blob: c1ebff9604cda962fe3ac8f299718bc14dfdb95c [file] [log] [blame]
drh900b31e2007-08-28 02:27:51 +00001/*
2** 2007 August 27
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
drh900b31e2007-08-28 02:27:51 +000013** This file contains code used to implement mutexes on Btree objects.
14** This code really belongs in btree.c. But btree.c is getting too
15** big and we want to break it down some. This packaged seemed like
16** a good breakout.
17*/
18#include "btreeInt.h"
danielk1977f7590db2009-04-10 12:55:16 +000019#ifndef SQLITE_OMIT_SHARED_CACHE
20#if SQLITE_THREADSAFE
drh900b31e2007-08-28 02:27:51 +000021
danielk19772a50ff02009-04-10 09:47:06 +000022/*
23** Obtain the BtShared mutex associated with B-Tree handle p. Also,
24** set BtShared.db to the database handle associated with p and the
25** p->locked boolean to true.
26*/
27static void lockBtreeMutex(Btree *p){
28 assert( p->locked==0 );
29 assert( sqlite3_mutex_notheld(p->pBt->mutex) );
30 assert( sqlite3_mutex_held(p->db->mutex) );
31
32 sqlite3_mutex_enter(p->pBt->mutex);
33 p->pBt->db = p->db;
34 p->locked = 1;
35}
36
37/*
38** Release the BtShared mutex associated with B-Tree handle p and
39** clear the p->locked boolean.
40*/
drh75e2a2d2014-08-22 21:58:10 +000041static void SQLITE_NOINLINE unlockBtreeMutex(Btree *p){
drhbdaec522011-04-04 00:14:43 +000042 BtShared *pBt = p->pBt;
danielk19772a50ff02009-04-10 09:47:06 +000043 assert( p->locked==1 );
drhbdaec522011-04-04 00:14:43 +000044 assert( sqlite3_mutex_held(pBt->mutex) );
danielk19772a50ff02009-04-10 09:47:06 +000045 assert( sqlite3_mutex_held(p->db->mutex) );
drhbdaec522011-04-04 00:14:43 +000046 assert( p->db==pBt->db );
danielk19772a50ff02009-04-10 09:47:06 +000047
drhbdaec522011-04-04 00:14:43 +000048 sqlite3_mutex_leave(pBt->mutex);
danielk19772a50ff02009-04-10 09:47:06 +000049 p->locked = 0;
50}
drh900b31e2007-08-28 02:27:51 +000051
drh75e2a2d2014-08-22 21:58:10 +000052/* Forward reference */
53static void SQLITE_NOINLINE btreeLockCarefully(Btree *p);
54
drh900b31e2007-08-28 02:27:51 +000055/*
56** Enter a mutex on the given BTree object.
57**
58** If the object is not sharable, then no mutex is ever required
59** and this routine is a no-op. The underlying mutex is non-recursive.
60** But we keep a reference count in Btree.wantToLock so the behavior
61** of this interface is recursive.
62**
63** To avoid deadlocks, multiple Btrees are locked in the same order
64** by all database connections. The p->pNext is a list of other
65** Btrees belonging to the same database connection as the p Btree
66** which need to be locked after p. If we cannot get a lock on
67** p, then first unlock all of the others on p->pNext, then wait
68** for the lock to become available on p, then relock all of the
69** subsequent Btrees that desire a lock.
70*/
71void sqlite3BtreeEnter(Btree *p){
drh900b31e2007-08-28 02:27:51 +000072 /* Some basic sanity checking on the Btree. The list of Btrees
73 ** connected by pNext and pPrev should be in sorted order by
74 ** Btree.pBt value. All elements of the list should belong to
75 ** the same connection. Only shared Btrees are on the list. */
76 assert( p->pNext==0 || p->pNext->pBt>p->pBt );
77 assert( p->pPrev==0 || p->pPrev->pBt<p->pBt );
drhe5fe6902007-12-07 18:55:28 +000078 assert( p->pNext==0 || p->pNext->db==p->db );
79 assert( p->pPrev==0 || p->pPrev->db==p->db );
drh900b31e2007-08-28 02:27:51 +000080 assert( p->sharable || (p->pNext==0 && p->pPrev==0) );
81
82 /* Check for locking consistency */
83 assert( !p->locked || p->wantToLock>0 );
84 assert( p->sharable || p->wantToLock==0 );
85
86 /* We should already hold a lock on the database connection */
drhe5fe6902007-12-07 18:55:28 +000087 assert( sqlite3_mutex_held(p->db->mutex) );
drh900b31e2007-08-28 02:27:51 +000088
danielk19772a50ff02009-04-10 09:47:06 +000089 /* Unless the database is sharable and unlocked, then BtShared.db
90 ** should already be set correctly. */
91 assert( (p->locked==0 && p->sharable) || p->pBt->db==p->db );
92
drh900b31e2007-08-28 02:27:51 +000093 if( !p->sharable ) return;
94 p->wantToLock++;
95 if( p->locked ) return;
drh75e2a2d2014-08-22 21:58:10 +000096 btreeLockCarefully(p);
97}
98
99/* This is a helper function for sqlite3BtreeLock(). By moving
100** complex, but seldom used logic, out of sqlite3BtreeLock() and
101** into this routine, we avoid unnecessary stack pointer changes
102** and thus help the sqlite3BtreeLock() routine to run much faster
103** in the common case.
104*/
105static void SQLITE_NOINLINE btreeLockCarefully(Btree *p){
106 Btree *pLater;
drh900b31e2007-08-28 02:27:51 +0000107
108 /* In most cases, we should be able to acquire the lock we
peter.d.reid60ec9142014-09-06 16:39:46 +0000109 ** want without having to go through the ascending lock
drh900b31e2007-08-28 02:27:51 +0000110 ** procedure that follows. Just be sure not to block.
111 */
112 if( sqlite3_mutex_try(p->pBt->mutex)==SQLITE_OK ){
danielk19772a50ff02009-04-10 09:47:06 +0000113 p->pBt->db = p->db;
drh900b31e2007-08-28 02:27:51 +0000114 p->locked = 1;
115 return;
116 }
117
118 /* To avoid deadlock, first release all locks with a larger
119 ** BtShared address. Then acquire our lock. Then reacquire
120 ** the other BtShared locks that we used to hold in ascending
121 ** order.
122 */
123 for(pLater=p->pNext; pLater; pLater=pLater->pNext){
124 assert( pLater->sharable );
125 assert( pLater->pNext==0 || pLater->pNext->pBt>pLater->pBt );
126 assert( !pLater->locked || pLater->wantToLock>0 );
127 if( pLater->locked ){
danielk19772a50ff02009-04-10 09:47:06 +0000128 unlockBtreeMutex(pLater);
drh900b31e2007-08-28 02:27:51 +0000129 }
130 }
danielk19772a50ff02009-04-10 09:47:06 +0000131 lockBtreeMutex(p);
drh900b31e2007-08-28 02:27:51 +0000132 for(pLater=p->pNext; pLater; pLater=pLater->pNext){
133 if( pLater->wantToLock ){
danielk19772a50ff02009-04-10 09:47:06 +0000134 lockBtreeMutex(pLater);
drh900b31e2007-08-28 02:27:51 +0000135 }
136 }
137}
138
drh75e2a2d2014-08-22 21:58:10 +0000139
drh900b31e2007-08-28 02:27:51 +0000140/*
141** Exit the recursive mutex on a Btree.
142*/
143void sqlite3BtreeLeave(Btree *p){
danb77009f2015-03-19 15:04:23 +0000144 assert( sqlite3_mutex_held(p->db->mutex) );
drh900b31e2007-08-28 02:27:51 +0000145 if( p->sharable ){
146 assert( p->wantToLock>0 );
147 p->wantToLock--;
148 if( p->wantToLock==0 ){
danielk19772a50ff02009-04-10 09:47:06 +0000149 unlockBtreeMutex(p);
drh900b31e2007-08-28 02:27:51 +0000150 }
151 }
152}
153
drh1fee73e2007-08-29 04:00:57 +0000154#ifndef NDEBUG
155/*
danielk19772a50ff02009-04-10 09:47:06 +0000156** Return true if the BtShared mutex is held on the btree, or if the
157** B-Tree is not marked as sharable.
drh1fee73e2007-08-29 04:00:57 +0000158**
159** This routine is used only from within assert() statements.
160*/
161int sqlite3BtreeHoldsMutex(Btree *p){
danielk19772a50ff02009-04-10 09:47:06 +0000162 assert( p->sharable==0 || p->locked==0 || p->wantToLock>0 );
163 assert( p->sharable==0 || p->locked==0 || p->db==p->pBt->db );
164 assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->pBt->mutex) );
165 assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->db->mutex) );
166
167 return (p->sharable==0 || p->locked);
drh1fee73e2007-08-29 04:00:57 +0000168}
169#endif
170
171
drh900b31e2007-08-28 02:27:51 +0000172/*
drhb1ab8ea2007-08-29 00:33:07 +0000173** Enter the mutex on every Btree associated with a database
174** connection. This is needed (for example) prior to parsing
175** a statement since we will be comparing table and column names
176** against all schemas and we do not want those schemas being
177** reset out from under us.
178**
179** There is a corresponding leave-all procedures.
180**
181** Enter the mutexes in accending order by BtShared pointer address
182** to avoid the possibility of deadlock when two threads with
183** two or more btrees in common both try to lock all their btrees
184** at the same instant.
185*/
186void sqlite3BtreeEnterAll(sqlite3 *db){
187 int i;
drh1a86f502011-04-05 19:27:41 +0000188 Btree *p;
drhb1ab8ea2007-08-29 00:33:07 +0000189 assert( sqlite3_mutex_held(db->mutex) );
drh1fee73e2007-08-29 04:00:57 +0000190 for(i=0; i<db->nDb; i++){
191 p = db->aDb[i].pBt;
drh1a86f502011-04-05 19:27:41 +0000192 if( p ) sqlite3BtreeEnter(p);
drhb1ab8ea2007-08-29 00:33:07 +0000193 }
194}
195void sqlite3BtreeLeaveAll(sqlite3 *db){
196 int i;
197 Btree *p;
198 assert( sqlite3_mutex_held(db->mutex) );
drh1fee73e2007-08-29 04:00:57 +0000199 for(i=0; i<db->nDb; i++){
200 p = db->aDb[i].pBt;
drh1a86f502011-04-05 19:27:41 +0000201 if( p ) sqlite3BtreeLeave(p);
drhb1ab8ea2007-08-29 00:33:07 +0000202 }
203}
204
drh1fee73e2007-08-29 04:00:57 +0000205#ifndef NDEBUG
206/*
207** Return true if the current thread holds the database connection
208** mutex and all required BtShared mutexes.
209**
210** This routine is used inside assert() statements only.
211*/
212int sqlite3BtreeHoldsAllMutexes(sqlite3 *db){
213 int i;
214 if( !sqlite3_mutex_held(db->mutex) ){
215 return 0;
216 }
217 for(i=0; i<db->nDb; i++){
218 Btree *p;
219 p = db->aDb[i].pBt;
220 if( p && p->sharable &&
221 (p->wantToLock==0 || !sqlite3_mutex_held(p->pBt->mutex)) ){
222 return 0;
223 }
224 }
225 return 1;
226}
227#endif /* NDEBUG */
228
drh21206082011-04-04 18:22:02 +0000229#ifndef NDEBUG
230/*
231** Return true if the correct mutexes are held for accessing the
232** db->aDb[iDb].pSchema structure. The mutexes required for schema
233** access are:
234**
235** (1) The mutex on db
236** (2) if iDb!=1, then the mutex on db->aDb[iDb].pBt.
237**
238** If pSchema is not NULL, then iDb is computed from pSchema and
239** db using sqlite3SchemaToIndex().
240*/
241int sqlite3SchemaMutexHeld(sqlite3 *db, int iDb, Schema *pSchema){
242 Btree *p;
243 assert( db!=0 );
244 if( pSchema ) iDb = sqlite3SchemaToIndex(db, pSchema);
245 assert( iDb>=0 && iDb<db->nDb );
246 if( !sqlite3_mutex_held(db->mutex) ) return 0;
247 if( iDb==1 ) return 1;
248 p = db->aDb[iDb].pBt;
249 assert( p!=0 );
250 return p->sharable==0 || p->locked==1;
251}
252#endif /* NDEBUG */
253
drhbdaec522011-04-04 00:14:43 +0000254#else /* SQLITE_THREADSAFE>0 above. SQLITE_THREADSAFE==0 below */
drhb1ab8ea2007-08-29 00:33:07 +0000255/*
drhbdaec522011-04-04 00:14:43 +0000256** The following are special cases for mutex enter routines for use
257** in single threaded applications that use shared cache. Except for
258** these two routines, all mutex operations are no-ops in that case and
259** are null #defines in btree.h.
drh900b31e2007-08-28 02:27:51 +0000260**
drhbdaec522011-04-04 00:14:43 +0000261** If shared cache is disabled, then all btree mutex routines, including
262** the ones below, are no-ops and are null #defines in btree.h.
drh900b31e2007-08-28 02:27:51 +0000263*/
drh900b31e2007-08-28 02:27:51 +0000264
danielk1977f7590db2009-04-10 12:55:16 +0000265void sqlite3BtreeEnter(Btree *p){
266 p->pBt->db = p->db;
267}
268void sqlite3BtreeEnterAll(sqlite3 *db){
269 int i;
270 for(i=0; i<db->nDb; i++){
271 Btree *p = db->aDb[i].pBt;
272 if( p ){
273 p->pBt->db = p->db;
274 }
275 }
276}
277#endif /* if SQLITE_THREADSAFE */
dan20d876f2016-01-07 16:06:22 +0000278
279#ifndef SQLITE_OMIT_INCRBLOB
280/*
281** Enter a mutex on a Btree given a cursor owned by that Btree.
282**
283** These entry points are used by incremental I/O only. Enter() is required
284** any time OMIT_SHARED_CACHE is not defined, regardless of whether or not
285** the build is threadsafe. Leave() is only required by threadsafe builds.
286*/
287void sqlite3BtreeEnterCursor(BtCursor *pCur){
288 sqlite3BtreeEnter(pCur->pBtree);
289}
290# if SQLITE_THREADSAFE
291void sqlite3BtreeLeaveCursor(BtCursor *pCur){
292 sqlite3BtreeLeave(pCur->pBtree);
293}
294# endif
295#endif /* ifndef SQLITE_OMIT_INCRBLOB */
296
danielk1977f7590db2009-04-10 12:55:16 +0000297#endif /* ifndef SQLITE_OMIT_SHARED_CACHE */