blob: d0d52ce41cac341f9e05079ac0a3dfa2ac31fc38 [file] [log] [blame]
drh4f26d6c2004-05-26 23:25:30 +00001/*
2** 2004 May 26
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
13** This file contains code use to manipulate "Mem" structure. A "Mem"
14** stores a single value in the VDBE. Mem is an opaque structure visible
15** only within the VDBE. Interface routines refer to a Mem using the
16** name sqlite_value
17*/
18#include "sqliteInt.h"
drh4f26d6c2004-05-26 23:25:30 +000019#include "vdbeInt.h"
20
drh75fd0542014-03-01 16:24:44 +000021#ifdef SQLITE_DEBUG
22/*
23** Check invariants on a Mem object.
24**
25** This routine is intended for use inside of assert() statements, like
26** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
27*/
28int sqlite3VdbeCheckMemInvariants(Mem *p){
drhd3b74202014-09-17 16:41:15 +000029 /* If MEM_Dyn is set then Mem.xDel!=0.
drha0024e62017-07-27 15:53:24 +000030 ** Mem.xDel might not be initialized if MEM_Dyn is clear.
drhc91b2fd2014-03-01 18:13:23 +000031 */
32 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
drhc91b2fd2014-03-01 18:13:23 +000033
drh722246e2014-10-07 23:02:24 +000034 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we
35 ** ensure that if Mem.szMalloc>0 then it is safe to do
36 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
37 ** That saves a few cycles in inner loops. */
drh1eda9f72014-09-19 22:30:49 +000038 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );
39
drh74eaba42014-09-18 17:52:15 +000040 /* Cannot be both MEM_Int and MEM_Real at the same time */
41 assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) );
42
drha0024e62017-07-27 15:53:24 +000043 if( p->flags & MEM_Null ){
44 /* Cannot be both MEM_Null and some other type */
45 assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob
drhce2fbd12018-01-12 21:00:14 +000046 |MEM_RowSet|MEM_Frame|MEM_Agg))==0 );
drha0024e62017-07-27 15:53:24 +000047
48 /* If MEM_Null is set, then either the value is a pure NULL (the usual
49 ** case) or it is a pointer set using sqlite3_bind_pointer() or
50 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be
51 ** set.
52 */
53 if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){
54 /* This is a pointer type. There may be a flag to indicate what to
55 ** do with the pointer. */
56 assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
57 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
58 ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 );
59
60 /* No other bits set */
61 assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype
62 |MEM_Dyn|MEM_Ephem|MEM_Static))==0 );
63 }else{
64 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn,
65 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */
66 }
67 }else{
68 /* The MEM_Cleared bit is only allowed on NULLs */
69 assert( (p->flags & MEM_Cleared)==0 );
70 }
drhe2bc6552017-04-17 20:50:34 +000071
drh17bcb102014-09-18 21:25:33 +000072 /* The szMalloc field holds the correct memory allocation size */
73 assert( p->szMalloc==0
74 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) );
drhc91b2fd2014-03-01 18:13:23 +000075
76 /* If p holds a string or blob, the Mem.z must point to exactly
77 ** one of the following:
78 **
79 ** (1) Memory in Mem.zMalloc and managed by the Mem object
80 ** (2) Memory to be freed using Mem.xDel
peter.d.reid60ec9142014-09-06 16:39:46 +000081 ** (3) An ephemeral string or blob
drhc91b2fd2014-03-01 18:13:23 +000082 ** (4) A static string or blob
83 */
drh17bcb102014-09-18 21:25:33 +000084 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
drhc91b2fd2014-03-01 18:13:23 +000085 assert(
drh17bcb102014-09-18 21:25:33 +000086 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
drhc91b2fd2014-03-01 18:13:23 +000087 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
88 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
89 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
90 );
91 }
drh75fd0542014-03-01 16:24:44 +000092 return 1;
93}
94#endif
95
drh563ddbe2018-02-01 15:57:00 +000096#ifdef SQLITE_DEBUG
97/*
98** Check that string value of pMem agrees with its integer or real value.
99**
100** A single int or real value always converts to the same strings. But
101** many different strings can be converted into the same int or real.
102** If a table contains a numeric value and an index is based on the
103** corresponding string value, then it is important that the string be
104** derived from the numeric value, not the other way around, to ensure
105** that the index and table are consistent. See ticket
106** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for
107** an example.
108**
109** This routine looks at pMem to verify that if it has both a numeric
110** representation and a string representation then the string rep has
111** been derived from the numeric and not the other way around. It returns
112** true if everything is ok and false if there is a problem.
113**
114** This routine is for use inside of assert() statements only.
115*/
116int sqlite3VdbeMemConsistentDualRep(Mem *p){
117 char zBuf[100];
118 char *z;
119 int i, j, incr;
120 if( (p->flags & MEM_Str)==0 ) return 1;
121 if( (p->flags & (MEM_Int|MEM_Real))==0 ) return 1;
122 if( p->flags & MEM_Int ){
123 sqlite3_snprintf(sizeof(zBuf),zBuf,"%lld",p->u.i);
124 }else{
125 sqlite3_snprintf(sizeof(zBuf),zBuf,"%!.15g",p->u.r);
126 }
127 z = p->z;
128 i = j = 0;
129 incr = 1;
130 if( p->enc!=SQLITE_UTF8 ){
131 incr = 2;
132 if( p->enc==SQLITE_UTF16BE ) z++;
133 }
134 while( zBuf[j] ){
135 if( zBuf[j++]!=z[i] ) return 0;
136 i += incr;
137 }
138 return 1;
139}
140#endif /* SQLITE_DEBUG */
drh75fd0542014-03-01 16:24:44 +0000141
drh4f26d6c2004-05-26 23:25:30 +0000142/*
danielk1977bfd6cce2004-06-18 04:24:54 +0000143** If pMem is an object with a valid string representation, this routine
144** ensures the internal encoding for the string representation is
145** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
drh4f26d6c2004-05-26 23:25:30 +0000146**
danielk1977bfd6cce2004-06-18 04:24:54 +0000147** If pMem is not a string object, or the encoding of the string
148** representation is already stored using the requested encoding, then this
149** routine is a no-op.
drh4f26d6c2004-05-26 23:25:30 +0000150**
151** SQLITE_OK is returned if the conversion is successful (or not required).
152** SQLITE_NOMEM may be returned if a malloc() fails during conversion
153** between formats.
154*/
drhb21c8cd2007-08-21 19:33:56 +0000155int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
mistachkinef593f22013-03-07 06:42:53 +0000156#ifndef SQLITE_OMIT_UTF16
danielk19772c336542005-01-13 02:14:23 +0000157 int rc;
mistachkinef593f22013-03-07 06:42:53 +0000158#endif
drh3d4501e2008-12-04 20:40:10 +0000159 assert( (pMem->flags&MEM_RowSet)==0 );
drhb27b7f52008-12-10 18:03:45 +0000160 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
161 || desiredEnc==SQLITE_UTF16BE );
drhc07df4c2017-09-21 01:04:30 +0000162 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
drh4f26d6c2004-05-26 23:25:30 +0000163 return SQLITE_OK;
164 }
drhb21c8cd2007-08-21 19:33:56 +0000165 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh6c626082004-11-14 21:56:29 +0000166#ifdef SQLITE_OMIT_UTF16
167 return SQLITE_ERROR;
168#else
danielk197700fd9572005-12-07 06:27:43 +0000169
170 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
171 ** then the encoding of the value may not have changed.
172 */
drhb27b7f52008-12-10 18:03:45 +0000173 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
danielk197700fd9572005-12-07 06:27:43 +0000174 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
175 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
176 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
danielk19772c336542005-01-13 02:14:23 +0000177 return rc;
drh6c626082004-11-14 21:56:29 +0000178#endif
drh4f26d6c2004-05-26 23:25:30 +0000179}
180
drheb2e1762004-05-27 01:53:56 +0000181/*
danielk1977a7a8e142008-02-13 18:25:27 +0000182** Make sure pMem->z points to a writable allocation of at least
drhb0e77042013-12-10 19:49:00 +0000183** min(n,32) bytes.
danielk1977a7a8e142008-02-13 18:25:27 +0000184**
drhb0e77042013-12-10 19:49:00 +0000185** If the bPreserve argument is true, then copy of the content of
186** pMem->z into the new allocation. pMem must be either a string or
187** blob if bPreserve is true. If bPreserve is false, any prior content
188** in pMem->z is discarded.
danielk1977a7a8e142008-02-13 18:25:27 +0000189*/
drh322f2852014-09-19 00:43:39 +0000190SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
drh75fd0542014-03-01 16:24:44 +0000191 assert( sqlite3VdbeCheckMemInvariants(pMem) );
drh3d4501e2008-12-04 20:40:10 +0000192 assert( (pMem->flags&MEM_RowSet)==0 );
drh575fad62016-02-05 13:38:36 +0000193 testcase( pMem->db==0 );
danielk1977a7a8e142008-02-13 18:25:27 +0000194
drhb0e77042013-12-10 19:49:00 +0000195 /* If the bPreserve flag is set to true, then the memory cell must already
dan2b9ee772012-03-31 09:59:44 +0000196 ** contain a valid string or blob value. */
drhb0e77042013-12-10 19:49:00 +0000197 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
198 testcase( bPreserve && pMem->z==0 );
dan2b9ee772012-03-31 09:59:44 +0000199
drh17bcb102014-09-18 21:25:33 +0000200 assert( pMem->szMalloc==0
201 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) );
drh4c6463c2017-04-10 20:27:54 +0000202 if( n<32 ) n = 32;
drh762dffa2017-09-20 18:47:51 +0000203 if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){
drh4c6463c2017-04-10 20:27:54 +0000204 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
205 bPreserve = 0;
206 }else{
207 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
208 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
209 }
210 if( pMem->zMalloc==0 ){
211 sqlite3VdbeMemSetNull(pMem);
212 pMem->z = 0;
213 pMem->szMalloc = 0;
214 return SQLITE_NOMEM_BKPT;
215 }else{
216 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
danielk1977a7a8e142008-02-13 18:25:27 +0000217 }
danielk19775f096132008-03-28 15:44:09 +0000218
drh762dffa2017-09-20 18:47:51 +0000219 if( bPreserve && pMem->z ){
220 assert( pMem->z!=pMem->zMalloc );
danielk19775f096132008-03-28 15:44:09 +0000221 memcpy(pMem->zMalloc, pMem->z, pMem->n);
222 }
drhc91b2fd2014-03-01 18:13:23 +0000223 if( (pMem->flags&MEM_Dyn)!=0 ){
224 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
danielk19775f096132008-03-28 15:44:09 +0000225 pMem->xDel((void *)(pMem->z));
226 }
227
228 pMem->z = pMem->zMalloc;
drhc91b2fd2014-03-01 18:13:23 +0000229 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
drhb0e77042013-12-10 19:49:00 +0000230 return SQLITE_OK;
danielk1977a7a8e142008-02-13 18:25:27 +0000231}
232
233/*
drh322f2852014-09-19 00:43:39 +0000234** Change the pMem->zMalloc allocation to be at least szNew bytes.
235** If pMem->zMalloc already meets or exceeds the requested size, this
236** routine is a no-op.
237**
238** Any prior string or blob content in the pMem object may be discarded.
drha5476e92014-09-19 04:42:38 +0000239** The pMem->xDel destructor is called, if it exists. Though MEM_Str
240** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null
241** values are preserved.
drh322f2852014-09-19 00:43:39 +0000242**
243** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
244** if unable to complete the resizing.
245*/
246int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
drh722246e2014-10-07 23:02:24 +0000247 assert( szNew>0 );
248 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 );
drh1eda9f72014-09-19 22:30:49 +0000249 if( pMem->szMalloc<szNew ){
drh322f2852014-09-19 00:43:39 +0000250 return sqlite3VdbeMemGrow(pMem, szNew, 0);
251 }
drh1eda9f72014-09-19 22:30:49 +0000252 assert( (pMem->flags & MEM_Dyn)==0 );
drh322f2852014-09-19 00:43:39 +0000253 pMem->z = pMem->zMalloc;
drha5476e92014-09-19 04:42:38 +0000254 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real);
drh322f2852014-09-19 00:43:39 +0000255 return SQLITE_OK;
256}
257
258/*
drh97397a72017-09-20 17:49:12 +0000259** It is already known that pMem contains an unterminated string.
260** Add the zero terminator.
261*/
262static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){
263 if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
264 return SQLITE_NOMEM_BKPT;
265 }
266 pMem->z[pMem->n] = 0;
267 pMem->z[pMem->n+1] = 0;
268 pMem->flags |= MEM_Term;
269 return SQLITE_OK;
270}
271
272/*
drh1eda9f72014-09-19 22:30:49 +0000273** Change pMem so that its MEM_Str or MEM_Blob value is stored in
274** MEM.zMalloc, where it can be safely written.
drheb2e1762004-05-27 01:53:56 +0000275**
276** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
277*/
drhdab898f2008-07-30 13:14:55 +0000278int sqlite3VdbeMemMakeWriteable(Mem *pMem){
drhb21c8cd2007-08-21 19:33:56 +0000279 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh3d4501e2008-12-04 20:40:10 +0000280 assert( (pMem->flags&MEM_RowSet)==0 );
drh8aaf7bc2016-09-20 01:19:18 +0000281 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){
282 if( ExpandBlob(pMem) ) return SQLITE_NOMEM;
283 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){
drh97397a72017-09-20 17:49:12 +0000284 int rc = vdbeMemAddTerminator(pMem);
285 if( rc ) return rc;
danielk1977a7a8e142008-02-13 18:25:27 +0000286 }
drheb2e1762004-05-27 01:53:56 +0000287 }
drhbd6789e2015-04-28 14:00:02 +0000288 pMem->flags &= ~MEM_Ephem;
289#ifdef SQLITE_DEBUG
290 pMem->pScopyFrom = 0;
291#endif
danielk1977a7a8e142008-02-13 18:25:27 +0000292
drhf4479502004-05-27 03:12:53 +0000293 return SQLITE_OK;
drheb2e1762004-05-27 01:53:56 +0000294}
295
296/*
drhfdf972a2007-05-02 13:30:27 +0000297** If the given Mem* has a zero-filled tail, turn it into an ordinary
drhb026e052007-05-02 01:34:31 +0000298** blob stored in dynamically allocated space.
299*/
danielk1977246ad312007-05-16 14:23:00 +0000300#ifndef SQLITE_OMIT_INCRBLOB
drhb21c8cd2007-08-21 19:33:56 +0000301int sqlite3VdbeMemExpandBlob(Mem *pMem){
drhff535a22016-09-20 01:46:15 +0000302 int nByte;
303 assert( pMem->flags & MEM_Zero );
drha0024e62017-07-27 15:53:24 +0000304 assert( pMem->flags&MEM_Blob );
drhff535a22016-09-20 01:46:15 +0000305 assert( (pMem->flags&MEM_RowSet)==0 );
306 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
danielk1977a7a8e142008-02-13 18:25:27 +0000307
drhff535a22016-09-20 01:46:15 +0000308 /* Set nByte to the number of bytes required to store the expanded blob. */
309 nByte = pMem->n + pMem->u.nZero;
310 if( nByte<=0 ){
311 nByte = 1;
drhb026e052007-05-02 01:34:31 +0000312 }
drhff535a22016-09-20 01:46:15 +0000313 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
314 return SQLITE_NOMEM_BKPT;
315 }
316
317 memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
318 pMem->n += pMem->u.nZero;
319 pMem->flags &= ~(MEM_Zero|MEM_Term);
drhb026e052007-05-02 01:34:31 +0000320 return SQLITE_OK;
321}
danielk1977246ad312007-05-16 14:23:00 +0000322#endif
drhb026e052007-05-02 01:34:31 +0000323
drhb026e052007-05-02 01:34:31 +0000324/*
drhb63388b2014-08-27 00:50:11 +0000325** Make sure the given Mem is \u0000 terminated.
326*/
327int sqlite3VdbeMemNulTerminate(Mem *pMem){
328 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
329 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) );
330 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 );
331 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){
332 return SQLITE_OK; /* Nothing to do */
333 }else{
334 return vdbeMemAddTerminator(pMem);
335 }
336}
337
338/*
danielk197713073932004-06-30 11:54:06 +0000339** Add MEM_Str to the set of representations for the given Mem. Numbers
340** are converted using sqlite3_snprintf(). Converting a BLOB to a string
341** is a no-op.
drheb2e1762004-05-27 01:53:56 +0000342**
drhbd9507c2014-08-23 17:21:37 +0000343** Existing representations MEM_Int and MEM_Real are invalidated if
344** bForce is true but are retained if bForce is false.
danielk197713073932004-06-30 11:54:06 +0000345**
346** A MEM_Null value will never be passed to this function. This function is
347** used for converting values to text for returning to the user (i.e. via
348** sqlite3_value_text()), or for ensuring that values to be used as btree
349** keys are strings. In the former case a NULL pointer is returned the
peter.d.reid60ec9142014-09-06 16:39:46 +0000350** user and the latter is an internal programming error.
drheb2e1762004-05-27 01:53:56 +0000351*/
drhbd9507c2014-08-23 17:21:37 +0000352int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
drheb2e1762004-05-27 01:53:56 +0000353 int fg = pMem->flags;
danielk1977a7a8e142008-02-13 18:25:27 +0000354 const int nByte = 32;
drheb2e1762004-05-27 01:53:56 +0000355
drhb21c8cd2007-08-21 19:33:56 +0000356 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
danielk1977def0fec2007-05-10 15:37:52 +0000357 assert( !(fg&MEM_Zero) );
drheb2e1762004-05-27 01:53:56 +0000358 assert( !(fg&(MEM_Str|MEM_Blob)) );
danielk197713073932004-06-30 11:54:06 +0000359 assert( fg&(MEM_Int|MEM_Real) );
drh3d4501e2008-12-04 20:40:10 +0000360 assert( (pMem->flags&MEM_RowSet)==0 );
drhea598cb2009-04-05 12:22:08 +0000361 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
drh3d4501e2008-12-04 20:40:10 +0000362
drheb2e1762004-05-27 01:53:56 +0000363
drh322f2852014-09-19 00:43:39 +0000364 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
drh2a1df932016-09-30 17:46:44 +0000365 pMem->enc = 0;
mistachkinfad30392016-02-13 23:43:46 +0000366 return SQLITE_NOMEM_BKPT;
danielk1977a7a8e142008-02-13 18:25:27 +0000367 }
368
drhbd9507c2014-08-23 17:21:37 +0000369 /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
danielk197713073932004-06-30 11:54:06 +0000370 ** string representation of the value. Then, if the required encoding
371 ** is UTF-16le or UTF-16be do a translation.
372 **
373 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
374 */
drh8df447f2005-11-01 15:48:24 +0000375 if( fg & MEM_Int ){
danielk1977a7a8e142008-02-13 18:25:27 +0000376 sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
drh8df447f2005-11-01 15:48:24 +0000377 }else{
378 assert( fg & MEM_Real );
drh74eaba42014-09-18 17:52:15 +0000379 sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r);
drheb2e1762004-05-27 01:53:56 +0000380 }
drhea678832008-12-10 19:26:22 +0000381 pMem->n = sqlite3Strlen30(pMem->z);
danielk197713073932004-06-30 11:54:06 +0000382 pMem->enc = SQLITE_UTF8;
danielk1977a7a8e142008-02-13 18:25:27 +0000383 pMem->flags |= MEM_Str|MEM_Term;
drhbd9507c2014-08-23 17:21:37 +0000384 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real);
drhb21c8cd2007-08-21 19:33:56 +0000385 sqlite3VdbeChangeEncoding(pMem, enc);
drhbd9507c2014-08-23 17:21:37 +0000386 return SQLITE_OK;
drheb2e1762004-05-27 01:53:56 +0000387}
388
389/*
drhabfcea22005-09-06 20:36:48 +0000390** Memory cell pMem contains the context of an aggregate function.
391** This routine calls the finalize method for that function. The
392** result of the aggregate is stored back into pMem.
drh90669c12006-01-20 15:45:36 +0000393**
394** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
395** otherwise.
drhabfcea22005-09-06 20:36:48 +0000396*/
drh90669c12006-01-20 15:45:36 +0000397int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
drh9d9c41e2017-10-31 03:40:15 +0000398 sqlite3_context ctx;
399 Mem t;
400 assert( pFunc!=0 );
401 assert( pFunc->xFinalize!=0 );
402 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
403 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
404 memset(&ctx, 0, sizeof(ctx));
405 memset(&t, 0, sizeof(t));
406 t.flags = MEM_Null;
407 t.db = pMem->db;
408 ctx.pOut = &t;
409 ctx.pMem = pMem;
410 ctx.pFunc = pFunc;
411 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
412 assert( (pMem->flags & MEM_Dyn)==0 );
413 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
414 memcpy(pMem, &t, sizeof(t));
415 return ctx.isError;
drhabfcea22005-09-06 20:36:48 +0000416}
417
dan9a947222018-06-14 19:06:36 +0000418/*
419** Memory cell pAccum contains the context of an aggregate function.
420** This routine calls the xValue method for that function and stores
421** the results in memory cell pMem.
422**
423** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK
424** otherwise.
425*/
dan67a9b8e2018-06-22 20:51:35 +0000426#ifndef SQLITE_OMIT_WINDOWFUNC
dan86fb6e12018-05-16 20:58:07 +0000427int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){
428 sqlite3_context ctx;
429 Mem t;
430 assert( pFunc!=0 );
431 assert( pFunc->xValue!=0 );
432 assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef );
433 assert( pAccum->db==0 || sqlite3_mutex_held(pAccum->db->mutex) );
434 memset(&ctx, 0, sizeof(ctx));
435 memset(&t, 0, sizeof(t));
436 t.flags = MEM_Null;
437 t.db = pAccum->db;
drh8f26da62018-07-05 21:22:57 +0000438 sqlite3VdbeMemSetNull(pOut);
dan86fb6e12018-05-16 20:58:07 +0000439 ctx.pOut = pOut;
440 ctx.pMem = pAccum;
441 ctx.pFunc = pFunc;
442 pFunc->xValue(&ctx);
443 return ctx.isError;
444}
dan67a9b8e2018-06-22 20:51:35 +0000445#endif /* SQLITE_OMIT_WINDOWFUNC */
dan9a947222018-06-14 19:06:36 +0000446
drhabfcea22005-09-06 20:36:48 +0000447/*
drh8740a602014-09-16 20:05:21 +0000448** If the memory cell contains a value that must be freed by
drh0725cab2014-09-17 14:52:46 +0000449** invoking the external callback in Mem.xDel, then this routine
450** will free that value. It also sets Mem.flags to MEM_Null.
drh12b7c7d2014-08-25 11:20:27 +0000451**
drh0725cab2014-09-17 14:52:46 +0000452** This is a helper routine for sqlite3VdbeMemSetNull() and
453** for sqlite3VdbeMemRelease(). Use those other routines as the
454** entry point for releasing Mem resources.
danielk19775f096132008-03-28 15:44:09 +0000455*/
drh0725cab2014-09-17 14:52:46 +0000456static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
danielk19775f096132008-03-28 15:44:09 +0000457 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
drh0725cab2014-09-17 14:52:46 +0000458 assert( VdbeMemDynamic(p) );
drh2d36eb42011-08-29 02:49:41 +0000459 if( p->flags&MEM_Agg ){
460 sqlite3VdbeMemFinalize(p, p->u.pDef);
461 assert( (p->flags & MEM_Agg)==0 );
drh0725cab2014-09-17 14:52:46 +0000462 testcase( p->flags & MEM_Dyn );
463 }
464 if( p->flags&MEM_Dyn ){
drh2d36eb42011-08-29 02:49:41 +0000465 assert( (p->flags&MEM_RowSet)==0 );
drhc91b2fd2014-03-01 18:13:23 +0000466 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
drh2d36eb42011-08-29 02:49:41 +0000467 p->xDel((void *)p->z);
drh2d36eb42011-08-29 02:49:41 +0000468 }else if( p->flags&MEM_RowSet ){
469 sqlite3RowSetClear(p->u.pRowSet);
470 }else if( p->flags&MEM_Frame ){
drh6b478bc2014-09-16 21:54:11 +0000471 VdbeFrame *pFrame = p->u.pFrame;
472 pFrame->pParent = pFrame->v->pDelFrame;
473 pFrame->v->pDelFrame = pFrame;
danielk19775f096132008-03-28 15:44:09 +0000474 }
drh6b478bc2014-09-16 21:54:11 +0000475 p->flags = MEM_Null;
danielk19775f096132008-03-28 15:44:09 +0000476}
477
478/*
drh12b7c7d2014-08-25 11:20:27 +0000479** Release memory held by the Mem p, both external memory cleared
480** by p->xDel and memory in p->zMalloc.
481**
482** This is a helper routine invoked by sqlite3VdbeMemRelease() in
drh0725cab2014-09-17 14:52:46 +0000483** the unusual case where there really is memory in p that needs
484** to be freed.
drh12b7c7d2014-08-25 11:20:27 +0000485*/
drh0725cab2014-09-17 14:52:46 +0000486static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
drh12b7c7d2014-08-25 11:20:27 +0000487 if( VdbeMemDynamic(p) ){
drh0725cab2014-09-17 14:52:46 +0000488 vdbeMemClearExternAndSetNull(p);
drh12b7c7d2014-08-25 11:20:27 +0000489 }
drh17bcb102014-09-18 21:25:33 +0000490 if( p->szMalloc ){
drhdbd6a7d2017-04-05 12:39:49 +0000491 sqlite3DbFreeNN(p->db, p->zMalloc);
drh17bcb102014-09-18 21:25:33 +0000492 p->szMalloc = 0;
drh12b7c7d2014-08-25 11:20:27 +0000493 }
494 p->z = 0;
495}
496
497/*
drh0725cab2014-09-17 14:52:46 +0000498** Release any memory resources held by the Mem. Both the memory that is
499** free by Mem.xDel and the Mem.zMalloc allocation are freed.
drh8740a602014-09-16 20:05:21 +0000500**
drh0725cab2014-09-17 14:52:46 +0000501** Use this routine prior to clean up prior to abandoning a Mem, or to
502** reset a Mem back to its minimum memory utilization.
503**
504** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
505** prior to inserting new content into the Mem.
drhf4479502004-05-27 03:12:53 +0000506*/
danielk1977d8123362004-06-12 09:25:12 +0000507void sqlite3VdbeMemRelease(Mem *p){
drh75fd0542014-03-01 16:24:44 +0000508 assert( sqlite3VdbeCheckMemInvariants(p) );
drh17bcb102014-09-18 21:25:33 +0000509 if( VdbeMemDynamic(p) || p->szMalloc ){
drh0725cab2014-09-17 14:52:46 +0000510 vdbeMemClear(p);
drh7250c542013-12-09 03:07:21 +0000511 }
drhf4479502004-05-27 03:12:53 +0000512}
513
514/*
drhd8c303f2008-01-11 15:27:03 +0000515** Convert a 64-bit IEEE double into a 64-bit signed integer.
drhde1a8b82013-11-26 15:45:02 +0000516** If the double is out of range of a 64-bit signed integer then
517** return the closest available 64-bit signed integer.
drhd8c303f2008-01-11 15:27:03 +0000518*/
drhb808d772017-04-01 11:59:36 +0000519static SQLITE_NOINLINE i64 doubleToInt64(double r){
drh52d14522010-01-13 15:15:40 +0000520#ifdef SQLITE_OMIT_FLOATING_POINT
521 /* When floating-point is omitted, double and int64 are the same thing */
522 return r;
523#else
drhd8c303f2008-01-11 15:27:03 +0000524 /*
525 ** Many compilers we encounter do not define constants for the
526 ** minimum and maximum 64-bit integers, or they define them
527 ** inconsistently. And many do not understand the "LL" notation.
528 ** So we define our own static constants here using nothing
529 ** larger than a 32-bit integer constant.
530 */
drh0f050352008-05-09 18:03:13 +0000531 static const i64 maxInt = LARGEST_INT64;
532 static const i64 minInt = SMALLEST_INT64;
drhd8c303f2008-01-11 15:27:03 +0000533
drhde1a8b82013-11-26 15:45:02 +0000534 if( r<=(double)minInt ){
drhd8c303f2008-01-11 15:27:03 +0000535 return minInt;
drhde1a8b82013-11-26 15:45:02 +0000536 }else if( r>=(double)maxInt ){
537 return maxInt;
drhd8c303f2008-01-11 15:27:03 +0000538 }else{
539 return (i64)r;
540 }
drh52d14522010-01-13 15:15:40 +0000541#endif
drhd8c303f2008-01-11 15:27:03 +0000542}
543
544/*
drh6a6124e2004-06-27 01:56:33 +0000545** Return some kind of integer value which is the best we can do
546** at representing the value that *pMem describes as an integer.
547** If pMem is an integer, then the value is exact. If pMem is
548** a floating-point then the value returned is the integer part.
549** If pMem is a string or blob, then we make an attempt to convert
peter.d.reid60ec9142014-09-06 16:39:46 +0000550** it into an integer and return that. If pMem represents an
drh347a7cb2009-03-23 21:37:04 +0000551** an SQL-NULL value, return 0.
drh6a6124e2004-06-27 01:56:33 +0000552**
drh347a7cb2009-03-23 21:37:04 +0000553** If pMem represents a string value, its encoding might be changed.
drheb2e1762004-05-27 01:53:56 +0000554*/
drhb808d772017-04-01 11:59:36 +0000555static SQLITE_NOINLINE i64 memIntValue(Mem *pMem){
556 i64 value = 0;
557 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
558 return value;
559}
drh6a6124e2004-06-27 01:56:33 +0000560i64 sqlite3VdbeIntValue(Mem *pMem){
drhb21c8cd2007-08-21 19:33:56 +0000561 int flags;
562 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drhea598cb2009-04-05 12:22:08 +0000563 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
drhb21c8cd2007-08-21 19:33:56 +0000564 flags = pMem->flags;
drh6fec0762004-05-30 01:38:43 +0000565 if( flags & MEM_Int ){
drh3c024d62007-03-30 11:23:45 +0000566 return pMem->u.i;
drh6fec0762004-05-30 01:38:43 +0000567 }else if( flags & MEM_Real ){
drh74eaba42014-09-18 17:52:15 +0000568 return doubleToInt64(pMem->u.r);
drh6fec0762004-05-30 01:38:43 +0000569 }else if( flags & (MEM_Str|MEM_Blob) ){
drh9339da12010-09-30 00:50:49 +0000570 assert( pMem->z || pMem->n==0 );
drhb808d772017-04-01 11:59:36 +0000571 return memIntValue(pMem);
drheb2e1762004-05-27 01:53:56 +0000572 }else{
drh6a6124e2004-06-27 01:56:33 +0000573 return 0;
drheb2e1762004-05-27 01:53:56 +0000574 }
drh6a6124e2004-06-27 01:56:33 +0000575}
576
577/*
drh6a6124e2004-06-27 01:56:33 +0000578** Return the best representation of pMem that we can get into a
579** double. If pMem is already a double or an integer, return its
580** value. If it is a string or blob, try to convert it to a double.
581** If it is a NULL, return 0.0.
drheb2e1762004-05-27 01:53:56 +0000582*/
drhb808d772017-04-01 11:59:36 +0000583static SQLITE_NOINLINE double memRealValue(Mem *pMem){
584 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
585 double val = (double)0;
586 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
587 return val;
588}
drh6a6124e2004-06-27 01:56:33 +0000589double sqlite3VdbeRealValue(Mem *pMem){
drhb21c8cd2007-08-21 19:33:56 +0000590 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drhea598cb2009-04-05 12:22:08 +0000591 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
danielk1977f93bbbe2004-05-27 10:30:52 +0000592 if( pMem->flags & MEM_Real ){
drh74eaba42014-09-18 17:52:15 +0000593 return pMem->u.r;
drh6a6124e2004-06-27 01:56:33 +0000594 }else if( pMem->flags & MEM_Int ){
drh3c024d62007-03-30 11:23:45 +0000595 return (double)pMem->u.i;
drheb2e1762004-05-27 01:53:56 +0000596 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
drhb808d772017-04-01 11:59:36 +0000597 return memRealValue(pMem);
drheb2e1762004-05-27 01:53:56 +0000598 }else{
shanefbd60f82009-02-04 03:59:25 +0000599 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
600 return (double)0;
drheb2e1762004-05-27 01:53:56 +0000601 }
drh6a6124e2004-06-27 01:56:33 +0000602}
603
604/*
drh1fcfa722018-02-26 15:27:31 +0000605** Return 1 if pMem represents true, and return 0 if pMem represents false.
606** Return the value ifNull if pMem is NULL.
607*/
608int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){
609 if( pMem->flags & MEM_Int ) return pMem->u.i!=0;
610 if( pMem->flags & MEM_Null ) return ifNull;
611 return sqlite3VdbeRealValue(pMem)!=0.0;
612}
613
614/*
drh8df447f2005-11-01 15:48:24 +0000615** The MEM structure is already a MEM_Real. Try to also make it a
616** MEM_Int if we can.
617*/
618void sqlite3VdbeIntegerAffinity(Mem *pMem){
drh74eaba42014-09-18 17:52:15 +0000619 i64 ix;
drh8df447f2005-11-01 15:48:24 +0000620 assert( pMem->flags & MEM_Real );
drh3d4501e2008-12-04 20:40:10 +0000621 assert( (pMem->flags & MEM_RowSet)==0 );
drhb21c8cd2007-08-21 19:33:56 +0000622 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drhea598cb2009-04-05 12:22:08 +0000623 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
drhefe3d652008-01-11 00:06:10 +0000624
drh74eaba42014-09-18 17:52:15 +0000625 ix = doubleToInt64(pMem->u.r);
drh94c3a2b2009-06-17 16:20:04 +0000626
627 /* Only mark the value as an integer if
628 **
629 ** (1) the round-trip conversion real->int->real is a no-op, and
630 ** (2) The integer is neither the largest nor the smallest
631 ** possible integer (ticket #3922)
632 **
drhe74871a2009-08-14 17:53:39 +0000633 ** The second and third terms in the following conditional enforces
634 ** the second condition under the assumption that addition overflow causes
drhde1a8b82013-11-26 15:45:02 +0000635 ** values to wrap around.
drh94c3a2b2009-06-17 16:20:04 +0000636 */
drh74eaba42014-09-18 17:52:15 +0000637 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
638 pMem->u.i = ix;
639 MemSetTypeFlag(pMem, MEM_Int);
drh8df447f2005-11-01 15:48:24 +0000640 }
641}
642
drh8a512562005-11-14 22:29:05 +0000643/*
644** Convert pMem to type integer. Invalidate any prior representations.
645*/
646int sqlite3VdbeMemIntegerify(Mem *pMem){
drhb21c8cd2007-08-21 19:33:56 +0000647 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh3d4501e2008-12-04 20:40:10 +0000648 assert( (pMem->flags & MEM_RowSet)==0 );
drhea598cb2009-04-05 12:22:08 +0000649 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
650
drh3c024d62007-03-30 11:23:45 +0000651 pMem->u.i = sqlite3VdbeIntValue(pMem);
drh3d4501e2008-12-04 20:40:10 +0000652 MemSetTypeFlag(pMem, MEM_Int);
drh8a512562005-11-14 22:29:05 +0000653 return SQLITE_OK;
654}
drh8df447f2005-11-01 15:48:24 +0000655
656/*
drh8a512562005-11-14 22:29:05 +0000657** Convert pMem so that it is of type MEM_Real.
658** Invalidate any prior representations.
drh6a6124e2004-06-27 01:56:33 +0000659*/
660int sqlite3VdbeMemRealify(Mem *pMem){
drhb21c8cd2007-08-21 19:33:56 +0000661 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drhea598cb2009-04-05 12:22:08 +0000662 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
663
drh74eaba42014-09-18 17:52:15 +0000664 pMem->u.r = sqlite3VdbeRealValue(pMem);
drh3d4501e2008-12-04 20:40:10 +0000665 MemSetTypeFlag(pMem, MEM_Real);
drh8a512562005-11-14 22:29:05 +0000666 return SQLITE_OK;
667}
668
drhd15046a2018-01-23 17:33:42 +0000669/* Compare a floating point value to an integer. Return true if the two
670** values are the same within the precision of the floating point value.
671**
672** For some versions of GCC on 32-bit machines, if you do the more obvious
673** comparison of "r1==(double)i" you sometimes get an answer of false even
674** though the r1 and (double)i values are bit-for-bit the same.
675*/
676static int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){
677 double r2 = (double)i;
678 return memcmp(&r1, &r2, sizeof(r1))==0;
679}
680
drh8a512562005-11-14 22:29:05 +0000681/*
682** Convert pMem so that it has types MEM_Real or MEM_Int or both.
683** Invalidate any prior representations.
drh4b5db5a2010-01-21 01:53:07 +0000684**
685** Every effort is made to force the conversion, even if the input
686** is a string that does not look completely like a number. Convert
687** as much of the string as we can and ignore the rest.
drh8a512562005-11-14 22:29:05 +0000688*/
689int sqlite3VdbeMemNumerify(Mem *pMem){
drh93518622010-09-30 14:48:06 +0000690 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){
drh84d4f1a2017-09-20 10:47:10 +0000691 int rc;
drh93518622010-09-30 14:48:06 +0000692 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
693 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh84d4f1a2017-09-20 10:47:10 +0000694 rc = sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc);
695 if( rc==0 ){
drh93518622010-09-30 14:48:06 +0000696 MemSetTypeFlag(pMem, MEM_Int);
697 }else{
drh84d4f1a2017-09-20 10:47:10 +0000698 i64 i = pMem->u.i;
699 sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
drhd15046a2018-01-23 17:33:42 +0000700 if( rc==1 && sqlite3RealSameAsInt(pMem->u.r, i) ){
drh84d4f1a2017-09-20 10:47:10 +0000701 pMem->u.i = i;
702 MemSetTypeFlag(pMem, MEM_Int);
703 }else{
704 MemSetTypeFlag(pMem, MEM_Real);
705 }
drh93518622010-09-30 14:48:06 +0000706 }
drhcd7b46d2007-05-16 11:55:56 +0000707 }
drh93518622010-09-30 14:48:06 +0000708 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 );
drh27fe1c32016-09-09 20:23:59 +0000709 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero);
drhf4479502004-05-27 03:12:53 +0000710 return SQLITE_OK;
drh4f26d6c2004-05-26 23:25:30 +0000711}
712
713/*
drh4169e432014-08-25 20:11:52 +0000714** Cast the datatype of the value in pMem according to the affinity
715** "aff". Casting is different from applying affinity in that a cast
716** is forced. In other words, the value is converted into the desired
717** affinity even if that results in loss of data. This routine is
718** used (for example) to implement the SQL "cast()" operator.
719*/
720void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){
721 if( pMem->flags & MEM_Null ) return;
722 switch( aff ){
drh05883a32015-06-02 15:32:08 +0000723 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */
drh4169e432014-08-25 20:11:52 +0000724 if( (pMem->flags & MEM_Blob)==0 ){
725 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
726 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
drhda5c6242016-10-05 15:02:00 +0000727 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob);
drh4169e432014-08-25 20:11:52 +0000728 }else{
729 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob);
730 }
731 break;
732 }
733 case SQLITE_AFF_NUMERIC: {
734 sqlite3VdbeMemNumerify(pMem);
735 break;
736 }
737 case SQLITE_AFF_INTEGER: {
738 sqlite3VdbeMemIntegerify(pMem);
739 break;
740 }
741 case SQLITE_AFF_REAL: {
742 sqlite3VdbeMemRealify(pMem);
743 break;
744 }
745 default: {
746 assert( aff==SQLITE_AFF_TEXT );
747 assert( MEM_Str==(MEM_Blob>>3) );
748 pMem->flags |= (pMem->flags&MEM_Blob)>>3;
749 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
750 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
751 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
752 break;
753 }
754 }
755}
756
drhd3b74202014-09-17 16:41:15 +0000757/*
758** Initialize bulk memory to be a consistent Mem object.
759**
760** The minimum amount of initialization feasible is performed.
761*/
762void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
763 assert( (flags & ~MEM_TypeMask)==0 );
764 pMem->flags = flags;
765 pMem->db = db;
drh17bcb102014-09-18 21:25:33 +0000766 pMem->szMalloc = 0;
drhd3b74202014-09-17 16:41:15 +0000767}
768
drh4169e432014-08-25 20:11:52 +0000769
770/*
drh4f26d6c2004-05-26 23:25:30 +0000771** Delete any previous value and set the value stored in *pMem to NULL.
drh0725cab2014-09-17 14:52:46 +0000772**
773** This routine calls the Mem.xDel destructor to dispose of values that
774** require the destructor. But it preserves the Mem.zMalloc memory allocation.
775** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
776** routine to invoke the destructor and deallocates Mem.zMalloc.
777**
778** Use this routine to reset the Mem prior to insert a new value.
779**
780** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
drh4f26d6c2004-05-26 23:25:30 +0000781*/
782void sqlite3VdbeMemSetNull(Mem *pMem){
drh6b478bc2014-09-16 21:54:11 +0000783 if( VdbeMemDynamic(pMem) ){
drh0725cab2014-09-17 14:52:46 +0000784 vdbeMemClearExternAndSetNull(pMem);
drh6b478bc2014-09-16 21:54:11 +0000785 }else{
786 pMem->flags = MEM_Null;
dan165921a2009-08-28 18:53:45 +0000787 }
drh4f26d6c2004-05-26 23:25:30 +0000788}
drha3cc0072013-12-13 16:23:55 +0000789void sqlite3ValueSetNull(sqlite3_value *p){
790 sqlite3VdbeMemSetNull((Mem*)p);
791}
drh4f26d6c2004-05-26 23:25:30 +0000792
793/*
drhb026e052007-05-02 01:34:31 +0000794** Delete any previous value and set the value to be a BLOB of length
795** n containing all zeros.
796*/
797void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
798 sqlite3VdbeMemRelease(pMem);
danielk1977a7a8e142008-02-13 18:25:27 +0000799 pMem->flags = MEM_Blob|MEM_Zero;
drhb026e052007-05-02 01:34:31 +0000800 pMem->n = 0;
drh98640a32007-06-07 19:08:32 +0000801 if( n<0 ) n = 0;
drh8df32842008-12-09 02:51:23 +0000802 pMem->u.nZero = n;
danielk1977def0fec2007-05-10 15:37:52 +0000803 pMem->enc = SQLITE_UTF8;
drh0725cab2014-09-17 14:52:46 +0000804 pMem->z = 0;
drhb026e052007-05-02 01:34:31 +0000805}
806
807/*
drh9bd038f2014-08-27 14:14:06 +0000808** The pMem is known to contain content that needs to be destroyed prior
809** to a value change. So invoke the destructor, then set the value to
810** a 64-bit integer.
811*/
812static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
drh0725cab2014-09-17 14:52:46 +0000813 sqlite3VdbeMemSetNull(pMem);
drh9bd038f2014-08-27 14:14:06 +0000814 pMem->u.i = val;
815 pMem->flags = MEM_Int;
816}
817
818/*
drh4f26d6c2004-05-26 23:25:30 +0000819** Delete any previous value and set the value stored in *pMem to val,
820** manifest type INTEGER.
821*/
drheb2e1762004-05-27 01:53:56 +0000822void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
drh9bd038f2014-08-27 14:14:06 +0000823 if( VdbeMemDynamic(pMem) ){
824 vdbeReleaseAndSetInt64(pMem, val);
825 }else{
826 pMem->u.i = val;
827 pMem->flags = MEM_Int;
828 }
drh4f26d6c2004-05-26 23:25:30 +0000829}
830
drha0024e62017-07-27 15:53:24 +0000831/* A no-op destructor */
drh92011842018-05-26 16:00:26 +0000832void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); }
drha0024e62017-07-27 15:53:24 +0000833
drh3a96a5d2017-06-30 23:09:03 +0000834/*
835** Set the value stored in *pMem should already be a NULL.
836** Also store a pointer to go with it.
837*/
drh22930062017-07-27 03:48:02 +0000838void sqlite3VdbeMemSetPointer(
839 Mem *pMem,
840 void *pPtr,
841 const char *zPType,
842 void (*xDestructor)(void*)
843){
drh3a96a5d2017-06-30 23:09:03 +0000844 assert( pMem->flags==MEM_Null );
drha0024e62017-07-27 15:53:24 +0000845 pMem->u.zPType = zPType ? zPType : "";
drh22930062017-07-27 03:48:02 +0000846 pMem->z = pPtr;
drha0024e62017-07-27 15:53:24 +0000847 pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term;
848 pMem->eSubtype = 'p';
849 pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor;
drh3a96a5d2017-06-30 23:09:03 +0000850}
851
drh7ec5ea92010-01-13 00:04:13 +0000852#ifndef SQLITE_OMIT_FLOATING_POINT
drh4f26d6c2004-05-26 23:25:30 +0000853/*
854** Delete any previous value and set the value stored in *pMem to val,
855** manifest type REAL.
856*/
drheb2e1762004-05-27 01:53:56 +0000857void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
drh0725cab2014-09-17 14:52:46 +0000858 sqlite3VdbeMemSetNull(pMem);
859 if( !sqlite3IsNaN(val) ){
drh74eaba42014-09-18 17:52:15 +0000860 pMem->u.r = val;
drh53c14022007-05-10 17:23:11 +0000861 pMem->flags = MEM_Real;
drh53c14022007-05-10 17:23:11 +0000862 }
drh4f26d6c2004-05-26 23:25:30 +0000863}
drh7ec5ea92010-01-13 00:04:13 +0000864#endif
drh4f26d6c2004-05-26 23:25:30 +0000865
866/*
drh3d4501e2008-12-04 20:40:10 +0000867** Delete any previous value and set the value of pMem to be an
868** empty boolean index.
869*/
870void sqlite3VdbeMemSetRowSet(Mem *pMem){
871 sqlite3 *db = pMem->db;
872 assert( db!=0 );
drh4c8555f2009-06-25 01:47:11 +0000873 assert( (pMem->flags & MEM_RowSet)==0 );
874 sqlite3VdbeMemRelease(pMem);
drh575fad62016-02-05 13:38:36 +0000875 pMem->zMalloc = sqlite3DbMallocRawNN(db, 64);
drh8d993632008-12-04 22:17:55 +0000876 if( db->mallocFailed ){
877 pMem->flags = MEM_Null;
drh17bcb102014-09-18 21:25:33 +0000878 pMem->szMalloc = 0;
drh8d993632008-12-04 22:17:55 +0000879 }else{
drh3d4501e2008-12-04 20:40:10 +0000880 assert( pMem->zMalloc );
drh17bcb102014-09-18 21:25:33 +0000881 pMem->szMalloc = sqlite3DbMallocSize(db, pMem->zMalloc);
882 pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, pMem->szMalloc);
drh3d4501e2008-12-04 20:40:10 +0000883 assert( pMem->u.pRowSet!=0 );
drh8d993632008-12-04 22:17:55 +0000884 pMem->flags = MEM_RowSet;
drh3d4501e2008-12-04 20:40:10 +0000885 }
886}
887
888/*
drh023ae032007-05-08 12:12:16 +0000889** Return true if the Mem object contains a TEXT or BLOB that is
890** too large - whose size exceeds SQLITE_MAX_LENGTH.
891*/
892int sqlite3VdbeMemTooBig(Mem *p){
drhfa4a4b92008-03-19 21:45:51 +0000893 assert( p->db!=0 );
drh023ae032007-05-08 12:12:16 +0000894 if( p->flags & (MEM_Str|MEM_Blob) ){
895 int n = p->n;
896 if( p->flags & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +0000897 n += p->u.nZero;
drh023ae032007-05-08 12:12:16 +0000898 }
drhbb4957f2008-03-20 14:03:29 +0000899 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
drh023ae032007-05-08 12:12:16 +0000900 }
901 return 0;
902}
903
drh2b4ded92010-09-27 21:09:31 +0000904#ifdef SQLITE_DEBUG
905/*
peter.d.reid60ec9142014-09-06 16:39:46 +0000906** This routine prepares a memory cell for modification by breaking
drh2b4ded92010-09-27 21:09:31 +0000907** its link to a shallow copy and by marking any current shallow
908** copies of this cell as invalid.
909**
910** This is used for testing and debugging only - to make sure shallow
911** copies are not misused.
912*/
drhe4c88c02012-01-04 12:57:45 +0000913void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
drh2b4ded92010-09-27 21:09:31 +0000914 int i;
915 Mem *pX;
drh9f6168b2016-03-19 23:32:58 +0000916 for(i=0, pX=pVdbe->aMem; i<pVdbe->nMem; i++, pX++){
drh2b4ded92010-09-27 21:09:31 +0000917 if( pX->pScopyFrom==pMem ){
drh8d7b2122018-06-11 13:10:45 +0000918 /* If pX is marked as a shallow copy of pMem, then verify that
919 ** no significant changes have been made to pX since the OP_SCopy.
920 ** A significant change would indicated a missed call to this
921 ** function for pX. Minor changes, such as adding or removing a
922 ** dual type, are allowed, as long as the underlying value is the
923 ** same. */
drh58773a52018-06-12 13:52:23 +0000924 u16 mFlags = pMem->flags & pX->flags & pX->mScopyFlags;
drh8d7b2122018-06-11 13:10:45 +0000925 assert( (mFlags&MEM_Int)==0 || pMem->u.i==pX->u.i );
926 assert( (mFlags&MEM_Real)==0 || pMem->u.r==pX->u.r );
927 assert( (mFlags&MEM_Str)==0 || (pMem->n==pX->n && pMem->z==pX->z) );
928 assert( (mFlags&MEM_Blob)==0 || sqlite3BlobCompare(pMem,pX)==0 );
929
930 /* pMem is the register that is changing. But also mark pX as
931 ** undefined so that we can quickly detect the shallow-copy error */
932 pX->flags = MEM_Undefined;
drh2b4ded92010-09-27 21:09:31 +0000933 pX->pScopyFrom = 0;
934 }
935 }
936 pMem->pScopyFrom = 0;
drh299bf7c2018-06-11 17:35:02 +0000937#ifdef SQLITE_DEBUG_COLUMN_CACHE
938 pMem->iTabColHash = 0;
939#endif
drh2b4ded92010-09-27 21:09:31 +0000940}
941#endif /* SQLITE_DEBUG */
942
danielk19775f096132008-03-28 15:44:09 +0000943
drh023ae032007-05-08 12:12:16 +0000944/*
drhfebe1062004-08-28 18:17:48 +0000945** Make an shallow copy of pFrom into pTo. Prior contents of
drha05a7222008-01-19 03:35:58 +0000946** pTo are freed. The pFrom->z field is not duplicated. If
drhfebe1062004-08-28 18:17:48 +0000947** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
948** and flags gets srcType (either MEM_Ephem or MEM_Static).
drh4f26d6c2004-05-26 23:25:30 +0000949*/
drh14e06742015-06-17 23:28:03 +0000950static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){
951 vdbeMemClearExternAndSetNull(pTo);
952 assert( !VdbeMemDynamic(pTo) );
953 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType);
954}
drhfebe1062004-08-28 18:17:48 +0000955void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
drh3d4501e2008-12-04 20:40:10 +0000956 assert( (pFrom->flags & MEM_RowSet)==0 );
drh035e5632014-09-16 14:16:31 +0000957 assert( pTo->db==pFrom->db );
drh14e06742015-06-17 23:28:03 +0000958 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; }
danielk19775f096132008-03-28 15:44:09 +0000959 memcpy(pTo, pFrom, MEMCELLSIZE);
drh299bf7c2018-06-11 17:35:02 +0000960#ifdef SQLITE_DEBUG_COLUMNCACHE
961 pTo->iTabColHash = pFrom->iTabColHash;
962#endif
dan5fea9072010-03-05 18:46:12 +0000963 if( (pFrom->flags&MEM_Static)==0 ){
danielk1977a7a8e142008-02-13 18:25:27 +0000964 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
drhfebe1062004-08-28 18:17:48 +0000965 assert( srcType==MEM_Ephem || srcType==MEM_Static );
966 pTo->flags |= srcType;
967 }
968}
969
970/*
971** Make a full copy of pFrom into pTo. Prior contents of pTo are
972** freed before the copy is made.
973*/
drhb21c8cd2007-08-21 19:33:56 +0000974int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
danielk1977a7a8e142008-02-13 18:25:27 +0000975 int rc = SQLITE_OK;
danielk1977a7a8e142008-02-13 18:25:27 +0000976
drh3d4501e2008-12-04 20:40:10 +0000977 assert( (pFrom->flags & MEM_RowSet)==0 );
drh0725cab2014-09-17 14:52:46 +0000978 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
danielk19775f096132008-03-28 15:44:09 +0000979 memcpy(pTo, pFrom, MEMCELLSIZE);
drh299bf7c2018-06-11 17:35:02 +0000980#ifdef SQLITE_DEBUG_COLUMNCACHE
981 pTo->iTabColHash = pFrom->iTabColHash;
982#endif
danielk19775f096132008-03-28 15:44:09 +0000983 pTo->flags &= ~MEM_Dyn;
danielk19775f096132008-03-28 15:44:09 +0000984 if( pTo->flags&(MEM_Str|MEM_Blob) ){
985 if( 0==(pFrom->flags&MEM_Static) ){
986 pTo->flags |= MEM_Ephem;
987 rc = sqlite3VdbeMemMakeWriteable(pTo);
danielk19779172fd82008-02-14 15:31:52 +0000988 }
danielk1977a7a8e142008-02-13 18:25:27 +0000989 }
990
drh71c697e2004-08-08 23:39:19 +0000991 return rc;
drh4f26d6c2004-05-26 23:25:30 +0000992}
993
drheb2e1762004-05-27 01:53:56 +0000994/*
danielk1977369f27e2004-06-15 11:40:04 +0000995** Transfer the contents of pFrom to pTo. Any existing value in pTo is
drhfebe1062004-08-28 18:17:48 +0000996** freed. If pFrom contains ephemeral data, a copy is made.
997**
drh643167f2008-01-22 21:30:53 +0000998** pFrom contains an SQL NULL when this routine returns.
danielk1977369f27e2004-06-15 11:40:04 +0000999*/
drh643167f2008-01-22 21:30:53 +00001000void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
drhb21c8cd2007-08-21 19:33:56 +00001001 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
1002 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
1003 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
danielk19775f096132008-03-28 15:44:09 +00001004
1005 sqlite3VdbeMemRelease(pTo);
danielk197713073932004-06-30 11:54:06 +00001006 memcpy(pTo, pFrom, sizeof(Mem));
danielk197713073932004-06-30 11:54:06 +00001007 pFrom->flags = MEM_Null;
drh17bcb102014-09-18 21:25:33 +00001008 pFrom->szMalloc = 0;
danielk1977369f27e2004-06-15 11:40:04 +00001009}
1010
1011/*
drheb2e1762004-05-27 01:53:56 +00001012** Change the value of a Mem to be a string or a BLOB.
danielk1977a7a8e142008-02-13 18:25:27 +00001013**
1014** The memory management strategy depends on the value of the xDel
1015** parameter. If the value passed is SQLITE_TRANSIENT, then the
1016** string is copied into a (possibly existing) buffer managed by the
1017** Mem structure. Otherwise, any existing buffer is freed and the
1018** pointer copied.
drh9a65f2c2009-06-22 19:05:40 +00001019**
1020** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
1021** size limit) then no memory allocation occurs. If the string can be
1022** stored without allocating memory, then it is. If a memory allocation
1023** is required to store the string, then value of pMem is unchanged. In
1024** either case, SQLITE_TOOBIG is returned.
drheb2e1762004-05-27 01:53:56 +00001025*/
drh4f26d6c2004-05-26 23:25:30 +00001026int sqlite3VdbeMemSetStr(
1027 Mem *pMem, /* Memory cell to set to string value */
1028 const char *z, /* String pointer */
1029 int n, /* Bytes in string, or negative */
drheb2e1762004-05-27 01:53:56 +00001030 u8 enc, /* Encoding of z. 0 for BLOBs */
danielk1977d8123362004-06-12 09:25:12 +00001031 void (*xDel)(void*) /* Destructor function */
drh4f26d6c2004-05-26 23:25:30 +00001032){
danielk1977a7a8e142008-02-13 18:25:27 +00001033 int nByte = n; /* New value for pMem->n */
drh0a687d12008-07-08 14:52:07 +00001034 int iLimit; /* Maximum allowed string or blob size */
drh8df32842008-12-09 02:51:23 +00001035 u16 flags = 0; /* New value for pMem->flags */
danielk1977a7a8e142008-02-13 18:25:27 +00001036
drhb21c8cd2007-08-21 19:33:56 +00001037 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh3d4501e2008-12-04 20:40:10 +00001038 assert( (pMem->flags & MEM_RowSet)==0 );
danielk1977a7a8e142008-02-13 18:25:27 +00001039
1040 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
drh4f26d6c2004-05-26 23:25:30 +00001041 if( !z ){
danielk1977a7a8e142008-02-13 18:25:27 +00001042 sqlite3VdbeMemSetNull(pMem);
drh4f26d6c2004-05-26 23:25:30 +00001043 return SQLITE_OK;
1044 }
danielk1977a7a8e142008-02-13 18:25:27 +00001045
drh0a687d12008-07-08 14:52:07 +00001046 if( pMem->db ){
1047 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
1048 }else{
1049 iLimit = SQLITE_MAX_LENGTH;
1050 }
danielk1977a7a8e142008-02-13 18:25:27 +00001051 flags = (enc==0?MEM_Blob:MEM_Str);
1052 if( nByte<0 ){
1053 assert( enc!=0 );
drh8fd38972008-02-19 15:44:09 +00001054 if( enc==SQLITE_UTF8 ){
drhb32c18b2017-08-21 02:05:22 +00001055 nByte = 0x7fffffff & (int)strlen(z);
drh0725cab2014-09-17 14:52:46 +00001056 if( nByte>iLimit ) nByte = iLimit+1;
drh8fd38972008-02-19 15:44:09 +00001057 }else{
drh0a687d12008-07-08 14:52:07 +00001058 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
drh8fd38972008-02-19 15:44:09 +00001059 }
danielk1977a7a8e142008-02-13 18:25:27 +00001060 flags |= MEM_Term;
drh4f26d6c2004-05-26 23:25:30 +00001061 }
danielk1977d8123362004-06-12 09:25:12 +00001062
danielk1977a7a8e142008-02-13 18:25:27 +00001063 /* The following block sets the new values of Mem.z and Mem.xDel. It
1064 ** also sets a flag in local variable "flags" to indicate the memory
1065 ** management (one of MEM_Dyn or MEM_Static).
1066 */
1067 if( xDel==SQLITE_TRANSIENT ){
1068 int nAlloc = nByte;
1069 if( flags&MEM_Term ){
1070 nAlloc += (enc==SQLITE_UTF8?1:2);
1071 }
drh0793f1b2008-11-05 17:41:19 +00001072 if( nByte>iLimit ){
1073 return SQLITE_TOOBIG;
1074 }
drh722246e2014-10-07 23:02:24 +00001075 testcase( nAlloc==0 );
1076 testcase( nAlloc==31 );
1077 testcase( nAlloc==32 );
1078 if( sqlite3VdbeMemClearAndResize(pMem, MAX(nAlloc,32)) ){
mistachkinfad30392016-02-13 23:43:46 +00001079 return SQLITE_NOMEM_BKPT;
danielk1977a7a8e142008-02-13 18:25:27 +00001080 }
1081 memcpy(pMem->z, z, nAlloc);
drh633e6d52008-07-28 19:34:53 +00001082 }else if( xDel==SQLITE_DYNAMIC ){
1083 sqlite3VdbeMemRelease(pMem);
1084 pMem->zMalloc = pMem->z = (char *)z;
drh17bcb102014-09-18 21:25:33 +00001085 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
danielk1977a7a8e142008-02-13 18:25:27 +00001086 }else{
1087 sqlite3VdbeMemRelease(pMem);
1088 pMem->z = (char *)z;
drhc890fec2008-08-01 20:10:08 +00001089 pMem->xDel = xDel;
1090 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
danielk1977a7a8e142008-02-13 18:25:27 +00001091 }
danielk1977d8123362004-06-12 09:25:12 +00001092
danielk1977a7a8e142008-02-13 18:25:27 +00001093 pMem->n = nByte;
1094 pMem->flags = flags;
1095 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
drh4f26d6c2004-05-26 23:25:30 +00001096
drh6c626082004-11-14 21:56:29 +00001097#ifndef SQLITE_OMIT_UTF16
danielk1977a7a8e142008-02-13 18:25:27 +00001098 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
mistachkinfad30392016-02-13 23:43:46 +00001099 return SQLITE_NOMEM_BKPT;
drh4f26d6c2004-05-26 23:25:30 +00001100 }
danielk1977a7a8e142008-02-13 18:25:27 +00001101#endif
1102
drh9a65f2c2009-06-22 19:05:40 +00001103 if( nByte>iLimit ){
1104 return SQLITE_TOOBIG;
1105 }
1106
drhf4479502004-05-27 03:12:53 +00001107 return SQLITE_OK;
drh4f26d6c2004-05-26 23:25:30 +00001108}
1109
1110/*
drhd5788202004-05-28 08:21:05 +00001111** Move data out of a btree key or data field and into a Mem structure.
drhcb3cabd2016-11-25 19:18:28 +00001112** The data is payload from the entry that pCur is currently pointing
drhd5788202004-05-28 08:21:05 +00001113** to. offset and amt determine what portion of the data or key to retrieve.
drhcb3cabd2016-11-25 19:18:28 +00001114** The result is written into the pMem element.
drhd5788202004-05-28 08:21:05 +00001115**
drh2a2a6962014-09-16 18:22:44 +00001116** The pMem object must have been initialized. This routine will use
1117** pMem->zMalloc to hold the content from the btree, if possible. New
1118** pMem->zMalloc space will be allocated if necessary. The calling routine
1119** is responsible for making sure that the pMem object is eventually
1120** destroyed.
drhd5788202004-05-28 08:21:05 +00001121**
1122** If this routine fails for any reason (malloc returns NULL or unable
1123** to read from the disk) then the pMem is left in an inconsistent state.
1124*/
drhf1aabd62015-06-17 01:31:28 +00001125static SQLITE_NOINLINE int vdbeMemFromBtreeResize(
1126 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
1127 u32 offset, /* Offset from the start of data to return bytes from. */
1128 u32 amt, /* Number of bytes to return. */
drhf1aabd62015-06-17 01:31:28 +00001129 Mem *pMem /* OUT: Return data in this Mem structure. */
1130){
1131 int rc;
1132 pMem->flags = MEM_Null;
drh24ddadf2017-09-22 12:52:31 +00001133 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){
drhcb3cabd2016-11-25 19:18:28 +00001134 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z);
drhf1aabd62015-06-17 01:31:28 +00001135 if( rc==SQLITE_OK ){
drh24ddadf2017-09-22 12:52:31 +00001136 pMem->z[amt] = 0; /* Overrun area used when reading malformed records */
drh63d16322017-09-20 18:07:50 +00001137 pMem->flags = MEM_Blob;
drhf1aabd62015-06-17 01:31:28 +00001138 pMem->n = (int)amt;
1139 }else{
1140 sqlite3VdbeMemRelease(pMem);
1141 }
1142 }
1143 return rc;
1144}
drhd5788202004-05-28 08:21:05 +00001145int sqlite3VdbeMemFromBtree(
1146 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
drh501932c2013-11-21 21:59:53 +00001147 u32 offset, /* Offset from the start of data to return bytes from. */
1148 u32 amt, /* Number of bytes to return. */
drhd5788202004-05-28 08:21:05 +00001149 Mem *pMem /* OUT: Return data in this Mem structure. */
1150){
danielk19774b0aa4c2009-05-28 11:05:57 +00001151 char *zData; /* Data from the btree layer */
drh501932c2013-11-21 21:59:53 +00001152 u32 available = 0; /* Number of bytes available on the local btree page */
danielk19774b0aa4c2009-05-28 11:05:57 +00001153 int rc = SQLITE_OK; /* Return code */
drhd5788202004-05-28 08:21:05 +00001154
drh5d1a8722009-07-22 18:07:40 +00001155 assert( sqlite3BtreeCursorIsValid(pCur) );
drhd3b74202014-09-17 16:41:15 +00001156 assert( !VdbeMemDynamic(pMem) );
drh5d1a8722009-07-22 18:07:40 +00001157
danielk19774b0aa4c2009-05-28 11:05:57 +00001158 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
1159 ** that both the BtShared and database handle mutexes are held. */
drh3d4501e2008-12-04 20:40:10 +00001160 assert( (pMem->flags & MEM_RowSet)==0 );
drha7c90c42016-06-04 20:37:10 +00001161 zData = (char *)sqlite3BtreePayloadFetch(pCur, &available);
drh61fc5952007-04-01 23:49:51 +00001162 assert( zData!=0 );
drhd5788202004-05-28 08:21:05 +00001163
drh2b53e002013-11-21 19:05:04 +00001164 if( offset+amt<=available ){
drhd5788202004-05-28 08:21:05 +00001165 pMem->z = &zData[offset];
1166 pMem->flags = MEM_Blob|MEM_Ephem;
drh5f1d5362014-03-04 13:18:23 +00001167 pMem->n = (int)amt;
drh8740a602014-09-16 20:05:21 +00001168 }else{
drhcb3cabd2016-11-25 19:18:28 +00001169 rc = vdbeMemFromBtreeResize(pCur, offset, amt, pMem);
drhd5788202004-05-28 08:21:05 +00001170 }
1171
danielk1977a7a8e142008-02-13 18:25:27 +00001172 return rc;
drhd5788202004-05-28 08:21:05 +00001173}
1174
drh6c9f8e62014-08-27 03:28:50 +00001175/*
1176** The pVal argument is known to be a value other than NULL.
1177** Convert it into a string with encoding enc and return a pointer
1178** to a zero-terminated version of that string.
1179*/
drh3b335fc2014-10-07 16:59:22 +00001180static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
drh6c9f8e62014-08-27 03:28:50 +00001181 assert( pVal!=0 );
1182 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1183 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1184 assert( (pVal->flags & MEM_RowSet)==0 );
1185 assert( (pVal->flags & (MEM_Null))==0 );
1186 if( pVal->flags & (MEM_Blob|MEM_Str) ){
drh34d04d62017-01-05 07:58:29 +00001187 if( ExpandBlob(pVal) ) return 0;
drh6c9f8e62014-08-27 03:28:50 +00001188 pVal->flags |= MEM_Str;
drh6c9f8e62014-08-27 03:28:50 +00001189 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){
1190 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
1191 }
1192 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
1193 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
1194 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
1195 return 0;
1196 }
1197 }
1198 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
1199 }else{
1200 sqlite3VdbeMemStringify(pVal, enc, 0);
1201 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
1202 }
1203 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
1204 || pVal->db->mallocFailed );
1205 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
drh563ddbe2018-02-01 15:57:00 +00001206 assert( sqlite3VdbeMemConsistentDualRep(pVal) );
drh6c9f8e62014-08-27 03:28:50 +00001207 return pVal->z;
1208 }else{
1209 return 0;
1210 }
1211}
1212
danielk19774e6af132004-06-10 14:01:08 +00001213/* This function is only available internally, it is not part of the
1214** external API. It works in a similar way to sqlite3_value_text(),
1215** except the data returned is in the encoding specified by the second
1216** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1217** SQLITE_UTF8.
drh7d9bd4e2006-02-16 18:16:36 +00001218**
1219** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1220** If that is the case, then the result must be aligned on an even byte
1221** boundary.
danielk19774e6af132004-06-10 14:01:08 +00001222*/
drhb21c8cd2007-08-21 19:33:56 +00001223const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
danielk1977bfd6cce2004-06-18 04:24:54 +00001224 if( !pVal ) return 0;
drhb21c8cd2007-08-21 19:33:56 +00001225 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
drh7d9bd4e2006-02-16 18:16:36 +00001226 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
drh3d4501e2008-12-04 20:40:10 +00001227 assert( (pVal->flags & MEM_RowSet)==0 );
drh6c9f8e62014-08-27 03:28:50 +00001228 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){
drh563ddbe2018-02-01 15:57:00 +00001229 assert( sqlite3VdbeMemConsistentDualRep(pVal) );
drh6c9f8e62014-08-27 03:28:50 +00001230 return pVal->z;
1231 }
danielk19774e6af132004-06-10 14:01:08 +00001232 if( pVal->flags&MEM_Null ){
danielk19774e6af132004-06-10 14:01:08 +00001233 return 0;
1234 }
drh6c9f8e62014-08-27 03:28:50 +00001235 return valueToText(pVal, enc);
danielk19774e6af132004-06-10 14:01:08 +00001236}
1237
drh6a6124e2004-06-27 01:56:33 +00001238/*
1239** Create a new sqlite3_value object.
1240*/
drh17435752007-08-16 04:30:38 +00001241sqlite3_value *sqlite3ValueNew(sqlite3 *db){
danielk197726783a52007-08-29 14:06:22 +00001242 Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
danielk19774e6af132004-06-10 14:01:08 +00001243 if( p ){
1244 p->flags = MEM_Null;
drhb21c8cd2007-08-21 19:33:56 +00001245 p->db = db;
danielk19774e6af132004-06-10 14:01:08 +00001246 }
1247 return p;
1248}
1249
drh6a6124e2004-06-27 01:56:33 +00001250/*
danaf2583c2013-08-15 18:43:21 +00001251** Context object passed by sqlite3Stat4ProbeSetValue() through to
1252** valueNew(). See comments above valueNew() for details.
danielk1977aee18ef2005-03-09 12:26:50 +00001253*/
danaf2583c2013-08-15 18:43:21 +00001254struct ValueNewStat4Ctx {
1255 Parse *pParse;
1256 Index *pIdx;
1257 UnpackedRecord **ppRec;
1258 int iVal;
1259};
1260
1261/*
1262** Allocate and return a pointer to a new sqlite3_value object. If
1263** the second argument to this function is NULL, the object is allocated
1264** by calling sqlite3ValueNew().
1265**
1266** Otherwise, if the second argument is non-zero, then this function is
1267** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1268** already been allocated, allocate the UnpackedRecord structure that
drh96f4ad22015-03-12 21:02:36 +00001269** that function will return to its caller here. Then return a pointer to
danaf2583c2013-08-15 18:43:21 +00001270** an sqlite3_value within the UnpackedRecord.a[] array.
1271*/
1272static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
drh1435a9a2013-08-27 23:15:44 +00001273#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
danaf2583c2013-08-15 18:43:21 +00001274 if( p ){
1275 UnpackedRecord *pRec = p->ppRec[0];
1276
1277 if( pRec==0 ){
1278 Index *pIdx = p->pIdx; /* Index being probed */
1279 int nByte; /* Bytes of space to allocate */
1280 int i; /* Counter variable */
drhd2694612013-11-04 22:04:17 +00001281 int nCol = pIdx->nColumn; /* Number of index columns including rowid */
danaf2583c2013-08-15 18:43:21 +00001282
danb5f68b02013-12-03 18:26:56 +00001283 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
danaf2583c2013-08-15 18:43:21 +00001284 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
1285 if( pRec ){
drh2ec2fb22013-11-06 19:59:23 +00001286 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
danaf2583c2013-08-15 18:43:21 +00001287 if( pRec->pKeyInfo ){
drha485ad12017-08-02 22:43:14 +00001288 assert( pRec->pKeyInfo->nAllField==nCol );
drh2ec2fb22013-11-06 19:59:23 +00001289 assert( pRec->pKeyInfo->enc==ENC(db) );
danb5f68b02013-12-03 18:26:56 +00001290 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
danaf2583c2013-08-15 18:43:21 +00001291 for(i=0; i<nCol; i++){
1292 pRec->aMem[i].flags = MEM_Null;
danaf2583c2013-08-15 18:43:21 +00001293 pRec->aMem[i].db = db;
1294 }
1295 }else{
drhdbd6a7d2017-04-05 12:39:49 +00001296 sqlite3DbFreeNN(db, pRec);
danaf2583c2013-08-15 18:43:21 +00001297 pRec = 0;
1298 }
1299 }
1300 if( pRec==0 ) return 0;
1301 p->ppRec[0] = pRec;
1302 }
1303
1304 pRec->nField = p->iVal+1;
1305 return &pRec->aMem[p->iVal];
1306 }
drh4f991892013-10-11 15:05:05 +00001307#else
1308 UNUSED_PARAMETER(p);
1309#endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
danaf2583c2013-08-15 18:43:21 +00001310 return sqlite3ValueNew(db);
dan7a419232013-08-06 20:01:43 +00001311}
1312
drh6a6124e2004-06-27 01:56:33 +00001313/*
dan18bf8072015-03-11 20:06:40 +00001314** The expression object indicated by the second argument is guaranteed
1315** to be a scalar SQL function. If
1316**
1317** * all function arguments are SQL literals,
drhe3a73072015-09-05 19:07:08 +00001318** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
dancdcc11d2015-03-11 20:59:42 +00001319** * the SQLITE_FUNC_NEEDCOLL function flag is not set,
dan18bf8072015-03-11 20:06:40 +00001320**
1321** then this routine attempts to invoke the SQL function. Assuming no
1322** error occurs, output parameter (*ppVal) is set to point to a value
1323** object containing the result before returning SQLITE_OK.
1324**
1325** Affinity aff is applied to the result of the function before returning.
1326** If the result is a text value, the sqlite3_value object uses encoding
1327** enc.
1328**
1329** If the conditions above are not met, this function returns SQLITE_OK
1330** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
1331** NULL and an SQLite error code returned.
1332*/
1333#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1334static int valueFromFunction(
1335 sqlite3 *db, /* The database connection */
1336 Expr *p, /* The expression to evaluate */
1337 u8 enc, /* Encoding to use */
1338 u8 aff, /* Affinity to use */
1339 sqlite3_value **ppVal, /* Write the new value here */
1340 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1341){
1342 sqlite3_context ctx; /* Context object for function invocation */
1343 sqlite3_value **apVal = 0; /* Function arguments */
1344 int nVal = 0; /* Size of apVal[] array */
1345 FuncDef *pFunc = 0; /* Function definition */
1346 sqlite3_value *pVal = 0; /* New value */
1347 int rc = SQLITE_OK; /* Return code */
dancdcc11d2015-03-11 20:59:42 +00001348 ExprList *pList = 0; /* Function arguments */
dan18bf8072015-03-11 20:06:40 +00001349 int i; /* Iterator variable */
1350
drh96f4ad22015-03-12 21:02:36 +00001351 assert( pCtx!=0 );
1352 assert( (p->flags & EP_TokenOnly)==0 );
1353 pList = p->x.pList;
1354 if( pList ) nVal = pList->nExpr;
drh80738d92016-02-15 00:34:16 +00001355 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0);
dan18bf8072015-03-11 20:06:40 +00001356 assert( pFunc );
drhe3a73072015-09-05 19:07:08 +00001357 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0
dan18bf8072015-03-11 20:06:40 +00001358 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
1359 ){
1360 return SQLITE_OK;
1361 }
1362
1363 if( pList ){
1364 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal);
1365 if( apVal==0 ){
mistachkinfad30392016-02-13 23:43:46 +00001366 rc = SQLITE_NOMEM_BKPT;
dan18bf8072015-03-11 20:06:40 +00001367 goto value_from_function_out;
1368 }
1369 for(i=0; i<nVal; i++){
1370 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]);
drha9e03b12015-03-12 06:46:52 +00001371 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out;
dan18bf8072015-03-11 20:06:40 +00001372 }
1373 }
1374
1375 pVal = valueNew(db, pCtx);
1376 if( pVal==0 ){
mistachkinfad30392016-02-13 23:43:46 +00001377 rc = SQLITE_NOMEM_BKPT;
dan18bf8072015-03-11 20:06:40 +00001378 goto value_from_function_out;
1379 }
1380
dan3df30592015-03-13 08:31:54 +00001381 assert( pCtx->pParse->rc==SQLITE_OK );
dan18bf8072015-03-11 20:06:40 +00001382 memset(&ctx, 0, sizeof(ctx));
1383 ctx.pOut = pVal;
1384 ctx.pFunc = pFunc;
drh2d801512016-01-14 22:19:58 +00001385 pFunc->xSFunc(&ctx, nVal, apVal);
dan18bf8072015-03-11 20:06:40 +00001386 if( ctx.isError ){
1387 rc = ctx.isError;
drh96f4ad22015-03-12 21:02:36 +00001388 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
dan18bf8072015-03-11 20:06:40 +00001389 }else{
1390 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
drh96f4ad22015-03-12 21:02:36 +00001391 assert( rc==SQLITE_OK );
1392 rc = sqlite3VdbeChangeEncoding(pVal, enc);
dan18bf8072015-03-11 20:06:40 +00001393 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){
1394 rc = SQLITE_TOOBIG;
dan3df30592015-03-13 08:31:54 +00001395 pCtx->pParse->nErr++;
dan18bf8072015-03-11 20:06:40 +00001396 }
1397 }
dan3df30592015-03-13 08:31:54 +00001398 pCtx->pParse->rc = rc;
dan18bf8072015-03-11 20:06:40 +00001399
1400 value_from_function_out:
1401 if( rc!=SQLITE_OK ){
dan18bf8072015-03-11 20:06:40 +00001402 pVal = 0;
1403 }
drha9e03b12015-03-12 06:46:52 +00001404 if( apVal ){
1405 for(i=0; i<nVal; i++){
1406 sqlite3ValueFree(apVal[i]);
1407 }
drhdbd6a7d2017-04-05 12:39:49 +00001408 sqlite3DbFreeNN(db, apVal);
dan18bf8072015-03-11 20:06:40 +00001409 }
dan18bf8072015-03-11 20:06:40 +00001410
1411 *ppVal = pVal;
1412 return rc;
1413}
1414#else
1415# define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
1416#endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1417
1418/*
danaf2583c2013-08-15 18:43:21 +00001419** Extract a value from the supplied expression in the manner described
1420** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1421** using valueNew().
1422**
1423** If pCtx is NULL and an error occurs after the sqlite3_value object
1424** has been allocated, it is freed before returning. Or, if pCtx is not
1425** NULL, it is assumed that the caller will free any allocated object
1426** in all cases.
danielk1977aee18ef2005-03-09 12:26:50 +00001427*/
drha7f4bf32013-10-14 13:21:00 +00001428static int valueFromExpr(
danaf2583c2013-08-15 18:43:21 +00001429 sqlite3 *db, /* The database connection */
1430 Expr *pExpr, /* The expression to evaluate */
1431 u8 enc, /* Encoding to use */
1432 u8 affinity, /* Affinity to use */
1433 sqlite3_value **ppVal, /* Write the new value here */
1434 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
danielk1977aee18ef2005-03-09 12:26:50 +00001435){
1436 int op;
1437 char *zVal = 0;
1438 sqlite3_value *pVal = 0;
drh93518622010-09-30 14:48:06 +00001439 int negInt = 1;
1440 const char *zNeg = "";
drh0e1f0022013-08-16 14:49:00 +00001441 int rc = SQLITE_OK;
danielk1977aee18ef2005-03-09 12:26:50 +00001442
drh42735c72016-09-29 19:27:16 +00001443 assert( pExpr!=0 );
drh94fa9c42016-02-27 21:16:04 +00001444 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft;
drh01f6b2d2017-12-06 20:50:08 +00001445#if defined(SQLITE_ENABLE_STAT3_OR_STAT4)
dan7ac2d482017-11-27 17:56:14 +00001446 if( op==TK_REGISTER ) op = pExpr->op2;
drh01f6b2d2017-12-06 20:50:08 +00001447#else
1448 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
1449#endif
danielk1977aee18ef2005-03-09 12:26:50 +00001450
drh96f4ad22015-03-12 21:02:36 +00001451 /* Compressed expressions only appear when parsing the DEFAULT clause
1452 ** on a table column definition, and hence only when pCtx==0. This
1453 ** check ensures that an EP_TokenOnly expression is never passed down
1454 ** into valueFromFunction(). */
1455 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );
1456
drh4169e432014-08-25 20:11:52 +00001457 if( op==TK_CAST ){
1458 u8 aff = sqlite3AffinityType(pExpr->u.zToken,0);
1459 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
drhec3e4f72014-08-25 21:11:01 +00001460 testcase( rc!=SQLITE_OK );
1461 if( *ppVal ){
drh4169e432014-08-25 20:11:52 +00001462 sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8);
1463 sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8);
1464 }
1465 return rc;
1466 }
1467
drh93518622010-09-30 14:48:06 +00001468 /* Handle negative integers in a single step. This is needed in the
1469 ** case when the value is -9223372036854775808.
1470 */
1471 if( op==TK_UMINUS
1472 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
1473 pExpr = pExpr->pLeft;
1474 op = pExpr->op;
1475 negInt = -1;
1476 zNeg = "-";
1477 }
1478
danielk1977aee18ef2005-03-09 12:26:50 +00001479 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
danaf2583c2013-08-15 18:43:21 +00001480 pVal = valueNew(db, pCtx);
drh33e619f2009-05-28 01:00:55 +00001481 if( pVal==0 ) goto no_mem;
1482 if( ExprHasProperty(pExpr, EP_IntValue) ){
drh93518622010-09-30 14:48:06 +00001483 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
drh33e619f2009-05-28 01:00:55 +00001484 }else{
drh93518622010-09-30 14:48:06 +00001485 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
drh33e619f2009-05-28 01:00:55 +00001486 if( zVal==0 ) goto no_mem;
1487 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
1488 }
drh05883a32015-06-02 15:32:08 +00001489 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){
drhe3b9bfe2009-05-05 12:54:50 +00001490 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
danielk1977aee18ef2005-03-09 12:26:50 +00001491 }else{
drhe3b9bfe2009-05-05 12:54:50 +00001492 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
1493 }
drh93518622010-09-30 14:48:06 +00001494 if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str;
drhe3b9bfe2009-05-05 12:54:50 +00001495 if( enc!=SQLITE_UTF8 ){
drh0e1f0022013-08-16 14:49:00 +00001496 rc = sqlite3VdbeChangeEncoding(pVal, enc);
danielk1977aee18ef2005-03-09 12:26:50 +00001497 }
1498 }else if( op==TK_UMINUS ) {
drh93518622010-09-30 14:48:06 +00001499 /* This branch happens for multiple negative signs. Ex: -(-5) */
drh6e3bccd2017-06-13 04:31:54 +00001500 if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx)
danad45ed72013-08-08 12:21:32 +00001501 && pVal!=0
1502 ){
drh93518622010-09-30 14:48:06 +00001503 sqlite3VdbeMemNumerify(pVal);
drh74eaba42014-09-18 17:52:15 +00001504 if( pVal->flags & MEM_Real ){
1505 pVal->u.r = -pVal->u.r;
1506 }else if( pVal->u.i==SMALLEST_INT64 ){
1507 pVal->u.r = -(double)SMALLEST_INT64;
1508 MemSetTypeFlag(pVal, MEM_Real);
drhd50ffc42011-03-08 02:38:28 +00001509 }else{
1510 pVal->u.i = -pVal->u.i;
1511 }
drh93518622010-09-30 14:48:06 +00001512 sqlite3ValueApplyAffinity(pVal, affinity, enc);
danielk1977aee18ef2005-03-09 12:26:50 +00001513 }
drh9b3eb0a2011-01-21 14:37:04 +00001514 }else if( op==TK_NULL ){
danaf2583c2013-08-15 18:43:21 +00001515 pVal = valueNew(db, pCtx);
drhb1aa0ab2011-02-18 17:23:23 +00001516 if( pVal==0 ) goto no_mem;
drhe0568d62016-12-09 00:15:17 +00001517 sqlite3VdbeMemNumerify(pVal);
danielk1977aee18ef2005-03-09 12:26:50 +00001518 }
1519#ifndef SQLITE_OMIT_BLOB_LITERAL
1520 else if( op==TK_BLOB ){
1521 int nVal;
drh33e619f2009-05-28 01:00:55 +00001522 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
1523 assert( pExpr->u.zToken[1]=='\'' );
danaf2583c2013-08-15 18:43:21 +00001524 pVal = valueNew(db, pCtx);
danielk1977f150c9d2008-10-30 17:21:12 +00001525 if( !pVal ) goto no_mem;
drh33e619f2009-05-28 01:00:55 +00001526 zVal = &pExpr->u.zToken[2];
drhb7916a72009-05-27 10:31:29 +00001527 nVal = sqlite3Strlen30(zVal)-1;
1528 assert( zVal[nVal]=='\'' );
drhca48c902008-01-18 14:08:24 +00001529 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
drh633e6d52008-07-28 19:34:53 +00001530 0, SQLITE_DYNAMIC);
danielk1977aee18ef2005-03-09 12:26:50 +00001531 }
1532#endif
drh8cdcd872015-03-16 13:48:23 +00001533#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
drh96f4ad22015-03-12 21:02:36 +00001534 else if( op==TK_FUNCTION && pCtx!=0 ){
dan18bf8072015-03-11 20:06:40 +00001535 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
1536 }
drh8cdcd872015-03-16 13:48:23 +00001537#endif
drh3bc43152018-04-18 11:35:35 +00001538 else if( op==TK_TRUEFALSE ){
1539 pVal = valueNew(db, pCtx);
1540 pVal->flags = MEM_Int;
1541 pVal->u.i = pExpr->u.zToken[4]==0;
1542 }
dan18bf8072015-03-11 20:06:40 +00001543
danielk1977aee18ef2005-03-09 12:26:50 +00001544 *ppVal = pVal;
drh0e1f0022013-08-16 14:49:00 +00001545 return rc;
danielk1977aee18ef2005-03-09 12:26:50 +00001546
1547no_mem:
drh84a6c852017-12-13 23:47:55 +00001548#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1549 if( pCtx==0 || pCtx->pParse->nErr==0 )
1550#endif
1551 sqlite3OomFault(db);
drh633e6d52008-07-28 19:34:53 +00001552 sqlite3DbFree(db, zVal);
danaf2583c2013-08-15 18:43:21 +00001553 assert( *ppVal==0 );
drh1435a9a2013-08-27 23:15:44 +00001554#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
danaf2583c2013-08-15 18:43:21 +00001555 if( pCtx==0 ) sqlite3ValueFree(pVal);
drh1435a9a2013-08-27 23:15:44 +00001556#else
1557 assert( pCtx==0 ); sqlite3ValueFree(pVal);
1558#endif
mistachkinfad30392016-02-13 23:43:46 +00001559 return SQLITE_NOMEM_BKPT;
danielk1977aee18ef2005-03-09 12:26:50 +00001560}
1561
1562/*
dan87cd9322013-08-07 15:52:41 +00001563** Create a new sqlite3_value object, containing the value of pExpr.
1564**
1565** This only works for very simple expressions that consist of one constant
1566** token (i.e. "5", "5.1", "'a string'"). If the expression can
1567** be converted directly into a value, then the value is allocated and
1568** a pointer written to *ppVal. The caller is responsible for deallocating
1569** the value by passing it to sqlite3ValueFree() later on. If the expression
1570** cannot be converted to a value, then *ppVal is set to NULL.
1571*/
1572int sqlite3ValueFromExpr(
1573 sqlite3 *db, /* The database connection */
1574 Expr *pExpr, /* The expression to evaluate */
1575 u8 enc, /* Encoding to use */
1576 u8 affinity, /* Affinity to use */
1577 sqlite3_value **ppVal /* Write the new value here */
1578){
drh42735c72016-09-29 19:27:16 +00001579 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0;
dan87cd9322013-08-07 15:52:41 +00001580}
1581
drh1435a9a2013-08-27 23:15:44 +00001582#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
dan8ad169a2013-08-12 20:14:04 +00001583/*
1584** The implementation of the sqlite_record() function. This function accepts
1585** a single argument of any type. The return value is a formatted database
1586** record (a blob) containing the argument value.
1587**
1588** This is used to convert the value stored in the 'sample' column of the
1589** sqlite_stat3 table to the record format SQLite uses internally.
1590*/
1591static void recordFunc(
1592 sqlite3_context *context,
1593 int argc,
1594 sqlite3_value **argv
1595){
1596 const int file_format = 1;
drhbe37c122015-10-16 14:54:17 +00001597 u32 iSerial; /* Serial type */
dan8ad169a2013-08-12 20:14:04 +00001598 int nSerial; /* Bytes of space for iSerial as varint */
drhbe37c122015-10-16 14:54:17 +00001599 u32 nVal; /* Bytes of space required for argv[0] */
dan8ad169a2013-08-12 20:14:04 +00001600 int nRet;
1601 sqlite3 *db;
1602 u8 *aRet;
1603
drh4f991892013-10-11 15:05:05 +00001604 UNUSED_PARAMETER( argc );
drhbe37c122015-10-16 14:54:17 +00001605 iSerial = sqlite3VdbeSerialType(argv[0], file_format, &nVal);
dan8ad169a2013-08-12 20:14:04 +00001606 nSerial = sqlite3VarintLen(iSerial);
dan8ad169a2013-08-12 20:14:04 +00001607 db = sqlite3_context_db_handle(context);
1608
1609 nRet = 1 + nSerial + nVal;
drh575fad62016-02-05 13:38:36 +00001610 aRet = sqlite3DbMallocRawNN(db, nRet);
dan8ad169a2013-08-12 20:14:04 +00001611 if( aRet==0 ){
1612 sqlite3_result_error_nomem(context);
1613 }else{
1614 aRet[0] = nSerial+1;
drh2f2b2b82014-08-22 18:48:25 +00001615 putVarint32(&aRet[1], iSerial);
drha9ab4812013-12-11 11:00:44 +00001616 sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial);
dan8ad169a2013-08-12 20:14:04 +00001617 sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT);
drhdbd6a7d2017-04-05 12:39:49 +00001618 sqlite3DbFreeNN(db, aRet);
dan8ad169a2013-08-12 20:14:04 +00001619 }
1620}
1621
1622/*
1623** Register built-in functions used to help read ANALYZE data.
1624*/
1625void sqlite3AnalyzeFunctions(void){
drh80738d92016-02-15 00:34:16 +00001626 static FuncDef aAnalyzeTableFuncs[] = {
dan8ad169a2013-08-12 20:14:04 +00001627 FUNCTION(sqlite_record, 1, 0, 0, recordFunc),
1628 };
drh80738d92016-02-15 00:34:16 +00001629 sqlite3InsertBuiltinFuncs(aAnalyzeTableFuncs, ArraySize(aAnalyzeTableFuncs));
dan8ad169a2013-08-12 20:14:04 +00001630}
1631
drh0288b212014-06-28 16:06:44 +00001632/*
1633** Attempt to extract a value from pExpr and use it to construct *ppVal.
1634**
1635** If pAlloc is not NULL, then an UnpackedRecord object is created for
1636** pAlloc if one does not exist and the new value is added to the
1637** UnpackedRecord object.
1638**
1639** A value is extracted in the following cases:
1640**
1641** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1642**
1643** * The expression is a bound variable, and this is a reprepare, or
1644**
1645** * The expression is a literal value.
1646**
1647** On success, *ppVal is made to point to the extracted value. The caller
1648** is responsible for ensuring that the value is eventually freed.
1649*/
danb0b82902014-06-26 20:21:46 +00001650static int stat4ValueFromExpr(
1651 Parse *pParse, /* Parse context */
1652 Expr *pExpr, /* The expression to extract a value from */
1653 u8 affinity, /* Affinity to use */
drh0288b212014-06-28 16:06:44 +00001654 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */
danb0b82902014-06-26 20:21:46 +00001655 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1656){
1657 int rc = SQLITE_OK;
1658 sqlite3_value *pVal = 0;
1659 sqlite3 *db = pParse->db;
1660
1661 /* Skip over any TK_COLLATE nodes */
1662 pExpr = sqlite3ExprSkipCollate(pExpr);
1663
drh7df74752017-06-26 14:46:05 +00001664 assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE );
danb0b82902014-06-26 20:21:46 +00001665 if( !pExpr ){
1666 pVal = valueNew(db, pAlloc);
1667 if( pVal ){
1668 sqlite3VdbeMemSetNull((Mem*)pVal);
1669 }
drh7df74752017-06-26 14:46:05 +00001670 }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
danb0b82902014-06-26 20:21:46 +00001671 Vdbe *v;
1672 int iBindVar = pExpr->iColumn;
1673 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
drh7df74752017-06-26 14:46:05 +00001674 if( (v = pParse->pReprepare)!=0 ){
danb0b82902014-06-26 20:21:46 +00001675 pVal = valueNew(db, pAlloc);
1676 if( pVal ){
1677 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
drh169dd922017-06-26 13:57:49 +00001678 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
danb0b82902014-06-26 20:21:46 +00001679 pVal->db = pParse->db;
1680 }
1681 }
1682 }else{
1683 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc);
1684 }
1685
1686 assert( pVal==0 || pVal->db==db );
1687 *ppVal = pVal;
1688 return rc;
1689}
1690
dan87cd9322013-08-07 15:52:41 +00001691/*
dan87cd9322013-08-07 15:52:41 +00001692** This function is used to allocate and populate UnpackedRecord
1693** structures intended to be compared against sample index keys stored
1694** in the sqlite_stat4 table.
1695**
dand66e5792016-08-03 16:14:33 +00001696** A single call to this function populates zero or more fields of the
1697** record starting with field iVal (fields are numbered from left to
1698** right starting with 0). A single field is populated if:
dan87cd9322013-08-07 15:52:41 +00001699**
1700** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1701**
1702** * The expression is a bound variable, and this is a reprepare, or
1703**
1704** * The sqlite3ValueFromExpr() function is able to extract a value
1705** from the expression (i.e. the expression is a literal value).
1706**
dand66e5792016-08-03 16:14:33 +00001707** Or, if pExpr is a TK_VECTOR, one field is populated for each of the
1708** vector components that match either of the two latter criteria listed
1709** above.
1710**
1711** Before any value is appended to the record, the affinity of the
1712** corresponding column within index pIdx is applied to it. Before
1713** this function returns, output parameter *pnExtract is set to the
1714** number of values appended to the record.
dan87cd9322013-08-07 15:52:41 +00001715**
1716** When this function is called, *ppRec must either point to an object
1717** allocated by an earlier call to this function, or must be NULL. If it
1718** is NULL and a value can be successfully extracted, a new UnpackedRecord
1719** is allocated (and *ppRec set to point to it) before returning.
1720**
1721** Unless an error is encountered, SQLITE_OK is returned. It is not an
1722** error if a value cannot be extracted from pExpr. If an error does
1723** occur, an SQLite error code is returned.
1724*/
dan7a419232013-08-06 20:01:43 +00001725int sqlite3Stat4ProbeSetValue(
1726 Parse *pParse, /* Parse context */
dan87cd9322013-08-07 15:52:41 +00001727 Index *pIdx, /* Index being probed */
1728 UnpackedRecord **ppRec, /* IN/OUT: Probe record */
dan7a419232013-08-06 20:01:43 +00001729 Expr *pExpr, /* The expression to extract a value from */
dand66e5792016-08-03 16:14:33 +00001730 int nElem, /* Maximum number of values to append */
dan7a419232013-08-06 20:01:43 +00001731 int iVal, /* Array element to populate */
dand66e5792016-08-03 16:14:33 +00001732 int *pnExtract /* OUT: Values appended to the record */
dan7a419232013-08-06 20:01:43 +00001733){
dand66e5792016-08-03 16:14:33 +00001734 int rc = SQLITE_OK;
1735 int nExtract = 0;
danb0b82902014-06-26 20:21:46 +00001736
dand66e5792016-08-03 16:14:33 +00001737 if( pExpr==0 || pExpr->op!=TK_SELECT ){
1738 int i;
1739 struct ValueNewStat4Ctx alloc;
dan7a419232013-08-06 20:01:43 +00001740
dand66e5792016-08-03 16:14:33 +00001741 alloc.pParse = pParse;
1742 alloc.pIdx = pIdx;
1743 alloc.ppRec = ppRec;
1744
1745 for(i=0; i<nElem; i++){
1746 sqlite3_value *pVal = 0;
drhfc7f27b2016-08-20 00:07:01 +00001747 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0);
dand66e5792016-08-03 16:14:33 +00001748 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i);
1749 alloc.iVal = iVal+i;
1750 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal);
1751 if( !pVal ) break;
1752 nExtract++;
1753 }
1754 }
1755
1756 *pnExtract = nExtract;
danb0b82902014-06-26 20:21:46 +00001757 return rc;
1758}
dan87cd9322013-08-07 15:52:41 +00001759
danb0b82902014-06-26 20:21:46 +00001760/*
1761** Attempt to extract a value from expression pExpr using the methods
1762** as described for sqlite3Stat4ProbeSetValue() above.
1763**
1764** If successful, set *ppVal to point to a new value object and return
1765** SQLITE_OK. If no value can be extracted, but no other error occurs
1766** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1767** does occur, return an SQLite error code. The final value of *ppVal
1768** is undefined in this case.
1769*/
1770int sqlite3Stat4ValueFromExpr(
1771 Parse *pParse, /* Parse context */
1772 Expr *pExpr, /* The expression to extract a value from */
1773 u8 affinity, /* Affinity to use */
1774 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1775){
1776 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal);
1777}
1778
drh0288b212014-06-28 16:06:44 +00001779/*
1780** Extract the iCol-th column from the nRec-byte record in pRec. Write
1781** the column value into *ppVal. If *ppVal is initially NULL then a new
1782** sqlite3_value object is allocated.
1783**
1784** If *ppVal is initially NULL then the caller is responsible for
1785** ensuring that the value written into *ppVal is eventually freed.
1786*/
danb0b82902014-06-26 20:21:46 +00001787int sqlite3Stat4Column(
1788 sqlite3 *db, /* Database handle */
1789 const void *pRec, /* Pointer to buffer containing record */
1790 int nRec, /* Size of buffer pRec in bytes */
1791 int iCol, /* Column to extract */
1792 sqlite3_value **ppVal /* OUT: Extracted value */
1793){
drh0288b212014-06-28 16:06:44 +00001794 u32 t; /* a column type code */
1795 int nHdr; /* Size of the header in the record */
1796 int iHdr; /* Next unread header byte */
1797 int iField; /* Next unread data byte */
1798 int szField; /* Size of the current data field */
1799 int i; /* Column index */
1800 u8 *a = (u8*)pRec; /* Typecast byte array */
1801 Mem *pMem = *ppVal; /* Write result into this Mem object */
1802
1803 assert( iCol>0 );
1804 iHdr = getVarint32(a, nHdr);
1805 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT;
1806 iField = nHdr;
1807 for(i=0; i<=iCol; i++){
1808 iHdr += getVarint32(&a[iHdr], t);
1809 testcase( iHdr==nHdr );
1810 testcase( iHdr==nHdr+1 );
1811 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT;
1812 szField = sqlite3VdbeSerialTypeLen(t);
1813 iField += szField;
1814 }
1815 testcase( iField==nRec );
1816 testcase( iField==nRec+1 );
1817 if( iField>nRec ) return SQLITE_CORRUPT_BKPT;
danb0b82902014-06-26 20:21:46 +00001818 if( pMem==0 ){
drh0288b212014-06-28 16:06:44 +00001819 pMem = *ppVal = sqlite3ValueNew(db);
mistachkinfad30392016-02-13 23:43:46 +00001820 if( pMem==0 ) return SQLITE_NOMEM_BKPT;
danb0b82902014-06-26 20:21:46 +00001821 }
drh0288b212014-06-28 16:06:44 +00001822 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem);
1823 pMem->enc = ENC(db);
1824 return SQLITE_OK;
dan7a419232013-08-06 20:01:43 +00001825}
1826
dan87cd9322013-08-07 15:52:41 +00001827/*
1828** Unless it is NULL, the argument must be an UnpackedRecord object returned
1829** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1830** the object.
1831*/
dan7a419232013-08-06 20:01:43 +00001832void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
1833 if( pRec ){
1834 int i;
drha485ad12017-08-02 22:43:14 +00001835 int nCol = pRec->pKeyInfo->nAllField;
dan7a419232013-08-06 20:01:43 +00001836 Mem *aMem = pRec->aMem;
1837 sqlite3 *db = aMem[0].db;
dandd6e1f12013-08-10 19:08:30 +00001838 for(i=0; i<nCol; i++){
drhcef25842015-04-20 13:59:18 +00001839 sqlite3VdbeMemRelease(&aMem[i]);
dan7a419232013-08-06 20:01:43 +00001840 }
drh2ec2fb22013-11-06 19:59:23 +00001841 sqlite3KeyInfoUnref(pRec->pKeyInfo);
drhdbd6a7d2017-04-05 12:39:49 +00001842 sqlite3DbFreeNN(db, pRec);
dan7a419232013-08-06 20:01:43 +00001843 }
1844}
dan7a419232013-08-06 20:01:43 +00001845#endif /* ifdef SQLITE_ENABLE_STAT4 */
1846
drh4f26d6c2004-05-26 23:25:30 +00001847/*
1848** Change the string value of an sqlite3_value object
1849*/
1850void sqlite3ValueSetStr(
drh17435752007-08-16 04:30:38 +00001851 sqlite3_value *v, /* Value to be set */
1852 int n, /* Length of string z */
1853 const void *z, /* Text of the new string */
1854 u8 enc, /* Encoding to use */
1855 void (*xDel)(void*) /* Destructor for the string */
drh4f26d6c2004-05-26 23:25:30 +00001856){
drhb21c8cd2007-08-21 19:33:56 +00001857 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
drh4f26d6c2004-05-26 23:25:30 +00001858}
1859
1860/*
1861** Free an sqlite3_value object
1862*/
1863void sqlite3ValueFree(sqlite3_value *v){
1864 if( !v ) return;
danielk1977a7a8e142008-02-13 18:25:27 +00001865 sqlite3VdbeMemRelease((Mem *)v);
drhdbd6a7d2017-04-05 12:39:49 +00001866 sqlite3DbFreeNN(((Mem*)v)->db, v);
drh4f26d6c2004-05-26 23:25:30 +00001867}
1868
1869/*
drh591909c2015-06-25 23:52:48 +00001870** The sqlite3ValueBytes() routine returns the number of bytes in the
1871** sqlite3_value object assuming that it uses the encoding "enc".
1872** The valueBytes() routine is a helper function.
drh4f26d6c2004-05-26 23:25:30 +00001873*/
drh591909c2015-06-25 23:52:48 +00001874static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){
1875 return valueToText(pVal, enc)!=0 ? pVal->n : 0;
1876}
drhb21c8cd2007-08-21 19:33:56 +00001877int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
drh4f26d6c2004-05-26 23:25:30 +00001878 Mem *p = (Mem*)pVal;
drh591909c2015-06-25 23:52:48 +00001879 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 );
1880 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){
1881 return p->n;
1882 }
1883 if( (p->flags & MEM_Blob)!=0 ){
drhb026e052007-05-02 01:34:31 +00001884 if( p->flags & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +00001885 return p->n + p->u.nZero;
drhb026e052007-05-02 01:34:31 +00001886 }else{
1887 return p->n;
1888 }
drh4f26d6c2004-05-26 23:25:30 +00001889 }
drh591909c2015-06-25 23:52:48 +00001890 if( p->flags & MEM_Null ) return 0;
1891 return valueBytes(pVal, enc);
drh4f26d6c2004-05-26 23:25:30 +00001892}