub));
1463 assert( nList<=HASHTABLE_NPAGE && nList>0 );
1464 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
drha2a42012010-05-18 18:01:08 +00001465
danf544b4c2010-06-25 11:35:52 +00001466 for(iList=0; iList<nList; iList++){
1467 nMerge = 1;
1468 aMerge = &aList[iList];
1469 for(iSub=0; iList & (1<<iSub); iSub++){
1470 struct Sublist *p = &aSub[iSub];
1471 assert( p->aList && p->nList<=(1<<iSub) );
danbdf1e242010-06-25 15:16:25 +00001472 assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001473 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
drha2a42012010-05-18 18:01:08 +00001474 }
danf544b4c2010-06-25 11:35:52 +00001475 aSub[iSub].aList = aMerge;
1476 aSub[iSub].nList = nMerge;
drha2a42012010-05-18 18:01:08 +00001477 }
1478
danf544b4c2010-06-25 11:35:52 +00001479 for(iSub++; iSub<ArraySize(aSub); iSub++){
1480 if( nList & (1<<iSub) ){
1481 struct Sublist *p = &aSub[iSub];
danbdf1e242010-06-25 15:16:25 +00001482 assert( p->nList<=(1<<iSub) );
1483 assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001484 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1485 }
1486 }
1487 assert( aMerge==aList );
1488 *pnList = nMerge;
1489
drha2a42012010-05-18 18:01:08 +00001490#ifdef SQLITE_DEBUG
1491 {
1492 int i;
1493 for(i=1; i<*pnList; i++){
1494 assert( aContent[aList[i]] > aContent[aList[i-1]] );
1495 }
1496 }
1497#endif
1498}
1499
dan5d656852010-06-14 07:53:26 +00001500/*
1501** Free an iterator allocated by walIteratorInit().
1502*/
1503static void walIteratorFree(WalIterator *p){
danbdf1e242010-06-25 15:16:25 +00001504 sqlite3ScratchFree(p);
dan5d656852010-06-14 07:53:26 +00001505}
1506
drha2a42012010-05-18 18:01:08 +00001507/*
danbdf1e242010-06-25 15:16:25 +00001508** Construct a WalInterator object that can be used to loop over all
1509** pages in the WAL in ascending order. The caller must hold the checkpoint
drhd9c9b782010-12-15 21:02:06 +00001510** lock.
drha2a42012010-05-18 18:01:08 +00001511**
1512** On success, make *pp point to the newly allocated WalInterator object
danbdf1e242010-06-25 15:16:25 +00001513** return SQLITE_OK. Otherwise, return an error code. If this routine
1514** returns an error, the value of *pp is undefined.
drha2a42012010-05-18 18:01:08 +00001515**
1516** The calling routine should invoke walIteratorFree() to destroy the
danbdf1e242010-06-25 15:16:25 +00001517** WalIterator object when it has finished with it.
drha2a42012010-05-18 18:01:08 +00001518*/
1519static int walIteratorInit(Wal *pWal, WalIterator **pp){
dan067f3162010-06-14 10:30:12 +00001520 WalIterator *p; /* Return value */
1521 int nSegment; /* Number of segments to merge */
1522 u32 iLast; /* Last frame in log */
1523 int nByte; /* Number of bytes to allocate */
1524 int i; /* Iterator variable */
1525 ht_slot *aTmp; /* Temp space used by merge-sort */
danbdf1e242010-06-25 15:16:25 +00001526 int rc = SQLITE_OK; /* Return Code */
drha2a42012010-05-18 18:01:08 +00001527
danbdf1e242010-06-25 15:16:25 +00001528 /* This routine only runs while holding the checkpoint lock. And
1529 ** it only runs if there is actually content in the log (mxFrame>0).
drha2a42012010-05-18 18:01:08 +00001530 */
danbdf1e242010-06-25 15:16:25 +00001531 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
dan13a3cb82010-06-11 19:04:21 +00001532 iLast = pWal->hdr.mxFrame;
drha2a42012010-05-18 18:01:08 +00001533
danbdf1e242010-06-25 15:16:25 +00001534 /* Allocate space for the WalIterator object. */
dan13a3cb82010-06-11 19:04:21 +00001535 nSegment = walFramePage(iLast) + 1;
1536 nByte = sizeof(WalIterator)
dan52d6fc02010-06-25 16:34:32 +00001537 + (nSegment-1)*sizeof(struct WalSegment)
1538 + iLast*sizeof(ht_slot);
danbdf1e242010-06-25 15:16:25 +00001539 p = (WalIterator *)sqlite3ScratchMalloc(nByte);
dan8f6097c2010-05-06 07:43:58 +00001540 if( !p ){
drha2a42012010-05-18 18:01:08 +00001541 return SQLITE_NOMEM;
1542 }
1543 memset(p, 0, nByte);
drha2a42012010-05-18 18:01:08 +00001544 p->nSegment = nSegment;
danbdf1e242010-06-25 15:16:25 +00001545
1546 /* Allocate temporary space used by the merge-sort routine. This block
1547 ** of memory will be freed before this function returns.
1548 */
dan52d6fc02010-06-25 16:34:32 +00001549 aTmp = (ht_slot *)sqlite3ScratchMalloc(
1550 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1551 );
danbdf1e242010-06-25 15:16:25 +00001552 if( !aTmp ){
1553 rc = SQLITE_NOMEM;
1554 }
1555
1556 for(i=0; rc==SQLITE_OK && i<nSegment; i++){
dan067f3162010-06-14 10:30:12 +00001557 volatile ht_slot *aHash;
dan13a3cb82010-06-11 19:04:21 +00001558 u32 iZero;
dan13a3cb82010-06-11 19:04:21 +00001559 volatile u32 *aPgno;
1560
dan4280eb32010-06-12 12:02:35 +00001561 rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
danbdf1e242010-06-25 15:16:25 +00001562 if( rc==SQLITE_OK ){
dan52d6fc02010-06-25 16:34:32 +00001563 int j; /* Counter variable */
1564 int nEntry; /* Number of entries in this segment */
1565 ht_slot *aIndex; /* Sorted index for this segment */
1566
danbdf1e242010-06-25 15:16:25 +00001567 aPgno++;
drh519426a2010-07-09 03:19:07 +00001568 if( (i+1)==nSegment ){
1569 nEntry = (int)(iLast - iZero);
1570 }else{
shaneh55897962010-07-09 12:57:53 +00001571 nEntry = (int)((u32*)aHash - (u32*)aPgno);
drh519426a2010-07-09 03:19:07 +00001572 }
dan52d6fc02010-06-25 16:34:32 +00001573 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
danbdf1e242010-06-25 15:16:25 +00001574 iZero++;
1575
danbdf1e242010-06-25 15:16:25 +00001576 for(j=0; j<nEntry; j++){
shaneh5eba1f62010-07-02 17:05:03 +00001577 aIndex[j] = (ht_slot)j;
danbdf1e242010-06-25 15:16:25 +00001578 }
1579 walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
1580 p->aSegment[i].iZero = iZero;
1581 p->aSegment[i].nEntry = nEntry;
1582 p->aSegment[i].aIndex = aIndex;
1583 p->aSegment[i].aPgno = (u32 *)aPgno;
dan13a3cb82010-06-11 19:04:21 +00001584 }
dan7c246102010-04-12 19:00:29 +00001585 }
danbdf1e242010-06-25 15:16:25 +00001586 sqlite3ScratchFree(aTmp);
dan7c246102010-04-12 19:00:29 +00001587
danbdf1e242010-06-25 15:16:25 +00001588 if( rc!=SQLITE_OK ){
1589 walIteratorFree(p);
1590 }
dan8f6097c2010-05-06 07:43:58 +00001591 *pp = p;
danbdf1e242010-06-25 15:16:25 +00001592 return rc;
dan7c246102010-04-12 19:00:29 +00001593}
1594
dan7c246102010-04-12 19:00:29 +00001595/*
dana58f26f2010-11-16 18:56:51 +00001596** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1597** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1598** busy-handler function. Invoke it and retry the lock until either the
1599** lock is successfully obtained or the busy-handler returns 0.
1600*/
1601static int walBusyLock(
1602 Wal *pWal, /* WAL connection */
1603 int (*xBusy)(void*), /* Function to call when busy */
1604 void *pBusyArg, /* Context argument for xBusyHandler */
1605 int lockIdx, /* Offset of first byte to lock */
1606 int n /* Number of bytes to lock */
1607){
1608 int rc;
1609 do {
1610 rc = walLockExclusive(pWal, lockIdx, n);
1611 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1612 return rc;
1613}
1614
1615/*
danf2b8dd52010-11-18 19:28:01 +00001616** The cache of the wal-index header must be valid to call this function.
1617** Return the page-size in bytes used by the database.
1618*/
1619static int walPagesize(Wal *pWal){
1620 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1621}
1622
1623/*
drh73b64e42010-05-30 19:55:15 +00001624** Copy as much content as we can from the WAL back into the database file
1625** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1626**
1627** The amount of information copies from WAL to database might be limited
1628** by active readers. This routine will never overwrite a database page
1629** that a concurrent reader might be using.
1630**
1631** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1632** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
1633** checkpoints are always run by a background thread or background
1634** process, foreground threads will never block on a lengthy fsync call.
1635**
1636** Fsync is called on the WAL before writing content out of the WAL and
1637** into the database. This ensures that if the new content is persistent
1638** in the WAL and can be recovered following a power-loss or hard reset.
1639**
1640** Fsync is also called on the database file if (and only if) the entire
1641** WAL content is copied into the database file. This second fsync makes
1642** it safe to delete the WAL since the new content will persist in the
1643** database file.
1644**
1645** This routine uses and updates the nBackfill field of the wal-index header.
1646** This is the only routine tha will increase the value of nBackfill.
1647** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1648** its value.)
1649**
1650** The caller must be holding sufficient locks to ensure that no other
1651** checkpoint is running (in any other thread or process) at the same
1652** time.
dan7c246102010-04-12 19:00:29 +00001653*/
drh7ed91f22010-04-29 22:34:07 +00001654static int walCheckpoint(
1655 Wal *pWal, /* Wal connection */
dancdc1f042010-11-18 12:11:05 +00001656 int eMode, /* One of PASSIVE, FULL or RESTART */
danf2b8dd52010-11-18 19:28:01 +00001657 int (*xBusyCall)(void*), /* Function to call when busy */
dana58f26f2010-11-16 18:56:51 +00001658 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00001659 int sync_flags, /* Flags for OsSync() (or 0) */
dan9c5e3682011-02-07 15:12:12 +00001660 u8 *zBuf /* Temporary buffer to use */
dan7c246102010-04-12 19:00:29 +00001661){
1662 int rc; /* Return code */
drhb2eced52010-08-12 02:41:12 +00001663 int szPage; /* Database page-size */
drh7ed91f22010-04-29 22:34:07 +00001664 WalIterator *pIter = 0; /* Wal iterator context */
dan7c246102010-04-12 19:00:29 +00001665 u32 iDbpage = 0; /* Next database page to write */
drh7ed91f22010-04-29 22:34:07 +00001666 u32 iFrame = 0; /* Wal frame containing data for iDbpage */
drh73b64e42010-05-30 19:55:15 +00001667 u32 mxSafeFrame; /* Max frame that can be backfilled */
dan502019c2010-07-28 14:26:17 +00001668 u32 mxPage; /* Max database page to write */
drh73b64e42010-05-30 19:55:15 +00001669 int i; /* Loop counter */
drh73b64e42010-05-30 19:55:15 +00001670 volatile WalCkptInfo *pInfo; /* The checkpoint status information */
danf2b8dd52010-11-18 19:28:01 +00001671 int (*xBusy)(void*) = 0; /* Function to call when waiting for locks */
dan7c246102010-04-12 19:00:29 +00001672
danf2b8dd52010-11-18 19:28:01 +00001673 szPage = walPagesize(pWal);
drh9b78f792010-08-14 21:21:24 +00001674 testcase( szPage<=32768 );
1675 testcase( szPage>=65536 );
drh7d208442010-12-16 02:06:29 +00001676 pInfo = walCkptInfo(pWal);
1677 if( pInfo->nBackfill>=pWal->hdr.mxFrame ) return SQLITE_OK;
danf544b4c2010-06-25 11:35:52 +00001678
dan7c246102010-04-12 19:00:29 +00001679 /* Allocate the iterator */
dan8f6097c2010-05-06 07:43:58 +00001680 rc = walIteratorInit(pWal, &pIter);
danf544b4c2010-06-25 11:35:52 +00001681 if( rc!=SQLITE_OK ){
danbdf1e242010-06-25 15:16:25 +00001682 return rc;
danb6e099a2010-05-04 14:47:39 +00001683 }
danf544b4c2010-06-25 11:35:52 +00001684 assert( pIter );
danb6e099a2010-05-04 14:47:39 +00001685
danf2b8dd52010-11-18 19:28:01 +00001686 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ) xBusy = xBusyCall;
danb6e099a2010-05-04 14:47:39 +00001687
drh73b64e42010-05-30 19:55:15 +00001688 /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1689 ** safe to write into the database. Frames beyond mxSafeFrame might
1690 ** overwrite database pages that are in use by active readers and thus
1691 ** cannot be backfilled from the WAL.
1692 */
dand54ff602010-05-31 11:16:30 +00001693 mxSafeFrame = pWal->hdr.mxFrame;
dan502019c2010-07-28 14:26:17 +00001694 mxPage = pWal->hdr.nPage;
drh73b64e42010-05-30 19:55:15 +00001695 for(i=1; i<WAL_NREADER; i++){
1696 u32 y = pInfo->aReadMark[i];
danf2b8dd52010-11-18 19:28:01 +00001697 if( mxSafeFrame>y ){
dan83f42d12010-06-04 10:37:05 +00001698 assert( y<=pWal->hdr.mxFrame );
danf2b8dd52010-11-18 19:28:01 +00001699 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
dan83f42d12010-06-04 10:37:05 +00001700 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001701 pInfo->aReadMark[i] = READMARK_NOT_USED;
drh73b64e42010-05-30 19:55:15 +00001702 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
drh2d37e1c2010-06-02 20:38:20 +00001703 }else if( rc==SQLITE_BUSY ){
drhdb7f6472010-06-09 14:45:12 +00001704 mxSafeFrame = y;
danf2b8dd52010-11-18 19:28:01 +00001705 xBusy = 0;
drh2d37e1c2010-06-02 20:38:20 +00001706 }else{
dan83f42d12010-06-04 10:37:05 +00001707 goto walcheckpoint_out;
drh73b64e42010-05-30 19:55:15 +00001708 }
1709 }
danc5118782010-04-17 17:34:41 +00001710 }
dan7c246102010-04-12 19:00:29 +00001711
drh73b64e42010-05-30 19:55:15 +00001712 if( pInfo->nBackfill<mxSafeFrame
dana58f26f2010-11-16 18:56:51 +00001713 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0), 1))==SQLITE_OK
drh73b64e42010-05-30 19:55:15 +00001714 ){
dan502019c2010-07-28 14:26:17 +00001715 i64 nSize; /* Current size of database file */
drh73b64e42010-05-30 19:55:15 +00001716 u32 nBackfill = pInfo->nBackfill;
1717
1718 /* Sync the WAL to disk */
1719 if( sync_flags ){
1720 rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
1721 }
1722
dan502019c2010-07-28 14:26:17 +00001723 /* If the database file may grow as a result of this checkpoint, hint
1724 ** about the eventual size of the db file to the VFS layer.
1725 */
dan007820d2010-08-09 07:51:40 +00001726 if( rc==SQLITE_OK ){
1727 i64 nReq = ((i64)mxPage * szPage);
1728 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1729 if( rc==SQLITE_OK && nSize<nReq ){
drhc02372c2012-01-10 17:59:59 +00001730 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
dan007820d2010-08-09 07:51:40 +00001731 }
dan502019c2010-07-28 14:26:17 +00001732 }
1733
drh73b64e42010-05-30 19:55:15 +00001734 /* Iterate through the contents of the WAL, copying data to the db file. */
1735 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
drh3e8e7ec2010-07-07 13:43:19 +00001736 i64 iOffset;
dan13a3cb82010-06-11 19:04:21 +00001737 assert( walFramePgno(pWal, iFrame)==iDbpage );
dan502019c2010-07-28 14:26:17 +00001738 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ) continue;
drh3e8e7ec2010-07-07 13:43:19 +00001739 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
drh09b5dbc2010-07-07 14:35:58 +00001740 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
drh3e8e7ec2010-07-07 13:43:19 +00001741 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1742 if( rc!=SQLITE_OK ) break;
1743 iOffset = (iDbpage-1)*(i64)szPage;
1744 testcase( IS_BIG_INT(iOffset) );
1745 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1746 if( rc!=SQLITE_OK ) break;
drh73b64e42010-05-30 19:55:15 +00001747 }
1748
1749 /* If work was actually accomplished... */
dand764c7d2010-06-04 11:56:22 +00001750 if( rc==SQLITE_OK ){
dan4280eb32010-06-12 12:02:35 +00001751 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
drh3e8e7ec2010-07-07 13:43:19 +00001752 i64 szDb = pWal->hdr.nPage*(i64)szPage;
1753 testcase( IS_BIG_INT(szDb) );
1754 rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
drh73b64e42010-05-30 19:55:15 +00001755 if( rc==SQLITE_OK && sync_flags ){
1756 rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
1757 }
1758 }
dand764c7d2010-06-04 11:56:22 +00001759 if( rc==SQLITE_OK ){
1760 pInfo->nBackfill = mxSafeFrame;
1761 }
drh73b64e42010-05-30 19:55:15 +00001762 }
1763
1764 /* Release the reader lock held while backfilling */
1765 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
dana58f26f2010-11-16 18:56:51 +00001766 }
1767
1768 if( rc==SQLITE_BUSY ){
drh34116ea2010-05-31 12:30:52 +00001769 /* Reset the return code so as not to report a checkpoint failure
dana58f26f2010-11-16 18:56:51 +00001770 ** just because there are active readers. */
drh34116ea2010-05-31 12:30:52 +00001771 rc = SQLITE_OK;
dan7c246102010-04-12 19:00:29 +00001772 }
1773
danf2b8dd52010-11-18 19:28:01 +00001774 /* If this is an SQLITE_CHECKPOINT_RESTART operation, and the entire wal
1775 ** file has been copied into the database file, then block until all
1776 ** readers have finished using the wal file. This ensures that the next
1777 ** process to write to the database restarts the wal file.
1778 */
1779 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
dancdc1f042010-11-18 12:11:05 +00001780 assert( pWal->writeLock );
danf2b8dd52010-11-18 19:28:01 +00001781 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1782 rc = SQLITE_BUSY;
1783 }else if( eMode==SQLITE_CHECKPOINT_RESTART ){
1784 assert( mxSafeFrame==pWal->hdr.mxFrame );
1785 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
1786 if( rc==SQLITE_OK ){
1787 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1788 }
dancdc1f042010-11-18 12:11:05 +00001789 }
1790 }
1791
dan83f42d12010-06-04 10:37:05 +00001792 walcheckpoint_out:
drh7ed91f22010-04-29 22:34:07 +00001793 walIteratorFree(pIter);
dan7c246102010-04-12 19:00:29 +00001794 return rc;
1795}
1796
1797/*
danf60b7f32011-12-16 13:24:27 +00001798** If the WAL file is currently larger than nMax bytes in size, truncate
1799** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
drh8dd4afa2011-12-08 19:50:32 +00001800*/
danf60b7f32011-12-16 13:24:27 +00001801static void walLimitSize(Wal *pWal, i64 nMax){
1802 i64 sz;
1803 int rx;
1804 sqlite3BeginBenignMalloc();
1805 rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
1806 if( rx==SQLITE_OK && (sz > nMax ) ){
1807 rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
1808 }
1809 sqlite3EndBenignMalloc();
1810 if( rx ){
1811 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
drh8dd4afa2011-12-08 19:50:32 +00001812 }
1813}
1814
1815/*
dan7c246102010-04-12 19:00:29 +00001816** Close a connection to a log file.
1817*/
drhc438efd2010-04-26 00:19:45 +00001818int sqlite3WalClose(
drh7ed91f22010-04-29 22:34:07 +00001819 Wal *pWal, /* Wal to close */
danc5118782010-04-17 17:34:41 +00001820 int sync_flags, /* Flags to pass to OsSync() (or 0) */
danb6e099a2010-05-04 14:47:39 +00001821 int nBuf,
1822 u8 *zBuf /* Buffer of at least nBuf bytes */
dan7c246102010-04-12 19:00:29 +00001823){
1824 int rc = SQLITE_OK;
drh7ed91f22010-04-29 22:34:07 +00001825 if( pWal ){
dan30c86292010-04-30 16:24:46 +00001826 int isDelete = 0; /* True to unlink wal and wal-index files */
1827
1828 /* If an EXCLUSIVE lock can be obtained on the database file (using the
1829 ** ordinary, rollback-mode locking methods, this guarantees that the
1830 ** connection associated with this log file is the only connection to
1831 ** the database. In this case checkpoint the database and unlink both
1832 ** the wal and wal-index files.
1833 **
1834 ** The EXCLUSIVE lock is not released before returning.
1835 */
drhd9e5c4f2010-05-12 18:01:39 +00001836 rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
dan30c86292010-04-30 16:24:46 +00001837 if( rc==SQLITE_OK ){
dan8c408002010-11-01 17:38:24 +00001838 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
1839 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
1840 }
dancdc1f042010-11-18 12:11:05 +00001841 rc = sqlite3WalCheckpoint(
1842 pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
1843 );
drheed42502011-12-16 15:38:52 +00001844 if( rc==SQLITE_OK ){
1845 int bPersist = -1;
drhc02372c2012-01-10 17:59:59 +00001846 sqlite3OsFileControlHint(
dan6f2f19a2012-01-10 16:56:39 +00001847 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
1848 );
drheed42502011-12-16 15:38:52 +00001849 if( bPersist!=1 ){
1850 /* Try to delete the WAL file if the checkpoint completed and
1851 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
1852 ** mode (!bPersist) */
1853 isDelete = 1;
1854 }else if( pWal->mxWalSize>=0 ){
1855 /* Try to truncate the WAL file to zero bytes if the checkpoint
1856 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
1857 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
1858 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate
1859 ** to zero bytes as truncating to the journal_size_limit might
1860 ** leave a corrupt WAL file on disk. */
1861 walLimitSize(pWal, 0);
1862 }
dan30c86292010-04-30 16:24:46 +00001863 }
dan30c86292010-04-30 16:24:46 +00001864 }
1865
dan1018e902010-05-05 15:33:05 +00001866 walIndexClose(pWal, isDelete);
drhd9e5c4f2010-05-12 18:01:39 +00001867 sqlite3OsClose(pWal->pWalFd);
dan30c86292010-04-30 16:24:46 +00001868 if( isDelete ){
drh92c45cf2012-01-10 00:24:59 +00001869 sqlite3BeginBenignMalloc();
drhd9e5c4f2010-05-12 18:01:39 +00001870 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
drh92c45cf2012-01-10 00:24:59 +00001871 sqlite3EndBenignMalloc();
dan30c86292010-04-30 16:24:46 +00001872 }
drhc74c3332010-05-31 12:15:19 +00001873 WALTRACE(("WAL%p: closed\n", pWal));
shaneh8a300f82010-07-02 18:15:31 +00001874 sqlite3_free((void *)pWal->apWiData);
drh7ed91f22010-04-29 22:34:07 +00001875 sqlite3_free(pWal);
dan7c246102010-04-12 19:00:29 +00001876 }
1877 return rc;
1878}
1879
1880/*
drha2a42012010-05-18 18:01:08 +00001881** Try to read the wal-index header. Return 0 on success and 1 if
1882** there is a problem.
1883**
1884** The wal-index is in shared memory. Another thread or process might
1885** be writing the header at the same time this procedure is trying to
1886** read it, which might result in inconsistency. A dirty read is detected
drh73b64e42010-05-30 19:55:15 +00001887** by verifying that both copies of the header are the same and also by
1888** a checksum on the header.
drha2a42012010-05-18 18:01:08 +00001889**
1890** If and only if the read is consistent and the header is different from
1891** pWal->hdr, then pWal->hdr is updated to the content of the new header
1892** and *pChanged is set to 1.
danb9bf16b2010-04-14 11:23:30 +00001893**
dan84670502010-05-07 05:46:23 +00001894** If the checksum cannot be verified return non-zero. If the header
1895** is read successfully and the checksum verified, return zero.
danb9bf16b2010-04-14 11:23:30 +00001896*/
drh7750ab42010-06-26 22:16:02 +00001897static int walIndexTryHdr(Wal *pWal, int *pChanged){
dan4280eb32010-06-12 12:02:35 +00001898 u32 aCksum[2]; /* Checksum on the header content */
1899 WalIndexHdr h1, h2; /* Two copies of the header content */
1900 WalIndexHdr volatile *aHdr; /* Header in shared memory */
danb9bf16b2010-04-14 11:23:30 +00001901
dan4280eb32010-06-12 12:02:35 +00001902 /* The first page of the wal-index must be mapped at this point. */
1903 assert( pWal->nWiData>0 && pWal->apWiData[0] );
drh79e6c782010-04-30 02:13:26 +00001904
drh6cef0cf2010-08-16 16:31:43 +00001905 /* Read the header. This might happen concurrently with a write to the
drh73b64e42010-05-30 19:55:15 +00001906 ** same area of shared memory on a different CPU in a SMP,
1907 ** meaning it is possible that an inconsistent snapshot is read
dan84670502010-05-07 05:46:23 +00001908 ** from the file. If this happens, return non-zero.
drhf0b20f82010-05-21 13:16:18 +00001909 **
1910 ** There are two copies of the header at the beginning of the wal-index.
1911 ** When reading, read [0] first then [1]. Writes are in the reverse order.
1912 ** Memory barriers are used to prevent the compiler or the hardware from
1913 ** reordering the reads and writes.
danb9bf16b2010-04-14 11:23:30 +00001914 */
dan4280eb32010-06-12 12:02:35 +00001915 aHdr = walIndexHdr(pWal);
1916 memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
dan8c408002010-11-01 17:38:24 +00001917 walShmBarrier(pWal);
dan4280eb32010-06-12 12:02:35 +00001918 memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
drh286a2882010-05-20 23:51:06 +00001919
drhf0b20f82010-05-21 13:16:18 +00001920 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
1921 return 1; /* Dirty read */
drh286a2882010-05-20 23:51:06 +00001922 }
drh4b82c382010-05-31 18:24:19 +00001923 if( h1.isInit==0 ){
drhf0b20f82010-05-21 13:16:18 +00001924 return 1; /* Malformed header - probably all zeros */
1925 }
danb8fd6c22010-05-24 10:39:36 +00001926 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
drhf0b20f82010-05-21 13:16:18 +00001927 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
1928 return 1; /* Checksum does not match */
danb9bf16b2010-04-14 11:23:30 +00001929 }
1930
drhf0b20f82010-05-21 13:16:18 +00001931 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
dana8614692010-05-06 14:42:34 +00001932 *pChanged = 1;
drhf0b20f82010-05-21 13:16:18 +00001933 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
drh9b78f792010-08-14 21:21:24 +00001934 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1935 testcase( pWal->szPage<=32768 );
1936 testcase( pWal->szPage>=65536 );
danb9bf16b2010-04-14 11:23:30 +00001937 }
dan84670502010-05-07 05:46:23 +00001938
1939 /* The header was successfully read. Return zero. */
1940 return 0;
danb9bf16b2010-04-14 11:23:30 +00001941}
1942
1943/*
drha2a42012010-05-18 18:01:08 +00001944** Read the wal-index header from the wal-index and into pWal->hdr.
drha927e942010-06-24 02:46:48 +00001945** If the wal-header appears to be corrupt, try to reconstruct the
1946** wal-index from the WAL before returning.
drha2a42012010-05-18 18:01:08 +00001947**
1948** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
1949** changed by this opertion. If pWal->hdr is unchanged, set *pChanged
1950** to 0.
1951**
drh7ed91f22010-04-29 22:34:07 +00001952** If the wal-index header is successfully read, return SQLITE_OK.
danb9bf16b2010-04-14 11:23:30 +00001953** Otherwise an SQLite error code.
1954*/
drh7ed91f22010-04-29 22:34:07 +00001955static int walIndexReadHdr(Wal *pWal, int *pChanged){
dan84670502010-05-07 05:46:23 +00001956 int rc; /* Return code */
drh73b64e42010-05-30 19:55:15 +00001957 int badHdr; /* True if a header read failed */
drha927e942010-06-24 02:46:48 +00001958 volatile u32 *page0; /* Chunk of wal-index containing header */
danb9bf16b2010-04-14 11:23:30 +00001959
dan4280eb32010-06-12 12:02:35 +00001960 /* Ensure that page 0 of the wal-index (the page that contains the
1961 ** wal-index header) is mapped. Return early if an error occurs here.
1962 */
dana8614692010-05-06 14:42:34 +00001963 assert( pChanged );
dan4280eb32010-06-12 12:02:35 +00001964 rc = walIndexPage(pWal, 0, &page0);
danc7991bd2010-05-05 19:04:59 +00001965 if( rc!=SQLITE_OK ){
1966 return rc;
dan4280eb32010-06-12 12:02:35 +00001967 };
1968 assert( page0 || pWal->writeLock==0 );
drh7ed91f22010-04-29 22:34:07 +00001969
dan4280eb32010-06-12 12:02:35 +00001970 /* If the first page of the wal-index has been mapped, try to read the
1971 ** wal-index header immediately, without holding any lock. This usually
1972 ** works, but may fail if the wal-index header is corrupt or currently
drha927e942010-06-24 02:46:48 +00001973 ** being modified by another thread or process.
danb9bf16b2010-04-14 11:23:30 +00001974 */
dan4280eb32010-06-12 12:02:35 +00001975 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
drhbab7b912010-05-26 17:31:58 +00001976
drh73b64e42010-05-30 19:55:15 +00001977 /* If the first attempt failed, it might have been due to a race
drh66dfec8b2011-06-01 20:01:49 +00001978 ** with a writer. So get a WRITE lock and try again.
drh73b64e42010-05-30 19:55:15 +00001979 */
dand54ff602010-05-31 11:16:30 +00001980 assert( badHdr==0 || pWal->writeLock==0 );
dan4edc6bf2011-05-10 17:31:29 +00001981 if( badHdr ){
drh66dfec8b2011-06-01 20:01:49 +00001982 if( pWal->readOnly & WAL_SHM_RDONLY ){
dan4edc6bf2011-05-10 17:31:29 +00001983 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
1984 walUnlockShared(pWal, WAL_WRITE_LOCK);
1985 rc = SQLITE_READONLY_RECOVERY;
drhbab7b912010-05-26 17:31:58 +00001986 }
dan4edc6bf2011-05-10 17:31:29 +00001987 }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
1988 pWal->writeLock = 1;
1989 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
1990 badHdr = walIndexTryHdr(pWal, pChanged);
1991 if( badHdr ){
1992 /* If the wal-index header is still malformed even while holding
1993 ** a WRITE lock, it can only mean that the header is corrupted and
1994 ** needs to be reconstructed. So run recovery to do exactly that.
1995 */
1996 rc = walIndexRecover(pWal);
1997 *pChanged = 1;
1998 }
1999 }
2000 pWal->writeLock = 0;
2001 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhbab7b912010-05-26 17:31:58 +00002002 }
danb9bf16b2010-04-14 11:23:30 +00002003 }
2004
drha927e942010-06-24 02:46:48 +00002005 /* If the header is read successfully, check the version number to make
2006 ** sure the wal-index was not constructed with some future format that
2007 ** this version of SQLite cannot understand.
2008 */
2009 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2010 rc = SQLITE_CANTOPEN_BKPT;
2011 }
2012
danb9bf16b2010-04-14 11:23:30 +00002013 return rc;
2014}
2015
2016/*
drh73b64e42010-05-30 19:55:15 +00002017** This is the value that walTryBeginRead returns when it needs to
2018** be retried.
dan7c246102010-04-12 19:00:29 +00002019*/
drh73b64e42010-05-30 19:55:15 +00002020#define WAL_RETRY (-1)
dan64d039e2010-04-13 19:27:31 +00002021
drh73b64e42010-05-30 19:55:15 +00002022/*
2023** Attempt to start a read transaction. This might fail due to a race or
2024** other transient condition. When that happens, it returns WAL_RETRY to
2025** indicate to the caller that it is safe to retry immediately.
2026**
drha927e942010-06-24 02:46:48 +00002027** On success return SQLITE_OK. On a permanent failure (such an
drh73b64e42010-05-30 19:55:15 +00002028** I/O error or an SQLITE_BUSY because another process is running
2029** recovery) return a positive error code.
2030**
drha927e942010-06-24 02:46:48 +00002031** The useWal parameter is true to force the use of the WAL and disable
2032** the case where the WAL is bypassed because it has been completely
2033** checkpointed. If useWal==0 then this routine calls walIndexReadHdr()
2034** to make a copy of the wal-index header into pWal->hdr. If the
2035** wal-index header has changed, *pChanged is set to 1 (as an indication
2036** to the caller that the local paget cache is obsolete and needs to be
2037** flushed.) When useWal==1, the wal-index header is assumed to already
2038** be loaded and the pChanged parameter is unused.
2039**
2040** The caller must set the cnt parameter to the number of prior calls to
2041** this routine during the current read attempt that returned WAL_RETRY.
2042** This routine will start taking more aggressive measures to clear the
2043** race conditions after multiple WAL_RETRY returns, and after an excessive
2044** number of errors will ultimately return SQLITE_PROTOCOL. The
2045** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2046** and is not honoring the locking protocol. There is a vanishingly small
2047** chance that SQLITE_PROTOCOL could be returned because of a run of really
2048** bad luck when there is lots of contention for the wal-index, but that
2049** possibility is so small that it can be safely neglected, we believe.
2050**
drh73b64e42010-05-30 19:55:15 +00002051** On success, this routine obtains a read lock on
2052** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
2053** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
2054** that means the Wal does not hold any read lock. The reader must not
2055** access any database page that is modified by a WAL frame up to and
2056** including frame number aReadMark[pWal->readLock]. The reader will
2057** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2058** Or if pWal->readLock==0, then the reader will ignore the WAL
2059** completely and get all content directly from the database file.
drha927e942010-06-24 02:46:48 +00002060** If the useWal parameter is 1 then the WAL will never be ignored and
2061** this routine will always set pWal->readLock>0 on success.
drh73b64e42010-05-30 19:55:15 +00002062** When the read transaction is completed, the caller must release the
2063** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2064**
2065** This routine uses the nBackfill and aReadMark[] fields of the header
2066** to select a particular WAL_READ_LOCK() that strives to let the
2067** checkpoint process do as much work as possible. This routine might
2068** update values of the aReadMark[] array in the header, but if it does
2069** so it takes care to hold an exclusive lock on the corresponding
2070** WAL_READ_LOCK() while changing values.
2071*/
drhaab4c022010-06-02 14:45:51 +00002072static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
drh73b64e42010-05-30 19:55:15 +00002073 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
2074 u32 mxReadMark; /* Largest aReadMark[] value */
2075 int mxI; /* Index of largest aReadMark[] value */
2076 int i; /* Loop counter */
dan13a3cb82010-06-11 19:04:21 +00002077 int rc = SQLITE_OK; /* Return code */
dan64d039e2010-04-13 19:27:31 +00002078
drh61e4ace2010-05-31 20:28:37 +00002079 assert( pWal->readLock<0 ); /* Not currently locked */
drh73b64e42010-05-30 19:55:15 +00002080
drh658d76c2011-02-19 15:22:14 +00002081 /* Take steps to avoid spinning forever if there is a protocol error.
2082 **
2083 ** Circumstances that cause a RETRY should only last for the briefest
2084 ** instances of time. No I/O or other system calls are done while the
2085 ** locks are held, so the locks should not be held for very long. But
2086 ** if we are unlucky, another process that is holding a lock might get
2087 ** paged out or take a page-fault that is time-consuming to resolve,
2088 ** during the few nanoseconds that it is holding the lock. In that case,
2089 ** it might take longer than normal for the lock to free.
2090 **
2091 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few
2092 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this
2093 ** is more of a scheduler yield than an actual delay. But on the 10th
2094 ** an subsequent retries, the delays start becoming longer and longer,
2095 ** so that on the 100th (and last) RETRY we delay for 21 milliseconds.
2096 ** The total delay time before giving up is less than 1 second.
2097 */
drhaab4c022010-06-02 14:45:51 +00002098 if( cnt>5 ){
drh658d76c2011-02-19 15:22:14 +00002099 int nDelay = 1; /* Pause time in microseconds */
drh03c69672011-02-19 23:18:12 +00002100 if( cnt>100 ){
2101 VVA_ONLY( pWal->lockError = 1; )
2102 return SQLITE_PROTOCOL;
2103 }
drh658d76c2011-02-19 15:22:14 +00002104 if( cnt>=10 ) nDelay = (cnt-9)*238; /* Max delay 21ms. Total delay 996ms */
2105 sqlite3OsSleep(pWal->pVfs, nDelay);
drhaab4c022010-06-02 14:45:51 +00002106 }
2107
drh73b64e42010-05-30 19:55:15 +00002108 if( !useWal ){
drh7ed91f22010-04-29 22:34:07 +00002109 rc = walIndexReadHdr(pWal, pChanged);
drh73b64e42010-05-30 19:55:15 +00002110 if( rc==SQLITE_BUSY ){
2111 /* If there is not a recovery running in another thread or process
2112 ** then convert BUSY errors to WAL_RETRY. If recovery is known to
2113 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
2114 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2115 ** would be technically correct. But the race is benign since with
2116 ** WAL_RETRY this routine will be called again and will probably be
2117 ** right on the second iteration.
2118 */
dan7d4514a2010-07-15 17:54:14 +00002119 if( pWal->apWiData[0]==0 ){
2120 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2121 ** We assume this is a transient condition, so return WAL_RETRY. The
2122 ** xShmMap() implementation used by the default unix and win32 VFS
2123 ** modules may return SQLITE_BUSY due to a race condition in the
2124 ** code that determines whether or not the shared-memory region
2125 ** must be zeroed before the requested page is returned.
2126 */
2127 rc = WAL_RETRY;
2128 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
drh73b64e42010-05-30 19:55:15 +00002129 walUnlockShared(pWal, WAL_RECOVER_LOCK);
2130 rc = WAL_RETRY;
2131 }else if( rc==SQLITE_BUSY ){
2132 rc = SQLITE_BUSY_RECOVERY;
2133 }
2134 }
drha927e942010-06-24 02:46:48 +00002135 if( rc!=SQLITE_OK ){
2136 return rc;
2137 }
drh73b64e42010-05-30 19:55:15 +00002138 }
2139
dan13a3cb82010-06-11 19:04:21 +00002140 pInfo = walCkptInfo(pWal);
drh73b64e42010-05-30 19:55:15 +00002141 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){
2142 /* The WAL has been completely backfilled (or it is empty).
2143 ** and can be safely ignored.
2144 */
2145 rc = walLockShared(pWal, WAL_READ_LOCK(0));
dan8c408002010-11-01 17:38:24 +00002146 walShmBarrier(pWal);
drh73b64e42010-05-30 19:55:15 +00002147 if( rc==SQLITE_OK ){
dan4280eb32010-06-12 12:02:35 +00002148 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
dan493cc592010-06-05 18:12:23 +00002149 /* It is not safe to allow the reader to continue here if frames
2150 ** may have been appended to the log before READ_LOCK(0) was obtained.
2151 ** When holding READ_LOCK(0), the reader ignores the entire log file,
2152 ** which implies that the database file contains a trustworthy
2153 ** snapshoT. Since holding READ_LOCK(0) prevents a checkpoint from
2154 ** happening, this is usually correct.
2155 **
2156 ** However, if frames have been appended to the log (or if the log
2157 ** is wrapped and written for that matter) before the READ_LOCK(0)
2158 ** is obtained, that is not necessarily true. A checkpointer may
2159 ** have started to backfill the appended frames but crashed before
2160 ** it finished. Leaving a corrupt image in the database file.
2161 */
drh73b64e42010-05-30 19:55:15 +00002162 walUnlockShared(pWal, WAL_READ_LOCK(0));
2163 return WAL_RETRY;
2164 }
2165 pWal->readLock = 0;
2166 return SQLITE_OK;
2167 }else if( rc!=SQLITE_BUSY ){
2168 return rc;
dan64d039e2010-04-13 19:27:31 +00002169 }
dan7c246102010-04-12 19:00:29 +00002170 }
danba515902010-04-30 09:32:06 +00002171
drh73b64e42010-05-30 19:55:15 +00002172 /* If we get this far, it means that the reader will want to use
2173 ** the WAL to get at content from recent commits. The job now is
2174 ** to select one of the aReadMark[] entries that is closest to
2175 ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2176 */
2177 mxReadMark = 0;
2178 mxI = 0;
2179 for(i=1; i<WAL_NREADER; i++){
2180 u32 thisMark = pInfo->aReadMark[i];
drhdb7f6472010-06-09 14:45:12 +00002181 if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){
2182 assert( thisMark!=READMARK_NOT_USED );
drh73b64e42010-05-30 19:55:15 +00002183 mxReadMark = thisMark;
2184 mxI = i;
2185 }
2186 }
drh658d76c2011-02-19 15:22:14 +00002187 /* There was once an "if" here. The extra "{" is to preserve indentation. */
2188 {
drh66dfec8b2011-06-01 20:01:49 +00002189 if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2190 && (mxReadMark<pWal->hdr.mxFrame || mxI==0)
2191 ){
dand54ff602010-05-31 11:16:30 +00002192 for(i=1; i<WAL_NREADER; i++){
drh73b64e42010-05-30 19:55:15 +00002193 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2194 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00002195 mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame;
drh73b64e42010-05-30 19:55:15 +00002196 mxI = i;
2197 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2198 break;
drh38933f22010-06-02 15:43:18 +00002199 }else if( rc!=SQLITE_BUSY ){
2200 return rc;
drh73b64e42010-05-30 19:55:15 +00002201 }
2202 }
2203 }
drh658d76c2011-02-19 15:22:14 +00002204 if( mxI==0 ){
drh5bf39342011-06-02 17:24:49 +00002205 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
dan4edc6bf2011-05-10 17:31:29 +00002206 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK;
drh658d76c2011-02-19 15:22:14 +00002207 }
drh73b64e42010-05-30 19:55:15 +00002208
2209 rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2210 if( rc ){
2211 return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2212 }
daneb8cb3a2010-06-05 18:34:26 +00002213 /* Now that the read-lock has been obtained, check that neither the
2214 ** value in the aReadMark[] array or the contents of the wal-index
2215 ** header have changed.
2216 **
2217 ** It is necessary to check that the wal-index header did not change
2218 ** between the time it was read and when the shared-lock was obtained
2219 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2220 ** that the log file may have been wrapped by a writer, or that frames
2221 ** that occur later in the log than pWal->hdr.mxFrame may have been
2222 ** copied into the database by a checkpointer. If either of these things
2223 ** happened, then reading the database with the current value of
2224 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2225 ** instead.
2226 **
dan640aac42010-06-05 19:18:59 +00002227 ** This does not guarantee that the copy of the wal-index header is up to
2228 ** date before proceeding. That would not be possible without somehow
2229 ** blocking writers. It only guarantees that a dangerous checkpoint or
daneb8cb3a2010-06-05 18:34:26 +00002230 ** log-wrap (either of which would require an exclusive lock on
2231 ** WAL_READ_LOCK(mxI)) has not occurred since the snapshot was valid.
2232 */
dan8c408002010-11-01 17:38:24 +00002233 walShmBarrier(pWal);
drh73b64e42010-05-30 19:55:15 +00002234 if( pInfo->aReadMark[mxI]!=mxReadMark
dan4280eb32010-06-12 12:02:35 +00002235 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
drh73b64e42010-05-30 19:55:15 +00002236 ){
2237 walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2238 return WAL_RETRY;
2239 }else{
drhdb7f6472010-06-09 14:45:12 +00002240 assert( mxReadMark<=pWal->hdr.mxFrame );
shaneh5eba1f62010-07-02 17:05:03 +00002241 pWal->readLock = (i16)mxI;
drh73b64e42010-05-30 19:55:15 +00002242 }
2243 }
2244 return rc;
2245}
2246
2247/*
2248** Begin a read transaction on the database.
2249**
2250** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2251** it takes a snapshot of the state of the WAL and wal-index for the current
2252** instant in time. The current thread will continue to use this snapshot.
2253** Other threads might append new content to the WAL and wal-index but
2254** that extra content is ignored by the current thread.
2255**
2256** If the database contents have changes since the previous read
2257** transaction, then *pChanged is set to 1 before returning. The
2258** Pager layer will use this to know that is cache is stale and
2259** needs to be flushed.
2260*/
drh66dfec8b2011-06-01 20:01:49 +00002261int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
drh73b64e42010-05-30 19:55:15 +00002262 int rc; /* Return code */
drhaab4c022010-06-02 14:45:51 +00002263 int cnt = 0; /* Number of TryBeginRead attempts */
drh73b64e42010-05-30 19:55:15 +00002264
2265 do{
drhaab4c022010-06-02 14:45:51 +00002266 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
drh73b64e42010-05-30 19:55:15 +00002267 }while( rc==WAL_RETRY );
drhab1cc742011-02-19 16:51:45 +00002268 testcase( (rc&0xff)==SQLITE_BUSY );
2269 testcase( (rc&0xff)==SQLITE_IOERR );
2270 testcase( rc==SQLITE_PROTOCOL );
2271 testcase( rc==SQLITE_OK );
dan7c246102010-04-12 19:00:29 +00002272 return rc;
2273}
2274
2275/*
drh73b64e42010-05-30 19:55:15 +00002276** Finish with a read transaction. All this does is release the
2277** read-lock.
dan7c246102010-04-12 19:00:29 +00002278*/
drh73b64e42010-05-30 19:55:15 +00002279void sqlite3WalEndReadTransaction(Wal *pWal){
dan73d66fd2010-08-07 16:17:48 +00002280 sqlite3WalEndWriteTransaction(pWal);
drh73b64e42010-05-30 19:55:15 +00002281 if( pWal->readLock>=0 ){
2282 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2283 pWal->readLock = -1;
2284 }
dan7c246102010-04-12 19:00:29 +00002285}
2286
dan5e0ce872010-04-28 17:48:44 +00002287/*
drh73b64e42010-05-30 19:55:15 +00002288** Read a page from the WAL, if it is present in the WAL and if the
2289** current read transaction is configured to use the WAL.
2290**
2291** The *pInWal is set to 1 if the requested page is in the WAL and
2292** has been loaded. Or *pInWal is set to 0 if the page was not in
2293** the WAL and needs to be read out of the database.
dan7c246102010-04-12 19:00:29 +00002294*/
danb6e099a2010-05-04 14:47:39 +00002295int sqlite3WalRead(
danbb23aff2010-05-10 14:46:09 +00002296 Wal *pWal, /* WAL handle */
2297 Pgno pgno, /* Database page number to read data for */
2298 int *pInWal, /* OUT: True if data is read from WAL */
2299 int nOut, /* Size of buffer pOut in bytes */
2300 u8 *pOut /* Buffer to write page data to */
danb6e099a2010-05-04 14:47:39 +00002301){
danbb23aff2010-05-10 14:46:09 +00002302 u32 iRead = 0; /* If !=0, WAL frame to return data from */
drh027a1282010-05-19 01:53:53 +00002303 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
danbb23aff2010-05-10 14:46:09 +00002304 int iHash; /* Used to loop through N hash tables */
dan7c246102010-04-12 19:00:29 +00002305
drhaab4c022010-06-02 14:45:51 +00002306 /* This routine is only be called from within a read transaction. */
2307 assert( pWal->readLock>=0 || pWal->lockError );
drh73b64e42010-05-30 19:55:15 +00002308
danbb23aff2010-05-10 14:46:09 +00002309 /* If the "last page" field of the wal-index header snapshot is 0, then
2310 ** no data will be read from the wal under any circumstances. Return early
drha927e942010-06-24 02:46:48 +00002311 ** in this case as an optimization. Likewise, if pWal->readLock==0,
2312 ** then the WAL is ignored by the reader so return early, as if the
2313 ** WAL were empty.
danbb23aff2010-05-10 14:46:09 +00002314 */
drh73b64e42010-05-30 19:55:15 +00002315 if( iLast==0 || pWal->readLock==0 ){
danbb23aff2010-05-10 14:46:09 +00002316 *pInWal = 0;
2317 return SQLITE_OK;
2318 }
2319
danbb23aff2010-05-10 14:46:09 +00002320 /* Search the hash table or tables for an entry matching page number
2321 ** pgno. Each iteration of the following for() loop searches one
2322 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2323 **
drha927e942010-06-24 02:46:48 +00002324 ** This code might run concurrently to the code in walIndexAppend()
danbb23aff2010-05-10 14:46:09 +00002325 ** that adds entries to the wal-index (and possibly to this hash
drh6e810962010-05-19 17:49:50 +00002326 ** table). This means the value just read from the hash
danbb23aff2010-05-10 14:46:09 +00002327 ** slot (aHash[iKey]) may have been added before or after the
2328 ** current read transaction was opened. Values added after the
2329 ** read transaction was opened may have been written incorrectly -
2330 ** i.e. these slots may contain garbage data. However, we assume
2331 ** that any slots written before the current read transaction was
2332 ** opened remain unmodified.
2333 **
2334 ** For the reasons above, the if(...) condition featured in the inner
2335 ** loop of the following block is more stringent that would be required
2336 ** if we had exclusive access to the hash-table:
2337 **
2338 ** (aPgno[iFrame]==pgno):
2339 ** This condition filters out normal hash-table collisions.
2340 **
2341 ** (iFrame<=iLast):
2342 ** This condition filters out entries that were added to the hash
2343 ** table after the current read-transaction had started.
dan7c246102010-04-12 19:00:29 +00002344 */
dan13a3cb82010-06-11 19:04:21 +00002345 for(iHash=walFramePage(iLast); iHash>=0 && iRead==0; iHash--){
dan067f3162010-06-14 10:30:12 +00002346 volatile ht_slot *aHash; /* Pointer to hash table */
2347 volatile u32 *aPgno; /* Pointer to array of page numbers */
danbb23aff2010-05-10 14:46:09 +00002348 u32 iZero; /* Frame number corresponding to aPgno[0] */
2349 int iKey; /* Hash slot index */
drh519426a2010-07-09 03:19:07 +00002350 int nCollide; /* Number of hash collisions remaining */
2351 int rc; /* Error code */
danbb23aff2010-05-10 14:46:09 +00002352
dan4280eb32010-06-12 12:02:35 +00002353 rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
2354 if( rc!=SQLITE_OK ){
2355 return rc;
2356 }
drh519426a2010-07-09 03:19:07 +00002357 nCollide = HASHTABLE_NSLOT;
dan6f150142010-05-21 15:31:56 +00002358 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
danbb23aff2010-05-10 14:46:09 +00002359 u32 iFrame = aHash[iKey] + iZero;
dand60bf112010-06-14 11:18:50 +00002360 if( iFrame<=iLast && aPgno[aHash[iKey]]==pgno ){
drhd5156602011-11-12 16:46:55 +00002361 /* assert( iFrame>iRead ); -- not true if there is corruption */
danbb23aff2010-05-10 14:46:09 +00002362 iRead = iFrame;
2363 }
drh519426a2010-07-09 03:19:07 +00002364 if( (nCollide--)==0 ){
2365 return SQLITE_CORRUPT_BKPT;
2366 }
dan7c246102010-04-12 19:00:29 +00002367 }
2368 }
dan7c246102010-04-12 19:00:29 +00002369
danbb23aff2010-05-10 14:46:09 +00002370#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2371 /* If expensive assert() statements are available, do a linear search
2372 ** of the wal-index file content. Make sure the results agree with the
2373 ** result obtained using the hash indexes above. */
2374 {
2375 u32 iRead2 = 0;
2376 u32 iTest;
2377 for(iTest=iLast; iTest>0; iTest--){
dan13a3cb82010-06-11 19:04:21 +00002378 if( walFramePgno(pWal, iTest)==pgno ){
danbb23aff2010-05-10 14:46:09 +00002379 iRead2 = iTest;
dan7c246102010-04-12 19:00:29 +00002380 break;
2381 }
dan7c246102010-04-12 19:00:29 +00002382 }
danbb23aff2010-05-10 14:46:09 +00002383 assert( iRead==iRead2 );
dan7c246102010-04-12 19:00:29 +00002384 }
danbb23aff2010-05-10 14:46:09 +00002385#endif
dancd11fb22010-04-26 10:40:52 +00002386
dan7c246102010-04-12 19:00:29 +00002387 /* If iRead is non-zero, then it is the log frame number that contains the
2388 ** required page. Read and return data from the log file.
2389 */
2390 if( iRead ){
drhb2eced52010-08-12 02:41:12 +00002391 int sz;
2392 i64 iOffset;
2393 sz = pWal->hdr.szPage;
drhb07028f2011-10-14 21:49:18 +00002394 sz = (sz&0xfe00) + ((sz&0x0001)<<16);
drh9b78f792010-08-14 21:21:24 +00002395 testcase( sz<=32768 );
2396 testcase( sz>=65536 );
drhb2eced52010-08-12 02:41:12 +00002397 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
drh7ed91f22010-04-29 22:34:07 +00002398 *pInWal = 1;
drh09b5dbc2010-07-07 14:35:58 +00002399 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
danf6029632012-02-28 17:57:34 +00002400 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
dan7c246102010-04-12 19:00:29 +00002401 }
2402
drh7ed91f22010-04-29 22:34:07 +00002403 *pInWal = 0;
dan7c246102010-04-12 19:00:29 +00002404 return SQLITE_OK;
2405}
2406
2407
2408/*
dan763afe62010-08-03 06:42:39 +00002409** Return the size of the database in pages (or zero, if unknown).
dan7c246102010-04-12 19:00:29 +00002410*/
dan763afe62010-08-03 06:42:39 +00002411Pgno sqlite3WalDbsize(Wal *pWal){
drh7e9e70b2010-08-16 14:17:59 +00002412 if( pWal && ALWAYS(pWal->readLock>=0) ){
dan763afe62010-08-03 06:42:39 +00002413 return pWal->hdr.nPage;
2414 }
2415 return 0;
dan7c246102010-04-12 19:00:29 +00002416}
2417
dan30c86292010-04-30 16:24:46 +00002418
drh73b64e42010-05-30 19:55:15 +00002419/*
2420** This function starts a write transaction on the WAL.
2421**
2422** A read transaction must have already been started by a prior call
2423** to sqlite3WalBeginReadTransaction().
2424**
2425** If another thread or process has written into the database since
2426** the read transaction was started, then it is not possible for this
2427** thread to write as doing so would cause a fork. So this routine
2428** returns SQLITE_BUSY in that case and no write transaction is started.
2429**
2430** There can only be a single writer active at a time.
2431*/
2432int sqlite3WalBeginWriteTransaction(Wal *pWal){
2433 int rc;
drh73b64e42010-05-30 19:55:15 +00002434
2435 /* Cannot start a write transaction without first holding a read
2436 ** transaction. */
2437 assert( pWal->readLock>=0 );
2438
dan1e5de5a2010-07-15 18:20:53 +00002439 if( pWal->readOnly ){
2440 return SQLITE_READONLY;
2441 }
2442
drh73b64e42010-05-30 19:55:15 +00002443 /* Only one writer allowed at a time. Get the write lock. Return
2444 ** SQLITE_BUSY if unable.
2445 */
2446 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
2447 if( rc ){
2448 return rc;
2449 }
drhc99597c2010-05-31 01:41:15 +00002450 pWal->writeLock = 1;
drh73b64e42010-05-30 19:55:15 +00002451
2452 /* If another connection has written to the database file since the
2453 ** time the read transaction on this connection was started, then
2454 ** the write is disallowed.
2455 */
dan4280eb32010-06-12 12:02:35 +00002456 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
drh73b64e42010-05-30 19:55:15 +00002457 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhc99597c2010-05-31 01:41:15 +00002458 pWal->writeLock = 0;
dan9971e712010-06-01 15:44:57 +00002459 rc = SQLITE_BUSY;
drh73b64e42010-05-30 19:55:15 +00002460 }
2461
drh7ed91f22010-04-29 22:34:07 +00002462 return rc;
dan7c246102010-04-12 19:00:29 +00002463}
2464
dan74d6cd82010-04-24 18:44:05 +00002465/*
drh73b64e42010-05-30 19:55:15 +00002466** End a write transaction. The commit has already been done. This
2467** routine merely releases the lock.
2468*/
2469int sqlite3WalEndWriteTransaction(Wal *pWal){
danda9fe0c2010-07-13 18:44:03 +00002470 if( pWal->writeLock ){
2471 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2472 pWal->writeLock = 0;
danf60b7f32011-12-16 13:24:27 +00002473 pWal->truncateOnCommit = 0;
danda9fe0c2010-07-13 18:44:03 +00002474 }
drh73b64e42010-05-30 19:55:15 +00002475 return SQLITE_OK;
2476}
2477
2478/*
dan74d6cd82010-04-24 18:44:05 +00002479** If any data has been written (but not committed) to the log file, this
2480** function moves the write-pointer back to the start of the transaction.
2481**
2482** Additionally, the callback function is invoked for each frame written
drh73b64e42010-05-30 19:55:15 +00002483** to the WAL since the start of the transaction. If the callback returns
dan74d6cd82010-04-24 18:44:05 +00002484** other than SQLITE_OK, it is not invoked again and the error code is
2485** returned to the caller.
2486**
2487** Otherwise, if the callback function does not return an error, this
2488** function returns SQLITE_OK.
2489*/
drh7ed91f22010-04-29 22:34:07 +00002490int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
dan55437592010-05-11 12:19:26 +00002491 int rc = SQLITE_OK;
drh7e9e70b2010-08-16 14:17:59 +00002492 if( ALWAYS(pWal->writeLock) ){
drh027a1282010-05-19 01:53:53 +00002493 Pgno iMax = pWal->hdr.mxFrame;
dan55437592010-05-11 12:19:26 +00002494 Pgno iFrame;
2495
dan5d656852010-06-14 07:53:26 +00002496 /* Restore the clients cache of the wal-index header to the state it
2497 ** was in before the client began writing to the database.
2498 */
dan067f3162010-06-14 10:30:12 +00002499 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
dan5d656852010-06-14 07:53:26 +00002500
2501 for(iFrame=pWal->hdr.mxFrame+1;
2502 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
2503 iFrame++
2504 ){
2505 /* This call cannot fail. Unless the page for which the page number
2506 ** is passed as the second argument is (a) in the cache and
2507 ** (b) has an outstanding reference, then xUndo is either a no-op
2508 ** (if (a) is false) or simply expels the page from the cache (if (b)
2509 ** is false).
2510 **
2511 ** If the upper layer is doing a rollback, it is guaranteed that there
2512 ** are no outstanding references to any page other than page 1. And
2513 ** page 1 is never written to the log until the transaction is
2514 ** committed. As a result, the call to xUndo may not fail.
2515 */
dan5d656852010-06-14 07:53:26 +00002516 assert( walFramePgno(pWal, iFrame)!=1 );
2517 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
dan6f150142010-05-21 15:31:56 +00002518 }
dan5d656852010-06-14 07:53:26 +00002519 walCleanupHash(pWal);
dan74d6cd82010-04-24 18:44:05 +00002520 }
dan5d656852010-06-14 07:53:26 +00002521 assert( rc==SQLITE_OK );
dan74d6cd82010-04-24 18:44:05 +00002522 return rc;
2523}
2524
dan71d89912010-05-24 13:57:42 +00002525/*
2526** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
2527** values. This function populates the array with values required to
2528** "rollback" the write position of the WAL handle back to the current
2529** point in the event of a savepoint rollback (via WalSavepointUndo()).
drh7ed91f22010-04-29 22:34:07 +00002530*/
dan71d89912010-05-24 13:57:42 +00002531void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
drh73b64e42010-05-30 19:55:15 +00002532 assert( pWal->writeLock );
dan71d89912010-05-24 13:57:42 +00002533 aWalData[0] = pWal->hdr.mxFrame;
2534 aWalData[1] = pWal->hdr.aFrameCksum[0];
2535 aWalData[2] = pWal->hdr.aFrameCksum[1];
dan6e6bd562010-06-02 18:59:03 +00002536 aWalData[3] = pWal->nCkpt;
dan4cd78b42010-04-26 16:57:10 +00002537}
2538
dan71d89912010-05-24 13:57:42 +00002539/*
2540** Move the write position of the WAL back to the point identified by
2541** the values in the aWalData[] array. aWalData must point to an array
2542** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
2543** by a call to WalSavepoint().
drh7ed91f22010-04-29 22:34:07 +00002544*/
dan71d89912010-05-24 13:57:42 +00002545int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
dan4cd78b42010-04-26 16:57:10 +00002546 int rc = SQLITE_OK;
dan4cd78b42010-04-26 16:57:10 +00002547
dan6e6bd562010-06-02 18:59:03 +00002548 assert( pWal->writeLock );
2549 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
2550
2551 if( aWalData[3]!=pWal->nCkpt ){
2552 /* This savepoint was opened immediately after the write-transaction
2553 ** was started. Right after that, the writer decided to wrap around
2554 ** to the start of the log. Update the savepoint values to match.
2555 */
2556 aWalData[0] = 0;
2557 aWalData[3] = pWal->nCkpt;
2558 }
2559
dan71d89912010-05-24 13:57:42 +00002560 if( aWalData[0]<pWal->hdr.mxFrame ){
dan71d89912010-05-24 13:57:42 +00002561 pWal->hdr.mxFrame = aWalData[0];
2562 pWal->hdr.aFrameCksum[0] = aWalData[1];
2563 pWal->hdr.aFrameCksum[1] = aWalData[2];
dan5d656852010-06-14 07:53:26 +00002564 walCleanupHash(pWal);
dan6f150142010-05-21 15:31:56 +00002565 }
dan6e6bd562010-06-02 18:59:03 +00002566
dan4cd78b42010-04-26 16:57:10 +00002567 return rc;
2568}
2569
drh8dd4afa2011-12-08 19:50:32 +00002570
dan9971e712010-06-01 15:44:57 +00002571/*
2572** This function is called just before writing a set of frames to the log
2573** file (see sqlite3WalFrames()). It checks to see if, instead of appending
2574** to the current log file, it is possible to overwrite the start of the
2575** existing log file with the new frames (i.e. "reset" the log). If so,
2576** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
2577** unchanged.
2578**
2579** SQLITE_OK is returned if no error is encountered (regardless of whether
2580** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
drh4533cd02010-10-05 15:41:05 +00002581** if an error occurs.
dan9971e712010-06-01 15:44:57 +00002582*/
2583static int walRestartLog(Wal *pWal){
2584 int rc = SQLITE_OK;
drhaab4c022010-06-02 14:45:51 +00002585 int cnt;
2586
dan13a3cb82010-06-11 19:04:21 +00002587 if( pWal->readLock==0 ){
dan9971e712010-06-01 15:44:57 +00002588 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2589 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2590 if( pInfo->nBackfill>0 ){
drh658d76c2011-02-19 15:22:14 +00002591 u32 salt1;
2592 sqlite3_randomness(4, &salt1);
dan9971e712010-06-01 15:44:57 +00002593 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2594 if( rc==SQLITE_OK ){
2595 /* If all readers are using WAL_READ_LOCK(0) (in other words if no
2596 ** readers are currently using the WAL), then the transactions
2597 ** frames will overwrite the start of the existing log. Update the
2598 ** wal-index header to reflect this.
2599 **
2600 ** In theory it would be Ok to update the cache of the header only
2601 ** at this point. But updating the actual wal-index header is also
2602 ** safe and means there is no special case for sqlite3WalUndo()
2603 ** to handle if this transaction is rolled back.
2604 */
dan199100e2010-06-09 16:58:49 +00002605 int i; /* Loop counter */
dan9971e712010-06-01 15:44:57 +00002606 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
drh85a83752011-05-16 21:00:27 +00002607
dan9971e712010-06-01 15:44:57 +00002608 pWal->nCkpt++;
2609 pWal->hdr.mxFrame = 0;
2610 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
drh658d76c2011-02-19 15:22:14 +00002611 aSalt[1] = salt1;
dan9971e712010-06-01 15:44:57 +00002612 walIndexWriteHdr(pWal);
dan199100e2010-06-09 16:58:49 +00002613 pInfo->nBackfill = 0;
2614 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
2615 assert( pInfo->aReadMark[0]==0 );
dan9971e712010-06-01 15:44:57 +00002616 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
drh4533cd02010-10-05 15:41:05 +00002617 }else if( rc!=SQLITE_BUSY ){
2618 return rc;
dan9971e712010-06-01 15:44:57 +00002619 }
2620 }
2621 walUnlockShared(pWal, WAL_READ_LOCK(0));
2622 pWal->readLock = -1;
drhaab4c022010-06-02 14:45:51 +00002623 cnt = 0;
dan9971e712010-06-01 15:44:57 +00002624 do{
2625 int notUsed;
drhaab4c022010-06-02 14:45:51 +00002626 rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
dan9971e712010-06-01 15:44:57 +00002627 }while( rc==WAL_RETRY );
drhc90e0812011-02-19 17:02:44 +00002628 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
drhab1cc742011-02-19 16:51:45 +00002629 testcase( (rc&0xff)==SQLITE_IOERR );
2630 testcase( rc==SQLITE_PROTOCOL );
2631 testcase( rc==SQLITE_OK );
dan9971e712010-06-01 15:44:57 +00002632 }
2633 return rc;
2634}
2635
drh88f975a2011-12-16 19:34:36 +00002636/*
drhd992b152011-12-20 20:13:25 +00002637** Information about the current state of the WAL file and where
2638** the next fsync should occur - passed from sqlite3WalFrames() into
2639** walWriteToLog().
2640*/
2641typedef struct WalWriter {
2642 Wal *pWal; /* The complete WAL information */
2643 sqlite3_file *pFd; /* The WAL file to which we write */
2644 sqlite3_int64 iSyncPoint; /* Fsync at this offset */
2645 int syncFlags; /* Flags for the fsync */
2646 int szPage; /* Size of one page */
2647} WalWriter;
2648
2649/*
drh88f975a2011-12-16 19:34:36 +00002650** Write iAmt bytes of content into the WAL file beginning at iOffset.
drhd992b152011-12-20 20:13:25 +00002651** Do a sync when crossing the p->iSyncPoint boundary.
drh88f975a2011-12-16 19:34:36 +00002652**
drhd992b152011-12-20 20:13:25 +00002653** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
2654** first write the part before iSyncPoint, then sync, then write the
2655** rest.
drh88f975a2011-12-16 19:34:36 +00002656*/
2657static int walWriteToLog(
drhd992b152011-12-20 20:13:25 +00002658 WalWriter *p, /* WAL to write to */
drh88f975a2011-12-16 19:34:36 +00002659 void *pContent, /* Content to be written */
2660 int iAmt, /* Number of bytes to write */
2661 sqlite3_int64 iOffset /* Start writing at this offset */
2662){
2663 int rc;
drhd992b152011-12-20 20:13:25 +00002664 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
2665 int iFirstAmt = (int)(p->iSyncPoint - iOffset);
2666 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
drh88f975a2011-12-16 19:34:36 +00002667 if( rc ) return rc;
drhd992b152011-12-20 20:13:25 +00002668 iOffset += iFirstAmt;
2669 iAmt -= iFirstAmt;
drh88f975a2011-12-16 19:34:36 +00002670 pContent = (void*)(iFirstAmt + (char*)pContent);
drhd992b152011-12-20 20:13:25 +00002671 assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) );
2672 rc = sqlite3OsSync(p->pFd, p->syncFlags);
drhcc8d10a2011-12-23 02:07:10 +00002673 if( iAmt==0 || rc ) return rc;
drh88f975a2011-12-16 19:34:36 +00002674 }
drhd992b152011-12-20 20:13:25 +00002675 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
2676 return rc;
2677}
2678
2679/*
2680** Write out a single frame of the WAL
2681*/
2682static int walWriteOneFrame(
2683 WalWriter *p, /* Where to write the frame */
2684 PgHdr *pPage, /* The page of the frame to be written */
2685 int nTruncate, /* The commit flag. Usually 0. >0 for commit */
2686 sqlite3_int64 iOffset /* Byte offset at which to write */
2687){
2688 int rc; /* Result code from subfunctions */
2689 void *pData; /* Data actually written */
2690 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
2691#if defined(SQLITE_HAS_CODEC)
2692 if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM;
2693#else
2694 pData = pPage->pData;
2695#endif
2696 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
2697 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
2698 if( rc ) return rc;
2699 /* Write the page data */
2700 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
drh88f975a2011-12-16 19:34:36 +00002701 return rc;
2702}
2703
dan7c246102010-04-12 19:00:29 +00002704/*
dan4cd78b42010-04-26 16:57:10 +00002705** Write a set of frames to the log. The caller must hold the write-lock
dan9971e712010-06-01 15:44:57 +00002706** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
dan7c246102010-04-12 19:00:29 +00002707*/
drhc438efd2010-04-26 00:19:45 +00002708int sqlite3WalFrames(
drh7ed91f22010-04-29 22:34:07 +00002709 Wal *pWal, /* Wal handle to write to */
drh6e810962010-05-19 17:49:50 +00002710 int szPage, /* Database page-size in bytes */
dan7c246102010-04-12 19:00:29 +00002711 PgHdr *pList, /* List of dirty pages to write */
2712 Pgno nTruncate, /* Database size after this commit */
2713 int isCommit, /* True if this is a commit */
danc5118782010-04-17 17:34:41 +00002714 int sync_flags /* Flags to pass to OsSync() (or 0) */
dan7c246102010-04-12 19:00:29 +00002715){
dan7c246102010-04-12 19:00:29 +00002716 int rc; /* Used to catch return codes */
2717 u32 iFrame; /* Next frame address */
dan7c246102010-04-12 19:00:29 +00002718 PgHdr *p; /* Iterator to run through pList with. */
drhe874d9e2010-05-07 20:02:23 +00002719 PgHdr *pLast = 0; /* Last frame in list */
drhd992b152011-12-20 20:13:25 +00002720 int nExtra = 0; /* Number of extra copies of last page */
2721 int szFrame; /* The size of a single frame */
2722 i64 iOffset; /* Next byte to write in WAL file */
2723 WalWriter w; /* The writer */
dan7c246102010-04-12 19:00:29 +00002724
dan7c246102010-04-12 19:00:29 +00002725 assert( pList );
drh73b64e42010-05-30 19:55:15 +00002726 assert( pWal->writeLock );
dan7c246102010-04-12 19:00:29 +00002727
drh41209942011-12-20 13:13:09 +00002728 /* If this frame set completes a transaction, then nTruncate>0. If
2729 ** nTruncate==0 then this frame set does not complete the transaction. */
2730 assert( (isCommit!=0)==(nTruncate!=0) );
2731
drhc74c3332010-05-31 12:15:19 +00002732#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
2733 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
2734 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
2735 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
2736 }
2737#endif
2738
dan9971e712010-06-01 15:44:57 +00002739 /* See if it is possible to write these frames into the start of the
2740 ** log file, instead of appending to it at pWal->hdr.mxFrame.
2741 */
2742 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
dan9971e712010-06-01 15:44:57 +00002743 return rc;
2744 }
dan9971e712010-06-01 15:44:57 +00002745
drha2a42012010-05-18 18:01:08 +00002746 /* If this is the first frame written into the log, write the WAL
2747 ** header to the start of the WAL file. See comments at the top of
2748 ** this source file for a description of the WAL header format.
dan97a31352010-04-16 13:59:31 +00002749 */
drh027a1282010-05-19 01:53:53 +00002750 iFrame = pWal->hdr.mxFrame;
dan97a31352010-04-16 13:59:31 +00002751 if( iFrame==0 ){
dan10f5a502010-06-23 15:55:43 +00002752 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */
2753 u32 aCksum[2]; /* Checksum for wal-header */
2754
danb8fd6c22010-05-24 10:39:36 +00002755 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
dan10f5a502010-06-23 15:55:43 +00002756 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
drh23ea97b2010-05-20 16:45:58 +00002757 sqlite3Put4byte(&aWalHdr[8], szPage);
2758 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
drhd2980312011-12-17 01:31:44 +00002759 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
drh7e263722010-05-20 21:21:09 +00002760 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
dan10f5a502010-06-23 15:55:43 +00002761 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
2762 sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
2763 sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
2764
drhb2eced52010-08-12 02:41:12 +00002765 pWal->szPage = szPage;
dan10f5a502010-06-23 15:55:43 +00002766 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
2767 pWal->hdr.aFrameCksum[0] = aCksum[0];
2768 pWal->hdr.aFrameCksum[1] = aCksum[1];
danf60b7f32011-12-16 13:24:27 +00002769 pWal->truncateOnCommit = 1;
dan10f5a502010-06-23 15:55:43 +00002770
drh23ea97b2010-05-20 16:45:58 +00002771 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
drhc74c3332010-05-31 12:15:19 +00002772 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
dan97a31352010-04-16 13:59:31 +00002773 if( rc!=SQLITE_OK ){
2774 return rc;
2775 }
drhd992b152011-12-20 20:13:25 +00002776
2777 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
2778 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise
2779 ** an out-of-order write following a WAL restart could result in
2780 ** database corruption. See the ticket:
2781 **
2782 ** http://localhost:591/sqlite/info/ff5be73dee
2783 */
2784 if( pWal->syncHeader && sync_flags ){
2785 rc = sqlite3OsSync(pWal->pWalFd, sync_flags & SQLITE_SYNC_MASK);
2786 if( rc ) return rc;
2787 }
dan97a31352010-04-16 13:59:31 +00002788 }
shanehbd2aaf92010-09-01 02:38:21 +00002789 assert( (int)pWal->szPage==szPage );
dan97a31352010-04-16 13:59:31 +00002790
drhd992b152011-12-20 20:13:25 +00002791 /* Setup information needed to write frames into the WAL */
2792 w.pWal = pWal;
2793 w.pFd = pWal->pWalFd;
2794 w.iSyncPoint = 0;
2795 w.syncFlags = sync_flags;
2796 w.szPage = szPage;
2797 iOffset = walFrameOffset(iFrame+1, szPage);
2798 szFrame = szPage + WAL_FRAME_HDRSIZE;
drh88f975a2011-12-16 19:34:36 +00002799
drhd992b152011-12-20 20:13:25 +00002800 /* Write all frames into the log file exactly once */
dan7c246102010-04-12 19:00:29 +00002801 for(p=pList; p; p=p->pDirty){
drhd992b152011-12-20 20:13:25 +00002802 int nDbSize; /* 0 normally. Positive == commit flag */
2803 iFrame++;
2804 assert( iOffset==walFrameOffset(iFrame, szPage) );
2805 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
2806 rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
2807 if( rc ) return rc;
dan7c246102010-04-12 19:00:29 +00002808 pLast = p;
drhd992b152011-12-20 20:13:25 +00002809 iOffset += szFrame;
dan7c246102010-04-12 19:00:29 +00002810 }
2811
drhd992b152011-12-20 20:13:25 +00002812 /* If this is the end of a transaction, then we might need to pad
2813 ** the transaction and/or sync the WAL file.
2814 **
2815 ** Padding and syncing only occur if this set of frames complete a
2816 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL
2817 ** or synchonous==OFF, then no padding or syncing are needed.
2818 **
drhcb15f352011-12-23 01:04:17 +00002819 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
2820 ** needed and only the sync is done. If padding is needed, then the
2821 ** final frame is repeated (with its commit mark) until the next sector
drhd992b152011-12-20 20:13:25 +00002822 ** boundary is crossed. Only the part of the WAL prior to the last
2823 ** sector boundary is synced; the part of the last frame that extends
2824 ** past the sector boundary is written after the sync.
2825 */
drh4eb02a42011-12-16 21:26:26 +00002826 if( isCommit && (sync_flags & WAL_SYNC_TRANSACTIONS)!=0 ){
drh374f4a02011-12-17 20:02:11 +00002827 if( pWal->padToSectorBoundary ){
drhd992b152011-12-20 20:13:25 +00002828 int sectorSize = sqlite3OsSectorSize(pWal->pWalFd);
2829 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
2830 while( iOffset<w.iSyncPoint ){
2831 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
2832 if( rc ) return rc;
2833 iOffset += szFrame;
2834 nExtra++;
dan7c246102010-04-12 19:00:29 +00002835 }
drh4e5e1082011-12-23 13:32:07 +00002836 }else{
2837 rc = sqlite3OsSync(w.pFd, sync_flags & SQLITE_SYNC_MASK);
dan7c246102010-04-12 19:00:29 +00002838 }
dan7c246102010-04-12 19:00:29 +00002839 }
2840
drhd992b152011-12-20 20:13:25 +00002841 /* If this frame set completes the first transaction in the WAL and
2842 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
2843 ** journal size limit, if possible.
2844 */
danf60b7f32011-12-16 13:24:27 +00002845 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
2846 i64 sz = pWal->mxWalSize;
drhd992b152011-12-20 20:13:25 +00002847 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
2848 sz = walFrameOffset(iFrame+nExtra+1, szPage);
danf60b7f32011-12-16 13:24:27 +00002849 }
2850 walLimitSize(pWal, sz);
2851 pWal->truncateOnCommit = 0;
2852 }
2853
drhe730fec2010-05-18 12:56:50 +00002854 /* Append data to the wal-index. It is not necessary to lock the
drha2a42012010-05-18 18:01:08 +00002855 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
dan7c246102010-04-12 19:00:29 +00002856 ** guarantees that there are no other writers, and no data that may
2857 ** be in use by existing readers is being overwritten.
2858 */
drh027a1282010-05-19 01:53:53 +00002859 iFrame = pWal->hdr.mxFrame;
danc7991bd2010-05-05 19:04:59 +00002860 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
dan7c246102010-04-12 19:00:29 +00002861 iFrame++;
danc7991bd2010-05-05 19:04:59 +00002862 rc = walIndexAppend(pWal, iFrame, p->pgno);
dan7c246102010-04-12 19:00:29 +00002863 }
drh20e226d2012-01-01 13:58:53 +00002864 while( rc==SQLITE_OK && nExtra>0 ){
dan7c246102010-04-12 19:00:29 +00002865 iFrame++;
drhd992b152011-12-20 20:13:25 +00002866 nExtra--;
danc7991bd2010-05-05 19:04:59 +00002867 rc = walIndexAppend(pWal, iFrame, pLast->pgno);
dan7c246102010-04-12 19:00:29 +00002868 }
2869
danc7991bd2010-05-05 19:04:59 +00002870 if( rc==SQLITE_OK ){
2871 /* Update the private copy of the header. */
shaneh1df2db72010-08-18 02:28:48 +00002872 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00002873 testcase( szPage<=32768 );
2874 testcase( szPage>=65536 );
drh027a1282010-05-19 01:53:53 +00002875 pWal->hdr.mxFrame = iFrame;
danc7991bd2010-05-05 19:04:59 +00002876 if( isCommit ){
2877 pWal->hdr.iChange++;
2878 pWal->hdr.nPage = nTruncate;
2879 }
danc7991bd2010-05-05 19:04:59 +00002880 /* If this is a commit, update the wal-index header too. */
2881 if( isCommit ){
drh7e263722010-05-20 21:21:09 +00002882 walIndexWriteHdr(pWal);
danc7991bd2010-05-05 19:04:59 +00002883 pWal->iCallback = iFrame;
2884 }
dan7c246102010-04-12 19:00:29 +00002885 }
danc7991bd2010-05-05 19:04:59 +00002886
drhc74c3332010-05-31 12:15:19 +00002887 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
dan8d22a172010-04-19 18:03:51 +00002888 return rc;
dan7c246102010-04-12 19:00:29 +00002889}
2890
2891/*
drh73b64e42010-05-30 19:55:15 +00002892** This routine is called to implement sqlite3_wal_checkpoint() and
2893** related interfaces.
danb9bf16b2010-04-14 11:23:30 +00002894**
drh73b64e42010-05-30 19:55:15 +00002895** Obtain a CHECKPOINT lock and then backfill as much information as
2896** we can from WAL into the database.
dana58f26f2010-11-16 18:56:51 +00002897**
2898** If parameter xBusy is not NULL, it is a pointer to a busy-handler
2899** callback. In this case this function runs a blocking checkpoint.
dan7c246102010-04-12 19:00:29 +00002900*/
drhc438efd2010-04-26 00:19:45 +00002901int sqlite3WalCheckpoint(
drh7ed91f22010-04-29 22:34:07 +00002902 Wal *pWal, /* Wal connection */
dancdc1f042010-11-18 12:11:05 +00002903 int eMode, /* PASSIVE, FULL or RESTART */
dana58f26f2010-11-16 18:56:51 +00002904 int (*xBusy)(void*), /* Function to call when busy */
2905 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00002906 int sync_flags, /* Flags to sync db file with (or 0) */
danb6e099a2010-05-04 14:47:39 +00002907 int nBuf, /* Size of temporary buffer */
dancdc1f042010-11-18 12:11:05 +00002908 u8 *zBuf, /* Temporary buffer to use */
2909 int *pnLog, /* OUT: Number of frames in WAL */
2910 int *pnCkpt /* OUT: Number of backfilled frames in WAL */
dan7c246102010-04-12 19:00:29 +00002911){
danb9bf16b2010-04-14 11:23:30 +00002912 int rc; /* Return code */
dan31c03902010-04-29 14:51:33 +00002913 int isChanged = 0; /* True if a new wal-index header is loaded */
danf2b8dd52010-11-18 19:28:01 +00002914 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */
dan7c246102010-04-12 19:00:29 +00002915
dand54ff602010-05-31 11:16:30 +00002916 assert( pWal->ckptLock==0 );
dana58f26f2010-11-16 18:56:51 +00002917 assert( pWal->writeLock==0 );
dan39c79f52010-04-15 10:58:51 +00002918
drh66dfec8b2011-06-01 20:01:49 +00002919 if( pWal->readOnly ) return SQLITE_READONLY;
drhc74c3332010-05-31 12:15:19 +00002920 WALTRACE(("WAL%p: checkpoint begins\n", pWal));
drh73b64e42010-05-30 19:55:15 +00002921 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2922 if( rc ){
2923 /* Usually this is SQLITE_BUSY meaning that another thread or process
2924 ** is already running a checkpoint, or maybe a recovery. But it might
2925 ** also be SQLITE_IOERR. */
danb9bf16b2010-04-14 11:23:30 +00002926 return rc;
2927 }
dand54ff602010-05-31 11:16:30 +00002928 pWal->ckptLock = 1;
dan64d039e2010-04-13 19:27:31 +00002929
dana58f26f2010-11-16 18:56:51 +00002930 /* If this is a blocking-checkpoint, then obtain the write-lock as well
2931 ** to prevent any writers from running while the checkpoint is underway.
2932 ** This has to be done before the call to walIndexReadHdr() below.
danf2b8dd52010-11-18 19:28:01 +00002933 **
2934 ** If the writer lock cannot be obtained, then a passive checkpoint is
2935 ** run instead. Since the checkpointer is not holding the writer lock,
2936 ** there is no point in blocking waiting for any readers. Assuming no
2937 ** other error occurs, this function will return SQLITE_BUSY to the caller.
dana58f26f2010-11-16 18:56:51 +00002938 */
dancdc1f042010-11-18 12:11:05 +00002939 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
dana58f26f2010-11-16 18:56:51 +00002940 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
danf2b8dd52010-11-18 19:28:01 +00002941 if( rc==SQLITE_OK ){
2942 pWal->writeLock = 1;
2943 }else if( rc==SQLITE_BUSY ){
2944 eMode2 = SQLITE_CHECKPOINT_PASSIVE;
2945 rc = SQLITE_OK;
2946 }
danb9bf16b2010-04-14 11:23:30 +00002947 }
dana58f26f2010-11-16 18:56:51 +00002948
danf2b8dd52010-11-18 19:28:01 +00002949 /* Read the wal-index header. */
drh7ed91f22010-04-29 22:34:07 +00002950 if( rc==SQLITE_OK ){
dana58f26f2010-11-16 18:56:51 +00002951 rc = walIndexReadHdr(pWal, &isChanged);
2952 }
danf2b8dd52010-11-18 19:28:01 +00002953
2954 /* Copy data from the log to the database file. */
dan9c5e3682011-02-07 15:12:12 +00002955 if( rc==SQLITE_OK ){
2956 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
danf2b8dd52010-11-18 19:28:01 +00002957 rc = SQLITE_CORRUPT_BKPT;
2958 }else{
dan9c5e3682011-02-07 15:12:12 +00002959 rc = walCheckpoint(pWal, eMode2, xBusy, pBusyArg, sync_flags, zBuf);
2960 }
2961
2962 /* If no error occurred, set the output variables. */
2963 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
danf2b8dd52010-11-18 19:28:01 +00002964 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
dan9c5e3682011-02-07 15:12:12 +00002965 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
danf2b8dd52010-11-18 19:28:01 +00002966 }
danb9bf16b2010-04-14 11:23:30 +00002967 }
danf2b8dd52010-11-18 19:28:01 +00002968
dan31c03902010-04-29 14:51:33 +00002969 if( isChanged ){
2970 /* If a new wal-index header was loaded before the checkpoint was
drha2a42012010-05-18 18:01:08 +00002971 ** performed, then the pager-cache associated with pWal is now
dan31c03902010-04-29 14:51:33 +00002972 ** out of date. So zero the cached wal-index header to ensure that
2973 ** next time the pager opens a snapshot on this database it knows that
2974 ** the cache needs to be reset.
2975 */
2976 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
2977 }
danb9bf16b2010-04-14 11:23:30 +00002978
2979 /* Release the locks. */
dana58f26f2010-11-16 18:56:51 +00002980 sqlite3WalEndWriteTransaction(pWal);
drh73b64e42010-05-30 19:55:15 +00002981 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
dand54ff602010-05-31 11:16:30 +00002982 pWal->ckptLock = 0;
drhc74c3332010-05-31 12:15:19 +00002983 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
danf2b8dd52010-11-18 19:28:01 +00002984 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
dan7c246102010-04-12 19:00:29 +00002985}
2986
drh7ed91f22010-04-29 22:34:07 +00002987/* Return the value to pass to a sqlite3_wal_hook callback, the
2988** number of frames in the WAL at the point of the last commit since
2989** sqlite3WalCallback() was called. If no commits have occurred since
2990** the last call, then return 0.
2991*/
2992int sqlite3WalCallback(Wal *pWal){
dan8d22a172010-04-19 18:03:51 +00002993 u32 ret = 0;
drh7ed91f22010-04-29 22:34:07 +00002994 if( pWal ){
2995 ret = pWal->iCallback;
2996 pWal->iCallback = 0;
dan8d22a172010-04-19 18:03:51 +00002997 }
2998 return (int)ret;
2999}
dan55437592010-05-11 12:19:26 +00003000
3001/*
drh61e4ace2010-05-31 20:28:37 +00003002** This function is called to change the WAL subsystem into or out
3003** of locking_mode=EXCLUSIVE.
dan55437592010-05-11 12:19:26 +00003004**
drh61e4ace2010-05-31 20:28:37 +00003005** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3006** into locking_mode=NORMAL. This means that we must acquire a lock
3007** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
3008** or if the acquisition of the lock fails, then return 0. If the
3009** transition out of exclusive-mode is successful, return 1. This
3010** operation must occur while the pager is still holding the exclusive
3011** lock on the main database file.
dan55437592010-05-11 12:19:26 +00003012**
drh61e4ace2010-05-31 20:28:37 +00003013** If op is one, then change from locking_mode=NORMAL into
3014** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
3015** be released. Return 1 if the transition is made and 0 if the
3016** WAL is already in exclusive-locking mode - meaning that this
3017** routine is a no-op. The pager must already hold the exclusive lock
3018** on the main database file before invoking this operation.
3019**
3020** If op is negative, then do a dry-run of the op==1 case but do
dan8c408002010-11-01 17:38:24 +00003021** not actually change anything. The pager uses this to see if it
drh61e4ace2010-05-31 20:28:37 +00003022** should acquire the database exclusive lock prior to invoking
3023** the op==1 case.
dan55437592010-05-11 12:19:26 +00003024*/
3025int sqlite3WalExclusiveMode(Wal *pWal, int op){
drh61e4ace2010-05-31 20:28:37 +00003026 int rc;
drhaab4c022010-06-02 14:45:51 +00003027 assert( pWal->writeLock==0 );
dan8c408002010-11-01 17:38:24 +00003028 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
dan3cac5dc2010-06-04 18:37:59 +00003029
3030 /* pWal->readLock is usually set, but might be -1 if there was a
3031 ** prior error while attempting to acquire are read-lock. This cannot
3032 ** happen if the connection is actually in exclusive mode (as no xShmLock
3033 ** locks are taken in this case). Nor should the pager attempt to
3034 ** upgrade to exclusive-mode following such an error.
3035 */
drhaab4c022010-06-02 14:45:51 +00003036 assert( pWal->readLock>=0 || pWal->lockError );
dan3cac5dc2010-06-04 18:37:59 +00003037 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3038
drh61e4ace2010-05-31 20:28:37 +00003039 if( op==0 ){
3040 if( pWal->exclusiveMode ){
3041 pWal->exclusiveMode = 0;
dan3cac5dc2010-06-04 18:37:59 +00003042 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
drh61e4ace2010-05-31 20:28:37 +00003043 pWal->exclusiveMode = 1;
3044 }
3045 rc = pWal->exclusiveMode==0;
3046 }else{
drhaab4c022010-06-02 14:45:51 +00003047 /* Already in locking_mode=NORMAL */
drh61e4ace2010-05-31 20:28:37 +00003048 rc = 0;
3049 }
3050 }else if( op>0 ){
3051 assert( pWal->exclusiveMode==0 );
drhaab4c022010-06-02 14:45:51 +00003052 assert( pWal->readLock>=0 );
drh61e4ace2010-05-31 20:28:37 +00003053 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3054 pWal->exclusiveMode = 1;
3055 rc = 1;
3056 }else{
3057 rc = pWal->exclusiveMode==0;
dan55437592010-05-11 12:19:26 +00003058 }
drh61e4ace2010-05-31 20:28:37 +00003059 return rc;
dan55437592010-05-11 12:19:26 +00003060}
3061
dan8c408002010-11-01 17:38:24 +00003062/*
3063** Return true if the argument is non-NULL and the WAL module is using
3064** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3065** WAL module is using shared-memory, return false.
3066*/
3067int sqlite3WalHeapMemory(Wal *pWal){
3068 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3069}
3070
drh70708602012-02-24 14:33:28 +00003071#ifdef SQLITE_ENABLE_ZIPVFS
danb3bdc722012-02-23 15:35:49 +00003072/*
3073** If the argument is not NULL, it points to a Wal object that holds a
3074** read-lock. This function returns the database page-size if it is known,
3075** or zero if it is not (or if pWal is NULL).
3076*/
3077int sqlite3WalFramesize(Wal *pWal){
danb3bdc722012-02-23 15:35:49 +00003078 assert( pWal==0 || pWal->readLock>=0 );
3079 return (pWal ? pWal->szPage : 0);
3080}
drh70708602012-02-24 14:33:28 +00003081#endif
danb3bdc722012-02-23 15:35:49 +00003082
dan5cf53532010-05-01 16:40:20 +00003083#endif /* #ifndef SQLITE_OMIT_WAL */