blob: 669be95208e06b90a13c2171448bd377934cb386 [file] [log] [blame]
dan7c246102010-04-12 19:00:29 +00001/*
drh7ed91f22010-04-29 22:34:07 +00002** 2010 February 1
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
drh027a1282010-05-19 01:53:53 +000013** This file contains the implementation of a write-ahead log (WAL) used in
14** "journal_mode=WAL" mode.
drh29d4dbe2010-05-18 23:29:52 +000015**
drh7ed91f22010-04-29 22:34:07 +000016** WRITE-AHEAD LOG (WAL) FILE FORMAT
dan97a31352010-04-16 13:59:31 +000017**
drh7e263722010-05-20 21:21:09 +000018** A WAL file consists of a header followed by zero or more "frames".
drh027a1282010-05-19 01:53:53 +000019** Each frame records the revised content of a single page from the
drh29d4dbe2010-05-18 23:29:52 +000020** database file. All changes to the database are recorded by writing
21** frames into the WAL. Transactions commit when a frame is written that
22** contains a commit marker. A single WAL can and usually does record
23** multiple transactions. Periodically, the content of the WAL is
24** transferred back into the database file in an operation called a
25** "checkpoint".
26**
27** A single WAL file can be used multiple times. In other words, the
drh027a1282010-05-19 01:53:53 +000028** WAL can fill up with frames and then be checkpointed and then new
drh29d4dbe2010-05-18 23:29:52 +000029** frames can overwrite the old ones. A WAL always grows from beginning
30** toward the end. Checksums and counters attached to each frame are
31** used to determine which frames within the WAL are valid and which
32** are leftovers from prior checkpoints.
33**
drhcd285082010-06-23 22:00:35 +000034** The WAL header is 32 bytes in size and consists of the following eight
dan97a31352010-04-16 13:59:31 +000035** big-endian 32-bit unsigned integer values:
36**
drh1b78eaf2010-05-25 13:40:03 +000037** 0: Magic number. 0x377f0682 or 0x377f0683
drh23ea97b2010-05-20 16:45:58 +000038** 4: File format version. Currently 3007000
39** 8: Database page size. Example: 1024
40** 12: Checkpoint sequence number
drh7e263722010-05-20 21:21:09 +000041** 16: Salt-1, random integer incremented with each checkpoint
42** 20: Salt-2, a different random integer changing with each ckpt
dan10f5a502010-06-23 15:55:43 +000043** 24: Checksum-1 (first part of checksum for first 24 bytes of header).
44** 28: Checksum-2 (second part of checksum for first 24 bytes of header).
dan97a31352010-04-16 13:59:31 +000045**
drh23ea97b2010-05-20 16:45:58 +000046** Immediately following the wal-header are zero or more frames. Each
47** frame consists of a 24-byte frame-header followed by a <page-size> bytes
drhcd285082010-06-23 22:00:35 +000048** of page data. The frame-header is six big-endian 32-bit unsigned
dan97a31352010-04-16 13:59:31 +000049** integer values, as follows:
50**
dan3de777f2010-04-17 12:31:37 +000051** 0: Page number.
52** 4: For commit records, the size of the database image in pages
dan97a31352010-04-16 13:59:31 +000053** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +000054** 8: Salt-1 (copied from the header)
55** 12: Salt-2 (copied from the header)
drh23ea97b2010-05-20 16:45:58 +000056** 16: Checksum-1.
57** 20: Checksum-2.
drh29d4dbe2010-05-18 23:29:52 +000058**
drh7e263722010-05-20 21:21:09 +000059** A frame is considered valid if and only if the following conditions are
60** true:
61**
62** (1) The salt-1 and salt-2 values in the frame-header match
63** salt values in the wal-header
64**
65** (2) The checksum values in the final 8 bytes of the frame-header
drh1b78eaf2010-05-25 13:40:03 +000066** exactly match the checksum computed consecutively on the
67** WAL header and the first 8 bytes and the content of all frames
68** up to and including the current frame.
69**
70** The checksum is computed using 32-bit big-endian integers if the
71** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72** is computed using little-endian if the magic number is 0x377f0682.
drh51b21b12010-05-25 15:53:31 +000073** The checksum values are always stored in the frame header in a
74** big-endian format regardless of which byte order is used to compute
75** the checksum. The checksum is computed by interpreting the input as
76** an even number of unsigned 32-bit integers: x[0] through x[N]. The
drhffca4302010-06-15 11:21:54 +000077** algorithm used for the checksum is as follows:
drh51b21b12010-05-25 15:53:31 +000078**
79** for i from 0 to n-1 step 2:
80** s0 += x[i] + s1;
81** s1 += x[i+1] + s0;
82** endfor
drh7e263722010-05-20 21:21:09 +000083**
drhcd285082010-06-23 22:00:35 +000084** Note that s0 and s1 are both weighted checksums using fibonacci weights
85** in reverse order (the largest fibonacci weight occurs on the first element
86** of the sequence being summed.) The s1 value spans all 32-bit
87** terms of the sequence whereas s0 omits the final term.
88**
drh7e263722010-05-20 21:21:09 +000089** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90** WAL is transferred into the database, then the database is VFS.xSync-ed.
drhffca4302010-06-15 11:21:54 +000091** The VFS.xSync operations serve as write barriers - all writes launched
drh7e263722010-05-20 21:21:09 +000092** before the xSync must complete before any write that launches after the
93** xSync begins.
94**
95** After each checkpoint, the salt-1 value is incremented and the salt-2
96** value is randomized. This prevents old and new frames in the WAL from
97** being considered valid at the same time and being checkpointing together
98** following a crash.
99**
drh29d4dbe2010-05-18 23:29:52 +0000100** READER ALGORITHM
101**
102** To read a page from the database (call it page number P), a reader
103** first checks the WAL to see if it contains page P. If so, then the
drh73b64e42010-05-30 19:55:15 +0000104** last valid instance of page P that is a followed by a commit frame
105** or is a commit frame itself becomes the value read. If the WAL
106** contains no copies of page P that are valid and which are a commit
107** frame or are followed by a commit frame, then page P is read from
108** the database file.
drh29d4dbe2010-05-18 23:29:52 +0000109**
drh73b64e42010-05-30 19:55:15 +0000110** To start a read transaction, the reader records the index of the last
111** valid frame in the WAL. The reader uses this recorded "mxFrame" value
112** for all subsequent read operations. New transactions can be appended
113** to the WAL, but as long as the reader uses its original mxFrame value
114** and ignores the newly appended content, it will see a consistent snapshot
115** of the database from a single point in time. This technique allows
116** multiple concurrent readers to view different versions of the database
117** content simultaneously.
118**
119** The reader algorithm in the previous paragraphs works correctly, but
drh29d4dbe2010-05-18 23:29:52 +0000120** because frames for page P can appear anywhere within the WAL, the
drh027a1282010-05-19 01:53:53 +0000121** reader has to scan the entire WAL looking for page P frames. If the
drh29d4dbe2010-05-18 23:29:52 +0000122** WAL is large (multiple megabytes is typical) that scan can be slow,
drh027a1282010-05-19 01:53:53 +0000123** and read performance suffers. To overcome this problem, a separate
124** data structure called the wal-index is maintained to expedite the
drh29d4dbe2010-05-18 23:29:52 +0000125** search for frames of a particular page.
126**
127** WAL-INDEX FORMAT
128**
129** Conceptually, the wal-index is shared memory, though VFS implementations
130** might choose to implement the wal-index using a mmapped file. Because
131** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132** on a network filesystem. All users of the database must be able to
133** share memory.
134**
drh07dae082017-10-30 20:44:36 +0000135** In the default unix and windows implementation, the wal-index is a mmapped
136** file whose name is the database name with a "-shm" suffix added. For that
137** reason, the wal-index is sometimes called the "shm" file.
138**
drh29d4dbe2010-05-18 23:29:52 +0000139** The wal-index is transient. After a crash, the wal-index can (and should
140** be) reconstructed from the original WAL file. In fact, the VFS is required
141** to either truncate or zero the header of the wal-index when the last
142** connection to it closes. Because the wal-index is transient, it can
143** use an architecture-specific format; it does not have to be cross-platform.
144** Hence, unlike the database and WAL file formats which store all values
145** as big endian, the wal-index can store multi-byte values in the native
146** byte order of the host computer.
147**
148** The purpose of the wal-index is to answer this question quickly: Given
drh610b8d82012-07-17 02:56:05 +0000149** a page number P and a maximum frame index M, return the index of the
150** last frame in the wal before frame M for page P in the WAL, or return
151** NULL if there are no frames for page P in the WAL prior to M.
drh29d4dbe2010-05-18 23:29:52 +0000152**
153** The wal-index consists of a header region, followed by an one or
154** more index blocks.
155**
drh027a1282010-05-19 01:53:53 +0000156** The wal-index header contains the total number of frames within the WAL
mistachkind5578432012-08-25 10:01:29 +0000157** in the mxFrame field.
danad3cadd2010-06-14 11:49:26 +0000158**
159** Each index block except for the first contains information on
160** HASHTABLE_NPAGE frames. The first index block contains information on
161** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
162** HASHTABLE_NPAGE are selected so that together the wal-index header and
163** first index block are the same size as all other index blocks in the
164** wal-index.
165**
166** Each index block contains two sections, a page-mapping that contains the
167** database page number associated with each wal frame, and a hash-table
drhffca4302010-06-15 11:21:54 +0000168** that allows readers to query an index block for a specific page number.
danad3cadd2010-06-14 11:49:26 +0000169** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
170** for the first index block) 32-bit page numbers. The first entry in the
171** first index-block contains the database page number corresponding to the
172** first frame in the WAL file. The first entry in the second index block
173** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
174** the log, and so on.
175**
176** The last index block in a wal-index usually contains less than the full
177** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
178** depending on the contents of the WAL file. This does not change the
179** allocated size of the page-mapping array - the page-mapping array merely
180** contains unused entries.
drh027a1282010-05-19 01:53:53 +0000181**
182** Even without using the hash table, the last frame for page P
danad3cadd2010-06-14 11:49:26 +0000183** can be found by scanning the page-mapping sections of each index block
drh027a1282010-05-19 01:53:53 +0000184** starting with the last index block and moving toward the first, and
185** within each index block, starting at the end and moving toward the
186** beginning. The first entry that equals P corresponds to the frame
187** holding the content for that page.
188**
189** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
190** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
191** hash table for each page number in the mapping section, so the hash
192** table is never more than half full. The expected number of collisions
193** prior to finding a match is 1. Each entry of the hash table is an
194** 1-based index of an entry in the mapping section of the same
195** index block. Let K be the 1-based index of the largest entry in
196** the mapping section. (For index blocks other than the last, K will
197** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
198** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
drh73b64e42010-05-30 19:55:15 +0000199** contain a value of 0.
drh027a1282010-05-19 01:53:53 +0000200**
201** To look for page P in the hash table, first compute a hash iKey on
202** P as follows:
203**
204** iKey = (P * 383) % HASHTABLE_NSLOT
205**
206** Then start scanning entries of the hash table, starting with iKey
207** (wrapping around to the beginning when the end of the hash table is
208** reached) until an unused hash slot is found. Let the first unused slot
209** be at index iUnused. (iUnused might be less than iKey if there was
210** wrap-around.) Because the hash table is never more than half full,
211** the search is guaranteed to eventually hit an unused entry. Let
212** iMax be the value between iKey and iUnused, closest to iUnused,
213** where aHash[iMax]==P. If there is no iMax entry (if there exists
214** no hash slot such that aHash[i]==p) then page P is not in the
215** current index block. Otherwise the iMax-th mapping entry of the
216** current index block corresponds to the last entry that references
217** page P.
218**
219** A hash search begins with the last index block and moves toward the
220** first index block, looking for entries corresponding to page P. On
221** average, only two or three slots in each index block need to be
222** examined in order to either find the last entry for page P, or to
223** establish that no such entry exists in the block. Each index block
224** holds over 4000 entries. So two or three index blocks are sufficient
225** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
226** comparisons (on average) suffice to either locate a frame in the
227** WAL or to establish that the frame does not exist in the WAL. This
228** is much faster than scanning the entire 10MB WAL.
229**
230** Note that entries are added in order of increasing K. Hence, one
231** reader might be using some value K0 and a second reader that started
232** at a later time (after additional transactions were added to the WAL
233** and to the wal-index) might be using a different value K1, where K1>K0.
234** Both readers can use the same hash table and mapping section to get
235** the correct result. There may be entries in the hash table with
236** K>K0 but to the first reader, those entries will appear to be unused
237** slots in the hash table and so the first reader will get an answer as
238** if no values greater than K0 had ever been inserted into the hash table
239** in the first place - which is what reader one wants. Meanwhile, the
240** second reader using K1 will see additional values that were inserted
241** later, which is exactly what reader two wants.
242**
dan6f150142010-05-21 15:31:56 +0000243** When a rollback occurs, the value of K is decreased. Hash table entries
244** that correspond to frames greater than the new K value are removed
245** from the hash table at this point.
dan97a31352010-04-16 13:59:31 +0000246*/
drh29d4dbe2010-05-18 23:29:52 +0000247#ifndef SQLITE_OMIT_WAL
dan97a31352010-04-16 13:59:31 +0000248
drh29d4dbe2010-05-18 23:29:52 +0000249#include "wal.h"
250
drh73b64e42010-05-30 19:55:15 +0000251/*
drhc74c3332010-05-31 12:15:19 +0000252** Trace output macros
253*/
drhc74c3332010-05-31 12:15:19 +0000254#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
drh15d68092010-05-31 16:56:14 +0000255int sqlite3WalTrace = 0;
drhc74c3332010-05-31 12:15:19 +0000256# define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
257#else
258# define WALTRACE(X)
259#endif
260
dan10f5a502010-06-23 15:55:43 +0000261/*
drh876c7ea2018-08-30 20:28:18 +0000262** WAL mode depends on atomic aligned 32-bit loads and stores in a few
263** places. The following macros try to make this explicit.
264*/
265#if GCC_VESRION>=5004000
266# define AtomicLoad(PTR) __atomic_load_n((PTR),__ATOMIC_RELAXED)
267# define AtomicStore(PTR,VAL) __atomic_store_n((PTR),(VAL),__ATOMIC_RELAXED)
268#else
269# define AtomicLoad(PTR) (*(PTR))
270# define AtomicStore(PTR,VAL) (*(PTR) = (VAL))
271#endif
272
273/*
dan10f5a502010-06-23 15:55:43 +0000274** The maximum (and only) versions of the wal and wal-index formats
275** that may be interpreted by this version of SQLite.
276**
277** If a client begins recovering a WAL file and finds that (a) the checksum
278** values in the wal-header are correct and (b) the version field is not
279** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
280**
281** Similarly, if a client successfully reads a wal-index header (i.e. the
282** checksum test is successful) and finds that the version field is not
283** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
284** returns SQLITE_CANTOPEN.
285*/
286#define WAL_MAX_VERSION 3007000
287#define WALINDEX_MAX_VERSION 3007000
drhc74c3332010-05-31 12:15:19 +0000288
289/*
drh07dae082017-10-30 20:44:36 +0000290** Index numbers for various locking bytes. WAL_NREADER is the number
drh998147e2015-12-10 02:15:03 +0000291** of available reader locks and should be at least 3. The default
292** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5.
drh07dae082017-10-30 20:44:36 +0000293**
294** Technically, the various VFSes are free to implement these locks however
295** they see fit. However, compatibility is encouraged so that VFSes can
296** interoperate. The standard implemention used on both unix and windows
297** is for the index number to indicate a byte offset into the
298** WalCkptInfo.aLock[] array in the wal-index header. In other words, all
299** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which
300** should be 120) is the location in the shm file for the first locking
301** byte.
drh73b64e42010-05-30 19:55:15 +0000302*/
303#define WAL_WRITE_LOCK 0
304#define WAL_ALL_BUT_WRITE 1
305#define WAL_CKPT_LOCK 1
306#define WAL_RECOVER_LOCK 2
307#define WAL_READ_LOCK(I) (3+(I))
308#define WAL_NREADER (SQLITE_SHM_NLOCK-3)
309
dan97a31352010-04-16 13:59:31 +0000310
drh7ed91f22010-04-29 22:34:07 +0000311/* Object declarations */
312typedef struct WalIndexHdr WalIndexHdr;
313typedef struct WalIterator WalIterator;
drh73b64e42010-05-30 19:55:15 +0000314typedef struct WalCkptInfo WalCkptInfo;
dan7c246102010-04-12 19:00:29 +0000315
316
317/*
drh286a2882010-05-20 23:51:06 +0000318** The following object holds a copy of the wal-index header content.
319**
320** The actual header in the wal-index consists of two copies of this
drh998147e2015-12-10 02:15:03 +0000321** object followed by one instance of the WalCkptInfo object.
322** For all versions of SQLite through 3.10.0 and probably beyond,
323** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
324** the total header size is 136 bytes.
drh9b78f792010-08-14 21:21:24 +0000325**
326** The szPage value can be any power of 2 between 512 and 32768, inclusive.
327** Or it can be 1 to represent a 65536-byte page. The latter case was
328** added in 3.7.1 when support for 64K pages was added.
dan7c246102010-04-12 19:00:29 +0000329*/
drh7ed91f22010-04-29 22:34:07 +0000330struct WalIndexHdr {
dan10f5a502010-06-23 15:55:43 +0000331 u32 iVersion; /* Wal-index version */
332 u32 unused; /* Unused (padding) field */
dan71d89912010-05-24 13:57:42 +0000333 u32 iChange; /* Counter incremented each transaction */
drh4b82c382010-05-31 18:24:19 +0000334 u8 isInit; /* 1 when initialized */
335 u8 bigEndCksum; /* True if checksums in WAL are big-endian */
drh9b78f792010-08-14 21:21:24 +0000336 u16 szPage; /* Database page size in bytes. 1==64K */
dand0aa3422010-05-31 16:41:53 +0000337 u32 mxFrame; /* Index of last valid frame in the WAL */
dan71d89912010-05-24 13:57:42 +0000338 u32 nPage; /* Size of database in pages */
339 u32 aFrameCksum[2]; /* Checksum of last frame in log */
340 u32 aSalt[2]; /* Two salt values copied from WAL header */
341 u32 aCksum[2]; /* Checksum over all prior fields */
dan7c246102010-04-12 19:00:29 +0000342};
343
drh73b64e42010-05-30 19:55:15 +0000344/*
345** A copy of the following object occurs in the wal-index immediately
346** following the second copy of the WalIndexHdr. This object stores
347** information used by checkpoint.
348**
349** nBackfill is the number of frames in the WAL that have been written
350** back into the database. (We call the act of moving content from WAL to
351** database "backfilling".) The nBackfill number is never greater than
352** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
353** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
354** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
355** mxFrame back to zero when the WAL is reset.
356**
drh998147e2015-12-10 02:15:03 +0000357** nBackfillAttempted is the largest value of nBackfill that a checkpoint
358** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however
359** the nBackfillAttempted is set before any backfilling is done and the
mistachkinc9fb38e2015-12-10 03:16:47 +0000360** nBackfill is only set after all backfilling completes. So if a checkpoint
drh998147e2015-12-10 02:15:03 +0000361** crashes, nBackfillAttempted might be larger than nBackfill. The
362** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
363**
364** The aLock[] field is a set of bytes used for locking. These bytes should
365** never be read or written.
366**
drh73b64e42010-05-30 19:55:15 +0000367** There is one entry in aReadMark[] for each reader lock. If a reader
368** holds read-lock K, then the value in aReadMark[K] is no greater than
drhdb7f6472010-06-09 14:45:12 +0000369** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
370** for any aReadMark[] means that entry is unused. aReadMark[0] is
371** a special case; its value is never used and it exists as a place-holder
372** to avoid having to offset aReadMark[] indexs by one. Readers holding
373** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
374** directly from the database.
drh73b64e42010-05-30 19:55:15 +0000375**
376** The value of aReadMark[K] may only be changed by a thread that
377** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
378** aReadMark[K] cannot changed while there is a reader is using that mark
379** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
380**
381** The checkpointer may only transfer frames from WAL to database where
382** the frame numbers are less than or equal to every aReadMark[] that is
383** in use (that is, every aReadMark[j] for which there is a corresponding
384** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
385** largest value and will increase an unused aReadMark[] to mxFrame if there
386** is not already an aReadMark[] equal to mxFrame. The exception to the
387** previous sentence is when nBackfill equals mxFrame (meaning that everything
388** in the WAL has been backfilled into the database) then new readers
389** will choose aReadMark[0] which has value 0 and hence such reader will
390** get all their all content directly from the database file and ignore
391** the WAL.
392**
393** Writers normally append new frames to the end of the WAL. However,
394** if nBackfill equals mxFrame (meaning that all WAL content has been
395** written back into the database) and if no readers are using the WAL
396** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
397** the writer will first "reset" the WAL back to the beginning and start
398** writing new content beginning at frame 1.
399**
400** We assume that 32-bit loads are atomic and so no locks are needed in
401** order to read from any aReadMark[] entries.
402*/
403struct WalCkptInfo {
404 u32 nBackfill; /* Number of WAL frames backfilled into DB */
405 u32 aReadMark[WAL_NREADER]; /* Reader marks */
drh998147e2015-12-10 02:15:03 +0000406 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */
407 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */
408 u32 notUsed0; /* Available for future enhancements */
drh73b64e42010-05-30 19:55:15 +0000409};
drhdb7f6472010-06-09 14:45:12 +0000410#define READMARK_NOT_USED 0xffffffff
drh73b64e42010-05-30 19:55:15 +0000411
412
drh7e263722010-05-20 21:21:09 +0000413/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
414** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
415** only support mandatory file-locks, we do not read or write data
416** from the region of the file on which locks are applied.
danff207012010-04-24 04:49:15 +0000417*/
drh998147e2015-12-10 02:15:03 +0000418#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
419#define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
dan7c246102010-04-12 19:00:29 +0000420
drh7ed91f22010-04-29 22:34:07 +0000421/* Size of header before each frame in wal */
drh23ea97b2010-05-20 16:45:58 +0000422#define WAL_FRAME_HDRSIZE 24
danff207012010-04-24 04:49:15 +0000423
dan10f5a502010-06-23 15:55:43 +0000424/* Size of write ahead log header, including checksum. */
dan10f5a502010-06-23 15:55:43 +0000425#define WAL_HDRSIZE 32
dan97a31352010-04-16 13:59:31 +0000426
danb8fd6c22010-05-24 10:39:36 +0000427/* WAL magic value. Either this value, or the same value with the least
428** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
429** big-endian format in the first 4 bytes of a WAL file.
430**
431** If the LSB is set, then the checksums for each frame within the WAL
432** file are calculated by treating all data as an array of 32-bit
433** big-endian words. Otherwise, they are calculated by interpreting
434** all data as 32-bit little-endian words.
435*/
436#define WAL_MAGIC 0x377f0682
437
dan97a31352010-04-16 13:59:31 +0000438/*
drh7ed91f22010-04-29 22:34:07 +0000439** Return the offset of frame iFrame in the write-ahead log file,
drh6e810962010-05-19 17:49:50 +0000440** assuming a database page size of szPage bytes. The offset returned
drh7ed91f22010-04-29 22:34:07 +0000441** is to the start of the write-ahead log frame-header.
dan97a31352010-04-16 13:59:31 +0000442*/
drh6e810962010-05-19 17:49:50 +0000443#define walFrameOffset(iFrame, szPage) ( \
danbd0e9072010-07-07 09:48:44 +0000444 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \
dan97a31352010-04-16 13:59:31 +0000445)
dan7c246102010-04-12 19:00:29 +0000446
447/*
drh7ed91f22010-04-29 22:34:07 +0000448** An open write-ahead log file is represented by an instance of the
449** following object.
dance4f05f2010-04-22 19:14:13 +0000450*/
drh7ed91f22010-04-29 22:34:07 +0000451struct Wal {
drh73b64e42010-05-30 19:55:15 +0000452 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
drhd9e5c4f2010-05-12 18:01:39 +0000453 sqlite3_file *pDbFd; /* File handle for the database file */
454 sqlite3_file *pWalFd; /* File handle for WAL file */
drh7ed91f22010-04-29 22:34:07 +0000455 u32 iCallback; /* Value to pass to log callback (or 0) */
drh85a83752011-05-16 21:00:27 +0000456 i64 mxWalSize; /* Truncate WAL to this size upon reset */
dan13a3cb82010-06-11 19:04:21 +0000457 int nWiData; /* Size of array apWiData */
drh88f975a2011-12-16 19:34:36 +0000458 int szFirstBlock; /* Size of first block written to WAL file */
dan13a3cb82010-06-11 19:04:21 +0000459 volatile u32 **apWiData; /* Pointer to wal-index content in memory */
drhb2eced52010-08-12 02:41:12 +0000460 u32 szPage; /* Database page size */
drh73b64e42010-05-30 19:55:15 +0000461 i16 readLock; /* Which read lock is being held. -1 for none */
drh4eb02a42011-12-16 21:26:26 +0000462 u8 syncFlags; /* Flags to use to sync header writes */
dan55437592010-05-11 12:19:26 +0000463 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
drh73b64e42010-05-30 19:55:15 +0000464 u8 writeLock; /* True if in a write transaction */
465 u8 ckptLock; /* True if holding a checkpoint lock */
drh66dfec8b2011-06-01 20:01:49 +0000466 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
danf60b7f32011-12-16 13:24:27 +0000467 u8 truncateOnCommit; /* True to truncate WAL file on commit */
drhd992b152011-12-20 20:13:25 +0000468 u8 syncHeader; /* Fsync the WAL header if true */
drh374f4a02011-12-17 20:02:11 +0000469 u8 padToSectorBoundary; /* Pad transactions out to the next sector */
drh85bc6df2017-11-10 20:00:50 +0000470 u8 bShmUnreliable; /* SHM content is read-only and unreliable */
drh73b64e42010-05-30 19:55:15 +0000471 WalIndexHdr hdr; /* Wal-index header for current transaction */
danb8c7cfb2015-08-13 20:23:46 +0000472 u32 minFrame; /* Ignore wal frames before this one */
danc9a90222016-01-09 18:57:35 +0000473 u32 iReCksum; /* On commit, recalculate checksums from here */
dan3e875ef2010-07-05 19:03:35 +0000474 const char *zWalName; /* Name of WAL file */
drh7e263722010-05-20 21:21:09 +0000475 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
drhaab4c022010-06-02 14:45:51 +0000476#ifdef SQLITE_DEBUG
477 u8 lockError; /* True if a locking error has occurred */
478#endif
danfc1acf32015-12-05 20:51:54 +0000479#ifdef SQLITE_ENABLE_SNAPSHOT
drh998147e2015-12-10 02:15:03 +0000480 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */
danfc1acf32015-12-05 20:51:54 +0000481#endif
dan7c246102010-04-12 19:00:29 +0000482};
483
drh73b64e42010-05-30 19:55:15 +0000484/*
dan8c408002010-11-01 17:38:24 +0000485** Candidate values for Wal.exclusiveMode.
486*/
487#define WAL_NORMAL_MODE 0
488#define WAL_EXCLUSIVE_MODE 1
489#define WAL_HEAPMEMORY_MODE 2
490
491/*
drh66dfec8b2011-06-01 20:01:49 +0000492** Possible values for WAL.readOnly
493*/
494#define WAL_RDWR 0 /* Normal read/write connection */
495#define WAL_RDONLY 1 /* The WAL file is readonly */
496#define WAL_SHM_RDONLY 2 /* The SHM file is readonly */
497
498/*
dan067f3162010-06-14 10:30:12 +0000499** Each page of the wal-index mapping contains a hash-table made up of
500** an array of HASHTABLE_NSLOT elements of the following type.
501*/
502typedef u16 ht_slot;
503
504/*
danad3cadd2010-06-14 11:49:26 +0000505** This structure is used to implement an iterator that loops through
506** all frames in the WAL in database page order. Where two or more frames
507** correspond to the same database page, the iterator visits only the
508** frame most recently written to the WAL (in other words, the frame with
509** the largest index).
510**
511** The internals of this structure are only accessed by:
512**
513** walIteratorInit() - Create a new iterator,
514** walIteratorNext() - Step an iterator,
515** walIteratorFree() - Free an iterator.
516**
517** This functionality is used by the checkpoint code (see walCheckpoint()).
518*/
519struct WalIterator {
520 int iPrior; /* Last result returned from the iterator */
drhd9c9b782010-12-15 21:02:06 +0000521 int nSegment; /* Number of entries in aSegment[] */
danad3cadd2010-06-14 11:49:26 +0000522 struct WalSegment {
523 int iNext; /* Next slot in aIndex[] not yet returned */
524 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
525 u32 *aPgno; /* Array of page numbers. */
drhd9c9b782010-12-15 21:02:06 +0000526 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */
danad3cadd2010-06-14 11:49:26 +0000527 int iZero; /* Frame number associated with aPgno[0] */
drhd9c9b782010-12-15 21:02:06 +0000528 } aSegment[1]; /* One for every 32KB page in the wal-index */
danad3cadd2010-06-14 11:49:26 +0000529};
530
531/*
dan13a3cb82010-06-11 19:04:21 +0000532** Define the parameters of the hash tables in the wal-index file. There
533** is a hash-table following every HASHTABLE_NPAGE page numbers in the
534** wal-index.
535**
536** Changing any of these constants will alter the wal-index format and
537** create incompatibilities.
538*/
dan067f3162010-06-14 10:30:12 +0000539#define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000540#define HASHTABLE_HASH_1 383 /* Should be prime */
541#define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000542
danad3cadd2010-06-14 11:49:26 +0000543/*
544** The block of page numbers associated with the first hash-table in a
dan13a3cb82010-06-11 19:04:21 +0000545** wal-index is smaller than usual. This is so that there is a complete
546** hash-table on each aligned 32KB page of the wal-index.
547*/
dan067f3162010-06-14 10:30:12 +0000548#define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
dan13a3cb82010-06-11 19:04:21 +0000549
dan067f3162010-06-14 10:30:12 +0000550/* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
551#define WALINDEX_PGSZ ( \
552 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
553)
dan13a3cb82010-06-11 19:04:21 +0000554
555/*
556** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
dan067f3162010-06-14 10:30:12 +0000557** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
dan13a3cb82010-06-11 19:04:21 +0000558** numbered from zero.
559**
drhc05a0632017-11-11 20:11:01 +0000560** If the wal-index is currently smaller the iPage pages then the size
561** of the wal-index might be increased, but only if it is safe to do
562** so. It is safe to enlarge the wal-index if pWal->writeLock is true
563** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE.
564**
dan13a3cb82010-06-11 19:04:21 +0000565** If this call is successful, *ppPage is set to point to the wal-index
566** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
567** then an SQLite error code is returned and *ppPage is set to 0.
568*/
drh2e178d72018-02-20 22:20:57 +0000569static SQLITE_NOINLINE int walIndexPageRealloc(
570 Wal *pWal, /* The WAL context */
571 int iPage, /* The page we seek */
572 volatile u32 **ppPage /* Write the page pointer here */
573){
dan13a3cb82010-06-11 19:04:21 +0000574 int rc = SQLITE_OK;
575
576 /* Enlarge the pWal->apWiData[] array if required */
577 if( pWal->nWiData<=iPage ){
drhf6ad2012019-04-13 14:07:57 +0000578 sqlite3_int64 nByte = sizeof(u32*)*(iPage+1);
dan13a3cb82010-06-11 19:04:21 +0000579 volatile u32 **apNew;
drhf3cdcdc2015-04-29 16:50:28 +0000580 apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte);
dan13a3cb82010-06-11 19:04:21 +0000581 if( !apNew ){
582 *ppPage = 0;
mistachkinfad30392016-02-13 23:43:46 +0000583 return SQLITE_NOMEM_BKPT;
dan13a3cb82010-06-11 19:04:21 +0000584 }
drh519426a2010-07-09 03:19:07 +0000585 memset((void*)&apNew[pWal->nWiData], 0,
586 sizeof(u32*)*(iPage+1-pWal->nWiData));
dan13a3cb82010-06-11 19:04:21 +0000587 pWal->apWiData = apNew;
588 pWal->nWiData = iPage+1;
589 }
590
591 /* Request a pointer to the required page from the VFS */
drhc0ec2f72018-02-21 01:48:22 +0000592 assert( pWal->apWiData[iPage]==0 );
593 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
594 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
595 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
596 }else{
597 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
598 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
599 );
600 assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 );
601 testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK );
602 if( (rc&0xff)==SQLITE_READONLY ){
603 pWal->readOnly |= WAL_SHM_RDONLY;
604 if( rc==SQLITE_READONLY ){
605 rc = SQLITE_OK;
dan4edc6bf2011-05-10 17:31:29 +0000606 }
dan8c408002010-11-01 17:38:24 +0000607 }
dan13a3cb82010-06-11 19:04:21 +0000608 }
danb6d2f9c2011-05-11 14:57:33 +0000609
drh66dfec8b2011-06-01 20:01:49 +0000610 *ppPage = pWal->apWiData[iPage];
dan13a3cb82010-06-11 19:04:21 +0000611 assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
612 return rc;
613}
drh2e178d72018-02-20 22:20:57 +0000614static int walIndexPage(
615 Wal *pWal, /* The WAL context */
616 int iPage, /* The page we seek */
617 volatile u32 **ppPage /* Write the page pointer here */
618){
619 if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){
620 return walIndexPageRealloc(pWal, iPage, ppPage);
621 }
622 return SQLITE_OK;
623}
dan13a3cb82010-06-11 19:04:21 +0000624
625/*
drh73b64e42010-05-30 19:55:15 +0000626** Return a pointer to the WalCkptInfo structure in the wal-index.
627*/
628static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000629 assert( pWal->nWiData>0 && pWal->apWiData[0] );
630 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
631}
632
633/*
634** Return a pointer to the WalIndexHdr structure in the wal-index.
635*/
636static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
637 assert( pWal->nWiData>0 && pWal->apWiData[0] );
638 return (volatile WalIndexHdr*)pWal->apWiData[0];
drh73b64e42010-05-30 19:55:15 +0000639}
640
dan7c246102010-04-12 19:00:29 +0000641/*
danb8fd6c22010-05-24 10:39:36 +0000642** The argument to this macro must be of type u32. On a little-endian
643** architecture, it returns the u32 value that results from interpreting
644** the 4 bytes as a big-endian value. On a big-endian architecture, it
peter.d.reid60ec9142014-09-06 16:39:46 +0000645** returns the value that would be produced by interpreting the 4 bytes
danb8fd6c22010-05-24 10:39:36 +0000646** of the input value as a little-endian integer.
647*/
648#define BYTESWAP32(x) ( \
649 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
650 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
651)
dan64d039e2010-04-13 19:27:31 +0000652
dan7c246102010-04-12 19:00:29 +0000653/*
drh7e263722010-05-20 21:21:09 +0000654** Generate or extend an 8 byte checksum based on the data in
655** array aByte[] and the initial values of aIn[0] and aIn[1] (or
656** initial values of 0 and 0 if aIn==NULL).
657**
658** The checksum is written back into aOut[] before returning.
659**
660** nByte must be a positive multiple of 8.
dan7c246102010-04-12 19:00:29 +0000661*/
drh7e263722010-05-20 21:21:09 +0000662static void walChecksumBytes(
danb8fd6c22010-05-24 10:39:36 +0000663 int nativeCksum, /* True for native byte-order, false for non-native */
drh7e263722010-05-20 21:21:09 +0000664 u8 *a, /* Content to be checksummed */
665 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
666 const u32 *aIn, /* Initial checksum value input */
667 u32 *aOut /* OUT: Final checksum value output */
668){
669 u32 s1, s2;
danb8fd6c22010-05-24 10:39:36 +0000670 u32 *aData = (u32 *)a;
671 u32 *aEnd = (u32 *)&a[nByte];
672
drh7e263722010-05-20 21:21:09 +0000673 if( aIn ){
674 s1 = aIn[0];
675 s2 = aIn[1];
676 }else{
677 s1 = s2 = 0;
678 }
dan7c246102010-04-12 19:00:29 +0000679
drh584c7542010-05-19 18:08:10 +0000680 assert( nByte>=8 );
danb8fd6c22010-05-24 10:39:36 +0000681 assert( (nByte&0x00000007)==0 );
drhf6ad2012019-04-13 14:07:57 +0000682 assert( nByte<=65536 );
dan7c246102010-04-12 19:00:29 +0000683
danb8fd6c22010-05-24 10:39:36 +0000684 if( nativeCksum ){
685 do {
686 s1 += *aData++ + s2;
687 s2 += *aData++ + s1;
688 }while( aData<aEnd );
689 }else{
690 do {
691 s1 += BYTESWAP32(aData[0]) + s2;
692 s2 += BYTESWAP32(aData[1]) + s1;
693 aData += 2;
694 }while( aData<aEnd );
695 }
696
drh7e263722010-05-20 21:21:09 +0000697 aOut[0] = s1;
698 aOut[1] = s2;
dan7c246102010-04-12 19:00:29 +0000699}
700
dan8c408002010-11-01 17:38:24 +0000701static void walShmBarrier(Wal *pWal){
702 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
703 sqlite3OsShmBarrier(pWal->pDbFd);
704 }
705}
706
dan7c246102010-04-12 19:00:29 +0000707/*
drh7e263722010-05-20 21:21:09 +0000708** Write the header information in pWal->hdr into the wal-index.
709**
710** The checksum on pWal->hdr is updated before it is written.
drh7ed91f22010-04-29 22:34:07 +0000711*/
drh7e263722010-05-20 21:21:09 +0000712static void walIndexWriteHdr(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000713 volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
714 const int nCksum = offsetof(WalIndexHdr, aCksum);
drh73b64e42010-05-30 19:55:15 +0000715
716 assert( pWal->writeLock );
drh4b82c382010-05-31 18:24:19 +0000717 pWal->hdr.isInit = 1;
dan10f5a502010-06-23 15:55:43 +0000718 pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
dan4280eb32010-06-12 12:02:35 +0000719 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
drhf6bff3f2015-07-17 01:16:10 +0000720 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
dan8c408002010-11-01 17:38:24 +0000721 walShmBarrier(pWal);
drhf6bff3f2015-07-17 01:16:10 +0000722 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +0000723}
724
725/*
726** This function encodes a single frame header and writes it to a buffer
drh7ed91f22010-04-29 22:34:07 +0000727** supplied by the caller. A frame-header is made up of a series of
dan7c246102010-04-12 19:00:29 +0000728** 4-byte big-endian integers, as follows:
729**
drh23ea97b2010-05-20 16:45:58 +0000730** 0: Page number.
731** 4: For commit records, the size of the database image in pages
732** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +0000733** 8: Salt-1 (copied from the wal-header)
734** 12: Salt-2 (copied from the wal-header)
drh23ea97b2010-05-20 16:45:58 +0000735** 16: Checksum-1.
736** 20: Checksum-2.
dan7c246102010-04-12 19:00:29 +0000737*/
drh7ed91f22010-04-29 22:34:07 +0000738static void walEncodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000739 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000740 u32 iPage, /* Database page number for frame */
741 u32 nTruncate, /* New db size (or 0 for non-commit frames) */
drh7e263722010-05-20 21:21:09 +0000742 u8 *aData, /* Pointer to page data */
dan7c246102010-04-12 19:00:29 +0000743 u8 *aFrame /* OUT: Write encoded frame here */
744){
danb8fd6c22010-05-24 10:39:36 +0000745 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000746 u32 *aCksum = pWal->hdr.aFrameCksum;
drh23ea97b2010-05-20 16:45:58 +0000747 assert( WAL_FRAME_HDRSIZE==24 );
dan97a31352010-04-16 13:59:31 +0000748 sqlite3Put4byte(&aFrame[0], iPage);
749 sqlite3Put4byte(&aFrame[4], nTruncate);
danc9a90222016-01-09 18:57:35 +0000750 if( pWal->iReCksum==0 ){
751 memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
dan7c246102010-04-12 19:00:29 +0000752
danc9a90222016-01-09 18:57:35 +0000753 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
754 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
755 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
dan7c246102010-04-12 19:00:29 +0000756
danc9a90222016-01-09 18:57:35 +0000757 sqlite3Put4byte(&aFrame[16], aCksum[0]);
758 sqlite3Put4byte(&aFrame[20], aCksum[1]);
drh869aaf02016-01-12 02:28:19 +0000759 }else{
760 memset(&aFrame[8], 0, 16);
danc9a90222016-01-09 18:57:35 +0000761 }
dan7c246102010-04-12 19:00:29 +0000762}
763
764/*
drh7e263722010-05-20 21:21:09 +0000765** Check to see if the frame with header in aFrame[] and content
766** in aData[] is valid. If it is a valid frame, fill *piPage and
767** *pnTruncate and return true. Return if the frame is not valid.
dan7c246102010-04-12 19:00:29 +0000768*/
drh7ed91f22010-04-29 22:34:07 +0000769static int walDecodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000770 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000771 u32 *piPage, /* OUT: Database page number for frame */
772 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
dan7c246102010-04-12 19:00:29 +0000773 u8 *aData, /* Pointer to page data (for checksum) */
774 u8 *aFrame /* Frame data */
775){
danb8fd6c22010-05-24 10:39:36 +0000776 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000777 u32 *aCksum = pWal->hdr.aFrameCksum;
drhc8179152010-05-24 13:28:36 +0000778 u32 pgno; /* Page number of the frame */
drh23ea97b2010-05-20 16:45:58 +0000779 assert( WAL_FRAME_HDRSIZE==24 );
780
drh7e263722010-05-20 21:21:09 +0000781 /* A frame is only valid if the salt values in the frame-header
782 ** match the salt values in the wal-header.
783 */
784 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
drh23ea97b2010-05-20 16:45:58 +0000785 return 0;
786 }
dan4a4b01d2010-04-16 11:30:18 +0000787
drhc8179152010-05-24 13:28:36 +0000788 /* A frame is only valid if the page number is creater than zero.
789 */
790 pgno = sqlite3Get4byte(&aFrame[0]);
791 if( pgno==0 ){
792 return 0;
793 }
794
drh519426a2010-07-09 03:19:07 +0000795 /* A frame is only valid if a checksum of the WAL header,
796 ** all prior frams, the first 16 bytes of this frame-header,
797 ** and the frame-data matches the checksum in the last 8
798 ** bytes of this frame-header.
drh7e263722010-05-20 21:21:09 +0000799 */
danb8fd6c22010-05-24 10:39:36 +0000800 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000801 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000802 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
drh23ea97b2010-05-20 16:45:58 +0000803 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
804 || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
dan7c246102010-04-12 19:00:29 +0000805 ){
806 /* Checksum failed. */
807 return 0;
808 }
809
drh7e263722010-05-20 21:21:09 +0000810 /* If we reach this point, the frame is valid. Return the page number
811 ** and the new database size.
812 */
drhc8179152010-05-24 13:28:36 +0000813 *piPage = pgno;
dan97a31352010-04-16 13:59:31 +0000814 *pnTruncate = sqlite3Get4byte(&aFrame[4]);
dan7c246102010-04-12 19:00:29 +0000815 return 1;
816}
817
dan7c246102010-04-12 19:00:29 +0000818
drhc74c3332010-05-31 12:15:19 +0000819#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
820/*
drh181e0912010-06-01 01:08:08 +0000821** Names of locks. This routine is used to provide debugging output and is not
822** a part of an ordinary build.
drhc74c3332010-05-31 12:15:19 +0000823*/
824static const char *walLockName(int lockIdx){
825 if( lockIdx==WAL_WRITE_LOCK ){
826 return "WRITE-LOCK";
827 }else if( lockIdx==WAL_CKPT_LOCK ){
828 return "CKPT-LOCK";
829 }else if( lockIdx==WAL_RECOVER_LOCK ){
830 return "RECOVER-LOCK";
831 }else{
832 static char zName[15];
833 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
834 lockIdx-WAL_READ_LOCK(0));
835 return zName;
836 }
837}
838#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
839
840
dan7c246102010-04-12 19:00:29 +0000841/*
drh181e0912010-06-01 01:08:08 +0000842** Set or release locks on the WAL. Locks are either shared or exclusive.
843** A lock cannot be moved directly between shared and exclusive - it must go
844** through the unlocked state first.
drh73b64e42010-05-30 19:55:15 +0000845**
846** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
847*/
848static int walLockShared(Wal *pWal, int lockIdx){
drhc74c3332010-05-31 12:15:19 +0000849 int rc;
drh73b64e42010-05-30 19:55:15 +0000850 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000851 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
852 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
853 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
854 walLockName(lockIdx), rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000855 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000856 return rc;
drh73b64e42010-05-30 19:55:15 +0000857}
858static void walUnlockShared(Wal *pWal, int lockIdx){
859 if( pWal->exclusiveMode ) return;
860 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
861 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
drhc74c3332010-05-31 12:15:19 +0000862 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
drh73b64e42010-05-30 19:55:15 +0000863}
drhab372772015-12-02 16:10:16 +0000864static int walLockExclusive(Wal *pWal, int lockIdx, int n){
drhc74c3332010-05-31 12:15:19 +0000865 int rc;
drh73b64e42010-05-30 19:55:15 +0000866 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000867 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
868 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
869 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
870 walLockName(lockIdx), n, rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000871 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000872 return rc;
drh73b64e42010-05-30 19:55:15 +0000873}
874static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
875 if( pWal->exclusiveMode ) return;
876 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
877 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
drhc74c3332010-05-31 12:15:19 +0000878 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
879 walLockName(lockIdx), n));
drh73b64e42010-05-30 19:55:15 +0000880}
881
882/*
drh29d4dbe2010-05-18 23:29:52 +0000883** Compute a hash on a page number. The resulting hash value must land
drh181e0912010-06-01 01:08:08 +0000884** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
885** the hash to the next value in the event of a collision.
drh29d4dbe2010-05-18 23:29:52 +0000886*/
887static int walHash(u32 iPage){
888 assert( iPage>0 );
889 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
890 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
891}
892static int walNextHash(int iPriorHash){
893 return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
danbb23aff2010-05-10 14:46:09 +0000894}
895
drh4ece2f22018-06-09 16:49:00 +0000896/*
897** An instance of the WalHashLoc object is used to describe the location
898** of a page hash table in the wal-index. This becomes the return value
899** from walHashGet().
900*/
901typedef struct WalHashLoc WalHashLoc;
902struct WalHashLoc {
903 volatile ht_slot *aHash; /* Start of the wal-index hash table */
904 volatile u32 *aPgno; /* aPgno[1] is the page of first frame indexed */
905 u32 iZero; /* One less than the frame number of first indexed*/
906};
907
dan4280eb32010-06-12 12:02:35 +0000908/*
909** Return pointers to the hash table and page number array stored on
910** page iHash of the wal-index. The wal-index is broken into 32KB pages
911** numbered starting from 0.
912**
drh4ece2f22018-06-09 16:49:00 +0000913** Set output variable pLoc->aHash to point to the start of the hash table
914** in the wal-index file. Set pLoc->iZero to one less than the frame
dan4280eb32010-06-12 12:02:35 +0000915** number of the first frame indexed by this hash table. If a
916** slot in the hash table is set to N, it refers to frame number
drh4ece2f22018-06-09 16:49:00 +0000917** (pLoc->iZero+N) in the log.
dan4280eb32010-06-12 12:02:35 +0000918**
drh4ece2f22018-06-09 16:49:00 +0000919** Finally, set pLoc->aPgno so that pLoc->aPgno[1] is the page number of the
920** first frame indexed by the hash table, frame (pLoc->iZero+1).
dan4280eb32010-06-12 12:02:35 +0000921*/
922static int walHashGet(
dan13a3cb82010-06-11 19:04:21 +0000923 Wal *pWal, /* WAL handle */
924 int iHash, /* Find the iHash'th table */
drh4ece2f22018-06-09 16:49:00 +0000925 WalHashLoc *pLoc /* OUT: Hash table location */
dan13a3cb82010-06-11 19:04:21 +0000926){
dan4280eb32010-06-12 12:02:35 +0000927 int rc; /* Return code */
dan13a3cb82010-06-11 19:04:21 +0000928
drh4ece2f22018-06-09 16:49:00 +0000929 rc = walIndexPage(pWal, iHash, &pLoc->aPgno);
dan4280eb32010-06-12 12:02:35 +0000930 assert( rc==SQLITE_OK || iHash>0 );
dan13a3cb82010-06-11 19:04:21 +0000931
dan4280eb32010-06-12 12:02:35 +0000932 if( rc==SQLITE_OK ){
drh4ece2f22018-06-09 16:49:00 +0000933 pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE];
dan4280eb32010-06-12 12:02:35 +0000934 if( iHash==0 ){
drh4ece2f22018-06-09 16:49:00 +0000935 pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
936 pLoc->iZero = 0;
dan4280eb32010-06-12 12:02:35 +0000937 }else{
drh4ece2f22018-06-09 16:49:00 +0000938 pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
dan4280eb32010-06-12 12:02:35 +0000939 }
drh4ece2f22018-06-09 16:49:00 +0000940 pLoc->aPgno = &pLoc->aPgno[-1];
dan13a3cb82010-06-11 19:04:21 +0000941 }
dan4280eb32010-06-12 12:02:35 +0000942 return rc;
dan13a3cb82010-06-11 19:04:21 +0000943}
944
dan4280eb32010-06-12 12:02:35 +0000945/*
946** Return the number of the wal-index page that contains the hash-table
947** and page-number array that contain entries corresponding to WAL frame
948** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
949** are numbered starting from 0.
950*/
dan13a3cb82010-06-11 19:04:21 +0000951static int walFramePage(u32 iFrame){
952 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
953 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
954 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
955 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
956 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
957 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
958 );
959 return iHash;
960}
961
962/*
963** Return the page number associated with frame iFrame in this WAL.
964*/
965static u32 walFramePgno(Wal *pWal, u32 iFrame){
966 int iHash = walFramePage(iFrame);
967 if( iHash==0 ){
968 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
969 }
970 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
971}
danbb23aff2010-05-10 14:46:09 +0000972
danca6b5ba2010-05-25 10:50:56 +0000973/*
974** Remove entries from the hash table that point to WAL slots greater
975** than pWal->hdr.mxFrame.
976**
977** This function is called whenever pWal->hdr.mxFrame is decreased due
978** to a rollback or savepoint.
979**
drh181e0912010-06-01 01:08:08 +0000980** At most only the hash table containing pWal->hdr.mxFrame needs to be
981** updated. Any later hash tables will be automatically cleared when
982** pWal->hdr.mxFrame advances to the point where those hash tables are
983** actually needed.
danca6b5ba2010-05-25 10:50:56 +0000984*/
985static void walCleanupHash(Wal *pWal){
drh4ece2f22018-06-09 16:49:00 +0000986 WalHashLoc sLoc; /* Hash table location */
dan067f3162010-06-14 10:30:12 +0000987 int iLimit = 0; /* Zero values greater than this */
988 int nByte; /* Number of bytes to zero in aPgno[] */
989 int i; /* Used to iterate through aHash[] */
drhb92d7d22019-04-03 17:48:10 +0000990 int rc; /* Return code form walHashGet() */
danca6b5ba2010-05-25 10:50:56 +0000991
drh73b64e42010-05-30 19:55:15 +0000992 assert( pWal->writeLock );
drhffca4302010-06-15 11:21:54 +0000993 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
994 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
995 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
drh9c156472010-06-01 12:58:41 +0000996
dan4280eb32010-06-12 12:02:35 +0000997 if( pWal->hdr.mxFrame==0 ) return;
998
999 /* Obtain pointers to the hash-table and page-number array containing
1000 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
drhb92d7d22019-04-03 17:48:10 +00001001 ** that the page said hash-table and array reside on is already mapped.(1)
dan4280eb32010-06-12 12:02:35 +00001002 */
1003 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
1004 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
drhb92d7d22019-04-03 17:48:10 +00001005 rc = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc);
1006 if( NEVER(rc) ) return; /* Defense-in-depth, in case (1) above is wrong */
dan4280eb32010-06-12 12:02:35 +00001007
1008 /* Zero all hash-table entries that correspond to frame numbers greater
1009 ** than pWal->hdr.mxFrame.
1010 */
drh4ece2f22018-06-09 16:49:00 +00001011 iLimit = pWal->hdr.mxFrame - sLoc.iZero;
dan4280eb32010-06-12 12:02:35 +00001012 assert( iLimit>0 );
1013 for(i=0; i<HASHTABLE_NSLOT; i++){
drh4ece2f22018-06-09 16:49:00 +00001014 if( sLoc.aHash[i]>iLimit ){
1015 sLoc.aHash[i] = 0;
danca6b5ba2010-05-25 10:50:56 +00001016 }
danca6b5ba2010-05-25 10:50:56 +00001017 }
dan4280eb32010-06-12 12:02:35 +00001018
1019 /* Zero the entries in the aPgno array that correspond to frames with
1020 ** frame numbers greater than pWal->hdr.mxFrame.
1021 */
drh4ece2f22018-06-09 16:49:00 +00001022 nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit+1]);
1023 memset((void *)&sLoc.aPgno[iLimit+1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +00001024
1025#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1026 /* Verify that the every entry in the mapping region is still reachable
1027 ** via the hash table even after the cleanup.
1028 */
drhf77bbd92010-06-01 13:17:44 +00001029 if( iLimit ){
mistachkin6b67a8a2015-07-21 19:22:35 +00001030 int j; /* Loop counter */
danca6b5ba2010-05-25 10:50:56 +00001031 int iKey; /* Hash key */
mistachkin6b67a8a2015-07-21 19:22:35 +00001032 for(j=1; j<=iLimit; j++){
drh4ece2f22018-06-09 16:49:00 +00001033 for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){
1034 if( sLoc.aHash[iKey]==j ) break;
danca6b5ba2010-05-25 10:50:56 +00001035 }
drh4ece2f22018-06-09 16:49:00 +00001036 assert( sLoc.aHash[iKey]==j );
danca6b5ba2010-05-25 10:50:56 +00001037 }
1038 }
1039#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1040}
1041
danbb23aff2010-05-10 14:46:09 +00001042
drh7ed91f22010-04-29 22:34:07 +00001043/*
drh29d4dbe2010-05-18 23:29:52 +00001044** Set an entry in the wal-index that will map database page number
1045** pPage into WAL frame iFrame.
dan7c246102010-04-12 19:00:29 +00001046*/
drh7ed91f22010-04-29 22:34:07 +00001047static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
dan4280eb32010-06-12 12:02:35 +00001048 int rc; /* Return code */
drh4ece2f22018-06-09 16:49:00 +00001049 WalHashLoc sLoc; /* Wal-index hash table location */
dance4f05f2010-04-22 19:14:13 +00001050
drh4ece2f22018-06-09 16:49:00 +00001051 rc = walHashGet(pWal, walFramePage(iFrame), &sLoc);
dan4280eb32010-06-12 12:02:35 +00001052
1053 /* Assuming the wal-index file was successfully mapped, populate the
1054 ** page number array and hash table entry.
dan7c246102010-04-12 19:00:29 +00001055 */
danbb23aff2010-05-10 14:46:09 +00001056 if( rc==SQLITE_OK ){
1057 int iKey; /* Hash table key */
dan4280eb32010-06-12 12:02:35 +00001058 int idx; /* Value to write to hash-table slot */
drh519426a2010-07-09 03:19:07 +00001059 int nCollide; /* Number of hash collisions */
dan7c246102010-04-12 19:00:29 +00001060
drh4ece2f22018-06-09 16:49:00 +00001061 idx = iFrame - sLoc.iZero;
dan4280eb32010-06-12 12:02:35 +00001062 assert( idx <= HASHTABLE_NSLOT/2 + 1 );
1063
1064 /* If this is the first entry to be added to this hash-table, zero the
peter.d.reid60ec9142014-09-06 16:39:46 +00001065 ** entire hash table and aPgno[] array before proceeding.
dan4280eb32010-06-12 12:02:35 +00001066 */
danca6b5ba2010-05-25 10:50:56 +00001067 if( idx==1 ){
drh4ece2f22018-06-09 16:49:00 +00001068 int nByte = (int)((u8 *)&sLoc.aHash[HASHTABLE_NSLOT]
1069 - (u8 *)&sLoc.aPgno[1]);
1070 memset((void*)&sLoc.aPgno[1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +00001071 }
danca6b5ba2010-05-25 10:50:56 +00001072
dan4280eb32010-06-12 12:02:35 +00001073 /* If the entry in aPgno[] is already set, then the previous writer
1074 ** must have exited unexpectedly in the middle of a transaction (after
1075 ** writing one or more dirty pages to the WAL to free up memory).
1076 ** Remove the remnants of that writers uncommitted transaction from
1077 ** the hash-table before writing any new entries.
1078 */
drh4ece2f22018-06-09 16:49:00 +00001079 if( sLoc.aPgno[idx] ){
danca6b5ba2010-05-25 10:50:56 +00001080 walCleanupHash(pWal);
drh4ece2f22018-06-09 16:49:00 +00001081 assert( !sLoc.aPgno[idx] );
danca6b5ba2010-05-25 10:50:56 +00001082 }
dan4280eb32010-06-12 12:02:35 +00001083
1084 /* Write the aPgno[] array entry and the hash-table slot. */
drh519426a2010-07-09 03:19:07 +00001085 nCollide = idx;
drh4ece2f22018-06-09 16:49:00 +00001086 for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
drh519426a2010-07-09 03:19:07 +00001087 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
drh29d4dbe2010-05-18 23:29:52 +00001088 }
drh4ece2f22018-06-09 16:49:00 +00001089 sLoc.aPgno[idx] = iPage;
1090 sLoc.aHash[iKey] = (ht_slot)idx;
drh4fa95bf2010-05-22 00:55:39 +00001091
1092#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1093 /* Verify that the number of entries in the hash table exactly equals
1094 ** the number of entries in the mapping region.
1095 */
1096 {
1097 int i; /* Loop counter */
1098 int nEntry = 0; /* Number of entries in the hash table */
drh4ece2f22018-06-09 16:49:00 +00001099 for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; }
drh4fa95bf2010-05-22 00:55:39 +00001100 assert( nEntry==idx );
1101 }
1102
1103 /* Verify that the every entry in the mapping region is reachable
1104 ** via the hash table. This turns out to be a really, really expensive
1105 ** thing to check, so only do this occasionally - not on every
1106 ** iteration.
1107 */
1108 if( (idx&0x3ff)==0 ){
1109 int i; /* Loop counter */
1110 for(i=1; i<=idx; i++){
drh4ece2f22018-06-09 16:49:00 +00001111 for(iKey=walHash(sLoc.aPgno[i]);
1112 sLoc.aHash[iKey];
1113 iKey=walNextHash(iKey)){
1114 if( sLoc.aHash[iKey]==i ) break;
drh4fa95bf2010-05-22 00:55:39 +00001115 }
drh4ece2f22018-06-09 16:49:00 +00001116 assert( sLoc.aHash[iKey]==i );
drh4fa95bf2010-05-22 00:55:39 +00001117 }
1118 }
1119#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
dan7c246102010-04-12 19:00:29 +00001120 }
dan31f98fc2010-04-27 05:42:32 +00001121
drh4fa95bf2010-05-22 00:55:39 +00001122
danbb23aff2010-05-10 14:46:09 +00001123 return rc;
dan7c246102010-04-12 19:00:29 +00001124}
1125
1126
1127/*
drh7ed91f22010-04-29 22:34:07 +00001128** Recover the wal-index by reading the write-ahead log file.
drh73b64e42010-05-30 19:55:15 +00001129**
1130** This routine first tries to establish an exclusive lock on the
1131** wal-index to prevent other threads/processes from doing anything
1132** with the WAL or wal-index while recovery is running. The
1133** WAL_RECOVER_LOCK is also held so that other threads will know
1134** that this thread is running recovery. If unable to establish
1135** the necessary locks, this routine returns SQLITE_BUSY.
dan7c246102010-04-12 19:00:29 +00001136*/
drh7ed91f22010-04-29 22:34:07 +00001137static int walIndexRecover(Wal *pWal){
dan7c246102010-04-12 19:00:29 +00001138 int rc; /* Return Code */
1139 i64 nSize; /* Size of log file */
dan71d89912010-05-24 13:57:42 +00001140 u32 aFrameCksum[2] = {0, 0};
dand0aa3422010-05-31 16:41:53 +00001141 int iLock; /* Lock offset to lock for checkpoint */
dan7c246102010-04-12 19:00:29 +00001142
dand0aa3422010-05-31 16:41:53 +00001143 /* Obtain an exclusive lock on all byte in the locking range not already
1144 ** locked by the caller. The caller is guaranteed to have locked the
1145 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1146 ** If successful, the same bytes that are locked here are unlocked before
1147 ** this function returns.
1148 */
1149 assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1150 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1151 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1152 assert( pWal->writeLock );
1153 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
dandea5ce32017-11-02 11:12:03 +00001154 rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1155 if( rc==SQLITE_OK ){
1156 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1157 if( rc!=SQLITE_OK ){
1158 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1159 }
1160 }
drh73b64e42010-05-30 19:55:15 +00001161 if( rc ){
1162 return rc;
1163 }
dandea5ce32017-11-02 11:12:03 +00001164
drhc74c3332010-05-31 12:15:19 +00001165 WALTRACE(("WAL%p: recovery begin...\n", pWal));
drh73b64e42010-05-30 19:55:15 +00001166
dan71d89912010-05-24 13:57:42 +00001167 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +00001168
drhd9e5c4f2010-05-12 18:01:39 +00001169 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
dan7c246102010-04-12 19:00:29 +00001170 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001171 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001172 }
1173
danb8fd6c22010-05-24 10:39:36 +00001174 if( nSize>WAL_HDRSIZE ){
1175 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
dan7c246102010-04-12 19:00:29 +00001176 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
drh584c7542010-05-19 18:08:10 +00001177 int szFrame; /* Number of bytes in buffer aFrame[] */
dan7c246102010-04-12 19:00:29 +00001178 u8 *aData; /* Pointer to data part of aFrame buffer */
1179 int iFrame; /* Index of last frame read */
1180 i64 iOffset; /* Next offset to read from log file */
drh6e810962010-05-19 17:49:50 +00001181 int szPage; /* Page size according to the log */
danb8fd6c22010-05-24 10:39:36 +00001182 u32 magic; /* Magic value read from WAL header */
dan10f5a502010-06-23 15:55:43 +00001183 u32 version; /* Magic value read from WAL header */
drhfe6163d2011-12-17 13:45:28 +00001184 int isValid; /* True if this frame is valid */
dan7c246102010-04-12 19:00:29 +00001185
danb8fd6c22010-05-24 10:39:36 +00001186 /* Read in the WAL header. */
drhd9e5c4f2010-05-12 18:01:39 +00001187 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
dan7c246102010-04-12 19:00:29 +00001188 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001189 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001190 }
1191
1192 /* If the database page size is not a power of two, or is greater than
danb8fd6c22010-05-24 10:39:36 +00001193 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1194 ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1195 ** WAL file.
dan7c246102010-04-12 19:00:29 +00001196 */
danb8fd6c22010-05-24 10:39:36 +00001197 magic = sqlite3Get4byte(&aBuf[0]);
drh23ea97b2010-05-20 16:45:58 +00001198 szPage = sqlite3Get4byte(&aBuf[8]);
danb8fd6c22010-05-24 10:39:36 +00001199 if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1200 || szPage&(szPage-1)
1201 || szPage>SQLITE_MAX_PAGE_SIZE
1202 || szPage<512
1203 ){
dan7c246102010-04-12 19:00:29 +00001204 goto finished;
1205 }
shaneh5eba1f62010-07-02 17:05:03 +00001206 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
drhb2eced52010-08-12 02:41:12 +00001207 pWal->szPage = szPage;
drh23ea97b2010-05-20 16:45:58 +00001208 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
drh7e263722010-05-20 21:21:09 +00001209 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
drhcd285082010-06-23 22:00:35 +00001210
1211 /* Verify that the WAL header checksum is correct */
dan71d89912010-05-24 13:57:42 +00001212 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
dan10f5a502010-06-23 15:55:43 +00001213 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
dan71d89912010-05-24 13:57:42 +00001214 );
dan10f5a502010-06-23 15:55:43 +00001215 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1216 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1217 ){
1218 goto finished;
1219 }
1220
drhcd285082010-06-23 22:00:35 +00001221 /* Verify that the version number on the WAL format is one that
1222 ** are able to understand */
dan10f5a502010-06-23 15:55:43 +00001223 version = sqlite3Get4byte(&aBuf[4]);
1224 if( version!=WAL_MAX_VERSION ){
1225 rc = SQLITE_CANTOPEN_BKPT;
1226 goto finished;
1227 }
1228
dan7c246102010-04-12 19:00:29 +00001229 /* Malloc a buffer to read frames into. */
drh584c7542010-05-19 18:08:10 +00001230 szFrame = szPage + WAL_FRAME_HDRSIZE;
drhf3cdcdc2015-04-29 16:50:28 +00001231 aFrame = (u8 *)sqlite3_malloc64(szFrame);
dan7c246102010-04-12 19:00:29 +00001232 if( !aFrame ){
mistachkinfad30392016-02-13 23:43:46 +00001233 rc = SQLITE_NOMEM_BKPT;
drh73b64e42010-05-30 19:55:15 +00001234 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001235 }
drh7ed91f22010-04-29 22:34:07 +00001236 aData = &aFrame[WAL_FRAME_HDRSIZE];
dan7c246102010-04-12 19:00:29 +00001237
1238 /* Read all frames from the log file. */
1239 iFrame = 0;
drh584c7542010-05-19 18:08:10 +00001240 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
dan7c246102010-04-12 19:00:29 +00001241 u32 pgno; /* Database page number for frame */
1242 u32 nTruncate; /* dbsize field from frame header */
dan7c246102010-04-12 19:00:29 +00001243
1244 /* Read and decode the next log frame. */
drhfe6163d2011-12-17 13:45:28 +00001245 iFrame++;
drh584c7542010-05-19 18:08:10 +00001246 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
dan7c246102010-04-12 19:00:29 +00001247 if( rc!=SQLITE_OK ) break;
drh7e263722010-05-20 21:21:09 +00001248 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
drhf694aa62011-12-20 22:18:51 +00001249 if( !isValid ) break;
drhfe6163d2011-12-17 13:45:28 +00001250 rc = walIndexAppend(pWal, iFrame, pgno);
danc7991bd2010-05-05 19:04:59 +00001251 if( rc!=SQLITE_OK ) break;
dan7c246102010-04-12 19:00:29 +00001252
1253 /* If nTruncate is non-zero, this is a commit record. */
1254 if( nTruncate ){
dan71d89912010-05-24 13:57:42 +00001255 pWal->hdr.mxFrame = iFrame;
1256 pWal->hdr.nPage = nTruncate;
shaneh1df2db72010-08-18 02:28:48 +00001257 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00001258 testcase( szPage<=32768 );
1259 testcase( szPage>=65536 );
dan71d89912010-05-24 13:57:42 +00001260 aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1261 aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
dan7c246102010-04-12 19:00:29 +00001262 }
1263 }
1264
1265 sqlite3_free(aFrame);
dan7c246102010-04-12 19:00:29 +00001266 }
1267
1268finished:
dan576bc322010-05-06 18:04:50 +00001269 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001270 volatile WalCkptInfo *pInfo;
1271 int i;
dan71d89912010-05-24 13:57:42 +00001272 pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1273 pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
drh7e263722010-05-20 21:21:09 +00001274 walIndexWriteHdr(pWal);
dan3dee6da2010-05-31 16:17:54 +00001275
drhdb7f6472010-06-09 14:45:12 +00001276 /* Reset the checkpoint-header. This is safe because this thread is
dan3dee6da2010-05-31 16:17:54 +00001277 ** currently holding locks that exclude all other readers, writers and
1278 ** checkpointers.
1279 */
drhdb7f6472010-06-09 14:45:12 +00001280 pInfo = walCkptInfo(pWal);
1281 pInfo->nBackfill = 0;
dan3bf83cc2015-12-10 15:45:15 +00001282 pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
drhdb7f6472010-06-09 14:45:12 +00001283 pInfo->aReadMark[0] = 0;
1284 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
dan5373b762012-07-17 14:37:12 +00001285 if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame;
daneb8763d2010-08-17 14:52:22 +00001286
1287 /* If more than one frame was recovered from the log file, report an
1288 ** event via sqlite3_log(). This is to help with identifying performance
1289 ** problems caused by applications routinely shutting down without
1290 ** checkpointing the log file.
1291 */
1292 if( pWal->hdr.nPage ){
drhd040e762013-04-10 23:48:37 +00001293 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1294 "recovered %d frames from WAL file %s",
dan0943f0b2013-04-01 14:35:01 +00001295 pWal->hdr.mxFrame, pWal->zWalName
daneb8763d2010-08-17 14:52:22 +00001296 );
1297 }
dan576bc322010-05-06 18:04:50 +00001298 }
drh73b64e42010-05-30 19:55:15 +00001299
1300recovery_error:
drhc74c3332010-05-31 12:15:19 +00001301 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
dandea5ce32017-11-02 11:12:03 +00001302 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1303 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
dan7c246102010-04-12 19:00:29 +00001304 return rc;
1305}
1306
drha8e654e2010-05-04 17:38:42 +00001307/*
dan1018e902010-05-05 15:33:05 +00001308** Close an open wal-index.
drha8e654e2010-05-04 17:38:42 +00001309*/
dan1018e902010-05-05 15:33:05 +00001310static void walIndexClose(Wal *pWal, int isDelete){
drh85bc6df2017-11-10 20:00:50 +00001311 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){
dan8c408002010-11-01 17:38:24 +00001312 int i;
1313 for(i=0; i<pWal->nWiData; i++){
1314 sqlite3_free((void *)pWal->apWiData[i]);
1315 pWal->apWiData[i] = 0;
1316 }
dan11caf4f2017-11-04 18:10:03 +00001317 }
1318 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
dan8c408002010-11-01 17:38:24 +00001319 sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1320 }
drha8e654e2010-05-04 17:38:42 +00001321}
1322
dan7c246102010-04-12 19:00:29 +00001323/*
dan3e875ef2010-07-05 19:03:35 +00001324** Open a connection to the WAL file zWalName. The database file must
1325** already be opened on connection pDbFd. The buffer that zWalName points
1326** to must remain valid for the lifetime of the returned Wal* handle.
dan3de777f2010-04-17 12:31:37 +00001327**
1328** A SHARED lock should be held on the database file when this function
1329** is called. The purpose of this SHARED lock is to prevent any other
drh181e0912010-06-01 01:08:08 +00001330** client from unlinking the WAL or wal-index file. If another process
dan3de777f2010-04-17 12:31:37 +00001331** were to do this just after this client opened one of these files, the
1332** system would be badly broken.
danef378022010-05-04 11:06:03 +00001333**
1334** If the log file is successfully opened, SQLITE_OK is returned and
1335** *ppWal is set to point to a new WAL handle. If an error occurs,
1336** an SQLite error code is returned and *ppWal is left unmodified.
dan7c246102010-04-12 19:00:29 +00001337*/
drhc438efd2010-04-26 00:19:45 +00001338int sqlite3WalOpen(
drh7ed91f22010-04-29 22:34:07 +00001339 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
drhd9e5c4f2010-05-12 18:01:39 +00001340 sqlite3_file *pDbFd, /* The open database file */
dan3e875ef2010-07-05 19:03:35 +00001341 const char *zWalName, /* Name of the WAL file */
dan8c408002010-11-01 17:38:24 +00001342 int bNoShm, /* True to run in heap-memory mode */
drh85a83752011-05-16 21:00:27 +00001343 i64 mxWalSize, /* Truncate WAL to this size on reset */
drh7ed91f22010-04-29 22:34:07 +00001344 Wal **ppWal /* OUT: Allocated Wal handle */
dan7c246102010-04-12 19:00:29 +00001345){
danef378022010-05-04 11:06:03 +00001346 int rc; /* Return Code */
drh7ed91f22010-04-29 22:34:07 +00001347 Wal *pRet; /* Object to allocate and return */
dan7c246102010-04-12 19:00:29 +00001348 int flags; /* Flags passed to OsOpen() */
dan7c246102010-04-12 19:00:29 +00001349
dan3e875ef2010-07-05 19:03:35 +00001350 assert( zWalName && zWalName[0] );
drhd9e5c4f2010-05-12 18:01:39 +00001351 assert( pDbFd );
dan7c246102010-04-12 19:00:29 +00001352
drh1b78eaf2010-05-25 13:40:03 +00001353 /* In the amalgamation, the os_unix.c and os_win.c source files come before
1354 ** this source file. Verify that the #defines of the locking byte offsets
1355 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
drh998147e2015-12-10 02:15:03 +00001356 ** For that matter, if the lock offset ever changes from its initial design
1357 ** value of 120, we need to know that so there is an assert() to check it.
drh1b78eaf2010-05-25 13:40:03 +00001358 */
drh998147e2015-12-10 02:15:03 +00001359 assert( 120==WALINDEX_LOCK_OFFSET );
1360 assert( 136==WALINDEX_HDR_SIZE );
drh1b78eaf2010-05-25 13:40:03 +00001361#ifdef WIN_SHM_BASE
1362 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1363#endif
1364#ifdef UNIX_SHM_BASE
1365 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1366#endif
1367
1368
drh7ed91f22010-04-29 22:34:07 +00001369 /* Allocate an instance of struct Wal to return. */
1370 *ppWal = 0;
dan3e875ef2010-07-05 19:03:35 +00001371 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
dan76ed3bc2010-05-03 17:18:24 +00001372 if( !pRet ){
mistachkinfad30392016-02-13 23:43:46 +00001373 return SQLITE_NOMEM_BKPT;
dan76ed3bc2010-05-03 17:18:24 +00001374 }
1375
dan7c246102010-04-12 19:00:29 +00001376 pRet->pVfs = pVfs;
drhd9e5c4f2010-05-12 18:01:39 +00001377 pRet->pWalFd = (sqlite3_file *)&pRet[1];
1378 pRet->pDbFd = pDbFd;
drh73b64e42010-05-30 19:55:15 +00001379 pRet->readLock = -1;
drh85a83752011-05-16 21:00:27 +00001380 pRet->mxWalSize = mxWalSize;
dan3e875ef2010-07-05 19:03:35 +00001381 pRet->zWalName = zWalName;
drhd992b152011-12-20 20:13:25 +00001382 pRet->syncHeader = 1;
drh374f4a02011-12-17 20:02:11 +00001383 pRet->padToSectorBoundary = 1;
dan8c408002010-11-01 17:38:24 +00001384 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
dan7c246102010-04-12 19:00:29 +00001385
drh7ed91f22010-04-29 22:34:07 +00001386 /* Open file handle on the write-ahead log file. */
danddb0ac42010-07-14 14:48:58 +00001387 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
danda9fe0c2010-07-13 18:44:03 +00001388 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
dan50833e32010-07-14 16:37:17 +00001389 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
drh66dfec8b2011-06-01 20:01:49 +00001390 pRet->readOnly = WAL_RDONLY;
dan50833e32010-07-14 16:37:17 +00001391 }
dan7c246102010-04-12 19:00:29 +00001392
dan7c246102010-04-12 19:00:29 +00001393 if( rc!=SQLITE_OK ){
dan1018e902010-05-05 15:33:05 +00001394 walIndexClose(pRet, 0);
drhd9e5c4f2010-05-12 18:01:39 +00001395 sqlite3OsClose(pRet->pWalFd);
danef378022010-05-04 11:06:03 +00001396 sqlite3_free(pRet);
1397 }else{
dandd973542014-02-13 19:27:08 +00001398 int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
drhd992b152011-12-20 20:13:25 +00001399 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
drhcb15f352011-12-23 01:04:17 +00001400 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1401 pRet->padToSectorBoundary = 0;
1402 }
danef378022010-05-04 11:06:03 +00001403 *ppWal = pRet;
drhc74c3332010-05-31 12:15:19 +00001404 WALTRACE(("WAL%d: opened\n", pRet));
dan7c246102010-04-12 19:00:29 +00001405 }
dan7c246102010-04-12 19:00:29 +00001406 return rc;
1407}
1408
drha2a42012010-05-18 18:01:08 +00001409/*
drh85a83752011-05-16 21:00:27 +00001410** Change the size to which the WAL file is trucated on each reset.
1411*/
1412void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1413 if( pWal ) pWal->mxWalSize = iLimit;
1414}
1415
1416/*
drha2a42012010-05-18 18:01:08 +00001417** Find the smallest page number out of all pages held in the WAL that
1418** has not been returned by any prior invocation of this method on the
1419** same WalIterator object. Write into *piFrame the frame index where
1420** that page was last written into the WAL. Write into *piPage the page
1421** number.
1422**
1423** Return 0 on success. If there are no pages in the WAL with a page
1424** number larger than *piPage, then return 1.
1425*/
drh7ed91f22010-04-29 22:34:07 +00001426static int walIteratorNext(
1427 WalIterator *p, /* Iterator */
drha2a42012010-05-18 18:01:08 +00001428 u32 *piPage, /* OUT: The page number of the next page */
1429 u32 *piFrame /* OUT: Wal frame index of next page */
dan7c246102010-04-12 19:00:29 +00001430){
drha2a42012010-05-18 18:01:08 +00001431 u32 iMin; /* Result pgno must be greater than iMin */
1432 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
1433 int i; /* For looping through segments */
dan7c246102010-04-12 19:00:29 +00001434
drha2a42012010-05-18 18:01:08 +00001435 iMin = p->iPrior;
1436 assert( iMin<0xffffffff );
dan7c246102010-04-12 19:00:29 +00001437 for(i=p->nSegment-1; i>=0; i--){
drh7ed91f22010-04-29 22:34:07 +00001438 struct WalSegment *pSegment = &p->aSegment[i];
dan13a3cb82010-06-11 19:04:21 +00001439 while( pSegment->iNext<pSegment->nEntry ){
drha2a42012010-05-18 18:01:08 +00001440 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
dan7c246102010-04-12 19:00:29 +00001441 if( iPg>iMin ){
1442 if( iPg<iRet ){
1443 iRet = iPg;
dan13a3cb82010-06-11 19:04:21 +00001444 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
dan7c246102010-04-12 19:00:29 +00001445 }
1446 break;
1447 }
1448 pSegment->iNext++;
1449 }
dan7c246102010-04-12 19:00:29 +00001450 }
1451
drha2a42012010-05-18 18:01:08 +00001452 *piPage = p->iPrior = iRet;
dan7c246102010-04-12 19:00:29 +00001453 return (iRet==0xFFFFFFFF);
1454}
1455
danf544b4c2010-06-25 11:35:52 +00001456/*
1457** This function merges two sorted lists into a single sorted list.
drhd9c9b782010-12-15 21:02:06 +00001458**
1459** aLeft[] and aRight[] are arrays of indices. The sort key is
1460** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following
1461** is guaranteed for all J<K:
1462**
1463** aContent[aLeft[J]] < aContent[aLeft[K]]
1464** aContent[aRight[J]] < aContent[aRight[K]]
1465**
1466** This routine overwrites aRight[] with a new (probably longer) sequence
1467** of indices such that the aRight[] contains every index that appears in
1468** either aLeft[] or the old aRight[] and such that the second condition
1469** above is still met.
1470**
1471** The aContent[aLeft[X]] values will be unique for all X. And the
1472** aContent[aRight[X]] values will be unique too. But there might be
1473** one or more combinations of X and Y such that
1474**
1475** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]]
1476**
1477** When that happens, omit the aLeft[X] and use the aRight[Y] index.
danf544b4c2010-06-25 11:35:52 +00001478*/
1479static void walMerge(
drhd9c9b782010-12-15 21:02:06 +00001480 const u32 *aContent, /* Pages in wal - keys for the sort */
danf544b4c2010-06-25 11:35:52 +00001481 ht_slot *aLeft, /* IN: Left hand input list */
1482 int nLeft, /* IN: Elements in array *paLeft */
1483 ht_slot **paRight, /* IN/OUT: Right hand input list */
1484 int *pnRight, /* IN/OUT: Elements in *paRight */
1485 ht_slot *aTmp /* Temporary buffer */
1486){
1487 int iLeft = 0; /* Current index in aLeft */
1488 int iRight = 0; /* Current index in aRight */
1489 int iOut = 0; /* Current index in output buffer */
1490 int nRight = *pnRight;
1491 ht_slot *aRight = *paRight;
dan7c246102010-04-12 19:00:29 +00001492
danf544b4c2010-06-25 11:35:52 +00001493 assert( nLeft>0 && nRight>0 );
1494 while( iRight<nRight || iLeft<nLeft ){
1495 ht_slot logpage;
1496 Pgno dbpage;
1497
1498 if( (iLeft<nLeft)
1499 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1500 ){
1501 logpage = aLeft[iLeft++];
1502 }else{
1503 logpage = aRight[iRight++];
1504 }
1505 dbpage = aContent[logpage];
1506
1507 aTmp[iOut++] = logpage;
1508 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1509
1510 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1511 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1512 }
1513
1514 *paRight = aLeft;
1515 *pnRight = iOut;
1516 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1517}
1518
1519/*
drhd9c9b782010-12-15 21:02:06 +00001520** Sort the elements in list aList using aContent[] as the sort key.
1521** Remove elements with duplicate keys, preferring to keep the
1522** larger aList[] values.
1523**
1524** The aList[] entries are indices into aContent[]. The values in
1525** aList[] are to be sorted so that for all J<K:
1526**
1527** aContent[aList[J]] < aContent[aList[K]]
1528**
1529** For any X and Y such that
1530**
1531** aContent[aList[X]] == aContent[aList[Y]]
1532**
1533** Keep the larger of the two values aList[X] and aList[Y] and discard
1534** the smaller.
danf544b4c2010-06-25 11:35:52 +00001535*/
dan13a3cb82010-06-11 19:04:21 +00001536static void walMergesort(
drhd9c9b782010-12-15 21:02:06 +00001537 const u32 *aContent, /* Pages in wal */
dan067f3162010-06-14 10:30:12 +00001538 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
1539 ht_slot *aList, /* IN/OUT: List to sort */
drha2a42012010-05-18 18:01:08 +00001540 int *pnList /* IN/OUT: Number of elements in aList[] */
1541){
danf544b4c2010-06-25 11:35:52 +00001542 struct Sublist {
1543 int nList; /* Number of elements in aList */
1544 ht_slot *aList; /* Pointer to sub-list content */
1545 };
drha2a42012010-05-18 18:01:08 +00001546
danf544b4c2010-06-25 11:35:52 +00001547 const int nList = *pnList; /* Size of input list */
drhff828942010-06-26 21:34:06 +00001548 int nMerge = 0; /* Number of elements in list aMerge */
1549 ht_slot *aMerge = 0; /* List to be merged */
danf544b4c2010-06-25 11:35:52 +00001550 int iList; /* Index into input list */
drhf4fa0b82015-07-15 18:35:54 +00001551 u32 iSub = 0; /* Index into aSub array */
danf544b4c2010-06-25 11:35:52 +00001552 struct Sublist aSub[13]; /* Array of sub-lists */
drha2a42012010-05-18 18:01:08 +00001553
danf544b4c2010-06-25 11:35:52 +00001554 memset(aSub, 0, sizeof(aSub));
1555 assert( nList<=HASHTABLE_NPAGE && nList>0 );
1556 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
drha2a42012010-05-18 18:01:08 +00001557
danf544b4c2010-06-25 11:35:52 +00001558 for(iList=0; iList<nList; iList++){
1559 nMerge = 1;
1560 aMerge = &aList[iList];
1561 for(iSub=0; iList & (1<<iSub); iSub++){
drhf4fa0b82015-07-15 18:35:54 +00001562 struct Sublist *p;
1563 assert( iSub<ArraySize(aSub) );
1564 p = &aSub[iSub];
danf544b4c2010-06-25 11:35:52 +00001565 assert( p->aList && p->nList<=(1<<iSub) );
danbdf1e242010-06-25 15:16:25 +00001566 assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001567 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
drha2a42012010-05-18 18:01:08 +00001568 }
danf544b4c2010-06-25 11:35:52 +00001569 aSub[iSub].aList = aMerge;
1570 aSub[iSub].nList = nMerge;
drha2a42012010-05-18 18:01:08 +00001571 }
1572
danf544b4c2010-06-25 11:35:52 +00001573 for(iSub++; iSub<ArraySize(aSub); iSub++){
1574 if( nList & (1<<iSub) ){
drhf4fa0b82015-07-15 18:35:54 +00001575 struct Sublist *p;
1576 assert( iSub<ArraySize(aSub) );
1577 p = &aSub[iSub];
danbdf1e242010-06-25 15:16:25 +00001578 assert( p->nList<=(1<<iSub) );
1579 assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001580 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1581 }
1582 }
1583 assert( aMerge==aList );
1584 *pnList = nMerge;
1585
drha2a42012010-05-18 18:01:08 +00001586#ifdef SQLITE_DEBUG
1587 {
1588 int i;
1589 for(i=1; i<*pnList; i++){
1590 assert( aContent[aList[i]] > aContent[aList[i-1]] );
1591 }
1592 }
1593#endif
1594}
1595
dan5d656852010-06-14 07:53:26 +00001596/*
1597** Free an iterator allocated by walIteratorInit().
1598*/
1599static void walIteratorFree(WalIterator *p){
drhcbd55b02014-11-04 14:22:27 +00001600 sqlite3_free(p);
dan5d656852010-06-14 07:53:26 +00001601}
1602
drha2a42012010-05-18 18:01:08 +00001603/*
danbdf1e242010-06-25 15:16:25 +00001604** Construct a WalInterator object that can be used to loop over all
dan302ce472018-03-02 15:42:20 +00001605** pages in the WAL following frame nBackfill in ascending order. Frames
1606** nBackfill or earlier may be included - excluding them is an optimization
1607** only. The caller must hold the checkpoint lock.
drha2a42012010-05-18 18:01:08 +00001608**
1609** On success, make *pp point to the newly allocated WalInterator object
danbdf1e242010-06-25 15:16:25 +00001610** return SQLITE_OK. Otherwise, return an error code. If this routine
1611** returns an error, the value of *pp is undefined.
drha2a42012010-05-18 18:01:08 +00001612**
1613** The calling routine should invoke walIteratorFree() to destroy the
danbdf1e242010-06-25 15:16:25 +00001614** WalIterator object when it has finished with it.
drha2a42012010-05-18 18:01:08 +00001615*/
dan302ce472018-03-02 15:42:20 +00001616static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){
dan067f3162010-06-14 10:30:12 +00001617 WalIterator *p; /* Return value */
1618 int nSegment; /* Number of segments to merge */
1619 u32 iLast; /* Last frame in log */
drhf6ad2012019-04-13 14:07:57 +00001620 sqlite3_int64 nByte; /* Number of bytes to allocate */
dan067f3162010-06-14 10:30:12 +00001621 int i; /* Iterator variable */
1622 ht_slot *aTmp; /* Temp space used by merge-sort */
danbdf1e242010-06-25 15:16:25 +00001623 int rc = SQLITE_OK; /* Return Code */
drha2a42012010-05-18 18:01:08 +00001624
danbdf1e242010-06-25 15:16:25 +00001625 /* This routine only runs while holding the checkpoint lock. And
1626 ** it only runs if there is actually content in the log (mxFrame>0).
drha2a42012010-05-18 18:01:08 +00001627 */
danbdf1e242010-06-25 15:16:25 +00001628 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
dan13a3cb82010-06-11 19:04:21 +00001629 iLast = pWal->hdr.mxFrame;
drha2a42012010-05-18 18:01:08 +00001630
danbdf1e242010-06-25 15:16:25 +00001631 /* Allocate space for the WalIterator object. */
dan13a3cb82010-06-11 19:04:21 +00001632 nSegment = walFramePage(iLast) + 1;
1633 nByte = sizeof(WalIterator)
dan52d6fc02010-06-25 16:34:32 +00001634 + (nSegment-1)*sizeof(struct WalSegment)
1635 + iLast*sizeof(ht_slot);
drhf3cdcdc2015-04-29 16:50:28 +00001636 p = (WalIterator *)sqlite3_malloc64(nByte);
dan8f6097c2010-05-06 07:43:58 +00001637 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00001638 return SQLITE_NOMEM_BKPT;
drha2a42012010-05-18 18:01:08 +00001639 }
1640 memset(p, 0, nByte);
drha2a42012010-05-18 18:01:08 +00001641 p->nSegment = nSegment;
danbdf1e242010-06-25 15:16:25 +00001642
1643 /* Allocate temporary space used by the merge-sort routine. This block
1644 ** of memory will be freed before this function returns.
1645 */
drhf3cdcdc2015-04-29 16:50:28 +00001646 aTmp = (ht_slot *)sqlite3_malloc64(
dan52d6fc02010-06-25 16:34:32 +00001647 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1648 );
danbdf1e242010-06-25 15:16:25 +00001649 if( !aTmp ){
mistachkinfad30392016-02-13 23:43:46 +00001650 rc = SQLITE_NOMEM_BKPT;
danbdf1e242010-06-25 15:16:25 +00001651 }
1652
dan302ce472018-03-02 15:42:20 +00001653 for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){
drh4ece2f22018-06-09 16:49:00 +00001654 WalHashLoc sLoc;
dan13a3cb82010-06-11 19:04:21 +00001655
drh4ece2f22018-06-09 16:49:00 +00001656 rc = walHashGet(pWal, i, &sLoc);
danbdf1e242010-06-25 15:16:25 +00001657 if( rc==SQLITE_OK ){
dan52d6fc02010-06-25 16:34:32 +00001658 int j; /* Counter variable */
1659 int nEntry; /* Number of entries in this segment */
1660 ht_slot *aIndex; /* Sorted index for this segment */
1661
drh4ece2f22018-06-09 16:49:00 +00001662 sLoc.aPgno++;
drh519426a2010-07-09 03:19:07 +00001663 if( (i+1)==nSegment ){
drh4ece2f22018-06-09 16:49:00 +00001664 nEntry = (int)(iLast - sLoc.iZero);
drh519426a2010-07-09 03:19:07 +00001665 }else{
drh4ece2f22018-06-09 16:49:00 +00001666 nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno);
drh519426a2010-07-09 03:19:07 +00001667 }
drh4ece2f22018-06-09 16:49:00 +00001668 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero];
1669 sLoc.iZero++;
danbdf1e242010-06-25 15:16:25 +00001670
danbdf1e242010-06-25 15:16:25 +00001671 for(j=0; j<nEntry; j++){
shaneh5eba1f62010-07-02 17:05:03 +00001672 aIndex[j] = (ht_slot)j;
danbdf1e242010-06-25 15:16:25 +00001673 }
drh4ece2f22018-06-09 16:49:00 +00001674 walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry);
1675 p->aSegment[i].iZero = sLoc.iZero;
danbdf1e242010-06-25 15:16:25 +00001676 p->aSegment[i].nEntry = nEntry;
1677 p->aSegment[i].aIndex = aIndex;
drh4ece2f22018-06-09 16:49:00 +00001678 p->aSegment[i].aPgno = (u32 *)sLoc.aPgno;
dan13a3cb82010-06-11 19:04:21 +00001679 }
dan7c246102010-04-12 19:00:29 +00001680 }
drhcbd55b02014-11-04 14:22:27 +00001681 sqlite3_free(aTmp);
dan7c246102010-04-12 19:00:29 +00001682
danbdf1e242010-06-25 15:16:25 +00001683 if( rc!=SQLITE_OK ){
1684 walIteratorFree(p);
drh49cc2f32018-03-05 23:23:28 +00001685 p = 0;
danbdf1e242010-06-25 15:16:25 +00001686 }
dan8f6097c2010-05-06 07:43:58 +00001687 *pp = p;
danbdf1e242010-06-25 15:16:25 +00001688 return rc;
dan7c246102010-04-12 19:00:29 +00001689}
1690
dan7c246102010-04-12 19:00:29 +00001691/*
dana58f26f2010-11-16 18:56:51 +00001692** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1693** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1694** busy-handler function. Invoke it and retry the lock until either the
1695** lock is successfully obtained or the busy-handler returns 0.
1696*/
1697static int walBusyLock(
1698 Wal *pWal, /* WAL connection */
1699 int (*xBusy)(void*), /* Function to call when busy */
1700 void *pBusyArg, /* Context argument for xBusyHandler */
1701 int lockIdx, /* Offset of first byte to lock */
1702 int n /* Number of bytes to lock */
1703){
1704 int rc;
1705 do {
drhab372772015-12-02 16:10:16 +00001706 rc = walLockExclusive(pWal, lockIdx, n);
dana58f26f2010-11-16 18:56:51 +00001707 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1708 return rc;
1709}
1710
1711/*
danf2b8dd52010-11-18 19:28:01 +00001712** The cache of the wal-index header must be valid to call this function.
1713** Return the page-size in bytes used by the database.
1714*/
1715static int walPagesize(Wal *pWal){
1716 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1717}
1718
1719/*
danf26a1542014-12-02 19:04:54 +00001720** The following is guaranteed when this function is called:
1721**
1722** a) the WRITER lock is held,
1723** b) the entire log file has been checkpointed, and
1724** c) any existing readers are reading exclusively from the database
1725** file - there are no readers that may attempt to read a frame from
1726** the log file.
1727**
1728** This function updates the shared-memory structures so that the next
1729** client to write to the database (which may be this one) does so by
1730** writing frames into the start of the log file.
dan0fe8c1b2014-12-02 19:35:09 +00001731**
1732** The value of parameter salt1 is used as the aSalt[1] value in the
1733** new wal-index header. It should be passed a pseudo-random value (i.e.
1734** one obtained from sqlite3_randomness()).
danf26a1542014-12-02 19:04:54 +00001735*/
dan0fe8c1b2014-12-02 19:35:09 +00001736static void walRestartHdr(Wal *pWal, u32 salt1){
danf26a1542014-12-02 19:04:54 +00001737 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1738 int i; /* Loop counter */
1739 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
1740 pWal->nCkpt++;
1741 pWal->hdr.mxFrame = 0;
1742 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
dan0fe8c1b2014-12-02 19:35:09 +00001743 memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
danf26a1542014-12-02 19:04:54 +00001744 walIndexWriteHdr(pWal);
1745 pInfo->nBackfill = 0;
drh998147e2015-12-10 02:15:03 +00001746 pInfo->nBackfillAttempted = 0;
danf26a1542014-12-02 19:04:54 +00001747 pInfo->aReadMark[1] = 0;
1748 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1749 assert( pInfo->aReadMark[0]==0 );
1750}
1751
1752/*
drh73b64e42010-05-30 19:55:15 +00001753** Copy as much content as we can from the WAL back into the database file
1754** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1755**
1756** The amount of information copies from WAL to database might be limited
1757** by active readers. This routine will never overwrite a database page
1758** that a concurrent reader might be using.
1759**
1760** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1761** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
1762** checkpoints are always run by a background thread or background
1763** process, foreground threads will never block on a lengthy fsync call.
1764**
1765** Fsync is called on the WAL before writing content out of the WAL and
1766** into the database. This ensures that if the new content is persistent
1767** in the WAL and can be recovered following a power-loss or hard reset.
1768**
1769** Fsync is also called on the database file if (and only if) the entire
1770** WAL content is copied into the database file. This second fsync makes
1771** it safe to delete the WAL since the new content will persist in the
1772** database file.
1773**
1774** This routine uses and updates the nBackfill field of the wal-index header.
peter.d.reid60ec9142014-09-06 16:39:46 +00001775** This is the only routine that will increase the value of nBackfill.
drh73b64e42010-05-30 19:55:15 +00001776** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1777** its value.)
1778**
1779** The caller must be holding sufficient locks to ensure that no other
1780** checkpoint is running (in any other thread or process) at the same
1781** time.
dan7c246102010-04-12 19:00:29 +00001782*/
drh7ed91f22010-04-29 22:34:07 +00001783static int walCheckpoint(
1784 Wal *pWal, /* Wal connection */
dan7fb89902016-08-12 16:21:15 +00001785 sqlite3 *db, /* Check for interrupts on this handle */
dancdc1f042010-11-18 12:11:05 +00001786 int eMode, /* One of PASSIVE, FULL or RESTART */
drhdd90d7e2014-12-03 19:25:41 +00001787 int (*xBusy)(void*), /* Function to call when busy */
dana58f26f2010-11-16 18:56:51 +00001788 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00001789 int sync_flags, /* Flags for OsSync() (or 0) */
dan9c5e3682011-02-07 15:12:12 +00001790 u8 *zBuf /* Temporary buffer to use */
dan7c246102010-04-12 19:00:29 +00001791){
dan976b0032015-01-29 19:12:12 +00001792 int rc = SQLITE_OK; /* Return code */
drhb2eced52010-08-12 02:41:12 +00001793 int szPage; /* Database page-size */
drh7ed91f22010-04-29 22:34:07 +00001794 WalIterator *pIter = 0; /* Wal iterator context */
dan7c246102010-04-12 19:00:29 +00001795 u32 iDbpage = 0; /* Next database page to write */
drh7ed91f22010-04-29 22:34:07 +00001796 u32 iFrame = 0; /* Wal frame containing data for iDbpage */
drh73b64e42010-05-30 19:55:15 +00001797 u32 mxSafeFrame; /* Max frame that can be backfilled */
dan502019c2010-07-28 14:26:17 +00001798 u32 mxPage; /* Max database page to write */
drh73b64e42010-05-30 19:55:15 +00001799 int i; /* Loop counter */
drh73b64e42010-05-30 19:55:15 +00001800 volatile WalCkptInfo *pInfo; /* The checkpoint status information */
dan7c246102010-04-12 19:00:29 +00001801
danf2b8dd52010-11-18 19:28:01 +00001802 szPage = walPagesize(pWal);
drh9b78f792010-08-14 21:21:24 +00001803 testcase( szPage<=32768 );
1804 testcase( szPage>=65536 );
drh7d208442010-12-16 02:06:29 +00001805 pInfo = walCkptInfo(pWal);
dan976b0032015-01-29 19:12:12 +00001806 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
danf544b4c2010-06-25 11:35:52 +00001807
dan976b0032015-01-29 19:12:12 +00001808 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
1809 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
1810 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
drh73b64e42010-05-30 19:55:15 +00001811
dan976b0032015-01-29 19:12:12 +00001812 /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1813 ** safe to write into the database. Frames beyond mxSafeFrame might
1814 ** overwrite database pages that are in use by active readers and thus
1815 ** cannot be backfilled from the WAL.
danf23da962013-03-23 21:00:41 +00001816 */
dan976b0032015-01-29 19:12:12 +00001817 mxSafeFrame = pWal->hdr.mxFrame;
1818 mxPage = pWal->hdr.nPage;
1819 for(i=1; i<WAL_NREADER; i++){
dan1fe0af22015-04-13 17:43:43 +00001820 /* Thread-sanitizer reports that the following is an unsafe read,
1821 ** as some other thread may be in the process of updating the value
1822 ** of the aReadMark[] slot. The assumption here is that if that is
1823 ** happening, the other client may only be increasing the value,
1824 ** not decreasing it. So assuming either that either the "old" or
1825 ** "new" version of the value is read, and not some arbitrary value
1826 ** that would never be written by a real client, things are still
1827 ** safe. */
dan976b0032015-01-29 19:12:12 +00001828 u32 y = pInfo->aReadMark[i];
1829 if( mxSafeFrame>y ){
1830 assert( y<=pWal->hdr.mxFrame );
1831 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
1832 if( rc==SQLITE_OK ){
1833 pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
1834 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1835 }else if( rc==SQLITE_BUSY ){
1836 mxSafeFrame = y;
1837 xBusy = 0;
1838 }else{
1839 goto walcheckpoint_out;
drh73b64e42010-05-30 19:55:15 +00001840 }
1841 }
1842 }
1843
danf0cb61d2018-03-02 16:52:47 +00001844 /* Allocate the iterator */
1845 if( pInfo->nBackfill<mxSafeFrame ){
1846 rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter);
1847 assert( rc==SQLITE_OK || pIter==0 );
1848 }
1849
1850 if( pIter
dan976b0032015-01-29 19:12:12 +00001851 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK
1852 ){
dan976b0032015-01-29 19:12:12 +00001853 u32 nBackfill = pInfo->nBackfill;
dana58f26f2010-11-16 18:56:51 +00001854
dan3bf83cc2015-12-10 15:45:15 +00001855 pInfo->nBackfillAttempted = mxSafeFrame;
1856
dan976b0032015-01-29 19:12:12 +00001857 /* Sync the WAL to disk */
drhdaaae7b2017-08-25 01:14:43 +00001858 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
dan976b0032015-01-29 19:12:12 +00001859
1860 /* If the database may grow as a result of this checkpoint, hint
1861 ** about the eventual size of the db file to the VFS layer.
1862 */
1863 if( rc==SQLITE_OK ){
1864 i64 nReq = ((i64)mxPage * szPage);
mistachkin6389a7b2018-08-08 20:46:35 +00001865 i64 nSize; /* Current size of database file */
dan976b0032015-01-29 19:12:12 +00001866 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1867 if( rc==SQLITE_OK && nSize<nReq ){
1868 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1869 }
1870 }
1871
1872
1873 /* Iterate through the contents of the WAL, copying data to the db file */
1874 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
1875 i64 iOffset;
1876 assert( walFramePgno(pWal, iFrame)==iDbpage );
dan7fb89902016-08-12 16:21:15 +00001877 if( db->u1.isInterrupted ){
1878 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
1879 break;
1880 }
dan976b0032015-01-29 19:12:12 +00001881 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
1882 continue;
1883 }
1884 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
1885 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
1886 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1887 if( rc!=SQLITE_OK ) break;
1888 iOffset = (iDbpage-1)*(i64)szPage;
1889 testcase( IS_BIG_INT(iOffset) );
1890 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1891 if( rc!=SQLITE_OK ) break;
1892 }
1893
1894 /* If work was actually accomplished... */
1895 if( rc==SQLITE_OK ){
1896 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
1897 i64 szDb = pWal->hdr.nPage*(i64)szPage;
1898 testcase( IS_BIG_INT(szDb) );
1899 rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
drhdaaae7b2017-08-25 01:14:43 +00001900 if( rc==SQLITE_OK ){
1901 rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags));
dan976b0032015-01-29 19:12:12 +00001902 }
1903 }
1904 if( rc==SQLITE_OK ){
1905 pInfo->nBackfill = mxSafeFrame;
1906 }
1907 }
1908
1909 /* Release the reader lock held while backfilling */
1910 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
1911 }
1912
1913 if( rc==SQLITE_BUSY ){
1914 /* Reset the return code so as not to report a checkpoint failure
1915 ** just because there are active readers. */
1916 rc = SQLITE_OK;
1917 }
dan7c246102010-04-12 19:00:29 +00001918 }
1919
danf26a1542014-12-02 19:04:54 +00001920 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
1921 ** entire wal file has been copied into the database file, then block
1922 ** until all readers have finished using the wal file. This ensures that
1923 ** the next process to write to the database restarts the wal file.
danf2b8dd52010-11-18 19:28:01 +00001924 */
1925 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
dancdc1f042010-11-18 12:11:05 +00001926 assert( pWal->writeLock );
danf2b8dd52010-11-18 19:28:01 +00001927 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1928 rc = SQLITE_BUSY;
danf26a1542014-12-02 19:04:54 +00001929 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
dan0fe8c1b2014-12-02 19:35:09 +00001930 u32 salt1;
1931 sqlite3_randomness(4, &salt1);
dan976b0032015-01-29 19:12:12 +00001932 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
danf2b8dd52010-11-18 19:28:01 +00001933 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
1934 if( rc==SQLITE_OK ){
danf26a1542014-12-02 19:04:54 +00001935 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
drha25165f2014-12-04 04:50:59 +00001936 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
1937 ** SQLITE_CHECKPOINT_RESTART with the addition that it also
1938 ** truncates the log file to zero bytes just prior to a
1939 ** successful return.
danf26a1542014-12-02 19:04:54 +00001940 **
1941 ** In theory, it might be safe to do this without updating the
1942 ** wal-index header in shared memory, as all subsequent reader or
1943 ** writer clients should see that the entire log file has been
1944 ** checkpointed and behave accordingly. This seems unsafe though,
1945 ** as it would leave the system in a state where the contents of
1946 ** the wal-index header do not match the contents of the
1947 ** file-system. To avoid this, update the wal-index header to
1948 ** indicate that the log file contains zero valid frames. */
dan0fe8c1b2014-12-02 19:35:09 +00001949 walRestartHdr(pWal, salt1);
danf26a1542014-12-02 19:04:54 +00001950 rc = sqlite3OsTruncate(pWal->pWalFd, 0);
1951 }
danf2b8dd52010-11-18 19:28:01 +00001952 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1953 }
dancdc1f042010-11-18 12:11:05 +00001954 }
1955 }
1956
dan83f42d12010-06-04 10:37:05 +00001957 walcheckpoint_out:
drh7ed91f22010-04-29 22:34:07 +00001958 walIteratorFree(pIter);
dan7c246102010-04-12 19:00:29 +00001959 return rc;
1960}
1961
1962/*
danf60b7f32011-12-16 13:24:27 +00001963** If the WAL file is currently larger than nMax bytes in size, truncate
1964** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
drh8dd4afa2011-12-08 19:50:32 +00001965*/
danf60b7f32011-12-16 13:24:27 +00001966static void walLimitSize(Wal *pWal, i64 nMax){
1967 i64 sz;
1968 int rx;
1969 sqlite3BeginBenignMalloc();
1970 rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
1971 if( rx==SQLITE_OK && (sz > nMax ) ){
1972 rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
1973 }
1974 sqlite3EndBenignMalloc();
1975 if( rx ){
1976 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
drh8dd4afa2011-12-08 19:50:32 +00001977 }
1978}
1979
1980/*
dan7c246102010-04-12 19:00:29 +00001981** Close a connection to a log file.
1982*/
drhc438efd2010-04-26 00:19:45 +00001983int sqlite3WalClose(
drh7ed91f22010-04-29 22:34:07 +00001984 Wal *pWal, /* Wal to close */
dan7fb89902016-08-12 16:21:15 +00001985 sqlite3 *db, /* For interrupt flag */
danc5118782010-04-17 17:34:41 +00001986 int sync_flags, /* Flags to pass to OsSync() (or 0) */
danb6e099a2010-05-04 14:47:39 +00001987 int nBuf,
1988 u8 *zBuf /* Buffer of at least nBuf bytes */
dan7c246102010-04-12 19:00:29 +00001989){
1990 int rc = SQLITE_OK;
drh7ed91f22010-04-29 22:34:07 +00001991 if( pWal ){
dan30c86292010-04-30 16:24:46 +00001992 int isDelete = 0; /* True to unlink wal and wal-index files */
1993
1994 /* If an EXCLUSIVE lock can be obtained on the database file (using the
1995 ** ordinary, rollback-mode locking methods, this guarantees that the
1996 ** connection associated with this log file is the only connection to
1997 ** the database. In this case checkpoint the database and unlink both
1998 ** the wal and wal-index files.
1999 **
2000 ** The EXCLUSIVE lock is not released before returning.
2001 */
dan4a5bad52016-11-11 17:08:51 +00002002 if( zBuf!=0
dan298af022016-10-31 16:16:49 +00002003 && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE))
2004 ){
dan8c408002010-11-01 17:38:24 +00002005 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
2006 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
2007 }
dan7fb89902016-08-12 16:21:15 +00002008 rc = sqlite3WalCheckpoint(pWal, db,
2009 SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
dancdc1f042010-11-18 12:11:05 +00002010 );
drheed42502011-12-16 15:38:52 +00002011 if( rc==SQLITE_OK ){
2012 int bPersist = -1;
drhc02372c2012-01-10 17:59:59 +00002013 sqlite3OsFileControlHint(
dan6f2f19a2012-01-10 16:56:39 +00002014 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
2015 );
drheed42502011-12-16 15:38:52 +00002016 if( bPersist!=1 ){
2017 /* Try to delete the WAL file if the checkpoint completed and
2018 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
2019 ** mode (!bPersist) */
2020 isDelete = 1;
2021 }else if( pWal->mxWalSize>=0 ){
2022 /* Try to truncate the WAL file to zero bytes if the checkpoint
2023 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
2024 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
2025 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate
2026 ** to zero bytes as truncating to the journal_size_limit might
2027 ** leave a corrupt WAL file on disk. */
2028 walLimitSize(pWal, 0);
2029 }
dan30c86292010-04-30 16:24:46 +00002030 }
dan30c86292010-04-30 16:24:46 +00002031 }
2032
dan1018e902010-05-05 15:33:05 +00002033 walIndexClose(pWal, isDelete);
drhd9e5c4f2010-05-12 18:01:39 +00002034 sqlite3OsClose(pWal->pWalFd);
dan30c86292010-04-30 16:24:46 +00002035 if( isDelete ){
drh92c45cf2012-01-10 00:24:59 +00002036 sqlite3BeginBenignMalloc();
drhd9e5c4f2010-05-12 18:01:39 +00002037 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
drh92c45cf2012-01-10 00:24:59 +00002038 sqlite3EndBenignMalloc();
dan30c86292010-04-30 16:24:46 +00002039 }
drhc74c3332010-05-31 12:15:19 +00002040 WALTRACE(("WAL%p: closed\n", pWal));
shaneh8a300f82010-07-02 18:15:31 +00002041 sqlite3_free((void *)pWal->apWiData);
drh7ed91f22010-04-29 22:34:07 +00002042 sqlite3_free(pWal);
dan7c246102010-04-12 19:00:29 +00002043 }
2044 return rc;
2045}
2046
2047/*
drha2a42012010-05-18 18:01:08 +00002048** Try to read the wal-index header. Return 0 on success and 1 if
2049** there is a problem.
2050**
2051** The wal-index is in shared memory. Another thread or process might
2052** be writing the header at the same time this procedure is trying to
2053** read it, which might result in inconsistency. A dirty read is detected
drh73b64e42010-05-30 19:55:15 +00002054** by verifying that both copies of the header are the same and also by
2055** a checksum on the header.
drha2a42012010-05-18 18:01:08 +00002056**
2057** If and only if the read is consistent and the header is different from
2058** pWal->hdr, then pWal->hdr is updated to the content of the new header
2059** and *pChanged is set to 1.
danb9bf16b2010-04-14 11:23:30 +00002060**
dan84670502010-05-07 05:46:23 +00002061** If the checksum cannot be verified return non-zero. If the header
2062** is read successfully and the checksum verified, return zero.
danb9bf16b2010-04-14 11:23:30 +00002063*/
drh7750ab42010-06-26 22:16:02 +00002064static int walIndexTryHdr(Wal *pWal, int *pChanged){
dan4280eb32010-06-12 12:02:35 +00002065 u32 aCksum[2]; /* Checksum on the header content */
2066 WalIndexHdr h1, h2; /* Two copies of the header content */
2067 WalIndexHdr volatile *aHdr; /* Header in shared memory */
danb9bf16b2010-04-14 11:23:30 +00002068
dan4280eb32010-06-12 12:02:35 +00002069 /* The first page of the wal-index must be mapped at this point. */
2070 assert( pWal->nWiData>0 && pWal->apWiData[0] );
drh79e6c782010-04-30 02:13:26 +00002071
drh6cef0cf2010-08-16 16:31:43 +00002072 /* Read the header. This might happen concurrently with a write to the
drh73b64e42010-05-30 19:55:15 +00002073 ** same area of shared memory on a different CPU in a SMP,
2074 ** meaning it is possible that an inconsistent snapshot is read
dan84670502010-05-07 05:46:23 +00002075 ** from the file. If this happens, return non-zero.
drhf0b20f82010-05-21 13:16:18 +00002076 **
2077 ** There are two copies of the header at the beginning of the wal-index.
2078 ** When reading, read [0] first then [1]. Writes are in the reverse order.
2079 ** Memory barriers are used to prevent the compiler or the hardware from
2080 ** reordering the reads and writes.
danb9bf16b2010-04-14 11:23:30 +00002081 */
dan4280eb32010-06-12 12:02:35 +00002082 aHdr = walIndexHdr(pWal);
2083 memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
dan8c408002010-11-01 17:38:24 +00002084 walShmBarrier(pWal);
dan4280eb32010-06-12 12:02:35 +00002085 memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
drh286a2882010-05-20 23:51:06 +00002086
drhf0b20f82010-05-21 13:16:18 +00002087 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
2088 return 1; /* Dirty read */
drh286a2882010-05-20 23:51:06 +00002089 }
drh4b82c382010-05-31 18:24:19 +00002090 if( h1.isInit==0 ){
drhf0b20f82010-05-21 13:16:18 +00002091 return 1; /* Malformed header - probably all zeros */
2092 }
danb8fd6c22010-05-24 10:39:36 +00002093 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
drhf0b20f82010-05-21 13:16:18 +00002094 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
2095 return 1; /* Checksum does not match */
danb9bf16b2010-04-14 11:23:30 +00002096 }
2097
drhf0b20f82010-05-21 13:16:18 +00002098 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
dana8614692010-05-06 14:42:34 +00002099 *pChanged = 1;
drhf0b20f82010-05-21 13:16:18 +00002100 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
drh9b78f792010-08-14 21:21:24 +00002101 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2102 testcase( pWal->szPage<=32768 );
2103 testcase( pWal->szPage>=65536 );
danb9bf16b2010-04-14 11:23:30 +00002104 }
dan84670502010-05-07 05:46:23 +00002105
2106 /* The header was successfully read. Return zero. */
2107 return 0;
danb9bf16b2010-04-14 11:23:30 +00002108}
2109
2110/*
dan08ecefc2017-11-07 21:15:07 +00002111** This is the value that walTryBeginRead returns when it needs to
2112** be retried.
2113*/
2114#define WAL_RETRY (-1)
2115
2116/*
drha2a42012010-05-18 18:01:08 +00002117** Read the wal-index header from the wal-index and into pWal->hdr.
drha927e942010-06-24 02:46:48 +00002118** If the wal-header appears to be corrupt, try to reconstruct the
2119** wal-index from the WAL before returning.
drha2a42012010-05-18 18:01:08 +00002120**
2121** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
peter.d.reid60ec9142014-09-06 16:39:46 +00002122** changed by this operation. If pWal->hdr is unchanged, set *pChanged
drha2a42012010-05-18 18:01:08 +00002123** to 0.
2124**
drh7ed91f22010-04-29 22:34:07 +00002125** If the wal-index header is successfully read, return SQLITE_OK.
danb9bf16b2010-04-14 11:23:30 +00002126** Otherwise an SQLite error code.
2127*/
drh7ed91f22010-04-29 22:34:07 +00002128static int walIndexReadHdr(Wal *pWal, int *pChanged){
dan84670502010-05-07 05:46:23 +00002129 int rc; /* Return code */
drh73b64e42010-05-30 19:55:15 +00002130 int badHdr; /* True if a header read failed */
drha927e942010-06-24 02:46:48 +00002131 volatile u32 *page0; /* Chunk of wal-index containing header */
danb9bf16b2010-04-14 11:23:30 +00002132
dan4280eb32010-06-12 12:02:35 +00002133 /* Ensure that page 0 of the wal-index (the page that contains the
2134 ** wal-index header) is mapped. Return early if an error occurs here.
2135 */
dana8614692010-05-06 14:42:34 +00002136 assert( pChanged );
dan4280eb32010-06-12 12:02:35 +00002137 rc = walIndexPage(pWal, 0, &page0);
danc7991bd2010-05-05 19:04:59 +00002138 if( rc!=SQLITE_OK ){
drh85bc6df2017-11-10 20:00:50 +00002139 assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */
2140 if( rc==SQLITE_READONLY_CANTINIT ){
2141 /* The SQLITE_READONLY_CANTINIT return means that the shared-memory
2142 ** was openable but is not writable, and this thread is unable to
2143 ** confirm that another write-capable connection has the shared-memory
2144 ** open, and hence the content of the shared-memory is unreliable,
2145 ** since the shared-memory might be inconsistent with the WAL file
2146 ** and there is no writer on hand to fix it. */
drhc05a0632017-11-11 20:11:01 +00002147 assert( page0==0 );
2148 assert( pWal->writeLock==0 );
2149 assert( pWal->readOnly & WAL_SHM_RDONLY );
drh85bc6df2017-11-10 20:00:50 +00002150 pWal->bShmUnreliable = 1;
2151 pWal->exclusiveMode = WAL_HEAPMEMORY_MODE;
2152 *pChanged = 1;
2153 }else{
2154 return rc; /* Any other non-OK return is just an error */
2155 }
drhc05a0632017-11-11 20:11:01 +00002156 }else{
2157 /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock
2158 ** is zero, which prevents the SHM from growing */
2159 testcase( page0!=0 );
2160 }
2161 assert( page0!=0 || pWal->writeLock==0 );
drh7ed91f22010-04-29 22:34:07 +00002162
dan4280eb32010-06-12 12:02:35 +00002163 /* If the first page of the wal-index has been mapped, try to read the
2164 ** wal-index header immediately, without holding any lock. This usually
2165 ** works, but may fail if the wal-index header is corrupt or currently
drha927e942010-06-24 02:46:48 +00002166 ** being modified by another thread or process.
danb9bf16b2010-04-14 11:23:30 +00002167 */
dan4280eb32010-06-12 12:02:35 +00002168 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
drhbab7b912010-05-26 17:31:58 +00002169
drh73b64e42010-05-30 19:55:15 +00002170 /* If the first attempt failed, it might have been due to a race
drh66dfec8b2011-06-01 20:01:49 +00002171 ** with a writer. So get a WRITE lock and try again.
drh73b64e42010-05-30 19:55:15 +00002172 */
dand54ff602010-05-31 11:16:30 +00002173 assert( badHdr==0 || pWal->writeLock==0 );
dan4edc6bf2011-05-10 17:31:29 +00002174 if( badHdr ){
drh85bc6df2017-11-10 20:00:50 +00002175 if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){
dan4edc6bf2011-05-10 17:31:29 +00002176 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2177 walUnlockShared(pWal, WAL_WRITE_LOCK);
2178 rc = SQLITE_READONLY_RECOVERY;
drhbab7b912010-05-26 17:31:58 +00002179 }
drhab372772015-12-02 16:10:16 +00002180 }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
dan4edc6bf2011-05-10 17:31:29 +00002181 pWal->writeLock = 1;
2182 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2183 badHdr = walIndexTryHdr(pWal, pChanged);
2184 if( badHdr ){
2185 /* If the wal-index header is still malformed even while holding
2186 ** a WRITE lock, it can only mean that the header is corrupted and
2187 ** needs to be reconstructed. So run recovery to do exactly that.
2188 */
2189 rc = walIndexRecover(pWal);
2190 *pChanged = 1;
2191 }
2192 }
2193 pWal->writeLock = 0;
2194 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhbab7b912010-05-26 17:31:58 +00002195 }
danb9bf16b2010-04-14 11:23:30 +00002196 }
2197
drha927e942010-06-24 02:46:48 +00002198 /* If the header is read successfully, check the version number to make
2199 ** sure the wal-index was not constructed with some future format that
2200 ** this version of SQLite cannot understand.
2201 */
2202 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2203 rc = SQLITE_CANTOPEN_BKPT;
2204 }
drh85bc6df2017-11-10 20:00:50 +00002205 if( pWal->bShmUnreliable ){
dan11caf4f2017-11-04 18:10:03 +00002206 if( rc!=SQLITE_OK ){
2207 walIndexClose(pWal, 0);
drh85bc6df2017-11-10 20:00:50 +00002208 pWal->bShmUnreliable = 0;
dan08ecefc2017-11-07 21:15:07 +00002209 assert( pWal->nWiData>0 && pWal->apWiData[0]==0 );
drh8b17ac12017-11-14 03:42:52 +00002210 /* walIndexRecover() might have returned SHORT_READ if a concurrent
2211 ** writer truncated the WAL out from under it. If that happens, it
2212 ** indicates that a writer has fixed the SHM file for us, so retry */
dan08ecefc2017-11-07 21:15:07 +00002213 if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY;
dan11caf4f2017-11-04 18:10:03 +00002214 }
2215 pWal->exclusiveMode = WAL_NORMAL_MODE;
2216 }
drha927e942010-06-24 02:46:48 +00002217
danb9bf16b2010-04-14 11:23:30 +00002218 return rc;
2219}
2220
2221/*
drh85bc6df2017-11-10 20:00:50 +00002222** Open a transaction in a connection where the shared-memory is read-only
2223** and where we cannot verify that there is a separate write-capable connection
2224** on hand to keep the shared-memory up-to-date with the WAL file.
2225**
2226** This can happen, for example, when the shared-memory is implemented by
2227** memory-mapping a *-shm file, where a prior writer has shut down and
2228** left the *-shm file on disk, and now the present connection is trying
2229** to use that database but lacks write permission on the *-shm file.
2230** Other scenarios are also possible, depending on the VFS implementation.
2231**
2232** Precondition:
2233**
2234** The *-wal file has been read and an appropriate wal-index has been
2235** constructed in pWal->apWiData[] using heap memory instead of shared
2236** memory.
dan11caf4f2017-11-04 18:10:03 +00002237**
2238** If this function returns SQLITE_OK, then the read transaction has
2239** been successfully opened. In this case output variable (*pChanged)
2240** is set to true before returning if the caller should discard the
2241** contents of the page cache before proceeding. Or, if it returns
2242** WAL_RETRY, then the heap memory wal-index has been discarded and
2243** the caller should retry opening the read transaction from the
2244** beginning (including attempting to map the *-shm file).
2245**
2246** If an error occurs, an SQLite error code is returned.
2247*/
drh85bc6df2017-11-10 20:00:50 +00002248static int walBeginShmUnreliable(Wal *pWal, int *pChanged){
dan11caf4f2017-11-04 18:10:03 +00002249 i64 szWal; /* Size of wal file on disk in bytes */
2250 i64 iOffset; /* Current offset when reading wal file */
2251 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
2252 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
2253 int szFrame; /* Number of bytes in buffer aFrame[] */
2254 u8 *aData; /* Pointer to data part of aFrame buffer */
2255 volatile void *pDummy; /* Dummy argument for xShmMap */
2256 int rc; /* Return code */
2257 u32 aSaveCksum[2]; /* Saved copy of pWal->hdr.aFrameCksum */
2258
drh85bc6df2017-11-10 20:00:50 +00002259 assert( pWal->bShmUnreliable );
dan11caf4f2017-11-04 18:10:03 +00002260 assert( pWal->readOnly & WAL_SHM_RDONLY );
2261 assert( pWal->nWiData>0 && pWal->apWiData[0] );
2262
2263 /* Take WAL_READ_LOCK(0). This has the effect of preventing any
drh85bc6df2017-11-10 20:00:50 +00002264 ** writers from running a checkpoint, but does not stop them
dan11caf4f2017-11-04 18:10:03 +00002265 ** from running recovery. */
2266 rc = walLockShared(pWal, WAL_READ_LOCK(0));
2267 if( rc!=SQLITE_OK ){
danab548382017-11-06 19:49:34 +00002268 if( rc==SQLITE_BUSY ) rc = WAL_RETRY;
drh85bc6df2017-11-10 20:00:50 +00002269 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002270 }
2271 pWal->readLock = 0;
2272
drh85bc6df2017-11-10 20:00:50 +00002273 /* Check to see if a separate writer has attached to the shared-memory area,
2274 ** thus making the shared-memory "reliable" again. Do this by invoking
2275 ** the xShmMap() routine of the VFS and looking to see if the return
2276 ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT.
drh9214c1e2017-11-08 19:26:27 +00002277 **
drh85bc6df2017-11-10 20:00:50 +00002278 ** If the shared-memory is now "reliable" return WAL_RETRY, which will
2279 ** cause the heap-memory WAL-index to be discarded and the actual
2280 ** shared memory to be used in its place.
drh870655b2017-11-11 13:30:44 +00002281 **
2282 ** This step is important because, even though this connection is holding
2283 ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might
2284 ** have already checkpointed the WAL file and, while the current
2285 ** is active, wrap the WAL and start overwriting frames that this
2286 ** process wants to use.
2287 **
2288 ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has
2289 ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY
2290 ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations,
2291 ** even if some external agent does a "chmod" to make the shared-memory
2292 ** writable by us, until sqlite3OsShmUnmap() has been called.
2293 ** This is a requirement on the VFS implementation.
2294 */
dan11caf4f2017-11-04 18:10:03 +00002295 rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy);
drh9214c1e2017-11-08 19:26:27 +00002296 assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */
drh7e45e3a2017-11-08 17:32:12 +00002297 if( rc!=SQLITE_READONLY_CANTINIT ){
dan11caf4f2017-11-04 18:10:03 +00002298 rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc);
drh85bc6df2017-11-10 20:00:50 +00002299 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002300 }
2301
drh870655b2017-11-11 13:30:44 +00002302 /* We reach this point only if the real shared-memory is still unreliable.
drh85bc6df2017-11-10 20:00:50 +00002303 ** Assume the in-memory WAL-index substitute is correct and load it
2304 ** into pWal->hdr.
2305 */
dan11caf4f2017-11-04 18:10:03 +00002306 memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr));
drh85bc6df2017-11-10 20:00:50 +00002307
drh870655b2017-11-11 13:30:44 +00002308 /* Make sure some writer hasn't come in and changed the WAL file out
2309 ** from under us, then disconnected, while we were not looking.
drh85bc6df2017-11-10 20:00:50 +00002310 */
dan11caf4f2017-11-04 18:10:03 +00002311 rc = sqlite3OsFileSize(pWal->pWalFd, &szWal);
danab548382017-11-06 19:49:34 +00002312 if( rc!=SQLITE_OK ){
drh85bc6df2017-11-10 20:00:50 +00002313 goto begin_unreliable_shm_out;
danab548382017-11-06 19:49:34 +00002314 }
2315 if( szWal<WAL_HDRSIZE ){
dan11caf4f2017-11-04 18:10:03 +00002316 /* If the wal file is too small to contain a wal-header and the
2317 ** wal-index header has mxFrame==0, then it must be safe to proceed
2318 ** reading the database file only. However, the page cache cannot
2319 ** be trusted, as a read/write connection may have connected, written
2320 ** the db, run a checkpoint, truncated the wal file and disconnected
2321 ** since this client's last read transaction. */
2322 *pChanged = 1;
danab548382017-11-06 19:49:34 +00002323 rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY);
drh85bc6df2017-11-10 20:00:50 +00002324 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002325 }
2326
2327 /* Check the salt keys at the start of the wal file still match. */
2328 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
2329 if( rc!=SQLITE_OK ){
drh85bc6df2017-11-10 20:00:50 +00002330 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002331 }
2332 if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){
drh870655b2017-11-11 13:30:44 +00002333 /* Some writer has wrapped the WAL file while we were not looking.
2334 ** Return WAL_RETRY which will cause the in-memory WAL-index to be
2335 ** rebuilt. */
dan11caf4f2017-11-04 18:10:03 +00002336 rc = WAL_RETRY;
drh85bc6df2017-11-10 20:00:50 +00002337 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002338 }
2339
2340 /* Allocate a buffer to read frames into */
2341 szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE;
2342 aFrame = (u8 *)sqlite3_malloc64(szFrame);
2343 if( aFrame==0 ){
2344 rc = SQLITE_NOMEM_BKPT;
drh85bc6df2017-11-10 20:00:50 +00002345 goto begin_unreliable_shm_out;
dan11caf4f2017-11-04 18:10:03 +00002346 }
2347 aData = &aFrame[WAL_FRAME_HDRSIZE];
2348
dancbd33212017-11-04 21:06:35 +00002349 /* Check to see if a complete transaction has been appended to the
2350 ** wal file since the heap-memory wal-index was created. If so, the
2351 ** heap-memory wal-index is discarded and WAL_RETRY returned to
2352 ** the caller. */
dan11caf4f2017-11-04 18:10:03 +00002353 aSaveCksum[0] = pWal->hdr.aFrameCksum[0];
2354 aSaveCksum[1] = pWal->hdr.aFrameCksum[1];
2355 for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage);
2356 iOffset+szFrame<=szWal;
2357 iOffset+=szFrame
2358 ){
2359 u32 pgno; /* Database page number for frame */
2360 u32 nTruncate; /* dbsize field from frame header */
2361
2362 /* Read and decode the next log frame. */
2363 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
danab548382017-11-06 19:49:34 +00002364 if( rc!=SQLITE_OK ) break;
dan11caf4f2017-11-04 18:10:03 +00002365 if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break;
2366
dancbd33212017-11-04 21:06:35 +00002367 /* If nTruncate is non-zero, then a complete transaction has been
2368 ** appended to this wal file. Set rc to WAL_RETRY and break out of
2369 ** the loop. */
dan11caf4f2017-11-04 18:10:03 +00002370 if( nTruncate ){
2371 rc = WAL_RETRY;
2372 break;
2373 }
2374 }
2375 pWal->hdr.aFrameCksum[0] = aSaveCksum[0];
2376 pWal->hdr.aFrameCksum[1] = aSaveCksum[1];
2377
drh85bc6df2017-11-10 20:00:50 +00002378 begin_unreliable_shm_out:
dan11caf4f2017-11-04 18:10:03 +00002379 sqlite3_free(aFrame);
2380 if( rc!=SQLITE_OK ){
2381 int i;
2382 for(i=0; i<pWal->nWiData; i++){
2383 sqlite3_free((void*)pWal->apWiData[i]);
2384 pWal->apWiData[i] = 0;
2385 }
drh85bc6df2017-11-10 20:00:50 +00002386 pWal->bShmUnreliable = 0;
dan11caf4f2017-11-04 18:10:03 +00002387 sqlite3WalEndReadTransaction(pWal);
2388 *pChanged = 1;
2389 }
2390 return rc;
2391}
2392
2393/*
drh73b64e42010-05-30 19:55:15 +00002394** Attempt to start a read transaction. This might fail due to a race or
2395** other transient condition. When that happens, it returns WAL_RETRY to
2396** indicate to the caller that it is safe to retry immediately.
2397**
drha927e942010-06-24 02:46:48 +00002398** On success return SQLITE_OK. On a permanent failure (such an
drh73b64e42010-05-30 19:55:15 +00002399** I/O error or an SQLITE_BUSY because another process is running
2400** recovery) return a positive error code.
2401**
drha927e942010-06-24 02:46:48 +00002402** The useWal parameter is true to force the use of the WAL and disable
2403** the case where the WAL is bypassed because it has been completely
2404** checkpointed. If useWal==0 then this routine calls walIndexReadHdr()
2405** to make a copy of the wal-index header into pWal->hdr. If the
2406** wal-index header has changed, *pChanged is set to 1 (as an indication
drh183f0aa2017-10-31 12:06:29 +00002407** to the caller that the local page cache is obsolete and needs to be
drha927e942010-06-24 02:46:48 +00002408** flushed.) When useWal==1, the wal-index header is assumed to already
2409** be loaded and the pChanged parameter is unused.
2410**
2411** The caller must set the cnt parameter to the number of prior calls to
2412** this routine during the current read attempt that returned WAL_RETRY.
2413** This routine will start taking more aggressive measures to clear the
2414** race conditions after multiple WAL_RETRY returns, and after an excessive
2415** number of errors will ultimately return SQLITE_PROTOCOL. The
2416** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2417** and is not honoring the locking protocol. There is a vanishingly small
2418** chance that SQLITE_PROTOCOL could be returned because of a run of really
2419** bad luck when there is lots of contention for the wal-index, but that
2420** possibility is so small that it can be safely neglected, we believe.
2421**
drh73b64e42010-05-30 19:55:15 +00002422** On success, this routine obtains a read lock on
2423** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
2424** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
2425** that means the Wal does not hold any read lock. The reader must not
2426** access any database page that is modified by a WAL frame up to and
2427** including frame number aReadMark[pWal->readLock]. The reader will
2428** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2429** Or if pWal->readLock==0, then the reader will ignore the WAL
2430** completely and get all content directly from the database file.
drha927e942010-06-24 02:46:48 +00002431** If the useWal parameter is 1 then the WAL will never be ignored and
2432** this routine will always set pWal->readLock>0 on success.
drh73b64e42010-05-30 19:55:15 +00002433** When the read transaction is completed, the caller must release the
2434** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2435**
2436** This routine uses the nBackfill and aReadMark[] fields of the header
2437** to select a particular WAL_READ_LOCK() that strives to let the
2438** checkpoint process do as much work as possible. This routine might
2439** update values of the aReadMark[] array in the header, but if it does
2440** so it takes care to hold an exclusive lock on the corresponding
2441** WAL_READ_LOCK() while changing values.
2442*/
drhaab4c022010-06-02 14:45:51 +00002443static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
drh73b64e42010-05-30 19:55:15 +00002444 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
2445 u32 mxReadMark; /* Largest aReadMark[] value */
2446 int mxI; /* Index of largest aReadMark[] value */
2447 int i; /* Loop counter */
dan13a3cb82010-06-11 19:04:21 +00002448 int rc = SQLITE_OK; /* Return code */
drhc49e9602015-12-11 03:16:54 +00002449 u32 mxFrame; /* Wal frame to lock to */
dan64d039e2010-04-13 19:27:31 +00002450
drh61e4ace2010-05-31 20:28:37 +00002451 assert( pWal->readLock<0 ); /* Not currently locked */
drh73b64e42010-05-30 19:55:15 +00002452
drh2e9b0922017-11-13 05:51:37 +00002453 /* useWal may only be set for read/write connections */
2454 assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 );
2455
drh658d76c2011-02-19 15:22:14 +00002456 /* Take steps to avoid spinning forever if there is a protocol error.
2457 **
2458 ** Circumstances that cause a RETRY should only last for the briefest
2459 ** instances of time. No I/O or other system calls are done while the
2460 ** locks are held, so the locks should not be held for very long. But
2461 ** if we are unlucky, another process that is holding a lock might get
2462 ** paged out or take a page-fault that is time-consuming to resolve,
2463 ** during the few nanoseconds that it is holding the lock. In that case,
2464 ** it might take longer than normal for the lock to free.
2465 **
2466 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few
2467 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this
2468 ** is more of a scheduler yield than an actual delay. But on the 10th
2469 ** an subsequent retries, the delays start becoming longer and longer,
drh5b6e3b92014-06-12 17:10:18 +00002470 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2471 ** The total delay time before giving up is less than 10 seconds.
drh658d76c2011-02-19 15:22:14 +00002472 */
drhaab4c022010-06-02 14:45:51 +00002473 if( cnt>5 ){
drh658d76c2011-02-19 15:22:14 +00002474 int nDelay = 1; /* Pause time in microseconds */
drh03c69672011-02-19 23:18:12 +00002475 if( cnt>100 ){
2476 VVA_ONLY( pWal->lockError = 1; )
2477 return SQLITE_PROTOCOL;
2478 }
drh5b6e3b92014-06-12 17:10:18 +00002479 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
drh658d76c2011-02-19 15:22:14 +00002480 sqlite3OsSleep(pWal->pVfs, nDelay);
drhaab4c022010-06-02 14:45:51 +00002481 }
2482
drh73b64e42010-05-30 19:55:15 +00002483 if( !useWal ){
dan11caf4f2017-11-04 18:10:03 +00002484 assert( rc==SQLITE_OK );
drh85bc6df2017-11-10 20:00:50 +00002485 if( pWal->bShmUnreliable==0 ){
dan11caf4f2017-11-04 18:10:03 +00002486 rc = walIndexReadHdr(pWal, pChanged);
2487 }
drh73b64e42010-05-30 19:55:15 +00002488 if( rc==SQLITE_BUSY ){
2489 /* If there is not a recovery running in another thread or process
2490 ** then convert BUSY errors to WAL_RETRY. If recovery is known to
2491 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
2492 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2493 ** would be technically correct. But the race is benign since with
2494 ** WAL_RETRY this routine will be called again and will probably be
2495 ** right on the second iteration.
2496 */
dan7d4514a2010-07-15 17:54:14 +00002497 if( pWal->apWiData[0]==0 ){
2498 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2499 ** We assume this is a transient condition, so return WAL_RETRY. The
2500 ** xShmMap() implementation used by the default unix and win32 VFS
2501 ** modules may return SQLITE_BUSY due to a race condition in the
2502 ** code that determines whether or not the shared-memory region
2503 ** must be zeroed before the requested page is returned.
2504 */
2505 rc = WAL_RETRY;
2506 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
drh73b64e42010-05-30 19:55:15 +00002507 walUnlockShared(pWal, WAL_RECOVER_LOCK);
2508 rc = WAL_RETRY;
2509 }else if( rc==SQLITE_BUSY ){
2510 rc = SQLITE_BUSY_RECOVERY;
2511 }
2512 }
drha927e942010-06-24 02:46:48 +00002513 if( rc!=SQLITE_OK ){
2514 return rc;
2515 }
drh85bc6df2017-11-10 20:00:50 +00002516 else if( pWal->bShmUnreliable ){
2517 return walBeginShmUnreliable(pWal, pChanged);
dan11caf4f2017-11-04 18:10:03 +00002518 }
drh73b64e42010-05-30 19:55:15 +00002519 }
2520
dan92c02da2017-11-01 20:59:28 +00002521 assert( pWal->nWiData>0 );
drh2e9b0922017-11-13 05:51:37 +00002522 assert( pWal->apWiData[0]!=0 );
2523 pInfo = walCkptInfo(pWal);
2524 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame
danfc1acf32015-12-05 20:51:54 +00002525#ifdef SQLITE_ENABLE_SNAPSHOT
dan21f2baf2017-09-23 07:46:54 +00002526 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0)
danfc1acf32015-12-05 20:51:54 +00002527#endif
2528 ){
drh73b64e42010-05-30 19:55:15 +00002529 /* The WAL has been completely backfilled (or it is empty).
2530 ** and can be safely ignored.
2531 */
2532 rc = walLockShared(pWal, WAL_READ_LOCK(0));
dan8c408002010-11-01 17:38:24 +00002533 walShmBarrier(pWal);
drh73b64e42010-05-30 19:55:15 +00002534 if( rc==SQLITE_OK ){
drh2e9b0922017-11-13 05:51:37 +00002535 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
dan493cc592010-06-05 18:12:23 +00002536 /* It is not safe to allow the reader to continue here if frames
2537 ** may have been appended to the log before READ_LOCK(0) was obtained.
2538 ** When holding READ_LOCK(0), the reader ignores the entire log file,
2539 ** which implies that the database file contains a trustworthy
peter.d.reid60ec9142014-09-06 16:39:46 +00002540 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
dan493cc592010-06-05 18:12:23 +00002541 ** happening, this is usually correct.
2542 **
2543 ** However, if frames have been appended to the log (or if the log
2544 ** is wrapped and written for that matter) before the READ_LOCK(0)
2545 ** is obtained, that is not necessarily true. A checkpointer may
2546 ** have started to backfill the appended frames but crashed before
2547 ** it finished. Leaving a corrupt image in the database file.
2548 */
drh73b64e42010-05-30 19:55:15 +00002549 walUnlockShared(pWal, WAL_READ_LOCK(0));
2550 return WAL_RETRY;
2551 }
2552 pWal->readLock = 0;
2553 return SQLITE_OK;
2554 }else if( rc!=SQLITE_BUSY ){
2555 return rc;
dan64d039e2010-04-13 19:27:31 +00002556 }
dan7c246102010-04-12 19:00:29 +00002557 }
danba515902010-04-30 09:32:06 +00002558
drh73b64e42010-05-30 19:55:15 +00002559 /* If we get this far, it means that the reader will want to use
2560 ** the WAL to get at content from recent commits. The job now is
2561 ** to select one of the aReadMark[] entries that is closest to
2562 ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2563 */
2564 mxReadMark = 0;
2565 mxI = 0;
danfc1acf32015-12-05 20:51:54 +00002566 mxFrame = pWal->hdr.mxFrame;
2567#ifdef SQLITE_ENABLE_SNAPSHOT
dan818b11a2015-12-07 14:33:07 +00002568 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
2569 mxFrame = pWal->pSnapshot->mxFrame;
2570 }
danfc1acf32015-12-05 20:51:54 +00002571#endif
drh73b64e42010-05-30 19:55:15 +00002572 for(i=1; i<WAL_NREADER; i++){
drh876c7ea2018-08-30 20:28:18 +00002573 u32 thisMark = AtomicLoad(pInfo->aReadMark+i);
danfc1acf32015-12-05 20:51:54 +00002574 if( mxReadMark<=thisMark && thisMark<=mxFrame ){
drhdb7f6472010-06-09 14:45:12 +00002575 assert( thisMark!=READMARK_NOT_USED );
drh73b64e42010-05-30 19:55:15 +00002576 mxReadMark = thisMark;
2577 mxI = i;
2578 }
2579 }
drh998147e2015-12-10 02:15:03 +00002580 if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2581 && (mxReadMark<mxFrame || mxI==0)
drh998147e2015-12-10 02:15:03 +00002582 ){
2583 for(i=1; i<WAL_NREADER; i++){
2584 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2585 if( rc==SQLITE_OK ){
drh876c7ea2018-08-30 20:28:18 +00002586 mxReadMark = AtomicStore(pInfo->aReadMark+i,mxFrame);
drh998147e2015-12-10 02:15:03 +00002587 mxI = i;
2588 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2589 break;
2590 }else if( rc!=SQLITE_BUSY ){
2591 return rc;
drh73b64e42010-05-30 19:55:15 +00002592 }
2593 }
drh998147e2015-12-10 02:15:03 +00002594 }
2595 if( mxI==0 ){
drh998147e2015-12-10 02:15:03 +00002596 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
drh7e45e3a2017-11-08 17:32:12 +00002597 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT;
drh998147e2015-12-10 02:15:03 +00002598 }
drh73b64e42010-05-30 19:55:15 +00002599
drh998147e2015-12-10 02:15:03 +00002600 rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2601 if( rc ){
2602 return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2603 }
2604 /* Now that the read-lock has been obtained, check that neither the
2605 ** value in the aReadMark[] array or the contents of the wal-index
2606 ** header have changed.
2607 **
2608 ** It is necessary to check that the wal-index header did not change
2609 ** between the time it was read and when the shared-lock was obtained
2610 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2611 ** that the log file may have been wrapped by a writer, or that frames
2612 ** that occur later in the log than pWal->hdr.mxFrame may have been
2613 ** copied into the database by a checkpointer. If either of these things
2614 ** happened, then reading the database with the current value of
2615 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2616 ** instead.
2617 **
2618 ** Before checking that the live wal-index header has not changed
2619 ** since it was read, set Wal.minFrame to the first frame in the wal
2620 ** file that has not yet been checkpointed. This client will not need
2621 ** to read any frames earlier than minFrame from the wal file - they
2622 ** can be safely read directly from the database file.
2623 **
2624 ** Because a ShmBarrier() call is made between taking the copy of
2625 ** nBackfill and checking that the wal-header in shared-memory still
2626 ** matches the one cached in pWal->hdr, it is guaranteed that the
2627 ** checkpointer that set nBackfill was not working with a wal-index
2628 ** header newer than that cached in pWal->hdr. If it were, that could
2629 ** cause a problem. The checkpointer could omit to checkpoint
2630 ** a version of page X that lies before pWal->minFrame (call that version
2631 ** A) on the basis that there is a newer version (version B) of the same
2632 ** page later in the wal file. But if version B happens to like past
2633 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
2634 ** that it can read version A from the database file. However, since
2635 ** we can guarantee that the checkpointer that set nBackfill could not
2636 ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
2637 */
drh876c7ea2018-08-30 20:28:18 +00002638 pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1;
drh998147e2015-12-10 02:15:03 +00002639 walShmBarrier(pWal);
drh876c7ea2018-08-30 20:28:18 +00002640 if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark
drh998147e2015-12-10 02:15:03 +00002641 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2642 ){
2643 walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2644 return WAL_RETRY;
2645 }else{
2646 assert( mxReadMark<=pWal->hdr.mxFrame );
2647 pWal->readLock = (i16)mxI;
drh73b64e42010-05-30 19:55:15 +00002648 }
2649 return rc;
2650}
2651
drhbc887112016-11-22 21:11:59 +00002652#ifdef SQLITE_ENABLE_SNAPSHOT
drh73b64e42010-05-30 19:55:15 +00002653/*
dan93f51132016-11-19 18:31:37 +00002654** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted
2655** variable so that older snapshots can be accessed. To do this, loop
2656** through all wal frames from nBackfillAttempted to (nBackfill+1),
2657** comparing their content to the corresponding page with the database
2658** file, if any. Set nBackfillAttempted to the frame number of the
2659** first frame for which the wal file content matches the db file.
2660**
2661** This is only really safe if the file-system is such that any page
2662** writes made by earlier checkpointers were atomic operations, which
2663** is not always true. It is also possible that nBackfillAttempted
2664** may be left set to a value larger than expected, if a wal frame
2665** contains content that duplicate of an earlier version of the same
2666** page.
2667**
2668** SQLITE_OK is returned if successful, or an SQLite error code if an
2669** error occurs. It is not an error if nBackfillAttempted cannot be
2670** decreased at all.
dan11584982016-11-18 20:49:43 +00002671*/
2672int sqlite3WalSnapshotRecover(Wal *pWal){
dan11584982016-11-18 20:49:43 +00002673 int rc;
2674
dan93f51132016-11-19 18:31:37 +00002675 assert( pWal->readLock>=0 );
2676 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
dan11584982016-11-18 20:49:43 +00002677 if( rc==SQLITE_OK ){
dan93f51132016-11-19 18:31:37 +00002678 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2679 int szPage = (int)pWal->szPage;
2680 i64 szDb; /* Size of db file in bytes */
2681
2682 rc = sqlite3OsFileSize(pWal->pDbFd, &szDb);
dan11584982016-11-18 20:49:43 +00002683 if( rc==SQLITE_OK ){
dan93f51132016-11-19 18:31:37 +00002684 void *pBuf1 = sqlite3_malloc(szPage);
2685 void *pBuf2 = sqlite3_malloc(szPage);
2686 if( pBuf1==0 || pBuf2==0 ){
2687 rc = SQLITE_NOMEM;
2688 }else{
2689 u32 i = pInfo->nBackfillAttempted;
2690 for(i=pInfo->nBackfillAttempted; i>pInfo->nBackfill; i--){
drh4ece2f22018-06-09 16:49:00 +00002691 WalHashLoc sLoc; /* Hash table location */
dan93f51132016-11-19 18:31:37 +00002692 u32 pgno; /* Page number in db file */
2693 i64 iDbOff; /* Offset of db file entry */
2694 i64 iWalOff; /* Offset of wal file entry */
dan11584982016-11-18 20:49:43 +00002695
drh4ece2f22018-06-09 16:49:00 +00002696 rc = walHashGet(pWal, walFramePage(i), &sLoc);
dan93f51132016-11-19 18:31:37 +00002697 if( rc!=SQLITE_OK ) break;
drh4ece2f22018-06-09 16:49:00 +00002698 pgno = sLoc.aPgno[i-sLoc.iZero];
dan93f51132016-11-19 18:31:37 +00002699 iDbOff = (i64)(pgno-1) * szPage;
dan11584982016-11-18 20:49:43 +00002700
dan93f51132016-11-19 18:31:37 +00002701 if( iDbOff+szPage<=szDb ){
2702 iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE;
2703 rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff);
dan11584982016-11-18 20:49:43 +00002704
dan93f51132016-11-19 18:31:37 +00002705 if( rc==SQLITE_OK ){
2706 rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff);
dan6a9e7f12016-11-19 16:35:53 +00002707 }
2708
dan93f51132016-11-19 18:31:37 +00002709 if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){
2710 break;
2711 }
dan6a9e7f12016-11-19 16:35:53 +00002712 }
dan93f51132016-11-19 18:31:37 +00002713
2714 pInfo->nBackfillAttempted = i-1;
dan11584982016-11-18 20:49:43 +00002715 }
dan6a9e7f12016-11-19 16:35:53 +00002716 }
dan11584982016-11-18 20:49:43 +00002717
dan93f51132016-11-19 18:31:37 +00002718 sqlite3_free(pBuf1);
2719 sqlite3_free(pBuf2);
2720 }
2721 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
dan11584982016-11-18 20:49:43 +00002722 }
2723
2724 return rc;
2725}
drhbc887112016-11-22 21:11:59 +00002726#endif /* SQLITE_ENABLE_SNAPSHOT */
dan11584982016-11-18 20:49:43 +00002727
2728/*
drh73b64e42010-05-30 19:55:15 +00002729** Begin a read transaction on the database.
2730**
2731** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2732** it takes a snapshot of the state of the WAL and wal-index for the current
2733** instant in time. The current thread will continue to use this snapshot.
2734** Other threads might append new content to the WAL and wal-index but
2735** that extra content is ignored by the current thread.
2736**
2737** If the database contents have changes since the previous read
2738** transaction, then *pChanged is set to 1 before returning. The
drh8741d0d2018-09-12 00:21:11 +00002739** Pager layer will use this to know that its cache is stale and
drh73b64e42010-05-30 19:55:15 +00002740** needs to be flushed.
2741*/
drh66dfec8b2011-06-01 20:01:49 +00002742int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
drh73b64e42010-05-30 19:55:15 +00002743 int rc; /* Return code */
drhaab4c022010-06-02 14:45:51 +00002744 int cnt = 0; /* Number of TryBeginRead attempts */
drh73b64e42010-05-30 19:55:15 +00002745
danfc1acf32015-12-05 20:51:54 +00002746#ifdef SQLITE_ENABLE_SNAPSHOT
2747 int bChanged = 0;
2748 WalIndexHdr *pSnapshot = pWal->pSnapshot;
drh998147e2015-12-10 02:15:03 +00002749 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
danfc1acf32015-12-05 20:51:54 +00002750 bChanged = 1;
2751 }
2752#endif
2753
drh73b64e42010-05-30 19:55:15 +00002754 do{
drhaab4c022010-06-02 14:45:51 +00002755 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
drh73b64e42010-05-30 19:55:15 +00002756 }while( rc==WAL_RETRY );
drhab1cc742011-02-19 16:51:45 +00002757 testcase( (rc&0xff)==SQLITE_BUSY );
2758 testcase( (rc&0xff)==SQLITE_IOERR );
2759 testcase( rc==SQLITE_PROTOCOL );
2760 testcase( rc==SQLITE_OK );
danfc1acf32015-12-05 20:51:54 +00002761
2762#ifdef SQLITE_ENABLE_SNAPSHOT
2763 if( rc==SQLITE_OK ){
drh998147e2015-12-10 02:15:03 +00002764 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
dan65127cd2015-12-09 20:05:27 +00002765 /* At this point the client has a lock on an aReadMark[] slot holding
dan3bf83cc2015-12-10 15:45:15 +00002766 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
2767 ** is populated with the wal-index header corresponding to the head
2768 ** of the wal file. Verify that pSnapshot is still valid before
2769 ** continuing. Reasons why pSnapshot might no longer be valid:
dan65127cd2015-12-09 20:05:27 +00002770 **
drh998147e2015-12-10 02:15:03 +00002771 ** (1) The WAL file has been reset since the snapshot was taken.
2772 ** In this case, the salt will have changed.
dan65127cd2015-12-09 20:05:27 +00002773 **
drh998147e2015-12-10 02:15:03 +00002774 ** (2) A checkpoint as been attempted that wrote frames past
2775 ** pSnapshot->mxFrame into the database file. Note that the
2776 ** checkpoint need not have completed for this to cause problems.
dan65127cd2015-12-09 20:05:27 +00002777 */
danfc1acf32015-12-05 20:51:54 +00002778 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
dan65127cd2015-12-09 20:05:27 +00002779
drh71b62fa2015-12-11 01:22:22 +00002780 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
dan65127cd2015-12-09 20:05:27 +00002781 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
2782
dan3bf83cc2015-12-10 15:45:15 +00002783 /* It is possible that there is a checkpointer thread running
2784 ** concurrent with this code. If this is the case, it may be that the
2785 ** checkpointer has already determined that it will checkpoint
2786 ** snapshot X, where X is later in the wal file than pSnapshot, but
2787 ** has not yet set the pInfo->nBackfillAttempted variable to indicate
2788 ** its intent. To avoid the race condition this leads to, ensure that
2789 ** there is no checkpointer process by taking a shared CKPT lock
dan11584982016-11-18 20:49:43 +00002790 ** before checking pInfo->nBackfillAttempted.
2791 **
2792 ** TODO: Does the aReadMark[] lock prevent a checkpointer from doing
2793 ** this already?
2794 */
dan3bf83cc2015-12-10 15:45:15 +00002795 rc = walLockShared(pWal, WAL_CKPT_LOCK);
2796
dana7aeb392015-12-10 19:11:34 +00002797 if( rc==SQLITE_OK ){
2798 /* Check that the wal file has not been wrapped. Assuming that it has
2799 ** not, also check that no checkpointer has attempted to checkpoint any
2800 ** frames beyond pSnapshot->mxFrame. If either of these conditions are
dan8d4b7a32018-08-31 19:00:16 +00002801 ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr
dana7aeb392015-12-10 19:11:34 +00002802 ** with *pSnapshot and set *pChanged as appropriate for opening the
2803 ** snapshot. */
2804 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
2805 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
2806 ){
dan0f308f52015-12-11 14:59:49 +00002807 assert( pWal->readLock>0 );
dana7aeb392015-12-10 19:11:34 +00002808 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
2809 *pChanged = bChanged;
2810 }else{
dan8d4b7a32018-08-31 19:00:16 +00002811 rc = SQLITE_ERROR_SNAPSHOT;
dana7aeb392015-12-10 19:11:34 +00002812 }
2813
2814 /* Release the shared CKPT lock obtained above. */
2815 walUnlockShared(pWal, WAL_CKPT_LOCK);
danf5778752018-08-28 11:23:52 +00002816 pWal->minFrame = 1;
danfc1acf32015-12-05 20:51:54 +00002817 }
dan65127cd2015-12-09 20:05:27 +00002818
dan3bf83cc2015-12-10 15:45:15 +00002819
danfc1acf32015-12-05 20:51:54 +00002820 if( rc!=SQLITE_OK ){
2821 sqlite3WalEndReadTransaction(pWal);
2822 }
2823 }
2824 }
2825#endif
dan7c246102010-04-12 19:00:29 +00002826 return rc;
2827}
2828
2829/*
drh73b64e42010-05-30 19:55:15 +00002830** Finish with a read transaction. All this does is release the
2831** read-lock.
dan7c246102010-04-12 19:00:29 +00002832*/
drh73b64e42010-05-30 19:55:15 +00002833void sqlite3WalEndReadTransaction(Wal *pWal){
dan73d66fd2010-08-07 16:17:48 +00002834 sqlite3WalEndWriteTransaction(pWal);
drh73b64e42010-05-30 19:55:15 +00002835 if( pWal->readLock>=0 ){
2836 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2837 pWal->readLock = -1;
2838 }
dan7c246102010-04-12 19:00:29 +00002839}
2840
dan5e0ce872010-04-28 17:48:44 +00002841/*
dan99bd1092013-03-22 18:20:14 +00002842** Search the wal file for page pgno. If found, set *piRead to the frame that
2843** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
2844** to zero.
drh73b64e42010-05-30 19:55:15 +00002845**
dan99bd1092013-03-22 18:20:14 +00002846** Return SQLITE_OK if successful, or an error code if an error occurs. If an
2847** error does occur, the final value of *piRead is undefined.
dan7c246102010-04-12 19:00:29 +00002848*/
dan99bd1092013-03-22 18:20:14 +00002849int sqlite3WalFindFrame(
danbb23aff2010-05-10 14:46:09 +00002850 Wal *pWal, /* WAL handle */
2851 Pgno pgno, /* Database page number to read data for */
dan99bd1092013-03-22 18:20:14 +00002852 u32 *piRead /* OUT: Frame number (or zero) */
danb6e099a2010-05-04 14:47:39 +00002853){
danbb23aff2010-05-10 14:46:09 +00002854 u32 iRead = 0; /* If !=0, WAL frame to return data from */
drh027a1282010-05-19 01:53:53 +00002855 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
danbb23aff2010-05-10 14:46:09 +00002856 int iHash; /* Used to loop through N hash tables */
dan6df003c2015-08-12 19:42:08 +00002857 int iMinHash;
dan7c246102010-04-12 19:00:29 +00002858
drhaab4c022010-06-02 14:45:51 +00002859 /* This routine is only be called from within a read transaction. */
2860 assert( pWal->readLock>=0 || pWal->lockError );
drh73b64e42010-05-30 19:55:15 +00002861
danbb23aff2010-05-10 14:46:09 +00002862 /* If the "last page" field of the wal-index header snapshot is 0, then
2863 ** no data will be read from the wal under any circumstances. Return early
drha927e942010-06-24 02:46:48 +00002864 ** in this case as an optimization. Likewise, if pWal->readLock==0,
2865 ** then the WAL is ignored by the reader so return early, as if the
2866 ** WAL were empty.
danbb23aff2010-05-10 14:46:09 +00002867 */
drh85bc6df2017-11-10 20:00:50 +00002868 if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){
dan99bd1092013-03-22 18:20:14 +00002869 *piRead = 0;
danbb23aff2010-05-10 14:46:09 +00002870 return SQLITE_OK;
2871 }
2872
danbb23aff2010-05-10 14:46:09 +00002873 /* Search the hash table or tables for an entry matching page number
2874 ** pgno. Each iteration of the following for() loop searches one
2875 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2876 **
drha927e942010-06-24 02:46:48 +00002877 ** This code might run concurrently to the code in walIndexAppend()
danbb23aff2010-05-10 14:46:09 +00002878 ** that adds entries to the wal-index (and possibly to this hash
drh6e810962010-05-19 17:49:50 +00002879 ** table). This means the value just read from the hash
danbb23aff2010-05-10 14:46:09 +00002880 ** slot (aHash[iKey]) may have been added before or after the
2881 ** current read transaction was opened. Values added after the
2882 ** read transaction was opened may have been written incorrectly -
2883 ** i.e. these slots may contain garbage data. However, we assume
2884 ** that any slots written before the current read transaction was
2885 ** opened remain unmodified.
2886 **
2887 ** For the reasons above, the if(...) condition featured in the inner
2888 ** loop of the following block is more stringent that would be required
2889 ** if we had exclusive access to the hash-table:
2890 **
2891 ** (aPgno[iFrame]==pgno):
2892 ** This condition filters out normal hash-table collisions.
2893 **
2894 ** (iFrame<=iLast):
2895 ** This condition filters out entries that were added to the hash
2896 ** table after the current read-transaction had started.
dan7c246102010-04-12 19:00:29 +00002897 */
danb8c7cfb2015-08-13 20:23:46 +00002898 iMinHash = walFramePage(pWal->minFrame);
drh8d3e15e2018-02-21 01:05:37 +00002899 for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){
drh4ece2f22018-06-09 16:49:00 +00002900 WalHashLoc sLoc; /* Hash table location */
danbb23aff2010-05-10 14:46:09 +00002901 int iKey; /* Hash slot index */
drh519426a2010-07-09 03:19:07 +00002902 int nCollide; /* Number of hash collisions remaining */
2903 int rc; /* Error code */
danbb23aff2010-05-10 14:46:09 +00002904
drh4ece2f22018-06-09 16:49:00 +00002905 rc = walHashGet(pWal, iHash, &sLoc);
dan4280eb32010-06-12 12:02:35 +00002906 if( rc!=SQLITE_OK ){
2907 return rc;
2908 }
drh519426a2010-07-09 03:19:07 +00002909 nCollide = HASHTABLE_NSLOT;
drh4ece2f22018-06-09 16:49:00 +00002910 for(iKey=walHash(pgno); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
drh680f0fe2019-04-17 21:12:05 +00002911 u32 iH = sLoc.aHash[iKey];
2912 u32 iFrame = iH + sLoc.iZero;
2913 if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH]==pgno ){
drh622a53d2014-12-29 11:50:39 +00002914 assert( iFrame>iRead || CORRUPT_DB );
danbb23aff2010-05-10 14:46:09 +00002915 iRead = iFrame;
2916 }
drh519426a2010-07-09 03:19:07 +00002917 if( (nCollide--)==0 ){
2918 return SQLITE_CORRUPT_BKPT;
2919 }
dan7c246102010-04-12 19:00:29 +00002920 }
drh8d3e15e2018-02-21 01:05:37 +00002921 if( iRead ) break;
dan7c246102010-04-12 19:00:29 +00002922 }
dan7c246102010-04-12 19:00:29 +00002923
danbb23aff2010-05-10 14:46:09 +00002924#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2925 /* If expensive assert() statements are available, do a linear search
2926 ** of the wal-index file content. Make sure the results agree with the
2927 ** result obtained using the hash indexes above. */
2928 {
2929 u32 iRead2 = 0;
2930 u32 iTest;
drh85bc6df2017-11-10 20:00:50 +00002931 assert( pWal->bShmUnreliable || pWal->minFrame>0 );
dan6c9d8f62017-11-07 21:25:15 +00002932 for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){
dan13a3cb82010-06-11 19:04:21 +00002933 if( walFramePgno(pWal, iTest)==pgno ){
danbb23aff2010-05-10 14:46:09 +00002934 iRead2 = iTest;
dan7c246102010-04-12 19:00:29 +00002935 break;
2936 }
dan7c246102010-04-12 19:00:29 +00002937 }
danbb23aff2010-05-10 14:46:09 +00002938 assert( iRead==iRead2 );
dan7c246102010-04-12 19:00:29 +00002939 }
danbb23aff2010-05-10 14:46:09 +00002940#endif
dancd11fb22010-04-26 10:40:52 +00002941
dan99bd1092013-03-22 18:20:14 +00002942 *piRead = iRead;
dan7c246102010-04-12 19:00:29 +00002943 return SQLITE_OK;
2944}
2945
dan99bd1092013-03-22 18:20:14 +00002946/*
2947** Read the contents of frame iRead from the wal file into buffer pOut
2948** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
2949** error code otherwise.
2950*/
2951int sqlite3WalReadFrame(
2952 Wal *pWal, /* WAL handle */
2953 u32 iRead, /* Frame to read */
2954 int nOut, /* Size of buffer pOut in bytes */
2955 u8 *pOut /* Buffer to write page data to */
2956){
2957 int sz;
2958 i64 iOffset;
2959 sz = pWal->hdr.szPage;
2960 sz = (sz&0xfe00) + ((sz&0x0001)<<16);
2961 testcase( sz<=32768 );
2962 testcase( sz>=65536 );
2963 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
2964 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2965 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
2966}
dan7c246102010-04-12 19:00:29 +00002967
2968/*
dan763afe62010-08-03 06:42:39 +00002969** Return the size of the database in pages (or zero, if unknown).
dan7c246102010-04-12 19:00:29 +00002970*/
dan763afe62010-08-03 06:42:39 +00002971Pgno sqlite3WalDbsize(Wal *pWal){
drh7e9e70b2010-08-16 14:17:59 +00002972 if( pWal && ALWAYS(pWal->readLock>=0) ){
dan763afe62010-08-03 06:42:39 +00002973 return pWal->hdr.nPage;
2974 }
2975 return 0;
dan7c246102010-04-12 19:00:29 +00002976}
2977
dan30c86292010-04-30 16:24:46 +00002978
drh73b64e42010-05-30 19:55:15 +00002979/*
2980** This function starts a write transaction on the WAL.
2981**
2982** A read transaction must have already been started by a prior call
2983** to sqlite3WalBeginReadTransaction().
2984**
2985** If another thread or process has written into the database since
2986** the read transaction was started, then it is not possible for this
2987** thread to write as doing so would cause a fork. So this routine
2988** returns SQLITE_BUSY in that case and no write transaction is started.
2989**
2990** There can only be a single writer active at a time.
2991*/
2992int sqlite3WalBeginWriteTransaction(Wal *pWal){
2993 int rc;
drh73b64e42010-05-30 19:55:15 +00002994
2995 /* Cannot start a write transaction without first holding a read
2996 ** transaction. */
2997 assert( pWal->readLock>=0 );
danc9a90222016-01-09 18:57:35 +00002998 assert( pWal->writeLock==0 && pWal->iReCksum==0 );
drh73b64e42010-05-30 19:55:15 +00002999
dan1e5de5a2010-07-15 18:20:53 +00003000 if( pWal->readOnly ){
3001 return SQLITE_READONLY;
3002 }
3003
drh73b64e42010-05-30 19:55:15 +00003004 /* Only one writer allowed at a time. Get the write lock. Return
3005 ** SQLITE_BUSY if unable.
3006 */
drhab372772015-12-02 16:10:16 +00003007 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
drh73b64e42010-05-30 19:55:15 +00003008 if( rc ){
3009 return rc;
3010 }
drhc99597c2010-05-31 01:41:15 +00003011 pWal->writeLock = 1;
drh73b64e42010-05-30 19:55:15 +00003012
3013 /* If another connection has written to the database file since the
3014 ** time the read transaction on this connection was started, then
3015 ** the write is disallowed.
3016 */
dan4280eb32010-06-12 12:02:35 +00003017 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
drh73b64e42010-05-30 19:55:15 +00003018 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhc99597c2010-05-31 01:41:15 +00003019 pWal->writeLock = 0;
danf73819a2013-06-27 11:46:27 +00003020 rc = SQLITE_BUSY_SNAPSHOT;
drh73b64e42010-05-30 19:55:15 +00003021 }
3022
drh7ed91f22010-04-29 22:34:07 +00003023 return rc;
dan7c246102010-04-12 19:00:29 +00003024}
3025
dan74d6cd82010-04-24 18:44:05 +00003026/*
drh73b64e42010-05-30 19:55:15 +00003027** End a write transaction. The commit has already been done. This
3028** routine merely releases the lock.
3029*/
3030int sqlite3WalEndWriteTransaction(Wal *pWal){
danda9fe0c2010-07-13 18:44:03 +00003031 if( pWal->writeLock ){
3032 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3033 pWal->writeLock = 0;
danc9a90222016-01-09 18:57:35 +00003034 pWal->iReCksum = 0;
danf60b7f32011-12-16 13:24:27 +00003035 pWal->truncateOnCommit = 0;
danda9fe0c2010-07-13 18:44:03 +00003036 }
drh73b64e42010-05-30 19:55:15 +00003037 return SQLITE_OK;
3038}
3039
3040/*
dan74d6cd82010-04-24 18:44:05 +00003041** If any data has been written (but not committed) to the log file, this
3042** function moves the write-pointer back to the start of the transaction.
3043**
3044** Additionally, the callback function is invoked for each frame written
drh73b64e42010-05-30 19:55:15 +00003045** to the WAL since the start of the transaction. If the callback returns
dan74d6cd82010-04-24 18:44:05 +00003046** other than SQLITE_OK, it is not invoked again and the error code is
3047** returned to the caller.
3048**
3049** Otherwise, if the callback function does not return an error, this
3050** function returns SQLITE_OK.
3051*/
drh7ed91f22010-04-29 22:34:07 +00003052int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
dan55437592010-05-11 12:19:26 +00003053 int rc = SQLITE_OK;
drh7e9e70b2010-08-16 14:17:59 +00003054 if( ALWAYS(pWal->writeLock) ){
drh027a1282010-05-19 01:53:53 +00003055 Pgno iMax = pWal->hdr.mxFrame;
dan55437592010-05-11 12:19:26 +00003056 Pgno iFrame;
3057
dan5d656852010-06-14 07:53:26 +00003058 /* Restore the clients cache of the wal-index header to the state it
3059 ** was in before the client began writing to the database.
3060 */
dan067f3162010-06-14 10:30:12 +00003061 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
dan5d656852010-06-14 07:53:26 +00003062
3063 for(iFrame=pWal->hdr.mxFrame+1;
drh664f85d2014-11-19 14:05:41 +00003064 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
dan5d656852010-06-14 07:53:26 +00003065 iFrame++
3066 ){
3067 /* This call cannot fail. Unless the page for which the page number
3068 ** is passed as the second argument is (a) in the cache and
3069 ** (b) has an outstanding reference, then xUndo is either a no-op
3070 ** (if (a) is false) or simply expels the page from the cache (if (b)
3071 ** is false).
3072 **
3073 ** If the upper layer is doing a rollback, it is guaranteed that there
3074 ** are no outstanding references to any page other than page 1. And
3075 ** page 1 is never written to the log until the transaction is
3076 ** committed. As a result, the call to xUndo may not fail.
3077 */
dan5d656852010-06-14 07:53:26 +00003078 assert( walFramePgno(pWal, iFrame)!=1 );
3079 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
dan6f150142010-05-21 15:31:56 +00003080 }
dan7eb05752012-10-15 11:28:24 +00003081 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
dan74d6cd82010-04-24 18:44:05 +00003082 }
3083 return rc;
3084}
3085
dan71d89912010-05-24 13:57:42 +00003086/*
3087** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
3088** values. This function populates the array with values required to
3089** "rollback" the write position of the WAL handle back to the current
3090** point in the event of a savepoint rollback (via WalSavepointUndo()).
drh7ed91f22010-04-29 22:34:07 +00003091*/
dan71d89912010-05-24 13:57:42 +00003092void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
drh73b64e42010-05-30 19:55:15 +00003093 assert( pWal->writeLock );
dan71d89912010-05-24 13:57:42 +00003094 aWalData[0] = pWal->hdr.mxFrame;
3095 aWalData[1] = pWal->hdr.aFrameCksum[0];
3096 aWalData[2] = pWal->hdr.aFrameCksum[1];
dan6e6bd562010-06-02 18:59:03 +00003097 aWalData[3] = pWal->nCkpt;
dan4cd78b42010-04-26 16:57:10 +00003098}
3099
dan71d89912010-05-24 13:57:42 +00003100/*
3101** Move the write position of the WAL back to the point identified by
3102** the values in the aWalData[] array. aWalData must point to an array
3103** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
3104** by a call to WalSavepoint().
drh7ed91f22010-04-29 22:34:07 +00003105*/
dan71d89912010-05-24 13:57:42 +00003106int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
dan4cd78b42010-04-26 16:57:10 +00003107 int rc = SQLITE_OK;
dan4cd78b42010-04-26 16:57:10 +00003108
dan6e6bd562010-06-02 18:59:03 +00003109 assert( pWal->writeLock );
3110 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
3111
3112 if( aWalData[3]!=pWal->nCkpt ){
3113 /* This savepoint was opened immediately after the write-transaction
3114 ** was started. Right after that, the writer decided to wrap around
3115 ** to the start of the log. Update the savepoint values to match.
3116 */
3117 aWalData[0] = 0;
3118 aWalData[3] = pWal->nCkpt;
3119 }
3120
dan71d89912010-05-24 13:57:42 +00003121 if( aWalData[0]<pWal->hdr.mxFrame ){
dan71d89912010-05-24 13:57:42 +00003122 pWal->hdr.mxFrame = aWalData[0];
3123 pWal->hdr.aFrameCksum[0] = aWalData[1];
3124 pWal->hdr.aFrameCksum[1] = aWalData[2];
dan5d656852010-06-14 07:53:26 +00003125 walCleanupHash(pWal);
dan6f150142010-05-21 15:31:56 +00003126 }
dan6e6bd562010-06-02 18:59:03 +00003127
dan4cd78b42010-04-26 16:57:10 +00003128 return rc;
3129}
3130
dan9971e712010-06-01 15:44:57 +00003131/*
3132** This function is called just before writing a set of frames to the log
3133** file (see sqlite3WalFrames()). It checks to see if, instead of appending
3134** to the current log file, it is possible to overwrite the start of the
3135** existing log file with the new frames (i.e. "reset" the log). If so,
3136** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
3137** unchanged.
3138**
3139** SQLITE_OK is returned if no error is encountered (regardless of whether
3140** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
drh4533cd02010-10-05 15:41:05 +00003141** if an error occurs.
dan9971e712010-06-01 15:44:57 +00003142*/
3143static int walRestartLog(Wal *pWal){
3144 int rc = SQLITE_OK;
drhaab4c022010-06-02 14:45:51 +00003145 int cnt;
3146
dan13a3cb82010-06-11 19:04:21 +00003147 if( pWal->readLock==0 ){
dan9971e712010-06-01 15:44:57 +00003148 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
3149 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
3150 if( pInfo->nBackfill>0 ){
drh658d76c2011-02-19 15:22:14 +00003151 u32 salt1;
3152 sqlite3_randomness(4, &salt1);
drhab372772015-12-02 16:10:16 +00003153 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
dan9971e712010-06-01 15:44:57 +00003154 if( rc==SQLITE_OK ){
3155 /* If all readers are using WAL_READ_LOCK(0) (in other words if no
3156 ** readers are currently using the WAL), then the transactions
3157 ** frames will overwrite the start of the existing log. Update the
3158 ** wal-index header to reflect this.
3159 **
3160 ** In theory it would be Ok to update the cache of the header only
3161 ** at this point. But updating the actual wal-index header is also
3162 ** safe and means there is no special case for sqlite3WalUndo()
danf26a1542014-12-02 19:04:54 +00003163 ** to handle if this transaction is rolled back. */
dan0fe8c1b2014-12-02 19:35:09 +00003164 walRestartHdr(pWal, salt1);
dan9971e712010-06-01 15:44:57 +00003165 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
drh4533cd02010-10-05 15:41:05 +00003166 }else if( rc!=SQLITE_BUSY ){
3167 return rc;
dan9971e712010-06-01 15:44:57 +00003168 }
3169 }
3170 walUnlockShared(pWal, WAL_READ_LOCK(0));
3171 pWal->readLock = -1;
drhaab4c022010-06-02 14:45:51 +00003172 cnt = 0;
dan9971e712010-06-01 15:44:57 +00003173 do{
3174 int notUsed;
drhaab4c022010-06-02 14:45:51 +00003175 rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
dan9971e712010-06-01 15:44:57 +00003176 }while( rc==WAL_RETRY );
drhc90e0812011-02-19 17:02:44 +00003177 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
drhab1cc742011-02-19 16:51:45 +00003178 testcase( (rc&0xff)==SQLITE_IOERR );
3179 testcase( rc==SQLITE_PROTOCOL );
3180 testcase( rc==SQLITE_OK );
dan9971e712010-06-01 15:44:57 +00003181 }
3182 return rc;
3183}
3184
drh88f975a2011-12-16 19:34:36 +00003185/*
drhd992b152011-12-20 20:13:25 +00003186** Information about the current state of the WAL file and where
3187** the next fsync should occur - passed from sqlite3WalFrames() into
3188** walWriteToLog().
3189*/
3190typedef struct WalWriter {
3191 Wal *pWal; /* The complete WAL information */
3192 sqlite3_file *pFd; /* The WAL file to which we write */
3193 sqlite3_int64 iSyncPoint; /* Fsync at this offset */
3194 int syncFlags; /* Flags for the fsync */
3195 int szPage; /* Size of one page */
3196} WalWriter;
3197
3198/*
drh88f975a2011-12-16 19:34:36 +00003199** Write iAmt bytes of content into the WAL file beginning at iOffset.
drhd992b152011-12-20 20:13:25 +00003200** Do a sync when crossing the p->iSyncPoint boundary.
drh88f975a2011-12-16 19:34:36 +00003201**
drhd992b152011-12-20 20:13:25 +00003202** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
3203** first write the part before iSyncPoint, then sync, then write the
3204** rest.
drh88f975a2011-12-16 19:34:36 +00003205*/
3206static int walWriteToLog(
drhd992b152011-12-20 20:13:25 +00003207 WalWriter *p, /* WAL to write to */
drh88f975a2011-12-16 19:34:36 +00003208 void *pContent, /* Content to be written */
3209 int iAmt, /* Number of bytes to write */
3210 sqlite3_int64 iOffset /* Start writing at this offset */
3211){
3212 int rc;
drhd992b152011-12-20 20:13:25 +00003213 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
3214 int iFirstAmt = (int)(p->iSyncPoint - iOffset);
3215 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
drh88f975a2011-12-16 19:34:36 +00003216 if( rc ) return rc;
drhd992b152011-12-20 20:13:25 +00003217 iOffset += iFirstAmt;
3218 iAmt -= iFirstAmt;
drh88f975a2011-12-16 19:34:36 +00003219 pContent = (void*)(iFirstAmt + (char*)pContent);
drhdaaae7b2017-08-25 01:14:43 +00003220 assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 );
3221 rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags));
drhcc8d10a2011-12-23 02:07:10 +00003222 if( iAmt==0 || rc ) return rc;
drh88f975a2011-12-16 19:34:36 +00003223 }
drhd992b152011-12-20 20:13:25 +00003224 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
3225 return rc;
3226}
3227
3228/*
3229** Write out a single frame of the WAL
3230*/
3231static int walWriteOneFrame(
3232 WalWriter *p, /* Where to write the frame */
3233 PgHdr *pPage, /* The page of the frame to be written */
3234 int nTruncate, /* The commit flag. Usually 0. >0 for commit */
3235 sqlite3_int64 iOffset /* Byte offset at which to write */
3236){
3237 int rc; /* Result code from subfunctions */
3238 void *pData; /* Data actually written */
3239 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
3240#if defined(SQLITE_HAS_CODEC)
mistachkinfad30392016-02-13 23:43:46 +00003241 if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM_BKPT;
drhd992b152011-12-20 20:13:25 +00003242#else
3243 pData = pPage->pData;
3244#endif
3245 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
3246 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
3247 if( rc ) return rc;
3248 /* Write the page data */
3249 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
drh88f975a2011-12-16 19:34:36 +00003250 return rc;
3251}
3252
dand6f7c972016-01-09 16:39:29 +00003253/*
3254** This function is called as part of committing a transaction within which
3255** one or more frames have been overwritten. It updates the checksums for
danc9a90222016-01-09 18:57:35 +00003256** all frames written to the wal file by the current transaction starting
3257** with the earliest to have been overwritten.
dand6f7c972016-01-09 16:39:29 +00003258**
3259** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
3260*/
danc9a90222016-01-09 18:57:35 +00003261static int walRewriteChecksums(Wal *pWal, u32 iLast){
dand6f7c972016-01-09 16:39:29 +00003262 const int szPage = pWal->szPage;/* Database page size */
3263 int rc = SQLITE_OK; /* Return code */
3264 u8 *aBuf; /* Buffer to load data from wal file into */
3265 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */
3266 u32 iRead; /* Next frame to read from wal file */
danc9a90222016-01-09 18:57:35 +00003267 i64 iCksumOff;
dand6f7c972016-01-09 16:39:29 +00003268
3269 aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
mistachkinfad30392016-02-13 23:43:46 +00003270 if( aBuf==0 ) return SQLITE_NOMEM_BKPT;
dand6f7c972016-01-09 16:39:29 +00003271
danc9a90222016-01-09 18:57:35 +00003272 /* Find the checksum values to use as input for the recalculating the
3273 ** first checksum. If the first frame is frame 1 (implying that the current
3274 ** transaction restarted the wal file), these values must be read from the
3275 ** wal-file header. Otherwise, read them from the frame header of the
3276 ** previous frame. */
3277 assert( pWal->iReCksum>0 );
3278 if( pWal->iReCksum==1 ){
3279 iCksumOff = 24;
dand6f7c972016-01-09 16:39:29 +00003280 }else{
danc9a90222016-01-09 18:57:35 +00003281 iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
dand6f7c972016-01-09 16:39:29 +00003282 }
danc9a90222016-01-09 18:57:35 +00003283 rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
3284 pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
3285 pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);
dand6f7c972016-01-09 16:39:29 +00003286
danc9a90222016-01-09 18:57:35 +00003287 iRead = pWal->iReCksum;
3288 pWal->iReCksum = 0;
3289 for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
dand6f7c972016-01-09 16:39:29 +00003290 i64 iOff = walFrameOffset(iRead, szPage);
3291 rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
3292 if( rc==SQLITE_OK ){
3293 u32 iPgno, nDbSize;
3294 iPgno = sqlite3Get4byte(aBuf);
3295 nDbSize = sqlite3Get4byte(&aBuf[4]);
3296
3297 walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
3298 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
3299 }
3300 }
3301
3302 sqlite3_free(aBuf);
3303 return rc;
3304}
3305
dan7c246102010-04-12 19:00:29 +00003306/*
dan4cd78b42010-04-26 16:57:10 +00003307** Write a set of frames to the log. The caller must hold the write-lock
dan9971e712010-06-01 15:44:57 +00003308** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
dan7c246102010-04-12 19:00:29 +00003309*/
drhc438efd2010-04-26 00:19:45 +00003310int sqlite3WalFrames(
drh7ed91f22010-04-29 22:34:07 +00003311 Wal *pWal, /* Wal handle to write to */
drh6e810962010-05-19 17:49:50 +00003312 int szPage, /* Database page-size in bytes */
dan7c246102010-04-12 19:00:29 +00003313 PgHdr *pList, /* List of dirty pages to write */
3314 Pgno nTruncate, /* Database size after this commit */
3315 int isCommit, /* True if this is a commit */
danc5118782010-04-17 17:34:41 +00003316 int sync_flags /* Flags to pass to OsSync() (or 0) */
dan7c246102010-04-12 19:00:29 +00003317){
dan7c246102010-04-12 19:00:29 +00003318 int rc; /* Used to catch return codes */
3319 u32 iFrame; /* Next frame address */
dan7c246102010-04-12 19:00:29 +00003320 PgHdr *p; /* Iterator to run through pList with. */
drhe874d9e2010-05-07 20:02:23 +00003321 PgHdr *pLast = 0; /* Last frame in list */
drhd992b152011-12-20 20:13:25 +00003322 int nExtra = 0; /* Number of extra copies of last page */
3323 int szFrame; /* The size of a single frame */
3324 i64 iOffset; /* Next byte to write in WAL file */
3325 WalWriter w; /* The writer */
dand6f7c972016-01-09 16:39:29 +00003326 u32 iFirst = 0; /* First frame that may be overwritten */
3327 WalIndexHdr *pLive; /* Pointer to shared header */
dan7c246102010-04-12 19:00:29 +00003328
dan7c246102010-04-12 19:00:29 +00003329 assert( pList );
drh73b64e42010-05-30 19:55:15 +00003330 assert( pWal->writeLock );
dan7c246102010-04-12 19:00:29 +00003331
drh41209942011-12-20 13:13:09 +00003332 /* If this frame set completes a transaction, then nTruncate>0. If
3333 ** nTruncate==0 then this frame set does not complete the transaction. */
3334 assert( (isCommit!=0)==(nTruncate!=0) );
3335
drhc74c3332010-05-31 12:15:19 +00003336#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
3337 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
3338 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
3339 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
3340 }
3341#endif
3342
dand6f7c972016-01-09 16:39:29 +00003343 pLive = (WalIndexHdr*)walIndexHdr(pWal);
drhb7c2f862016-01-09 23:55:47 +00003344 if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
dand6f7c972016-01-09 16:39:29 +00003345 iFirst = pLive->mxFrame+1;
3346 }
3347
dan9971e712010-06-01 15:44:57 +00003348 /* See if it is possible to write these frames into the start of the
3349 ** log file, instead of appending to it at pWal->hdr.mxFrame.
3350 */
3351 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
dan9971e712010-06-01 15:44:57 +00003352 return rc;
3353 }
dan9971e712010-06-01 15:44:57 +00003354
drha2a42012010-05-18 18:01:08 +00003355 /* If this is the first frame written into the log, write the WAL
3356 ** header to the start of the WAL file. See comments at the top of
3357 ** this source file for a description of the WAL header format.
dan97a31352010-04-16 13:59:31 +00003358 */
drh027a1282010-05-19 01:53:53 +00003359 iFrame = pWal->hdr.mxFrame;
dan97a31352010-04-16 13:59:31 +00003360 if( iFrame==0 ){
dan10f5a502010-06-23 15:55:43 +00003361 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */
3362 u32 aCksum[2]; /* Checksum for wal-header */
3363
danb8fd6c22010-05-24 10:39:36 +00003364 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
dan10f5a502010-06-23 15:55:43 +00003365 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
drh23ea97b2010-05-20 16:45:58 +00003366 sqlite3Put4byte(&aWalHdr[8], szPage);
3367 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
drhd2980312011-12-17 01:31:44 +00003368 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
drh7e263722010-05-20 21:21:09 +00003369 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
dan10f5a502010-06-23 15:55:43 +00003370 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
3371 sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
3372 sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
3373
drhb2eced52010-08-12 02:41:12 +00003374 pWal->szPage = szPage;
dan10f5a502010-06-23 15:55:43 +00003375 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
3376 pWal->hdr.aFrameCksum[0] = aCksum[0];
3377 pWal->hdr.aFrameCksum[1] = aCksum[1];
danf60b7f32011-12-16 13:24:27 +00003378 pWal->truncateOnCommit = 1;
dan10f5a502010-06-23 15:55:43 +00003379
drh23ea97b2010-05-20 16:45:58 +00003380 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
drhc74c3332010-05-31 12:15:19 +00003381 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
dan97a31352010-04-16 13:59:31 +00003382 if( rc!=SQLITE_OK ){
3383 return rc;
3384 }
drhd992b152011-12-20 20:13:25 +00003385
3386 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
3387 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise
3388 ** an out-of-order write following a WAL restart could result in
3389 ** database corruption. See the ticket:
3390 **
drh9c6e07d2017-08-24 20:54:42 +00003391 ** https://sqlite.org/src/info/ff5be73dee
drhd992b152011-12-20 20:13:25 +00003392 */
drhdaaae7b2017-08-25 01:14:43 +00003393 if( pWal->syncHeader ){
3394 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
drhd992b152011-12-20 20:13:25 +00003395 if( rc ) return rc;
3396 }
dan97a31352010-04-16 13:59:31 +00003397 }
shanehbd2aaf92010-09-01 02:38:21 +00003398 assert( (int)pWal->szPage==szPage );
dan97a31352010-04-16 13:59:31 +00003399
drhd992b152011-12-20 20:13:25 +00003400 /* Setup information needed to write frames into the WAL */
3401 w.pWal = pWal;
3402 w.pFd = pWal->pWalFd;
3403 w.iSyncPoint = 0;
3404 w.syncFlags = sync_flags;
3405 w.szPage = szPage;
3406 iOffset = walFrameOffset(iFrame+1, szPage);
3407 szFrame = szPage + WAL_FRAME_HDRSIZE;
drh88f975a2011-12-16 19:34:36 +00003408
drhd992b152011-12-20 20:13:25 +00003409 /* Write all frames into the log file exactly once */
dan7c246102010-04-12 19:00:29 +00003410 for(p=pList; p; p=p->pDirty){
drhd992b152011-12-20 20:13:25 +00003411 int nDbSize; /* 0 normally. Positive == commit flag */
dand6f7c972016-01-09 16:39:29 +00003412
3413 /* Check if this page has already been written into the wal file by
3414 ** the current transaction. If so, overwrite the existing frame and
3415 ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
3416 ** checksums must be recomputed when the transaction is committed. */
3417 if( iFirst && (p->pDirty || isCommit==0) ){
3418 u32 iWrite = 0;
drh89970872016-01-11 00:52:32 +00003419 VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
3420 assert( rc==SQLITE_OK || iWrite==0 );
dand6f7c972016-01-09 16:39:29 +00003421 if( iWrite>=iFirst ){
3422 i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
drh8e0cea12016-02-15 15:06:47 +00003423 void *pData;
danc9a90222016-01-09 18:57:35 +00003424 if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
3425 pWal->iReCksum = iWrite;
3426 }
drh8e0cea12016-02-15 15:06:47 +00003427#if defined(SQLITE_HAS_CODEC)
3428 if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM;
3429#else
3430 pData = p->pData;
3431#endif
3432 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
dand6f7c972016-01-09 16:39:29 +00003433 if( rc ) return rc;
3434 p->flags &= ~PGHDR_WAL_APPEND;
3435 continue;
3436 }
3437 }
3438
drhd992b152011-12-20 20:13:25 +00003439 iFrame++;
3440 assert( iOffset==walFrameOffset(iFrame, szPage) );
3441 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
3442 rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
3443 if( rc ) return rc;
dan7c246102010-04-12 19:00:29 +00003444 pLast = p;
drhd992b152011-12-20 20:13:25 +00003445 iOffset += szFrame;
dand6f7c972016-01-09 16:39:29 +00003446 p->flags |= PGHDR_WAL_APPEND;
3447 }
3448
3449 /* Recalculate checksums within the wal file if required. */
danc9a90222016-01-09 18:57:35 +00003450 if( isCommit && pWal->iReCksum ){
3451 rc = walRewriteChecksums(pWal, iFrame);
dand6f7c972016-01-09 16:39:29 +00003452 if( rc ) return rc;
dan7c246102010-04-12 19:00:29 +00003453 }
3454
drhd992b152011-12-20 20:13:25 +00003455 /* If this is the end of a transaction, then we might need to pad
3456 ** the transaction and/or sync the WAL file.
3457 **
3458 ** Padding and syncing only occur if this set of frames complete a
3459 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL
peter.d.reid60ec9142014-09-06 16:39:46 +00003460 ** or synchronous==OFF, then no padding or syncing are needed.
drhd992b152011-12-20 20:13:25 +00003461 **
drhcb15f352011-12-23 01:04:17 +00003462 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
3463 ** needed and only the sync is done. If padding is needed, then the
3464 ** final frame is repeated (with its commit mark) until the next sector
drhd992b152011-12-20 20:13:25 +00003465 ** boundary is crossed. Only the part of the WAL prior to the last
3466 ** sector boundary is synced; the part of the last frame that extends
3467 ** past the sector boundary is written after the sync.
3468 */
drhdaaae7b2017-08-25 01:14:43 +00003469 if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){
danfe912512016-05-24 16:20:51 +00003470 int bSync = 1;
drh374f4a02011-12-17 20:02:11 +00003471 if( pWal->padToSectorBoundary ){
danc9a53262012-10-01 06:50:55 +00003472 int sectorSize = sqlite3SectorSize(pWal->pWalFd);
drhd992b152011-12-20 20:13:25 +00003473 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
danfe912512016-05-24 16:20:51 +00003474 bSync = (w.iSyncPoint==iOffset);
3475 testcase( bSync );
drhd992b152011-12-20 20:13:25 +00003476 while( iOffset<w.iSyncPoint ){
3477 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
3478 if( rc ) return rc;
3479 iOffset += szFrame;
3480 nExtra++;
drh55f66b32019-07-16 19:44:32 +00003481 assert( pLast!=0 );
dan7c246102010-04-12 19:00:29 +00003482 }
danfe912512016-05-24 16:20:51 +00003483 }
3484 if( bSync ){
3485 assert( rc==SQLITE_OK );
drhdaaae7b2017-08-25 01:14:43 +00003486 rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags));
dan7c246102010-04-12 19:00:29 +00003487 }
dan7c246102010-04-12 19:00:29 +00003488 }
3489
drhd992b152011-12-20 20:13:25 +00003490 /* If this frame set completes the first transaction in the WAL and
3491 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
3492 ** journal size limit, if possible.
3493 */
danf60b7f32011-12-16 13:24:27 +00003494 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
3495 i64 sz = pWal->mxWalSize;
drhd992b152011-12-20 20:13:25 +00003496 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
3497 sz = walFrameOffset(iFrame+nExtra+1, szPage);
danf60b7f32011-12-16 13:24:27 +00003498 }
3499 walLimitSize(pWal, sz);
3500 pWal->truncateOnCommit = 0;
3501 }
3502
drhe730fec2010-05-18 12:56:50 +00003503 /* Append data to the wal-index. It is not necessary to lock the
drha2a42012010-05-18 18:01:08 +00003504 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
dan7c246102010-04-12 19:00:29 +00003505 ** guarantees that there are no other writers, and no data that may
3506 ** be in use by existing readers is being overwritten.
3507 */
drh027a1282010-05-19 01:53:53 +00003508 iFrame = pWal->hdr.mxFrame;
danc7991bd2010-05-05 19:04:59 +00003509 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
dand6f7c972016-01-09 16:39:29 +00003510 if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
dan7c246102010-04-12 19:00:29 +00003511 iFrame++;
danc7991bd2010-05-05 19:04:59 +00003512 rc = walIndexAppend(pWal, iFrame, p->pgno);
dan7c246102010-04-12 19:00:29 +00003513 }
drh55f66b32019-07-16 19:44:32 +00003514 assert( pLast!=0 || nExtra==0 );
drh20e226d2012-01-01 13:58:53 +00003515 while( rc==SQLITE_OK && nExtra>0 ){
dan7c246102010-04-12 19:00:29 +00003516 iFrame++;
drhd992b152011-12-20 20:13:25 +00003517 nExtra--;
danc7991bd2010-05-05 19:04:59 +00003518 rc = walIndexAppend(pWal, iFrame, pLast->pgno);
dan7c246102010-04-12 19:00:29 +00003519 }
3520
danc7991bd2010-05-05 19:04:59 +00003521 if( rc==SQLITE_OK ){
3522 /* Update the private copy of the header. */
shaneh1df2db72010-08-18 02:28:48 +00003523 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00003524 testcase( szPage<=32768 );
3525 testcase( szPage>=65536 );
drh027a1282010-05-19 01:53:53 +00003526 pWal->hdr.mxFrame = iFrame;
danc7991bd2010-05-05 19:04:59 +00003527 if( isCommit ){
3528 pWal->hdr.iChange++;
3529 pWal->hdr.nPage = nTruncate;
3530 }
danc7991bd2010-05-05 19:04:59 +00003531 /* If this is a commit, update the wal-index header too. */
3532 if( isCommit ){
drh7e263722010-05-20 21:21:09 +00003533 walIndexWriteHdr(pWal);
danc7991bd2010-05-05 19:04:59 +00003534 pWal->iCallback = iFrame;
3535 }
dan7c246102010-04-12 19:00:29 +00003536 }
danc7991bd2010-05-05 19:04:59 +00003537
drhc74c3332010-05-31 12:15:19 +00003538 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
dan8d22a172010-04-19 18:03:51 +00003539 return rc;
dan7c246102010-04-12 19:00:29 +00003540}
3541
3542/*
drh73b64e42010-05-30 19:55:15 +00003543** This routine is called to implement sqlite3_wal_checkpoint() and
3544** related interfaces.
danb9bf16b2010-04-14 11:23:30 +00003545**
drh73b64e42010-05-30 19:55:15 +00003546** Obtain a CHECKPOINT lock and then backfill as much information as
3547** we can from WAL into the database.
dana58f26f2010-11-16 18:56:51 +00003548**
3549** If parameter xBusy is not NULL, it is a pointer to a busy-handler
3550** callback. In this case this function runs a blocking checkpoint.
dan7c246102010-04-12 19:00:29 +00003551*/
drhc438efd2010-04-26 00:19:45 +00003552int sqlite3WalCheckpoint(
drh7ed91f22010-04-29 22:34:07 +00003553 Wal *pWal, /* Wal connection */
dan7fb89902016-08-12 16:21:15 +00003554 sqlite3 *db, /* Check this handle's interrupt flag */
drhdd90d7e2014-12-03 19:25:41 +00003555 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */
dana58f26f2010-11-16 18:56:51 +00003556 int (*xBusy)(void*), /* Function to call when busy */
3557 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00003558 int sync_flags, /* Flags to sync db file with (or 0) */
danb6e099a2010-05-04 14:47:39 +00003559 int nBuf, /* Size of temporary buffer */
dancdc1f042010-11-18 12:11:05 +00003560 u8 *zBuf, /* Temporary buffer to use */
3561 int *pnLog, /* OUT: Number of frames in WAL */
3562 int *pnCkpt /* OUT: Number of backfilled frames in WAL */
dan7c246102010-04-12 19:00:29 +00003563){
danb9bf16b2010-04-14 11:23:30 +00003564 int rc; /* Return code */
dan31c03902010-04-29 14:51:33 +00003565 int isChanged = 0; /* True if a new wal-index header is loaded */
danf2b8dd52010-11-18 19:28:01 +00003566 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */
drhdd90d7e2014-12-03 19:25:41 +00003567 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */
dan7c246102010-04-12 19:00:29 +00003568
dand54ff602010-05-31 11:16:30 +00003569 assert( pWal->ckptLock==0 );
dana58f26f2010-11-16 18:56:51 +00003570 assert( pWal->writeLock==0 );
dan39c79f52010-04-15 10:58:51 +00003571
drhdd90d7e2014-12-03 19:25:41 +00003572 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
3573 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
3574 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
3575
drh66dfec8b2011-06-01 20:01:49 +00003576 if( pWal->readOnly ) return SQLITE_READONLY;
drhc74c3332010-05-31 12:15:19 +00003577 WALTRACE(("WAL%p: checkpoint begins\n", pWal));
drhdd90d7e2014-12-03 19:25:41 +00003578
3579 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
3580 ** "checkpoint" lock on the database file. */
drhab372772015-12-02 16:10:16 +00003581 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
drh73b64e42010-05-30 19:55:15 +00003582 if( rc ){
drhdd90d7e2014-12-03 19:25:41 +00003583 /* EVIDENCE-OF: R-10421-19736 If any other process is running a
3584 ** checkpoint operation at the same time, the lock cannot be obtained and
3585 ** SQLITE_BUSY is returned.
3586 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
3587 ** it will not be invoked in this case.
3588 */
3589 testcase( rc==SQLITE_BUSY );
3590 testcase( xBusy!=0 );
danb9bf16b2010-04-14 11:23:30 +00003591 return rc;
3592 }
dand54ff602010-05-31 11:16:30 +00003593 pWal->ckptLock = 1;
dan64d039e2010-04-13 19:27:31 +00003594
drhdd90d7e2014-12-03 19:25:41 +00003595 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
3596 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
3597 ** file.
danf2b8dd52010-11-18 19:28:01 +00003598 **
drhdd90d7e2014-12-03 19:25:41 +00003599 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
3600 ** immediately, and a busy-handler is configured, it is invoked and the
3601 ** writer lock retried until either the busy-handler returns 0 or the
3602 ** lock is successfully obtained.
dana58f26f2010-11-16 18:56:51 +00003603 */
dancdc1f042010-11-18 12:11:05 +00003604 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
dana58f26f2010-11-16 18:56:51 +00003605 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
danf2b8dd52010-11-18 19:28:01 +00003606 if( rc==SQLITE_OK ){
3607 pWal->writeLock = 1;
3608 }else if( rc==SQLITE_BUSY ){
3609 eMode2 = SQLITE_CHECKPOINT_PASSIVE;
drhdd90d7e2014-12-03 19:25:41 +00003610 xBusy2 = 0;
danf2b8dd52010-11-18 19:28:01 +00003611 rc = SQLITE_OK;
3612 }
danb9bf16b2010-04-14 11:23:30 +00003613 }
dana58f26f2010-11-16 18:56:51 +00003614
danf2b8dd52010-11-18 19:28:01 +00003615 /* Read the wal-index header. */
drh7ed91f22010-04-29 22:34:07 +00003616 if( rc==SQLITE_OK ){
dana58f26f2010-11-16 18:56:51 +00003617 rc = walIndexReadHdr(pWal, &isChanged);
danf55a4cf2013-04-01 16:56:41 +00003618 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3619 sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3620 }
dana58f26f2010-11-16 18:56:51 +00003621 }
danf2b8dd52010-11-18 19:28:01 +00003622
3623 /* Copy data from the log to the database file. */
dan9c5e3682011-02-07 15:12:12 +00003624 if( rc==SQLITE_OK ){
dand6f7c972016-01-09 16:39:29 +00003625
dan9c5e3682011-02-07 15:12:12 +00003626 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
danf2b8dd52010-11-18 19:28:01 +00003627 rc = SQLITE_CORRUPT_BKPT;
3628 }else{
dan7fb89902016-08-12 16:21:15 +00003629 rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
dan9c5e3682011-02-07 15:12:12 +00003630 }
3631
3632 /* If no error occurred, set the output variables. */
3633 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
danf2b8dd52010-11-18 19:28:01 +00003634 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
dan9c5e3682011-02-07 15:12:12 +00003635 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
danf2b8dd52010-11-18 19:28:01 +00003636 }
danb9bf16b2010-04-14 11:23:30 +00003637 }
danf2b8dd52010-11-18 19:28:01 +00003638
dan31c03902010-04-29 14:51:33 +00003639 if( isChanged ){
3640 /* If a new wal-index header was loaded before the checkpoint was
drha2a42012010-05-18 18:01:08 +00003641 ** performed, then the pager-cache associated with pWal is now
dan31c03902010-04-29 14:51:33 +00003642 ** out of date. So zero the cached wal-index header to ensure that
3643 ** next time the pager opens a snapshot on this database it knows that
3644 ** the cache needs to be reset.
3645 */
3646 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3647 }
danb9bf16b2010-04-14 11:23:30 +00003648
3649 /* Release the locks. */
dana58f26f2010-11-16 18:56:51 +00003650 sqlite3WalEndWriteTransaction(pWal);
drh73b64e42010-05-30 19:55:15 +00003651 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
dand54ff602010-05-31 11:16:30 +00003652 pWal->ckptLock = 0;
drhc74c3332010-05-31 12:15:19 +00003653 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
danf2b8dd52010-11-18 19:28:01 +00003654 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
dan7c246102010-04-12 19:00:29 +00003655}
3656
drh7ed91f22010-04-29 22:34:07 +00003657/* Return the value to pass to a sqlite3_wal_hook callback, the
3658** number of frames in the WAL at the point of the last commit since
3659** sqlite3WalCallback() was called. If no commits have occurred since
3660** the last call, then return 0.
3661*/
3662int sqlite3WalCallback(Wal *pWal){
dan8d22a172010-04-19 18:03:51 +00003663 u32 ret = 0;
drh7ed91f22010-04-29 22:34:07 +00003664 if( pWal ){
3665 ret = pWal->iCallback;
3666 pWal->iCallback = 0;
dan8d22a172010-04-19 18:03:51 +00003667 }
3668 return (int)ret;
3669}
dan55437592010-05-11 12:19:26 +00003670
3671/*
drh61e4ace2010-05-31 20:28:37 +00003672** This function is called to change the WAL subsystem into or out
3673** of locking_mode=EXCLUSIVE.
dan55437592010-05-11 12:19:26 +00003674**
drh61e4ace2010-05-31 20:28:37 +00003675** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3676** into locking_mode=NORMAL. This means that we must acquire a lock
3677** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
3678** or if the acquisition of the lock fails, then return 0. If the
3679** transition out of exclusive-mode is successful, return 1. This
3680** operation must occur while the pager is still holding the exclusive
3681** lock on the main database file.
dan55437592010-05-11 12:19:26 +00003682**
drh61e4ace2010-05-31 20:28:37 +00003683** If op is one, then change from locking_mode=NORMAL into
3684** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
3685** be released. Return 1 if the transition is made and 0 if the
3686** WAL is already in exclusive-locking mode - meaning that this
3687** routine is a no-op. The pager must already hold the exclusive lock
3688** on the main database file before invoking this operation.
3689**
3690** If op is negative, then do a dry-run of the op==1 case but do
dan8c408002010-11-01 17:38:24 +00003691** not actually change anything. The pager uses this to see if it
drh61e4ace2010-05-31 20:28:37 +00003692** should acquire the database exclusive lock prior to invoking
3693** the op==1 case.
dan55437592010-05-11 12:19:26 +00003694*/
3695int sqlite3WalExclusiveMode(Wal *pWal, int op){
drh61e4ace2010-05-31 20:28:37 +00003696 int rc;
drhaab4c022010-06-02 14:45:51 +00003697 assert( pWal->writeLock==0 );
dan8c408002010-11-01 17:38:24 +00003698 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
dan3cac5dc2010-06-04 18:37:59 +00003699
3700 /* pWal->readLock is usually set, but might be -1 if there was a
3701 ** prior error while attempting to acquire are read-lock. This cannot
3702 ** happen if the connection is actually in exclusive mode (as no xShmLock
3703 ** locks are taken in this case). Nor should the pager attempt to
3704 ** upgrade to exclusive-mode following such an error.
3705 */
drhaab4c022010-06-02 14:45:51 +00003706 assert( pWal->readLock>=0 || pWal->lockError );
dan3cac5dc2010-06-04 18:37:59 +00003707 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3708
drh61e4ace2010-05-31 20:28:37 +00003709 if( op==0 ){
drhc05a0632017-11-11 20:11:01 +00003710 if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){
3711 pWal->exclusiveMode = WAL_NORMAL_MODE;
dan3cac5dc2010-06-04 18:37:59 +00003712 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
drhc05a0632017-11-11 20:11:01 +00003713 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
drh61e4ace2010-05-31 20:28:37 +00003714 }
drhc05a0632017-11-11 20:11:01 +00003715 rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
drh61e4ace2010-05-31 20:28:37 +00003716 }else{
drhaab4c022010-06-02 14:45:51 +00003717 /* Already in locking_mode=NORMAL */
drh61e4ace2010-05-31 20:28:37 +00003718 rc = 0;
3719 }
3720 }else if( op>0 ){
drhc05a0632017-11-11 20:11:01 +00003721 assert( pWal->exclusiveMode==WAL_NORMAL_MODE );
drhaab4c022010-06-02 14:45:51 +00003722 assert( pWal->readLock>=0 );
drh61e4ace2010-05-31 20:28:37 +00003723 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
drhc05a0632017-11-11 20:11:01 +00003724 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
drh61e4ace2010-05-31 20:28:37 +00003725 rc = 1;
3726 }else{
drhc05a0632017-11-11 20:11:01 +00003727 rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
dan55437592010-05-11 12:19:26 +00003728 }
drh61e4ace2010-05-31 20:28:37 +00003729 return rc;
dan55437592010-05-11 12:19:26 +00003730}
3731
dan8c408002010-11-01 17:38:24 +00003732/*
3733** Return true if the argument is non-NULL and the WAL module is using
3734** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3735** WAL module is using shared-memory, return false.
3736*/
3737int sqlite3WalHeapMemory(Wal *pWal){
3738 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3739}
3740
danfc1acf32015-12-05 20:51:54 +00003741#ifdef SQLITE_ENABLE_SNAPSHOT
drhe230a892015-12-10 22:48:22 +00003742/* Create a snapshot object. The content of a snapshot is opaque to
3743** every other subsystem, so the WAL module can put whatever it needs
3744** in the object.
3745*/
danfc1acf32015-12-05 20:51:54 +00003746int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
3747 int rc = SQLITE_OK;
3748 WalIndexHdr *pRet;
drhba6eb872016-11-15 17:37:56 +00003749 static const u32 aZero[4] = { 0, 0, 0, 0 };
danfc1acf32015-12-05 20:51:54 +00003750
3751 assert( pWal->readLock>=0 && pWal->writeLock==0 );
3752
drhba6eb872016-11-15 17:37:56 +00003753 if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){
3754 *ppSnapshot = 0;
3755 return SQLITE_ERROR;
3756 }
danfc1acf32015-12-05 20:51:54 +00003757 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
3758 if( pRet==0 ){
mistachkinfad30392016-02-13 23:43:46 +00003759 rc = SQLITE_NOMEM_BKPT;
danfc1acf32015-12-05 20:51:54 +00003760 }else{
3761 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
3762 *ppSnapshot = (sqlite3_snapshot*)pRet;
3763 }
3764
3765 return rc;
3766}
3767
drhe230a892015-12-10 22:48:22 +00003768/* Try to open on pSnapshot when the next read-transaction starts
3769*/
danfc1acf32015-12-05 20:51:54 +00003770void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot){
3771 pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
3772}
danad2d5ba2016-04-11 19:59:52 +00003773
3774/*
3775** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
3776** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
3777*/
3778int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
3779 WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
3780 WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;
3781
3782 /* aSalt[0] is a copy of the value stored in the wal file header. It
3783 ** is incremented each time the wal file is restarted. */
3784 if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
3785 if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
3786 if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
3787 if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
3788 return 0;
3789}
danfa3d4c12018-08-06 17:12:36 +00003790
3791/*
3792** The caller currently has a read transaction open on the database.
3793** This function takes a SHARED lock on the CHECKPOINTER slot and then
3794** checks if the snapshot passed as the second argument is still
3795** available. If so, SQLITE_OK is returned.
3796**
3797** If the snapshot is not available, SQLITE_ERROR is returned. Or, if
3798** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error
3799** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER
3800** lock is released before returning.
3801*/
3802int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){
3803 int rc;
3804 rc = walLockShared(pWal, WAL_CKPT_LOCK);
3805 if( rc==SQLITE_OK ){
3806 WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot;
3807 if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
3808 || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted
3809 ){
dan8d4b7a32018-08-31 19:00:16 +00003810 rc = SQLITE_ERROR_SNAPSHOT;
danfa3d4c12018-08-06 17:12:36 +00003811 walUnlockShared(pWal, WAL_CKPT_LOCK);
3812 }
3813 }
3814 return rc;
3815}
3816
3817/*
3818** Release a lock obtained by an earlier successful call to
3819** sqlite3WalSnapshotCheck().
3820*/
3821void sqlite3WalSnapshotUnlock(Wal *pWal){
3822 assert( pWal );
3823 walUnlockShared(pWal, WAL_CKPT_LOCK);
3824}
3825
3826
danfc1acf32015-12-05 20:51:54 +00003827#endif /* SQLITE_ENABLE_SNAPSHOT */
3828
drh70708602012-02-24 14:33:28 +00003829#ifdef SQLITE_ENABLE_ZIPVFS
danb3bdc722012-02-23 15:35:49 +00003830/*
3831** If the argument is not NULL, it points to a Wal object that holds a
3832** read-lock. This function returns the database page-size if it is known,
3833** or zero if it is not (or if pWal is NULL).
3834*/
3835int sqlite3WalFramesize(Wal *pWal){
danb3bdc722012-02-23 15:35:49 +00003836 assert( pWal==0 || pWal->readLock>=0 );
3837 return (pWal ? pWal->szPage : 0);
3838}
drh70708602012-02-24 14:33:28 +00003839#endif
danb3bdc722012-02-23 15:35:49 +00003840
drh21d61852016-01-08 02:27:01 +00003841/* Return the sqlite3_file object for the WAL file
3842*/
3843sqlite3_file *sqlite3WalFile(Wal *pWal){
3844 return pWal->pWalFd;
3845}
3846
dan5cf53532010-05-01 16:40:20 +00003847#endif /* #ifndef SQLITE_OMIT_WAL */