blob: 2c1a9983e5b4d25bf759e98b7e6e6040371a5155 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drhe53831d2007-08-17 01:14:38 +0000115#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000116
117#ifdef SQLITE_DEBUG
118/*
drh0ee3dbe2009-10-16 15:05:18 +0000119**** This function is only used as part of an assert() statement. ***
120**
121** Check to see if pBtree holds the required locks to read or write to the
122** table with root page iRoot. Return 1 if it does and 0 if not.
123**
124** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000125** Btree connection pBtree:
126**
127** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128**
drh0ee3dbe2009-10-16 15:05:18 +0000129** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000130** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000131** the corresponding table. This makes things a bit more complicated,
132** as this module treats each table as a separate structure. To determine
133** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000134** function has to search through the database schema.
135**
drh0ee3dbe2009-10-16 15:05:18 +0000136** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000137** hold a write-lock on the schema table (root page 1). This is also
138** acceptable.
139*/
140static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
145){
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
149
drh0ee3dbe2009-10-16 15:05:18 +0000150 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000151 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000152 ** Return true immediately.
153 */
danielk197796d48e92009-06-29 06:00:37 +0000154 if( (pBtree->sharable==0)
155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000156 ){
157 return 1;
158 }
159
drh0ee3dbe2009-10-16 15:05:18 +0000160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
164 */
drh2c5e35f2014-08-05 11:04:21 +0000165 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000166 return 1;
167 }
168
danielk197796d48e92009-06-29 06:00:37 +0000169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000177 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000178 if( iTab ){
179 /* Two or more indexes share the same root page. There must
180 ** be imposter tables. So just return true. The assert is not
181 ** useful in that case. */
182 return 1;
183 }
shane5eff7cf2009-08-10 03:57:58 +0000184 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000185 }
186 }
187 }else{
188 iTab = iRoot;
189 }
190
191 /* Search for the required lock. Either a write-lock on root-page iTab, a
192 ** write-lock on the schema table, or (if the client is reading) a
193 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
194 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
195 if( pLock->pBtree==pBtree
196 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
197 && pLock->eLock>=eLockType
198 ){
199 return 1;
200 }
201 }
202
203 /* Failed to find the required lock. */
204 return 0;
205}
drh0ee3dbe2009-10-16 15:05:18 +0000206#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000207
drh0ee3dbe2009-10-16 15:05:18 +0000208#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000209/*
drh0ee3dbe2009-10-16 15:05:18 +0000210**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000211**
drh0ee3dbe2009-10-16 15:05:18 +0000212** Return true if it would be illegal for pBtree to write into the
213** table or index rooted at iRoot because other shared connections are
214** simultaneously reading that same table or index.
215**
216** It is illegal for pBtree to write if some other Btree object that
217** shares the same BtShared object is currently reading or writing
218** the iRoot table. Except, if the other Btree object has the
219** read-uncommitted flag set, then it is OK for the other object to
220** have a read cursor.
221**
222** For example, before writing to any part of the table or index
223** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000224**
225** assert( !hasReadConflicts(pBtree, iRoot) );
226*/
227static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
228 BtCursor *p;
229 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
230 if( p->pgnoRoot==iRoot
231 && p->pBtree!=pBtree
232 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
233 ){
234 return 1;
235 }
236 }
237 return 0;
238}
239#endif /* #ifdef SQLITE_DEBUG */
240
danielk1977da184232006-01-05 11:34:32 +0000241/*
drh0ee3dbe2009-10-16 15:05:18 +0000242** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000243** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000244** SQLITE_OK if the lock may be obtained (by calling
245** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000246*/
drhc25eabe2009-02-24 18:57:31 +0000247static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000248 BtShared *pBt = p->pBt;
249 BtLock *pIter;
250
drh1fee73e2007-08-29 04:00:57 +0000251 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000252 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
253 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000254 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000255
danielk19775b413d72009-04-01 09:41:54 +0000256 /* If requesting a write-lock, then the Btree must have an open write
257 ** transaction on this file. And, obviously, for this to be so there
258 ** must be an open write transaction on the file itself.
259 */
260 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
261 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
262
drh0ee3dbe2009-10-16 15:05:18 +0000263 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000264 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000265 return SQLITE_OK;
266 }
267
danielk1977641b0f42007-12-21 04:47:25 +0000268 /* If some other connection is holding an exclusive lock, the
269 ** requested lock may not be obtained.
270 */
drhc9166342012-01-05 23:32:06 +0000271 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000272 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
273 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000274 }
275
danielk1977e0d9e6f2009-07-03 16:25:06 +0000276 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
277 /* The condition (pIter->eLock!=eLock) in the following if(...)
278 ** statement is a simplification of:
279 **
280 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
281 **
282 ** since we know that if eLock==WRITE_LOCK, then no other connection
283 ** may hold a WRITE_LOCK on any table in this file (since there can
284 ** only be a single writer).
285 */
286 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
287 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
288 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
289 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
290 if( eLock==WRITE_LOCK ){
291 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000292 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000293 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000294 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000295 }
296 }
297 return SQLITE_OK;
298}
drhe53831d2007-08-17 01:14:38 +0000299#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000300
drhe53831d2007-08-17 01:14:38 +0000301#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000302/*
303** Add a lock on the table with root-page iTable to the shared-btree used
304** by Btree handle p. Parameter eLock must be either READ_LOCK or
305** WRITE_LOCK.
306**
danielk19779d104862009-07-09 08:27:14 +0000307** This function assumes the following:
308**
drh0ee3dbe2009-10-16 15:05:18 +0000309** (a) The specified Btree object p is connected to a sharable
310** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000311**
drh0ee3dbe2009-10-16 15:05:18 +0000312** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000313** with the requested lock (i.e. querySharedCacheTableLock() has
314** already been called and returned SQLITE_OK).
315**
316** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
317** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000318*/
drhc25eabe2009-02-24 18:57:31 +0000319static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000320 BtShared *pBt = p->pBt;
321 BtLock *pLock = 0;
322 BtLock *pIter;
323
drh1fee73e2007-08-29 04:00:57 +0000324 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000325 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
326 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000327
danielk1977e0d9e6f2009-07-03 16:25:06 +0000328 /* A connection with the read-uncommitted flag set will never try to
329 ** obtain a read-lock using this function. The only read-lock obtained
330 ** by a connection in read-uncommitted mode is on the sqlite_master
331 ** table, and that lock is obtained in BtreeBeginTrans(). */
332 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
333
danielk19779d104862009-07-09 08:27:14 +0000334 /* This function should only be called on a sharable b-tree after it
335 ** has been determined that no other b-tree holds a conflicting lock. */
336 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000337 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000338
339 /* First search the list for an existing lock on this table. */
340 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
341 if( pIter->iTable==iTable && pIter->pBtree==p ){
342 pLock = pIter;
343 break;
344 }
345 }
346
347 /* If the above search did not find a BtLock struct associating Btree p
348 ** with table iTable, allocate one and link it into the list.
349 */
350 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000351 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000352 if( !pLock ){
353 return SQLITE_NOMEM;
354 }
355 pLock->iTable = iTable;
356 pLock->pBtree = p;
357 pLock->pNext = pBt->pLock;
358 pBt->pLock = pLock;
359 }
360
361 /* Set the BtLock.eLock variable to the maximum of the current lock
362 ** and the requested lock. This means if a write-lock was already held
363 ** and a read-lock requested, we don't incorrectly downgrade the lock.
364 */
365 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000366 if( eLock>pLock->eLock ){
367 pLock->eLock = eLock;
368 }
danielk1977aef0bf62005-12-30 16:28:01 +0000369
370 return SQLITE_OK;
371}
drhe53831d2007-08-17 01:14:38 +0000372#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000373
drhe53831d2007-08-17 01:14:38 +0000374#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000375/*
drhc25eabe2009-02-24 18:57:31 +0000376** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000377** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000378**
drh0ee3dbe2009-10-16 15:05:18 +0000379** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000380** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000381** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000382*/
drhc25eabe2009-02-24 18:57:31 +0000383static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000384 BtShared *pBt = p->pBt;
385 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000386
drh1fee73e2007-08-29 04:00:57 +0000387 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000388 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000389 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000390
danielk1977aef0bf62005-12-30 16:28:01 +0000391 while( *ppIter ){
392 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000393 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000394 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000395 if( pLock->pBtree==p ){
396 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000397 assert( pLock->iTable!=1 || pLock==&p->lock );
398 if( pLock->iTable!=1 ){
399 sqlite3_free(pLock);
400 }
danielk1977aef0bf62005-12-30 16:28:01 +0000401 }else{
402 ppIter = &pLock->pNext;
403 }
404 }
danielk1977641b0f42007-12-21 04:47:25 +0000405
drhc9166342012-01-05 23:32:06 +0000406 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000407 if( pBt->pWriter==p ){
408 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000409 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000410 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000411 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000412 ** transaction. If there currently exists a writer, and p is not
413 ** that writer, then the number of locks held by connections other
414 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000415 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000416 **
drhc9166342012-01-05 23:32:06 +0000417 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000418 ** be zero already. So this next line is harmless in that case.
419 */
drhc9166342012-01-05 23:32:06 +0000420 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000421 }
danielk1977aef0bf62005-12-30 16:28:01 +0000422}
danielk197794b30732009-07-02 17:21:57 +0000423
danielk1977e0d9e6f2009-07-03 16:25:06 +0000424/*
drh0ee3dbe2009-10-16 15:05:18 +0000425** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000426*/
danielk197794b30732009-07-02 17:21:57 +0000427static void downgradeAllSharedCacheTableLocks(Btree *p){
428 BtShared *pBt = p->pBt;
429 if( pBt->pWriter==p ){
430 BtLock *pLock;
431 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000432 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000433 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
434 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
435 pLock->eLock = READ_LOCK;
436 }
437 }
438}
439
danielk1977aef0bf62005-12-30 16:28:01 +0000440#endif /* SQLITE_OMIT_SHARED_CACHE */
441
drh980b1a72006-08-16 16:42:48 +0000442static void releasePage(MemPage *pPage); /* Forward reference */
443
drh1fee73e2007-08-29 04:00:57 +0000444/*
drh0ee3dbe2009-10-16 15:05:18 +0000445***** This routine is used inside of assert() only ****
446**
447** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000448*/
drh0ee3dbe2009-10-16 15:05:18 +0000449#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000450static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000451 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000452}
453#endif
454
danielk197792d4d7a2007-05-04 12:05:56 +0000455/*
dan5a500af2014-03-11 20:33:04 +0000456** Invalidate the overflow cache of the cursor passed as the first argument.
457** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000458*/
drh036dbec2014-03-11 23:40:44 +0000459#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000460
461/*
462** Invalidate the overflow page-list cache for all cursors opened
463** on the shared btree structure pBt.
464*/
465static void invalidateAllOverflowCache(BtShared *pBt){
466 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000467 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000468 for(p=pBt->pCursor; p; p=p->pNext){
469 invalidateOverflowCache(p);
470 }
471}
danielk197796d48e92009-06-29 06:00:37 +0000472
dan5a500af2014-03-11 20:33:04 +0000473#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000474/*
475** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000476** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000477** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000478**
479** If argument isClearTable is true, then the entire contents of the
480** table is about to be deleted. In this case invalidate all incrblob
481** cursors open on any row within the table with root-page pgnoRoot.
482**
483** Otherwise, if argument isClearTable is false, then the row with
484** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000485** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000486*/
487static void invalidateIncrblobCursors(
488 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000489 i64 iRow, /* The rowid that might be changing */
490 int isClearTable /* True if all rows are being deleted */
491){
492 BtCursor *p;
drh69180952015-06-25 13:03:10 +0000493 if( pBtree->hasIncrblobCur==0 ) return;
danielk197796d48e92009-06-29 06:00:37 +0000494 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000495 pBtree->hasIncrblobCur = 0;
496 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
497 if( (p->curFlags & BTCF_Incrblob)!=0 ){
498 pBtree->hasIncrblobCur = 1;
499 if( isClearTable || p->info.nKey==iRow ){
500 p->eState = CURSOR_INVALID;
501 }
danielk197796d48e92009-06-29 06:00:37 +0000502 }
503 }
504}
505
danielk197792d4d7a2007-05-04 12:05:56 +0000506#else
dan5a500af2014-03-11 20:33:04 +0000507 /* Stub function when INCRBLOB is omitted */
drheeb844a2009-08-08 18:01:07 +0000508 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000509#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000510
drh980b1a72006-08-16 16:42:48 +0000511/*
danielk1977bea2a942009-01-20 17:06:27 +0000512** Set bit pgno of the BtShared.pHasContent bitvec. This is called
513** when a page that previously contained data becomes a free-list leaf
514** page.
515**
516** The BtShared.pHasContent bitvec exists to work around an obscure
517** bug caused by the interaction of two useful IO optimizations surrounding
518** free-list leaf pages:
519**
520** 1) When all data is deleted from a page and the page becomes
521** a free-list leaf page, the page is not written to the database
522** (as free-list leaf pages contain no meaningful data). Sometimes
523** such a page is not even journalled (as it will not be modified,
524** why bother journalling it?).
525**
526** 2) When a free-list leaf page is reused, its content is not read
527** from the database or written to the journal file (why should it
528** be, if it is not at all meaningful?).
529**
530** By themselves, these optimizations work fine and provide a handy
531** performance boost to bulk delete or insert operations. However, if
532** a page is moved to the free-list and then reused within the same
533** transaction, a problem comes up. If the page is not journalled when
534** it is moved to the free-list and it is also not journalled when it
535** is extracted from the free-list and reused, then the original data
536** may be lost. In the event of a rollback, it may not be possible
537** to restore the database to its original configuration.
538**
539** The solution is the BtShared.pHasContent bitvec. Whenever a page is
540** moved to become a free-list leaf page, the corresponding bit is
541** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000542** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000543** set in BtShared.pHasContent. The contents of the bitvec are cleared
544** at the end of every transaction.
545*/
546static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
547 int rc = SQLITE_OK;
548 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000549 assert( pgno<=pBt->nPage );
550 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000551 if( !pBt->pHasContent ){
552 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000553 }
554 }
555 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
556 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
557 }
558 return rc;
559}
560
561/*
562** Query the BtShared.pHasContent vector.
563**
564** This function is called when a free-list leaf page is removed from the
565** free-list for reuse. It returns false if it is safe to retrieve the
566** page from the pager layer with the 'no-content' flag set. True otherwise.
567*/
568static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
569 Bitvec *p = pBt->pHasContent;
570 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
571}
572
573/*
574** Clear (destroy) the BtShared.pHasContent bitvec. This should be
575** invoked at the conclusion of each write-transaction.
576*/
577static void btreeClearHasContent(BtShared *pBt){
578 sqlite3BitvecDestroy(pBt->pHasContent);
579 pBt->pHasContent = 0;
580}
581
582/*
drh138eeeb2013-03-27 03:15:23 +0000583** Release all of the apPage[] pages for a cursor.
584*/
585static void btreeReleaseAllCursorPages(BtCursor *pCur){
586 int i;
587 for(i=0; i<=pCur->iPage; i++){
588 releasePage(pCur->apPage[i]);
589 pCur->apPage[i] = 0;
590 }
591 pCur->iPage = -1;
592}
593
danf0ee1d32015-09-12 19:26:11 +0000594/*
595** The cursor passed as the only argument must point to a valid entry
596** when this function is called (i.e. have eState==CURSOR_VALID). This
597** function saves the current cursor key in variables pCur->nKey and
598** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
599** code otherwise.
600**
601** If the cursor is open on an intkey table, then the integer key
602** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
603** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
604** set to point to a malloced buffer pCur->nKey bytes in size containing
605** the key.
606*/
607static int saveCursorKey(BtCursor *pCur){
608 int rc;
609 assert( CURSOR_VALID==pCur->eState );
610 assert( 0==pCur->pKey );
611 assert( cursorHoldsMutex(pCur) );
612
613 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
614 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
615
616 /* If this is an intKey table, then the above call to BtreeKeySize()
617 ** stores the integer key in pCur->nKey. In this case this value is
618 ** all that is required. Otherwise, if pCur is not open on an intKey
619 ** table, then malloc space for and store the pCur->nKey bytes of key
620 ** data. */
621 if( 0==pCur->curIntKey ){
622 void *pKey = sqlite3Malloc( pCur->nKey );
623 if( pKey ){
624 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
625 if( rc==SQLITE_OK ){
626 pCur->pKey = pKey;
627 }else{
628 sqlite3_free(pKey);
629 }
630 }else{
631 rc = SQLITE_NOMEM;
632 }
633 }
634 assert( !pCur->curIntKey || !pCur->pKey );
635 return rc;
636}
drh138eeeb2013-03-27 03:15:23 +0000637
638/*
drh980b1a72006-08-16 16:42:48 +0000639** Save the current cursor position in the variables BtCursor.nKey
640** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000641**
642** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
643** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000644*/
645static int saveCursorPosition(BtCursor *pCur){
646 int rc;
647
drhd2f83132015-03-25 17:35:01 +0000648 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000649 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000650 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000651
drhd2f83132015-03-25 17:35:01 +0000652 if( pCur->eState==CURSOR_SKIPNEXT ){
653 pCur->eState = CURSOR_VALID;
654 }else{
655 pCur->skipNext = 0;
656 }
drh980b1a72006-08-16 16:42:48 +0000657
danf0ee1d32015-09-12 19:26:11 +0000658 rc = saveCursorKey(pCur);
drh980b1a72006-08-16 16:42:48 +0000659 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000660 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000661 pCur->eState = CURSOR_REQUIRESEEK;
662 }
663
dane755e102015-09-30 12:59:12 +0000664 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
drh980b1a72006-08-16 16:42:48 +0000665 return rc;
666}
667
drh637f3d82014-08-22 22:26:07 +0000668/* Forward reference */
669static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
670
drh980b1a72006-08-16 16:42:48 +0000671/*
drh0ee3dbe2009-10-16 15:05:18 +0000672** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000673** the table with root-page iRoot. "Saving the cursor position" means that
674** the location in the btree is remembered in such a way that it can be
675** moved back to the same spot after the btree has been modified. This
676** routine is called just before cursor pExcept is used to modify the
677** table, for example in BtreeDelete() or BtreeInsert().
678**
drh27fb7462015-06-30 02:47:36 +0000679** If there are two or more cursors on the same btree, then all such
680** cursors should have their BTCF_Multiple flag set. The btreeCursor()
681** routine enforces that rule. This routine only needs to be called in
682** the uncommon case when pExpect has the BTCF_Multiple flag set.
683**
684** If pExpect!=NULL and if no other cursors are found on the same root-page,
685** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
686** pointless call to this routine.
687**
drh637f3d82014-08-22 22:26:07 +0000688** Implementation note: This routine merely checks to see if any cursors
689** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
690** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000691*/
692static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
drh3bdffdd2014-08-23 19:08:09 +0000693 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000694 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000695 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000696 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000697 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
698 }
drh27fb7462015-06-30 02:47:36 +0000699 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
700 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
701 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000702}
703
704/* This helper routine to saveAllCursors does the actual work of saving
705** the cursors if and when a cursor is found that actually requires saving.
706** The common case is that no cursors need to be saved, so this routine is
707** broken out from its caller to avoid unnecessary stack pointer movement.
708*/
709static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000710 BtCursor *p, /* The first cursor that needs saving */
711 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
712 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000713){
714 do{
drh138eeeb2013-03-27 03:15:23 +0000715 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000716 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000717 int rc = saveCursorPosition(p);
718 if( SQLITE_OK!=rc ){
719 return rc;
720 }
721 }else{
722 testcase( p->iPage>0 );
723 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000724 }
725 }
drh637f3d82014-08-22 22:26:07 +0000726 p = p->pNext;
727 }while( p );
drh980b1a72006-08-16 16:42:48 +0000728 return SQLITE_OK;
729}
730
731/*
drhbf700f32007-03-31 02:36:44 +0000732** Clear the current cursor position.
733*/
danielk1977be51a652008-10-08 17:58:48 +0000734void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000735 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000736 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000737 pCur->pKey = 0;
738 pCur->eState = CURSOR_INVALID;
739}
740
741/*
danielk19773509a652009-07-06 18:56:13 +0000742** In this version of BtreeMoveto, pKey is a packed index record
743** such as is generated by the OP_MakeRecord opcode. Unpack the
744** record and then call BtreeMovetoUnpacked() to do the work.
745*/
746static int btreeMoveto(
747 BtCursor *pCur, /* Cursor open on the btree to be searched */
748 const void *pKey, /* Packed key if the btree is an index */
749 i64 nKey, /* Integer key for tables. Size of pKey for indices */
750 int bias, /* Bias search to the high end */
751 int *pRes /* Write search results here */
752){
753 int rc; /* Status code */
754 UnpackedRecord *pIdxKey; /* Unpacked index key */
drhb4139222013-11-06 14:36:08 +0000755 char aSpace[200]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000756 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000757
758 if( pKey ){
759 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000760 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
761 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
762 );
danielk19773509a652009-07-06 18:56:13 +0000763 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000764 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000765 if( pIdxKey->nField==0 ){
766 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
767 return SQLITE_CORRUPT_BKPT;
768 }
danielk19773509a652009-07-06 18:56:13 +0000769 }else{
770 pIdxKey = 0;
771 }
772 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000773 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000774 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000775 }
776 return rc;
777}
778
779/*
drh980b1a72006-08-16 16:42:48 +0000780** Restore the cursor to the position it was in (or as close to as possible)
781** when saveCursorPosition() was called. Note that this call deletes the
782** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000783** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000784** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000785*/
danielk197730548662009-07-09 05:07:37 +0000786static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000787 int rc;
drhd2f83132015-03-25 17:35:01 +0000788 int skipNext;
drh1fee73e2007-08-29 04:00:57 +0000789 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000790 assert( pCur->eState>=CURSOR_REQUIRESEEK );
791 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000792 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000793 }
drh980b1a72006-08-16 16:42:48 +0000794 pCur->eState = CURSOR_INVALID;
drhd2f83132015-03-25 17:35:01 +0000795 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
drh980b1a72006-08-16 16:42:48 +0000796 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000797 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000798 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000799 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drhd2f83132015-03-25 17:35:01 +0000800 pCur->skipNext |= skipNext;
drh9b47ee32013-08-20 03:13:51 +0000801 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
802 pCur->eState = CURSOR_SKIPNEXT;
803 }
drh980b1a72006-08-16 16:42:48 +0000804 }
805 return rc;
806}
807
drha3460582008-07-11 21:02:53 +0000808#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000809 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000810 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000811 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000812
drha3460582008-07-11 21:02:53 +0000813/*
drh6848dad2014-08-22 23:33:03 +0000814** Determine whether or not a cursor has moved from the position where
815** it was last placed, or has been invalidated for any other reason.
816** Cursors can move when the row they are pointing at is deleted out
817** from under them, for example. Cursor might also move if a btree
818** is rebalanced.
drha3460582008-07-11 21:02:53 +0000819**
drh6848dad2014-08-22 23:33:03 +0000820** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000821**
drh6848dad2014-08-22 23:33:03 +0000822** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
823** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000824*/
drh6848dad2014-08-22 23:33:03 +0000825int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drhc22284f2014-10-13 16:02:20 +0000826 return pCur->eState!=CURSOR_VALID;
drh6848dad2014-08-22 23:33:03 +0000827}
828
829/*
830** This routine restores a cursor back to its original position after it
831** has been moved by some outside activity (such as a btree rebalance or
832** a row having been deleted out from under the cursor).
833**
834** On success, the *pDifferentRow parameter is false if the cursor is left
835** pointing at exactly the same row. *pDifferntRow is the row the cursor
836** was pointing to has been deleted, forcing the cursor to point to some
837** nearby row.
838**
839** This routine should only be called for a cursor that just returned
840** TRUE from sqlite3BtreeCursorHasMoved().
841*/
842int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000843 int rc;
844
drh6848dad2014-08-22 23:33:03 +0000845 assert( pCur!=0 );
846 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000847 rc = restoreCursorPosition(pCur);
848 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000849 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000850 return rc;
851 }
drh606a3572015-03-25 18:29:10 +0000852 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000853 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000854 }else{
drh606a3572015-03-25 18:29:10 +0000855 assert( pCur->skipNext==0 );
drh6848dad2014-08-22 23:33:03 +0000856 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000857 }
858 return SQLITE_OK;
859}
860
danielk1977599fcba2004-11-08 07:13:13 +0000861#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000862/*
drha3152892007-05-05 11:48:52 +0000863** Given a page number of a regular database page, return the page
864** number for the pointer-map page that contains the entry for the
865** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000866**
867** Return 0 (not a valid page) for pgno==1 since there is
868** no pointer map associated with page 1. The integrity_check logic
869** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000870*/
danielk1977266664d2006-02-10 08:24:21 +0000871static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000872 int nPagesPerMapPage;
873 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000874 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000875 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000876 nPagesPerMapPage = (pBt->usableSize/5)+1;
877 iPtrMap = (pgno-2)/nPagesPerMapPage;
878 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000879 if( ret==PENDING_BYTE_PAGE(pBt) ){
880 ret++;
881 }
882 return ret;
883}
danielk1977a19df672004-11-03 11:37:07 +0000884
danielk1977afcdd022004-10-31 16:25:42 +0000885/*
danielk1977afcdd022004-10-31 16:25:42 +0000886** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000887**
888** This routine updates the pointer map entry for page number 'key'
889** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000890**
891** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
892** a no-op. If an error occurs, the appropriate error code is written
893** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000894*/
drh98add2e2009-07-20 17:11:49 +0000895static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000896 DbPage *pDbPage; /* The pointer map page */
897 u8 *pPtrmap; /* The pointer map data */
898 Pgno iPtrmap; /* The pointer map page number */
899 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000900 int rc; /* Return code from subfunctions */
901
902 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000903
drh1fee73e2007-08-29 04:00:57 +0000904 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000905 /* The master-journal page number must never be used as a pointer map page */
906 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
907
danielk1977ac11ee62005-01-15 12:45:51 +0000908 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000909 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000910 *pRC = SQLITE_CORRUPT_BKPT;
911 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000912 }
danielk1977266664d2006-02-10 08:24:21 +0000913 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000914 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000915 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000916 *pRC = rc;
917 return;
danielk1977afcdd022004-10-31 16:25:42 +0000918 }
danielk19778c666b12008-07-18 09:34:57 +0000919 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000920 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000921 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000922 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000923 }
drhfc243732011-05-17 15:21:56 +0000924 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000925 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000926
drh615ae552005-01-16 23:21:00 +0000927 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
928 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000929 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000930 if( rc==SQLITE_OK ){
931 pPtrmap[offset] = eType;
932 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000933 }
danielk1977afcdd022004-10-31 16:25:42 +0000934 }
935
drh4925a552009-07-07 11:39:58 +0000936ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000937 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000938}
939
940/*
941** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000942**
943** This routine retrieves the pointer map entry for page 'key', writing
944** the type and parent page number to *pEType and *pPgno respectively.
945** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000946*/
danielk1977aef0bf62005-12-30 16:28:01 +0000947static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000948 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000949 int iPtrmap; /* Pointer map page index */
950 u8 *pPtrmap; /* Pointer map page data */
951 int offset; /* Offset of entry in pointer map */
952 int rc;
953
drh1fee73e2007-08-29 04:00:57 +0000954 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000955
danielk1977266664d2006-02-10 08:24:21 +0000956 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000957 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000958 if( rc!=0 ){
959 return rc;
960 }
danielk19773b8a05f2007-03-19 17:44:26 +0000961 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000962
danielk19778c666b12008-07-18 09:34:57 +0000963 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000964 if( offset<0 ){
965 sqlite3PagerUnref(pDbPage);
966 return SQLITE_CORRUPT_BKPT;
967 }
968 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000969 assert( pEType!=0 );
970 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000971 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000972
danielk19773b8a05f2007-03-19 17:44:26 +0000973 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000974 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000975 return SQLITE_OK;
976}
977
danielk197785d90ca2008-07-19 14:25:15 +0000978#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000979 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000980 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000981 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000982#endif
danielk1977afcdd022004-10-31 16:25:42 +0000983
drh0d316a42002-08-11 20:10:47 +0000984/*
drh271efa52004-05-30 19:19:05 +0000985** Given a btree page and a cell index (0 means the first cell on
986** the page, 1 means the second cell, and so forth) return a pointer
987** to the cell content.
988**
drhf44890a2015-06-27 03:58:15 +0000989** findCellPastPtr() does the same except it skips past the initial
990** 4-byte child pointer found on interior pages, if there is one.
991**
drh271efa52004-05-30 19:19:05 +0000992** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000993*/
drh1688c862008-07-18 02:44:17 +0000994#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +0000995 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +0000996#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +0000997 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +0000998
drh68f2a572011-06-03 17:50:49 +0000999
drh43605152004-05-29 21:46:49 +00001000/*
drh5fa60512015-06-19 17:19:34 +00001001** This is common tail processing for btreeParseCellPtr() and
1002** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1003** on a single B-tree page. Make necessary adjustments to the CellInfo
1004** structure.
drh43605152004-05-29 21:46:49 +00001005*/
drh5fa60512015-06-19 17:19:34 +00001006static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1007 MemPage *pPage, /* Page containing the cell */
1008 u8 *pCell, /* Pointer to the cell text. */
1009 CellInfo *pInfo /* Fill in this structure */
1010){
1011 /* If the payload will not fit completely on the local page, we have
1012 ** to decide how much to store locally and how much to spill onto
1013 ** overflow pages. The strategy is to minimize the amount of unused
1014 ** space on overflow pages while keeping the amount of local storage
1015 ** in between minLocal and maxLocal.
1016 **
1017 ** Warning: changing the way overflow payload is distributed in any
1018 ** way will result in an incompatible file format.
1019 */
1020 int minLocal; /* Minimum amount of payload held locally */
1021 int maxLocal; /* Maximum amount of payload held locally */
1022 int surplus; /* Overflow payload available for local storage */
1023
1024 minLocal = pPage->minLocal;
1025 maxLocal = pPage->maxLocal;
1026 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1027 testcase( surplus==maxLocal );
1028 testcase( surplus==maxLocal+1 );
1029 if( surplus <= maxLocal ){
1030 pInfo->nLocal = (u16)surplus;
1031 }else{
1032 pInfo->nLocal = (u16)minLocal;
1033 }
1034 pInfo->iOverflow = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell);
1035 pInfo->nSize = pInfo->iOverflow + 4;
1036}
1037
1038/*
1039** The following routines are implementations of the MemPage.xParseCell()
1040** method.
1041**
1042** Parse a cell content block and fill in the CellInfo structure.
1043**
1044** btreeParseCellPtr() => table btree leaf nodes
1045** btreeParseCellNoPayload() => table btree internal nodes
1046** btreeParseCellPtrIndex() => index btree nodes
1047**
1048** There is also a wrapper function btreeParseCell() that works for
1049** all MemPage types and that references the cell by index rather than
1050** by pointer.
1051*/
1052static void btreeParseCellPtrNoPayload(
1053 MemPage *pPage, /* Page containing the cell */
1054 u8 *pCell, /* Pointer to the cell text. */
1055 CellInfo *pInfo /* Fill in this structure */
1056){
1057 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1058 assert( pPage->leaf==0 );
1059 assert( pPage->noPayload );
1060 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001061#ifndef SQLITE_DEBUG
1062 UNUSED_PARAMETER(pPage);
1063#endif
drh5fa60512015-06-19 17:19:34 +00001064 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1065 pInfo->nPayload = 0;
1066 pInfo->nLocal = 0;
1067 pInfo->iOverflow = 0;
1068 pInfo->pPayload = 0;
1069 return;
1070}
danielk197730548662009-07-09 05:07:37 +00001071static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001072 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001073 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001074 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001075){
drh3e28ff52014-09-24 00:59:08 +00001076 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001077 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001078 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001079
drh1fee73e2007-08-29 04:00:57 +00001080 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001081 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001082 assert( pPage->intKeyLeaf || pPage->noPayload );
1083 assert( pPage->noPayload==0 );
1084 assert( pPage->intKeyLeaf );
1085 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001086 pIter = pCell;
1087
1088 /* The next block of code is equivalent to:
1089 **
1090 ** pIter += getVarint32(pIter, nPayload);
1091 **
1092 ** The code is inlined to avoid a function call.
1093 */
1094 nPayload = *pIter;
1095 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001096 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001097 nPayload &= 0x7f;
1098 do{
1099 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1100 }while( (*pIter)>=0x80 && pIter<pEnd );
1101 }
1102 pIter++;
1103
1104 /* The next block of code is equivalent to:
1105 **
1106 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1107 **
1108 ** The code is inlined to avoid a function call.
1109 */
1110 iKey = *pIter;
1111 if( iKey>=0x80 ){
1112 u8 *pEnd = &pIter[7];
1113 iKey &= 0x7f;
1114 while(1){
1115 iKey = (iKey<<7) | (*++pIter & 0x7f);
1116 if( (*pIter)<0x80 ) break;
1117 if( pIter>=pEnd ){
1118 iKey = (iKey<<8) | *++pIter;
1119 break;
1120 }
1121 }
1122 }
1123 pIter++;
1124
1125 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001126 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001127 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001128 testcase( nPayload==pPage->maxLocal );
1129 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001130 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001131 /* This is the (easy) common case where the entire payload fits
1132 ** on the local page. No overflow is required.
1133 */
drhab1cc582014-09-23 21:25:19 +00001134 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1135 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001136 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001137 pInfo->iOverflow = 0;
drh6f11bef2004-05-13 01:12:56 +00001138 }else{
drh5fa60512015-06-19 17:19:34 +00001139 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1140 }
1141}
1142static void btreeParseCellPtrIndex(
1143 MemPage *pPage, /* Page containing the cell */
1144 u8 *pCell, /* Pointer to the cell text. */
1145 CellInfo *pInfo /* Fill in this structure */
1146){
1147 u8 *pIter; /* For scanning through pCell */
1148 u32 nPayload; /* Number of bytes of cell payload */
drh271efa52004-05-30 19:19:05 +00001149
drh5fa60512015-06-19 17:19:34 +00001150 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1151 assert( pPage->leaf==0 || pPage->leaf==1 );
1152 assert( pPage->intKeyLeaf==0 );
1153 assert( pPage->noPayload==0 );
1154 pIter = pCell + pPage->childPtrSize;
1155 nPayload = *pIter;
1156 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001157 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001158 nPayload &= 0x7f;
1159 do{
1160 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1161 }while( *(pIter)>=0x80 && pIter<pEnd );
1162 }
1163 pIter++;
1164 pInfo->nKey = nPayload;
1165 pInfo->nPayload = nPayload;
1166 pInfo->pPayload = pIter;
1167 testcase( nPayload==pPage->maxLocal );
1168 testcase( nPayload==pPage->maxLocal+1 );
1169 if( nPayload<=pPage->maxLocal ){
1170 /* This is the (easy) common case where the entire payload fits
1171 ** on the local page. No overflow is required.
1172 */
1173 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1174 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1175 pInfo->nLocal = (u16)nPayload;
1176 pInfo->iOverflow = 0;
1177 }else{
1178 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001179 }
drh3aac2dd2004-04-26 14:10:20 +00001180}
danielk197730548662009-07-09 05:07:37 +00001181static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001182 MemPage *pPage, /* Page containing the cell */
1183 int iCell, /* The cell index. First cell is 0 */
1184 CellInfo *pInfo /* Fill in this structure */
1185){
drh5fa60512015-06-19 17:19:34 +00001186 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001187}
drh3aac2dd2004-04-26 14:10:20 +00001188
1189/*
drh5fa60512015-06-19 17:19:34 +00001190** The following routines are implementations of the MemPage.xCellSize
1191** method.
1192**
drh43605152004-05-29 21:46:49 +00001193** Compute the total number of bytes that a Cell needs in the cell
1194** data area of the btree-page. The return number includes the cell
1195** data header and the local payload, but not any overflow page or
1196** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001197**
drh5fa60512015-06-19 17:19:34 +00001198** cellSizePtrNoPayload() => table internal nodes
1199** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001200*/
danielk1977ae5558b2009-04-29 11:31:47 +00001201static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001202 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1203 u8 *pEnd; /* End mark for a varint */
1204 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001205
1206#ifdef SQLITE_DEBUG
1207 /* The value returned by this function should always be the same as
1208 ** the (CellInfo.nSize) value found by doing a full parse of the
1209 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1210 ** this function verifies that this invariant is not violated. */
1211 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001212 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001213#endif
1214
drh25ada072015-06-19 15:07:14 +00001215 assert( pPage->noPayload==0 );
drh3e28ff52014-09-24 00:59:08 +00001216 nSize = *pIter;
1217 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001218 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001219 nSize &= 0x7f;
1220 do{
1221 nSize = (nSize<<7) | (*++pIter & 0x7f);
1222 }while( *(pIter)>=0x80 && pIter<pEnd );
1223 }
1224 pIter++;
drhdc41d602014-09-22 19:51:35 +00001225 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001226 /* pIter now points at the 64-bit integer key value, a variable length
1227 ** integer. The following block moves pIter to point at the first byte
1228 ** past the end of the key value. */
1229 pEnd = &pIter[9];
1230 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001231 }
drh0a45c272009-07-08 01:49:11 +00001232 testcase( nSize==pPage->maxLocal );
1233 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001234 if( nSize<=pPage->maxLocal ){
1235 nSize += (u32)(pIter - pCell);
1236 if( nSize<4 ) nSize = 4;
1237 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001238 int minLocal = pPage->minLocal;
1239 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001240 testcase( nSize==pPage->maxLocal );
1241 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001242 if( nSize>pPage->maxLocal ){
1243 nSize = minLocal;
1244 }
drh3e28ff52014-09-24 00:59:08 +00001245 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001246 }
drhdc41d602014-09-22 19:51:35 +00001247 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001248 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001249}
drh25ada072015-06-19 15:07:14 +00001250static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1251 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1252 u8 *pEnd; /* End mark for a varint */
1253
1254#ifdef SQLITE_DEBUG
1255 /* The value returned by this function should always be the same as
1256 ** the (CellInfo.nSize) value found by doing a full parse of the
1257 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1258 ** this function verifies that this invariant is not violated. */
1259 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001260 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001261#else
1262 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001263#endif
1264
1265 assert( pPage->childPtrSize==4 );
1266 pEnd = pIter + 9;
1267 while( (*pIter++)&0x80 && pIter<pEnd );
1268 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1269 return (u16)(pIter - pCell);
1270}
1271
drh0ee3dbe2009-10-16 15:05:18 +00001272
1273#ifdef SQLITE_DEBUG
1274/* This variation on cellSizePtr() is used inside of assert() statements
1275** only. */
drha9121e42008-02-19 14:59:35 +00001276static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001277 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001278}
danielk1977bc6ada42004-06-30 08:20:16 +00001279#endif
drh3b7511c2001-05-26 13:15:44 +00001280
danielk197779a40da2005-01-16 08:00:01 +00001281#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001282/*
danielk197726836652005-01-17 01:33:13 +00001283** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001284** to an overflow page, insert an entry into the pointer-map
1285** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001286*/
drh98add2e2009-07-20 17:11:49 +00001287static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001288 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001289 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001290 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001291 pPage->xParseCell(pPage, pCell, &info);
danielk19774dbaa892009-06-16 16:50:22 +00001292 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001293 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001294 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001295 }
danielk1977ac11ee62005-01-15 12:45:51 +00001296}
danielk197779a40da2005-01-16 08:00:01 +00001297#endif
1298
danielk1977ac11ee62005-01-15 12:45:51 +00001299
drhda200cc2004-05-09 11:51:38 +00001300/*
drh72f82862001-05-24 21:06:34 +00001301** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001302** end of the page and all free space is collected into one
1303** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001304** pointer array and the cell content area.
drhfdab0262014-11-20 15:30:50 +00001305**
1306** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1307** b-tree page so that there are no freeblocks or fragment bytes, all
1308** unused bytes are contained in the unallocated space region, and all
1309** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001310*/
shane0af3f892008-11-12 04:55:34 +00001311static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001312 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001313 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001314 int hdr; /* Offset to the page header */
1315 int size; /* Size of a cell */
1316 int usableSize; /* Number of usable bytes on a page */
1317 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001318 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001319 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001320 unsigned char *data; /* The page data */
1321 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001322 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001323 int iCellFirst; /* First allowable cell index */
1324 int iCellLast; /* Last possible cell index */
1325
drh2af926b2001-05-15 00:39:25 +00001326
danielk19773b8a05f2007-03-19 17:44:26 +00001327 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001328 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001329 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001330 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001331 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001332 temp = 0;
1333 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001334 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001335 cellOffset = pPage->cellOffset;
1336 nCell = pPage->nCell;
1337 assert( nCell==get2byte(&data[hdr+3]) );
1338 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001339 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001340 iCellFirst = cellOffset + 2*nCell;
1341 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001342 for(i=0; i<nCell; i++){
1343 u8 *pAddr; /* The i-th cell pointer */
1344 pAddr = &data[cellOffset + i*2];
1345 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001346 testcase( pc==iCellFirst );
1347 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001348 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001349 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001350 */
1351 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001352 return SQLITE_CORRUPT_BKPT;
1353 }
drh17146622009-07-07 17:38:38 +00001354 assert( pc>=iCellFirst && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001355 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001356 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001357 if( cbrk<iCellFirst || pc+size>usableSize ){
1358 return SQLITE_CORRUPT_BKPT;
1359 }
drh7157e1d2009-07-09 13:25:32 +00001360 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001361 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001362 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001363 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001364 if( temp==0 ){
1365 int x;
1366 if( cbrk==pc ) continue;
1367 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1368 x = get2byte(&data[hdr+5]);
1369 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1370 src = temp;
1371 }
1372 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001373 }
drh17146622009-07-07 17:38:38 +00001374 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001375 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001376 data[hdr+1] = 0;
1377 data[hdr+2] = 0;
1378 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001379 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001380 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001381 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001382 return SQLITE_CORRUPT_BKPT;
1383 }
shane0af3f892008-11-12 04:55:34 +00001384 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001385}
1386
drha059ad02001-04-17 20:09:11 +00001387/*
dan8e9ba0c2014-10-14 17:27:04 +00001388** Search the free-list on page pPg for space to store a cell nByte bytes in
1389** size. If one can be found, return a pointer to the space and remove it
1390** from the free-list.
1391**
1392** If no suitable space can be found on the free-list, return NULL.
1393**
drhba0f9992014-10-30 20:48:44 +00001394** This function may detect corruption within pPg. If corruption is
1395** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001396**
drhb7580e82015-06-25 18:36:13 +00001397** Slots on the free list that are between 1 and 3 bytes larger than nByte
1398** will be ignored if adding the extra space to the fragmentation count
1399** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001400*/
drhb7580e82015-06-25 18:36:13 +00001401static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
dan8e9ba0c2014-10-14 17:27:04 +00001402 const int hdr = pPg->hdrOffset;
1403 u8 * const aData = pPg->aData;
drhb7580e82015-06-25 18:36:13 +00001404 int iAddr = hdr + 1;
1405 int pc = get2byte(&aData[iAddr]);
1406 int x;
dan8e9ba0c2014-10-14 17:27:04 +00001407 int usableSize = pPg->pBt->usableSize;
1408
drhb7580e82015-06-25 18:36:13 +00001409 assert( pc>0 );
1410 do{
dan8e9ba0c2014-10-14 17:27:04 +00001411 int size; /* Size of the free slot */
drh113762a2014-11-19 16:36:25 +00001412 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
1413 ** increasing offset. */
dan8e9ba0c2014-10-14 17:27:04 +00001414 if( pc>usableSize-4 || pc<iAddr+4 ){
drhba0f9992014-10-30 20:48:44 +00001415 *pRc = SQLITE_CORRUPT_BKPT;
dan8e9ba0c2014-10-14 17:27:04 +00001416 return 0;
1417 }
drh113762a2014-11-19 16:36:25 +00001418 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1419 ** freeblock form a big-endian integer which is the size of the freeblock
1420 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001421 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001422 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001423 testcase( x==4 );
1424 testcase( x==3 );
drh24dee9d2015-06-02 19:36:29 +00001425 if( pc < pPg->cellOffset+2*pPg->nCell || size+pc > usableSize ){
1426 *pRc = SQLITE_CORRUPT_BKPT;
1427 return 0;
1428 }else if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001429 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1430 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001431 if( aData[hdr+7]>57 ) return 0;
1432
dan8e9ba0c2014-10-14 17:27:04 +00001433 /* Remove the slot from the free-list. Update the number of
1434 ** fragmented bytes within the page. */
1435 memcpy(&aData[iAddr], &aData[pc], 2);
1436 aData[hdr+7] += (u8)x;
dan8e9ba0c2014-10-14 17:27:04 +00001437 }else{
1438 /* The slot remains on the free-list. Reduce its size to account
1439 ** for the portion used by the new allocation. */
1440 put2byte(&aData[pc+2], x);
1441 }
1442 return &aData[pc + x];
1443 }
drhb7580e82015-06-25 18:36:13 +00001444 iAddr = pc;
1445 pc = get2byte(&aData[pc]);
1446 }while( pc );
dan8e9ba0c2014-10-14 17:27:04 +00001447
1448 return 0;
1449}
1450
1451/*
danielk19776011a752009-04-01 16:25:32 +00001452** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001453** as the first argument. Write into *pIdx the index into pPage->aData[]
1454** of the first byte of allocated space. Return either SQLITE_OK or
1455** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001456**
drh0a45c272009-07-08 01:49:11 +00001457** The caller guarantees that there is sufficient space to make the
1458** allocation. This routine might need to defragment in order to bring
1459** all the space together, however. This routine will avoid using
1460** the first two bytes past the cell pointer area since presumably this
1461** allocation is being made in order to insert a new cell, so we will
1462** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001463*/
drh0a45c272009-07-08 01:49:11 +00001464static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001465 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1466 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001467 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001468 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001469 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001470
danielk19773b8a05f2007-03-19 17:44:26 +00001471 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001472 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001473 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001474 assert( nByte>=0 ); /* Minimum cell size is 4 */
1475 assert( pPage->nFree>=nByte );
1476 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001477 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001478
drh0a45c272009-07-08 01:49:11 +00001479 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1480 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001481 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001482 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1483 ** and the reserved space is zero (the usual value for reserved space)
1484 ** then the cell content offset of an empty page wants to be 65536.
1485 ** However, that integer is too large to be stored in a 2-byte unsigned
1486 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001487 top = get2byte(&data[hdr+5]);
mistachkin68cdd0e2015-06-26 03:12:27 +00001488 assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
drhded340e2015-06-25 15:04:56 +00001489 if( gap>top ){
1490 if( top==0 && pPage->pBt->usableSize==65536 ){
1491 top = 65536;
1492 }else{
1493 return SQLITE_CORRUPT_BKPT;
1494 }
drhe7266222015-05-29 17:51:16 +00001495 }
drh4c04f3c2014-08-20 11:56:14 +00001496
1497 /* If there is enough space between gap and top for one more cell pointer
1498 ** array entry offset, and if the freelist is not empty, then search the
1499 ** freelist looking for a free slot big enough to satisfy the request.
1500 */
drh0a45c272009-07-08 01:49:11 +00001501 testcase( gap+2==top );
1502 testcase( gap+1==top );
1503 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001504 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001505 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001506 if( pSpace ){
drhfefa0942014-11-05 21:21:08 +00001507 assert( pSpace>=data && (pSpace - data)<65536 );
1508 *pIdx = (int)(pSpace - data);
dan8e9ba0c2014-10-14 17:27:04 +00001509 return SQLITE_OK;
drhb7580e82015-06-25 18:36:13 +00001510 }else if( rc ){
1511 return rc;
drh9e572e62004-04-23 23:43:10 +00001512 }
1513 }
drh43605152004-05-29 21:46:49 +00001514
drh4c04f3c2014-08-20 11:56:14 +00001515 /* The request could not be fulfilled using a freelist slot. Check
1516 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001517 */
1518 testcase( gap+2+nByte==top );
1519 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001520 assert( pPage->nCell>0 || CORRUPT_DB );
drh0a45c272009-07-08 01:49:11 +00001521 rc = defragmentPage(pPage);
1522 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001523 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001524 assert( gap+nByte<=top );
1525 }
1526
1527
drh43605152004-05-29 21:46:49 +00001528 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001529 ** and the cell content area. The btreeInitPage() call has already
1530 ** validated the freelist. Given that the freelist is valid, there
1531 ** is no way that the allocation can extend off the end of the page.
1532 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001533 */
drh0a45c272009-07-08 01:49:11 +00001534 top -= nByte;
drh43605152004-05-29 21:46:49 +00001535 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001536 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001537 *pIdx = top;
1538 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001539}
1540
1541/*
drh9e572e62004-04-23 23:43:10 +00001542** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001543** The first byte of the new free block is pPage->aData[iStart]
1544** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001545**
drh5f5c7532014-08-20 17:56:27 +00001546** Adjacent freeblocks are coalesced.
1547**
1548** Note that even though the freeblock list was checked by btreeInitPage(),
1549** that routine will not detect overlap between cells or freeblocks. Nor
1550** does it detect cells or freeblocks that encrouch into the reserved bytes
1551** at the end of the page. So do additional corruption checks inside this
1552** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001553*/
drh5f5c7532014-08-20 17:56:27 +00001554static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001555 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001556 u16 iFreeBlk; /* Address of the next freeblock */
1557 u8 hdr; /* Page header size. 0 or 100 */
1558 u8 nFrag = 0; /* Reduction in fragmentation */
1559 u16 iOrigSize = iSize; /* Original value of iSize */
1560 u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1561 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001562 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001563
drh9e572e62004-04-23 23:43:10 +00001564 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001565 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001566 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001567 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001568 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001569 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5f5c7532014-08-20 17:56:27 +00001570 assert( iStart<=iLast );
drh9e572e62004-04-23 23:43:10 +00001571
drh5f5c7532014-08-20 17:56:27 +00001572 /* Overwrite deleted information with zeros when the secure_delete
1573 ** option is enabled */
drhc9166342012-01-05 23:32:06 +00001574 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh7fb91642014-08-20 14:37:09 +00001575 memset(&data[iStart], 0, iSize);
drh5b47efa2010-02-12 18:18:39 +00001576 }
drhfcce93f2006-02-22 03:08:32 +00001577
drh5f5c7532014-08-20 17:56:27 +00001578 /* The list of freeblocks must be in ascending order. Find the
1579 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001580 */
drh43605152004-05-29 21:46:49 +00001581 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001582 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001583 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1584 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1585 }else{
1586 while( (iFreeBlk = get2byte(&data[iPtr]))>0 && iFreeBlk<iStart ){
1587 if( iFreeBlk<iPtr+4 ) return SQLITE_CORRUPT_BKPT;
1588 iPtr = iFreeBlk;
drh9e572e62004-04-23 23:43:10 +00001589 }
drh7bc4c452014-08-20 18:43:44 +00001590 if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT;
1591 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1592
1593 /* At this point:
1594 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001595 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001596 **
1597 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1598 */
1599 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1600 nFrag = iFreeBlk - iEnd;
1601 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
1602 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drhae6cd722015-06-25 15:21:52 +00001603 if( iEnd > pPage->pBt->usableSize ) return SQLITE_CORRUPT_BKPT;
drh7bc4c452014-08-20 18:43:44 +00001604 iSize = iEnd - iStart;
1605 iFreeBlk = get2byte(&data[iFreeBlk]);
1606 }
1607
drh3f387402014-09-24 01:23:00 +00001608 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1609 ** pointer in the page header) then check to see if iStart should be
1610 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001611 */
1612 if( iPtr>hdr+1 ){
1613 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1614 if( iPtrEnd+3>=iStart ){
1615 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
1616 nFrag += iStart - iPtrEnd;
1617 iSize = iEnd - iPtr;
1618 iStart = iPtr;
1619 }
1620 }
1621 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT;
1622 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001623 }
drh7bc4c452014-08-20 18:43:44 +00001624 if( iStart==get2byte(&data[hdr+5]) ){
drh5f5c7532014-08-20 17:56:27 +00001625 /* The new freeblock is at the beginning of the cell content area,
1626 ** so just extend the cell content area rather than create another
1627 ** freelist entry */
drh7bc4c452014-08-20 18:43:44 +00001628 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT;
drh5f5c7532014-08-20 17:56:27 +00001629 put2byte(&data[hdr+1], iFreeBlk);
1630 put2byte(&data[hdr+5], iEnd);
1631 }else{
1632 /* Insert the new freeblock into the freelist */
1633 put2byte(&data[iPtr], iStart);
1634 put2byte(&data[iStart], iFreeBlk);
1635 put2byte(&data[iStart+2], iSize);
drh4b70f112004-05-02 21:12:19 +00001636 }
drh5f5c7532014-08-20 17:56:27 +00001637 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001638 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001639}
1640
1641/*
drh271efa52004-05-30 19:19:05 +00001642** Decode the flags byte (the first byte of the header) for a page
1643** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001644**
1645** Only the following combinations are supported. Anything different
1646** indicates a corrupt database files:
1647**
1648** PTF_ZERODATA
1649** PTF_ZERODATA | PTF_LEAF
1650** PTF_LEAFDATA | PTF_INTKEY
1651** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001652*/
drh44845222008-07-17 18:39:57 +00001653static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001654 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001655
1656 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001657 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001658 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001659 flagByte &= ~PTF_LEAF;
1660 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001661 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001662 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001663 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drhfdab0262014-11-20 15:30:50 +00001664 /* EVIDENCE-OF: R-03640-13415 A value of 5 means the page is an interior
1665 ** table b-tree page. */
1666 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1667 /* EVIDENCE-OF: R-20501-61796 A value of 13 means the page is a leaf
1668 ** table b-tree page. */
1669 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001670 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001671 if( pPage->leaf ){
1672 pPage->intKeyLeaf = 1;
1673 pPage->noPayload = 0;
drh5fa60512015-06-19 17:19:34 +00001674 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001675 }else{
1676 pPage->intKeyLeaf = 0;
1677 pPage->noPayload = 1;
1678 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001679 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001680 }
drh271efa52004-05-30 19:19:05 +00001681 pPage->maxLocal = pBt->maxLeaf;
1682 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001683 }else if( flagByte==PTF_ZERODATA ){
drhfdab0262014-11-20 15:30:50 +00001684 /* EVIDENCE-OF: R-27225-53936 A value of 2 means the page is an interior
1685 ** index b-tree page. */
1686 assert( (PTF_ZERODATA)==2 );
1687 /* EVIDENCE-OF: R-16571-11615 A value of 10 means the page is a leaf
1688 ** index b-tree page. */
1689 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001690 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001691 pPage->intKeyLeaf = 0;
1692 pPage->noPayload = 0;
drh5fa60512015-06-19 17:19:34 +00001693 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001694 pPage->maxLocal = pBt->maxLocal;
1695 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001696 }else{
drhfdab0262014-11-20 15:30:50 +00001697 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1698 ** an error. */
drh44845222008-07-17 18:39:57 +00001699 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001700 }
drhc9166342012-01-05 23:32:06 +00001701 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001702 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001703}
1704
1705/*
drh7e3b0a02001-04-28 16:52:40 +00001706** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001707**
1708** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001709** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001710** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1711** guarantee that the page is well-formed. It only shows that
1712** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001713*/
danielk197730548662009-07-09 05:07:37 +00001714static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001715
danielk197771d5d2c2008-09-29 11:49:47 +00001716 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001717 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001718 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001719 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001720 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1721 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001722
1723 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001724 u16 pc; /* Address of a freeblock within pPage->aData[] */
1725 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001726 u8 *data; /* Equal to pPage->aData */
1727 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001728 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001729 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001730 int nFree; /* Number of unused bytes on the page */
1731 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001732 int iCellFirst; /* First allowable cell or freeblock offset */
1733 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001734
1735 pBt = pPage->pBt;
1736
danielk1977eaa06f62008-09-18 17:34:44 +00001737 hdr = pPage->hdrOffset;
1738 data = pPage->aData;
drhfdab0262014-11-20 15:30:50 +00001739 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1740 ** the b-tree page type. */
danielk1977eaa06f62008-09-18 17:34:44 +00001741 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001742 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1743 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001744 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001745 usableSize = pBt->usableSize;
drhfdab0262014-11-20 15:30:50 +00001746 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
drh3def2352011-11-11 00:27:15 +00001747 pPage->aDataEnd = &data[usableSize];
1748 pPage->aCellIdx = &data[cellOffset];
drhf44890a2015-06-27 03:58:15 +00001749 pPage->aDataOfst = &data[pPage->childPtrSize];
drhfdab0262014-11-20 15:30:50 +00001750 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1751 ** the start of the cell content area. A zero value for this integer is
1752 ** interpreted as 65536. */
drh5d433ce2010-08-14 16:02:52 +00001753 top = get2byteNotZero(&data[hdr+5]);
drhfdab0262014-11-20 15:30:50 +00001754 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1755 ** number of cells on the page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001756 pPage->nCell = get2byte(&data[hdr+3]);
1757 if( pPage->nCell>MX_CELL(pBt) ){
1758 /* To many cells for a single page. The page must be corrupt */
1759 return SQLITE_CORRUPT_BKPT;
1760 }
drhb908d762009-07-08 16:54:40 +00001761 testcase( pPage->nCell==MX_CELL(pBt) );
drhfdab0262014-11-20 15:30:50 +00001762 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1763 ** possible for a root page of a table that contains no rows) then the
1764 ** offset to the cell content area will equal the page size minus the
1765 ** bytes of reserved space. */
1766 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
drh69e931e2009-06-03 21:04:35 +00001767
shane5eff7cf2009-08-10 03:57:58 +00001768 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001769 ** of page when parsing a cell.
1770 **
1771 ** The following block of code checks early to see if a cell extends
1772 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1773 ** returned if it does.
1774 */
drh0a45c272009-07-08 01:49:11 +00001775 iCellFirst = cellOffset + 2*pPage->nCell;
1776 iCellLast = usableSize - 4;
drh1421d982015-05-27 03:46:18 +00001777 if( pBt->db->flags & SQLITE_CellSizeCk ){
drh69e931e2009-06-03 21:04:35 +00001778 int i; /* Index into the cell pointer array */
1779 int sz; /* Size of a cell */
1780
drh69e931e2009-06-03 21:04:35 +00001781 if( !pPage->leaf ) iCellLast--;
1782 for(i=0; i<pPage->nCell; i++){
drh329428e2015-06-30 13:28:18 +00001783 pc = get2byteAligned(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001784 testcase( pc==iCellFirst );
1785 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001786 if( pc<iCellFirst || pc>iCellLast ){
1787 return SQLITE_CORRUPT_BKPT;
1788 }
drh25ada072015-06-19 15:07:14 +00001789 sz = pPage->xCellSize(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001790 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001791 if( pc+sz>usableSize ){
1792 return SQLITE_CORRUPT_BKPT;
1793 }
1794 }
drh0a45c272009-07-08 01:49:11 +00001795 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001796 }
drh69e931e2009-06-03 21:04:35 +00001797
drhfdab0262014-11-20 15:30:50 +00001798 /* Compute the total free space on the page
1799 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1800 ** start of the first freeblock on the page, or is zero if there are no
1801 ** freeblocks. */
danielk1977eaa06f62008-09-18 17:34:44 +00001802 pc = get2byte(&data[hdr+1]);
drhfdab0262014-11-20 15:30:50 +00001803 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
danielk1977eaa06f62008-09-18 17:34:44 +00001804 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001805 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001806 if( pc<iCellFirst || pc>iCellLast ){
drhfdab0262014-11-20 15:30:50 +00001807 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1808 ** always be at least one cell before the first freeblock.
1809 **
1810 ** Or, the freeblock is off the end of the page
1811 */
danielk1977eaa06f62008-09-18 17:34:44 +00001812 return SQLITE_CORRUPT_BKPT;
1813 }
1814 next = get2byte(&data[pc]);
1815 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001816 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1817 /* Free blocks must be in ascending order. And the last byte of
drhf2f105d2012-08-20 15:53:54 +00001818 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001819 return SQLITE_CORRUPT_BKPT;
1820 }
shane85095702009-06-15 16:27:08 +00001821 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001822 pc = next;
1823 }
danielk197793c829c2009-06-03 17:26:17 +00001824
1825 /* At this point, nFree contains the sum of the offset to the start
1826 ** of the cell-content area plus the number of free bytes within
1827 ** the cell-content area. If this is greater than the usable-size
1828 ** of the page, then the page must be corrupted. This check also
1829 ** serves to verify that the offset to the start of the cell-content
1830 ** area, according to the page header, lies within the page.
1831 */
1832 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001833 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001834 }
shane5eff7cf2009-08-10 03:57:58 +00001835 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001836 pPage->isInit = 1;
1837 }
drh9e572e62004-04-23 23:43:10 +00001838 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001839}
1840
1841/*
drh8b2f49b2001-06-08 00:21:52 +00001842** Set up a raw page so that it looks like a database page holding
1843** no entries.
drhbd03cae2001-06-02 02:40:57 +00001844*/
drh9e572e62004-04-23 23:43:10 +00001845static void zeroPage(MemPage *pPage, int flags){
1846 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001847 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001848 u8 hdr = pPage->hdrOffset;
1849 u16 first;
drh9e572e62004-04-23 23:43:10 +00001850
danielk19773b8a05f2007-03-19 17:44:26 +00001851 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001852 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1853 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001854 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001855 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001856 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001857 memset(&data[hdr], 0, pBt->usableSize - hdr);
1858 }
drh1bd10f82008-12-10 21:19:56 +00001859 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001860 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001861 memset(&data[hdr+1], 0, 4);
1862 data[hdr+7] = 0;
1863 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001864 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001865 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00001866 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001867 pPage->aDataEnd = &data[pBt->usableSize];
1868 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00001869 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00001870 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001871 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1872 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001873 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001874 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001875}
1876
drh897a8202008-09-18 01:08:15 +00001877
1878/*
1879** Convert a DbPage obtained from the pager into a MemPage used by
1880** the btree layer.
1881*/
1882static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1883 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1884 pPage->aData = sqlite3PagerGetData(pDbPage);
1885 pPage->pDbPage = pDbPage;
1886 pPage->pBt = pBt;
1887 pPage->pgno = pgno;
drh375beb02015-06-27 15:51:06 +00001888 pPage->hdrOffset = pgno==1 ? 100 : 0;
drh897a8202008-09-18 01:08:15 +00001889 return pPage;
1890}
1891
drhbd03cae2001-06-02 02:40:57 +00001892/*
drh3aac2dd2004-04-26 14:10:20 +00001893** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00001894** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00001895**
drh7e8c6f12015-05-28 03:28:27 +00001896** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
1897** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00001898** to fetch the content. Just fill in the content with zeros for now.
1899** If in the future we call sqlite3PagerWrite() on this page, that
1900** means we have started to be concerned about content and the disk
1901** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001902*/
danielk197730548662009-07-09 05:07:37 +00001903static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001904 BtShared *pBt, /* The btree */
1905 Pgno pgno, /* Number of the page to fetch */
1906 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00001907 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00001908){
drh3aac2dd2004-04-26 14:10:20 +00001909 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001910 DbPage *pDbPage;
1911
drhb00fc3b2013-08-21 23:42:32 +00001912 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00001913 assert( sqlite3_mutex_held(pBt->mutex) );
dan11dcd112013-03-15 18:29:18 +00001914 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00001915 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001916 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001917 return SQLITE_OK;
1918}
1919
1920/*
danielk1977bea2a942009-01-20 17:06:27 +00001921** Retrieve a page from the pager cache. If the requested page is not
1922** already in the pager cache return NULL. Initialize the MemPage.pBt and
1923** MemPage.aData elements if needed.
1924*/
1925static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1926 DbPage *pDbPage;
1927 assert( sqlite3_mutex_held(pBt->mutex) );
1928 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1929 if( pDbPage ){
1930 return btreePageFromDbPage(pDbPage, pgno, pBt);
1931 }
1932 return 0;
1933}
1934
1935/*
danielk197789d40042008-11-17 14:20:56 +00001936** Return the size of the database file in pages. If there is any kind of
1937** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001938*/
drhb1299152010-03-30 22:58:33 +00001939static Pgno btreePagecount(BtShared *pBt){
1940 return pBt->nPage;
1941}
1942u32 sqlite3BtreeLastPage(Btree *p){
1943 assert( sqlite3BtreeHoldsMutex(p) );
1944 assert( ((p->pBt->nPage)&0x8000000)==0 );
drheac5bd72014-07-25 21:35:39 +00001945 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001946}
1947
1948/*
drh28f58dd2015-06-27 19:45:03 +00001949** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00001950**
drh15a00212015-06-27 20:55:00 +00001951** If pCur!=0 then the page is being fetched as part of a moveToChild()
1952** call. Do additional sanity checking on the page in this case.
1953** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00001954**
1955** The page is fetched as read-write unless pCur is not NULL and is
1956** a read-only cursor.
1957**
1958** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00001959** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001960*/
1961static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00001962 BtShared *pBt, /* The database file */
1963 Pgno pgno, /* Number of the page to get */
1964 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00001965 BtCursor *pCur, /* Cursor to receive the page, or NULL */
1966 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00001967){
1968 int rc;
drh28f58dd2015-06-27 19:45:03 +00001969 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00001970 assert( sqlite3_mutex_held(pBt->mutex) );
drh28f58dd2015-06-27 19:45:03 +00001971 assert( pCur==0 || ppPage==&pCur->apPage[pCur->iPage] );
1972 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00001973 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00001974
danba3cbf32010-06-30 04:29:03 +00001975 if( pgno>btreePagecount(pBt) ){
1976 rc = SQLITE_CORRUPT_BKPT;
drh28f58dd2015-06-27 19:45:03 +00001977 goto getAndInitPage_error;
1978 }
1979 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
1980 if( rc ){
1981 goto getAndInitPage_error;
1982 }
1983 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
1984 if( (*ppPage)->isInit==0 ){
1985 rc = btreeInitPage(*ppPage);
1986 if( rc!=SQLITE_OK ){
1987 releasePage(*ppPage);
1988 goto getAndInitPage_error;
danielk197789bc4bc2009-07-21 19:25:24 +00001989 }
drhee696e22004-08-30 16:52:17 +00001990 }
danba3cbf32010-06-30 04:29:03 +00001991
drh15a00212015-06-27 20:55:00 +00001992 /* If obtaining a child page for a cursor, we must verify that the page is
1993 ** compatible with the root page. */
1994 if( pCur
drh408efc02015-06-27 22:49:10 +00001995 && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey)
drh28f58dd2015-06-27 19:45:03 +00001996 ){
1997 rc = SQLITE_CORRUPT_BKPT;
1998 releasePage(*ppPage);
1999 goto getAndInitPage_error;
2000 }
drh28f58dd2015-06-27 19:45:03 +00002001 return SQLITE_OK;
2002
2003getAndInitPage_error:
2004 if( pCur ) pCur->iPage--;
drh325d0872015-06-29 00:52:33 +00002005 testcase( pgno==0 );
2006 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00002007 return rc;
2008}
2009
2010/*
drh3aac2dd2004-04-26 14:10:20 +00002011** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002012** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00002013*/
drhbbf0f862015-06-27 14:59:26 +00002014static void releasePageNotNull(MemPage *pPage){
2015 assert( pPage->aData );
2016 assert( pPage->pBt );
2017 assert( pPage->pDbPage!=0 );
2018 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2019 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2020 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2021 sqlite3PagerUnrefNotNull(pPage->pDbPage);
2022}
drh4b70f112004-05-02 21:12:19 +00002023static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002024 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002025}
2026
2027/*
drh7e8c6f12015-05-28 03:28:27 +00002028** Get an unused page.
2029**
2030** This works just like btreeGetPage() with the addition:
2031**
2032** * If the page is already in use for some other purpose, immediately
2033** release it and return an SQLITE_CURRUPT error.
2034** * Make sure the isInit flag is clear
2035*/
2036static int btreeGetUnusedPage(
2037 BtShared *pBt, /* The btree */
2038 Pgno pgno, /* Number of the page to fetch */
2039 MemPage **ppPage, /* Return the page in this parameter */
2040 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2041){
2042 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2043 if( rc==SQLITE_OK ){
2044 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2045 releasePage(*ppPage);
2046 *ppPage = 0;
2047 return SQLITE_CORRUPT_BKPT;
2048 }
2049 (*ppPage)->isInit = 0;
2050 }else{
2051 *ppPage = 0;
2052 }
2053 return rc;
2054}
2055
2056
2057/*
drha6abd042004-06-09 17:37:22 +00002058** During a rollback, when the pager reloads information into the cache
2059** so that the cache is restored to its original state at the start of
2060** the transaction, for each page restored this routine is called.
2061**
2062** This routine needs to reset the extra data section at the end of the
2063** page to agree with the restored data.
2064*/
danielk1977eaa06f62008-09-18 17:34:44 +00002065static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002066 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002067 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002068 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002069 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002070 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002071 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002072 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002073 /* pPage might not be a btree page; it might be an overflow page
2074 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002075 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002076 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002077 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002078 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002079 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002080 }
drha6abd042004-06-09 17:37:22 +00002081 }
2082}
2083
2084/*
drhe5fe6902007-12-07 18:55:28 +00002085** Invoke the busy handler for a btree.
2086*/
danielk19771ceedd32008-11-19 10:22:33 +00002087static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002088 BtShared *pBt = (BtShared*)pArg;
2089 assert( pBt->db );
2090 assert( sqlite3_mutex_held(pBt->db->mutex) );
2091 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2092}
2093
2094/*
drhad3e0102004-09-03 23:32:18 +00002095** Open a database file.
2096**
drh382c0242001-10-06 16:33:02 +00002097** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002098** then an ephemeral database is created. The ephemeral database might
2099** be exclusively in memory, or it might use a disk-based memory cache.
2100** Either way, the ephemeral database will be automatically deleted
2101** when sqlite3BtreeClose() is called.
2102**
drhe53831d2007-08-17 01:14:38 +00002103** If zFilename is ":memory:" then an in-memory database is created
2104** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002105**
drh33f111d2012-01-17 15:29:14 +00002106** The "flags" parameter is a bitmask that might contain bits like
2107** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002108**
drhc47fd8e2009-04-30 13:30:32 +00002109** If the database is already opened in the same database connection
2110** and we are in shared cache mode, then the open will fail with an
2111** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2112** objects in the same database connection since doing so will lead
2113** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002114*/
drh23e11ca2004-05-04 17:27:28 +00002115int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002116 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002117 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002118 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002119 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002120 int flags, /* Options */
2121 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002122){
drh7555d8e2009-03-20 13:15:30 +00002123 BtShared *pBt = 0; /* Shared part of btree structure */
2124 Btree *p; /* Handle to return */
2125 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2126 int rc = SQLITE_OK; /* Result code from this function */
2127 u8 nReserve; /* Byte of unused space on each page */
2128 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002129
drh75c014c2010-08-30 15:02:28 +00002130 /* True if opening an ephemeral, temporary database */
2131 const int isTempDb = zFilename==0 || zFilename[0]==0;
2132
danielk1977aef0bf62005-12-30 16:28:01 +00002133 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002134 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002135 */
drhb0a7c9c2010-12-06 21:09:59 +00002136#ifdef SQLITE_OMIT_MEMORYDB
2137 const int isMemdb = 0;
2138#else
2139 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002140 || (isTempDb && sqlite3TempInMemory(db))
2141 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002142#endif
2143
drhe5fe6902007-12-07 18:55:28 +00002144 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002145 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002146 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002147 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2148
2149 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2150 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2151
2152 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2153 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002154
drh75c014c2010-08-30 15:02:28 +00002155 if( isMemdb ){
2156 flags |= BTREE_MEMORY;
2157 }
2158 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2159 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2160 }
drh17435752007-08-16 04:30:38 +00002161 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002162 if( !p ){
2163 return SQLITE_NOMEM;
2164 }
2165 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002166 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002167#ifndef SQLITE_OMIT_SHARED_CACHE
2168 p->lock.pBtree = p;
2169 p->lock.iTable = 1;
2170#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002171
drh198bf392006-01-06 21:52:49 +00002172#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002173 /*
2174 ** If this Btree is a candidate for shared cache, try to find an
2175 ** existing BtShared object that we can share with
2176 */
drh4ab9d252012-05-26 20:08:49 +00002177 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002178 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002179 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002180 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002181 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002182 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002183
drhff0587c2007-08-29 17:43:19 +00002184 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002185 if( !zFullPathname ){
2186 sqlite3_free(p);
2187 return SQLITE_NOMEM;
2188 }
drhafc8b7f2012-05-26 18:06:38 +00002189 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002190 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002191 }else{
2192 rc = sqlite3OsFullPathname(pVfs, zFilename,
2193 nFullPathname, zFullPathname);
2194 if( rc ){
2195 sqlite3_free(zFullPathname);
2196 sqlite3_free(p);
2197 return rc;
2198 }
drh070ad6b2011-11-17 11:43:19 +00002199 }
drh30ddce62011-10-15 00:16:30 +00002200#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002201 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2202 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00002203 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00002204 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002205#endif
drh78f82d12008-09-02 00:52:52 +00002206 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002207 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002208 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002209 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002210 int iDb;
2211 for(iDb=db->nDb-1; iDb>=0; iDb--){
2212 Btree *pExisting = db->aDb[iDb].pBt;
2213 if( pExisting && pExisting->pBt==pBt ){
2214 sqlite3_mutex_leave(mutexShared);
2215 sqlite3_mutex_leave(mutexOpen);
2216 sqlite3_free(zFullPathname);
2217 sqlite3_free(p);
2218 return SQLITE_CONSTRAINT;
2219 }
2220 }
drhff0587c2007-08-29 17:43:19 +00002221 p->pBt = pBt;
2222 pBt->nRef++;
2223 break;
2224 }
2225 }
2226 sqlite3_mutex_leave(mutexShared);
2227 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002228 }
drhff0587c2007-08-29 17:43:19 +00002229#ifdef SQLITE_DEBUG
2230 else{
2231 /* In debug mode, we mark all persistent databases as sharable
2232 ** even when they are not. This exercises the locking code and
2233 ** gives more opportunity for asserts(sqlite3_mutex_held())
2234 ** statements to find locking problems.
2235 */
2236 p->sharable = 1;
2237 }
2238#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002239 }
2240#endif
drha059ad02001-04-17 20:09:11 +00002241 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002242 /*
2243 ** The following asserts make sure that structures used by the btree are
2244 ** the right size. This is to guard against size changes that result
2245 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002246 */
drh062cf272015-03-23 19:03:51 +00002247 assert( sizeof(i64)==8 );
2248 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002249 assert( sizeof(u32)==4 );
2250 assert( sizeof(u16)==2 );
2251 assert( sizeof(Pgno)==4 );
2252
2253 pBt = sqlite3MallocZero( sizeof(*pBt) );
2254 if( pBt==0 ){
2255 rc = SQLITE_NOMEM;
2256 goto btree_open_out;
2257 }
danielk197771d5d2c2008-09-29 11:49:47 +00002258 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00002259 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002260 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002261 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002262 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2263 }
2264 if( rc!=SQLITE_OK ){
2265 goto btree_open_out;
2266 }
shanehbd2aaf92010-09-01 02:38:21 +00002267 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002268 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00002269 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002270 p->pBt = pBt;
2271
drhe53831d2007-08-17 01:14:38 +00002272 pBt->pCursor = 0;
2273 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002274 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00002275#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00002276 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002277#endif
drh113762a2014-11-19 16:36:25 +00002278 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2279 ** determined by the 2-byte integer located at an offset of 16 bytes from
2280 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002281 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002282 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2283 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002284 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002285#ifndef SQLITE_OMIT_AUTOVACUUM
2286 /* If the magic name ":memory:" will create an in-memory database, then
2287 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2288 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2289 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2290 ** regular file-name. In this case the auto-vacuum applies as per normal.
2291 */
2292 if( zFilename && !isMemdb ){
2293 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2294 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2295 }
2296#endif
2297 nReserve = 0;
2298 }else{
drh113762a2014-11-19 16:36:25 +00002299 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2300 ** determined by the one-byte unsigned integer found at an offset of 20
2301 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002302 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002303 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002304#ifndef SQLITE_OMIT_AUTOVACUUM
2305 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2306 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2307#endif
2308 }
drhfa9601a2009-06-18 17:22:39 +00002309 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002310 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002311 pBt->usableSize = pBt->pageSize - nReserve;
2312 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002313
2314#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2315 /* Add the new BtShared object to the linked list sharable BtShareds.
2316 */
2317 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002318 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00002319 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00002320 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002321 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002322 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002323 if( pBt->mutex==0 ){
2324 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00002325 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00002326 goto btree_open_out;
2327 }
drhff0587c2007-08-29 17:43:19 +00002328 }
drhe53831d2007-08-17 01:14:38 +00002329 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002330 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2331 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002332 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002333 }
drheee46cf2004-11-06 00:02:48 +00002334#endif
drh90f5ecb2004-07-22 01:19:35 +00002335 }
danielk1977aef0bf62005-12-30 16:28:01 +00002336
drhcfed7bc2006-03-13 14:28:05 +00002337#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002338 /* If the new Btree uses a sharable pBtShared, then link the new
2339 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002340 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002341 */
drhe53831d2007-08-17 01:14:38 +00002342 if( p->sharable ){
2343 int i;
2344 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002345 for(i=0; i<db->nDb; i++){
2346 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002347 while( pSib->pPrev ){ pSib = pSib->pPrev; }
2348 if( p->pBt<pSib->pBt ){
2349 p->pNext = pSib;
2350 p->pPrev = 0;
2351 pSib->pPrev = p;
2352 }else{
drhabddb0c2007-08-20 13:14:28 +00002353 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002354 pSib = pSib->pNext;
2355 }
2356 p->pNext = pSib->pNext;
2357 p->pPrev = pSib;
2358 if( p->pNext ){
2359 p->pNext->pPrev = p;
2360 }
2361 pSib->pNext = p;
2362 }
2363 break;
2364 }
2365 }
danielk1977aef0bf62005-12-30 16:28:01 +00002366 }
danielk1977aef0bf62005-12-30 16:28:01 +00002367#endif
2368 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002369
2370btree_open_out:
2371 if( rc!=SQLITE_OK ){
2372 if( pBt && pBt->pPager ){
2373 sqlite3PagerClose(pBt->pPager);
2374 }
drh17435752007-08-16 04:30:38 +00002375 sqlite3_free(pBt);
2376 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002377 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002378 }else{
2379 /* If the B-Tree was successfully opened, set the pager-cache size to the
2380 ** default value. Except, when opening on an existing shared pager-cache,
2381 ** do not change the pager-cache size.
2382 */
2383 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2384 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2385 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002386 }
drh7555d8e2009-03-20 13:15:30 +00002387 if( mutexOpen ){
2388 assert( sqlite3_mutex_held(mutexOpen) );
2389 sqlite3_mutex_leave(mutexOpen);
2390 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002391 return rc;
drha059ad02001-04-17 20:09:11 +00002392}
2393
2394/*
drhe53831d2007-08-17 01:14:38 +00002395** Decrement the BtShared.nRef counter. When it reaches zero,
2396** remove the BtShared structure from the sharing list. Return
2397** true if the BtShared.nRef counter reaches zero and return
2398** false if it is still positive.
2399*/
2400static int removeFromSharingList(BtShared *pBt){
2401#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002402 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002403 BtShared *pList;
2404 int removed = 0;
2405
drhd677b3d2007-08-20 22:48:41 +00002406 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002407 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002408 sqlite3_mutex_enter(pMaster);
2409 pBt->nRef--;
2410 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002411 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2412 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002413 }else{
drh78f82d12008-09-02 00:52:52 +00002414 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002415 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002416 pList=pList->pNext;
2417 }
drh34004ce2008-07-11 16:15:17 +00002418 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002419 pList->pNext = pBt->pNext;
2420 }
2421 }
drh3285db22007-09-03 22:00:39 +00002422 if( SQLITE_THREADSAFE ){
2423 sqlite3_mutex_free(pBt->mutex);
2424 }
drhe53831d2007-08-17 01:14:38 +00002425 removed = 1;
2426 }
2427 sqlite3_mutex_leave(pMaster);
2428 return removed;
2429#else
2430 return 1;
2431#endif
2432}
2433
2434/*
drhf7141992008-06-19 00:16:08 +00002435** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002436** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2437** pointer.
drhf7141992008-06-19 00:16:08 +00002438*/
2439static void allocateTempSpace(BtShared *pBt){
2440 if( !pBt->pTmpSpace ){
2441 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002442
2443 /* One of the uses of pBt->pTmpSpace is to format cells before
2444 ** inserting them into a leaf page (function fillInCell()). If
2445 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2446 ** by the various routines that manipulate binary cells. Which
2447 ** can mean that fillInCell() only initializes the first 2 or 3
2448 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2449 ** it into a database page. This is not actually a problem, but it
2450 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2451 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002452 ** zero the first 4 bytes of temp space here.
2453 **
2454 ** Also: Provide four bytes of initialized space before the
2455 ** beginning of pTmpSpace as an area available to prepend the
2456 ** left-child pointer to the beginning of a cell.
2457 */
2458 if( pBt->pTmpSpace ){
2459 memset(pBt->pTmpSpace, 0, 8);
2460 pBt->pTmpSpace += 4;
2461 }
drhf7141992008-06-19 00:16:08 +00002462 }
2463}
2464
2465/*
2466** Free the pBt->pTmpSpace allocation
2467*/
2468static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002469 if( pBt->pTmpSpace ){
2470 pBt->pTmpSpace -= 4;
2471 sqlite3PageFree(pBt->pTmpSpace);
2472 pBt->pTmpSpace = 0;
2473 }
drhf7141992008-06-19 00:16:08 +00002474}
2475
2476/*
drha059ad02001-04-17 20:09:11 +00002477** Close an open database and invalidate all cursors.
2478*/
danielk1977aef0bf62005-12-30 16:28:01 +00002479int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002480 BtShared *pBt = p->pBt;
2481 BtCursor *pCur;
2482
danielk1977aef0bf62005-12-30 16:28:01 +00002483 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002484 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002485 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002486 pCur = pBt->pCursor;
2487 while( pCur ){
2488 BtCursor *pTmp = pCur;
2489 pCur = pCur->pNext;
2490 if( pTmp->pBtree==p ){
2491 sqlite3BtreeCloseCursor(pTmp);
2492 }
drha059ad02001-04-17 20:09:11 +00002493 }
danielk1977aef0bf62005-12-30 16:28:01 +00002494
danielk19778d34dfd2006-01-24 16:37:57 +00002495 /* Rollback any active transaction and free the handle structure.
2496 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2497 ** this handle.
2498 */
drh47b7fc72014-11-11 01:33:57 +00002499 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002500 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002501
danielk1977aef0bf62005-12-30 16:28:01 +00002502 /* If there are still other outstanding references to the shared-btree
2503 ** structure, return now. The remainder of this procedure cleans
2504 ** up the shared-btree.
2505 */
drhe53831d2007-08-17 01:14:38 +00002506 assert( p->wantToLock==0 && p->locked==0 );
2507 if( !p->sharable || removeFromSharingList(pBt) ){
2508 /* The pBt is no longer on the sharing list, so we can access
2509 ** it without having to hold the mutex.
2510 **
2511 ** Clean out and delete the BtShared object.
2512 */
2513 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002514 sqlite3PagerClose(pBt->pPager);
2515 if( pBt->xFreeSchema && pBt->pSchema ){
2516 pBt->xFreeSchema(pBt->pSchema);
2517 }
drhb9755982010-07-24 16:34:37 +00002518 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002519 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002520 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002521 }
2522
drhe53831d2007-08-17 01:14:38 +00002523#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002524 assert( p->wantToLock==0 );
2525 assert( p->locked==0 );
2526 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2527 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002528#endif
2529
drhe53831d2007-08-17 01:14:38 +00002530 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002531 return SQLITE_OK;
2532}
2533
2534/*
drhda47d772002-12-02 04:25:19 +00002535** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002536**
2537** The maximum number of cache pages is set to the absolute
2538** value of mxPage. If mxPage is negative, the pager will
2539** operate asynchronously - it will not stop to do fsync()s
2540** to insure data is written to the disk surface before
2541** continuing. Transactions still work if synchronous is off,
2542** and the database cannot be corrupted if this program
2543** crashes. But if the operating system crashes or there is
2544** an abrupt power failure when synchronous is off, the database
2545** could be left in an inconsistent and unrecoverable state.
2546** Synchronous is on by default so database corruption is not
2547** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002548*/
danielk1977aef0bf62005-12-30 16:28:01 +00002549int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2550 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002551 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002552 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002553 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002554 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002555 return SQLITE_OK;
2556}
2557
drh18c7e402014-03-14 11:46:10 +00002558#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002559/*
dan5d8a1372013-03-19 19:28:06 +00002560** Change the limit on the amount of the database file that may be
2561** memory mapped.
2562*/
drh9b4c59f2013-04-15 17:03:42 +00002563int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002564 BtShared *pBt = p->pBt;
2565 assert( sqlite3_mutex_held(p->db->mutex) );
2566 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002567 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002568 sqlite3BtreeLeave(p);
2569 return SQLITE_OK;
2570}
drh18c7e402014-03-14 11:46:10 +00002571#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002572
2573/*
drh973b6e32003-02-12 14:09:42 +00002574** Change the way data is synced to disk in order to increase or decrease
2575** how well the database resists damage due to OS crashes and power
2576** failures. Level 1 is the same as asynchronous (no syncs() occur and
2577** there is a high probability of damage) Level 2 is the default. There
2578** is a very low but non-zero probability of damage. Level 3 reduces the
2579** probability of damage to near zero but with a write performance reduction.
2580*/
danielk197793758c82005-01-21 08:13:14 +00002581#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002582int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002583 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002584 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002585){
danielk1977aef0bf62005-12-30 16:28:01 +00002586 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002587 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002588 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002589 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002590 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002591 return SQLITE_OK;
2592}
danielk197793758c82005-01-21 08:13:14 +00002593#endif
drh973b6e32003-02-12 14:09:42 +00002594
drh2c8997b2005-08-27 16:36:48 +00002595/*
2596** Return TRUE if the given btree is set to safety level 1. In other
2597** words, return TRUE if no sync() occurs on the disk files.
2598*/
danielk1977aef0bf62005-12-30 16:28:01 +00002599int sqlite3BtreeSyncDisabled(Btree *p){
2600 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002601 int rc;
drhe5fe6902007-12-07 18:55:28 +00002602 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002603 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002604 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002605 rc = sqlite3PagerNosync(pBt->pPager);
2606 sqlite3BtreeLeave(p);
2607 return rc;
drh2c8997b2005-08-27 16:36:48 +00002608}
2609
drh973b6e32003-02-12 14:09:42 +00002610/*
drh90f5ecb2004-07-22 01:19:35 +00002611** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002612** Or, if the page size has already been fixed, return SQLITE_READONLY
2613** without changing anything.
drh06f50212004-11-02 14:24:33 +00002614**
2615** The page size must be a power of 2 between 512 and 65536. If the page
2616** size supplied does not meet this constraint then the page size is not
2617** changed.
2618**
2619** Page sizes are constrained to be a power of two so that the region
2620** of the database file used for locking (beginning at PENDING_BYTE,
2621** the first byte past the 1GB boundary, 0x40000000) needs to occur
2622** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002623**
2624** If parameter nReserve is less than zero, then the number of reserved
2625** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002626**
drhc9166342012-01-05 23:32:06 +00002627** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002628** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002629*/
drhce4869f2009-04-02 20:16:58 +00002630int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002631 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002632 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002633 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002634 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002635#if SQLITE_HAS_CODEC
2636 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2637#endif
drhc9166342012-01-05 23:32:06 +00002638 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002639 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002640 return SQLITE_READONLY;
2641 }
2642 if( nReserve<0 ){
2643 nReserve = pBt->pageSize - pBt->usableSize;
2644 }
drhf49661a2008-12-10 16:45:50 +00002645 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002646 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2647 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002648 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002649 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002650 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002651 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002652 }
drhfa9601a2009-06-18 17:22:39 +00002653 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002654 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002655 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002656 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002657 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002658}
2659
2660/*
2661** Return the currently defined page size
2662*/
danielk1977aef0bf62005-12-30 16:28:01 +00002663int sqlite3BtreeGetPageSize(Btree *p){
2664 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002665}
drh7f751222009-03-17 22:33:00 +00002666
dan0094f372012-09-28 20:23:42 +00002667/*
2668** This function is similar to sqlite3BtreeGetReserve(), except that it
2669** may only be called if it is guaranteed that the b-tree mutex is already
2670** held.
2671**
2672** This is useful in one special case in the backup API code where it is
2673** known that the shared b-tree mutex is held, but the mutex on the
2674** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2675** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002676** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002677*/
2678int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002679 int n;
dan0094f372012-09-28 20:23:42 +00002680 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002681 n = p->pBt->pageSize - p->pBt->usableSize;
2682 return n;
dan0094f372012-09-28 20:23:42 +00002683}
2684
drh7f751222009-03-17 22:33:00 +00002685/*
2686** Return the number of bytes of space at the end of every page that
2687** are intentually left unused. This is the "reserved" space that is
2688** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002689**
2690** If SQLITE_HAS_MUTEX is defined then the number returned is the
2691** greater of the current reserved space and the maximum requested
2692** reserve space.
drh7f751222009-03-17 22:33:00 +00002693*/
drhad0961b2015-02-21 00:19:25 +00002694int sqlite3BtreeGetOptimalReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002695 int n;
2696 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002697 n = sqlite3BtreeGetReserveNoMutex(p);
2698#ifdef SQLITE_HAS_CODEC
2699 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2700#endif
drhd677b3d2007-08-20 22:48:41 +00002701 sqlite3BtreeLeave(p);
2702 return n;
drh2011d5f2004-07-22 02:40:37 +00002703}
drhf8e632b2007-05-08 14:51:36 +00002704
drhad0961b2015-02-21 00:19:25 +00002705
drhf8e632b2007-05-08 14:51:36 +00002706/*
2707** Set the maximum page count for a database if mxPage is positive.
2708** No changes are made if mxPage is 0 or negative.
2709** Regardless of the value of mxPage, return the maximum page count.
2710*/
2711int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002712 int n;
2713 sqlite3BtreeEnter(p);
2714 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2715 sqlite3BtreeLeave(p);
2716 return n;
drhf8e632b2007-05-08 14:51:36 +00002717}
drh5b47efa2010-02-12 18:18:39 +00002718
2719/*
drhc9166342012-01-05 23:32:06 +00002720** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2721** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002722** setting after the change.
2723*/
2724int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2725 int b;
drhaf034ed2010-02-12 19:46:26 +00002726 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002727 sqlite3BtreeEnter(p);
2728 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002729 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2730 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002731 }
drhc9166342012-01-05 23:32:06 +00002732 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002733 sqlite3BtreeLeave(p);
2734 return b;
2735}
drh90f5ecb2004-07-22 01:19:35 +00002736
2737/*
danielk1977951af802004-11-05 15:45:09 +00002738** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2739** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2740** is disabled. The default value for the auto-vacuum property is
2741** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2742*/
danielk1977aef0bf62005-12-30 16:28:01 +00002743int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002744#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002745 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002746#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002747 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002748 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002749 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002750
2751 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002752 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002753 rc = SQLITE_READONLY;
2754 }else{
drh076d4662009-02-18 20:31:18 +00002755 pBt->autoVacuum = av ?1:0;
2756 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002757 }
drhd677b3d2007-08-20 22:48:41 +00002758 sqlite3BtreeLeave(p);
2759 return rc;
danielk1977951af802004-11-05 15:45:09 +00002760#endif
2761}
2762
2763/*
2764** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2765** enabled 1 is returned. Otherwise 0.
2766*/
danielk1977aef0bf62005-12-30 16:28:01 +00002767int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002768#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002769 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002770#else
drhd677b3d2007-08-20 22:48:41 +00002771 int rc;
2772 sqlite3BtreeEnter(p);
2773 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002774 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2775 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2776 BTREE_AUTOVACUUM_INCR
2777 );
drhd677b3d2007-08-20 22:48:41 +00002778 sqlite3BtreeLeave(p);
2779 return rc;
danielk1977951af802004-11-05 15:45:09 +00002780#endif
2781}
2782
2783
2784/*
drha34b6762004-05-07 13:30:42 +00002785** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002786** also acquire a readlock on that file.
2787**
2788** SQLITE_OK is returned on success. If the file is not a
2789** well-formed database file, then SQLITE_CORRUPT is returned.
2790** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002791** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002792*/
danielk1977aef0bf62005-12-30 16:28:01 +00002793static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002794 int rc; /* Result code from subfunctions */
2795 MemPage *pPage1; /* Page 1 of the database file */
2796 int nPage; /* Number of pages in the database */
2797 int nPageFile = 0; /* Number of pages in the database file */
2798 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002799
drh1fee73e2007-08-29 04:00:57 +00002800 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002801 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002802 rc = sqlite3PagerSharedLock(pBt->pPager);
2803 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002804 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002805 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002806
2807 /* Do some checking to help insure the file we opened really is
2808 ** a valid database file.
2809 */
drhc2a4bab2010-04-02 12:46:45 +00002810 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002811 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002812 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002813 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002814 }
2815 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002816 u32 pageSize;
2817 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002818 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002819 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00002820 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
2821 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
2822 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00002823 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002824 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002825 }
dan5cf53532010-05-01 16:40:20 +00002826
2827#ifdef SQLITE_OMIT_WAL
2828 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002829 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002830 }
2831 if( page1[19]>1 ){
2832 goto page1_init_failed;
2833 }
2834#else
dane04dc882010-04-20 18:53:15 +00002835 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002836 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002837 }
dane04dc882010-04-20 18:53:15 +00002838 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002839 goto page1_init_failed;
2840 }
drhe5ae5732008-06-15 02:51:47 +00002841
dana470aeb2010-04-21 11:43:38 +00002842 /* If the write version is set to 2, this database should be accessed
2843 ** in WAL mode. If the log is not already open, open it now. Then
2844 ** return SQLITE_OK and return without populating BtShared.pPage1.
2845 ** The caller detects this and calls this function again. This is
2846 ** required as the version of page 1 currently in the page1 buffer
2847 ** may not be the latest version - there may be a newer one in the log
2848 ** file.
2849 */
drhc9166342012-01-05 23:32:06 +00002850 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002851 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002852 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002853 if( rc!=SQLITE_OK ){
2854 goto page1_init_failed;
2855 }else if( isOpen==0 ){
2856 releasePage(pPage1);
2857 return SQLITE_OK;
2858 }
dan8b5444b2010-04-27 14:37:47 +00002859 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002860 }
dan5cf53532010-05-01 16:40:20 +00002861#endif
dane04dc882010-04-20 18:53:15 +00002862
drh113762a2014-11-19 16:36:25 +00002863 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
2864 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
2865 **
drhe5ae5732008-06-15 02:51:47 +00002866 ** The original design allowed these amounts to vary, but as of
2867 ** version 3.6.0, we require them to be fixed.
2868 */
2869 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2870 goto page1_init_failed;
2871 }
drh113762a2014-11-19 16:36:25 +00002872 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2873 ** determined by the 2-byte integer located at an offset of 16 bytes from
2874 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002875 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00002876 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
2877 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00002878 if( ((pageSize-1)&pageSize)!=0
2879 || pageSize>SQLITE_MAX_PAGE_SIZE
2880 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002881 ){
drh07d183d2005-05-01 22:52:42 +00002882 goto page1_init_failed;
2883 }
2884 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00002885 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
2886 ** integer at offset 20 is the number of bytes of space at the end of
2887 ** each page to reserve for extensions.
2888 **
2889 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2890 ** determined by the one-byte unsigned integer found at an offset of 20
2891 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00002892 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002893 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002894 /* After reading the first page of the database assuming a page size
2895 ** of BtShared.pageSize, we have discovered that the page-size is
2896 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2897 ** zero and return SQLITE_OK. The caller will call this function
2898 ** again with the correct page-size.
2899 */
2900 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002901 pBt->usableSize = usableSize;
2902 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002903 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002904 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2905 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002906 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002907 }
danecac6702011-02-09 18:19:20 +00002908 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002909 rc = SQLITE_CORRUPT_BKPT;
2910 goto page1_init_failed;
2911 }
drh113762a2014-11-19 16:36:25 +00002912 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
2913 ** be less than 480. In other words, if the page size is 512, then the
2914 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00002915 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002916 goto page1_init_failed;
2917 }
drh43b18e12010-08-17 19:40:08 +00002918 pBt->pageSize = pageSize;
2919 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002920#ifndef SQLITE_OMIT_AUTOVACUUM
2921 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002922 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002923#endif
drh306dc212001-05-21 13:45:10 +00002924 }
drhb6f41482004-05-14 01:58:11 +00002925
2926 /* maxLocal is the maximum amount of payload to store locally for
2927 ** a cell. Make sure it is small enough so that at least minFanout
2928 ** cells can will fit on one page. We assume a 10-byte page header.
2929 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002930 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002931 ** 4-byte child pointer
2932 ** 9-byte nKey value
2933 ** 4-byte nData value
2934 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002935 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002936 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2937 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002938 */
shaneh1df2db72010-08-18 02:28:48 +00002939 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2940 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2941 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2942 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002943 if( pBt->maxLocal>127 ){
2944 pBt->max1bytePayload = 127;
2945 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002946 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002947 }
drh2e38c322004-09-03 18:38:44 +00002948 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002949 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002950 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002951 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002952
drh72f82862001-05-24 21:06:34 +00002953page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002954 releasePage(pPage1);
2955 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002956 return rc;
drh306dc212001-05-21 13:45:10 +00002957}
2958
drh85ec3b62013-05-14 23:12:06 +00002959#ifndef NDEBUG
2960/*
2961** Return the number of cursors open on pBt. This is for use
2962** in assert() expressions, so it is only compiled if NDEBUG is not
2963** defined.
2964**
2965** Only write cursors are counted if wrOnly is true. If wrOnly is
2966** false then all cursors are counted.
2967**
2968** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00002969** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00002970** have been tripped into the CURSOR_FAULT state are not counted.
2971*/
2972static int countValidCursors(BtShared *pBt, int wrOnly){
2973 BtCursor *pCur;
2974 int r = 0;
2975 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00002976 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
2977 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00002978 }
2979 return r;
2980}
2981#endif
2982
drh306dc212001-05-21 13:45:10 +00002983/*
drhb8ca3072001-12-05 00:21:20 +00002984** If there are no outstanding cursors and we are not in the middle
2985** of a transaction but there is a read lock on the database, then
2986** this routine unrefs the first page of the database file which
2987** has the effect of releasing the read lock.
2988**
drhb8ca3072001-12-05 00:21:20 +00002989** If there is a transaction in progress, this routine is a no-op.
2990*/
danielk1977aef0bf62005-12-30 16:28:01 +00002991static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002992 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00002993 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00002994 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00002995 MemPage *pPage1 = pBt->pPage1;
2996 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00002997 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00002998 pBt->pPage1 = 0;
drhbbf0f862015-06-27 14:59:26 +00002999 releasePageNotNull(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003000 }
3001}
3002
3003/*
drhe39f2f92009-07-23 01:43:59 +00003004** If pBt points to an empty file then convert that empty file
3005** into a new empty database by initializing the first page of
3006** the database.
drh8b2f49b2001-06-08 00:21:52 +00003007*/
danielk1977aef0bf62005-12-30 16:28:01 +00003008static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003009 MemPage *pP1;
3010 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003011 int rc;
drhd677b3d2007-08-20 22:48:41 +00003012
drh1fee73e2007-08-29 04:00:57 +00003013 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003014 if( pBt->nPage>0 ){
3015 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003016 }
drh3aac2dd2004-04-26 14:10:20 +00003017 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003018 assert( pP1!=0 );
3019 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003020 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003021 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003022 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3023 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003024 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3025 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003026 data[18] = 1;
3027 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003028 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3029 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003030 data[21] = 64;
3031 data[22] = 32;
3032 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003033 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003034 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003035 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003036#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003037 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003038 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003039 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003040 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003041#endif
drhdd3cd972010-03-27 17:12:36 +00003042 pBt->nPage = 1;
3043 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003044 return SQLITE_OK;
3045}
3046
3047/*
danb483eba2012-10-13 19:58:11 +00003048** Initialize the first page of the database file (creating a database
3049** consisting of a single page and no schema objects). Return SQLITE_OK
3050** if successful, or an SQLite error code otherwise.
3051*/
3052int sqlite3BtreeNewDb(Btree *p){
3053 int rc;
3054 sqlite3BtreeEnter(p);
3055 p->pBt->nPage = 0;
3056 rc = newDatabase(p->pBt);
3057 sqlite3BtreeLeave(p);
3058 return rc;
3059}
3060
3061/*
danielk1977ee5741e2004-05-31 10:01:34 +00003062** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003063** is started if the second argument is nonzero, otherwise a read-
3064** transaction. If the second argument is 2 or more and exclusive
3065** transaction is started, meaning that no other process is allowed
3066** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003067** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003068** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003069**
danielk1977ee5741e2004-05-31 10:01:34 +00003070** A write-transaction must be started before attempting any
3071** changes to the database. None of the following routines
3072** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003073**
drh23e11ca2004-05-04 17:27:28 +00003074** sqlite3BtreeCreateTable()
3075** sqlite3BtreeCreateIndex()
3076** sqlite3BtreeClearTable()
3077** sqlite3BtreeDropTable()
3078** sqlite3BtreeInsert()
3079** sqlite3BtreeDelete()
3080** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003081**
drhb8ef32c2005-03-14 02:01:49 +00003082** If an initial attempt to acquire the lock fails because of lock contention
3083** and the database was previously unlocked, then invoke the busy handler
3084** if there is one. But if there was previously a read-lock, do not
3085** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3086** returned when there is already a read-lock in order to avoid a deadlock.
3087**
3088** Suppose there are two processes A and B. A has a read lock and B has
3089** a reserved lock. B tries to promote to exclusive but is blocked because
3090** of A's read lock. A tries to promote to reserved but is blocked by B.
3091** One or the other of the two processes must give way or there can be
3092** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3093** when A already has a read lock, we encourage A to give up and let B
3094** proceed.
drha059ad02001-04-17 20:09:11 +00003095*/
danielk1977aef0bf62005-12-30 16:28:01 +00003096int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00003097 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003098 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00003099 int rc = SQLITE_OK;
3100
drhd677b3d2007-08-20 22:48:41 +00003101 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003102 btreeIntegrity(p);
3103
danielk1977ee5741e2004-05-31 10:01:34 +00003104 /* If the btree is already in a write-transaction, or it
3105 ** is already in a read-transaction and a read-transaction
3106 ** is requested, this is a no-op.
3107 */
danielk1977aef0bf62005-12-30 16:28:01 +00003108 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003109 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003110 }
dan56c517a2013-09-26 11:04:33 +00003111 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003112
3113 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003114 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003115 rc = SQLITE_READONLY;
3116 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003117 }
3118
danielk1977404ca072009-03-16 13:19:36 +00003119#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00003120 /* If another database handle has already opened a write transaction
3121 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00003122 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00003123 */
drhc9166342012-01-05 23:32:06 +00003124 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3125 || (pBt->btsFlags & BTS_PENDING)!=0
3126 ){
danielk1977404ca072009-03-16 13:19:36 +00003127 pBlock = pBt->pWriter->db;
3128 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00003129 BtLock *pIter;
3130 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3131 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00003132 pBlock = pIter->pBtree->db;
3133 break;
danielk1977641b0f42007-12-21 04:47:25 +00003134 }
3135 }
3136 }
danielk1977404ca072009-03-16 13:19:36 +00003137 if( pBlock ){
3138 sqlite3ConnectionBlocked(p->db, pBlock);
3139 rc = SQLITE_LOCKED_SHAREDCACHE;
3140 goto trans_begun;
3141 }
danielk1977641b0f42007-12-21 04:47:25 +00003142#endif
3143
danielk1977602b4662009-07-02 07:47:33 +00003144 /* Any read-only or read-write transaction implies a read-lock on
3145 ** page 1. So if some other shared-cache client already has a write-lock
3146 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00003147 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3148 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003149
drhc9166342012-01-05 23:32:06 +00003150 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3151 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003152 do {
danielk1977295dc102009-04-01 19:07:03 +00003153 /* Call lockBtree() until either pBt->pPage1 is populated or
3154 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3155 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3156 ** reading page 1 it discovers that the page-size of the database
3157 ** file is not pBt->pageSize. In this case lockBtree() will update
3158 ** pBt->pageSize to the page-size of the file on disk.
3159 */
3160 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003161
drhb8ef32c2005-03-14 02:01:49 +00003162 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003163 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003164 rc = SQLITE_READONLY;
3165 }else{
danielk1977d8293352009-04-30 09:10:37 +00003166 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003167 if( rc==SQLITE_OK ){
3168 rc = newDatabase(pBt);
3169 }
drhb8ef32c2005-03-14 02:01:49 +00003170 }
3171 }
3172
danielk1977bd434552009-03-18 10:33:00 +00003173 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00003174 unlockBtreeIfUnused(pBt);
3175 }
danf9b76712010-06-01 14:12:45 +00003176 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003177 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00003178
3179 if( rc==SQLITE_OK ){
3180 if( p->inTrans==TRANS_NONE ){
3181 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003182#ifndef SQLITE_OMIT_SHARED_CACHE
3183 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003184 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003185 p->lock.eLock = READ_LOCK;
3186 p->lock.pNext = pBt->pLock;
3187 pBt->pLock = &p->lock;
3188 }
3189#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003190 }
3191 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3192 if( p->inTrans>pBt->inTransaction ){
3193 pBt->inTransaction = p->inTrans;
3194 }
danielk1977404ca072009-03-16 13:19:36 +00003195 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003196 MemPage *pPage1 = pBt->pPage1;
3197#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003198 assert( !pBt->pWriter );
3199 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003200 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3201 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003202#endif
dan59257dc2010-08-04 11:34:31 +00003203
3204 /* If the db-size header field is incorrect (as it may be if an old
3205 ** client has been writing the database file), update it now. Doing
3206 ** this sooner rather than later means the database size can safely
3207 ** re-read the database size from page 1 if a savepoint or transaction
3208 ** rollback occurs within the transaction.
3209 */
3210 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3211 rc = sqlite3PagerWrite(pPage1->pDbPage);
3212 if( rc==SQLITE_OK ){
3213 put4byte(&pPage1->aData[28], pBt->nPage);
3214 }
3215 }
3216 }
danielk1977aef0bf62005-12-30 16:28:01 +00003217 }
3218
drhd677b3d2007-08-20 22:48:41 +00003219
3220trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00003221 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00003222 /* This call makes sure that the pager has the correct number of
3223 ** open savepoints. If the second parameter is greater than 0 and
3224 ** the sub-journal is not already open, then it will be opened here.
3225 */
danielk1977fd7f0452008-12-17 17:30:26 +00003226 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3227 }
danielk197712dd5492008-12-18 15:45:07 +00003228
danielk1977aef0bf62005-12-30 16:28:01 +00003229 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003230 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003231 return rc;
drha059ad02001-04-17 20:09:11 +00003232}
3233
danielk1977687566d2004-11-02 12:56:41 +00003234#ifndef SQLITE_OMIT_AUTOVACUUM
3235
3236/*
3237** Set the pointer-map entries for all children of page pPage. Also, if
3238** pPage contains cells that point to overflow pages, set the pointer
3239** map entries for the overflow pages as well.
3240*/
3241static int setChildPtrmaps(MemPage *pPage){
3242 int i; /* Counter variable */
3243 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003244 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003245 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00003246 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003247 Pgno pgno = pPage->pgno;
3248
drh1fee73e2007-08-29 04:00:57 +00003249 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00003250 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00003251 if( rc!=SQLITE_OK ){
3252 goto set_child_ptrmaps_out;
3253 }
danielk1977687566d2004-11-02 12:56:41 +00003254 nCell = pPage->nCell;
3255
3256 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003257 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003258
drh98add2e2009-07-20 17:11:49 +00003259 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003260
danielk1977687566d2004-11-02 12:56:41 +00003261 if( !pPage->leaf ){
3262 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003263 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003264 }
3265 }
3266
3267 if( !pPage->leaf ){
3268 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003269 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003270 }
3271
3272set_child_ptrmaps_out:
3273 pPage->isInit = isInitOrig;
3274 return rc;
3275}
3276
3277/*
drhf3aed592009-07-08 18:12:49 +00003278** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3279** that it points to iTo. Parameter eType describes the type of pointer to
3280** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003281**
3282** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3283** page of pPage.
3284**
3285** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3286** page pointed to by one of the cells on pPage.
3287**
3288** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3289** overflow page in the list.
3290*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003291static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003292 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003293 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003294 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003295 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003296 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00003297 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003298 }
danielk1977f78fc082004-11-02 14:40:32 +00003299 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003300 }else{
drhf49661a2008-12-10 16:45:50 +00003301 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003302 int i;
3303 int nCell;
drha1f75d92015-05-24 10:18:12 +00003304 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003305
drha1f75d92015-05-24 10:18:12 +00003306 rc = btreeInitPage(pPage);
3307 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003308 nCell = pPage->nCell;
3309
danielk1977687566d2004-11-02 12:56:41 +00003310 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003311 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003312 if( eType==PTRMAP_OVERFLOW1 ){
3313 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003314 pPage->xParseCell(pPage, pCell, &info);
drhe42a9b42011-08-31 13:27:19 +00003315 if( info.iOverflow
3316 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
3317 && iFrom==get4byte(&pCell[info.iOverflow])
3318 ){
3319 put4byte(&pCell[info.iOverflow], iTo);
3320 break;
danielk1977687566d2004-11-02 12:56:41 +00003321 }
3322 }else{
3323 if( get4byte(pCell)==iFrom ){
3324 put4byte(pCell, iTo);
3325 break;
3326 }
3327 }
3328 }
3329
3330 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003331 if( eType!=PTRMAP_BTREE ||
3332 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00003333 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003334 }
danielk1977687566d2004-11-02 12:56:41 +00003335 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3336 }
3337
3338 pPage->isInit = isInitOrig;
3339 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003340 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003341}
3342
danielk1977003ba062004-11-04 02:57:33 +00003343
danielk19777701e812005-01-10 12:59:51 +00003344/*
3345** Move the open database page pDbPage to location iFreePage in the
3346** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003347**
3348** The isCommit flag indicates that there is no need to remember that
3349** the journal needs to be sync()ed before database page pDbPage->pgno
3350** can be written to. The caller has already promised not to write to that
3351** page.
danielk19777701e812005-01-10 12:59:51 +00003352*/
danielk1977003ba062004-11-04 02:57:33 +00003353static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003354 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003355 MemPage *pDbPage, /* Open page to move */
3356 u8 eType, /* Pointer map 'type' entry for pDbPage */
3357 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003358 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003359 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003360){
3361 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3362 Pgno iDbPage = pDbPage->pgno;
3363 Pager *pPager = pBt->pPager;
3364 int rc;
3365
danielk1977a0bf2652004-11-04 14:30:04 +00003366 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3367 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003368 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003369 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00003370
drh85b623f2007-12-13 21:54:09 +00003371 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003372 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3373 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003374 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003375 if( rc!=SQLITE_OK ){
3376 return rc;
3377 }
3378 pDbPage->pgno = iFreePage;
3379
3380 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3381 ** that point to overflow pages. The pointer map entries for all these
3382 ** pages need to be changed.
3383 **
3384 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3385 ** pointer to a subsequent overflow page. If this is the case, then
3386 ** the pointer map needs to be updated for the subsequent overflow page.
3387 */
danielk1977a0bf2652004-11-04 14:30:04 +00003388 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003389 rc = setChildPtrmaps(pDbPage);
3390 if( rc!=SQLITE_OK ){
3391 return rc;
3392 }
3393 }else{
3394 Pgno nextOvfl = get4byte(pDbPage->aData);
3395 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003396 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003397 if( rc!=SQLITE_OK ){
3398 return rc;
3399 }
3400 }
3401 }
3402
3403 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3404 ** that it points at iFreePage. Also fix the pointer map entry for
3405 ** iPtrPage.
3406 */
danielk1977a0bf2652004-11-04 14:30:04 +00003407 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003408 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003409 if( rc!=SQLITE_OK ){
3410 return rc;
3411 }
danielk19773b8a05f2007-03-19 17:44:26 +00003412 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003413 if( rc!=SQLITE_OK ){
3414 releasePage(pPtrPage);
3415 return rc;
3416 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003417 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003418 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003419 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003420 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003421 }
danielk1977003ba062004-11-04 02:57:33 +00003422 }
danielk1977003ba062004-11-04 02:57:33 +00003423 return rc;
3424}
3425
danielk1977dddbcdc2007-04-26 14:42:34 +00003426/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003427static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003428
3429/*
dan51f0b6d2013-02-22 20:16:34 +00003430** Perform a single step of an incremental-vacuum. If successful, return
3431** SQLITE_OK. If there is no work to do (and therefore no point in
3432** calling this function again), return SQLITE_DONE. Or, if an error
3433** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003434**
peter.d.reid60ec9142014-09-06 16:39:46 +00003435** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003436** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003437**
dan51f0b6d2013-02-22 20:16:34 +00003438** Parameter nFin is the number of pages that this database would contain
3439** were this function called until it returns SQLITE_DONE.
3440**
3441** If the bCommit parameter is non-zero, this function assumes that the
3442** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003443** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003444** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003445*/
dan51f0b6d2013-02-22 20:16:34 +00003446static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003447 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003448 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003449
drh1fee73e2007-08-29 04:00:57 +00003450 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003451 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003452
3453 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003454 u8 eType;
3455 Pgno iPtrPage;
3456
3457 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003458 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003459 return SQLITE_DONE;
3460 }
3461
3462 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3463 if( rc!=SQLITE_OK ){
3464 return rc;
3465 }
3466 if( eType==PTRMAP_ROOTPAGE ){
3467 return SQLITE_CORRUPT_BKPT;
3468 }
3469
3470 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003471 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003472 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003473 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003474 ** truncated to zero after this function returns, so it doesn't
3475 ** matter if it still contains some garbage entries.
3476 */
3477 Pgno iFreePg;
3478 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003479 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003480 if( rc!=SQLITE_OK ){
3481 return rc;
3482 }
3483 assert( iFreePg==iLastPg );
3484 releasePage(pFreePg);
3485 }
3486 } else {
3487 Pgno iFreePg; /* Index of free page to move pLastPg to */
3488 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003489 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3490 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003491
drhb00fc3b2013-08-21 23:42:32 +00003492 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003493 if( rc!=SQLITE_OK ){
3494 return rc;
3495 }
3496
dan51f0b6d2013-02-22 20:16:34 +00003497 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003498 ** is swapped with the first free page pulled off the free list.
3499 **
dan51f0b6d2013-02-22 20:16:34 +00003500 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003501 ** looping until a free-page located within the first nFin pages
3502 ** of the file is found.
3503 */
dan51f0b6d2013-02-22 20:16:34 +00003504 if( bCommit==0 ){
3505 eMode = BTALLOC_LE;
3506 iNear = nFin;
3507 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003508 do {
3509 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003510 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003511 if( rc!=SQLITE_OK ){
3512 releasePage(pLastPg);
3513 return rc;
3514 }
3515 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003516 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003517 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003518
dane1df4e32013-03-05 11:27:04 +00003519 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003520 releasePage(pLastPg);
3521 if( rc!=SQLITE_OK ){
3522 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003523 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003524 }
3525 }
3526
dan51f0b6d2013-02-22 20:16:34 +00003527 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003528 do {
danielk19773460d192008-12-27 15:23:13 +00003529 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003530 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3531 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003532 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003533 }
3534 return SQLITE_OK;
3535}
3536
3537/*
dan51f0b6d2013-02-22 20:16:34 +00003538** The database opened by the first argument is an auto-vacuum database
3539** nOrig pages in size containing nFree free pages. Return the expected
3540** size of the database in pages following an auto-vacuum operation.
3541*/
3542static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3543 int nEntry; /* Number of entries on one ptrmap page */
3544 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3545 Pgno nFin; /* Return value */
3546
3547 nEntry = pBt->usableSize/5;
3548 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3549 nFin = nOrig - nFree - nPtrmap;
3550 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3551 nFin--;
3552 }
3553 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3554 nFin--;
3555 }
dan51f0b6d2013-02-22 20:16:34 +00003556
3557 return nFin;
3558}
3559
3560/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003561** A write-transaction must be opened before calling this function.
3562** It performs a single unit of work towards an incremental vacuum.
3563**
3564** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003565** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003566** SQLITE_OK is returned. Otherwise an SQLite error code.
3567*/
3568int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003569 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003570 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003571
3572 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003573 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3574 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003575 rc = SQLITE_DONE;
3576 }else{
dan51f0b6d2013-02-22 20:16:34 +00003577 Pgno nOrig = btreePagecount(pBt);
3578 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3579 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3580
dan91384712013-02-24 11:50:43 +00003581 if( nOrig<nFin ){
3582 rc = SQLITE_CORRUPT_BKPT;
3583 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003584 rc = saveAllCursors(pBt, 0, 0);
3585 if( rc==SQLITE_OK ){
3586 invalidateAllOverflowCache(pBt);
3587 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3588 }
dan51f0b6d2013-02-22 20:16:34 +00003589 if( rc==SQLITE_OK ){
3590 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3591 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3592 }
3593 }else{
3594 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003595 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003596 }
drhd677b3d2007-08-20 22:48:41 +00003597 sqlite3BtreeLeave(p);
3598 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003599}
3600
3601/*
danielk19773b8a05f2007-03-19 17:44:26 +00003602** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003603** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003604**
3605** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3606** the database file should be truncated to during the commit process.
3607** i.e. the database has been reorganized so that only the first *pnTrunc
3608** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003609*/
danielk19773460d192008-12-27 15:23:13 +00003610static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003611 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003612 Pager *pPager = pBt->pPager;
mistachkinc29cbb02015-07-02 16:52:01 +00003613 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00003614
drh1fee73e2007-08-29 04:00:57 +00003615 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003616 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003617 assert(pBt->autoVacuum);
3618 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003619 Pgno nFin; /* Number of pages in database after autovacuuming */
3620 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003621 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003622 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003623
drhb1299152010-03-30 22:58:33 +00003624 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003625 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3626 /* It is not possible to create a database for which the final page
3627 ** is either a pointer-map page or the pending-byte page. If one
3628 ** is encountered, this indicates corruption.
3629 */
danielk19773460d192008-12-27 15:23:13 +00003630 return SQLITE_CORRUPT_BKPT;
3631 }
danielk1977ef165ce2009-04-06 17:50:03 +00003632
danielk19773460d192008-12-27 15:23:13 +00003633 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003634 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003635 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003636 if( nFin<nOrig ){
3637 rc = saveAllCursors(pBt, 0, 0);
3638 }
danielk19773460d192008-12-27 15:23:13 +00003639 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003640 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003641 }
danielk19773460d192008-12-27 15:23:13 +00003642 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003643 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3644 put4byte(&pBt->pPage1->aData[32], 0);
3645 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003646 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003647 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003648 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003649 }
3650 if( rc!=SQLITE_OK ){
3651 sqlite3PagerRollback(pPager);
3652 }
danielk1977687566d2004-11-02 12:56:41 +00003653 }
3654
dan0aed84d2013-03-26 14:16:20 +00003655 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003656 return rc;
3657}
danielk1977dddbcdc2007-04-26 14:42:34 +00003658
danielk1977a50d9aa2009-06-08 14:49:45 +00003659#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3660# define setChildPtrmaps(x) SQLITE_OK
3661#endif
danielk1977687566d2004-11-02 12:56:41 +00003662
3663/*
drh80e35f42007-03-30 14:06:34 +00003664** This routine does the first phase of a two-phase commit. This routine
3665** causes a rollback journal to be created (if it does not already exist)
3666** and populated with enough information so that if a power loss occurs
3667** the database can be restored to its original state by playing back
3668** the journal. Then the contents of the journal are flushed out to
3669** the disk. After the journal is safely on oxide, the changes to the
3670** database are written into the database file and flushed to oxide.
3671** At the end of this call, the rollback journal still exists on the
3672** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003673** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003674** commit process.
3675**
3676** This call is a no-op if no write-transaction is currently active on pBt.
3677**
3678** Otherwise, sync the database file for the btree pBt. zMaster points to
3679** the name of a master journal file that should be written into the
3680** individual journal file, or is NULL, indicating no master journal file
3681** (single database transaction).
3682**
3683** When this is called, the master journal should already have been
3684** created, populated with this journal pointer and synced to disk.
3685**
3686** Once this is routine has returned, the only thing required to commit
3687** the write-transaction for this database file is to delete the journal.
3688*/
3689int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3690 int rc = SQLITE_OK;
3691 if( p->inTrans==TRANS_WRITE ){
3692 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003693 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003694#ifndef SQLITE_OMIT_AUTOVACUUM
3695 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003696 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003697 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003698 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003699 return rc;
3700 }
3701 }
danbc1a3c62013-02-23 16:40:46 +00003702 if( pBt->bDoTruncate ){
3703 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3704 }
drh80e35f42007-03-30 14:06:34 +00003705#endif
drh49b9d332009-01-02 18:10:42 +00003706 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003707 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003708 }
3709 return rc;
3710}
3711
3712/*
danielk197794b30732009-07-02 17:21:57 +00003713** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3714** at the conclusion of a transaction.
3715*/
3716static void btreeEndTransaction(Btree *p){
3717 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003718 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003719 assert( sqlite3BtreeHoldsMutex(p) );
3720
danbc1a3c62013-02-23 16:40:46 +00003721#ifndef SQLITE_OMIT_AUTOVACUUM
3722 pBt->bDoTruncate = 0;
3723#endif
danc0537fe2013-06-28 19:41:43 +00003724 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003725 /* If there are other active statements that belong to this database
3726 ** handle, downgrade to a read-only transaction. The other statements
3727 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003728 downgradeAllSharedCacheTableLocks(p);
3729 p->inTrans = TRANS_READ;
3730 }else{
3731 /* If the handle had any kind of transaction open, decrement the
3732 ** transaction count of the shared btree. If the transaction count
3733 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3734 ** call below will unlock the pager. */
3735 if( p->inTrans!=TRANS_NONE ){
3736 clearAllSharedCacheTableLocks(p);
3737 pBt->nTransaction--;
3738 if( 0==pBt->nTransaction ){
3739 pBt->inTransaction = TRANS_NONE;
3740 }
3741 }
3742
3743 /* Set the current transaction state to TRANS_NONE and unlock the
3744 ** pager if this call closed the only read or write transaction. */
3745 p->inTrans = TRANS_NONE;
3746 unlockBtreeIfUnused(pBt);
3747 }
3748
3749 btreeIntegrity(p);
3750}
3751
3752/*
drh2aa679f2001-06-25 02:11:07 +00003753** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003754**
drh6e345992007-03-30 11:12:08 +00003755** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003756** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3757** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3758** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003759** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003760** routine has to do is delete or truncate or zero the header in the
3761** the rollback journal (which causes the transaction to commit) and
3762** drop locks.
drh6e345992007-03-30 11:12:08 +00003763**
dan60939d02011-03-29 15:40:55 +00003764** Normally, if an error occurs while the pager layer is attempting to
3765** finalize the underlying journal file, this function returns an error and
3766** the upper layer will attempt a rollback. However, if the second argument
3767** is non-zero then this b-tree transaction is part of a multi-file
3768** transaction. In this case, the transaction has already been committed
3769** (by deleting a master journal file) and the caller will ignore this
3770** functions return code. So, even if an error occurs in the pager layer,
3771** reset the b-tree objects internal state to indicate that the write
3772** transaction has been closed. This is quite safe, as the pager will have
3773** transitioned to the error state.
3774**
drh5e00f6c2001-09-13 13:46:56 +00003775** This will release the write lock on the database file. If there
3776** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003777*/
dan60939d02011-03-29 15:40:55 +00003778int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003779
drh075ed302010-10-14 01:17:30 +00003780 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003781 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003782 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003783
3784 /* If the handle has a write-transaction open, commit the shared-btrees
3785 ** transaction and set the shared state to TRANS_READ.
3786 */
3787 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003788 int rc;
drh075ed302010-10-14 01:17:30 +00003789 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003790 assert( pBt->inTransaction==TRANS_WRITE );
3791 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003792 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003793 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003794 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003795 return rc;
3796 }
drh3da9c042014-12-22 18:41:21 +00003797 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00003798 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003799 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003800 }
danielk1977aef0bf62005-12-30 16:28:01 +00003801
danielk197794b30732009-07-02 17:21:57 +00003802 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003803 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003804 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003805}
3806
drh80e35f42007-03-30 14:06:34 +00003807/*
3808** Do both phases of a commit.
3809*/
3810int sqlite3BtreeCommit(Btree *p){
3811 int rc;
drhd677b3d2007-08-20 22:48:41 +00003812 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003813 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3814 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003815 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003816 }
drhd677b3d2007-08-20 22:48:41 +00003817 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003818 return rc;
3819}
3820
drhc39e0002004-05-07 23:50:57 +00003821/*
drhfb982642007-08-30 01:19:59 +00003822** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00003823** code to errCode for every cursor on any BtShared that pBtree
3824** references. Or if the writeOnly flag is set to 1, then only
3825** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00003826**
drh47b7fc72014-11-11 01:33:57 +00003827** Every cursor is a candidate to be tripped, including cursors
3828** that belong to other database connections that happen to be
3829** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00003830**
dan80231042014-11-12 14:56:02 +00003831** This routine gets called when a rollback occurs. If the writeOnly
3832** flag is true, then only write-cursors need be tripped - read-only
3833** cursors save their current positions so that they may continue
3834** following the rollback. Or, if writeOnly is false, all cursors are
3835** tripped. In general, writeOnly is false if the transaction being
3836** rolled back modified the database schema. In this case b-tree root
3837** pages may be moved or deleted from the database altogether, making
3838** it unsafe for read cursors to continue.
3839**
3840** If the writeOnly flag is true and an error is encountered while
3841** saving the current position of a read-only cursor, all cursors,
3842** including all read-cursors are tripped.
3843**
3844** SQLITE_OK is returned if successful, or if an error occurs while
3845** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00003846*/
dan80231042014-11-12 14:56:02 +00003847int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00003848 BtCursor *p;
dan80231042014-11-12 14:56:02 +00003849 int rc = SQLITE_OK;
3850
drh47b7fc72014-11-11 01:33:57 +00003851 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00003852 if( pBtree ){
3853 sqlite3BtreeEnter(pBtree);
3854 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
3855 int i;
3856 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00003857 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00003858 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00003859 if( rc!=SQLITE_OK ){
3860 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
3861 break;
3862 }
3863 }
3864 }else{
3865 sqlite3BtreeClearCursor(p);
3866 p->eState = CURSOR_FAULT;
3867 p->skipNext = errCode;
3868 }
3869 for(i=0; i<=p->iPage; i++){
3870 releasePage(p->apPage[i]);
3871 p->apPage[i] = 0;
3872 }
danielk1977bc2ca9e2008-11-13 14:28:28 +00003873 }
dan80231042014-11-12 14:56:02 +00003874 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00003875 }
dan80231042014-11-12 14:56:02 +00003876 return rc;
drhfb982642007-08-30 01:19:59 +00003877}
3878
3879/*
drh47b7fc72014-11-11 01:33:57 +00003880** Rollback the transaction in progress.
3881**
3882** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
3883** Only write cursors are tripped if writeOnly is true but all cursors are
3884** tripped if writeOnly is false. Any attempt to use
3885** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00003886**
3887** This will release the write lock on the database file. If there
3888** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003889*/
drh47b7fc72014-11-11 01:33:57 +00003890int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00003891 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003892 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003893 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003894
drh47b7fc72014-11-11 01:33:57 +00003895 assert( writeOnly==1 || writeOnly==0 );
3896 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00003897 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00003898 if( tripCode==SQLITE_OK ){
3899 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00003900 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00003901 }else{
3902 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00003903 }
drh0f198a72012-02-13 16:43:16 +00003904 if( tripCode ){
dan80231042014-11-12 14:56:02 +00003905 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
3906 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
3907 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00003908 }
danielk1977aef0bf62005-12-30 16:28:01 +00003909 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003910
3911 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003912 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003913
danielk19778d34dfd2006-01-24 16:37:57 +00003914 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003915 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003916 if( rc2!=SQLITE_OK ){
3917 rc = rc2;
3918 }
3919
drh24cd67e2004-05-10 16:18:47 +00003920 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003921 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003922 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00003923 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003924 int nPage = get4byte(28+(u8*)pPage1->aData);
3925 testcase( nPage==0 );
3926 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3927 testcase( pBt->nPage!=nPage );
3928 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003929 releasePage(pPage1);
3930 }
drh85ec3b62013-05-14 23:12:06 +00003931 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003932 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003933 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00003934 }
danielk1977aef0bf62005-12-30 16:28:01 +00003935
danielk197794b30732009-07-02 17:21:57 +00003936 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003937 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003938 return rc;
3939}
3940
3941/*
peter.d.reid60ec9142014-09-06 16:39:46 +00003942** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00003943** back independently of the main transaction. You must start a transaction
3944** before starting a subtransaction. The subtransaction is ended automatically
3945** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003946**
3947** Statement subtransactions are used around individual SQL statements
3948** that are contained within a BEGIN...COMMIT block. If a constraint
3949** error occurs within the statement, the effect of that one statement
3950** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003951**
3952** A statement sub-transaction is implemented as an anonymous savepoint. The
3953** value passed as the second parameter is the total number of savepoints,
3954** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3955** are no active savepoints and no other statement-transactions open,
3956** iStatement is 1. This anonymous savepoint can be released or rolled back
3957** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003958*/
danielk1977bd434552009-03-18 10:33:00 +00003959int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003960 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003961 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003962 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003963 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00003964 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00003965 assert( iStatement>0 );
3966 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003967 assert( pBt->inTransaction==TRANS_WRITE );
3968 /* At the pager level, a statement transaction is a savepoint with
3969 ** an index greater than all savepoints created explicitly using
3970 ** SQL statements. It is illegal to open, release or rollback any
3971 ** such savepoints while the statement transaction savepoint is active.
3972 */
3973 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003974 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003975 return rc;
3976}
3977
3978/*
danielk1977fd7f0452008-12-17 17:30:26 +00003979** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3980** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003981** savepoint identified by parameter iSavepoint, depending on the value
3982** of op.
3983**
3984** Normally, iSavepoint is greater than or equal to zero. However, if op is
3985** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3986** contents of the entire transaction are rolled back. This is different
3987** from a normal transaction rollback, as no locks are released and the
3988** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003989*/
3990int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3991 int rc = SQLITE_OK;
3992 if( p && p->inTrans==TRANS_WRITE ){
3993 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003994 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3995 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3996 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003997 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003998 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00003999 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4000 pBt->nPage = 0;
4001 }
drh9f0bbf92009-01-02 21:08:09 +00004002 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00004003 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00004004
4005 /* The database size was written into the offset 28 of the header
4006 ** when the transaction started, so we know that the value at offset
4007 ** 28 is nonzero. */
4008 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004009 }
danielk1977fd7f0452008-12-17 17:30:26 +00004010 sqlite3BtreeLeave(p);
4011 }
4012 return rc;
4013}
4014
4015/*
drh8b2f49b2001-06-08 00:21:52 +00004016** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004017** iTable. If a read-only cursor is requested, it is assumed that
4018** the caller already has at least a read-only transaction open
4019** on the database already. If a write-cursor is requested, then
4020** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004021**
4022** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00004023** If wrFlag==1, then the cursor can be used for reading or for
4024** writing if other conditions for writing are also met. These
4025** are the conditions that must be met in order for writing to
4026** be allowed:
drh6446c4d2001-12-15 14:22:18 +00004027**
drhf74b8d92002-09-01 23:20:45 +00004028** 1: The cursor must have been opened with wrFlag==1
4029**
drhfe5d71d2007-03-19 11:54:10 +00004030** 2: Other database connections that share the same pager cache
4031** but which are not in the READ_UNCOMMITTED state may not have
4032** cursors open with wrFlag==0 on the same table. Otherwise
4033** the changes made by this write cursor would be visible to
4034** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004035**
4036** 3: The database must be writable (not on read-only media)
4037**
4038** 4: There must be an active transaction.
4039**
drh6446c4d2001-12-15 14:22:18 +00004040** No checking is done to make sure that page iTable really is the
4041** root page of a b-tree. If it is not, then the cursor acquired
4042** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004043**
drhf25a5072009-11-18 23:01:25 +00004044** It is assumed that the sqlite3BtreeCursorZero() has been called
4045** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004046*/
drhd677b3d2007-08-20 22:48:41 +00004047static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004048 Btree *p, /* The btree */
4049 int iTable, /* Root page of table to open */
4050 int wrFlag, /* 1 to write. 0 read-only */
4051 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4052 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004053){
danielk19773e8add92009-07-04 17:16:00 +00004054 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004055 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004056
drh1fee73e2007-08-29 04:00:57 +00004057 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00004058 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00004059
danielk1977602b4662009-07-02 07:47:33 +00004060 /* The following assert statements verify that if this is a sharable
4061 ** b-tree database, the connection is holding the required table locks,
4062 ** and that no other connection has any open cursor that conflicts with
4063 ** this lock. */
4064 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00004065 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4066
danielk19773e8add92009-07-04 17:16:00 +00004067 /* Assert that the caller has opened the required transaction. */
4068 assert( p->inTrans>TRANS_NONE );
4069 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4070 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004071 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004072
drh3fbb0222014-09-24 19:47:27 +00004073 if( wrFlag ){
4074 allocateTempSpace(pBt);
4075 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM;
4076 }
drhb1299152010-03-30 22:58:33 +00004077 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00004078 assert( wrFlag==0 );
4079 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00004080 }
danielk1977aef0bf62005-12-30 16:28:01 +00004081
danielk1977aef0bf62005-12-30 16:28:01 +00004082 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004083 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00004084 pCur->pgnoRoot = (Pgno)iTable;
4085 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004086 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004087 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004088 pCur->pBt = pBt;
drh4c417182014-03-31 23:57:41 +00004089 assert( wrFlag==0 || wrFlag==BTCF_WriteFlag );
4090 pCur->curFlags = wrFlag;
drh28f58dd2015-06-27 19:45:03 +00004091 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
drh27fb7462015-06-30 02:47:36 +00004092 /* If there are two or more cursors on the same btree, then all such
4093 ** cursors *must* have the BTCF_Multiple flag set. */
4094 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4095 if( pX->pgnoRoot==(Pgno)iTable ){
4096 pX->curFlags |= BTCF_Multiple;
4097 pCur->curFlags |= BTCF_Multiple;
4098 }
drha059ad02001-04-17 20:09:11 +00004099 }
drh27fb7462015-06-30 02:47:36 +00004100 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004101 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004102 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004103 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004104}
drhd677b3d2007-08-20 22:48:41 +00004105int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004106 Btree *p, /* The btree */
4107 int iTable, /* Root page of table to open */
4108 int wrFlag, /* 1 to write. 0 read-only */
4109 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4110 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004111){
4112 int rc;
dan08f901b2015-05-25 19:24:36 +00004113 if( iTable<1 ){
4114 rc = SQLITE_CORRUPT_BKPT;
4115 }else{
4116 sqlite3BtreeEnter(p);
4117 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4118 sqlite3BtreeLeave(p);
4119 }
drhd677b3d2007-08-20 22:48:41 +00004120 return rc;
4121}
drh7f751222009-03-17 22:33:00 +00004122
4123/*
4124** Return the size of a BtCursor object in bytes.
4125**
4126** This interfaces is needed so that users of cursors can preallocate
4127** sufficient storage to hold a cursor. The BtCursor object is opaque
4128** to users so they cannot do the sizeof() themselves - they must call
4129** this routine.
4130*/
4131int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004132 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004133}
4134
drh7f751222009-03-17 22:33:00 +00004135/*
drhf25a5072009-11-18 23:01:25 +00004136** Initialize memory that will be converted into a BtCursor object.
4137**
4138** The simple approach here would be to memset() the entire object
4139** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4140** do not need to be zeroed and they are large, so we can save a lot
4141** of run-time by skipping the initialization of those elements.
4142*/
4143void sqlite3BtreeCursorZero(BtCursor *p){
4144 memset(p, 0, offsetof(BtCursor, iPage));
4145}
4146
4147/*
drh5e00f6c2001-09-13 13:46:56 +00004148** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004149** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004150*/
drh3aac2dd2004-04-26 14:10:20 +00004151int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004152 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004153 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00004154 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00004155 BtShared *pBt = pCur->pBt;
4156 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00004157 sqlite3BtreeClearCursor(pCur);
drh27fb7462015-06-30 02:47:36 +00004158 assert( pBt->pCursor!=0 );
4159 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004160 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004161 }else{
4162 BtCursor *pPrev = pBt->pCursor;
4163 do{
4164 if( pPrev->pNext==pCur ){
4165 pPrev->pNext = pCur->pNext;
4166 break;
4167 }
4168 pPrev = pPrev->pNext;
4169 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004170 }
danielk197771d5d2c2008-09-29 11:49:47 +00004171 for(i=0; i<=pCur->iPage; i++){
4172 releasePage(pCur->apPage[i]);
4173 }
danielk1977cd3e8f72008-03-25 09:47:35 +00004174 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004175 sqlite3_free(pCur->aOverflow);
danielk1977cd3e8f72008-03-25 09:47:35 +00004176 /* sqlite3_free(pCur); */
4177 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00004178 }
drh8c42ca92001-06-22 19:15:00 +00004179 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004180}
4181
drh5e2f8b92001-05-28 00:41:15 +00004182/*
drh86057612007-06-26 01:04:48 +00004183** Make sure the BtCursor* given in the argument has a valid
4184** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004185** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004186**
4187** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004188** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004189*/
drh9188b382004-05-14 21:12:22 +00004190#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00004191 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004192 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00004193 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00004194 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00004195 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
dan7df42ab2014-01-20 18:25:44 +00004196 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00004197 }
danielk19771cc5ed82007-05-16 17:28:43 +00004198#else
4199 #define assertCellInfo(x)
4200#endif
drhc5b41ac2015-06-17 02:11:46 +00004201static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4202 if( pCur->info.nSize==0 ){
4203 int iPage = pCur->iPage;
4204 pCur->curFlags |= BTCF_ValidNKey;
4205 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
4206 }else{
4207 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004208 }
drhc5b41ac2015-06-17 02:11:46 +00004209}
drh9188b382004-05-14 21:12:22 +00004210
drhea8ffdf2009-07-22 00:35:23 +00004211#ifndef NDEBUG /* The next routine used only within assert() statements */
4212/*
4213** Return true if the given BtCursor is valid. A valid cursor is one
4214** that is currently pointing to a row in a (non-empty) table.
4215** This is a verification routine is used only within assert() statements.
4216*/
4217int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4218 return pCur && pCur->eState==CURSOR_VALID;
4219}
4220#endif /* NDEBUG */
4221
drh9188b382004-05-14 21:12:22 +00004222/*
drh3aac2dd2004-04-26 14:10:20 +00004223** Set *pSize to the size of the buffer needed to hold the value of
4224** the key for the current entry. If the cursor is not pointing
4225** to a valid entry, *pSize is set to 0.
4226**
drh4b70f112004-05-02 21:12:19 +00004227** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00004228** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00004229**
4230** The caller must position the cursor prior to invoking this routine.
4231**
4232** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00004233*/
drh4a1c3802004-05-12 15:15:47 +00004234int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00004235 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004236 assert( pCur->eState==CURSOR_VALID );
4237 getCellInfo(pCur);
4238 *pSize = pCur->info.nKey;
drhea8ffdf2009-07-22 00:35:23 +00004239 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004240}
drh2af926b2001-05-15 00:39:25 +00004241
drh72f82862001-05-24 21:06:34 +00004242/*
drh0e1c19e2004-05-11 00:58:56 +00004243** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00004244** cursor currently points to.
4245**
4246** The caller must guarantee that the cursor is pointing to a non-NULL
4247** valid entry. In other words, the calling procedure must guarantee
4248** that the cursor has Cursor.eState==CURSOR_VALID.
4249**
4250** Failure is not possible. This function always returns SQLITE_OK.
4251** It might just as well be a procedure (returning void) but we continue
4252** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00004253*/
4254int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00004255 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004256 assert( pCur->eState==CURSOR_VALID );
drhf94c9482015-03-25 12:05:49 +00004257 assert( pCur->iPage>=0 );
4258 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
drh3e28ff52014-09-24 00:59:08 +00004259 assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 );
drhea8ffdf2009-07-22 00:35:23 +00004260 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004261 *pSize = pCur->info.nPayload;
drhea8ffdf2009-07-22 00:35:23 +00004262 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00004263}
4264
4265/*
danielk1977d04417962007-05-02 13:16:30 +00004266** Given the page number of an overflow page in the database (parameter
4267** ovfl), this function finds the page number of the next page in the
4268** linked list of overflow pages. If possible, it uses the auto-vacuum
4269** pointer-map data instead of reading the content of page ovfl to do so.
4270**
4271** If an error occurs an SQLite error code is returned. Otherwise:
4272**
danielk1977bea2a942009-01-20 17:06:27 +00004273** The page number of the next overflow page in the linked list is
4274** written to *pPgnoNext. If page ovfl is the last page in its linked
4275** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004276**
danielk1977bea2a942009-01-20 17:06:27 +00004277** If ppPage is not NULL, and a reference to the MemPage object corresponding
4278** to page number pOvfl was obtained, then *ppPage is set to point to that
4279** reference. It is the responsibility of the caller to call releasePage()
4280** on *ppPage to free the reference. In no reference was obtained (because
4281** the pointer-map was used to obtain the value for *pPgnoNext), then
4282** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004283*/
4284static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004285 BtShared *pBt, /* The database file */
4286 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004287 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004288 Pgno *pPgnoNext /* OUT: Next overflow page number */
4289){
4290 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004291 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004292 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004293
drh1fee73e2007-08-29 04:00:57 +00004294 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004295 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004296
4297#ifndef SQLITE_OMIT_AUTOVACUUM
4298 /* Try to find the next page in the overflow list using the
4299 ** autovacuum pointer-map pages. Guess that the next page in
4300 ** the overflow list is page number (ovfl+1). If that guess turns
4301 ** out to be wrong, fall back to loading the data of page
4302 ** number ovfl to determine the next page number.
4303 */
4304 if( pBt->autoVacuum ){
4305 Pgno pgno;
4306 Pgno iGuess = ovfl+1;
4307 u8 eType;
4308
4309 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4310 iGuess++;
4311 }
4312
drhb1299152010-03-30 22:58:33 +00004313 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004314 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004315 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004316 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004317 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004318 }
4319 }
4320 }
4321#endif
4322
danielk1977d8a3f3d2009-07-11 11:45:23 +00004323 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004324 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004325 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004326 assert( rc==SQLITE_OK || pPage==0 );
4327 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004328 next = get4byte(pPage->aData);
4329 }
danielk1977443c0592009-01-16 15:21:05 +00004330 }
danielk197745d68822009-01-16 16:23:38 +00004331
danielk1977bea2a942009-01-20 17:06:27 +00004332 *pPgnoNext = next;
4333 if( ppPage ){
4334 *ppPage = pPage;
4335 }else{
4336 releasePage(pPage);
4337 }
4338 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004339}
4340
danielk1977da107192007-05-04 08:32:13 +00004341/*
4342** Copy data from a buffer to a page, or from a page to a buffer.
4343**
4344** pPayload is a pointer to data stored on database page pDbPage.
4345** If argument eOp is false, then nByte bytes of data are copied
4346** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4347** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4348** of data are copied from the buffer pBuf to pPayload.
4349**
4350** SQLITE_OK is returned on success, otherwise an error code.
4351*/
4352static int copyPayload(
4353 void *pPayload, /* Pointer to page data */
4354 void *pBuf, /* Pointer to buffer */
4355 int nByte, /* Number of bytes to copy */
4356 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4357 DbPage *pDbPage /* Page containing pPayload */
4358){
4359 if( eOp ){
4360 /* Copy data from buffer to page (a write operation) */
4361 int rc = sqlite3PagerWrite(pDbPage);
4362 if( rc!=SQLITE_OK ){
4363 return rc;
4364 }
4365 memcpy(pPayload, pBuf, nByte);
4366 }else{
4367 /* Copy data from page to buffer (a read operation) */
4368 memcpy(pBuf, pPayload, nByte);
4369 }
4370 return SQLITE_OK;
4371}
danielk1977d04417962007-05-02 13:16:30 +00004372
4373/*
danielk19779f8d6402007-05-02 17:48:45 +00004374** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004375** for the entry that the pCur cursor is pointing to. The eOp
4376** argument is interpreted as follows:
4377**
4378** 0: The operation is a read. Populate the overflow cache.
4379** 1: The operation is a write. Populate the overflow cache.
4380** 2: The operation is a read. Do not populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004381**
4382** A total of "amt" bytes are read or written beginning at "offset".
4383** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004384**
drh3bcdfd22009-07-12 02:32:21 +00004385** The content being read or written might appear on the main page
4386** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004387**
dan5a500af2014-03-11 20:33:04 +00004388** If the current cursor entry uses one or more overflow pages and the
4389** eOp argument is not 2, this function may allocate space for and lazily
peter.d.reid60ec9142014-09-06 16:39:46 +00004390** populates the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004391** Subsequent calls use this cache to make seeking to the supplied offset
4392** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004393**
4394** Once an overflow page-list cache has been allocated, it may be
4395** invalidated if some other cursor writes to the same table, or if
4396** the cursor is moved to a different row. Additionally, in auto-vacuum
4397** mode, the following events may invalidate an overflow page-list cache.
4398**
4399** * An incremental vacuum,
4400** * A commit in auto_vacuum="full" mode,
4401** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004402*/
danielk19779f8d6402007-05-02 17:48:45 +00004403static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004404 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004405 u32 offset, /* Begin reading this far into payload */
4406 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004407 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004408 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004409){
4410 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004411 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004412 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004413 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004414 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004415#ifdef SQLITE_DIRECT_OVERFLOW_READ
dan9501a642014-10-01 12:01:10 +00004416 unsigned char * const pBufStart = pBuf;
drh3f387402014-09-24 01:23:00 +00004417 int bEnd; /* True if reading to end of data */
drh4c417182014-03-31 23:57:41 +00004418#endif
drh3aac2dd2004-04-26 14:10:20 +00004419
danielk1977da107192007-05-04 08:32:13 +00004420 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00004421 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004422 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004423 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00004424 assert( eOp!=2 || offset==0 ); /* Always start from beginning for eOp==2 */
danielk1977da107192007-05-04 08:32:13 +00004425
drh86057612007-06-26 01:04:48 +00004426 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004427 aPayload = pCur->info.pPayload;
drh4c417182014-03-31 23:57:41 +00004428#ifdef SQLITE_DIRECT_OVERFLOW_READ
drhab1cc582014-09-23 21:25:19 +00004429 bEnd = offset+amt==pCur->info.nPayload;
drh4c417182014-03-31 23:57:41 +00004430#endif
drhab1cc582014-09-23 21:25:19 +00004431 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004432
drhab1cc582014-09-23 21:25:19 +00004433 if( &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ){
danielk1977da107192007-05-04 08:32:13 +00004434 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00004435 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00004436 }
danielk1977da107192007-05-04 08:32:13 +00004437
4438 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004439 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004440 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004441 if( a+offset>pCur->info.nLocal ){
4442 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004443 }
dan5a500af2014-03-11 20:33:04 +00004444 rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004445 offset = 0;
drha34b6762004-05-07 13:30:42 +00004446 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004447 amt -= a;
drhdd793422001-06-28 01:54:48 +00004448 }else{
drhfa1a98a2004-05-14 19:08:17 +00004449 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004450 }
danielk1977da107192007-05-04 08:32:13 +00004451
dan85753662014-12-11 16:38:18 +00004452
danielk1977da107192007-05-04 08:32:13 +00004453 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004454 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004455 Pgno nextPage;
4456
drhfa1a98a2004-05-14 19:08:17 +00004457 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004458
drha38c9512014-04-01 01:24:34 +00004459 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4460 ** Except, do not allocate aOverflow[] for eOp==2.
4461 **
4462 ** The aOverflow[] array is sized at one entry for each overflow page
4463 ** in the overflow chain. The page number of the first overflow page is
4464 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4465 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004466 */
drh036dbec2014-03-11 23:40:44 +00004467 if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004468 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
dan5a500af2014-03-11 20:33:04 +00004469 if( nOvfl>pCur->nOvflAlloc ){
dan85753662014-12-11 16:38:18 +00004470 Pgno *aNew = (Pgno*)sqlite3Realloc(
4471 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004472 );
4473 if( aNew==0 ){
4474 rc = SQLITE_NOMEM;
4475 }else{
4476 pCur->nOvflAlloc = nOvfl*2;
4477 pCur->aOverflow = aNew;
4478 }
4479 }
4480 if( rc==SQLITE_OK ){
4481 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
drh036dbec2014-03-11 23:40:44 +00004482 pCur->curFlags |= BTCF_ValidOvfl;
danielk19772dec9702007-05-02 16:48:37 +00004483 }
4484 }
danielk1977da107192007-05-04 08:32:13 +00004485
4486 /* If the overflow page-list cache has been allocated and the
4487 ** entry for the first required overflow page is valid, skip
4488 ** directly to it.
4489 */
drh3f387402014-09-24 01:23:00 +00004490 if( (pCur->curFlags & BTCF_ValidOvfl)!=0
4491 && pCur->aOverflow[offset/ovflSize]
4492 ){
danielk19772dec9702007-05-02 16:48:37 +00004493 iIdx = (offset/ovflSize);
4494 nextPage = pCur->aOverflow[iIdx];
4495 offset = (offset%ovflSize);
4496 }
danielk1977da107192007-05-04 08:32:13 +00004497
4498 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4499
danielk1977da107192007-05-04 08:32:13 +00004500 /* If required, populate the overflow page-list cache. */
drh036dbec2014-03-11 23:40:44 +00004501 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
danielk1977da107192007-05-04 08:32:13 +00004502 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
4503 pCur->aOverflow[iIdx] = nextPage;
4504 }
danielk1977da107192007-05-04 08:32:13 +00004505
danielk1977d04417962007-05-02 13:16:30 +00004506 if( offset>=ovflSize ){
4507 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004508 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004509 ** data is not required. So first try to lookup the overflow
4510 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004511 ** function.
drha38c9512014-04-01 01:24:34 +00004512 **
4513 ** Note that the aOverflow[] array must be allocated because eOp!=2
4514 ** here. If eOp==2, then offset==0 and this branch is never taken.
danielk1977d04417962007-05-02 13:16:30 +00004515 */
drha38c9512014-04-01 01:24:34 +00004516 assert( eOp!=2 );
4517 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004518 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004519 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004520 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004521 }else{
danielk1977da107192007-05-04 08:32:13 +00004522 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004523 }
danielk1977da107192007-05-04 08:32:13 +00004524 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004525 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004526 /* Need to read this page properly. It contains some of the
4527 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004528 */
danf4ba1092011-10-08 14:57:07 +00004529#ifdef SQLITE_DIRECT_OVERFLOW_READ
4530 sqlite3_file *fd;
4531#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004532 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004533 if( a + offset > ovflSize ){
4534 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004535 }
danf4ba1092011-10-08 14:57:07 +00004536
4537#ifdef SQLITE_DIRECT_OVERFLOW_READ
4538 /* If all the following are true:
4539 **
4540 ** 1) this is a read operation, and
4541 ** 2) data is required from the start of this overflow page, and
4542 ** 3) the database is file-backed, and
4543 ** 4) there is no open write-transaction, and
4544 ** 5) the database is not a WAL database,
dan9bc21b52014-03-20 18:56:35 +00004545 ** 6) all data from the page is being read.
dan9501a642014-10-01 12:01:10 +00004546 ** 7) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004547 **
4548 ** then data can be read directly from the database file into the
4549 ** output buffer, bypassing the page-cache altogether. This speeds
4550 ** up loading large records that span many overflow pages.
4551 */
dan5a500af2014-03-11 20:33:04 +00004552 if( (eOp&0x01)==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004553 && offset==0 /* (2) */
dan9bc21b52014-03-20 18:56:35 +00004554 && (bEnd || a==ovflSize) /* (6) */
danf4ba1092011-10-08 14:57:07 +00004555 && pBt->inTransaction==TRANS_READ /* (4) */
4556 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
4557 && pBt->pPage1->aData[19]==0x01 /* (5) */
dan9501a642014-10-01 12:01:10 +00004558 && &pBuf[-4]>=pBufStart /* (7) */
danf4ba1092011-10-08 14:57:07 +00004559 ){
4560 u8 aSave[4];
4561 u8 *aWrite = &pBuf[-4];
dan9501a642014-10-01 12:01:10 +00004562 assert( aWrite>=pBufStart ); /* hence (7) */
danf4ba1092011-10-08 14:57:07 +00004563 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004564 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004565 nextPage = get4byte(aWrite);
4566 memcpy(aWrite, aSave, 4);
4567 }else
4568#endif
4569
4570 {
4571 DbPage *pDbPage;
dan11dcd112013-03-15 18:29:18 +00004572 rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage,
dan5a500af2014-03-11 20:33:04 +00004573 ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004574 );
danf4ba1092011-10-08 14:57:07 +00004575 if( rc==SQLITE_OK ){
4576 aPayload = sqlite3PagerGetData(pDbPage);
4577 nextPage = get4byte(aPayload);
dan5a500af2014-03-11 20:33:04 +00004578 rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
danf4ba1092011-10-08 14:57:07 +00004579 sqlite3PagerUnref(pDbPage);
4580 offset = 0;
4581 }
4582 }
4583 amt -= a;
4584 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004585 }
drh2af926b2001-05-15 00:39:25 +00004586 }
drh2af926b2001-05-15 00:39:25 +00004587 }
danielk1977cfe9a692004-06-16 12:00:29 +00004588
danielk1977da107192007-05-04 08:32:13 +00004589 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004590 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004591 }
danielk1977da107192007-05-04 08:32:13 +00004592 return rc;
drh2af926b2001-05-15 00:39:25 +00004593}
4594
drh72f82862001-05-24 21:06:34 +00004595/*
drh3aac2dd2004-04-26 14:10:20 +00004596** Read part of the key associated with cursor pCur. Exactly
peter.d.reid60ec9142014-09-06 16:39:46 +00004597** "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004598** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004599**
drh5d1a8722009-07-22 18:07:40 +00004600** The caller must ensure that pCur is pointing to a valid row
4601** in the table.
4602**
drh3aac2dd2004-04-26 14:10:20 +00004603** Return SQLITE_OK on success or an error code if anything goes
4604** wrong. An error is returned if "offset+amt" is larger than
4605** the available payload.
drh72f82862001-05-24 21:06:34 +00004606*/
drha34b6762004-05-07 13:30:42 +00004607int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004608 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004609 assert( pCur->eState==CURSOR_VALID );
4610 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4611 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4612 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004613}
4614
4615/*
drh3aac2dd2004-04-26 14:10:20 +00004616** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004617** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004618** begins at "offset".
4619**
4620** Return SQLITE_OK on success or an error code if anything goes
4621** wrong. An error is returned if "offset+amt" is larger than
4622** the available payload.
drh72f82862001-05-24 21:06:34 +00004623*/
drh3aac2dd2004-04-26 14:10:20 +00004624int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004625 int rc;
4626
danielk19773588ceb2008-06-10 17:30:26 +00004627#ifndef SQLITE_OMIT_INCRBLOB
4628 if ( pCur->eState==CURSOR_INVALID ){
4629 return SQLITE_ABORT;
4630 }
4631#endif
4632
drh1fee73e2007-08-29 04:00:57 +00004633 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004634 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004635 if( rc==SQLITE_OK ){
4636 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004637 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4638 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004639 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004640 }
4641 return rc;
drh2af926b2001-05-15 00:39:25 +00004642}
4643
drh72f82862001-05-24 21:06:34 +00004644/*
drh0e1c19e2004-05-11 00:58:56 +00004645** Return a pointer to payload information from the entry that the
4646** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004647** the key if index btrees (pPage->intKey==0) and is the data for
4648** table btrees (pPage->intKey==1). The number of bytes of available
4649** key/data is written into *pAmt. If *pAmt==0, then the value
4650** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004651**
4652** This routine is an optimization. It is common for the entire key
4653** and data to fit on the local page and for there to be no overflow
4654** pages. When that is so, this routine can be used to access the
4655** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004656** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004657** the key/data and copy it into a preallocated buffer.
4658**
4659** The pointer returned by this routine looks directly into the cached
4660** page of the database. The data might change or move the next time
4661** any btree routine is called.
4662*/
drh2a8d2262013-12-09 20:43:22 +00004663static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004664 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004665 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004666){
drhf3392e32015-04-15 17:26:55 +00004667 u32 amt;
danielk197771d5d2c2008-09-29 11:49:47 +00004668 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004669 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004670 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004671 assert( cursorHoldsMutex(pCur) );
drh2a8d2262013-12-09 20:43:22 +00004672 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh86dd3712014-03-25 11:00:21 +00004673 assert( pCur->info.nSize>0 );
drhf3392e32015-04-15 17:26:55 +00004674 assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
4675 assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
4676 amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
4677 if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
4678 *pAmt = amt;
drhab1cc582014-09-23 21:25:19 +00004679 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00004680}
4681
4682
4683/*
drhe51c44f2004-05-30 20:46:09 +00004684** For the entry that cursor pCur is point to, return as
4685** many bytes of the key or data as are available on the local
4686** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004687**
4688** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004689** or be destroyed on the next call to any Btree routine,
4690** including calls from other threads against the same cache.
4691** Hence, a mutex on the BtShared should be held prior to calling
4692** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004693**
4694** These routines is used to get quick access to key and data
4695** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004696*/
drh501932c2013-11-21 21:59:53 +00004697const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004698 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004699}
drh501932c2013-11-21 21:59:53 +00004700const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004701 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004702}
4703
4704
4705/*
drh8178a752003-01-05 21:41:40 +00004706** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004707** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004708**
4709** This function returns SQLITE_CORRUPT if the page-header flags field of
4710** the new child page does not match the flags field of the parent (i.e.
4711** if an intkey page appears to be the parent of a non-intkey page, or
4712** vice-versa).
drh72f82862001-05-24 21:06:34 +00004713*/
drh3aac2dd2004-04-26 14:10:20 +00004714static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00004715 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004716
drh1fee73e2007-08-29 04:00:57 +00004717 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004718 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004719 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004720 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004721 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4722 return SQLITE_CORRUPT_BKPT;
4723 }
drh271efa52004-05-30 19:19:05 +00004724 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004725 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh28f58dd2015-06-27 19:45:03 +00004726 pCur->iPage++;
4727 pCur->aiIdx[pCur->iPage] = 0;
4728 return getAndInitPage(pBt, newPgno, &pCur->apPage[pCur->iPage],
4729 pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00004730}
4731
drhcbd33492015-03-25 13:06:54 +00004732#if SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00004733/*
4734** Page pParent is an internal (non-leaf) tree page. This function
4735** asserts that page number iChild is the left-child if the iIdx'th
4736** cell in page pParent. Or, if iIdx is equal to the total number of
4737** cells in pParent, that page number iChild is the right-child of
4738** the page.
4739*/
4740static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00004741 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
4742 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00004743 assert( iIdx<=pParent->nCell );
4744 if( iIdx==pParent->nCell ){
4745 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4746 }else{
4747 assert( get4byte(findCell(pParent, iIdx))==iChild );
4748 }
4749}
4750#else
4751# define assertParentIndex(x,y,z)
4752#endif
4753
drh72f82862001-05-24 21:06:34 +00004754/*
drh5e2f8b92001-05-28 00:41:15 +00004755** Move the cursor up to the parent page.
4756**
4757** pCur->idx is set to the cell index that contains the pointer
4758** to the page we are coming from. If we are coming from the
4759** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004760** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004761*/
danielk197730548662009-07-09 05:07:37 +00004762static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004763 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004764 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004765 assert( pCur->iPage>0 );
4766 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004767 assertParentIndex(
4768 pCur->apPage[pCur->iPage-1],
4769 pCur->aiIdx[pCur->iPage-1],
4770 pCur->apPage[pCur->iPage]->pgno
4771 );
dan6c2688c2012-01-12 15:05:03 +00004772 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00004773 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004774 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhbbf0f862015-06-27 14:59:26 +00004775 releasePageNotNull(pCur->apPage[pCur->iPage--]);
drh72f82862001-05-24 21:06:34 +00004776}
4777
4778/*
danielk19778f880a82009-07-13 09:41:45 +00004779** Move the cursor to point to the root page of its b-tree structure.
4780**
4781** If the table has a virtual root page, then the cursor is moved to point
4782** to the virtual root page instead of the actual root page. A table has a
4783** virtual root page when the actual root page contains no cells and a
4784** single child page. This can only happen with the table rooted at page 1.
4785**
4786** If the b-tree structure is empty, the cursor state is set to
4787** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4788** cell located on the root (or virtual root) page and the cursor state
4789** is set to CURSOR_VALID.
4790**
4791** If this function returns successfully, it may be assumed that the
4792** page-header flags indicate that the [virtual] root-page is the expected
4793** kind of b-tree page (i.e. if when opening the cursor the caller did not
4794** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4795** indicating a table b-tree, or if the caller did specify a KeyInfo
4796** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4797** b-tree).
drh72f82862001-05-24 21:06:34 +00004798*/
drh5e2f8b92001-05-28 00:41:15 +00004799static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004800 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004801 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004802
drh1fee73e2007-08-29 04:00:57 +00004803 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004804 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4805 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4806 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4807 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4808 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004809 assert( pCur->skipNext!=SQLITE_OK );
4810 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004811 }
danielk1977be51a652008-10-08 17:58:48 +00004812 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004813 }
danielk197771d5d2c2008-09-29 11:49:47 +00004814
4815 if( pCur->iPage>=0 ){
drhbbf0f862015-06-27 14:59:26 +00004816 while( pCur->iPage ){
4817 assert( pCur->apPage[pCur->iPage]!=0 );
4818 releasePageNotNull(pCur->apPage[pCur->iPage--]);
4819 }
dana205a482011-08-27 18:48:57 +00004820 }else if( pCur->pgnoRoot==0 ){
4821 pCur->eState = CURSOR_INVALID;
4822 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004823 }else{
drh28f58dd2015-06-27 19:45:03 +00004824 assert( pCur->iPage==(-1) );
drh4e8fe3f2013-12-06 23:25:27 +00004825 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
drh15a00212015-06-27 20:55:00 +00004826 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00004827 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004828 pCur->eState = CURSOR_INVALID;
4829 return rc;
4830 }
danielk1977172114a2009-07-07 15:47:12 +00004831 pCur->iPage = 0;
drh408efc02015-06-27 22:49:10 +00004832 pCur->curIntKey = pCur->apPage[0]->intKey;
drhc39e0002004-05-07 23:50:57 +00004833 }
danielk197771d5d2c2008-09-29 11:49:47 +00004834 pRoot = pCur->apPage[0];
4835 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00004836
4837 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4838 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4839 ** NULL, the caller expects a table b-tree. If this is not the case,
4840 ** return an SQLITE_CORRUPT error.
4841 **
4842 ** Earlier versions of SQLite assumed that this test could not fail
4843 ** if the root page was already loaded when this function was called (i.e.
4844 ** if pCur->iPage>=0). But this is not so if the database is corrupted
4845 ** in such a way that page pRoot is linked into a second b-tree table
4846 ** (or the freelist). */
4847 assert( pRoot->intKey==1 || pRoot->intKey==0 );
4848 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4849 return SQLITE_CORRUPT_BKPT;
4850 }
danielk19778f880a82009-07-13 09:41:45 +00004851
danielk197771d5d2c2008-09-29 11:49:47 +00004852 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004853 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004854 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00004855
drh4e8fe3f2013-12-06 23:25:27 +00004856 if( pRoot->nCell>0 ){
4857 pCur->eState = CURSOR_VALID;
4858 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00004859 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004860 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004861 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004862 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004863 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004864 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004865 pCur->eState = CURSOR_INVALID;
drh8856d6a2004-04-29 14:42:46 +00004866 }
4867 return rc;
drh72f82862001-05-24 21:06:34 +00004868}
drh2af926b2001-05-15 00:39:25 +00004869
drh5e2f8b92001-05-28 00:41:15 +00004870/*
4871** Move the cursor down to the left-most leaf entry beneath the
4872** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004873**
4874** The left-most leaf is the one with the smallest key - the first
4875** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004876*/
4877static int moveToLeftmost(BtCursor *pCur){
4878 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004879 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004880 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004881
drh1fee73e2007-08-29 04:00:57 +00004882 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004883 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004884 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4885 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4886 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004887 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004888 }
drhd677b3d2007-08-20 22:48:41 +00004889 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004890}
4891
drh2dcc9aa2002-12-04 13:40:25 +00004892/*
4893** Move the cursor down to the right-most leaf entry beneath the
4894** page to which it is currently pointing. Notice the difference
4895** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4896** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4897** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004898**
4899** The right-most entry is the one with the largest key - the last
4900** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004901*/
4902static int moveToRightmost(BtCursor *pCur){
4903 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004904 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004905 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004906
drh1fee73e2007-08-29 04:00:57 +00004907 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004908 assert( pCur->eState==CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00004909 while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004910 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004911 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004912 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00004913 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004914 }
drhee6438d2014-09-01 13:29:32 +00004915 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
4916 assert( pCur->info.nSize==0 );
4917 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
4918 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00004919}
4920
drh5e00f6c2001-09-13 13:46:56 +00004921/* Move the cursor to the first entry in the table. Return SQLITE_OK
4922** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004923** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004924*/
drh3aac2dd2004-04-26 14:10:20 +00004925int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004926 int rc;
drhd677b3d2007-08-20 22:48:41 +00004927
drh1fee73e2007-08-29 04:00:57 +00004928 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004929 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004930 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004931 if( rc==SQLITE_OK ){
4932 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004933 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004934 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004935 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004936 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004937 *pRes = 0;
4938 rc = moveToLeftmost(pCur);
4939 }
drh5e00f6c2001-09-13 13:46:56 +00004940 }
drh5e00f6c2001-09-13 13:46:56 +00004941 return rc;
4942}
drh5e2f8b92001-05-28 00:41:15 +00004943
drh9562b552002-02-19 15:00:07 +00004944/* Move the cursor to the last entry in the table. Return SQLITE_OK
4945** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004946** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004947*/
drh3aac2dd2004-04-26 14:10:20 +00004948int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004949 int rc;
drhd677b3d2007-08-20 22:48:41 +00004950
drh1fee73e2007-08-29 04:00:57 +00004951 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004952 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004953
4954 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00004955 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00004956#ifdef SQLITE_DEBUG
4957 /* This block serves to assert() that the cursor really does point
4958 ** to the last entry in the b-tree. */
4959 int ii;
4960 for(ii=0; ii<pCur->iPage; ii++){
4961 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4962 }
4963 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4964 assert( pCur->apPage[pCur->iPage]->leaf );
4965#endif
4966 return SQLITE_OK;
4967 }
4968
drh9562b552002-02-19 15:00:07 +00004969 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004970 if( rc==SQLITE_OK ){
4971 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00004972 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004973 *pRes = 1;
4974 }else{
4975 assert( pCur->eState==CURSOR_VALID );
4976 *pRes = 0;
4977 rc = moveToRightmost(pCur);
drh036dbec2014-03-11 23:40:44 +00004978 if( rc==SQLITE_OK ){
4979 pCur->curFlags |= BTCF_AtLast;
4980 }else{
4981 pCur->curFlags &= ~BTCF_AtLast;
4982 }
4983
drhd677b3d2007-08-20 22:48:41 +00004984 }
drh9562b552002-02-19 15:00:07 +00004985 }
drh9562b552002-02-19 15:00:07 +00004986 return rc;
4987}
4988
drhe14006d2008-03-25 17:23:32 +00004989/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004990** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004991**
drhe63d9992008-08-13 19:11:48 +00004992** For INTKEY tables, the intKey parameter is used. pIdxKey
4993** must be NULL. For index tables, pIdxKey is used and intKey
4994** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004995**
drh5e2f8b92001-05-28 00:41:15 +00004996** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004997** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004998** were present. The cursor might point to an entry that comes
4999** before or after the key.
5000**
drh64022502009-01-09 14:11:04 +00005001** An integer is written into *pRes which is the result of
5002** comparing the key with the entry to which the cursor is
5003** pointing. The meaning of the integer written into
5004** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005005**
5006** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005007** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005008** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005009**
5010** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005011** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00005012**
5013** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005014** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00005015**
drha059ad02001-04-17 20:09:11 +00005016*/
drhe63d9992008-08-13 19:11:48 +00005017int sqlite3BtreeMovetoUnpacked(
5018 BtCursor *pCur, /* The cursor to be moved */
5019 UnpackedRecord *pIdxKey, /* Unpacked index key */
5020 i64 intKey, /* The table key */
5021 int biasRight, /* If true, bias the search to the high end */
5022 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005023){
drh72f82862001-05-24 21:06:34 +00005024 int rc;
dan3b9330f2014-02-27 20:44:18 +00005025 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00005026
drh1fee73e2007-08-29 04:00:57 +00005027 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005028 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005029 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00005030 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00005031
5032 /* If the cursor is already positioned at the point we are trying
5033 ** to move to, then just return without doing any work */
drh036dbec2014-03-11 23:40:44 +00005034 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
drhc75d8862015-06-27 23:55:20 +00005035 && pCur->curIntKey
danielk197771d5d2c2008-09-29 11:49:47 +00005036 ){
drhe63d9992008-08-13 19:11:48 +00005037 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005038 *pRes = 0;
5039 return SQLITE_OK;
5040 }
drh036dbec2014-03-11 23:40:44 +00005041 if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00005042 *pRes = -1;
5043 return SQLITE_OK;
5044 }
5045 }
5046
dan1fed5da2014-02-25 21:01:25 +00005047 if( pIdxKey ){
5048 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00005049 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00005050 assert( pIdxKey->default_rc==1
5051 || pIdxKey->default_rc==0
5052 || pIdxKey->default_rc==-1
5053 );
drh13a747e2014-03-03 21:46:55 +00005054 }else{
drhb6e8fd12014-03-06 01:56:33 +00005055 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00005056 }
5057
drh5e2f8b92001-05-28 00:41:15 +00005058 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005059 if( rc ){
5060 return rc;
5061 }
dana205a482011-08-27 18:48:57 +00005062 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
5063 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
5064 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00005065 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00005066 *pRes = -1;
dana205a482011-08-27 18:48:57 +00005067 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00005068 return SQLITE_OK;
5069 }
drhc75d8862015-06-27 23:55:20 +00005070 assert( pCur->apPage[0]->intKey==pCur->curIntKey );
5071 assert( pCur->curIntKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00005072 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005073 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005074 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00005075 MemPage *pPage = pCur->apPage[pCur->iPage];
drhec3e6b12013-11-25 02:38:55 +00005076 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005077
5078 /* pPage->nCell must be greater than zero. If this is the root-page
5079 ** the cursor would have been INVALID above and this for(;;) loop
5080 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005081 ** would have already detected db corruption. Similarly, pPage must
5082 ** be the right kind (index or table) of b-tree page. Otherwise
5083 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005084 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005085 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005086 lwr = 0;
5087 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00005088 assert( biasRight==0 || biasRight==1 );
5089 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drhd793f442013-11-25 14:10:15 +00005090 pCur->aiIdx[pCur->iPage] = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00005091 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00005092 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00005093 i64 nCellKey;
drhf44890a2015-06-27 03:58:15 +00005094 pCell = findCellPastPtr(pPage, idx);
drh3e28ff52014-09-24 00:59:08 +00005095 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00005096 while( 0x80 <= *(pCell++) ){
5097 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
5098 }
drhd172f862006-01-12 15:01:15 +00005099 }
drha2c20e42008-03-29 16:01:04 +00005100 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00005101 if( nCellKey<intKey ){
5102 lwr = idx+1;
5103 if( lwr>upr ){ c = -1; break; }
5104 }else if( nCellKey>intKey ){
5105 upr = idx-1;
5106 if( lwr>upr ){ c = +1; break; }
5107 }else{
5108 assert( nCellKey==intKey );
drh036dbec2014-03-11 23:40:44 +00005109 pCur->curFlags |= BTCF_ValidNKey;
drhec3e6b12013-11-25 02:38:55 +00005110 pCur->info.nKey = nCellKey;
drhd793f442013-11-25 14:10:15 +00005111 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005112 if( !pPage->leaf ){
5113 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00005114 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00005115 }else{
5116 *pRes = 0;
5117 rc = SQLITE_OK;
5118 goto moveto_finish;
5119 }
drhd793f442013-11-25 14:10:15 +00005120 }
drhebf10b12013-11-25 17:38:26 +00005121 assert( lwr+upr>=0 );
5122 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00005123 }
5124 }else{
5125 for(;;){
drhc6827502015-05-28 15:14:32 +00005126 int nCell; /* Size of the pCell cell in bytes */
drhf44890a2015-06-27 03:58:15 +00005127 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005128
drhb2eced52010-08-12 02:41:12 +00005129 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00005130 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00005131 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00005132 ** varint. This information is used to attempt to avoid parsing
5133 ** the entire cell by checking for the cases where the record is
5134 ** stored entirely within the b-tree page by inspecting the first
5135 ** 2 bytes of the cell.
5136 */
drhec3e6b12013-11-25 02:38:55 +00005137 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00005138 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00005139 /* This branch runs if the record-size field of the cell is a
5140 ** single byte varint and the record fits entirely on the main
5141 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00005142 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005143 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00005144 }else if( !(pCell[1] & 0x80)
5145 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5146 ){
5147 /* The record-size field is a 2 byte varint and the record
5148 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00005149 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005150 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00005151 }else{
danielk197711c327a2009-05-04 19:01:26 +00005152 /* The record flows over onto one or more overflow pages. In
5153 ** this case the whole cell needs to be parsed, a buffer allocated
5154 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00005155 ** buffer before VdbeRecordCompare() can be called.
5156 **
5157 ** If the record is corrupt, the xRecordCompare routine may read
5158 ** up to two varints past the end of the buffer. An extra 18
5159 ** bytes of padding is allocated at the end of the buffer in
5160 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00005161 void *pCellKey;
5162 u8 * const pCellBody = pCell - pPage->childPtrSize;
drh5fa60512015-06-19 17:19:34 +00005163 pPage->xParseCell(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00005164 nCell = (int)pCur->info.nKey;
drhc6827502015-05-28 15:14:32 +00005165 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5166 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5167 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5168 testcase( nCell==2 ); /* Minimum legal index key size */
dan3548db72015-05-27 14:21:05 +00005169 if( nCell<2 ){
5170 rc = SQLITE_CORRUPT_BKPT;
5171 goto moveto_finish;
5172 }
5173 pCellKey = sqlite3Malloc( nCell+18 );
danielk19776507ecb2008-03-25 09:56:44 +00005174 if( pCellKey==0 ){
5175 rc = SQLITE_NOMEM;
5176 goto moveto_finish;
5177 }
drhd793f442013-11-25 14:10:15 +00005178 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan5a500af2014-03-11 20:33:04 +00005179 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
drhec9b31f2009-08-25 13:53:49 +00005180 if( rc ){
5181 sqlite3_free(pCellKey);
5182 goto moveto_finish;
5183 }
drh75179de2014-09-16 14:37:35 +00005184 c = xRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00005185 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00005186 }
dan38fdead2014-04-01 10:19:02 +00005187 assert(
5188 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00005189 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00005190 );
drhbb933ef2013-11-25 15:01:38 +00005191 if( c<0 ){
5192 lwr = idx+1;
5193 }else if( c>0 ){
5194 upr = idx-1;
5195 }else{
5196 assert( c==0 );
drh64022502009-01-09 14:11:04 +00005197 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00005198 rc = SQLITE_OK;
drhd793f442013-11-25 14:10:15 +00005199 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan38fdead2014-04-01 10:19:02 +00005200 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00005201 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00005202 }
drhebf10b12013-11-25 17:38:26 +00005203 if( lwr>upr ) break;
5204 assert( lwr+upr>=0 );
5205 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005206 }
drh72f82862001-05-24 21:06:34 +00005207 }
drhb07028f2011-10-14 21:49:18 +00005208 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005209 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005210 if( pPage->leaf ){
drhec3e6b12013-11-25 02:38:55 +00005211 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhbb933ef2013-11-25 15:01:38 +00005212 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005213 *pRes = c;
5214 rc = SQLITE_OK;
5215 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00005216 }
5217moveto_next_layer:
5218 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005219 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005220 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005221 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005222 }
drhf49661a2008-12-10 16:45:50 +00005223 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005224 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005225 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005226 }
drh1e968a02008-03-25 00:22:21 +00005227moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005228 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005229 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhe63d9992008-08-13 19:11:48 +00005230 return rc;
5231}
5232
drhd677b3d2007-08-20 22:48:41 +00005233
drh72f82862001-05-24 21:06:34 +00005234/*
drhc39e0002004-05-07 23:50:57 +00005235** Return TRUE if the cursor is not pointing at an entry of the table.
5236**
5237** TRUE will be returned after a call to sqlite3BtreeNext() moves
5238** past the last entry in the table or sqlite3BtreePrev() moves past
5239** the first entry. TRUE is also returned if the table is empty.
5240*/
5241int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005242 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5243 ** have been deleted? This API will need to change to return an error code
5244 ** as well as the boolean result value.
5245 */
5246 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005247}
5248
5249/*
drhbd03cae2001-06-02 02:40:57 +00005250** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00005251** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00005252** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00005253** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005254**
drhee6438d2014-09-01 13:29:32 +00005255** The main entry point is sqlite3BtreeNext(). That routine is optimized
5256** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5257** to the next cell on the current page. The (slower) btreeNext() helper
5258** routine is called when it is necessary to move to a different page or
5259** to restore the cursor.
5260**
drhe39a7322014-02-03 14:04:11 +00005261** The calling function will set *pRes to 0 or 1. The initial *pRes value
5262** will be 1 if the cursor being stepped corresponds to an SQL index and
5263** if this routine could have been skipped if that SQL index had been
5264** a unique index. Otherwise the caller will have set *pRes to zero.
5265** Zero is the common case. The btree implementation is free to use the
5266** initial *pRes value as a hint to improve performance, but the current
5267** SQLite btree implementation does not. (Note that the comdb2 btree
5268** implementation does use this hint, however.)
drh72f82862001-05-24 21:06:34 +00005269*/
drhee6438d2014-09-01 13:29:32 +00005270static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00005271 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005272 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005273 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005274
drh1fee73e2007-08-29 04:00:57 +00005275 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005276 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005277 assert( *pRes==0 );
drhf66f26a2013-08-19 20:04:10 +00005278 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005279 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005280 rc = restoreCursorPosition(pCur);
5281 if( rc!=SQLITE_OK ){
5282 return rc;
5283 }
5284 if( CURSOR_INVALID==pCur->eState ){
5285 *pRes = 1;
5286 return SQLITE_OK;
5287 }
drh9b47ee32013-08-20 03:13:51 +00005288 if( pCur->skipNext ){
5289 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5290 pCur->eState = CURSOR_VALID;
5291 if( pCur->skipNext>0 ){
5292 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005293 return SQLITE_OK;
5294 }
drhf66f26a2013-08-19 20:04:10 +00005295 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005296 }
danielk1977da184232006-01-05 11:34:32 +00005297 }
danielk1977da184232006-01-05 11:34:32 +00005298
danielk197771d5d2c2008-09-29 11:49:47 +00005299 pPage = pCur->apPage[pCur->iPage];
5300 idx = ++pCur->aiIdx[pCur->iPage];
5301 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00005302
5303 /* If the database file is corrupt, it is possible for the value of idx
5304 ** to be invalid here. This can only occur if a second cursor modifies
5305 ** the page while cursor pCur is holding a reference to it. Which can
5306 ** only happen if the database is corrupt in such a way as to link the
5307 ** page into more than one b-tree structure. */
5308 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005309
danielk197771d5d2c2008-09-29 11:49:47 +00005310 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005311 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005312 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005313 if( rc ) return rc;
5314 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005315 }
drh5e2f8b92001-05-28 00:41:15 +00005316 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005317 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00005318 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00005319 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00005320 return SQLITE_OK;
5321 }
danielk197730548662009-07-09 05:07:37 +00005322 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00005323 pPage = pCur->apPage[pCur->iPage];
5324 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005325 if( pPage->intKey ){
drhee6438d2014-09-01 13:29:32 +00005326 return sqlite3BtreeNext(pCur, pRes);
drh8b18dd42004-05-12 19:18:15 +00005327 }else{
drhee6438d2014-09-01 13:29:32 +00005328 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005329 }
drh8178a752003-01-05 21:41:40 +00005330 }
drh3aac2dd2004-04-26 14:10:20 +00005331 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005332 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005333 }else{
5334 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005335 }
drh72f82862001-05-24 21:06:34 +00005336}
drhee6438d2014-09-01 13:29:32 +00005337int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
5338 MemPage *pPage;
5339 assert( cursorHoldsMutex(pCur) );
5340 assert( pRes!=0 );
5341 assert( *pRes==0 || *pRes==1 );
5342 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5343 pCur->info.nSize = 0;
5344 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5345 *pRes = 0;
5346 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
5347 pPage = pCur->apPage[pCur->iPage];
5348 if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){
5349 pCur->aiIdx[pCur->iPage]--;
5350 return btreeNext(pCur, pRes);
5351 }
5352 if( pPage->leaf ){
5353 return SQLITE_OK;
5354 }else{
5355 return moveToLeftmost(pCur);
5356 }
5357}
drh72f82862001-05-24 21:06:34 +00005358
drh3b7511c2001-05-26 13:15:44 +00005359/*
drh2dcc9aa2002-12-04 13:40:25 +00005360** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00005361** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00005362** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00005363** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005364**
drhee6438d2014-09-01 13:29:32 +00005365** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5366** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005367** to the previous cell on the current page. The (slower) btreePrevious()
5368** helper routine is called when it is necessary to move to a different page
5369** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005370**
drhe39a7322014-02-03 14:04:11 +00005371** The calling function will set *pRes to 0 or 1. The initial *pRes value
5372** will be 1 if the cursor being stepped corresponds to an SQL index and
5373** if this routine could have been skipped if that SQL index had been
5374** a unique index. Otherwise the caller will have set *pRes to zero.
5375** Zero is the common case. The btree implementation is free to use the
5376** initial *pRes value as a hint to improve performance, but the current
5377** SQLite btree implementation does not. (Note that the comdb2 btree
5378** implementation does use this hint, however.)
drh2dcc9aa2002-12-04 13:40:25 +00005379*/
drhee6438d2014-09-01 13:29:32 +00005380static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00005381 int rc;
drh8178a752003-01-05 21:41:40 +00005382 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005383
drh1fee73e2007-08-29 04:00:57 +00005384 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005385 assert( pRes!=0 );
drhee6438d2014-09-01 13:29:32 +00005386 assert( *pRes==0 );
drh9b47ee32013-08-20 03:13:51 +00005387 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005388 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5389 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005390 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005391 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005392 if( rc!=SQLITE_OK ){
5393 return rc;
drhf66f26a2013-08-19 20:04:10 +00005394 }
5395 if( CURSOR_INVALID==pCur->eState ){
5396 *pRes = 1;
5397 return SQLITE_OK;
5398 }
drh9b47ee32013-08-20 03:13:51 +00005399 if( pCur->skipNext ){
5400 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5401 pCur->eState = CURSOR_VALID;
5402 if( pCur->skipNext<0 ){
5403 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005404 return SQLITE_OK;
5405 }
drhf66f26a2013-08-19 20:04:10 +00005406 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005407 }
danielk1977da184232006-01-05 11:34:32 +00005408 }
danielk1977da184232006-01-05 11:34:32 +00005409
danielk197771d5d2c2008-09-29 11:49:47 +00005410 pPage = pCur->apPage[pCur->iPage];
5411 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005412 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00005413 int idx = pCur->aiIdx[pCur->iPage];
5414 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005415 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005416 rc = moveToRightmost(pCur);
5417 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00005418 while( pCur->aiIdx[pCur->iPage]==0 ){
5419 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005420 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00005421 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00005422 return SQLITE_OK;
5423 }
danielk197730548662009-07-09 05:07:37 +00005424 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005425 }
drhee6438d2014-09-01 13:29:32 +00005426 assert( pCur->info.nSize==0 );
5427 assert( (pCur->curFlags & (BTCF_ValidNKey|BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005428
5429 pCur->aiIdx[pCur->iPage]--;
5430 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00005431 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00005432 rc = sqlite3BtreePrevious(pCur, pRes);
5433 }else{
5434 rc = SQLITE_OK;
5435 }
drh2dcc9aa2002-12-04 13:40:25 +00005436 }
drh2dcc9aa2002-12-04 13:40:25 +00005437 return rc;
5438}
drhee6438d2014-09-01 13:29:32 +00005439int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
5440 assert( cursorHoldsMutex(pCur) );
5441 assert( pRes!=0 );
5442 assert( *pRes==0 || *pRes==1 );
5443 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5444 *pRes = 0;
5445 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5446 pCur->info.nSize = 0;
5447 if( pCur->eState!=CURSOR_VALID
5448 || pCur->aiIdx[pCur->iPage]==0
5449 || pCur->apPage[pCur->iPage]->leaf==0
5450 ){
5451 return btreePrevious(pCur, pRes);
5452 }
5453 pCur->aiIdx[pCur->iPage]--;
5454 return SQLITE_OK;
5455}
drh2dcc9aa2002-12-04 13:40:25 +00005456
5457/*
drh3b7511c2001-05-26 13:15:44 +00005458** Allocate a new page from the database file.
5459**
danielk19773b8a05f2007-03-19 17:44:26 +00005460** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005461** has already been called on the new page.) The new page has also
5462** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005463** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005464**
5465** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00005466** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00005467**
drh82e647d2013-03-02 03:25:55 +00005468** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005469** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005470** attempt to keep related pages close to each other in the database file,
5471** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005472**
drh82e647d2013-03-02 03:25:55 +00005473** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5474** anywhere on the free-list, then it is guaranteed to be returned. If
5475** eMode is BTALLOC_LT then the page returned will be less than or equal
5476** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5477** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005478*/
drh4f0c5872007-03-26 22:05:01 +00005479static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005480 BtShared *pBt, /* The btree */
5481 MemPage **ppPage, /* Store pointer to the allocated page here */
5482 Pgno *pPgno, /* Store the page number here */
5483 Pgno nearby, /* Search for a page near this one */
5484 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005485){
drh3aac2dd2004-04-26 14:10:20 +00005486 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005487 int rc;
drh35cd6432009-06-05 14:17:21 +00005488 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005489 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005490 MemPage *pTrunk = 0;
5491 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005492 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005493
drh1fee73e2007-08-29 04:00:57 +00005494 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005495 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005496 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005497 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005498 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5499 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005500 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005501 testcase( n==mxPage-1 );
5502 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005503 return SQLITE_CORRUPT_BKPT;
5504 }
drh3aac2dd2004-04-26 14:10:20 +00005505 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005506 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005507 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005508 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00005509 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005510
drh82e647d2013-03-02 03:25:55 +00005511 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005512 ** shows that the page 'nearby' is somewhere on the free-list, then
5513 ** the entire-list will be searched for that page.
5514 */
5515#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005516 if( eMode==BTALLOC_EXACT ){
5517 if( nearby<=mxPage ){
5518 u8 eType;
5519 assert( nearby>0 );
5520 assert( pBt->autoVacuum );
5521 rc = ptrmapGet(pBt, nearby, &eType, 0);
5522 if( rc ) return rc;
5523 if( eType==PTRMAP_FREEPAGE ){
5524 searchList = 1;
5525 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005526 }
dan51f0b6d2013-02-22 20:16:34 +00005527 }else if( eMode==BTALLOC_LE ){
5528 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005529 }
5530#endif
5531
5532 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5533 ** first free-list trunk page. iPrevTrunk is initially 1.
5534 */
danielk19773b8a05f2007-03-19 17:44:26 +00005535 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005536 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005537 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005538
5539 /* The code within this loop is run only once if the 'searchList' variable
5540 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005541 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5542 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005543 */
5544 do {
5545 pPrevTrunk = pTrunk;
5546 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005547 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5548 ** is the page number of the next freelist trunk page in the list or
5549 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005550 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005551 }else{
drh113762a2014-11-19 16:36:25 +00005552 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5553 ** stores the page number of the first page of the freelist, or zero if
5554 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005555 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005556 }
drhdf35a082009-07-09 02:24:35 +00005557 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00005558 if( iTrunk>mxPage || nSearch++ > n ){
drh1662b5a2009-06-04 19:06:09 +00005559 rc = SQLITE_CORRUPT_BKPT;
5560 }else{
drh7e8c6f12015-05-28 03:28:27 +00005561 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005562 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005563 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005564 pTrunk = 0;
5565 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005566 }
drhb07028f2011-10-14 21:49:18 +00005567 assert( pTrunk!=0 );
5568 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005569 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5570 ** is the number of leaf page pointers to follow. */
5571 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005572 if( k==0 && !searchList ){
5573 /* The trunk has no leaves and the list is not being searched.
5574 ** So extract the trunk page itself and use it as the newly
5575 ** allocated page */
5576 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005577 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005578 if( rc ){
5579 goto end_allocate_page;
5580 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005581 *pPgno = iTrunk;
5582 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5583 *ppPage = pTrunk;
5584 pTrunk = 0;
5585 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005586 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005587 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00005588 rc = SQLITE_CORRUPT_BKPT;
5589 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005590#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005591 }else if( searchList
5592 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5593 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005594 /* The list is being searched and this trunk page is the page
5595 ** to allocate, regardless of whether it has leaves.
5596 */
dan51f0b6d2013-02-22 20:16:34 +00005597 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005598 *ppPage = pTrunk;
5599 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005600 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005601 if( rc ){
5602 goto end_allocate_page;
5603 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005604 if( k==0 ){
5605 if( !pPrevTrunk ){
5606 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5607 }else{
danf48c3552010-08-23 15:41:24 +00005608 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5609 if( rc!=SQLITE_OK ){
5610 goto end_allocate_page;
5611 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005612 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5613 }
5614 }else{
5615 /* The trunk page is required by the caller but it contains
5616 ** pointers to free-list leaves. The first leaf becomes a trunk
5617 ** page in this case.
5618 */
5619 MemPage *pNewTrunk;
5620 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005621 if( iNewTrunk>mxPage ){
5622 rc = SQLITE_CORRUPT_BKPT;
5623 goto end_allocate_page;
5624 }
drhdf35a082009-07-09 02:24:35 +00005625 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00005626 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005627 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005628 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005629 }
danielk19773b8a05f2007-03-19 17:44:26 +00005630 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005631 if( rc!=SQLITE_OK ){
5632 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005633 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005634 }
5635 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5636 put4byte(&pNewTrunk->aData[4], k-1);
5637 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005638 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005639 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005640 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005641 put4byte(&pPage1->aData[32], iNewTrunk);
5642 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005643 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005644 if( rc ){
5645 goto end_allocate_page;
5646 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005647 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5648 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005649 }
5650 pTrunk = 0;
5651 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5652#endif
danielk1977e5765212009-06-17 11:13:28 +00005653 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005654 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005655 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005656 Pgno iPage;
5657 unsigned char *aData = pTrunk->aData;
5658 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005659 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005660 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005661 if( eMode==BTALLOC_LE ){
5662 for(i=0; i<k; i++){
5663 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005664 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005665 closest = i;
5666 break;
5667 }
5668 }
5669 }else{
5670 int dist;
5671 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5672 for(i=1; i<k; i++){
5673 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5674 if( d2<dist ){
5675 closest = i;
5676 dist = d2;
5677 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005678 }
5679 }
5680 }else{
5681 closest = 0;
5682 }
5683
5684 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005685 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005686 if( iPage>mxPage ){
5687 rc = SQLITE_CORRUPT_BKPT;
5688 goto end_allocate_page;
5689 }
drhdf35a082009-07-09 02:24:35 +00005690 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005691 if( !searchList
5692 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5693 ){
danielk1977bea2a942009-01-20 17:06:27 +00005694 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005695 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005696 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5697 ": %d more free pages\n",
5698 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005699 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5700 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005701 if( closest<k-1 ){
5702 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5703 }
5704 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00005705 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00005706 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005707 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005708 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005709 if( rc!=SQLITE_OK ){
5710 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00005711 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005712 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005713 }
5714 searchList = 0;
5715 }
drhee696e22004-08-30 16:52:17 +00005716 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005717 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005718 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005719 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005720 }else{
danbc1a3c62013-02-23 16:40:46 +00005721 /* There are no pages on the freelist, so append a new page to the
5722 ** database image.
5723 **
5724 ** Normally, new pages allocated by this block can be requested from the
5725 ** pager layer with the 'no-content' flag set. This prevents the pager
5726 ** from trying to read the pages content from disk. However, if the
5727 ** current transaction has already run one or more incremental-vacuum
5728 ** steps, then the page we are about to allocate may contain content
5729 ** that is required in the event of a rollback. In this case, do
5730 ** not set the no-content flag. This causes the pager to load and journal
5731 ** the current page content before overwriting it.
5732 **
5733 ** Note that the pager will not actually attempt to load or journal
5734 ** content for any page that really does lie past the end of the database
5735 ** file on disk. So the effects of disabling the no-content optimization
5736 ** here are confined to those pages that lie between the end of the
5737 ** database image and the end of the database file.
5738 */
drh3f387402014-09-24 01:23:00 +00005739 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00005740
drhdd3cd972010-03-27 17:12:36 +00005741 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5742 if( rc ) return rc;
5743 pBt->nPage++;
5744 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005745
danielk1977afcdd022004-10-31 16:25:42 +00005746#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005747 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005748 /* If *pPgno refers to a pointer-map page, allocate two new pages
5749 ** at the end of the file instead of one. The first allocated page
5750 ** becomes a new pointer-map page, the second is used by the caller.
5751 */
danielk1977ac861692009-03-28 10:54:22 +00005752 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005753 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5754 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005755 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005756 if( rc==SQLITE_OK ){
5757 rc = sqlite3PagerWrite(pPg->pDbPage);
5758 releasePage(pPg);
5759 }
5760 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005761 pBt->nPage++;
5762 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005763 }
5764#endif
drhdd3cd972010-03-27 17:12:36 +00005765 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5766 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005767
danielk1977599fcba2004-11-08 07:13:13 +00005768 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005769 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00005770 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005771 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005772 if( rc!=SQLITE_OK ){
5773 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00005774 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005775 }
drh3a4c1412004-05-09 20:40:11 +00005776 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005777 }
danielk1977599fcba2004-11-08 07:13:13 +00005778
5779 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005780
5781end_allocate_page:
5782 releasePage(pTrunk);
5783 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00005784 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
5785 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00005786 return rc;
5787}
5788
5789/*
danielk1977bea2a942009-01-20 17:06:27 +00005790** This function is used to add page iPage to the database file free-list.
5791** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005792**
danielk1977bea2a942009-01-20 17:06:27 +00005793** The value passed as the second argument to this function is optional.
5794** If the caller happens to have a pointer to the MemPage object
5795** corresponding to page iPage handy, it may pass it as the second value.
5796** Otherwise, it may pass NULL.
5797**
5798** If a pointer to a MemPage object is passed as the second argument,
5799** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005800*/
danielk1977bea2a942009-01-20 17:06:27 +00005801static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5802 MemPage *pTrunk = 0; /* Free-list trunk page */
5803 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5804 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5805 MemPage *pPage; /* Page being freed. May be NULL. */
5806 int rc; /* Return Code */
5807 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005808
danielk1977bea2a942009-01-20 17:06:27 +00005809 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00005810 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00005811 assert( !pMemPage || pMemPage->pgno==iPage );
5812
danfb0246b2015-05-26 12:18:17 +00005813 if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +00005814 if( pMemPage ){
5815 pPage = pMemPage;
5816 sqlite3PagerRef(pPage->pDbPage);
5817 }else{
5818 pPage = btreePageLookup(pBt, iPage);
5819 }
drh3aac2dd2004-04-26 14:10:20 +00005820
drha34b6762004-05-07 13:30:42 +00005821 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005822 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005823 if( rc ) goto freepage_out;
5824 nFree = get4byte(&pPage1->aData[36]);
5825 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005826
drhc9166342012-01-05 23:32:06 +00005827 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005828 /* If the secure_delete option is enabled, then
5829 ** always fully overwrite deleted information with zeros.
5830 */
drhb00fc3b2013-08-21 23:42:32 +00005831 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00005832 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005833 ){
5834 goto freepage_out;
5835 }
5836 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005837 }
drhfcce93f2006-02-22 03:08:32 +00005838
danielk1977687566d2004-11-02 12:56:41 +00005839 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005840 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005841 */
danielk197785d90ca2008-07-19 14:25:15 +00005842 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005843 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005844 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005845 }
danielk1977687566d2004-11-02 12:56:41 +00005846
danielk1977bea2a942009-01-20 17:06:27 +00005847 /* Now manipulate the actual database free-list structure. There are two
5848 ** possibilities. If the free-list is currently empty, or if the first
5849 ** trunk page in the free-list is full, then this page will become a
5850 ** new free-list trunk page. Otherwise, it will become a leaf of the
5851 ** first trunk page in the current free-list. This block tests if it
5852 ** is possible to add the page as a new free-list leaf.
5853 */
5854 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005855 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005856
5857 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00005858 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005859 if( rc!=SQLITE_OK ){
5860 goto freepage_out;
5861 }
5862
5863 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005864 assert( pBt->usableSize>32 );
5865 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005866 rc = SQLITE_CORRUPT_BKPT;
5867 goto freepage_out;
5868 }
drheeb844a2009-08-08 18:01:07 +00005869 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005870 /* In this case there is room on the trunk page to insert the page
5871 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005872 **
5873 ** Note that the trunk page is not really full until it contains
5874 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5875 ** coded. But due to a coding error in versions of SQLite prior to
5876 ** 3.6.0, databases with freelist trunk pages holding more than
5877 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5878 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005879 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005880 ** for now. At some point in the future (once everyone has upgraded
5881 ** to 3.6.0 or later) we should consider fixing the conditional above
5882 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00005883 **
5884 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
5885 ** avoid using the last six entries in the freelist trunk page array in
5886 ** order that database files created by newer versions of SQLite can be
5887 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00005888 */
danielk19773b8a05f2007-03-19 17:44:26 +00005889 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005890 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005891 put4byte(&pTrunk->aData[4], nLeaf+1);
5892 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005893 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005894 sqlite3PagerDontWrite(pPage->pDbPage);
5895 }
danielk1977bea2a942009-01-20 17:06:27 +00005896 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005897 }
drh3a4c1412004-05-09 20:40:11 +00005898 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005899 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005900 }
drh3b7511c2001-05-26 13:15:44 +00005901 }
danielk1977bea2a942009-01-20 17:06:27 +00005902
5903 /* If control flows to this point, then it was not possible to add the
5904 ** the page being freed as a leaf page of the first trunk in the free-list.
5905 ** Possibly because the free-list is empty, or possibly because the
5906 ** first trunk in the free-list is full. Either way, the page being freed
5907 ** will become the new first trunk page in the free-list.
5908 */
drhb00fc3b2013-08-21 23:42:32 +00005909 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00005910 goto freepage_out;
5911 }
5912 rc = sqlite3PagerWrite(pPage->pDbPage);
5913 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005914 goto freepage_out;
5915 }
5916 put4byte(pPage->aData, iTrunk);
5917 put4byte(&pPage->aData[4], 0);
5918 put4byte(&pPage1->aData[32], iPage);
5919 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5920
5921freepage_out:
5922 if( pPage ){
5923 pPage->isInit = 0;
5924 }
5925 releasePage(pPage);
5926 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005927 return rc;
5928}
drhc314dc72009-07-21 11:52:34 +00005929static void freePage(MemPage *pPage, int *pRC){
5930 if( (*pRC)==SQLITE_OK ){
5931 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5932 }
danielk1977bea2a942009-01-20 17:06:27 +00005933}
drh3b7511c2001-05-26 13:15:44 +00005934
5935/*
drh9bfdc252014-09-24 02:05:41 +00005936** Free any overflow pages associated with the given Cell. Write the
5937** local Cell size (the number of bytes on the original page, omitting
5938** overflow) into *pnSize.
drh3b7511c2001-05-26 13:15:44 +00005939*/
drh9bfdc252014-09-24 02:05:41 +00005940static int clearCell(
5941 MemPage *pPage, /* The page that contains the Cell */
5942 unsigned char *pCell, /* First byte of the Cell */
5943 u16 *pnSize /* Write the size of the Cell here */
5944){
danielk1977aef0bf62005-12-30 16:28:01 +00005945 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005946 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005947 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005948 int rc;
drh94440812007-03-06 11:42:19 +00005949 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005950 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005951
drh1fee73e2007-08-29 04:00:57 +00005952 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh5fa60512015-06-19 17:19:34 +00005953 pPage->xParseCell(pPage, pCell, &info);
drh9bfdc252014-09-24 02:05:41 +00005954 *pnSize = info.nSize;
drh6f11bef2004-05-13 01:12:56 +00005955 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005956 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005957 }
drhe42a9b42011-08-31 13:27:19 +00005958 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00005959 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00005960 }
drh6f11bef2004-05-13 01:12:56 +00005961 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005962 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005963 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005964 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00005965 assert( nOvfl>0 ||
5966 (CORRUPT_DB && (info.nPayload + ovflPageSize)<ovflPageSize)
5967 );
drh72365832007-03-06 15:53:44 +00005968 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005969 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005970 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005971 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005972 /* 0 is not a legal page number and page 1 cannot be an
5973 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5974 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005975 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005976 }
danielk1977bea2a942009-01-20 17:06:27 +00005977 if( nOvfl ){
5978 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5979 if( rc ) return rc;
5980 }
dan887d4b22010-02-25 12:09:16 +00005981
shaneh1da207e2010-03-09 14:41:12 +00005982 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005983 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5984 ){
5985 /* There is no reason any cursor should have an outstanding reference
5986 ** to an overflow page belonging to a cell that is being deleted/updated.
5987 ** So if there exists more than one reference to this page, then it
5988 ** must not really be an overflow page and the database must be corrupt.
5989 ** It is helpful to detect this before calling freePage2(), as
5990 ** freePage2() may zero the page contents if secure-delete mode is
5991 ** enabled. If this 'overflow' page happens to be a page that the
5992 ** caller is iterating through or using in some other way, this
5993 ** can be problematic.
5994 */
5995 rc = SQLITE_CORRUPT_BKPT;
5996 }else{
5997 rc = freePage2(pBt, pOvfl, ovflPgno);
5998 }
5999
danielk1977bea2a942009-01-20 17:06:27 +00006000 if( pOvfl ){
6001 sqlite3PagerUnref(pOvfl->pDbPage);
6002 }
drh3b7511c2001-05-26 13:15:44 +00006003 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00006004 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00006005 }
drh5e2f8b92001-05-28 00:41:15 +00006006 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00006007}
6008
6009/*
drh91025292004-05-03 19:49:32 +00006010** Create the byte sequence used to represent a cell on page pPage
6011** and write that byte sequence into pCell[]. Overflow pages are
6012** allocated and filled in as necessary. The calling procedure
6013** is responsible for making sure sufficient space has been allocated
6014** for pCell[].
6015**
6016** Note that pCell does not necessary need to point to the pPage->aData
6017** area. pCell might point to some temporary storage. The cell will
6018** be constructed in this temporary area then copied into pPage->aData
6019** later.
drh3b7511c2001-05-26 13:15:44 +00006020*/
6021static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006022 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006023 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00006024 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00006025 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00006026 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00006027 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006028){
drh3b7511c2001-05-26 13:15:44 +00006029 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006030 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00006031 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00006032 int spaceLeft;
6033 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00006034 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00006035 unsigned char *pPrior;
6036 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00006037 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00006038 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00006039 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006040
drh1fee73e2007-08-29 04:00:57 +00006041 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006042
drhc5053fb2008-11-27 02:22:10 +00006043 /* pPage is not necessarily writeable since pCell might be auxiliary
6044 ** buffer space that is separate from the pPage buffer area */
6045 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
6046 || sqlite3PagerIswriteable(pPage->pDbPage) );
6047
drh91025292004-05-03 19:49:32 +00006048 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006049 nHeader = pPage->childPtrSize;
6050 nPayload = nData + nZero;
drh3e28ff52014-09-24 00:59:08 +00006051 if( pPage->intKeyLeaf ){
drh6200c882014-09-23 22:36:25 +00006052 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh6f11bef2004-05-13 01:12:56 +00006053 }else{
drh6200c882014-09-23 22:36:25 +00006054 assert( nData==0 );
6055 assert( nZero==0 );
drh91025292004-05-03 19:49:32 +00006056 }
drh6f11bef2004-05-13 01:12:56 +00006057 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
drh6f11bef2004-05-13 01:12:56 +00006058
drh6200c882014-09-23 22:36:25 +00006059 /* Fill in the payload size */
drh3aac2dd2004-04-26 14:10:20 +00006060 if( pPage->intKey ){
6061 pSrc = pData;
6062 nSrc = nData;
drh91025292004-05-03 19:49:32 +00006063 nData = 0;
drhf49661a2008-12-10 16:45:50 +00006064 }else{
drh98ef0f62015-06-30 01:25:52 +00006065 assert( nKey<=0x7fffffff && pKey!=0 );
drh6200c882014-09-23 22:36:25 +00006066 nPayload = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00006067 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00006068 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00006069 }
drh6200c882014-09-23 22:36:25 +00006070 if( nPayload<=pPage->maxLocal ){
6071 n = nHeader + nPayload;
6072 testcase( n==3 );
6073 testcase( n==4 );
6074 if( n<4 ) n = 4;
6075 *pnSize = n;
6076 spaceLeft = nPayload;
6077 pPrior = pCell;
6078 }else{
6079 int mn = pPage->minLocal;
6080 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6081 testcase( n==pPage->maxLocal );
6082 testcase( n==pPage->maxLocal+1 );
6083 if( n > pPage->maxLocal ) n = mn;
6084 spaceLeft = n;
6085 *pnSize = n + nHeader + 4;
6086 pPrior = &pCell[nHeader+n];
6087 }
drh3aac2dd2004-04-26 14:10:20 +00006088 pPayload = &pCell[nHeader];
drh3b7511c2001-05-26 13:15:44 +00006089
drh6200c882014-09-23 22:36:25 +00006090 /* At this point variables should be set as follows:
6091 **
6092 ** nPayload Total payload size in bytes
6093 ** pPayload Begin writing payload here
6094 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6095 ** that means content must spill into overflow pages.
6096 ** *pnSize Size of the local cell (not counting overflow pages)
6097 ** pPrior Where to write the pgno of the first overflow page
6098 **
6099 ** Use a call to btreeParseCellPtr() to verify that the values above
6100 ** were computed correctly.
6101 */
6102#if SQLITE_DEBUG
6103 {
6104 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006105 pPage->xParseCell(pPage, pCell, &info);
drh6200c882014-09-23 22:36:25 +00006106 assert( nHeader=(int)(info.pPayload - pCell) );
6107 assert( info.nKey==nKey );
6108 assert( *pnSize == info.nSize );
6109 assert( spaceLeft == info.nLocal );
6110 assert( pPrior == &pCell[info.iOverflow] );
6111 }
6112#endif
6113
6114 /* Write the payload into the local Cell and any extra into overflow pages */
drh3b7511c2001-05-26 13:15:44 +00006115 while( nPayload>0 ){
6116 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00006117#ifndef SQLITE_OMIT_AUTOVACUUM
6118 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006119 if( pBt->autoVacuum ){
6120 do{
6121 pgnoOvfl++;
6122 } while(
6123 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6124 );
danielk1977b39f70b2007-05-17 18:28:11 +00006125 }
danielk1977afcdd022004-10-31 16:25:42 +00006126#endif
drhf49661a2008-12-10 16:45:50 +00006127 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006128#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006129 /* If the database supports auto-vacuum, and the second or subsequent
6130 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006131 ** for that page now.
6132 **
6133 ** If this is the first overflow page, then write a partial entry
6134 ** to the pointer-map. If we write nothing to this pointer-map slot,
6135 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006136 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006137 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006138 */
danielk19774ef24492007-05-23 09:52:41 +00006139 if( pBt->autoVacuum && rc==SQLITE_OK ){
6140 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006141 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006142 if( rc ){
6143 releasePage(pOvfl);
6144 }
danielk1977afcdd022004-10-31 16:25:42 +00006145 }
6146#endif
drh3b7511c2001-05-26 13:15:44 +00006147 if( rc ){
drh9b171272004-05-08 02:03:22 +00006148 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006149 return rc;
6150 }
drhc5053fb2008-11-27 02:22:10 +00006151
6152 /* If pToRelease is not zero than pPrior points into the data area
6153 ** of pToRelease. Make sure pToRelease is still writeable. */
6154 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6155
6156 /* If pPrior is part of the data area of pPage, then make sure pPage
6157 ** is still writeable */
6158 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6159 || sqlite3PagerIswriteable(pPage->pDbPage) );
6160
drh3aac2dd2004-04-26 14:10:20 +00006161 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006162 releasePage(pToRelease);
6163 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006164 pPrior = pOvfl->aData;
6165 put4byte(pPrior, 0);
6166 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006167 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006168 }
6169 n = nPayload;
6170 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00006171
6172 /* If pToRelease is not zero than pPayload points into the data area
6173 ** of pToRelease. Make sure pToRelease is still writeable. */
6174 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6175
6176 /* If pPayload is part of the data area of pPage, then make sure pPage
6177 ** is still writeable */
6178 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6179 || sqlite3PagerIswriteable(pPage->pDbPage) );
6180
drhb026e052007-05-02 01:34:31 +00006181 if( nSrc>0 ){
6182 if( n>nSrc ) n = nSrc;
6183 assert( pSrc );
6184 memcpy(pPayload, pSrc, n);
6185 }else{
6186 memset(pPayload, 0, n);
6187 }
drh3b7511c2001-05-26 13:15:44 +00006188 nPayload -= n;
drhde647132004-05-07 17:57:49 +00006189 pPayload += n;
drh9b171272004-05-08 02:03:22 +00006190 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00006191 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00006192 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00006193 if( nSrc==0 ){
6194 nSrc = nData;
6195 pSrc = pData;
6196 }
drhdd793422001-06-28 01:54:48 +00006197 }
drh9b171272004-05-08 02:03:22 +00006198 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006199 return SQLITE_OK;
6200}
6201
drh14acc042001-06-10 19:56:58 +00006202/*
6203** Remove the i-th cell from pPage. This routine effects pPage only.
6204** The cell content is not freed or deallocated. It is assumed that
6205** the cell content has been copied someplace else. This routine just
6206** removes the reference to the cell from pPage.
6207**
6208** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006209*/
drh98add2e2009-07-20 17:11:49 +00006210static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006211 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006212 u8 *data; /* pPage->aData */
6213 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006214 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006215 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006216
drh98add2e2009-07-20 17:11:49 +00006217 if( *pRC ) return;
6218
drh8c42ca92001-06-22 19:15:00 +00006219 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006220 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006221 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006222 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00006223 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006224 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006225 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006226 hdr = pPage->hdrOffset;
6227 testcase( pc==get2byte(&data[hdr+5]) );
6228 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00006229 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006230 *pRC = SQLITE_CORRUPT_BKPT;
6231 return;
shane0af3f892008-11-12 04:55:34 +00006232 }
shanedcc50b72008-11-13 18:29:50 +00006233 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006234 if( rc ){
6235 *pRC = rc;
6236 return;
shanedcc50b72008-11-13 18:29:50 +00006237 }
drh14acc042001-06-10 19:56:58 +00006238 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006239 if( pPage->nCell==0 ){
6240 memset(&data[hdr+1], 0, 4);
6241 data[hdr+7] = 0;
6242 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6243 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6244 - pPage->childPtrSize - 8;
6245 }else{
6246 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6247 put2byte(&data[hdr+3], pPage->nCell);
6248 pPage->nFree += 2;
6249 }
drh14acc042001-06-10 19:56:58 +00006250}
6251
6252/*
6253** Insert a new cell on pPage at cell index "i". pCell points to the
6254** content of the cell.
6255**
6256** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006257** will not fit, then make a copy of the cell content into pTemp if
6258** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006259** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006260** in pTemp or the original pCell) and also record its index.
6261** Allocating a new entry in pPage->aCell[] implies that
6262** pPage->nOverflow is incremented.
drh14acc042001-06-10 19:56:58 +00006263*/
drh98add2e2009-07-20 17:11:49 +00006264static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006265 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006266 int i, /* New cell becomes the i-th cell of the page */
6267 u8 *pCell, /* Content of the new cell */
6268 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006269 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006270 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6271 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006272){
drh383d30f2010-02-26 13:07:37 +00006273 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006274 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006275 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006276 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006277
drh98add2e2009-07-20 17:11:49 +00006278 if( *pRC ) return;
6279
drh43605152004-05-29 21:46:49 +00006280 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006281 assert( MX_CELL(pPage->pBt)<=10921 );
6282 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006283 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6284 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006285 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00006286 /* The cell should normally be sized correctly. However, when moving a
6287 ** malformed cell from a leaf page to an interior page, if the cell size
6288 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6289 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6290 ** the term after the || in the following assert(). */
drh25ada072015-06-19 15:07:14 +00006291 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00006292 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006293 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006294 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006295 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006296 }
danielk19774dbaa892009-06-16 16:50:22 +00006297 if( iChild ){
6298 put4byte(pCell, iChild);
6299 }
drh43605152004-05-29 21:46:49 +00006300 j = pPage->nOverflow++;
drh2cbd78b2012-02-02 19:37:18 +00006301 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
6302 pPage->apOvfl[j] = pCell;
6303 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006304
6305 /* When multiple overflows occur, they are always sequential and in
6306 ** sorted order. This invariants arise because multiple overflows can
6307 ** only occur when inserting divider cells into the parent page during
6308 ** balancing, and the dividers are adjacent and sorted.
6309 */
6310 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6311 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006312 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006313 int rc = sqlite3PagerWrite(pPage->pDbPage);
6314 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006315 *pRC = rc;
6316 return;
danielk19776e465eb2007-08-21 13:11:00 +00006317 }
6318 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006319 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00006320 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00006321 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006322 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006323 /* The allocateSpace() routine guarantees the following properties
6324 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00006325 assert( idx >= 0 );
6326 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00006327 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00006328 pPage->nFree -= (u16)(2 + sz);
drhd6176c42014-10-11 17:22:55 +00006329 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006330 if( iChild ){
6331 put4byte(&data[idx], iChild);
6332 }
drh2c8fb922015-06-25 19:53:48 +00006333 pIns = pPage->aCellIdx + i*2;
6334 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6335 put2byte(pIns, idx);
6336 pPage->nCell++;
6337 /* increment the cell count */
6338 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6339 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
danielk1977a19df672004-11-03 11:37:07 +00006340#ifndef SQLITE_OMIT_AUTOVACUUM
6341 if( pPage->pBt->autoVacuum ){
6342 /* The cell may contain a pointer to an overflow page. If so, write
6343 ** the entry for the overflow page into the pointer map.
6344 */
drh98add2e2009-07-20 17:11:49 +00006345 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006346 }
6347#endif
drh14acc042001-06-10 19:56:58 +00006348 }
6349}
6350
6351/*
drh1ffd2472015-06-23 02:37:30 +00006352** A CellArray object contains a cache of pointers and sizes for a
6353** consecutive sequence of cells that might be held multiple pages.
6354*/
6355typedef struct CellArray CellArray;
6356struct CellArray {
6357 int nCell; /* Number of cells in apCell[] */
6358 MemPage *pRef; /* Reference page */
6359 u8 **apCell; /* All cells begin balanced */
6360 u16 *szCell; /* Local size of all cells in apCell[] */
6361};
6362
6363/*
6364** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6365** computed.
6366*/
6367static void populateCellCache(CellArray *p, int idx, int N){
6368 assert( idx>=0 && idx+N<=p->nCell );
6369 while( N>0 ){
6370 assert( p->apCell[idx]!=0 );
6371 if( p->szCell[idx]==0 ){
6372 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6373 }else{
6374 assert( CORRUPT_DB ||
6375 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6376 }
6377 idx++;
6378 N--;
6379 }
6380}
6381
6382/*
6383** Return the size of the Nth element of the cell array
6384*/
6385static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6386 assert( N>=0 && N<p->nCell );
6387 assert( p->szCell[N]==0 );
6388 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6389 return p->szCell[N];
6390}
6391static u16 cachedCellSize(CellArray *p, int N){
6392 assert( N>=0 && N<p->nCell );
6393 if( p->szCell[N] ) return p->szCell[N];
6394 return computeCellSize(p, N);
6395}
6396
6397/*
dan8e9ba0c2014-10-14 17:27:04 +00006398** Array apCell[] contains pointers to nCell b-tree page cells. The
6399** szCell[] array contains the size in bytes of each cell. This function
6400** replaces the current contents of page pPg with the contents of the cell
6401** array.
6402**
6403** Some of the cells in apCell[] may currently be stored in pPg. This
6404** function works around problems caused by this by making a copy of any
6405** such cells before overwriting the page data.
6406**
6407** The MemPage.nFree field is invalidated by this function. It is the
6408** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006409*/
drh658873b2015-06-22 20:02:04 +00006410static int rebuildPage(
dan33ea4862014-10-09 19:35:37 +00006411 MemPage *pPg, /* Edit this page */
dan33ea4862014-10-09 19:35:37 +00006412 int nCell, /* Final number of cells on page */
dan09c68402014-10-11 20:00:24 +00006413 u8 **apCell, /* Array of cells */
6414 u16 *szCell /* Array of cell sizes */
dan33ea4862014-10-09 19:35:37 +00006415){
6416 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6417 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6418 const int usableSize = pPg->pBt->usableSize;
6419 u8 * const pEnd = &aData[usableSize];
6420 int i;
6421 u8 *pCellptr = pPg->aCellIdx;
6422 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6423 u8 *pData;
6424
6425 i = get2byte(&aData[hdr+5]);
6426 memcpy(&pTmp[i], &aData[i], usableSize - i);
dan33ea4862014-10-09 19:35:37 +00006427
dan8e9ba0c2014-10-14 17:27:04 +00006428 pData = pEnd;
dan33ea4862014-10-09 19:35:37 +00006429 for(i=0; i<nCell; i++){
6430 u8 *pCell = apCell[i];
6431 if( pCell>aData && pCell<pEnd ){
6432 pCell = &pTmp[pCell - aData];
6433 }
6434 pData -= szCell[i];
dan33ea4862014-10-09 19:35:37 +00006435 put2byte(pCellptr, (pData - aData));
6436 pCellptr += 2;
drh658873b2015-06-22 20:02:04 +00006437 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6438 memcpy(pData, pCell, szCell[i]);
drh25ada072015-06-19 15:07:14 +00006439 assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
drhea82b372015-06-23 21:35:28 +00006440 testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
dan33ea4862014-10-09 19:35:37 +00006441 }
6442
dand7b545b2014-10-13 18:03:27 +00006443 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006444 pPg->nCell = nCell;
6445 pPg->nOverflow = 0;
6446
6447 put2byte(&aData[hdr+1], 0);
6448 put2byte(&aData[hdr+3], pPg->nCell);
6449 put2byte(&aData[hdr+5], pData - aData);
6450 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00006451 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00006452}
6453
dan8e9ba0c2014-10-14 17:27:04 +00006454/*
6455** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6456** contains the size in bytes of each such cell. This function attempts to
6457** add the cells stored in the array to page pPg. If it cannot (because
6458** the page needs to be defragmented before the cells will fit), non-zero
6459** is returned. Otherwise, if the cells are added successfully, zero is
6460** returned.
6461**
6462** Argument pCellptr points to the first entry in the cell-pointer array
6463** (part of page pPg) to populate. After cell apCell[0] is written to the
6464** page body, a 16-bit offset is written to pCellptr. And so on, for each
6465** cell in the array. It is the responsibility of the caller to ensure
6466** that it is safe to overwrite this part of the cell-pointer array.
6467**
6468** When this function is called, *ppData points to the start of the
6469** content area on page pPg. If the size of the content area is extended,
6470** *ppData is updated to point to the new start of the content area
6471** before returning.
6472**
6473** Finally, argument pBegin points to the byte immediately following the
6474** end of the space required by this page for the cell-pointer area (for
6475** all cells - not just those inserted by the current call). If the content
6476** area must be extended to before this point in order to accomodate all
6477** cells in apCell[], then the cells do not fit and non-zero is returned.
6478*/
dand7b545b2014-10-13 18:03:27 +00006479static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00006480 MemPage *pPg, /* Page to add cells to */
6481 u8 *pBegin, /* End of cell-pointer array */
6482 u8 **ppData, /* IN/OUT: Page content -area pointer */
6483 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00006484 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00006485 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00006486 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006487){
6488 int i;
6489 u8 *aData = pPg->aData;
6490 u8 *pData = *ppData;
drhf7838932015-06-23 15:36:34 +00006491 int iEnd = iFirst + nCell;
dan23eba452014-10-24 18:43:57 +00006492 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhf7838932015-06-23 15:36:34 +00006493 for(i=iFirst; i<iEnd; i++){
6494 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00006495 u8 *pSlot;
drhf7838932015-06-23 15:36:34 +00006496 sz = cachedCellSize(pCArray, i);
drhb7580e82015-06-25 18:36:13 +00006497 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
dand7b545b2014-10-13 18:03:27 +00006498 pData -= sz;
6499 if( pData<pBegin ) return 1;
6500 pSlot = pData;
6501 }
drh48310f82015-10-10 16:41:28 +00006502 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
6503 ** database. But they might for a corrupt database. Hence use memmove()
6504 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
6505 assert( (pSlot+sz)<=pCArray->apCell[i]
6506 || pSlot>=(pCArray->apCell[i]+sz)
6507 || CORRUPT_DB );
6508 memmove(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00006509 put2byte(pCellptr, (pSlot - aData));
6510 pCellptr += 2;
6511 }
6512 *ppData = pData;
6513 return 0;
6514}
6515
dan8e9ba0c2014-10-14 17:27:04 +00006516/*
6517** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6518** contains the size in bytes of each such cell. This function adds the
6519** space associated with each cell in the array that is currently stored
6520** within the body of pPg to the pPg free-list. The cell-pointers and other
6521** fields of the page are not updated.
6522**
6523** This function returns the total number of cells added to the free-list.
6524*/
dand7b545b2014-10-13 18:03:27 +00006525static int pageFreeArray(
6526 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00006527 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00006528 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00006529 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006530){
6531 u8 * const aData = pPg->aData;
6532 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00006533 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00006534 int nRet = 0;
6535 int i;
drhf7838932015-06-23 15:36:34 +00006536 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00006537 u8 *pFree = 0;
6538 int szFree = 0;
6539
drhf7838932015-06-23 15:36:34 +00006540 for(i=iFirst; i<iEnd; i++){
6541 u8 *pCell = pCArray->apCell[i];
dan89ca0b32014-10-25 20:36:28 +00006542 if( pCell>=pStart && pCell<pEnd ){
drhf7838932015-06-23 15:36:34 +00006543 int sz;
6544 /* No need to use cachedCellSize() here. The sizes of all cells that
6545 ** are to be freed have already been computing while deciding which
6546 ** cells need freeing */
6547 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00006548 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00006549 if( pFree ){
6550 assert( pFree>aData && (pFree - aData)<65536 );
6551 freeSpace(pPg, (u16)(pFree - aData), szFree);
6552 }
dand7b545b2014-10-13 18:03:27 +00006553 pFree = pCell;
6554 szFree = sz;
dan89ca0b32014-10-25 20:36:28 +00006555 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00006556 }else{
6557 pFree = pCell;
6558 szFree += sz;
6559 }
6560 nRet++;
6561 }
6562 }
drhfefa0942014-11-05 21:21:08 +00006563 if( pFree ){
6564 assert( pFree>aData && (pFree - aData)<65536 );
6565 freeSpace(pPg, (u16)(pFree - aData), szFree);
6566 }
dand7b545b2014-10-13 18:03:27 +00006567 return nRet;
6568}
6569
dand7b545b2014-10-13 18:03:27 +00006570/*
drh5ab63772014-11-27 03:46:04 +00006571** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6572** pages being balanced. The current page, pPg, has pPg->nCell cells starting
6573** with apCell[iOld]. After balancing, this page should hold nNew cells
6574** starting at apCell[iNew].
6575**
6576** This routine makes the necessary adjustments to pPg so that it contains
6577** the correct cells after being balanced.
6578**
dand7b545b2014-10-13 18:03:27 +00006579** The pPg->nFree field is invalid when this function returns. It is the
6580** responsibility of the caller to set it correctly.
6581*/
drh658873b2015-06-22 20:02:04 +00006582static int editPage(
dan09c68402014-10-11 20:00:24 +00006583 MemPage *pPg, /* Edit this page */
6584 int iOld, /* Index of first cell currently on page */
6585 int iNew, /* Index of new first cell on page */
6586 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00006587 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00006588){
dand7b545b2014-10-13 18:03:27 +00006589 u8 * const aData = pPg->aData;
6590 const int hdr = pPg->hdrOffset;
6591 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6592 int nCell = pPg->nCell; /* Cells stored on pPg */
6593 u8 *pData;
6594 u8 *pCellptr;
6595 int i;
6596 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6597 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00006598
6599#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00006600 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6601 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00006602#endif
6603
dand7b545b2014-10-13 18:03:27 +00006604 /* Remove cells from the start and end of the page */
6605 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00006606 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
dand7b545b2014-10-13 18:03:27 +00006607 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6608 nCell -= nShift;
6609 }
6610 if( iNewEnd < iOldEnd ){
drhf7838932015-06-23 15:36:34 +00006611 nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
dand7b545b2014-10-13 18:03:27 +00006612 }
dan09c68402014-10-11 20:00:24 +00006613
drh5ab63772014-11-27 03:46:04 +00006614 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00006615 if( pData<pBegin ) goto editpage_fail;
6616
6617 /* Add cells to the start of the page */
6618 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00006619 int nAdd = MIN(nNew,iOld-iNew);
6620 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
dand7b545b2014-10-13 18:03:27 +00006621 pCellptr = pPg->aCellIdx;
6622 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6623 if( pageInsertArray(
6624 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006625 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00006626 ) ) goto editpage_fail;
6627 nCell += nAdd;
6628 }
6629
6630 /* Add any overflow cells */
6631 for(i=0; i<pPg->nOverflow; i++){
6632 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6633 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00006634 pCellptr = &pPg->aCellIdx[iCell * 2];
dand7b545b2014-10-13 18:03:27 +00006635 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6636 nCell++;
6637 if( pageInsertArray(
6638 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006639 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00006640 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006641 }
dand7b545b2014-10-13 18:03:27 +00006642 }
dan09c68402014-10-11 20:00:24 +00006643
dand7b545b2014-10-13 18:03:27 +00006644 /* Append cells to the end of the page */
6645 pCellptr = &pPg->aCellIdx[nCell*2];
6646 if( pageInsertArray(
6647 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006648 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00006649 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006650
dand7b545b2014-10-13 18:03:27 +00006651 pPg->nCell = nNew;
6652 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00006653
dand7b545b2014-10-13 18:03:27 +00006654 put2byte(&aData[hdr+3], pPg->nCell);
6655 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00006656
6657#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00006658 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00006659 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00006660 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
dand7b545b2014-10-13 18:03:27 +00006661 if( pCell>=aData && pCell<&aData[pPg->pBt->usableSize] ){
6662 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00006663 }
drh1ffd2472015-06-23 02:37:30 +00006664 assert( 0==memcmp(pCell, &aData[iOff],
6665 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00006666 }
dan09c68402014-10-11 20:00:24 +00006667#endif
6668
drh658873b2015-06-22 20:02:04 +00006669 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00006670 editpage_fail:
dan09c68402014-10-11 20:00:24 +00006671 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00006672 populateCellCache(pCArray, iNew, nNew);
6673 return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
dan09c68402014-10-11 20:00:24 +00006674}
6675
drh14acc042001-06-10 19:56:58 +00006676/*
drhc3b70572003-01-04 19:44:07 +00006677** The following parameters determine how many adjacent pages get involved
6678** in a balancing operation. NN is the number of neighbors on either side
6679** of the page that participate in the balancing operation. NB is the
6680** total number of pages that participate, including the target page and
6681** NN neighbors on either side.
6682**
6683** The minimum value of NN is 1 (of course). Increasing NN above 1
6684** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6685** in exchange for a larger degradation in INSERT and UPDATE performance.
6686** The value of NN appears to give the best results overall.
6687*/
6688#define NN 1 /* Number of neighbors on either side of pPage */
6689#define NB (NN*2+1) /* Total pages involved in the balance */
6690
danielk1977ac245ec2005-01-14 13:50:11 +00006691
drh615ae552005-01-16 23:21:00 +00006692#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00006693/*
6694** This version of balance() handles the common special case where
6695** a new entry is being inserted on the extreme right-end of the
6696** tree, in other words, when the new entry will become the largest
6697** entry in the tree.
6698**
drhc314dc72009-07-21 11:52:34 +00006699** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00006700** a new page to the right-hand side and put the one new entry in
6701** that page. This leaves the right side of the tree somewhat
6702** unbalanced. But odds are that we will be inserting new entries
6703** at the end soon afterwards so the nearly empty page will quickly
6704** fill up. On average.
6705**
6706** pPage is the leaf page which is the right-most page in the tree.
6707** pParent is its parent. pPage must have a single overflow entry
6708** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00006709**
6710** The pSpace buffer is used to store a temporary copy of the divider
6711** cell that will be inserted into pParent. Such a cell consists of a 4
6712** byte page number followed by a variable length integer. In other
6713** words, at most 13 bytes. Hence the pSpace buffer must be at
6714** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00006715*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006716static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6717 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00006718 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00006719 int rc; /* Return Code */
6720 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00006721
drh1fee73e2007-08-29 04:00:57 +00006722 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00006723 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006724 assert( pPage->nOverflow==1 );
6725
drh5d433ce2010-08-14 16:02:52 +00006726 /* This error condition is now caught prior to reaching this function */
drh1fd2d7d2014-12-02 16:16:47 +00006727 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00006728
danielk1977a50d9aa2009-06-08 14:49:45 +00006729 /* Allocate a new page. This page will become the right-sibling of
6730 ** pPage. Make the parent page writable, so that the new divider cell
6731 ** may be inserted. If both these operations are successful, proceed.
6732 */
drh4f0c5872007-03-26 22:05:01 +00006733 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006734
danielk1977eaa06f62008-09-18 17:34:44 +00006735 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006736
6737 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00006738 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00006739 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00006740 u8 *pStop;
6741
drhc5053fb2008-11-27 02:22:10 +00006742 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006743 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6744 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drh658873b2015-06-22 20:02:04 +00006745 rc = rebuildPage(pNew, 1, &pCell, &szCell);
drhea82b372015-06-23 21:35:28 +00006746 if( NEVER(rc) ) return rc;
dan8e9ba0c2014-10-14 17:27:04 +00006747 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00006748
6749 /* If this is an auto-vacuum database, update the pointer map
6750 ** with entries for the new page, and any pointer from the
6751 ** cell on the page to an overflow page. If either of these
6752 ** operations fails, the return code is set, but the contents
6753 ** of the parent page are still manipulated by thh code below.
6754 ** That is Ok, at this point the parent page is guaranteed to
6755 ** be marked as dirty. Returning an error code will cause a
6756 ** rollback, undoing any changes made to the parent page.
6757 */
6758 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006759 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
6760 if( szCell>pNew->minLocal ){
6761 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006762 }
6763 }
danielk1977eaa06f62008-09-18 17:34:44 +00006764
danielk19776f235cc2009-06-04 14:46:08 +00006765 /* Create a divider cell to insert into pParent. The divider cell
6766 ** consists of a 4-byte page number (the page number of pPage) and
6767 ** a variable length key value (which must be the same value as the
6768 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00006769 **
danielk19776f235cc2009-06-04 14:46:08 +00006770 ** To find the largest key value on pPage, first find the right-most
6771 ** cell on pPage. The first two fields of this cell are the
6772 ** record-length (a variable length integer at most 32-bits in size)
6773 ** and the key value (a variable length integer, may have any value).
6774 ** The first of the while(...) loops below skips over the record-length
6775 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00006776 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00006777 */
danielk1977eaa06f62008-09-18 17:34:44 +00006778 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00006779 pStop = &pCell[9];
6780 while( (*(pCell++)&0x80) && pCell<pStop );
6781 pStop = &pCell[9];
6782 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
6783
danielk19774dbaa892009-06-16 16:50:22 +00006784 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00006785 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
6786 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00006787
6788 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00006789 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
6790
danielk1977e08a3c42008-09-18 18:17:03 +00006791 /* Release the reference to the new page. */
6792 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00006793 }
6794
danielk1977eaa06f62008-09-18 17:34:44 +00006795 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00006796}
drh615ae552005-01-16 23:21:00 +00006797#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00006798
dane6593d82014-10-24 16:40:49 +00006799#if 0
drhc3b70572003-01-04 19:44:07 +00006800/*
danielk19774dbaa892009-06-16 16:50:22 +00006801** This function does not contribute anything to the operation of SQLite.
6802** it is sometimes activated temporarily while debugging code responsible
6803** for setting pointer-map entries.
6804*/
6805static int ptrmapCheckPages(MemPage **apPage, int nPage){
6806 int i, j;
6807 for(i=0; i<nPage; i++){
6808 Pgno n;
6809 u8 e;
6810 MemPage *pPage = apPage[i];
6811 BtShared *pBt = pPage->pBt;
6812 assert( pPage->isInit );
6813
6814 for(j=0; j<pPage->nCell; j++){
6815 CellInfo info;
6816 u8 *z;
6817
6818 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00006819 pPage->xParseCell(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00006820 if( info.iOverflow ){
6821 Pgno ovfl = get4byte(&z[info.iOverflow]);
6822 ptrmapGet(pBt, ovfl, &e, &n);
6823 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6824 }
6825 if( !pPage->leaf ){
6826 Pgno child = get4byte(z);
6827 ptrmapGet(pBt, child, &e, &n);
6828 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6829 }
6830 }
6831 if( !pPage->leaf ){
6832 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6833 ptrmapGet(pBt, child, &e, &n);
6834 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6835 }
6836 }
6837 return 1;
6838}
6839#endif
6840
danielk1977cd581a72009-06-23 15:43:39 +00006841/*
6842** This function is used to copy the contents of the b-tree node stored
6843** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6844** the pointer-map entries for each child page are updated so that the
6845** parent page stored in the pointer map is page pTo. If pFrom contained
6846** any cells with overflow page pointers, then the corresponding pointer
6847** map entries are also updated so that the parent page is page pTo.
6848**
6849** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00006850** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00006851**
danielk197730548662009-07-09 05:07:37 +00006852** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00006853**
6854** The performance of this function is not critical. It is only used by
6855** the balance_shallower() and balance_deeper() procedures, neither of
6856** which are called often under normal circumstances.
6857*/
drhc314dc72009-07-21 11:52:34 +00006858static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
6859 if( (*pRC)==SQLITE_OK ){
6860 BtShared * const pBt = pFrom->pBt;
6861 u8 * const aFrom = pFrom->aData;
6862 u8 * const aTo = pTo->aData;
6863 int const iFromHdr = pFrom->hdrOffset;
6864 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00006865 int rc;
drhc314dc72009-07-21 11:52:34 +00006866 int iData;
6867
6868
6869 assert( pFrom->isInit );
6870 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00006871 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00006872
6873 /* Copy the b-tree node content from page pFrom to page pTo. */
6874 iData = get2byte(&aFrom[iFromHdr+5]);
6875 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6876 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6877
6878 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00006879 ** match the new data. The initialization of pTo can actually fail under
6880 ** fairly obscure circumstances, even though it is a copy of initialized
6881 ** page pFrom.
6882 */
drhc314dc72009-07-21 11:52:34 +00006883 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00006884 rc = btreeInitPage(pTo);
6885 if( rc!=SQLITE_OK ){
6886 *pRC = rc;
6887 return;
6888 }
drhc314dc72009-07-21 11:52:34 +00006889
6890 /* If this is an auto-vacuum database, update the pointer-map entries
6891 ** for any b-tree or overflow pages that pTo now contains the pointers to.
6892 */
6893 if( ISAUTOVACUUM ){
6894 *pRC = setChildPtrmaps(pTo);
6895 }
danielk1977cd581a72009-06-23 15:43:39 +00006896 }
danielk1977cd581a72009-06-23 15:43:39 +00006897}
6898
6899/*
danielk19774dbaa892009-06-16 16:50:22 +00006900** This routine redistributes cells on the iParentIdx'th child of pParent
6901** (hereafter "the page") and up to 2 siblings so that all pages have about the
6902** same amount of free space. Usually a single sibling on either side of the
6903** page are used in the balancing, though both siblings might come from one
6904** side if the page is the first or last child of its parent. If the page
6905** has fewer than 2 siblings (something which can only happen if the page
6906** is a root page or a child of a root page) then all available siblings
6907** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00006908**
danielk19774dbaa892009-06-16 16:50:22 +00006909** The number of siblings of the page might be increased or decreased by
6910** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00006911**
danielk19774dbaa892009-06-16 16:50:22 +00006912** Note that when this routine is called, some of the cells on the page
6913** might not actually be stored in MemPage.aData[]. This can happen
6914** if the page is overfull. This routine ensures that all cells allocated
6915** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00006916**
danielk19774dbaa892009-06-16 16:50:22 +00006917** In the course of balancing the page and its siblings, cells may be
6918** inserted into or removed from the parent page (pParent). Doing so
6919** may cause the parent page to become overfull or underfull. If this
6920** happens, it is the responsibility of the caller to invoke the correct
6921** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00006922**
drh5e00f6c2001-09-13 13:46:56 +00006923** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00006924** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00006925** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00006926**
6927** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00006928** buffer big enough to hold one page. If while inserting cells into the parent
6929** page (pParent) the parent page becomes overfull, this buffer is
6930** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00006931** a maximum of four divider cells into the parent page, and the maximum
6932** size of a cell stored within an internal node is always less than 1/4
6933** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6934** enough for all overflow cells.
6935**
6936** If aOvflSpace is set to a null pointer, this function returns
6937** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00006938*/
mistachkine7c54162012-10-02 22:54:27 +00006939#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6940#pragma optimize("", off)
6941#endif
danielk19774dbaa892009-06-16 16:50:22 +00006942static int balance_nonroot(
6943 MemPage *pParent, /* Parent page of siblings being balanced */
6944 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00006945 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00006946 int isRoot, /* True if pParent is a root-page */
6947 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00006948){
drh16a9b832007-05-05 18:39:25 +00006949 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00006950 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00006951 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00006952 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00006953 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00006954 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00006955 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00006956 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00006957 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00006958 int usableSpace; /* Bytes in pPage beyond the header */
6959 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00006960 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00006961 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00006962 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00006963 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00006964 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00006965 u8 *pRight; /* Location in parent of right-sibling pointer */
6966 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00006967 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
6968 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00006969 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00006970 u8 *aSpace1; /* Space for copies of dividers cells */
6971 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00006972 u8 abDone[NB+2]; /* True after i'th new page is populated */
6973 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00006974 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00006975 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00006976 CellArray b; /* Parsed information on cells being balanced */
dan33ea4862014-10-09 19:35:37 +00006977
6978 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00006979 b.nCell = 0;
6980 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00006981 pBt = pParent->pBt;
6982 assert( sqlite3_mutex_held(pBt->mutex) );
6983 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00006984
danielk1977e5765212009-06-17 11:13:28 +00006985#if 0
drh43605152004-05-29 21:46:49 +00006986 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00006987#endif
drh2e38c322004-09-03 18:38:44 +00006988
danielk19774dbaa892009-06-16 16:50:22 +00006989 /* At this point pParent may have at most one overflow cell. And if
6990 ** this overflow cell is present, it must be the cell with
6991 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00006992 ** is called (indirectly) from sqlite3BtreeDelete().
6993 */
danielk19774dbaa892009-06-16 16:50:22 +00006994 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00006995 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00006996
danielk197711a8a862009-06-17 11:49:52 +00006997 if( !aOvflSpace ){
6998 return SQLITE_NOMEM;
6999 }
7000
danielk1977a50d9aa2009-06-08 14:49:45 +00007001 /* Find the sibling pages to balance. Also locate the cells in pParent
7002 ** that divide the siblings. An attempt is made to find NN siblings on
7003 ** either side of pPage. More siblings are taken from one side, however,
7004 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00007005 ** has NB or fewer children then all children of pParent are taken.
7006 **
7007 ** This loop also drops the divider cells from the parent page. This
7008 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00007009 ** overflow cells in the parent page, since if any existed they will
7010 ** have already been removed.
7011 */
danielk19774dbaa892009-06-16 16:50:22 +00007012 i = pParent->nOverflow + pParent->nCell;
7013 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00007014 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00007015 }else{
dan7d6885a2012-08-08 14:04:56 +00007016 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00007017 if( iParentIdx==0 ){
7018 nxDiv = 0;
7019 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00007020 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00007021 }else{
danielk19774dbaa892009-06-16 16:50:22 +00007022 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00007023 }
dan7d6885a2012-08-08 14:04:56 +00007024 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00007025 }
dan7d6885a2012-08-08 14:04:56 +00007026 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007027 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7028 pRight = &pParent->aData[pParent->hdrOffset+8];
7029 }else{
7030 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7031 }
7032 pgno = get4byte(pRight);
7033 while( 1 ){
drh28f58dd2015-06-27 19:45:03 +00007034 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007035 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007036 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007037 goto balance_cleanup;
7038 }
danielk1977634f2982005-03-28 08:44:07 +00007039 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00007040 if( (i--)==0 ) break;
7041
drh2cbd78b2012-02-02 19:37:18 +00007042 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
7043 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007044 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007045 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007046 pParent->nOverflow = 0;
7047 }else{
7048 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7049 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007050 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007051
7052 /* Drop the cell from the parent page. apDiv[i] still points to
7053 ** the cell within the parent, even though it has been dropped.
7054 ** This is safe because dropping a cell only overwrites the first
7055 ** four bytes of it, and this function does not need the first
7056 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007057 ** later on.
7058 **
drh8a575d92011-10-12 17:00:28 +00007059 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007060 ** the dropCell() routine will overwrite the entire cell with zeroes.
7061 ** In this case, temporarily copy the cell into the aOvflSpace[]
7062 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7063 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00007064 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00007065 int iOff;
7066
7067 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00007068 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00007069 rc = SQLITE_CORRUPT_BKPT;
7070 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7071 goto balance_cleanup;
7072 }else{
7073 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7074 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7075 }
drh5b47efa2010-02-12 18:18:39 +00007076 }
drh98add2e2009-07-20 17:11:49 +00007077 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007078 }
drh8b2f49b2001-06-08 00:21:52 +00007079 }
7080
drha9121e42008-02-19 14:59:35 +00007081 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007082 ** alignment */
drha9121e42008-02-19 14:59:35 +00007083 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007084
drh8b2f49b2001-06-08 00:21:52 +00007085 /*
danielk1977634f2982005-03-28 08:44:07 +00007086 ** Allocate space for memory structures
7087 */
drhfacf0302008-06-17 15:12:00 +00007088 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007089 nMaxCells*sizeof(u8*) /* b.apCell */
7090 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007091 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007092
drhcbd55b02014-11-04 14:22:27 +00007093 /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer
7094 ** that is more than 6 times the database page size. */
mistachkin0fbd7352014-12-09 04:26:56 +00007095 assert( szScratch<=6*(int)pBt->pageSize );
drh1ffd2472015-06-23 02:37:30 +00007096 b.apCell = sqlite3ScratchMalloc( szScratch );
7097 if( b.apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00007098 rc = SQLITE_NOMEM;
7099 goto balance_cleanup;
7100 }
drh1ffd2472015-06-23 02:37:30 +00007101 b.szCell = (u16*)&b.apCell[nMaxCells];
7102 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007103 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007104
7105 /*
7106 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007107 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007108 ** into space obtained from aSpace1[]. The divider cells have already
7109 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007110 **
7111 ** If the siblings are on leaf pages, then the child pointers of the
7112 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007113 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007114 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007115 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007116 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007117 **
7118 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7119 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007120 */
drh1ffd2472015-06-23 02:37:30 +00007121 b.pRef = apOld[0];
7122 leafCorrection = b.pRef->leaf*4;
7123 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007124 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007125 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007126 int limit = pOld->nCell;
7127 u8 *aData = pOld->aData;
7128 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007129 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007130 u8 *piEnd;
danielk19774dbaa892009-06-16 16:50:22 +00007131
drh73d340a2015-05-28 11:23:11 +00007132 /* Verify that all sibling pages are of the same "type" (table-leaf,
7133 ** table-interior, index-leaf, or index-interior).
7134 */
7135 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7136 rc = SQLITE_CORRUPT_BKPT;
7137 goto balance_cleanup;
7138 }
7139
drhfe647dc2015-06-23 18:24:25 +00007140 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
7141 ** constains overflow cells, include them in the b.apCell[] array
7142 ** in the correct spot.
7143 **
7144 ** Note that when there are multiple overflow cells, it is always the
7145 ** case that they are sequential and adjacent. This invariant arises
7146 ** because multiple overflows can only occurs when inserting divider
7147 ** cells into a parent on a prior balance, and divider cells are always
7148 ** adjacent and are inserted in order. There is an assert() tagged
7149 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7150 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007151 **
7152 ** This must be done in advance. Once the balance starts, the cell
7153 ** offset section of the btree page will be overwritten and we will no
7154 ** long be able to find the cells if a pointer to each cell is not saved
7155 ** first.
7156 */
drh1ffd2472015-06-23 02:37:30 +00007157 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*limit);
drh68f2a572011-06-03 17:50:49 +00007158 if( pOld->nOverflow>0 ){
drh4edfdd32015-06-23 14:49:42 +00007159 memset(&b.szCell[b.nCell+limit], 0, sizeof(b.szCell[0])*pOld->nOverflow);
drhfe647dc2015-06-23 18:24:25 +00007160 limit = pOld->aiOvfl[0];
7161 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00007162 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00007163 piCell += 2;
7164 b.nCell++;
7165 }
7166 for(k=0; k<pOld->nOverflow; k++){
7167 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007168 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007169 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007170 }
drh1ffd2472015-06-23 02:37:30 +00007171 }
drhfe647dc2015-06-23 18:24:25 +00007172 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7173 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007174 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00007175 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00007176 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007177 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007178 }
7179
drh1ffd2472015-06-23 02:37:30 +00007180 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007181 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007182 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007183 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007184 assert( b.nCell<nMaxCells );
7185 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007186 pTemp = &aSpace1[iSpace1];
7187 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007188 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007189 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007190 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007191 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007192 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007193 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007194 if( !pOld->leaf ){
7195 assert( leafCorrection==0 );
7196 assert( pOld->hdrOffset==0 );
7197 /* The right pointer of the child page pOld becomes the left
7198 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007199 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007200 }else{
7201 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007202 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007203 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7204 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007205 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7206 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007207 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007208 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007209 }
7210 }
drh1ffd2472015-06-23 02:37:30 +00007211 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007212 }
drh8b2f49b2001-06-08 00:21:52 +00007213 }
7214
7215 /*
drh1ffd2472015-06-23 02:37:30 +00007216 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007217 ** Store this number in "k". Also compute szNew[] which is the total
7218 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007219 ** in b.apCell[] of the cell that divides page i from page i+1.
7220 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007221 **
drh96f5b762004-05-16 16:24:36 +00007222 ** Values computed by this block:
7223 **
7224 ** k: The total number of sibling pages
7225 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007226 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007227 ** the right of the i-th sibling page.
7228 ** usableSpace: Number of bytes of space available on each sibling.
7229 **
drh8b2f49b2001-06-08 00:21:52 +00007230 */
drh43605152004-05-29 21:46:49 +00007231 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh658873b2015-06-22 20:02:04 +00007232 for(i=0; i<nOld; i++){
7233 MemPage *p = apOld[i];
7234 szNew[i] = usableSpace - p->nFree;
7235 if( szNew[i]<0 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7236 for(j=0; j<p->nOverflow; j++){
7237 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7238 }
7239 cntNew[i] = cntOld[i];
7240 }
7241 k = nOld;
7242 for(i=0; i<k; i++){
7243 int sz;
7244 while( szNew[i]>usableSpace ){
7245 if( i+1>=k ){
7246 k = i+2;
7247 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7248 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007249 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007250 }
drh1ffd2472015-06-23 02:37:30 +00007251 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007252 szNew[i] -= sz;
7253 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007254 if( cntNew[i]<b.nCell ){
7255 sz = 2 + cachedCellSize(&b, cntNew[i]);
7256 }else{
7257 sz = 0;
7258 }
drh658873b2015-06-22 20:02:04 +00007259 }
7260 szNew[i+1] += sz;
7261 cntNew[i]--;
7262 }
drh1ffd2472015-06-23 02:37:30 +00007263 while( cntNew[i]<b.nCell ){
7264 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007265 if( szNew[i]+sz>usableSpace ) break;
7266 szNew[i] += sz;
7267 cntNew[i]++;
7268 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007269 if( cntNew[i]<b.nCell ){
7270 sz = 2 + cachedCellSize(&b, cntNew[i]);
7271 }else{
7272 sz = 0;
7273 }
drh658873b2015-06-22 20:02:04 +00007274 }
7275 szNew[i+1] -= sz;
7276 }
drh1ffd2472015-06-23 02:37:30 +00007277 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007278 k = i+1;
drh672073a2015-06-24 12:07:40 +00007279 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00007280 rc = SQLITE_CORRUPT_BKPT;
7281 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00007282 }
7283 }
drh96f5b762004-05-16 16:24:36 +00007284
7285 /*
7286 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00007287 ** on the left side (siblings with smaller keys). The left siblings are
7288 ** always nearly full, while the right-most sibling might be nearly empty.
7289 ** The next block of code attempts to adjust the packing of siblings to
7290 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00007291 **
7292 ** This adjustment is more than an optimization. The packing above might
7293 ** be so out of balance as to be illegal. For example, the right-most
7294 ** sibling might be completely empty. This adjustment is not optional.
7295 */
drh6019e162001-07-02 17:51:45 +00007296 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00007297 int szRight = szNew[i]; /* Size of sibling on the right */
7298 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7299 int r; /* Index of right-most cell in left sibling */
7300 int d; /* Index of first cell to the left of right sibling */
7301
drh008d64c2015-06-23 16:00:24 +00007302 r = cntNew[i-1] - 1;
7303 d = r + 1 - leafData;
7304 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00007305 do{
drh1ffd2472015-06-23 02:37:30 +00007306 assert( d<nMaxCells );
7307 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007308 (void)cachedCellSize(&b, r);
7309 if( szRight!=0
7310 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+2)) ){
7311 break;
7312 }
7313 szRight += b.szCell[d] + 2;
7314 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00007315 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00007316 r--;
7317 d--;
drh672073a2015-06-24 12:07:40 +00007318 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00007319 szNew[i] = szRight;
7320 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00007321 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7322 rc = SQLITE_CORRUPT_BKPT;
7323 goto balance_cleanup;
7324 }
drh6019e162001-07-02 17:51:45 +00007325 }
drh09d0deb2005-08-02 17:13:09 +00007326
drh2a0df922014-10-30 23:14:56 +00007327 /* Sanity check: For a non-corrupt database file one of the follwing
7328 ** must be true:
7329 ** (1) We found one or more cells (cntNew[0])>0), or
7330 ** (2) pPage is a virtual root page. A virtual root page is when
7331 ** the real root page is page 1 and we are the only child of
7332 ** that page.
drh09d0deb2005-08-02 17:13:09 +00007333 */
drh2a0df922014-10-30 23:14:56 +00007334 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00007335 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7336 apOld[0]->pgno, apOld[0]->nCell,
7337 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7338 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007339 ));
7340
drh8b2f49b2001-06-08 00:21:52 +00007341 /*
drh6b308672002-07-08 02:16:37 +00007342 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007343 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007344 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007345 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007346 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007347 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007348 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007349 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007350 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007351 nNew++;
danielk197728129562005-01-11 10:25:06 +00007352 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007353 }else{
drh7aa8f852006-03-28 00:24:44 +00007354 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007355 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007356 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007357 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007358 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007359 nNew++;
drh1ffd2472015-06-23 02:37:30 +00007360 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007361
7362 /* Set the pointer-map entry for the new sibling page. */
7363 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007364 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007365 if( rc!=SQLITE_OK ){
7366 goto balance_cleanup;
7367 }
7368 }
drh6b308672002-07-08 02:16:37 +00007369 }
drh8b2f49b2001-06-08 00:21:52 +00007370 }
7371
7372 /*
dan33ea4862014-10-09 19:35:37 +00007373 ** Reassign page numbers so that the new pages are in ascending order.
7374 ** This helps to keep entries in the disk file in order so that a scan
7375 ** of the table is closer to a linear scan through the file. That in turn
7376 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007377 **
dan33ea4862014-10-09 19:35:37 +00007378 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7379 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007380 **
dan33ea4862014-10-09 19:35:37 +00007381 ** When NB==3, this one optimization makes the database about 25% faster
7382 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007383 */
dan33ea4862014-10-09 19:35:37 +00007384 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007385 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007386 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007387 for(j=0; j<i; j++){
7388 if( aPgno[j]==aPgno[i] ){
7389 /* This branch is taken if the set of sibling pages somehow contains
7390 ** duplicate entries. This can happen if the database is corrupt.
7391 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007392 ** we do the detection here in order to avoid populating the pager
7393 ** cache with two separate objects associated with the same
7394 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007395 assert( CORRUPT_DB );
7396 rc = SQLITE_CORRUPT_BKPT;
7397 goto balance_cleanup;
7398 }
7399 }
dan33ea4862014-10-09 19:35:37 +00007400 }
7401 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007402 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007403 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007404 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007405 }
drh00fe08a2014-10-31 00:05:23 +00007406 pgno = aPgOrder[iBest];
7407 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007408 if( iBest!=i ){
7409 if( iBest>i ){
7410 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7411 }
7412 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7413 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007414 }
7415 }
dan33ea4862014-10-09 19:35:37 +00007416
7417 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7418 "%d(%d nc=%d) %d(%d nc=%d)\n",
7419 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007420 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007421 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007422 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007423 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007424 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007425 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7426 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7427 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7428 ));
danielk19774dbaa892009-06-16 16:50:22 +00007429
7430 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7431 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00007432
dan33ea4862014-10-09 19:35:37 +00007433 /* If the sibling pages are not leaves, ensure that the right-child pointer
7434 ** of the right-most new sibling page is set to the value that was
7435 ** originally in the same field of the right-most old sibling page. */
7436 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7437 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7438 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7439 }
danielk1977ac11ee62005-01-15 12:45:51 +00007440
dan33ea4862014-10-09 19:35:37 +00007441 /* Make any required updates to pointer map entries associated with
7442 ** cells stored on sibling pages following the balance operation. Pointer
7443 ** map entries associated with divider cells are set by the insertCell()
7444 ** routine. The associated pointer map entries are:
7445 **
7446 ** a) if the cell contains a reference to an overflow chain, the
7447 ** entry associated with the first page in the overflow chain, and
7448 **
7449 ** b) if the sibling pages are not leaves, the child page associated
7450 ** with the cell.
7451 **
7452 ** If the sibling pages are not leaves, then the pointer map entry
7453 ** associated with the right-child of each sibling may also need to be
7454 ** updated. This happens below, after the sibling pages have been
7455 ** populated, not here.
7456 */
7457 if( ISAUTOVACUUM ){
7458 MemPage *pNew = apNew[0];
7459 u8 *aOld = pNew->aData;
7460 int cntOldNext = pNew->nCell + pNew->nOverflow;
7461 int usableSize = pBt->usableSize;
7462 int iNew = 0;
7463 int iOld = 0;
danielk1977634f2982005-03-28 08:44:07 +00007464
drh1ffd2472015-06-23 02:37:30 +00007465 for(i=0; i<b.nCell; i++){
7466 u8 *pCell = b.apCell[i];
dan33ea4862014-10-09 19:35:37 +00007467 if( i==cntOldNext ){
7468 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7469 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7470 aOld = pOld->aData;
7471 }
7472 if( i==cntNew[iNew] ){
7473 pNew = apNew[++iNew];
7474 if( !leafData ) continue;
7475 }
7476
7477 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00007478 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00007479 ** or else the divider cell to the left of sibling page iOld. So,
7480 ** if sibling page iOld had the same page number as pNew, and if
7481 ** pCell really was a part of sibling page iOld (not a divider or
7482 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00007483 if( iOld>=nNew
7484 || pNew->pgno!=aPgno[iOld]
7485 || pCell<aOld
7486 || pCell>=&aOld[usableSize]
7487 ){
dan33ea4862014-10-09 19:35:37 +00007488 if( !leafCorrection ){
7489 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7490 }
drh1ffd2472015-06-23 02:37:30 +00007491 if( cachedCellSize(&b,i)>pNew->minLocal ){
dan33ea4862014-10-09 19:35:37 +00007492 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774aeff622007-05-12 09:30:47 +00007493 }
drhea82b372015-06-23 21:35:28 +00007494 if( rc ) goto balance_cleanup;
drh4b70f112004-05-02 21:12:19 +00007495 }
drh14acc042001-06-10 19:56:58 +00007496 }
7497 }
dan33ea4862014-10-09 19:35:37 +00007498
7499 /* Insert new divider cells into pParent. */
7500 for(i=0; i<nNew-1; i++){
7501 u8 *pCell;
7502 u8 *pTemp;
7503 int sz;
7504 MemPage *pNew = apNew[i];
7505 j = cntNew[i];
7506
7507 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007508 assert( b.apCell[j]!=0 );
7509 pCell = b.apCell[j];
7510 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00007511 pTemp = &aOvflSpace[iOvflSpace];
7512 if( !pNew->leaf ){
7513 memcpy(&pNew->aData[8], pCell, 4);
7514 }else if( leafData ){
7515 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00007516 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00007517 ** cell consists of the integer key for the right-most cell of
7518 ** the sibling-page assembled above only.
7519 */
7520 CellInfo info;
7521 j--;
drh1ffd2472015-06-23 02:37:30 +00007522 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00007523 pCell = pTemp;
7524 sz = 4 + putVarint(&pCell[4], info.nKey);
7525 pTemp = 0;
7526 }else{
7527 pCell -= 4;
7528 /* Obscure case for non-leaf-data trees: If the cell at pCell was
7529 ** previously stored on a leaf node, and its reported size was 4
7530 ** bytes, then it may actually be smaller than this
7531 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7532 ** any cell). But it is important to pass the correct size to
7533 ** insertCell(), so reparse the cell now.
7534 **
7535 ** Note that this can never happen in an SQLite data file, as all
7536 ** cells are at least 4 bytes. It only happens in b-trees used
7537 ** to evaluate "IN (SELECT ...)" and similar clauses.
7538 */
drh1ffd2472015-06-23 02:37:30 +00007539 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00007540 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00007541 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00007542 }
7543 }
7544 iOvflSpace += sz;
7545 assert( sz<=pBt->maxLocal+23 );
7546 assert( iOvflSpace <= (int)pBt->pageSize );
7547 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7548 if( rc!=SQLITE_OK ) goto balance_cleanup;
7549 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7550 }
7551
7552 /* Now update the actual sibling pages. The order in which they are updated
7553 ** is important, as this code needs to avoid disrupting any page from which
7554 ** cells may still to be read. In practice, this means:
7555 **
drhd836d422014-10-31 14:26:36 +00007556 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7557 ** then it is not safe to update page apNew[iPg] until after
7558 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007559 **
drhd836d422014-10-31 14:26:36 +00007560 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7561 ** then it is not safe to update page apNew[iPg] until after
7562 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007563 **
7564 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00007565 **
7566 ** The iPg value in the following loop starts at nNew-1 goes down
7567 ** to 0, then back up to nNew-1 again, thus making two passes over
7568 ** the pages. On the initial downward pass, only condition (1) above
7569 ** needs to be tested because (2) will always be true from the previous
7570 ** step. On the upward pass, both conditions are always true, so the
7571 ** upwards pass simply processes pages that were missed on the downward
7572 ** pass.
dan33ea4862014-10-09 19:35:37 +00007573 */
drhbec021b2014-10-31 12:22:00 +00007574 for(i=1-nNew; i<nNew; i++){
7575 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00007576 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00007577 if( abDone[iPg] ) continue; /* Skip pages already processed */
7578 if( i>=0 /* On the upwards pass, or... */
7579 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00007580 ){
dan09c68402014-10-11 20:00:24 +00007581 int iNew;
7582 int iOld;
7583 int nNewCell;
7584
drhd836d422014-10-31 14:26:36 +00007585 /* Verify condition (1): If cells are moving left, update iPg
7586 ** only after iPg-1 has already been updated. */
7587 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7588
7589 /* Verify condition (2): If cells are moving right, update iPg
7590 ** only after iPg+1 has already been updated. */
7591 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7592
dan09c68402014-10-11 20:00:24 +00007593 if( iPg==0 ){
7594 iNew = iOld = 0;
7595 nNewCell = cntNew[0];
7596 }else{
drh1ffd2472015-06-23 02:37:30 +00007597 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00007598 iNew = cntNew[iPg-1] + !leafData;
7599 nNewCell = cntNew[iPg] - iNew;
7600 }
7601
drh1ffd2472015-06-23 02:37:30 +00007602 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00007603 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00007604 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00007605 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00007606 assert( apNew[iPg]->nOverflow==0 );
7607 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00007608 }
7609 }
drhd836d422014-10-31 14:26:36 +00007610
7611 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00007612 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7613
drh7aa8f852006-03-28 00:24:44 +00007614 assert( nOld>0 );
7615 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00007616
danielk197713bd99f2009-06-24 05:40:34 +00007617 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7618 /* The root page of the b-tree now contains no cells. The only sibling
7619 ** page is the right-child of the parent. Copy the contents of the
7620 ** child page into the parent, decreasing the overall height of the
7621 ** b-tree structure by one. This is described as the "balance-shallower"
7622 ** sub-algorithm in some documentation.
7623 **
7624 ** If this is an auto-vacuum database, the call to copyNodeContent()
7625 ** sets all pointer-map entries corresponding to database image pages
7626 ** for which the pointer is stored within the content being copied.
7627 **
drh768f2902014-10-31 02:51:41 +00007628 ** It is critical that the child page be defragmented before being
7629 ** copied into the parent, because if the parent is page 1 then it will
7630 ** by smaller than the child due to the database header, and so all the
7631 ** free space needs to be up front.
7632 */
drh9b5351d2015-09-30 14:19:08 +00007633 assert( nNew==1 || CORRUPT_DB );
dan89ca0b32014-10-25 20:36:28 +00007634 rc = defragmentPage(apNew[0]);
drh768f2902014-10-31 02:51:41 +00007635 testcase( rc!=SQLITE_OK );
7636 assert( apNew[0]->nFree ==
7637 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7638 || rc!=SQLITE_OK
7639 );
7640 copyNodeContent(apNew[0], pParent, &rc);
7641 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00007642 }else if( ISAUTOVACUUM && !leafCorrection ){
7643 /* Fix the pointer map entries associated with the right-child of each
7644 ** sibling page. All other pointer map entries have already been taken
7645 ** care of. */
7646 for(i=0; i<nNew; i++){
7647 u32 key = get4byte(&apNew[i]->aData[8]);
7648 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007649 }
dan33ea4862014-10-09 19:35:37 +00007650 }
danielk19774dbaa892009-06-16 16:50:22 +00007651
dan33ea4862014-10-09 19:35:37 +00007652 assert( pParent->isInit );
7653 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00007654 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00007655
dan33ea4862014-10-09 19:35:37 +00007656 /* Free any old pages that were not reused as new pages.
7657 */
7658 for(i=nNew; i<nOld; i++){
7659 freePage(apOld[i], &rc);
7660 }
7661
dane6593d82014-10-24 16:40:49 +00007662#if 0
dan33ea4862014-10-09 19:35:37 +00007663 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00007664 /* The ptrmapCheckPages() contains assert() statements that verify that
7665 ** all pointer map pages are set correctly. This is helpful while
7666 ** debugging. This is usually disabled because a corrupt database may
7667 ** cause an assert() statement to fail. */
7668 ptrmapCheckPages(apNew, nNew);
7669 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00007670 }
dan33ea4862014-10-09 19:35:37 +00007671#endif
danielk1977cd581a72009-06-23 15:43:39 +00007672
drh8b2f49b2001-06-08 00:21:52 +00007673 /*
drh14acc042001-06-10 19:56:58 +00007674 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00007675 */
drh14acc042001-06-10 19:56:58 +00007676balance_cleanup:
drh1ffd2472015-06-23 02:37:30 +00007677 sqlite3ScratchFree(b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00007678 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00007679 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00007680 }
drh14acc042001-06-10 19:56:58 +00007681 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00007682 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00007683 }
danielk1977eaa06f62008-09-18 17:34:44 +00007684
drh8b2f49b2001-06-08 00:21:52 +00007685 return rc;
7686}
mistachkine7c54162012-10-02 22:54:27 +00007687#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
7688#pragma optimize("", on)
7689#endif
drh8b2f49b2001-06-08 00:21:52 +00007690
drh43605152004-05-29 21:46:49 +00007691
7692/*
danielk1977a50d9aa2009-06-08 14:49:45 +00007693** This function is called when the root page of a b-tree structure is
7694** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00007695**
danielk1977a50d9aa2009-06-08 14:49:45 +00007696** A new child page is allocated and the contents of the current root
7697** page, including overflow cells, are copied into the child. The root
7698** page is then overwritten to make it an empty page with the right-child
7699** pointer pointing to the new page.
7700**
7701** Before returning, all pointer-map entries corresponding to pages
7702** that the new child-page now contains pointers to are updated. The
7703** entry corresponding to the new right-child pointer of the root
7704** page is also updated.
7705**
7706** If successful, *ppChild is set to contain a reference to the child
7707** page and SQLITE_OK is returned. In this case the caller is required
7708** to call releasePage() on *ppChild exactly once. If an error occurs,
7709** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00007710*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007711static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7712 int rc; /* Return value from subprocedures */
7713 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00007714 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00007715 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00007716
danielk1977a50d9aa2009-06-08 14:49:45 +00007717 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00007718 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00007719
danielk1977a50d9aa2009-06-08 14:49:45 +00007720 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7721 ** page that will become the new right-child of pPage. Copy the contents
7722 ** of the node stored on pRoot into the new child page.
7723 */
drh98add2e2009-07-20 17:11:49 +00007724 rc = sqlite3PagerWrite(pRoot->pDbPage);
7725 if( rc==SQLITE_OK ){
7726 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00007727 copyNodeContent(pRoot, pChild, &rc);
7728 if( ISAUTOVACUUM ){
7729 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00007730 }
7731 }
7732 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007733 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007734 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00007735 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00007736 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007737 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
7738 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7739 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007740
danielk1977a50d9aa2009-06-08 14:49:45 +00007741 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
7742
7743 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00007744 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
7745 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
7746 memcpy(pChild->apOvfl, pRoot->apOvfl,
7747 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00007748 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00007749
7750 /* Zero the contents of pRoot. Then install pChild as the right-child. */
7751 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
7752 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
7753
7754 *ppChild = pChild;
7755 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00007756}
7757
7758/*
danielk197771d5d2c2008-09-29 11:49:47 +00007759** The page that pCur currently points to has just been modified in
7760** some way. This function figures out if this modification means the
7761** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00007762** routine. Balancing routines are:
7763**
7764** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00007765** balance_deeper()
7766** balance_nonroot()
drh43605152004-05-29 21:46:49 +00007767*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007768static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00007769 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00007770 const int nMin = pCur->pBt->usableSize * 2 / 3;
7771 u8 aBalanceQuickSpace[13];
7772 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007773
shane75ac1de2009-06-09 18:58:52 +00007774 TESTONLY( int balance_quick_called = 0 );
7775 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00007776
7777 do {
7778 int iPage = pCur->iPage;
7779 MemPage *pPage = pCur->apPage[iPage];
7780
7781 if( iPage==0 ){
7782 if( pPage->nOverflow ){
7783 /* The root page of the b-tree is overfull. In this case call the
7784 ** balance_deeper() function to create a new child for the root-page
7785 ** and copy the current contents of the root-page to it. The
7786 ** next iteration of the do-loop will balance the child page.
7787 */
7788 assert( (balance_deeper_called++)==0 );
7789 rc = balance_deeper(pPage, &pCur->apPage[1]);
7790 if( rc==SQLITE_OK ){
7791 pCur->iPage = 1;
7792 pCur->aiIdx[0] = 0;
7793 pCur->aiIdx[1] = 0;
7794 assert( pCur->apPage[1]->nOverflow );
7795 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007796 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00007797 break;
7798 }
7799 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
7800 break;
7801 }else{
7802 MemPage * const pParent = pCur->apPage[iPage-1];
7803 int const iIdx = pCur->aiIdx[iPage-1];
7804
7805 rc = sqlite3PagerWrite(pParent->pDbPage);
7806 if( rc==SQLITE_OK ){
7807#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00007808 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00007809 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00007810 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00007811 && pParent->pgno!=1
7812 && pParent->nCell==iIdx
7813 ){
7814 /* Call balance_quick() to create a new sibling of pPage on which
7815 ** to store the overflow cell. balance_quick() inserts a new cell
7816 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00007817 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00007818 ** use either balance_nonroot() or balance_deeper(). Until this
7819 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
7820 ** buffer.
7821 **
7822 ** The purpose of the following assert() is to check that only a
7823 ** single call to balance_quick() is made for each call to this
7824 ** function. If this were not verified, a subtle bug involving reuse
7825 ** of the aBalanceQuickSpace[] might sneak in.
7826 */
7827 assert( (balance_quick_called++)==0 );
7828 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
7829 }else
7830#endif
7831 {
7832 /* In this case, call balance_nonroot() to redistribute cells
7833 ** between pPage and up to 2 of its sibling pages. This involves
7834 ** modifying the contents of pParent, which may cause pParent to
7835 ** become overfull or underfull. The next iteration of the do-loop
7836 ** will balance the parent page to correct this.
7837 **
7838 ** If the parent page becomes overfull, the overflow cell or cells
7839 ** are stored in the pSpace buffer allocated immediately below.
7840 ** A subsequent iteration of the do-loop will deal with this by
7841 ** calling balance_nonroot() (balance_deeper() may be called first,
7842 ** but it doesn't deal with overflow cells - just moves them to a
7843 ** different page). Once this subsequent call to balance_nonroot()
7844 ** has completed, it is safe to release the pSpace buffer used by
7845 ** the previous call, as the overflow cell data will have been
7846 ** copied either into the body of a database page or into the new
7847 ** pSpace buffer passed to the latter call to balance_nonroot().
7848 */
7849 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00007850 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
7851 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00007852 if( pFree ){
7853 /* If pFree is not NULL, it points to the pSpace buffer used
7854 ** by a previous call to balance_nonroot(). Its contents are
7855 ** now stored either on real database pages or within the
7856 ** new pSpace buffer, so it may be safely freed here. */
7857 sqlite3PageFree(pFree);
7858 }
7859
danielk19774dbaa892009-06-16 16:50:22 +00007860 /* The pSpace buffer will be freed after the next call to
7861 ** balance_nonroot(), or just before this function returns, whichever
7862 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007863 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00007864 }
7865 }
7866
7867 pPage->nOverflow = 0;
7868
7869 /* The next iteration of the do-loop balances the parent page. */
7870 releasePage(pPage);
7871 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00007872 assert( pCur->iPage>=0 );
drh43605152004-05-29 21:46:49 +00007873 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007874 }while( rc==SQLITE_OK );
7875
7876 if( pFree ){
7877 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00007878 }
7879 return rc;
7880}
7881
drhf74b8d92002-09-01 23:20:45 +00007882
7883/*
drh3b7511c2001-05-26 13:15:44 +00007884** Insert a new record into the BTree. The key is given by (pKey,nKey)
7885** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00007886** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00007887** is left pointing at a random location.
7888**
7889** For an INTKEY table, only the nKey value of the key is used. pKey is
7890** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00007891**
7892** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00007893** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00007894** been performed. seekResult is the search result returned (a negative
7895** number if pCur points at an entry that is smaller than (pKey, nKey), or
peter.d.reid60ec9142014-09-06 16:39:46 +00007896** a positive value if pCur points at an entry that is larger than
danielk1977de630352009-05-04 11:42:29 +00007897** (pKey, nKey)).
7898**
drh3e9ca092009-09-08 01:14:48 +00007899** If the seekResult parameter is non-zero, then the caller guarantees that
7900** cursor pCur is pointing at the existing copy of a row that is to be
7901** overwritten. If the seekResult parameter is 0, then cursor pCur may
7902** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00007903** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00007904*/
drh3aac2dd2004-04-26 14:10:20 +00007905int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00007906 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00007907 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00007908 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00007909 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00007910 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00007911 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00007912){
drh3b7511c2001-05-26 13:15:44 +00007913 int rc;
drh3e9ca092009-09-08 01:14:48 +00007914 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00007915 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007916 int idx;
drh3b7511c2001-05-26 13:15:44 +00007917 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00007918 Btree *p = pCur->pBtree;
7919 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00007920 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00007921 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00007922
drh98add2e2009-07-20 17:11:49 +00007923 if( pCur->eState==CURSOR_FAULT ){
7924 assert( pCur->skipNext!=SQLITE_OK );
7925 return pCur->skipNext;
7926 }
7927
drh1fee73e2007-08-29 04:00:57 +00007928 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00007929 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
7930 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00007931 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00007932 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7933
danielk197731d31b82009-07-13 13:18:07 +00007934 /* Assert that the caller has been consistent. If this cursor was opened
7935 ** expecting an index b-tree, then the caller should be inserting blob
7936 ** keys with no associated data. If the cursor was opened expecting an
7937 ** intkey table, the caller should be inserting integer keys with a
7938 ** blob of associated data. */
7939 assert( (pKey==0)==(pCur->pKeyInfo==0) );
7940
danielk19779c3acf32009-05-02 07:36:49 +00007941 /* Save the positions of any other cursors open on this table.
7942 **
danielk19773509a652009-07-06 18:56:13 +00007943 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00007944 ** example, when inserting data into a table with auto-generated integer
7945 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
7946 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00007947 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00007948 ** that the cursor is already where it needs to be and returns without
7949 ** doing any work. To avoid thwarting these optimizations, it is important
7950 ** not to clear the cursor here.
7951 */
drh27fb7462015-06-30 02:47:36 +00007952 if( pCur->curFlags & BTCF_Multiple ){
7953 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7954 if( rc ) return rc;
7955 }
drhd60f4f42012-03-23 14:23:52 +00007956
drhd60f4f42012-03-23 14:23:52 +00007957 if( pCur->pKeyInfo==0 ){
drh207c8172015-06-29 23:01:32 +00007958 assert( pKey==0 );
drhe0670b62014-02-12 21:31:12 +00007959 /* If this is an insert into a table b-tree, invalidate any incrblob
7960 ** cursors open on the row being replaced */
drhd60f4f42012-03-23 14:23:52 +00007961 invalidateIncrblobCursors(p, nKey, 0);
drhe0670b62014-02-12 21:31:12 +00007962
7963 /* If the cursor is currently on the last row and we are appending a
drh207c8172015-06-29 23:01:32 +00007964 ** new row onto the end, set the "loc" to avoid an unnecessary
7965 ** btreeMoveto() call */
drh3f387402014-09-24 01:23:00 +00007966 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0
7967 && pCur->info.nKey==nKey-1 ){
drh207c8172015-06-29 23:01:32 +00007968 loc = -1;
7969 }else if( loc==0 ){
7970 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, nKey, appendBias, &loc);
7971 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00007972 }
drh207c8172015-06-29 23:01:32 +00007973 }else if( loc==0 ){
drh4c301aa2009-07-15 17:25:45 +00007974 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
7975 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00007976 }
danielk1977b980d2212009-06-22 18:03:51 +00007977 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00007978
danielk197771d5d2c2008-09-29 11:49:47 +00007979 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00007980 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00007981 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00007982
drh3a4c1412004-05-09 20:40:11 +00007983 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
7984 pCur->pgnoRoot, nKey, nData, pPage->pgno,
7985 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00007986 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00007987 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00007988 assert( newCell!=0 );
drhb026e052007-05-02 01:34:31 +00007989 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00007990 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00007991 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00007992 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00007993 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00007994 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00007995 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00007996 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00007997 rc = sqlite3PagerWrite(pPage->pDbPage);
7998 if( rc ){
7999 goto end_insert;
8000 }
danielk197771d5d2c2008-09-29 11:49:47 +00008001 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00008002 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008003 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00008004 }
drh9bfdc252014-09-24 02:05:41 +00008005 rc = clearCell(pPage, oldCell, &szOld);
drh98add2e2009-07-20 17:11:49 +00008006 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00008007 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00008008 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00008009 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00008010 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00008011 }else{
drh4b70f112004-05-02 21:12:19 +00008012 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00008013 }
drh98add2e2009-07-20 17:11:49 +00008014 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00008015 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00008016
mistachkin48864df2013-03-21 21:20:32 +00008017 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00008018 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00008019 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00008020 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00008021 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008022 ** Previous versions of SQLite called moveToRoot() to move the cursor
8023 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00008024 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8025 ** set the cursor state to "invalid". This makes common insert operations
8026 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00008027 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008028 ** There is a subtle but important optimization here too. When inserting
8029 ** multiple records into an intkey b-tree using a single cursor (as can
8030 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8031 ** is advantageous to leave the cursor pointing to the last entry in
8032 ** the b-tree if possible. If the cursor is left pointing to the last
8033 ** entry in the table, and the next row inserted has an integer key
8034 ** larger than the largest existing key, it is possible to insert the
8035 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00008036 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008037 pCur->info.nSize = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00008038 if( rc==SQLITE_OK && pPage->nOverflow ){
drh036dbec2014-03-11 23:40:44 +00008039 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00008040 rc = balance(pCur);
8041
8042 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00008043 ** fails. Internal data structure corruption will result otherwise.
8044 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8045 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008046 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00008047 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00008048 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008049 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00008050
drh2e38c322004-09-03 18:38:44 +00008051end_insert:
drh5e2f8b92001-05-28 00:41:15 +00008052 return rc;
8053}
8054
8055/*
danf0ee1d32015-09-12 19:26:11 +00008056** Delete the entry that the cursor is pointing to.
8057**
8058** If the second parameter is zero, then the cursor is left pointing at an
8059** arbitrary location after the delete. If it is non-zero, then the cursor
8060** is left in a state such that the next call to BtreeNext() or BtreePrev()
8061** moves it to the same row as it would if the call to BtreeDelete() had
8062** been omitted.
drh3b7511c2001-05-26 13:15:44 +00008063*/
danf0ee1d32015-09-12 19:26:11 +00008064int sqlite3BtreeDelete(BtCursor *pCur, int bPreserve){
drhd677b3d2007-08-20 22:48:41 +00008065 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00008066 BtShared *pBt = p->pBt;
8067 int rc; /* Return code */
8068 MemPage *pPage; /* Page to delete cell from */
8069 unsigned char *pCell; /* Pointer to cell to delete */
8070 int iCellIdx; /* Index of cell to delete */
8071 int iCellDepth; /* Depth of node containing pCell */
drh9bfdc252014-09-24 02:05:41 +00008072 u16 szCell; /* Size of the cell being deleted */
danf0ee1d32015-09-12 19:26:11 +00008073 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */
drh8b2f49b2001-06-08 00:21:52 +00008074
drh1fee73e2007-08-29 04:00:57 +00008075 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00008076 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008077 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00008078 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00008079 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8080 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drh98ef0f62015-06-30 01:25:52 +00008081 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
8082 assert( pCur->eState==CURSOR_VALID );
danielk1977da184232006-01-05 11:34:32 +00008083
danielk19774dbaa892009-06-16 16:50:22 +00008084 iCellDepth = pCur->iPage;
8085 iCellIdx = pCur->aiIdx[iCellDepth];
8086 pPage = pCur->apPage[iCellDepth];
8087 pCell = findCell(pPage, iCellIdx);
8088
8089 /* If the page containing the entry to delete is not a leaf page, move
8090 ** the cursor to the largest entry in the tree that is smaller than
8091 ** the entry being deleted. This cell will replace the cell being deleted
8092 ** from the internal node. The 'previous' entry is used for this instead
8093 ** of the 'next' entry, as the previous entry is always a part of the
8094 ** sub-tree headed by the child page of the cell being deleted. This makes
8095 ** balancing the tree following the delete operation easier. */
8096 if( !pPage->leaf ){
drhe39a7322014-02-03 14:04:11 +00008097 int notUsed = 0;
drh4c301aa2009-07-15 17:25:45 +00008098 rc = sqlite3BtreePrevious(pCur, &notUsed);
8099 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00008100 }
8101
8102 /* Save the positions of any other cursors open on this table before
danf0ee1d32015-09-12 19:26:11 +00008103 ** making any modifications. */
drh27fb7462015-06-30 02:47:36 +00008104 if( pCur->curFlags & BTCF_Multiple ){
8105 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8106 if( rc ) return rc;
8107 }
drhd60f4f42012-03-23 14:23:52 +00008108
8109 /* If this is a delete operation to remove a row from a table b-tree,
8110 ** invalidate any incrblob cursors open on the row being deleted. */
8111 if( pCur->pKeyInfo==0 ){
8112 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
8113 }
8114
danf0ee1d32015-09-12 19:26:11 +00008115 /* If the bPreserve flag is set to true, then the cursor position must
8116 ** be preserved following this delete operation. If the current delete
8117 ** will cause a b-tree rebalance, then this is done by saving the cursor
8118 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8119 ** returning.
8120 **
8121 ** Or, if the current delete will not cause a rebalance, then the cursor
8122 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8123 ** before or after the deleted entry. In this case set bSkipnext to true. */
8124 if( bPreserve ){
8125 if( !pPage->leaf
drh66336f32015-09-14 14:08:25 +00008126 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
danf0ee1d32015-09-12 19:26:11 +00008127 ){
8128 /* A b-tree rebalance will be required after deleting this entry.
8129 ** Save the cursor key. */
8130 rc = saveCursorKey(pCur);
8131 if( rc ) return rc;
8132 }else{
8133 bSkipnext = 1;
8134 }
8135 }
8136
8137 /* Make the page containing the entry to be deleted writable. Then free any
8138 ** overflow pages associated with the entry and finally remove the cell
8139 ** itself from within the page. */
drha4ec1d42009-07-11 13:13:11 +00008140 rc = sqlite3PagerWrite(pPage->pDbPage);
8141 if( rc ) return rc;
drh9bfdc252014-09-24 02:05:41 +00008142 rc = clearCell(pPage, pCell, &szCell);
8143 dropCell(pPage, iCellIdx, szCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008144 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00008145
danielk19774dbaa892009-06-16 16:50:22 +00008146 /* If the cell deleted was not located on a leaf page, then the cursor
8147 ** is currently pointing to the largest entry in the sub-tree headed
8148 ** by the child-page of the cell that was just deleted from an internal
8149 ** node. The cell from the leaf node needs to be moved to the internal
8150 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00008151 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00008152 MemPage *pLeaf = pCur->apPage[pCur->iPage];
8153 int nCell;
8154 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
8155 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00008156
danielk19774dbaa892009-06-16 16:50:22 +00008157 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00008158 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00008159 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00008160 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00008161 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008162 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00008163 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00008164 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8165 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008166 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00008167 }
danielk19774dbaa892009-06-16 16:50:22 +00008168
8169 /* Balance the tree. If the entry deleted was located on a leaf page,
8170 ** then the cursor still points to that page. In this case the first
8171 ** call to balance() repairs the tree, and the if(...) condition is
8172 ** never true.
8173 **
8174 ** Otherwise, if the entry deleted was on an internal node page, then
8175 ** pCur is pointing to the leaf page from which a cell was removed to
8176 ** replace the cell deleted from the internal node. This is slightly
8177 ** tricky as the leaf node may be underfull, and the internal node may
8178 ** be either under or overfull. In this case run the balancing algorithm
8179 ** on the leaf node first. If the balance proceeds far enough up the
8180 ** tree that we can be sure that any problem in the internal node has
8181 ** been corrected, so be it. Otherwise, after balancing the leaf node,
8182 ** walk the cursor up the tree to the internal node and balance it as
8183 ** well. */
8184 rc = balance(pCur);
8185 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8186 while( pCur->iPage>iCellDepth ){
8187 releasePage(pCur->apPage[pCur->iPage--]);
8188 }
8189 rc = balance(pCur);
8190 }
8191
danielk19776b456a22005-03-21 04:04:02 +00008192 if( rc==SQLITE_OK ){
danf0ee1d32015-09-12 19:26:11 +00008193 if( bSkipnext ){
8194 assert( bPreserve && pCur->iPage==iCellDepth );
drh78ac1092015-09-20 22:57:47 +00008195 assert( pPage==pCur->apPage[pCur->iPage] );
8196 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
danf0ee1d32015-09-12 19:26:11 +00008197 pCur->eState = CURSOR_SKIPNEXT;
8198 if( iCellIdx>=pPage->nCell ){
8199 pCur->skipNext = -1;
8200 pCur->aiIdx[iCellDepth] = pPage->nCell-1;
8201 }else{
8202 pCur->skipNext = 1;
8203 }
8204 }else{
8205 rc = moveToRoot(pCur);
8206 if( bPreserve ){
8207 pCur->eState = CURSOR_REQUIRESEEK;
8208 }
8209 }
danielk19776b456a22005-03-21 04:04:02 +00008210 }
drh5e2f8b92001-05-28 00:41:15 +00008211 return rc;
drh3b7511c2001-05-26 13:15:44 +00008212}
drh8b2f49b2001-06-08 00:21:52 +00008213
8214/*
drhc6b52df2002-01-04 03:09:29 +00008215** Create a new BTree table. Write into *piTable the page
8216** number for the root page of the new table.
8217**
drhab01f612004-05-22 02:55:23 +00008218** The type of type is determined by the flags parameter. Only the
8219** following values of flags are currently in use. Other values for
8220** flags might not work:
8221**
8222** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
8223** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00008224*/
drhd4187c72010-08-30 22:15:45 +00008225static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00008226 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008227 MemPage *pRoot;
8228 Pgno pgnoRoot;
8229 int rc;
drhd4187c72010-08-30 22:15:45 +00008230 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00008231
drh1fee73e2007-08-29 04:00:57 +00008232 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008233 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008234 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00008235
danielk1977003ba062004-11-04 02:57:33 +00008236#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00008237 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00008238 if( rc ){
8239 return rc;
8240 }
danielk1977003ba062004-11-04 02:57:33 +00008241#else
danielk1977687566d2004-11-02 12:56:41 +00008242 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00008243 Pgno pgnoMove; /* Move a page here to make room for the root-page */
8244 MemPage *pPageMove; /* The page to move to. */
8245
danielk197720713f32007-05-03 11:43:33 +00008246 /* Creating a new table may probably require moving an existing database
8247 ** to make room for the new tables root page. In case this page turns
8248 ** out to be an overflow page, delete all overflow page-map caches
8249 ** held by open cursors.
8250 */
danielk197792d4d7a2007-05-04 12:05:56 +00008251 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00008252
danielk1977003ba062004-11-04 02:57:33 +00008253 /* Read the value of meta[3] from the database to determine where the
8254 ** root page of the new table should go. meta[3] is the largest root-page
8255 ** created so far, so the new root-page is (meta[3]+1).
8256 */
danielk1977602b4662009-07-02 07:47:33 +00008257 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00008258 pgnoRoot++;
8259
danielk1977599fcba2004-11-08 07:13:13 +00008260 /* The new root-page may not be allocated on a pointer-map page, or the
8261 ** PENDING_BYTE page.
8262 */
drh72190432008-01-31 14:54:43 +00008263 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00008264 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00008265 pgnoRoot++;
8266 }
drh499e15b2015-05-22 12:37:37 +00008267 assert( pgnoRoot>=3 || CORRUPT_DB );
8268 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00008269
8270 /* Allocate a page. The page that currently resides at pgnoRoot will
8271 ** be moved to the allocated page (unless the allocated page happens
8272 ** to reside at pgnoRoot).
8273 */
dan51f0b6d2013-02-22 20:16:34 +00008274 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00008275 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00008276 return rc;
8277 }
danielk1977003ba062004-11-04 02:57:33 +00008278
8279 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00008280 /* pgnoRoot is the page that will be used for the root-page of
8281 ** the new table (assuming an error did not occur). But we were
8282 ** allocated pgnoMove. If required (i.e. if it was not allocated
8283 ** by extending the file), the current page at position pgnoMove
8284 ** is already journaled.
8285 */
drheeb844a2009-08-08 18:01:07 +00008286 u8 eType = 0;
8287 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00008288
danf7679ad2013-04-03 11:38:36 +00008289 /* Save the positions of any open cursors. This is required in
8290 ** case they are holding a reference to an xFetch reference
8291 ** corresponding to page pgnoRoot. */
8292 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00008293 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00008294 if( rc!=SQLITE_OK ){
8295 return rc;
8296 }
danielk1977f35843b2007-04-07 15:03:17 +00008297
8298 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00008299 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008300 if( rc!=SQLITE_OK ){
8301 return rc;
8302 }
8303 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00008304 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8305 rc = SQLITE_CORRUPT_BKPT;
8306 }
8307 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00008308 releasePage(pRoot);
8309 return rc;
8310 }
drhccae6022005-02-26 17:31:26 +00008311 assert( eType!=PTRMAP_ROOTPAGE );
8312 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00008313 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00008314 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00008315
8316 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00008317 if( rc!=SQLITE_OK ){
8318 return rc;
8319 }
drhb00fc3b2013-08-21 23:42:32 +00008320 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008321 if( rc!=SQLITE_OK ){
8322 return rc;
8323 }
danielk19773b8a05f2007-03-19 17:44:26 +00008324 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00008325 if( rc!=SQLITE_OK ){
8326 releasePage(pRoot);
8327 return rc;
8328 }
8329 }else{
8330 pRoot = pPageMove;
8331 }
8332
danielk197742741be2005-01-08 12:42:39 +00008333 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00008334 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00008335 if( rc ){
8336 releasePage(pRoot);
8337 return rc;
8338 }
drhbf592832010-03-30 15:51:12 +00008339
8340 /* When the new root page was allocated, page 1 was made writable in
8341 ** order either to increase the database filesize, or to decrement the
8342 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8343 */
8344 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00008345 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00008346 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00008347 releasePage(pRoot);
8348 return rc;
8349 }
danielk197742741be2005-01-08 12:42:39 +00008350
danielk1977003ba062004-11-04 02:57:33 +00008351 }else{
drh4f0c5872007-03-26 22:05:01 +00008352 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00008353 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00008354 }
8355#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008356 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00008357 if( createTabFlags & BTREE_INTKEY ){
8358 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8359 }else{
8360 ptfFlags = PTF_ZERODATA | PTF_LEAF;
8361 }
8362 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00008363 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00008364 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00008365 *piTable = (int)pgnoRoot;
8366 return SQLITE_OK;
8367}
drhd677b3d2007-08-20 22:48:41 +00008368int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8369 int rc;
8370 sqlite3BtreeEnter(p);
8371 rc = btreeCreateTable(p, piTable, flags);
8372 sqlite3BtreeLeave(p);
8373 return rc;
8374}
drh8b2f49b2001-06-08 00:21:52 +00008375
8376/*
8377** Erase the given database page and all its children. Return
8378** the page to the freelist.
8379*/
drh4b70f112004-05-02 21:12:19 +00008380static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00008381 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00008382 Pgno pgno, /* Page number to clear */
8383 int freePageFlag, /* Deallocate page if true */
8384 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00008385){
danielk1977146ba992009-07-22 14:08:13 +00008386 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00008387 int rc;
drh4b70f112004-05-02 21:12:19 +00008388 unsigned char *pCell;
8389 int i;
dan8ce71842014-01-14 20:14:09 +00008390 int hdr;
drh9bfdc252014-09-24 02:05:41 +00008391 u16 szCell;
drh8b2f49b2001-06-08 00:21:52 +00008392
drh1fee73e2007-08-29 04:00:57 +00008393 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00008394 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00008395 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00008396 }
drh28f58dd2015-06-27 19:45:03 +00008397 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00008398 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00008399 if( pPage->bBusy ){
8400 rc = SQLITE_CORRUPT_BKPT;
8401 goto cleardatabasepage_out;
8402 }
8403 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00008404 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00008405 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00008406 pCell = findCell(pPage, i);
drhccf46d02015-04-01 13:21:33 +00008407 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00008408 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008409 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008410 }
drh9bfdc252014-09-24 02:05:41 +00008411 rc = clearCell(pPage, pCell, &szCell);
danielk19776b456a22005-03-21 04:04:02 +00008412 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008413 }
drhccf46d02015-04-01 13:21:33 +00008414 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00008415 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008416 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00008417 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00008418 assert( pPage->intKey || CORRUPT_DB );
8419 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00008420 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00008421 }
8422 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00008423 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00008424 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00008425 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00008426 }
danielk19776b456a22005-03-21 04:04:02 +00008427
8428cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00008429 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00008430 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00008431 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008432}
8433
8434/*
drhab01f612004-05-22 02:55:23 +00008435** Delete all information from a single table in the database. iTable is
8436** the page number of the root of the table. After this routine returns,
8437** the root page is empty, but still exists.
8438**
8439** This routine will fail with SQLITE_LOCKED if there are any open
8440** read cursors on the table. Open write cursors are moved to the
8441** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00008442**
8443** If pnChange is not NULL, then table iTable must be an intkey table. The
8444** integer value pointed to by pnChange is incremented by the number of
8445** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00008446*/
danielk1977c7af4842008-10-27 13:59:33 +00008447int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00008448 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00008449 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00008450 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008451 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008452
drhc046e3e2009-07-15 11:26:44 +00008453 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00008454
drhc046e3e2009-07-15 11:26:44 +00008455 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00008456 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8457 ** is the root of a table b-tree - if it is not, the following call is
8458 ** a no-op). */
8459 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00008460 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00008461 }
drhd677b3d2007-08-20 22:48:41 +00008462 sqlite3BtreeLeave(p);
8463 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008464}
8465
8466/*
drh079a3072014-03-19 14:10:55 +00008467** Delete all information from the single table that pCur is open on.
8468**
8469** This routine only work for pCur on an ephemeral table.
8470*/
8471int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8472 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8473}
8474
8475/*
drh8b2f49b2001-06-08 00:21:52 +00008476** Erase all information in a table and add the root of the table to
8477** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00008478** page 1) is never added to the freelist.
8479**
8480** This routine will fail with SQLITE_LOCKED if there are any open
8481** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00008482**
8483** If AUTOVACUUM is enabled and the page at iTable is not the last
8484** root page in the database file, then the last root page
8485** in the database file is moved into the slot formerly occupied by
8486** iTable and that last slot formerly occupied by the last root page
8487** is added to the freelist instead of iTable. In this say, all
8488** root pages are kept at the beginning of the database file, which
8489** is necessary for AUTOVACUUM to work right. *piMoved is set to the
8490** page number that used to be the last root page in the file before
8491** the move. If no page gets moved, *piMoved is set to 0.
8492** The last root page is recorded in meta[3] and the value of
8493** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00008494*/
danielk197789d40042008-11-17 14:20:56 +00008495static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00008496 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00008497 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00008498 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00008499
drh1fee73e2007-08-29 04:00:57 +00008500 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008501 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00008502
danielk1977e6efa742004-11-10 11:55:10 +00008503 /* It is illegal to drop a table if any cursors are open on the
8504 ** database. This is because in auto-vacuum mode the backend may
8505 ** need to move another root-page to fill a gap left by the deleted
8506 ** root page. If an open cursor was using this page a problem would
8507 ** occur.
drhc046e3e2009-07-15 11:26:44 +00008508 **
8509 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00008510 */
drhc046e3e2009-07-15 11:26:44 +00008511 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00008512 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
8513 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00008514 }
danielk1977a0bf2652004-11-04 14:30:04 +00008515
drhb00fc3b2013-08-21 23:42:32 +00008516 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00008517 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00008518 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00008519 if( rc ){
8520 releasePage(pPage);
8521 return rc;
8522 }
danielk1977a0bf2652004-11-04 14:30:04 +00008523
drh205f48e2004-11-05 00:43:11 +00008524 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00008525
drh4b70f112004-05-02 21:12:19 +00008526 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00008527#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00008528 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008529 releasePage(pPage);
8530#else
8531 if( pBt->autoVacuum ){
8532 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00008533 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008534
8535 if( iTable==maxRootPgno ){
8536 /* If the table being dropped is the table with the largest root-page
8537 ** number in the database, put the root page on the free list.
8538 */
drhc314dc72009-07-21 11:52:34 +00008539 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008540 releasePage(pPage);
8541 if( rc!=SQLITE_OK ){
8542 return rc;
8543 }
8544 }else{
8545 /* The table being dropped does not have the largest root-page
8546 ** number in the database. So move the page that does into the
8547 ** gap left by the deleted root-page.
8548 */
8549 MemPage *pMove;
8550 releasePage(pPage);
drhb00fc3b2013-08-21 23:42:32 +00008551 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00008552 if( rc!=SQLITE_OK ){
8553 return rc;
8554 }
danielk19774c999992008-07-16 18:17:55 +00008555 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00008556 releasePage(pMove);
8557 if( rc!=SQLITE_OK ){
8558 return rc;
8559 }
drhfe3313f2009-07-21 19:02:20 +00008560 pMove = 0;
drhb00fc3b2013-08-21 23:42:32 +00008561 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00008562 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008563 releasePage(pMove);
8564 if( rc!=SQLITE_OK ){
8565 return rc;
8566 }
8567 *piMoved = maxRootPgno;
8568 }
8569
danielk1977599fcba2004-11-08 07:13:13 +00008570 /* Set the new 'max-root-page' value in the database header. This
8571 ** is the old value less one, less one more if that happens to
8572 ** be a root-page number, less one again if that is the
8573 ** PENDING_BYTE_PAGE.
8574 */
danielk197787a6e732004-11-05 12:58:25 +00008575 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00008576 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8577 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00008578 maxRootPgno--;
8579 }
danielk1977599fcba2004-11-08 07:13:13 +00008580 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8581
danielk1977aef0bf62005-12-30 16:28:01 +00008582 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008583 }else{
drhc314dc72009-07-21 11:52:34 +00008584 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008585 releasePage(pPage);
8586 }
8587#endif
drh2aa679f2001-06-25 02:11:07 +00008588 }else{
drhc046e3e2009-07-15 11:26:44 +00008589 /* If sqlite3BtreeDropTable was called on page 1.
8590 ** This really never should happen except in a corrupt
8591 ** database.
8592 */
drha34b6762004-05-07 13:30:42 +00008593 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00008594 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00008595 }
drh8b2f49b2001-06-08 00:21:52 +00008596 return rc;
8597}
drhd677b3d2007-08-20 22:48:41 +00008598int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8599 int rc;
8600 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00008601 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00008602 sqlite3BtreeLeave(p);
8603 return rc;
8604}
drh8b2f49b2001-06-08 00:21:52 +00008605
drh001bbcb2003-03-19 03:14:00 +00008606
drh8b2f49b2001-06-08 00:21:52 +00008607/*
danielk1977602b4662009-07-02 07:47:33 +00008608** This function may only be called if the b-tree connection already
8609** has a read or write transaction open on the database.
8610**
drh23e11ca2004-05-04 17:27:28 +00008611** Read the meta-information out of a database file. Meta[0]
8612** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00008613** through meta[15] are available for use by higher layers. Meta[0]
8614** is read-only, the others are read/write.
8615**
8616** The schema layer numbers meta values differently. At the schema
8617** layer (and the SetCookie and ReadCookie opcodes) the number of
8618** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00008619**
8620** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
8621** of reading the value out of the header, it instead loads the "DataVersion"
8622** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
8623** database file. It is a number computed by the pager. But its access
8624** pattern is the same as header meta values, and so it is convenient to
8625** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00008626*/
danielk1977602b4662009-07-02 07:47:33 +00008627void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00008628 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008629
drhd677b3d2007-08-20 22:48:41 +00008630 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00008631 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00008632 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00008633 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00008634 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00008635
drh91618562014-12-19 19:28:02 +00008636 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00008637 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00008638 }else{
8639 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
8640 }
drhae157872004-08-14 19:20:09 +00008641
danielk1977602b4662009-07-02 07:47:33 +00008642 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8643 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00008644#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00008645 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8646 pBt->btsFlags |= BTS_READ_ONLY;
8647 }
danielk1977003ba062004-11-04 02:57:33 +00008648#endif
drhae157872004-08-14 19:20:09 +00008649
drhd677b3d2007-08-20 22:48:41 +00008650 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00008651}
8652
8653/*
drh23e11ca2004-05-04 17:27:28 +00008654** Write meta-information back into the database. Meta[0] is
8655** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00008656*/
danielk1977aef0bf62005-12-30 16:28:01 +00008657int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8658 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00008659 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00008660 int rc;
drh23e11ca2004-05-04 17:27:28 +00008661 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00008662 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008663 assert( p->inTrans==TRANS_WRITE );
8664 assert( pBt->pPage1!=0 );
8665 pP1 = pBt->pPage1->aData;
8666 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8667 if( rc==SQLITE_OK ){
8668 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00008669#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00008670 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00008671 assert( pBt->autoVacuum || iMeta==0 );
8672 assert( iMeta==0 || iMeta==1 );
8673 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00008674 }
drh64022502009-01-09 14:11:04 +00008675#endif
drh5df72a52002-06-06 23:16:05 +00008676 }
drhd677b3d2007-08-20 22:48:41 +00008677 sqlite3BtreeLeave(p);
8678 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008679}
drh8c42ca92001-06-22 19:15:00 +00008680
danielk1977a5533162009-02-24 10:01:51 +00008681#ifndef SQLITE_OMIT_BTREECOUNT
8682/*
8683** The first argument, pCur, is a cursor opened on some b-tree. Count the
8684** number of entries in the b-tree and write the result to *pnEntry.
8685**
8686** SQLITE_OK is returned if the operation is successfully executed.
8687** Otherwise, if an error is encountered (i.e. an IO error or database
8688** corruption) an SQLite error code is returned.
8689*/
8690int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
8691 i64 nEntry = 0; /* Value to return in *pnEntry */
8692 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00008693
8694 if( pCur->pgnoRoot==0 ){
8695 *pnEntry = 0;
8696 return SQLITE_OK;
8697 }
danielk1977a5533162009-02-24 10:01:51 +00008698 rc = moveToRoot(pCur);
8699
8700 /* Unless an error occurs, the following loop runs one iteration for each
8701 ** page in the B-Tree structure (not including overflow pages).
8702 */
8703 while( rc==SQLITE_OK ){
8704 int iIdx; /* Index of child node in parent */
8705 MemPage *pPage; /* Current page of the b-tree */
8706
8707 /* If this is a leaf page or the tree is not an int-key tree, then
8708 ** this page contains countable entries. Increment the entry counter
8709 ** accordingly.
8710 */
8711 pPage = pCur->apPage[pCur->iPage];
8712 if( pPage->leaf || !pPage->intKey ){
8713 nEntry += pPage->nCell;
8714 }
8715
8716 /* pPage is a leaf node. This loop navigates the cursor so that it
8717 ** points to the first interior cell that it points to the parent of
8718 ** the next page in the tree that has not yet been visited. The
8719 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
8720 ** of the page, or to the number of cells in the page if the next page
8721 ** to visit is the right-child of its parent.
8722 **
8723 ** If all pages in the tree have been visited, return SQLITE_OK to the
8724 ** caller.
8725 */
8726 if( pPage->leaf ){
8727 do {
8728 if( pCur->iPage==0 ){
8729 /* All pages of the b-tree have been visited. Return successfully. */
8730 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00008731 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008732 }
danielk197730548662009-07-09 05:07:37 +00008733 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008734 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
8735
8736 pCur->aiIdx[pCur->iPage]++;
8737 pPage = pCur->apPage[pCur->iPage];
8738 }
8739
8740 /* Descend to the child node of the cell that the cursor currently
8741 ** points at. This is the right-child if (iIdx==pPage->nCell).
8742 */
8743 iIdx = pCur->aiIdx[pCur->iPage];
8744 if( iIdx==pPage->nCell ){
8745 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
8746 }else{
8747 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
8748 }
8749 }
8750
shanebe217792009-03-05 04:20:31 +00008751 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00008752 return rc;
8753}
8754#endif
drhdd793422001-06-28 01:54:48 +00008755
drhdd793422001-06-28 01:54:48 +00008756/*
drh5eddca62001-06-30 21:53:53 +00008757** Return the pager associated with a BTree. This routine is used for
8758** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00008759*/
danielk1977aef0bf62005-12-30 16:28:01 +00008760Pager *sqlite3BtreePager(Btree *p){
8761 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00008762}
drh5eddca62001-06-30 21:53:53 +00008763
drhb7f91642004-10-31 02:22:47 +00008764#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008765/*
8766** Append a message to the error message string.
8767*/
drh2e38c322004-09-03 18:38:44 +00008768static void checkAppendMsg(
8769 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00008770 const char *zFormat,
8771 ...
8772){
8773 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00008774 if( !pCheck->mxErr ) return;
8775 pCheck->mxErr--;
8776 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00008777 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00008778 if( pCheck->errMsg.nChar ){
8779 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00008780 }
drh867db832014-09-26 02:41:05 +00008781 if( pCheck->zPfx ){
drhd37bea52015-09-02 15:37:50 +00008782 sqlite3XPrintf(&pCheck->errMsg, 0, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +00008783 }
8784 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
8785 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00008786 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00008787 pCheck->mallocFailed = 1;
8788 }
drh5eddca62001-06-30 21:53:53 +00008789}
drhb7f91642004-10-31 02:22:47 +00008790#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008791
drhb7f91642004-10-31 02:22:47 +00008792#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00008793
8794/*
8795** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
8796** corresponds to page iPg is already set.
8797*/
8798static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8799 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8800 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
8801}
8802
8803/*
8804** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
8805*/
8806static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8807 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8808 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
8809}
8810
8811
drh5eddca62001-06-30 21:53:53 +00008812/*
8813** Add 1 to the reference count for page iPage. If this is the second
8814** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00008815** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00008816** if this is the first reference to the page.
8817**
8818** Also check that the page number is in bounds.
8819*/
drh867db832014-09-26 02:41:05 +00008820static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh5eddca62001-06-30 21:53:53 +00008821 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00008822 if( iPage>pCheck->nPage ){
drh867db832014-09-26 02:41:05 +00008823 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008824 return 1;
8825 }
dan1235bb12012-04-03 17:43:28 +00008826 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00008827 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008828 return 1;
8829 }
dan1235bb12012-04-03 17:43:28 +00008830 setPageReferenced(pCheck, iPage);
8831 return 0;
drh5eddca62001-06-30 21:53:53 +00008832}
8833
danielk1977afcdd022004-10-31 16:25:42 +00008834#ifndef SQLITE_OMIT_AUTOVACUUM
8835/*
8836** Check that the entry in the pointer-map for page iChild maps to
8837** page iParent, pointer type ptrType. If not, append an error message
8838** to pCheck.
8839*/
8840static void checkPtrmap(
8841 IntegrityCk *pCheck, /* Integrity check context */
8842 Pgno iChild, /* Child page number */
8843 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00008844 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00008845){
8846 int rc;
8847 u8 ePtrmapType;
8848 Pgno iPtrmapParent;
8849
8850 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
8851 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00008852 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00008853 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00008854 return;
8855 }
8856
8857 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00008858 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00008859 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
8860 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
8861 }
8862}
8863#endif
8864
drh5eddca62001-06-30 21:53:53 +00008865/*
8866** Check the integrity of the freelist or of an overflow page list.
8867** Verify that the number of pages on the list is N.
8868*/
drh30e58752002-03-02 20:41:57 +00008869static void checkList(
8870 IntegrityCk *pCheck, /* Integrity checking context */
8871 int isFreeList, /* True for a freelist. False for overflow page list */
8872 int iPage, /* Page number for first page in the list */
drh867db832014-09-26 02:41:05 +00008873 int N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00008874){
8875 int i;
drh3a4c1412004-05-09 20:40:11 +00008876 int expected = N;
8877 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00008878 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00008879 DbPage *pOvflPage;
8880 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00008881 if( iPage<1 ){
drh867db832014-09-26 02:41:05 +00008882 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008883 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00008884 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00008885 break;
8886 }
drh867db832014-09-26 02:41:05 +00008887 if( checkRef(pCheck, iPage) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00008888 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh867db832014-09-26 02:41:05 +00008889 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008890 break;
8891 }
danielk19773b8a05f2007-03-19 17:44:26 +00008892 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00008893 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00008894 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00008895#ifndef SQLITE_OMIT_AUTOVACUUM
8896 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008897 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008898 }
8899#endif
drh43b18e12010-08-17 19:40:08 +00008900 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00008901 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008902 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00008903 N--;
8904 }else{
8905 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00008906 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00008907#ifndef SQLITE_OMIT_AUTOVACUUM
8908 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008909 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008910 }
8911#endif
drh867db832014-09-26 02:41:05 +00008912 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00008913 }
8914 N -= n;
drh30e58752002-03-02 20:41:57 +00008915 }
drh30e58752002-03-02 20:41:57 +00008916 }
danielk1977afcdd022004-10-31 16:25:42 +00008917#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008918 else{
8919 /* If this database supports auto-vacuum and iPage is not the last
8920 ** page in this overflow list, check that the pointer-map entry for
8921 ** the following page matches iPage.
8922 */
8923 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00008924 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00008925 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00008926 }
danielk1977afcdd022004-10-31 16:25:42 +00008927 }
8928#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008929 iPage = get4byte(pOvflData);
8930 sqlite3PagerUnref(pOvflPage);
danad41f5e2015-09-18 14:45:01 +00008931
8932 if( isFreeList && N<(iPage!=0) ){
8933 checkAppendMsg(pCheck, "free-page count in header is too small");
8934 }
drh5eddca62001-06-30 21:53:53 +00008935 }
8936}
drhb7f91642004-10-31 02:22:47 +00008937#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008938
drh67731a92015-04-16 11:56:03 +00008939/*
8940** An implementation of a min-heap.
8941**
8942** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00008943** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00008944** and aHeap[N*2+1].
8945**
8946** The heap property is this: Every node is less than or equal to both
8947** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00008948** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00008949**
8950** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
8951** the heap, preserving the heap property. The btreeHeapPull() routine
8952** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00008953** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00008954** property.
8955**
8956** This heap is used for cell overlap and coverage testing. Each u32
8957** entry represents the span of a cell or freeblock on a btree page.
8958** The upper 16 bits are the index of the first byte of a range and the
8959** lower 16 bits are the index of the last byte of that range.
8960*/
8961static void btreeHeapInsert(u32 *aHeap, u32 x){
8962 u32 j, i = ++aHeap[0];
8963 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00008964 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00008965 x = aHeap[j];
8966 aHeap[j] = aHeap[i];
8967 aHeap[i] = x;
8968 i = j;
8969 }
8970}
8971static int btreeHeapPull(u32 *aHeap, u32 *pOut){
8972 u32 j, i, x;
8973 if( (x = aHeap[0])==0 ) return 0;
8974 *pOut = aHeap[1];
8975 aHeap[1] = aHeap[x];
8976 aHeap[x] = 0xffffffff;
8977 aHeap[0]--;
8978 i = 1;
8979 while( (j = i*2)<=aHeap[0] ){
8980 if( aHeap[j]>aHeap[j+1] ) j++;
8981 if( aHeap[i]<aHeap[j] ) break;
8982 x = aHeap[i];
8983 aHeap[i] = aHeap[j];
8984 aHeap[j] = x;
8985 i = j;
8986 }
8987 return 1;
8988}
8989
drhb7f91642004-10-31 02:22:47 +00008990#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008991/*
8992** Do various sanity checks on a single page of a tree. Return
8993** the tree depth. Root pages return 0. Parents of root pages
8994** return 1, and so forth.
8995**
8996** These checks are done:
8997**
8998** 1. Make sure that cells and freeblocks do not overlap
8999** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +00009000** 2. Make sure integer cell keys are in order.
9001** 3. Check the integrity of overflow pages.
9002** 4. Recursively call checkTreePage on all children.
9003** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +00009004*/
9005static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00009006 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00009007 int iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +00009008 i64 *piMinKey, /* Write minimum integer primary key here */
9009 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +00009010){
drhcbc6b712015-07-02 16:17:30 +00009011 MemPage *pPage = 0; /* The page being analyzed */
9012 int i; /* Loop counter */
9013 int rc; /* Result code from subroutine call */
9014 int depth = -1, d2; /* Depth of a subtree */
9015 int pgno; /* Page number */
9016 int nFrag; /* Number of fragmented bytes on the page */
9017 int hdr; /* Offset to the page header */
9018 int cellStart; /* Offset to the start of the cell pointer array */
9019 int nCell; /* Number of cells */
9020 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9021 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
9022 ** False if IPK must be strictly less than maxKey */
9023 u8 *data; /* Page content */
9024 u8 *pCell; /* Cell content */
9025 u8 *pCellIdx; /* Next element of the cell pointer array */
9026 BtShared *pBt; /* The BtShared object that owns pPage */
9027 u32 pc; /* Address of a cell */
9028 u32 usableSize; /* Usable size of the page */
9029 u32 contentOffset; /* Offset to the start of the cell content area */
9030 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +00009031 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +00009032 const char *saved_zPfx = pCheck->zPfx;
9033 int saved_v1 = pCheck->v1;
9034 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +00009035 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +00009036
drh5eddca62001-06-30 21:53:53 +00009037 /* Check that the page exists
9038 */
drhd9cb6ac2005-10-20 07:28:17 +00009039 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00009040 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00009041 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00009042 if( checkRef(pCheck, iPage) ) return 0;
9043 pCheck->zPfx = "Page %d: ";
9044 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00009045 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00009046 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009047 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00009048 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009049 }
danielk197793caf5a2009-07-11 06:55:33 +00009050
9051 /* Clear MemPage.isInit to make sure the corruption detection code in
9052 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +00009053 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +00009054 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00009055 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00009056 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00009057 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00009058 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +00009059 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009060 }
drhcbc6b712015-07-02 16:17:30 +00009061 data = pPage->aData;
9062 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +00009063
drhcbc6b712015-07-02 16:17:30 +00009064 /* Set up for cell analysis */
drhe05b3f82015-07-01 17:53:49 +00009065 pCheck->zPfx = "On tree page %d cell %d: ";
drhcbc6b712015-07-02 16:17:30 +00009066 contentOffset = get2byteNotZero(&data[hdr+5]);
9067 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
9068
9069 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9070 ** number of cells on the page. */
9071 nCell = get2byte(&data[hdr+3]);
9072 assert( pPage->nCell==nCell );
9073
9074 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9075 ** immediately follows the b-tree page header. */
9076 cellStart = hdr + 12 - 4*pPage->leaf;
9077 assert( pPage->aCellIdx==&data[cellStart] );
9078 pCellIdx = &data[cellStart + 2*(nCell-1)];
9079
9080 if( !pPage->leaf ){
9081 /* Analyze the right-child page of internal pages */
9082 pgno = get4byte(&data[hdr+8]);
9083#ifndef SQLITE_OMIT_AUTOVACUUM
9084 if( pBt->autoVacuum ){
9085 pCheck->zPfx = "On page %d at right child: ";
9086 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9087 }
9088#endif
9089 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9090 keyCanBeEqual = 0;
9091 }else{
9092 /* For leaf pages, the coverage check will occur in the same loop
9093 ** as the other cell checks, so initialize the heap. */
9094 heap = pCheck->heap;
9095 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +00009096 }
9097
9098 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9099 ** integer offsets to the cell contents. */
9100 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +00009101 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00009102
drhcbc6b712015-07-02 16:17:30 +00009103 /* Check cell size */
drh867db832014-09-26 02:41:05 +00009104 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +00009105 assert( pCellIdx==&data[cellStart + i*2] );
9106 pc = get2byteAligned(pCellIdx);
9107 pCellIdx -= 2;
9108 if( pc<contentOffset || pc>usableSize-4 ){
9109 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9110 pc, contentOffset, usableSize-4);
9111 doCoverageCheck = 0;
9112 continue;
shaneh195475d2010-02-19 04:28:08 +00009113 }
drhcbc6b712015-07-02 16:17:30 +00009114 pCell = &data[pc];
9115 pPage->xParseCell(pPage, pCell, &info);
9116 if( pc+info.nSize>usableSize ){
9117 checkAppendMsg(pCheck, "Extends off end of page");
9118 doCoverageCheck = 0;
9119 continue;
9120 }
9121
9122 /* Check for integer primary key out of range */
9123 if( pPage->intKey ){
9124 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9125 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9126 }
9127 maxKey = info.nKey;
9128 }
9129
9130 /* Check the content overflow list */
9131 if( info.nPayload>info.nLocal ){
9132 int nPage; /* Number of pages on the overflow chain */
9133 Pgno pgnoOvfl; /* First page of the overflow chain */
9134 assert( pc + info.iOverflow <= usableSize );
9135 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
9136 pgnoOvfl = get4byte(&pCell[info.iOverflow]);
danielk1977afcdd022004-10-31 16:25:42 +00009137#ifndef SQLITE_OMIT_AUTOVACUUM
9138 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009139 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009140 }
9141#endif
drh867db832014-09-26 02:41:05 +00009142 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00009143 }
9144
drhda200cc2004-05-09 11:51:38 +00009145 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +00009146 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +00009147 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00009148#ifndef SQLITE_OMIT_AUTOVACUUM
9149 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009150 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009151 }
9152#endif
drhcbc6b712015-07-02 16:17:30 +00009153 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9154 keyCanBeEqual = 0;
9155 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +00009156 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +00009157 depth = d2;
drhda200cc2004-05-09 11:51:38 +00009158 }
drhcbc6b712015-07-02 16:17:30 +00009159 }else{
9160 /* Populate the coverage-checking heap for leaf pages */
9161 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +00009162 }
drh5eddca62001-06-30 21:53:53 +00009163 }
drhcbc6b712015-07-02 16:17:30 +00009164 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +00009165
drh5eddca62001-06-30 21:53:53 +00009166 /* Check for complete coverage of the page
9167 */
drh867db832014-09-26 02:41:05 +00009168 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +00009169 if( doCoverageCheck && pCheck->mxErr>0 ){
9170 /* For leaf pages, the min-heap has already been initialized and the
9171 ** cells have already been inserted. But for internal pages, that has
9172 ** not yet been done, so do it now */
9173 if( !pPage->leaf ){
9174 heap = pCheck->heap;
9175 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +00009176 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +00009177 u32 size;
9178 pc = get2byteAligned(&data[cellStart+i*2]);
9179 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +00009180 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +00009181 }
drh2e38c322004-09-03 18:38:44 +00009182 }
drhcbc6b712015-07-02 16:17:30 +00009183 /* Add the freeblocks to the min-heap
9184 **
9185 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +00009186 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +00009187 ** freeblocks on the page.
9188 */
drh8c2bbb62009-07-10 02:52:20 +00009189 i = get2byte(&data[hdr+1]);
9190 while( i>0 ){
9191 int size, j;
mistachkinc29cbb02015-07-02 16:52:01 +00009192 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009193 size = get2byte(&data[i+2]);
mistachkinc29cbb02015-07-02 16:52:01 +00009194 assert( (u32)(i+size)<=usableSize ); /* Enforced by btreeInitPage() */
drhe56d4302015-07-08 01:22:52 +00009195 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +00009196 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9197 ** big-endian integer which is the offset in the b-tree page of the next
9198 ** freeblock in the chain, or zero if the freeblock is the last on the
9199 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +00009200 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +00009201 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9202 ** increasing offset. */
drh8c2bbb62009-07-10 02:52:20 +00009203 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
mistachkinc29cbb02015-07-02 16:52:01 +00009204 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009205 i = j;
drh2e38c322004-09-03 18:38:44 +00009206 }
drhcbc6b712015-07-02 16:17:30 +00009207 /* Analyze the min-heap looking for overlap between cells and/or
9208 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +00009209 **
9210 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
9211 ** There is an implied first entry the covers the page header, the cell
9212 ** pointer index, and the gap between the cell pointer index and the start
9213 ** of cell content.
9214 **
9215 ** The loop below pulls entries from the min-heap in order and compares
9216 ** the start_address against the previous end_address. If there is an
9217 ** overlap, that means bytes are used multiple times. If there is a gap,
9218 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +00009219 */
9220 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +00009221 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +00009222 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +00009223 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +00009224 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +00009225 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +00009226 break;
drh67731a92015-04-16 11:56:03 +00009227 }else{
drhcbc6b712015-07-02 16:17:30 +00009228 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +00009229 prev = x;
drh2e38c322004-09-03 18:38:44 +00009230 }
9231 }
drhcbc6b712015-07-02 16:17:30 +00009232 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +00009233 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9234 ** is stored in the fifth field of the b-tree page header.
9235 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9236 ** number of fragmented free bytes within the cell content area.
9237 */
drhcbc6b712015-07-02 16:17:30 +00009238 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +00009239 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +00009240 "Fragmentation of %d bytes reported as %d on page %d",
drhcbc6b712015-07-02 16:17:30 +00009241 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00009242 }
9243 }
drh867db832014-09-26 02:41:05 +00009244
9245end_of_check:
drh72e191e2015-07-04 11:14:20 +00009246 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drhe05b3f82015-07-01 17:53:49 +00009247 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00009248 pCheck->zPfx = saved_zPfx;
9249 pCheck->v1 = saved_v1;
9250 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +00009251 return depth+1;
drh5eddca62001-06-30 21:53:53 +00009252}
drhb7f91642004-10-31 02:22:47 +00009253#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009254
drhb7f91642004-10-31 02:22:47 +00009255#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009256/*
9257** This routine does a complete check of the given BTree file. aRoot[] is
9258** an array of pages numbers were each page number is the root page of
9259** a table. nRoot is the number of entries in aRoot.
9260**
danielk19773509a652009-07-06 18:56:13 +00009261** A read-only or read-write transaction must be opened before calling
9262** this function.
9263**
drhc890fec2008-08-01 20:10:08 +00009264** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00009265** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00009266** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00009267** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00009268*/
drh1dcdbc02007-01-27 02:24:54 +00009269char *sqlite3BtreeIntegrityCheck(
9270 Btree *p, /* The btree to be checked */
9271 int *aRoot, /* An array of root pages numbers for individual trees */
9272 int nRoot, /* Number of entries in aRoot[] */
9273 int mxErr, /* Stop reporting errors after this many */
9274 int *pnErr /* Write number of errors seen to this variable */
9275){
danielk197789d40042008-11-17 14:20:56 +00009276 Pgno i;
drhaaab5722002-02-19 13:39:21 +00009277 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00009278 BtShared *pBt = p->pBt;
drhcbc6b712015-07-02 16:17:30 +00009279 int savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +00009280 char zErr[100];
drhcbc6b712015-07-02 16:17:30 +00009281 VVA_ONLY( int nRef );
drh5eddca62001-06-30 21:53:53 +00009282
drhd677b3d2007-08-20 22:48:41 +00009283 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00009284 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhe05b3f82015-07-01 17:53:49 +00009285 assert( (nRef = sqlite3PagerRefcount(pBt->pPager))>=0 );
drh5eddca62001-06-30 21:53:53 +00009286 sCheck.pBt = pBt;
9287 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00009288 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00009289 sCheck.mxErr = mxErr;
9290 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00009291 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +00009292 sCheck.zPfx = 0;
9293 sCheck.v1 = 0;
9294 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +00009295 sCheck.aPgRef = 0;
9296 sCheck.heap = 0;
9297 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh0de8c112002-07-06 16:32:14 +00009298 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +00009299 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +00009300 }
dan1235bb12012-04-03 17:43:28 +00009301
9302 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9303 if( !sCheck.aPgRef ){
drhe05b3f82015-07-01 17:53:49 +00009304 sCheck.mallocFailed = 1;
9305 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +00009306 }
drhe05b3f82015-07-01 17:53:49 +00009307 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
9308 if( sCheck.heap==0 ){
9309 sCheck.mallocFailed = 1;
9310 goto integrity_ck_cleanup;
9311 }
9312
drh42cac6d2004-11-20 20:31:11 +00009313 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00009314 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +00009315
9316 /* Check the integrity of the freelist
9317 */
drh867db832014-09-26 02:41:05 +00009318 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +00009319 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +00009320 get4byte(&pBt->pPage1->aData[36]));
9321 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00009322
9323 /* Check all the tables.
9324 */
drhcbc6b712015-07-02 16:17:30 +00009325 testcase( pBt->db->flags & SQLITE_CellSizeCk );
9326 pBt->db->flags &= ~SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +00009327 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +00009328 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +00009329 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00009330#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009331 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +00009332 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009333 }
9334#endif
drhcbc6b712015-07-02 16:17:30 +00009335 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +00009336 }
drhcbc6b712015-07-02 16:17:30 +00009337 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +00009338
9339 /* Make sure every page in the file is referenced
9340 */
drh1dcdbc02007-01-27 02:24:54 +00009341 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00009342#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00009343 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +00009344 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00009345 }
danielk1977afcdd022004-10-31 16:25:42 +00009346#else
9347 /* If the database supports auto-vacuum, make sure no tables contain
9348 ** references to pointer-map pages.
9349 */
dan1235bb12012-04-03 17:43:28 +00009350 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00009351 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009352 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +00009353 }
dan1235bb12012-04-03 17:43:28 +00009354 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00009355 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009356 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +00009357 }
9358#endif
drh5eddca62001-06-30 21:53:53 +00009359 }
9360
drh5eddca62001-06-30 21:53:53 +00009361 /* Clean up and report errors.
9362 */
drhe05b3f82015-07-01 17:53:49 +00009363integrity_ck_cleanup:
9364 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +00009365 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00009366 if( sCheck.mallocFailed ){
9367 sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009368 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +00009369 }
drh1dcdbc02007-01-27 02:24:54 +00009370 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00009371 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009372 /* Make sure this analysis did not leave any unref() pages. */
9373 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
9374 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +00009375 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00009376}
drhb7f91642004-10-31 02:22:47 +00009377#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00009378
drh73509ee2003-04-06 20:44:45 +00009379/*
drhd4e0bb02012-05-27 01:19:04 +00009380** Return the full pathname of the underlying database file. Return
9381** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00009382**
9383** The pager filename is invariant as long as the pager is
9384** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00009385*/
danielk1977aef0bf62005-12-30 16:28:01 +00009386const char *sqlite3BtreeGetFilename(Btree *p){
9387 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00009388 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00009389}
9390
9391/*
danielk19775865e3d2004-06-14 06:03:57 +00009392** Return the pathname of the journal file for this database. The return
9393** value of this routine is the same regardless of whether the journal file
9394** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00009395**
9396** The pager journal filename is invariant as long as the pager is
9397** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00009398*/
danielk1977aef0bf62005-12-30 16:28:01 +00009399const char *sqlite3BtreeGetJournalname(Btree *p){
9400 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00009401 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00009402}
9403
danielk19771d850a72004-05-31 08:26:49 +00009404/*
9405** Return non-zero if a transaction is active.
9406*/
danielk1977aef0bf62005-12-30 16:28:01 +00009407int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00009408 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00009409 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00009410}
9411
dana550f2d2010-08-02 10:47:05 +00009412#ifndef SQLITE_OMIT_WAL
9413/*
9414** Run a checkpoint on the Btree passed as the first argument.
9415**
9416** Return SQLITE_LOCKED if this or any other connection has an open
9417** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00009418**
dancdc1f042010-11-18 12:11:05 +00009419** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00009420*/
dancdc1f042010-11-18 12:11:05 +00009421int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00009422 int rc = SQLITE_OK;
9423 if( p ){
9424 BtShared *pBt = p->pBt;
9425 sqlite3BtreeEnter(p);
9426 if( pBt->inTransaction!=TRANS_NONE ){
9427 rc = SQLITE_LOCKED;
9428 }else{
dancdc1f042010-11-18 12:11:05 +00009429 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00009430 }
9431 sqlite3BtreeLeave(p);
9432 }
9433 return rc;
9434}
9435#endif
9436
danielk19771d850a72004-05-31 08:26:49 +00009437/*
danielk19772372c2b2006-06-27 16:34:56 +00009438** Return non-zero if a read (or write) transaction is active.
9439*/
9440int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00009441 assert( p );
drhe5fe6902007-12-07 18:55:28 +00009442 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00009443 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00009444}
9445
danielk197704103022009-02-03 16:51:24 +00009446int sqlite3BtreeIsInBackup(Btree *p){
9447 assert( p );
9448 assert( sqlite3_mutex_held(p->db->mutex) );
9449 return p->nBackup!=0;
9450}
9451
danielk19772372c2b2006-06-27 16:34:56 +00009452/*
danielk1977da184232006-01-05 11:34:32 +00009453** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00009454** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00009455** purposes (for example, to store a high-level schema associated with
9456** the shared-btree). The btree layer manages reference counting issues.
9457**
9458** The first time this is called on a shared-btree, nBytes bytes of memory
9459** are allocated, zeroed, and returned to the caller. For each subsequent
9460** call the nBytes parameter is ignored and a pointer to the same blob
9461** of memory returned.
9462**
danielk1977171bfed2008-06-23 09:50:50 +00009463** If the nBytes parameter is 0 and the blob of memory has not yet been
9464** allocated, a null pointer is returned. If the blob has already been
9465** allocated, it is returned as normal.
9466**
danielk1977da184232006-01-05 11:34:32 +00009467** Just before the shared-btree is closed, the function passed as the
9468** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00009469** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00009470** on the memory, the btree layer does that.
9471*/
9472void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9473 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00009474 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00009475 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00009476 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00009477 pBt->xFreeSchema = xFree;
9478 }
drh27641702007-08-22 02:56:42 +00009479 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00009480 return pBt->pSchema;
9481}
9482
danielk1977c87d34d2006-01-06 13:00:28 +00009483/*
danielk1977404ca072009-03-16 13:19:36 +00009484** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9485** btree as the argument handle holds an exclusive lock on the
9486** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00009487*/
9488int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00009489 int rc;
drhe5fe6902007-12-07 18:55:28 +00009490 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00009491 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00009492 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9493 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00009494 sqlite3BtreeLeave(p);
9495 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00009496}
9497
drha154dcd2006-03-22 22:10:07 +00009498
9499#ifndef SQLITE_OMIT_SHARED_CACHE
9500/*
9501** Obtain a lock on the table whose root page is iTab. The
9502** lock is a write lock if isWritelock is true or a read lock
9503** if it is false.
9504*/
danielk1977c00da102006-01-07 13:21:04 +00009505int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00009506 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00009507 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00009508 if( p->sharable ){
9509 u8 lockType = READ_LOCK + isWriteLock;
9510 assert( READ_LOCK+1==WRITE_LOCK );
9511 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00009512
drh6a9ad3d2008-04-02 16:29:30 +00009513 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00009514 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009515 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00009516 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009517 }
9518 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00009519 }
9520 return rc;
9521}
drha154dcd2006-03-22 22:10:07 +00009522#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00009523
danielk1977b4e9af92007-05-01 17:49:49 +00009524#ifndef SQLITE_OMIT_INCRBLOB
9525/*
9526** Argument pCsr must be a cursor opened for writing on an
9527** INTKEY table currently pointing at a valid table entry.
9528** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00009529**
9530** Only the data content may only be modified, it is not possible to
9531** change the length of the data stored. If this function is called with
9532** parameters that attempt to write past the end of the existing data,
9533** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00009534*/
danielk1977dcbb5d32007-05-04 18:36:44 +00009535int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00009536 int rc;
drh1fee73e2007-08-29 04:00:57 +00009537 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00009538 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +00009539 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +00009540
danielk1977c9000e62009-07-08 13:55:28 +00009541 rc = restoreCursorPosition(pCsr);
9542 if( rc!=SQLITE_OK ){
9543 return rc;
9544 }
danielk19773588ceb2008-06-10 17:30:26 +00009545 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9546 if( pCsr->eState!=CURSOR_VALID ){
9547 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00009548 }
9549
dan227a1c42013-04-03 11:17:39 +00009550 /* Save the positions of all other cursors open on this table. This is
9551 ** required in case any of them are holding references to an xFetch
9552 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00009553 **
drh3f387402014-09-24 01:23:00 +00009554 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +00009555 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9556 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00009557 */
drh370c9f42013-04-03 20:04:04 +00009558 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9559 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00009560
danielk1977c9000e62009-07-08 13:55:28 +00009561 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00009562 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00009563 ** (b) there is a read/write transaction open,
9564 ** (c) the connection holds a write-lock on the table (if required),
9565 ** (d) there are no conflicting read-locks, and
9566 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00009567 */
drh036dbec2014-03-11 23:40:44 +00009568 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +00009569 return SQLITE_READONLY;
9570 }
drhc9166342012-01-05 23:32:06 +00009571 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9572 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009573 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9574 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00009575 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00009576
drhfb192682009-07-11 18:26:28 +00009577 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00009578}
danielk19772dec9702007-05-02 16:48:37 +00009579
9580/*
dan5a500af2014-03-11 20:33:04 +00009581** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +00009582*/
dan5a500af2014-03-11 20:33:04 +00009583void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +00009584 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +00009585 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +00009586}
danielk1977b4e9af92007-05-01 17:49:49 +00009587#endif
dane04dc882010-04-20 18:53:15 +00009588
9589/*
9590** Set both the "read version" (single byte at byte offset 18) and
9591** "write version" (single byte at byte offset 19) fields in the database
9592** header to iVersion.
9593*/
9594int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9595 BtShared *pBt = pBtree->pBt;
9596 int rc; /* Return code */
9597
dane04dc882010-04-20 18:53:15 +00009598 assert( iVersion==1 || iVersion==2 );
9599
danb9780022010-04-21 18:37:57 +00009600 /* If setting the version fields to 1, do not automatically open the
9601 ** WAL connection, even if the version fields are currently set to 2.
9602 */
drhc9166342012-01-05 23:32:06 +00009603 pBt->btsFlags &= ~BTS_NO_WAL;
9604 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00009605
9606 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00009607 if( rc==SQLITE_OK ){
9608 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00009609 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00009610 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00009611 if( rc==SQLITE_OK ){
9612 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9613 if( rc==SQLITE_OK ){
9614 aData[18] = (u8)iVersion;
9615 aData[19] = (u8)iVersion;
9616 }
9617 }
9618 }
dane04dc882010-04-20 18:53:15 +00009619 }
9620
drhc9166342012-01-05 23:32:06 +00009621 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00009622 return rc;
9623}
dan428c2182012-08-06 18:50:11 +00009624
9625/*
drhe0997b32015-03-20 14:57:50 +00009626** set the mask of hint flags for cursor pCsr.
dan428c2182012-08-06 18:50:11 +00009627*/
9628void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){
drhe0997b32015-03-20 14:57:50 +00009629 assert( mask==BTREE_BULKLOAD || mask==BTREE_SEEK_EQ || mask==0 );
dan428c2182012-08-06 18:50:11 +00009630 pCsr->hints = mask;
9631}
drh781597f2014-05-21 08:21:07 +00009632
drhe0997b32015-03-20 14:57:50 +00009633#ifdef SQLITE_DEBUG
9634/*
9635** Return true if the cursor has a hint specified. This routine is
9636** only used from within assert() statements
9637*/
9638int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
9639 return (pCsr->hints & mask)!=0;
9640}
9641#endif
9642
drh781597f2014-05-21 08:21:07 +00009643/*
9644** Return true if the given Btree is read-only.
9645*/
9646int sqlite3BtreeIsReadonly(Btree *p){
9647 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9648}
drhdef68892014-11-04 12:11:23 +00009649
9650/*
9651** Return the size of the header added to each page by this module.
9652*/
drh37c057b2014-12-30 00:57:29 +00009653int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }