blob: 088d3d64a48381bf4290a5c0ca5a1b97053b8734 [file] [log] [blame]
drh4f26d6c2004-05-26 23:25:30 +00001/*
2** 2004 May 26
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
13** This file contains code use to manipulate "Mem" structure. A "Mem"
14** stores a single value in the VDBE. Mem is an opaque structure visible
15** only within the VDBE. Interface routines refer to a Mem using the
16** name sqlite_value
17*/
18#include "sqliteInt.h"
drh4f26d6c2004-05-26 23:25:30 +000019#include "vdbeInt.h"
20
21/*
danielk1977bfd6cce2004-06-18 04:24:54 +000022** If pMem is an object with a valid string representation, this routine
23** ensures the internal encoding for the string representation is
24** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
drh4f26d6c2004-05-26 23:25:30 +000025**
danielk1977bfd6cce2004-06-18 04:24:54 +000026** If pMem is not a string object, or the encoding of the string
27** representation is already stored using the requested encoding, then this
28** routine is a no-op.
drh4f26d6c2004-05-26 23:25:30 +000029**
30** SQLITE_OK is returned if the conversion is successful (or not required).
31** SQLITE_NOMEM may be returned if a malloc() fails during conversion
32** between formats.
33*/
drhb21c8cd2007-08-21 19:33:56 +000034int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
danielk19772c336542005-01-13 02:14:23 +000035 int rc;
drh3d4501e2008-12-04 20:40:10 +000036 assert( (pMem->flags&MEM_RowSet)==0 );
drhb27b7f52008-12-10 18:03:45 +000037 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
38 || desiredEnc==SQLITE_UTF16BE );
drheb2e1762004-05-27 01:53:56 +000039 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
drh4f26d6c2004-05-26 23:25:30 +000040 return SQLITE_OK;
41 }
drhb21c8cd2007-08-21 19:33:56 +000042 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh6c626082004-11-14 21:56:29 +000043#ifdef SQLITE_OMIT_UTF16
44 return SQLITE_ERROR;
45#else
danielk197700fd9572005-12-07 06:27:43 +000046
47 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
48 ** then the encoding of the value may not have changed.
49 */
drhb27b7f52008-12-10 18:03:45 +000050 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
danielk197700fd9572005-12-07 06:27:43 +000051 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
52 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
53 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
danielk19772c336542005-01-13 02:14:23 +000054 return rc;
drh6c626082004-11-14 21:56:29 +000055#endif
drh4f26d6c2004-05-26 23:25:30 +000056}
57
drheb2e1762004-05-27 01:53:56 +000058/*
danielk1977a7a8e142008-02-13 18:25:27 +000059** Make sure pMem->z points to a writable allocation of at least
60** n bytes.
61**
62** If the memory cell currently contains string or blob data
63** and the third argument passed to this function is true, the
64** current content of the cell is preserved. Otherwise, it may
65** be discarded.
66**
67** This function sets the MEM_Dyn flag and clears any xDel callback.
68** It also clears MEM_Ephem and MEM_Static. If the preserve flag is
69** not set, Mem.n is zeroed.
70*/
71int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve){
danielk19775f096132008-03-28 15:44:09 +000072 assert( 1 >=
73 ((pMem->zMalloc && pMem->zMalloc==pMem->z) ? 1 : 0) +
74 (((pMem->flags&MEM_Dyn)&&pMem->xDel) ? 1 : 0) +
75 ((pMem->flags&MEM_Ephem) ? 1 : 0) +
76 ((pMem->flags&MEM_Static) ? 1 : 0)
danielk1977a7a8e142008-02-13 18:25:27 +000077 );
drh3d4501e2008-12-04 20:40:10 +000078 assert( (pMem->flags&MEM_RowSet)==0 );
danielk1977a7a8e142008-02-13 18:25:27 +000079
drhaf005fb2008-07-09 16:51:51 +000080 if( n<32 ) n = 32;
drh633e6d52008-07-28 19:34:53 +000081 if( sqlite3DbMallocSize(pMem->db, pMem->zMalloc)<n ){
danielk19775f096132008-03-28 15:44:09 +000082 if( preserve && pMem->z==pMem->zMalloc ){
83 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
84 preserve = 0;
85 }else{
drh633e6d52008-07-28 19:34:53 +000086 sqlite3DbFree(pMem->db, pMem->zMalloc);
danielk19775f096132008-03-28 15:44:09 +000087 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
danielk1977a7a8e142008-02-13 18:25:27 +000088 }
danielk1977a7a8e142008-02-13 18:25:27 +000089 }
danielk19775f096132008-03-28 15:44:09 +000090
drh4c8555f2009-06-25 01:47:11 +000091 if( pMem->z && preserve && pMem->zMalloc && pMem->z!=pMem->zMalloc ){
danielk19775f096132008-03-28 15:44:09 +000092 memcpy(pMem->zMalloc, pMem->z, pMem->n);
93 }
drhb08c2a72008-04-16 00:28:13 +000094 if( pMem->flags&MEM_Dyn && pMem->xDel ){
drhaa538a52012-01-19 16:57:16 +000095 assert( pMem->xDel!=SQLITE_DYNAMIC );
danielk19775f096132008-03-28 15:44:09 +000096 pMem->xDel((void *)(pMem->z));
97 }
98
99 pMem->z = pMem->zMalloc;
drh753cc102008-11-11 00:21:30 +0000100 if( pMem->z==0 ){
101 pMem->flags = MEM_Null;
102 }else{
103 pMem->flags &= ~(MEM_Ephem|MEM_Static);
104 }
danielk19775f096132008-03-28 15:44:09 +0000105 pMem->xDel = 0;
106 return (pMem->z ? SQLITE_OK : SQLITE_NOMEM);
danielk1977a7a8e142008-02-13 18:25:27 +0000107}
108
109/*
drhdab898f2008-07-30 13:14:55 +0000110** Make the given Mem object MEM_Dyn. In other words, make it so
111** that any TEXT or BLOB content is stored in memory obtained from
112** malloc(). In this way, we know that the memory is safe to be
113** overwritten or altered.
drheb2e1762004-05-27 01:53:56 +0000114**
115** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
116*/
drhdab898f2008-07-30 13:14:55 +0000117int sqlite3VdbeMemMakeWriteable(Mem *pMem){
danielk1977a7a8e142008-02-13 18:25:27 +0000118 int f;
drhb21c8cd2007-08-21 19:33:56 +0000119 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh3d4501e2008-12-04 20:40:10 +0000120 assert( (pMem->flags&MEM_RowSet)==0 );
drh45d29302012-01-08 22:18:33 +0000121 ExpandBlob(pMem);
danielk1977a7a8e142008-02-13 18:25:27 +0000122 f = pMem->flags;
danielk19775f096132008-03-28 15:44:09 +0000123 if( (f&(MEM_Str|MEM_Blob)) && pMem->z!=pMem->zMalloc ){
danielk1977a7a8e142008-02-13 18:25:27 +0000124 if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){
125 return SQLITE_NOMEM;
126 }
127 pMem->z[pMem->n] = 0;
128 pMem->z[pMem->n+1] = 0;
129 pMem->flags |= MEM_Term;
drhebc16712010-09-28 00:25:58 +0000130#ifdef SQLITE_DEBUG
131 pMem->pScopyFrom = 0;
132#endif
drheb2e1762004-05-27 01:53:56 +0000133 }
danielk1977a7a8e142008-02-13 18:25:27 +0000134
drhf4479502004-05-27 03:12:53 +0000135 return SQLITE_OK;
drheb2e1762004-05-27 01:53:56 +0000136}
137
138/*
drhfdf972a2007-05-02 13:30:27 +0000139** If the given Mem* has a zero-filled tail, turn it into an ordinary
drhb026e052007-05-02 01:34:31 +0000140** blob stored in dynamically allocated space.
141*/
danielk1977246ad312007-05-16 14:23:00 +0000142#ifndef SQLITE_OMIT_INCRBLOB
drhb21c8cd2007-08-21 19:33:56 +0000143int sqlite3VdbeMemExpandBlob(Mem *pMem){
drhb026e052007-05-02 01:34:31 +0000144 if( pMem->flags & MEM_Zero ){
drh98640a32007-06-07 19:08:32 +0000145 int nByte;
danielk1977a7a8e142008-02-13 18:25:27 +0000146 assert( pMem->flags&MEM_Blob );
drh3d4501e2008-12-04 20:40:10 +0000147 assert( (pMem->flags&MEM_RowSet)==0 );
drhb21c8cd2007-08-21 19:33:56 +0000148 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
danielk1977a7a8e142008-02-13 18:25:27 +0000149
150 /* Set nByte to the number of bytes required to store the expanded blob. */
drh8df32842008-12-09 02:51:23 +0000151 nByte = pMem->n + pMem->u.nZero;
danielk1977a7a8e142008-02-13 18:25:27 +0000152 if( nByte<=0 ){
153 nByte = 1;
154 }
155 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
drhb026e052007-05-02 01:34:31 +0000156 return SQLITE_NOMEM;
157 }
danielk1977a7a8e142008-02-13 18:25:27 +0000158
drh8df32842008-12-09 02:51:23 +0000159 memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
160 pMem->n += pMem->u.nZero;
danielk1977a7a8e142008-02-13 18:25:27 +0000161 pMem->flags &= ~(MEM_Zero|MEM_Term);
drhb026e052007-05-02 01:34:31 +0000162 }
163 return SQLITE_OK;
164}
danielk1977246ad312007-05-16 14:23:00 +0000165#endif
drhb026e052007-05-02 01:34:31 +0000166
167
168/*
drheb2e1762004-05-27 01:53:56 +0000169** Make sure the given Mem is \u0000 terminated.
170*/
drhb21c8cd2007-08-21 19:33:56 +0000171int sqlite3VdbeMemNulTerminate(Mem *pMem){
172 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
danielk197713073932004-06-30 11:54:06 +0000173 if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){
drheb2e1762004-05-27 01:53:56 +0000174 return SQLITE_OK; /* Nothing to do */
175 }
danielk1977a7a8e142008-02-13 18:25:27 +0000176 if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
177 return SQLITE_NOMEM;
danielk19773f6b0872004-06-17 05:36:44 +0000178 }
danielk1977a7a8e142008-02-13 18:25:27 +0000179 pMem->z[pMem->n] = 0;
180 pMem->z[pMem->n+1] = 0;
181 pMem->flags |= MEM_Term;
danielk19773f6b0872004-06-17 05:36:44 +0000182 return SQLITE_OK;
drheb2e1762004-05-27 01:53:56 +0000183}
184
185/*
danielk197713073932004-06-30 11:54:06 +0000186** Add MEM_Str to the set of representations for the given Mem. Numbers
187** are converted using sqlite3_snprintf(). Converting a BLOB to a string
188** is a no-op.
drheb2e1762004-05-27 01:53:56 +0000189**
190** Existing representations MEM_Int and MEM_Real are *not* invalidated.
danielk197713073932004-06-30 11:54:06 +0000191**
192** A MEM_Null value will never be passed to this function. This function is
193** used for converting values to text for returning to the user (i.e. via
194** sqlite3_value_text()), or for ensuring that values to be used as btree
195** keys are strings. In the former case a NULL pointer is returned the
196** user and the later is an internal programming error.
drheb2e1762004-05-27 01:53:56 +0000197*/
drhb21c8cd2007-08-21 19:33:56 +0000198int sqlite3VdbeMemStringify(Mem *pMem, int enc){
drheb2e1762004-05-27 01:53:56 +0000199 int rc = SQLITE_OK;
200 int fg = pMem->flags;
danielk1977a7a8e142008-02-13 18:25:27 +0000201 const int nByte = 32;
drheb2e1762004-05-27 01:53:56 +0000202
drhb21c8cd2007-08-21 19:33:56 +0000203 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
danielk1977def0fec2007-05-10 15:37:52 +0000204 assert( !(fg&MEM_Zero) );
drheb2e1762004-05-27 01:53:56 +0000205 assert( !(fg&(MEM_Str|MEM_Blob)) );
danielk197713073932004-06-30 11:54:06 +0000206 assert( fg&(MEM_Int|MEM_Real) );
drh3d4501e2008-12-04 20:40:10 +0000207 assert( (pMem->flags&MEM_RowSet)==0 );
drhea598cb2009-04-05 12:22:08 +0000208 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
drh3d4501e2008-12-04 20:40:10 +0000209
drheb2e1762004-05-27 01:53:56 +0000210
danielk1977a7a8e142008-02-13 18:25:27 +0000211 if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){
212 return SQLITE_NOMEM;
213 }
214
215 /* For a Real or Integer, use sqlite3_mprintf() to produce the UTF-8
danielk197713073932004-06-30 11:54:06 +0000216 ** string representation of the value. Then, if the required encoding
217 ** is UTF-16le or UTF-16be do a translation.
218 **
219 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
220 */
drh8df447f2005-11-01 15:48:24 +0000221 if( fg & MEM_Int ){
danielk1977a7a8e142008-02-13 18:25:27 +0000222 sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
drh8df447f2005-11-01 15:48:24 +0000223 }else{
224 assert( fg & MEM_Real );
danielk1977a7a8e142008-02-13 18:25:27 +0000225 sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->r);
drheb2e1762004-05-27 01:53:56 +0000226 }
drhea678832008-12-10 19:26:22 +0000227 pMem->n = sqlite3Strlen30(pMem->z);
danielk197713073932004-06-30 11:54:06 +0000228 pMem->enc = SQLITE_UTF8;
danielk1977a7a8e142008-02-13 18:25:27 +0000229 pMem->flags |= MEM_Str|MEM_Term;
drhb21c8cd2007-08-21 19:33:56 +0000230 sqlite3VdbeChangeEncoding(pMem, enc);
drheb2e1762004-05-27 01:53:56 +0000231 return rc;
232}
233
234/*
drhabfcea22005-09-06 20:36:48 +0000235** Memory cell pMem contains the context of an aggregate function.
236** This routine calls the finalize method for that function. The
237** result of the aggregate is stored back into pMem.
drh90669c12006-01-20 15:45:36 +0000238**
239** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
240** otherwise.
drhabfcea22005-09-06 20:36:48 +0000241*/
drh90669c12006-01-20 15:45:36 +0000242int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
243 int rc = SQLITE_OK;
drh4c8555f2009-06-25 01:47:11 +0000244 if( ALWAYS(pFunc && pFunc->xFinalize) ){
drha10a34b2005-09-07 22:09:48 +0000245 sqlite3_context ctx;
drh3c024d62007-03-30 11:23:45 +0000246 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
drhb21c8cd2007-08-21 19:33:56 +0000247 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh709b8cb2008-08-22 14:41:00 +0000248 memset(&ctx, 0, sizeof(ctx));
drha10a34b2005-09-07 22:09:48 +0000249 ctx.s.flags = MEM_Null;
drhb21c8cd2007-08-21 19:33:56 +0000250 ctx.s.db = pMem->db;
drha10a34b2005-09-07 22:09:48 +0000251 ctx.pMem = pMem;
252 ctx.pFunc = pFunc;
drhee9ff672010-09-03 18:50:48 +0000253 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
drhb08c2a72008-04-16 00:28:13 +0000254 assert( 0==(pMem->flags&MEM_Dyn) && !pMem->xDel );
drh633e6d52008-07-28 19:34:53 +0000255 sqlite3DbFree(pMem->db, pMem->zMalloc);
drh092d5ef2008-12-10 11:49:06 +0000256 memcpy(pMem, &ctx.s, sizeof(ctx.s));
drh4c8555f2009-06-25 01:47:11 +0000257 rc = ctx.isError;
drhabfcea22005-09-06 20:36:48 +0000258 }
drh90669c12006-01-20 15:45:36 +0000259 return rc;
drhabfcea22005-09-06 20:36:48 +0000260}
261
262/*
danielk19775f096132008-03-28 15:44:09 +0000263** If the memory cell contains a string value that must be freed by
264** invoking an external callback, free it now. Calling this function
265** does not free any Mem.zMalloc buffer.
266*/
267void sqlite3VdbeMemReleaseExternal(Mem *p){
268 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
drh2d36eb42011-08-29 02:49:41 +0000269 if( p->flags&MEM_Agg ){
270 sqlite3VdbeMemFinalize(p, p->u.pDef);
271 assert( (p->flags & MEM_Agg)==0 );
272 sqlite3VdbeMemRelease(p);
273 }else if( p->flags&MEM_Dyn && p->xDel ){
274 assert( (p->flags&MEM_RowSet)==0 );
drhaa538a52012-01-19 16:57:16 +0000275 assert( p->xDel!=SQLITE_DYNAMIC );
drh2d36eb42011-08-29 02:49:41 +0000276 p->xDel((void *)p->z);
277 p->xDel = 0;
278 }else if( p->flags&MEM_RowSet ){
279 sqlite3RowSetClear(p->u.pRowSet);
280 }else if( p->flags&MEM_Frame ){
281 sqlite3VdbeMemSetNull(p);
danielk19775f096132008-03-28 15:44:09 +0000282 }
283}
284
285/*
danielk1977d8123362004-06-12 09:25:12 +0000286** Release any memory held by the Mem. This may leave the Mem in an
287** inconsistent state, for example with (Mem.z==0) and
288** (Mem.type==SQLITE_TEXT).
drhf4479502004-05-27 03:12:53 +0000289*/
danielk1977d8123362004-06-12 09:25:12 +0000290void sqlite3VdbeMemRelease(Mem *p){
drhe4c88c02012-01-04 12:57:45 +0000291 VdbeMemRelease(p);
drh633e6d52008-07-28 19:34:53 +0000292 sqlite3DbFree(p->db, p->zMalloc);
danielk19775f096132008-03-28 15:44:09 +0000293 p->z = 0;
294 p->zMalloc = 0;
295 p->xDel = 0;
drhf4479502004-05-27 03:12:53 +0000296}
297
298/*
drhd8c303f2008-01-11 15:27:03 +0000299** Convert a 64-bit IEEE double into a 64-bit signed integer.
300** If the double is too large, return 0x8000000000000000.
301**
302** Most systems appear to do this simply by assigning
303** variables and without the extra range tests. But
304** there are reports that windows throws an expection
305** if the floating point value is out of range. (See ticket #2880.)
306** Because we do not completely understand the problem, we will
307** take the conservative approach and always do range tests
308** before attempting the conversion.
309*/
310static i64 doubleToInt64(double r){
drh52d14522010-01-13 15:15:40 +0000311#ifdef SQLITE_OMIT_FLOATING_POINT
312 /* When floating-point is omitted, double and int64 are the same thing */
313 return r;
314#else
drhd8c303f2008-01-11 15:27:03 +0000315 /*
316 ** Many compilers we encounter do not define constants for the
317 ** minimum and maximum 64-bit integers, or they define them
318 ** inconsistently. And many do not understand the "LL" notation.
319 ** So we define our own static constants here using nothing
320 ** larger than a 32-bit integer constant.
321 */
drh0f050352008-05-09 18:03:13 +0000322 static const i64 maxInt = LARGEST_INT64;
323 static const i64 minInt = SMALLEST_INT64;
drhd8c303f2008-01-11 15:27:03 +0000324
325 if( r<(double)minInt ){
326 return minInt;
327 }else if( r>(double)maxInt ){
drhf9e749c2009-03-29 15:12:09 +0000328 /* minInt is correct here - not maxInt. It turns out that assigning
329 ** a very large positive number to an integer results in a very large
330 ** negative integer. This makes no sense, but it is what x86 hardware
331 ** does so for compatibility we will do the same in software. */
drhd8c303f2008-01-11 15:27:03 +0000332 return minInt;
333 }else{
334 return (i64)r;
335 }
drh52d14522010-01-13 15:15:40 +0000336#endif
drhd8c303f2008-01-11 15:27:03 +0000337}
338
339/*
drh6a6124e2004-06-27 01:56:33 +0000340** Return some kind of integer value which is the best we can do
341** at representing the value that *pMem describes as an integer.
342** If pMem is an integer, then the value is exact. If pMem is
343** a floating-point then the value returned is the integer part.
344** If pMem is a string or blob, then we make an attempt to convert
drh347a7cb2009-03-23 21:37:04 +0000345** it into a integer and return that. If pMem represents an
346** an SQL-NULL value, return 0.
drh6a6124e2004-06-27 01:56:33 +0000347**
drh347a7cb2009-03-23 21:37:04 +0000348** If pMem represents a string value, its encoding might be changed.
drheb2e1762004-05-27 01:53:56 +0000349*/
drh6a6124e2004-06-27 01:56:33 +0000350i64 sqlite3VdbeIntValue(Mem *pMem){
drhb21c8cd2007-08-21 19:33:56 +0000351 int flags;
352 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drhea598cb2009-04-05 12:22:08 +0000353 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
drhb21c8cd2007-08-21 19:33:56 +0000354 flags = pMem->flags;
drh6fec0762004-05-30 01:38:43 +0000355 if( flags & MEM_Int ){
drh3c024d62007-03-30 11:23:45 +0000356 return pMem->u.i;
drh6fec0762004-05-30 01:38:43 +0000357 }else if( flags & MEM_Real ){
drhd8c303f2008-01-11 15:27:03 +0000358 return doubleToInt64(pMem->r);
drh6fec0762004-05-30 01:38:43 +0000359 }else if( flags & (MEM_Str|MEM_Blob) ){
drh158b9cb2011-03-05 20:59:46 +0000360 i64 value = 0;
drh9339da12010-09-30 00:50:49 +0000361 assert( pMem->z || pMem->n==0 );
362 testcase( pMem->z==0 );
363 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
drh6a6124e2004-06-27 01:56:33 +0000364 return value;
drheb2e1762004-05-27 01:53:56 +0000365 }else{
drh6a6124e2004-06-27 01:56:33 +0000366 return 0;
drheb2e1762004-05-27 01:53:56 +0000367 }
drh6a6124e2004-06-27 01:56:33 +0000368}
369
370/*
drh6a6124e2004-06-27 01:56:33 +0000371** Return the best representation of pMem that we can get into a
372** double. If pMem is already a double or an integer, return its
373** value. If it is a string or blob, try to convert it to a double.
374** If it is a NULL, return 0.0.
drheb2e1762004-05-27 01:53:56 +0000375*/
drh6a6124e2004-06-27 01:56:33 +0000376double sqlite3VdbeRealValue(Mem *pMem){
drhb21c8cd2007-08-21 19:33:56 +0000377 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drhea598cb2009-04-05 12:22:08 +0000378 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
danielk1977f93bbbe2004-05-27 10:30:52 +0000379 if( pMem->flags & MEM_Real ){
drh6a6124e2004-06-27 01:56:33 +0000380 return pMem->r;
381 }else if( pMem->flags & MEM_Int ){
drh3c024d62007-03-30 11:23:45 +0000382 return (double)pMem->u.i;
drheb2e1762004-05-27 01:53:56 +0000383 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
shanefbd60f82009-02-04 03:59:25 +0000384 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
385 double val = (double)0;
drhe062d7b2010-10-05 12:05:32 +0000386 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
drh487e2622005-06-25 18:42:14 +0000387 return val;
drheb2e1762004-05-27 01:53:56 +0000388 }else{
shanefbd60f82009-02-04 03:59:25 +0000389 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
390 return (double)0;
drheb2e1762004-05-27 01:53:56 +0000391 }
drh6a6124e2004-06-27 01:56:33 +0000392}
393
394/*
drh8df447f2005-11-01 15:48:24 +0000395** The MEM structure is already a MEM_Real. Try to also make it a
396** MEM_Int if we can.
397*/
398void sqlite3VdbeIntegerAffinity(Mem *pMem){
399 assert( pMem->flags & MEM_Real );
drh3d4501e2008-12-04 20:40:10 +0000400 assert( (pMem->flags & MEM_RowSet)==0 );
drhb21c8cd2007-08-21 19:33:56 +0000401 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drhea598cb2009-04-05 12:22:08 +0000402 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
drhefe3d652008-01-11 00:06:10 +0000403
drhd8c303f2008-01-11 15:27:03 +0000404 pMem->u.i = doubleToInt64(pMem->r);
drh94c3a2b2009-06-17 16:20:04 +0000405
406 /* Only mark the value as an integer if
407 **
408 ** (1) the round-trip conversion real->int->real is a no-op, and
409 ** (2) The integer is neither the largest nor the smallest
410 ** possible integer (ticket #3922)
411 **
drhe74871a2009-08-14 17:53:39 +0000412 ** The second and third terms in the following conditional enforces
413 ** the second condition under the assumption that addition overflow causes
414 ** values to wrap around. On x86 hardware, the third term is always
415 ** true and could be omitted. But we leave it in because other
416 ** architectures might behave differently.
drh94c3a2b2009-06-17 16:20:04 +0000417 */
drhbb8c1b52012-02-10 01:25:13 +0000418 if( pMem->r==(double)pMem->u.i
419 && pMem->u.i>SMALLEST_INT64
420#if defined(__i486__) || defined(__x86_64__)
421 && ALWAYS(pMem->u.i<LARGEST_INT64)
422#else
423 && pMem->u.i<LARGEST_INT64
424#endif
425 ){
drh8df447f2005-11-01 15:48:24 +0000426 pMem->flags |= MEM_Int;
427 }
428}
429
drh8a512562005-11-14 22:29:05 +0000430/*
431** Convert pMem to type integer. Invalidate any prior representations.
432*/
433int sqlite3VdbeMemIntegerify(Mem *pMem){
drhb21c8cd2007-08-21 19:33:56 +0000434 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh3d4501e2008-12-04 20:40:10 +0000435 assert( (pMem->flags & MEM_RowSet)==0 );
drhea598cb2009-04-05 12:22:08 +0000436 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
437
drh3c024d62007-03-30 11:23:45 +0000438 pMem->u.i = sqlite3VdbeIntValue(pMem);
drh3d4501e2008-12-04 20:40:10 +0000439 MemSetTypeFlag(pMem, MEM_Int);
drh8a512562005-11-14 22:29:05 +0000440 return SQLITE_OK;
441}
drh8df447f2005-11-01 15:48:24 +0000442
443/*
drh8a512562005-11-14 22:29:05 +0000444** Convert pMem so that it is of type MEM_Real.
445** Invalidate any prior representations.
drh6a6124e2004-06-27 01:56:33 +0000446*/
447int sqlite3VdbeMemRealify(Mem *pMem){
drhb21c8cd2007-08-21 19:33:56 +0000448 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drhea598cb2009-04-05 12:22:08 +0000449 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
450
drh6a6124e2004-06-27 01:56:33 +0000451 pMem->r = sqlite3VdbeRealValue(pMem);
drh3d4501e2008-12-04 20:40:10 +0000452 MemSetTypeFlag(pMem, MEM_Real);
drh8a512562005-11-14 22:29:05 +0000453 return SQLITE_OK;
454}
455
456/*
457** Convert pMem so that it has types MEM_Real or MEM_Int or both.
458** Invalidate any prior representations.
drh4b5db5a2010-01-21 01:53:07 +0000459**
460** Every effort is made to force the conversion, even if the input
461** is a string that does not look completely like a number. Convert
462** as much of the string as we can and ignore the rest.
drh8a512562005-11-14 22:29:05 +0000463*/
464int sqlite3VdbeMemNumerify(Mem *pMem){
drh93518622010-09-30 14:48:06 +0000465 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){
466 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
467 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
shaneh5f1d6b62010-09-30 16:51:25 +0000468 if( 0==sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc) ){
drh93518622010-09-30 14:48:06 +0000469 MemSetTypeFlag(pMem, MEM_Int);
470 }else{
471 pMem->r = sqlite3VdbeRealValue(pMem);
472 MemSetTypeFlag(pMem, MEM_Real);
473 sqlite3VdbeIntegerAffinity(pMem);
474 }
drhcd7b46d2007-05-16 11:55:56 +0000475 }
drh93518622010-09-30 14:48:06 +0000476 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 );
477 pMem->flags &= ~(MEM_Str|MEM_Blob);
drhf4479502004-05-27 03:12:53 +0000478 return SQLITE_OK;
drh4f26d6c2004-05-26 23:25:30 +0000479}
480
481/*
482** Delete any previous value and set the value stored in *pMem to NULL.
483*/
484void sqlite3VdbeMemSetNull(Mem *pMem){
dan165921a2009-08-28 18:53:45 +0000485 if( pMem->flags & MEM_Frame ){
dan27106572010-12-01 08:04:47 +0000486 VdbeFrame *pFrame = pMem->u.pFrame;
487 pFrame->pParent = pFrame->v->pDelFrame;
488 pFrame->v->pDelFrame = pFrame;
dan165921a2009-08-28 18:53:45 +0000489 }
drh3d4501e2008-12-04 20:40:10 +0000490 if( pMem->flags & MEM_RowSet ){
491 sqlite3RowSetClear(pMem->u.pRowSet);
492 }
493 MemSetTypeFlag(pMem, MEM_Null);
drh9c054832004-05-31 18:51:57 +0000494 pMem->type = SQLITE_NULL;
drh4f26d6c2004-05-26 23:25:30 +0000495}
496
497/*
drhb026e052007-05-02 01:34:31 +0000498** Delete any previous value and set the value to be a BLOB of length
499** n containing all zeros.
500*/
501void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
502 sqlite3VdbeMemRelease(pMem);
danielk1977a7a8e142008-02-13 18:25:27 +0000503 pMem->flags = MEM_Blob|MEM_Zero;
drhb026e052007-05-02 01:34:31 +0000504 pMem->type = SQLITE_BLOB;
505 pMem->n = 0;
drh98640a32007-06-07 19:08:32 +0000506 if( n<0 ) n = 0;
drh8df32842008-12-09 02:51:23 +0000507 pMem->u.nZero = n;
danielk1977def0fec2007-05-10 15:37:52 +0000508 pMem->enc = SQLITE_UTF8;
danielk1977f16c6242009-07-18 14:36:23 +0000509
510#ifdef SQLITE_OMIT_INCRBLOB
511 sqlite3VdbeMemGrow(pMem, n, 0);
512 if( pMem->z ){
513 pMem->n = n;
514 memset(pMem->z, 0, n);
515 }
516#endif
drhb026e052007-05-02 01:34:31 +0000517}
518
519/*
drh4f26d6c2004-05-26 23:25:30 +0000520** Delete any previous value and set the value stored in *pMem to val,
521** manifest type INTEGER.
522*/
drheb2e1762004-05-27 01:53:56 +0000523void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
danielk1977d8123362004-06-12 09:25:12 +0000524 sqlite3VdbeMemRelease(pMem);
drh3c024d62007-03-30 11:23:45 +0000525 pMem->u.i = val;
drh4f26d6c2004-05-26 23:25:30 +0000526 pMem->flags = MEM_Int;
drh9c054832004-05-31 18:51:57 +0000527 pMem->type = SQLITE_INTEGER;
drh4f26d6c2004-05-26 23:25:30 +0000528}
529
drh7ec5ea92010-01-13 00:04:13 +0000530#ifndef SQLITE_OMIT_FLOATING_POINT
drh4f26d6c2004-05-26 23:25:30 +0000531/*
532** Delete any previous value and set the value stored in *pMem to val,
533** manifest type REAL.
534*/
drheb2e1762004-05-27 01:53:56 +0000535void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
drh0de3ae92008-04-28 16:55:26 +0000536 if( sqlite3IsNaN(val) ){
drh53c14022007-05-10 17:23:11 +0000537 sqlite3VdbeMemSetNull(pMem);
538 }else{
539 sqlite3VdbeMemRelease(pMem);
540 pMem->r = val;
541 pMem->flags = MEM_Real;
542 pMem->type = SQLITE_FLOAT;
543 }
drh4f26d6c2004-05-26 23:25:30 +0000544}
drh7ec5ea92010-01-13 00:04:13 +0000545#endif
drh4f26d6c2004-05-26 23:25:30 +0000546
547/*
drh3d4501e2008-12-04 20:40:10 +0000548** Delete any previous value and set the value of pMem to be an
549** empty boolean index.
550*/
551void sqlite3VdbeMemSetRowSet(Mem *pMem){
552 sqlite3 *db = pMem->db;
553 assert( db!=0 );
drh4c8555f2009-06-25 01:47:11 +0000554 assert( (pMem->flags & MEM_RowSet)==0 );
555 sqlite3VdbeMemRelease(pMem);
556 pMem->zMalloc = sqlite3DbMallocRaw(db, 64);
drh8d993632008-12-04 22:17:55 +0000557 if( db->mallocFailed ){
558 pMem->flags = MEM_Null;
559 }else{
drh3d4501e2008-12-04 20:40:10 +0000560 assert( pMem->zMalloc );
561 pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc,
562 sqlite3DbMallocSize(db, pMem->zMalloc));
563 assert( pMem->u.pRowSet!=0 );
drh8d993632008-12-04 22:17:55 +0000564 pMem->flags = MEM_RowSet;
drh3d4501e2008-12-04 20:40:10 +0000565 }
566}
567
568/*
drh023ae032007-05-08 12:12:16 +0000569** Return true if the Mem object contains a TEXT or BLOB that is
570** too large - whose size exceeds SQLITE_MAX_LENGTH.
571*/
572int sqlite3VdbeMemTooBig(Mem *p){
drhfa4a4b92008-03-19 21:45:51 +0000573 assert( p->db!=0 );
drh023ae032007-05-08 12:12:16 +0000574 if( p->flags & (MEM_Str|MEM_Blob) ){
575 int n = p->n;
576 if( p->flags & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +0000577 n += p->u.nZero;
drh023ae032007-05-08 12:12:16 +0000578 }
drhbb4957f2008-03-20 14:03:29 +0000579 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
drh023ae032007-05-08 12:12:16 +0000580 }
581 return 0;
582}
583
drh2b4ded92010-09-27 21:09:31 +0000584#ifdef SQLITE_DEBUG
585/*
586** This routine prepares a memory cell for modication by breaking
587** its link to a shallow copy and by marking any current shallow
588** copies of this cell as invalid.
589**
590** This is used for testing and debugging only - to make sure shallow
591** copies are not misused.
592*/
drhe4c88c02012-01-04 12:57:45 +0000593void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
drh2b4ded92010-09-27 21:09:31 +0000594 int i;
595 Mem *pX;
596 for(i=1, pX=&pVdbe->aMem[1]; i<=pVdbe->nMem; i++, pX++){
597 if( pX->pScopyFrom==pMem ){
598 pX->flags |= MEM_Invalid;
599 pX->pScopyFrom = 0;
600 }
601 }
602 pMem->pScopyFrom = 0;
603}
604#endif /* SQLITE_DEBUG */
605
danielk1977e5f5b8f2008-03-28 18:11:16 +0000606/*
607** Size of struct Mem not including the Mem.zMalloc member.
608*/
mlcreechfe3f4e82008-03-29 23:25:27 +0000609#define MEMCELLSIZE (size_t)(&(((Mem *)0)->zMalloc))
danielk19775f096132008-03-28 15:44:09 +0000610
drh023ae032007-05-08 12:12:16 +0000611/*
drhfebe1062004-08-28 18:17:48 +0000612** Make an shallow copy of pFrom into pTo. Prior contents of
drha05a7222008-01-19 03:35:58 +0000613** pTo are freed. The pFrom->z field is not duplicated. If
drhfebe1062004-08-28 18:17:48 +0000614** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
615** and flags gets srcType (either MEM_Ephem or MEM_Static).
drh4f26d6c2004-05-26 23:25:30 +0000616*/
drhfebe1062004-08-28 18:17:48 +0000617void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
drh3d4501e2008-12-04 20:40:10 +0000618 assert( (pFrom->flags & MEM_RowSet)==0 );
drhe4c88c02012-01-04 12:57:45 +0000619 VdbeMemRelease(pTo);
danielk19775f096132008-03-28 15:44:09 +0000620 memcpy(pTo, pFrom, MEMCELLSIZE);
danielk1977d8123362004-06-12 09:25:12 +0000621 pTo->xDel = 0;
dan5fea9072010-03-05 18:46:12 +0000622 if( (pFrom->flags&MEM_Static)==0 ){
danielk1977a7a8e142008-02-13 18:25:27 +0000623 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
drhfebe1062004-08-28 18:17:48 +0000624 assert( srcType==MEM_Ephem || srcType==MEM_Static );
625 pTo->flags |= srcType;
626 }
627}
628
629/*
630** Make a full copy of pFrom into pTo. Prior contents of pTo are
631** freed before the copy is made.
632*/
drhb21c8cd2007-08-21 19:33:56 +0000633int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
danielk1977a7a8e142008-02-13 18:25:27 +0000634 int rc = SQLITE_OK;
danielk1977a7a8e142008-02-13 18:25:27 +0000635
drh3d4501e2008-12-04 20:40:10 +0000636 assert( (pFrom->flags & MEM_RowSet)==0 );
drhe4c88c02012-01-04 12:57:45 +0000637 VdbeMemRelease(pTo);
danielk19775f096132008-03-28 15:44:09 +0000638 memcpy(pTo, pFrom, MEMCELLSIZE);
639 pTo->flags &= ~MEM_Dyn;
640
641 if( pTo->flags&(MEM_Str|MEM_Blob) ){
642 if( 0==(pFrom->flags&MEM_Static) ){
643 pTo->flags |= MEM_Ephem;
644 rc = sqlite3VdbeMemMakeWriteable(pTo);
danielk19779172fd82008-02-14 15:31:52 +0000645 }
danielk1977a7a8e142008-02-13 18:25:27 +0000646 }
647
drh71c697e2004-08-08 23:39:19 +0000648 return rc;
drh4f26d6c2004-05-26 23:25:30 +0000649}
650
drheb2e1762004-05-27 01:53:56 +0000651/*
danielk1977369f27e2004-06-15 11:40:04 +0000652** Transfer the contents of pFrom to pTo. Any existing value in pTo is
drhfebe1062004-08-28 18:17:48 +0000653** freed. If pFrom contains ephemeral data, a copy is made.
654**
drh643167f2008-01-22 21:30:53 +0000655** pFrom contains an SQL NULL when this routine returns.
danielk1977369f27e2004-06-15 11:40:04 +0000656*/
drh643167f2008-01-22 21:30:53 +0000657void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
drhb21c8cd2007-08-21 19:33:56 +0000658 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
659 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
660 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
danielk19775f096132008-03-28 15:44:09 +0000661
662 sqlite3VdbeMemRelease(pTo);
danielk197713073932004-06-30 11:54:06 +0000663 memcpy(pTo, pFrom, sizeof(Mem));
danielk197713073932004-06-30 11:54:06 +0000664 pFrom->flags = MEM_Null;
665 pFrom->xDel = 0;
danielk19775f096132008-03-28 15:44:09 +0000666 pFrom->zMalloc = 0;
danielk1977369f27e2004-06-15 11:40:04 +0000667}
668
669/*
drheb2e1762004-05-27 01:53:56 +0000670** Change the value of a Mem to be a string or a BLOB.
danielk1977a7a8e142008-02-13 18:25:27 +0000671**
672** The memory management strategy depends on the value of the xDel
673** parameter. If the value passed is SQLITE_TRANSIENT, then the
674** string is copied into a (possibly existing) buffer managed by the
675** Mem structure. Otherwise, any existing buffer is freed and the
676** pointer copied.
drh9a65f2c2009-06-22 19:05:40 +0000677**
678** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
679** size limit) then no memory allocation occurs. If the string can be
680** stored without allocating memory, then it is. If a memory allocation
681** is required to store the string, then value of pMem is unchanged. In
682** either case, SQLITE_TOOBIG is returned.
drheb2e1762004-05-27 01:53:56 +0000683*/
drh4f26d6c2004-05-26 23:25:30 +0000684int sqlite3VdbeMemSetStr(
685 Mem *pMem, /* Memory cell to set to string value */
686 const char *z, /* String pointer */
687 int n, /* Bytes in string, or negative */
drheb2e1762004-05-27 01:53:56 +0000688 u8 enc, /* Encoding of z. 0 for BLOBs */
danielk1977d8123362004-06-12 09:25:12 +0000689 void (*xDel)(void*) /* Destructor function */
drh4f26d6c2004-05-26 23:25:30 +0000690){
danielk1977a7a8e142008-02-13 18:25:27 +0000691 int nByte = n; /* New value for pMem->n */
drh0a687d12008-07-08 14:52:07 +0000692 int iLimit; /* Maximum allowed string or blob size */
drh8df32842008-12-09 02:51:23 +0000693 u16 flags = 0; /* New value for pMem->flags */
danielk1977a7a8e142008-02-13 18:25:27 +0000694
drhb21c8cd2007-08-21 19:33:56 +0000695 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh3d4501e2008-12-04 20:40:10 +0000696 assert( (pMem->flags & MEM_RowSet)==0 );
danielk1977a7a8e142008-02-13 18:25:27 +0000697
698 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
drh4f26d6c2004-05-26 23:25:30 +0000699 if( !z ){
danielk1977a7a8e142008-02-13 18:25:27 +0000700 sqlite3VdbeMemSetNull(pMem);
drh4f26d6c2004-05-26 23:25:30 +0000701 return SQLITE_OK;
702 }
danielk1977a7a8e142008-02-13 18:25:27 +0000703
drh0a687d12008-07-08 14:52:07 +0000704 if( pMem->db ){
705 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
706 }else{
707 iLimit = SQLITE_MAX_LENGTH;
708 }
danielk1977a7a8e142008-02-13 18:25:27 +0000709 flags = (enc==0?MEM_Blob:MEM_Str);
710 if( nByte<0 ){
711 assert( enc!=0 );
drh8fd38972008-02-19 15:44:09 +0000712 if( enc==SQLITE_UTF8 ){
drh0a687d12008-07-08 14:52:07 +0000713 for(nByte=0; nByte<=iLimit && z[nByte]; nByte++){}
drh8fd38972008-02-19 15:44:09 +0000714 }else{
drh0a687d12008-07-08 14:52:07 +0000715 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
drh8fd38972008-02-19 15:44:09 +0000716 }
danielk1977a7a8e142008-02-13 18:25:27 +0000717 flags |= MEM_Term;
drh4f26d6c2004-05-26 23:25:30 +0000718 }
danielk1977d8123362004-06-12 09:25:12 +0000719
danielk1977a7a8e142008-02-13 18:25:27 +0000720 /* The following block sets the new values of Mem.z and Mem.xDel. It
721 ** also sets a flag in local variable "flags" to indicate the memory
722 ** management (one of MEM_Dyn or MEM_Static).
723 */
724 if( xDel==SQLITE_TRANSIENT ){
725 int nAlloc = nByte;
726 if( flags&MEM_Term ){
727 nAlloc += (enc==SQLITE_UTF8?1:2);
728 }
drh0793f1b2008-11-05 17:41:19 +0000729 if( nByte>iLimit ){
730 return SQLITE_TOOBIG;
731 }
danielk1977a7a8e142008-02-13 18:25:27 +0000732 if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){
733 return SQLITE_NOMEM;
734 }
735 memcpy(pMem->z, z, nAlloc);
drh633e6d52008-07-28 19:34:53 +0000736 }else if( xDel==SQLITE_DYNAMIC ){
737 sqlite3VdbeMemRelease(pMem);
738 pMem->zMalloc = pMem->z = (char *)z;
739 pMem->xDel = 0;
danielk1977a7a8e142008-02-13 18:25:27 +0000740 }else{
741 sqlite3VdbeMemRelease(pMem);
742 pMem->z = (char *)z;
drhc890fec2008-08-01 20:10:08 +0000743 pMem->xDel = xDel;
744 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
danielk1977a7a8e142008-02-13 18:25:27 +0000745 }
danielk1977d8123362004-06-12 09:25:12 +0000746
danielk1977a7a8e142008-02-13 18:25:27 +0000747 pMem->n = nByte;
748 pMem->flags = flags;
749 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
750 pMem->type = (enc==0 ? SQLITE_BLOB : SQLITE_TEXT);
drh4f26d6c2004-05-26 23:25:30 +0000751
drh6c626082004-11-14 21:56:29 +0000752#ifndef SQLITE_OMIT_UTF16
danielk1977a7a8e142008-02-13 18:25:27 +0000753 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
754 return SQLITE_NOMEM;
drh4f26d6c2004-05-26 23:25:30 +0000755 }
danielk1977a7a8e142008-02-13 18:25:27 +0000756#endif
757
drh9a65f2c2009-06-22 19:05:40 +0000758 if( nByte>iLimit ){
759 return SQLITE_TOOBIG;
760 }
761
drhf4479502004-05-27 03:12:53 +0000762 return SQLITE_OK;
drh4f26d6c2004-05-26 23:25:30 +0000763}
764
765/*
766** Compare the values contained by the two memory cells, returning
767** negative, zero or positive if pMem1 is less than, equal to, or greater
768** than pMem2. Sorting order is NULL's first, followed by numbers (integers
769** and reals) sorted numerically, followed by text ordered by the collating
770** sequence pColl and finally blob's ordered by memcmp().
771**
772** Two NULL values are considered equal by this function.
773*/
774int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
775 int rc;
776 int f1, f2;
777 int combined_flags;
778
drh4f26d6c2004-05-26 23:25:30 +0000779 f1 = pMem1->flags;
780 f2 = pMem2->flags;
781 combined_flags = f1|f2;
drh3d4501e2008-12-04 20:40:10 +0000782 assert( (combined_flags & MEM_RowSet)==0 );
drh4f26d6c2004-05-26 23:25:30 +0000783
784 /* If one value is NULL, it is less than the other. If both values
785 ** are NULL, return 0.
786 */
787 if( combined_flags&MEM_Null ){
788 return (f2&MEM_Null) - (f1&MEM_Null);
789 }
790
791 /* If one value is a number and the other is not, the number is less.
792 ** If both are numbers, compare as reals if one is a real, or as integers
793 ** if both values are integers.
794 */
795 if( combined_flags&(MEM_Int|MEM_Real) ){
796 if( !(f1&(MEM_Int|MEM_Real)) ){
797 return 1;
798 }
799 if( !(f2&(MEM_Int|MEM_Real)) ){
800 return -1;
801 }
802 if( (f1 & f2 & MEM_Int)==0 ){
803 double r1, r2;
804 if( (f1&MEM_Real)==0 ){
drh8df32842008-12-09 02:51:23 +0000805 r1 = (double)pMem1->u.i;
drh4f26d6c2004-05-26 23:25:30 +0000806 }else{
807 r1 = pMem1->r;
808 }
809 if( (f2&MEM_Real)==0 ){
drh8df32842008-12-09 02:51:23 +0000810 r2 = (double)pMem2->u.i;
drh4f26d6c2004-05-26 23:25:30 +0000811 }else{
812 r2 = pMem2->r;
813 }
814 if( r1<r2 ) return -1;
815 if( r1>r2 ) return 1;
816 return 0;
817 }else{
818 assert( f1&MEM_Int );
819 assert( f2&MEM_Int );
drh3c024d62007-03-30 11:23:45 +0000820 if( pMem1->u.i < pMem2->u.i ) return -1;
821 if( pMem1->u.i > pMem2->u.i ) return 1;
drh4f26d6c2004-05-26 23:25:30 +0000822 return 0;
823 }
824 }
825
826 /* If one value is a string and the other is a blob, the string is less.
827 ** If both are strings, compare using the collating functions.
828 */
829 if( combined_flags&MEM_Str ){
830 if( (f1 & MEM_Str)==0 ){
831 return 1;
832 }
833 if( (f2 & MEM_Str)==0 ){
834 return -1;
835 }
danielk19770202b292004-06-09 09:55:16 +0000836
837 assert( pMem1->enc==pMem2->enc );
danielk1977dc8453f2004-06-12 00:42:34 +0000838 assert( pMem1->enc==SQLITE_UTF8 ||
839 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
danielk19770202b292004-06-09 09:55:16 +0000840
danielk1977b3bf5562006-01-10 17:58:23 +0000841 /* The collation sequence must be defined at this point, even if
842 ** the user deletes the collation sequence after the vdbe program is
843 ** compiled (this was not always the case).
danielk19770202b292004-06-09 09:55:16 +0000844 */
danielk1977466be562004-06-10 02:16:01 +0000845 assert( !pColl || pColl->xCmp );
danielk19770202b292004-06-09 09:55:16 +0000846
847 if( pColl ){
danielk1977466be562004-06-10 02:16:01 +0000848 if( pMem1->enc==pColl->enc ){
drh7d9bd4e2006-02-16 18:16:36 +0000849 /* The strings are already in the correct encoding. Call the
850 ** comparison function directly */
danielk1977466be562004-06-10 02:16:01 +0000851 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
danielk19770202b292004-06-09 09:55:16 +0000852 }else{
drh7d9bd4e2006-02-16 18:16:36 +0000853 const void *v1, *v2;
854 int n1, n2;
danielk19777eae4f52008-09-16 12:06:08 +0000855 Mem c1;
856 Mem c2;
857 memset(&c1, 0, sizeof(c1));
858 memset(&c2, 0, sizeof(c2));
859 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
860 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
861 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
862 n1 = v1==0 ? 0 : c1.n;
863 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
864 n2 = v2==0 ? 0 : c2.n;
drh7d9bd4e2006-02-16 18:16:36 +0000865 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
danielk19777eae4f52008-09-16 12:06:08 +0000866 sqlite3VdbeMemRelease(&c1);
867 sqlite3VdbeMemRelease(&c2);
danielk1977f4618892004-06-28 13:09:11 +0000868 return rc;
danielk19770202b292004-06-09 09:55:16 +0000869 }
drh4f26d6c2004-05-26 23:25:30 +0000870 }
danielk19770202b292004-06-09 09:55:16 +0000871 /* If a NULL pointer was passed as the collate function, fall through
danielk19774e6af132004-06-10 14:01:08 +0000872 ** to the blob case and use memcmp(). */
drh4f26d6c2004-05-26 23:25:30 +0000873 }
874
danielk19774e6af132004-06-10 14:01:08 +0000875 /* Both values must be blobs. Compare using memcmp(). */
drh4f26d6c2004-05-26 23:25:30 +0000876 rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n);
877 if( rc==0 ){
878 rc = pMem1->n - pMem2->n;
879 }
880 return rc;
881}
danielk1977c572ef72004-05-27 09:28:41 +0000882
drhd5788202004-05-28 08:21:05 +0000883/*
884** Move data out of a btree key or data field and into a Mem structure.
885** The data or key is taken from the entry that pCur is currently pointing
886** to. offset and amt determine what portion of the data or key to retrieve.
887** key is true to get the key or false to get data. The result is written
888** into the pMem element.
889**
890** The pMem structure is assumed to be uninitialized. Any prior content
891** is overwritten without being freed.
892**
893** If this routine fails for any reason (malloc returns NULL or unable
894** to read from the disk) then the pMem is left in an inconsistent state.
895*/
896int sqlite3VdbeMemFromBtree(
897 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
898 int offset, /* Offset from the start of data to return bytes from. */
899 int amt, /* Number of bytes to return. */
900 int key, /* If true, retrieve from the btree key, not data. */
901 Mem *pMem /* OUT: Return data in this Mem structure. */
902){
danielk19774b0aa4c2009-05-28 11:05:57 +0000903 char *zData; /* Data from the btree layer */
904 int available = 0; /* Number of bytes available on the local btree page */
905 int rc = SQLITE_OK; /* Return code */
drhd5788202004-05-28 08:21:05 +0000906
drh5d1a8722009-07-22 18:07:40 +0000907 assert( sqlite3BtreeCursorIsValid(pCur) );
908
danielk19774b0aa4c2009-05-28 11:05:57 +0000909 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
910 ** that both the BtShared and database handle mutexes are held. */
drh3d4501e2008-12-04 20:40:10 +0000911 assert( (pMem->flags & MEM_RowSet)==0 );
drhd5788202004-05-28 08:21:05 +0000912 if( key ){
drhe51c44f2004-05-30 20:46:09 +0000913 zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);
drhd5788202004-05-28 08:21:05 +0000914 }else{
drhe51c44f2004-05-30 20:46:09 +0000915 zData = (char *)sqlite3BtreeDataFetch(pCur, &available);
drhd5788202004-05-28 08:21:05 +0000916 }
drh61fc5952007-04-01 23:49:51 +0000917 assert( zData!=0 );
drhd5788202004-05-28 08:21:05 +0000918
drh4c8555f2009-06-25 01:47:11 +0000919 if( offset+amt<=available && (pMem->flags&MEM_Dyn)==0 ){
danielk1977a7a8e142008-02-13 18:25:27 +0000920 sqlite3VdbeMemRelease(pMem);
drhd5788202004-05-28 08:21:05 +0000921 pMem->z = &zData[offset];
922 pMem->flags = MEM_Blob|MEM_Ephem;
danielk1977a7a8e142008-02-13 18:25:27 +0000923 }else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){
924 pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term;
drhd5788202004-05-28 08:21:05 +0000925 pMem->enc = 0;
drh9c054832004-05-31 18:51:57 +0000926 pMem->type = SQLITE_BLOB;
drhd5788202004-05-28 08:21:05 +0000927 if( key ){
danielk1977a7a8e142008-02-13 18:25:27 +0000928 rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z);
drhd5788202004-05-28 08:21:05 +0000929 }else{
danielk1977a7a8e142008-02-13 18:25:27 +0000930 rc = sqlite3BtreeData(pCur, offset, amt, pMem->z);
drhd5788202004-05-28 08:21:05 +0000931 }
danielk1977a7a8e142008-02-13 18:25:27 +0000932 pMem->z[amt] = 0;
933 pMem->z[amt+1] = 0;
drhd5788202004-05-28 08:21:05 +0000934 if( rc!=SQLITE_OK ){
danielk1977a7a8e142008-02-13 18:25:27 +0000935 sqlite3VdbeMemRelease(pMem);
drhd5788202004-05-28 08:21:05 +0000936 }
937 }
danielk1977a7a8e142008-02-13 18:25:27 +0000938 pMem->n = amt;
drhd5788202004-05-28 08:21:05 +0000939
danielk1977a7a8e142008-02-13 18:25:27 +0000940 return rc;
drhd5788202004-05-28 08:21:05 +0000941}
942
danielk19774e6af132004-06-10 14:01:08 +0000943/* This function is only available internally, it is not part of the
944** external API. It works in a similar way to sqlite3_value_text(),
945** except the data returned is in the encoding specified by the second
946** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
947** SQLITE_UTF8.
drh7d9bd4e2006-02-16 18:16:36 +0000948**
949** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
950** If that is the case, then the result must be aligned on an even byte
951** boundary.
danielk19774e6af132004-06-10 14:01:08 +0000952*/
drhb21c8cd2007-08-21 19:33:56 +0000953const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
danielk1977bfd6cce2004-06-18 04:24:54 +0000954 if( !pVal ) return 0;
drhb21c8cd2007-08-21 19:33:56 +0000955
956 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
drh7d9bd4e2006-02-16 18:16:36 +0000957 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
drh3d4501e2008-12-04 20:40:10 +0000958 assert( (pVal->flags & MEM_RowSet)==0 );
danielk1977bfd6cce2004-06-18 04:24:54 +0000959
danielk19774e6af132004-06-10 14:01:08 +0000960 if( pVal->flags&MEM_Null ){
danielk19774e6af132004-06-10 14:01:08 +0000961 return 0;
962 }
drhf1f6c582006-01-12 19:42:41 +0000963 assert( (MEM_Blob>>3) == MEM_Str );
964 pVal->flags |= (pVal->flags & MEM_Blob)>>3;
drh45d29302012-01-08 22:18:33 +0000965 ExpandBlob(pVal);
danielk19774e6af132004-06-10 14:01:08 +0000966 if( pVal->flags&MEM_Str ){
drhb21c8cd2007-08-21 19:33:56 +0000967 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
shane1fc41292008-07-08 22:28:48 +0000968 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
drh7d9bd4e2006-02-16 18:16:36 +0000969 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
drhb21c8cd2007-08-21 19:33:56 +0000970 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
drh7d9bd4e2006-02-16 18:16:36 +0000971 return 0;
972 }
973 }
drh2faf5f52011-12-30 15:17:47 +0000974 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
drhf0313812006-09-04 15:53:53 +0000975 }else{
976 assert( (pVal->flags&MEM_Blob)==0 );
drhb21c8cd2007-08-21 19:33:56 +0000977 sqlite3VdbeMemStringify(pVal, enc);
drh8df32842008-12-09 02:51:23 +0000978 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
danielk19774e6af132004-06-10 14:01:08 +0000979 }
drhb21c8cd2007-08-21 19:33:56 +0000980 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
981 || pVal->db->mallocFailed );
drh7d9bd4e2006-02-16 18:16:36 +0000982 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
983 return pVal->z;
984 }else{
985 return 0;
986 }
danielk19774e6af132004-06-10 14:01:08 +0000987}
988
drh6a6124e2004-06-27 01:56:33 +0000989/*
990** Create a new sqlite3_value object.
991*/
drh17435752007-08-16 04:30:38 +0000992sqlite3_value *sqlite3ValueNew(sqlite3 *db){
danielk197726783a52007-08-29 14:06:22 +0000993 Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
danielk19774e6af132004-06-10 14:01:08 +0000994 if( p ){
995 p->flags = MEM_Null;
996 p->type = SQLITE_NULL;
drhb21c8cd2007-08-21 19:33:56 +0000997 p->db = db;
danielk19774e6af132004-06-10 14:01:08 +0000998 }
999 return p;
1000}
1001
drh6a6124e2004-06-27 01:56:33 +00001002/*
danielk1977aee18ef2005-03-09 12:26:50 +00001003** Create a new sqlite3_value object, containing the value of pExpr.
1004**
1005** This only works for very simple expressions that consist of one constant
drhc4dd3fd2008-01-22 01:48:05 +00001006** token (i.e. "5", "5.1", "'a string'"). If the expression can
danielk1977aee18ef2005-03-09 12:26:50 +00001007** be converted directly into a value, then the value is allocated and
1008** a pointer written to *ppVal. The caller is responsible for deallocating
1009** the value by passing it to sqlite3ValueFree() later on. If the expression
1010** cannot be converted to a value, then *ppVal is set to NULL.
1011*/
1012int sqlite3ValueFromExpr(
drhb21c8cd2007-08-21 19:33:56 +00001013 sqlite3 *db, /* The database connection */
drh17435752007-08-16 04:30:38 +00001014 Expr *pExpr, /* The expression to evaluate */
1015 u8 enc, /* Encoding to use */
1016 u8 affinity, /* Affinity to use */
1017 sqlite3_value **ppVal /* Write the new value here */
danielk1977aee18ef2005-03-09 12:26:50 +00001018){
1019 int op;
1020 char *zVal = 0;
1021 sqlite3_value *pVal = 0;
drh93518622010-09-30 14:48:06 +00001022 int negInt = 1;
1023 const char *zNeg = "";
danielk1977aee18ef2005-03-09 12:26:50 +00001024
1025 if( !pExpr ){
1026 *ppVal = 0;
1027 return SQLITE_OK;
1028 }
1029 op = pExpr->op;
drh4a466d32010-06-25 14:17:58 +00001030
drhfaacf172011-08-12 01:51:45 +00001031 /* op can only be TK_REGISTER if we have compiled with SQLITE_ENABLE_STAT3.
drh4a466d32010-06-25 14:17:58 +00001032 ** The ifdef here is to enable us to achieve 100% branch test coverage even
drhfaacf172011-08-12 01:51:45 +00001033 ** when SQLITE_ENABLE_STAT3 is omitted.
drh4a466d32010-06-25 14:17:58 +00001034 */
drhfaacf172011-08-12 01:51:45 +00001035#ifdef SQLITE_ENABLE_STAT3
drh4a466d32010-06-25 14:17:58 +00001036 if( op==TK_REGISTER ) op = pExpr->op2;
1037#else
1038 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
1039#endif
danielk1977aee18ef2005-03-09 12:26:50 +00001040
drh93518622010-09-30 14:48:06 +00001041 /* Handle negative integers in a single step. This is needed in the
1042 ** case when the value is -9223372036854775808.
1043 */
1044 if( op==TK_UMINUS
1045 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
1046 pExpr = pExpr->pLeft;
1047 op = pExpr->op;
1048 negInt = -1;
1049 zNeg = "-";
1050 }
1051
danielk1977aee18ef2005-03-09 12:26:50 +00001052 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
drh17435752007-08-16 04:30:38 +00001053 pVal = sqlite3ValueNew(db);
drh33e619f2009-05-28 01:00:55 +00001054 if( pVal==0 ) goto no_mem;
1055 if( ExprHasProperty(pExpr, EP_IntValue) ){
drh93518622010-09-30 14:48:06 +00001056 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
drh33e619f2009-05-28 01:00:55 +00001057 }else{
drh93518622010-09-30 14:48:06 +00001058 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
drh33e619f2009-05-28 01:00:55 +00001059 if( zVal==0 ) goto no_mem;
1060 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
drh3995c262009-08-19 22:14:17 +00001061 if( op==TK_FLOAT ) pVal->type = SQLITE_FLOAT;
drh33e619f2009-05-28 01:00:55 +00001062 }
danielk1977aee18ef2005-03-09 12:26:50 +00001063 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){
drhe3b9bfe2009-05-05 12:54:50 +00001064 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
danielk1977aee18ef2005-03-09 12:26:50 +00001065 }else{
drhe3b9bfe2009-05-05 12:54:50 +00001066 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
1067 }
drh93518622010-09-30 14:48:06 +00001068 if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str;
drhe3b9bfe2009-05-05 12:54:50 +00001069 if( enc!=SQLITE_UTF8 ){
1070 sqlite3VdbeChangeEncoding(pVal, enc);
danielk1977aee18ef2005-03-09 12:26:50 +00001071 }
1072 }else if( op==TK_UMINUS ) {
drh93518622010-09-30 14:48:06 +00001073 /* This branch happens for multiple negative signs. Ex: -(-5) */
drhb21c8cd2007-08-21 19:33:56 +00001074 if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){
drh93518622010-09-30 14:48:06 +00001075 sqlite3VdbeMemNumerify(pVal);
drhd50ffc42011-03-08 02:38:28 +00001076 if( pVal->u.i==SMALLEST_INT64 ){
1077 pVal->flags &= MEM_Int;
1078 pVal->flags |= MEM_Real;
1079 pVal->r = (double)LARGEST_INT64;
1080 }else{
1081 pVal->u.i = -pVal->u.i;
1082 }
1083 pVal->r = -pVal->r;
drh93518622010-09-30 14:48:06 +00001084 sqlite3ValueApplyAffinity(pVal, affinity, enc);
danielk1977aee18ef2005-03-09 12:26:50 +00001085 }
drh9b3eb0a2011-01-21 14:37:04 +00001086 }else if( op==TK_NULL ){
1087 pVal = sqlite3ValueNew(db);
drhb1aa0ab2011-02-18 17:23:23 +00001088 if( pVal==0 ) goto no_mem;
danielk1977aee18ef2005-03-09 12:26:50 +00001089 }
1090#ifndef SQLITE_OMIT_BLOB_LITERAL
1091 else if( op==TK_BLOB ){
1092 int nVal;
drh33e619f2009-05-28 01:00:55 +00001093 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
1094 assert( pExpr->u.zToken[1]=='\'' );
danielk19771e536952007-08-16 10:09:01 +00001095 pVal = sqlite3ValueNew(db);
danielk1977f150c9d2008-10-30 17:21:12 +00001096 if( !pVal ) goto no_mem;
drh33e619f2009-05-28 01:00:55 +00001097 zVal = &pExpr->u.zToken[2];
drhb7916a72009-05-27 10:31:29 +00001098 nVal = sqlite3Strlen30(zVal)-1;
1099 assert( zVal[nVal]=='\'' );
drhca48c902008-01-18 14:08:24 +00001100 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
drh633e6d52008-07-28 19:34:53 +00001101 0, SQLITE_DYNAMIC);
danielk1977aee18ef2005-03-09 12:26:50 +00001102 }
1103#endif
1104
dan937d0de2009-10-15 18:35:38 +00001105 if( pVal ){
1106 sqlite3VdbeMemStoreType(pVal);
1107 }
danielk1977aee18ef2005-03-09 12:26:50 +00001108 *ppVal = pVal;
1109 return SQLITE_OK;
1110
1111no_mem:
drh17435752007-08-16 04:30:38 +00001112 db->mallocFailed = 1;
drh633e6d52008-07-28 19:34:53 +00001113 sqlite3DbFree(db, zVal);
danielk1977aee18ef2005-03-09 12:26:50 +00001114 sqlite3ValueFree(pVal);
1115 *ppVal = 0;
1116 return SQLITE_NOMEM;
1117}
1118
1119/*
drh6a6124e2004-06-27 01:56:33 +00001120** Change the string value of an sqlite3_value object
1121*/
danielk1977bfd6cce2004-06-18 04:24:54 +00001122void sqlite3ValueSetStr(
drh17435752007-08-16 04:30:38 +00001123 sqlite3_value *v, /* Value to be set */
1124 int n, /* Length of string z */
1125 const void *z, /* Text of the new string */
1126 u8 enc, /* Encoding to use */
1127 void (*xDel)(void*) /* Destructor for the string */
danielk1977bfd6cce2004-06-18 04:24:54 +00001128){
drhb21c8cd2007-08-21 19:33:56 +00001129 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
danielk19774e6af132004-06-10 14:01:08 +00001130}
1131
drh6a6124e2004-06-27 01:56:33 +00001132/*
1133** Free an sqlite3_value object
1134*/
danielk19774e6af132004-06-10 14:01:08 +00001135void sqlite3ValueFree(sqlite3_value *v){
danielk1977bfd6cce2004-06-18 04:24:54 +00001136 if( !v ) return;
danielk1977a7a8e142008-02-13 18:25:27 +00001137 sqlite3VdbeMemRelease((Mem *)v);
drh633e6d52008-07-28 19:34:53 +00001138 sqlite3DbFree(((Mem*)v)->db, v);
danielk19774e6af132004-06-10 14:01:08 +00001139}
1140
drh6a6124e2004-06-27 01:56:33 +00001141/*
1142** Return the number of bytes in the sqlite3_value object assuming
1143** that it uses the encoding "enc"
1144*/
drhb21c8cd2007-08-21 19:33:56 +00001145int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
danielk19774e6af132004-06-10 14:01:08 +00001146 Mem *p = (Mem*)pVal;
drhb21c8cd2007-08-21 19:33:56 +00001147 if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){
drhb026e052007-05-02 01:34:31 +00001148 if( p->flags & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +00001149 return p->n + p->u.nZero;
drhb026e052007-05-02 01:34:31 +00001150 }else{
1151 return p->n;
1152 }
danielk19774e6af132004-06-10 14:01:08 +00001153 }
1154 return 0;
1155}