blob: 51fca4b4bef0667b9ccb99561737cc516b6d280a [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drhe53831d2007-08-17 01:14:38 +0000115#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000116
117#ifdef SQLITE_DEBUG
118/*
drh0ee3dbe2009-10-16 15:05:18 +0000119**** This function is only used as part of an assert() statement. ***
120**
121** Check to see if pBtree holds the required locks to read or write to the
122** table with root page iRoot. Return 1 if it does and 0 if not.
123**
124** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000125** Btree connection pBtree:
126**
127** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128**
drh0ee3dbe2009-10-16 15:05:18 +0000129** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000130** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000131** the corresponding table. This makes things a bit more complicated,
132** as this module treats each table as a separate structure. To determine
133** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000134** function has to search through the database schema.
135**
drh0ee3dbe2009-10-16 15:05:18 +0000136** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000137** hold a write-lock on the schema table (root page 1). This is also
138** acceptable.
139*/
140static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
145){
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
149
drh0ee3dbe2009-10-16 15:05:18 +0000150 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000151 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000152 ** Return true immediately.
153 */
danielk197796d48e92009-06-29 06:00:37 +0000154 if( (pBtree->sharable==0)
155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000156 ){
157 return 1;
158 }
159
drh0ee3dbe2009-10-16 15:05:18 +0000160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
164 */
drh2c5e35f2014-08-05 11:04:21 +0000165 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000166 return 1;
167 }
168
danielk197796d48e92009-06-29 06:00:37 +0000169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000177 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000178 if( iTab ){
179 /* Two or more indexes share the same root page. There must
180 ** be imposter tables. So just return true. The assert is not
181 ** useful in that case. */
182 return 1;
183 }
shane5eff7cf2009-08-10 03:57:58 +0000184 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000185 }
186 }
187 }else{
188 iTab = iRoot;
189 }
190
191 /* Search for the required lock. Either a write-lock on root-page iTab, a
192 ** write-lock on the schema table, or (if the client is reading) a
193 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
194 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
195 if( pLock->pBtree==pBtree
196 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
197 && pLock->eLock>=eLockType
198 ){
199 return 1;
200 }
201 }
202
203 /* Failed to find the required lock. */
204 return 0;
205}
drh0ee3dbe2009-10-16 15:05:18 +0000206#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000207
drh0ee3dbe2009-10-16 15:05:18 +0000208#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000209/*
drh0ee3dbe2009-10-16 15:05:18 +0000210**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000211**
drh0ee3dbe2009-10-16 15:05:18 +0000212** Return true if it would be illegal for pBtree to write into the
213** table or index rooted at iRoot because other shared connections are
214** simultaneously reading that same table or index.
215**
216** It is illegal for pBtree to write if some other Btree object that
217** shares the same BtShared object is currently reading or writing
218** the iRoot table. Except, if the other Btree object has the
219** read-uncommitted flag set, then it is OK for the other object to
220** have a read cursor.
221**
222** For example, before writing to any part of the table or index
223** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000224**
225** assert( !hasReadConflicts(pBtree, iRoot) );
226*/
227static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
228 BtCursor *p;
229 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
230 if( p->pgnoRoot==iRoot
231 && p->pBtree!=pBtree
232 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
233 ){
234 return 1;
235 }
236 }
237 return 0;
238}
239#endif /* #ifdef SQLITE_DEBUG */
240
danielk1977da184232006-01-05 11:34:32 +0000241/*
drh0ee3dbe2009-10-16 15:05:18 +0000242** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000243** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000244** SQLITE_OK if the lock may be obtained (by calling
245** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000246*/
drhc25eabe2009-02-24 18:57:31 +0000247static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000248 BtShared *pBt = p->pBt;
249 BtLock *pIter;
250
drh1fee73e2007-08-29 04:00:57 +0000251 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000252 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
253 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000254 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000255
danielk19775b413d72009-04-01 09:41:54 +0000256 /* If requesting a write-lock, then the Btree must have an open write
257 ** transaction on this file. And, obviously, for this to be so there
258 ** must be an open write transaction on the file itself.
259 */
260 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
261 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
262
drh0ee3dbe2009-10-16 15:05:18 +0000263 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000264 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000265 return SQLITE_OK;
266 }
267
danielk1977641b0f42007-12-21 04:47:25 +0000268 /* If some other connection is holding an exclusive lock, the
269 ** requested lock may not be obtained.
270 */
drhc9166342012-01-05 23:32:06 +0000271 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000272 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
273 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000274 }
275
danielk1977e0d9e6f2009-07-03 16:25:06 +0000276 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
277 /* The condition (pIter->eLock!=eLock) in the following if(...)
278 ** statement is a simplification of:
279 **
280 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
281 **
282 ** since we know that if eLock==WRITE_LOCK, then no other connection
283 ** may hold a WRITE_LOCK on any table in this file (since there can
284 ** only be a single writer).
285 */
286 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
287 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
288 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
289 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
290 if( eLock==WRITE_LOCK ){
291 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000292 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000293 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000294 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000295 }
296 }
297 return SQLITE_OK;
298}
drhe53831d2007-08-17 01:14:38 +0000299#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000300
drhe53831d2007-08-17 01:14:38 +0000301#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000302/*
303** Add a lock on the table with root-page iTable to the shared-btree used
304** by Btree handle p. Parameter eLock must be either READ_LOCK or
305** WRITE_LOCK.
306**
danielk19779d104862009-07-09 08:27:14 +0000307** This function assumes the following:
308**
drh0ee3dbe2009-10-16 15:05:18 +0000309** (a) The specified Btree object p is connected to a sharable
310** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000311**
drh0ee3dbe2009-10-16 15:05:18 +0000312** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000313** with the requested lock (i.e. querySharedCacheTableLock() has
314** already been called and returned SQLITE_OK).
315**
316** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
317** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000318*/
drhc25eabe2009-02-24 18:57:31 +0000319static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000320 BtShared *pBt = p->pBt;
321 BtLock *pLock = 0;
322 BtLock *pIter;
323
drh1fee73e2007-08-29 04:00:57 +0000324 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000325 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
326 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000327
danielk1977e0d9e6f2009-07-03 16:25:06 +0000328 /* A connection with the read-uncommitted flag set will never try to
329 ** obtain a read-lock using this function. The only read-lock obtained
330 ** by a connection in read-uncommitted mode is on the sqlite_master
331 ** table, and that lock is obtained in BtreeBeginTrans(). */
332 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
333
danielk19779d104862009-07-09 08:27:14 +0000334 /* This function should only be called on a sharable b-tree after it
335 ** has been determined that no other b-tree holds a conflicting lock. */
336 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000337 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000338
339 /* First search the list for an existing lock on this table. */
340 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
341 if( pIter->iTable==iTable && pIter->pBtree==p ){
342 pLock = pIter;
343 break;
344 }
345 }
346
347 /* If the above search did not find a BtLock struct associating Btree p
348 ** with table iTable, allocate one and link it into the list.
349 */
350 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000351 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000352 if( !pLock ){
353 return SQLITE_NOMEM;
354 }
355 pLock->iTable = iTable;
356 pLock->pBtree = p;
357 pLock->pNext = pBt->pLock;
358 pBt->pLock = pLock;
359 }
360
361 /* Set the BtLock.eLock variable to the maximum of the current lock
362 ** and the requested lock. This means if a write-lock was already held
363 ** and a read-lock requested, we don't incorrectly downgrade the lock.
364 */
365 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000366 if( eLock>pLock->eLock ){
367 pLock->eLock = eLock;
368 }
danielk1977aef0bf62005-12-30 16:28:01 +0000369
370 return SQLITE_OK;
371}
drhe53831d2007-08-17 01:14:38 +0000372#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000373
drhe53831d2007-08-17 01:14:38 +0000374#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000375/*
drhc25eabe2009-02-24 18:57:31 +0000376** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000377** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000378**
drh0ee3dbe2009-10-16 15:05:18 +0000379** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000380** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000381** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000382*/
drhc25eabe2009-02-24 18:57:31 +0000383static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000384 BtShared *pBt = p->pBt;
385 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000386
drh1fee73e2007-08-29 04:00:57 +0000387 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000388 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000389 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000390
danielk1977aef0bf62005-12-30 16:28:01 +0000391 while( *ppIter ){
392 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000393 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000394 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000395 if( pLock->pBtree==p ){
396 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000397 assert( pLock->iTable!=1 || pLock==&p->lock );
398 if( pLock->iTable!=1 ){
399 sqlite3_free(pLock);
400 }
danielk1977aef0bf62005-12-30 16:28:01 +0000401 }else{
402 ppIter = &pLock->pNext;
403 }
404 }
danielk1977641b0f42007-12-21 04:47:25 +0000405
drhc9166342012-01-05 23:32:06 +0000406 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000407 if( pBt->pWriter==p ){
408 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000409 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000410 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000411 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000412 ** transaction. If there currently exists a writer, and p is not
413 ** that writer, then the number of locks held by connections other
414 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000415 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000416 **
drhc9166342012-01-05 23:32:06 +0000417 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000418 ** be zero already. So this next line is harmless in that case.
419 */
drhc9166342012-01-05 23:32:06 +0000420 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000421 }
danielk1977aef0bf62005-12-30 16:28:01 +0000422}
danielk197794b30732009-07-02 17:21:57 +0000423
danielk1977e0d9e6f2009-07-03 16:25:06 +0000424/*
drh0ee3dbe2009-10-16 15:05:18 +0000425** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000426*/
danielk197794b30732009-07-02 17:21:57 +0000427static void downgradeAllSharedCacheTableLocks(Btree *p){
428 BtShared *pBt = p->pBt;
429 if( pBt->pWriter==p ){
430 BtLock *pLock;
431 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000432 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000433 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
434 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
435 pLock->eLock = READ_LOCK;
436 }
437 }
438}
439
danielk1977aef0bf62005-12-30 16:28:01 +0000440#endif /* SQLITE_OMIT_SHARED_CACHE */
441
drh980b1a72006-08-16 16:42:48 +0000442static void releasePage(MemPage *pPage); /* Forward reference */
443
drh1fee73e2007-08-29 04:00:57 +0000444/*
drh0ee3dbe2009-10-16 15:05:18 +0000445***** This routine is used inside of assert() only ****
446**
447** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000448*/
drh0ee3dbe2009-10-16 15:05:18 +0000449#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000450static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000451 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000452}
453#endif
454
danielk197792d4d7a2007-05-04 12:05:56 +0000455/*
dan5a500af2014-03-11 20:33:04 +0000456** Invalidate the overflow cache of the cursor passed as the first argument.
457** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000458*/
drh036dbec2014-03-11 23:40:44 +0000459#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000460
461/*
462** Invalidate the overflow page-list cache for all cursors opened
463** on the shared btree structure pBt.
464*/
465static void invalidateAllOverflowCache(BtShared *pBt){
466 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000467 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000468 for(p=pBt->pCursor; p; p=p->pNext){
469 invalidateOverflowCache(p);
470 }
471}
danielk197796d48e92009-06-29 06:00:37 +0000472
dan5a500af2014-03-11 20:33:04 +0000473#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000474/*
475** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000476** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000477** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000478**
479** If argument isClearTable is true, then the entire contents of the
480** table is about to be deleted. In this case invalidate all incrblob
481** cursors open on any row within the table with root-page pgnoRoot.
482**
483** Otherwise, if argument isClearTable is false, then the row with
484** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000485** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000486*/
487static void invalidateIncrblobCursors(
488 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000489 i64 iRow, /* The rowid that might be changing */
490 int isClearTable /* True if all rows are being deleted */
491){
492 BtCursor *p;
493 BtShared *pBt = pBtree->pBt;
494 assert( sqlite3BtreeHoldsMutex(pBtree) );
495 for(p=pBt->pCursor; p; p=p->pNext){
drh3f387402014-09-24 01:23:00 +0000496 if( (p->curFlags & BTCF_Incrblob)!=0
497 && (isClearTable || p->info.nKey==iRow)
498 ){
danielk197796d48e92009-06-29 06:00:37 +0000499 p->eState = CURSOR_INVALID;
500 }
501 }
502}
503
danielk197792d4d7a2007-05-04 12:05:56 +0000504#else
dan5a500af2014-03-11 20:33:04 +0000505 /* Stub function when INCRBLOB is omitted */
drheeb844a2009-08-08 18:01:07 +0000506 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000507#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000508
drh980b1a72006-08-16 16:42:48 +0000509/*
danielk1977bea2a942009-01-20 17:06:27 +0000510** Set bit pgno of the BtShared.pHasContent bitvec. This is called
511** when a page that previously contained data becomes a free-list leaf
512** page.
513**
514** The BtShared.pHasContent bitvec exists to work around an obscure
515** bug caused by the interaction of two useful IO optimizations surrounding
516** free-list leaf pages:
517**
518** 1) When all data is deleted from a page and the page becomes
519** a free-list leaf page, the page is not written to the database
520** (as free-list leaf pages contain no meaningful data). Sometimes
521** such a page is not even journalled (as it will not be modified,
522** why bother journalling it?).
523**
524** 2) When a free-list leaf page is reused, its content is not read
525** from the database or written to the journal file (why should it
526** be, if it is not at all meaningful?).
527**
528** By themselves, these optimizations work fine and provide a handy
529** performance boost to bulk delete or insert operations. However, if
530** a page is moved to the free-list and then reused within the same
531** transaction, a problem comes up. If the page is not journalled when
532** it is moved to the free-list and it is also not journalled when it
533** is extracted from the free-list and reused, then the original data
534** may be lost. In the event of a rollback, it may not be possible
535** to restore the database to its original configuration.
536**
537** The solution is the BtShared.pHasContent bitvec. Whenever a page is
538** moved to become a free-list leaf page, the corresponding bit is
539** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000540** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000541** set in BtShared.pHasContent. The contents of the bitvec are cleared
542** at the end of every transaction.
543*/
544static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
545 int rc = SQLITE_OK;
546 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000547 assert( pgno<=pBt->nPage );
548 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000549 if( !pBt->pHasContent ){
550 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000551 }
552 }
553 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
554 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
555 }
556 return rc;
557}
558
559/*
560** Query the BtShared.pHasContent vector.
561**
562** This function is called when a free-list leaf page is removed from the
563** free-list for reuse. It returns false if it is safe to retrieve the
564** page from the pager layer with the 'no-content' flag set. True otherwise.
565*/
566static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
567 Bitvec *p = pBt->pHasContent;
568 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
569}
570
571/*
572** Clear (destroy) the BtShared.pHasContent bitvec. This should be
573** invoked at the conclusion of each write-transaction.
574*/
575static void btreeClearHasContent(BtShared *pBt){
576 sqlite3BitvecDestroy(pBt->pHasContent);
577 pBt->pHasContent = 0;
578}
579
580/*
drh138eeeb2013-03-27 03:15:23 +0000581** Release all of the apPage[] pages for a cursor.
582*/
583static void btreeReleaseAllCursorPages(BtCursor *pCur){
584 int i;
585 for(i=0; i<=pCur->iPage; i++){
586 releasePage(pCur->apPage[i]);
587 pCur->apPage[i] = 0;
588 }
589 pCur->iPage = -1;
590}
591
592
593/*
drh980b1a72006-08-16 16:42:48 +0000594** Save the current cursor position in the variables BtCursor.nKey
595** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000596**
597** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
598** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000599*/
600static int saveCursorPosition(BtCursor *pCur){
601 int rc;
602
drhd2f83132015-03-25 17:35:01 +0000603 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000604 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000605 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000606
drhd2f83132015-03-25 17:35:01 +0000607 if( pCur->eState==CURSOR_SKIPNEXT ){
608 pCur->eState = CURSOR_VALID;
609 }else{
610 pCur->skipNext = 0;
611 }
drh980b1a72006-08-16 16:42:48 +0000612 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000613 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000614
615 /* If this is an intKey table, then the above call to BtreeKeySize()
616 ** stores the integer key in pCur->nKey. In this case this value is
617 ** all that is required. Otherwise, if pCur is not open on an intKey
618 ** table, then malloc space for and store the pCur->nKey bytes of key
619 ** data.
620 */
drh4c301aa2009-07-15 17:25:45 +0000621 if( 0==pCur->apPage[0]->intKey ){
drhda4ca9d2014-09-09 17:27:35 +0000622 void *pKey = sqlite3Malloc( pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000623 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000624 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000625 if( rc==SQLITE_OK ){
626 pCur->pKey = pKey;
627 }else{
drh17435752007-08-16 04:30:38 +0000628 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000629 }
630 }else{
631 rc = SQLITE_NOMEM;
632 }
633 }
danielk197771d5d2c2008-09-29 11:49:47 +0000634 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000635
636 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000637 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000638 pCur->eState = CURSOR_REQUIRESEEK;
639 }
640
danielk197792d4d7a2007-05-04 12:05:56 +0000641 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000642 return rc;
643}
644
drh637f3d82014-08-22 22:26:07 +0000645/* Forward reference */
646static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
647
drh980b1a72006-08-16 16:42:48 +0000648/*
drh0ee3dbe2009-10-16 15:05:18 +0000649** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000650** the table with root-page iRoot. "Saving the cursor position" means that
651** the location in the btree is remembered in such a way that it can be
652** moved back to the same spot after the btree has been modified. This
653** routine is called just before cursor pExcept is used to modify the
654** table, for example in BtreeDelete() or BtreeInsert().
655**
656** Implementation note: This routine merely checks to see if any cursors
657** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
658** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000659*/
660static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
drh3bdffdd2014-08-23 19:08:09 +0000661 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000662 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000663 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000664 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000665 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
666 }
667 return p ? saveCursorsOnList(p, iRoot, pExcept) : SQLITE_OK;
668}
669
670/* This helper routine to saveAllCursors does the actual work of saving
671** the cursors if and when a cursor is found that actually requires saving.
672** The common case is that no cursors need to be saved, so this routine is
673** broken out from its caller to avoid unnecessary stack pointer movement.
674*/
675static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000676 BtCursor *p, /* The first cursor that needs saving */
677 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
678 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000679){
680 do{
drh138eeeb2013-03-27 03:15:23 +0000681 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000682 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000683 int rc = saveCursorPosition(p);
684 if( SQLITE_OK!=rc ){
685 return rc;
686 }
687 }else{
688 testcase( p->iPage>0 );
689 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000690 }
691 }
drh637f3d82014-08-22 22:26:07 +0000692 p = p->pNext;
693 }while( p );
drh980b1a72006-08-16 16:42:48 +0000694 return SQLITE_OK;
695}
696
697/*
drhbf700f32007-03-31 02:36:44 +0000698** Clear the current cursor position.
699*/
danielk1977be51a652008-10-08 17:58:48 +0000700void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000701 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000702 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000703 pCur->pKey = 0;
704 pCur->eState = CURSOR_INVALID;
705}
706
707/*
danielk19773509a652009-07-06 18:56:13 +0000708** In this version of BtreeMoveto, pKey is a packed index record
709** such as is generated by the OP_MakeRecord opcode. Unpack the
710** record and then call BtreeMovetoUnpacked() to do the work.
711*/
712static int btreeMoveto(
713 BtCursor *pCur, /* Cursor open on the btree to be searched */
714 const void *pKey, /* Packed key if the btree is an index */
715 i64 nKey, /* Integer key for tables. Size of pKey for indices */
716 int bias, /* Bias search to the high end */
717 int *pRes /* Write search results here */
718){
719 int rc; /* Status code */
720 UnpackedRecord *pIdxKey; /* Unpacked index key */
drhb4139222013-11-06 14:36:08 +0000721 char aSpace[200]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000722 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000723
724 if( pKey ){
725 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000726 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
727 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
728 );
danielk19773509a652009-07-06 18:56:13 +0000729 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000730 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000731 if( pIdxKey->nField==0 ){
732 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
733 return SQLITE_CORRUPT_BKPT;
734 }
danielk19773509a652009-07-06 18:56:13 +0000735 }else{
736 pIdxKey = 0;
737 }
738 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000739 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000740 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000741 }
742 return rc;
743}
744
745/*
drh980b1a72006-08-16 16:42:48 +0000746** Restore the cursor to the position it was in (or as close to as possible)
747** when saveCursorPosition() was called. Note that this call deletes the
748** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000749** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000750** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000751*/
danielk197730548662009-07-09 05:07:37 +0000752static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000753 int rc;
drhd2f83132015-03-25 17:35:01 +0000754 int skipNext;
drh1fee73e2007-08-29 04:00:57 +0000755 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000756 assert( pCur->eState>=CURSOR_REQUIRESEEK );
757 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000758 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000759 }
drh980b1a72006-08-16 16:42:48 +0000760 pCur->eState = CURSOR_INVALID;
drhd2f83132015-03-25 17:35:01 +0000761 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
drh980b1a72006-08-16 16:42:48 +0000762 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000763 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000764 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000765 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drhd2f83132015-03-25 17:35:01 +0000766 pCur->skipNext |= skipNext;
drh9b47ee32013-08-20 03:13:51 +0000767 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
768 pCur->eState = CURSOR_SKIPNEXT;
769 }
drh980b1a72006-08-16 16:42:48 +0000770 }
771 return rc;
772}
773
drha3460582008-07-11 21:02:53 +0000774#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000775 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000776 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000777 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000778
drha3460582008-07-11 21:02:53 +0000779/*
drh6848dad2014-08-22 23:33:03 +0000780** Determine whether or not a cursor has moved from the position where
781** it was last placed, or has been invalidated for any other reason.
782** Cursors can move when the row they are pointing at is deleted out
783** from under them, for example. Cursor might also move if a btree
784** is rebalanced.
drha3460582008-07-11 21:02:53 +0000785**
drh6848dad2014-08-22 23:33:03 +0000786** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000787**
drh6848dad2014-08-22 23:33:03 +0000788** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
789** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000790*/
drh6848dad2014-08-22 23:33:03 +0000791int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drhc22284f2014-10-13 16:02:20 +0000792 return pCur->eState!=CURSOR_VALID;
drh6848dad2014-08-22 23:33:03 +0000793}
794
795/*
796** This routine restores a cursor back to its original position after it
797** has been moved by some outside activity (such as a btree rebalance or
798** a row having been deleted out from under the cursor).
799**
800** On success, the *pDifferentRow parameter is false if the cursor is left
801** pointing at exactly the same row. *pDifferntRow is the row the cursor
802** was pointing to has been deleted, forcing the cursor to point to some
803** nearby row.
804**
805** This routine should only be called for a cursor that just returned
806** TRUE from sqlite3BtreeCursorHasMoved().
807*/
808int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000809 int rc;
810
drh6848dad2014-08-22 23:33:03 +0000811 assert( pCur!=0 );
812 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000813 rc = restoreCursorPosition(pCur);
814 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000815 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000816 return rc;
817 }
drh606a3572015-03-25 18:29:10 +0000818 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000819 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000820 }else{
drh606a3572015-03-25 18:29:10 +0000821 assert( pCur->skipNext==0 );
drh6848dad2014-08-22 23:33:03 +0000822 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000823 }
824 return SQLITE_OK;
825}
826
danielk1977599fcba2004-11-08 07:13:13 +0000827#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000828/*
drha3152892007-05-05 11:48:52 +0000829** Given a page number of a regular database page, return the page
830** number for the pointer-map page that contains the entry for the
831** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000832**
833** Return 0 (not a valid page) for pgno==1 since there is
834** no pointer map associated with page 1. The integrity_check logic
835** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000836*/
danielk1977266664d2006-02-10 08:24:21 +0000837static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000838 int nPagesPerMapPage;
839 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000840 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000841 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000842 nPagesPerMapPage = (pBt->usableSize/5)+1;
843 iPtrMap = (pgno-2)/nPagesPerMapPage;
844 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000845 if( ret==PENDING_BYTE_PAGE(pBt) ){
846 ret++;
847 }
848 return ret;
849}
danielk1977a19df672004-11-03 11:37:07 +0000850
danielk1977afcdd022004-10-31 16:25:42 +0000851/*
danielk1977afcdd022004-10-31 16:25:42 +0000852** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000853**
854** This routine updates the pointer map entry for page number 'key'
855** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000856**
857** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
858** a no-op. If an error occurs, the appropriate error code is written
859** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000860*/
drh98add2e2009-07-20 17:11:49 +0000861static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000862 DbPage *pDbPage; /* The pointer map page */
863 u8 *pPtrmap; /* The pointer map data */
864 Pgno iPtrmap; /* The pointer map page number */
865 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000866 int rc; /* Return code from subfunctions */
867
868 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000869
drh1fee73e2007-08-29 04:00:57 +0000870 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000871 /* The master-journal page number must never be used as a pointer map page */
872 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
873
danielk1977ac11ee62005-01-15 12:45:51 +0000874 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000875 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000876 *pRC = SQLITE_CORRUPT_BKPT;
877 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000878 }
danielk1977266664d2006-02-10 08:24:21 +0000879 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000880 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000881 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000882 *pRC = rc;
883 return;
danielk1977afcdd022004-10-31 16:25:42 +0000884 }
danielk19778c666b12008-07-18 09:34:57 +0000885 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000886 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000887 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000888 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000889 }
drhfc243732011-05-17 15:21:56 +0000890 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000891 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000892
drh615ae552005-01-16 23:21:00 +0000893 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
894 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000895 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000896 if( rc==SQLITE_OK ){
897 pPtrmap[offset] = eType;
898 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000899 }
danielk1977afcdd022004-10-31 16:25:42 +0000900 }
901
drh4925a552009-07-07 11:39:58 +0000902ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000903 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000904}
905
906/*
907** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000908**
909** This routine retrieves the pointer map entry for page 'key', writing
910** the type and parent page number to *pEType and *pPgno respectively.
911** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000912*/
danielk1977aef0bf62005-12-30 16:28:01 +0000913static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000914 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000915 int iPtrmap; /* Pointer map page index */
916 u8 *pPtrmap; /* Pointer map page data */
917 int offset; /* Offset of entry in pointer map */
918 int rc;
919
drh1fee73e2007-08-29 04:00:57 +0000920 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000921
danielk1977266664d2006-02-10 08:24:21 +0000922 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000923 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000924 if( rc!=0 ){
925 return rc;
926 }
danielk19773b8a05f2007-03-19 17:44:26 +0000927 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000928
danielk19778c666b12008-07-18 09:34:57 +0000929 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000930 if( offset<0 ){
931 sqlite3PagerUnref(pDbPage);
932 return SQLITE_CORRUPT_BKPT;
933 }
934 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000935 assert( pEType!=0 );
936 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000937 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000938
danielk19773b8a05f2007-03-19 17:44:26 +0000939 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000940 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000941 return SQLITE_OK;
942}
943
danielk197785d90ca2008-07-19 14:25:15 +0000944#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000945 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000946 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000947 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000948#endif
danielk1977afcdd022004-10-31 16:25:42 +0000949
drh0d316a42002-08-11 20:10:47 +0000950/*
drh271efa52004-05-30 19:19:05 +0000951** Given a btree page and a cell index (0 means the first cell on
952** the page, 1 means the second cell, and so forth) return a pointer
953** to the cell content.
954**
955** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000956*/
drh1688c862008-07-18 02:44:17 +0000957#define findCell(P,I) \
drh3def2352011-11-11 00:27:15 +0000958 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +0000959#define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I)))))
960
drh43605152004-05-29 21:46:49 +0000961
962/*
drh93a960a2008-07-10 00:32:42 +0000963** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000964** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000965*/
966static u8 *findOverflowCell(MemPage *pPage, int iCell){
967 int i;
drh1fee73e2007-08-29 04:00:57 +0000968 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000969 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000970 int k;
drh2cbd78b2012-02-02 19:37:18 +0000971 k = pPage->aiOvfl[i];
drh6d08b4d2004-07-20 12:45:22 +0000972 if( k<=iCell ){
973 if( k==iCell ){
drh2cbd78b2012-02-02 19:37:18 +0000974 return pPage->apOvfl[i];
drh43605152004-05-29 21:46:49 +0000975 }
976 iCell--;
977 }
978 }
danielk19771cc5ed82007-05-16 17:28:43 +0000979 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000980}
981
982/*
983** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000984** are two versions of this function. btreeParseCell() takes a
985** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000986** takes a pointer to the body of the cell as its second argument.
drh43605152004-05-29 21:46:49 +0000987*/
danielk197730548662009-07-09 05:07:37 +0000988static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000989 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000990 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000991 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000992){
drh3e28ff52014-09-24 00:59:08 +0000993 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +0000994 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000995
drh1fee73e2007-08-29 04:00:57 +0000996 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +0000997 assert( pPage->leaf==0 || pPage->leaf==1 );
drh3e28ff52014-09-24 00:59:08 +0000998 if( pPage->intKeyLeaf ){
999 assert( pPage->childPtrSize==0 );
1000 pIter = pCell + getVarint32(pCell, nPayload);
drhab1cc582014-09-23 21:25:19 +00001001 pIter += getVarint(pIter, (u64*)&pInfo->nKey);
drh3e28ff52014-09-24 00:59:08 +00001002 }else if( pPage->noPayload ){
1003 assert( pPage->childPtrSize==4 );
1004 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1005 pInfo->nPayload = 0;
1006 pInfo->nLocal = 0;
1007 pInfo->iOverflow = 0;
1008 pInfo->pPayload = 0;
1009 return;
drh504b6982006-01-22 21:52:56 +00001010 }else{
drh3e28ff52014-09-24 00:59:08 +00001011 pIter = pCell + pPage->childPtrSize;
drhab1cc582014-09-23 21:25:19 +00001012 pIter += getVarint32(pIter, nPayload);
drh79df1f42008-07-18 00:57:33 +00001013 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +00001014 }
drh72365832007-03-06 15:53:44 +00001015 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001016 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001017 testcase( nPayload==pPage->maxLocal );
1018 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001019 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001020 /* This is the (easy) common case where the entire payload fits
1021 ** on the local page. No overflow is required.
1022 */
drhab1cc582014-09-23 21:25:19 +00001023 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1024 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001025 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001026 pInfo->iOverflow = 0;
drh6f11bef2004-05-13 01:12:56 +00001027 }else{
drh271efa52004-05-30 19:19:05 +00001028 /* If the payload will not fit completely on the local page, we have
1029 ** to decide how much to store locally and how much to spill onto
1030 ** overflow pages. The strategy is to minimize the amount of unused
1031 ** space on overflow pages while keeping the amount of local storage
1032 ** in between minLocal and maxLocal.
1033 **
1034 ** Warning: changing the way overflow payload is distributed in any
1035 ** way will result in an incompatible file format.
1036 */
1037 int minLocal; /* Minimum amount of payload held locally */
1038 int maxLocal; /* Maximum amount of payload held locally */
1039 int surplus; /* Overflow payload available for local storage */
1040
1041 minLocal = pPage->minLocal;
1042 maxLocal = pPage->maxLocal;
1043 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001044 testcase( surplus==maxLocal );
1045 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +00001046 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +00001047 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +00001048 }else{
drhf49661a2008-12-10 16:45:50 +00001049 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +00001050 }
drhab1cc582014-09-23 21:25:19 +00001051 pInfo->iOverflow = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell);
drh6f11bef2004-05-13 01:12:56 +00001052 pInfo->nSize = pInfo->iOverflow + 4;
1053 }
drh3aac2dd2004-04-26 14:10:20 +00001054}
danielk197730548662009-07-09 05:07:37 +00001055static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001056 MemPage *pPage, /* Page containing the cell */
1057 int iCell, /* The cell index. First cell is 0 */
1058 CellInfo *pInfo /* Fill in this structure */
1059){
drhc4683832014-09-23 23:12:53 +00001060 btreeParseCellPtr(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001061}
drh3aac2dd2004-04-26 14:10:20 +00001062
1063/*
drh43605152004-05-29 21:46:49 +00001064** Compute the total number of bytes that a Cell needs in the cell
1065** data area of the btree-page. The return number includes the cell
1066** data header and the local payload, but not any overflow page or
1067** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +00001068*/
danielk1977ae5558b2009-04-29 11:31:47 +00001069static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001070 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1071 u8 *pEnd; /* End mark for a varint */
1072 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001073
1074#ifdef SQLITE_DEBUG
1075 /* The value returned by this function should always be the same as
1076 ** the (CellInfo.nSize) value found by doing a full parse of the
1077 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1078 ** this function verifies that this invariant is not violated. */
1079 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +00001080 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001081#endif
1082
drh3e28ff52014-09-24 00:59:08 +00001083 if( pPage->noPayload ){
1084 pEnd = &pIter[9];
1085 while( (*pIter++)&0x80 && pIter<pEnd );
1086 assert( pPage->childPtrSize==4 );
1087 return (u16)(pIter - pCell);
drhdc41d602014-09-22 19:51:35 +00001088 }
drh3e28ff52014-09-24 00:59:08 +00001089 nSize = *pIter;
1090 if( nSize>=0x80 ){
1091 pEnd = &pIter[9];
1092 nSize &= 0x7f;
1093 do{
1094 nSize = (nSize<<7) | (*++pIter & 0x7f);
1095 }while( *(pIter)>=0x80 && pIter<pEnd );
1096 }
1097 pIter++;
drhdc41d602014-09-22 19:51:35 +00001098 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001099 /* pIter now points at the 64-bit integer key value, a variable length
1100 ** integer. The following block moves pIter to point at the first byte
1101 ** past the end of the key value. */
1102 pEnd = &pIter[9];
1103 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001104 }
drh0a45c272009-07-08 01:49:11 +00001105 testcase( nSize==pPage->maxLocal );
1106 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001107 if( nSize<=pPage->maxLocal ){
1108 nSize += (u32)(pIter - pCell);
1109 if( nSize<4 ) nSize = 4;
1110 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001111 int minLocal = pPage->minLocal;
1112 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001113 testcase( nSize==pPage->maxLocal );
1114 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001115 if( nSize>pPage->maxLocal ){
1116 nSize = minLocal;
1117 }
drh3e28ff52014-09-24 00:59:08 +00001118 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001119 }
drhdc41d602014-09-22 19:51:35 +00001120 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001121 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001122}
drh0ee3dbe2009-10-16 15:05:18 +00001123
1124#ifdef SQLITE_DEBUG
1125/* This variation on cellSizePtr() is used inside of assert() statements
1126** only. */
drha9121e42008-02-19 14:59:35 +00001127static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +00001128 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001129}
danielk1977bc6ada42004-06-30 08:20:16 +00001130#endif
drh3b7511c2001-05-26 13:15:44 +00001131
danielk197779a40da2005-01-16 08:00:01 +00001132#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001133/*
danielk197726836652005-01-17 01:33:13 +00001134** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001135** to an overflow page, insert an entry into the pointer-map
1136** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001137*/
drh98add2e2009-07-20 17:11:49 +00001138static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001139 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001140 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001141 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001142 btreeParseCellPtr(pPage, pCell, &info);
danielk19774dbaa892009-06-16 16:50:22 +00001143 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001144 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001145 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001146 }
danielk1977ac11ee62005-01-15 12:45:51 +00001147}
danielk197779a40da2005-01-16 08:00:01 +00001148#endif
1149
danielk1977ac11ee62005-01-15 12:45:51 +00001150
drhda200cc2004-05-09 11:51:38 +00001151/*
drh72f82862001-05-24 21:06:34 +00001152** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001153** end of the page and all free space is collected into one
1154** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001155** pointer array and the cell content area.
drhfdab0262014-11-20 15:30:50 +00001156**
1157** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1158** b-tree page so that there are no freeblocks or fragment bytes, all
1159** unused bytes are contained in the unallocated space region, and all
1160** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001161*/
shane0af3f892008-11-12 04:55:34 +00001162static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001163 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001164 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001165 int hdr; /* Offset to the page header */
1166 int size; /* Size of a cell */
1167 int usableSize; /* Number of usable bytes on a page */
1168 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001169 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001170 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001171 unsigned char *data; /* The page data */
1172 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001173 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001174 int iCellFirst; /* First allowable cell index */
1175 int iCellLast; /* Last possible cell index */
1176
drh2af926b2001-05-15 00:39:25 +00001177
danielk19773b8a05f2007-03-19 17:44:26 +00001178 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001179 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001180 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001181 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001182 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001183 temp = 0;
1184 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001185 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001186 cellOffset = pPage->cellOffset;
1187 nCell = pPage->nCell;
1188 assert( nCell==get2byte(&data[hdr+3]) );
1189 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001190 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001191 iCellFirst = cellOffset + 2*nCell;
1192 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001193 for(i=0; i<nCell; i++){
1194 u8 *pAddr; /* The i-th cell pointer */
1195 pAddr = &data[cellOffset + i*2];
1196 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001197 testcase( pc==iCellFirst );
1198 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001199#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001200 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001201 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1202 */
1203 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001204 return SQLITE_CORRUPT_BKPT;
1205 }
drh17146622009-07-07 17:38:38 +00001206#endif
1207 assert( pc>=iCellFirst && pc<=iCellLast );
drh588400b2014-09-27 05:00:25 +00001208 size = cellSizePtr(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001209 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001210#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1211 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001212 return SQLITE_CORRUPT_BKPT;
1213 }
drh17146622009-07-07 17:38:38 +00001214#else
1215 if( cbrk<iCellFirst || pc+size>usableSize ){
1216 return SQLITE_CORRUPT_BKPT;
1217 }
1218#endif
drh7157e1d2009-07-09 13:25:32 +00001219 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001220 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001221 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001222 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001223 if( temp==0 ){
1224 int x;
1225 if( cbrk==pc ) continue;
1226 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1227 x = get2byte(&data[hdr+5]);
1228 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1229 src = temp;
1230 }
1231 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001232 }
drh17146622009-07-07 17:38:38 +00001233 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001234 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001235 data[hdr+1] = 0;
1236 data[hdr+2] = 0;
1237 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001238 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001239 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001240 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001241 return SQLITE_CORRUPT_BKPT;
1242 }
shane0af3f892008-11-12 04:55:34 +00001243 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001244}
1245
drha059ad02001-04-17 20:09:11 +00001246/*
dan8e9ba0c2014-10-14 17:27:04 +00001247** Search the free-list on page pPg for space to store a cell nByte bytes in
1248** size. If one can be found, return a pointer to the space and remove it
1249** from the free-list.
1250**
1251** If no suitable space can be found on the free-list, return NULL.
1252**
drhba0f9992014-10-30 20:48:44 +00001253** This function may detect corruption within pPg. If corruption is
1254** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001255**
1256** If a slot of at least nByte bytes is found but cannot be used because
1257** there are already at least 60 fragmented bytes on the page, return NULL.
1258** In this case, if pbDefrag parameter is not NULL, set *pbDefrag to true.
dan8e9ba0c2014-10-14 17:27:04 +00001259*/
dan61e94c92014-10-27 08:02:16 +00001260static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc, int *pbDefrag){
dan8e9ba0c2014-10-14 17:27:04 +00001261 const int hdr = pPg->hdrOffset;
1262 u8 * const aData = pPg->aData;
1263 int iAddr;
1264 int pc;
1265 int usableSize = pPg->pBt->usableSize;
1266
1267 for(iAddr=hdr+1; (pc = get2byte(&aData[iAddr]))>0; iAddr=pc){
1268 int size; /* Size of the free slot */
drh113762a2014-11-19 16:36:25 +00001269 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
1270 ** increasing offset. */
dan8e9ba0c2014-10-14 17:27:04 +00001271 if( pc>usableSize-4 || pc<iAddr+4 ){
drhba0f9992014-10-30 20:48:44 +00001272 *pRc = SQLITE_CORRUPT_BKPT;
dan8e9ba0c2014-10-14 17:27:04 +00001273 return 0;
1274 }
drh113762a2014-11-19 16:36:25 +00001275 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1276 ** freeblock form a big-endian integer which is the size of the freeblock
1277 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001278 size = get2byte(&aData[pc+2]);
1279 if( size>=nByte ){
1280 int x = size - nByte;
1281 testcase( x==4 );
1282 testcase( x==3 );
1283 if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001284 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1285 ** number of bytes in fragments may not exceed 60. */
dan61e94c92014-10-27 08:02:16 +00001286 if( aData[hdr+7]>=60 ){
1287 if( pbDefrag ) *pbDefrag = 1;
1288 return 0;
1289 }
dan8e9ba0c2014-10-14 17:27:04 +00001290 /* Remove the slot from the free-list. Update the number of
1291 ** fragmented bytes within the page. */
1292 memcpy(&aData[iAddr], &aData[pc], 2);
1293 aData[hdr+7] += (u8)x;
1294 }else if( size+pc > usableSize ){
drhba0f9992014-10-30 20:48:44 +00001295 *pRc = SQLITE_CORRUPT_BKPT;
dan8e9ba0c2014-10-14 17:27:04 +00001296 return 0;
1297 }else{
1298 /* The slot remains on the free-list. Reduce its size to account
1299 ** for the portion used by the new allocation. */
1300 put2byte(&aData[pc+2], x);
1301 }
1302 return &aData[pc + x];
1303 }
1304 }
1305
1306 return 0;
1307}
1308
1309/*
danielk19776011a752009-04-01 16:25:32 +00001310** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001311** as the first argument. Write into *pIdx the index into pPage->aData[]
1312** of the first byte of allocated space. Return either SQLITE_OK or
1313** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001314**
drh0a45c272009-07-08 01:49:11 +00001315** The caller guarantees that there is sufficient space to make the
1316** allocation. This routine might need to defragment in order to bring
1317** all the space together, however. This routine will avoid using
1318** the first two bytes past the cell pointer area since presumably this
1319** allocation is being made in order to insert a new cell, so we will
1320** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001321*/
drh0a45c272009-07-08 01:49:11 +00001322static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001323 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1324 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001325 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001326 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001327 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001328
danielk19773b8a05f2007-03-19 17:44:26 +00001329 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001330 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001331 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001332 assert( nByte>=0 ); /* Minimum cell size is 4 */
1333 assert( pPage->nFree>=nByte );
1334 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001335 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001336
drh0a45c272009-07-08 01:49:11 +00001337 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1338 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001339 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001340 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1341 ** and the reserved space is zero (the usual value for reserved space)
1342 ** then the cell content offset of an empty page wants to be 65536.
1343 ** However, that integer is too large to be stored in a 2-byte unsigned
1344 ** integer, so a value of 0 is used in its place. */
1345 top = get2byteNotZero(&data[hdr+5]);
1346 if( gap>top ) return SQLITE_CORRUPT_BKPT;
drh4c04f3c2014-08-20 11:56:14 +00001347
1348 /* If there is enough space between gap and top for one more cell pointer
1349 ** array entry offset, and if the freelist is not empty, then search the
1350 ** freelist looking for a free slot big enough to satisfy the request.
1351 */
drh0a45c272009-07-08 01:49:11 +00001352 testcase( gap+2==top );
1353 testcase( gap+1==top );
1354 testcase( gap==top );
drh4c04f3c2014-08-20 11:56:14 +00001355 if( gap+2<=top && (data[hdr+1] || data[hdr+2]) ){
dan61e94c92014-10-27 08:02:16 +00001356 int bDefrag = 0;
1357 u8 *pSpace = pageFindSlot(pPage, nByte, &rc, &bDefrag);
dan8e9ba0c2014-10-14 17:27:04 +00001358 if( rc ) return rc;
dan61e94c92014-10-27 08:02:16 +00001359 if( bDefrag ) goto defragment_page;
dan8e9ba0c2014-10-14 17:27:04 +00001360 if( pSpace ){
drhfefa0942014-11-05 21:21:08 +00001361 assert( pSpace>=data && (pSpace - data)<65536 );
1362 *pIdx = (int)(pSpace - data);
dan8e9ba0c2014-10-14 17:27:04 +00001363 return SQLITE_OK;
drh9e572e62004-04-23 23:43:10 +00001364 }
1365 }
drh43605152004-05-29 21:46:49 +00001366
drh4c04f3c2014-08-20 11:56:14 +00001367 /* The request could not be fulfilled using a freelist slot. Check
1368 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001369 */
1370 testcase( gap+2+nByte==top );
1371 if( gap+2+nByte>top ){
dan61e94c92014-10-27 08:02:16 +00001372 defragment_page:
drh1fd2d7d2014-12-02 16:16:47 +00001373 assert( pPage->nCell>0 || CORRUPT_DB );
drh0a45c272009-07-08 01:49:11 +00001374 rc = defragmentPage(pPage);
1375 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001376 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001377 assert( gap+nByte<=top );
1378 }
1379
1380
drh43605152004-05-29 21:46:49 +00001381 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001382 ** and the cell content area. The btreeInitPage() call has already
1383 ** validated the freelist. Given that the freelist is valid, there
1384 ** is no way that the allocation can extend off the end of the page.
1385 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001386 */
drh0a45c272009-07-08 01:49:11 +00001387 top -= nByte;
drh43605152004-05-29 21:46:49 +00001388 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001389 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001390 *pIdx = top;
1391 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001392}
1393
1394/*
drh9e572e62004-04-23 23:43:10 +00001395** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001396** The first byte of the new free block is pPage->aData[iStart]
1397** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001398**
drh5f5c7532014-08-20 17:56:27 +00001399** Adjacent freeblocks are coalesced.
1400**
1401** Note that even though the freeblock list was checked by btreeInitPage(),
1402** that routine will not detect overlap between cells or freeblocks. Nor
1403** does it detect cells or freeblocks that encrouch into the reserved bytes
1404** at the end of the page. So do additional corruption checks inside this
1405** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001406*/
drh5f5c7532014-08-20 17:56:27 +00001407static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001408 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001409 u16 iFreeBlk; /* Address of the next freeblock */
1410 u8 hdr; /* Page header size. 0 or 100 */
1411 u8 nFrag = 0; /* Reduction in fragmentation */
1412 u16 iOrigSize = iSize; /* Original value of iSize */
1413 u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1414 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001415 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001416
drh9e572e62004-04-23 23:43:10 +00001417 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001418 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh7fb91642014-08-20 14:37:09 +00001419 assert( iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001420 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001421 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001422 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5f5c7532014-08-20 17:56:27 +00001423 assert( iStart<=iLast );
drh9e572e62004-04-23 23:43:10 +00001424
drh5f5c7532014-08-20 17:56:27 +00001425 /* Overwrite deleted information with zeros when the secure_delete
1426 ** option is enabled */
drhc9166342012-01-05 23:32:06 +00001427 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh7fb91642014-08-20 14:37:09 +00001428 memset(&data[iStart], 0, iSize);
drh5b47efa2010-02-12 18:18:39 +00001429 }
drhfcce93f2006-02-22 03:08:32 +00001430
drh5f5c7532014-08-20 17:56:27 +00001431 /* The list of freeblocks must be in ascending order. Find the
1432 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001433 */
drh43605152004-05-29 21:46:49 +00001434 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001435 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001436 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1437 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1438 }else{
1439 while( (iFreeBlk = get2byte(&data[iPtr]))>0 && iFreeBlk<iStart ){
1440 if( iFreeBlk<iPtr+4 ) return SQLITE_CORRUPT_BKPT;
1441 iPtr = iFreeBlk;
drh9e572e62004-04-23 23:43:10 +00001442 }
drh7bc4c452014-08-20 18:43:44 +00001443 if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT;
1444 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1445
1446 /* At this point:
1447 ** iFreeBlk: First freeblock after iStart, or zero if none
1448 ** iPtr: The address of a pointer iFreeBlk
1449 **
1450 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1451 */
1452 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1453 nFrag = iFreeBlk - iEnd;
1454 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
1455 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
1456 iSize = iEnd - iStart;
1457 iFreeBlk = get2byte(&data[iFreeBlk]);
1458 }
1459
drh3f387402014-09-24 01:23:00 +00001460 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1461 ** pointer in the page header) then check to see if iStart should be
1462 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001463 */
1464 if( iPtr>hdr+1 ){
1465 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1466 if( iPtrEnd+3>=iStart ){
1467 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
1468 nFrag += iStart - iPtrEnd;
1469 iSize = iEnd - iPtr;
1470 iStart = iPtr;
1471 }
1472 }
1473 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT;
1474 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001475 }
drh7bc4c452014-08-20 18:43:44 +00001476 if( iStart==get2byte(&data[hdr+5]) ){
drh5f5c7532014-08-20 17:56:27 +00001477 /* The new freeblock is at the beginning of the cell content area,
1478 ** so just extend the cell content area rather than create another
1479 ** freelist entry */
drh7bc4c452014-08-20 18:43:44 +00001480 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT;
drh5f5c7532014-08-20 17:56:27 +00001481 put2byte(&data[hdr+1], iFreeBlk);
1482 put2byte(&data[hdr+5], iEnd);
1483 }else{
1484 /* Insert the new freeblock into the freelist */
1485 put2byte(&data[iPtr], iStart);
1486 put2byte(&data[iStart], iFreeBlk);
1487 put2byte(&data[iStart+2], iSize);
drh4b70f112004-05-02 21:12:19 +00001488 }
drh5f5c7532014-08-20 17:56:27 +00001489 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001490 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001491}
1492
1493/*
drh271efa52004-05-30 19:19:05 +00001494** Decode the flags byte (the first byte of the header) for a page
1495** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001496**
1497** Only the following combinations are supported. Anything different
1498** indicates a corrupt database files:
1499**
1500** PTF_ZERODATA
1501** PTF_ZERODATA | PTF_LEAF
1502** PTF_LEAFDATA | PTF_INTKEY
1503** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001504*/
drh44845222008-07-17 18:39:57 +00001505static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001506 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001507
1508 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001509 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001510 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001511 flagByte &= ~PTF_LEAF;
1512 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001513 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001514 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drhfdab0262014-11-20 15:30:50 +00001515 /* EVIDENCE-OF: R-03640-13415 A value of 5 means the page is an interior
1516 ** table b-tree page. */
1517 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1518 /* EVIDENCE-OF: R-20501-61796 A value of 13 means the page is a leaf
1519 ** table b-tree page. */
1520 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001521 pPage->intKey = 1;
drh3e28ff52014-09-24 00:59:08 +00001522 pPage->intKeyLeaf = pPage->leaf;
1523 pPage->noPayload = !pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001524 pPage->maxLocal = pBt->maxLeaf;
1525 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001526 }else if( flagByte==PTF_ZERODATA ){
drhfdab0262014-11-20 15:30:50 +00001527 /* EVIDENCE-OF: R-27225-53936 A value of 2 means the page is an interior
1528 ** index b-tree page. */
1529 assert( (PTF_ZERODATA)==2 );
1530 /* EVIDENCE-OF: R-16571-11615 A value of 10 means the page is a leaf
1531 ** index b-tree page. */
1532 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001533 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001534 pPage->intKeyLeaf = 0;
1535 pPage->noPayload = 0;
drh271efa52004-05-30 19:19:05 +00001536 pPage->maxLocal = pBt->maxLocal;
1537 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001538 }else{
drhfdab0262014-11-20 15:30:50 +00001539 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1540 ** an error. */
drh44845222008-07-17 18:39:57 +00001541 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001542 }
drhc9166342012-01-05 23:32:06 +00001543 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001544 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001545}
1546
1547/*
drh7e3b0a02001-04-28 16:52:40 +00001548** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001549**
1550** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001551** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001552** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1553** guarantee that the page is well-formed. It only shows that
1554** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001555*/
danielk197730548662009-07-09 05:07:37 +00001556static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001557
danielk197771d5d2c2008-09-29 11:49:47 +00001558 assert( pPage->pBt!=0 );
1559 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001560 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001561 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1562 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001563
1564 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001565 u16 pc; /* Address of a freeblock within pPage->aData[] */
1566 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001567 u8 *data; /* Equal to pPage->aData */
1568 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001569 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001570 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001571 int nFree; /* Number of unused bytes on the page */
1572 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001573 int iCellFirst; /* First allowable cell or freeblock offset */
1574 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001575
1576 pBt = pPage->pBt;
1577
danielk1977eaa06f62008-09-18 17:34:44 +00001578 hdr = pPage->hdrOffset;
1579 data = pPage->aData;
drhfdab0262014-11-20 15:30:50 +00001580 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1581 ** the b-tree page type. */
danielk1977eaa06f62008-09-18 17:34:44 +00001582 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001583 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1584 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001585 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001586 usableSize = pBt->usableSize;
drhfdab0262014-11-20 15:30:50 +00001587 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
drh3def2352011-11-11 00:27:15 +00001588 pPage->aDataEnd = &data[usableSize];
1589 pPage->aCellIdx = &data[cellOffset];
drhfdab0262014-11-20 15:30:50 +00001590 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1591 ** the start of the cell content area. A zero value for this integer is
1592 ** interpreted as 65536. */
drh5d433ce2010-08-14 16:02:52 +00001593 top = get2byteNotZero(&data[hdr+5]);
drhfdab0262014-11-20 15:30:50 +00001594 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1595 ** number of cells on the page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001596 pPage->nCell = get2byte(&data[hdr+3]);
1597 if( pPage->nCell>MX_CELL(pBt) ){
1598 /* To many cells for a single page. The page must be corrupt */
1599 return SQLITE_CORRUPT_BKPT;
1600 }
drhb908d762009-07-08 16:54:40 +00001601 testcase( pPage->nCell==MX_CELL(pBt) );
drhfdab0262014-11-20 15:30:50 +00001602 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1603 ** possible for a root page of a table that contains no rows) then the
1604 ** offset to the cell content area will equal the page size minus the
1605 ** bytes of reserved space. */
1606 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
drh69e931e2009-06-03 21:04:35 +00001607
shane5eff7cf2009-08-10 03:57:58 +00001608 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001609 ** of page when parsing a cell.
1610 **
1611 ** The following block of code checks early to see if a cell extends
1612 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1613 ** returned if it does.
1614 */
drh0a45c272009-07-08 01:49:11 +00001615 iCellFirst = cellOffset + 2*pPage->nCell;
1616 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001617#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001618 {
drh69e931e2009-06-03 21:04:35 +00001619 int i; /* Index into the cell pointer array */
1620 int sz; /* Size of a cell */
1621
drh69e931e2009-06-03 21:04:35 +00001622 if( !pPage->leaf ) iCellLast--;
1623 for(i=0; i<pPage->nCell; i++){
1624 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001625 testcase( pc==iCellFirst );
1626 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001627 if( pc<iCellFirst || pc>iCellLast ){
1628 return SQLITE_CORRUPT_BKPT;
1629 }
1630 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001631 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001632 if( pc+sz>usableSize ){
1633 return SQLITE_CORRUPT_BKPT;
1634 }
1635 }
drh0a45c272009-07-08 01:49:11 +00001636 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001637 }
1638#endif
1639
drhfdab0262014-11-20 15:30:50 +00001640 /* Compute the total free space on the page
1641 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1642 ** start of the first freeblock on the page, or is zero if there are no
1643 ** freeblocks. */
danielk1977eaa06f62008-09-18 17:34:44 +00001644 pc = get2byte(&data[hdr+1]);
drhfdab0262014-11-20 15:30:50 +00001645 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
danielk1977eaa06f62008-09-18 17:34:44 +00001646 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001647 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001648 if( pc<iCellFirst || pc>iCellLast ){
drhfdab0262014-11-20 15:30:50 +00001649 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1650 ** always be at least one cell before the first freeblock.
1651 **
1652 ** Or, the freeblock is off the end of the page
1653 */
danielk1977eaa06f62008-09-18 17:34:44 +00001654 return SQLITE_CORRUPT_BKPT;
1655 }
1656 next = get2byte(&data[pc]);
1657 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001658 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1659 /* Free blocks must be in ascending order. And the last byte of
drhf2f105d2012-08-20 15:53:54 +00001660 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001661 return SQLITE_CORRUPT_BKPT;
1662 }
shane85095702009-06-15 16:27:08 +00001663 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001664 pc = next;
1665 }
danielk197793c829c2009-06-03 17:26:17 +00001666
1667 /* At this point, nFree contains the sum of the offset to the start
1668 ** of the cell-content area plus the number of free bytes within
1669 ** the cell-content area. If this is greater than the usable-size
1670 ** of the page, then the page must be corrupted. This check also
1671 ** serves to verify that the offset to the start of the cell-content
1672 ** area, according to the page header, lies within the page.
1673 */
1674 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001675 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001676 }
shane5eff7cf2009-08-10 03:57:58 +00001677 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001678 pPage->isInit = 1;
1679 }
drh9e572e62004-04-23 23:43:10 +00001680 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001681}
1682
1683/*
drh8b2f49b2001-06-08 00:21:52 +00001684** Set up a raw page so that it looks like a database page holding
1685** no entries.
drhbd03cae2001-06-02 02:40:57 +00001686*/
drh9e572e62004-04-23 23:43:10 +00001687static void zeroPage(MemPage *pPage, int flags){
1688 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001689 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001690 u8 hdr = pPage->hdrOffset;
1691 u16 first;
drh9e572e62004-04-23 23:43:10 +00001692
danielk19773b8a05f2007-03-19 17:44:26 +00001693 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001694 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1695 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001696 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001697 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001698 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001699 memset(&data[hdr], 0, pBt->usableSize - hdr);
1700 }
drh1bd10f82008-12-10 21:19:56 +00001701 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001702 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001703 memset(&data[hdr+1], 0, 4);
1704 data[hdr+7] = 0;
1705 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001706 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001707 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00001708 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001709 pPage->aDataEnd = &data[pBt->usableSize];
1710 pPage->aCellIdx = &data[first];
drh43605152004-05-29 21:46:49 +00001711 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001712 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1713 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001714 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001715 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001716}
1717
drh897a8202008-09-18 01:08:15 +00001718
1719/*
1720** Convert a DbPage obtained from the pager into a MemPage used by
1721** the btree layer.
1722*/
1723static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1724 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1725 pPage->aData = sqlite3PagerGetData(pDbPage);
1726 pPage->pDbPage = pDbPage;
1727 pPage->pBt = pBt;
1728 pPage->pgno = pgno;
1729 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1730 return pPage;
1731}
1732
drhbd03cae2001-06-02 02:40:57 +00001733/*
drh3aac2dd2004-04-26 14:10:20 +00001734** Get a page from the pager. Initialize the MemPage.pBt and
1735** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001736**
1737** If the noContent flag is set, it means that we do not care about
1738** the content of the page at this time. So do not go to the disk
1739** to fetch the content. Just fill in the content with zeros for now.
1740** If in the future we call sqlite3PagerWrite() on this page, that
1741** means we have started to be concerned about content and the disk
1742** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001743*/
danielk197730548662009-07-09 05:07:37 +00001744static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001745 BtShared *pBt, /* The btree */
1746 Pgno pgno, /* Number of the page to fetch */
1747 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00001748 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00001749){
drh3aac2dd2004-04-26 14:10:20 +00001750 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001751 DbPage *pDbPage;
1752
drhb00fc3b2013-08-21 23:42:32 +00001753 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00001754 assert( sqlite3_mutex_held(pBt->mutex) );
dan11dcd112013-03-15 18:29:18 +00001755 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00001756 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001757 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001758 return SQLITE_OK;
1759}
1760
1761/*
danielk1977bea2a942009-01-20 17:06:27 +00001762** Retrieve a page from the pager cache. If the requested page is not
1763** already in the pager cache return NULL. Initialize the MemPage.pBt and
1764** MemPage.aData elements if needed.
1765*/
1766static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1767 DbPage *pDbPage;
1768 assert( sqlite3_mutex_held(pBt->mutex) );
1769 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1770 if( pDbPage ){
1771 return btreePageFromDbPage(pDbPage, pgno, pBt);
1772 }
1773 return 0;
1774}
1775
1776/*
danielk197789d40042008-11-17 14:20:56 +00001777** Return the size of the database file in pages. If there is any kind of
1778** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001779*/
drhb1299152010-03-30 22:58:33 +00001780static Pgno btreePagecount(BtShared *pBt){
1781 return pBt->nPage;
1782}
1783u32 sqlite3BtreeLastPage(Btree *p){
1784 assert( sqlite3BtreeHoldsMutex(p) );
1785 assert( ((p->pBt->nPage)&0x8000000)==0 );
drheac5bd72014-07-25 21:35:39 +00001786 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001787}
1788
1789/*
danielk197789bc4bc2009-07-21 19:25:24 +00001790** Get a page from the pager and initialize it. This routine is just a
1791** convenience wrapper around separate calls to btreeGetPage() and
1792** btreeInitPage().
1793**
1794** If an error occurs, then the value *ppPage is set to is undefined. It
1795** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001796*/
1797static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00001798 BtShared *pBt, /* The database file */
1799 Pgno pgno, /* Number of the page to get */
1800 MemPage **ppPage, /* Write the page pointer here */
drhb00fc3b2013-08-21 23:42:32 +00001801 int bReadonly /* PAGER_GET_READONLY or 0 */
drhde647132004-05-07 17:57:49 +00001802){
1803 int rc;
drh1fee73e2007-08-29 04:00:57 +00001804 assert( sqlite3_mutex_held(pBt->mutex) );
drhb00fc3b2013-08-21 23:42:32 +00001805 assert( bReadonly==PAGER_GET_READONLY || bReadonly==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00001806
danba3cbf32010-06-30 04:29:03 +00001807 if( pgno>btreePagecount(pBt) ){
1808 rc = SQLITE_CORRUPT_BKPT;
1809 }else{
drhb00fc3b2013-08-21 23:42:32 +00001810 rc = btreeGetPage(pBt, pgno, ppPage, bReadonly);
drh29f2bad2013-12-09 01:04:54 +00001811 if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
danba3cbf32010-06-30 04:29:03 +00001812 rc = btreeInitPage(*ppPage);
1813 if( rc!=SQLITE_OK ){
1814 releasePage(*ppPage);
1815 }
danielk197789bc4bc2009-07-21 19:25:24 +00001816 }
drhee696e22004-08-30 16:52:17 +00001817 }
danba3cbf32010-06-30 04:29:03 +00001818
1819 testcase( pgno==0 );
1820 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00001821 return rc;
1822}
1823
1824/*
drh3aac2dd2004-04-26 14:10:20 +00001825** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001826** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001827*/
drh4b70f112004-05-02 21:12:19 +00001828static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001829 if( pPage ){
1830 assert( pPage->aData );
1831 assert( pPage->pBt );
drhda8a3302013-12-13 19:35:21 +00001832 assert( pPage->pDbPage!=0 );
drhbf4bca52007-09-06 22:19:14 +00001833 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1834 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001835 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda8a3302013-12-13 19:35:21 +00001836 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001837 }
1838}
1839
1840/*
drha6abd042004-06-09 17:37:22 +00001841** During a rollback, when the pager reloads information into the cache
1842** so that the cache is restored to its original state at the start of
1843** the transaction, for each page restored this routine is called.
1844**
1845** This routine needs to reset the extra data section at the end of the
1846** page to agree with the restored data.
1847*/
danielk1977eaa06f62008-09-18 17:34:44 +00001848static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001849 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001850 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001851 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001852 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001853 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001854 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001855 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001856 /* pPage might not be a btree page; it might be an overflow page
1857 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001858 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001859 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001860 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001861 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001862 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001863 }
drha6abd042004-06-09 17:37:22 +00001864 }
1865}
1866
1867/*
drhe5fe6902007-12-07 18:55:28 +00001868** Invoke the busy handler for a btree.
1869*/
danielk19771ceedd32008-11-19 10:22:33 +00001870static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001871 BtShared *pBt = (BtShared*)pArg;
1872 assert( pBt->db );
1873 assert( sqlite3_mutex_held(pBt->db->mutex) );
1874 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1875}
1876
1877/*
drhad3e0102004-09-03 23:32:18 +00001878** Open a database file.
1879**
drh382c0242001-10-06 16:33:02 +00001880** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00001881** then an ephemeral database is created. The ephemeral database might
1882** be exclusively in memory, or it might use a disk-based memory cache.
1883** Either way, the ephemeral database will be automatically deleted
1884** when sqlite3BtreeClose() is called.
1885**
drhe53831d2007-08-17 01:14:38 +00001886** If zFilename is ":memory:" then an in-memory database is created
1887** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001888**
drh33f111d2012-01-17 15:29:14 +00001889** The "flags" parameter is a bitmask that might contain bits like
1890** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00001891**
drhc47fd8e2009-04-30 13:30:32 +00001892** If the database is already opened in the same database connection
1893** and we are in shared cache mode, then the open will fail with an
1894** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1895** objects in the same database connection since doing so will lead
1896** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001897*/
drh23e11ca2004-05-04 17:27:28 +00001898int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00001899 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00001900 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001901 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001902 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001903 int flags, /* Options */
1904 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001905){
drh7555d8e2009-03-20 13:15:30 +00001906 BtShared *pBt = 0; /* Shared part of btree structure */
1907 Btree *p; /* Handle to return */
1908 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1909 int rc = SQLITE_OK; /* Result code from this function */
1910 u8 nReserve; /* Byte of unused space on each page */
1911 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001912
drh75c014c2010-08-30 15:02:28 +00001913 /* True if opening an ephemeral, temporary database */
1914 const int isTempDb = zFilename==0 || zFilename[0]==0;
1915
danielk1977aef0bf62005-12-30 16:28:01 +00001916 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00001917 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00001918 */
drhb0a7c9c2010-12-06 21:09:59 +00001919#ifdef SQLITE_OMIT_MEMORYDB
1920 const int isMemdb = 0;
1921#else
1922 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00001923 || (isTempDb && sqlite3TempInMemory(db))
1924 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00001925#endif
1926
drhe5fe6902007-12-07 18:55:28 +00001927 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00001928 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00001929 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00001930 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
1931
1932 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
1933 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
1934
1935 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
1936 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00001937
drh75c014c2010-08-30 15:02:28 +00001938 if( isMemdb ){
1939 flags |= BTREE_MEMORY;
1940 }
1941 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
1942 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
1943 }
drh17435752007-08-16 04:30:38 +00001944 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001945 if( !p ){
1946 return SQLITE_NOMEM;
1947 }
1948 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001949 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001950#ifndef SQLITE_OMIT_SHARED_CACHE
1951 p->lock.pBtree = p;
1952 p->lock.iTable = 1;
1953#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001954
drh198bf392006-01-06 21:52:49 +00001955#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001956 /*
1957 ** If this Btree is a candidate for shared cache, try to find an
1958 ** existing BtShared object that we can share with
1959 */
drh4ab9d252012-05-26 20:08:49 +00001960 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00001961 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00001962 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00001963 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00001964 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00001965 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00001966
drhff0587c2007-08-29 17:43:19 +00001967 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00001968 if( !zFullPathname ){
1969 sqlite3_free(p);
1970 return SQLITE_NOMEM;
1971 }
drhafc8b7f2012-05-26 18:06:38 +00001972 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00001973 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00001974 }else{
1975 rc = sqlite3OsFullPathname(pVfs, zFilename,
1976 nFullPathname, zFullPathname);
1977 if( rc ){
1978 sqlite3_free(zFullPathname);
1979 sqlite3_free(p);
1980 return rc;
1981 }
drh070ad6b2011-11-17 11:43:19 +00001982 }
drh30ddce62011-10-15 00:16:30 +00001983#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00001984 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1985 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001986 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001987 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00001988#endif
drh78f82d12008-09-02 00:52:52 +00001989 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001990 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00001991 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00001992 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001993 int iDb;
1994 for(iDb=db->nDb-1; iDb>=0; iDb--){
1995 Btree *pExisting = db->aDb[iDb].pBt;
1996 if( pExisting && pExisting->pBt==pBt ){
1997 sqlite3_mutex_leave(mutexShared);
1998 sqlite3_mutex_leave(mutexOpen);
1999 sqlite3_free(zFullPathname);
2000 sqlite3_free(p);
2001 return SQLITE_CONSTRAINT;
2002 }
2003 }
drhff0587c2007-08-29 17:43:19 +00002004 p->pBt = pBt;
2005 pBt->nRef++;
2006 break;
2007 }
2008 }
2009 sqlite3_mutex_leave(mutexShared);
2010 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002011 }
drhff0587c2007-08-29 17:43:19 +00002012#ifdef SQLITE_DEBUG
2013 else{
2014 /* In debug mode, we mark all persistent databases as sharable
2015 ** even when they are not. This exercises the locking code and
2016 ** gives more opportunity for asserts(sqlite3_mutex_held())
2017 ** statements to find locking problems.
2018 */
2019 p->sharable = 1;
2020 }
2021#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002022 }
2023#endif
drha059ad02001-04-17 20:09:11 +00002024 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002025 /*
2026 ** The following asserts make sure that structures used by the btree are
2027 ** the right size. This is to guard against size changes that result
2028 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002029 */
drh062cf272015-03-23 19:03:51 +00002030 assert( sizeof(i64)==8 );
2031 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002032 assert( sizeof(u32)==4 );
2033 assert( sizeof(u16)==2 );
2034 assert( sizeof(Pgno)==4 );
2035
2036 pBt = sqlite3MallocZero( sizeof(*pBt) );
2037 if( pBt==0 ){
2038 rc = SQLITE_NOMEM;
2039 goto btree_open_out;
2040 }
danielk197771d5d2c2008-09-29 11:49:47 +00002041 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00002042 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002043 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002044 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002045 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2046 }
2047 if( rc!=SQLITE_OK ){
2048 goto btree_open_out;
2049 }
shanehbd2aaf92010-09-01 02:38:21 +00002050 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002051 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00002052 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002053 p->pBt = pBt;
2054
drhe53831d2007-08-17 01:14:38 +00002055 pBt->pCursor = 0;
2056 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002057 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00002058#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00002059 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002060#endif
drh113762a2014-11-19 16:36:25 +00002061 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2062 ** determined by the 2-byte integer located at an offset of 16 bytes from
2063 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002064 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002065 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2066 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002067 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002068#ifndef SQLITE_OMIT_AUTOVACUUM
2069 /* If the magic name ":memory:" will create an in-memory database, then
2070 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2071 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2072 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2073 ** regular file-name. In this case the auto-vacuum applies as per normal.
2074 */
2075 if( zFilename && !isMemdb ){
2076 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2077 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2078 }
2079#endif
2080 nReserve = 0;
2081 }else{
drh113762a2014-11-19 16:36:25 +00002082 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2083 ** determined by the one-byte unsigned integer found at an offset of 20
2084 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002085 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002086 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002087#ifndef SQLITE_OMIT_AUTOVACUUM
2088 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2089 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2090#endif
2091 }
drhfa9601a2009-06-18 17:22:39 +00002092 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002093 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002094 pBt->usableSize = pBt->pageSize - nReserve;
2095 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002096
2097#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2098 /* Add the new BtShared object to the linked list sharable BtShareds.
2099 */
2100 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002101 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00002102 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00002103 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002104 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002105 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002106 if( pBt->mutex==0 ){
2107 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00002108 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00002109 goto btree_open_out;
2110 }
drhff0587c2007-08-29 17:43:19 +00002111 }
drhe53831d2007-08-17 01:14:38 +00002112 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002113 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2114 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002115 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002116 }
drheee46cf2004-11-06 00:02:48 +00002117#endif
drh90f5ecb2004-07-22 01:19:35 +00002118 }
danielk1977aef0bf62005-12-30 16:28:01 +00002119
drhcfed7bc2006-03-13 14:28:05 +00002120#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002121 /* If the new Btree uses a sharable pBtShared, then link the new
2122 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002123 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002124 */
drhe53831d2007-08-17 01:14:38 +00002125 if( p->sharable ){
2126 int i;
2127 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002128 for(i=0; i<db->nDb; i++){
2129 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002130 while( pSib->pPrev ){ pSib = pSib->pPrev; }
2131 if( p->pBt<pSib->pBt ){
2132 p->pNext = pSib;
2133 p->pPrev = 0;
2134 pSib->pPrev = p;
2135 }else{
drhabddb0c2007-08-20 13:14:28 +00002136 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002137 pSib = pSib->pNext;
2138 }
2139 p->pNext = pSib->pNext;
2140 p->pPrev = pSib;
2141 if( p->pNext ){
2142 p->pNext->pPrev = p;
2143 }
2144 pSib->pNext = p;
2145 }
2146 break;
2147 }
2148 }
danielk1977aef0bf62005-12-30 16:28:01 +00002149 }
danielk1977aef0bf62005-12-30 16:28:01 +00002150#endif
2151 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002152
2153btree_open_out:
2154 if( rc!=SQLITE_OK ){
2155 if( pBt && pBt->pPager ){
2156 sqlite3PagerClose(pBt->pPager);
2157 }
drh17435752007-08-16 04:30:38 +00002158 sqlite3_free(pBt);
2159 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002160 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002161 }else{
2162 /* If the B-Tree was successfully opened, set the pager-cache size to the
2163 ** default value. Except, when opening on an existing shared pager-cache,
2164 ** do not change the pager-cache size.
2165 */
2166 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2167 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2168 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002169 }
drh7555d8e2009-03-20 13:15:30 +00002170 if( mutexOpen ){
2171 assert( sqlite3_mutex_held(mutexOpen) );
2172 sqlite3_mutex_leave(mutexOpen);
2173 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002174 return rc;
drha059ad02001-04-17 20:09:11 +00002175}
2176
2177/*
drhe53831d2007-08-17 01:14:38 +00002178** Decrement the BtShared.nRef counter. When it reaches zero,
2179** remove the BtShared structure from the sharing list. Return
2180** true if the BtShared.nRef counter reaches zero and return
2181** false if it is still positive.
2182*/
2183static int removeFromSharingList(BtShared *pBt){
2184#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002185 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002186 BtShared *pList;
2187 int removed = 0;
2188
drhd677b3d2007-08-20 22:48:41 +00002189 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002190 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002191 sqlite3_mutex_enter(pMaster);
2192 pBt->nRef--;
2193 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002194 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2195 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002196 }else{
drh78f82d12008-09-02 00:52:52 +00002197 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002198 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002199 pList=pList->pNext;
2200 }
drh34004ce2008-07-11 16:15:17 +00002201 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002202 pList->pNext = pBt->pNext;
2203 }
2204 }
drh3285db22007-09-03 22:00:39 +00002205 if( SQLITE_THREADSAFE ){
2206 sqlite3_mutex_free(pBt->mutex);
2207 }
drhe53831d2007-08-17 01:14:38 +00002208 removed = 1;
2209 }
2210 sqlite3_mutex_leave(pMaster);
2211 return removed;
2212#else
2213 return 1;
2214#endif
2215}
2216
2217/*
drhf7141992008-06-19 00:16:08 +00002218** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002219** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2220** pointer.
drhf7141992008-06-19 00:16:08 +00002221*/
2222static void allocateTempSpace(BtShared *pBt){
2223 if( !pBt->pTmpSpace ){
2224 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002225
2226 /* One of the uses of pBt->pTmpSpace is to format cells before
2227 ** inserting them into a leaf page (function fillInCell()). If
2228 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2229 ** by the various routines that manipulate binary cells. Which
2230 ** can mean that fillInCell() only initializes the first 2 or 3
2231 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2232 ** it into a database page. This is not actually a problem, but it
2233 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2234 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002235 ** zero the first 4 bytes of temp space here.
2236 **
2237 ** Also: Provide four bytes of initialized space before the
2238 ** beginning of pTmpSpace as an area available to prepend the
2239 ** left-child pointer to the beginning of a cell.
2240 */
2241 if( pBt->pTmpSpace ){
2242 memset(pBt->pTmpSpace, 0, 8);
2243 pBt->pTmpSpace += 4;
2244 }
drhf7141992008-06-19 00:16:08 +00002245 }
2246}
2247
2248/*
2249** Free the pBt->pTmpSpace allocation
2250*/
2251static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002252 if( pBt->pTmpSpace ){
2253 pBt->pTmpSpace -= 4;
2254 sqlite3PageFree(pBt->pTmpSpace);
2255 pBt->pTmpSpace = 0;
2256 }
drhf7141992008-06-19 00:16:08 +00002257}
2258
2259/*
drha059ad02001-04-17 20:09:11 +00002260** Close an open database and invalidate all cursors.
2261*/
danielk1977aef0bf62005-12-30 16:28:01 +00002262int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002263 BtShared *pBt = p->pBt;
2264 BtCursor *pCur;
2265
danielk1977aef0bf62005-12-30 16:28:01 +00002266 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002267 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002268 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002269 pCur = pBt->pCursor;
2270 while( pCur ){
2271 BtCursor *pTmp = pCur;
2272 pCur = pCur->pNext;
2273 if( pTmp->pBtree==p ){
2274 sqlite3BtreeCloseCursor(pTmp);
2275 }
drha059ad02001-04-17 20:09:11 +00002276 }
danielk1977aef0bf62005-12-30 16:28:01 +00002277
danielk19778d34dfd2006-01-24 16:37:57 +00002278 /* Rollback any active transaction and free the handle structure.
2279 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2280 ** this handle.
2281 */
drh47b7fc72014-11-11 01:33:57 +00002282 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002283 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002284
danielk1977aef0bf62005-12-30 16:28:01 +00002285 /* If there are still other outstanding references to the shared-btree
2286 ** structure, return now. The remainder of this procedure cleans
2287 ** up the shared-btree.
2288 */
drhe53831d2007-08-17 01:14:38 +00002289 assert( p->wantToLock==0 && p->locked==0 );
2290 if( !p->sharable || removeFromSharingList(pBt) ){
2291 /* The pBt is no longer on the sharing list, so we can access
2292 ** it without having to hold the mutex.
2293 **
2294 ** Clean out and delete the BtShared object.
2295 */
2296 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002297 sqlite3PagerClose(pBt->pPager);
2298 if( pBt->xFreeSchema && pBt->pSchema ){
2299 pBt->xFreeSchema(pBt->pSchema);
2300 }
drhb9755982010-07-24 16:34:37 +00002301 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002302 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002303 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002304 }
2305
drhe53831d2007-08-17 01:14:38 +00002306#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002307 assert( p->wantToLock==0 );
2308 assert( p->locked==0 );
2309 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2310 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002311#endif
2312
drhe53831d2007-08-17 01:14:38 +00002313 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002314 return SQLITE_OK;
2315}
2316
2317/*
drhda47d772002-12-02 04:25:19 +00002318** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002319**
2320** The maximum number of cache pages is set to the absolute
2321** value of mxPage. If mxPage is negative, the pager will
2322** operate asynchronously - it will not stop to do fsync()s
2323** to insure data is written to the disk surface before
2324** continuing. Transactions still work if synchronous is off,
2325** and the database cannot be corrupted if this program
2326** crashes. But if the operating system crashes or there is
2327** an abrupt power failure when synchronous is off, the database
2328** could be left in an inconsistent and unrecoverable state.
2329** Synchronous is on by default so database corruption is not
2330** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002331*/
danielk1977aef0bf62005-12-30 16:28:01 +00002332int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2333 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002334 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002335 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002336 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002337 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002338 return SQLITE_OK;
2339}
2340
drh18c7e402014-03-14 11:46:10 +00002341#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002342/*
dan5d8a1372013-03-19 19:28:06 +00002343** Change the limit on the amount of the database file that may be
2344** memory mapped.
2345*/
drh9b4c59f2013-04-15 17:03:42 +00002346int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002347 BtShared *pBt = p->pBt;
2348 assert( sqlite3_mutex_held(p->db->mutex) );
2349 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002350 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002351 sqlite3BtreeLeave(p);
2352 return SQLITE_OK;
2353}
drh18c7e402014-03-14 11:46:10 +00002354#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002355
2356/*
drh973b6e32003-02-12 14:09:42 +00002357** Change the way data is synced to disk in order to increase or decrease
2358** how well the database resists damage due to OS crashes and power
2359** failures. Level 1 is the same as asynchronous (no syncs() occur and
2360** there is a high probability of damage) Level 2 is the default. There
2361** is a very low but non-zero probability of damage. Level 3 reduces the
2362** probability of damage to near zero but with a write performance reduction.
2363*/
danielk197793758c82005-01-21 08:13:14 +00002364#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002365int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002366 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002367 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002368){
danielk1977aef0bf62005-12-30 16:28:01 +00002369 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002370 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002371 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002372 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002373 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002374 return SQLITE_OK;
2375}
danielk197793758c82005-01-21 08:13:14 +00002376#endif
drh973b6e32003-02-12 14:09:42 +00002377
drh2c8997b2005-08-27 16:36:48 +00002378/*
2379** Return TRUE if the given btree is set to safety level 1. In other
2380** words, return TRUE if no sync() occurs on the disk files.
2381*/
danielk1977aef0bf62005-12-30 16:28:01 +00002382int sqlite3BtreeSyncDisabled(Btree *p){
2383 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002384 int rc;
drhe5fe6902007-12-07 18:55:28 +00002385 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002386 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002387 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002388 rc = sqlite3PagerNosync(pBt->pPager);
2389 sqlite3BtreeLeave(p);
2390 return rc;
drh2c8997b2005-08-27 16:36:48 +00002391}
2392
drh973b6e32003-02-12 14:09:42 +00002393/*
drh90f5ecb2004-07-22 01:19:35 +00002394** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002395** Or, if the page size has already been fixed, return SQLITE_READONLY
2396** without changing anything.
drh06f50212004-11-02 14:24:33 +00002397**
2398** The page size must be a power of 2 between 512 and 65536. If the page
2399** size supplied does not meet this constraint then the page size is not
2400** changed.
2401**
2402** Page sizes are constrained to be a power of two so that the region
2403** of the database file used for locking (beginning at PENDING_BYTE,
2404** the first byte past the 1GB boundary, 0x40000000) needs to occur
2405** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002406**
2407** If parameter nReserve is less than zero, then the number of reserved
2408** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002409**
drhc9166342012-01-05 23:32:06 +00002410** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002411** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002412*/
drhce4869f2009-04-02 20:16:58 +00002413int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002414 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002415 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002416 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002417 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002418#if SQLITE_HAS_CODEC
2419 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2420#endif
drhc9166342012-01-05 23:32:06 +00002421 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002422 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002423 return SQLITE_READONLY;
2424 }
2425 if( nReserve<0 ){
2426 nReserve = pBt->pageSize - pBt->usableSize;
2427 }
drhf49661a2008-12-10 16:45:50 +00002428 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002429 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2430 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002431 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002432 assert( !pBt->pPage1 && !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002433 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002434 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002435 }
drhfa9601a2009-06-18 17:22:39 +00002436 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002437 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002438 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002439 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002440 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002441}
2442
2443/*
2444** Return the currently defined page size
2445*/
danielk1977aef0bf62005-12-30 16:28:01 +00002446int sqlite3BtreeGetPageSize(Btree *p){
2447 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002448}
drh7f751222009-03-17 22:33:00 +00002449
dan0094f372012-09-28 20:23:42 +00002450/*
2451** This function is similar to sqlite3BtreeGetReserve(), except that it
2452** may only be called if it is guaranteed that the b-tree mutex is already
2453** held.
2454**
2455** This is useful in one special case in the backup API code where it is
2456** known that the shared b-tree mutex is held, but the mutex on the
2457** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2458** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002459** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002460*/
2461int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002462 int n;
dan0094f372012-09-28 20:23:42 +00002463 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002464 n = p->pBt->pageSize - p->pBt->usableSize;
2465 return n;
dan0094f372012-09-28 20:23:42 +00002466}
2467
drh7f751222009-03-17 22:33:00 +00002468/*
2469** Return the number of bytes of space at the end of every page that
2470** are intentually left unused. This is the "reserved" space that is
2471** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002472**
2473** If SQLITE_HAS_MUTEX is defined then the number returned is the
2474** greater of the current reserved space and the maximum requested
2475** reserve space.
drh7f751222009-03-17 22:33:00 +00002476*/
drhad0961b2015-02-21 00:19:25 +00002477int sqlite3BtreeGetOptimalReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002478 int n;
2479 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002480 n = sqlite3BtreeGetReserveNoMutex(p);
2481#ifdef SQLITE_HAS_CODEC
2482 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2483#endif
drhd677b3d2007-08-20 22:48:41 +00002484 sqlite3BtreeLeave(p);
2485 return n;
drh2011d5f2004-07-22 02:40:37 +00002486}
drhf8e632b2007-05-08 14:51:36 +00002487
drhad0961b2015-02-21 00:19:25 +00002488
drhf8e632b2007-05-08 14:51:36 +00002489/*
2490** Set the maximum page count for a database if mxPage is positive.
2491** No changes are made if mxPage is 0 or negative.
2492** Regardless of the value of mxPage, return the maximum page count.
2493*/
2494int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002495 int n;
2496 sqlite3BtreeEnter(p);
2497 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2498 sqlite3BtreeLeave(p);
2499 return n;
drhf8e632b2007-05-08 14:51:36 +00002500}
drh5b47efa2010-02-12 18:18:39 +00002501
2502/*
drhc9166342012-01-05 23:32:06 +00002503** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2504** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002505** setting after the change.
2506*/
2507int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2508 int b;
drhaf034ed2010-02-12 19:46:26 +00002509 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002510 sqlite3BtreeEnter(p);
2511 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002512 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2513 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002514 }
drhc9166342012-01-05 23:32:06 +00002515 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002516 sqlite3BtreeLeave(p);
2517 return b;
2518}
drh90f5ecb2004-07-22 01:19:35 +00002519
2520/*
danielk1977951af802004-11-05 15:45:09 +00002521** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2522** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2523** is disabled. The default value for the auto-vacuum property is
2524** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2525*/
danielk1977aef0bf62005-12-30 16:28:01 +00002526int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002527#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002528 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002529#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002530 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002531 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002532 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002533
2534 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002535 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002536 rc = SQLITE_READONLY;
2537 }else{
drh076d4662009-02-18 20:31:18 +00002538 pBt->autoVacuum = av ?1:0;
2539 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002540 }
drhd677b3d2007-08-20 22:48:41 +00002541 sqlite3BtreeLeave(p);
2542 return rc;
danielk1977951af802004-11-05 15:45:09 +00002543#endif
2544}
2545
2546/*
2547** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2548** enabled 1 is returned. Otherwise 0.
2549*/
danielk1977aef0bf62005-12-30 16:28:01 +00002550int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002551#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002552 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002553#else
drhd677b3d2007-08-20 22:48:41 +00002554 int rc;
2555 sqlite3BtreeEnter(p);
2556 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002557 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2558 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2559 BTREE_AUTOVACUUM_INCR
2560 );
drhd677b3d2007-08-20 22:48:41 +00002561 sqlite3BtreeLeave(p);
2562 return rc;
danielk1977951af802004-11-05 15:45:09 +00002563#endif
2564}
2565
2566
2567/*
drha34b6762004-05-07 13:30:42 +00002568** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002569** also acquire a readlock on that file.
2570**
2571** SQLITE_OK is returned on success. If the file is not a
2572** well-formed database file, then SQLITE_CORRUPT is returned.
2573** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002574** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002575*/
danielk1977aef0bf62005-12-30 16:28:01 +00002576static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002577 int rc; /* Result code from subfunctions */
2578 MemPage *pPage1; /* Page 1 of the database file */
2579 int nPage; /* Number of pages in the database */
2580 int nPageFile = 0; /* Number of pages in the database file */
2581 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002582
drh1fee73e2007-08-29 04:00:57 +00002583 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002584 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002585 rc = sqlite3PagerSharedLock(pBt->pPager);
2586 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002587 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002588 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002589
2590 /* Do some checking to help insure the file we opened really is
2591 ** a valid database file.
2592 */
drhc2a4bab2010-04-02 12:46:45 +00002593 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002594 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002595 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002596 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002597 }
2598 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002599 u32 pageSize;
2600 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002601 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002602 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00002603 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
2604 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
2605 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00002606 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002607 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002608 }
dan5cf53532010-05-01 16:40:20 +00002609
2610#ifdef SQLITE_OMIT_WAL
2611 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002612 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002613 }
2614 if( page1[19]>1 ){
2615 goto page1_init_failed;
2616 }
2617#else
dane04dc882010-04-20 18:53:15 +00002618 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002619 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002620 }
dane04dc882010-04-20 18:53:15 +00002621 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002622 goto page1_init_failed;
2623 }
drhe5ae5732008-06-15 02:51:47 +00002624
dana470aeb2010-04-21 11:43:38 +00002625 /* If the write version is set to 2, this database should be accessed
2626 ** in WAL mode. If the log is not already open, open it now. Then
2627 ** return SQLITE_OK and return without populating BtShared.pPage1.
2628 ** The caller detects this and calls this function again. This is
2629 ** required as the version of page 1 currently in the page1 buffer
2630 ** may not be the latest version - there may be a newer one in the log
2631 ** file.
2632 */
drhc9166342012-01-05 23:32:06 +00002633 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002634 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002635 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002636 if( rc!=SQLITE_OK ){
2637 goto page1_init_failed;
2638 }else if( isOpen==0 ){
2639 releasePage(pPage1);
2640 return SQLITE_OK;
2641 }
dan8b5444b2010-04-27 14:37:47 +00002642 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002643 }
dan5cf53532010-05-01 16:40:20 +00002644#endif
dane04dc882010-04-20 18:53:15 +00002645
drh113762a2014-11-19 16:36:25 +00002646 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
2647 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
2648 **
drhe5ae5732008-06-15 02:51:47 +00002649 ** The original design allowed these amounts to vary, but as of
2650 ** version 3.6.0, we require them to be fixed.
2651 */
2652 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2653 goto page1_init_failed;
2654 }
drh113762a2014-11-19 16:36:25 +00002655 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2656 ** determined by the 2-byte integer located at an offset of 16 bytes from
2657 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002658 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00002659 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
2660 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00002661 if( ((pageSize-1)&pageSize)!=0
2662 || pageSize>SQLITE_MAX_PAGE_SIZE
2663 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002664 ){
drh07d183d2005-05-01 22:52:42 +00002665 goto page1_init_failed;
2666 }
2667 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00002668 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
2669 ** integer at offset 20 is the number of bytes of space at the end of
2670 ** each page to reserve for extensions.
2671 **
2672 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2673 ** determined by the one-byte unsigned integer found at an offset of 20
2674 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00002675 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002676 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002677 /* After reading the first page of the database assuming a page size
2678 ** of BtShared.pageSize, we have discovered that the page-size is
2679 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2680 ** zero and return SQLITE_OK. The caller will call this function
2681 ** again with the correct page-size.
2682 */
2683 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002684 pBt->usableSize = usableSize;
2685 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002686 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002687 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2688 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002689 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002690 }
danecac6702011-02-09 18:19:20 +00002691 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002692 rc = SQLITE_CORRUPT_BKPT;
2693 goto page1_init_failed;
2694 }
drh113762a2014-11-19 16:36:25 +00002695 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
2696 ** be less than 480. In other words, if the page size is 512, then the
2697 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00002698 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002699 goto page1_init_failed;
2700 }
drh43b18e12010-08-17 19:40:08 +00002701 pBt->pageSize = pageSize;
2702 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002703#ifndef SQLITE_OMIT_AUTOVACUUM
2704 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002705 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002706#endif
drh306dc212001-05-21 13:45:10 +00002707 }
drhb6f41482004-05-14 01:58:11 +00002708
2709 /* maxLocal is the maximum amount of payload to store locally for
2710 ** a cell. Make sure it is small enough so that at least minFanout
2711 ** cells can will fit on one page. We assume a 10-byte page header.
2712 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002713 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002714 ** 4-byte child pointer
2715 ** 9-byte nKey value
2716 ** 4-byte nData value
2717 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002718 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002719 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2720 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002721 */
shaneh1df2db72010-08-18 02:28:48 +00002722 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2723 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2724 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2725 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002726 if( pBt->maxLocal>127 ){
2727 pBt->max1bytePayload = 127;
2728 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002729 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002730 }
drh2e38c322004-09-03 18:38:44 +00002731 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002732 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002733 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002734 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002735
drh72f82862001-05-24 21:06:34 +00002736page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002737 releasePage(pPage1);
2738 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002739 return rc;
drh306dc212001-05-21 13:45:10 +00002740}
2741
drh85ec3b62013-05-14 23:12:06 +00002742#ifndef NDEBUG
2743/*
2744** Return the number of cursors open on pBt. This is for use
2745** in assert() expressions, so it is only compiled if NDEBUG is not
2746** defined.
2747**
2748** Only write cursors are counted if wrOnly is true. If wrOnly is
2749** false then all cursors are counted.
2750**
2751** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00002752** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00002753** have been tripped into the CURSOR_FAULT state are not counted.
2754*/
2755static int countValidCursors(BtShared *pBt, int wrOnly){
2756 BtCursor *pCur;
2757 int r = 0;
2758 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00002759 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
2760 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00002761 }
2762 return r;
2763}
2764#endif
2765
drh306dc212001-05-21 13:45:10 +00002766/*
drhb8ca3072001-12-05 00:21:20 +00002767** If there are no outstanding cursors and we are not in the middle
2768** of a transaction but there is a read lock on the database, then
2769** this routine unrefs the first page of the database file which
2770** has the effect of releasing the read lock.
2771**
drhb8ca3072001-12-05 00:21:20 +00002772** If there is a transaction in progress, this routine is a no-op.
2773*/
danielk1977aef0bf62005-12-30 16:28:01 +00002774static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002775 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00002776 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00002777 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00002778 MemPage *pPage1 = pBt->pPage1;
2779 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00002780 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00002781 pBt->pPage1 = 0;
drhb2325b72014-09-24 18:31:07 +00002782 releasePage(pPage1);
drhb8ca3072001-12-05 00:21:20 +00002783 }
2784}
2785
2786/*
drhe39f2f92009-07-23 01:43:59 +00002787** If pBt points to an empty file then convert that empty file
2788** into a new empty database by initializing the first page of
2789** the database.
drh8b2f49b2001-06-08 00:21:52 +00002790*/
danielk1977aef0bf62005-12-30 16:28:01 +00002791static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002792 MemPage *pP1;
2793 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002794 int rc;
drhd677b3d2007-08-20 22:48:41 +00002795
drh1fee73e2007-08-29 04:00:57 +00002796 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002797 if( pBt->nPage>0 ){
2798 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002799 }
drh3aac2dd2004-04-26 14:10:20 +00002800 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002801 assert( pP1!=0 );
2802 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002803 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002804 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002805 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2806 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00002807 data[16] = (u8)((pBt->pageSize>>8)&0xff);
2808 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00002809 data[18] = 1;
2810 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002811 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2812 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002813 data[21] = 64;
2814 data[22] = 32;
2815 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002816 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002817 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00002818 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00002819#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002820 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002821 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002822 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002823 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002824#endif
drhdd3cd972010-03-27 17:12:36 +00002825 pBt->nPage = 1;
2826 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002827 return SQLITE_OK;
2828}
2829
2830/*
danb483eba2012-10-13 19:58:11 +00002831** Initialize the first page of the database file (creating a database
2832** consisting of a single page and no schema objects). Return SQLITE_OK
2833** if successful, or an SQLite error code otherwise.
2834*/
2835int sqlite3BtreeNewDb(Btree *p){
2836 int rc;
2837 sqlite3BtreeEnter(p);
2838 p->pBt->nPage = 0;
2839 rc = newDatabase(p->pBt);
2840 sqlite3BtreeLeave(p);
2841 return rc;
2842}
2843
2844/*
danielk1977ee5741e2004-05-31 10:01:34 +00002845** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002846** is started if the second argument is nonzero, otherwise a read-
2847** transaction. If the second argument is 2 or more and exclusive
2848** transaction is started, meaning that no other process is allowed
2849** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002850** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002851** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002852**
danielk1977ee5741e2004-05-31 10:01:34 +00002853** A write-transaction must be started before attempting any
2854** changes to the database. None of the following routines
2855** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002856**
drh23e11ca2004-05-04 17:27:28 +00002857** sqlite3BtreeCreateTable()
2858** sqlite3BtreeCreateIndex()
2859** sqlite3BtreeClearTable()
2860** sqlite3BtreeDropTable()
2861** sqlite3BtreeInsert()
2862** sqlite3BtreeDelete()
2863** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002864**
drhb8ef32c2005-03-14 02:01:49 +00002865** If an initial attempt to acquire the lock fails because of lock contention
2866** and the database was previously unlocked, then invoke the busy handler
2867** if there is one. But if there was previously a read-lock, do not
2868** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2869** returned when there is already a read-lock in order to avoid a deadlock.
2870**
2871** Suppose there are two processes A and B. A has a read lock and B has
2872** a reserved lock. B tries to promote to exclusive but is blocked because
2873** of A's read lock. A tries to promote to reserved but is blocked by B.
2874** One or the other of the two processes must give way or there can be
2875** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2876** when A already has a read lock, we encourage A to give up and let B
2877** proceed.
drha059ad02001-04-17 20:09:11 +00002878*/
danielk1977aef0bf62005-12-30 16:28:01 +00002879int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002880 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002881 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002882 int rc = SQLITE_OK;
2883
drhd677b3d2007-08-20 22:48:41 +00002884 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002885 btreeIntegrity(p);
2886
danielk1977ee5741e2004-05-31 10:01:34 +00002887 /* If the btree is already in a write-transaction, or it
2888 ** is already in a read-transaction and a read-transaction
2889 ** is requested, this is a no-op.
2890 */
danielk1977aef0bf62005-12-30 16:28:01 +00002891 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002892 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002893 }
dan56c517a2013-09-26 11:04:33 +00002894 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00002895
2896 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00002897 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002898 rc = SQLITE_READONLY;
2899 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002900 }
2901
danielk1977404ca072009-03-16 13:19:36 +00002902#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002903 /* If another database handle has already opened a write transaction
2904 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002905 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002906 */
drhc9166342012-01-05 23:32:06 +00002907 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
2908 || (pBt->btsFlags & BTS_PENDING)!=0
2909 ){
danielk1977404ca072009-03-16 13:19:36 +00002910 pBlock = pBt->pWriter->db;
2911 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002912 BtLock *pIter;
2913 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2914 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002915 pBlock = pIter->pBtree->db;
2916 break;
danielk1977641b0f42007-12-21 04:47:25 +00002917 }
2918 }
2919 }
danielk1977404ca072009-03-16 13:19:36 +00002920 if( pBlock ){
2921 sqlite3ConnectionBlocked(p->db, pBlock);
2922 rc = SQLITE_LOCKED_SHAREDCACHE;
2923 goto trans_begun;
2924 }
danielk1977641b0f42007-12-21 04:47:25 +00002925#endif
2926
danielk1977602b4662009-07-02 07:47:33 +00002927 /* Any read-only or read-write transaction implies a read-lock on
2928 ** page 1. So if some other shared-cache client already has a write-lock
2929 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002930 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2931 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002932
drhc9166342012-01-05 23:32:06 +00002933 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
2934 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00002935 do {
danielk1977295dc102009-04-01 19:07:03 +00002936 /* Call lockBtree() until either pBt->pPage1 is populated or
2937 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2938 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2939 ** reading page 1 it discovers that the page-size of the database
2940 ** file is not pBt->pageSize. In this case lockBtree() will update
2941 ** pBt->pageSize to the page-size of the file on disk.
2942 */
2943 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002944
drhb8ef32c2005-03-14 02:01:49 +00002945 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00002946 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00002947 rc = SQLITE_READONLY;
2948 }else{
danielk1977d8293352009-04-30 09:10:37 +00002949 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002950 if( rc==SQLITE_OK ){
2951 rc = newDatabase(pBt);
2952 }
drhb8ef32c2005-03-14 02:01:49 +00002953 }
2954 }
2955
danielk1977bd434552009-03-18 10:33:00 +00002956 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002957 unlockBtreeIfUnused(pBt);
2958 }
danf9b76712010-06-01 14:12:45 +00002959 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002960 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002961
2962 if( rc==SQLITE_OK ){
2963 if( p->inTrans==TRANS_NONE ){
2964 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002965#ifndef SQLITE_OMIT_SHARED_CACHE
2966 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00002967 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00002968 p->lock.eLock = READ_LOCK;
2969 p->lock.pNext = pBt->pLock;
2970 pBt->pLock = &p->lock;
2971 }
2972#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002973 }
2974 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2975 if( p->inTrans>pBt->inTransaction ){
2976 pBt->inTransaction = p->inTrans;
2977 }
danielk1977404ca072009-03-16 13:19:36 +00002978 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00002979 MemPage *pPage1 = pBt->pPage1;
2980#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002981 assert( !pBt->pWriter );
2982 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00002983 pBt->btsFlags &= ~BTS_EXCLUSIVE;
2984 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00002985#endif
dan59257dc2010-08-04 11:34:31 +00002986
2987 /* If the db-size header field is incorrect (as it may be if an old
2988 ** client has been writing the database file), update it now. Doing
2989 ** this sooner rather than later means the database size can safely
2990 ** re-read the database size from page 1 if a savepoint or transaction
2991 ** rollback occurs within the transaction.
2992 */
2993 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
2994 rc = sqlite3PagerWrite(pPage1->pDbPage);
2995 if( rc==SQLITE_OK ){
2996 put4byte(&pPage1->aData[28], pBt->nPage);
2997 }
2998 }
2999 }
danielk1977aef0bf62005-12-30 16:28:01 +00003000 }
3001
drhd677b3d2007-08-20 22:48:41 +00003002
3003trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00003004 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00003005 /* This call makes sure that the pager has the correct number of
3006 ** open savepoints. If the second parameter is greater than 0 and
3007 ** the sub-journal is not already open, then it will be opened here.
3008 */
danielk1977fd7f0452008-12-17 17:30:26 +00003009 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3010 }
danielk197712dd5492008-12-18 15:45:07 +00003011
danielk1977aef0bf62005-12-30 16:28:01 +00003012 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003013 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003014 return rc;
drha059ad02001-04-17 20:09:11 +00003015}
3016
danielk1977687566d2004-11-02 12:56:41 +00003017#ifndef SQLITE_OMIT_AUTOVACUUM
3018
3019/*
3020** Set the pointer-map entries for all children of page pPage. Also, if
3021** pPage contains cells that point to overflow pages, set the pointer
3022** map entries for the overflow pages as well.
3023*/
3024static int setChildPtrmaps(MemPage *pPage){
3025 int i; /* Counter variable */
3026 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003027 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003028 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00003029 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003030 Pgno pgno = pPage->pgno;
3031
drh1fee73e2007-08-29 04:00:57 +00003032 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00003033 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00003034 if( rc!=SQLITE_OK ){
3035 goto set_child_ptrmaps_out;
3036 }
danielk1977687566d2004-11-02 12:56:41 +00003037 nCell = pPage->nCell;
3038
3039 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003040 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003041
drh98add2e2009-07-20 17:11:49 +00003042 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003043
danielk1977687566d2004-11-02 12:56:41 +00003044 if( !pPage->leaf ){
3045 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003046 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003047 }
3048 }
3049
3050 if( !pPage->leaf ){
3051 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003052 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003053 }
3054
3055set_child_ptrmaps_out:
3056 pPage->isInit = isInitOrig;
3057 return rc;
3058}
3059
3060/*
drhf3aed592009-07-08 18:12:49 +00003061** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3062** that it points to iTo. Parameter eType describes the type of pointer to
3063** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003064**
3065** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3066** page of pPage.
3067**
3068** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3069** page pointed to by one of the cells on pPage.
3070**
3071** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3072** overflow page in the list.
3073*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003074static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003075 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003076 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003077 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003078 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003079 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00003080 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003081 }
danielk1977f78fc082004-11-02 14:40:32 +00003082 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003083 }else{
drhf49661a2008-12-10 16:45:50 +00003084 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003085 int i;
3086 int nCell;
3087
danielk197730548662009-07-09 05:07:37 +00003088 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00003089 nCell = pPage->nCell;
3090
danielk1977687566d2004-11-02 12:56:41 +00003091 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003092 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003093 if( eType==PTRMAP_OVERFLOW1 ){
3094 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00003095 btreeParseCellPtr(pPage, pCell, &info);
drhe42a9b42011-08-31 13:27:19 +00003096 if( info.iOverflow
3097 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
3098 && iFrom==get4byte(&pCell[info.iOverflow])
3099 ){
3100 put4byte(&pCell[info.iOverflow], iTo);
3101 break;
danielk1977687566d2004-11-02 12:56:41 +00003102 }
3103 }else{
3104 if( get4byte(pCell)==iFrom ){
3105 put4byte(pCell, iTo);
3106 break;
3107 }
3108 }
3109 }
3110
3111 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003112 if( eType!=PTRMAP_BTREE ||
3113 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00003114 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003115 }
danielk1977687566d2004-11-02 12:56:41 +00003116 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3117 }
3118
3119 pPage->isInit = isInitOrig;
3120 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003121 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003122}
3123
danielk1977003ba062004-11-04 02:57:33 +00003124
danielk19777701e812005-01-10 12:59:51 +00003125/*
3126** Move the open database page pDbPage to location iFreePage in the
3127** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003128**
3129** The isCommit flag indicates that there is no need to remember that
3130** the journal needs to be sync()ed before database page pDbPage->pgno
3131** can be written to. The caller has already promised not to write to that
3132** page.
danielk19777701e812005-01-10 12:59:51 +00003133*/
danielk1977003ba062004-11-04 02:57:33 +00003134static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003135 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003136 MemPage *pDbPage, /* Open page to move */
3137 u8 eType, /* Pointer map 'type' entry for pDbPage */
3138 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003139 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003140 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003141){
3142 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3143 Pgno iDbPage = pDbPage->pgno;
3144 Pager *pPager = pBt->pPager;
3145 int rc;
3146
danielk1977a0bf2652004-11-04 14:30:04 +00003147 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3148 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003149 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003150 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00003151
drh85b623f2007-12-13 21:54:09 +00003152 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003153 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3154 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003155 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003156 if( rc!=SQLITE_OK ){
3157 return rc;
3158 }
3159 pDbPage->pgno = iFreePage;
3160
3161 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3162 ** that point to overflow pages. The pointer map entries for all these
3163 ** pages need to be changed.
3164 **
3165 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3166 ** pointer to a subsequent overflow page. If this is the case, then
3167 ** the pointer map needs to be updated for the subsequent overflow page.
3168 */
danielk1977a0bf2652004-11-04 14:30:04 +00003169 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003170 rc = setChildPtrmaps(pDbPage);
3171 if( rc!=SQLITE_OK ){
3172 return rc;
3173 }
3174 }else{
3175 Pgno nextOvfl = get4byte(pDbPage->aData);
3176 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003177 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003178 if( rc!=SQLITE_OK ){
3179 return rc;
3180 }
3181 }
3182 }
3183
3184 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3185 ** that it points at iFreePage. Also fix the pointer map entry for
3186 ** iPtrPage.
3187 */
danielk1977a0bf2652004-11-04 14:30:04 +00003188 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003189 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003190 if( rc!=SQLITE_OK ){
3191 return rc;
3192 }
danielk19773b8a05f2007-03-19 17:44:26 +00003193 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003194 if( rc!=SQLITE_OK ){
3195 releasePage(pPtrPage);
3196 return rc;
3197 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003198 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003199 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003200 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003201 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003202 }
danielk1977003ba062004-11-04 02:57:33 +00003203 }
danielk1977003ba062004-11-04 02:57:33 +00003204 return rc;
3205}
3206
danielk1977dddbcdc2007-04-26 14:42:34 +00003207/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003208static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003209
3210/*
dan51f0b6d2013-02-22 20:16:34 +00003211** Perform a single step of an incremental-vacuum. If successful, return
3212** SQLITE_OK. If there is no work to do (and therefore no point in
3213** calling this function again), return SQLITE_DONE. Or, if an error
3214** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003215**
peter.d.reid60ec9142014-09-06 16:39:46 +00003216** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003217** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003218**
dan51f0b6d2013-02-22 20:16:34 +00003219** Parameter nFin is the number of pages that this database would contain
3220** were this function called until it returns SQLITE_DONE.
3221**
3222** If the bCommit parameter is non-zero, this function assumes that the
3223** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003224** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003225** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003226*/
dan51f0b6d2013-02-22 20:16:34 +00003227static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003228 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003229 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003230
drh1fee73e2007-08-29 04:00:57 +00003231 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003232 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003233
3234 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003235 u8 eType;
3236 Pgno iPtrPage;
3237
3238 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003239 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003240 return SQLITE_DONE;
3241 }
3242
3243 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3244 if( rc!=SQLITE_OK ){
3245 return rc;
3246 }
3247 if( eType==PTRMAP_ROOTPAGE ){
3248 return SQLITE_CORRUPT_BKPT;
3249 }
3250
3251 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003252 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003253 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003254 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003255 ** truncated to zero after this function returns, so it doesn't
3256 ** matter if it still contains some garbage entries.
3257 */
3258 Pgno iFreePg;
3259 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003260 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003261 if( rc!=SQLITE_OK ){
3262 return rc;
3263 }
3264 assert( iFreePg==iLastPg );
3265 releasePage(pFreePg);
3266 }
3267 } else {
3268 Pgno iFreePg; /* Index of free page to move pLastPg to */
3269 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003270 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3271 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003272
drhb00fc3b2013-08-21 23:42:32 +00003273 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003274 if( rc!=SQLITE_OK ){
3275 return rc;
3276 }
3277
dan51f0b6d2013-02-22 20:16:34 +00003278 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003279 ** is swapped with the first free page pulled off the free list.
3280 **
dan51f0b6d2013-02-22 20:16:34 +00003281 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003282 ** looping until a free-page located within the first nFin pages
3283 ** of the file is found.
3284 */
dan51f0b6d2013-02-22 20:16:34 +00003285 if( bCommit==0 ){
3286 eMode = BTALLOC_LE;
3287 iNear = nFin;
3288 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003289 do {
3290 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003291 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003292 if( rc!=SQLITE_OK ){
3293 releasePage(pLastPg);
3294 return rc;
3295 }
3296 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003297 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003298 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003299
dane1df4e32013-03-05 11:27:04 +00003300 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003301 releasePage(pLastPg);
3302 if( rc!=SQLITE_OK ){
3303 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003304 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003305 }
3306 }
3307
dan51f0b6d2013-02-22 20:16:34 +00003308 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003309 do {
danielk19773460d192008-12-27 15:23:13 +00003310 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003311 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3312 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003313 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003314 }
3315 return SQLITE_OK;
3316}
3317
3318/*
dan51f0b6d2013-02-22 20:16:34 +00003319** The database opened by the first argument is an auto-vacuum database
3320** nOrig pages in size containing nFree free pages. Return the expected
3321** size of the database in pages following an auto-vacuum operation.
3322*/
3323static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3324 int nEntry; /* Number of entries on one ptrmap page */
3325 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3326 Pgno nFin; /* Return value */
3327
3328 nEntry = pBt->usableSize/5;
3329 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3330 nFin = nOrig - nFree - nPtrmap;
3331 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3332 nFin--;
3333 }
3334 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3335 nFin--;
3336 }
dan51f0b6d2013-02-22 20:16:34 +00003337
3338 return nFin;
3339}
3340
3341/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003342** A write-transaction must be opened before calling this function.
3343** It performs a single unit of work towards an incremental vacuum.
3344**
3345** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003346** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003347** SQLITE_OK is returned. Otherwise an SQLite error code.
3348*/
3349int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003350 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003351 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003352
3353 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003354 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3355 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003356 rc = SQLITE_DONE;
3357 }else{
dan51f0b6d2013-02-22 20:16:34 +00003358 Pgno nOrig = btreePagecount(pBt);
3359 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3360 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3361
dan91384712013-02-24 11:50:43 +00003362 if( nOrig<nFin ){
3363 rc = SQLITE_CORRUPT_BKPT;
3364 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003365 rc = saveAllCursors(pBt, 0, 0);
3366 if( rc==SQLITE_OK ){
3367 invalidateAllOverflowCache(pBt);
3368 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3369 }
dan51f0b6d2013-02-22 20:16:34 +00003370 if( rc==SQLITE_OK ){
3371 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3372 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3373 }
3374 }else{
3375 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003376 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003377 }
drhd677b3d2007-08-20 22:48:41 +00003378 sqlite3BtreeLeave(p);
3379 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003380}
3381
3382/*
danielk19773b8a05f2007-03-19 17:44:26 +00003383** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003384** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003385**
3386** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3387** the database file should be truncated to during the commit process.
3388** i.e. the database has been reorganized so that only the first *pnTrunc
3389** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003390*/
danielk19773460d192008-12-27 15:23:13 +00003391static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003392 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003393 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00003394 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003395
drh1fee73e2007-08-29 04:00:57 +00003396 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003397 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003398 assert(pBt->autoVacuum);
3399 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003400 Pgno nFin; /* Number of pages in database after autovacuuming */
3401 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003402 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003403 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003404
drhb1299152010-03-30 22:58:33 +00003405 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003406 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3407 /* It is not possible to create a database for which the final page
3408 ** is either a pointer-map page or the pending-byte page. If one
3409 ** is encountered, this indicates corruption.
3410 */
danielk19773460d192008-12-27 15:23:13 +00003411 return SQLITE_CORRUPT_BKPT;
3412 }
danielk1977ef165ce2009-04-06 17:50:03 +00003413
danielk19773460d192008-12-27 15:23:13 +00003414 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003415 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003416 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003417 if( nFin<nOrig ){
3418 rc = saveAllCursors(pBt, 0, 0);
3419 }
danielk19773460d192008-12-27 15:23:13 +00003420 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003421 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003422 }
danielk19773460d192008-12-27 15:23:13 +00003423 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003424 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3425 put4byte(&pBt->pPage1->aData[32], 0);
3426 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003427 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003428 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003429 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003430 }
3431 if( rc!=SQLITE_OK ){
3432 sqlite3PagerRollback(pPager);
3433 }
danielk1977687566d2004-11-02 12:56:41 +00003434 }
3435
dan0aed84d2013-03-26 14:16:20 +00003436 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003437 return rc;
3438}
danielk1977dddbcdc2007-04-26 14:42:34 +00003439
danielk1977a50d9aa2009-06-08 14:49:45 +00003440#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3441# define setChildPtrmaps(x) SQLITE_OK
3442#endif
danielk1977687566d2004-11-02 12:56:41 +00003443
3444/*
drh80e35f42007-03-30 14:06:34 +00003445** This routine does the first phase of a two-phase commit. This routine
3446** causes a rollback journal to be created (if it does not already exist)
3447** and populated with enough information so that if a power loss occurs
3448** the database can be restored to its original state by playing back
3449** the journal. Then the contents of the journal are flushed out to
3450** the disk. After the journal is safely on oxide, the changes to the
3451** database are written into the database file and flushed to oxide.
3452** At the end of this call, the rollback journal still exists on the
3453** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003454** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003455** commit process.
3456**
3457** This call is a no-op if no write-transaction is currently active on pBt.
3458**
3459** Otherwise, sync the database file for the btree pBt. zMaster points to
3460** the name of a master journal file that should be written into the
3461** individual journal file, or is NULL, indicating no master journal file
3462** (single database transaction).
3463**
3464** When this is called, the master journal should already have been
3465** created, populated with this journal pointer and synced to disk.
3466**
3467** Once this is routine has returned, the only thing required to commit
3468** the write-transaction for this database file is to delete the journal.
3469*/
3470int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3471 int rc = SQLITE_OK;
3472 if( p->inTrans==TRANS_WRITE ){
3473 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003474 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003475#ifndef SQLITE_OMIT_AUTOVACUUM
3476 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003477 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003478 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003479 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003480 return rc;
3481 }
3482 }
danbc1a3c62013-02-23 16:40:46 +00003483 if( pBt->bDoTruncate ){
3484 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3485 }
drh80e35f42007-03-30 14:06:34 +00003486#endif
drh49b9d332009-01-02 18:10:42 +00003487 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003488 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003489 }
3490 return rc;
3491}
3492
3493/*
danielk197794b30732009-07-02 17:21:57 +00003494** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3495** at the conclusion of a transaction.
3496*/
3497static void btreeEndTransaction(Btree *p){
3498 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003499 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003500 assert( sqlite3BtreeHoldsMutex(p) );
3501
danbc1a3c62013-02-23 16:40:46 +00003502#ifndef SQLITE_OMIT_AUTOVACUUM
3503 pBt->bDoTruncate = 0;
3504#endif
danc0537fe2013-06-28 19:41:43 +00003505 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003506 /* If there are other active statements that belong to this database
3507 ** handle, downgrade to a read-only transaction. The other statements
3508 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003509 downgradeAllSharedCacheTableLocks(p);
3510 p->inTrans = TRANS_READ;
3511 }else{
3512 /* If the handle had any kind of transaction open, decrement the
3513 ** transaction count of the shared btree. If the transaction count
3514 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3515 ** call below will unlock the pager. */
3516 if( p->inTrans!=TRANS_NONE ){
3517 clearAllSharedCacheTableLocks(p);
3518 pBt->nTransaction--;
3519 if( 0==pBt->nTransaction ){
3520 pBt->inTransaction = TRANS_NONE;
3521 }
3522 }
3523
3524 /* Set the current transaction state to TRANS_NONE and unlock the
3525 ** pager if this call closed the only read or write transaction. */
3526 p->inTrans = TRANS_NONE;
3527 unlockBtreeIfUnused(pBt);
3528 }
3529
3530 btreeIntegrity(p);
3531}
3532
3533/*
drh2aa679f2001-06-25 02:11:07 +00003534** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003535**
drh6e345992007-03-30 11:12:08 +00003536** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003537** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3538** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3539** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003540** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003541** routine has to do is delete or truncate or zero the header in the
3542** the rollback journal (which causes the transaction to commit) and
3543** drop locks.
drh6e345992007-03-30 11:12:08 +00003544**
dan60939d02011-03-29 15:40:55 +00003545** Normally, if an error occurs while the pager layer is attempting to
3546** finalize the underlying journal file, this function returns an error and
3547** the upper layer will attempt a rollback. However, if the second argument
3548** is non-zero then this b-tree transaction is part of a multi-file
3549** transaction. In this case, the transaction has already been committed
3550** (by deleting a master journal file) and the caller will ignore this
3551** functions return code. So, even if an error occurs in the pager layer,
3552** reset the b-tree objects internal state to indicate that the write
3553** transaction has been closed. This is quite safe, as the pager will have
3554** transitioned to the error state.
3555**
drh5e00f6c2001-09-13 13:46:56 +00003556** This will release the write lock on the database file. If there
3557** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003558*/
dan60939d02011-03-29 15:40:55 +00003559int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003560
drh075ed302010-10-14 01:17:30 +00003561 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003562 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003563 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003564
3565 /* If the handle has a write-transaction open, commit the shared-btrees
3566 ** transaction and set the shared state to TRANS_READ.
3567 */
3568 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003569 int rc;
drh075ed302010-10-14 01:17:30 +00003570 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003571 assert( pBt->inTransaction==TRANS_WRITE );
3572 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003573 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003574 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003575 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003576 return rc;
3577 }
drh3da9c042014-12-22 18:41:21 +00003578 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00003579 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003580 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003581 }
danielk1977aef0bf62005-12-30 16:28:01 +00003582
danielk197794b30732009-07-02 17:21:57 +00003583 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003584 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003585 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003586}
3587
drh80e35f42007-03-30 14:06:34 +00003588/*
3589** Do both phases of a commit.
3590*/
3591int sqlite3BtreeCommit(Btree *p){
3592 int rc;
drhd677b3d2007-08-20 22:48:41 +00003593 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003594 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3595 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003596 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003597 }
drhd677b3d2007-08-20 22:48:41 +00003598 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003599 return rc;
3600}
3601
drhc39e0002004-05-07 23:50:57 +00003602/*
drhfb982642007-08-30 01:19:59 +00003603** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00003604** code to errCode for every cursor on any BtShared that pBtree
3605** references. Or if the writeOnly flag is set to 1, then only
3606** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00003607**
drh47b7fc72014-11-11 01:33:57 +00003608** Every cursor is a candidate to be tripped, including cursors
3609** that belong to other database connections that happen to be
3610** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00003611**
dan80231042014-11-12 14:56:02 +00003612** This routine gets called when a rollback occurs. If the writeOnly
3613** flag is true, then only write-cursors need be tripped - read-only
3614** cursors save their current positions so that they may continue
3615** following the rollback. Or, if writeOnly is false, all cursors are
3616** tripped. In general, writeOnly is false if the transaction being
3617** rolled back modified the database schema. In this case b-tree root
3618** pages may be moved or deleted from the database altogether, making
3619** it unsafe for read cursors to continue.
3620**
3621** If the writeOnly flag is true and an error is encountered while
3622** saving the current position of a read-only cursor, all cursors,
3623** including all read-cursors are tripped.
3624**
3625** SQLITE_OK is returned if successful, or if an error occurs while
3626** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00003627*/
dan80231042014-11-12 14:56:02 +00003628int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00003629 BtCursor *p;
dan80231042014-11-12 14:56:02 +00003630 int rc = SQLITE_OK;
3631
drh47b7fc72014-11-11 01:33:57 +00003632 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00003633 if( pBtree ){
3634 sqlite3BtreeEnter(pBtree);
3635 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
3636 int i;
3637 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00003638 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00003639 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00003640 if( rc!=SQLITE_OK ){
3641 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
3642 break;
3643 }
3644 }
3645 }else{
3646 sqlite3BtreeClearCursor(p);
3647 p->eState = CURSOR_FAULT;
3648 p->skipNext = errCode;
3649 }
3650 for(i=0; i<=p->iPage; i++){
3651 releasePage(p->apPage[i]);
3652 p->apPage[i] = 0;
3653 }
danielk1977bc2ca9e2008-11-13 14:28:28 +00003654 }
dan80231042014-11-12 14:56:02 +00003655 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00003656 }
dan80231042014-11-12 14:56:02 +00003657 return rc;
drhfb982642007-08-30 01:19:59 +00003658}
3659
3660/*
drh47b7fc72014-11-11 01:33:57 +00003661** Rollback the transaction in progress.
3662**
3663** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
3664** Only write cursors are tripped if writeOnly is true but all cursors are
3665** tripped if writeOnly is false. Any attempt to use
3666** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00003667**
3668** This will release the write lock on the database file. If there
3669** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003670*/
drh47b7fc72014-11-11 01:33:57 +00003671int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00003672 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003673 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003674 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003675
drh47b7fc72014-11-11 01:33:57 +00003676 assert( writeOnly==1 || writeOnly==0 );
3677 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00003678 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00003679 if( tripCode==SQLITE_OK ){
3680 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00003681 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00003682 }else{
3683 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00003684 }
drh0f198a72012-02-13 16:43:16 +00003685 if( tripCode ){
dan80231042014-11-12 14:56:02 +00003686 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
3687 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
3688 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00003689 }
danielk1977aef0bf62005-12-30 16:28:01 +00003690 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003691
3692 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003693 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003694
danielk19778d34dfd2006-01-24 16:37:57 +00003695 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003696 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003697 if( rc2!=SQLITE_OK ){
3698 rc = rc2;
3699 }
3700
drh24cd67e2004-05-10 16:18:47 +00003701 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003702 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003703 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00003704 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003705 int nPage = get4byte(28+(u8*)pPage1->aData);
3706 testcase( nPage==0 );
3707 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3708 testcase( pBt->nPage!=nPage );
3709 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003710 releasePage(pPage1);
3711 }
drh85ec3b62013-05-14 23:12:06 +00003712 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003713 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003714 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00003715 }
danielk1977aef0bf62005-12-30 16:28:01 +00003716
danielk197794b30732009-07-02 17:21:57 +00003717 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003718 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003719 return rc;
3720}
3721
3722/*
peter.d.reid60ec9142014-09-06 16:39:46 +00003723** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00003724** back independently of the main transaction. You must start a transaction
3725** before starting a subtransaction. The subtransaction is ended automatically
3726** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003727**
3728** Statement subtransactions are used around individual SQL statements
3729** that are contained within a BEGIN...COMMIT block. If a constraint
3730** error occurs within the statement, the effect of that one statement
3731** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003732**
3733** A statement sub-transaction is implemented as an anonymous savepoint. The
3734** value passed as the second parameter is the total number of savepoints,
3735** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3736** are no active savepoints and no other statement-transactions open,
3737** iStatement is 1. This anonymous savepoint can be released or rolled back
3738** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003739*/
danielk1977bd434552009-03-18 10:33:00 +00003740int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003741 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003742 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003743 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003744 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00003745 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00003746 assert( iStatement>0 );
3747 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003748 assert( pBt->inTransaction==TRANS_WRITE );
3749 /* At the pager level, a statement transaction is a savepoint with
3750 ** an index greater than all savepoints created explicitly using
3751 ** SQL statements. It is illegal to open, release or rollback any
3752 ** such savepoints while the statement transaction savepoint is active.
3753 */
3754 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003755 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003756 return rc;
3757}
3758
3759/*
danielk1977fd7f0452008-12-17 17:30:26 +00003760** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3761** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003762** savepoint identified by parameter iSavepoint, depending on the value
3763** of op.
3764**
3765** Normally, iSavepoint is greater than or equal to zero. However, if op is
3766** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3767** contents of the entire transaction are rolled back. This is different
3768** from a normal transaction rollback, as no locks are released and the
3769** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003770*/
3771int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3772 int rc = SQLITE_OK;
3773 if( p && p->inTrans==TRANS_WRITE ){
3774 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003775 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3776 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3777 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003778 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003779 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00003780 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
3781 pBt->nPage = 0;
3782 }
drh9f0bbf92009-01-02 21:08:09 +00003783 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003784 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00003785
3786 /* The database size was written into the offset 28 of the header
3787 ** when the transaction started, so we know that the value at offset
3788 ** 28 is nonzero. */
3789 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00003790 }
danielk1977fd7f0452008-12-17 17:30:26 +00003791 sqlite3BtreeLeave(p);
3792 }
3793 return rc;
3794}
3795
3796/*
drh8b2f49b2001-06-08 00:21:52 +00003797** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003798** iTable. If a read-only cursor is requested, it is assumed that
3799** the caller already has at least a read-only transaction open
3800** on the database already. If a write-cursor is requested, then
3801** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003802**
3803** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003804** If wrFlag==1, then the cursor can be used for reading or for
3805** writing if other conditions for writing are also met. These
3806** are the conditions that must be met in order for writing to
3807** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003808**
drhf74b8d92002-09-01 23:20:45 +00003809** 1: The cursor must have been opened with wrFlag==1
3810**
drhfe5d71d2007-03-19 11:54:10 +00003811** 2: Other database connections that share the same pager cache
3812** but which are not in the READ_UNCOMMITTED state may not have
3813** cursors open with wrFlag==0 on the same table. Otherwise
3814** the changes made by this write cursor would be visible to
3815** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003816**
3817** 3: The database must be writable (not on read-only media)
3818**
3819** 4: There must be an active transaction.
3820**
drh6446c4d2001-12-15 14:22:18 +00003821** No checking is done to make sure that page iTable really is the
3822** root page of a b-tree. If it is not, then the cursor acquired
3823** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003824**
drhf25a5072009-11-18 23:01:25 +00003825** It is assumed that the sqlite3BtreeCursorZero() has been called
3826** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003827*/
drhd677b3d2007-08-20 22:48:41 +00003828static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003829 Btree *p, /* The btree */
3830 int iTable, /* Root page of table to open */
3831 int wrFlag, /* 1 to write. 0 read-only */
3832 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3833 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003834){
danielk19773e8add92009-07-04 17:16:00 +00003835 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003836
drh1fee73e2007-08-29 04:00:57 +00003837 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003838 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003839
danielk1977602b4662009-07-02 07:47:33 +00003840 /* The following assert statements verify that if this is a sharable
3841 ** b-tree database, the connection is holding the required table locks,
3842 ** and that no other connection has any open cursor that conflicts with
3843 ** this lock. */
3844 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003845 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3846
danielk19773e8add92009-07-04 17:16:00 +00003847 /* Assert that the caller has opened the required transaction. */
3848 assert( p->inTrans>TRANS_NONE );
3849 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3850 assert( pBt->pPage1 && pBt->pPage1->aData );
3851
drhc9166342012-01-05 23:32:06 +00003852 if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){
danielk197796d48e92009-06-29 06:00:37 +00003853 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003854 }
drh3fbb0222014-09-24 19:47:27 +00003855 if( wrFlag ){
3856 allocateTempSpace(pBt);
3857 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM;
3858 }
drhb1299152010-03-30 22:58:33 +00003859 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00003860 assert( wrFlag==0 );
3861 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00003862 }
danielk1977aef0bf62005-12-30 16:28:01 +00003863
danielk1977aef0bf62005-12-30 16:28:01 +00003864 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003865 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003866 pCur->pgnoRoot = (Pgno)iTable;
3867 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003868 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003869 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003870 pCur->pBt = pBt;
drh4c417182014-03-31 23:57:41 +00003871 assert( wrFlag==0 || wrFlag==BTCF_WriteFlag );
3872 pCur->curFlags = wrFlag;
drha059ad02001-04-17 20:09:11 +00003873 pCur->pNext = pBt->pCursor;
3874 if( pCur->pNext ){
3875 pCur->pNext->pPrev = pCur;
3876 }
3877 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003878 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00003879 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003880}
drhd677b3d2007-08-20 22:48:41 +00003881int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003882 Btree *p, /* The btree */
3883 int iTable, /* Root page of table to open */
3884 int wrFlag, /* 1 to write. 0 read-only */
3885 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3886 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003887){
3888 int rc;
3889 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003890 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003891 sqlite3BtreeLeave(p);
3892 return rc;
3893}
drh7f751222009-03-17 22:33:00 +00003894
3895/*
3896** Return the size of a BtCursor object in bytes.
3897**
3898** This interfaces is needed so that users of cursors can preallocate
3899** sufficient storage to hold a cursor. The BtCursor object is opaque
3900** to users so they cannot do the sizeof() themselves - they must call
3901** this routine.
3902*/
3903int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00003904 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00003905}
3906
drh7f751222009-03-17 22:33:00 +00003907/*
drhf25a5072009-11-18 23:01:25 +00003908** Initialize memory that will be converted into a BtCursor object.
3909**
3910** The simple approach here would be to memset() the entire object
3911** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3912** do not need to be zeroed and they are large, so we can save a lot
3913** of run-time by skipping the initialization of those elements.
3914*/
3915void sqlite3BtreeCursorZero(BtCursor *p){
3916 memset(p, 0, offsetof(BtCursor, iPage));
3917}
3918
3919/*
drh5e00f6c2001-09-13 13:46:56 +00003920** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003921** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003922*/
drh3aac2dd2004-04-26 14:10:20 +00003923int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003924 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003925 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003926 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003927 BtShared *pBt = pCur->pBt;
3928 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003929 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003930 if( pCur->pPrev ){
3931 pCur->pPrev->pNext = pCur->pNext;
3932 }else{
3933 pBt->pCursor = pCur->pNext;
3934 }
3935 if( pCur->pNext ){
3936 pCur->pNext->pPrev = pCur->pPrev;
3937 }
danielk197771d5d2c2008-09-29 11:49:47 +00003938 for(i=0; i<=pCur->iPage; i++){
3939 releasePage(pCur->apPage[i]);
3940 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003941 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00003942 sqlite3_free(pCur->aOverflow);
danielk1977cd3e8f72008-03-25 09:47:35 +00003943 /* sqlite3_free(pCur); */
3944 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003945 }
drh8c42ca92001-06-22 19:15:00 +00003946 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003947}
3948
drh5e2f8b92001-05-28 00:41:15 +00003949/*
drh86057612007-06-26 01:04:48 +00003950** Make sure the BtCursor* given in the argument has a valid
3951** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003952** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003953**
3954** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003955** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003956**
3957** 2007-06-25: There is a bug in some versions of MSVC that cause the
3958** compiler to crash when getCellInfo() is implemented as a macro.
3959** But there is a measureable speed advantage to using the macro on gcc
3960** (when less compiler optimizations like -Os or -O0 are used and the
peter.d.reid60ec9142014-09-06 16:39:46 +00003961** compiler is not doing aggressive inlining.) So we use a real function
drh86057612007-06-26 01:04:48 +00003962** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003963*/
drh9188b382004-05-14 21:12:22 +00003964#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003965 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003966 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003967 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003968 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003969 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
dan7df42ab2014-01-20 18:25:44 +00003970 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003971 }
danielk19771cc5ed82007-05-16 17:28:43 +00003972#else
3973 #define assertCellInfo(x)
3974#endif
drh86057612007-06-26 01:04:48 +00003975#ifdef _MSC_VER
3976 /* Use a real function in MSVC to work around bugs in that compiler. */
3977 static void getCellInfo(BtCursor *pCur){
3978 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003979 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003980 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drh036dbec2014-03-11 23:40:44 +00003981 pCur->curFlags |= BTCF_ValidNKey;
drh86057612007-06-26 01:04:48 +00003982 }else{
3983 assertCellInfo(pCur);
3984 }
3985 }
3986#else /* if not _MSC_VER */
3987 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003988#define getCellInfo(pCur) \
3989 if( pCur->info.nSize==0 ){ \
3990 int iPage = pCur->iPage; \
drh036dbec2014-03-11 23:40:44 +00003991 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
3992 pCur->curFlags |= BTCF_ValidNKey; \
danielk197771d5d2c2008-09-29 11:49:47 +00003993 }else{ \
3994 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003995 }
3996#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003997
drhea8ffdf2009-07-22 00:35:23 +00003998#ifndef NDEBUG /* The next routine used only within assert() statements */
3999/*
4000** Return true if the given BtCursor is valid. A valid cursor is one
4001** that is currently pointing to a row in a (non-empty) table.
4002** This is a verification routine is used only within assert() statements.
4003*/
4004int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4005 return pCur && pCur->eState==CURSOR_VALID;
4006}
4007#endif /* NDEBUG */
4008
drh9188b382004-05-14 21:12:22 +00004009/*
drh3aac2dd2004-04-26 14:10:20 +00004010** Set *pSize to the size of the buffer needed to hold the value of
4011** the key for the current entry. If the cursor is not pointing
4012** to a valid entry, *pSize is set to 0.
4013**
drh4b70f112004-05-02 21:12:19 +00004014** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00004015** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00004016**
4017** The caller must position the cursor prior to invoking this routine.
4018**
4019** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00004020*/
drh4a1c3802004-05-12 15:15:47 +00004021int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00004022 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004023 assert( pCur->eState==CURSOR_VALID );
4024 getCellInfo(pCur);
4025 *pSize = pCur->info.nKey;
drhea8ffdf2009-07-22 00:35:23 +00004026 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004027}
drh2af926b2001-05-15 00:39:25 +00004028
drh72f82862001-05-24 21:06:34 +00004029/*
drh0e1c19e2004-05-11 00:58:56 +00004030** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00004031** cursor currently points to.
4032**
4033** The caller must guarantee that the cursor is pointing to a non-NULL
4034** valid entry. In other words, the calling procedure must guarantee
4035** that the cursor has Cursor.eState==CURSOR_VALID.
4036**
4037** Failure is not possible. This function always returns SQLITE_OK.
4038** It might just as well be a procedure (returning void) but we continue
4039** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00004040*/
4041int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00004042 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004043 assert( pCur->eState==CURSOR_VALID );
drhf94c9482015-03-25 12:05:49 +00004044 assert( pCur->iPage>=0 );
4045 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
drh3e28ff52014-09-24 00:59:08 +00004046 assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 );
drhea8ffdf2009-07-22 00:35:23 +00004047 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004048 *pSize = pCur->info.nPayload;
drhea8ffdf2009-07-22 00:35:23 +00004049 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00004050}
4051
4052/*
danielk1977d04417962007-05-02 13:16:30 +00004053** Given the page number of an overflow page in the database (parameter
4054** ovfl), this function finds the page number of the next page in the
4055** linked list of overflow pages. If possible, it uses the auto-vacuum
4056** pointer-map data instead of reading the content of page ovfl to do so.
4057**
4058** If an error occurs an SQLite error code is returned. Otherwise:
4059**
danielk1977bea2a942009-01-20 17:06:27 +00004060** The page number of the next overflow page in the linked list is
4061** written to *pPgnoNext. If page ovfl is the last page in its linked
4062** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004063**
danielk1977bea2a942009-01-20 17:06:27 +00004064** If ppPage is not NULL, and a reference to the MemPage object corresponding
4065** to page number pOvfl was obtained, then *ppPage is set to point to that
4066** reference. It is the responsibility of the caller to call releasePage()
4067** on *ppPage to free the reference. In no reference was obtained (because
4068** the pointer-map was used to obtain the value for *pPgnoNext), then
4069** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004070*/
4071static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004072 BtShared *pBt, /* The database file */
4073 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004074 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004075 Pgno *pPgnoNext /* OUT: Next overflow page number */
4076){
4077 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004078 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004079 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004080
drh1fee73e2007-08-29 04:00:57 +00004081 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004082 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004083
4084#ifndef SQLITE_OMIT_AUTOVACUUM
4085 /* Try to find the next page in the overflow list using the
4086 ** autovacuum pointer-map pages. Guess that the next page in
4087 ** the overflow list is page number (ovfl+1). If that guess turns
4088 ** out to be wrong, fall back to loading the data of page
4089 ** number ovfl to determine the next page number.
4090 */
4091 if( pBt->autoVacuum ){
4092 Pgno pgno;
4093 Pgno iGuess = ovfl+1;
4094 u8 eType;
4095
4096 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4097 iGuess++;
4098 }
4099
drhb1299152010-03-30 22:58:33 +00004100 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004101 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004102 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004103 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004104 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004105 }
4106 }
4107 }
4108#endif
4109
danielk1977d8a3f3d2009-07-11 11:45:23 +00004110 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004111 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004112 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004113 assert( rc==SQLITE_OK || pPage==0 );
4114 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004115 next = get4byte(pPage->aData);
4116 }
danielk1977443c0592009-01-16 15:21:05 +00004117 }
danielk197745d68822009-01-16 16:23:38 +00004118
danielk1977bea2a942009-01-20 17:06:27 +00004119 *pPgnoNext = next;
4120 if( ppPage ){
4121 *ppPage = pPage;
4122 }else{
4123 releasePage(pPage);
4124 }
4125 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004126}
4127
danielk1977da107192007-05-04 08:32:13 +00004128/*
4129** Copy data from a buffer to a page, or from a page to a buffer.
4130**
4131** pPayload is a pointer to data stored on database page pDbPage.
4132** If argument eOp is false, then nByte bytes of data are copied
4133** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4134** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4135** of data are copied from the buffer pBuf to pPayload.
4136**
4137** SQLITE_OK is returned on success, otherwise an error code.
4138*/
4139static int copyPayload(
4140 void *pPayload, /* Pointer to page data */
4141 void *pBuf, /* Pointer to buffer */
4142 int nByte, /* Number of bytes to copy */
4143 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4144 DbPage *pDbPage /* Page containing pPayload */
4145){
4146 if( eOp ){
4147 /* Copy data from buffer to page (a write operation) */
4148 int rc = sqlite3PagerWrite(pDbPage);
4149 if( rc!=SQLITE_OK ){
4150 return rc;
4151 }
4152 memcpy(pPayload, pBuf, nByte);
4153 }else{
4154 /* Copy data from page to buffer (a read operation) */
4155 memcpy(pBuf, pPayload, nByte);
4156 }
4157 return SQLITE_OK;
4158}
danielk1977d04417962007-05-02 13:16:30 +00004159
4160/*
danielk19779f8d6402007-05-02 17:48:45 +00004161** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004162** for the entry that the pCur cursor is pointing to. The eOp
4163** argument is interpreted as follows:
4164**
4165** 0: The operation is a read. Populate the overflow cache.
4166** 1: The operation is a write. Populate the overflow cache.
4167** 2: The operation is a read. Do not populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004168**
4169** A total of "amt" bytes are read or written beginning at "offset".
4170** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004171**
drh3bcdfd22009-07-12 02:32:21 +00004172** The content being read or written might appear on the main page
4173** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004174**
dan5a500af2014-03-11 20:33:04 +00004175** If the current cursor entry uses one or more overflow pages and the
4176** eOp argument is not 2, this function may allocate space for and lazily
peter.d.reid60ec9142014-09-06 16:39:46 +00004177** populates the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004178** Subsequent calls use this cache to make seeking to the supplied offset
4179** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004180**
4181** Once an overflow page-list cache has been allocated, it may be
4182** invalidated if some other cursor writes to the same table, or if
4183** the cursor is moved to a different row. Additionally, in auto-vacuum
4184** mode, the following events may invalidate an overflow page-list cache.
4185**
4186** * An incremental vacuum,
4187** * A commit in auto_vacuum="full" mode,
4188** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004189*/
danielk19779f8d6402007-05-02 17:48:45 +00004190static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004191 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004192 u32 offset, /* Begin reading this far into payload */
4193 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004194 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004195 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004196){
4197 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004198 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004199 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004200 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004201 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004202#ifdef SQLITE_DIRECT_OVERFLOW_READ
dan9501a642014-10-01 12:01:10 +00004203 unsigned char * const pBufStart = pBuf;
drh3f387402014-09-24 01:23:00 +00004204 int bEnd; /* True if reading to end of data */
drh4c417182014-03-31 23:57:41 +00004205#endif
drh3aac2dd2004-04-26 14:10:20 +00004206
danielk1977da107192007-05-04 08:32:13 +00004207 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00004208 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004209 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004210 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00004211 assert( eOp!=2 || offset==0 ); /* Always start from beginning for eOp==2 */
danielk1977da107192007-05-04 08:32:13 +00004212
drh86057612007-06-26 01:04:48 +00004213 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004214 aPayload = pCur->info.pPayload;
drh4c417182014-03-31 23:57:41 +00004215#ifdef SQLITE_DIRECT_OVERFLOW_READ
drhab1cc582014-09-23 21:25:19 +00004216 bEnd = offset+amt==pCur->info.nPayload;
drh4c417182014-03-31 23:57:41 +00004217#endif
drhab1cc582014-09-23 21:25:19 +00004218 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004219
drhab1cc582014-09-23 21:25:19 +00004220 if( &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ){
danielk1977da107192007-05-04 08:32:13 +00004221 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00004222 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00004223 }
danielk1977da107192007-05-04 08:32:13 +00004224
4225 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004226 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004227 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004228 if( a+offset>pCur->info.nLocal ){
4229 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004230 }
dan5a500af2014-03-11 20:33:04 +00004231 rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004232 offset = 0;
drha34b6762004-05-07 13:30:42 +00004233 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004234 amt -= a;
drhdd793422001-06-28 01:54:48 +00004235 }else{
drhfa1a98a2004-05-14 19:08:17 +00004236 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004237 }
danielk1977da107192007-05-04 08:32:13 +00004238
dan85753662014-12-11 16:38:18 +00004239
danielk1977da107192007-05-04 08:32:13 +00004240 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004241 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004242 Pgno nextPage;
4243
drhfa1a98a2004-05-14 19:08:17 +00004244 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004245
drha38c9512014-04-01 01:24:34 +00004246 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4247 ** Except, do not allocate aOverflow[] for eOp==2.
4248 **
4249 ** The aOverflow[] array is sized at one entry for each overflow page
4250 ** in the overflow chain. The page number of the first overflow page is
4251 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4252 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004253 */
drh036dbec2014-03-11 23:40:44 +00004254 if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004255 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
dan5a500af2014-03-11 20:33:04 +00004256 if( nOvfl>pCur->nOvflAlloc ){
dan85753662014-12-11 16:38:18 +00004257 Pgno *aNew = (Pgno*)sqlite3Realloc(
4258 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004259 );
4260 if( aNew==0 ){
4261 rc = SQLITE_NOMEM;
4262 }else{
4263 pCur->nOvflAlloc = nOvfl*2;
4264 pCur->aOverflow = aNew;
4265 }
4266 }
4267 if( rc==SQLITE_OK ){
4268 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
drh036dbec2014-03-11 23:40:44 +00004269 pCur->curFlags |= BTCF_ValidOvfl;
danielk19772dec9702007-05-02 16:48:37 +00004270 }
4271 }
danielk1977da107192007-05-04 08:32:13 +00004272
4273 /* If the overflow page-list cache has been allocated and the
4274 ** entry for the first required overflow page is valid, skip
4275 ** directly to it.
4276 */
drh3f387402014-09-24 01:23:00 +00004277 if( (pCur->curFlags & BTCF_ValidOvfl)!=0
4278 && pCur->aOverflow[offset/ovflSize]
4279 ){
danielk19772dec9702007-05-02 16:48:37 +00004280 iIdx = (offset/ovflSize);
4281 nextPage = pCur->aOverflow[iIdx];
4282 offset = (offset%ovflSize);
4283 }
danielk1977da107192007-05-04 08:32:13 +00004284
4285 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4286
danielk1977da107192007-05-04 08:32:13 +00004287 /* If required, populate the overflow page-list cache. */
drh036dbec2014-03-11 23:40:44 +00004288 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
danielk1977da107192007-05-04 08:32:13 +00004289 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
4290 pCur->aOverflow[iIdx] = nextPage;
4291 }
danielk1977da107192007-05-04 08:32:13 +00004292
danielk1977d04417962007-05-02 13:16:30 +00004293 if( offset>=ovflSize ){
4294 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004295 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004296 ** data is not required. So first try to lookup the overflow
4297 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004298 ** function.
drha38c9512014-04-01 01:24:34 +00004299 **
4300 ** Note that the aOverflow[] array must be allocated because eOp!=2
4301 ** here. If eOp==2, then offset==0 and this branch is never taken.
danielk1977d04417962007-05-02 13:16:30 +00004302 */
drha38c9512014-04-01 01:24:34 +00004303 assert( eOp!=2 );
4304 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004305 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004306 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004307 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004308 }else{
danielk1977da107192007-05-04 08:32:13 +00004309 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004310 }
danielk1977da107192007-05-04 08:32:13 +00004311 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004312 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004313 /* Need to read this page properly. It contains some of the
4314 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004315 */
danf4ba1092011-10-08 14:57:07 +00004316#ifdef SQLITE_DIRECT_OVERFLOW_READ
4317 sqlite3_file *fd;
4318#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004319 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004320 if( a + offset > ovflSize ){
4321 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004322 }
danf4ba1092011-10-08 14:57:07 +00004323
4324#ifdef SQLITE_DIRECT_OVERFLOW_READ
4325 /* If all the following are true:
4326 **
4327 ** 1) this is a read operation, and
4328 ** 2) data is required from the start of this overflow page, and
4329 ** 3) the database is file-backed, and
4330 ** 4) there is no open write-transaction, and
4331 ** 5) the database is not a WAL database,
dan9bc21b52014-03-20 18:56:35 +00004332 ** 6) all data from the page is being read.
dan9501a642014-10-01 12:01:10 +00004333 ** 7) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004334 **
4335 ** then data can be read directly from the database file into the
4336 ** output buffer, bypassing the page-cache altogether. This speeds
4337 ** up loading large records that span many overflow pages.
4338 */
dan5a500af2014-03-11 20:33:04 +00004339 if( (eOp&0x01)==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004340 && offset==0 /* (2) */
dan9bc21b52014-03-20 18:56:35 +00004341 && (bEnd || a==ovflSize) /* (6) */
danf4ba1092011-10-08 14:57:07 +00004342 && pBt->inTransaction==TRANS_READ /* (4) */
4343 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
4344 && pBt->pPage1->aData[19]==0x01 /* (5) */
dan9501a642014-10-01 12:01:10 +00004345 && &pBuf[-4]>=pBufStart /* (7) */
danf4ba1092011-10-08 14:57:07 +00004346 ){
4347 u8 aSave[4];
4348 u8 *aWrite = &pBuf[-4];
dan9501a642014-10-01 12:01:10 +00004349 assert( aWrite>=pBufStart ); /* hence (7) */
danf4ba1092011-10-08 14:57:07 +00004350 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004351 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004352 nextPage = get4byte(aWrite);
4353 memcpy(aWrite, aSave, 4);
4354 }else
4355#endif
4356
4357 {
4358 DbPage *pDbPage;
dan11dcd112013-03-15 18:29:18 +00004359 rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage,
dan5a500af2014-03-11 20:33:04 +00004360 ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004361 );
danf4ba1092011-10-08 14:57:07 +00004362 if( rc==SQLITE_OK ){
4363 aPayload = sqlite3PagerGetData(pDbPage);
4364 nextPage = get4byte(aPayload);
dan5a500af2014-03-11 20:33:04 +00004365 rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
danf4ba1092011-10-08 14:57:07 +00004366 sqlite3PagerUnref(pDbPage);
4367 offset = 0;
4368 }
4369 }
4370 amt -= a;
4371 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004372 }
drh2af926b2001-05-15 00:39:25 +00004373 }
drh2af926b2001-05-15 00:39:25 +00004374 }
danielk1977cfe9a692004-06-16 12:00:29 +00004375
danielk1977da107192007-05-04 08:32:13 +00004376 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004377 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004378 }
danielk1977da107192007-05-04 08:32:13 +00004379 return rc;
drh2af926b2001-05-15 00:39:25 +00004380}
4381
drh72f82862001-05-24 21:06:34 +00004382/*
drh3aac2dd2004-04-26 14:10:20 +00004383** Read part of the key associated with cursor pCur. Exactly
peter.d.reid60ec9142014-09-06 16:39:46 +00004384** "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004385** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004386**
drh5d1a8722009-07-22 18:07:40 +00004387** The caller must ensure that pCur is pointing to a valid row
4388** in the table.
4389**
drh3aac2dd2004-04-26 14:10:20 +00004390** Return SQLITE_OK on success or an error code if anything goes
4391** wrong. An error is returned if "offset+amt" is larger than
4392** the available payload.
drh72f82862001-05-24 21:06:34 +00004393*/
drha34b6762004-05-07 13:30:42 +00004394int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004395 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004396 assert( pCur->eState==CURSOR_VALID );
4397 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4398 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4399 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004400}
4401
4402/*
drh3aac2dd2004-04-26 14:10:20 +00004403** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004404** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004405** begins at "offset".
4406**
4407** Return SQLITE_OK on success or an error code if anything goes
4408** wrong. An error is returned if "offset+amt" is larger than
4409** the available payload.
drh72f82862001-05-24 21:06:34 +00004410*/
drh3aac2dd2004-04-26 14:10:20 +00004411int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004412 int rc;
4413
danielk19773588ceb2008-06-10 17:30:26 +00004414#ifndef SQLITE_OMIT_INCRBLOB
4415 if ( pCur->eState==CURSOR_INVALID ){
4416 return SQLITE_ABORT;
4417 }
4418#endif
4419
drh1fee73e2007-08-29 04:00:57 +00004420 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004421 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004422 if( rc==SQLITE_OK ){
4423 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004424 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4425 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004426 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004427 }
4428 return rc;
drh2af926b2001-05-15 00:39:25 +00004429}
4430
drh72f82862001-05-24 21:06:34 +00004431/*
drh0e1c19e2004-05-11 00:58:56 +00004432** Return a pointer to payload information from the entry that the
4433** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004434** the key if index btrees (pPage->intKey==0) and is the data for
4435** table btrees (pPage->intKey==1). The number of bytes of available
4436** key/data is written into *pAmt. If *pAmt==0, then the value
4437** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004438**
4439** This routine is an optimization. It is common for the entire key
4440** and data to fit on the local page and for there to be no overflow
4441** pages. When that is so, this routine can be used to access the
4442** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004443** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004444** the key/data and copy it into a preallocated buffer.
4445**
4446** The pointer returned by this routine looks directly into the cached
4447** page of the database. The data might change or move the next time
4448** any btree routine is called.
4449*/
drh2a8d2262013-12-09 20:43:22 +00004450static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004451 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004452 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004453){
drhf3392e32015-04-15 17:26:55 +00004454 u32 amt;
danielk197771d5d2c2008-09-29 11:49:47 +00004455 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004456 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004457 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004458 assert( cursorHoldsMutex(pCur) );
drh2a8d2262013-12-09 20:43:22 +00004459 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh86dd3712014-03-25 11:00:21 +00004460 assert( pCur->info.nSize>0 );
drhf3392e32015-04-15 17:26:55 +00004461 assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
4462 assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
4463 amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
4464 if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
4465 *pAmt = amt;
drhab1cc582014-09-23 21:25:19 +00004466 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00004467}
4468
4469
4470/*
drhe51c44f2004-05-30 20:46:09 +00004471** For the entry that cursor pCur is point to, return as
4472** many bytes of the key or data as are available on the local
4473** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004474**
4475** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004476** or be destroyed on the next call to any Btree routine,
4477** including calls from other threads against the same cache.
4478** Hence, a mutex on the BtShared should be held prior to calling
4479** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004480**
4481** These routines is used to get quick access to key and data
4482** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004483*/
drh501932c2013-11-21 21:59:53 +00004484const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004485 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004486}
drh501932c2013-11-21 21:59:53 +00004487const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004488 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004489}
4490
4491
4492/*
drh8178a752003-01-05 21:41:40 +00004493** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004494** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004495**
4496** This function returns SQLITE_CORRUPT if the page-header flags field of
4497** the new child page does not match the flags field of the parent (i.e.
4498** if an intkey page appears to be the parent of a non-intkey page, or
4499** vice-versa).
drh72f82862001-05-24 21:06:34 +00004500*/
drh3aac2dd2004-04-26 14:10:20 +00004501static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00004502 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004503 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00004504 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00004505 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004506
drh1fee73e2007-08-29 04:00:57 +00004507 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004508 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004509 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004510 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004511 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4512 return SQLITE_CORRUPT_BKPT;
4513 }
drhb00fc3b2013-08-21 23:42:32 +00004514 rc = getAndInitPage(pBt, newPgno, &pNewPage,
drh036dbec2014-03-11 23:40:44 +00004515 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0);
drh6019e162001-07-02 17:51:45 +00004516 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004517 pCur->apPage[i+1] = pNewPage;
4518 pCur->aiIdx[i+1] = 0;
4519 pCur->iPage++;
4520
drh271efa52004-05-30 19:19:05 +00004521 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004522 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
danielk1977bd5969a2009-07-11 17:39:42 +00004523 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004524 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004525 }
drh72f82862001-05-24 21:06:34 +00004526 return SQLITE_OK;
4527}
4528
drhcbd33492015-03-25 13:06:54 +00004529#if SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00004530/*
4531** Page pParent is an internal (non-leaf) tree page. This function
4532** asserts that page number iChild is the left-child if the iIdx'th
4533** cell in page pParent. Or, if iIdx is equal to the total number of
4534** cells in pParent, that page number iChild is the right-child of
4535** the page.
4536*/
4537static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00004538 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
4539 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00004540 assert( iIdx<=pParent->nCell );
4541 if( iIdx==pParent->nCell ){
4542 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4543 }else{
4544 assert( get4byte(findCell(pParent, iIdx))==iChild );
4545 }
4546}
4547#else
4548# define assertParentIndex(x,y,z)
4549#endif
4550
drh72f82862001-05-24 21:06:34 +00004551/*
drh5e2f8b92001-05-28 00:41:15 +00004552** Move the cursor up to the parent page.
4553**
4554** pCur->idx is set to the cell index that contains the pointer
4555** to the page we are coming from. If we are coming from the
4556** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004557** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004558*/
danielk197730548662009-07-09 05:07:37 +00004559static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004560 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004561 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004562 assert( pCur->iPage>0 );
4563 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004564 assertParentIndex(
4565 pCur->apPage[pCur->iPage-1],
4566 pCur->aiIdx[pCur->iPage-1],
4567 pCur->apPage[pCur->iPage]->pgno
4568 );
dan6c2688c2012-01-12 15:05:03 +00004569 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
danbb246c42012-01-12 14:25:55 +00004570
danielk197771d5d2c2008-09-29 11:49:47 +00004571 releasePage(pCur->apPage[pCur->iPage]);
4572 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004573 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004574 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh72f82862001-05-24 21:06:34 +00004575}
4576
4577/*
danielk19778f880a82009-07-13 09:41:45 +00004578** Move the cursor to point to the root page of its b-tree structure.
4579**
4580** If the table has a virtual root page, then the cursor is moved to point
4581** to the virtual root page instead of the actual root page. A table has a
4582** virtual root page when the actual root page contains no cells and a
4583** single child page. This can only happen with the table rooted at page 1.
4584**
4585** If the b-tree structure is empty, the cursor state is set to
4586** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4587** cell located on the root (or virtual root) page and the cursor state
4588** is set to CURSOR_VALID.
4589**
4590** If this function returns successfully, it may be assumed that the
4591** page-header flags indicate that the [virtual] root-page is the expected
4592** kind of b-tree page (i.e. if when opening the cursor the caller did not
4593** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4594** indicating a table b-tree, or if the caller did specify a KeyInfo
4595** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4596** b-tree).
drh72f82862001-05-24 21:06:34 +00004597*/
drh5e2f8b92001-05-28 00:41:15 +00004598static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004599 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004600 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004601
drh1fee73e2007-08-29 04:00:57 +00004602 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004603 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4604 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4605 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4606 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4607 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004608 assert( pCur->skipNext!=SQLITE_OK );
4609 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004610 }
danielk1977be51a652008-10-08 17:58:48 +00004611 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004612 }
danielk197771d5d2c2008-09-29 11:49:47 +00004613
4614 if( pCur->iPage>=0 ){
drh4e8fe3f2013-12-06 23:25:27 +00004615 while( pCur->iPage ) releasePage(pCur->apPage[pCur->iPage--]);
dana205a482011-08-27 18:48:57 +00004616 }else if( pCur->pgnoRoot==0 ){
4617 pCur->eState = CURSOR_INVALID;
4618 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004619 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004620 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
drh036dbec2014-03-11 23:40:44 +00004621 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0);
drh4c301aa2009-07-15 17:25:45 +00004622 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004623 pCur->eState = CURSOR_INVALID;
4624 return rc;
4625 }
danielk1977172114a2009-07-07 15:47:12 +00004626 pCur->iPage = 0;
drhc39e0002004-05-07 23:50:57 +00004627 }
danielk197771d5d2c2008-09-29 11:49:47 +00004628 pRoot = pCur->apPage[0];
4629 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00004630
4631 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4632 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4633 ** NULL, the caller expects a table b-tree. If this is not the case,
4634 ** return an SQLITE_CORRUPT error.
4635 **
4636 ** Earlier versions of SQLite assumed that this test could not fail
4637 ** if the root page was already loaded when this function was called (i.e.
4638 ** if pCur->iPage>=0). But this is not so if the database is corrupted
4639 ** in such a way that page pRoot is linked into a second b-tree table
4640 ** (or the freelist). */
4641 assert( pRoot->intKey==1 || pRoot->intKey==0 );
4642 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4643 return SQLITE_CORRUPT_BKPT;
4644 }
danielk19778f880a82009-07-13 09:41:45 +00004645
danielk197771d5d2c2008-09-29 11:49:47 +00004646 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004647 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004648 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00004649
drh4e8fe3f2013-12-06 23:25:27 +00004650 if( pRoot->nCell>0 ){
4651 pCur->eState = CURSOR_VALID;
4652 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00004653 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004654 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004655 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004656 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004657 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004658 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004659 pCur->eState = CURSOR_INVALID;
drh8856d6a2004-04-29 14:42:46 +00004660 }
4661 return rc;
drh72f82862001-05-24 21:06:34 +00004662}
drh2af926b2001-05-15 00:39:25 +00004663
drh5e2f8b92001-05-28 00:41:15 +00004664/*
4665** Move the cursor down to the left-most leaf entry beneath the
4666** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004667**
4668** The left-most leaf is the one with the smallest key - the first
4669** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004670*/
4671static int moveToLeftmost(BtCursor *pCur){
4672 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004673 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004674 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004675
drh1fee73e2007-08-29 04:00:57 +00004676 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004677 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004678 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4679 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4680 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004681 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004682 }
drhd677b3d2007-08-20 22:48:41 +00004683 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004684}
4685
drh2dcc9aa2002-12-04 13:40:25 +00004686/*
4687** Move the cursor down to the right-most leaf entry beneath the
4688** page to which it is currently pointing. Notice the difference
4689** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4690** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4691** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004692**
4693** The right-most entry is the one with the largest key - the last
4694** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004695*/
4696static int moveToRightmost(BtCursor *pCur){
4697 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004698 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004699 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004700
drh1fee73e2007-08-29 04:00:57 +00004701 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004702 assert( pCur->eState==CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00004703 while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004704 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004705 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004706 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00004707 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004708 }
drhee6438d2014-09-01 13:29:32 +00004709 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
4710 assert( pCur->info.nSize==0 );
4711 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
4712 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00004713}
4714
drh5e00f6c2001-09-13 13:46:56 +00004715/* Move the cursor to the first entry in the table. Return SQLITE_OK
4716** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004717** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004718*/
drh3aac2dd2004-04-26 14:10:20 +00004719int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004720 int rc;
drhd677b3d2007-08-20 22:48:41 +00004721
drh1fee73e2007-08-29 04:00:57 +00004722 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004723 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004724 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004725 if( rc==SQLITE_OK ){
4726 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004727 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004728 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004729 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004730 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004731 *pRes = 0;
4732 rc = moveToLeftmost(pCur);
4733 }
drh5e00f6c2001-09-13 13:46:56 +00004734 }
drh5e00f6c2001-09-13 13:46:56 +00004735 return rc;
4736}
drh5e2f8b92001-05-28 00:41:15 +00004737
drh9562b552002-02-19 15:00:07 +00004738/* Move the cursor to the last entry in the table. Return SQLITE_OK
4739** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004740** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004741*/
drh3aac2dd2004-04-26 14:10:20 +00004742int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004743 int rc;
drhd677b3d2007-08-20 22:48:41 +00004744
drh1fee73e2007-08-29 04:00:57 +00004745 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004746 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004747
4748 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00004749 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00004750#ifdef SQLITE_DEBUG
4751 /* This block serves to assert() that the cursor really does point
4752 ** to the last entry in the b-tree. */
4753 int ii;
4754 for(ii=0; ii<pCur->iPage; ii++){
4755 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4756 }
4757 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4758 assert( pCur->apPage[pCur->iPage]->leaf );
4759#endif
4760 return SQLITE_OK;
4761 }
4762
drh9562b552002-02-19 15:00:07 +00004763 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004764 if( rc==SQLITE_OK ){
4765 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00004766 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004767 *pRes = 1;
4768 }else{
4769 assert( pCur->eState==CURSOR_VALID );
4770 *pRes = 0;
4771 rc = moveToRightmost(pCur);
drh036dbec2014-03-11 23:40:44 +00004772 if( rc==SQLITE_OK ){
4773 pCur->curFlags |= BTCF_AtLast;
4774 }else{
4775 pCur->curFlags &= ~BTCF_AtLast;
4776 }
4777
drhd677b3d2007-08-20 22:48:41 +00004778 }
drh9562b552002-02-19 15:00:07 +00004779 }
drh9562b552002-02-19 15:00:07 +00004780 return rc;
4781}
4782
drhe14006d2008-03-25 17:23:32 +00004783/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004784** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004785**
drhe63d9992008-08-13 19:11:48 +00004786** For INTKEY tables, the intKey parameter is used. pIdxKey
4787** must be NULL. For index tables, pIdxKey is used and intKey
4788** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004789**
drh5e2f8b92001-05-28 00:41:15 +00004790** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004791** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004792** were present. The cursor might point to an entry that comes
4793** before or after the key.
4794**
drh64022502009-01-09 14:11:04 +00004795** An integer is written into *pRes which is the result of
4796** comparing the key with the entry to which the cursor is
4797** pointing. The meaning of the integer written into
4798** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004799**
4800** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004801** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004802** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004803**
4804** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004805** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004806**
4807** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004808** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004809**
drha059ad02001-04-17 20:09:11 +00004810*/
drhe63d9992008-08-13 19:11:48 +00004811int sqlite3BtreeMovetoUnpacked(
4812 BtCursor *pCur, /* The cursor to be moved */
4813 UnpackedRecord *pIdxKey, /* Unpacked index key */
4814 i64 intKey, /* The table key */
4815 int biasRight, /* If true, bias the search to the high end */
4816 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004817){
drh72f82862001-05-24 21:06:34 +00004818 int rc;
dan3b9330f2014-02-27 20:44:18 +00004819 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00004820
drh1fee73e2007-08-29 04:00:57 +00004821 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004822 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004823 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004824 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004825
4826 /* If the cursor is already positioned at the point we are trying
4827 ** to move to, then just return without doing any work */
drh036dbec2014-03-11 23:40:44 +00004828 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
danielk197771d5d2c2008-09-29 11:49:47 +00004829 && pCur->apPage[0]->intKey
4830 ){
drhe63d9992008-08-13 19:11:48 +00004831 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004832 *pRes = 0;
4833 return SQLITE_OK;
4834 }
drh036dbec2014-03-11 23:40:44 +00004835 if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004836 *pRes = -1;
4837 return SQLITE_OK;
4838 }
4839 }
4840
dan1fed5da2014-02-25 21:01:25 +00004841 if( pIdxKey ){
4842 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00004843 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00004844 assert( pIdxKey->default_rc==1
4845 || pIdxKey->default_rc==0
4846 || pIdxKey->default_rc==-1
4847 );
drh13a747e2014-03-03 21:46:55 +00004848 }else{
drhb6e8fd12014-03-06 01:56:33 +00004849 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00004850 }
4851
drh5e2f8b92001-05-28 00:41:15 +00004852 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004853 if( rc ){
4854 return rc;
4855 }
dana205a482011-08-27 18:48:57 +00004856 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
4857 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
4858 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00004859 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004860 *pRes = -1;
dana205a482011-08-27 18:48:57 +00004861 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004862 return SQLITE_OK;
4863 }
danielk197771d5d2c2008-09-29 11:49:47 +00004864 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004865 for(;;){
drhec3e6b12013-11-25 02:38:55 +00004866 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00004867 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004868 MemPage *pPage = pCur->apPage[pCur->iPage];
drhec3e6b12013-11-25 02:38:55 +00004869 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00004870
4871 /* pPage->nCell must be greater than zero. If this is the root-page
4872 ** the cursor would have been INVALID above and this for(;;) loop
4873 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004874 ** would have already detected db corruption. Similarly, pPage must
4875 ** be the right kind (index or table) of b-tree page. Otherwise
4876 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004877 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004878 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004879 lwr = 0;
4880 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00004881 assert( biasRight==0 || biasRight==1 );
4882 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drhd793f442013-11-25 14:10:15 +00004883 pCur->aiIdx[pCur->iPage] = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00004884 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00004885 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004886 i64 nCellKey;
drhec3e6b12013-11-25 02:38:55 +00004887 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3e28ff52014-09-24 00:59:08 +00004888 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00004889 while( 0x80 <= *(pCell++) ){
4890 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
4891 }
drhd172f862006-01-12 15:01:15 +00004892 }
drha2c20e42008-03-29 16:01:04 +00004893 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00004894 if( nCellKey<intKey ){
4895 lwr = idx+1;
4896 if( lwr>upr ){ c = -1; break; }
4897 }else if( nCellKey>intKey ){
4898 upr = idx-1;
4899 if( lwr>upr ){ c = +1; break; }
4900 }else{
4901 assert( nCellKey==intKey );
drh036dbec2014-03-11 23:40:44 +00004902 pCur->curFlags |= BTCF_ValidNKey;
drhec3e6b12013-11-25 02:38:55 +00004903 pCur->info.nKey = nCellKey;
drhd793f442013-11-25 14:10:15 +00004904 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00004905 if( !pPage->leaf ){
4906 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00004907 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00004908 }else{
4909 *pRes = 0;
4910 rc = SQLITE_OK;
4911 goto moveto_finish;
4912 }
drhd793f442013-11-25 14:10:15 +00004913 }
drhebf10b12013-11-25 17:38:26 +00004914 assert( lwr+upr>=0 );
4915 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00004916 }
4917 }else{
4918 for(;;){
4919 int nCell;
drhec3e6b12013-11-25 02:38:55 +00004920 pCell = findCell(pPage, idx) + pPage->childPtrSize;
4921
drhb2eced52010-08-12 02:41:12 +00004922 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00004923 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00004924 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00004925 ** varint. This information is used to attempt to avoid parsing
4926 ** the entire cell by checking for the cases where the record is
4927 ** stored entirely within the b-tree page by inspecting the first
4928 ** 2 bytes of the cell.
4929 */
drhec3e6b12013-11-25 02:38:55 +00004930 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00004931 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00004932 /* This branch runs if the record-size field of the cell is a
4933 ** single byte varint and the record fits entirely on the main
4934 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00004935 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00004936 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00004937 }else if( !(pCell[1] & 0x80)
4938 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4939 ){
4940 /* The record-size field is a 2 byte varint and the record
4941 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00004942 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00004943 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004944 }else{
danielk197711c327a2009-05-04 19:01:26 +00004945 /* The record flows over onto one or more overflow pages. In
4946 ** this case the whole cell needs to be parsed, a buffer allocated
4947 ** and accessPayload() used to retrieve the record into the
4948 ** buffer before VdbeRecordCompare() can be called. */
4949 void *pCellKey;
4950 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004951 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004952 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004953 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004954 if( pCellKey==0 ){
4955 rc = SQLITE_NOMEM;
4956 goto moveto_finish;
4957 }
drhd793f442013-11-25 14:10:15 +00004958 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan5a500af2014-03-11 20:33:04 +00004959 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
drhec9b31f2009-08-25 13:53:49 +00004960 if( rc ){
4961 sqlite3_free(pCellKey);
4962 goto moveto_finish;
4963 }
drh75179de2014-09-16 14:37:35 +00004964 c = xRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004965 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00004966 }
dan38fdead2014-04-01 10:19:02 +00004967 assert(
4968 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00004969 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00004970 );
drhbb933ef2013-11-25 15:01:38 +00004971 if( c<0 ){
4972 lwr = idx+1;
4973 }else if( c>0 ){
4974 upr = idx-1;
4975 }else{
4976 assert( c==0 );
drh64022502009-01-09 14:11:04 +00004977 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004978 rc = SQLITE_OK;
drhd793f442013-11-25 14:10:15 +00004979 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan38fdead2014-04-01 10:19:02 +00004980 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00004981 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004982 }
drhebf10b12013-11-25 17:38:26 +00004983 if( lwr>upr ) break;
4984 assert( lwr+upr>=0 );
4985 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00004986 }
drh72f82862001-05-24 21:06:34 +00004987 }
drhb07028f2011-10-14 21:49:18 +00004988 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00004989 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004990 if( pPage->leaf ){
drhec3e6b12013-11-25 02:38:55 +00004991 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhbb933ef2013-11-25 15:01:38 +00004992 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00004993 *pRes = c;
4994 rc = SQLITE_OK;
4995 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00004996 }
4997moveto_next_layer:
4998 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004999 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005000 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005001 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005002 }
drhf49661a2008-12-10 16:45:50 +00005003 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005004 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005005 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005006 }
drh1e968a02008-03-25 00:22:21 +00005007moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005008 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005009 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhe63d9992008-08-13 19:11:48 +00005010 return rc;
5011}
5012
drhd677b3d2007-08-20 22:48:41 +00005013
drh72f82862001-05-24 21:06:34 +00005014/*
drhc39e0002004-05-07 23:50:57 +00005015** Return TRUE if the cursor is not pointing at an entry of the table.
5016**
5017** TRUE will be returned after a call to sqlite3BtreeNext() moves
5018** past the last entry in the table or sqlite3BtreePrev() moves past
5019** the first entry. TRUE is also returned if the table is empty.
5020*/
5021int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005022 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5023 ** have been deleted? This API will need to change to return an error code
5024 ** as well as the boolean result value.
5025 */
5026 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005027}
5028
5029/*
drhbd03cae2001-06-02 02:40:57 +00005030** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00005031** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00005032** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00005033** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005034**
drhee6438d2014-09-01 13:29:32 +00005035** The main entry point is sqlite3BtreeNext(). That routine is optimized
5036** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5037** to the next cell on the current page. The (slower) btreeNext() helper
5038** routine is called when it is necessary to move to a different page or
5039** to restore the cursor.
5040**
drhe39a7322014-02-03 14:04:11 +00005041** The calling function will set *pRes to 0 or 1. The initial *pRes value
5042** will be 1 if the cursor being stepped corresponds to an SQL index and
5043** if this routine could have been skipped if that SQL index had been
5044** a unique index. Otherwise the caller will have set *pRes to zero.
5045** Zero is the common case. The btree implementation is free to use the
5046** initial *pRes value as a hint to improve performance, but the current
5047** SQLite btree implementation does not. (Note that the comdb2 btree
5048** implementation does use this hint, however.)
drh72f82862001-05-24 21:06:34 +00005049*/
drhee6438d2014-09-01 13:29:32 +00005050static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00005051 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005052 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005053 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005054
drh1fee73e2007-08-29 04:00:57 +00005055 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005056 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005057 assert( *pRes==0 );
drhf66f26a2013-08-19 20:04:10 +00005058 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005059 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005060 rc = restoreCursorPosition(pCur);
5061 if( rc!=SQLITE_OK ){
5062 return rc;
5063 }
5064 if( CURSOR_INVALID==pCur->eState ){
5065 *pRes = 1;
5066 return SQLITE_OK;
5067 }
drh9b47ee32013-08-20 03:13:51 +00005068 if( pCur->skipNext ){
5069 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5070 pCur->eState = CURSOR_VALID;
5071 if( pCur->skipNext>0 ){
5072 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005073 return SQLITE_OK;
5074 }
drhf66f26a2013-08-19 20:04:10 +00005075 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005076 }
danielk1977da184232006-01-05 11:34:32 +00005077 }
danielk1977da184232006-01-05 11:34:32 +00005078
danielk197771d5d2c2008-09-29 11:49:47 +00005079 pPage = pCur->apPage[pCur->iPage];
5080 idx = ++pCur->aiIdx[pCur->iPage];
5081 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00005082
5083 /* If the database file is corrupt, it is possible for the value of idx
5084 ** to be invalid here. This can only occur if a second cursor modifies
5085 ** the page while cursor pCur is holding a reference to it. Which can
5086 ** only happen if the database is corrupt in such a way as to link the
5087 ** page into more than one b-tree structure. */
5088 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005089
danielk197771d5d2c2008-09-29 11:49:47 +00005090 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005091 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005092 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005093 if( rc ) return rc;
5094 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005095 }
drh5e2f8b92001-05-28 00:41:15 +00005096 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005097 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00005098 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00005099 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00005100 return SQLITE_OK;
5101 }
danielk197730548662009-07-09 05:07:37 +00005102 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00005103 pPage = pCur->apPage[pCur->iPage];
5104 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005105 if( pPage->intKey ){
drhee6438d2014-09-01 13:29:32 +00005106 return sqlite3BtreeNext(pCur, pRes);
drh8b18dd42004-05-12 19:18:15 +00005107 }else{
drhee6438d2014-09-01 13:29:32 +00005108 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005109 }
drh8178a752003-01-05 21:41:40 +00005110 }
drh3aac2dd2004-04-26 14:10:20 +00005111 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005112 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005113 }else{
5114 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005115 }
drh72f82862001-05-24 21:06:34 +00005116}
drhee6438d2014-09-01 13:29:32 +00005117int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
5118 MemPage *pPage;
5119 assert( cursorHoldsMutex(pCur) );
5120 assert( pRes!=0 );
5121 assert( *pRes==0 || *pRes==1 );
5122 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5123 pCur->info.nSize = 0;
5124 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5125 *pRes = 0;
5126 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
5127 pPage = pCur->apPage[pCur->iPage];
5128 if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){
5129 pCur->aiIdx[pCur->iPage]--;
5130 return btreeNext(pCur, pRes);
5131 }
5132 if( pPage->leaf ){
5133 return SQLITE_OK;
5134 }else{
5135 return moveToLeftmost(pCur);
5136 }
5137}
drh72f82862001-05-24 21:06:34 +00005138
drh3b7511c2001-05-26 13:15:44 +00005139/*
drh2dcc9aa2002-12-04 13:40:25 +00005140** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00005141** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00005142** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00005143** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005144**
drhee6438d2014-09-01 13:29:32 +00005145** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5146** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005147** to the previous cell on the current page. The (slower) btreePrevious()
5148** helper routine is called when it is necessary to move to a different page
5149** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005150**
drhe39a7322014-02-03 14:04:11 +00005151** The calling function will set *pRes to 0 or 1. The initial *pRes value
5152** will be 1 if the cursor being stepped corresponds to an SQL index and
5153** if this routine could have been skipped if that SQL index had been
5154** a unique index. Otherwise the caller will have set *pRes to zero.
5155** Zero is the common case. The btree implementation is free to use the
5156** initial *pRes value as a hint to improve performance, but the current
5157** SQLite btree implementation does not. (Note that the comdb2 btree
5158** implementation does use this hint, however.)
drh2dcc9aa2002-12-04 13:40:25 +00005159*/
drhee6438d2014-09-01 13:29:32 +00005160static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00005161 int rc;
drh8178a752003-01-05 21:41:40 +00005162 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005163
drh1fee73e2007-08-29 04:00:57 +00005164 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005165 assert( pRes!=0 );
drhee6438d2014-09-01 13:29:32 +00005166 assert( *pRes==0 );
drh9b47ee32013-08-20 03:13:51 +00005167 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005168 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5169 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005170 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005171 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005172 if( rc!=SQLITE_OK ){
5173 return rc;
drhf66f26a2013-08-19 20:04:10 +00005174 }
5175 if( CURSOR_INVALID==pCur->eState ){
5176 *pRes = 1;
5177 return SQLITE_OK;
5178 }
drh9b47ee32013-08-20 03:13:51 +00005179 if( pCur->skipNext ){
5180 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5181 pCur->eState = CURSOR_VALID;
5182 if( pCur->skipNext<0 ){
5183 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005184 return SQLITE_OK;
5185 }
drhf66f26a2013-08-19 20:04:10 +00005186 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005187 }
danielk1977da184232006-01-05 11:34:32 +00005188 }
danielk1977da184232006-01-05 11:34:32 +00005189
danielk197771d5d2c2008-09-29 11:49:47 +00005190 pPage = pCur->apPage[pCur->iPage];
5191 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005192 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00005193 int idx = pCur->aiIdx[pCur->iPage];
5194 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005195 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005196 rc = moveToRightmost(pCur);
5197 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00005198 while( pCur->aiIdx[pCur->iPage]==0 ){
5199 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005200 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00005201 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00005202 return SQLITE_OK;
5203 }
danielk197730548662009-07-09 05:07:37 +00005204 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005205 }
drhee6438d2014-09-01 13:29:32 +00005206 assert( pCur->info.nSize==0 );
5207 assert( (pCur->curFlags & (BTCF_ValidNKey|BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005208
5209 pCur->aiIdx[pCur->iPage]--;
5210 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00005211 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00005212 rc = sqlite3BtreePrevious(pCur, pRes);
5213 }else{
5214 rc = SQLITE_OK;
5215 }
drh2dcc9aa2002-12-04 13:40:25 +00005216 }
drh2dcc9aa2002-12-04 13:40:25 +00005217 return rc;
5218}
drhee6438d2014-09-01 13:29:32 +00005219int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
5220 assert( cursorHoldsMutex(pCur) );
5221 assert( pRes!=0 );
5222 assert( *pRes==0 || *pRes==1 );
5223 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5224 *pRes = 0;
5225 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5226 pCur->info.nSize = 0;
5227 if( pCur->eState!=CURSOR_VALID
5228 || pCur->aiIdx[pCur->iPage]==0
5229 || pCur->apPage[pCur->iPage]->leaf==0
5230 ){
5231 return btreePrevious(pCur, pRes);
5232 }
5233 pCur->aiIdx[pCur->iPage]--;
5234 return SQLITE_OK;
5235}
drh2dcc9aa2002-12-04 13:40:25 +00005236
5237/*
drh3b7511c2001-05-26 13:15:44 +00005238** Allocate a new page from the database file.
5239**
danielk19773b8a05f2007-03-19 17:44:26 +00005240** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005241** has already been called on the new page.) The new page has also
5242** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005243** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005244**
5245** SQLITE_OK is returned on success. Any other return value indicates
5246** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00005247** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00005248**
drh82e647d2013-03-02 03:25:55 +00005249** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005250** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005251** attempt to keep related pages close to each other in the database file,
5252** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005253**
drh82e647d2013-03-02 03:25:55 +00005254** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5255** anywhere on the free-list, then it is guaranteed to be returned. If
5256** eMode is BTALLOC_LT then the page returned will be less than or equal
5257** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5258** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005259*/
drh4f0c5872007-03-26 22:05:01 +00005260static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005261 BtShared *pBt, /* The btree */
5262 MemPage **ppPage, /* Store pointer to the allocated page here */
5263 Pgno *pPgno, /* Store the page number here */
5264 Pgno nearby, /* Search for a page near this one */
5265 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005266){
drh3aac2dd2004-04-26 14:10:20 +00005267 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005268 int rc;
drh35cd6432009-06-05 14:17:21 +00005269 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005270 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005271 MemPage *pTrunk = 0;
5272 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005273 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005274
drh1fee73e2007-08-29 04:00:57 +00005275 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005276 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005277 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005278 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005279 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5280 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005281 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005282 testcase( n==mxPage-1 );
5283 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005284 return SQLITE_CORRUPT_BKPT;
5285 }
drh3aac2dd2004-04-26 14:10:20 +00005286 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005287 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005288 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005289 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
5290
drh82e647d2013-03-02 03:25:55 +00005291 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005292 ** shows that the page 'nearby' is somewhere on the free-list, then
5293 ** the entire-list will be searched for that page.
5294 */
5295#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005296 if( eMode==BTALLOC_EXACT ){
5297 if( nearby<=mxPage ){
5298 u8 eType;
5299 assert( nearby>0 );
5300 assert( pBt->autoVacuum );
5301 rc = ptrmapGet(pBt, nearby, &eType, 0);
5302 if( rc ) return rc;
5303 if( eType==PTRMAP_FREEPAGE ){
5304 searchList = 1;
5305 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005306 }
dan51f0b6d2013-02-22 20:16:34 +00005307 }else if( eMode==BTALLOC_LE ){
5308 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005309 }
5310#endif
5311
5312 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5313 ** first free-list trunk page. iPrevTrunk is initially 1.
5314 */
danielk19773b8a05f2007-03-19 17:44:26 +00005315 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005316 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005317 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005318
5319 /* The code within this loop is run only once if the 'searchList' variable
5320 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005321 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5322 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005323 */
5324 do {
5325 pPrevTrunk = pTrunk;
5326 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005327 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5328 ** is the page number of the next freelist trunk page in the list or
5329 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005330 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005331 }else{
drh113762a2014-11-19 16:36:25 +00005332 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5333 ** stores the page number of the first page of the freelist, or zero if
5334 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005335 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005336 }
drhdf35a082009-07-09 02:24:35 +00005337 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005338 if( iTrunk>mxPage ){
5339 rc = SQLITE_CORRUPT_BKPT;
5340 }else{
drhb00fc3b2013-08-21 23:42:32 +00005341 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005342 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005343 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005344 pTrunk = 0;
5345 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005346 }
drhb07028f2011-10-14 21:49:18 +00005347 assert( pTrunk!=0 );
5348 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005349 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5350 ** is the number of leaf page pointers to follow. */
5351 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005352 if( k==0 && !searchList ){
5353 /* The trunk has no leaves and the list is not being searched.
5354 ** So extract the trunk page itself and use it as the newly
5355 ** allocated page */
5356 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005357 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005358 if( rc ){
5359 goto end_allocate_page;
5360 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005361 *pPgno = iTrunk;
5362 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5363 *ppPage = pTrunk;
5364 pTrunk = 0;
5365 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005366 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005367 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00005368 rc = SQLITE_CORRUPT_BKPT;
5369 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005370#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005371 }else if( searchList
5372 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5373 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005374 /* The list is being searched and this trunk page is the page
5375 ** to allocate, regardless of whether it has leaves.
5376 */
dan51f0b6d2013-02-22 20:16:34 +00005377 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005378 *ppPage = pTrunk;
5379 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005380 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005381 if( rc ){
5382 goto end_allocate_page;
5383 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005384 if( k==0 ){
5385 if( !pPrevTrunk ){
5386 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5387 }else{
danf48c3552010-08-23 15:41:24 +00005388 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5389 if( rc!=SQLITE_OK ){
5390 goto end_allocate_page;
5391 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005392 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5393 }
5394 }else{
5395 /* The trunk page is required by the caller but it contains
5396 ** pointers to free-list leaves. The first leaf becomes a trunk
5397 ** page in this case.
5398 */
5399 MemPage *pNewTrunk;
5400 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005401 if( iNewTrunk>mxPage ){
5402 rc = SQLITE_CORRUPT_BKPT;
5403 goto end_allocate_page;
5404 }
drhdf35a082009-07-09 02:24:35 +00005405 testcase( iNewTrunk==mxPage );
drhb00fc3b2013-08-21 23:42:32 +00005406 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005407 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005408 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005409 }
danielk19773b8a05f2007-03-19 17:44:26 +00005410 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005411 if( rc!=SQLITE_OK ){
5412 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005413 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005414 }
5415 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5416 put4byte(&pNewTrunk->aData[4], k-1);
5417 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005418 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005419 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005420 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005421 put4byte(&pPage1->aData[32], iNewTrunk);
5422 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005423 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005424 if( rc ){
5425 goto end_allocate_page;
5426 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005427 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5428 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005429 }
5430 pTrunk = 0;
5431 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5432#endif
danielk1977e5765212009-06-17 11:13:28 +00005433 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005434 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005435 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005436 Pgno iPage;
5437 unsigned char *aData = pTrunk->aData;
5438 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005439 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005440 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005441 if( eMode==BTALLOC_LE ){
5442 for(i=0; i<k; i++){
5443 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005444 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005445 closest = i;
5446 break;
5447 }
5448 }
5449 }else{
5450 int dist;
5451 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5452 for(i=1; i<k; i++){
5453 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5454 if( d2<dist ){
5455 closest = i;
5456 dist = d2;
5457 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005458 }
5459 }
5460 }else{
5461 closest = 0;
5462 }
5463
5464 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005465 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005466 if( iPage>mxPage ){
5467 rc = SQLITE_CORRUPT_BKPT;
5468 goto end_allocate_page;
5469 }
drhdf35a082009-07-09 02:24:35 +00005470 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005471 if( !searchList
5472 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5473 ){
danielk1977bea2a942009-01-20 17:06:27 +00005474 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005475 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005476 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5477 ": %d more free pages\n",
5478 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005479 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5480 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005481 if( closest<k-1 ){
5482 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5483 }
5484 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00005485 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drhb00fc3b2013-08-21 23:42:32 +00005486 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005487 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005488 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005489 if( rc!=SQLITE_OK ){
5490 releasePage(*ppPage);
5491 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005492 }
5493 searchList = 0;
5494 }
drhee696e22004-08-30 16:52:17 +00005495 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005496 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005497 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005498 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005499 }else{
danbc1a3c62013-02-23 16:40:46 +00005500 /* There are no pages on the freelist, so append a new page to the
5501 ** database image.
5502 **
5503 ** Normally, new pages allocated by this block can be requested from the
5504 ** pager layer with the 'no-content' flag set. This prevents the pager
5505 ** from trying to read the pages content from disk. However, if the
5506 ** current transaction has already run one or more incremental-vacuum
5507 ** steps, then the page we are about to allocate may contain content
5508 ** that is required in the event of a rollback. In this case, do
5509 ** not set the no-content flag. This causes the pager to load and journal
5510 ** the current page content before overwriting it.
5511 **
5512 ** Note that the pager will not actually attempt to load or journal
5513 ** content for any page that really does lie past the end of the database
5514 ** file on disk. So the effects of disabling the no-content optimization
5515 ** here are confined to those pages that lie between the end of the
5516 ** database image and the end of the database file.
5517 */
drh3f387402014-09-24 01:23:00 +00005518 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00005519
drhdd3cd972010-03-27 17:12:36 +00005520 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5521 if( rc ) return rc;
5522 pBt->nPage++;
5523 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005524
danielk1977afcdd022004-10-31 16:25:42 +00005525#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005526 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005527 /* If *pPgno refers to a pointer-map page, allocate two new pages
5528 ** at the end of the file instead of one. The first allocated page
5529 ** becomes a new pointer-map page, the second is used by the caller.
5530 */
danielk1977ac861692009-03-28 10:54:22 +00005531 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005532 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5533 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drhb00fc3b2013-08-21 23:42:32 +00005534 rc = btreeGetPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005535 if( rc==SQLITE_OK ){
5536 rc = sqlite3PagerWrite(pPg->pDbPage);
5537 releasePage(pPg);
5538 }
5539 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005540 pBt->nPage++;
5541 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005542 }
5543#endif
drhdd3cd972010-03-27 17:12:36 +00005544 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5545 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005546
danielk1977599fcba2004-11-08 07:13:13 +00005547 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhb00fc3b2013-08-21 23:42:32 +00005548 rc = btreeGetPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00005549 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005550 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005551 if( rc!=SQLITE_OK ){
5552 releasePage(*ppPage);
5553 }
drh3a4c1412004-05-09 20:40:11 +00005554 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005555 }
danielk1977599fcba2004-11-08 07:13:13 +00005556
5557 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005558
5559end_allocate_page:
5560 releasePage(pTrunk);
5561 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00005562 if( rc==SQLITE_OK ){
5563 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
5564 releasePage(*ppPage);
dan7df42ab2014-01-20 18:25:44 +00005565 *ppPage = 0;
danielk1977b247c212008-11-21 09:09:01 +00005566 return SQLITE_CORRUPT_BKPT;
5567 }
5568 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00005569 }else{
5570 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00005571 }
drh93b4fc72011-04-07 14:47:01 +00005572 assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) );
drh3b7511c2001-05-26 13:15:44 +00005573 return rc;
5574}
5575
5576/*
danielk1977bea2a942009-01-20 17:06:27 +00005577** This function is used to add page iPage to the database file free-list.
5578** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005579**
danielk1977bea2a942009-01-20 17:06:27 +00005580** The value passed as the second argument to this function is optional.
5581** If the caller happens to have a pointer to the MemPage object
5582** corresponding to page iPage handy, it may pass it as the second value.
5583** Otherwise, it may pass NULL.
5584**
5585** If a pointer to a MemPage object is passed as the second argument,
5586** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005587*/
danielk1977bea2a942009-01-20 17:06:27 +00005588static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5589 MemPage *pTrunk = 0; /* Free-list trunk page */
5590 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5591 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5592 MemPage *pPage; /* Page being freed. May be NULL. */
5593 int rc; /* Return Code */
5594 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005595
danielk1977bea2a942009-01-20 17:06:27 +00005596 assert( sqlite3_mutex_held(pBt->mutex) );
5597 assert( iPage>1 );
5598 assert( !pMemPage || pMemPage->pgno==iPage );
5599
5600 if( pMemPage ){
5601 pPage = pMemPage;
5602 sqlite3PagerRef(pPage->pDbPage);
5603 }else{
5604 pPage = btreePageLookup(pBt, iPage);
5605 }
drh3aac2dd2004-04-26 14:10:20 +00005606
drha34b6762004-05-07 13:30:42 +00005607 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005608 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005609 if( rc ) goto freepage_out;
5610 nFree = get4byte(&pPage1->aData[36]);
5611 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005612
drhc9166342012-01-05 23:32:06 +00005613 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005614 /* If the secure_delete option is enabled, then
5615 ** always fully overwrite deleted information with zeros.
5616 */
drhb00fc3b2013-08-21 23:42:32 +00005617 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00005618 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005619 ){
5620 goto freepage_out;
5621 }
5622 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005623 }
drhfcce93f2006-02-22 03:08:32 +00005624
danielk1977687566d2004-11-02 12:56:41 +00005625 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005626 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005627 */
danielk197785d90ca2008-07-19 14:25:15 +00005628 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005629 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005630 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005631 }
danielk1977687566d2004-11-02 12:56:41 +00005632
danielk1977bea2a942009-01-20 17:06:27 +00005633 /* Now manipulate the actual database free-list structure. There are two
5634 ** possibilities. If the free-list is currently empty, or if the first
5635 ** trunk page in the free-list is full, then this page will become a
5636 ** new free-list trunk page. Otherwise, it will become a leaf of the
5637 ** first trunk page in the current free-list. This block tests if it
5638 ** is possible to add the page as a new free-list leaf.
5639 */
5640 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005641 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005642
5643 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00005644 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005645 if( rc!=SQLITE_OK ){
5646 goto freepage_out;
5647 }
5648
5649 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005650 assert( pBt->usableSize>32 );
5651 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005652 rc = SQLITE_CORRUPT_BKPT;
5653 goto freepage_out;
5654 }
drheeb844a2009-08-08 18:01:07 +00005655 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005656 /* In this case there is room on the trunk page to insert the page
5657 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005658 **
5659 ** Note that the trunk page is not really full until it contains
5660 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5661 ** coded. But due to a coding error in versions of SQLite prior to
5662 ** 3.6.0, databases with freelist trunk pages holding more than
5663 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5664 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005665 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005666 ** for now. At some point in the future (once everyone has upgraded
5667 ** to 3.6.0 or later) we should consider fixing the conditional above
5668 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00005669 **
5670 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
5671 ** avoid using the last six entries in the freelist trunk page array in
5672 ** order that database files created by newer versions of SQLite can be
5673 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00005674 */
danielk19773b8a05f2007-03-19 17:44:26 +00005675 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005676 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005677 put4byte(&pTrunk->aData[4], nLeaf+1);
5678 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005679 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005680 sqlite3PagerDontWrite(pPage->pDbPage);
5681 }
danielk1977bea2a942009-01-20 17:06:27 +00005682 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005683 }
drh3a4c1412004-05-09 20:40:11 +00005684 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005685 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005686 }
drh3b7511c2001-05-26 13:15:44 +00005687 }
danielk1977bea2a942009-01-20 17:06:27 +00005688
5689 /* If control flows to this point, then it was not possible to add the
5690 ** the page being freed as a leaf page of the first trunk in the free-list.
5691 ** Possibly because the free-list is empty, or possibly because the
5692 ** first trunk in the free-list is full. Either way, the page being freed
5693 ** will become the new first trunk page in the free-list.
5694 */
drhb00fc3b2013-08-21 23:42:32 +00005695 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00005696 goto freepage_out;
5697 }
5698 rc = sqlite3PagerWrite(pPage->pDbPage);
5699 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005700 goto freepage_out;
5701 }
5702 put4byte(pPage->aData, iTrunk);
5703 put4byte(&pPage->aData[4], 0);
5704 put4byte(&pPage1->aData[32], iPage);
5705 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5706
5707freepage_out:
5708 if( pPage ){
5709 pPage->isInit = 0;
5710 }
5711 releasePage(pPage);
5712 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005713 return rc;
5714}
drhc314dc72009-07-21 11:52:34 +00005715static void freePage(MemPage *pPage, int *pRC){
5716 if( (*pRC)==SQLITE_OK ){
5717 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5718 }
danielk1977bea2a942009-01-20 17:06:27 +00005719}
drh3b7511c2001-05-26 13:15:44 +00005720
5721/*
drh9bfdc252014-09-24 02:05:41 +00005722** Free any overflow pages associated with the given Cell. Write the
5723** local Cell size (the number of bytes on the original page, omitting
5724** overflow) into *pnSize.
drh3b7511c2001-05-26 13:15:44 +00005725*/
drh9bfdc252014-09-24 02:05:41 +00005726static int clearCell(
5727 MemPage *pPage, /* The page that contains the Cell */
5728 unsigned char *pCell, /* First byte of the Cell */
5729 u16 *pnSize /* Write the size of the Cell here */
5730){
danielk1977aef0bf62005-12-30 16:28:01 +00005731 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005732 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005733 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005734 int rc;
drh94440812007-03-06 11:42:19 +00005735 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005736 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005737
drh1fee73e2007-08-29 04:00:57 +00005738 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00005739 btreeParseCellPtr(pPage, pCell, &info);
drh9bfdc252014-09-24 02:05:41 +00005740 *pnSize = info.nSize;
drh6f11bef2004-05-13 01:12:56 +00005741 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005742 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005743 }
drhe42a9b42011-08-31 13:27:19 +00005744 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00005745 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00005746 }
drh6f11bef2004-05-13 01:12:56 +00005747 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005748 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005749 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005750 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5751 assert( ovflPgno==0 || nOvfl>0 );
5752 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005753 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005754 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005755 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005756 /* 0 is not a legal page number and page 1 cannot be an
5757 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5758 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005759 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005760 }
danielk1977bea2a942009-01-20 17:06:27 +00005761 if( nOvfl ){
5762 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5763 if( rc ) return rc;
5764 }
dan887d4b22010-02-25 12:09:16 +00005765
shaneh1da207e2010-03-09 14:41:12 +00005766 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005767 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5768 ){
5769 /* There is no reason any cursor should have an outstanding reference
5770 ** to an overflow page belonging to a cell that is being deleted/updated.
5771 ** So if there exists more than one reference to this page, then it
5772 ** must not really be an overflow page and the database must be corrupt.
5773 ** It is helpful to detect this before calling freePage2(), as
5774 ** freePage2() may zero the page contents if secure-delete mode is
5775 ** enabled. If this 'overflow' page happens to be a page that the
5776 ** caller is iterating through or using in some other way, this
5777 ** can be problematic.
5778 */
5779 rc = SQLITE_CORRUPT_BKPT;
5780 }else{
5781 rc = freePage2(pBt, pOvfl, ovflPgno);
5782 }
5783
danielk1977bea2a942009-01-20 17:06:27 +00005784 if( pOvfl ){
5785 sqlite3PagerUnref(pOvfl->pDbPage);
5786 }
drh3b7511c2001-05-26 13:15:44 +00005787 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005788 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005789 }
drh5e2f8b92001-05-28 00:41:15 +00005790 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005791}
5792
5793/*
drh91025292004-05-03 19:49:32 +00005794** Create the byte sequence used to represent a cell on page pPage
5795** and write that byte sequence into pCell[]. Overflow pages are
5796** allocated and filled in as necessary. The calling procedure
5797** is responsible for making sure sufficient space has been allocated
5798** for pCell[].
5799**
5800** Note that pCell does not necessary need to point to the pPage->aData
5801** area. pCell might point to some temporary storage. The cell will
5802** be constructed in this temporary area then copied into pPage->aData
5803** later.
drh3b7511c2001-05-26 13:15:44 +00005804*/
5805static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005806 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005807 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005808 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005809 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005810 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005811 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005812){
drh3b7511c2001-05-26 13:15:44 +00005813 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005814 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005815 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005816 int spaceLeft;
5817 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005818 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005819 unsigned char *pPrior;
5820 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005821 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005822 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005823 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00005824
drh1fee73e2007-08-29 04:00:57 +00005825 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005826
drhc5053fb2008-11-27 02:22:10 +00005827 /* pPage is not necessarily writeable since pCell might be auxiliary
5828 ** buffer space that is separate from the pPage buffer area */
5829 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5830 || sqlite3PagerIswriteable(pPage->pDbPage) );
5831
drh91025292004-05-03 19:49:32 +00005832 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00005833 nHeader = pPage->childPtrSize;
5834 nPayload = nData + nZero;
drh3e28ff52014-09-24 00:59:08 +00005835 if( pPage->intKeyLeaf ){
drh6200c882014-09-23 22:36:25 +00005836 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh6f11bef2004-05-13 01:12:56 +00005837 }else{
drh6200c882014-09-23 22:36:25 +00005838 assert( nData==0 );
5839 assert( nZero==0 );
drh91025292004-05-03 19:49:32 +00005840 }
drh6f11bef2004-05-13 01:12:56 +00005841 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
drh6f11bef2004-05-13 01:12:56 +00005842
drh6200c882014-09-23 22:36:25 +00005843 /* Fill in the payload size */
drh3aac2dd2004-04-26 14:10:20 +00005844 if( pPage->intKey ){
5845 pSrc = pData;
5846 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005847 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005848 }else{
danielk197731d31b82009-07-13 13:18:07 +00005849 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5850 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005851 }
drh6200c882014-09-23 22:36:25 +00005852 nPayload = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005853 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005854 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005855 }
drh6200c882014-09-23 22:36:25 +00005856 if( nPayload<=pPage->maxLocal ){
5857 n = nHeader + nPayload;
5858 testcase( n==3 );
5859 testcase( n==4 );
5860 if( n<4 ) n = 4;
5861 *pnSize = n;
5862 spaceLeft = nPayload;
5863 pPrior = pCell;
5864 }else{
5865 int mn = pPage->minLocal;
5866 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
5867 testcase( n==pPage->maxLocal );
5868 testcase( n==pPage->maxLocal+1 );
5869 if( n > pPage->maxLocal ) n = mn;
5870 spaceLeft = n;
5871 *pnSize = n + nHeader + 4;
5872 pPrior = &pCell[nHeader+n];
5873 }
drh3aac2dd2004-04-26 14:10:20 +00005874 pPayload = &pCell[nHeader];
drh3b7511c2001-05-26 13:15:44 +00005875
drh6200c882014-09-23 22:36:25 +00005876 /* At this point variables should be set as follows:
5877 **
5878 ** nPayload Total payload size in bytes
5879 ** pPayload Begin writing payload here
5880 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
5881 ** that means content must spill into overflow pages.
5882 ** *pnSize Size of the local cell (not counting overflow pages)
5883 ** pPrior Where to write the pgno of the first overflow page
5884 **
5885 ** Use a call to btreeParseCellPtr() to verify that the values above
5886 ** were computed correctly.
5887 */
5888#if SQLITE_DEBUG
5889 {
5890 CellInfo info;
5891 btreeParseCellPtr(pPage, pCell, &info);
5892 assert( nHeader=(int)(info.pPayload - pCell) );
5893 assert( info.nKey==nKey );
5894 assert( *pnSize == info.nSize );
5895 assert( spaceLeft == info.nLocal );
5896 assert( pPrior == &pCell[info.iOverflow] );
5897 }
5898#endif
5899
5900 /* Write the payload into the local Cell and any extra into overflow pages */
drh3b7511c2001-05-26 13:15:44 +00005901 while( nPayload>0 ){
5902 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005903#ifndef SQLITE_OMIT_AUTOVACUUM
5904 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005905 if( pBt->autoVacuum ){
5906 do{
5907 pgnoOvfl++;
5908 } while(
5909 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5910 );
danielk1977b39f70b2007-05-17 18:28:11 +00005911 }
danielk1977afcdd022004-10-31 16:25:42 +00005912#endif
drhf49661a2008-12-10 16:45:50 +00005913 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005914#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005915 /* If the database supports auto-vacuum, and the second or subsequent
5916 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005917 ** for that page now.
5918 **
5919 ** If this is the first overflow page, then write a partial entry
5920 ** to the pointer-map. If we write nothing to this pointer-map slot,
5921 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00005922 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00005923 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005924 */
danielk19774ef24492007-05-23 09:52:41 +00005925 if( pBt->autoVacuum && rc==SQLITE_OK ){
5926 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00005927 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00005928 if( rc ){
5929 releasePage(pOvfl);
5930 }
danielk1977afcdd022004-10-31 16:25:42 +00005931 }
5932#endif
drh3b7511c2001-05-26 13:15:44 +00005933 if( rc ){
drh9b171272004-05-08 02:03:22 +00005934 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005935 return rc;
5936 }
drhc5053fb2008-11-27 02:22:10 +00005937
5938 /* If pToRelease is not zero than pPrior points into the data area
5939 ** of pToRelease. Make sure pToRelease is still writeable. */
5940 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5941
5942 /* If pPrior is part of the data area of pPage, then make sure pPage
5943 ** is still writeable */
5944 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5945 || sqlite3PagerIswriteable(pPage->pDbPage) );
5946
drh3aac2dd2004-04-26 14:10:20 +00005947 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005948 releasePage(pToRelease);
5949 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005950 pPrior = pOvfl->aData;
5951 put4byte(pPrior, 0);
5952 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005953 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005954 }
5955 n = nPayload;
5956 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005957
5958 /* If pToRelease is not zero than pPayload points into the data area
5959 ** of pToRelease. Make sure pToRelease is still writeable. */
5960 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5961
5962 /* If pPayload is part of the data area of pPage, then make sure pPage
5963 ** is still writeable */
5964 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5965 || sqlite3PagerIswriteable(pPage->pDbPage) );
5966
drhb026e052007-05-02 01:34:31 +00005967 if( nSrc>0 ){
5968 if( n>nSrc ) n = nSrc;
5969 assert( pSrc );
5970 memcpy(pPayload, pSrc, n);
5971 }else{
5972 memset(pPayload, 0, n);
5973 }
drh3b7511c2001-05-26 13:15:44 +00005974 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005975 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005976 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005977 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005978 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005979 if( nSrc==0 ){
5980 nSrc = nData;
5981 pSrc = pData;
5982 }
drhdd793422001-06-28 01:54:48 +00005983 }
drh9b171272004-05-08 02:03:22 +00005984 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005985 return SQLITE_OK;
5986}
5987
drh14acc042001-06-10 19:56:58 +00005988/*
5989** Remove the i-th cell from pPage. This routine effects pPage only.
5990** The cell content is not freed or deallocated. It is assumed that
5991** the cell content has been copied someplace else. This routine just
5992** removes the reference to the cell from pPage.
5993**
5994** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005995*/
drh98add2e2009-07-20 17:11:49 +00005996static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00005997 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00005998 u8 *data; /* pPage->aData */
5999 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006000 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006001 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006002
drh98add2e2009-07-20 17:11:49 +00006003 if( *pRC ) return;
6004
drh8c42ca92001-06-22 19:15:00 +00006005 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00006006 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006007 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006008 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00006009 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006010 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006011 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006012 hdr = pPage->hdrOffset;
6013 testcase( pc==get2byte(&data[hdr+5]) );
6014 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00006015 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006016 *pRC = SQLITE_CORRUPT_BKPT;
6017 return;
shane0af3f892008-11-12 04:55:34 +00006018 }
shanedcc50b72008-11-13 18:29:50 +00006019 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006020 if( rc ){
6021 *pRC = rc;
6022 return;
shanedcc50b72008-11-13 18:29:50 +00006023 }
drh14acc042001-06-10 19:56:58 +00006024 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006025 if( pPage->nCell==0 ){
6026 memset(&data[hdr+1], 0, 4);
6027 data[hdr+7] = 0;
6028 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6029 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6030 - pPage->childPtrSize - 8;
6031 }else{
6032 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6033 put2byte(&data[hdr+3], pPage->nCell);
6034 pPage->nFree += 2;
6035 }
drh14acc042001-06-10 19:56:58 +00006036}
6037
6038/*
6039** Insert a new cell on pPage at cell index "i". pCell points to the
6040** content of the cell.
6041**
6042** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006043** will not fit, then make a copy of the cell content into pTemp if
6044** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006045** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006046** in pTemp or the original pCell) and also record its index.
6047** Allocating a new entry in pPage->aCell[] implies that
6048** pPage->nOverflow is incremented.
drh14acc042001-06-10 19:56:58 +00006049*/
drh98add2e2009-07-20 17:11:49 +00006050static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006051 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006052 int i, /* New cell becomes the i-th cell of the page */
6053 u8 *pCell, /* Content of the new cell */
6054 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006055 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006056 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6057 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006058){
drh383d30f2010-02-26 13:07:37 +00006059 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006060 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006061 int end; /* First byte past the last cell pointer in data[] */
6062 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00006063 int cellOffset; /* Address of first cell pointer in data[] */
6064 u8 *data; /* The content of the whole page */
danielk19774dbaa892009-06-16 16:50:22 +00006065
drh98add2e2009-07-20 17:11:49 +00006066 if( *pRC ) return;
6067
drh43605152004-05-29 21:46:49 +00006068 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006069 assert( MX_CELL(pPage->pBt)<=10921 );
6070 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006071 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6072 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006073 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00006074 /* The cell should normally be sized correctly. However, when moving a
6075 ** malformed cell from a leaf page to an interior page, if the cell size
6076 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6077 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6078 ** the term after the || in the following assert(). */
6079 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00006080 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006081 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006082 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006083 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006084 }
danielk19774dbaa892009-06-16 16:50:22 +00006085 if( iChild ){
6086 put4byte(pCell, iChild);
6087 }
drh43605152004-05-29 21:46:49 +00006088 j = pPage->nOverflow++;
drh2cbd78b2012-02-02 19:37:18 +00006089 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
6090 pPage->apOvfl[j] = pCell;
6091 pPage->aiOvfl[j] = (u16)i;
drh14acc042001-06-10 19:56:58 +00006092 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006093 int rc = sqlite3PagerWrite(pPage->pDbPage);
6094 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006095 *pRC = rc;
6096 return;
danielk19776e465eb2007-08-21 13:11:00 +00006097 }
6098 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006099 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00006100 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00006101 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00006102 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00006103 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006104 if( rc ){ *pRC = rc; return; }
drhc314dc72009-07-21 11:52:34 +00006105 /* The allocateSpace() routine guarantees the following two properties
6106 ** if it returns success */
6107 assert( idx >= end+2 );
drhfcd71b62011-04-05 22:08:24 +00006108 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00006109 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00006110 pPage->nFree -= (u16)(2 + sz);
drhd6176c42014-10-11 17:22:55 +00006111 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006112 if( iChild ){
6113 put4byte(&data[idx], iChild);
6114 }
drh8f518832013-12-09 02:32:19 +00006115 memmove(&data[ins+2], &data[ins], end-ins);
drh43605152004-05-29 21:46:49 +00006116 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00006117 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00006118#ifndef SQLITE_OMIT_AUTOVACUUM
6119 if( pPage->pBt->autoVacuum ){
6120 /* The cell may contain a pointer to an overflow page. If so, write
6121 ** the entry for the overflow page into the pointer map.
6122 */
drh98add2e2009-07-20 17:11:49 +00006123 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006124 }
6125#endif
drh14acc042001-06-10 19:56:58 +00006126 }
6127}
6128
6129/*
dan8e9ba0c2014-10-14 17:27:04 +00006130** Array apCell[] contains pointers to nCell b-tree page cells. The
6131** szCell[] array contains the size in bytes of each cell. This function
6132** replaces the current contents of page pPg with the contents of the cell
6133** array.
6134**
6135** Some of the cells in apCell[] may currently be stored in pPg. This
6136** function works around problems caused by this by making a copy of any
6137** such cells before overwriting the page data.
6138**
6139** The MemPage.nFree field is invalidated by this function. It is the
6140** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006141*/
dan33ea4862014-10-09 19:35:37 +00006142static void rebuildPage(
6143 MemPage *pPg, /* Edit this page */
dan33ea4862014-10-09 19:35:37 +00006144 int nCell, /* Final number of cells on page */
dan09c68402014-10-11 20:00:24 +00006145 u8 **apCell, /* Array of cells */
6146 u16 *szCell /* Array of cell sizes */
dan33ea4862014-10-09 19:35:37 +00006147){
6148 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6149 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6150 const int usableSize = pPg->pBt->usableSize;
6151 u8 * const pEnd = &aData[usableSize];
6152 int i;
6153 u8 *pCellptr = pPg->aCellIdx;
6154 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6155 u8 *pData;
6156
6157 i = get2byte(&aData[hdr+5]);
6158 memcpy(&pTmp[i], &aData[i], usableSize - i);
dan33ea4862014-10-09 19:35:37 +00006159
dan8e9ba0c2014-10-14 17:27:04 +00006160 pData = pEnd;
dan33ea4862014-10-09 19:35:37 +00006161 for(i=0; i<nCell; i++){
6162 u8 *pCell = apCell[i];
6163 if( pCell>aData && pCell<pEnd ){
6164 pCell = &pTmp[pCell - aData];
6165 }
6166 pData -= szCell[i];
6167 memcpy(pData, pCell, szCell[i]);
6168 put2byte(pCellptr, (pData - aData));
6169 pCellptr += 2;
6170 assert( szCell[i]==cellSizePtr(pPg, pCell) );
6171 }
6172
dand7b545b2014-10-13 18:03:27 +00006173 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006174 pPg->nCell = nCell;
6175 pPg->nOverflow = 0;
6176
6177 put2byte(&aData[hdr+1], 0);
6178 put2byte(&aData[hdr+3], pPg->nCell);
6179 put2byte(&aData[hdr+5], pData - aData);
6180 aData[hdr+7] = 0x00;
6181}
6182
dan8e9ba0c2014-10-14 17:27:04 +00006183/*
6184** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6185** contains the size in bytes of each such cell. This function attempts to
6186** add the cells stored in the array to page pPg. If it cannot (because
6187** the page needs to be defragmented before the cells will fit), non-zero
6188** is returned. Otherwise, if the cells are added successfully, zero is
6189** returned.
6190**
6191** Argument pCellptr points to the first entry in the cell-pointer array
6192** (part of page pPg) to populate. After cell apCell[0] is written to the
6193** page body, a 16-bit offset is written to pCellptr. And so on, for each
6194** cell in the array. It is the responsibility of the caller to ensure
6195** that it is safe to overwrite this part of the cell-pointer array.
6196**
6197** When this function is called, *ppData points to the start of the
6198** content area on page pPg. If the size of the content area is extended,
6199** *ppData is updated to point to the new start of the content area
6200** before returning.
6201**
6202** Finally, argument pBegin points to the byte immediately following the
6203** end of the space required by this page for the cell-pointer area (for
6204** all cells - not just those inserted by the current call). If the content
6205** area must be extended to before this point in order to accomodate all
6206** cells in apCell[], then the cells do not fit and non-zero is returned.
6207*/
dand7b545b2014-10-13 18:03:27 +00006208static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00006209 MemPage *pPg, /* Page to add cells to */
6210 u8 *pBegin, /* End of cell-pointer array */
6211 u8 **ppData, /* IN/OUT: Page content -area pointer */
6212 u8 *pCellptr, /* Pointer to cell-pointer area */
6213 int nCell, /* Number of cells to add to pPg */
dand7b545b2014-10-13 18:03:27 +00006214 u8 **apCell, /* Array of cells */
6215 u16 *szCell /* Array of cell sizes */
6216){
6217 int i;
6218 u8 *aData = pPg->aData;
6219 u8 *pData = *ppData;
dan8e9ba0c2014-10-14 17:27:04 +00006220 const int bFreelist = aData[1] || aData[2];
dan23eba452014-10-24 18:43:57 +00006221 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
dand7b545b2014-10-13 18:03:27 +00006222 for(i=0; i<nCell; i++){
6223 int sz = szCell[i];
drhba0f9992014-10-30 20:48:44 +00006224 int rc;
dand7b545b2014-10-13 18:03:27 +00006225 u8 *pSlot;
drhba0f9992014-10-30 20:48:44 +00006226 if( bFreelist==0 || (pSlot = pageFindSlot(pPg, sz, &rc, 0))==0 ){
dand7b545b2014-10-13 18:03:27 +00006227 pData -= sz;
6228 if( pData<pBegin ) return 1;
6229 pSlot = pData;
6230 }
6231 memcpy(pSlot, apCell[i], sz);
6232 put2byte(pCellptr, (pSlot - aData));
6233 pCellptr += 2;
6234 }
6235 *ppData = pData;
6236 return 0;
6237}
6238
dan8e9ba0c2014-10-14 17:27:04 +00006239/*
6240** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6241** contains the size in bytes of each such cell. This function adds the
6242** space associated with each cell in the array that is currently stored
6243** within the body of pPg to the pPg free-list. The cell-pointers and other
6244** fields of the page are not updated.
6245**
6246** This function returns the total number of cells added to the free-list.
6247*/
dand7b545b2014-10-13 18:03:27 +00006248static int pageFreeArray(
6249 MemPage *pPg, /* Page to edit */
6250 int nCell, /* Cells to delete */
6251 u8 **apCell, /* Array of cells */
6252 u16 *szCell /* Array of cell sizes */
6253){
6254 u8 * const aData = pPg->aData;
6255 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00006256 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00006257 int nRet = 0;
6258 int i;
6259 u8 *pFree = 0;
6260 int szFree = 0;
6261
6262 for(i=0; i<nCell; i++){
6263 u8 *pCell = apCell[i];
dan89ca0b32014-10-25 20:36:28 +00006264 if( pCell>=pStart && pCell<pEnd ){
dand7b545b2014-10-13 18:03:27 +00006265 int sz = szCell[i];
6266 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00006267 if( pFree ){
6268 assert( pFree>aData && (pFree - aData)<65536 );
6269 freeSpace(pPg, (u16)(pFree - aData), szFree);
6270 }
dand7b545b2014-10-13 18:03:27 +00006271 pFree = pCell;
6272 szFree = sz;
dan89ca0b32014-10-25 20:36:28 +00006273 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00006274 }else{
6275 pFree = pCell;
6276 szFree += sz;
6277 }
6278 nRet++;
6279 }
6280 }
drhfefa0942014-11-05 21:21:08 +00006281 if( pFree ){
6282 assert( pFree>aData && (pFree - aData)<65536 );
6283 freeSpace(pPg, (u16)(pFree - aData), szFree);
6284 }
dand7b545b2014-10-13 18:03:27 +00006285 return nRet;
6286}
6287
dand7b545b2014-10-13 18:03:27 +00006288/*
drh5ab63772014-11-27 03:46:04 +00006289** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6290** pages being balanced. The current page, pPg, has pPg->nCell cells starting
6291** with apCell[iOld]. After balancing, this page should hold nNew cells
6292** starting at apCell[iNew].
6293**
6294** This routine makes the necessary adjustments to pPg so that it contains
6295** the correct cells after being balanced.
6296**
dand7b545b2014-10-13 18:03:27 +00006297** The pPg->nFree field is invalid when this function returns. It is the
6298** responsibility of the caller to set it correctly.
6299*/
dan09c68402014-10-11 20:00:24 +00006300static void editPage(
6301 MemPage *pPg, /* Edit this page */
6302 int iOld, /* Index of first cell currently on page */
6303 int iNew, /* Index of new first cell on page */
6304 int nNew, /* Final number of cells on page */
6305 u8 **apCell, /* Array of cells */
6306 u16 *szCell /* Array of cell sizes */
6307){
dand7b545b2014-10-13 18:03:27 +00006308 u8 * const aData = pPg->aData;
6309 const int hdr = pPg->hdrOffset;
6310 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6311 int nCell = pPg->nCell; /* Cells stored on pPg */
6312 u8 *pData;
6313 u8 *pCellptr;
6314 int i;
6315 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6316 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00006317
6318#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00006319 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6320 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00006321#endif
6322
dand7b545b2014-10-13 18:03:27 +00006323 /* Remove cells from the start and end of the page */
6324 if( iOld<iNew ){
6325 int nShift = pageFreeArray(
6326 pPg, iNew-iOld, &apCell[iOld], &szCell[iOld]
6327 );
6328 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6329 nCell -= nShift;
6330 }
6331 if( iNewEnd < iOldEnd ){
6332 nCell -= pageFreeArray(
6333 pPg, iOldEnd-iNewEnd, &apCell[iNewEnd], &szCell[iNewEnd]
6334 );
6335 }
dan09c68402014-10-11 20:00:24 +00006336
drh5ab63772014-11-27 03:46:04 +00006337 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00006338 if( pData<pBegin ) goto editpage_fail;
6339
6340 /* Add cells to the start of the page */
6341 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00006342 int nAdd = MIN(nNew,iOld-iNew);
6343 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
dand7b545b2014-10-13 18:03:27 +00006344 pCellptr = pPg->aCellIdx;
6345 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6346 if( pageInsertArray(
6347 pPg, pBegin, &pData, pCellptr,
6348 nAdd, &apCell[iNew], &szCell[iNew]
6349 ) ) goto editpage_fail;
6350 nCell += nAdd;
6351 }
6352
6353 /* Add any overflow cells */
6354 for(i=0; i<pPg->nOverflow; i++){
6355 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6356 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00006357 pCellptr = &pPg->aCellIdx[iCell * 2];
dand7b545b2014-10-13 18:03:27 +00006358 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6359 nCell++;
6360 if( pageInsertArray(
6361 pPg, pBegin, &pData, pCellptr,
6362 1, &apCell[iCell + iNew], &szCell[iCell + iNew]
6363 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006364 }
dand7b545b2014-10-13 18:03:27 +00006365 }
dan09c68402014-10-11 20:00:24 +00006366
dand7b545b2014-10-13 18:03:27 +00006367 /* Append cells to the end of the page */
6368 pCellptr = &pPg->aCellIdx[nCell*2];
6369 if( pageInsertArray(
6370 pPg, pBegin, &pData, pCellptr,
6371 nNew-nCell, &apCell[iNew+nCell], &szCell[iNew+nCell]
6372 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006373
dand7b545b2014-10-13 18:03:27 +00006374 pPg->nCell = nNew;
6375 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00006376
dand7b545b2014-10-13 18:03:27 +00006377 put2byte(&aData[hdr+3], pPg->nCell);
6378 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00006379
6380#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00006381 for(i=0; i<nNew && !CORRUPT_DB; i++){
dand7b545b2014-10-13 18:03:27 +00006382 u8 *pCell = apCell[i+iNew];
6383 int iOff = get2byte(&pPg->aCellIdx[i*2]);
6384 if( pCell>=aData && pCell<&aData[pPg->pBt->usableSize] ){
6385 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00006386 }
dand7b545b2014-10-13 18:03:27 +00006387 assert( 0==memcmp(pCell, &aData[iOff], szCell[i+iNew]) );
6388 }
dan09c68402014-10-11 20:00:24 +00006389#endif
6390
dand7b545b2014-10-13 18:03:27 +00006391 return;
dan09c68402014-10-11 20:00:24 +00006392 editpage_fail:
dan09c68402014-10-11 20:00:24 +00006393 /* Unable to edit this page. Rebuild it from scratch instead. */
6394 rebuildPage(pPg, nNew, &apCell[iNew], &szCell[iNew]);
6395}
6396
drh14acc042001-06-10 19:56:58 +00006397/*
drhc3b70572003-01-04 19:44:07 +00006398** The following parameters determine how many adjacent pages get involved
6399** in a balancing operation. NN is the number of neighbors on either side
6400** of the page that participate in the balancing operation. NB is the
6401** total number of pages that participate, including the target page and
6402** NN neighbors on either side.
6403**
6404** The minimum value of NN is 1 (of course). Increasing NN above 1
6405** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6406** in exchange for a larger degradation in INSERT and UPDATE performance.
6407** The value of NN appears to give the best results overall.
6408*/
6409#define NN 1 /* Number of neighbors on either side of pPage */
6410#define NB (NN*2+1) /* Total pages involved in the balance */
6411
danielk1977ac245ec2005-01-14 13:50:11 +00006412
drh615ae552005-01-16 23:21:00 +00006413#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00006414/*
6415** This version of balance() handles the common special case where
6416** a new entry is being inserted on the extreme right-end of the
6417** tree, in other words, when the new entry will become the largest
6418** entry in the tree.
6419**
drhc314dc72009-07-21 11:52:34 +00006420** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00006421** a new page to the right-hand side and put the one new entry in
6422** that page. This leaves the right side of the tree somewhat
6423** unbalanced. But odds are that we will be inserting new entries
6424** at the end soon afterwards so the nearly empty page will quickly
6425** fill up. On average.
6426**
6427** pPage is the leaf page which is the right-most page in the tree.
6428** pParent is its parent. pPage must have a single overflow entry
6429** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00006430**
6431** The pSpace buffer is used to store a temporary copy of the divider
6432** cell that will be inserted into pParent. Such a cell consists of a 4
6433** byte page number followed by a variable length integer. In other
6434** words, at most 13 bytes. Hence the pSpace buffer must be at
6435** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00006436*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006437static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6438 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00006439 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00006440 int rc; /* Return Code */
6441 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00006442
drh1fee73e2007-08-29 04:00:57 +00006443 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00006444 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006445 assert( pPage->nOverflow==1 );
6446
drh5d433ce2010-08-14 16:02:52 +00006447 /* This error condition is now caught prior to reaching this function */
drh1fd2d7d2014-12-02 16:16:47 +00006448 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00006449
danielk1977a50d9aa2009-06-08 14:49:45 +00006450 /* Allocate a new page. This page will become the right-sibling of
6451 ** pPage. Make the parent page writable, so that the new divider cell
6452 ** may be inserted. If both these operations are successful, proceed.
6453 */
drh4f0c5872007-03-26 22:05:01 +00006454 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006455
danielk1977eaa06f62008-09-18 17:34:44 +00006456 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006457
6458 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00006459 u8 *pCell = pPage->apOvfl[0];
danielk19776f235cc2009-06-04 14:46:08 +00006460 u16 szCell = cellSizePtr(pPage, pCell);
6461 u8 *pStop;
6462
drhc5053fb2008-11-27 02:22:10 +00006463 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006464 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6465 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
dan8e9ba0c2014-10-14 17:27:04 +00006466 rebuildPage(pNew, 1, &pCell, &szCell);
6467 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00006468
6469 /* If this is an auto-vacuum database, update the pointer map
6470 ** with entries for the new page, and any pointer from the
6471 ** cell on the page to an overflow page. If either of these
6472 ** operations fails, the return code is set, but the contents
6473 ** of the parent page are still manipulated by thh code below.
6474 ** That is Ok, at this point the parent page is guaranteed to
6475 ** be marked as dirty. Returning an error code will cause a
6476 ** rollback, undoing any changes made to the parent page.
6477 */
6478 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006479 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
6480 if( szCell>pNew->minLocal ){
6481 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006482 }
6483 }
danielk1977eaa06f62008-09-18 17:34:44 +00006484
danielk19776f235cc2009-06-04 14:46:08 +00006485 /* Create a divider cell to insert into pParent. The divider cell
6486 ** consists of a 4-byte page number (the page number of pPage) and
6487 ** a variable length key value (which must be the same value as the
6488 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00006489 **
danielk19776f235cc2009-06-04 14:46:08 +00006490 ** To find the largest key value on pPage, first find the right-most
6491 ** cell on pPage. The first two fields of this cell are the
6492 ** record-length (a variable length integer at most 32-bits in size)
6493 ** and the key value (a variable length integer, may have any value).
6494 ** The first of the while(...) loops below skips over the record-length
6495 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00006496 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00006497 */
danielk1977eaa06f62008-09-18 17:34:44 +00006498 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00006499 pStop = &pCell[9];
6500 while( (*(pCell++)&0x80) && pCell<pStop );
6501 pStop = &pCell[9];
6502 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
6503
danielk19774dbaa892009-06-16 16:50:22 +00006504 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00006505 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
6506 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00006507
6508 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00006509 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
6510
danielk1977e08a3c42008-09-18 18:17:03 +00006511 /* Release the reference to the new page. */
6512 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00006513 }
6514
danielk1977eaa06f62008-09-18 17:34:44 +00006515 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00006516}
drh615ae552005-01-16 23:21:00 +00006517#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00006518
dane6593d82014-10-24 16:40:49 +00006519#if 0
drhc3b70572003-01-04 19:44:07 +00006520/*
danielk19774dbaa892009-06-16 16:50:22 +00006521** This function does not contribute anything to the operation of SQLite.
6522** it is sometimes activated temporarily while debugging code responsible
6523** for setting pointer-map entries.
6524*/
6525static int ptrmapCheckPages(MemPage **apPage, int nPage){
6526 int i, j;
6527 for(i=0; i<nPage; i++){
6528 Pgno n;
6529 u8 e;
6530 MemPage *pPage = apPage[i];
6531 BtShared *pBt = pPage->pBt;
6532 assert( pPage->isInit );
6533
6534 for(j=0; j<pPage->nCell; j++){
6535 CellInfo info;
6536 u8 *z;
6537
6538 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00006539 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00006540 if( info.iOverflow ){
6541 Pgno ovfl = get4byte(&z[info.iOverflow]);
6542 ptrmapGet(pBt, ovfl, &e, &n);
6543 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6544 }
6545 if( !pPage->leaf ){
6546 Pgno child = get4byte(z);
6547 ptrmapGet(pBt, child, &e, &n);
6548 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6549 }
6550 }
6551 if( !pPage->leaf ){
6552 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6553 ptrmapGet(pBt, child, &e, &n);
6554 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6555 }
6556 }
6557 return 1;
6558}
6559#endif
6560
danielk1977cd581a72009-06-23 15:43:39 +00006561/*
6562** This function is used to copy the contents of the b-tree node stored
6563** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6564** the pointer-map entries for each child page are updated so that the
6565** parent page stored in the pointer map is page pTo. If pFrom contained
6566** any cells with overflow page pointers, then the corresponding pointer
6567** map entries are also updated so that the parent page is page pTo.
6568**
6569** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00006570** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00006571**
danielk197730548662009-07-09 05:07:37 +00006572** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00006573**
6574** The performance of this function is not critical. It is only used by
6575** the balance_shallower() and balance_deeper() procedures, neither of
6576** which are called often under normal circumstances.
6577*/
drhc314dc72009-07-21 11:52:34 +00006578static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
6579 if( (*pRC)==SQLITE_OK ){
6580 BtShared * const pBt = pFrom->pBt;
6581 u8 * const aFrom = pFrom->aData;
6582 u8 * const aTo = pTo->aData;
6583 int const iFromHdr = pFrom->hdrOffset;
6584 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00006585 int rc;
drhc314dc72009-07-21 11:52:34 +00006586 int iData;
6587
6588
6589 assert( pFrom->isInit );
6590 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00006591 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00006592
6593 /* Copy the b-tree node content from page pFrom to page pTo. */
6594 iData = get2byte(&aFrom[iFromHdr+5]);
6595 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6596 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6597
6598 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00006599 ** match the new data. The initialization of pTo can actually fail under
6600 ** fairly obscure circumstances, even though it is a copy of initialized
6601 ** page pFrom.
6602 */
drhc314dc72009-07-21 11:52:34 +00006603 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00006604 rc = btreeInitPage(pTo);
6605 if( rc!=SQLITE_OK ){
6606 *pRC = rc;
6607 return;
6608 }
drhc314dc72009-07-21 11:52:34 +00006609
6610 /* If this is an auto-vacuum database, update the pointer-map entries
6611 ** for any b-tree or overflow pages that pTo now contains the pointers to.
6612 */
6613 if( ISAUTOVACUUM ){
6614 *pRC = setChildPtrmaps(pTo);
6615 }
danielk1977cd581a72009-06-23 15:43:39 +00006616 }
danielk1977cd581a72009-06-23 15:43:39 +00006617}
6618
6619/*
danielk19774dbaa892009-06-16 16:50:22 +00006620** This routine redistributes cells on the iParentIdx'th child of pParent
6621** (hereafter "the page") and up to 2 siblings so that all pages have about the
6622** same amount of free space. Usually a single sibling on either side of the
6623** page are used in the balancing, though both siblings might come from one
6624** side if the page is the first or last child of its parent. If the page
6625** has fewer than 2 siblings (something which can only happen if the page
6626** is a root page or a child of a root page) then all available siblings
6627** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00006628**
danielk19774dbaa892009-06-16 16:50:22 +00006629** The number of siblings of the page might be increased or decreased by
6630** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00006631**
danielk19774dbaa892009-06-16 16:50:22 +00006632** Note that when this routine is called, some of the cells on the page
6633** might not actually be stored in MemPage.aData[]. This can happen
6634** if the page is overfull. This routine ensures that all cells allocated
6635** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00006636**
danielk19774dbaa892009-06-16 16:50:22 +00006637** In the course of balancing the page and its siblings, cells may be
6638** inserted into or removed from the parent page (pParent). Doing so
6639** may cause the parent page to become overfull or underfull. If this
6640** happens, it is the responsibility of the caller to invoke the correct
6641** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00006642**
drh5e00f6c2001-09-13 13:46:56 +00006643** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00006644** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00006645** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00006646**
6647** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00006648** buffer big enough to hold one page. If while inserting cells into the parent
6649** page (pParent) the parent page becomes overfull, this buffer is
6650** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00006651** a maximum of four divider cells into the parent page, and the maximum
6652** size of a cell stored within an internal node is always less than 1/4
6653** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6654** enough for all overflow cells.
6655**
6656** If aOvflSpace is set to a null pointer, this function returns
6657** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00006658*/
mistachkine7c54162012-10-02 22:54:27 +00006659#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6660#pragma optimize("", off)
6661#endif
danielk19774dbaa892009-06-16 16:50:22 +00006662static int balance_nonroot(
6663 MemPage *pParent, /* Parent page of siblings being balanced */
6664 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00006665 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00006666 int isRoot, /* True if pParent is a root-page */
6667 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00006668){
drh16a9b832007-05-05 18:39:25 +00006669 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00006670 int nCell = 0; /* Number of cells in apCell[] */
6671 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00006672 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00006673 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00006674 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00006675 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00006676 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00006677 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00006678 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00006679 int usableSpace; /* Bytes in pPage beyond the header */
6680 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00006681 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00006682 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00006683 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00006684 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00006685 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00006686 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00006687 u8 *pRight; /* Location in parent of right-sibling pointer */
6688 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00006689 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
dan09c68402014-10-11 20:00:24 +00006690 int cntOld[NB+2]; /* Old index in aCell[] after i-th page */
drh2a0df922014-10-30 23:14:56 +00006691 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00006692 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00006693 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00006694 u8 *aSpace1; /* Space for copies of dividers cells */
6695 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00006696 u8 abDone[NB+2]; /* True after i'th new page is populated */
6697 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00006698 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00006699 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
dan33ea4862014-10-09 19:35:37 +00006700
6701 memset(abDone, 0, sizeof(abDone));
danielk1977a50d9aa2009-06-08 14:49:45 +00006702 pBt = pParent->pBt;
6703 assert( sqlite3_mutex_held(pBt->mutex) );
6704 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00006705
danielk1977e5765212009-06-17 11:13:28 +00006706#if 0
drh43605152004-05-29 21:46:49 +00006707 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00006708#endif
drh2e38c322004-09-03 18:38:44 +00006709
danielk19774dbaa892009-06-16 16:50:22 +00006710 /* At this point pParent may have at most one overflow cell. And if
6711 ** this overflow cell is present, it must be the cell with
6712 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00006713 ** is called (indirectly) from sqlite3BtreeDelete().
6714 */
danielk19774dbaa892009-06-16 16:50:22 +00006715 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00006716 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00006717
danielk197711a8a862009-06-17 11:49:52 +00006718 if( !aOvflSpace ){
6719 return SQLITE_NOMEM;
6720 }
6721
danielk1977a50d9aa2009-06-08 14:49:45 +00006722 /* Find the sibling pages to balance. Also locate the cells in pParent
6723 ** that divide the siblings. An attempt is made to find NN siblings on
6724 ** either side of pPage. More siblings are taken from one side, however,
6725 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00006726 ** has NB or fewer children then all children of pParent are taken.
6727 **
6728 ** This loop also drops the divider cells from the parent page. This
6729 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00006730 ** overflow cells in the parent page, since if any existed they will
6731 ** have already been removed.
6732 */
danielk19774dbaa892009-06-16 16:50:22 +00006733 i = pParent->nOverflow + pParent->nCell;
6734 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00006735 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00006736 }else{
dan7d6885a2012-08-08 14:04:56 +00006737 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00006738 if( iParentIdx==0 ){
6739 nxDiv = 0;
6740 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00006741 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00006742 }else{
danielk19774dbaa892009-06-16 16:50:22 +00006743 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00006744 }
dan7d6885a2012-08-08 14:04:56 +00006745 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00006746 }
dan7d6885a2012-08-08 14:04:56 +00006747 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00006748 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
6749 pRight = &pParent->aData[pParent->hdrOffset+8];
6750 }else{
6751 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
6752 }
6753 pgno = get4byte(pRight);
6754 while( 1 ){
dan11dcd112013-03-15 18:29:18 +00006755 rc = getAndInitPage(pBt, pgno, &apOld[i], 0);
danielk19774dbaa892009-06-16 16:50:22 +00006756 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00006757 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00006758 goto balance_cleanup;
6759 }
danielk1977634f2982005-03-28 08:44:07 +00006760 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00006761 if( (i--)==0 ) break;
6762
drh2cbd78b2012-02-02 19:37:18 +00006763 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
6764 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006765 pgno = get4byte(apDiv[i]);
6766 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6767 pParent->nOverflow = 0;
6768 }else{
6769 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
6770 pgno = get4byte(apDiv[i]);
6771 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6772
6773 /* Drop the cell from the parent page. apDiv[i] still points to
6774 ** the cell within the parent, even though it has been dropped.
6775 ** This is safe because dropping a cell only overwrites the first
6776 ** four bytes of it, and this function does not need the first
6777 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00006778 ** later on.
6779 **
drh8a575d92011-10-12 17:00:28 +00006780 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00006781 ** the dropCell() routine will overwrite the entire cell with zeroes.
6782 ** In this case, temporarily copy the cell into the aOvflSpace[]
6783 ** buffer. It will be copied out again as soon as the aSpace[] buffer
6784 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00006785 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00006786 int iOff;
6787
6788 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00006789 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00006790 rc = SQLITE_CORRUPT_BKPT;
6791 memset(apOld, 0, (i+1)*sizeof(MemPage*));
6792 goto balance_cleanup;
6793 }else{
6794 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
6795 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
6796 }
drh5b47efa2010-02-12 18:18:39 +00006797 }
drh98add2e2009-07-20 17:11:49 +00006798 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006799 }
drh8b2f49b2001-06-08 00:21:52 +00006800 }
6801
drha9121e42008-02-19 14:59:35 +00006802 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00006803 ** alignment */
drha9121e42008-02-19 14:59:35 +00006804 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00006805
drh8b2f49b2001-06-08 00:21:52 +00006806 /*
danielk1977634f2982005-03-28 08:44:07 +00006807 ** Allocate space for memory structures
6808 */
drhfacf0302008-06-17 15:12:00 +00006809 szScratch =
drha9121e42008-02-19 14:59:35 +00006810 nMaxCells*sizeof(u8*) /* apCell */
6811 + nMaxCells*sizeof(u16) /* szCell */
dan33ea4862014-10-09 19:35:37 +00006812 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00006813
drhcbd55b02014-11-04 14:22:27 +00006814 /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer
6815 ** that is more than 6 times the database page size. */
mistachkin0fbd7352014-12-09 04:26:56 +00006816 assert( szScratch<=6*(int)pBt->pageSize );
drhfacf0302008-06-17 15:12:00 +00006817 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00006818 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00006819 rc = SQLITE_NOMEM;
6820 goto balance_cleanup;
6821 }
drha9121e42008-02-19 14:59:35 +00006822 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00006823 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00006824 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00006825
6826 /*
6827 ** Load pointers to all cells on sibling pages and the divider cells
6828 ** into the local apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00006829 ** into space obtained from aSpace1[]. The divider cells have already
6830 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00006831 **
6832 ** If the siblings are on leaf pages, then the child pointers of the
6833 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00006834 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00006835 ** child pointers. If siblings are not leaves, then all cell in
6836 ** apCell[] include child pointers. Either way, all cells in apCell[]
6837 ** are alike.
drh96f5b762004-05-16 16:24:36 +00006838 **
6839 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
6840 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00006841 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006842 leafCorrection = apOld[0]->leaf*4;
drh3e28ff52014-09-24 00:59:08 +00006843 leafData = apOld[0]->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00006844 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006845 int limit;
dan33ea4862014-10-09 19:35:37 +00006846 MemPage *pOld = apOld[i];
danielk19774dbaa892009-06-16 16:50:22 +00006847
6848 limit = pOld->nCell+pOld->nOverflow;
drh68f2a572011-06-03 17:50:49 +00006849 if( pOld->nOverflow>0 ){
6850 for(j=0; j<limit; j++){
6851 assert( nCell<nMaxCells );
6852 apCell[nCell] = findOverflowCell(pOld, j);
6853 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6854 nCell++;
6855 }
6856 }else{
6857 u8 *aData = pOld->aData;
6858 u16 maskPage = pOld->maskPage;
6859 u16 cellOffset = pOld->cellOffset;
6860 for(j=0; j<limit; j++){
6861 assert( nCell<nMaxCells );
6862 apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j);
6863 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6864 nCell++;
6865 }
6866 }
dan09c68402014-10-11 20:00:24 +00006867 cntOld[i] = nCell;
danielk19774dbaa892009-06-16 16:50:22 +00006868 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00006869 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00006870 u8 *pTemp;
6871 assert( nCell<nMaxCells );
6872 szCell[nCell] = sz;
6873 pTemp = &aSpace1[iSpace1];
6874 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00006875 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006876 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00006877 memcpy(pTemp, apDiv[i], sz);
6878 apCell[nCell] = pTemp+leafCorrection;
6879 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00006880 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00006881 if( !pOld->leaf ){
6882 assert( leafCorrection==0 );
6883 assert( pOld->hdrOffset==0 );
6884 /* The right pointer of the child page pOld becomes the left
6885 ** pointer of the divider cell */
6886 memcpy(apCell[nCell], &pOld->aData[8], 4);
6887 }else{
6888 assert( leafCorrection==4 );
6889 if( szCell[nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00006890 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
6891 ** does exist, pad it with 0x00 bytes. */
6892 assert( szCell[nCell]==3 );
danee7172f2014-12-24 18:11:50 +00006893 assert( apCell[nCell]==&aSpace1[iSpace1-3] );
6894 aSpace1[iSpace1++] = 0x00;
danielk19774dbaa892009-06-16 16:50:22 +00006895 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00006896 }
6897 }
drh14acc042001-06-10 19:56:58 +00006898 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00006899 }
drh8b2f49b2001-06-08 00:21:52 +00006900 }
6901
6902 /*
drh6019e162001-07-02 17:51:45 +00006903 ** Figure out the number of pages needed to hold all nCell cells.
6904 ** Store this number in "k". Also compute szNew[] which is the total
6905 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00006906 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00006907 ** cntNew[k] should equal nCell.
6908 **
drh96f5b762004-05-16 16:24:36 +00006909 ** Values computed by this block:
6910 **
6911 ** k: The total number of sibling pages
6912 ** szNew[i]: Spaced used on the i-th sibling page.
6913 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
6914 ** the right of the i-th sibling page.
6915 ** usableSpace: Number of bytes of space available on each sibling.
6916 **
drh8b2f49b2001-06-08 00:21:52 +00006917 */
drh43605152004-05-29 21:46:49 +00006918 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00006919 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00006920 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00006921 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00006922 if( subtotal > usableSpace ){
dand7b545b2014-10-13 18:03:27 +00006923 szNew[k] = subtotal - szCell[i] - 2;
drh6019e162001-07-02 17:51:45 +00006924 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00006925 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00006926 subtotal = 0;
6927 k++;
drh9978c972010-02-23 17:36:32 +00006928 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00006929 }
6930 }
6931 szNew[k] = subtotal;
6932 cntNew[k] = nCell;
6933 k++;
drh96f5b762004-05-16 16:24:36 +00006934
6935 /*
6936 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00006937 ** on the left side (siblings with smaller keys). The left siblings are
6938 ** always nearly full, while the right-most sibling might be nearly empty.
6939 ** The next block of code attempts to adjust the packing of siblings to
6940 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00006941 **
6942 ** This adjustment is more than an optimization. The packing above might
6943 ** be so out of balance as to be illegal. For example, the right-most
6944 ** sibling might be completely empty. This adjustment is not optional.
6945 */
drh6019e162001-07-02 17:51:45 +00006946 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00006947 int szRight = szNew[i]; /* Size of sibling on the right */
6948 int szLeft = szNew[i-1]; /* Size of sibling on the left */
6949 int r; /* Index of right-most cell in left sibling */
6950 int d; /* Index of first cell to the left of right sibling */
6951
6952 r = cntNew[i-1] - 1;
6953 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00006954 assert( d<nMaxCells );
6955 assert( r<nMaxCells );
danf64cc492012-08-08 11:55:15 +00006956 while( szRight==0
6957 || (!bBulk && szRight+szCell[d]+2<=szLeft-(szCell[r]+2))
6958 ){
drh43605152004-05-29 21:46:49 +00006959 szRight += szCell[d] + 2;
6960 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00006961 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00006962 r = cntNew[i-1] - 1;
6963 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00006964 }
drh96f5b762004-05-16 16:24:36 +00006965 szNew[i] = szRight;
6966 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00006967 }
drh09d0deb2005-08-02 17:13:09 +00006968
drh2a0df922014-10-30 23:14:56 +00006969 /* Sanity check: For a non-corrupt database file one of the follwing
6970 ** must be true:
6971 ** (1) We found one or more cells (cntNew[0])>0), or
6972 ** (2) pPage is a virtual root page. A virtual root page is when
6973 ** the real root page is page 1 and we are the only child of
6974 ** that page.
drh09d0deb2005-08-02 17:13:09 +00006975 */
drh2a0df922014-10-30 23:14:56 +00006976 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00006977 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
6978 apOld[0]->pgno, apOld[0]->nCell,
6979 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
6980 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00006981 ));
6982
drh8b2f49b2001-06-08 00:21:52 +00006983 /*
drh6b308672002-07-08 02:16:37 +00006984 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00006985 */
drheac74422009-06-14 12:47:11 +00006986 if( apOld[0]->pgno<=1 ){
drh9978c972010-02-23 17:36:32 +00006987 rc = SQLITE_CORRUPT_BKPT;
drheac74422009-06-14 12:47:11 +00006988 goto balance_cleanup;
6989 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006990 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00006991 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00006992 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00006993 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00006994 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00006995 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006996 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00006997 nNew++;
danielk197728129562005-01-11 10:25:06 +00006998 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00006999 }else{
drh7aa8f852006-03-28 00:24:44 +00007000 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007001 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007002 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007003 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007004 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007005 nNew++;
dan09c68402014-10-11 20:00:24 +00007006 cntOld[i] = nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007007
7008 /* Set the pointer-map entry for the new sibling page. */
7009 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007010 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007011 if( rc!=SQLITE_OK ){
7012 goto balance_cleanup;
7013 }
7014 }
drh6b308672002-07-08 02:16:37 +00007015 }
drh8b2f49b2001-06-08 00:21:52 +00007016 }
7017
7018 /*
dan33ea4862014-10-09 19:35:37 +00007019 ** Reassign page numbers so that the new pages are in ascending order.
7020 ** This helps to keep entries in the disk file in order so that a scan
7021 ** of the table is closer to a linear scan through the file. That in turn
7022 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007023 **
dan33ea4862014-10-09 19:35:37 +00007024 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7025 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007026 **
dan33ea4862014-10-09 19:35:37 +00007027 ** When NB==3, this one optimization makes the database about 25% faster
7028 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007029 */
dan33ea4862014-10-09 19:35:37 +00007030 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007031 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007032 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007033 for(j=0; j<i; j++){
7034 if( aPgno[j]==aPgno[i] ){
7035 /* This branch is taken if the set of sibling pages somehow contains
7036 ** duplicate entries. This can happen if the database is corrupt.
7037 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007038 ** we do the detection here in order to avoid populating the pager
7039 ** cache with two separate objects associated with the same
7040 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007041 assert( CORRUPT_DB );
7042 rc = SQLITE_CORRUPT_BKPT;
7043 goto balance_cleanup;
7044 }
7045 }
dan33ea4862014-10-09 19:35:37 +00007046 }
7047 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007048 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007049 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007050 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007051 }
drh00fe08a2014-10-31 00:05:23 +00007052 pgno = aPgOrder[iBest];
7053 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007054 if( iBest!=i ){
7055 if( iBest>i ){
7056 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7057 }
7058 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7059 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007060 }
7061 }
dan33ea4862014-10-09 19:35:37 +00007062
7063 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7064 "%d(%d nc=%d) %d(%d nc=%d)\n",
7065 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007066 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007067 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007068 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007069 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007070 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007071 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7072 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7073 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7074 ));
danielk19774dbaa892009-06-16 16:50:22 +00007075
7076 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7077 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00007078
dan33ea4862014-10-09 19:35:37 +00007079 /* If the sibling pages are not leaves, ensure that the right-child pointer
7080 ** of the right-most new sibling page is set to the value that was
7081 ** originally in the same field of the right-most old sibling page. */
7082 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7083 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7084 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7085 }
danielk1977ac11ee62005-01-15 12:45:51 +00007086
dan33ea4862014-10-09 19:35:37 +00007087 /* Make any required updates to pointer map entries associated with
7088 ** cells stored on sibling pages following the balance operation. Pointer
7089 ** map entries associated with divider cells are set by the insertCell()
7090 ** routine. The associated pointer map entries are:
7091 **
7092 ** a) if the cell contains a reference to an overflow chain, the
7093 ** entry associated with the first page in the overflow chain, and
7094 **
7095 ** b) if the sibling pages are not leaves, the child page associated
7096 ** with the cell.
7097 **
7098 ** If the sibling pages are not leaves, then the pointer map entry
7099 ** associated with the right-child of each sibling may also need to be
7100 ** updated. This happens below, after the sibling pages have been
7101 ** populated, not here.
7102 */
7103 if( ISAUTOVACUUM ){
7104 MemPage *pNew = apNew[0];
7105 u8 *aOld = pNew->aData;
7106 int cntOldNext = pNew->nCell + pNew->nOverflow;
7107 int usableSize = pBt->usableSize;
7108 int iNew = 0;
7109 int iOld = 0;
danielk1977634f2982005-03-28 08:44:07 +00007110
dan33ea4862014-10-09 19:35:37 +00007111 for(i=0; i<nCell; i++){
7112 u8 *pCell = apCell[i];
7113 if( i==cntOldNext ){
7114 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7115 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7116 aOld = pOld->aData;
7117 }
7118 if( i==cntNew[iNew] ){
7119 pNew = apNew[++iNew];
7120 if( !leafData ) continue;
7121 }
7122
7123 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00007124 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00007125 ** or else the divider cell to the left of sibling page iOld. So,
7126 ** if sibling page iOld had the same page number as pNew, and if
7127 ** pCell really was a part of sibling page iOld (not a divider or
7128 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00007129 if( iOld>=nNew
7130 || pNew->pgno!=aPgno[iOld]
7131 || pCell<aOld
7132 || pCell>=&aOld[usableSize]
7133 ){
dan33ea4862014-10-09 19:35:37 +00007134 if( !leafCorrection ){
7135 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7136 }
7137 if( szCell[i]>pNew->minLocal ){
7138 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774aeff622007-05-12 09:30:47 +00007139 }
drh4b70f112004-05-02 21:12:19 +00007140 }
drh14acc042001-06-10 19:56:58 +00007141 }
7142 }
dan33ea4862014-10-09 19:35:37 +00007143
7144 /* Insert new divider cells into pParent. */
7145 for(i=0; i<nNew-1; i++){
7146 u8 *pCell;
7147 u8 *pTemp;
7148 int sz;
7149 MemPage *pNew = apNew[i];
7150 j = cntNew[i];
7151
7152 assert( j<nMaxCells );
7153 pCell = apCell[j];
7154 sz = szCell[j] + leafCorrection;
7155 pTemp = &aOvflSpace[iOvflSpace];
7156 if( !pNew->leaf ){
7157 memcpy(&pNew->aData[8], pCell, 4);
7158 }else if( leafData ){
7159 /* If the tree is a leaf-data tree, and the siblings are leaves,
7160 ** then there is no divider cell in apCell[]. Instead, the divider
7161 ** cell consists of the integer key for the right-most cell of
7162 ** the sibling-page assembled above only.
7163 */
7164 CellInfo info;
7165 j--;
7166 btreeParseCellPtr(pNew, apCell[j], &info);
7167 pCell = pTemp;
7168 sz = 4 + putVarint(&pCell[4], info.nKey);
7169 pTemp = 0;
7170 }else{
7171 pCell -= 4;
7172 /* Obscure case for non-leaf-data trees: If the cell at pCell was
7173 ** previously stored on a leaf node, and its reported size was 4
7174 ** bytes, then it may actually be smaller than this
7175 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7176 ** any cell). But it is important to pass the correct size to
7177 ** insertCell(), so reparse the cell now.
7178 **
7179 ** Note that this can never happen in an SQLite data file, as all
7180 ** cells are at least 4 bytes. It only happens in b-trees used
7181 ** to evaluate "IN (SELECT ...)" and similar clauses.
7182 */
7183 if( szCell[j]==4 ){
7184 assert(leafCorrection==4);
7185 sz = cellSizePtr(pParent, pCell);
7186 }
7187 }
7188 iOvflSpace += sz;
7189 assert( sz<=pBt->maxLocal+23 );
7190 assert( iOvflSpace <= (int)pBt->pageSize );
7191 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7192 if( rc!=SQLITE_OK ) goto balance_cleanup;
7193 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7194 }
7195
7196 /* Now update the actual sibling pages. The order in which they are updated
7197 ** is important, as this code needs to avoid disrupting any page from which
7198 ** cells may still to be read. In practice, this means:
7199 **
drhd836d422014-10-31 14:26:36 +00007200 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7201 ** then it is not safe to update page apNew[iPg] until after
7202 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007203 **
drhd836d422014-10-31 14:26:36 +00007204 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7205 ** then it is not safe to update page apNew[iPg] until after
7206 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007207 **
7208 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00007209 **
7210 ** The iPg value in the following loop starts at nNew-1 goes down
7211 ** to 0, then back up to nNew-1 again, thus making two passes over
7212 ** the pages. On the initial downward pass, only condition (1) above
7213 ** needs to be tested because (2) will always be true from the previous
7214 ** step. On the upward pass, both conditions are always true, so the
7215 ** upwards pass simply processes pages that were missed on the downward
7216 ** pass.
dan33ea4862014-10-09 19:35:37 +00007217 */
drhbec021b2014-10-31 12:22:00 +00007218 for(i=1-nNew; i<nNew; i++){
7219 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00007220 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00007221 if( abDone[iPg] ) continue; /* Skip pages already processed */
7222 if( i>=0 /* On the upwards pass, or... */
7223 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00007224 ){
dan09c68402014-10-11 20:00:24 +00007225 int iNew;
7226 int iOld;
7227 int nNewCell;
7228
drhd836d422014-10-31 14:26:36 +00007229 /* Verify condition (1): If cells are moving left, update iPg
7230 ** only after iPg-1 has already been updated. */
7231 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7232
7233 /* Verify condition (2): If cells are moving right, update iPg
7234 ** only after iPg+1 has already been updated. */
7235 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7236
dan09c68402014-10-11 20:00:24 +00007237 if( iPg==0 ){
7238 iNew = iOld = 0;
7239 nNewCell = cntNew[0];
7240 }else{
7241 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : nCell;
7242 iNew = cntNew[iPg-1] + !leafData;
7243 nNewCell = cntNew[iPg] - iNew;
7244 }
7245
7246 editPage(apNew[iPg], iOld, iNew, nNewCell, apCell, szCell);
drhd836d422014-10-31 14:26:36 +00007247 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00007248 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00007249 assert( apNew[iPg]->nOverflow==0 );
7250 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00007251 }
7252 }
drhd836d422014-10-31 14:26:36 +00007253
7254 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00007255 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7256
drh7aa8f852006-03-28 00:24:44 +00007257 assert( nOld>0 );
7258 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00007259
danielk197713bd99f2009-06-24 05:40:34 +00007260 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7261 /* The root page of the b-tree now contains no cells. The only sibling
7262 ** page is the right-child of the parent. Copy the contents of the
7263 ** child page into the parent, decreasing the overall height of the
7264 ** b-tree structure by one. This is described as the "balance-shallower"
7265 ** sub-algorithm in some documentation.
7266 **
7267 ** If this is an auto-vacuum database, the call to copyNodeContent()
7268 ** sets all pointer-map entries corresponding to database image pages
7269 ** for which the pointer is stored within the content being copied.
7270 **
drh768f2902014-10-31 02:51:41 +00007271 ** It is critical that the child page be defragmented before being
7272 ** copied into the parent, because if the parent is page 1 then it will
7273 ** by smaller than the child due to the database header, and so all the
7274 ** free space needs to be up front.
7275 */
danielk197713bd99f2009-06-24 05:40:34 +00007276 assert( nNew==1 );
dan89ca0b32014-10-25 20:36:28 +00007277 rc = defragmentPage(apNew[0]);
drh768f2902014-10-31 02:51:41 +00007278 testcase( rc!=SQLITE_OK );
7279 assert( apNew[0]->nFree ==
7280 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7281 || rc!=SQLITE_OK
7282 );
7283 copyNodeContent(apNew[0], pParent, &rc);
7284 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00007285 }else if( ISAUTOVACUUM && !leafCorrection ){
7286 /* Fix the pointer map entries associated with the right-child of each
7287 ** sibling page. All other pointer map entries have already been taken
7288 ** care of. */
7289 for(i=0; i<nNew; i++){
7290 u32 key = get4byte(&apNew[i]->aData[8]);
7291 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007292 }
dan33ea4862014-10-09 19:35:37 +00007293 }
danielk19774dbaa892009-06-16 16:50:22 +00007294
dan33ea4862014-10-09 19:35:37 +00007295 assert( pParent->isInit );
7296 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
7297 nOld, nNew, nCell));
danielk19774dbaa892009-06-16 16:50:22 +00007298
dan33ea4862014-10-09 19:35:37 +00007299 /* Free any old pages that were not reused as new pages.
7300 */
7301 for(i=nNew; i<nOld; i++){
7302 freePage(apOld[i], &rc);
7303 }
7304
dane6593d82014-10-24 16:40:49 +00007305#if 0
dan33ea4862014-10-09 19:35:37 +00007306 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00007307 /* The ptrmapCheckPages() contains assert() statements that verify that
7308 ** all pointer map pages are set correctly. This is helpful while
7309 ** debugging. This is usually disabled because a corrupt database may
7310 ** cause an assert() statement to fail. */
7311 ptrmapCheckPages(apNew, nNew);
7312 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00007313 }
dan33ea4862014-10-09 19:35:37 +00007314#endif
danielk1977cd581a72009-06-23 15:43:39 +00007315
drh8b2f49b2001-06-08 00:21:52 +00007316 /*
drh14acc042001-06-10 19:56:58 +00007317 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00007318 */
drh14acc042001-06-10 19:56:58 +00007319balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00007320 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00007321 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00007322 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00007323 }
drh14acc042001-06-10 19:56:58 +00007324 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00007325 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00007326 }
danielk1977eaa06f62008-09-18 17:34:44 +00007327
drh8b2f49b2001-06-08 00:21:52 +00007328 return rc;
7329}
mistachkine7c54162012-10-02 22:54:27 +00007330#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
7331#pragma optimize("", on)
7332#endif
drh8b2f49b2001-06-08 00:21:52 +00007333
drh43605152004-05-29 21:46:49 +00007334
7335/*
danielk1977a50d9aa2009-06-08 14:49:45 +00007336** This function is called when the root page of a b-tree structure is
7337** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00007338**
danielk1977a50d9aa2009-06-08 14:49:45 +00007339** A new child page is allocated and the contents of the current root
7340** page, including overflow cells, are copied into the child. The root
7341** page is then overwritten to make it an empty page with the right-child
7342** pointer pointing to the new page.
7343**
7344** Before returning, all pointer-map entries corresponding to pages
7345** that the new child-page now contains pointers to are updated. The
7346** entry corresponding to the new right-child pointer of the root
7347** page is also updated.
7348**
7349** If successful, *ppChild is set to contain a reference to the child
7350** page and SQLITE_OK is returned. In this case the caller is required
7351** to call releasePage() on *ppChild exactly once. If an error occurs,
7352** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00007353*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007354static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7355 int rc; /* Return value from subprocedures */
7356 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00007357 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00007358 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00007359
danielk1977a50d9aa2009-06-08 14:49:45 +00007360 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00007361 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00007362
danielk1977a50d9aa2009-06-08 14:49:45 +00007363 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7364 ** page that will become the new right-child of pPage. Copy the contents
7365 ** of the node stored on pRoot into the new child page.
7366 */
drh98add2e2009-07-20 17:11:49 +00007367 rc = sqlite3PagerWrite(pRoot->pDbPage);
7368 if( rc==SQLITE_OK ){
7369 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00007370 copyNodeContent(pRoot, pChild, &rc);
7371 if( ISAUTOVACUUM ){
7372 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00007373 }
7374 }
7375 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007376 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007377 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00007378 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00007379 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007380 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
7381 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7382 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007383
danielk1977a50d9aa2009-06-08 14:49:45 +00007384 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
7385
7386 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00007387 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
7388 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
7389 memcpy(pChild->apOvfl, pRoot->apOvfl,
7390 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00007391 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00007392
7393 /* Zero the contents of pRoot. Then install pChild as the right-child. */
7394 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
7395 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
7396
7397 *ppChild = pChild;
7398 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00007399}
7400
7401/*
danielk197771d5d2c2008-09-29 11:49:47 +00007402** The page that pCur currently points to has just been modified in
7403** some way. This function figures out if this modification means the
7404** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00007405** routine. Balancing routines are:
7406**
7407** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00007408** balance_deeper()
7409** balance_nonroot()
drh43605152004-05-29 21:46:49 +00007410*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007411static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00007412 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00007413 const int nMin = pCur->pBt->usableSize * 2 / 3;
7414 u8 aBalanceQuickSpace[13];
7415 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007416
shane75ac1de2009-06-09 18:58:52 +00007417 TESTONLY( int balance_quick_called = 0 );
7418 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00007419
7420 do {
7421 int iPage = pCur->iPage;
7422 MemPage *pPage = pCur->apPage[iPage];
7423
7424 if( iPage==0 ){
7425 if( pPage->nOverflow ){
7426 /* The root page of the b-tree is overfull. In this case call the
7427 ** balance_deeper() function to create a new child for the root-page
7428 ** and copy the current contents of the root-page to it. The
7429 ** next iteration of the do-loop will balance the child page.
7430 */
7431 assert( (balance_deeper_called++)==0 );
7432 rc = balance_deeper(pPage, &pCur->apPage[1]);
7433 if( rc==SQLITE_OK ){
7434 pCur->iPage = 1;
7435 pCur->aiIdx[0] = 0;
7436 pCur->aiIdx[1] = 0;
7437 assert( pCur->apPage[1]->nOverflow );
7438 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007439 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00007440 break;
7441 }
7442 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
7443 break;
7444 }else{
7445 MemPage * const pParent = pCur->apPage[iPage-1];
7446 int const iIdx = pCur->aiIdx[iPage-1];
7447
7448 rc = sqlite3PagerWrite(pParent->pDbPage);
7449 if( rc==SQLITE_OK ){
7450#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00007451 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00007452 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00007453 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00007454 && pParent->pgno!=1
7455 && pParent->nCell==iIdx
7456 ){
7457 /* Call balance_quick() to create a new sibling of pPage on which
7458 ** to store the overflow cell. balance_quick() inserts a new cell
7459 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00007460 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00007461 ** use either balance_nonroot() or balance_deeper(). Until this
7462 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
7463 ** buffer.
7464 **
7465 ** The purpose of the following assert() is to check that only a
7466 ** single call to balance_quick() is made for each call to this
7467 ** function. If this were not verified, a subtle bug involving reuse
7468 ** of the aBalanceQuickSpace[] might sneak in.
7469 */
7470 assert( (balance_quick_called++)==0 );
7471 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
7472 }else
7473#endif
7474 {
7475 /* In this case, call balance_nonroot() to redistribute cells
7476 ** between pPage and up to 2 of its sibling pages. This involves
7477 ** modifying the contents of pParent, which may cause pParent to
7478 ** become overfull or underfull. The next iteration of the do-loop
7479 ** will balance the parent page to correct this.
7480 **
7481 ** If the parent page becomes overfull, the overflow cell or cells
7482 ** are stored in the pSpace buffer allocated immediately below.
7483 ** A subsequent iteration of the do-loop will deal with this by
7484 ** calling balance_nonroot() (balance_deeper() may be called first,
7485 ** but it doesn't deal with overflow cells - just moves them to a
7486 ** different page). Once this subsequent call to balance_nonroot()
7487 ** has completed, it is safe to release the pSpace buffer used by
7488 ** the previous call, as the overflow cell data will have been
7489 ** copied either into the body of a database page or into the new
7490 ** pSpace buffer passed to the latter call to balance_nonroot().
7491 */
7492 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00007493 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
7494 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00007495 if( pFree ){
7496 /* If pFree is not NULL, it points to the pSpace buffer used
7497 ** by a previous call to balance_nonroot(). Its contents are
7498 ** now stored either on real database pages or within the
7499 ** new pSpace buffer, so it may be safely freed here. */
7500 sqlite3PageFree(pFree);
7501 }
7502
danielk19774dbaa892009-06-16 16:50:22 +00007503 /* The pSpace buffer will be freed after the next call to
7504 ** balance_nonroot(), or just before this function returns, whichever
7505 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007506 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00007507 }
7508 }
7509
7510 pPage->nOverflow = 0;
7511
7512 /* The next iteration of the do-loop balances the parent page. */
7513 releasePage(pPage);
7514 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00007515 assert( pCur->iPage>=0 );
drh43605152004-05-29 21:46:49 +00007516 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007517 }while( rc==SQLITE_OK );
7518
7519 if( pFree ){
7520 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00007521 }
7522 return rc;
7523}
7524
drhf74b8d92002-09-01 23:20:45 +00007525
7526/*
drh3b7511c2001-05-26 13:15:44 +00007527** Insert a new record into the BTree. The key is given by (pKey,nKey)
7528** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00007529** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00007530** is left pointing at a random location.
7531**
7532** For an INTKEY table, only the nKey value of the key is used. pKey is
7533** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00007534**
7535** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00007536** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00007537** been performed. seekResult is the search result returned (a negative
7538** number if pCur points at an entry that is smaller than (pKey, nKey), or
peter.d.reid60ec9142014-09-06 16:39:46 +00007539** a positive value if pCur points at an entry that is larger than
danielk1977de630352009-05-04 11:42:29 +00007540** (pKey, nKey)).
7541**
drh3e9ca092009-09-08 01:14:48 +00007542** If the seekResult parameter is non-zero, then the caller guarantees that
7543** cursor pCur is pointing at the existing copy of a row that is to be
7544** overwritten. If the seekResult parameter is 0, then cursor pCur may
7545** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00007546** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00007547*/
drh3aac2dd2004-04-26 14:10:20 +00007548int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00007549 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00007550 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00007551 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00007552 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00007553 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00007554 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00007555){
drh3b7511c2001-05-26 13:15:44 +00007556 int rc;
drh3e9ca092009-09-08 01:14:48 +00007557 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00007558 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007559 int idx;
drh3b7511c2001-05-26 13:15:44 +00007560 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00007561 Btree *p = pCur->pBtree;
7562 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00007563 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00007564 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00007565
drh98add2e2009-07-20 17:11:49 +00007566 if( pCur->eState==CURSOR_FAULT ){
7567 assert( pCur->skipNext!=SQLITE_OK );
7568 return pCur->skipNext;
7569 }
7570
drh1fee73e2007-08-29 04:00:57 +00007571 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00007572 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
7573 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00007574 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00007575 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7576
danielk197731d31b82009-07-13 13:18:07 +00007577 /* Assert that the caller has been consistent. If this cursor was opened
7578 ** expecting an index b-tree, then the caller should be inserting blob
7579 ** keys with no associated data. If the cursor was opened expecting an
7580 ** intkey table, the caller should be inserting integer keys with a
7581 ** blob of associated data. */
7582 assert( (pKey==0)==(pCur->pKeyInfo==0) );
7583
danielk19779c3acf32009-05-02 07:36:49 +00007584 /* Save the positions of any other cursors open on this table.
7585 **
danielk19773509a652009-07-06 18:56:13 +00007586 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00007587 ** example, when inserting data into a table with auto-generated integer
7588 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
7589 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00007590 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00007591 ** that the cursor is already where it needs to be and returns without
7592 ** doing any work. To avoid thwarting these optimizations, it is important
7593 ** not to clear the cursor here.
7594 */
drh4c301aa2009-07-15 17:25:45 +00007595 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7596 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007597
drhd60f4f42012-03-23 14:23:52 +00007598 if( pCur->pKeyInfo==0 ){
drhe0670b62014-02-12 21:31:12 +00007599 /* If this is an insert into a table b-tree, invalidate any incrblob
7600 ** cursors open on the row being replaced */
drhd60f4f42012-03-23 14:23:52 +00007601 invalidateIncrblobCursors(p, nKey, 0);
drhe0670b62014-02-12 21:31:12 +00007602
7603 /* If the cursor is currently on the last row and we are appending a
7604 ** new row onto the end, set the "loc" to avoid an unnecessary btreeMoveto()
7605 ** call */
drh3f387402014-09-24 01:23:00 +00007606 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0
7607 && pCur->info.nKey==nKey-1 ){
drhe0670b62014-02-12 21:31:12 +00007608 loc = -1;
7609 }
drhd60f4f42012-03-23 14:23:52 +00007610 }
7611
drh4c301aa2009-07-15 17:25:45 +00007612 if( !loc ){
7613 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
7614 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00007615 }
danielk1977b980d2212009-06-22 18:03:51 +00007616 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00007617
danielk197771d5d2c2008-09-29 11:49:47 +00007618 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00007619 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00007620 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00007621
drh3a4c1412004-05-09 20:40:11 +00007622 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
7623 pCur->pgnoRoot, nKey, nData, pPage->pgno,
7624 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00007625 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00007626 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00007627 assert( newCell!=0 );
drhb026e052007-05-02 01:34:31 +00007628 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00007629 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00007630 assert( szNew==cellSizePtr(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00007631 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00007632 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00007633 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00007634 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00007635 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00007636 rc = sqlite3PagerWrite(pPage->pDbPage);
7637 if( rc ){
7638 goto end_insert;
7639 }
danielk197771d5d2c2008-09-29 11:49:47 +00007640 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00007641 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007642 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00007643 }
drh9bfdc252014-09-24 02:05:41 +00007644 rc = clearCell(pPage, oldCell, &szOld);
drh98add2e2009-07-20 17:11:49 +00007645 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00007646 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00007647 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00007648 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00007649 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00007650 }else{
drh4b70f112004-05-02 21:12:19 +00007651 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00007652 }
drh98add2e2009-07-20 17:11:49 +00007653 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00007654 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00007655
mistachkin48864df2013-03-21 21:20:32 +00007656 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00007657 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00007658 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00007659 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00007660 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007661 ** Previous versions of SQLite called moveToRoot() to move the cursor
7662 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00007663 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
7664 ** set the cursor state to "invalid". This makes common insert operations
7665 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00007666 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007667 ** There is a subtle but important optimization here too. When inserting
7668 ** multiple records into an intkey b-tree using a single cursor (as can
7669 ** happen while processing an "INSERT INTO ... SELECT" statement), it
7670 ** is advantageous to leave the cursor pointing to the last entry in
7671 ** the b-tree if possible. If the cursor is left pointing to the last
7672 ** entry in the table, and the next row inserted has an integer key
7673 ** larger than the largest existing key, it is possible to insert the
7674 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00007675 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007676 pCur->info.nSize = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007677 if( rc==SQLITE_OK && pPage->nOverflow ){
drh036dbec2014-03-11 23:40:44 +00007678 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00007679 rc = balance(pCur);
7680
7681 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00007682 ** fails. Internal data structure corruption will result otherwise.
7683 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
7684 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007685 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00007686 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00007687 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007688 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00007689
drh2e38c322004-09-03 18:38:44 +00007690end_insert:
drh5e2f8b92001-05-28 00:41:15 +00007691 return rc;
7692}
7693
7694/*
drh4b70f112004-05-02 21:12:19 +00007695** Delete the entry that the cursor is pointing to. The cursor
peter.d.reid60ec9142014-09-06 16:39:46 +00007696** is left pointing at an arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00007697*/
drh3aac2dd2004-04-26 14:10:20 +00007698int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00007699 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00007700 BtShared *pBt = p->pBt;
7701 int rc; /* Return code */
7702 MemPage *pPage; /* Page to delete cell from */
7703 unsigned char *pCell; /* Pointer to cell to delete */
7704 int iCellIdx; /* Index of cell to delete */
7705 int iCellDepth; /* Depth of node containing pCell */
drh9bfdc252014-09-24 02:05:41 +00007706 u16 szCell; /* Size of the cell being deleted */
drh8b2f49b2001-06-08 00:21:52 +00007707
drh1fee73e2007-08-29 04:00:57 +00007708 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00007709 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007710 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00007711 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00007712 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7713 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
7714
danielk19774dbaa892009-06-16 16:50:22 +00007715 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
7716 || NEVER(pCur->eState!=CURSOR_VALID)
7717 ){
7718 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00007719 }
danielk1977da184232006-01-05 11:34:32 +00007720
danielk19774dbaa892009-06-16 16:50:22 +00007721 iCellDepth = pCur->iPage;
7722 iCellIdx = pCur->aiIdx[iCellDepth];
7723 pPage = pCur->apPage[iCellDepth];
7724 pCell = findCell(pPage, iCellIdx);
7725
7726 /* If the page containing the entry to delete is not a leaf page, move
7727 ** the cursor to the largest entry in the tree that is smaller than
7728 ** the entry being deleted. This cell will replace the cell being deleted
7729 ** from the internal node. The 'previous' entry is used for this instead
7730 ** of the 'next' entry, as the previous entry is always a part of the
7731 ** sub-tree headed by the child page of the cell being deleted. This makes
7732 ** balancing the tree following the delete operation easier. */
7733 if( !pPage->leaf ){
drhe39a7322014-02-03 14:04:11 +00007734 int notUsed = 0;
drh4c301aa2009-07-15 17:25:45 +00007735 rc = sqlite3BtreePrevious(pCur, &notUsed);
7736 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00007737 }
7738
7739 /* Save the positions of any other cursors open on this table before
7740 ** making any modifications. Make the page containing the entry to be
7741 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00007742 ** entry and finally remove the cell itself from within the page.
7743 */
7744 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7745 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007746
7747 /* If this is a delete operation to remove a row from a table b-tree,
7748 ** invalidate any incrblob cursors open on the row being deleted. */
7749 if( pCur->pKeyInfo==0 ){
7750 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
7751 }
7752
drha4ec1d42009-07-11 13:13:11 +00007753 rc = sqlite3PagerWrite(pPage->pDbPage);
7754 if( rc ) return rc;
drh9bfdc252014-09-24 02:05:41 +00007755 rc = clearCell(pPage, pCell, &szCell);
7756 dropCell(pPage, iCellIdx, szCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00007757 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00007758
danielk19774dbaa892009-06-16 16:50:22 +00007759 /* If the cell deleted was not located on a leaf page, then the cursor
7760 ** is currently pointing to the largest entry in the sub-tree headed
7761 ** by the child-page of the cell that was just deleted from an internal
7762 ** node. The cell from the leaf node needs to be moved to the internal
7763 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00007764 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00007765 MemPage *pLeaf = pCur->apPage[pCur->iPage];
7766 int nCell;
7767 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
7768 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00007769
danielk19774dbaa892009-06-16 16:50:22 +00007770 pCell = findCell(pLeaf, pLeaf->nCell-1);
7771 nCell = cellSizePtr(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00007772 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00007773 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00007774 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00007775 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00007776 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
7777 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00007778 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00007779 }
danielk19774dbaa892009-06-16 16:50:22 +00007780
7781 /* Balance the tree. If the entry deleted was located on a leaf page,
7782 ** then the cursor still points to that page. In this case the first
7783 ** call to balance() repairs the tree, and the if(...) condition is
7784 ** never true.
7785 **
7786 ** Otherwise, if the entry deleted was on an internal node page, then
7787 ** pCur is pointing to the leaf page from which a cell was removed to
7788 ** replace the cell deleted from the internal node. This is slightly
7789 ** tricky as the leaf node may be underfull, and the internal node may
7790 ** be either under or overfull. In this case run the balancing algorithm
7791 ** on the leaf node first. If the balance proceeds far enough up the
7792 ** tree that we can be sure that any problem in the internal node has
7793 ** been corrected, so be it. Otherwise, after balancing the leaf node,
7794 ** walk the cursor up the tree to the internal node and balance it as
7795 ** well. */
7796 rc = balance(pCur);
7797 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
7798 while( pCur->iPage>iCellDepth ){
7799 releasePage(pCur->apPage[pCur->iPage--]);
7800 }
7801 rc = balance(pCur);
7802 }
7803
danielk19776b456a22005-03-21 04:04:02 +00007804 if( rc==SQLITE_OK ){
7805 moveToRoot(pCur);
7806 }
drh5e2f8b92001-05-28 00:41:15 +00007807 return rc;
drh3b7511c2001-05-26 13:15:44 +00007808}
drh8b2f49b2001-06-08 00:21:52 +00007809
7810/*
drhc6b52df2002-01-04 03:09:29 +00007811** Create a new BTree table. Write into *piTable the page
7812** number for the root page of the new table.
7813**
drhab01f612004-05-22 02:55:23 +00007814** The type of type is determined by the flags parameter. Only the
7815** following values of flags are currently in use. Other values for
7816** flags might not work:
7817**
7818** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
7819** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00007820*/
drhd4187c72010-08-30 22:15:45 +00007821static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00007822 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007823 MemPage *pRoot;
7824 Pgno pgnoRoot;
7825 int rc;
drhd4187c72010-08-30 22:15:45 +00007826 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00007827
drh1fee73e2007-08-29 04:00:57 +00007828 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007829 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007830 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00007831
danielk1977003ba062004-11-04 02:57:33 +00007832#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00007833 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00007834 if( rc ){
7835 return rc;
7836 }
danielk1977003ba062004-11-04 02:57:33 +00007837#else
danielk1977687566d2004-11-02 12:56:41 +00007838 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00007839 Pgno pgnoMove; /* Move a page here to make room for the root-page */
7840 MemPage *pPageMove; /* The page to move to. */
7841
danielk197720713f32007-05-03 11:43:33 +00007842 /* Creating a new table may probably require moving an existing database
7843 ** to make room for the new tables root page. In case this page turns
7844 ** out to be an overflow page, delete all overflow page-map caches
7845 ** held by open cursors.
7846 */
danielk197792d4d7a2007-05-04 12:05:56 +00007847 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00007848
danielk1977003ba062004-11-04 02:57:33 +00007849 /* Read the value of meta[3] from the database to determine where the
7850 ** root page of the new table should go. meta[3] is the largest root-page
7851 ** created so far, so the new root-page is (meta[3]+1).
7852 */
danielk1977602b4662009-07-02 07:47:33 +00007853 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00007854 pgnoRoot++;
7855
danielk1977599fcba2004-11-08 07:13:13 +00007856 /* The new root-page may not be allocated on a pointer-map page, or the
7857 ** PENDING_BYTE page.
7858 */
drh72190432008-01-31 14:54:43 +00007859 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00007860 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00007861 pgnoRoot++;
7862 }
7863 assert( pgnoRoot>=3 );
7864
7865 /* Allocate a page. The page that currently resides at pgnoRoot will
7866 ** be moved to the allocated page (unless the allocated page happens
7867 ** to reside at pgnoRoot).
7868 */
dan51f0b6d2013-02-22 20:16:34 +00007869 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00007870 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00007871 return rc;
7872 }
danielk1977003ba062004-11-04 02:57:33 +00007873
7874 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00007875 /* pgnoRoot is the page that will be used for the root-page of
7876 ** the new table (assuming an error did not occur). But we were
7877 ** allocated pgnoMove. If required (i.e. if it was not allocated
7878 ** by extending the file), the current page at position pgnoMove
7879 ** is already journaled.
7880 */
drheeb844a2009-08-08 18:01:07 +00007881 u8 eType = 0;
7882 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00007883
danf7679ad2013-04-03 11:38:36 +00007884 /* Save the positions of any open cursors. This is required in
7885 ** case they are holding a reference to an xFetch reference
7886 ** corresponding to page pgnoRoot. */
7887 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00007888 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00007889 if( rc!=SQLITE_OK ){
7890 return rc;
7891 }
danielk1977f35843b2007-04-07 15:03:17 +00007892
7893 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00007894 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007895 if( rc!=SQLITE_OK ){
7896 return rc;
7897 }
7898 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00007899 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
7900 rc = SQLITE_CORRUPT_BKPT;
7901 }
7902 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00007903 releasePage(pRoot);
7904 return rc;
7905 }
drhccae6022005-02-26 17:31:26 +00007906 assert( eType!=PTRMAP_ROOTPAGE );
7907 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00007908 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00007909 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00007910
7911 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00007912 if( rc!=SQLITE_OK ){
7913 return rc;
7914 }
drhb00fc3b2013-08-21 23:42:32 +00007915 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007916 if( rc!=SQLITE_OK ){
7917 return rc;
7918 }
danielk19773b8a05f2007-03-19 17:44:26 +00007919 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00007920 if( rc!=SQLITE_OK ){
7921 releasePage(pRoot);
7922 return rc;
7923 }
7924 }else{
7925 pRoot = pPageMove;
7926 }
7927
danielk197742741be2005-01-08 12:42:39 +00007928 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00007929 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00007930 if( rc ){
7931 releasePage(pRoot);
7932 return rc;
7933 }
drhbf592832010-03-30 15:51:12 +00007934
7935 /* When the new root page was allocated, page 1 was made writable in
7936 ** order either to increase the database filesize, or to decrement the
7937 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
7938 */
7939 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00007940 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00007941 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00007942 releasePage(pRoot);
7943 return rc;
7944 }
danielk197742741be2005-01-08 12:42:39 +00007945
danielk1977003ba062004-11-04 02:57:33 +00007946 }else{
drh4f0c5872007-03-26 22:05:01 +00007947 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00007948 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00007949 }
7950#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007951 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00007952 if( createTabFlags & BTREE_INTKEY ){
7953 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
7954 }else{
7955 ptfFlags = PTF_ZERODATA | PTF_LEAF;
7956 }
7957 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00007958 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00007959 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00007960 *piTable = (int)pgnoRoot;
7961 return SQLITE_OK;
7962}
drhd677b3d2007-08-20 22:48:41 +00007963int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
7964 int rc;
7965 sqlite3BtreeEnter(p);
7966 rc = btreeCreateTable(p, piTable, flags);
7967 sqlite3BtreeLeave(p);
7968 return rc;
7969}
drh8b2f49b2001-06-08 00:21:52 +00007970
7971/*
7972** Erase the given database page and all its children. Return
7973** the page to the freelist.
7974*/
drh4b70f112004-05-02 21:12:19 +00007975static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00007976 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00007977 Pgno pgno, /* Page number to clear */
7978 int freePageFlag, /* Deallocate page if true */
7979 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00007980){
danielk1977146ba992009-07-22 14:08:13 +00007981 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00007982 int rc;
drh4b70f112004-05-02 21:12:19 +00007983 unsigned char *pCell;
7984 int i;
dan8ce71842014-01-14 20:14:09 +00007985 int hdr;
drh9bfdc252014-09-24 02:05:41 +00007986 u16 szCell;
drh8b2f49b2001-06-08 00:21:52 +00007987
drh1fee73e2007-08-29 04:00:57 +00007988 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00007989 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00007990 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00007991 }
dan11dcd112013-03-15 18:29:18 +00007992 rc = getAndInitPage(pBt, pgno, &pPage, 0);
danielk1977146ba992009-07-22 14:08:13 +00007993 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00007994 if( pPage->bBusy ){
7995 rc = SQLITE_CORRUPT_BKPT;
7996 goto cleardatabasepage_out;
7997 }
7998 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00007999 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00008000 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00008001 pCell = findCell(pPage, i);
drhccf46d02015-04-01 13:21:33 +00008002 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00008003 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008004 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008005 }
drh9bfdc252014-09-24 02:05:41 +00008006 rc = clearCell(pPage, pCell, &szCell);
danielk19776b456a22005-03-21 04:04:02 +00008007 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008008 }
drhccf46d02015-04-01 13:21:33 +00008009 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00008010 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008011 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00008012 }else if( pnChange ){
8013 assert( pPage->intKey );
8014 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00008015 }
8016 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00008017 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00008018 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00008019 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00008020 }
danielk19776b456a22005-03-21 04:04:02 +00008021
8022cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00008023 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00008024 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00008025 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008026}
8027
8028/*
drhab01f612004-05-22 02:55:23 +00008029** Delete all information from a single table in the database. iTable is
8030** the page number of the root of the table. After this routine returns,
8031** the root page is empty, but still exists.
8032**
8033** This routine will fail with SQLITE_LOCKED if there are any open
8034** read cursors on the table. Open write cursors are moved to the
8035** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00008036**
8037** If pnChange is not NULL, then table iTable must be an intkey table. The
8038** integer value pointed to by pnChange is incremented by the number of
8039** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00008040*/
danielk1977c7af4842008-10-27 13:59:33 +00008041int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00008042 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00008043 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00008044 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008045 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008046
drhc046e3e2009-07-15 11:26:44 +00008047 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00008048
drhc046e3e2009-07-15 11:26:44 +00008049 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00008050 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8051 ** is the root of a table b-tree - if it is not, the following call is
8052 ** a no-op). */
8053 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00008054 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00008055 }
drhd677b3d2007-08-20 22:48:41 +00008056 sqlite3BtreeLeave(p);
8057 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008058}
8059
8060/*
drh079a3072014-03-19 14:10:55 +00008061** Delete all information from the single table that pCur is open on.
8062**
8063** This routine only work for pCur on an ephemeral table.
8064*/
8065int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8066 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8067}
8068
8069/*
drh8b2f49b2001-06-08 00:21:52 +00008070** Erase all information in a table and add the root of the table to
8071** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00008072** page 1) is never added to the freelist.
8073**
8074** This routine will fail with SQLITE_LOCKED if there are any open
8075** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00008076**
8077** If AUTOVACUUM is enabled and the page at iTable is not the last
8078** root page in the database file, then the last root page
8079** in the database file is moved into the slot formerly occupied by
8080** iTable and that last slot formerly occupied by the last root page
8081** is added to the freelist instead of iTable. In this say, all
8082** root pages are kept at the beginning of the database file, which
8083** is necessary for AUTOVACUUM to work right. *piMoved is set to the
8084** page number that used to be the last root page in the file before
8085** the move. If no page gets moved, *piMoved is set to 0.
8086** The last root page is recorded in meta[3] and the value of
8087** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00008088*/
danielk197789d40042008-11-17 14:20:56 +00008089static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00008090 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00008091 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00008092 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00008093
drh1fee73e2007-08-29 04:00:57 +00008094 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008095 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00008096
danielk1977e6efa742004-11-10 11:55:10 +00008097 /* It is illegal to drop a table if any cursors are open on the
8098 ** database. This is because in auto-vacuum mode the backend may
8099 ** need to move another root-page to fill a gap left by the deleted
8100 ** root page. If an open cursor was using this page a problem would
8101 ** occur.
drhc046e3e2009-07-15 11:26:44 +00008102 **
8103 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00008104 */
drhc046e3e2009-07-15 11:26:44 +00008105 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00008106 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
8107 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00008108 }
danielk1977a0bf2652004-11-04 14:30:04 +00008109
drhb00fc3b2013-08-21 23:42:32 +00008110 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00008111 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00008112 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00008113 if( rc ){
8114 releasePage(pPage);
8115 return rc;
8116 }
danielk1977a0bf2652004-11-04 14:30:04 +00008117
drh205f48e2004-11-05 00:43:11 +00008118 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00008119
drh4b70f112004-05-02 21:12:19 +00008120 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00008121#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00008122 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008123 releasePage(pPage);
8124#else
8125 if( pBt->autoVacuum ){
8126 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00008127 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008128
8129 if( iTable==maxRootPgno ){
8130 /* If the table being dropped is the table with the largest root-page
8131 ** number in the database, put the root page on the free list.
8132 */
drhc314dc72009-07-21 11:52:34 +00008133 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008134 releasePage(pPage);
8135 if( rc!=SQLITE_OK ){
8136 return rc;
8137 }
8138 }else{
8139 /* The table being dropped does not have the largest root-page
8140 ** number in the database. So move the page that does into the
8141 ** gap left by the deleted root-page.
8142 */
8143 MemPage *pMove;
8144 releasePage(pPage);
drhb00fc3b2013-08-21 23:42:32 +00008145 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00008146 if( rc!=SQLITE_OK ){
8147 return rc;
8148 }
danielk19774c999992008-07-16 18:17:55 +00008149 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00008150 releasePage(pMove);
8151 if( rc!=SQLITE_OK ){
8152 return rc;
8153 }
drhfe3313f2009-07-21 19:02:20 +00008154 pMove = 0;
drhb00fc3b2013-08-21 23:42:32 +00008155 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00008156 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008157 releasePage(pMove);
8158 if( rc!=SQLITE_OK ){
8159 return rc;
8160 }
8161 *piMoved = maxRootPgno;
8162 }
8163
danielk1977599fcba2004-11-08 07:13:13 +00008164 /* Set the new 'max-root-page' value in the database header. This
8165 ** is the old value less one, less one more if that happens to
8166 ** be a root-page number, less one again if that is the
8167 ** PENDING_BYTE_PAGE.
8168 */
danielk197787a6e732004-11-05 12:58:25 +00008169 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00008170 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8171 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00008172 maxRootPgno--;
8173 }
danielk1977599fcba2004-11-08 07:13:13 +00008174 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8175
danielk1977aef0bf62005-12-30 16:28:01 +00008176 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008177 }else{
drhc314dc72009-07-21 11:52:34 +00008178 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008179 releasePage(pPage);
8180 }
8181#endif
drh2aa679f2001-06-25 02:11:07 +00008182 }else{
drhc046e3e2009-07-15 11:26:44 +00008183 /* If sqlite3BtreeDropTable was called on page 1.
8184 ** This really never should happen except in a corrupt
8185 ** database.
8186 */
drha34b6762004-05-07 13:30:42 +00008187 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00008188 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00008189 }
drh8b2f49b2001-06-08 00:21:52 +00008190 return rc;
8191}
drhd677b3d2007-08-20 22:48:41 +00008192int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8193 int rc;
8194 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00008195 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00008196 sqlite3BtreeLeave(p);
8197 return rc;
8198}
drh8b2f49b2001-06-08 00:21:52 +00008199
drh001bbcb2003-03-19 03:14:00 +00008200
drh8b2f49b2001-06-08 00:21:52 +00008201/*
danielk1977602b4662009-07-02 07:47:33 +00008202** This function may only be called if the b-tree connection already
8203** has a read or write transaction open on the database.
8204**
drh23e11ca2004-05-04 17:27:28 +00008205** Read the meta-information out of a database file. Meta[0]
8206** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00008207** through meta[15] are available for use by higher layers. Meta[0]
8208** is read-only, the others are read/write.
8209**
8210** The schema layer numbers meta values differently. At the schema
8211** layer (and the SetCookie and ReadCookie opcodes) the number of
8212** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00008213**
8214** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
8215** of reading the value out of the header, it instead loads the "DataVersion"
8216** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
8217** database file. It is a number computed by the pager. But its access
8218** pattern is the same as header meta values, and so it is convenient to
8219** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00008220*/
danielk1977602b4662009-07-02 07:47:33 +00008221void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00008222 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008223
drhd677b3d2007-08-20 22:48:41 +00008224 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00008225 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00008226 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00008227 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00008228 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00008229
drh91618562014-12-19 19:28:02 +00008230 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00008231 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00008232 }else{
8233 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
8234 }
drhae157872004-08-14 19:20:09 +00008235
danielk1977602b4662009-07-02 07:47:33 +00008236 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8237 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00008238#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00008239 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8240 pBt->btsFlags |= BTS_READ_ONLY;
8241 }
danielk1977003ba062004-11-04 02:57:33 +00008242#endif
drhae157872004-08-14 19:20:09 +00008243
drhd677b3d2007-08-20 22:48:41 +00008244 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00008245}
8246
8247/*
drh23e11ca2004-05-04 17:27:28 +00008248** Write meta-information back into the database. Meta[0] is
8249** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00008250*/
danielk1977aef0bf62005-12-30 16:28:01 +00008251int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8252 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00008253 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00008254 int rc;
drh23e11ca2004-05-04 17:27:28 +00008255 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00008256 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008257 assert( p->inTrans==TRANS_WRITE );
8258 assert( pBt->pPage1!=0 );
8259 pP1 = pBt->pPage1->aData;
8260 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8261 if( rc==SQLITE_OK ){
8262 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00008263#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00008264 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00008265 assert( pBt->autoVacuum || iMeta==0 );
8266 assert( iMeta==0 || iMeta==1 );
8267 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00008268 }
drh64022502009-01-09 14:11:04 +00008269#endif
drh5df72a52002-06-06 23:16:05 +00008270 }
drhd677b3d2007-08-20 22:48:41 +00008271 sqlite3BtreeLeave(p);
8272 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008273}
drh8c42ca92001-06-22 19:15:00 +00008274
danielk1977a5533162009-02-24 10:01:51 +00008275#ifndef SQLITE_OMIT_BTREECOUNT
8276/*
8277** The first argument, pCur, is a cursor opened on some b-tree. Count the
8278** number of entries in the b-tree and write the result to *pnEntry.
8279**
8280** SQLITE_OK is returned if the operation is successfully executed.
8281** Otherwise, if an error is encountered (i.e. an IO error or database
8282** corruption) an SQLite error code is returned.
8283*/
8284int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
8285 i64 nEntry = 0; /* Value to return in *pnEntry */
8286 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00008287
8288 if( pCur->pgnoRoot==0 ){
8289 *pnEntry = 0;
8290 return SQLITE_OK;
8291 }
danielk1977a5533162009-02-24 10:01:51 +00008292 rc = moveToRoot(pCur);
8293
8294 /* Unless an error occurs, the following loop runs one iteration for each
8295 ** page in the B-Tree structure (not including overflow pages).
8296 */
8297 while( rc==SQLITE_OK ){
8298 int iIdx; /* Index of child node in parent */
8299 MemPage *pPage; /* Current page of the b-tree */
8300
8301 /* If this is a leaf page or the tree is not an int-key tree, then
8302 ** this page contains countable entries. Increment the entry counter
8303 ** accordingly.
8304 */
8305 pPage = pCur->apPage[pCur->iPage];
8306 if( pPage->leaf || !pPage->intKey ){
8307 nEntry += pPage->nCell;
8308 }
8309
8310 /* pPage is a leaf node. This loop navigates the cursor so that it
8311 ** points to the first interior cell that it points to the parent of
8312 ** the next page in the tree that has not yet been visited. The
8313 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
8314 ** of the page, or to the number of cells in the page if the next page
8315 ** to visit is the right-child of its parent.
8316 **
8317 ** If all pages in the tree have been visited, return SQLITE_OK to the
8318 ** caller.
8319 */
8320 if( pPage->leaf ){
8321 do {
8322 if( pCur->iPage==0 ){
8323 /* All pages of the b-tree have been visited. Return successfully. */
8324 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00008325 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008326 }
danielk197730548662009-07-09 05:07:37 +00008327 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008328 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
8329
8330 pCur->aiIdx[pCur->iPage]++;
8331 pPage = pCur->apPage[pCur->iPage];
8332 }
8333
8334 /* Descend to the child node of the cell that the cursor currently
8335 ** points at. This is the right-child if (iIdx==pPage->nCell).
8336 */
8337 iIdx = pCur->aiIdx[pCur->iPage];
8338 if( iIdx==pPage->nCell ){
8339 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
8340 }else{
8341 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
8342 }
8343 }
8344
shanebe217792009-03-05 04:20:31 +00008345 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00008346 return rc;
8347}
8348#endif
drhdd793422001-06-28 01:54:48 +00008349
drhdd793422001-06-28 01:54:48 +00008350/*
drh5eddca62001-06-30 21:53:53 +00008351** Return the pager associated with a BTree. This routine is used for
8352** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00008353*/
danielk1977aef0bf62005-12-30 16:28:01 +00008354Pager *sqlite3BtreePager(Btree *p){
8355 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00008356}
drh5eddca62001-06-30 21:53:53 +00008357
drhb7f91642004-10-31 02:22:47 +00008358#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008359/*
8360** Append a message to the error message string.
8361*/
drh2e38c322004-09-03 18:38:44 +00008362static void checkAppendMsg(
8363 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00008364 const char *zFormat,
8365 ...
8366){
8367 va_list ap;
drh867db832014-09-26 02:41:05 +00008368 char zBuf[200];
drh1dcdbc02007-01-27 02:24:54 +00008369 if( !pCheck->mxErr ) return;
8370 pCheck->mxErr--;
8371 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00008372 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00008373 if( pCheck->errMsg.nChar ){
8374 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00008375 }
drh867db832014-09-26 02:41:05 +00008376 if( pCheck->zPfx ){
8377 sqlite3_snprintf(sizeof(zBuf), zBuf, pCheck->zPfx, pCheck->v1, pCheck->v2);
8378 sqlite3StrAccumAppendAll(&pCheck->errMsg, zBuf);
drhf089aa42008-07-08 19:34:06 +00008379 }
8380 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
8381 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00008382 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00008383 pCheck->mallocFailed = 1;
8384 }
drh5eddca62001-06-30 21:53:53 +00008385}
drhb7f91642004-10-31 02:22:47 +00008386#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008387
drhb7f91642004-10-31 02:22:47 +00008388#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00008389
8390/*
8391** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
8392** corresponds to page iPg is already set.
8393*/
8394static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8395 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8396 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
8397}
8398
8399/*
8400** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
8401*/
8402static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8403 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8404 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
8405}
8406
8407
drh5eddca62001-06-30 21:53:53 +00008408/*
8409** Add 1 to the reference count for page iPage. If this is the second
8410** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00008411** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00008412** if this is the first reference to the page.
8413**
8414** Also check that the page number is in bounds.
8415*/
drh867db832014-09-26 02:41:05 +00008416static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh5eddca62001-06-30 21:53:53 +00008417 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00008418 if( iPage>pCheck->nPage ){
drh867db832014-09-26 02:41:05 +00008419 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008420 return 1;
8421 }
dan1235bb12012-04-03 17:43:28 +00008422 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00008423 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008424 return 1;
8425 }
dan1235bb12012-04-03 17:43:28 +00008426 setPageReferenced(pCheck, iPage);
8427 return 0;
drh5eddca62001-06-30 21:53:53 +00008428}
8429
danielk1977afcdd022004-10-31 16:25:42 +00008430#ifndef SQLITE_OMIT_AUTOVACUUM
8431/*
8432** Check that the entry in the pointer-map for page iChild maps to
8433** page iParent, pointer type ptrType. If not, append an error message
8434** to pCheck.
8435*/
8436static void checkPtrmap(
8437 IntegrityCk *pCheck, /* Integrity check context */
8438 Pgno iChild, /* Child page number */
8439 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00008440 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00008441){
8442 int rc;
8443 u8 ePtrmapType;
8444 Pgno iPtrmapParent;
8445
8446 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
8447 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00008448 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00008449 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00008450 return;
8451 }
8452
8453 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00008454 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00008455 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
8456 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
8457 }
8458}
8459#endif
8460
drh5eddca62001-06-30 21:53:53 +00008461/*
8462** Check the integrity of the freelist or of an overflow page list.
8463** Verify that the number of pages on the list is N.
8464*/
drh30e58752002-03-02 20:41:57 +00008465static void checkList(
8466 IntegrityCk *pCheck, /* Integrity checking context */
8467 int isFreeList, /* True for a freelist. False for overflow page list */
8468 int iPage, /* Page number for first page in the list */
drh867db832014-09-26 02:41:05 +00008469 int N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00008470){
8471 int i;
drh3a4c1412004-05-09 20:40:11 +00008472 int expected = N;
8473 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00008474 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00008475 DbPage *pOvflPage;
8476 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00008477 if( iPage<1 ){
drh867db832014-09-26 02:41:05 +00008478 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008479 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00008480 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00008481 break;
8482 }
drh867db832014-09-26 02:41:05 +00008483 if( checkRef(pCheck, iPage) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00008484 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh867db832014-09-26 02:41:05 +00008485 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008486 break;
8487 }
danielk19773b8a05f2007-03-19 17:44:26 +00008488 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00008489 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00008490 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00008491#ifndef SQLITE_OMIT_AUTOVACUUM
8492 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008493 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008494 }
8495#endif
drh43b18e12010-08-17 19:40:08 +00008496 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00008497 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008498 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00008499 N--;
8500 }else{
8501 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00008502 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00008503#ifndef SQLITE_OMIT_AUTOVACUUM
8504 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008505 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008506 }
8507#endif
drh867db832014-09-26 02:41:05 +00008508 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00008509 }
8510 N -= n;
drh30e58752002-03-02 20:41:57 +00008511 }
drh30e58752002-03-02 20:41:57 +00008512 }
danielk1977afcdd022004-10-31 16:25:42 +00008513#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008514 else{
8515 /* If this database supports auto-vacuum and iPage is not the last
8516 ** page in this overflow list, check that the pointer-map entry for
8517 ** the following page matches iPage.
8518 */
8519 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00008520 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00008521 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00008522 }
danielk1977afcdd022004-10-31 16:25:42 +00008523 }
8524#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008525 iPage = get4byte(pOvflData);
8526 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00008527 }
8528}
drhb7f91642004-10-31 02:22:47 +00008529#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008530
drhb7f91642004-10-31 02:22:47 +00008531#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008532/*
8533** Do various sanity checks on a single page of a tree. Return
8534** the tree depth. Root pages return 0. Parents of root pages
8535** return 1, and so forth.
8536**
8537** These checks are done:
8538**
8539** 1. Make sure that cells and freeblocks do not overlap
8540** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00008541** NO 2. Make sure cell keys are in order.
8542** NO 3. Make sure no key is less than or equal to zLowerBound.
8543** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00008544** 5. Check the integrity of overflow pages.
8545** 6. Recursively call checkTreePage on all children.
8546** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00008547** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00008548** the root of the tree.
8549*/
8550static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00008551 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00008552 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00008553 i64 *pnParentMinKey,
8554 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00008555){
8556 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00008557 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00008558 int hdr, cellStart;
8559 int nCell;
drhda200cc2004-05-09 11:51:38 +00008560 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00008561 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00008562 int usableSize;
shane0af3f892008-11-12 04:55:34 +00008563 char *hit = 0;
shaneh195475d2010-02-19 04:28:08 +00008564 i64 nMinKey = 0;
8565 i64 nMaxKey = 0;
drh867db832014-09-26 02:41:05 +00008566 const char *saved_zPfx = pCheck->zPfx;
8567 int saved_v1 = pCheck->v1;
8568 int saved_v2 = pCheck->v2;
danielk1977ef73ee92004-11-06 12:26:07 +00008569
drh5eddca62001-06-30 21:53:53 +00008570 /* Check that the page exists
8571 */
drhd9cb6ac2005-10-20 07:28:17 +00008572 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00008573 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00008574 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00008575 if( checkRef(pCheck, iPage) ) return 0;
8576 pCheck->zPfx = "Page %d: ";
8577 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00008578 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00008579 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008580 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00008581 depth = -1;
8582 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00008583 }
danielk197793caf5a2009-07-11 06:55:33 +00008584
8585 /* Clear MemPage.isInit to make sure the corruption detection code in
8586 ** btreeInitPage() is executed. */
8587 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00008588 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00008589 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00008590 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00008591 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00008592 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00008593 depth = -1;
8594 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00008595 }
8596
8597 /* Check out all the cells.
8598 */
8599 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00008600 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00008601 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00008602 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00008603 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00008604
8605 /* Check payload overflow pages
8606 */
drh867db832014-09-26 02:41:05 +00008607 pCheck->zPfx = "On tree page %d cell %d: ";
8608 pCheck->v1 = iPage;
8609 pCheck->v2 = i;
danielk19771cc5ed82007-05-16 17:28:43 +00008610 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00008611 btreeParseCellPtr(pPage, pCell, &info);
drhab1cc582014-09-23 21:25:19 +00008612 sz = info.nPayload;
shaneh195475d2010-02-19 04:28:08 +00008613 /* For intKey pages, check that the keys are in order.
8614 */
drhab1cc582014-09-23 21:25:19 +00008615 if( pPage->intKey ){
8616 if( i==0 ){
8617 nMinKey = nMaxKey = info.nKey;
8618 }else if( info.nKey <= nMaxKey ){
drh867db832014-09-26 02:41:05 +00008619 checkAppendMsg(pCheck,
drhab1cc582014-09-23 21:25:19 +00008620 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
shaneh195475d2010-02-19 04:28:08 +00008621 }
8622 nMaxKey = info.nKey;
8623 }
danielk19775be31f52009-03-30 13:53:43 +00008624 if( (sz>info.nLocal)
8625 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
8626 ){
drhb6f41482004-05-14 01:58:11 +00008627 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00008628 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
8629#ifndef SQLITE_OMIT_AUTOVACUUM
8630 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008631 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008632 }
8633#endif
drh867db832014-09-26 02:41:05 +00008634 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00008635 }
8636
8637 /* Check sanity of left child page.
8638 */
drhda200cc2004-05-09 11:51:38 +00008639 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008640 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00008641#ifndef SQLITE_OMIT_AUTOVACUUM
8642 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008643 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008644 }
8645#endif
drh867db832014-09-26 02:41:05 +00008646 d2 = checkTreePage(pCheck, pgno, &nMinKey, i==0?NULL:&nMaxKey);
drhda200cc2004-05-09 11:51:38 +00008647 if( i>0 && d2!=depth ){
drh867db832014-09-26 02:41:05 +00008648 checkAppendMsg(pCheck, "Child page depth differs");
drhda200cc2004-05-09 11:51:38 +00008649 }
8650 depth = d2;
drh5eddca62001-06-30 21:53:53 +00008651 }
drh5eddca62001-06-30 21:53:53 +00008652 }
shaneh195475d2010-02-19 04:28:08 +00008653
drhda200cc2004-05-09 11:51:38 +00008654 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008655 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh867db832014-09-26 02:41:05 +00008656 pCheck->zPfx = "On page %d at right child: ";
8657 pCheck->v1 = iPage;
danielk1977afcdd022004-10-31 16:25:42 +00008658#ifndef SQLITE_OMIT_AUTOVACUUM
8659 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008660 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008661 }
8662#endif
drh867db832014-09-26 02:41:05 +00008663 checkTreePage(pCheck, pgno, NULL, !pPage->nCell?NULL:&nMaxKey);
drhda200cc2004-05-09 11:51:38 +00008664 }
drh5eddca62001-06-30 21:53:53 +00008665
shaneh195475d2010-02-19 04:28:08 +00008666 /* For intKey leaf pages, check that the min/max keys are in order
8667 ** with any left/parent/right pages.
8668 */
drh867db832014-09-26 02:41:05 +00008669 pCheck->zPfx = "Page %d: ";
8670 pCheck->v1 = iPage;
shaneh195475d2010-02-19 04:28:08 +00008671 if( pPage->leaf && pPage->intKey ){
8672 /* if we are a left child page */
8673 if( pnParentMinKey ){
8674 /* if we are the left most child page */
8675 if( !pnParentMaxKey ){
8676 if( nMaxKey > *pnParentMinKey ){
drh867db832014-09-26 02:41:05 +00008677 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00008678 "Rowid %lld out of order (max larger than parent min of %lld)",
8679 nMaxKey, *pnParentMinKey);
8680 }
8681 }else{
8682 if( nMinKey <= *pnParentMinKey ){
drh867db832014-09-26 02:41:05 +00008683 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00008684 "Rowid %lld out of order (min less than parent min of %lld)",
8685 nMinKey, *pnParentMinKey);
8686 }
8687 if( nMaxKey > *pnParentMaxKey ){
drh867db832014-09-26 02:41:05 +00008688 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00008689 "Rowid %lld out of order (max larger than parent max of %lld)",
8690 nMaxKey, *pnParentMaxKey);
8691 }
8692 *pnParentMinKey = nMaxKey;
8693 }
8694 /* else if we're a right child page */
8695 } else if( pnParentMaxKey ){
8696 if( nMinKey <= *pnParentMaxKey ){
drh867db832014-09-26 02:41:05 +00008697 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00008698 "Rowid %lld out of order (min less than parent max of %lld)",
8699 nMinKey, *pnParentMaxKey);
8700 }
8701 }
8702 }
8703
drh5eddca62001-06-30 21:53:53 +00008704 /* Check for complete coverage of the page
8705 */
drhda200cc2004-05-09 11:51:38 +00008706 data = pPage->aData;
8707 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00008708 hit = sqlite3PageMalloc( pBt->pageSize );
drh867db832014-09-26 02:41:05 +00008709 pCheck->zPfx = 0;
drhc890fec2008-08-01 20:10:08 +00008710 if( hit==0 ){
8711 pCheck->mallocFailed = 1;
8712 }else{
drh5d433ce2010-08-14 16:02:52 +00008713 int contentOffset = get2byteNotZero(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00008714 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
shane5780ebd2008-11-11 17:36:30 +00008715 memset(hit+contentOffset, 0, usableSize-contentOffset);
8716 memset(hit, 1, contentOffset);
drhfdab0262014-11-20 15:30:50 +00008717 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
8718 ** number of cells on the page. */
drh2e38c322004-09-03 18:38:44 +00008719 nCell = get2byte(&data[hdr+3]);
drhfdab0262014-11-20 15:30:50 +00008720 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
8721 ** immediately follows the b-tree page header. */
drh2e38c322004-09-03 18:38:44 +00008722 cellStart = hdr + 12 - 4*pPage->leaf;
drhfdab0262014-11-20 15:30:50 +00008723 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
8724 ** integer offsets to the cell contents. */
drh2e38c322004-09-03 18:38:44 +00008725 for(i=0; i<nCell; i++){
8726 int pc = get2byte(&data[cellStart+i*2]);
drh9b78f792010-08-14 21:21:24 +00008727 u32 size = 65536;
drh2e38c322004-09-03 18:38:44 +00008728 int j;
drh8c2bbb62009-07-10 02:52:20 +00008729 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00008730 size = cellSizePtr(pPage, &data[pc]);
8731 }
drh43b18e12010-08-17 19:40:08 +00008732 if( (int)(pc+size-1)>=usableSize ){
drh867db832014-09-26 02:41:05 +00008733 pCheck->zPfx = 0;
8734 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00008735 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00008736 }else{
8737 for(j=pc+size-1; j>=pc; j--) hit[j]++;
8738 }
drh2e38c322004-09-03 18:38:44 +00008739 }
drhfdab0262014-11-20 15:30:50 +00008740 /* EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
8741 ** is the offset of the first freeblock, or zero if there are no
8742 ** freeblocks on the page. */
drh8c2bbb62009-07-10 02:52:20 +00008743 i = get2byte(&data[hdr+1]);
8744 while( i>0 ){
8745 int size, j;
8746 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
8747 size = get2byte(&data[i+2]);
8748 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
8749 for(j=i+size-1; j>=i; j--) hit[j]++;
drhfdab0262014-11-20 15:30:50 +00008750 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
8751 ** big-endian integer which is the offset in the b-tree page of the next
8752 ** freeblock in the chain, or zero if the freeblock is the last on the
8753 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +00008754 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +00008755 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
8756 ** increasing offset. */
drh8c2bbb62009-07-10 02:52:20 +00008757 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
8758 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
8759 i = j;
drh2e38c322004-09-03 18:38:44 +00008760 }
8761 for(i=cnt=0; i<usableSize; i++){
8762 if( hit[i]==0 ){
8763 cnt++;
8764 }else if( hit[i]>1 ){
drh867db832014-09-26 02:41:05 +00008765 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008766 "Multiple uses for byte %d of page %d", i, iPage);
8767 break;
8768 }
8769 }
drhfdab0262014-11-20 15:30:50 +00008770 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
8771 ** is stored in the fifth field of the b-tree page header.
8772 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
8773 ** number of fragmented free bytes within the cell content area.
8774 */
drh2e38c322004-09-03 18:38:44 +00008775 if( cnt!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +00008776 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +00008777 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00008778 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00008779 }
8780 }
drh8c2bbb62009-07-10 02:52:20 +00008781 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00008782 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00008783
8784end_of_check:
8785 pCheck->zPfx = saved_zPfx;
8786 pCheck->v1 = saved_v1;
8787 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +00008788 return depth+1;
drh5eddca62001-06-30 21:53:53 +00008789}
drhb7f91642004-10-31 02:22:47 +00008790#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008791
drhb7f91642004-10-31 02:22:47 +00008792#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008793/*
8794** This routine does a complete check of the given BTree file. aRoot[] is
8795** an array of pages numbers were each page number is the root page of
8796** a table. nRoot is the number of entries in aRoot.
8797**
danielk19773509a652009-07-06 18:56:13 +00008798** A read-only or read-write transaction must be opened before calling
8799** this function.
8800**
drhc890fec2008-08-01 20:10:08 +00008801** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00008802** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00008803** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00008804** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00008805*/
drh1dcdbc02007-01-27 02:24:54 +00008806char *sqlite3BtreeIntegrityCheck(
8807 Btree *p, /* The btree to be checked */
8808 int *aRoot, /* An array of root pages numbers for individual trees */
8809 int nRoot, /* Number of entries in aRoot[] */
8810 int mxErr, /* Stop reporting errors after this many */
8811 int *pnErr /* Write number of errors seen to this variable */
8812){
danielk197789d40042008-11-17 14:20:56 +00008813 Pgno i;
drh5eddca62001-06-30 21:53:53 +00008814 int nRef;
drhaaab5722002-02-19 13:39:21 +00008815 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00008816 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00008817 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00008818
drhd677b3d2007-08-20 22:48:41 +00008819 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00008820 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00008821 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00008822 sCheck.pBt = pBt;
8823 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00008824 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00008825 sCheck.mxErr = mxErr;
8826 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00008827 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +00008828 sCheck.zPfx = 0;
8829 sCheck.v1 = 0;
8830 sCheck.v2 = 0;
drh1dcdbc02007-01-27 02:24:54 +00008831 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00008832 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00008833 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00008834 return 0;
8835 }
dan1235bb12012-04-03 17:43:28 +00008836
8837 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
8838 if( !sCheck.aPgRef ){
drh1dcdbc02007-01-27 02:24:54 +00008839 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00008840 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00008841 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00008842 }
drh42cac6d2004-11-20 20:31:11 +00008843 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00008844 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh32055c22012-12-12 14:30:03 +00008845 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drhb9755982010-07-24 16:34:37 +00008846 sCheck.errMsg.useMalloc = 2;
drh5eddca62001-06-30 21:53:53 +00008847
8848 /* Check the integrity of the freelist
8849 */
drh867db832014-09-26 02:41:05 +00008850 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +00008851 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +00008852 get4byte(&pBt->pPage1->aData[36]));
8853 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00008854
8855 /* Check all the tables.
8856 */
danielk197789d40042008-11-17 14:20:56 +00008857 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00008858 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00008859#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008860 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +00008861 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008862 }
8863#endif
drh867db832014-09-26 02:41:05 +00008864 sCheck.zPfx = "List of tree roots: ";
8865 checkTreePage(&sCheck, aRoot[i], NULL, NULL);
8866 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00008867 }
8868
8869 /* Make sure every page in the file is referenced
8870 */
drh1dcdbc02007-01-27 02:24:54 +00008871 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00008872#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00008873 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +00008874 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00008875 }
danielk1977afcdd022004-10-31 16:25:42 +00008876#else
8877 /* If the database supports auto-vacuum, make sure no tables contain
8878 ** references to pointer-map pages.
8879 */
dan1235bb12012-04-03 17:43:28 +00008880 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00008881 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00008882 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +00008883 }
dan1235bb12012-04-03 17:43:28 +00008884 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00008885 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00008886 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +00008887 }
8888#endif
drh5eddca62001-06-30 21:53:53 +00008889 }
8890
drh64022502009-01-09 14:11:04 +00008891 /* Make sure this analysis did not leave any unref() pages.
8892 ** This is an internal consistency check; an integrity check
8893 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00008894 */
drh64022502009-01-09 14:11:04 +00008895 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh867db832014-09-26 02:41:05 +00008896 checkAppendMsg(&sCheck,
drh5eddca62001-06-30 21:53:53 +00008897 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00008898 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00008899 );
drh5eddca62001-06-30 21:53:53 +00008900 }
8901
8902 /* Clean up and report errors.
8903 */
drhd677b3d2007-08-20 22:48:41 +00008904 sqlite3BtreeLeave(p);
dan1235bb12012-04-03 17:43:28 +00008905 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00008906 if( sCheck.mallocFailed ){
8907 sqlite3StrAccumReset(&sCheck.errMsg);
8908 *pnErr = sCheck.nErr+1;
8909 return 0;
8910 }
drh1dcdbc02007-01-27 02:24:54 +00008911 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00008912 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
8913 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00008914}
drhb7f91642004-10-31 02:22:47 +00008915#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00008916
drh73509ee2003-04-06 20:44:45 +00008917/*
drhd4e0bb02012-05-27 01:19:04 +00008918** Return the full pathname of the underlying database file. Return
8919** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00008920**
8921** The pager filename is invariant as long as the pager is
8922** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00008923*/
danielk1977aef0bf62005-12-30 16:28:01 +00008924const char *sqlite3BtreeGetFilename(Btree *p){
8925 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00008926 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00008927}
8928
8929/*
danielk19775865e3d2004-06-14 06:03:57 +00008930** Return the pathname of the journal file for this database. The return
8931** value of this routine is the same regardless of whether the journal file
8932** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00008933**
8934** The pager journal filename is invariant as long as the pager is
8935** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00008936*/
danielk1977aef0bf62005-12-30 16:28:01 +00008937const char *sqlite3BtreeGetJournalname(Btree *p){
8938 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00008939 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00008940}
8941
danielk19771d850a72004-05-31 08:26:49 +00008942/*
8943** Return non-zero if a transaction is active.
8944*/
danielk1977aef0bf62005-12-30 16:28:01 +00008945int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00008946 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00008947 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00008948}
8949
dana550f2d2010-08-02 10:47:05 +00008950#ifndef SQLITE_OMIT_WAL
8951/*
8952** Run a checkpoint on the Btree passed as the first argument.
8953**
8954** Return SQLITE_LOCKED if this or any other connection has an open
8955** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00008956**
dancdc1f042010-11-18 12:11:05 +00008957** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00008958*/
dancdc1f042010-11-18 12:11:05 +00008959int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00008960 int rc = SQLITE_OK;
8961 if( p ){
8962 BtShared *pBt = p->pBt;
8963 sqlite3BtreeEnter(p);
8964 if( pBt->inTransaction!=TRANS_NONE ){
8965 rc = SQLITE_LOCKED;
8966 }else{
dancdc1f042010-11-18 12:11:05 +00008967 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00008968 }
8969 sqlite3BtreeLeave(p);
8970 }
8971 return rc;
8972}
8973#endif
8974
danielk19771d850a72004-05-31 08:26:49 +00008975/*
danielk19772372c2b2006-06-27 16:34:56 +00008976** Return non-zero if a read (or write) transaction is active.
8977*/
8978int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00008979 assert( p );
drhe5fe6902007-12-07 18:55:28 +00008980 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00008981 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00008982}
8983
danielk197704103022009-02-03 16:51:24 +00008984int sqlite3BtreeIsInBackup(Btree *p){
8985 assert( p );
8986 assert( sqlite3_mutex_held(p->db->mutex) );
8987 return p->nBackup!=0;
8988}
8989
danielk19772372c2b2006-06-27 16:34:56 +00008990/*
danielk1977da184232006-01-05 11:34:32 +00008991** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00008992** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00008993** purposes (for example, to store a high-level schema associated with
8994** the shared-btree). The btree layer manages reference counting issues.
8995**
8996** The first time this is called on a shared-btree, nBytes bytes of memory
8997** are allocated, zeroed, and returned to the caller. For each subsequent
8998** call the nBytes parameter is ignored and a pointer to the same blob
8999** of memory returned.
9000**
danielk1977171bfed2008-06-23 09:50:50 +00009001** If the nBytes parameter is 0 and the blob of memory has not yet been
9002** allocated, a null pointer is returned. If the blob has already been
9003** allocated, it is returned as normal.
9004**
danielk1977da184232006-01-05 11:34:32 +00009005** Just before the shared-btree is closed, the function passed as the
9006** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00009007** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00009008** on the memory, the btree layer does that.
9009*/
9010void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9011 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00009012 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00009013 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00009014 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00009015 pBt->xFreeSchema = xFree;
9016 }
drh27641702007-08-22 02:56:42 +00009017 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00009018 return pBt->pSchema;
9019}
9020
danielk1977c87d34d2006-01-06 13:00:28 +00009021/*
danielk1977404ca072009-03-16 13:19:36 +00009022** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9023** btree as the argument handle holds an exclusive lock on the
9024** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00009025*/
9026int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00009027 int rc;
drhe5fe6902007-12-07 18:55:28 +00009028 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00009029 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00009030 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9031 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00009032 sqlite3BtreeLeave(p);
9033 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00009034}
9035
drha154dcd2006-03-22 22:10:07 +00009036
9037#ifndef SQLITE_OMIT_SHARED_CACHE
9038/*
9039** Obtain a lock on the table whose root page is iTab. The
9040** lock is a write lock if isWritelock is true or a read lock
9041** if it is false.
9042*/
danielk1977c00da102006-01-07 13:21:04 +00009043int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00009044 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00009045 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00009046 if( p->sharable ){
9047 u8 lockType = READ_LOCK + isWriteLock;
9048 assert( READ_LOCK+1==WRITE_LOCK );
9049 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00009050
drh6a9ad3d2008-04-02 16:29:30 +00009051 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00009052 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009053 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00009054 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009055 }
9056 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00009057 }
9058 return rc;
9059}
drha154dcd2006-03-22 22:10:07 +00009060#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00009061
danielk1977b4e9af92007-05-01 17:49:49 +00009062#ifndef SQLITE_OMIT_INCRBLOB
9063/*
9064** Argument pCsr must be a cursor opened for writing on an
9065** INTKEY table currently pointing at a valid table entry.
9066** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00009067**
9068** Only the data content may only be modified, it is not possible to
9069** change the length of the data stored. If this function is called with
9070** parameters that attempt to write past the end of the existing data,
9071** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00009072*/
danielk1977dcbb5d32007-05-04 18:36:44 +00009073int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00009074 int rc;
drh1fee73e2007-08-29 04:00:57 +00009075 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00009076 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +00009077 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +00009078
danielk1977c9000e62009-07-08 13:55:28 +00009079 rc = restoreCursorPosition(pCsr);
9080 if( rc!=SQLITE_OK ){
9081 return rc;
9082 }
danielk19773588ceb2008-06-10 17:30:26 +00009083 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9084 if( pCsr->eState!=CURSOR_VALID ){
9085 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00009086 }
9087
dan227a1c42013-04-03 11:17:39 +00009088 /* Save the positions of all other cursors open on this table. This is
9089 ** required in case any of them are holding references to an xFetch
9090 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00009091 **
drh3f387402014-09-24 01:23:00 +00009092 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +00009093 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9094 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00009095 */
drh370c9f42013-04-03 20:04:04 +00009096 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9097 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00009098
danielk1977c9000e62009-07-08 13:55:28 +00009099 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00009100 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00009101 ** (b) there is a read/write transaction open,
9102 ** (c) the connection holds a write-lock on the table (if required),
9103 ** (d) there are no conflicting read-locks, and
9104 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00009105 */
drh036dbec2014-03-11 23:40:44 +00009106 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +00009107 return SQLITE_READONLY;
9108 }
drhc9166342012-01-05 23:32:06 +00009109 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9110 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009111 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9112 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00009113 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00009114
drhfb192682009-07-11 18:26:28 +00009115 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00009116}
danielk19772dec9702007-05-02 16:48:37 +00009117
9118/*
dan5a500af2014-03-11 20:33:04 +00009119** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +00009120*/
dan5a500af2014-03-11 20:33:04 +00009121void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +00009122 pCur->curFlags |= BTCF_Incrblob;
danielk19772dec9702007-05-02 16:48:37 +00009123}
danielk1977b4e9af92007-05-01 17:49:49 +00009124#endif
dane04dc882010-04-20 18:53:15 +00009125
9126/*
9127** Set both the "read version" (single byte at byte offset 18) and
9128** "write version" (single byte at byte offset 19) fields in the database
9129** header to iVersion.
9130*/
9131int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9132 BtShared *pBt = pBtree->pBt;
9133 int rc; /* Return code */
9134
dane04dc882010-04-20 18:53:15 +00009135 assert( iVersion==1 || iVersion==2 );
9136
danb9780022010-04-21 18:37:57 +00009137 /* If setting the version fields to 1, do not automatically open the
9138 ** WAL connection, even if the version fields are currently set to 2.
9139 */
drhc9166342012-01-05 23:32:06 +00009140 pBt->btsFlags &= ~BTS_NO_WAL;
9141 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00009142
9143 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00009144 if( rc==SQLITE_OK ){
9145 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00009146 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00009147 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00009148 if( rc==SQLITE_OK ){
9149 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9150 if( rc==SQLITE_OK ){
9151 aData[18] = (u8)iVersion;
9152 aData[19] = (u8)iVersion;
9153 }
9154 }
9155 }
dane04dc882010-04-20 18:53:15 +00009156 }
9157
drhc9166342012-01-05 23:32:06 +00009158 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00009159 return rc;
9160}
dan428c2182012-08-06 18:50:11 +00009161
9162/*
drhe0997b32015-03-20 14:57:50 +00009163** set the mask of hint flags for cursor pCsr.
dan428c2182012-08-06 18:50:11 +00009164*/
9165void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){
drhe0997b32015-03-20 14:57:50 +00009166 assert( mask==BTREE_BULKLOAD || mask==BTREE_SEEK_EQ || mask==0 );
dan428c2182012-08-06 18:50:11 +00009167 pCsr->hints = mask;
9168}
drh781597f2014-05-21 08:21:07 +00009169
drhe0997b32015-03-20 14:57:50 +00009170#ifdef SQLITE_DEBUG
9171/*
9172** Return true if the cursor has a hint specified. This routine is
9173** only used from within assert() statements
9174*/
9175int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
9176 return (pCsr->hints & mask)!=0;
9177}
9178#endif
9179
drh781597f2014-05-21 08:21:07 +00009180/*
9181** Return true if the given Btree is read-only.
9182*/
9183int sqlite3BtreeIsReadonly(Btree *p){
9184 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9185}
drhdef68892014-11-04 12:11:23 +00009186
9187/*
9188** Return the size of the header added to each page by this module.
9189*/
drh37c057b2014-12-30 00:57:29 +00009190int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }