drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 1 | /* |
| 2 | ** 2004 May 26 |
| 3 | ** |
| 4 | ** The author disclaims copyright to this source code. In place of |
| 5 | ** a legal notice, here is a blessing: |
| 6 | ** |
| 7 | ** May you do good and not evil. |
| 8 | ** May you find forgiveness for yourself and forgive others. |
| 9 | ** May you share freely, never taking more than you give. |
| 10 | ** |
| 11 | ************************************************************************* |
| 12 | ** |
| 13 | ** This file contains code use to manipulate "Mem" structure. A "Mem" |
| 14 | ** stores a single value in the VDBE. Mem is an opaque structure visible |
| 15 | ** only within the VDBE. Interface routines refer to a Mem using the |
| 16 | ** name sqlite_value |
| 17 | */ |
| 18 | #include "sqliteInt.h" |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 19 | #include "vdbeInt.h" |
| 20 | |
drh | 75fd054 | 2014-03-01 16:24:44 +0000 | [diff] [blame] | 21 | #ifdef SQLITE_DEBUG |
| 22 | /* |
| 23 | ** Check invariants on a Mem object. |
| 24 | ** |
| 25 | ** This routine is intended for use inside of assert() statements, like |
| 26 | ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) ); |
| 27 | */ |
| 28 | int sqlite3VdbeCheckMemInvariants(Mem *p){ |
drh | d3b7420 | 2014-09-17 16:41:15 +0000 | [diff] [blame] | 29 | /* If MEM_Dyn is set then Mem.xDel!=0. |
drh | a0024e6 | 2017-07-27 15:53:24 +0000 | [diff] [blame] | 30 | ** Mem.xDel might not be initialized if MEM_Dyn is clear. |
drh | c91b2fd | 2014-03-01 18:13:23 +0000 | [diff] [blame] | 31 | */ |
| 32 | assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 ); |
drh | c91b2fd | 2014-03-01 18:13:23 +0000 | [diff] [blame] | 33 | |
drh | 722246e | 2014-10-07 23:02:24 +0000 | [diff] [blame] | 34 | /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we |
| 35 | ** ensure that if Mem.szMalloc>0 then it is safe to do |
| 36 | ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn. |
| 37 | ** That saves a few cycles in inner loops. */ |
drh | 1eda9f7 | 2014-09-19 22:30:49 +0000 | [diff] [blame] | 38 | assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 ); |
| 39 | |
drh | 74eaba4 | 2014-09-18 17:52:15 +0000 | [diff] [blame] | 40 | /* Cannot be both MEM_Int and MEM_Real at the same time */ |
| 41 | assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) ); |
| 42 | |
drh | a0024e6 | 2017-07-27 15:53:24 +0000 | [diff] [blame] | 43 | if( p->flags & MEM_Null ){ |
| 44 | /* Cannot be both MEM_Null and some other type */ |
| 45 | assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob |
drh | ce2fbd1 | 2018-01-12 21:00:14 +0000 | [diff] [blame] | 46 | |MEM_RowSet|MEM_Frame|MEM_Agg))==0 ); |
drh | a0024e6 | 2017-07-27 15:53:24 +0000 | [diff] [blame] | 47 | |
| 48 | /* If MEM_Null is set, then either the value is a pure NULL (the usual |
| 49 | ** case) or it is a pointer set using sqlite3_bind_pointer() or |
| 50 | ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be |
| 51 | ** set. |
| 52 | */ |
| 53 | if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){ |
| 54 | /* This is a pointer type. There may be a flag to indicate what to |
| 55 | ** do with the pointer. */ |
| 56 | assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + |
| 57 | ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + |
| 58 | ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 ); |
| 59 | |
| 60 | /* No other bits set */ |
| 61 | assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype |
| 62 | |MEM_Dyn|MEM_Ephem|MEM_Static))==0 ); |
| 63 | }else{ |
| 64 | /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn, |
| 65 | ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */ |
| 66 | } |
| 67 | }else{ |
| 68 | /* The MEM_Cleared bit is only allowed on NULLs */ |
| 69 | assert( (p->flags & MEM_Cleared)==0 ); |
| 70 | } |
drh | e2bc655 | 2017-04-17 20:50:34 +0000 | [diff] [blame] | 71 | |
drh | 17bcb10 | 2014-09-18 21:25:33 +0000 | [diff] [blame] | 72 | /* The szMalloc field holds the correct memory allocation size */ |
| 73 | assert( p->szMalloc==0 |
| 74 | || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) ); |
drh | c91b2fd | 2014-03-01 18:13:23 +0000 | [diff] [blame] | 75 | |
| 76 | /* If p holds a string or blob, the Mem.z must point to exactly |
| 77 | ** one of the following: |
| 78 | ** |
| 79 | ** (1) Memory in Mem.zMalloc and managed by the Mem object |
| 80 | ** (2) Memory to be freed using Mem.xDel |
peter.d.reid | 60ec914 | 2014-09-06 16:39:46 +0000 | [diff] [blame] | 81 | ** (3) An ephemeral string or blob |
drh | c91b2fd | 2014-03-01 18:13:23 +0000 | [diff] [blame] | 82 | ** (4) A static string or blob |
| 83 | */ |
drh | 17bcb10 | 2014-09-18 21:25:33 +0000 | [diff] [blame] | 84 | if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){ |
drh | c91b2fd | 2014-03-01 18:13:23 +0000 | [diff] [blame] | 85 | assert( |
drh | 17bcb10 | 2014-09-18 21:25:33 +0000 | [diff] [blame] | 86 | ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) + |
drh | c91b2fd | 2014-03-01 18:13:23 +0000 | [diff] [blame] | 87 | ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + |
| 88 | ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + |
| 89 | ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1 |
| 90 | ); |
| 91 | } |
drh | 75fd054 | 2014-03-01 16:24:44 +0000 | [diff] [blame] | 92 | return 1; |
| 93 | } |
| 94 | #endif |
| 95 | |
drh | 563ddbe | 2018-02-01 15:57:00 +0000 | [diff] [blame] | 96 | #ifdef SQLITE_DEBUG |
| 97 | /* |
| 98 | ** Check that string value of pMem agrees with its integer or real value. |
| 99 | ** |
| 100 | ** A single int or real value always converts to the same strings. But |
| 101 | ** many different strings can be converted into the same int or real. |
| 102 | ** If a table contains a numeric value and an index is based on the |
| 103 | ** corresponding string value, then it is important that the string be |
| 104 | ** derived from the numeric value, not the other way around, to ensure |
| 105 | ** that the index and table are consistent. See ticket |
| 106 | ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for |
| 107 | ** an example. |
| 108 | ** |
| 109 | ** This routine looks at pMem to verify that if it has both a numeric |
| 110 | ** representation and a string representation then the string rep has |
| 111 | ** been derived from the numeric and not the other way around. It returns |
| 112 | ** true if everything is ok and false if there is a problem. |
| 113 | ** |
| 114 | ** This routine is for use inside of assert() statements only. |
| 115 | */ |
| 116 | int sqlite3VdbeMemConsistentDualRep(Mem *p){ |
| 117 | char zBuf[100]; |
| 118 | char *z; |
| 119 | int i, j, incr; |
| 120 | if( (p->flags & MEM_Str)==0 ) return 1; |
| 121 | if( (p->flags & (MEM_Int|MEM_Real))==0 ) return 1; |
| 122 | if( p->flags & MEM_Int ){ |
| 123 | sqlite3_snprintf(sizeof(zBuf),zBuf,"%lld",p->u.i); |
| 124 | }else{ |
| 125 | sqlite3_snprintf(sizeof(zBuf),zBuf,"%!.15g",p->u.r); |
| 126 | } |
| 127 | z = p->z; |
| 128 | i = j = 0; |
| 129 | incr = 1; |
| 130 | if( p->enc!=SQLITE_UTF8 ){ |
| 131 | incr = 2; |
| 132 | if( p->enc==SQLITE_UTF16BE ) z++; |
| 133 | } |
| 134 | while( zBuf[j] ){ |
| 135 | if( zBuf[j++]!=z[i] ) return 0; |
| 136 | i += incr; |
| 137 | } |
| 138 | return 1; |
| 139 | } |
| 140 | #endif /* SQLITE_DEBUG */ |
drh | 75fd054 | 2014-03-01 16:24:44 +0000 | [diff] [blame] | 141 | |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 142 | /* |
danielk1977 | bfd6cce | 2004-06-18 04:24:54 +0000 | [diff] [blame] | 143 | ** If pMem is an object with a valid string representation, this routine |
| 144 | ** ensures the internal encoding for the string representation is |
| 145 | ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 146 | ** |
danielk1977 | bfd6cce | 2004-06-18 04:24:54 +0000 | [diff] [blame] | 147 | ** If pMem is not a string object, or the encoding of the string |
| 148 | ** representation is already stored using the requested encoding, then this |
| 149 | ** routine is a no-op. |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 150 | ** |
| 151 | ** SQLITE_OK is returned if the conversion is successful (or not required). |
| 152 | ** SQLITE_NOMEM may be returned if a malloc() fails during conversion |
| 153 | ** between formats. |
| 154 | */ |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 155 | int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ |
mistachkin | ef593f2 | 2013-03-07 06:42:53 +0000 | [diff] [blame] | 156 | #ifndef SQLITE_OMIT_UTF16 |
danielk1977 | 2c33654 | 2005-01-13 02:14:23 +0000 | [diff] [blame] | 157 | int rc; |
mistachkin | ef593f2 | 2013-03-07 06:42:53 +0000 | [diff] [blame] | 158 | #endif |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 159 | assert( (pMem->flags&MEM_RowSet)==0 ); |
drh | b27b7f5 | 2008-12-10 18:03:45 +0000 | [diff] [blame] | 160 | assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE |
| 161 | || desiredEnc==SQLITE_UTF16BE ); |
drh | c07df4c | 2017-09-21 01:04:30 +0000 | [diff] [blame] | 162 | if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 163 | return SQLITE_OK; |
| 164 | } |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 165 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
drh | 6c62608 | 2004-11-14 21:56:29 +0000 | [diff] [blame] | 166 | #ifdef SQLITE_OMIT_UTF16 |
| 167 | return SQLITE_ERROR; |
| 168 | #else |
danielk1977 | 00fd957 | 2005-12-07 06:27:43 +0000 | [diff] [blame] | 169 | |
| 170 | /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, |
| 171 | ** then the encoding of the value may not have changed. |
| 172 | */ |
drh | b27b7f5 | 2008-12-10 18:03:45 +0000 | [diff] [blame] | 173 | rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc); |
danielk1977 | 00fd957 | 2005-12-07 06:27:43 +0000 | [diff] [blame] | 174 | assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); |
| 175 | assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); |
| 176 | assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); |
danielk1977 | 2c33654 | 2005-01-13 02:14:23 +0000 | [diff] [blame] | 177 | return rc; |
drh | 6c62608 | 2004-11-14 21:56:29 +0000 | [diff] [blame] | 178 | #endif |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 179 | } |
| 180 | |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 181 | /* |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 182 | ** Make sure pMem->z points to a writable allocation of at least |
drh | b0e7704 | 2013-12-10 19:49:00 +0000 | [diff] [blame] | 183 | ** min(n,32) bytes. |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 184 | ** |
drh | b0e7704 | 2013-12-10 19:49:00 +0000 | [diff] [blame] | 185 | ** If the bPreserve argument is true, then copy of the content of |
| 186 | ** pMem->z into the new allocation. pMem must be either a string or |
| 187 | ** blob if bPreserve is true. If bPreserve is false, any prior content |
| 188 | ** in pMem->z is discarded. |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 189 | */ |
drh | 322f285 | 2014-09-19 00:43:39 +0000 | [diff] [blame] | 190 | SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){ |
drh | 75fd054 | 2014-03-01 16:24:44 +0000 | [diff] [blame] | 191 | assert( sqlite3VdbeCheckMemInvariants(pMem) ); |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 192 | assert( (pMem->flags&MEM_RowSet)==0 ); |
drh | 575fad6 | 2016-02-05 13:38:36 +0000 | [diff] [blame] | 193 | testcase( pMem->db==0 ); |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 194 | |
drh | b0e7704 | 2013-12-10 19:49:00 +0000 | [diff] [blame] | 195 | /* If the bPreserve flag is set to true, then the memory cell must already |
dan | 2b9ee77 | 2012-03-31 09:59:44 +0000 | [diff] [blame] | 196 | ** contain a valid string or blob value. */ |
drh | b0e7704 | 2013-12-10 19:49:00 +0000 | [diff] [blame] | 197 | assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) ); |
| 198 | testcase( bPreserve && pMem->z==0 ); |
dan | 2b9ee77 | 2012-03-31 09:59:44 +0000 | [diff] [blame] | 199 | |
drh | 17bcb10 | 2014-09-18 21:25:33 +0000 | [diff] [blame] | 200 | assert( pMem->szMalloc==0 |
| 201 | || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) ); |
drh | 4c6463c | 2017-04-10 20:27:54 +0000 | [diff] [blame] | 202 | if( n<32 ) n = 32; |
drh | 762dffa | 2017-09-20 18:47:51 +0000 | [diff] [blame] | 203 | if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){ |
drh | 4c6463c | 2017-04-10 20:27:54 +0000 | [diff] [blame] | 204 | pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); |
| 205 | bPreserve = 0; |
| 206 | }else{ |
| 207 | if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); |
| 208 | pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); |
| 209 | } |
| 210 | if( pMem->zMalloc==0 ){ |
| 211 | sqlite3VdbeMemSetNull(pMem); |
| 212 | pMem->z = 0; |
| 213 | pMem->szMalloc = 0; |
| 214 | return SQLITE_NOMEM_BKPT; |
| 215 | }else{ |
| 216 | pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 217 | } |
danielk1977 | 5f09613 | 2008-03-28 15:44:09 +0000 | [diff] [blame] | 218 | |
drh | 762dffa | 2017-09-20 18:47:51 +0000 | [diff] [blame] | 219 | if( bPreserve && pMem->z ){ |
| 220 | assert( pMem->z!=pMem->zMalloc ); |
danielk1977 | 5f09613 | 2008-03-28 15:44:09 +0000 | [diff] [blame] | 221 | memcpy(pMem->zMalloc, pMem->z, pMem->n); |
| 222 | } |
drh | c91b2fd | 2014-03-01 18:13:23 +0000 | [diff] [blame] | 223 | if( (pMem->flags&MEM_Dyn)!=0 ){ |
| 224 | assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC ); |
danielk1977 | 5f09613 | 2008-03-28 15:44:09 +0000 | [diff] [blame] | 225 | pMem->xDel((void *)(pMem->z)); |
| 226 | } |
| 227 | |
| 228 | pMem->z = pMem->zMalloc; |
drh | c91b2fd | 2014-03-01 18:13:23 +0000 | [diff] [blame] | 229 | pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static); |
drh | b0e7704 | 2013-12-10 19:49:00 +0000 | [diff] [blame] | 230 | return SQLITE_OK; |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 231 | } |
| 232 | |
| 233 | /* |
drh | 322f285 | 2014-09-19 00:43:39 +0000 | [diff] [blame] | 234 | ** Change the pMem->zMalloc allocation to be at least szNew bytes. |
| 235 | ** If pMem->zMalloc already meets or exceeds the requested size, this |
| 236 | ** routine is a no-op. |
| 237 | ** |
| 238 | ** Any prior string or blob content in the pMem object may be discarded. |
drh | a5476e9 | 2014-09-19 04:42:38 +0000 | [diff] [blame] | 239 | ** The pMem->xDel destructor is called, if it exists. Though MEM_Str |
| 240 | ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null |
| 241 | ** values are preserved. |
drh | 322f285 | 2014-09-19 00:43:39 +0000 | [diff] [blame] | 242 | ** |
| 243 | ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM) |
| 244 | ** if unable to complete the resizing. |
| 245 | */ |
| 246 | int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){ |
drh | 722246e | 2014-10-07 23:02:24 +0000 | [diff] [blame] | 247 | assert( szNew>0 ); |
| 248 | assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 ); |
drh | 1eda9f7 | 2014-09-19 22:30:49 +0000 | [diff] [blame] | 249 | if( pMem->szMalloc<szNew ){ |
drh | 322f285 | 2014-09-19 00:43:39 +0000 | [diff] [blame] | 250 | return sqlite3VdbeMemGrow(pMem, szNew, 0); |
| 251 | } |
drh | 1eda9f7 | 2014-09-19 22:30:49 +0000 | [diff] [blame] | 252 | assert( (pMem->flags & MEM_Dyn)==0 ); |
drh | 322f285 | 2014-09-19 00:43:39 +0000 | [diff] [blame] | 253 | pMem->z = pMem->zMalloc; |
drh | a5476e9 | 2014-09-19 04:42:38 +0000 | [diff] [blame] | 254 | pMem->flags &= (MEM_Null|MEM_Int|MEM_Real); |
drh | 322f285 | 2014-09-19 00:43:39 +0000 | [diff] [blame] | 255 | return SQLITE_OK; |
| 256 | } |
| 257 | |
| 258 | /* |
drh | 97397a7 | 2017-09-20 17:49:12 +0000 | [diff] [blame] | 259 | ** It is already known that pMem contains an unterminated string. |
| 260 | ** Add the zero terminator. |
| 261 | */ |
| 262 | static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){ |
| 263 | if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){ |
| 264 | return SQLITE_NOMEM_BKPT; |
| 265 | } |
| 266 | pMem->z[pMem->n] = 0; |
| 267 | pMem->z[pMem->n+1] = 0; |
| 268 | pMem->flags |= MEM_Term; |
| 269 | return SQLITE_OK; |
| 270 | } |
| 271 | |
| 272 | /* |
drh | 1eda9f7 | 2014-09-19 22:30:49 +0000 | [diff] [blame] | 273 | ** Change pMem so that its MEM_Str or MEM_Blob value is stored in |
| 274 | ** MEM.zMalloc, where it can be safely written. |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 275 | ** |
| 276 | ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. |
| 277 | */ |
drh | dab898f | 2008-07-30 13:14:55 +0000 | [diff] [blame] | 278 | int sqlite3VdbeMemMakeWriteable(Mem *pMem){ |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 279 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 280 | assert( (pMem->flags&MEM_RowSet)==0 ); |
drh | 8aaf7bc | 2016-09-20 01:19:18 +0000 | [diff] [blame] | 281 | if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){ |
| 282 | if( ExpandBlob(pMem) ) return SQLITE_NOMEM; |
| 283 | if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){ |
drh | 97397a7 | 2017-09-20 17:49:12 +0000 | [diff] [blame] | 284 | int rc = vdbeMemAddTerminator(pMem); |
| 285 | if( rc ) return rc; |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 286 | } |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 287 | } |
drh | bd6789e | 2015-04-28 14:00:02 +0000 | [diff] [blame] | 288 | pMem->flags &= ~MEM_Ephem; |
| 289 | #ifdef SQLITE_DEBUG |
| 290 | pMem->pScopyFrom = 0; |
| 291 | #endif |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 292 | |
drh | f447950 | 2004-05-27 03:12:53 +0000 | [diff] [blame] | 293 | return SQLITE_OK; |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 294 | } |
| 295 | |
| 296 | /* |
drh | fdf972a | 2007-05-02 13:30:27 +0000 | [diff] [blame] | 297 | ** If the given Mem* has a zero-filled tail, turn it into an ordinary |
drh | b026e05 | 2007-05-02 01:34:31 +0000 | [diff] [blame] | 298 | ** blob stored in dynamically allocated space. |
| 299 | */ |
danielk1977 | 246ad31 | 2007-05-16 14:23:00 +0000 | [diff] [blame] | 300 | #ifndef SQLITE_OMIT_INCRBLOB |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 301 | int sqlite3VdbeMemExpandBlob(Mem *pMem){ |
drh | ff535a2 | 2016-09-20 01:46:15 +0000 | [diff] [blame] | 302 | int nByte; |
| 303 | assert( pMem->flags & MEM_Zero ); |
drh | a0024e6 | 2017-07-27 15:53:24 +0000 | [diff] [blame] | 304 | assert( pMem->flags&MEM_Blob ); |
drh | ff535a2 | 2016-09-20 01:46:15 +0000 | [diff] [blame] | 305 | assert( (pMem->flags&MEM_RowSet)==0 ); |
| 306 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 307 | |
drh | ff535a2 | 2016-09-20 01:46:15 +0000 | [diff] [blame] | 308 | /* Set nByte to the number of bytes required to store the expanded blob. */ |
| 309 | nByte = pMem->n + pMem->u.nZero; |
| 310 | if( nByte<=0 ){ |
| 311 | nByte = 1; |
drh | b026e05 | 2007-05-02 01:34:31 +0000 | [diff] [blame] | 312 | } |
drh | ff535a2 | 2016-09-20 01:46:15 +0000 | [diff] [blame] | 313 | if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ |
| 314 | return SQLITE_NOMEM_BKPT; |
| 315 | } |
| 316 | |
| 317 | memset(&pMem->z[pMem->n], 0, pMem->u.nZero); |
| 318 | pMem->n += pMem->u.nZero; |
| 319 | pMem->flags &= ~(MEM_Zero|MEM_Term); |
drh | b026e05 | 2007-05-02 01:34:31 +0000 | [diff] [blame] | 320 | return SQLITE_OK; |
| 321 | } |
danielk1977 | 246ad31 | 2007-05-16 14:23:00 +0000 | [diff] [blame] | 322 | #endif |
drh | b026e05 | 2007-05-02 01:34:31 +0000 | [diff] [blame] | 323 | |
drh | b026e05 | 2007-05-02 01:34:31 +0000 | [diff] [blame] | 324 | /* |
drh | b63388b | 2014-08-27 00:50:11 +0000 | [diff] [blame] | 325 | ** Make sure the given Mem is \u0000 terminated. |
| 326 | */ |
| 327 | int sqlite3VdbeMemNulTerminate(Mem *pMem){ |
| 328 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
| 329 | testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) ); |
| 330 | testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 ); |
| 331 | if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){ |
| 332 | return SQLITE_OK; /* Nothing to do */ |
| 333 | }else{ |
| 334 | return vdbeMemAddTerminator(pMem); |
| 335 | } |
| 336 | } |
| 337 | |
| 338 | /* |
danielk1977 | 1307393 | 2004-06-30 11:54:06 +0000 | [diff] [blame] | 339 | ** Add MEM_Str to the set of representations for the given Mem. Numbers |
| 340 | ** are converted using sqlite3_snprintf(). Converting a BLOB to a string |
| 341 | ** is a no-op. |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 342 | ** |
drh | bd9507c | 2014-08-23 17:21:37 +0000 | [diff] [blame] | 343 | ** Existing representations MEM_Int and MEM_Real are invalidated if |
| 344 | ** bForce is true but are retained if bForce is false. |
danielk1977 | 1307393 | 2004-06-30 11:54:06 +0000 | [diff] [blame] | 345 | ** |
| 346 | ** A MEM_Null value will never be passed to this function. This function is |
| 347 | ** used for converting values to text for returning to the user (i.e. via |
| 348 | ** sqlite3_value_text()), or for ensuring that values to be used as btree |
| 349 | ** keys are strings. In the former case a NULL pointer is returned the |
peter.d.reid | 60ec914 | 2014-09-06 16:39:46 +0000 | [diff] [blame] | 350 | ** user and the latter is an internal programming error. |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 351 | */ |
drh | bd9507c | 2014-08-23 17:21:37 +0000 | [diff] [blame] | 352 | int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){ |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 353 | int fg = pMem->flags; |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 354 | const int nByte = 32; |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 355 | |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 356 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
danielk1977 | def0fec | 2007-05-10 15:37:52 +0000 | [diff] [blame] | 357 | assert( !(fg&MEM_Zero) ); |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 358 | assert( !(fg&(MEM_Str|MEM_Blob)) ); |
danielk1977 | 1307393 | 2004-06-30 11:54:06 +0000 | [diff] [blame] | 359 | assert( fg&(MEM_Int|MEM_Real) ); |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 360 | assert( (pMem->flags&MEM_RowSet)==0 ); |
drh | ea598cb | 2009-04-05 12:22:08 +0000 | [diff] [blame] | 361 | assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 362 | |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 363 | |
drh | 322f285 | 2014-09-19 00:43:39 +0000 | [diff] [blame] | 364 | if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){ |
drh | 2a1df93 | 2016-09-30 17:46:44 +0000 | [diff] [blame] | 365 | pMem->enc = 0; |
mistachkin | fad3039 | 2016-02-13 23:43:46 +0000 | [diff] [blame] | 366 | return SQLITE_NOMEM_BKPT; |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 367 | } |
| 368 | |
drh | bd9507c | 2014-08-23 17:21:37 +0000 | [diff] [blame] | 369 | /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8 |
danielk1977 | 1307393 | 2004-06-30 11:54:06 +0000 | [diff] [blame] | 370 | ** string representation of the value. Then, if the required encoding |
| 371 | ** is UTF-16le or UTF-16be do a translation. |
| 372 | ** |
| 373 | ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16. |
| 374 | */ |
drh | 8df447f | 2005-11-01 15:48:24 +0000 | [diff] [blame] | 375 | if( fg & MEM_Int ){ |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 376 | sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i); |
drh | 8df447f | 2005-11-01 15:48:24 +0000 | [diff] [blame] | 377 | }else{ |
| 378 | assert( fg & MEM_Real ); |
drh | 74eaba4 | 2014-09-18 17:52:15 +0000 | [diff] [blame] | 379 | sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r); |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 380 | } |
drh | ea67883 | 2008-12-10 19:26:22 +0000 | [diff] [blame] | 381 | pMem->n = sqlite3Strlen30(pMem->z); |
danielk1977 | 1307393 | 2004-06-30 11:54:06 +0000 | [diff] [blame] | 382 | pMem->enc = SQLITE_UTF8; |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 383 | pMem->flags |= MEM_Str|MEM_Term; |
drh | bd9507c | 2014-08-23 17:21:37 +0000 | [diff] [blame] | 384 | if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real); |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 385 | sqlite3VdbeChangeEncoding(pMem, enc); |
drh | bd9507c | 2014-08-23 17:21:37 +0000 | [diff] [blame] | 386 | return SQLITE_OK; |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 387 | } |
| 388 | |
| 389 | /* |
drh | abfcea2 | 2005-09-06 20:36:48 +0000 | [diff] [blame] | 390 | ** Memory cell pMem contains the context of an aggregate function. |
| 391 | ** This routine calls the finalize method for that function. The |
| 392 | ** result of the aggregate is stored back into pMem. |
drh | 90669c1 | 2006-01-20 15:45:36 +0000 | [diff] [blame] | 393 | ** |
| 394 | ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK |
| 395 | ** otherwise. |
drh | abfcea2 | 2005-09-06 20:36:48 +0000 | [diff] [blame] | 396 | */ |
drh | 90669c1 | 2006-01-20 15:45:36 +0000 | [diff] [blame] | 397 | int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ |
drh | 9d9c41e | 2017-10-31 03:40:15 +0000 | [diff] [blame] | 398 | sqlite3_context ctx; |
| 399 | Mem t; |
| 400 | assert( pFunc!=0 ); |
| 401 | assert( pFunc->xFinalize!=0 ); |
| 402 | assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); |
| 403 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
| 404 | memset(&ctx, 0, sizeof(ctx)); |
| 405 | memset(&t, 0, sizeof(t)); |
| 406 | t.flags = MEM_Null; |
| 407 | t.db = pMem->db; |
| 408 | ctx.pOut = &t; |
| 409 | ctx.pMem = pMem; |
| 410 | ctx.pFunc = pFunc; |
| 411 | pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */ |
| 412 | assert( (pMem->flags & MEM_Dyn)==0 ); |
| 413 | if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); |
| 414 | memcpy(pMem, &t, sizeof(t)); |
| 415 | return ctx.isError; |
drh | abfcea2 | 2005-09-06 20:36:48 +0000 | [diff] [blame] | 416 | } |
| 417 | |
dan | 9a94722 | 2018-06-14 19:06:36 +0000 | [diff] [blame] | 418 | /* |
| 419 | ** Memory cell pAccum contains the context of an aggregate function. |
| 420 | ** This routine calls the xValue method for that function and stores |
| 421 | ** the results in memory cell pMem. |
| 422 | ** |
| 423 | ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK |
| 424 | ** otherwise. |
| 425 | */ |
dan | 67a9b8e | 2018-06-22 20:51:35 +0000 | [diff] [blame] | 426 | #ifndef SQLITE_OMIT_WINDOWFUNC |
dan | 86fb6e1 | 2018-05-16 20:58:07 +0000 | [diff] [blame] | 427 | int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){ |
| 428 | sqlite3_context ctx; |
| 429 | Mem t; |
| 430 | assert( pFunc!=0 ); |
| 431 | assert( pFunc->xValue!=0 ); |
| 432 | assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef ); |
| 433 | assert( pAccum->db==0 || sqlite3_mutex_held(pAccum->db->mutex) ); |
| 434 | memset(&ctx, 0, sizeof(ctx)); |
| 435 | memset(&t, 0, sizeof(t)); |
| 436 | t.flags = MEM_Null; |
| 437 | t.db = pAccum->db; |
drh | 8f26da6 | 2018-07-05 21:22:57 +0000 | [diff] [blame] | 438 | sqlite3VdbeMemSetNull(pOut); |
dan | 86fb6e1 | 2018-05-16 20:58:07 +0000 | [diff] [blame] | 439 | ctx.pOut = pOut; |
| 440 | ctx.pMem = pAccum; |
| 441 | ctx.pFunc = pFunc; |
| 442 | pFunc->xValue(&ctx); |
| 443 | return ctx.isError; |
| 444 | } |
dan | 67a9b8e | 2018-06-22 20:51:35 +0000 | [diff] [blame] | 445 | #endif /* SQLITE_OMIT_WINDOWFUNC */ |
dan | 9a94722 | 2018-06-14 19:06:36 +0000 | [diff] [blame] | 446 | |
drh | abfcea2 | 2005-09-06 20:36:48 +0000 | [diff] [blame] | 447 | /* |
drh | 8740a60 | 2014-09-16 20:05:21 +0000 | [diff] [blame] | 448 | ** If the memory cell contains a value that must be freed by |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 449 | ** invoking the external callback in Mem.xDel, then this routine |
| 450 | ** will free that value. It also sets Mem.flags to MEM_Null. |
drh | 12b7c7d | 2014-08-25 11:20:27 +0000 | [diff] [blame] | 451 | ** |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 452 | ** This is a helper routine for sqlite3VdbeMemSetNull() and |
| 453 | ** for sqlite3VdbeMemRelease(). Use those other routines as the |
| 454 | ** entry point for releasing Mem resources. |
danielk1977 | 5f09613 | 2008-03-28 15:44:09 +0000 | [diff] [blame] | 455 | */ |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 456 | static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){ |
danielk1977 | 5f09613 | 2008-03-28 15:44:09 +0000 | [diff] [blame] | 457 | assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 458 | assert( VdbeMemDynamic(p) ); |
drh | 2d36eb4 | 2011-08-29 02:49:41 +0000 | [diff] [blame] | 459 | if( p->flags&MEM_Agg ){ |
| 460 | sqlite3VdbeMemFinalize(p, p->u.pDef); |
| 461 | assert( (p->flags & MEM_Agg)==0 ); |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 462 | testcase( p->flags & MEM_Dyn ); |
| 463 | } |
| 464 | if( p->flags&MEM_Dyn ){ |
drh | 2d36eb4 | 2011-08-29 02:49:41 +0000 | [diff] [blame] | 465 | assert( (p->flags&MEM_RowSet)==0 ); |
drh | c91b2fd | 2014-03-01 18:13:23 +0000 | [diff] [blame] | 466 | assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 ); |
drh | 2d36eb4 | 2011-08-29 02:49:41 +0000 | [diff] [blame] | 467 | p->xDel((void *)p->z); |
drh | 2d36eb4 | 2011-08-29 02:49:41 +0000 | [diff] [blame] | 468 | }else if( p->flags&MEM_RowSet ){ |
| 469 | sqlite3RowSetClear(p->u.pRowSet); |
| 470 | }else if( p->flags&MEM_Frame ){ |
drh | 6b478bc | 2014-09-16 21:54:11 +0000 | [diff] [blame] | 471 | VdbeFrame *pFrame = p->u.pFrame; |
| 472 | pFrame->pParent = pFrame->v->pDelFrame; |
| 473 | pFrame->v->pDelFrame = pFrame; |
danielk1977 | 5f09613 | 2008-03-28 15:44:09 +0000 | [diff] [blame] | 474 | } |
drh | 6b478bc | 2014-09-16 21:54:11 +0000 | [diff] [blame] | 475 | p->flags = MEM_Null; |
danielk1977 | 5f09613 | 2008-03-28 15:44:09 +0000 | [diff] [blame] | 476 | } |
| 477 | |
| 478 | /* |
drh | 12b7c7d | 2014-08-25 11:20:27 +0000 | [diff] [blame] | 479 | ** Release memory held by the Mem p, both external memory cleared |
| 480 | ** by p->xDel and memory in p->zMalloc. |
| 481 | ** |
| 482 | ** This is a helper routine invoked by sqlite3VdbeMemRelease() in |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 483 | ** the unusual case where there really is memory in p that needs |
| 484 | ** to be freed. |
drh | 12b7c7d | 2014-08-25 11:20:27 +0000 | [diff] [blame] | 485 | */ |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 486 | static SQLITE_NOINLINE void vdbeMemClear(Mem *p){ |
drh | 12b7c7d | 2014-08-25 11:20:27 +0000 | [diff] [blame] | 487 | if( VdbeMemDynamic(p) ){ |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 488 | vdbeMemClearExternAndSetNull(p); |
drh | 12b7c7d | 2014-08-25 11:20:27 +0000 | [diff] [blame] | 489 | } |
drh | 17bcb10 | 2014-09-18 21:25:33 +0000 | [diff] [blame] | 490 | if( p->szMalloc ){ |
drh | dbd6a7d | 2017-04-05 12:39:49 +0000 | [diff] [blame] | 491 | sqlite3DbFreeNN(p->db, p->zMalloc); |
drh | 17bcb10 | 2014-09-18 21:25:33 +0000 | [diff] [blame] | 492 | p->szMalloc = 0; |
drh | 12b7c7d | 2014-08-25 11:20:27 +0000 | [diff] [blame] | 493 | } |
| 494 | p->z = 0; |
| 495 | } |
| 496 | |
| 497 | /* |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 498 | ** Release any memory resources held by the Mem. Both the memory that is |
| 499 | ** free by Mem.xDel and the Mem.zMalloc allocation are freed. |
drh | 8740a60 | 2014-09-16 20:05:21 +0000 | [diff] [blame] | 500 | ** |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 501 | ** Use this routine prior to clean up prior to abandoning a Mem, or to |
| 502 | ** reset a Mem back to its minimum memory utilization. |
| 503 | ** |
| 504 | ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space |
| 505 | ** prior to inserting new content into the Mem. |
drh | f447950 | 2004-05-27 03:12:53 +0000 | [diff] [blame] | 506 | */ |
danielk1977 | d812336 | 2004-06-12 09:25:12 +0000 | [diff] [blame] | 507 | void sqlite3VdbeMemRelease(Mem *p){ |
drh | 75fd054 | 2014-03-01 16:24:44 +0000 | [diff] [blame] | 508 | assert( sqlite3VdbeCheckMemInvariants(p) ); |
drh | 17bcb10 | 2014-09-18 21:25:33 +0000 | [diff] [blame] | 509 | if( VdbeMemDynamic(p) || p->szMalloc ){ |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 510 | vdbeMemClear(p); |
drh | 7250c54 | 2013-12-09 03:07:21 +0000 | [diff] [blame] | 511 | } |
drh | f447950 | 2004-05-27 03:12:53 +0000 | [diff] [blame] | 512 | } |
| 513 | |
| 514 | /* |
drh | d8c303f | 2008-01-11 15:27:03 +0000 | [diff] [blame] | 515 | ** Convert a 64-bit IEEE double into a 64-bit signed integer. |
drh | de1a8b8 | 2013-11-26 15:45:02 +0000 | [diff] [blame] | 516 | ** If the double is out of range of a 64-bit signed integer then |
| 517 | ** return the closest available 64-bit signed integer. |
drh | d8c303f | 2008-01-11 15:27:03 +0000 | [diff] [blame] | 518 | */ |
drh | b808d77 | 2017-04-01 11:59:36 +0000 | [diff] [blame] | 519 | static SQLITE_NOINLINE i64 doubleToInt64(double r){ |
drh | 52d1452 | 2010-01-13 15:15:40 +0000 | [diff] [blame] | 520 | #ifdef SQLITE_OMIT_FLOATING_POINT |
| 521 | /* When floating-point is omitted, double and int64 are the same thing */ |
| 522 | return r; |
| 523 | #else |
drh | d8c303f | 2008-01-11 15:27:03 +0000 | [diff] [blame] | 524 | /* |
| 525 | ** Many compilers we encounter do not define constants for the |
| 526 | ** minimum and maximum 64-bit integers, or they define them |
| 527 | ** inconsistently. And many do not understand the "LL" notation. |
| 528 | ** So we define our own static constants here using nothing |
| 529 | ** larger than a 32-bit integer constant. |
| 530 | */ |
drh | 0f05035 | 2008-05-09 18:03:13 +0000 | [diff] [blame] | 531 | static const i64 maxInt = LARGEST_INT64; |
| 532 | static const i64 minInt = SMALLEST_INT64; |
drh | d8c303f | 2008-01-11 15:27:03 +0000 | [diff] [blame] | 533 | |
drh | de1a8b8 | 2013-11-26 15:45:02 +0000 | [diff] [blame] | 534 | if( r<=(double)minInt ){ |
drh | d8c303f | 2008-01-11 15:27:03 +0000 | [diff] [blame] | 535 | return minInt; |
drh | de1a8b8 | 2013-11-26 15:45:02 +0000 | [diff] [blame] | 536 | }else if( r>=(double)maxInt ){ |
| 537 | return maxInt; |
drh | d8c303f | 2008-01-11 15:27:03 +0000 | [diff] [blame] | 538 | }else{ |
| 539 | return (i64)r; |
| 540 | } |
drh | 52d1452 | 2010-01-13 15:15:40 +0000 | [diff] [blame] | 541 | #endif |
drh | d8c303f | 2008-01-11 15:27:03 +0000 | [diff] [blame] | 542 | } |
| 543 | |
| 544 | /* |
drh | 6a6124e | 2004-06-27 01:56:33 +0000 | [diff] [blame] | 545 | ** Return some kind of integer value which is the best we can do |
| 546 | ** at representing the value that *pMem describes as an integer. |
| 547 | ** If pMem is an integer, then the value is exact. If pMem is |
| 548 | ** a floating-point then the value returned is the integer part. |
| 549 | ** If pMem is a string or blob, then we make an attempt to convert |
peter.d.reid | 60ec914 | 2014-09-06 16:39:46 +0000 | [diff] [blame] | 550 | ** it into an integer and return that. If pMem represents an |
drh | 347a7cb | 2009-03-23 21:37:04 +0000 | [diff] [blame] | 551 | ** an SQL-NULL value, return 0. |
drh | 6a6124e | 2004-06-27 01:56:33 +0000 | [diff] [blame] | 552 | ** |
drh | 347a7cb | 2009-03-23 21:37:04 +0000 | [diff] [blame] | 553 | ** If pMem represents a string value, its encoding might be changed. |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 554 | */ |
drh | b808d77 | 2017-04-01 11:59:36 +0000 | [diff] [blame] | 555 | static SQLITE_NOINLINE i64 memIntValue(Mem *pMem){ |
| 556 | i64 value = 0; |
| 557 | sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc); |
| 558 | return value; |
| 559 | } |
drh | 6a6124e | 2004-06-27 01:56:33 +0000 | [diff] [blame] | 560 | i64 sqlite3VdbeIntValue(Mem *pMem){ |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 561 | int flags; |
| 562 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
drh | ea598cb | 2009-04-05 12:22:08 +0000 | [diff] [blame] | 563 | assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 564 | flags = pMem->flags; |
drh | 6fec076 | 2004-05-30 01:38:43 +0000 | [diff] [blame] | 565 | if( flags & MEM_Int ){ |
drh | 3c024d6 | 2007-03-30 11:23:45 +0000 | [diff] [blame] | 566 | return pMem->u.i; |
drh | 6fec076 | 2004-05-30 01:38:43 +0000 | [diff] [blame] | 567 | }else if( flags & MEM_Real ){ |
drh | 74eaba4 | 2014-09-18 17:52:15 +0000 | [diff] [blame] | 568 | return doubleToInt64(pMem->u.r); |
drh | 6fec076 | 2004-05-30 01:38:43 +0000 | [diff] [blame] | 569 | }else if( flags & (MEM_Str|MEM_Blob) ){ |
drh | 9339da1 | 2010-09-30 00:50:49 +0000 | [diff] [blame] | 570 | assert( pMem->z || pMem->n==0 ); |
drh | b808d77 | 2017-04-01 11:59:36 +0000 | [diff] [blame] | 571 | return memIntValue(pMem); |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 572 | }else{ |
drh | 6a6124e | 2004-06-27 01:56:33 +0000 | [diff] [blame] | 573 | return 0; |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 574 | } |
drh | 6a6124e | 2004-06-27 01:56:33 +0000 | [diff] [blame] | 575 | } |
| 576 | |
| 577 | /* |
drh | 6a6124e | 2004-06-27 01:56:33 +0000 | [diff] [blame] | 578 | ** Return the best representation of pMem that we can get into a |
| 579 | ** double. If pMem is already a double or an integer, return its |
| 580 | ** value. If it is a string or blob, try to convert it to a double. |
| 581 | ** If it is a NULL, return 0.0. |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 582 | */ |
drh | b808d77 | 2017-04-01 11:59:36 +0000 | [diff] [blame] | 583 | static SQLITE_NOINLINE double memRealValue(Mem *pMem){ |
| 584 | /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ |
| 585 | double val = (double)0; |
| 586 | sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc); |
| 587 | return val; |
| 588 | } |
drh | 6a6124e | 2004-06-27 01:56:33 +0000 | [diff] [blame] | 589 | double sqlite3VdbeRealValue(Mem *pMem){ |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 590 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
drh | ea598cb | 2009-04-05 12:22:08 +0000 | [diff] [blame] | 591 | assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
danielk1977 | f93bbbe | 2004-05-27 10:30:52 +0000 | [diff] [blame] | 592 | if( pMem->flags & MEM_Real ){ |
drh | 74eaba4 | 2014-09-18 17:52:15 +0000 | [diff] [blame] | 593 | return pMem->u.r; |
drh | 6a6124e | 2004-06-27 01:56:33 +0000 | [diff] [blame] | 594 | }else if( pMem->flags & MEM_Int ){ |
drh | 3c024d6 | 2007-03-30 11:23:45 +0000 | [diff] [blame] | 595 | return (double)pMem->u.i; |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 596 | }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ |
drh | b808d77 | 2017-04-01 11:59:36 +0000 | [diff] [blame] | 597 | return memRealValue(pMem); |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 598 | }else{ |
shane | fbd60f8 | 2009-02-04 03:59:25 +0000 | [diff] [blame] | 599 | /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ |
| 600 | return (double)0; |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 601 | } |
drh | 6a6124e | 2004-06-27 01:56:33 +0000 | [diff] [blame] | 602 | } |
| 603 | |
| 604 | /* |
drh | 1fcfa72 | 2018-02-26 15:27:31 +0000 | [diff] [blame] | 605 | ** Return 1 if pMem represents true, and return 0 if pMem represents false. |
| 606 | ** Return the value ifNull if pMem is NULL. |
| 607 | */ |
| 608 | int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){ |
| 609 | if( pMem->flags & MEM_Int ) return pMem->u.i!=0; |
| 610 | if( pMem->flags & MEM_Null ) return ifNull; |
| 611 | return sqlite3VdbeRealValue(pMem)!=0.0; |
| 612 | } |
| 613 | |
| 614 | /* |
drh | 8df447f | 2005-11-01 15:48:24 +0000 | [diff] [blame] | 615 | ** The MEM structure is already a MEM_Real. Try to also make it a |
| 616 | ** MEM_Int if we can. |
| 617 | */ |
| 618 | void sqlite3VdbeIntegerAffinity(Mem *pMem){ |
drh | 74eaba4 | 2014-09-18 17:52:15 +0000 | [diff] [blame] | 619 | i64 ix; |
drh | 8df447f | 2005-11-01 15:48:24 +0000 | [diff] [blame] | 620 | assert( pMem->flags & MEM_Real ); |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 621 | assert( (pMem->flags & MEM_RowSet)==0 ); |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 622 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
drh | ea598cb | 2009-04-05 12:22:08 +0000 | [diff] [blame] | 623 | assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
drh | efe3d65 | 2008-01-11 00:06:10 +0000 | [diff] [blame] | 624 | |
drh | 74eaba4 | 2014-09-18 17:52:15 +0000 | [diff] [blame] | 625 | ix = doubleToInt64(pMem->u.r); |
drh | 94c3a2b | 2009-06-17 16:20:04 +0000 | [diff] [blame] | 626 | |
| 627 | /* Only mark the value as an integer if |
| 628 | ** |
| 629 | ** (1) the round-trip conversion real->int->real is a no-op, and |
| 630 | ** (2) The integer is neither the largest nor the smallest |
| 631 | ** possible integer (ticket #3922) |
| 632 | ** |
drh | e74871a | 2009-08-14 17:53:39 +0000 | [diff] [blame] | 633 | ** The second and third terms in the following conditional enforces |
| 634 | ** the second condition under the assumption that addition overflow causes |
drh | de1a8b8 | 2013-11-26 15:45:02 +0000 | [diff] [blame] | 635 | ** values to wrap around. |
drh | 94c3a2b | 2009-06-17 16:20:04 +0000 | [diff] [blame] | 636 | */ |
drh | 74eaba4 | 2014-09-18 17:52:15 +0000 | [diff] [blame] | 637 | if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){ |
| 638 | pMem->u.i = ix; |
| 639 | MemSetTypeFlag(pMem, MEM_Int); |
drh | 8df447f | 2005-11-01 15:48:24 +0000 | [diff] [blame] | 640 | } |
| 641 | } |
| 642 | |
drh | 8a51256 | 2005-11-14 22:29:05 +0000 | [diff] [blame] | 643 | /* |
| 644 | ** Convert pMem to type integer. Invalidate any prior representations. |
| 645 | */ |
| 646 | int sqlite3VdbeMemIntegerify(Mem *pMem){ |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 647 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 648 | assert( (pMem->flags & MEM_RowSet)==0 ); |
drh | ea598cb | 2009-04-05 12:22:08 +0000 | [diff] [blame] | 649 | assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
| 650 | |
drh | 3c024d6 | 2007-03-30 11:23:45 +0000 | [diff] [blame] | 651 | pMem->u.i = sqlite3VdbeIntValue(pMem); |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 652 | MemSetTypeFlag(pMem, MEM_Int); |
drh | 8a51256 | 2005-11-14 22:29:05 +0000 | [diff] [blame] | 653 | return SQLITE_OK; |
| 654 | } |
drh | 8df447f | 2005-11-01 15:48:24 +0000 | [diff] [blame] | 655 | |
| 656 | /* |
drh | 8a51256 | 2005-11-14 22:29:05 +0000 | [diff] [blame] | 657 | ** Convert pMem so that it is of type MEM_Real. |
| 658 | ** Invalidate any prior representations. |
drh | 6a6124e | 2004-06-27 01:56:33 +0000 | [diff] [blame] | 659 | */ |
| 660 | int sqlite3VdbeMemRealify(Mem *pMem){ |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 661 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
drh | ea598cb | 2009-04-05 12:22:08 +0000 | [diff] [blame] | 662 | assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
| 663 | |
drh | 74eaba4 | 2014-09-18 17:52:15 +0000 | [diff] [blame] | 664 | pMem->u.r = sqlite3VdbeRealValue(pMem); |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 665 | MemSetTypeFlag(pMem, MEM_Real); |
drh | 8a51256 | 2005-11-14 22:29:05 +0000 | [diff] [blame] | 666 | return SQLITE_OK; |
| 667 | } |
| 668 | |
drh | d15046a | 2018-01-23 17:33:42 +0000 | [diff] [blame] | 669 | /* Compare a floating point value to an integer. Return true if the two |
| 670 | ** values are the same within the precision of the floating point value. |
| 671 | ** |
| 672 | ** For some versions of GCC on 32-bit machines, if you do the more obvious |
| 673 | ** comparison of "r1==(double)i" you sometimes get an answer of false even |
| 674 | ** though the r1 and (double)i values are bit-for-bit the same. |
| 675 | */ |
| 676 | static int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){ |
| 677 | double r2 = (double)i; |
| 678 | return memcmp(&r1, &r2, sizeof(r1))==0; |
| 679 | } |
| 680 | |
drh | 8a51256 | 2005-11-14 22:29:05 +0000 | [diff] [blame] | 681 | /* |
| 682 | ** Convert pMem so that it has types MEM_Real or MEM_Int or both. |
| 683 | ** Invalidate any prior representations. |
drh | 4b5db5a | 2010-01-21 01:53:07 +0000 | [diff] [blame] | 684 | ** |
| 685 | ** Every effort is made to force the conversion, even if the input |
| 686 | ** is a string that does not look completely like a number. Convert |
| 687 | ** as much of the string as we can and ignore the rest. |
drh | 8a51256 | 2005-11-14 22:29:05 +0000 | [diff] [blame] | 688 | */ |
| 689 | int sqlite3VdbeMemNumerify(Mem *pMem){ |
drh | 9351862 | 2010-09-30 14:48:06 +0000 | [diff] [blame] | 690 | if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){ |
drh | 84d4f1a | 2017-09-20 10:47:10 +0000 | [diff] [blame] | 691 | int rc; |
drh | 9351862 | 2010-09-30 14:48:06 +0000 | [diff] [blame] | 692 | assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); |
| 693 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
drh | 84d4f1a | 2017-09-20 10:47:10 +0000 | [diff] [blame] | 694 | rc = sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc); |
| 695 | if( rc==0 ){ |
drh | 9351862 | 2010-09-30 14:48:06 +0000 | [diff] [blame] | 696 | MemSetTypeFlag(pMem, MEM_Int); |
| 697 | }else{ |
drh | 84d4f1a | 2017-09-20 10:47:10 +0000 | [diff] [blame] | 698 | i64 i = pMem->u.i; |
| 699 | sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); |
drh | d15046a | 2018-01-23 17:33:42 +0000 | [diff] [blame] | 700 | if( rc==1 && sqlite3RealSameAsInt(pMem->u.r, i) ){ |
drh | 84d4f1a | 2017-09-20 10:47:10 +0000 | [diff] [blame] | 701 | pMem->u.i = i; |
| 702 | MemSetTypeFlag(pMem, MEM_Int); |
| 703 | }else{ |
| 704 | MemSetTypeFlag(pMem, MEM_Real); |
| 705 | } |
drh | 9351862 | 2010-09-30 14:48:06 +0000 | [diff] [blame] | 706 | } |
drh | cd7b46d | 2007-05-16 11:55:56 +0000 | [diff] [blame] | 707 | } |
drh | 9351862 | 2010-09-30 14:48:06 +0000 | [diff] [blame] | 708 | assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 ); |
drh | 27fe1c3 | 2016-09-09 20:23:59 +0000 | [diff] [blame] | 709 | pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero); |
drh | f447950 | 2004-05-27 03:12:53 +0000 | [diff] [blame] | 710 | return SQLITE_OK; |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 711 | } |
| 712 | |
| 713 | /* |
drh | 4169e43 | 2014-08-25 20:11:52 +0000 | [diff] [blame] | 714 | ** Cast the datatype of the value in pMem according to the affinity |
| 715 | ** "aff". Casting is different from applying affinity in that a cast |
| 716 | ** is forced. In other words, the value is converted into the desired |
| 717 | ** affinity even if that results in loss of data. This routine is |
| 718 | ** used (for example) to implement the SQL "cast()" operator. |
| 719 | */ |
| 720 | void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){ |
| 721 | if( pMem->flags & MEM_Null ) return; |
| 722 | switch( aff ){ |
drh | 05883a3 | 2015-06-02 15:32:08 +0000 | [diff] [blame] | 723 | case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */ |
drh | 4169e43 | 2014-08-25 20:11:52 +0000 | [diff] [blame] | 724 | if( (pMem->flags & MEM_Blob)==0 ){ |
| 725 | sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); |
| 726 | assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); |
drh | da5c624 | 2016-10-05 15:02:00 +0000 | [diff] [blame] | 727 | if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob); |
drh | 4169e43 | 2014-08-25 20:11:52 +0000 | [diff] [blame] | 728 | }else{ |
| 729 | pMem->flags &= ~(MEM_TypeMask&~MEM_Blob); |
| 730 | } |
| 731 | break; |
| 732 | } |
| 733 | case SQLITE_AFF_NUMERIC: { |
| 734 | sqlite3VdbeMemNumerify(pMem); |
| 735 | break; |
| 736 | } |
| 737 | case SQLITE_AFF_INTEGER: { |
| 738 | sqlite3VdbeMemIntegerify(pMem); |
| 739 | break; |
| 740 | } |
| 741 | case SQLITE_AFF_REAL: { |
| 742 | sqlite3VdbeMemRealify(pMem); |
| 743 | break; |
| 744 | } |
| 745 | default: { |
| 746 | assert( aff==SQLITE_AFF_TEXT ); |
| 747 | assert( MEM_Str==(MEM_Blob>>3) ); |
| 748 | pMem->flags |= (pMem->flags&MEM_Blob)>>3; |
| 749 | sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); |
| 750 | assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); |
| 751 | pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero); |
| 752 | break; |
| 753 | } |
| 754 | } |
| 755 | } |
| 756 | |
drh | d3b7420 | 2014-09-17 16:41:15 +0000 | [diff] [blame] | 757 | /* |
| 758 | ** Initialize bulk memory to be a consistent Mem object. |
| 759 | ** |
| 760 | ** The minimum amount of initialization feasible is performed. |
| 761 | */ |
| 762 | void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){ |
| 763 | assert( (flags & ~MEM_TypeMask)==0 ); |
| 764 | pMem->flags = flags; |
| 765 | pMem->db = db; |
drh | 17bcb10 | 2014-09-18 21:25:33 +0000 | [diff] [blame] | 766 | pMem->szMalloc = 0; |
drh | d3b7420 | 2014-09-17 16:41:15 +0000 | [diff] [blame] | 767 | } |
| 768 | |
drh | 4169e43 | 2014-08-25 20:11:52 +0000 | [diff] [blame] | 769 | |
| 770 | /* |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 771 | ** Delete any previous value and set the value stored in *pMem to NULL. |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 772 | ** |
| 773 | ** This routine calls the Mem.xDel destructor to dispose of values that |
| 774 | ** require the destructor. But it preserves the Mem.zMalloc memory allocation. |
| 775 | ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this |
| 776 | ** routine to invoke the destructor and deallocates Mem.zMalloc. |
| 777 | ** |
| 778 | ** Use this routine to reset the Mem prior to insert a new value. |
| 779 | ** |
| 780 | ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it. |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 781 | */ |
| 782 | void sqlite3VdbeMemSetNull(Mem *pMem){ |
drh | 6b478bc | 2014-09-16 21:54:11 +0000 | [diff] [blame] | 783 | if( VdbeMemDynamic(pMem) ){ |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 784 | vdbeMemClearExternAndSetNull(pMem); |
drh | 6b478bc | 2014-09-16 21:54:11 +0000 | [diff] [blame] | 785 | }else{ |
| 786 | pMem->flags = MEM_Null; |
dan | 165921a | 2009-08-28 18:53:45 +0000 | [diff] [blame] | 787 | } |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 788 | } |
drh | a3cc007 | 2013-12-13 16:23:55 +0000 | [diff] [blame] | 789 | void sqlite3ValueSetNull(sqlite3_value *p){ |
| 790 | sqlite3VdbeMemSetNull((Mem*)p); |
| 791 | } |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 792 | |
| 793 | /* |
drh | b026e05 | 2007-05-02 01:34:31 +0000 | [diff] [blame] | 794 | ** Delete any previous value and set the value to be a BLOB of length |
| 795 | ** n containing all zeros. |
| 796 | */ |
| 797 | void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ |
| 798 | sqlite3VdbeMemRelease(pMem); |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 799 | pMem->flags = MEM_Blob|MEM_Zero; |
drh | b026e05 | 2007-05-02 01:34:31 +0000 | [diff] [blame] | 800 | pMem->n = 0; |
drh | 98640a3 | 2007-06-07 19:08:32 +0000 | [diff] [blame] | 801 | if( n<0 ) n = 0; |
drh | 8df3284 | 2008-12-09 02:51:23 +0000 | [diff] [blame] | 802 | pMem->u.nZero = n; |
danielk1977 | def0fec | 2007-05-10 15:37:52 +0000 | [diff] [blame] | 803 | pMem->enc = SQLITE_UTF8; |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 804 | pMem->z = 0; |
drh | b026e05 | 2007-05-02 01:34:31 +0000 | [diff] [blame] | 805 | } |
| 806 | |
| 807 | /* |
drh | 9bd038f | 2014-08-27 14:14:06 +0000 | [diff] [blame] | 808 | ** The pMem is known to contain content that needs to be destroyed prior |
| 809 | ** to a value change. So invoke the destructor, then set the value to |
| 810 | ** a 64-bit integer. |
| 811 | */ |
| 812 | static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){ |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 813 | sqlite3VdbeMemSetNull(pMem); |
drh | 9bd038f | 2014-08-27 14:14:06 +0000 | [diff] [blame] | 814 | pMem->u.i = val; |
| 815 | pMem->flags = MEM_Int; |
| 816 | } |
| 817 | |
| 818 | /* |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 819 | ** Delete any previous value and set the value stored in *pMem to val, |
| 820 | ** manifest type INTEGER. |
| 821 | */ |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 822 | void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ |
drh | 9bd038f | 2014-08-27 14:14:06 +0000 | [diff] [blame] | 823 | if( VdbeMemDynamic(pMem) ){ |
| 824 | vdbeReleaseAndSetInt64(pMem, val); |
| 825 | }else{ |
| 826 | pMem->u.i = val; |
| 827 | pMem->flags = MEM_Int; |
| 828 | } |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 829 | } |
| 830 | |
drh | a0024e6 | 2017-07-27 15:53:24 +0000 | [diff] [blame] | 831 | /* A no-op destructor */ |
drh | 9201184 | 2018-05-26 16:00:26 +0000 | [diff] [blame] | 832 | void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); } |
drh | a0024e6 | 2017-07-27 15:53:24 +0000 | [diff] [blame] | 833 | |
drh | 3a96a5d | 2017-06-30 23:09:03 +0000 | [diff] [blame] | 834 | /* |
| 835 | ** Set the value stored in *pMem should already be a NULL. |
| 836 | ** Also store a pointer to go with it. |
| 837 | */ |
drh | 2293006 | 2017-07-27 03:48:02 +0000 | [diff] [blame] | 838 | void sqlite3VdbeMemSetPointer( |
| 839 | Mem *pMem, |
| 840 | void *pPtr, |
| 841 | const char *zPType, |
| 842 | void (*xDestructor)(void*) |
| 843 | ){ |
drh | 3a96a5d | 2017-06-30 23:09:03 +0000 | [diff] [blame] | 844 | assert( pMem->flags==MEM_Null ); |
drh | a0024e6 | 2017-07-27 15:53:24 +0000 | [diff] [blame] | 845 | pMem->u.zPType = zPType ? zPType : ""; |
drh | 2293006 | 2017-07-27 03:48:02 +0000 | [diff] [blame] | 846 | pMem->z = pPtr; |
drh | a0024e6 | 2017-07-27 15:53:24 +0000 | [diff] [blame] | 847 | pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term; |
| 848 | pMem->eSubtype = 'p'; |
| 849 | pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor; |
drh | 3a96a5d | 2017-06-30 23:09:03 +0000 | [diff] [blame] | 850 | } |
| 851 | |
drh | 7ec5ea9 | 2010-01-13 00:04:13 +0000 | [diff] [blame] | 852 | #ifndef SQLITE_OMIT_FLOATING_POINT |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 853 | /* |
| 854 | ** Delete any previous value and set the value stored in *pMem to val, |
| 855 | ** manifest type REAL. |
| 856 | */ |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 857 | void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 858 | sqlite3VdbeMemSetNull(pMem); |
| 859 | if( !sqlite3IsNaN(val) ){ |
drh | 74eaba4 | 2014-09-18 17:52:15 +0000 | [diff] [blame] | 860 | pMem->u.r = val; |
drh | 53c1402 | 2007-05-10 17:23:11 +0000 | [diff] [blame] | 861 | pMem->flags = MEM_Real; |
drh | 53c1402 | 2007-05-10 17:23:11 +0000 | [diff] [blame] | 862 | } |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 863 | } |
drh | 7ec5ea9 | 2010-01-13 00:04:13 +0000 | [diff] [blame] | 864 | #endif |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 865 | |
| 866 | /* |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 867 | ** Delete any previous value and set the value of pMem to be an |
| 868 | ** empty boolean index. |
| 869 | */ |
| 870 | void sqlite3VdbeMemSetRowSet(Mem *pMem){ |
| 871 | sqlite3 *db = pMem->db; |
| 872 | assert( db!=0 ); |
drh | 4c8555f | 2009-06-25 01:47:11 +0000 | [diff] [blame] | 873 | assert( (pMem->flags & MEM_RowSet)==0 ); |
| 874 | sqlite3VdbeMemRelease(pMem); |
drh | 575fad6 | 2016-02-05 13:38:36 +0000 | [diff] [blame] | 875 | pMem->zMalloc = sqlite3DbMallocRawNN(db, 64); |
drh | 8d99363 | 2008-12-04 22:17:55 +0000 | [diff] [blame] | 876 | if( db->mallocFailed ){ |
| 877 | pMem->flags = MEM_Null; |
drh | 17bcb10 | 2014-09-18 21:25:33 +0000 | [diff] [blame] | 878 | pMem->szMalloc = 0; |
drh | 8d99363 | 2008-12-04 22:17:55 +0000 | [diff] [blame] | 879 | }else{ |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 880 | assert( pMem->zMalloc ); |
drh | 17bcb10 | 2014-09-18 21:25:33 +0000 | [diff] [blame] | 881 | pMem->szMalloc = sqlite3DbMallocSize(db, pMem->zMalloc); |
| 882 | pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, pMem->szMalloc); |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 883 | assert( pMem->u.pRowSet!=0 ); |
drh | 8d99363 | 2008-12-04 22:17:55 +0000 | [diff] [blame] | 884 | pMem->flags = MEM_RowSet; |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 885 | } |
| 886 | } |
| 887 | |
| 888 | /* |
drh | 023ae03 | 2007-05-08 12:12:16 +0000 | [diff] [blame] | 889 | ** Return true if the Mem object contains a TEXT or BLOB that is |
| 890 | ** too large - whose size exceeds SQLITE_MAX_LENGTH. |
| 891 | */ |
| 892 | int sqlite3VdbeMemTooBig(Mem *p){ |
drh | fa4a4b9 | 2008-03-19 21:45:51 +0000 | [diff] [blame] | 893 | assert( p->db!=0 ); |
drh | 023ae03 | 2007-05-08 12:12:16 +0000 | [diff] [blame] | 894 | if( p->flags & (MEM_Str|MEM_Blob) ){ |
| 895 | int n = p->n; |
| 896 | if( p->flags & MEM_Zero ){ |
drh | 8df3284 | 2008-12-09 02:51:23 +0000 | [diff] [blame] | 897 | n += p->u.nZero; |
drh | 023ae03 | 2007-05-08 12:12:16 +0000 | [diff] [blame] | 898 | } |
drh | bb4957f | 2008-03-20 14:03:29 +0000 | [diff] [blame] | 899 | return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; |
drh | 023ae03 | 2007-05-08 12:12:16 +0000 | [diff] [blame] | 900 | } |
| 901 | return 0; |
| 902 | } |
| 903 | |
drh | 2b4ded9 | 2010-09-27 21:09:31 +0000 | [diff] [blame] | 904 | #ifdef SQLITE_DEBUG |
| 905 | /* |
peter.d.reid | 60ec914 | 2014-09-06 16:39:46 +0000 | [diff] [blame] | 906 | ** This routine prepares a memory cell for modification by breaking |
drh | 2b4ded9 | 2010-09-27 21:09:31 +0000 | [diff] [blame] | 907 | ** its link to a shallow copy and by marking any current shallow |
| 908 | ** copies of this cell as invalid. |
| 909 | ** |
| 910 | ** This is used for testing and debugging only - to make sure shallow |
| 911 | ** copies are not misused. |
| 912 | */ |
drh | e4c88c0 | 2012-01-04 12:57:45 +0000 | [diff] [blame] | 913 | void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){ |
drh | 2b4ded9 | 2010-09-27 21:09:31 +0000 | [diff] [blame] | 914 | int i; |
| 915 | Mem *pX; |
drh | 9f6168b | 2016-03-19 23:32:58 +0000 | [diff] [blame] | 916 | for(i=0, pX=pVdbe->aMem; i<pVdbe->nMem; i++, pX++){ |
drh | 2b4ded9 | 2010-09-27 21:09:31 +0000 | [diff] [blame] | 917 | if( pX->pScopyFrom==pMem ){ |
drh | 8d7b212 | 2018-06-11 13:10:45 +0000 | [diff] [blame] | 918 | /* If pX is marked as a shallow copy of pMem, then verify that |
| 919 | ** no significant changes have been made to pX since the OP_SCopy. |
| 920 | ** A significant change would indicated a missed call to this |
| 921 | ** function for pX. Minor changes, such as adding or removing a |
| 922 | ** dual type, are allowed, as long as the underlying value is the |
| 923 | ** same. */ |
drh | 58773a5 | 2018-06-12 13:52:23 +0000 | [diff] [blame] | 924 | u16 mFlags = pMem->flags & pX->flags & pX->mScopyFlags; |
drh | 8d7b212 | 2018-06-11 13:10:45 +0000 | [diff] [blame] | 925 | assert( (mFlags&MEM_Int)==0 || pMem->u.i==pX->u.i ); |
| 926 | assert( (mFlags&MEM_Real)==0 || pMem->u.r==pX->u.r ); |
| 927 | assert( (mFlags&MEM_Str)==0 || (pMem->n==pX->n && pMem->z==pX->z) ); |
| 928 | assert( (mFlags&MEM_Blob)==0 || sqlite3BlobCompare(pMem,pX)==0 ); |
| 929 | |
| 930 | /* pMem is the register that is changing. But also mark pX as |
| 931 | ** undefined so that we can quickly detect the shallow-copy error */ |
| 932 | pX->flags = MEM_Undefined; |
drh | 2b4ded9 | 2010-09-27 21:09:31 +0000 | [diff] [blame] | 933 | pX->pScopyFrom = 0; |
| 934 | } |
| 935 | } |
| 936 | pMem->pScopyFrom = 0; |
drh | 299bf7c | 2018-06-11 17:35:02 +0000 | [diff] [blame] | 937 | #ifdef SQLITE_DEBUG_COLUMN_CACHE |
| 938 | pMem->iTabColHash = 0; |
| 939 | #endif |
drh | 2b4ded9 | 2010-09-27 21:09:31 +0000 | [diff] [blame] | 940 | } |
| 941 | #endif /* SQLITE_DEBUG */ |
| 942 | |
danielk1977 | 5f09613 | 2008-03-28 15:44:09 +0000 | [diff] [blame] | 943 | |
drh | 023ae03 | 2007-05-08 12:12:16 +0000 | [diff] [blame] | 944 | /* |
drh | febe106 | 2004-08-28 18:17:48 +0000 | [diff] [blame] | 945 | ** Make an shallow copy of pFrom into pTo. Prior contents of |
drh | a05a722 | 2008-01-19 03:35:58 +0000 | [diff] [blame] | 946 | ** pTo are freed. The pFrom->z field is not duplicated. If |
drh | febe106 | 2004-08-28 18:17:48 +0000 | [diff] [blame] | 947 | ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z |
| 948 | ** and flags gets srcType (either MEM_Ephem or MEM_Static). |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 949 | */ |
drh | 14e0674 | 2015-06-17 23:28:03 +0000 | [diff] [blame] | 950 | static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){ |
| 951 | vdbeMemClearExternAndSetNull(pTo); |
| 952 | assert( !VdbeMemDynamic(pTo) ); |
| 953 | sqlite3VdbeMemShallowCopy(pTo, pFrom, eType); |
| 954 | } |
drh | febe106 | 2004-08-28 18:17:48 +0000 | [diff] [blame] | 955 | void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 956 | assert( (pFrom->flags & MEM_RowSet)==0 ); |
drh | 035e563 | 2014-09-16 14:16:31 +0000 | [diff] [blame] | 957 | assert( pTo->db==pFrom->db ); |
drh | 14e0674 | 2015-06-17 23:28:03 +0000 | [diff] [blame] | 958 | if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; } |
danielk1977 | 5f09613 | 2008-03-28 15:44:09 +0000 | [diff] [blame] | 959 | memcpy(pTo, pFrom, MEMCELLSIZE); |
drh | 299bf7c | 2018-06-11 17:35:02 +0000 | [diff] [blame] | 960 | #ifdef SQLITE_DEBUG_COLUMNCACHE |
| 961 | pTo->iTabColHash = pFrom->iTabColHash; |
| 962 | #endif |
dan | 5fea907 | 2010-03-05 18:46:12 +0000 | [diff] [blame] | 963 | if( (pFrom->flags&MEM_Static)==0 ){ |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 964 | pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); |
drh | febe106 | 2004-08-28 18:17:48 +0000 | [diff] [blame] | 965 | assert( srcType==MEM_Ephem || srcType==MEM_Static ); |
| 966 | pTo->flags |= srcType; |
| 967 | } |
| 968 | } |
| 969 | |
| 970 | /* |
| 971 | ** Make a full copy of pFrom into pTo. Prior contents of pTo are |
| 972 | ** freed before the copy is made. |
| 973 | */ |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 974 | int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 975 | int rc = SQLITE_OK; |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 976 | |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 977 | assert( (pFrom->flags & MEM_RowSet)==0 ); |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 978 | if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo); |
danielk1977 | 5f09613 | 2008-03-28 15:44:09 +0000 | [diff] [blame] | 979 | memcpy(pTo, pFrom, MEMCELLSIZE); |
drh | 299bf7c | 2018-06-11 17:35:02 +0000 | [diff] [blame] | 980 | #ifdef SQLITE_DEBUG_COLUMNCACHE |
| 981 | pTo->iTabColHash = pFrom->iTabColHash; |
| 982 | #endif |
danielk1977 | 5f09613 | 2008-03-28 15:44:09 +0000 | [diff] [blame] | 983 | pTo->flags &= ~MEM_Dyn; |
danielk1977 | 5f09613 | 2008-03-28 15:44:09 +0000 | [diff] [blame] | 984 | if( pTo->flags&(MEM_Str|MEM_Blob) ){ |
| 985 | if( 0==(pFrom->flags&MEM_Static) ){ |
| 986 | pTo->flags |= MEM_Ephem; |
| 987 | rc = sqlite3VdbeMemMakeWriteable(pTo); |
danielk1977 | 9172fd8 | 2008-02-14 15:31:52 +0000 | [diff] [blame] | 988 | } |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 989 | } |
| 990 | |
drh | 71c697e | 2004-08-08 23:39:19 +0000 | [diff] [blame] | 991 | return rc; |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 992 | } |
| 993 | |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 994 | /* |
danielk1977 | 369f27e | 2004-06-15 11:40:04 +0000 | [diff] [blame] | 995 | ** Transfer the contents of pFrom to pTo. Any existing value in pTo is |
drh | febe106 | 2004-08-28 18:17:48 +0000 | [diff] [blame] | 996 | ** freed. If pFrom contains ephemeral data, a copy is made. |
| 997 | ** |
drh | 643167f | 2008-01-22 21:30:53 +0000 | [diff] [blame] | 998 | ** pFrom contains an SQL NULL when this routine returns. |
danielk1977 | 369f27e | 2004-06-15 11:40:04 +0000 | [diff] [blame] | 999 | */ |
drh | 643167f | 2008-01-22 21:30:53 +0000 | [diff] [blame] | 1000 | void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 1001 | assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); |
| 1002 | assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); |
| 1003 | assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); |
danielk1977 | 5f09613 | 2008-03-28 15:44:09 +0000 | [diff] [blame] | 1004 | |
| 1005 | sqlite3VdbeMemRelease(pTo); |
danielk1977 | 1307393 | 2004-06-30 11:54:06 +0000 | [diff] [blame] | 1006 | memcpy(pTo, pFrom, sizeof(Mem)); |
danielk1977 | 1307393 | 2004-06-30 11:54:06 +0000 | [diff] [blame] | 1007 | pFrom->flags = MEM_Null; |
drh | 17bcb10 | 2014-09-18 21:25:33 +0000 | [diff] [blame] | 1008 | pFrom->szMalloc = 0; |
danielk1977 | 369f27e | 2004-06-15 11:40:04 +0000 | [diff] [blame] | 1009 | } |
| 1010 | |
| 1011 | /* |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 1012 | ** Change the value of a Mem to be a string or a BLOB. |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 1013 | ** |
| 1014 | ** The memory management strategy depends on the value of the xDel |
| 1015 | ** parameter. If the value passed is SQLITE_TRANSIENT, then the |
| 1016 | ** string is copied into a (possibly existing) buffer managed by the |
| 1017 | ** Mem structure. Otherwise, any existing buffer is freed and the |
| 1018 | ** pointer copied. |
drh | 9a65f2c | 2009-06-22 19:05:40 +0000 | [diff] [blame] | 1019 | ** |
| 1020 | ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH |
| 1021 | ** size limit) then no memory allocation occurs. If the string can be |
| 1022 | ** stored without allocating memory, then it is. If a memory allocation |
| 1023 | ** is required to store the string, then value of pMem is unchanged. In |
| 1024 | ** either case, SQLITE_TOOBIG is returned. |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 1025 | */ |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 1026 | int sqlite3VdbeMemSetStr( |
| 1027 | Mem *pMem, /* Memory cell to set to string value */ |
| 1028 | const char *z, /* String pointer */ |
| 1029 | int n, /* Bytes in string, or negative */ |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 1030 | u8 enc, /* Encoding of z. 0 for BLOBs */ |
danielk1977 | d812336 | 2004-06-12 09:25:12 +0000 | [diff] [blame] | 1031 | void (*xDel)(void*) /* Destructor function */ |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 1032 | ){ |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 1033 | int nByte = n; /* New value for pMem->n */ |
drh | 0a687d1 | 2008-07-08 14:52:07 +0000 | [diff] [blame] | 1034 | int iLimit; /* Maximum allowed string or blob size */ |
drh | 8df3284 | 2008-12-09 02:51:23 +0000 | [diff] [blame] | 1035 | u16 flags = 0; /* New value for pMem->flags */ |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 1036 | |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 1037 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 1038 | assert( (pMem->flags & MEM_RowSet)==0 ); |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 1039 | |
| 1040 | /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 1041 | if( !z ){ |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 1042 | sqlite3VdbeMemSetNull(pMem); |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 1043 | return SQLITE_OK; |
| 1044 | } |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 1045 | |
drh | 0a687d1 | 2008-07-08 14:52:07 +0000 | [diff] [blame] | 1046 | if( pMem->db ){ |
| 1047 | iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH]; |
| 1048 | }else{ |
| 1049 | iLimit = SQLITE_MAX_LENGTH; |
| 1050 | } |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 1051 | flags = (enc==0?MEM_Blob:MEM_Str); |
| 1052 | if( nByte<0 ){ |
| 1053 | assert( enc!=0 ); |
drh | 8fd3897 | 2008-02-19 15:44:09 +0000 | [diff] [blame] | 1054 | if( enc==SQLITE_UTF8 ){ |
drh | b32c18b | 2017-08-21 02:05:22 +0000 | [diff] [blame] | 1055 | nByte = 0x7fffffff & (int)strlen(z); |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 1056 | if( nByte>iLimit ) nByte = iLimit+1; |
drh | 8fd3897 | 2008-02-19 15:44:09 +0000 | [diff] [blame] | 1057 | }else{ |
drh | 0a687d1 | 2008-07-08 14:52:07 +0000 | [diff] [blame] | 1058 | for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){} |
drh | 8fd3897 | 2008-02-19 15:44:09 +0000 | [diff] [blame] | 1059 | } |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 1060 | flags |= MEM_Term; |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 1061 | } |
danielk1977 | d812336 | 2004-06-12 09:25:12 +0000 | [diff] [blame] | 1062 | |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 1063 | /* The following block sets the new values of Mem.z and Mem.xDel. It |
| 1064 | ** also sets a flag in local variable "flags" to indicate the memory |
| 1065 | ** management (one of MEM_Dyn or MEM_Static). |
| 1066 | */ |
| 1067 | if( xDel==SQLITE_TRANSIENT ){ |
| 1068 | int nAlloc = nByte; |
| 1069 | if( flags&MEM_Term ){ |
| 1070 | nAlloc += (enc==SQLITE_UTF8?1:2); |
| 1071 | } |
drh | 0793f1b | 2008-11-05 17:41:19 +0000 | [diff] [blame] | 1072 | if( nByte>iLimit ){ |
| 1073 | return SQLITE_TOOBIG; |
| 1074 | } |
drh | 722246e | 2014-10-07 23:02:24 +0000 | [diff] [blame] | 1075 | testcase( nAlloc==0 ); |
| 1076 | testcase( nAlloc==31 ); |
| 1077 | testcase( nAlloc==32 ); |
| 1078 | if( sqlite3VdbeMemClearAndResize(pMem, MAX(nAlloc,32)) ){ |
mistachkin | fad3039 | 2016-02-13 23:43:46 +0000 | [diff] [blame] | 1079 | return SQLITE_NOMEM_BKPT; |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 1080 | } |
| 1081 | memcpy(pMem->z, z, nAlloc); |
drh | 633e6d5 | 2008-07-28 19:34:53 +0000 | [diff] [blame] | 1082 | }else if( xDel==SQLITE_DYNAMIC ){ |
| 1083 | sqlite3VdbeMemRelease(pMem); |
| 1084 | pMem->zMalloc = pMem->z = (char *)z; |
drh | 17bcb10 | 2014-09-18 21:25:33 +0000 | [diff] [blame] | 1085 | pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 1086 | }else{ |
| 1087 | sqlite3VdbeMemRelease(pMem); |
| 1088 | pMem->z = (char *)z; |
drh | c890fec | 2008-08-01 20:10:08 +0000 | [diff] [blame] | 1089 | pMem->xDel = xDel; |
| 1090 | flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 1091 | } |
danielk1977 | d812336 | 2004-06-12 09:25:12 +0000 | [diff] [blame] | 1092 | |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 1093 | pMem->n = nByte; |
| 1094 | pMem->flags = flags; |
| 1095 | pMem->enc = (enc==0 ? SQLITE_UTF8 : enc); |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 1096 | |
drh | 6c62608 | 2004-11-14 21:56:29 +0000 | [diff] [blame] | 1097 | #ifndef SQLITE_OMIT_UTF16 |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 1098 | if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ |
mistachkin | fad3039 | 2016-02-13 23:43:46 +0000 | [diff] [blame] | 1099 | return SQLITE_NOMEM_BKPT; |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 1100 | } |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 1101 | #endif |
| 1102 | |
drh | 9a65f2c | 2009-06-22 19:05:40 +0000 | [diff] [blame] | 1103 | if( nByte>iLimit ){ |
| 1104 | return SQLITE_TOOBIG; |
| 1105 | } |
| 1106 | |
drh | f447950 | 2004-05-27 03:12:53 +0000 | [diff] [blame] | 1107 | return SQLITE_OK; |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 1108 | } |
| 1109 | |
| 1110 | /* |
drh | d578820 | 2004-05-28 08:21:05 +0000 | [diff] [blame] | 1111 | ** Move data out of a btree key or data field and into a Mem structure. |
drh | cb3cabd | 2016-11-25 19:18:28 +0000 | [diff] [blame] | 1112 | ** The data is payload from the entry that pCur is currently pointing |
drh | d578820 | 2004-05-28 08:21:05 +0000 | [diff] [blame] | 1113 | ** to. offset and amt determine what portion of the data or key to retrieve. |
drh | cb3cabd | 2016-11-25 19:18:28 +0000 | [diff] [blame] | 1114 | ** The result is written into the pMem element. |
drh | d578820 | 2004-05-28 08:21:05 +0000 | [diff] [blame] | 1115 | ** |
drh | 2a2a696 | 2014-09-16 18:22:44 +0000 | [diff] [blame] | 1116 | ** The pMem object must have been initialized. This routine will use |
| 1117 | ** pMem->zMalloc to hold the content from the btree, if possible. New |
| 1118 | ** pMem->zMalloc space will be allocated if necessary. The calling routine |
| 1119 | ** is responsible for making sure that the pMem object is eventually |
| 1120 | ** destroyed. |
drh | d578820 | 2004-05-28 08:21:05 +0000 | [diff] [blame] | 1121 | ** |
| 1122 | ** If this routine fails for any reason (malloc returns NULL or unable |
| 1123 | ** to read from the disk) then the pMem is left in an inconsistent state. |
| 1124 | */ |
drh | f1aabd6 | 2015-06-17 01:31:28 +0000 | [diff] [blame] | 1125 | static SQLITE_NOINLINE int vdbeMemFromBtreeResize( |
| 1126 | BtCursor *pCur, /* Cursor pointing at record to retrieve. */ |
| 1127 | u32 offset, /* Offset from the start of data to return bytes from. */ |
| 1128 | u32 amt, /* Number of bytes to return. */ |
drh | f1aabd6 | 2015-06-17 01:31:28 +0000 | [diff] [blame] | 1129 | Mem *pMem /* OUT: Return data in this Mem structure. */ |
| 1130 | ){ |
| 1131 | int rc; |
| 1132 | pMem->flags = MEM_Null; |
drh | 24ddadf | 2017-09-22 12:52:31 +0000 | [diff] [blame] | 1133 | if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){ |
drh | cb3cabd | 2016-11-25 19:18:28 +0000 | [diff] [blame] | 1134 | rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z); |
drh | f1aabd6 | 2015-06-17 01:31:28 +0000 | [diff] [blame] | 1135 | if( rc==SQLITE_OK ){ |
drh | 24ddadf | 2017-09-22 12:52:31 +0000 | [diff] [blame] | 1136 | pMem->z[amt] = 0; /* Overrun area used when reading malformed records */ |
drh | 63d1632 | 2017-09-20 18:07:50 +0000 | [diff] [blame] | 1137 | pMem->flags = MEM_Blob; |
drh | f1aabd6 | 2015-06-17 01:31:28 +0000 | [diff] [blame] | 1138 | pMem->n = (int)amt; |
| 1139 | }else{ |
| 1140 | sqlite3VdbeMemRelease(pMem); |
| 1141 | } |
| 1142 | } |
| 1143 | return rc; |
| 1144 | } |
drh | d578820 | 2004-05-28 08:21:05 +0000 | [diff] [blame] | 1145 | int sqlite3VdbeMemFromBtree( |
| 1146 | BtCursor *pCur, /* Cursor pointing at record to retrieve. */ |
drh | 501932c | 2013-11-21 21:59:53 +0000 | [diff] [blame] | 1147 | u32 offset, /* Offset from the start of data to return bytes from. */ |
| 1148 | u32 amt, /* Number of bytes to return. */ |
drh | d578820 | 2004-05-28 08:21:05 +0000 | [diff] [blame] | 1149 | Mem *pMem /* OUT: Return data in this Mem structure. */ |
| 1150 | ){ |
danielk1977 | 4b0aa4c | 2009-05-28 11:05:57 +0000 | [diff] [blame] | 1151 | char *zData; /* Data from the btree layer */ |
drh | 501932c | 2013-11-21 21:59:53 +0000 | [diff] [blame] | 1152 | u32 available = 0; /* Number of bytes available on the local btree page */ |
danielk1977 | 4b0aa4c | 2009-05-28 11:05:57 +0000 | [diff] [blame] | 1153 | int rc = SQLITE_OK; /* Return code */ |
drh | d578820 | 2004-05-28 08:21:05 +0000 | [diff] [blame] | 1154 | |
drh | 5d1a872 | 2009-07-22 18:07:40 +0000 | [diff] [blame] | 1155 | assert( sqlite3BtreeCursorIsValid(pCur) ); |
drh | d3b7420 | 2014-09-17 16:41:15 +0000 | [diff] [blame] | 1156 | assert( !VdbeMemDynamic(pMem) ); |
drh | 5d1a872 | 2009-07-22 18:07:40 +0000 | [diff] [blame] | 1157 | |
danielk1977 | 4b0aa4c | 2009-05-28 11:05:57 +0000 | [diff] [blame] | 1158 | /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() |
| 1159 | ** that both the BtShared and database handle mutexes are held. */ |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 1160 | assert( (pMem->flags & MEM_RowSet)==0 ); |
drh | a7c90c4 | 2016-06-04 20:37:10 +0000 | [diff] [blame] | 1161 | zData = (char *)sqlite3BtreePayloadFetch(pCur, &available); |
drh | 61fc595 | 2007-04-01 23:49:51 +0000 | [diff] [blame] | 1162 | assert( zData!=0 ); |
drh | d578820 | 2004-05-28 08:21:05 +0000 | [diff] [blame] | 1163 | |
drh | 2b53e00 | 2013-11-21 19:05:04 +0000 | [diff] [blame] | 1164 | if( offset+amt<=available ){ |
drh | d578820 | 2004-05-28 08:21:05 +0000 | [diff] [blame] | 1165 | pMem->z = &zData[offset]; |
| 1166 | pMem->flags = MEM_Blob|MEM_Ephem; |
drh | 5f1d536 | 2014-03-04 13:18:23 +0000 | [diff] [blame] | 1167 | pMem->n = (int)amt; |
drh | 8740a60 | 2014-09-16 20:05:21 +0000 | [diff] [blame] | 1168 | }else{ |
drh | cb3cabd | 2016-11-25 19:18:28 +0000 | [diff] [blame] | 1169 | rc = vdbeMemFromBtreeResize(pCur, offset, amt, pMem); |
drh | d578820 | 2004-05-28 08:21:05 +0000 | [diff] [blame] | 1170 | } |
| 1171 | |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 1172 | return rc; |
drh | d578820 | 2004-05-28 08:21:05 +0000 | [diff] [blame] | 1173 | } |
| 1174 | |
drh | 6c9f8e6 | 2014-08-27 03:28:50 +0000 | [diff] [blame] | 1175 | /* |
| 1176 | ** The pVal argument is known to be a value other than NULL. |
| 1177 | ** Convert it into a string with encoding enc and return a pointer |
| 1178 | ** to a zero-terminated version of that string. |
| 1179 | */ |
drh | 3b335fc | 2014-10-07 16:59:22 +0000 | [diff] [blame] | 1180 | static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){ |
drh | 6c9f8e6 | 2014-08-27 03:28:50 +0000 | [diff] [blame] | 1181 | assert( pVal!=0 ); |
| 1182 | assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); |
| 1183 | assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); |
| 1184 | assert( (pVal->flags & MEM_RowSet)==0 ); |
| 1185 | assert( (pVal->flags & (MEM_Null))==0 ); |
| 1186 | if( pVal->flags & (MEM_Blob|MEM_Str) ){ |
drh | 34d04d6 | 2017-01-05 07:58:29 +0000 | [diff] [blame] | 1187 | if( ExpandBlob(pVal) ) return 0; |
drh | 6c9f8e6 | 2014-08-27 03:28:50 +0000 | [diff] [blame] | 1188 | pVal->flags |= MEM_Str; |
drh | 6c9f8e6 | 2014-08-27 03:28:50 +0000 | [diff] [blame] | 1189 | if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){ |
| 1190 | sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); |
| 1191 | } |
| 1192 | if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ |
| 1193 | assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); |
| 1194 | if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ |
| 1195 | return 0; |
| 1196 | } |
| 1197 | } |
| 1198 | sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */ |
| 1199 | }else{ |
| 1200 | sqlite3VdbeMemStringify(pVal, enc, 0); |
| 1201 | assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); |
| 1202 | } |
| 1203 | assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 |
| 1204 | || pVal->db->mallocFailed ); |
| 1205 | if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ |
drh | 563ddbe | 2018-02-01 15:57:00 +0000 | [diff] [blame] | 1206 | assert( sqlite3VdbeMemConsistentDualRep(pVal) ); |
drh | 6c9f8e6 | 2014-08-27 03:28:50 +0000 | [diff] [blame] | 1207 | return pVal->z; |
| 1208 | }else{ |
| 1209 | return 0; |
| 1210 | } |
| 1211 | } |
| 1212 | |
danielk1977 | 4e6af13 | 2004-06-10 14:01:08 +0000 | [diff] [blame] | 1213 | /* This function is only available internally, it is not part of the |
| 1214 | ** external API. It works in a similar way to sqlite3_value_text(), |
| 1215 | ** except the data returned is in the encoding specified by the second |
| 1216 | ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or |
| 1217 | ** SQLITE_UTF8. |
drh | 7d9bd4e | 2006-02-16 18:16:36 +0000 | [diff] [blame] | 1218 | ** |
| 1219 | ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. |
| 1220 | ** If that is the case, then the result must be aligned on an even byte |
| 1221 | ** boundary. |
danielk1977 | 4e6af13 | 2004-06-10 14:01:08 +0000 | [diff] [blame] | 1222 | */ |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 1223 | const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ |
danielk1977 | bfd6cce | 2004-06-18 04:24:54 +0000 | [diff] [blame] | 1224 | if( !pVal ) return 0; |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 1225 | assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); |
drh | 7d9bd4e | 2006-02-16 18:16:36 +0000 | [diff] [blame] | 1226 | assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 1227 | assert( (pVal->flags & MEM_RowSet)==0 ); |
drh | 6c9f8e6 | 2014-08-27 03:28:50 +0000 | [diff] [blame] | 1228 | if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){ |
drh | 563ddbe | 2018-02-01 15:57:00 +0000 | [diff] [blame] | 1229 | assert( sqlite3VdbeMemConsistentDualRep(pVal) ); |
drh | 6c9f8e6 | 2014-08-27 03:28:50 +0000 | [diff] [blame] | 1230 | return pVal->z; |
| 1231 | } |
danielk1977 | 4e6af13 | 2004-06-10 14:01:08 +0000 | [diff] [blame] | 1232 | if( pVal->flags&MEM_Null ){ |
danielk1977 | 4e6af13 | 2004-06-10 14:01:08 +0000 | [diff] [blame] | 1233 | return 0; |
| 1234 | } |
drh | 6c9f8e6 | 2014-08-27 03:28:50 +0000 | [diff] [blame] | 1235 | return valueToText(pVal, enc); |
danielk1977 | 4e6af13 | 2004-06-10 14:01:08 +0000 | [diff] [blame] | 1236 | } |
| 1237 | |
drh | 6a6124e | 2004-06-27 01:56:33 +0000 | [diff] [blame] | 1238 | /* |
| 1239 | ** Create a new sqlite3_value object. |
| 1240 | */ |
drh | 1743575 | 2007-08-16 04:30:38 +0000 | [diff] [blame] | 1241 | sqlite3_value *sqlite3ValueNew(sqlite3 *db){ |
danielk1977 | 26783a5 | 2007-08-29 14:06:22 +0000 | [diff] [blame] | 1242 | Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); |
danielk1977 | 4e6af13 | 2004-06-10 14:01:08 +0000 | [diff] [blame] | 1243 | if( p ){ |
| 1244 | p->flags = MEM_Null; |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 1245 | p->db = db; |
danielk1977 | 4e6af13 | 2004-06-10 14:01:08 +0000 | [diff] [blame] | 1246 | } |
| 1247 | return p; |
| 1248 | } |
| 1249 | |
drh | 6a6124e | 2004-06-27 01:56:33 +0000 | [diff] [blame] | 1250 | /* |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1251 | ** Context object passed by sqlite3Stat4ProbeSetValue() through to |
| 1252 | ** valueNew(). See comments above valueNew() for details. |
danielk1977 | aee18ef | 2005-03-09 12:26:50 +0000 | [diff] [blame] | 1253 | */ |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1254 | struct ValueNewStat4Ctx { |
| 1255 | Parse *pParse; |
| 1256 | Index *pIdx; |
| 1257 | UnpackedRecord **ppRec; |
| 1258 | int iVal; |
| 1259 | }; |
| 1260 | |
| 1261 | /* |
| 1262 | ** Allocate and return a pointer to a new sqlite3_value object. If |
| 1263 | ** the second argument to this function is NULL, the object is allocated |
| 1264 | ** by calling sqlite3ValueNew(). |
| 1265 | ** |
| 1266 | ** Otherwise, if the second argument is non-zero, then this function is |
| 1267 | ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not |
| 1268 | ** already been allocated, allocate the UnpackedRecord structure that |
drh | 96f4ad2 | 2015-03-12 21:02:36 +0000 | [diff] [blame] | 1269 | ** that function will return to its caller here. Then return a pointer to |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1270 | ** an sqlite3_value within the UnpackedRecord.a[] array. |
| 1271 | */ |
| 1272 | static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){ |
drh | 1435a9a | 2013-08-27 23:15:44 +0000 | [diff] [blame] | 1273 | #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1274 | if( p ){ |
| 1275 | UnpackedRecord *pRec = p->ppRec[0]; |
| 1276 | |
| 1277 | if( pRec==0 ){ |
| 1278 | Index *pIdx = p->pIdx; /* Index being probed */ |
| 1279 | int nByte; /* Bytes of space to allocate */ |
| 1280 | int i; /* Counter variable */ |
drh | d269461 | 2013-11-04 22:04:17 +0000 | [diff] [blame] | 1281 | int nCol = pIdx->nColumn; /* Number of index columns including rowid */ |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1282 | |
dan | b5f68b0 | 2013-12-03 18:26:56 +0000 | [diff] [blame] | 1283 | nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord)); |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1284 | pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte); |
| 1285 | if( pRec ){ |
drh | 2ec2fb2 | 2013-11-06 19:59:23 +0000 | [diff] [blame] | 1286 | pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx); |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1287 | if( pRec->pKeyInfo ){ |
drh | a485ad1 | 2017-08-02 22:43:14 +0000 | [diff] [blame] | 1288 | assert( pRec->pKeyInfo->nAllField==nCol ); |
drh | 2ec2fb2 | 2013-11-06 19:59:23 +0000 | [diff] [blame] | 1289 | assert( pRec->pKeyInfo->enc==ENC(db) ); |
dan | b5f68b0 | 2013-12-03 18:26:56 +0000 | [diff] [blame] | 1290 | pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord))); |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1291 | for(i=0; i<nCol; i++){ |
| 1292 | pRec->aMem[i].flags = MEM_Null; |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1293 | pRec->aMem[i].db = db; |
| 1294 | } |
| 1295 | }else{ |
drh | dbd6a7d | 2017-04-05 12:39:49 +0000 | [diff] [blame] | 1296 | sqlite3DbFreeNN(db, pRec); |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1297 | pRec = 0; |
| 1298 | } |
| 1299 | } |
| 1300 | if( pRec==0 ) return 0; |
| 1301 | p->ppRec[0] = pRec; |
| 1302 | } |
| 1303 | |
| 1304 | pRec->nField = p->iVal+1; |
| 1305 | return &pRec->aMem[p->iVal]; |
| 1306 | } |
drh | 4f99189 | 2013-10-11 15:05:05 +0000 | [diff] [blame] | 1307 | #else |
| 1308 | UNUSED_PARAMETER(p); |
| 1309 | #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */ |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1310 | return sqlite3ValueNew(db); |
dan | 7a41923 | 2013-08-06 20:01:43 +0000 | [diff] [blame] | 1311 | } |
| 1312 | |
drh | 6a6124e | 2004-06-27 01:56:33 +0000 | [diff] [blame] | 1313 | /* |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1314 | ** The expression object indicated by the second argument is guaranteed |
| 1315 | ** to be a scalar SQL function. If |
| 1316 | ** |
| 1317 | ** * all function arguments are SQL literals, |
drh | e3a7307 | 2015-09-05 19:07:08 +0000 | [diff] [blame] | 1318 | ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and |
dan | cdcc11d | 2015-03-11 20:59:42 +0000 | [diff] [blame] | 1319 | ** * the SQLITE_FUNC_NEEDCOLL function flag is not set, |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1320 | ** |
| 1321 | ** then this routine attempts to invoke the SQL function. Assuming no |
| 1322 | ** error occurs, output parameter (*ppVal) is set to point to a value |
| 1323 | ** object containing the result before returning SQLITE_OK. |
| 1324 | ** |
| 1325 | ** Affinity aff is applied to the result of the function before returning. |
| 1326 | ** If the result is a text value, the sqlite3_value object uses encoding |
| 1327 | ** enc. |
| 1328 | ** |
| 1329 | ** If the conditions above are not met, this function returns SQLITE_OK |
| 1330 | ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to |
| 1331 | ** NULL and an SQLite error code returned. |
| 1332 | */ |
| 1333 | #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 1334 | static int valueFromFunction( |
| 1335 | sqlite3 *db, /* The database connection */ |
| 1336 | Expr *p, /* The expression to evaluate */ |
| 1337 | u8 enc, /* Encoding to use */ |
| 1338 | u8 aff, /* Affinity to use */ |
| 1339 | sqlite3_value **ppVal, /* Write the new value here */ |
| 1340 | struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ |
| 1341 | ){ |
| 1342 | sqlite3_context ctx; /* Context object for function invocation */ |
| 1343 | sqlite3_value **apVal = 0; /* Function arguments */ |
| 1344 | int nVal = 0; /* Size of apVal[] array */ |
| 1345 | FuncDef *pFunc = 0; /* Function definition */ |
| 1346 | sqlite3_value *pVal = 0; /* New value */ |
| 1347 | int rc = SQLITE_OK; /* Return code */ |
dan | cdcc11d | 2015-03-11 20:59:42 +0000 | [diff] [blame] | 1348 | ExprList *pList = 0; /* Function arguments */ |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1349 | int i; /* Iterator variable */ |
| 1350 | |
drh | 96f4ad2 | 2015-03-12 21:02:36 +0000 | [diff] [blame] | 1351 | assert( pCtx!=0 ); |
| 1352 | assert( (p->flags & EP_TokenOnly)==0 ); |
| 1353 | pList = p->x.pList; |
| 1354 | if( pList ) nVal = pList->nExpr; |
drh | 80738d9 | 2016-02-15 00:34:16 +0000 | [diff] [blame] | 1355 | pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0); |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1356 | assert( pFunc ); |
drh | e3a7307 | 2015-09-05 19:07:08 +0000 | [diff] [blame] | 1357 | if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0 |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1358 | || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) |
| 1359 | ){ |
| 1360 | return SQLITE_OK; |
| 1361 | } |
| 1362 | |
| 1363 | if( pList ){ |
| 1364 | apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal); |
| 1365 | if( apVal==0 ){ |
mistachkin | fad3039 | 2016-02-13 23:43:46 +0000 | [diff] [blame] | 1366 | rc = SQLITE_NOMEM_BKPT; |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1367 | goto value_from_function_out; |
| 1368 | } |
| 1369 | for(i=0; i<nVal; i++){ |
| 1370 | rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]); |
drh | a9e03b1 | 2015-03-12 06:46:52 +0000 | [diff] [blame] | 1371 | if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out; |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1372 | } |
| 1373 | } |
| 1374 | |
| 1375 | pVal = valueNew(db, pCtx); |
| 1376 | if( pVal==0 ){ |
mistachkin | fad3039 | 2016-02-13 23:43:46 +0000 | [diff] [blame] | 1377 | rc = SQLITE_NOMEM_BKPT; |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1378 | goto value_from_function_out; |
| 1379 | } |
| 1380 | |
dan | 3df3059 | 2015-03-13 08:31:54 +0000 | [diff] [blame] | 1381 | assert( pCtx->pParse->rc==SQLITE_OK ); |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1382 | memset(&ctx, 0, sizeof(ctx)); |
| 1383 | ctx.pOut = pVal; |
| 1384 | ctx.pFunc = pFunc; |
drh | 2d80151 | 2016-01-14 22:19:58 +0000 | [diff] [blame] | 1385 | pFunc->xSFunc(&ctx, nVal, apVal); |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1386 | if( ctx.isError ){ |
| 1387 | rc = ctx.isError; |
drh | 96f4ad2 | 2015-03-12 21:02:36 +0000 | [diff] [blame] | 1388 | sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal)); |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1389 | }else{ |
| 1390 | sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8); |
drh | 96f4ad2 | 2015-03-12 21:02:36 +0000 | [diff] [blame] | 1391 | assert( rc==SQLITE_OK ); |
| 1392 | rc = sqlite3VdbeChangeEncoding(pVal, enc); |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1393 | if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){ |
| 1394 | rc = SQLITE_TOOBIG; |
dan | 3df3059 | 2015-03-13 08:31:54 +0000 | [diff] [blame] | 1395 | pCtx->pParse->nErr++; |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1396 | } |
| 1397 | } |
dan | 3df3059 | 2015-03-13 08:31:54 +0000 | [diff] [blame] | 1398 | pCtx->pParse->rc = rc; |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1399 | |
| 1400 | value_from_function_out: |
| 1401 | if( rc!=SQLITE_OK ){ |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1402 | pVal = 0; |
| 1403 | } |
drh | a9e03b1 | 2015-03-12 06:46:52 +0000 | [diff] [blame] | 1404 | if( apVal ){ |
| 1405 | for(i=0; i<nVal; i++){ |
| 1406 | sqlite3ValueFree(apVal[i]); |
| 1407 | } |
drh | dbd6a7d | 2017-04-05 12:39:49 +0000 | [diff] [blame] | 1408 | sqlite3DbFreeNN(db, apVal); |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1409 | } |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1410 | |
| 1411 | *ppVal = pVal; |
| 1412 | return rc; |
| 1413 | } |
| 1414 | #else |
| 1415 | # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK |
| 1416 | #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */ |
| 1417 | |
| 1418 | /* |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1419 | ** Extract a value from the supplied expression in the manner described |
| 1420 | ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object |
| 1421 | ** using valueNew(). |
| 1422 | ** |
| 1423 | ** If pCtx is NULL and an error occurs after the sqlite3_value object |
| 1424 | ** has been allocated, it is freed before returning. Or, if pCtx is not |
| 1425 | ** NULL, it is assumed that the caller will free any allocated object |
| 1426 | ** in all cases. |
danielk1977 | aee18ef | 2005-03-09 12:26:50 +0000 | [diff] [blame] | 1427 | */ |
drh | a7f4bf3 | 2013-10-14 13:21:00 +0000 | [diff] [blame] | 1428 | static int valueFromExpr( |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1429 | sqlite3 *db, /* The database connection */ |
| 1430 | Expr *pExpr, /* The expression to evaluate */ |
| 1431 | u8 enc, /* Encoding to use */ |
| 1432 | u8 affinity, /* Affinity to use */ |
| 1433 | sqlite3_value **ppVal, /* Write the new value here */ |
| 1434 | struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ |
danielk1977 | aee18ef | 2005-03-09 12:26:50 +0000 | [diff] [blame] | 1435 | ){ |
| 1436 | int op; |
| 1437 | char *zVal = 0; |
| 1438 | sqlite3_value *pVal = 0; |
drh | 9351862 | 2010-09-30 14:48:06 +0000 | [diff] [blame] | 1439 | int negInt = 1; |
| 1440 | const char *zNeg = ""; |
drh | 0e1f002 | 2013-08-16 14:49:00 +0000 | [diff] [blame] | 1441 | int rc = SQLITE_OK; |
danielk1977 | aee18ef | 2005-03-09 12:26:50 +0000 | [diff] [blame] | 1442 | |
drh | 42735c7 | 2016-09-29 19:27:16 +0000 | [diff] [blame] | 1443 | assert( pExpr!=0 ); |
drh | 94fa9c4 | 2016-02-27 21:16:04 +0000 | [diff] [blame] | 1444 | while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft; |
drh | 01f6b2d | 2017-12-06 20:50:08 +0000 | [diff] [blame] | 1445 | #if defined(SQLITE_ENABLE_STAT3_OR_STAT4) |
dan | 7ac2d48 | 2017-11-27 17:56:14 +0000 | [diff] [blame] | 1446 | if( op==TK_REGISTER ) op = pExpr->op2; |
drh | 01f6b2d | 2017-12-06 20:50:08 +0000 | [diff] [blame] | 1447 | #else |
| 1448 | if( NEVER(op==TK_REGISTER) ) op = pExpr->op2; |
| 1449 | #endif |
danielk1977 | aee18ef | 2005-03-09 12:26:50 +0000 | [diff] [blame] | 1450 | |
drh | 96f4ad2 | 2015-03-12 21:02:36 +0000 | [diff] [blame] | 1451 | /* Compressed expressions only appear when parsing the DEFAULT clause |
| 1452 | ** on a table column definition, and hence only when pCtx==0. This |
| 1453 | ** check ensures that an EP_TokenOnly expression is never passed down |
| 1454 | ** into valueFromFunction(). */ |
| 1455 | assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 ); |
| 1456 | |
drh | 4169e43 | 2014-08-25 20:11:52 +0000 | [diff] [blame] | 1457 | if( op==TK_CAST ){ |
| 1458 | u8 aff = sqlite3AffinityType(pExpr->u.zToken,0); |
| 1459 | rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx); |
drh | ec3e4f7 | 2014-08-25 21:11:01 +0000 | [diff] [blame] | 1460 | testcase( rc!=SQLITE_OK ); |
| 1461 | if( *ppVal ){ |
drh | 4169e43 | 2014-08-25 20:11:52 +0000 | [diff] [blame] | 1462 | sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8); |
| 1463 | sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8); |
| 1464 | } |
| 1465 | return rc; |
| 1466 | } |
| 1467 | |
drh | 9351862 | 2010-09-30 14:48:06 +0000 | [diff] [blame] | 1468 | /* Handle negative integers in a single step. This is needed in the |
| 1469 | ** case when the value is -9223372036854775808. |
| 1470 | */ |
| 1471 | if( op==TK_UMINUS |
| 1472 | && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){ |
| 1473 | pExpr = pExpr->pLeft; |
| 1474 | op = pExpr->op; |
| 1475 | negInt = -1; |
| 1476 | zNeg = "-"; |
| 1477 | } |
| 1478 | |
danielk1977 | aee18ef | 2005-03-09 12:26:50 +0000 | [diff] [blame] | 1479 | if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1480 | pVal = valueNew(db, pCtx); |
drh | 33e619f | 2009-05-28 01:00:55 +0000 | [diff] [blame] | 1481 | if( pVal==0 ) goto no_mem; |
| 1482 | if( ExprHasProperty(pExpr, EP_IntValue) ){ |
drh | 9351862 | 2010-09-30 14:48:06 +0000 | [diff] [blame] | 1483 | sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); |
drh | 33e619f | 2009-05-28 01:00:55 +0000 | [diff] [blame] | 1484 | }else{ |
drh | 9351862 | 2010-09-30 14:48:06 +0000 | [diff] [blame] | 1485 | zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); |
drh | 33e619f | 2009-05-28 01:00:55 +0000 | [diff] [blame] | 1486 | if( zVal==0 ) goto no_mem; |
| 1487 | sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); |
| 1488 | } |
drh | 05883a3 | 2015-06-02 15:32:08 +0000 | [diff] [blame] | 1489 | if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){ |
drh | e3b9bfe | 2009-05-05 12:54:50 +0000 | [diff] [blame] | 1490 | sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); |
danielk1977 | aee18ef | 2005-03-09 12:26:50 +0000 | [diff] [blame] | 1491 | }else{ |
drh | e3b9bfe | 2009-05-05 12:54:50 +0000 | [diff] [blame] | 1492 | sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); |
| 1493 | } |
drh | 9351862 | 2010-09-30 14:48:06 +0000 | [diff] [blame] | 1494 | if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str; |
drh | e3b9bfe | 2009-05-05 12:54:50 +0000 | [diff] [blame] | 1495 | if( enc!=SQLITE_UTF8 ){ |
drh | 0e1f002 | 2013-08-16 14:49:00 +0000 | [diff] [blame] | 1496 | rc = sqlite3VdbeChangeEncoding(pVal, enc); |
danielk1977 | aee18ef | 2005-03-09 12:26:50 +0000 | [diff] [blame] | 1497 | } |
| 1498 | }else if( op==TK_UMINUS ) { |
drh | 9351862 | 2010-09-30 14:48:06 +0000 | [diff] [blame] | 1499 | /* This branch happens for multiple negative signs. Ex: -(-5) */ |
drh | 6e3bccd | 2017-06-13 04:31:54 +0000 | [diff] [blame] | 1500 | if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx) |
dan | ad45ed7 | 2013-08-08 12:21:32 +0000 | [diff] [blame] | 1501 | && pVal!=0 |
| 1502 | ){ |
drh | 9351862 | 2010-09-30 14:48:06 +0000 | [diff] [blame] | 1503 | sqlite3VdbeMemNumerify(pVal); |
drh | 74eaba4 | 2014-09-18 17:52:15 +0000 | [diff] [blame] | 1504 | if( pVal->flags & MEM_Real ){ |
| 1505 | pVal->u.r = -pVal->u.r; |
| 1506 | }else if( pVal->u.i==SMALLEST_INT64 ){ |
| 1507 | pVal->u.r = -(double)SMALLEST_INT64; |
| 1508 | MemSetTypeFlag(pVal, MEM_Real); |
drh | d50ffc4 | 2011-03-08 02:38:28 +0000 | [diff] [blame] | 1509 | }else{ |
| 1510 | pVal->u.i = -pVal->u.i; |
| 1511 | } |
drh | 9351862 | 2010-09-30 14:48:06 +0000 | [diff] [blame] | 1512 | sqlite3ValueApplyAffinity(pVal, affinity, enc); |
danielk1977 | aee18ef | 2005-03-09 12:26:50 +0000 | [diff] [blame] | 1513 | } |
drh | 9b3eb0a | 2011-01-21 14:37:04 +0000 | [diff] [blame] | 1514 | }else if( op==TK_NULL ){ |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1515 | pVal = valueNew(db, pCtx); |
drh | b1aa0ab | 2011-02-18 17:23:23 +0000 | [diff] [blame] | 1516 | if( pVal==0 ) goto no_mem; |
drh | e0568d6 | 2016-12-09 00:15:17 +0000 | [diff] [blame] | 1517 | sqlite3VdbeMemNumerify(pVal); |
danielk1977 | aee18ef | 2005-03-09 12:26:50 +0000 | [diff] [blame] | 1518 | } |
| 1519 | #ifndef SQLITE_OMIT_BLOB_LITERAL |
| 1520 | else if( op==TK_BLOB ){ |
| 1521 | int nVal; |
drh | 33e619f | 2009-05-28 01:00:55 +0000 | [diff] [blame] | 1522 | assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); |
| 1523 | assert( pExpr->u.zToken[1]=='\'' ); |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1524 | pVal = valueNew(db, pCtx); |
danielk1977 | f150c9d | 2008-10-30 17:21:12 +0000 | [diff] [blame] | 1525 | if( !pVal ) goto no_mem; |
drh | 33e619f | 2009-05-28 01:00:55 +0000 | [diff] [blame] | 1526 | zVal = &pExpr->u.zToken[2]; |
drh | b7916a7 | 2009-05-27 10:31:29 +0000 | [diff] [blame] | 1527 | nVal = sqlite3Strlen30(zVal)-1; |
| 1528 | assert( zVal[nVal]=='\'' ); |
drh | ca48c90 | 2008-01-18 14:08:24 +0000 | [diff] [blame] | 1529 | sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, |
drh | 633e6d5 | 2008-07-28 19:34:53 +0000 | [diff] [blame] | 1530 | 0, SQLITE_DYNAMIC); |
danielk1977 | aee18ef | 2005-03-09 12:26:50 +0000 | [diff] [blame] | 1531 | } |
| 1532 | #endif |
drh | 8cdcd87 | 2015-03-16 13:48:23 +0000 | [diff] [blame] | 1533 | #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
drh | 96f4ad2 | 2015-03-12 21:02:36 +0000 | [diff] [blame] | 1534 | else if( op==TK_FUNCTION && pCtx!=0 ){ |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1535 | rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx); |
| 1536 | } |
drh | 8cdcd87 | 2015-03-16 13:48:23 +0000 | [diff] [blame] | 1537 | #endif |
drh | 3bc4315 | 2018-04-18 11:35:35 +0000 | [diff] [blame] | 1538 | else if( op==TK_TRUEFALSE ){ |
| 1539 | pVal = valueNew(db, pCtx); |
| 1540 | pVal->flags = MEM_Int; |
| 1541 | pVal->u.i = pExpr->u.zToken[4]==0; |
| 1542 | } |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1543 | |
danielk1977 | aee18ef | 2005-03-09 12:26:50 +0000 | [diff] [blame] | 1544 | *ppVal = pVal; |
drh | 0e1f002 | 2013-08-16 14:49:00 +0000 | [diff] [blame] | 1545 | return rc; |
danielk1977 | aee18ef | 2005-03-09 12:26:50 +0000 | [diff] [blame] | 1546 | |
| 1547 | no_mem: |
drh | 84a6c85 | 2017-12-13 23:47:55 +0000 | [diff] [blame] | 1548 | #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 1549 | if( pCtx==0 || pCtx->pParse->nErr==0 ) |
| 1550 | #endif |
| 1551 | sqlite3OomFault(db); |
drh | 633e6d5 | 2008-07-28 19:34:53 +0000 | [diff] [blame] | 1552 | sqlite3DbFree(db, zVal); |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1553 | assert( *ppVal==0 ); |
drh | 1435a9a | 2013-08-27 23:15:44 +0000 | [diff] [blame] | 1554 | #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1555 | if( pCtx==0 ) sqlite3ValueFree(pVal); |
drh | 1435a9a | 2013-08-27 23:15:44 +0000 | [diff] [blame] | 1556 | #else |
| 1557 | assert( pCtx==0 ); sqlite3ValueFree(pVal); |
| 1558 | #endif |
mistachkin | fad3039 | 2016-02-13 23:43:46 +0000 | [diff] [blame] | 1559 | return SQLITE_NOMEM_BKPT; |
danielk1977 | aee18ef | 2005-03-09 12:26:50 +0000 | [diff] [blame] | 1560 | } |
| 1561 | |
| 1562 | /* |
dan | 87cd932 | 2013-08-07 15:52:41 +0000 | [diff] [blame] | 1563 | ** Create a new sqlite3_value object, containing the value of pExpr. |
| 1564 | ** |
| 1565 | ** This only works for very simple expressions that consist of one constant |
| 1566 | ** token (i.e. "5", "5.1", "'a string'"). If the expression can |
| 1567 | ** be converted directly into a value, then the value is allocated and |
| 1568 | ** a pointer written to *ppVal. The caller is responsible for deallocating |
| 1569 | ** the value by passing it to sqlite3ValueFree() later on. If the expression |
| 1570 | ** cannot be converted to a value, then *ppVal is set to NULL. |
| 1571 | */ |
| 1572 | int sqlite3ValueFromExpr( |
| 1573 | sqlite3 *db, /* The database connection */ |
| 1574 | Expr *pExpr, /* The expression to evaluate */ |
| 1575 | u8 enc, /* Encoding to use */ |
| 1576 | u8 affinity, /* Affinity to use */ |
| 1577 | sqlite3_value **ppVal /* Write the new value here */ |
| 1578 | ){ |
drh | 42735c7 | 2016-09-29 19:27:16 +0000 | [diff] [blame] | 1579 | return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0; |
dan | 87cd932 | 2013-08-07 15:52:41 +0000 | [diff] [blame] | 1580 | } |
| 1581 | |
drh | 1435a9a | 2013-08-27 23:15:44 +0000 | [diff] [blame] | 1582 | #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
dan | 8ad169a | 2013-08-12 20:14:04 +0000 | [diff] [blame] | 1583 | /* |
| 1584 | ** The implementation of the sqlite_record() function. This function accepts |
| 1585 | ** a single argument of any type. The return value is a formatted database |
| 1586 | ** record (a blob) containing the argument value. |
| 1587 | ** |
| 1588 | ** This is used to convert the value stored in the 'sample' column of the |
| 1589 | ** sqlite_stat3 table to the record format SQLite uses internally. |
| 1590 | */ |
| 1591 | static void recordFunc( |
| 1592 | sqlite3_context *context, |
| 1593 | int argc, |
| 1594 | sqlite3_value **argv |
| 1595 | ){ |
| 1596 | const int file_format = 1; |
drh | be37c12 | 2015-10-16 14:54:17 +0000 | [diff] [blame] | 1597 | u32 iSerial; /* Serial type */ |
dan | 8ad169a | 2013-08-12 20:14:04 +0000 | [diff] [blame] | 1598 | int nSerial; /* Bytes of space for iSerial as varint */ |
drh | be37c12 | 2015-10-16 14:54:17 +0000 | [diff] [blame] | 1599 | u32 nVal; /* Bytes of space required for argv[0] */ |
dan | 8ad169a | 2013-08-12 20:14:04 +0000 | [diff] [blame] | 1600 | int nRet; |
| 1601 | sqlite3 *db; |
| 1602 | u8 *aRet; |
| 1603 | |
drh | 4f99189 | 2013-10-11 15:05:05 +0000 | [diff] [blame] | 1604 | UNUSED_PARAMETER( argc ); |
drh | be37c12 | 2015-10-16 14:54:17 +0000 | [diff] [blame] | 1605 | iSerial = sqlite3VdbeSerialType(argv[0], file_format, &nVal); |
dan | 8ad169a | 2013-08-12 20:14:04 +0000 | [diff] [blame] | 1606 | nSerial = sqlite3VarintLen(iSerial); |
dan | 8ad169a | 2013-08-12 20:14:04 +0000 | [diff] [blame] | 1607 | db = sqlite3_context_db_handle(context); |
| 1608 | |
| 1609 | nRet = 1 + nSerial + nVal; |
drh | 575fad6 | 2016-02-05 13:38:36 +0000 | [diff] [blame] | 1610 | aRet = sqlite3DbMallocRawNN(db, nRet); |
dan | 8ad169a | 2013-08-12 20:14:04 +0000 | [diff] [blame] | 1611 | if( aRet==0 ){ |
| 1612 | sqlite3_result_error_nomem(context); |
| 1613 | }else{ |
| 1614 | aRet[0] = nSerial+1; |
drh | 2f2b2b8 | 2014-08-22 18:48:25 +0000 | [diff] [blame] | 1615 | putVarint32(&aRet[1], iSerial); |
drh | a9ab481 | 2013-12-11 11:00:44 +0000 | [diff] [blame] | 1616 | sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial); |
dan | 8ad169a | 2013-08-12 20:14:04 +0000 | [diff] [blame] | 1617 | sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT); |
drh | dbd6a7d | 2017-04-05 12:39:49 +0000 | [diff] [blame] | 1618 | sqlite3DbFreeNN(db, aRet); |
dan | 8ad169a | 2013-08-12 20:14:04 +0000 | [diff] [blame] | 1619 | } |
| 1620 | } |
| 1621 | |
| 1622 | /* |
| 1623 | ** Register built-in functions used to help read ANALYZE data. |
| 1624 | */ |
| 1625 | void sqlite3AnalyzeFunctions(void){ |
drh | 80738d9 | 2016-02-15 00:34:16 +0000 | [diff] [blame] | 1626 | static FuncDef aAnalyzeTableFuncs[] = { |
dan | 8ad169a | 2013-08-12 20:14:04 +0000 | [diff] [blame] | 1627 | FUNCTION(sqlite_record, 1, 0, 0, recordFunc), |
| 1628 | }; |
drh | 80738d9 | 2016-02-15 00:34:16 +0000 | [diff] [blame] | 1629 | sqlite3InsertBuiltinFuncs(aAnalyzeTableFuncs, ArraySize(aAnalyzeTableFuncs)); |
dan | 8ad169a | 2013-08-12 20:14:04 +0000 | [diff] [blame] | 1630 | } |
| 1631 | |
drh | 0288b21 | 2014-06-28 16:06:44 +0000 | [diff] [blame] | 1632 | /* |
| 1633 | ** Attempt to extract a value from pExpr and use it to construct *ppVal. |
| 1634 | ** |
| 1635 | ** If pAlloc is not NULL, then an UnpackedRecord object is created for |
| 1636 | ** pAlloc if one does not exist and the new value is added to the |
| 1637 | ** UnpackedRecord object. |
| 1638 | ** |
| 1639 | ** A value is extracted in the following cases: |
| 1640 | ** |
| 1641 | ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, |
| 1642 | ** |
| 1643 | ** * The expression is a bound variable, and this is a reprepare, or |
| 1644 | ** |
| 1645 | ** * The expression is a literal value. |
| 1646 | ** |
| 1647 | ** On success, *ppVal is made to point to the extracted value. The caller |
| 1648 | ** is responsible for ensuring that the value is eventually freed. |
| 1649 | */ |
dan | b0b8290 | 2014-06-26 20:21:46 +0000 | [diff] [blame] | 1650 | static int stat4ValueFromExpr( |
| 1651 | Parse *pParse, /* Parse context */ |
| 1652 | Expr *pExpr, /* The expression to extract a value from */ |
| 1653 | u8 affinity, /* Affinity to use */ |
drh | 0288b21 | 2014-06-28 16:06:44 +0000 | [diff] [blame] | 1654 | struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */ |
dan | b0b8290 | 2014-06-26 20:21:46 +0000 | [diff] [blame] | 1655 | sqlite3_value **ppVal /* OUT: New value object (or NULL) */ |
| 1656 | ){ |
| 1657 | int rc = SQLITE_OK; |
| 1658 | sqlite3_value *pVal = 0; |
| 1659 | sqlite3 *db = pParse->db; |
| 1660 | |
| 1661 | /* Skip over any TK_COLLATE nodes */ |
| 1662 | pExpr = sqlite3ExprSkipCollate(pExpr); |
| 1663 | |
drh | 7df7475 | 2017-06-26 14:46:05 +0000 | [diff] [blame] | 1664 | assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE ); |
dan | b0b8290 | 2014-06-26 20:21:46 +0000 | [diff] [blame] | 1665 | if( !pExpr ){ |
| 1666 | pVal = valueNew(db, pAlloc); |
| 1667 | if( pVal ){ |
| 1668 | sqlite3VdbeMemSetNull((Mem*)pVal); |
| 1669 | } |
drh | 7df7475 | 2017-06-26 14:46:05 +0000 | [diff] [blame] | 1670 | }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){ |
dan | b0b8290 | 2014-06-26 20:21:46 +0000 | [diff] [blame] | 1671 | Vdbe *v; |
| 1672 | int iBindVar = pExpr->iColumn; |
| 1673 | sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar); |
drh | 7df7475 | 2017-06-26 14:46:05 +0000 | [diff] [blame] | 1674 | if( (v = pParse->pReprepare)!=0 ){ |
dan | b0b8290 | 2014-06-26 20:21:46 +0000 | [diff] [blame] | 1675 | pVal = valueNew(db, pAlloc); |
| 1676 | if( pVal ){ |
| 1677 | rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]); |
drh | 169dd92 | 2017-06-26 13:57:49 +0000 | [diff] [blame] | 1678 | sqlite3ValueApplyAffinity(pVal, affinity, ENC(db)); |
dan | b0b8290 | 2014-06-26 20:21:46 +0000 | [diff] [blame] | 1679 | pVal->db = pParse->db; |
| 1680 | } |
| 1681 | } |
| 1682 | }else{ |
| 1683 | rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc); |
| 1684 | } |
| 1685 | |
| 1686 | assert( pVal==0 || pVal->db==db ); |
| 1687 | *ppVal = pVal; |
| 1688 | return rc; |
| 1689 | } |
| 1690 | |
dan | 87cd932 | 2013-08-07 15:52:41 +0000 | [diff] [blame] | 1691 | /* |
dan | 87cd932 | 2013-08-07 15:52:41 +0000 | [diff] [blame] | 1692 | ** This function is used to allocate and populate UnpackedRecord |
| 1693 | ** structures intended to be compared against sample index keys stored |
| 1694 | ** in the sqlite_stat4 table. |
| 1695 | ** |
dan | d66e579 | 2016-08-03 16:14:33 +0000 | [diff] [blame] | 1696 | ** A single call to this function populates zero or more fields of the |
| 1697 | ** record starting with field iVal (fields are numbered from left to |
| 1698 | ** right starting with 0). A single field is populated if: |
dan | 87cd932 | 2013-08-07 15:52:41 +0000 | [diff] [blame] | 1699 | ** |
| 1700 | ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, |
| 1701 | ** |
| 1702 | ** * The expression is a bound variable, and this is a reprepare, or |
| 1703 | ** |
| 1704 | ** * The sqlite3ValueFromExpr() function is able to extract a value |
| 1705 | ** from the expression (i.e. the expression is a literal value). |
| 1706 | ** |
dan | d66e579 | 2016-08-03 16:14:33 +0000 | [diff] [blame] | 1707 | ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the |
| 1708 | ** vector components that match either of the two latter criteria listed |
| 1709 | ** above. |
| 1710 | ** |
| 1711 | ** Before any value is appended to the record, the affinity of the |
| 1712 | ** corresponding column within index pIdx is applied to it. Before |
| 1713 | ** this function returns, output parameter *pnExtract is set to the |
| 1714 | ** number of values appended to the record. |
dan | 87cd932 | 2013-08-07 15:52:41 +0000 | [diff] [blame] | 1715 | ** |
| 1716 | ** When this function is called, *ppRec must either point to an object |
| 1717 | ** allocated by an earlier call to this function, or must be NULL. If it |
| 1718 | ** is NULL and a value can be successfully extracted, a new UnpackedRecord |
| 1719 | ** is allocated (and *ppRec set to point to it) before returning. |
| 1720 | ** |
| 1721 | ** Unless an error is encountered, SQLITE_OK is returned. It is not an |
| 1722 | ** error if a value cannot be extracted from pExpr. If an error does |
| 1723 | ** occur, an SQLite error code is returned. |
| 1724 | */ |
dan | 7a41923 | 2013-08-06 20:01:43 +0000 | [diff] [blame] | 1725 | int sqlite3Stat4ProbeSetValue( |
| 1726 | Parse *pParse, /* Parse context */ |
dan | 87cd932 | 2013-08-07 15:52:41 +0000 | [diff] [blame] | 1727 | Index *pIdx, /* Index being probed */ |
| 1728 | UnpackedRecord **ppRec, /* IN/OUT: Probe record */ |
dan | 7a41923 | 2013-08-06 20:01:43 +0000 | [diff] [blame] | 1729 | Expr *pExpr, /* The expression to extract a value from */ |
dan | d66e579 | 2016-08-03 16:14:33 +0000 | [diff] [blame] | 1730 | int nElem, /* Maximum number of values to append */ |
dan | 7a41923 | 2013-08-06 20:01:43 +0000 | [diff] [blame] | 1731 | int iVal, /* Array element to populate */ |
dan | d66e579 | 2016-08-03 16:14:33 +0000 | [diff] [blame] | 1732 | int *pnExtract /* OUT: Values appended to the record */ |
dan | 7a41923 | 2013-08-06 20:01:43 +0000 | [diff] [blame] | 1733 | ){ |
dan | d66e579 | 2016-08-03 16:14:33 +0000 | [diff] [blame] | 1734 | int rc = SQLITE_OK; |
| 1735 | int nExtract = 0; |
dan | b0b8290 | 2014-06-26 20:21:46 +0000 | [diff] [blame] | 1736 | |
dan | d66e579 | 2016-08-03 16:14:33 +0000 | [diff] [blame] | 1737 | if( pExpr==0 || pExpr->op!=TK_SELECT ){ |
| 1738 | int i; |
| 1739 | struct ValueNewStat4Ctx alloc; |
dan | 7a41923 | 2013-08-06 20:01:43 +0000 | [diff] [blame] | 1740 | |
dan | d66e579 | 2016-08-03 16:14:33 +0000 | [diff] [blame] | 1741 | alloc.pParse = pParse; |
| 1742 | alloc.pIdx = pIdx; |
| 1743 | alloc.ppRec = ppRec; |
| 1744 | |
| 1745 | for(i=0; i<nElem; i++){ |
| 1746 | sqlite3_value *pVal = 0; |
drh | fc7f27b | 2016-08-20 00:07:01 +0000 | [diff] [blame] | 1747 | Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0); |
dan | d66e579 | 2016-08-03 16:14:33 +0000 | [diff] [blame] | 1748 | u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i); |
| 1749 | alloc.iVal = iVal+i; |
| 1750 | rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal); |
| 1751 | if( !pVal ) break; |
| 1752 | nExtract++; |
| 1753 | } |
| 1754 | } |
| 1755 | |
| 1756 | *pnExtract = nExtract; |
dan | b0b8290 | 2014-06-26 20:21:46 +0000 | [diff] [blame] | 1757 | return rc; |
| 1758 | } |
dan | 87cd932 | 2013-08-07 15:52:41 +0000 | [diff] [blame] | 1759 | |
dan | b0b8290 | 2014-06-26 20:21:46 +0000 | [diff] [blame] | 1760 | /* |
| 1761 | ** Attempt to extract a value from expression pExpr using the methods |
| 1762 | ** as described for sqlite3Stat4ProbeSetValue() above. |
| 1763 | ** |
| 1764 | ** If successful, set *ppVal to point to a new value object and return |
| 1765 | ** SQLITE_OK. If no value can be extracted, but no other error occurs |
| 1766 | ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error |
| 1767 | ** does occur, return an SQLite error code. The final value of *ppVal |
| 1768 | ** is undefined in this case. |
| 1769 | */ |
| 1770 | int sqlite3Stat4ValueFromExpr( |
| 1771 | Parse *pParse, /* Parse context */ |
| 1772 | Expr *pExpr, /* The expression to extract a value from */ |
| 1773 | u8 affinity, /* Affinity to use */ |
| 1774 | sqlite3_value **ppVal /* OUT: New value object (or NULL) */ |
| 1775 | ){ |
| 1776 | return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal); |
| 1777 | } |
| 1778 | |
drh | 0288b21 | 2014-06-28 16:06:44 +0000 | [diff] [blame] | 1779 | /* |
| 1780 | ** Extract the iCol-th column from the nRec-byte record in pRec. Write |
| 1781 | ** the column value into *ppVal. If *ppVal is initially NULL then a new |
| 1782 | ** sqlite3_value object is allocated. |
| 1783 | ** |
| 1784 | ** If *ppVal is initially NULL then the caller is responsible for |
| 1785 | ** ensuring that the value written into *ppVal is eventually freed. |
| 1786 | */ |
dan | b0b8290 | 2014-06-26 20:21:46 +0000 | [diff] [blame] | 1787 | int sqlite3Stat4Column( |
| 1788 | sqlite3 *db, /* Database handle */ |
| 1789 | const void *pRec, /* Pointer to buffer containing record */ |
| 1790 | int nRec, /* Size of buffer pRec in bytes */ |
| 1791 | int iCol, /* Column to extract */ |
| 1792 | sqlite3_value **ppVal /* OUT: Extracted value */ |
| 1793 | ){ |
drh | 0288b21 | 2014-06-28 16:06:44 +0000 | [diff] [blame] | 1794 | u32 t; /* a column type code */ |
| 1795 | int nHdr; /* Size of the header in the record */ |
| 1796 | int iHdr; /* Next unread header byte */ |
| 1797 | int iField; /* Next unread data byte */ |
| 1798 | int szField; /* Size of the current data field */ |
| 1799 | int i; /* Column index */ |
| 1800 | u8 *a = (u8*)pRec; /* Typecast byte array */ |
| 1801 | Mem *pMem = *ppVal; /* Write result into this Mem object */ |
| 1802 | |
| 1803 | assert( iCol>0 ); |
| 1804 | iHdr = getVarint32(a, nHdr); |
| 1805 | if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT; |
| 1806 | iField = nHdr; |
| 1807 | for(i=0; i<=iCol; i++){ |
| 1808 | iHdr += getVarint32(&a[iHdr], t); |
| 1809 | testcase( iHdr==nHdr ); |
| 1810 | testcase( iHdr==nHdr+1 ); |
| 1811 | if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT; |
| 1812 | szField = sqlite3VdbeSerialTypeLen(t); |
| 1813 | iField += szField; |
| 1814 | } |
| 1815 | testcase( iField==nRec ); |
| 1816 | testcase( iField==nRec+1 ); |
| 1817 | if( iField>nRec ) return SQLITE_CORRUPT_BKPT; |
dan | b0b8290 | 2014-06-26 20:21:46 +0000 | [diff] [blame] | 1818 | if( pMem==0 ){ |
drh | 0288b21 | 2014-06-28 16:06:44 +0000 | [diff] [blame] | 1819 | pMem = *ppVal = sqlite3ValueNew(db); |
mistachkin | fad3039 | 2016-02-13 23:43:46 +0000 | [diff] [blame] | 1820 | if( pMem==0 ) return SQLITE_NOMEM_BKPT; |
dan | b0b8290 | 2014-06-26 20:21:46 +0000 | [diff] [blame] | 1821 | } |
drh | 0288b21 | 2014-06-28 16:06:44 +0000 | [diff] [blame] | 1822 | sqlite3VdbeSerialGet(&a[iField-szField], t, pMem); |
| 1823 | pMem->enc = ENC(db); |
| 1824 | return SQLITE_OK; |
dan | 7a41923 | 2013-08-06 20:01:43 +0000 | [diff] [blame] | 1825 | } |
| 1826 | |
dan | 87cd932 | 2013-08-07 15:52:41 +0000 | [diff] [blame] | 1827 | /* |
| 1828 | ** Unless it is NULL, the argument must be an UnpackedRecord object returned |
| 1829 | ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes |
| 1830 | ** the object. |
| 1831 | */ |
dan | 7a41923 | 2013-08-06 20:01:43 +0000 | [diff] [blame] | 1832 | void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){ |
| 1833 | if( pRec ){ |
| 1834 | int i; |
drh | a485ad1 | 2017-08-02 22:43:14 +0000 | [diff] [blame] | 1835 | int nCol = pRec->pKeyInfo->nAllField; |
dan | 7a41923 | 2013-08-06 20:01:43 +0000 | [diff] [blame] | 1836 | Mem *aMem = pRec->aMem; |
| 1837 | sqlite3 *db = aMem[0].db; |
dan | dd6e1f1 | 2013-08-10 19:08:30 +0000 | [diff] [blame] | 1838 | for(i=0; i<nCol; i++){ |
drh | cef2584 | 2015-04-20 13:59:18 +0000 | [diff] [blame] | 1839 | sqlite3VdbeMemRelease(&aMem[i]); |
dan | 7a41923 | 2013-08-06 20:01:43 +0000 | [diff] [blame] | 1840 | } |
drh | 2ec2fb2 | 2013-11-06 19:59:23 +0000 | [diff] [blame] | 1841 | sqlite3KeyInfoUnref(pRec->pKeyInfo); |
drh | dbd6a7d | 2017-04-05 12:39:49 +0000 | [diff] [blame] | 1842 | sqlite3DbFreeNN(db, pRec); |
dan | 7a41923 | 2013-08-06 20:01:43 +0000 | [diff] [blame] | 1843 | } |
| 1844 | } |
dan | 7a41923 | 2013-08-06 20:01:43 +0000 | [diff] [blame] | 1845 | #endif /* ifdef SQLITE_ENABLE_STAT4 */ |
| 1846 | |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 1847 | /* |
| 1848 | ** Change the string value of an sqlite3_value object |
| 1849 | */ |
| 1850 | void sqlite3ValueSetStr( |
drh | 1743575 | 2007-08-16 04:30:38 +0000 | [diff] [blame] | 1851 | sqlite3_value *v, /* Value to be set */ |
| 1852 | int n, /* Length of string z */ |
| 1853 | const void *z, /* Text of the new string */ |
| 1854 | u8 enc, /* Encoding to use */ |
| 1855 | void (*xDel)(void*) /* Destructor for the string */ |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 1856 | ){ |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 1857 | if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 1858 | } |
| 1859 | |
| 1860 | /* |
| 1861 | ** Free an sqlite3_value object |
| 1862 | */ |
| 1863 | void sqlite3ValueFree(sqlite3_value *v){ |
| 1864 | if( !v ) return; |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 1865 | sqlite3VdbeMemRelease((Mem *)v); |
drh | dbd6a7d | 2017-04-05 12:39:49 +0000 | [diff] [blame] | 1866 | sqlite3DbFreeNN(((Mem*)v)->db, v); |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 1867 | } |
| 1868 | |
| 1869 | /* |
drh | 591909c | 2015-06-25 23:52:48 +0000 | [diff] [blame] | 1870 | ** The sqlite3ValueBytes() routine returns the number of bytes in the |
| 1871 | ** sqlite3_value object assuming that it uses the encoding "enc". |
| 1872 | ** The valueBytes() routine is a helper function. |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 1873 | */ |
drh | 591909c | 2015-06-25 23:52:48 +0000 | [diff] [blame] | 1874 | static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){ |
| 1875 | return valueToText(pVal, enc)!=0 ? pVal->n : 0; |
| 1876 | } |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 1877 | int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 1878 | Mem *p = (Mem*)pVal; |
drh | 591909c | 2015-06-25 23:52:48 +0000 | [diff] [blame] | 1879 | assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 ); |
| 1880 | if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){ |
| 1881 | return p->n; |
| 1882 | } |
| 1883 | if( (p->flags & MEM_Blob)!=0 ){ |
drh | b026e05 | 2007-05-02 01:34:31 +0000 | [diff] [blame] | 1884 | if( p->flags & MEM_Zero ){ |
drh | 8df3284 | 2008-12-09 02:51:23 +0000 | [diff] [blame] | 1885 | return p->n + p->u.nZero; |
drh | b026e05 | 2007-05-02 01:34:31 +0000 | [diff] [blame] | 1886 | }else{ |
| 1887 | return p->n; |
| 1888 | } |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 1889 | } |
drh | 591909c | 2015-06-25 23:52:48 +0000 | [diff] [blame] | 1890 | if( p->flags & MEM_Null ) return 0; |
| 1891 | return valueBytes(pVal, enc); |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 1892 | } |