drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 1 | /* |
| 2 | ** 2004 May 26 |
| 3 | ** |
| 4 | ** The author disclaims copyright to this source code. In place of |
| 5 | ** a legal notice, here is a blessing: |
| 6 | ** |
| 7 | ** May you do good and not evil. |
| 8 | ** May you find forgiveness for yourself and forgive others. |
| 9 | ** May you share freely, never taking more than you give. |
| 10 | ** |
| 11 | ************************************************************************* |
| 12 | ** |
| 13 | ** This file contains code use to manipulate "Mem" structure. A "Mem" |
| 14 | ** stores a single value in the VDBE. Mem is an opaque structure visible |
| 15 | ** only within the VDBE. Interface routines refer to a Mem using the |
| 16 | ** name sqlite_value |
| 17 | */ |
| 18 | #include "sqliteInt.h" |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 19 | #include "vdbeInt.h" |
| 20 | |
drh | 75fd054 | 2014-03-01 16:24:44 +0000 | [diff] [blame] | 21 | #ifdef SQLITE_DEBUG |
| 22 | /* |
| 23 | ** Check invariants on a Mem object. |
| 24 | ** |
| 25 | ** This routine is intended for use inside of assert() statements, like |
| 26 | ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) ); |
| 27 | */ |
| 28 | int sqlite3VdbeCheckMemInvariants(Mem *p){ |
drh | d3b7420 | 2014-09-17 16:41:15 +0000 | [diff] [blame] | 29 | /* If MEM_Dyn is set then Mem.xDel!=0. |
| 30 | ** Mem.xDel is might not be initialized if MEM_Dyn is clear. |
drh | c91b2fd | 2014-03-01 18:13:23 +0000 | [diff] [blame] | 31 | */ |
| 32 | assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 ); |
drh | c91b2fd | 2014-03-01 18:13:23 +0000 | [diff] [blame] | 33 | |
drh | 722246e | 2014-10-07 23:02:24 +0000 | [diff] [blame] | 34 | /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we |
| 35 | ** ensure that if Mem.szMalloc>0 then it is safe to do |
| 36 | ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn. |
| 37 | ** That saves a few cycles in inner loops. */ |
drh | 1eda9f7 | 2014-09-19 22:30:49 +0000 | [diff] [blame] | 38 | assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 ); |
| 39 | |
drh | 74eaba4 | 2014-09-18 17:52:15 +0000 | [diff] [blame] | 40 | /* Cannot be both MEM_Int and MEM_Real at the same time */ |
| 41 | assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) ); |
| 42 | |
drh | 17bcb10 | 2014-09-18 21:25:33 +0000 | [diff] [blame] | 43 | /* The szMalloc field holds the correct memory allocation size */ |
| 44 | assert( p->szMalloc==0 |
| 45 | || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) ); |
| 46 | |
drh | c91b2fd | 2014-03-01 18:13:23 +0000 | [diff] [blame] | 47 | /* If p holds a string or blob, the Mem.z must point to exactly |
| 48 | ** one of the following: |
| 49 | ** |
| 50 | ** (1) Memory in Mem.zMalloc and managed by the Mem object |
| 51 | ** (2) Memory to be freed using Mem.xDel |
peter.d.reid | 60ec914 | 2014-09-06 16:39:46 +0000 | [diff] [blame] | 52 | ** (3) An ephemeral string or blob |
drh | c91b2fd | 2014-03-01 18:13:23 +0000 | [diff] [blame] | 53 | ** (4) A static string or blob |
| 54 | */ |
drh | 17bcb10 | 2014-09-18 21:25:33 +0000 | [diff] [blame] | 55 | if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){ |
drh | c91b2fd | 2014-03-01 18:13:23 +0000 | [diff] [blame] | 56 | assert( |
drh | 17bcb10 | 2014-09-18 21:25:33 +0000 | [diff] [blame] | 57 | ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) + |
drh | c91b2fd | 2014-03-01 18:13:23 +0000 | [diff] [blame] | 58 | ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + |
| 59 | ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + |
| 60 | ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1 |
| 61 | ); |
| 62 | } |
drh | 75fd054 | 2014-03-01 16:24:44 +0000 | [diff] [blame] | 63 | return 1; |
| 64 | } |
| 65 | #endif |
| 66 | |
| 67 | |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 68 | /* |
danielk1977 | bfd6cce | 2004-06-18 04:24:54 +0000 | [diff] [blame] | 69 | ** If pMem is an object with a valid string representation, this routine |
| 70 | ** ensures the internal encoding for the string representation is |
| 71 | ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 72 | ** |
danielk1977 | bfd6cce | 2004-06-18 04:24:54 +0000 | [diff] [blame] | 73 | ** If pMem is not a string object, or the encoding of the string |
| 74 | ** representation is already stored using the requested encoding, then this |
| 75 | ** routine is a no-op. |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 76 | ** |
| 77 | ** SQLITE_OK is returned if the conversion is successful (or not required). |
| 78 | ** SQLITE_NOMEM may be returned if a malloc() fails during conversion |
| 79 | ** between formats. |
| 80 | */ |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 81 | int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ |
mistachkin | ef593f2 | 2013-03-07 06:42:53 +0000 | [diff] [blame] | 82 | #ifndef SQLITE_OMIT_UTF16 |
danielk1977 | 2c33654 | 2005-01-13 02:14:23 +0000 | [diff] [blame] | 83 | int rc; |
mistachkin | ef593f2 | 2013-03-07 06:42:53 +0000 | [diff] [blame] | 84 | #endif |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 85 | assert( (pMem->flags&MEM_RowSet)==0 ); |
drh | b27b7f5 | 2008-12-10 18:03:45 +0000 | [diff] [blame] | 86 | assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE |
| 87 | || desiredEnc==SQLITE_UTF16BE ); |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 88 | if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 89 | return SQLITE_OK; |
| 90 | } |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 91 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
drh | 6c62608 | 2004-11-14 21:56:29 +0000 | [diff] [blame] | 92 | #ifdef SQLITE_OMIT_UTF16 |
| 93 | return SQLITE_ERROR; |
| 94 | #else |
danielk1977 | 00fd957 | 2005-12-07 06:27:43 +0000 | [diff] [blame] | 95 | |
| 96 | /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, |
| 97 | ** then the encoding of the value may not have changed. |
| 98 | */ |
drh | b27b7f5 | 2008-12-10 18:03:45 +0000 | [diff] [blame] | 99 | rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc); |
danielk1977 | 00fd957 | 2005-12-07 06:27:43 +0000 | [diff] [blame] | 100 | assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); |
| 101 | assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); |
| 102 | assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); |
danielk1977 | 2c33654 | 2005-01-13 02:14:23 +0000 | [diff] [blame] | 103 | return rc; |
drh | 6c62608 | 2004-11-14 21:56:29 +0000 | [diff] [blame] | 104 | #endif |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 105 | } |
| 106 | |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 107 | /* |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 108 | ** Make sure pMem->z points to a writable allocation of at least |
drh | b0e7704 | 2013-12-10 19:49:00 +0000 | [diff] [blame] | 109 | ** min(n,32) bytes. |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 110 | ** |
drh | b0e7704 | 2013-12-10 19:49:00 +0000 | [diff] [blame] | 111 | ** If the bPreserve argument is true, then copy of the content of |
| 112 | ** pMem->z into the new allocation. pMem must be either a string or |
| 113 | ** blob if bPreserve is true. If bPreserve is false, any prior content |
| 114 | ** in pMem->z is discarded. |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 115 | */ |
drh | 322f285 | 2014-09-19 00:43:39 +0000 | [diff] [blame] | 116 | SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){ |
drh | 75fd054 | 2014-03-01 16:24:44 +0000 | [diff] [blame] | 117 | assert( sqlite3VdbeCheckMemInvariants(pMem) ); |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 118 | assert( (pMem->flags&MEM_RowSet)==0 ); |
drh | 575fad6 | 2016-02-05 13:38:36 +0000 | [diff] [blame] | 119 | testcase( pMem->db==0 ); |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 120 | |
drh | b0e7704 | 2013-12-10 19:49:00 +0000 | [diff] [blame] | 121 | /* If the bPreserve flag is set to true, then the memory cell must already |
dan | 2b9ee77 | 2012-03-31 09:59:44 +0000 | [diff] [blame] | 122 | ** contain a valid string or blob value. */ |
drh | b0e7704 | 2013-12-10 19:49:00 +0000 | [diff] [blame] | 123 | assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) ); |
| 124 | testcase( bPreserve && pMem->z==0 ); |
dan | 2b9ee77 | 2012-03-31 09:59:44 +0000 | [diff] [blame] | 125 | |
drh | 17bcb10 | 2014-09-18 21:25:33 +0000 | [diff] [blame] | 126 | assert( pMem->szMalloc==0 |
| 127 | || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) ); |
| 128 | if( pMem->szMalloc<n ){ |
drh | b0e7704 | 2013-12-10 19:49:00 +0000 | [diff] [blame] | 129 | if( n<32 ) n = 32; |
drh | 17bcb10 | 2014-09-18 21:25:33 +0000 | [diff] [blame] | 130 | if( bPreserve && pMem->szMalloc>0 && pMem->z==pMem->zMalloc ){ |
danielk1977 | 5f09613 | 2008-03-28 15:44:09 +0000 | [diff] [blame] | 131 | pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); |
drh | b0e7704 | 2013-12-10 19:49:00 +0000 | [diff] [blame] | 132 | bPreserve = 0; |
danielk1977 | 5f09613 | 2008-03-28 15:44:09 +0000 | [diff] [blame] | 133 | }else{ |
drh | 17bcb10 | 2014-09-18 21:25:33 +0000 | [diff] [blame] | 134 | if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc); |
danielk1977 | 5f09613 | 2008-03-28 15:44:09 +0000 | [diff] [blame] | 135 | pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 136 | } |
drh | b0e7704 | 2013-12-10 19:49:00 +0000 | [diff] [blame] | 137 | if( pMem->zMalloc==0 ){ |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 138 | sqlite3VdbeMemSetNull(pMem); |
drh | d1053a4 | 2014-03-04 18:06:04 +0000 | [diff] [blame] | 139 | pMem->z = 0; |
drh | 17bcb10 | 2014-09-18 21:25:33 +0000 | [diff] [blame] | 140 | pMem->szMalloc = 0; |
mistachkin | fad3039 | 2016-02-13 23:43:46 +0000 | [diff] [blame] | 141 | return SQLITE_NOMEM_BKPT; |
drh | 17bcb10 | 2014-09-18 21:25:33 +0000 | [diff] [blame] | 142 | }else{ |
| 143 | pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); |
drh | b0e7704 | 2013-12-10 19:49:00 +0000 | [diff] [blame] | 144 | } |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 145 | } |
danielk1977 | 5f09613 | 2008-03-28 15:44:09 +0000 | [diff] [blame] | 146 | |
dan | 7443916 | 2014-10-15 11:31:35 +0000 | [diff] [blame] | 147 | if( bPreserve && pMem->z && pMem->z!=pMem->zMalloc ){ |
danielk1977 | 5f09613 | 2008-03-28 15:44:09 +0000 | [diff] [blame] | 148 | memcpy(pMem->zMalloc, pMem->z, pMem->n); |
| 149 | } |
drh | c91b2fd | 2014-03-01 18:13:23 +0000 | [diff] [blame] | 150 | if( (pMem->flags&MEM_Dyn)!=0 ){ |
| 151 | assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC ); |
danielk1977 | 5f09613 | 2008-03-28 15:44:09 +0000 | [diff] [blame] | 152 | pMem->xDel((void *)(pMem->z)); |
| 153 | } |
| 154 | |
| 155 | pMem->z = pMem->zMalloc; |
drh | c91b2fd | 2014-03-01 18:13:23 +0000 | [diff] [blame] | 156 | pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static); |
drh | b0e7704 | 2013-12-10 19:49:00 +0000 | [diff] [blame] | 157 | return SQLITE_OK; |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 158 | } |
| 159 | |
| 160 | /* |
drh | 322f285 | 2014-09-19 00:43:39 +0000 | [diff] [blame] | 161 | ** Change the pMem->zMalloc allocation to be at least szNew bytes. |
| 162 | ** If pMem->zMalloc already meets or exceeds the requested size, this |
| 163 | ** routine is a no-op. |
| 164 | ** |
| 165 | ** Any prior string or blob content in the pMem object may be discarded. |
drh | a5476e9 | 2014-09-19 04:42:38 +0000 | [diff] [blame] | 166 | ** The pMem->xDel destructor is called, if it exists. Though MEM_Str |
| 167 | ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null |
| 168 | ** values are preserved. |
drh | 322f285 | 2014-09-19 00:43:39 +0000 | [diff] [blame] | 169 | ** |
| 170 | ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM) |
| 171 | ** if unable to complete the resizing. |
| 172 | */ |
| 173 | int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){ |
drh | 722246e | 2014-10-07 23:02:24 +0000 | [diff] [blame] | 174 | assert( szNew>0 ); |
| 175 | assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 ); |
drh | 1eda9f7 | 2014-09-19 22:30:49 +0000 | [diff] [blame] | 176 | if( pMem->szMalloc<szNew ){ |
drh | 322f285 | 2014-09-19 00:43:39 +0000 | [diff] [blame] | 177 | return sqlite3VdbeMemGrow(pMem, szNew, 0); |
| 178 | } |
drh | 1eda9f7 | 2014-09-19 22:30:49 +0000 | [diff] [blame] | 179 | assert( (pMem->flags & MEM_Dyn)==0 ); |
drh | 322f285 | 2014-09-19 00:43:39 +0000 | [diff] [blame] | 180 | pMem->z = pMem->zMalloc; |
drh | a5476e9 | 2014-09-19 04:42:38 +0000 | [diff] [blame] | 181 | pMem->flags &= (MEM_Null|MEM_Int|MEM_Real); |
drh | 322f285 | 2014-09-19 00:43:39 +0000 | [diff] [blame] | 182 | return SQLITE_OK; |
| 183 | } |
| 184 | |
| 185 | /* |
drh | 1eda9f7 | 2014-09-19 22:30:49 +0000 | [diff] [blame] | 186 | ** Change pMem so that its MEM_Str or MEM_Blob value is stored in |
| 187 | ** MEM.zMalloc, where it can be safely written. |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 188 | ** |
| 189 | ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. |
| 190 | */ |
drh | dab898f | 2008-07-30 13:14:55 +0000 | [diff] [blame] | 191 | int sqlite3VdbeMemMakeWriteable(Mem *pMem){ |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 192 | int f; |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 193 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 194 | assert( (pMem->flags&MEM_RowSet)==0 ); |
drh | 45d2930 | 2012-01-08 22:18:33 +0000 | [diff] [blame] | 195 | ExpandBlob(pMem); |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 196 | f = pMem->flags; |
drh | 17bcb10 | 2014-09-18 21:25:33 +0000 | [diff] [blame] | 197 | if( (f&(MEM_Str|MEM_Blob)) && (pMem->szMalloc==0 || pMem->z!=pMem->zMalloc) ){ |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 198 | if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){ |
mistachkin | fad3039 | 2016-02-13 23:43:46 +0000 | [diff] [blame] | 199 | return SQLITE_NOMEM_BKPT; |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 200 | } |
| 201 | pMem->z[pMem->n] = 0; |
| 202 | pMem->z[pMem->n+1] = 0; |
| 203 | pMem->flags |= MEM_Term; |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 204 | } |
drh | bd6789e | 2015-04-28 14:00:02 +0000 | [diff] [blame] | 205 | pMem->flags &= ~MEM_Ephem; |
| 206 | #ifdef SQLITE_DEBUG |
| 207 | pMem->pScopyFrom = 0; |
| 208 | #endif |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 209 | |
drh | f447950 | 2004-05-27 03:12:53 +0000 | [diff] [blame] | 210 | return SQLITE_OK; |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 211 | } |
| 212 | |
| 213 | /* |
drh | fdf972a | 2007-05-02 13:30:27 +0000 | [diff] [blame] | 214 | ** If the given Mem* has a zero-filled tail, turn it into an ordinary |
drh | b026e05 | 2007-05-02 01:34:31 +0000 | [diff] [blame] | 215 | ** blob stored in dynamically allocated space. |
| 216 | */ |
danielk1977 | 246ad31 | 2007-05-16 14:23:00 +0000 | [diff] [blame] | 217 | #ifndef SQLITE_OMIT_INCRBLOB |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 218 | int sqlite3VdbeMemExpandBlob(Mem *pMem){ |
drh | b026e05 | 2007-05-02 01:34:31 +0000 | [diff] [blame] | 219 | if( pMem->flags & MEM_Zero ){ |
drh | 98640a3 | 2007-06-07 19:08:32 +0000 | [diff] [blame] | 220 | int nByte; |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 221 | assert( pMem->flags&MEM_Blob ); |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 222 | assert( (pMem->flags&MEM_RowSet)==0 ); |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 223 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 224 | |
| 225 | /* Set nByte to the number of bytes required to store the expanded blob. */ |
drh | 8df3284 | 2008-12-09 02:51:23 +0000 | [diff] [blame] | 226 | nByte = pMem->n + pMem->u.nZero; |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 227 | if( nByte<=0 ){ |
| 228 | nByte = 1; |
| 229 | } |
| 230 | if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ |
mistachkin | fad3039 | 2016-02-13 23:43:46 +0000 | [diff] [blame] | 231 | return SQLITE_NOMEM_BKPT; |
drh | b026e05 | 2007-05-02 01:34:31 +0000 | [diff] [blame] | 232 | } |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 233 | |
drh | 8df3284 | 2008-12-09 02:51:23 +0000 | [diff] [blame] | 234 | memset(&pMem->z[pMem->n], 0, pMem->u.nZero); |
| 235 | pMem->n += pMem->u.nZero; |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 236 | pMem->flags &= ~(MEM_Zero|MEM_Term); |
drh | b026e05 | 2007-05-02 01:34:31 +0000 | [diff] [blame] | 237 | } |
| 238 | return SQLITE_OK; |
| 239 | } |
danielk1977 | 246ad31 | 2007-05-16 14:23:00 +0000 | [diff] [blame] | 240 | #endif |
drh | b026e05 | 2007-05-02 01:34:31 +0000 | [diff] [blame] | 241 | |
drh | b026e05 | 2007-05-02 01:34:31 +0000 | [diff] [blame] | 242 | /* |
drh | b63388b | 2014-08-27 00:50:11 +0000 | [diff] [blame] | 243 | ** It is already known that pMem contains an unterminated string. |
| 244 | ** Add the zero terminator. |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 245 | */ |
drh | b63388b | 2014-08-27 00:50:11 +0000 | [diff] [blame] | 246 | static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){ |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 247 | if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){ |
mistachkin | fad3039 | 2016-02-13 23:43:46 +0000 | [diff] [blame] | 248 | return SQLITE_NOMEM_BKPT; |
danielk1977 | 3f6b087 | 2004-06-17 05:36:44 +0000 | [diff] [blame] | 249 | } |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 250 | pMem->z[pMem->n] = 0; |
| 251 | pMem->z[pMem->n+1] = 0; |
| 252 | pMem->flags |= MEM_Term; |
danielk1977 | 3f6b087 | 2004-06-17 05:36:44 +0000 | [diff] [blame] | 253 | return SQLITE_OK; |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 254 | } |
| 255 | |
| 256 | /* |
drh | b63388b | 2014-08-27 00:50:11 +0000 | [diff] [blame] | 257 | ** Make sure the given Mem is \u0000 terminated. |
| 258 | */ |
| 259 | int sqlite3VdbeMemNulTerminate(Mem *pMem){ |
| 260 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
| 261 | testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) ); |
| 262 | testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 ); |
| 263 | if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){ |
| 264 | return SQLITE_OK; /* Nothing to do */ |
| 265 | }else{ |
| 266 | return vdbeMemAddTerminator(pMem); |
| 267 | } |
| 268 | } |
| 269 | |
| 270 | /* |
danielk1977 | 1307393 | 2004-06-30 11:54:06 +0000 | [diff] [blame] | 271 | ** Add MEM_Str to the set of representations for the given Mem. Numbers |
| 272 | ** are converted using sqlite3_snprintf(). Converting a BLOB to a string |
| 273 | ** is a no-op. |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 274 | ** |
drh | bd9507c | 2014-08-23 17:21:37 +0000 | [diff] [blame] | 275 | ** Existing representations MEM_Int and MEM_Real are invalidated if |
| 276 | ** bForce is true but are retained if bForce is false. |
danielk1977 | 1307393 | 2004-06-30 11:54:06 +0000 | [diff] [blame] | 277 | ** |
| 278 | ** A MEM_Null value will never be passed to this function. This function is |
| 279 | ** used for converting values to text for returning to the user (i.e. via |
| 280 | ** sqlite3_value_text()), or for ensuring that values to be used as btree |
| 281 | ** keys are strings. In the former case a NULL pointer is returned the |
peter.d.reid | 60ec914 | 2014-09-06 16:39:46 +0000 | [diff] [blame] | 282 | ** user and the latter is an internal programming error. |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 283 | */ |
drh | bd9507c | 2014-08-23 17:21:37 +0000 | [diff] [blame] | 284 | int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){ |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 285 | int fg = pMem->flags; |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 286 | const int nByte = 32; |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 287 | |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 288 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
danielk1977 | def0fec | 2007-05-10 15:37:52 +0000 | [diff] [blame] | 289 | assert( !(fg&MEM_Zero) ); |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 290 | assert( !(fg&(MEM_Str|MEM_Blob)) ); |
danielk1977 | 1307393 | 2004-06-30 11:54:06 +0000 | [diff] [blame] | 291 | assert( fg&(MEM_Int|MEM_Real) ); |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 292 | assert( (pMem->flags&MEM_RowSet)==0 ); |
drh | ea598cb | 2009-04-05 12:22:08 +0000 | [diff] [blame] | 293 | assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 294 | |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 295 | |
drh | 322f285 | 2014-09-19 00:43:39 +0000 | [diff] [blame] | 296 | if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){ |
mistachkin | fad3039 | 2016-02-13 23:43:46 +0000 | [diff] [blame] | 297 | return SQLITE_NOMEM_BKPT; |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 298 | } |
| 299 | |
drh | bd9507c | 2014-08-23 17:21:37 +0000 | [diff] [blame] | 300 | /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8 |
danielk1977 | 1307393 | 2004-06-30 11:54:06 +0000 | [diff] [blame] | 301 | ** string representation of the value. Then, if the required encoding |
| 302 | ** is UTF-16le or UTF-16be do a translation. |
| 303 | ** |
| 304 | ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16. |
| 305 | */ |
drh | 8df447f | 2005-11-01 15:48:24 +0000 | [diff] [blame] | 306 | if( fg & MEM_Int ){ |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 307 | sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i); |
drh | 8df447f | 2005-11-01 15:48:24 +0000 | [diff] [blame] | 308 | }else{ |
| 309 | assert( fg & MEM_Real ); |
drh | 74eaba4 | 2014-09-18 17:52:15 +0000 | [diff] [blame] | 310 | sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r); |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 311 | } |
drh | ea67883 | 2008-12-10 19:26:22 +0000 | [diff] [blame] | 312 | pMem->n = sqlite3Strlen30(pMem->z); |
danielk1977 | 1307393 | 2004-06-30 11:54:06 +0000 | [diff] [blame] | 313 | pMem->enc = SQLITE_UTF8; |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 314 | pMem->flags |= MEM_Str|MEM_Term; |
drh | bd9507c | 2014-08-23 17:21:37 +0000 | [diff] [blame] | 315 | if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real); |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 316 | sqlite3VdbeChangeEncoding(pMem, enc); |
drh | bd9507c | 2014-08-23 17:21:37 +0000 | [diff] [blame] | 317 | return SQLITE_OK; |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 318 | } |
| 319 | |
| 320 | /* |
drh | abfcea2 | 2005-09-06 20:36:48 +0000 | [diff] [blame] | 321 | ** Memory cell pMem contains the context of an aggregate function. |
| 322 | ** This routine calls the finalize method for that function. The |
| 323 | ** result of the aggregate is stored back into pMem. |
drh | 90669c1 | 2006-01-20 15:45:36 +0000 | [diff] [blame] | 324 | ** |
| 325 | ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK |
| 326 | ** otherwise. |
drh | abfcea2 | 2005-09-06 20:36:48 +0000 | [diff] [blame] | 327 | */ |
drh | 90669c1 | 2006-01-20 15:45:36 +0000 | [diff] [blame] | 328 | int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ |
| 329 | int rc = SQLITE_OK; |
drh | 4c8555f | 2009-06-25 01:47:11 +0000 | [diff] [blame] | 330 | if( ALWAYS(pFunc && pFunc->xFinalize) ){ |
drh | a10a34b | 2005-09-07 22:09:48 +0000 | [diff] [blame] | 331 | sqlite3_context ctx; |
drh | 9bd038f | 2014-08-27 14:14:06 +0000 | [diff] [blame] | 332 | Mem t; |
drh | 3c024d6 | 2007-03-30 11:23:45 +0000 | [diff] [blame] | 333 | assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 334 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
drh | 709b8cb | 2008-08-22 14:41:00 +0000 | [diff] [blame] | 335 | memset(&ctx, 0, sizeof(ctx)); |
drh | 9bd038f | 2014-08-27 14:14:06 +0000 | [diff] [blame] | 336 | memset(&t, 0, sizeof(t)); |
| 337 | t.flags = MEM_Null; |
| 338 | t.db = pMem->db; |
| 339 | ctx.pOut = &t; |
drh | a10a34b | 2005-09-07 22:09:48 +0000 | [diff] [blame] | 340 | ctx.pMem = pMem; |
| 341 | ctx.pFunc = pFunc; |
drh | ee9ff67 | 2010-09-03 18:50:48 +0000 | [diff] [blame] | 342 | pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */ |
drh | d3b7420 | 2014-09-17 16:41:15 +0000 | [diff] [blame] | 343 | assert( (pMem->flags & MEM_Dyn)==0 ); |
drh | 17bcb10 | 2014-09-18 21:25:33 +0000 | [diff] [blame] | 344 | if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc); |
drh | 9bd038f | 2014-08-27 14:14:06 +0000 | [diff] [blame] | 345 | memcpy(pMem, &t, sizeof(t)); |
drh | 4c8555f | 2009-06-25 01:47:11 +0000 | [diff] [blame] | 346 | rc = ctx.isError; |
drh | abfcea2 | 2005-09-06 20:36:48 +0000 | [diff] [blame] | 347 | } |
drh | 90669c1 | 2006-01-20 15:45:36 +0000 | [diff] [blame] | 348 | return rc; |
drh | abfcea2 | 2005-09-06 20:36:48 +0000 | [diff] [blame] | 349 | } |
| 350 | |
| 351 | /* |
drh | 8740a60 | 2014-09-16 20:05:21 +0000 | [diff] [blame] | 352 | ** If the memory cell contains a value that must be freed by |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 353 | ** invoking the external callback in Mem.xDel, then this routine |
| 354 | ** will free that value. It also sets Mem.flags to MEM_Null. |
drh | 8740a60 | 2014-09-16 20:05:21 +0000 | [diff] [blame] | 355 | ** |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 356 | ** This is a helper routine for sqlite3VdbeMemSetNull() and |
| 357 | ** for sqlite3VdbeMemRelease(). Use those other routines as the |
| 358 | ** entry point for releasing Mem resources. |
danielk1977 | 5f09613 | 2008-03-28 15:44:09 +0000 | [diff] [blame] | 359 | */ |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 360 | static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){ |
danielk1977 | 5f09613 | 2008-03-28 15:44:09 +0000 | [diff] [blame] | 361 | assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 362 | assert( VdbeMemDynamic(p) ); |
drh | 2d36eb4 | 2011-08-29 02:49:41 +0000 | [diff] [blame] | 363 | if( p->flags&MEM_Agg ){ |
| 364 | sqlite3VdbeMemFinalize(p, p->u.pDef); |
| 365 | assert( (p->flags & MEM_Agg)==0 ); |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 366 | testcase( p->flags & MEM_Dyn ); |
| 367 | } |
| 368 | if( p->flags&MEM_Dyn ){ |
drh | 2d36eb4 | 2011-08-29 02:49:41 +0000 | [diff] [blame] | 369 | assert( (p->flags&MEM_RowSet)==0 ); |
drh | c91b2fd | 2014-03-01 18:13:23 +0000 | [diff] [blame] | 370 | assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 ); |
drh | 2d36eb4 | 2011-08-29 02:49:41 +0000 | [diff] [blame] | 371 | p->xDel((void *)p->z); |
drh | 2d36eb4 | 2011-08-29 02:49:41 +0000 | [diff] [blame] | 372 | }else if( p->flags&MEM_RowSet ){ |
| 373 | sqlite3RowSetClear(p->u.pRowSet); |
| 374 | }else if( p->flags&MEM_Frame ){ |
drh | 6b478bc | 2014-09-16 21:54:11 +0000 | [diff] [blame] | 375 | VdbeFrame *pFrame = p->u.pFrame; |
| 376 | pFrame->pParent = pFrame->v->pDelFrame; |
| 377 | pFrame->v->pDelFrame = pFrame; |
danielk1977 | 5f09613 | 2008-03-28 15:44:09 +0000 | [diff] [blame] | 378 | } |
drh | 6b478bc | 2014-09-16 21:54:11 +0000 | [diff] [blame] | 379 | p->flags = MEM_Null; |
danielk1977 | 5f09613 | 2008-03-28 15:44:09 +0000 | [diff] [blame] | 380 | } |
| 381 | |
| 382 | /* |
drh | 12b7c7d | 2014-08-25 11:20:27 +0000 | [diff] [blame] | 383 | ** Release memory held by the Mem p, both external memory cleared |
| 384 | ** by p->xDel and memory in p->zMalloc. |
| 385 | ** |
| 386 | ** This is a helper routine invoked by sqlite3VdbeMemRelease() in |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 387 | ** the unusual case where there really is memory in p that needs |
| 388 | ** to be freed. |
drh | 12b7c7d | 2014-08-25 11:20:27 +0000 | [diff] [blame] | 389 | */ |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 390 | static SQLITE_NOINLINE void vdbeMemClear(Mem *p){ |
drh | 12b7c7d | 2014-08-25 11:20:27 +0000 | [diff] [blame] | 391 | if( VdbeMemDynamic(p) ){ |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 392 | vdbeMemClearExternAndSetNull(p); |
drh | 12b7c7d | 2014-08-25 11:20:27 +0000 | [diff] [blame] | 393 | } |
drh | 17bcb10 | 2014-09-18 21:25:33 +0000 | [diff] [blame] | 394 | if( p->szMalloc ){ |
drh | 12b7c7d | 2014-08-25 11:20:27 +0000 | [diff] [blame] | 395 | sqlite3DbFree(p->db, p->zMalloc); |
drh | 17bcb10 | 2014-09-18 21:25:33 +0000 | [diff] [blame] | 396 | p->szMalloc = 0; |
drh | 12b7c7d | 2014-08-25 11:20:27 +0000 | [diff] [blame] | 397 | } |
| 398 | p->z = 0; |
| 399 | } |
| 400 | |
| 401 | /* |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 402 | ** Release any memory resources held by the Mem. Both the memory that is |
| 403 | ** free by Mem.xDel and the Mem.zMalloc allocation are freed. |
drh | 8740a60 | 2014-09-16 20:05:21 +0000 | [diff] [blame] | 404 | ** |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 405 | ** Use this routine prior to clean up prior to abandoning a Mem, or to |
| 406 | ** reset a Mem back to its minimum memory utilization. |
| 407 | ** |
| 408 | ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space |
| 409 | ** prior to inserting new content into the Mem. |
drh | f447950 | 2004-05-27 03:12:53 +0000 | [diff] [blame] | 410 | */ |
danielk1977 | d812336 | 2004-06-12 09:25:12 +0000 | [diff] [blame] | 411 | void sqlite3VdbeMemRelease(Mem *p){ |
drh | 75fd054 | 2014-03-01 16:24:44 +0000 | [diff] [blame] | 412 | assert( sqlite3VdbeCheckMemInvariants(p) ); |
drh | 17bcb10 | 2014-09-18 21:25:33 +0000 | [diff] [blame] | 413 | if( VdbeMemDynamic(p) || p->szMalloc ){ |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 414 | vdbeMemClear(p); |
drh | 7250c54 | 2013-12-09 03:07:21 +0000 | [diff] [blame] | 415 | } |
drh | f447950 | 2004-05-27 03:12:53 +0000 | [diff] [blame] | 416 | } |
| 417 | |
| 418 | /* |
drh | d8c303f | 2008-01-11 15:27:03 +0000 | [diff] [blame] | 419 | ** Convert a 64-bit IEEE double into a 64-bit signed integer. |
drh | de1a8b8 | 2013-11-26 15:45:02 +0000 | [diff] [blame] | 420 | ** If the double is out of range of a 64-bit signed integer then |
| 421 | ** return the closest available 64-bit signed integer. |
drh | d8c303f | 2008-01-11 15:27:03 +0000 | [diff] [blame] | 422 | */ |
| 423 | static i64 doubleToInt64(double r){ |
drh | 52d1452 | 2010-01-13 15:15:40 +0000 | [diff] [blame] | 424 | #ifdef SQLITE_OMIT_FLOATING_POINT |
| 425 | /* When floating-point is omitted, double and int64 are the same thing */ |
| 426 | return r; |
| 427 | #else |
drh | d8c303f | 2008-01-11 15:27:03 +0000 | [diff] [blame] | 428 | /* |
| 429 | ** Many compilers we encounter do not define constants for the |
| 430 | ** minimum and maximum 64-bit integers, or they define them |
| 431 | ** inconsistently. And many do not understand the "LL" notation. |
| 432 | ** So we define our own static constants here using nothing |
| 433 | ** larger than a 32-bit integer constant. |
| 434 | */ |
drh | 0f05035 | 2008-05-09 18:03:13 +0000 | [diff] [blame] | 435 | static const i64 maxInt = LARGEST_INT64; |
| 436 | static const i64 minInt = SMALLEST_INT64; |
drh | d8c303f | 2008-01-11 15:27:03 +0000 | [diff] [blame] | 437 | |
drh | de1a8b8 | 2013-11-26 15:45:02 +0000 | [diff] [blame] | 438 | if( r<=(double)minInt ){ |
drh | d8c303f | 2008-01-11 15:27:03 +0000 | [diff] [blame] | 439 | return minInt; |
drh | de1a8b8 | 2013-11-26 15:45:02 +0000 | [diff] [blame] | 440 | }else if( r>=(double)maxInt ){ |
| 441 | return maxInt; |
drh | d8c303f | 2008-01-11 15:27:03 +0000 | [diff] [blame] | 442 | }else{ |
| 443 | return (i64)r; |
| 444 | } |
drh | 52d1452 | 2010-01-13 15:15:40 +0000 | [diff] [blame] | 445 | #endif |
drh | d8c303f | 2008-01-11 15:27:03 +0000 | [diff] [blame] | 446 | } |
| 447 | |
| 448 | /* |
drh | 6a6124e | 2004-06-27 01:56:33 +0000 | [diff] [blame] | 449 | ** Return some kind of integer value which is the best we can do |
| 450 | ** at representing the value that *pMem describes as an integer. |
| 451 | ** If pMem is an integer, then the value is exact. If pMem is |
| 452 | ** a floating-point then the value returned is the integer part. |
| 453 | ** If pMem is a string or blob, then we make an attempt to convert |
peter.d.reid | 60ec914 | 2014-09-06 16:39:46 +0000 | [diff] [blame] | 454 | ** it into an integer and return that. If pMem represents an |
drh | 347a7cb | 2009-03-23 21:37:04 +0000 | [diff] [blame] | 455 | ** an SQL-NULL value, return 0. |
drh | 6a6124e | 2004-06-27 01:56:33 +0000 | [diff] [blame] | 456 | ** |
drh | 347a7cb | 2009-03-23 21:37:04 +0000 | [diff] [blame] | 457 | ** If pMem represents a string value, its encoding might be changed. |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 458 | */ |
drh | 6a6124e | 2004-06-27 01:56:33 +0000 | [diff] [blame] | 459 | i64 sqlite3VdbeIntValue(Mem *pMem){ |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 460 | int flags; |
| 461 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
drh | ea598cb | 2009-04-05 12:22:08 +0000 | [diff] [blame] | 462 | assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 463 | flags = pMem->flags; |
drh | 6fec076 | 2004-05-30 01:38:43 +0000 | [diff] [blame] | 464 | if( flags & MEM_Int ){ |
drh | 3c024d6 | 2007-03-30 11:23:45 +0000 | [diff] [blame] | 465 | return pMem->u.i; |
drh | 6fec076 | 2004-05-30 01:38:43 +0000 | [diff] [blame] | 466 | }else if( flags & MEM_Real ){ |
drh | 74eaba4 | 2014-09-18 17:52:15 +0000 | [diff] [blame] | 467 | return doubleToInt64(pMem->u.r); |
drh | 6fec076 | 2004-05-30 01:38:43 +0000 | [diff] [blame] | 468 | }else if( flags & (MEM_Str|MEM_Blob) ){ |
drh | 158b9cb | 2011-03-05 20:59:46 +0000 | [diff] [blame] | 469 | i64 value = 0; |
drh | 9339da1 | 2010-09-30 00:50:49 +0000 | [diff] [blame] | 470 | assert( pMem->z || pMem->n==0 ); |
drh | 9339da1 | 2010-09-30 00:50:49 +0000 | [diff] [blame] | 471 | sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc); |
drh | 6a6124e | 2004-06-27 01:56:33 +0000 | [diff] [blame] | 472 | return value; |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 473 | }else{ |
drh | 6a6124e | 2004-06-27 01:56:33 +0000 | [diff] [blame] | 474 | return 0; |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 475 | } |
drh | 6a6124e | 2004-06-27 01:56:33 +0000 | [diff] [blame] | 476 | } |
| 477 | |
| 478 | /* |
drh | 6a6124e | 2004-06-27 01:56:33 +0000 | [diff] [blame] | 479 | ** Return the best representation of pMem that we can get into a |
| 480 | ** double. If pMem is already a double or an integer, return its |
| 481 | ** value. If it is a string or blob, try to convert it to a double. |
| 482 | ** If it is a NULL, return 0.0. |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 483 | */ |
drh | 6a6124e | 2004-06-27 01:56:33 +0000 | [diff] [blame] | 484 | double sqlite3VdbeRealValue(Mem *pMem){ |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 485 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
drh | ea598cb | 2009-04-05 12:22:08 +0000 | [diff] [blame] | 486 | assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
danielk1977 | f93bbbe | 2004-05-27 10:30:52 +0000 | [diff] [blame] | 487 | if( pMem->flags & MEM_Real ){ |
drh | 74eaba4 | 2014-09-18 17:52:15 +0000 | [diff] [blame] | 488 | return pMem->u.r; |
drh | 6a6124e | 2004-06-27 01:56:33 +0000 | [diff] [blame] | 489 | }else if( pMem->flags & MEM_Int ){ |
drh | 3c024d6 | 2007-03-30 11:23:45 +0000 | [diff] [blame] | 490 | return (double)pMem->u.i; |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 491 | }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ |
shane | fbd60f8 | 2009-02-04 03:59:25 +0000 | [diff] [blame] | 492 | /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ |
| 493 | double val = (double)0; |
drh | e062d7b | 2010-10-05 12:05:32 +0000 | [diff] [blame] | 494 | sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc); |
drh | 487e262 | 2005-06-25 18:42:14 +0000 | [diff] [blame] | 495 | return val; |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 496 | }else{ |
shane | fbd60f8 | 2009-02-04 03:59:25 +0000 | [diff] [blame] | 497 | /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ |
| 498 | return (double)0; |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 499 | } |
drh | 6a6124e | 2004-06-27 01:56:33 +0000 | [diff] [blame] | 500 | } |
| 501 | |
| 502 | /* |
drh | 8df447f | 2005-11-01 15:48:24 +0000 | [diff] [blame] | 503 | ** The MEM structure is already a MEM_Real. Try to also make it a |
| 504 | ** MEM_Int if we can. |
| 505 | */ |
| 506 | void sqlite3VdbeIntegerAffinity(Mem *pMem){ |
drh | 74eaba4 | 2014-09-18 17:52:15 +0000 | [diff] [blame] | 507 | i64 ix; |
drh | 8df447f | 2005-11-01 15:48:24 +0000 | [diff] [blame] | 508 | assert( pMem->flags & MEM_Real ); |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 509 | assert( (pMem->flags & MEM_RowSet)==0 ); |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 510 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
drh | ea598cb | 2009-04-05 12:22:08 +0000 | [diff] [blame] | 511 | assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
drh | efe3d65 | 2008-01-11 00:06:10 +0000 | [diff] [blame] | 512 | |
drh | 74eaba4 | 2014-09-18 17:52:15 +0000 | [diff] [blame] | 513 | ix = doubleToInt64(pMem->u.r); |
drh | 94c3a2b | 2009-06-17 16:20:04 +0000 | [diff] [blame] | 514 | |
| 515 | /* Only mark the value as an integer if |
| 516 | ** |
| 517 | ** (1) the round-trip conversion real->int->real is a no-op, and |
| 518 | ** (2) The integer is neither the largest nor the smallest |
| 519 | ** possible integer (ticket #3922) |
| 520 | ** |
drh | e74871a | 2009-08-14 17:53:39 +0000 | [diff] [blame] | 521 | ** The second and third terms in the following conditional enforces |
| 522 | ** the second condition under the assumption that addition overflow causes |
drh | de1a8b8 | 2013-11-26 15:45:02 +0000 | [diff] [blame] | 523 | ** values to wrap around. |
drh | 94c3a2b | 2009-06-17 16:20:04 +0000 | [diff] [blame] | 524 | */ |
drh | 74eaba4 | 2014-09-18 17:52:15 +0000 | [diff] [blame] | 525 | if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){ |
| 526 | pMem->u.i = ix; |
| 527 | MemSetTypeFlag(pMem, MEM_Int); |
drh | 8df447f | 2005-11-01 15:48:24 +0000 | [diff] [blame] | 528 | } |
| 529 | } |
| 530 | |
drh | 8a51256 | 2005-11-14 22:29:05 +0000 | [diff] [blame] | 531 | /* |
| 532 | ** Convert pMem to type integer. Invalidate any prior representations. |
| 533 | */ |
| 534 | int sqlite3VdbeMemIntegerify(Mem *pMem){ |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 535 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 536 | assert( (pMem->flags & MEM_RowSet)==0 ); |
drh | ea598cb | 2009-04-05 12:22:08 +0000 | [diff] [blame] | 537 | assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
| 538 | |
drh | 3c024d6 | 2007-03-30 11:23:45 +0000 | [diff] [blame] | 539 | pMem->u.i = sqlite3VdbeIntValue(pMem); |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 540 | MemSetTypeFlag(pMem, MEM_Int); |
drh | 8a51256 | 2005-11-14 22:29:05 +0000 | [diff] [blame] | 541 | return SQLITE_OK; |
| 542 | } |
drh | 8df447f | 2005-11-01 15:48:24 +0000 | [diff] [blame] | 543 | |
| 544 | /* |
drh | 8a51256 | 2005-11-14 22:29:05 +0000 | [diff] [blame] | 545 | ** Convert pMem so that it is of type MEM_Real. |
| 546 | ** Invalidate any prior representations. |
drh | 6a6124e | 2004-06-27 01:56:33 +0000 | [diff] [blame] | 547 | */ |
| 548 | int sqlite3VdbeMemRealify(Mem *pMem){ |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 549 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
drh | ea598cb | 2009-04-05 12:22:08 +0000 | [diff] [blame] | 550 | assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
| 551 | |
drh | 74eaba4 | 2014-09-18 17:52:15 +0000 | [diff] [blame] | 552 | pMem->u.r = sqlite3VdbeRealValue(pMem); |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 553 | MemSetTypeFlag(pMem, MEM_Real); |
drh | 8a51256 | 2005-11-14 22:29:05 +0000 | [diff] [blame] | 554 | return SQLITE_OK; |
| 555 | } |
| 556 | |
| 557 | /* |
| 558 | ** Convert pMem so that it has types MEM_Real or MEM_Int or both. |
| 559 | ** Invalidate any prior representations. |
drh | 4b5db5a | 2010-01-21 01:53:07 +0000 | [diff] [blame] | 560 | ** |
| 561 | ** Every effort is made to force the conversion, even if the input |
| 562 | ** is a string that does not look completely like a number. Convert |
| 563 | ** as much of the string as we can and ignore the rest. |
drh | 8a51256 | 2005-11-14 22:29:05 +0000 | [diff] [blame] | 564 | */ |
| 565 | int sqlite3VdbeMemNumerify(Mem *pMem){ |
drh | 9351862 | 2010-09-30 14:48:06 +0000 | [diff] [blame] | 566 | if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){ |
| 567 | assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); |
| 568 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
shaneh | 5f1d6b6 | 2010-09-30 16:51:25 +0000 | [diff] [blame] | 569 | if( 0==sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc) ){ |
drh | 9351862 | 2010-09-30 14:48:06 +0000 | [diff] [blame] | 570 | MemSetTypeFlag(pMem, MEM_Int); |
| 571 | }else{ |
drh | 74eaba4 | 2014-09-18 17:52:15 +0000 | [diff] [blame] | 572 | pMem->u.r = sqlite3VdbeRealValue(pMem); |
drh | 9351862 | 2010-09-30 14:48:06 +0000 | [diff] [blame] | 573 | MemSetTypeFlag(pMem, MEM_Real); |
| 574 | sqlite3VdbeIntegerAffinity(pMem); |
| 575 | } |
drh | cd7b46d | 2007-05-16 11:55:56 +0000 | [diff] [blame] | 576 | } |
drh | 9351862 | 2010-09-30 14:48:06 +0000 | [diff] [blame] | 577 | assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 ); |
| 578 | pMem->flags &= ~(MEM_Str|MEM_Blob); |
drh | f447950 | 2004-05-27 03:12:53 +0000 | [diff] [blame] | 579 | return SQLITE_OK; |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 580 | } |
| 581 | |
| 582 | /* |
drh | 4169e43 | 2014-08-25 20:11:52 +0000 | [diff] [blame] | 583 | ** Cast the datatype of the value in pMem according to the affinity |
| 584 | ** "aff". Casting is different from applying affinity in that a cast |
| 585 | ** is forced. In other words, the value is converted into the desired |
| 586 | ** affinity even if that results in loss of data. This routine is |
| 587 | ** used (for example) to implement the SQL "cast()" operator. |
| 588 | */ |
| 589 | void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){ |
| 590 | if( pMem->flags & MEM_Null ) return; |
| 591 | switch( aff ){ |
drh | 05883a3 | 2015-06-02 15:32:08 +0000 | [diff] [blame] | 592 | case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */ |
drh | 4169e43 | 2014-08-25 20:11:52 +0000 | [diff] [blame] | 593 | if( (pMem->flags & MEM_Blob)==0 ){ |
| 594 | sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); |
| 595 | assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); |
| 596 | MemSetTypeFlag(pMem, MEM_Blob); |
| 597 | }else{ |
| 598 | pMem->flags &= ~(MEM_TypeMask&~MEM_Blob); |
| 599 | } |
| 600 | break; |
| 601 | } |
| 602 | case SQLITE_AFF_NUMERIC: { |
| 603 | sqlite3VdbeMemNumerify(pMem); |
| 604 | break; |
| 605 | } |
| 606 | case SQLITE_AFF_INTEGER: { |
| 607 | sqlite3VdbeMemIntegerify(pMem); |
| 608 | break; |
| 609 | } |
| 610 | case SQLITE_AFF_REAL: { |
| 611 | sqlite3VdbeMemRealify(pMem); |
| 612 | break; |
| 613 | } |
| 614 | default: { |
| 615 | assert( aff==SQLITE_AFF_TEXT ); |
| 616 | assert( MEM_Str==(MEM_Blob>>3) ); |
| 617 | pMem->flags |= (pMem->flags&MEM_Blob)>>3; |
| 618 | sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); |
| 619 | assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); |
| 620 | pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero); |
| 621 | break; |
| 622 | } |
| 623 | } |
| 624 | } |
| 625 | |
drh | d3b7420 | 2014-09-17 16:41:15 +0000 | [diff] [blame] | 626 | /* |
| 627 | ** Initialize bulk memory to be a consistent Mem object. |
| 628 | ** |
| 629 | ** The minimum amount of initialization feasible is performed. |
| 630 | */ |
| 631 | void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){ |
| 632 | assert( (flags & ~MEM_TypeMask)==0 ); |
| 633 | pMem->flags = flags; |
| 634 | pMem->db = db; |
drh | 17bcb10 | 2014-09-18 21:25:33 +0000 | [diff] [blame] | 635 | pMem->szMalloc = 0; |
drh | d3b7420 | 2014-09-17 16:41:15 +0000 | [diff] [blame] | 636 | } |
| 637 | |
drh | 4169e43 | 2014-08-25 20:11:52 +0000 | [diff] [blame] | 638 | |
| 639 | /* |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 640 | ** Delete any previous value and set the value stored in *pMem to NULL. |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 641 | ** |
| 642 | ** This routine calls the Mem.xDel destructor to dispose of values that |
| 643 | ** require the destructor. But it preserves the Mem.zMalloc memory allocation. |
| 644 | ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this |
| 645 | ** routine to invoke the destructor and deallocates Mem.zMalloc. |
| 646 | ** |
| 647 | ** Use this routine to reset the Mem prior to insert a new value. |
| 648 | ** |
| 649 | ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it. |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 650 | */ |
| 651 | void sqlite3VdbeMemSetNull(Mem *pMem){ |
drh | 6b478bc | 2014-09-16 21:54:11 +0000 | [diff] [blame] | 652 | if( VdbeMemDynamic(pMem) ){ |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 653 | vdbeMemClearExternAndSetNull(pMem); |
drh | 6b478bc | 2014-09-16 21:54:11 +0000 | [diff] [blame] | 654 | }else{ |
| 655 | pMem->flags = MEM_Null; |
dan | 165921a | 2009-08-28 18:53:45 +0000 | [diff] [blame] | 656 | } |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 657 | } |
drh | a3cc007 | 2013-12-13 16:23:55 +0000 | [diff] [blame] | 658 | void sqlite3ValueSetNull(sqlite3_value *p){ |
| 659 | sqlite3VdbeMemSetNull((Mem*)p); |
| 660 | } |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 661 | |
| 662 | /* |
drh | b026e05 | 2007-05-02 01:34:31 +0000 | [diff] [blame] | 663 | ** Delete any previous value and set the value to be a BLOB of length |
| 664 | ** n containing all zeros. |
| 665 | */ |
| 666 | void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ |
| 667 | sqlite3VdbeMemRelease(pMem); |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 668 | pMem->flags = MEM_Blob|MEM_Zero; |
drh | b026e05 | 2007-05-02 01:34:31 +0000 | [diff] [blame] | 669 | pMem->n = 0; |
drh | 98640a3 | 2007-06-07 19:08:32 +0000 | [diff] [blame] | 670 | if( n<0 ) n = 0; |
drh | 8df3284 | 2008-12-09 02:51:23 +0000 | [diff] [blame] | 671 | pMem->u.nZero = n; |
danielk1977 | def0fec | 2007-05-10 15:37:52 +0000 | [diff] [blame] | 672 | pMem->enc = SQLITE_UTF8; |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 673 | pMem->z = 0; |
drh | b026e05 | 2007-05-02 01:34:31 +0000 | [diff] [blame] | 674 | } |
| 675 | |
| 676 | /* |
drh | 9bd038f | 2014-08-27 14:14:06 +0000 | [diff] [blame] | 677 | ** The pMem is known to contain content that needs to be destroyed prior |
| 678 | ** to a value change. So invoke the destructor, then set the value to |
| 679 | ** a 64-bit integer. |
| 680 | */ |
| 681 | static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){ |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 682 | sqlite3VdbeMemSetNull(pMem); |
drh | 9bd038f | 2014-08-27 14:14:06 +0000 | [diff] [blame] | 683 | pMem->u.i = val; |
| 684 | pMem->flags = MEM_Int; |
| 685 | } |
| 686 | |
| 687 | /* |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 688 | ** Delete any previous value and set the value stored in *pMem to val, |
| 689 | ** manifest type INTEGER. |
| 690 | */ |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 691 | void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ |
drh | 9bd038f | 2014-08-27 14:14:06 +0000 | [diff] [blame] | 692 | if( VdbeMemDynamic(pMem) ){ |
| 693 | vdbeReleaseAndSetInt64(pMem, val); |
| 694 | }else{ |
| 695 | pMem->u.i = val; |
| 696 | pMem->flags = MEM_Int; |
| 697 | } |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 698 | } |
| 699 | |
drh | 7ec5ea9 | 2010-01-13 00:04:13 +0000 | [diff] [blame] | 700 | #ifndef SQLITE_OMIT_FLOATING_POINT |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 701 | /* |
| 702 | ** Delete any previous value and set the value stored in *pMem to val, |
| 703 | ** manifest type REAL. |
| 704 | */ |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 705 | void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 706 | sqlite3VdbeMemSetNull(pMem); |
| 707 | if( !sqlite3IsNaN(val) ){ |
drh | 74eaba4 | 2014-09-18 17:52:15 +0000 | [diff] [blame] | 708 | pMem->u.r = val; |
drh | 53c1402 | 2007-05-10 17:23:11 +0000 | [diff] [blame] | 709 | pMem->flags = MEM_Real; |
drh | 53c1402 | 2007-05-10 17:23:11 +0000 | [diff] [blame] | 710 | } |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 711 | } |
drh | 7ec5ea9 | 2010-01-13 00:04:13 +0000 | [diff] [blame] | 712 | #endif |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 713 | |
| 714 | /* |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 715 | ** Delete any previous value and set the value of pMem to be an |
| 716 | ** empty boolean index. |
| 717 | */ |
| 718 | void sqlite3VdbeMemSetRowSet(Mem *pMem){ |
| 719 | sqlite3 *db = pMem->db; |
| 720 | assert( db!=0 ); |
drh | 4c8555f | 2009-06-25 01:47:11 +0000 | [diff] [blame] | 721 | assert( (pMem->flags & MEM_RowSet)==0 ); |
| 722 | sqlite3VdbeMemRelease(pMem); |
drh | 575fad6 | 2016-02-05 13:38:36 +0000 | [diff] [blame] | 723 | pMem->zMalloc = sqlite3DbMallocRawNN(db, 64); |
drh | 8d99363 | 2008-12-04 22:17:55 +0000 | [diff] [blame] | 724 | if( db->mallocFailed ){ |
| 725 | pMem->flags = MEM_Null; |
drh | 17bcb10 | 2014-09-18 21:25:33 +0000 | [diff] [blame] | 726 | pMem->szMalloc = 0; |
drh | 8d99363 | 2008-12-04 22:17:55 +0000 | [diff] [blame] | 727 | }else{ |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 728 | assert( pMem->zMalloc ); |
drh | 17bcb10 | 2014-09-18 21:25:33 +0000 | [diff] [blame] | 729 | pMem->szMalloc = sqlite3DbMallocSize(db, pMem->zMalloc); |
| 730 | pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, pMem->szMalloc); |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 731 | assert( pMem->u.pRowSet!=0 ); |
drh | 8d99363 | 2008-12-04 22:17:55 +0000 | [diff] [blame] | 732 | pMem->flags = MEM_RowSet; |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 733 | } |
| 734 | } |
| 735 | |
| 736 | /* |
drh | 023ae03 | 2007-05-08 12:12:16 +0000 | [diff] [blame] | 737 | ** Return true if the Mem object contains a TEXT or BLOB that is |
| 738 | ** too large - whose size exceeds SQLITE_MAX_LENGTH. |
| 739 | */ |
| 740 | int sqlite3VdbeMemTooBig(Mem *p){ |
drh | fa4a4b9 | 2008-03-19 21:45:51 +0000 | [diff] [blame] | 741 | assert( p->db!=0 ); |
drh | 023ae03 | 2007-05-08 12:12:16 +0000 | [diff] [blame] | 742 | if( p->flags & (MEM_Str|MEM_Blob) ){ |
| 743 | int n = p->n; |
| 744 | if( p->flags & MEM_Zero ){ |
drh | 8df3284 | 2008-12-09 02:51:23 +0000 | [diff] [blame] | 745 | n += p->u.nZero; |
drh | 023ae03 | 2007-05-08 12:12:16 +0000 | [diff] [blame] | 746 | } |
drh | bb4957f | 2008-03-20 14:03:29 +0000 | [diff] [blame] | 747 | return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; |
drh | 023ae03 | 2007-05-08 12:12:16 +0000 | [diff] [blame] | 748 | } |
| 749 | return 0; |
| 750 | } |
| 751 | |
drh | 2b4ded9 | 2010-09-27 21:09:31 +0000 | [diff] [blame] | 752 | #ifdef SQLITE_DEBUG |
| 753 | /* |
peter.d.reid | 60ec914 | 2014-09-06 16:39:46 +0000 | [diff] [blame] | 754 | ** This routine prepares a memory cell for modification by breaking |
drh | 2b4ded9 | 2010-09-27 21:09:31 +0000 | [diff] [blame] | 755 | ** its link to a shallow copy and by marking any current shallow |
| 756 | ** copies of this cell as invalid. |
| 757 | ** |
| 758 | ** This is used for testing and debugging only - to make sure shallow |
| 759 | ** copies are not misused. |
| 760 | */ |
drh | e4c88c0 | 2012-01-04 12:57:45 +0000 | [diff] [blame] | 761 | void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){ |
drh | 2b4ded9 | 2010-09-27 21:09:31 +0000 | [diff] [blame] | 762 | int i; |
| 763 | Mem *pX; |
| 764 | for(i=1, pX=&pVdbe->aMem[1]; i<=pVdbe->nMem; i++, pX++){ |
| 765 | if( pX->pScopyFrom==pMem ){ |
drh | a5750cf | 2014-02-07 13:20:31 +0000 | [diff] [blame] | 766 | pX->flags |= MEM_Undefined; |
drh | 2b4ded9 | 2010-09-27 21:09:31 +0000 | [diff] [blame] | 767 | pX->pScopyFrom = 0; |
| 768 | } |
| 769 | } |
| 770 | pMem->pScopyFrom = 0; |
| 771 | } |
| 772 | #endif /* SQLITE_DEBUG */ |
| 773 | |
danielk1977 | 5f09613 | 2008-03-28 15:44:09 +0000 | [diff] [blame] | 774 | |
drh | 023ae03 | 2007-05-08 12:12:16 +0000 | [diff] [blame] | 775 | /* |
drh | febe106 | 2004-08-28 18:17:48 +0000 | [diff] [blame] | 776 | ** Make an shallow copy of pFrom into pTo. Prior contents of |
drh | a05a722 | 2008-01-19 03:35:58 +0000 | [diff] [blame] | 777 | ** pTo are freed. The pFrom->z field is not duplicated. If |
drh | febe106 | 2004-08-28 18:17:48 +0000 | [diff] [blame] | 778 | ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z |
| 779 | ** and flags gets srcType (either MEM_Ephem or MEM_Static). |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 780 | */ |
drh | 14e0674 | 2015-06-17 23:28:03 +0000 | [diff] [blame] | 781 | static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){ |
| 782 | vdbeMemClearExternAndSetNull(pTo); |
| 783 | assert( !VdbeMemDynamic(pTo) ); |
| 784 | sqlite3VdbeMemShallowCopy(pTo, pFrom, eType); |
| 785 | } |
drh | febe106 | 2004-08-28 18:17:48 +0000 | [diff] [blame] | 786 | void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 787 | assert( (pFrom->flags & MEM_RowSet)==0 ); |
drh | 035e563 | 2014-09-16 14:16:31 +0000 | [diff] [blame] | 788 | assert( pTo->db==pFrom->db ); |
drh | 14e0674 | 2015-06-17 23:28:03 +0000 | [diff] [blame] | 789 | if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; } |
danielk1977 | 5f09613 | 2008-03-28 15:44:09 +0000 | [diff] [blame] | 790 | memcpy(pTo, pFrom, MEMCELLSIZE); |
dan | 5fea907 | 2010-03-05 18:46:12 +0000 | [diff] [blame] | 791 | if( (pFrom->flags&MEM_Static)==0 ){ |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 792 | pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); |
drh | febe106 | 2004-08-28 18:17:48 +0000 | [diff] [blame] | 793 | assert( srcType==MEM_Ephem || srcType==MEM_Static ); |
| 794 | pTo->flags |= srcType; |
| 795 | } |
| 796 | } |
| 797 | |
| 798 | /* |
| 799 | ** Make a full copy of pFrom into pTo. Prior contents of pTo are |
| 800 | ** freed before the copy is made. |
| 801 | */ |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 802 | int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 803 | int rc = SQLITE_OK; |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 804 | |
drh | 9dfedc8 | 2015-05-22 19:55:10 +0000 | [diff] [blame] | 805 | /* The pFrom==0 case in the following assert() is when an sqlite3_value |
| 806 | ** from sqlite3_value_dup() is used as the argument |
| 807 | ** to sqlite3_result_value(). */ |
| 808 | assert( pTo->db==pFrom->db || pFrom->db==0 ); |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 809 | assert( (pFrom->flags & MEM_RowSet)==0 ); |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 810 | if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo); |
danielk1977 | 5f09613 | 2008-03-28 15:44:09 +0000 | [diff] [blame] | 811 | memcpy(pTo, pFrom, MEMCELLSIZE); |
| 812 | pTo->flags &= ~MEM_Dyn; |
danielk1977 | 5f09613 | 2008-03-28 15:44:09 +0000 | [diff] [blame] | 813 | if( pTo->flags&(MEM_Str|MEM_Blob) ){ |
| 814 | if( 0==(pFrom->flags&MEM_Static) ){ |
| 815 | pTo->flags |= MEM_Ephem; |
| 816 | rc = sqlite3VdbeMemMakeWriteable(pTo); |
danielk1977 | 9172fd8 | 2008-02-14 15:31:52 +0000 | [diff] [blame] | 817 | } |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 818 | } |
| 819 | |
drh | 71c697e | 2004-08-08 23:39:19 +0000 | [diff] [blame] | 820 | return rc; |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 821 | } |
| 822 | |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 823 | /* |
danielk1977 | 369f27e | 2004-06-15 11:40:04 +0000 | [diff] [blame] | 824 | ** Transfer the contents of pFrom to pTo. Any existing value in pTo is |
drh | febe106 | 2004-08-28 18:17:48 +0000 | [diff] [blame] | 825 | ** freed. If pFrom contains ephemeral data, a copy is made. |
| 826 | ** |
drh | 643167f | 2008-01-22 21:30:53 +0000 | [diff] [blame] | 827 | ** pFrom contains an SQL NULL when this routine returns. |
danielk1977 | 369f27e | 2004-06-15 11:40:04 +0000 | [diff] [blame] | 828 | */ |
drh | 643167f | 2008-01-22 21:30:53 +0000 | [diff] [blame] | 829 | void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 830 | assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); |
| 831 | assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); |
| 832 | assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); |
danielk1977 | 5f09613 | 2008-03-28 15:44:09 +0000 | [diff] [blame] | 833 | |
| 834 | sqlite3VdbeMemRelease(pTo); |
danielk1977 | 1307393 | 2004-06-30 11:54:06 +0000 | [diff] [blame] | 835 | memcpy(pTo, pFrom, sizeof(Mem)); |
danielk1977 | 1307393 | 2004-06-30 11:54:06 +0000 | [diff] [blame] | 836 | pFrom->flags = MEM_Null; |
drh | 17bcb10 | 2014-09-18 21:25:33 +0000 | [diff] [blame] | 837 | pFrom->szMalloc = 0; |
danielk1977 | 369f27e | 2004-06-15 11:40:04 +0000 | [diff] [blame] | 838 | } |
| 839 | |
| 840 | /* |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 841 | ** Change the value of a Mem to be a string or a BLOB. |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 842 | ** |
| 843 | ** The memory management strategy depends on the value of the xDel |
| 844 | ** parameter. If the value passed is SQLITE_TRANSIENT, then the |
| 845 | ** string is copied into a (possibly existing) buffer managed by the |
| 846 | ** Mem structure. Otherwise, any existing buffer is freed and the |
| 847 | ** pointer copied. |
drh | 9a65f2c | 2009-06-22 19:05:40 +0000 | [diff] [blame] | 848 | ** |
| 849 | ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH |
| 850 | ** size limit) then no memory allocation occurs. If the string can be |
| 851 | ** stored without allocating memory, then it is. If a memory allocation |
| 852 | ** is required to store the string, then value of pMem is unchanged. In |
| 853 | ** either case, SQLITE_TOOBIG is returned. |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 854 | */ |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 855 | int sqlite3VdbeMemSetStr( |
| 856 | Mem *pMem, /* Memory cell to set to string value */ |
| 857 | const char *z, /* String pointer */ |
| 858 | int n, /* Bytes in string, or negative */ |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 859 | u8 enc, /* Encoding of z. 0 for BLOBs */ |
danielk1977 | d812336 | 2004-06-12 09:25:12 +0000 | [diff] [blame] | 860 | void (*xDel)(void*) /* Destructor function */ |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 861 | ){ |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 862 | int nByte = n; /* New value for pMem->n */ |
drh | 0a687d1 | 2008-07-08 14:52:07 +0000 | [diff] [blame] | 863 | int iLimit; /* Maximum allowed string or blob size */ |
drh | 8df3284 | 2008-12-09 02:51:23 +0000 | [diff] [blame] | 864 | u16 flags = 0; /* New value for pMem->flags */ |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 865 | |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 866 | assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 867 | assert( (pMem->flags & MEM_RowSet)==0 ); |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 868 | |
| 869 | /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 870 | if( !z ){ |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 871 | sqlite3VdbeMemSetNull(pMem); |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 872 | return SQLITE_OK; |
| 873 | } |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 874 | |
drh | 0a687d1 | 2008-07-08 14:52:07 +0000 | [diff] [blame] | 875 | if( pMem->db ){ |
| 876 | iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH]; |
| 877 | }else{ |
| 878 | iLimit = SQLITE_MAX_LENGTH; |
| 879 | } |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 880 | flags = (enc==0?MEM_Blob:MEM_Str); |
| 881 | if( nByte<0 ){ |
| 882 | assert( enc!=0 ); |
drh | 8fd3897 | 2008-02-19 15:44:09 +0000 | [diff] [blame] | 883 | if( enc==SQLITE_UTF8 ){ |
drh | 0725cab | 2014-09-17 14:52:46 +0000 | [diff] [blame] | 884 | nByte = sqlite3Strlen30(z); |
| 885 | if( nByte>iLimit ) nByte = iLimit+1; |
drh | 8fd3897 | 2008-02-19 15:44:09 +0000 | [diff] [blame] | 886 | }else{ |
drh | 0a687d1 | 2008-07-08 14:52:07 +0000 | [diff] [blame] | 887 | for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){} |
drh | 8fd3897 | 2008-02-19 15:44:09 +0000 | [diff] [blame] | 888 | } |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 889 | flags |= MEM_Term; |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 890 | } |
danielk1977 | d812336 | 2004-06-12 09:25:12 +0000 | [diff] [blame] | 891 | |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 892 | /* The following block sets the new values of Mem.z and Mem.xDel. It |
| 893 | ** also sets a flag in local variable "flags" to indicate the memory |
| 894 | ** management (one of MEM_Dyn or MEM_Static). |
| 895 | */ |
| 896 | if( xDel==SQLITE_TRANSIENT ){ |
| 897 | int nAlloc = nByte; |
| 898 | if( flags&MEM_Term ){ |
| 899 | nAlloc += (enc==SQLITE_UTF8?1:2); |
| 900 | } |
drh | 0793f1b | 2008-11-05 17:41:19 +0000 | [diff] [blame] | 901 | if( nByte>iLimit ){ |
| 902 | return SQLITE_TOOBIG; |
| 903 | } |
drh | 722246e | 2014-10-07 23:02:24 +0000 | [diff] [blame] | 904 | testcase( nAlloc==0 ); |
| 905 | testcase( nAlloc==31 ); |
| 906 | testcase( nAlloc==32 ); |
| 907 | if( sqlite3VdbeMemClearAndResize(pMem, MAX(nAlloc,32)) ){ |
mistachkin | fad3039 | 2016-02-13 23:43:46 +0000 | [diff] [blame] | 908 | return SQLITE_NOMEM_BKPT; |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 909 | } |
| 910 | memcpy(pMem->z, z, nAlloc); |
drh | 633e6d5 | 2008-07-28 19:34:53 +0000 | [diff] [blame] | 911 | }else if( xDel==SQLITE_DYNAMIC ){ |
| 912 | sqlite3VdbeMemRelease(pMem); |
| 913 | pMem->zMalloc = pMem->z = (char *)z; |
drh | 17bcb10 | 2014-09-18 21:25:33 +0000 | [diff] [blame] | 914 | pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 915 | }else{ |
| 916 | sqlite3VdbeMemRelease(pMem); |
| 917 | pMem->z = (char *)z; |
drh | c890fec | 2008-08-01 20:10:08 +0000 | [diff] [blame] | 918 | pMem->xDel = xDel; |
| 919 | flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 920 | } |
danielk1977 | d812336 | 2004-06-12 09:25:12 +0000 | [diff] [blame] | 921 | |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 922 | pMem->n = nByte; |
| 923 | pMem->flags = flags; |
| 924 | pMem->enc = (enc==0 ? SQLITE_UTF8 : enc); |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 925 | |
drh | 6c62608 | 2004-11-14 21:56:29 +0000 | [diff] [blame] | 926 | #ifndef SQLITE_OMIT_UTF16 |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 927 | if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ |
mistachkin | fad3039 | 2016-02-13 23:43:46 +0000 | [diff] [blame] | 928 | return SQLITE_NOMEM_BKPT; |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 929 | } |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 930 | #endif |
| 931 | |
drh | 9a65f2c | 2009-06-22 19:05:40 +0000 | [diff] [blame] | 932 | if( nByte>iLimit ){ |
| 933 | return SQLITE_TOOBIG; |
| 934 | } |
| 935 | |
drh | f447950 | 2004-05-27 03:12:53 +0000 | [diff] [blame] | 936 | return SQLITE_OK; |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 937 | } |
| 938 | |
| 939 | /* |
drh | d578820 | 2004-05-28 08:21:05 +0000 | [diff] [blame] | 940 | ** Move data out of a btree key or data field and into a Mem structure. |
| 941 | ** The data or key is taken from the entry that pCur is currently pointing |
| 942 | ** to. offset and amt determine what portion of the data or key to retrieve. |
| 943 | ** key is true to get the key or false to get data. The result is written |
| 944 | ** into the pMem element. |
| 945 | ** |
drh | 2a2a696 | 2014-09-16 18:22:44 +0000 | [diff] [blame] | 946 | ** The pMem object must have been initialized. This routine will use |
| 947 | ** pMem->zMalloc to hold the content from the btree, if possible. New |
| 948 | ** pMem->zMalloc space will be allocated if necessary. The calling routine |
| 949 | ** is responsible for making sure that the pMem object is eventually |
| 950 | ** destroyed. |
drh | d578820 | 2004-05-28 08:21:05 +0000 | [diff] [blame] | 951 | ** |
| 952 | ** If this routine fails for any reason (malloc returns NULL or unable |
| 953 | ** to read from the disk) then the pMem is left in an inconsistent state. |
| 954 | */ |
drh | f1aabd6 | 2015-06-17 01:31:28 +0000 | [diff] [blame] | 955 | static SQLITE_NOINLINE int vdbeMemFromBtreeResize( |
| 956 | BtCursor *pCur, /* Cursor pointing at record to retrieve. */ |
| 957 | u32 offset, /* Offset from the start of data to return bytes from. */ |
| 958 | u32 amt, /* Number of bytes to return. */ |
| 959 | int key, /* If true, retrieve from the btree key, not data. */ |
| 960 | Mem *pMem /* OUT: Return data in this Mem structure. */ |
| 961 | ){ |
| 962 | int rc; |
| 963 | pMem->flags = MEM_Null; |
| 964 | if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+2)) ){ |
| 965 | if( key ){ |
| 966 | rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z); |
| 967 | }else{ |
| 968 | rc = sqlite3BtreeData(pCur, offset, amt, pMem->z); |
| 969 | } |
| 970 | if( rc==SQLITE_OK ){ |
| 971 | pMem->z[amt] = 0; |
| 972 | pMem->z[amt+1] = 0; |
| 973 | pMem->flags = MEM_Blob|MEM_Term; |
| 974 | pMem->n = (int)amt; |
| 975 | }else{ |
| 976 | sqlite3VdbeMemRelease(pMem); |
| 977 | } |
| 978 | } |
| 979 | return rc; |
| 980 | } |
drh | d578820 | 2004-05-28 08:21:05 +0000 | [diff] [blame] | 981 | int sqlite3VdbeMemFromBtree( |
| 982 | BtCursor *pCur, /* Cursor pointing at record to retrieve. */ |
drh | 501932c | 2013-11-21 21:59:53 +0000 | [diff] [blame] | 983 | u32 offset, /* Offset from the start of data to return bytes from. */ |
| 984 | u32 amt, /* Number of bytes to return. */ |
drh | d578820 | 2004-05-28 08:21:05 +0000 | [diff] [blame] | 985 | int key, /* If true, retrieve from the btree key, not data. */ |
| 986 | Mem *pMem /* OUT: Return data in this Mem structure. */ |
| 987 | ){ |
danielk1977 | 4b0aa4c | 2009-05-28 11:05:57 +0000 | [diff] [blame] | 988 | char *zData; /* Data from the btree layer */ |
drh | 501932c | 2013-11-21 21:59:53 +0000 | [diff] [blame] | 989 | u32 available = 0; /* Number of bytes available on the local btree page */ |
danielk1977 | 4b0aa4c | 2009-05-28 11:05:57 +0000 | [diff] [blame] | 990 | int rc = SQLITE_OK; /* Return code */ |
drh | d578820 | 2004-05-28 08:21:05 +0000 | [diff] [blame] | 991 | |
drh | 5d1a872 | 2009-07-22 18:07:40 +0000 | [diff] [blame] | 992 | assert( sqlite3BtreeCursorIsValid(pCur) ); |
drh | d3b7420 | 2014-09-17 16:41:15 +0000 | [diff] [blame] | 993 | assert( !VdbeMemDynamic(pMem) ); |
drh | 5d1a872 | 2009-07-22 18:07:40 +0000 | [diff] [blame] | 994 | |
danielk1977 | 4b0aa4c | 2009-05-28 11:05:57 +0000 | [diff] [blame] | 995 | /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() |
| 996 | ** that both the BtShared and database handle mutexes are held. */ |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 997 | assert( (pMem->flags & MEM_RowSet)==0 ); |
drh | d578820 | 2004-05-28 08:21:05 +0000 | [diff] [blame] | 998 | if( key ){ |
drh | e51c44f | 2004-05-30 20:46:09 +0000 | [diff] [blame] | 999 | zData = (char *)sqlite3BtreeKeyFetch(pCur, &available); |
drh | d578820 | 2004-05-28 08:21:05 +0000 | [diff] [blame] | 1000 | }else{ |
drh | e51c44f | 2004-05-30 20:46:09 +0000 | [diff] [blame] | 1001 | zData = (char *)sqlite3BtreeDataFetch(pCur, &available); |
drh | d578820 | 2004-05-28 08:21:05 +0000 | [diff] [blame] | 1002 | } |
drh | 61fc595 | 2007-04-01 23:49:51 +0000 | [diff] [blame] | 1003 | assert( zData!=0 ); |
drh | d578820 | 2004-05-28 08:21:05 +0000 | [diff] [blame] | 1004 | |
drh | 2b53e00 | 2013-11-21 19:05:04 +0000 | [diff] [blame] | 1005 | if( offset+amt<=available ){ |
drh | d578820 | 2004-05-28 08:21:05 +0000 | [diff] [blame] | 1006 | pMem->z = &zData[offset]; |
| 1007 | pMem->flags = MEM_Blob|MEM_Ephem; |
drh | 5f1d536 | 2014-03-04 13:18:23 +0000 | [diff] [blame] | 1008 | pMem->n = (int)amt; |
drh | 8740a60 | 2014-09-16 20:05:21 +0000 | [diff] [blame] | 1009 | }else{ |
drh | f1aabd6 | 2015-06-17 01:31:28 +0000 | [diff] [blame] | 1010 | rc = vdbeMemFromBtreeResize(pCur, offset, amt, key, pMem); |
drh | d578820 | 2004-05-28 08:21:05 +0000 | [diff] [blame] | 1011 | } |
| 1012 | |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 1013 | return rc; |
drh | d578820 | 2004-05-28 08:21:05 +0000 | [diff] [blame] | 1014 | } |
| 1015 | |
drh | 6c9f8e6 | 2014-08-27 03:28:50 +0000 | [diff] [blame] | 1016 | /* |
| 1017 | ** The pVal argument is known to be a value other than NULL. |
| 1018 | ** Convert it into a string with encoding enc and return a pointer |
| 1019 | ** to a zero-terminated version of that string. |
| 1020 | */ |
drh | 3b335fc | 2014-10-07 16:59:22 +0000 | [diff] [blame] | 1021 | static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){ |
drh | 6c9f8e6 | 2014-08-27 03:28:50 +0000 | [diff] [blame] | 1022 | assert( pVal!=0 ); |
| 1023 | assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); |
| 1024 | assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); |
| 1025 | assert( (pVal->flags & MEM_RowSet)==0 ); |
| 1026 | assert( (pVal->flags & (MEM_Null))==0 ); |
| 1027 | if( pVal->flags & (MEM_Blob|MEM_Str) ){ |
| 1028 | pVal->flags |= MEM_Str; |
| 1029 | if( pVal->flags & MEM_Zero ){ |
| 1030 | sqlite3VdbeMemExpandBlob(pVal); |
| 1031 | } |
| 1032 | if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){ |
| 1033 | sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); |
| 1034 | } |
| 1035 | if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ |
| 1036 | assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); |
| 1037 | if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ |
| 1038 | return 0; |
| 1039 | } |
| 1040 | } |
| 1041 | sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */ |
| 1042 | }else{ |
| 1043 | sqlite3VdbeMemStringify(pVal, enc, 0); |
| 1044 | assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); |
| 1045 | } |
| 1046 | assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 |
| 1047 | || pVal->db->mallocFailed ); |
| 1048 | if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ |
| 1049 | return pVal->z; |
| 1050 | }else{ |
| 1051 | return 0; |
| 1052 | } |
| 1053 | } |
| 1054 | |
danielk1977 | 4e6af13 | 2004-06-10 14:01:08 +0000 | [diff] [blame] | 1055 | /* This function is only available internally, it is not part of the |
| 1056 | ** external API. It works in a similar way to sqlite3_value_text(), |
| 1057 | ** except the data returned is in the encoding specified by the second |
| 1058 | ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or |
| 1059 | ** SQLITE_UTF8. |
drh | 7d9bd4e | 2006-02-16 18:16:36 +0000 | [diff] [blame] | 1060 | ** |
| 1061 | ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. |
| 1062 | ** If that is the case, then the result must be aligned on an even byte |
| 1063 | ** boundary. |
danielk1977 | 4e6af13 | 2004-06-10 14:01:08 +0000 | [diff] [blame] | 1064 | */ |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 1065 | const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ |
danielk1977 | bfd6cce | 2004-06-18 04:24:54 +0000 | [diff] [blame] | 1066 | if( !pVal ) return 0; |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 1067 | assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); |
drh | 7d9bd4e | 2006-02-16 18:16:36 +0000 | [diff] [blame] | 1068 | assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); |
drh | 3d4501e | 2008-12-04 20:40:10 +0000 | [diff] [blame] | 1069 | assert( (pVal->flags & MEM_RowSet)==0 ); |
drh | 6c9f8e6 | 2014-08-27 03:28:50 +0000 | [diff] [blame] | 1070 | if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){ |
| 1071 | return pVal->z; |
| 1072 | } |
danielk1977 | 4e6af13 | 2004-06-10 14:01:08 +0000 | [diff] [blame] | 1073 | if( pVal->flags&MEM_Null ){ |
danielk1977 | 4e6af13 | 2004-06-10 14:01:08 +0000 | [diff] [blame] | 1074 | return 0; |
| 1075 | } |
drh | 6c9f8e6 | 2014-08-27 03:28:50 +0000 | [diff] [blame] | 1076 | return valueToText(pVal, enc); |
danielk1977 | 4e6af13 | 2004-06-10 14:01:08 +0000 | [diff] [blame] | 1077 | } |
| 1078 | |
drh | 6a6124e | 2004-06-27 01:56:33 +0000 | [diff] [blame] | 1079 | /* |
| 1080 | ** Create a new sqlite3_value object. |
| 1081 | */ |
drh | 1743575 | 2007-08-16 04:30:38 +0000 | [diff] [blame] | 1082 | sqlite3_value *sqlite3ValueNew(sqlite3 *db){ |
danielk1977 | 26783a5 | 2007-08-29 14:06:22 +0000 | [diff] [blame] | 1083 | Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); |
danielk1977 | 4e6af13 | 2004-06-10 14:01:08 +0000 | [diff] [blame] | 1084 | if( p ){ |
| 1085 | p->flags = MEM_Null; |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 1086 | p->db = db; |
danielk1977 | 4e6af13 | 2004-06-10 14:01:08 +0000 | [diff] [blame] | 1087 | } |
| 1088 | return p; |
| 1089 | } |
| 1090 | |
drh | 6a6124e | 2004-06-27 01:56:33 +0000 | [diff] [blame] | 1091 | /* |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1092 | ** Context object passed by sqlite3Stat4ProbeSetValue() through to |
| 1093 | ** valueNew(). See comments above valueNew() for details. |
danielk1977 | aee18ef | 2005-03-09 12:26:50 +0000 | [diff] [blame] | 1094 | */ |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1095 | struct ValueNewStat4Ctx { |
| 1096 | Parse *pParse; |
| 1097 | Index *pIdx; |
| 1098 | UnpackedRecord **ppRec; |
| 1099 | int iVal; |
| 1100 | }; |
| 1101 | |
| 1102 | /* |
| 1103 | ** Allocate and return a pointer to a new sqlite3_value object. If |
| 1104 | ** the second argument to this function is NULL, the object is allocated |
| 1105 | ** by calling sqlite3ValueNew(). |
| 1106 | ** |
| 1107 | ** Otherwise, if the second argument is non-zero, then this function is |
| 1108 | ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not |
| 1109 | ** already been allocated, allocate the UnpackedRecord structure that |
drh | 96f4ad2 | 2015-03-12 21:02:36 +0000 | [diff] [blame] | 1110 | ** that function will return to its caller here. Then return a pointer to |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1111 | ** an sqlite3_value within the UnpackedRecord.a[] array. |
| 1112 | */ |
| 1113 | static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){ |
drh | 1435a9a | 2013-08-27 23:15:44 +0000 | [diff] [blame] | 1114 | #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1115 | if( p ){ |
| 1116 | UnpackedRecord *pRec = p->ppRec[0]; |
| 1117 | |
| 1118 | if( pRec==0 ){ |
| 1119 | Index *pIdx = p->pIdx; /* Index being probed */ |
| 1120 | int nByte; /* Bytes of space to allocate */ |
| 1121 | int i; /* Counter variable */ |
drh | d269461 | 2013-11-04 22:04:17 +0000 | [diff] [blame] | 1122 | int nCol = pIdx->nColumn; /* Number of index columns including rowid */ |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1123 | |
dan | b5f68b0 | 2013-12-03 18:26:56 +0000 | [diff] [blame] | 1124 | nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord)); |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1125 | pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte); |
| 1126 | if( pRec ){ |
drh | 2ec2fb2 | 2013-11-06 19:59:23 +0000 | [diff] [blame] | 1127 | pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx); |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1128 | if( pRec->pKeyInfo ){ |
drh | 1153c7b | 2013-11-01 22:02:56 +0000 | [diff] [blame] | 1129 | assert( pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField==nCol ); |
drh | 2ec2fb2 | 2013-11-06 19:59:23 +0000 | [diff] [blame] | 1130 | assert( pRec->pKeyInfo->enc==ENC(db) ); |
dan | b5f68b0 | 2013-12-03 18:26:56 +0000 | [diff] [blame] | 1131 | pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord))); |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1132 | for(i=0; i<nCol; i++){ |
| 1133 | pRec->aMem[i].flags = MEM_Null; |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1134 | pRec->aMem[i].db = db; |
| 1135 | } |
| 1136 | }else{ |
| 1137 | sqlite3DbFree(db, pRec); |
| 1138 | pRec = 0; |
| 1139 | } |
| 1140 | } |
| 1141 | if( pRec==0 ) return 0; |
| 1142 | p->ppRec[0] = pRec; |
| 1143 | } |
| 1144 | |
| 1145 | pRec->nField = p->iVal+1; |
| 1146 | return &pRec->aMem[p->iVal]; |
| 1147 | } |
drh | 4f99189 | 2013-10-11 15:05:05 +0000 | [diff] [blame] | 1148 | #else |
| 1149 | UNUSED_PARAMETER(p); |
| 1150 | #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */ |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1151 | return sqlite3ValueNew(db); |
dan | 7a41923 | 2013-08-06 20:01:43 +0000 | [diff] [blame] | 1152 | } |
| 1153 | |
drh | 6a6124e | 2004-06-27 01:56:33 +0000 | [diff] [blame] | 1154 | /* |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1155 | ** The expression object indicated by the second argument is guaranteed |
| 1156 | ** to be a scalar SQL function. If |
| 1157 | ** |
| 1158 | ** * all function arguments are SQL literals, |
drh | e3a7307 | 2015-09-05 19:07:08 +0000 | [diff] [blame] | 1159 | ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and |
dan | cdcc11d | 2015-03-11 20:59:42 +0000 | [diff] [blame] | 1160 | ** * the SQLITE_FUNC_NEEDCOLL function flag is not set, |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1161 | ** |
| 1162 | ** then this routine attempts to invoke the SQL function. Assuming no |
| 1163 | ** error occurs, output parameter (*ppVal) is set to point to a value |
| 1164 | ** object containing the result before returning SQLITE_OK. |
| 1165 | ** |
| 1166 | ** Affinity aff is applied to the result of the function before returning. |
| 1167 | ** If the result is a text value, the sqlite3_value object uses encoding |
| 1168 | ** enc. |
| 1169 | ** |
| 1170 | ** If the conditions above are not met, this function returns SQLITE_OK |
| 1171 | ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to |
| 1172 | ** NULL and an SQLite error code returned. |
| 1173 | */ |
| 1174 | #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
| 1175 | static int valueFromFunction( |
| 1176 | sqlite3 *db, /* The database connection */ |
| 1177 | Expr *p, /* The expression to evaluate */ |
| 1178 | u8 enc, /* Encoding to use */ |
| 1179 | u8 aff, /* Affinity to use */ |
| 1180 | sqlite3_value **ppVal, /* Write the new value here */ |
| 1181 | struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ |
| 1182 | ){ |
| 1183 | sqlite3_context ctx; /* Context object for function invocation */ |
| 1184 | sqlite3_value **apVal = 0; /* Function arguments */ |
| 1185 | int nVal = 0; /* Size of apVal[] array */ |
| 1186 | FuncDef *pFunc = 0; /* Function definition */ |
| 1187 | sqlite3_value *pVal = 0; /* New value */ |
| 1188 | int rc = SQLITE_OK; /* Return code */ |
dan | cdcc11d | 2015-03-11 20:59:42 +0000 | [diff] [blame] | 1189 | ExprList *pList = 0; /* Function arguments */ |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1190 | int i; /* Iterator variable */ |
| 1191 | |
drh | 96f4ad2 | 2015-03-12 21:02:36 +0000 | [diff] [blame] | 1192 | assert( pCtx!=0 ); |
| 1193 | assert( (p->flags & EP_TokenOnly)==0 ); |
| 1194 | pList = p->x.pList; |
| 1195 | if( pList ) nVal = pList->nExpr; |
drh | 80738d9 | 2016-02-15 00:34:16 +0000 | [diff] [blame] | 1196 | pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0); |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1197 | assert( pFunc ); |
drh | e3a7307 | 2015-09-05 19:07:08 +0000 | [diff] [blame] | 1198 | if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0 |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1199 | || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) |
| 1200 | ){ |
| 1201 | return SQLITE_OK; |
| 1202 | } |
| 1203 | |
| 1204 | if( pList ){ |
| 1205 | apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal); |
| 1206 | if( apVal==0 ){ |
mistachkin | fad3039 | 2016-02-13 23:43:46 +0000 | [diff] [blame] | 1207 | rc = SQLITE_NOMEM_BKPT; |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1208 | goto value_from_function_out; |
| 1209 | } |
| 1210 | for(i=0; i<nVal; i++){ |
| 1211 | rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]); |
drh | a9e03b1 | 2015-03-12 06:46:52 +0000 | [diff] [blame] | 1212 | if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out; |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1213 | } |
| 1214 | } |
| 1215 | |
| 1216 | pVal = valueNew(db, pCtx); |
| 1217 | if( pVal==0 ){ |
mistachkin | fad3039 | 2016-02-13 23:43:46 +0000 | [diff] [blame] | 1218 | rc = SQLITE_NOMEM_BKPT; |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1219 | goto value_from_function_out; |
| 1220 | } |
| 1221 | |
dan | 3df3059 | 2015-03-13 08:31:54 +0000 | [diff] [blame] | 1222 | assert( pCtx->pParse->rc==SQLITE_OK ); |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1223 | memset(&ctx, 0, sizeof(ctx)); |
| 1224 | ctx.pOut = pVal; |
| 1225 | ctx.pFunc = pFunc; |
drh | 2d80151 | 2016-01-14 22:19:58 +0000 | [diff] [blame] | 1226 | pFunc->xSFunc(&ctx, nVal, apVal); |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1227 | if( ctx.isError ){ |
| 1228 | rc = ctx.isError; |
drh | 96f4ad2 | 2015-03-12 21:02:36 +0000 | [diff] [blame] | 1229 | sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal)); |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1230 | }else{ |
| 1231 | sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8); |
drh | 96f4ad2 | 2015-03-12 21:02:36 +0000 | [diff] [blame] | 1232 | assert( rc==SQLITE_OK ); |
| 1233 | rc = sqlite3VdbeChangeEncoding(pVal, enc); |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1234 | if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){ |
| 1235 | rc = SQLITE_TOOBIG; |
dan | 3df3059 | 2015-03-13 08:31:54 +0000 | [diff] [blame] | 1236 | pCtx->pParse->nErr++; |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1237 | } |
| 1238 | } |
dan | 3df3059 | 2015-03-13 08:31:54 +0000 | [diff] [blame] | 1239 | pCtx->pParse->rc = rc; |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1240 | |
| 1241 | value_from_function_out: |
| 1242 | if( rc!=SQLITE_OK ){ |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1243 | pVal = 0; |
| 1244 | } |
drh | a9e03b1 | 2015-03-12 06:46:52 +0000 | [diff] [blame] | 1245 | if( apVal ){ |
| 1246 | for(i=0; i<nVal; i++){ |
| 1247 | sqlite3ValueFree(apVal[i]); |
| 1248 | } |
| 1249 | sqlite3DbFree(db, apVal); |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1250 | } |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1251 | |
| 1252 | *ppVal = pVal; |
| 1253 | return rc; |
| 1254 | } |
| 1255 | #else |
| 1256 | # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK |
| 1257 | #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */ |
| 1258 | |
| 1259 | /* |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1260 | ** Extract a value from the supplied expression in the manner described |
| 1261 | ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object |
| 1262 | ** using valueNew(). |
| 1263 | ** |
| 1264 | ** If pCtx is NULL and an error occurs after the sqlite3_value object |
| 1265 | ** has been allocated, it is freed before returning. Or, if pCtx is not |
| 1266 | ** NULL, it is assumed that the caller will free any allocated object |
| 1267 | ** in all cases. |
danielk1977 | aee18ef | 2005-03-09 12:26:50 +0000 | [diff] [blame] | 1268 | */ |
drh | a7f4bf3 | 2013-10-14 13:21:00 +0000 | [diff] [blame] | 1269 | static int valueFromExpr( |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1270 | sqlite3 *db, /* The database connection */ |
| 1271 | Expr *pExpr, /* The expression to evaluate */ |
| 1272 | u8 enc, /* Encoding to use */ |
| 1273 | u8 affinity, /* Affinity to use */ |
| 1274 | sqlite3_value **ppVal, /* Write the new value here */ |
| 1275 | struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ |
danielk1977 | aee18ef | 2005-03-09 12:26:50 +0000 | [diff] [blame] | 1276 | ){ |
| 1277 | int op; |
| 1278 | char *zVal = 0; |
| 1279 | sqlite3_value *pVal = 0; |
drh | 9351862 | 2010-09-30 14:48:06 +0000 | [diff] [blame] | 1280 | int negInt = 1; |
| 1281 | const char *zNeg = ""; |
drh | 0e1f002 | 2013-08-16 14:49:00 +0000 | [diff] [blame] | 1282 | int rc = SQLITE_OK; |
danielk1977 | aee18ef | 2005-03-09 12:26:50 +0000 | [diff] [blame] | 1283 | |
| 1284 | if( !pExpr ){ |
| 1285 | *ppVal = 0; |
| 1286 | return SQLITE_OK; |
| 1287 | } |
drh | 94fa9c4 | 2016-02-27 21:16:04 +0000 | [diff] [blame] | 1288 | while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft; |
drh | 4a466d3 | 2010-06-25 14:17:58 +0000 | [diff] [blame] | 1289 | if( NEVER(op==TK_REGISTER) ) op = pExpr->op2; |
danielk1977 | aee18ef | 2005-03-09 12:26:50 +0000 | [diff] [blame] | 1290 | |
drh | 96f4ad2 | 2015-03-12 21:02:36 +0000 | [diff] [blame] | 1291 | /* Compressed expressions only appear when parsing the DEFAULT clause |
| 1292 | ** on a table column definition, and hence only when pCtx==0. This |
| 1293 | ** check ensures that an EP_TokenOnly expression is never passed down |
| 1294 | ** into valueFromFunction(). */ |
| 1295 | assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 ); |
| 1296 | |
drh | 4169e43 | 2014-08-25 20:11:52 +0000 | [diff] [blame] | 1297 | if( op==TK_CAST ){ |
| 1298 | u8 aff = sqlite3AffinityType(pExpr->u.zToken,0); |
| 1299 | rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx); |
drh | ec3e4f7 | 2014-08-25 21:11:01 +0000 | [diff] [blame] | 1300 | testcase( rc!=SQLITE_OK ); |
| 1301 | if( *ppVal ){ |
drh | 4169e43 | 2014-08-25 20:11:52 +0000 | [diff] [blame] | 1302 | sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8); |
| 1303 | sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8); |
| 1304 | } |
| 1305 | return rc; |
| 1306 | } |
| 1307 | |
drh | 9351862 | 2010-09-30 14:48:06 +0000 | [diff] [blame] | 1308 | /* Handle negative integers in a single step. This is needed in the |
| 1309 | ** case when the value is -9223372036854775808. |
| 1310 | */ |
| 1311 | if( op==TK_UMINUS |
| 1312 | && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){ |
| 1313 | pExpr = pExpr->pLeft; |
| 1314 | op = pExpr->op; |
| 1315 | negInt = -1; |
| 1316 | zNeg = "-"; |
| 1317 | } |
| 1318 | |
danielk1977 | aee18ef | 2005-03-09 12:26:50 +0000 | [diff] [blame] | 1319 | if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1320 | pVal = valueNew(db, pCtx); |
drh | 33e619f | 2009-05-28 01:00:55 +0000 | [diff] [blame] | 1321 | if( pVal==0 ) goto no_mem; |
| 1322 | if( ExprHasProperty(pExpr, EP_IntValue) ){ |
drh | 9351862 | 2010-09-30 14:48:06 +0000 | [diff] [blame] | 1323 | sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); |
drh | 33e619f | 2009-05-28 01:00:55 +0000 | [diff] [blame] | 1324 | }else{ |
drh | 9351862 | 2010-09-30 14:48:06 +0000 | [diff] [blame] | 1325 | zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); |
drh | 33e619f | 2009-05-28 01:00:55 +0000 | [diff] [blame] | 1326 | if( zVal==0 ) goto no_mem; |
| 1327 | sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); |
| 1328 | } |
drh | 05883a3 | 2015-06-02 15:32:08 +0000 | [diff] [blame] | 1329 | if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){ |
drh | e3b9bfe | 2009-05-05 12:54:50 +0000 | [diff] [blame] | 1330 | sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); |
danielk1977 | aee18ef | 2005-03-09 12:26:50 +0000 | [diff] [blame] | 1331 | }else{ |
drh | e3b9bfe | 2009-05-05 12:54:50 +0000 | [diff] [blame] | 1332 | sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); |
| 1333 | } |
drh | 9351862 | 2010-09-30 14:48:06 +0000 | [diff] [blame] | 1334 | if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str; |
drh | e3b9bfe | 2009-05-05 12:54:50 +0000 | [diff] [blame] | 1335 | if( enc!=SQLITE_UTF8 ){ |
drh | 0e1f002 | 2013-08-16 14:49:00 +0000 | [diff] [blame] | 1336 | rc = sqlite3VdbeChangeEncoding(pVal, enc); |
danielk1977 | aee18ef | 2005-03-09 12:26:50 +0000 | [diff] [blame] | 1337 | } |
| 1338 | }else if( op==TK_UMINUS ) { |
drh | 9351862 | 2010-09-30 14:48:06 +0000 | [diff] [blame] | 1339 | /* This branch happens for multiple negative signs. Ex: -(-5) */ |
dan | ad45ed7 | 2013-08-08 12:21:32 +0000 | [diff] [blame] | 1340 | if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) |
| 1341 | && pVal!=0 |
| 1342 | ){ |
drh | 9351862 | 2010-09-30 14:48:06 +0000 | [diff] [blame] | 1343 | sqlite3VdbeMemNumerify(pVal); |
drh | 74eaba4 | 2014-09-18 17:52:15 +0000 | [diff] [blame] | 1344 | if( pVal->flags & MEM_Real ){ |
| 1345 | pVal->u.r = -pVal->u.r; |
| 1346 | }else if( pVal->u.i==SMALLEST_INT64 ){ |
| 1347 | pVal->u.r = -(double)SMALLEST_INT64; |
| 1348 | MemSetTypeFlag(pVal, MEM_Real); |
drh | d50ffc4 | 2011-03-08 02:38:28 +0000 | [diff] [blame] | 1349 | }else{ |
| 1350 | pVal->u.i = -pVal->u.i; |
| 1351 | } |
drh | 9351862 | 2010-09-30 14:48:06 +0000 | [diff] [blame] | 1352 | sqlite3ValueApplyAffinity(pVal, affinity, enc); |
danielk1977 | aee18ef | 2005-03-09 12:26:50 +0000 | [diff] [blame] | 1353 | } |
drh | 9b3eb0a | 2011-01-21 14:37:04 +0000 | [diff] [blame] | 1354 | }else if( op==TK_NULL ){ |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1355 | pVal = valueNew(db, pCtx); |
drh | b1aa0ab | 2011-02-18 17:23:23 +0000 | [diff] [blame] | 1356 | if( pVal==0 ) goto no_mem; |
danielk1977 | aee18ef | 2005-03-09 12:26:50 +0000 | [diff] [blame] | 1357 | } |
| 1358 | #ifndef SQLITE_OMIT_BLOB_LITERAL |
| 1359 | else if( op==TK_BLOB ){ |
| 1360 | int nVal; |
drh | 33e619f | 2009-05-28 01:00:55 +0000 | [diff] [blame] | 1361 | assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); |
| 1362 | assert( pExpr->u.zToken[1]=='\'' ); |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1363 | pVal = valueNew(db, pCtx); |
danielk1977 | f150c9d | 2008-10-30 17:21:12 +0000 | [diff] [blame] | 1364 | if( !pVal ) goto no_mem; |
drh | 33e619f | 2009-05-28 01:00:55 +0000 | [diff] [blame] | 1365 | zVal = &pExpr->u.zToken[2]; |
drh | b7916a7 | 2009-05-27 10:31:29 +0000 | [diff] [blame] | 1366 | nVal = sqlite3Strlen30(zVal)-1; |
| 1367 | assert( zVal[nVal]=='\'' ); |
drh | ca48c90 | 2008-01-18 14:08:24 +0000 | [diff] [blame] | 1368 | sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, |
drh | 633e6d5 | 2008-07-28 19:34:53 +0000 | [diff] [blame] | 1369 | 0, SQLITE_DYNAMIC); |
danielk1977 | aee18ef | 2005-03-09 12:26:50 +0000 | [diff] [blame] | 1370 | } |
| 1371 | #endif |
| 1372 | |
drh | 8cdcd87 | 2015-03-16 13:48:23 +0000 | [diff] [blame] | 1373 | #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
drh | 96f4ad2 | 2015-03-12 21:02:36 +0000 | [diff] [blame] | 1374 | else if( op==TK_FUNCTION && pCtx!=0 ){ |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1375 | rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx); |
| 1376 | } |
drh | 8cdcd87 | 2015-03-16 13:48:23 +0000 | [diff] [blame] | 1377 | #endif |
dan | 18bf807 | 2015-03-11 20:06:40 +0000 | [diff] [blame] | 1378 | |
danielk1977 | aee18ef | 2005-03-09 12:26:50 +0000 | [diff] [blame] | 1379 | *ppVal = pVal; |
drh | 0e1f002 | 2013-08-16 14:49:00 +0000 | [diff] [blame] | 1380 | return rc; |
danielk1977 | aee18ef | 2005-03-09 12:26:50 +0000 | [diff] [blame] | 1381 | |
| 1382 | no_mem: |
drh | 4a642b6 | 2016-02-05 01:55:27 +0000 | [diff] [blame] | 1383 | sqlite3OomFault(db); |
drh | 633e6d5 | 2008-07-28 19:34:53 +0000 | [diff] [blame] | 1384 | sqlite3DbFree(db, zVal); |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1385 | assert( *ppVal==0 ); |
drh | 1435a9a | 2013-08-27 23:15:44 +0000 | [diff] [blame] | 1386 | #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1387 | if( pCtx==0 ) sqlite3ValueFree(pVal); |
drh | 1435a9a | 2013-08-27 23:15:44 +0000 | [diff] [blame] | 1388 | #else |
| 1389 | assert( pCtx==0 ); sqlite3ValueFree(pVal); |
| 1390 | #endif |
mistachkin | fad3039 | 2016-02-13 23:43:46 +0000 | [diff] [blame] | 1391 | return SQLITE_NOMEM_BKPT; |
danielk1977 | aee18ef | 2005-03-09 12:26:50 +0000 | [diff] [blame] | 1392 | } |
| 1393 | |
| 1394 | /* |
dan | 87cd932 | 2013-08-07 15:52:41 +0000 | [diff] [blame] | 1395 | ** Create a new sqlite3_value object, containing the value of pExpr. |
| 1396 | ** |
| 1397 | ** This only works for very simple expressions that consist of one constant |
| 1398 | ** token (i.e. "5", "5.1", "'a string'"). If the expression can |
| 1399 | ** be converted directly into a value, then the value is allocated and |
| 1400 | ** a pointer written to *ppVal. The caller is responsible for deallocating |
| 1401 | ** the value by passing it to sqlite3ValueFree() later on. If the expression |
| 1402 | ** cannot be converted to a value, then *ppVal is set to NULL. |
| 1403 | */ |
| 1404 | int sqlite3ValueFromExpr( |
| 1405 | sqlite3 *db, /* The database connection */ |
| 1406 | Expr *pExpr, /* The expression to evaluate */ |
| 1407 | u8 enc, /* Encoding to use */ |
| 1408 | u8 affinity, /* Affinity to use */ |
| 1409 | sqlite3_value **ppVal /* Write the new value here */ |
| 1410 | ){ |
dan | af2583c | 2013-08-15 18:43:21 +0000 | [diff] [blame] | 1411 | return valueFromExpr(db, pExpr, enc, affinity, ppVal, 0); |
dan | 87cd932 | 2013-08-07 15:52:41 +0000 | [diff] [blame] | 1412 | } |
| 1413 | |
drh | 1435a9a | 2013-08-27 23:15:44 +0000 | [diff] [blame] | 1414 | #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
dan | 8ad169a | 2013-08-12 20:14:04 +0000 | [diff] [blame] | 1415 | /* |
| 1416 | ** The implementation of the sqlite_record() function. This function accepts |
| 1417 | ** a single argument of any type. The return value is a formatted database |
| 1418 | ** record (a blob) containing the argument value. |
| 1419 | ** |
| 1420 | ** This is used to convert the value stored in the 'sample' column of the |
| 1421 | ** sqlite_stat3 table to the record format SQLite uses internally. |
| 1422 | */ |
| 1423 | static void recordFunc( |
| 1424 | sqlite3_context *context, |
| 1425 | int argc, |
| 1426 | sqlite3_value **argv |
| 1427 | ){ |
| 1428 | const int file_format = 1; |
drh | be37c12 | 2015-10-16 14:54:17 +0000 | [diff] [blame] | 1429 | u32 iSerial; /* Serial type */ |
dan | 8ad169a | 2013-08-12 20:14:04 +0000 | [diff] [blame] | 1430 | int nSerial; /* Bytes of space for iSerial as varint */ |
drh | be37c12 | 2015-10-16 14:54:17 +0000 | [diff] [blame] | 1431 | u32 nVal; /* Bytes of space required for argv[0] */ |
dan | 8ad169a | 2013-08-12 20:14:04 +0000 | [diff] [blame] | 1432 | int nRet; |
| 1433 | sqlite3 *db; |
| 1434 | u8 *aRet; |
| 1435 | |
drh | 4f99189 | 2013-10-11 15:05:05 +0000 | [diff] [blame] | 1436 | UNUSED_PARAMETER( argc ); |
drh | be37c12 | 2015-10-16 14:54:17 +0000 | [diff] [blame] | 1437 | iSerial = sqlite3VdbeSerialType(argv[0], file_format, &nVal); |
dan | 8ad169a | 2013-08-12 20:14:04 +0000 | [diff] [blame] | 1438 | nSerial = sqlite3VarintLen(iSerial); |
dan | 8ad169a | 2013-08-12 20:14:04 +0000 | [diff] [blame] | 1439 | db = sqlite3_context_db_handle(context); |
| 1440 | |
| 1441 | nRet = 1 + nSerial + nVal; |
drh | 575fad6 | 2016-02-05 13:38:36 +0000 | [diff] [blame] | 1442 | aRet = sqlite3DbMallocRawNN(db, nRet); |
dan | 8ad169a | 2013-08-12 20:14:04 +0000 | [diff] [blame] | 1443 | if( aRet==0 ){ |
| 1444 | sqlite3_result_error_nomem(context); |
| 1445 | }else{ |
| 1446 | aRet[0] = nSerial+1; |
drh | 2f2b2b8 | 2014-08-22 18:48:25 +0000 | [diff] [blame] | 1447 | putVarint32(&aRet[1], iSerial); |
drh | a9ab481 | 2013-12-11 11:00:44 +0000 | [diff] [blame] | 1448 | sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial); |
dan | 8ad169a | 2013-08-12 20:14:04 +0000 | [diff] [blame] | 1449 | sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT); |
| 1450 | sqlite3DbFree(db, aRet); |
| 1451 | } |
| 1452 | } |
| 1453 | |
| 1454 | /* |
| 1455 | ** Register built-in functions used to help read ANALYZE data. |
| 1456 | */ |
| 1457 | void sqlite3AnalyzeFunctions(void){ |
drh | 80738d9 | 2016-02-15 00:34:16 +0000 | [diff] [blame] | 1458 | static FuncDef aAnalyzeTableFuncs[] = { |
dan | 8ad169a | 2013-08-12 20:14:04 +0000 | [diff] [blame] | 1459 | FUNCTION(sqlite_record, 1, 0, 0, recordFunc), |
| 1460 | }; |
drh | 80738d9 | 2016-02-15 00:34:16 +0000 | [diff] [blame] | 1461 | sqlite3InsertBuiltinFuncs(aAnalyzeTableFuncs, ArraySize(aAnalyzeTableFuncs)); |
dan | 8ad169a | 2013-08-12 20:14:04 +0000 | [diff] [blame] | 1462 | } |
| 1463 | |
drh | 0288b21 | 2014-06-28 16:06:44 +0000 | [diff] [blame] | 1464 | /* |
| 1465 | ** Attempt to extract a value from pExpr and use it to construct *ppVal. |
| 1466 | ** |
| 1467 | ** If pAlloc is not NULL, then an UnpackedRecord object is created for |
| 1468 | ** pAlloc if one does not exist and the new value is added to the |
| 1469 | ** UnpackedRecord object. |
| 1470 | ** |
| 1471 | ** A value is extracted in the following cases: |
| 1472 | ** |
| 1473 | ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, |
| 1474 | ** |
| 1475 | ** * The expression is a bound variable, and this is a reprepare, or |
| 1476 | ** |
| 1477 | ** * The expression is a literal value. |
| 1478 | ** |
| 1479 | ** On success, *ppVal is made to point to the extracted value. The caller |
| 1480 | ** is responsible for ensuring that the value is eventually freed. |
| 1481 | */ |
dan | b0b8290 | 2014-06-26 20:21:46 +0000 | [diff] [blame] | 1482 | static int stat4ValueFromExpr( |
| 1483 | Parse *pParse, /* Parse context */ |
| 1484 | Expr *pExpr, /* The expression to extract a value from */ |
| 1485 | u8 affinity, /* Affinity to use */ |
drh | 0288b21 | 2014-06-28 16:06:44 +0000 | [diff] [blame] | 1486 | struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */ |
dan | b0b8290 | 2014-06-26 20:21:46 +0000 | [diff] [blame] | 1487 | sqlite3_value **ppVal /* OUT: New value object (or NULL) */ |
| 1488 | ){ |
| 1489 | int rc = SQLITE_OK; |
| 1490 | sqlite3_value *pVal = 0; |
| 1491 | sqlite3 *db = pParse->db; |
| 1492 | |
| 1493 | /* Skip over any TK_COLLATE nodes */ |
| 1494 | pExpr = sqlite3ExprSkipCollate(pExpr); |
| 1495 | |
| 1496 | if( !pExpr ){ |
| 1497 | pVal = valueNew(db, pAlloc); |
| 1498 | if( pVal ){ |
| 1499 | sqlite3VdbeMemSetNull((Mem*)pVal); |
| 1500 | } |
| 1501 | }else if( pExpr->op==TK_VARIABLE |
| 1502 | || NEVER(pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE) |
| 1503 | ){ |
| 1504 | Vdbe *v; |
| 1505 | int iBindVar = pExpr->iColumn; |
| 1506 | sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar); |
| 1507 | if( (v = pParse->pReprepare)!=0 ){ |
| 1508 | pVal = valueNew(db, pAlloc); |
| 1509 | if( pVal ){ |
| 1510 | rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]); |
| 1511 | if( rc==SQLITE_OK ){ |
| 1512 | sqlite3ValueApplyAffinity(pVal, affinity, ENC(db)); |
| 1513 | } |
| 1514 | pVal->db = pParse->db; |
| 1515 | } |
| 1516 | } |
| 1517 | }else{ |
| 1518 | rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc); |
| 1519 | } |
| 1520 | |
| 1521 | assert( pVal==0 || pVal->db==db ); |
| 1522 | *ppVal = pVal; |
| 1523 | return rc; |
| 1524 | } |
| 1525 | |
dan | 87cd932 | 2013-08-07 15:52:41 +0000 | [diff] [blame] | 1526 | /* |
dan | 87cd932 | 2013-08-07 15:52:41 +0000 | [diff] [blame] | 1527 | ** This function is used to allocate and populate UnpackedRecord |
| 1528 | ** structures intended to be compared against sample index keys stored |
| 1529 | ** in the sqlite_stat4 table. |
| 1530 | ** |
| 1531 | ** A single call to this function attempts to populates field iVal (leftmost |
| 1532 | ** is 0 etc.) of the unpacked record with a value extracted from expression |
| 1533 | ** pExpr. Extraction of values is possible if: |
| 1534 | ** |
| 1535 | ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, |
| 1536 | ** |
| 1537 | ** * The expression is a bound variable, and this is a reprepare, or |
| 1538 | ** |
| 1539 | ** * The sqlite3ValueFromExpr() function is able to extract a value |
| 1540 | ** from the expression (i.e. the expression is a literal value). |
| 1541 | ** |
| 1542 | ** If a value can be extracted, the affinity passed as the 5th argument |
| 1543 | ** is applied to it before it is copied into the UnpackedRecord. Output |
| 1544 | ** parameter *pbOk is set to true if a value is extracted, or false |
| 1545 | ** otherwise. |
| 1546 | ** |
| 1547 | ** When this function is called, *ppRec must either point to an object |
| 1548 | ** allocated by an earlier call to this function, or must be NULL. If it |
| 1549 | ** is NULL and a value can be successfully extracted, a new UnpackedRecord |
| 1550 | ** is allocated (and *ppRec set to point to it) before returning. |
| 1551 | ** |
| 1552 | ** Unless an error is encountered, SQLITE_OK is returned. It is not an |
| 1553 | ** error if a value cannot be extracted from pExpr. If an error does |
| 1554 | ** occur, an SQLite error code is returned. |
| 1555 | */ |
dan | 7a41923 | 2013-08-06 20:01:43 +0000 | [diff] [blame] | 1556 | int sqlite3Stat4ProbeSetValue( |
| 1557 | Parse *pParse, /* Parse context */ |
dan | 87cd932 | 2013-08-07 15:52:41 +0000 | [diff] [blame] | 1558 | Index *pIdx, /* Index being probed */ |
| 1559 | UnpackedRecord **ppRec, /* IN/OUT: Probe record */ |
dan | 7a41923 | 2013-08-06 20:01:43 +0000 | [diff] [blame] | 1560 | Expr *pExpr, /* The expression to extract a value from */ |
| 1561 | u8 affinity, /* Affinity to use */ |
| 1562 | int iVal, /* Array element to populate */ |
| 1563 | int *pbOk /* OUT: True if value was extracted */ |
| 1564 | ){ |
dan | b0b8290 | 2014-06-26 20:21:46 +0000 | [diff] [blame] | 1565 | int rc; |
dan | 87cd932 | 2013-08-07 15:52:41 +0000 | [diff] [blame] | 1566 | sqlite3_value *pVal = 0; |
dan | 87cd932 | 2013-08-07 15:52:41 +0000 | [diff] [blame] | 1567 | struct ValueNewStat4Ctx alloc; |
dan | b0b8290 | 2014-06-26 20:21:46 +0000 | [diff] [blame] | 1568 | |
dan | 87cd932 | 2013-08-07 15:52:41 +0000 | [diff] [blame] | 1569 | alloc.pParse = pParse; |
| 1570 | alloc.pIdx = pIdx; |
| 1571 | alloc.ppRec = ppRec; |
| 1572 | alloc.iVal = iVal; |
dan | 7a41923 | 2013-08-06 20:01:43 +0000 | [diff] [blame] | 1573 | |
dan | b0b8290 | 2014-06-26 20:21:46 +0000 | [diff] [blame] | 1574 | rc = stat4ValueFromExpr(pParse, pExpr, affinity, &alloc, &pVal); |
| 1575 | assert( pVal==0 || pVal->db==pParse->db ); |
drh | 7190e07 | 2013-12-03 19:16:06 +0000 | [diff] [blame] | 1576 | *pbOk = (pVal!=0); |
dan | b0b8290 | 2014-06-26 20:21:46 +0000 | [diff] [blame] | 1577 | return rc; |
| 1578 | } |
dan | 87cd932 | 2013-08-07 15:52:41 +0000 | [diff] [blame] | 1579 | |
dan | b0b8290 | 2014-06-26 20:21:46 +0000 | [diff] [blame] | 1580 | /* |
| 1581 | ** Attempt to extract a value from expression pExpr using the methods |
| 1582 | ** as described for sqlite3Stat4ProbeSetValue() above. |
| 1583 | ** |
| 1584 | ** If successful, set *ppVal to point to a new value object and return |
| 1585 | ** SQLITE_OK. If no value can be extracted, but no other error occurs |
| 1586 | ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error |
| 1587 | ** does occur, return an SQLite error code. The final value of *ppVal |
| 1588 | ** is undefined in this case. |
| 1589 | */ |
| 1590 | int sqlite3Stat4ValueFromExpr( |
| 1591 | Parse *pParse, /* Parse context */ |
| 1592 | Expr *pExpr, /* The expression to extract a value from */ |
| 1593 | u8 affinity, /* Affinity to use */ |
| 1594 | sqlite3_value **ppVal /* OUT: New value object (or NULL) */ |
| 1595 | ){ |
| 1596 | return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal); |
| 1597 | } |
| 1598 | |
drh | 0288b21 | 2014-06-28 16:06:44 +0000 | [diff] [blame] | 1599 | /* |
| 1600 | ** Extract the iCol-th column from the nRec-byte record in pRec. Write |
| 1601 | ** the column value into *ppVal. If *ppVal is initially NULL then a new |
| 1602 | ** sqlite3_value object is allocated. |
| 1603 | ** |
| 1604 | ** If *ppVal is initially NULL then the caller is responsible for |
| 1605 | ** ensuring that the value written into *ppVal is eventually freed. |
| 1606 | */ |
dan | b0b8290 | 2014-06-26 20:21:46 +0000 | [diff] [blame] | 1607 | int sqlite3Stat4Column( |
| 1608 | sqlite3 *db, /* Database handle */ |
| 1609 | const void *pRec, /* Pointer to buffer containing record */ |
| 1610 | int nRec, /* Size of buffer pRec in bytes */ |
| 1611 | int iCol, /* Column to extract */ |
| 1612 | sqlite3_value **ppVal /* OUT: Extracted value */ |
| 1613 | ){ |
drh | 0288b21 | 2014-06-28 16:06:44 +0000 | [diff] [blame] | 1614 | u32 t; /* a column type code */ |
| 1615 | int nHdr; /* Size of the header in the record */ |
| 1616 | int iHdr; /* Next unread header byte */ |
| 1617 | int iField; /* Next unread data byte */ |
| 1618 | int szField; /* Size of the current data field */ |
| 1619 | int i; /* Column index */ |
| 1620 | u8 *a = (u8*)pRec; /* Typecast byte array */ |
| 1621 | Mem *pMem = *ppVal; /* Write result into this Mem object */ |
| 1622 | |
| 1623 | assert( iCol>0 ); |
| 1624 | iHdr = getVarint32(a, nHdr); |
| 1625 | if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT; |
| 1626 | iField = nHdr; |
| 1627 | for(i=0; i<=iCol; i++){ |
| 1628 | iHdr += getVarint32(&a[iHdr], t); |
| 1629 | testcase( iHdr==nHdr ); |
| 1630 | testcase( iHdr==nHdr+1 ); |
| 1631 | if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT; |
| 1632 | szField = sqlite3VdbeSerialTypeLen(t); |
| 1633 | iField += szField; |
| 1634 | } |
| 1635 | testcase( iField==nRec ); |
| 1636 | testcase( iField==nRec+1 ); |
| 1637 | if( iField>nRec ) return SQLITE_CORRUPT_BKPT; |
dan | b0b8290 | 2014-06-26 20:21:46 +0000 | [diff] [blame] | 1638 | if( pMem==0 ){ |
drh | 0288b21 | 2014-06-28 16:06:44 +0000 | [diff] [blame] | 1639 | pMem = *ppVal = sqlite3ValueNew(db); |
mistachkin | fad3039 | 2016-02-13 23:43:46 +0000 | [diff] [blame] | 1640 | if( pMem==0 ) return SQLITE_NOMEM_BKPT; |
dan | b0b8290 | 2014-06-26 20:21:46 +0000 | [diff] [blame] | 1641 | } |
drh | 0288b21 | 2014-06-28 16:06:44 +0000 | [diff] [blame] | 1642 | sqlite3VdbeSerialGet(&a[iField-szField], t, pMem); |
| 1643 | pMem->enc = ENC(db); |
| 1644 | return SQLITE_OK; |
dan | 7a41923 | 2013-08-06 20:01:43 +0000 | [diff] [blame] | 1645 | } |
| 1646 | |
dan | 87cd932 | 2013-08-07 15:52:41 +0000 | [diff] [blame] | 1647 | /* |
| 1648 | ** Unless it is NULL, the argument must be an UnpackedRecord object returned |
| 1649 | ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes |
| 1650 | ** the object. |
| 1651 | */ |
dan | 7a41923 | 2013-08-06 20:01:43 +0000 | [diff] [blame] | 1652 | void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){ |
| 1653 | if( pRec ){ |
| 1654 | int i; |
drh | 1153c7b | 2013-11-01 22:02:56 +0000 | [diff] [blame] | 1655 | int nCol = pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField; |
dan | 7a41923 | 2013-08-06 20:01:43 +0000 | [diff] [blame] | 1656 | Mem *aMem = pRec->aMem; |
| 1657 | sqlite3 *db = aMem[0].db; |
dan | dd6e1f1 | 2013-08-10 19:08:30 +0000 | [diff] [blame] | 1658 | for(i=0; i<nCol; i++){ |
drh | cef2584 | 2015-04-20 13:59:18 +0000 | [diff] [blame] | 1659 | sqlite3VdbeMemRelease(&aMem[i]); |
dan | 7a41923 | 2013-08-06 20:01:43 +0000 | [diff] [blame] | 1660 | } |
drh | 2ec2fb2 | 2013-11-06 19:59:23 +0000 | [diff] [blame] | 1661 | sqlite3KeyInfoUnref(pRec->pKeyInfo); |
dan | 7a41923 | 2013-08-06 20:01:43 +0000 | [diff] [blame] | 1662 | sqlite3DbFree(db, pRec); |
| 1663 | } |
| 1664 | } |
dan | 7a41923 | 2013-08-06 20:01:43 +0000 | [diff] [blame] | 1665 | #endif /* ifdef SQLITE_ENABLE_STAT4 */ |
| 1666 | |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 1667 | /* |
| 1668 | ** Change the string value of an sqlite3_value object |
| 1669 | */ |
| 1670 | void sqlite3ValueSetStr( |
drh | 1743575 | 2007-08-16 04:30:38 +0000 | [diff] [blame] | 1671 | sqlite3_value *v, /* Value to be set */ |
| 1672 | int n, /* Length of string z */ |
| 1673 | const void *z, /* Text of the new string */ |
| 1674 | u8 enc, /* Encoding to use */ |
| 1675 | void (*xDel)(void*) /* Destructor for the string */ |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 1676 | ){ |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 1677 | if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 1678 | } |
| 1679 | |
| 1680 | /* |
| 1681 | ** Free an sqlite3_value object |
| 1682 | */ |
| 1683 | void sqlite3ValueFree(sqlite3_value *v){ |
| 1684 | if( !v ) return; |
danielk1977 | a7a8e14 | 2008-02-13 18:25:27 +0000 | [diff] [blame] | 1685 | sqlite3VdbeMemRelease((Mem *)v); |
drh | 633e6d5 | 2008-07-28 19:34:53 +0000 | [diff] [blame] | 1686 | sqlite3DbFree(((Mem*)v)->db, v); |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 1687 | } |
| 1688 | |
| 1689 | /* |
drh | 591909c | 2015-06-25 23:52:48 +0000 | [diff] [blame] | 1690 | ** The sqlite3ValueBytes() routine returns the number of bytes in the |
| 1691 | ** sqlite3_value object assuming that it uses the encoding "enc". |
| 1692 | ** The valueBytes() routine is a helper function. |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 1693 | */ |
drh | 591909c | 2015-06-25 23:52:48 +0000 | [diff] [blame] | 1694 | static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){ |
| 1695 | return valueToText(pVal, enc)!=0 ? pVal->n : 0; |
| 1696 | } |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 1697 | int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 1698 | Mem *p = (Mem*)pVal; |
drh | 591909c | 2015-06-25 23:52:48 +0000 | [diff] [blame] | 1699 | assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 ); |
| 1700 | if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){ |
| 1701 | return p->n; |
| 1702 | } |
| 1703 | if( (p->flags & MEM_Blob)!=0 ){ |
drh | b026e05 | 2007-05-02 01:34:31 +0000 | [diff] [blame] | 1704 | if( p->flags & MEM_Zero ){ |
drh | 8df3284 | 2008-12-09 02:51:23 +0000 | [diff] [blame] | 1705 | return p->n + p->u.nZero; |
drh | b026e05 | 2007-05-02 01:34:31 +0000 | [diff] [blame] | 1706 | }else{ |
| 1707 | return p->n; |
| 1708 | } |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 1709 | } |
drh | 591909c | 2015-06-25 23:52:48 +0000 | [diff] [blame] | 1710 | if( p->flags & MEM_Null ) return 0; |
| 1711 | return valueBytes(pVal, enc); |
drh | 4f26d6c | 2004-05-26 23:25:30 +0000 | [diff] [blame] | 1712 | } |