blob: 9b6f4f9e1df8a5363cc2fca3e61966592dca77b1 [file] [log] [blame]
drhc81c11f2009-11-10 01:30:52 +00001/*
2** 2001 September 15
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12** Utility functions used throughout sqlite.
13**
14** This file contains functions for allocating memory, comparing
15** strings, and stuff like that.
16**
17*/
18#include "sqliteInt.h"
19#include <stdarg.h>
drh0ede9eb2015-01-10 16:49:23 +000020#if HAVE_ISNAN || SQLITE_HAVE_ISNAN
drhc81c11f2009-11-10 01:30:52 +000021# include <math.h>
22#endif
23
24/*
25** Routine needed to support the testcase() macro.
26*/
27#ifdef SQLITE_COVERAGE_TEST
28void sqlite3Coverage(int x){
drh68bf0672011-04-11 15:35:24 +000029 static unsigned dummy = 0;
30 dummy += (unsigned)x;
drhc81c11f2009-11-10 01:30:52 +000031}
32#endif
33
drhc007f612014-05-16 14:17:01 +000034/*
35** Give a callback to the test harness that can be used to simulate faults
36** in places where it is difficult or expensive to do so purely by means
37** of inputs.
38**
39** The intent of the integer argument is to let the fault simulator know
40** which of multiple sqlite3FaultSim() calls has been hit.
41**
42** Return whatever integer value the test callback returns, or return
43** SQLITE_OK if no test callback is installed.
44*/
drhd12602a2016-12-07 15:49:02 +000045#ifndef SQLITE_UNTESTABLE
drhc007f612014-05-16 14:17:01 +000046int sqlite3FaultSim(int iTest){
47 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
48 return xCallback ? xCallback(iTest) : SQLITE_OK;
49}
50#endif
51
drh85c8f292010-01-13 17:39:53 +000052#ifndef SQLITE_OMIT_FLOATING_POINT
drhc81c11f2009-11-10 01:30:52 +000053/*
54** Return true if the floating point value is Not a Number (NaN).
55**
56** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
57** Otherwise, we have our own implementation that works on most systems.
58*/
59int sqlite3IsNaN(double x){
60 int rc; /* The value return */
drh0ede9eb2015-01-10 16:49:23 +000061#if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
drhc81c11f2009-11-10 01:30:52 +000062 /*
63 ** Systems that support the isnan() library function should probably
64 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have
65 ** found that many systems do not have a working isnan() function so
66 ** this implementation is provided as an alternative.
67 **
68 ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
69 ** On the other hand, the use of -ffast-math comes with the following
70 ** warning:
71 **
72 ** This option [-ffast-math] should never be turned on by any
73 ** -O option since it can result in incorrect output for programs
74 ** which depend on an exact implementation of IEEE or ISO
75 ** rules/specifications for math functions.
76 **
77 ** Under MSVC, this NaN test may fail if compiled with a floating-
78 ** point precision mode other than /fp:precise. From the MSDN
79 ** documentation:
80 **
81 ** The compiler [with /fp:precise] will properly handle comparisons
82 ** involving NaN. For example, x != x evaluates to true if x is NaN
83 ** ...
84 */
85#ifdef __FAST_MATH__
86# error SQLite will not work correctly with the -ffast-math option of GCC.
87#endif
88 volatile double y = x;
89 volatile double z = y;
90 rc = (y!=z);
drh0ede9eb2015-01-10 16:49:23 +000091#else /* if HAVE_ISNAN */
drhc81c11f2009-11-10 01:30:52 +000092 rc = isnan(x);
drh0ede9eb2015-01-10 16:49:23 +000093#endif /* HAVE_ISNAN */
drhc81c11f2009-11-10 01:30:52 +000094 testcase( rc );
95 return rc;
96}
drh85c8f292010-01-13 17:39:53 +000097#endif /* SQLITE_OMIT_FLOATING_POINT */
drhc81c11f2009-11-10 01:30:52 +000098
99/*
100** Compute a string length that is limited to what can be stored in
101** lower 30 bits of a 32-bit signed integer.
102**
103** The value returned will never be negative. Nor will it ever be greater
104** than the actual length of the string. For very long strings (greater
105** than 1GiB) the value returned might be less than the true string length.
106*/
107int sqlite3Strlen30(const char *z){
drhc81c11f2009-11-10 01:30:52 +0000108 if( z==0 ) return 0;
drh1116bf12015-06-30 03:18:33 +0000109 return 0x3fffffff & (int)strlen(z);
drhc81c11f2009-11-10 01:30:52 +0000110}
111
112/*
drhd7564862016-03-22 20:05:09 +0000113** Return the declared type of a column. Or return zDflt if the column
114** has no declared type.
115**
116** The column type is an extra string stored after the zero-terminator on
117** the column name if and only if the COLFLAG_HASTYPE flag is set.
drh94eaafa2016-02-29 15:53:11 +0000118*/
drhd7564862016-03-22 20:05:09 +0000119char *sqlite3ColumnType(Column *pCol, char *zDflt){
120 if( (pCol->colFlags & COLFLAG_HASTYPE)==0 ) return zDflt;
121 return pCol->zName + strlen(pCol->zName) + 1;
drh94eaafa2016-02-29 15:53:11 +0000122}
123
124/*
drh80fbee02016-03-21 11:57:13 +0000125** Helper function for sqlite3Error() - called rarely. Broken out into
126** a separate routine to avoid unnecessary register saves on entry to
127** sqlite3Error().
drh13f40da2014-08-22 18:00:11 +0000128*/
drh8d2f41c2016-03-21 11:38:01 +0000129static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){
130 if( db->pErr ) sqlite3ValueSetNull(db->pErr);
131 sqlite3SystemError(db, err_code);
132}
drh80fbee02016-03-21 11:57:13 +0000133
134/*
135** Set the current error code to err_code and clear any prior error message.
136** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
137** that would be appropriate.
138*/
drh13f40da2014-08-22 18:00:11 +0000139void sqlite3Error(sqlite3 *db, int err_code){
140 assert( db!=0 );
141 db->errCode = err_code;
drh8d2f41c2016-03-21 11:38:01 +0000142 if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code);
drh13f40da2014-08-22 18:00:11 +0000143}
144
145/*
drh1b9f2142016-03-17 16:01:23 +0000146** Load the sqlite3.iSysErrno field if that is an appropriate thing
147** to do based on the SQLite error code in rc.
148*/
149void sqlite3SystemError(sqlite3 *db, int rc){
150 if( rc==SQLITE_IOERR_NOMEM ) return;
151 rc &= 0xff;
152 if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){
153 db->iSysErrno = sqlite3OsGetLastError(db->pVfs);
154 }
155}
156
157/*
drhc81c11f2009-11-10 01:30:52 +0000158** Set the most recent error code and error string for the sqlite
159** handle "db". The error code is set to "err_code".
160**
161** If it is not NULL, string zFormat specifies the format of the
162** error string in the style of the printf functions: The following
163** format characters are allowed:
164**
165** %s Insert a string
166** %z A string that should be freed after use
167** %d Insert an integer
168** %T Insert a token
169** %S Insert the first element of a SrcList
170**
171** zFormat and any string tokens that follow it are assumed to be
172** encoded in UTF-8.
173**
174** To clear the most recent error for sqlite handle "db", sqlite3Error
175** should be called with err_code set to SQLITE_OK and zFormat set
176** to NULL.
177*/
drh13f40da2014-08-22 18:00:11 +0000178void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
drha3cc0072013-12-13 16:23:55 +0000179 assert( db!=0 );
180 db->errCode = err_code;
drh8d2f41c2016-03-21 11:38:01 +0000181 sqlite3SystemError(db, err_code);
drh13f40da2014-08-22 18:00:11 +0000182 if( zFormat==0 ){
183 sqlite3Error(db, err_code);
184 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
drha3cc0072013-12-13 16:23:55 +0000185 char *z;
186 va_list ap;
187 va_start(ap, zFormat);
188 z = sqlite3VMPrintf(db, zFormat, ap);
189 va_end(ap);
190 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
drhc81c11f2009-11-10 01:30:52 +0000191 }
192}
193
194/*
195** Add an error message to pParse->zErrMsg and increment pParse->nErr.
196** The following formatting characters are allowed:
197**
198** %s Insert a string
199** %z A string that should be freed after use
200** %d Insert an integer
201** %T Insert a token
202** %S Insert the first element of a SrcList
203**
drh13f40da2014-08-22 18:00:11 +0000204** This function should be used to report any error that occurs while
drhc81c11f2009-11-10 01:30:52 +0000205** compiling an SQL statement (i.e. within sqlite3_prepare()). The
206** last thing the sqlite3_prepare() function does is copy the error
207** stored by this function into the database handle using sqlite3Error().
drh13f40da2014-08-22 18:00:11 +0000208** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
209** during statement execution (sqlite3_step() etc.).
drhc81c11f2009-11-10 01:30:52 +0000210*/
211void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
drha7564662010-02-22 19:32:31 +0000212 char *zMsg;
drhc81c11f2009-11-10 01:30:52 +0000213 va_list ap;
214 sqlite3 *db = pParse->db;
drhc81c11f2009-11-10 01:30:52 +0000215 va_start(ap, zFormat);
drha7564662010-02-22 19:32:31 +0000216 zMsg = sqlite3VMPrintf(db, zFormat, ap);
drhc81c11f2009-11-10 01:30:52 +0000217 va_end(ap);
drha7564662010-02-22 19:32:31 +0000218 if( db->suppressErr ){
219 sqlite3DbFree(db, zMsg);
220 }else{
221 pParse->nErr++;
222 sqlite3DbFree(db, pParse->zErrMsg);
223 pParse->zErrMsg = zMsg;
224 pParse->rc = SQLITE_ERROR;
drha7564662010-02-22 19:32:31 +0000225 }
drhc81c11f2009-11-10 01:30:52 +0000226}
227
228/*
229** Convert an SQL-style quoted string into a normal string by removing
230** the quote characters. The conversion is done in-place. If the
231** input does not begin with a quote character, then this routine
232** is a no-op.
233**
234** The input string must be zero-terminated. A new zero-terminator
235** is added to the dequoted string.
236**
237** The return value is -1 if no dequoting occurs or the length of the
238** dequoted string, exclusive of the zero terminator, if dequoting does
239** occur.
240**
241** 2002-Feb-14: This routine is extended to remove MS-Access style
peter.d.reid60ec9142014-09-06 16:39:46 +0000242** brackets from around identifiers. For example: "[a-b-c]" becomes
drhc81c11f2009-11-10 01:30:52 +0000243** "a-b-c".
244*/
drh244b9d62016-04-11 19:01:08 +0000245void sqlite3Dequote(char *z){
drhc81c11f2009-11-10 01:30:52 +0000246 char quote;
247 int i, j;
drh244b9d62016-04-11 19:01:08 +0000248 if( z==0 ) return;
drhc81c11f2009-11-10 01:30:52 +0000249 quote = z[0];
drh244b9d62016-04-11 19:01:08 +0000250 if( !sqlite3Isquote(quote) ) return;
251 if( quote=='[' ) quote = ']';
drh9ccd8652013-09-13 16:36:46 +0000252 for(i=1, j=0;; i++){
253 assert( z[i] );
drhc81c11f2009-11-10 01:30:52 +0000254 if( z[i]==quote ){
255 if( z[i+1]==quote ){
256 z[j++] = quote;
257 i++;
258 }else{
259 break;
260 }
261 }else{
262 z[j++] = z[i];
263 }
264 }
265 z[j] = 0;
drhc81c11f2009-11-10 01:30:52 +0000266}
267
drh40aced52016-01-22 17:48:09 +0000268/*
269** Generate a Token object from a string
270*/
271void sqlite3TokenInit(Token *p, char *z){
272 p->z = z;
273 p->n = sqlite3Strlen30(z);
274}
275
drhc81c11f2009-11-10 01:30:52 +0000276/* Convenient short-hand */
277#define UpperToLower sqlite3UpperToLower
278
279/*
280** Some systems have stricmp(). Others have strcasecmp(). Because
281** there is no consistency, we will define our own.
drh9f129f42010-08-31 15:27:32 +0000282**
drh0299b402012-03-19 17:42:46 +0000283** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
284** sqlite3_strnicmp() APIs allow applications and extensions to compare
285** the contents of two buffers containing UTF-8 strings in a
286** case-independent fashion, using the same definition of "case
287** independence" that SQLite uses internally when comparing identifiers.
drhc81c11f2009-11-10 01:30:52 +0000288*/
drh3fa97302012-02-22 16:58:36 +0000289int sqlite3_stricmp(const char *zLeft, const char *zRight){
drh9ca95732014-10-24 00:35:58 +0000290 if( zLeft==0 ){
291 return zRight ? -1 : 0;
292 }else if( zRight==0 ){
293 return 1;
294 }
drh80738d92016-02-15 00:34:16 +0000295 return sqlite3StrICmp(zLeft, zRight);
296}
297int sqlite3StrICmp(const char *zLeft, const char *zRight){
298 unsigned char *a, *b;
299 int c;
drhc81c11f2009-11-10 01:30:52 +0000300 a = (unsigned char *)zLeft;
301 b = (unsigned char *)zRight;
drh80738d92016-02-15 00:34:16 +0000302 for(;;){
303 c = (int)UpperToLower[*a] - (int)UpperToLower[*b];
304 if( c || *a==0 ) break;
305 a++;
306 b++;
307 }
308 return c;
drhc81c11f2009-11-10 01:30:52 +0000309}
310int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
311 register unsigned char *a, *b;
drh9ca95732014-10-24 00:35:58 +0000312 if( zLeft==0 ){
313 return zRight ? -1 : 0;
314 }else if( zRight==0 ){
315 return 1;
316 }
drhc81c11f2009-11-10 01:30:52 +0000317 a = (unsigned char *)zLeft;
318 b = (unsigned char *)zRight;
319 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
320 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
321}
322
323/*
drh9339da12010-09-30 00:50:49 +0000324** The string z[] is an text representation of a real number.
drh025586a2010-09-30 17:33:11 +0000325** Convert this string to a double and write it into *pResult.
drhc81c11f2009-11-10 01:30:52 +0000326**
drh9339da12010-09-30 00:50:49 +0000327** The string z[] is length bytes in length (bytes, not characters) and
328** uses the encoding enc. The string is not necessarily zero-terminated.
drhc81c11f2009-11-10 01:30:52 +0000329**
drh9339da12010-09-30 00:50:49 +0000330** Return TRUE if the result is a valid real number (or integer) and FALSE
drh025586a2010-09-30 17:33:11 +0000331** if the string is empty or contains extraneous text. Valid numbers
332** are in one of these formats:
333**
334** [+-]digits[E[+-]digits]
335** [+-]digits.[digits][E[+-]digits]
336** [+-].digits[E[+-]digits]
337**
338** Leading and trailing whitespace is ignored for the purpose of determining
339** validity.
340**
341** If some prefix of the input string is a valid number, this routine
342** returns FALSE but it still converts the prefix and writes the result
343** into *pResult.
drhc81c11f2009-11-10 01:30:52 +0000344*/
drh9339da12010-09-30 00:50:49 +0000345int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
drhc81c11f2009-11-10 01:30:52 +0000346#ifndef SQLITE_OMIT_FLOATING_POINT
drh0e5fba72013-03-20 12:04:29 +0000347 int incr;
drh9339da12010-09-30 00:50:49 +0000348 const char *zEnd = z + length;
drhc81c11f2009-11-10 01:30:52 +0000349 /* sign * significand * (10 ^ (esign * exponent)) */
drh025586a2010-09-30 17:33:11 +0000350 int sign = 1; /* sign of significand */
351 i64 s = 0; /* significand */
352 int d = 0; /* adjust exponent for shifting decimal point */
353 int esign = 1; /* sign of exponent */
354 int e = 0; /* exponent */
355 int eValid = 1; /* True exponent is either not used or is well-formed */
drhc81c11f2009-11-10 01:30:52 +0000356 double result;
357 int nDigits = 0;
drhad975d52016-04-27 15:24:13 +0000358 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */
drhc81c11f2009-11-10 01:30:52 +0000359
drh0e5fba72013-03-20 12:04:29 +0000360 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
drh025586a2010-09-30 17:33:11 +0000361 *pResult = 0.0; /* Default return value, in case of an error */
362
drh0e5fba72013-03-20 12:04:29 +0000363 if( enc==SQLITE_UTF8 ){
364 incr = 1;
365 }else{
366 int i;
367 incr = 2;
368 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
369 for(i=3-enc; i<length && z[i]==0; i+=2){}
370 nonNum = i<length;
drhad975d52016-04-27 15:24:13 +0000371 zEnd = &z[i^1];
drh0e5fba72013-03-20 12:04:29 +0000372 z += (enc&1);
373 }
drh9339da12010-09-30 00:50:49 +0000374
drhc81c11f2009-11-10 01:30:52 +0000375 /* skip leading spaces */
drh9339da12010-09-30 00:50:49 +0000376 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
drh025586a2010-09-30 17:33:11 +0000377 if( z>=zEnd ) return 0;
drh9339da12010-09-30 00:50:49 +0000378
drhc81c11f2009-11-10 01:30:52 +0000379 /* get sign of significand */
380 if( *z=='-' ){
381 sign = -1;
drh9339da12010-09-30 00:50:49 +0000382 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000383 }else if( *z=='+' ){
drh9339da12010-09-30 00:50:49 +0000384 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000385 }
drh9339da12010-09-30 00:50:49 +0000386
drhc81c11f2009-11-10 01:30:52 +0000387 /* copy max significant digits to significand */
drh9339da12010-09-30 00:50:49 +0000388 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
drhc81c11f2009-11-10 01:30:52 +0000389 s = s*10 + (*z - '0');
drh9339da12010-09-30 00:50:49 +0000390 z+=incr, nDigits++;
drhc81c11f2009-11-10 01:30:52 +0000391 }
drh9339da12010-09-30 00:50:49 +0000392
drhc81c11f2009-11-10 01:30:52 +0000393 /* skip non-significant significand digits
394 ** (increase exponent by d to shift decimal left) */
drh9339da12010-09-30 00:50:49 +0000395 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++;
396 if( z>=zEnd ) goto do_atof_calc;
drhc81c11f2009-11-10 01:30:52 +0000397
398 /* if decimal point is present */
399 if( *z=='.' ){
drh9339da12010-09-30 00:50:49 +0000400 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000401 /* copy digits from after decimal to significand
402 ** (decrease exponent by d to shift decimal right) */
drh15af62a2016-04-26 23:14:45 +0000403 while( z<zEnd && sqlite3Isdigit(*z) ){
404 if( s<((LARGEST_INT64-9)/10) ){
405 s = s*10 + (*z - '0');
406 d--;
407 }
408 z+=incr, nDigits++;
drhc81c11f2009-11-10 01:30:52 +0000409 }
drhc81c11f2009-11-10 01:30:52 +0000410 }
drh9339da12010-09-30 00:50:49 +0000411 if( z>=zEnd ) goto do_atof_calc;
drhc81c11f2009-11-10 01:30:52 +0000412
413 /* if exponent is present */
414 if( *z=='e' || *z=='E' ){
drh9339da12010-09-30 00:50:49 +0000415 z+=incr;
drh025586a2010-09-30 17:33:11 +0000416 eValid = 0;
drhad975d52016-04-27 15:24:13 +0000417
418 /* This branch is needed to avoid a (harmless) buffer overread. The
419 ** special comment alerts the mutation tester that the correct answer
420 ** is obtained even if the branch is omitted */
421 if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/
422
drhc81c11f2009-11-10 01:30:52 +0000423 /* get sign of exponent */
424 if( *z=='-' ){
425 esign = -1;
drh9339da12010-09-30 00:50:49 +0000426 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000427 }else if( *z=='+' ){
drh9339da12010-09-30 00:50:49 +0000428 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000429 }
430 /* copy digits to exponent */
drh9339da12010-09-30 00:50:49 +0000431 while( z<zEnd && sqlite3Isdigit(*z) ){
drh57db4a72011-10-17 20:41:46 +0000432 e = e<10000 ? (e*10 + (*z - '0')) : 10000;
drh9339da12010-09-30 00:50:49 +0000433 z+=incr;
drh025586a2010-09-30 17:33:11 +0000434 eValid = 1;
drhc81c11f2009-11-10 01:30:52 +0000435 }
436 }
437
drh025586a2010-09-30 17:33:11 +0000438 /* skip trailing spaces */
drhc6daa012016-04-27 02:35:03 +0000439 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
drh025586a2010-09-30 17:33:11 +0000440
drh9339da12010-09-30 00:50:49 +0000441do_atof_calc:
drhc81c11f2009-11-10 01:30:52 +0000442 /* adjust exponent by d, and update sign */
443 e = (e*esign) + d;
444 if( e<0 ) {
445 esign = -1;
446 e *= -1;
447 } else {
448 esign = 1;
449 }
450
drhad975d52016-04-27 15:24:13 +0000451 if( s==0 ) {
452 /* In the IEEE 754 standard, zero is signed. */
drhc6daa012016-04-27 02:35:03 +0000453 result = sign<0 ? -(double)0 : (double)0;
drhc81c11f2009-11-10 01:30:52 +0000454 } else {
drhad975d52016-04-27 15:24:13 +0000455 /* Attempt to reduce exponent.
456 **
457 ** Branches that are not required for the correct answer but which only
458 ** help to obtain the correct answer faster are marked with special
459 ** comments, as a hint to the mutation tester.
460 */
461 while( e>0 ){ /*OPTIMIZATION-IF-TRUE*/
462 if( esign>0 ){
463 if( s>=(LARGEST_INT64/10) ) break; /*OPTIMIZATION-IF-FALSE*/
464 s *= 10;
465 }else{
466 if( s%10!=0 ) break; /*OPTIMIZATION-IF-FALSE*/
467 s /= 10;
468 }
469 e--;
drhc81c11f2009-11-10 01:30:52 +0000470 }
471
472 /* adjust the sign of significand */
473 s = sign<0 ? -s : s;
474
drhad975d52016-04-27 15:24:13 +0000475 if( e==0 ){ /*OPTIMIZATION-IF-TRUE*/
476 result = (double)s;
477 }else{
drh89f15082012-06-19 00:45:16 +0000478 LONGDOUBLE_TYPE scale = 1.0;
drhc81c11f2009-11-10 01:30:52 +0000479 /* attempt to handle extremely small/large numbers better */
drhad975d52016-04-27 15:24:13 +0000480 if( e>307 ){ /*OPTIMIZATION-IF-TRUE*/
481 if( e<342 ){ /*OPTIMIZATION-IF-TRUE*/
482 while( e%308 ) { scale *= 1.0e+1; e -= 1; }
483 if( esign<0 ){
484 result = s / scale;
485 result /= 1.0e+308;
486 }else{
487 result = s * scale;
488 result *= 1.0e+308;
489 }
490 }else{ assert( e>=342 );
491 if( esign<0 ){
492 result = 0.0*s;
493 }else{
494 result = 1e308*1e308*s; /* Infinity */
495 }
drh2458a2e2011-10-17 12:14:26 +0000496 }
drhc81c11f2009-11-10 01:30:52 +0000497 }else{
498 /* 1.0e+22 is the largest power of 10 than can be
499 ** represented exactly. */
500 while( e%22 ) { scale *= 1.0e+1; e -= 1; }
501 while( e>0 ) { scale *= 1.0e+22; e -= 22; }
502 if( esign<0 ){
503 result = s / scale;
504 }else{
505 result = s * scale;
506 }
507 }
drhc81c11f2009-11-10 01:30:52 +0000508 }
509 }
510
511 /* store the result */
512 *pResult = result;
513
drh025586a2010-09-30 17:33:11 +0000514 /* return true if number and no extra non-whitespace chracters after */
drhad975d52016-04-27 15:24:13 +0000515 return z==zEnd && nDigits>0 && eValid && nonNum==0;
drhc81c11f2009-11-10 01:30:52 +0000516#else
shaneh5f1d6b62010-09-30 16:51:25 +0000517 return !sqlite3Atoi64(z, pResult, length, enc);
drhc81c11f2009-11-10 01:30:52 +0000518#endif /* SQLITE_OMIT_FLOATING_POINT */
519}
520
521/*
522** Compare the 19-character string zNum against the text representation
523** value 2^63: 9223372036854775808. Return negative, zero, or positive
524** if zNum is less than, equal to, or greater than the string.
shaneh5f1d6b62010-09-30 16:51:25 +0000525** Note that zNum must contain exactly 19 characters.
drhc81c11f2009-11-10 01:30:52 +0000526**
527** Unlike memcmp() this routine is guaranteed to return the difference
528** in the values of the last digit if the only difference is in the
529** last digit. So, for example,
530**
drh9339da12010-09-30 00:50:49 +0000531** compare2pow63("9223372036854775800", 1)
drhc81c11f2009-11-10 01:30:52 +0000532**
533** will return -8.
534*/
drh9339da12010-09-30 00:50:49 +0000535static int compare2pow63(const char *zNum, int incr){
536 int c = 0;
537 int i;
538 /* 012345678901234567 */
539 const char *pow63 = "922337203685477580";
540 for(i=0; c==0 && i<18; i++){
541 c = (zNum[i*incr]-pow63[i])*10;
542 }
drhc81c11f2009-11-10 01:30:52 +0000543 if( c==0 ){
drh9339da12010-09-30 00:50:49 +0000544 c = zNum[18*incr] - '8';
drh44dbca82010-01-13 04:22:20 +0000545 testcase( c==(-1) );
546 testcase( c==0 );
547 testcase( c==(+1) );
drhc81c11f2009-11-10 01:30:52 +0000548 }
549 return c;
550}
551
drhc81c11f2009-11-10 01:30:52 +0000552/*
drh9296c182014-07-23 13:40:49 +0000553** Convert zNum to a 64-bit signed integer. zNum must be decimal. This
554** routine does *not* accept hexadecimal notation.
drh158b9cb2011-03-05 20:59:46 +0000555**
556** If the zNum value is representable as a 64-bit twos-complement
557** integer, then write that value into *pNum and return 0.
558**
drha256c1a2013-12-01 01:18:29 +0000559** If zNum is exactly 9223372036854775808, return 2. This special
560** case is broken out because while 9223372036854775808 cannot be a
561** signed 64-bit integer, its negative -9223372036854775808 can be.
drh158b9cb2011-03-05 20:59:46 +0000562**
563** If zNum is too big for a 64-bit integer and is not
drha256c1a2013-12-01 01:18:29 +0000564** 9223372036854775808 or if zNum contains any non-numeric text,
drh0e5fba72013-03-20 12:04:29 +0000565** then return 1.
drhc81c11f2009-11-10 01:30:52 +0000566**
drh9339da12010-09-30 00:50:49 +0000567** length is the number of bytes in the string (bytes, not characters).
568** The string is not necessarily zero-terminated. The encoding is
569** given by enc.
drhc81c11f2009-11-10 01:30:52 +0000570*/
drh9339da12010-09-30 00:50:49 +0000571int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
drh0e5fba72013-03-20 12:04:29 +0000572 int incr;
drh158b9cb2011-03-05 20:59:46 +0000573 u64 u = 0;
shaneh5f1d6b62010-09-30 16:51:25 +0000574 int neg = 0; /* assume positive */
drh9339da12010-09-30 00:50:49 +0000575 int i;
576 int c = 0;
drh609d5842016-04-28 00:32:16 +0000577 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */
drhc81c11f2009-11-10 01:30:52 +0000578 const char *zStart;
drh9339da12010-09-30 00:50:49 +0000579 const char *zEnd = zNum + length;
drh0e5fba72013-03-20 12:04:29 +0000580 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
581 if( enc==SQLITE_UTF8 ){
582 incr = 1;
583 }else{
584 incr = 2;
585 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
586 for(i=3-enc; i<length && zNum[i]==0; i+=2){}
587 nonNum = i<length;
drh609d5842016-04-28 00:32:16 +0000588 zEnd = &zNum[i^1];
drh0e5fba72013-03-20 12:04:29 +0000589 zNum += (enc&1);
590 }
drh9339da12010-09-30 00:50:49 +0000591 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
drh158b9cb2011-03-05 20:59:46 +0000592 if( zNum<zEnd ){
593 if( *zNum=='-' ){
594 neg = 1;
595 zNum+=incr;
596 }else if( *zNum=='+' ){
597 zNum+=incr;
598 }
drhc81c11f2009-11-10 01:30:52 +0000599 }
600 zStart = zNum;
drh9339da12010-09-30 00:50:49 +0000601 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
602 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
drh158b9cb2011-03-05 20:59:46 +0000603 u = u*10 + c - '0';
drhc81c11f2009-11-10 01:30:52 +0000604 }
drh158b9cb2011-03-05 20:59:46 +0000605 if( u>LARGEST_INT64 ){
drhde1a8b82013-11-26 15:45:02 +0000606 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
drh158b9cb2011-03-05 20:59:46 +0000607 }else if( neg ){
608 *pNum = -(i64)u;
609 }else{
610 *pNum = (i64)u;
611 }
drh44dbca82010-01-13 04:22:20 +0000612 testcase( i==18 );
613 testcase( i==19 );
614 testcase( i==20 );
drh609d5842016-04-28 00:32:16 +0000615 if( &zNum[i]<zEnd /* Extra bytes at the end */
616 || (i==0 && zStart==zNum) /* No digits */
617 || i>19*incr /* Too many digits */
618 || nonNum /* UTF16 with high-order bytes non-zero */
619 ){
drhc81c11f2009-11-10 01:30:52 +0000620 /* zNum is empty or contains non-numeric text or is longer
shaneh5f1d6b62010-09-30 16:51:25 +0000621 ** than 19 digits (thus guaranteeing that it is too large) */
622 return 1;
drh9339da12010-09-30 00:50:49 +0000623 }else if( i<19*incr ){
drhc81c11f2009-11-10 01:30:52 +0000624 /* Less than 19 digits, so we know that it fits in 64 bits */
drh158b9cb2011-03-05 20:59:46 +0000625 assert( u<=LARGEST_INT64 );
shaneh5f1d6b62010-09-30 16:51:25 +0000626 return 0;
drhc81c11f2009-11-10 01:30:52 +0000627 }else{
drh158b9cb2011-03-05 20:59:46 +0000628 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
629 c = compare2pow63(zNum, incr);
630 if( c<0 ){
631 /* zNum is less than 9223372036854775808 so it fits */
632 assert( u<=LARGEST_INT64 );
633 return 0;
634 }else if( c>0 ){
635 /* zNum is greater than 9223372036854775808 so it overflows */
636 return 1;
637 }else{
638 /* zNum is exactly 9223372036854775808. Fits if negative. The
639 ** special case 2 overflow if positive */
640 assert( u-1==LARGEST_INT64 );
drh158b9cb2011-03-05 20:59:46 +0000641 return neg ? 0 : 2;
642 }
drhc81c11f2009-11-10 01:30:52 +0000643 }
644}
645
646/*
drh9296c182014-07-23 13:40:49 +0000647** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
648** into a 64-bit signed integer. This routine accepts hexadecimal literals,
649** whereas sqlite3Atoi64() does not.
650**
651** Returns:
652**
653** 0 Successful transformation. Fits in a 64-bit signed integer.
654** 1 Integer too large for a 64-bit signed integer or is malformed
655** 2 Special case of 9223372036854775808
656*/
657int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
658#ifndef SQLITE_OMIT_HEX_INTEGER
659 if( z[0]=='0'
660 && (z[1]=='x' || z[1]=='X')
drh9296c182014-07-23 13:40:49 +0000661 ){
662 u64 u = 0;
663 int i, k;
664 for(i=2; z[i]=='0'; i++){}
665 for(k=i; sqlite3Isxdigit(z[k]); k++){
666 u = u*16 + sqlite3HexToInt(z[k]);
667 }
668 memcpy(pOut, &u, 8);
669 return (z[k]==0 && k-i<=16) ? 0 : 1;
670 }else
671#endif /* SQLITE_OMIT_HEX_INTEGER */
672 {
673 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
674 }
675}
676
677/*
drhc81c11f2009-11-10 01:30:52 +0000678** If zNum represents an integer that will fit in 32-bits, then set
679** *pValue to that integer and return true. Otherwise return false.
680**
drh9296c182014-07-23 13:40:49 +0000681** This routine accepts both decimal and hexadecimal notation for integers.
682**
drhc81c11f2009-11-10 01:30:52 +0000683** Any non-numeric characters that following zNum are ignored.
684** This is different from sqlite3Atoi64() which requires the
685** input number to be zero-terminated.
686*/
687int sqlite3GetInt32(const char *zNum, int *pValue){
688 sqlite_int64 v = 0;
689 int i, c;
690 int neg = 0;
691 if( zNum[0]=='-' ){
692 neg = 1;
693 zNum++;
694 }else if( zNum[0]=='+' ){
695 zNum++;
696 }
drh28e048c2014-07-23 01:26:51 +0000697#ifndef SQLITE_OMIT_HEX_INTEGER
698 else if( zNum[0]=='0'
699 && (zNum[1]=='x' || zNum[1]=='X')
700 && sqlite3Isxdigit(zNum[2])
701 ){
702 u32 u = 0;
703 zNum += 2;
704 while( zNum[0]=='0' ) zNum++;
705 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
706 u = u*16 + sqlite3HexToInt(zNum[i]);
707 }
708 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
709 memcpy(pValue, &u, 4);
710 return 1;
711 }else{
712 return 0;
713 }
714 }
715#endif
drh935f2e72015-04-18 04:45:00 +0000716 while( zNum[0]=='0' ) zNum++;
drhc81c11f2009-11-10 01:30:52 +0000717 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
718 v = v*10 + c;
719 }
720
721 /* The longest decimal representation of a 32 bit integer is 10 digits:
722 **
723 ** 1234567890
724 ** 2^31 -> 2147483648
725 */
drh44dbca82010-01-13 04:22:20 +0000726 testcase( i==10 );
drhc81c11f2009-11-10 01:30:52 +0000727 if( i>10 ){
728 return 0;
729 }
drh44dbca82010-01-13 04:22:20 +0000730 testcase( v-neg==2147483647 );
drhc81c11f2009-11-10 01:30:52 +0000731 if( v-neg>2147483647 ){
732 return 0;
733 }
734 if( neg ){
735 v = -v;
736 }
737 *pValue = (int)v;
738 return 1;
739}
740
741/*
drh60ac3f42010-11-23 18:59:27 +0000742** Return a 32-bit integer value extracted from a string. If the
743** string is not an integer, just return 0.
744*/
745int sqlite3Atoi(const char *z){
746 int x = 0;
747 if( z ) sqlite3GetInt32(z, &x);
748 return x;
749}
750
751/*
drhc81c11f2009-11-10 01:30:52 +0000752** The variable-length integer encoding is as follows:
753**
754** KEY:
755** A = 0xxxxxxx 7 bits of data and one flag bit
756** B = 1xxxxxxx 7 bits of data and one flag bit
757** C = xxxxxxxx 8 bits of data
758**
759** 7 bits - A
760** 14 bits - BA
761** 21 bits - BBA
762** 28 bits - BBBA
763** 35 bits - BBBBA
764** 42 bits - BBBBBA
765** 49 bits - BBBBBBA
766** 56 bits - BBBBBBBA
767** 64 bits - BBBBBBBBC
768*/
769
770/*
771** Write a 64-bit variable-length integer to memory starting at p[0].
772** The length of data write will be between 1 and 9 bytes. The number
773** of bytes written is returned.
774**
775** A variable-length integer consists of the lower 7 bits of each byte
776** for all bytes that have the 8th bit set and one byte with the 8th
777** bit clear. Except, if we get to the 9th byte, it stores the full
778** 8 bits and is the last byte.
779*/
drh2f2b2b82014-08-22 18:48:25 +0000780static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
drhc81c11f2009-11-10 01:30:52 +0000781 int i, j, n;
782 u8 buf[10];
783 if( v & (((u64)0xff000000)<<32) ){
784 p[8] = (u8)v;
785 v >>= 8;
786 for(i=7; i>=0; i--){
787 p[i] = (u8)((v & 0x7f) | 0x80);
788 v >>= 7;
789 }
790 return 9;
791 }
792 n = 0;
793 do{
794 buf[n++] = (u8)((v & 0x7f) | 0x80);
795 v >>= 7;
796 }while( v!=0 );
797 buf[0] &= 0x7f;
798 assert( n<=9 );
799 for(i=0, j=n-1; j>=0; j--, i++){
800 p[i] = buf[j];
801 }
802 return n;
803}
drh2f2b2b82014-08-22 18:48:25 +0000804int sqlite3PutVarint(unsigned char *p, u64 v){
805 if( v<=0x7f ){
806 p[0] = v&0x7f;
drhc81c11f2009-11-10 01:30:52 +0000807 return 1;
808 }
drh2f2b2b82014-08-22 18:48:25 +0000809 if( v<=0x3fff ){
810 p[0] = ((v>>7)&0x7f)|0x80;
811 p[1] = v&0x7f;
drhc81c11f2009-11-10 01:30:52 +0000812 return 2;
813 }
drh2f2b2b82014-08-22 18:48:25 +0000814 return putVarint64(p,v);
drhc81c11f2009-11-10 01:30:52 +0000815}
816
817/*
drh0b2864c2010-03-03 15:18:38 +0000818** Bitmasks used by sqlite3GetVarint(). These precomputed constants
819** are defined here rather than simply putting the constant expressions
820** inline in order to work around bugs in the RVT compiler.
821**
822** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
823**
824** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
825*/
826#define SLOT_2_0 0x001fc07f
827#define SLOT_4_2_0 0xf01fc07f
828
829
830/*
drhc81c11f2009-11-10 01:30:52 +0000831** Read a 64-bit variable-length integer from memory starting at p[0].
832** Return the number of bytes read. The value is stored in *v.
833*/
834u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
835 u32 a,b,s;
836
837 a = *p;
838 /* a: p0 (unmasked) */
839 if (!(a&0x80))
840 {
841 *v = a;
842 return 1;
843 }
844
845 p++;
846 b = *p;
847 /* b: p1 (unmasked) */
848 if (!(b&0x80))
849 {
850 a &= 0x7f;
851 a = a<<7;
852 a |= b;
853 *v = a;
854 return 2;
855 }
856
drh0b2864c2010-03-03 15:18:38 +0000857 /* Verify that constants are precomputed correctly */
858 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
shaneh1da207e2010-03-09 14:41:12 +0000859 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
drh0b2864c2010-03-03 15:18:38 +0000860
drhc81c11f2009-11-10 01:30:52 +0000861 p++;
862 a = a<<14;
863 a |= *p;
864 /* a: p0<<14 | p2 (unmasked) */
865 if (!(a&0x80))
866 {
drh0b2864c2010-03-03 15:18:38 +0000867 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000868 b &= 0x7f;
869 b = b<<7;
870 a |= b;
871 *v = a;
872 return 3;
873 }
874
875 /* CSE1 from below */
drh0b2864c2010-03-03 15:18:38 +0000876 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000877 p++;
878 b = b<<14;
879 b |= *p;
880 /* b: p1<<14 | p3 (unmasked) */
881 if (!(b&0x80))
882 {
drh0b2864c2010-03-03 15:18:38 +0000883 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000884 /* moved CSE1 up */
885 /* a &= (0x7f<<14)|(0x7f); */
886 a = a<<7;
887 a |= b;
888 *v = a;
889 return 4;
890 }
891
892 /* a: p0<<14 | p2 (masked) */
893 /* b: p1<<14 | p3 (unmasked) */
894 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
895 /* moved CSE1 up */
896 /* a &= (0x7f<<14)|(0x7f); */
drh0b2864c2010-03-03 15:18:38 +0000897 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000898 s = a;
899 /* s: p0<<14 | p2 (masked) */
900
901 p++;
902 a = a<<14;
903 a |= *p;
904 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
905 if (!(a&0x80))
906 {
drh62aaa6c2015-11-21 17:27:42 +0000907 /* we can skip these cause they were (effectively) done above
908 ** while calculating s */
drhc81c11f2009-11-10 01:30:52 +0000909 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
910 /* b &= (0x7f<<14)|(0x7f); */
911 b = b<<7;
912 a |= b;
913 s = s>>18;
914 *v = ((u64)s)<<32 | a;
915 return 5;
916 }
917
918 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
919 s = s<<7;
920 s |= b;
921 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
922
923 p++;
924 b = b<<14;
925 b |= *p;
926 /* b: p1<<28 | p3<<14 | p5 (unmasked) */
927 if (!(b&0x80))
928 {
929 /* we can skip this cause it was (effectively) done above in calc'ing s */
930 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
drh0b2864c2010-03-03 15:18:38 +0000931 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000932 a = a<<7;
933 a |= b;
934 s = s>>18;
935 *v = ((u64)s)<<32 | a;
936 return 6;
937 }
938
939 p++;
940 a = a<<14;
941 a |= *p;
942 /* a: p2<<28 | p4<<14 | p6 (unmasked) */
943 if (!(a&0x80))
944 {
drh0b2864c2010-03-03 15:18:38 +0000945 a &= SLOT_4_2_0;
946 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000947 b = b<<7;
948 a |= b;
949 s = s>>11;
950 *v = ((u64)s)<<32 | a;
951 return 7;
952 }
953
954 /* CSE2 from below */
drh0b2864c2010-03-03 15:18:38 +0000955 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000956 p++;
957 b = b<<14;
958 b |= *p;
959 /* b: p3<<28 | p5<<14 | p7 (unmasked) */
960 if (!(b&0x80))
961 {
drh0b2864c2010-03-03 15:18:38 +0000962 b &= SLOT_4_2_0;
drhc81c11f2009-11-10 01:30:52 +0000963 /* moved CSE2 up */
964 /* a &= (0x7f<<14)|(0x7f); */
965 a = a<<7;
966 a |= b;
967 s = s>>4;
968 *v = ((u64)s)<<32 | a;
969 return 8;
970 }
971
972 p++;
973 a = a<<15;
974 a |= *p;
975 /* a: p4<<29 | p6<<15 | p8 (unmasked) */
976
977 /* moved CSE2 up */
978 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
drh0b2864c2010-03-03 15:18:38 +0000979 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +0000980 b = b<<8;
981 a |= b;
982
983 s = s<<4;
984 b = p[-4];
985 b &= 0x7f;
986 b = b>>3;
987 s |= b;
988
989 *v = ((u64)s)<<32 | a;
990
991 return 9;
992}
993
994/*
995** Read a 32-bit variable-length integer from memory starting at p[0].
996** Return the number of bytes read. The value is stored in *v.
997**
998** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
999** integer, then set *v to 0xffffffff.
1000**
1001** A MACRO version, getVarint32, is provided which inlines the
1002** single-byte case. All code should use the MACRO version as
1003** this function assumes the single-byte case has already been handled.
1004*/
1005u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
1006 u32 a,b;
1007
1008 /* The 1-byte case. Overwhelmingly the most common. Handled inline
1009 ** by the getVarin32() macro */
1010 a = *p;
1011 /* a: p0 (unmasked) */
1012#ifndef getVarint32
1013 if (!(a&0x80))
1014 {
1015 /* Values between 0 and 127 */
1016 *v = a;
1017 return 1;
1018 }
1019#endif
1020
1021 /* The 2-byte case */
1022 p++;
1023 b = *p;
1024 /* b: p1 (unmasked) */
1025 if (!(b&0x80))
1026 {
1027 /* Values between 128 and 16383 */
1028 a &= 0x7f;
1029 a = a<<7;
1030 *v = a | b;
1031 return 2;
1032 }
1033
1034 /* The 3-byte case */
1035 p++;
1036 a = a<<14;
1037 a |= *p;
1038 /* a: p0<<14 | p2 (unmasked) */
1039 if (!(a&0x80))
1040 {
1041 /* Values between 16384 and 2097151 */
1042 a &= (0x7f<<14)|(0x7f);
1043 b &= 0x7f;
1044 b = b<<7;
1045 *v = a | b;
1046 return 3;
1047 }
1048
1049 /* A 32-bit varint is used to store size information in btrees.
1050 ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
1051 ** A 3-byte varint is sufficient, for example, to record the size
1052 ** of a 1048569-byte BLOB or string.
1053 **
1054 ** We only unroll the first 1-, 2-, and 3- byte cases. The very
1055 ** rare larger cases can be handled by the slower 64-bit varint
1056 ** routine.
1057 */
1058#if 1
1059 {
1060 u64 v64;
1061 u8 n;
1062
1063 p -= 2;
1064 n = sqlite3GetVarint(p, &v64);
1065 assert( n>3 && n<=9 );
1066 if( (v64 & SQLITE_MAX_U32)!=v64 ){
1067 *v = 0xffffffff;
1068 }else{
1069 *v = (u32)v64;
1070 }
1071 return n;
1072 }
1073
1074#else
1075 /* For following code (kept for historical record only) shows an
1076 ** unrolling for the 3- and 4-byte varint cases. This code is
1077 ** slightly faster, but it is also larger and much harder to test.
1078 */
1079 p++;
1080 b = b<<14;
1081 b |= *p;
1082 /* b: p1<<14 | p3 (unmasked) */
1083 if (!(b&0x80))
1084 {
1085 /* Values between 2097152 and 268435455 */
1086 b &= (0x7f<<14)|(0x7f);
1087 a &= (0x7f<<14)|(0x7f);
1088 a = a<<7;
1089 *v = a | b;
1090 return 4;
1091 }
1092
1093 p++;
1094 a = a<<14;
1095 a |= *p;
1096 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1097 if (!(a&0x80))
1098 {
dan3bbe7612010-03-03 16:02:05 +00001099 /* Values between 268435456 and 34359738367 */
1100 a &= SLOT_4_2_0;
1101 b &= SLOT_4_2_0;
drhc81c11f2009-11-10 01:30:52 +00001102 b = b<<7;
1103 *v = a | b;
1104 return 5;
1105 }
1106
1107 /* We can only reach this point when reading a corrupt database
1108 ** file. In that case we are not in any hurry. Use the (relatively
1109 ** slow) general-purpose sqlite3GetVarint() routine to extract the
1110 ** value. */
1111 {
1112 u64 v64;
1113 u8 n;
1114
1115 p -= 4;
1116 n = sqlite3GetVarint(p, &v64);
1117 assert( n>5 && n<=9 );
1118 *v = (u32)v64;
1119 return n;
1120 }
1121#endif
1122}
1123
1124/*
1125** Return the number of bytes that will be needed to store the given
1126** 64-bit integer.
1127*/
1128int sqlite3VarintLen(u64 v){
drh59a53642015-09-01 22:29:07 +00001129 int i;
drh6f17c092016-03-04 21:18:09 +00001130 for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); }
drhc81c11f2009-11-10 01:30:52 +00001131 return i;
1132}
1133
1134
1135/*
1136** Read or write a four-byte big-endian integer value.
1137*/
1138u32 sqlite3Get4byte(const u8 *p){
drh5372e4d2015-06-30 12:47:09 +00001139#if SQLITE_BYTEORDER==4321
1140 u32 x;
1141 memcpy(&x,p,4);
1142 return x;
drhdc5ece82017-02-15 15:09:09 +00001143#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
drh5372e4d2015-06-30 12:47:09 +00001144 u32 x;
1145 memcpy(&x,p,4);
1146 return __builtin_bswap32(x);
drha39284b2017-02-09 17:12:22 +00001147#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
mistachkin647ca462015-06-30 17:28:40 +00001148 u32 x;
1149 memcpy(&x,p,4);
1150 return _byteswap_ulong(x);
drh5372e4d2015-06-30 12:47:09 +00001151#else
drh693e6712014-01-24 22:58:00 +00001152 testcase( p[0]&0x80 );
1153 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
drh5372e4d2015-06-30 12:47:09 +00001154#endif
drhc81c11f2009-11-10 01:30:52 +00001155}
1156void sqlite3Put4byte(unsigned char *p, u32 v){
drh5372e4d2015-06-30 12:47:09 +00001157#if SQLITE_BYTEORDER==4321
1158 memcpy(p,&v,4);
drhdc5ece82017-02-15 15:09:09 +00001159#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
drh5372e4d2015-06-30 12:47:09 +00001160 u32 x = __builtin_bswap32(v);
1161 memcpy(p,&x,4);
drha39284b2017-02-09 17:12:22 +00001162#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
mistachkin647ca462015-06-30 17:28:40 +00001163 u32 x = _byteswap_ulong(v);
1164 memcpy(p,&x,4);
drh5372e4d2015-06-30 12:47:09 +00001165#else
drhc81c11f2009-11-10 01:30:52 +00001166 p[0] = (u8)(v>>24);
1167 p[1] = (u8)(v>>16);
1168 p[2] = (u8)(v>>8);
1169 p[3] = (u8)v;
drh5372e4d2015-06-30 12:47:09 +00001170#endif
drhc81c11f2009-11-10 01:30:52 +00001171}
1172
drh9296c182014-07-23 13:40:49 +00001173
1174
1175/*
1176** Translate a single byte of Hex into an integer.
1177** This routine only works if h really is a valid hexadecimal
1178** character: 0..9a..fA..F
1179*/
1180u8 sqlite3HexToInt(int h){
1181 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
1182#ifdef SQLITE_ASCII
1183 h += 9*(1&(h>>6));
1184#endif
1185#ifdef SQLITE_EBCDIC
1186 h += 9*(1&~(h>>4));
1187#endif
1188 return (u8)(h & 0xf);
1189}
1190
drhc81c11f2009-11-10 01:30:52 +00001191#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1192/*
1193** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1194** value. Return a pointer to its binary value. Space to hold the
1195** binary value has been obtained from malloc and must be freed by
1196** the calling routine.
1197*/
1198void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1199 char *zBlob;
1200 int i;
1201
drh575fad62016-02-05 13:38:36 +00001202 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
drhc81c11f2009-11-10 01:30:52 +00001203 n--;
1204 if( zBlob ){
1205 for(i=0; i<n; i+=2){
dancd74b612011-04-22 19:37:32 +00001206 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
drhc81c11f2009-11-10 01:30:52 +00001207 }
1208 zBlob[i/2] = 0;
1209 }
1210 return zBlob;
1211}
1212#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1213
drh413c3d32010-02-23 20:11:56 +00001214/*
1215** Log an error that is an API call on a connection pointer that should
1216** not have been used. The "type" of connection pointer is given as the
1217** argument. The zType is a word like "NULL" or "closed" or "invalid".
1218*/
1219static void logBadConnection(const char *zType){
1220 sqlite3_log(SQLITE_MISUSE,
1221 "API call with %s database connection pointer",
1222 zType
1223 );
1224}
drhc81c11f2009-11-10 01:30:52 +00001225
1226/*
drhc81c11f2009-11-10 01:30:52 +00001227** Check to make sure we have a valid db pointer. This test is not
1228** foolproof but it does provide some measure of protection against
1229** misuse of the interface such as passing in db pointers that are
1230** NULL or which have been previously closed. If this routine returns
1231** 1 it means that the db pointer is valid and 0 if it should not be
1232** dereferenced for any reason. The calling function should invoke
1233** SQLITE_MISUSE immediately.
1234**
1235** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1236** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1237** open properly and is not fit for general use but which can be
1238** used as an argument to sqlite3_errmsg() or sqlite3_close().
1239*/
1240int sqlite3SafetyCheckOk(sqlite3 *db){
1241 u32 magic;
drh413c3d32010-02-23 20:11:56 +00001242 if( db==0 ){
1243 logBadConnection("NULL");
1244 return 0;
1245 }
drhc81c11f2009-11-10 01:30:52 +00001246 magic = db->magic;
drh9978c972010-02-23 17:36:32 +00001247 if( magic!=SQLITE_MAGIC_OPEN ){
drhe294da02010-02-25 23:44:15 +00001248 if( sqlite3SafetyCheckSickOrOk(db) ){
1249 testcase( sqlite3GlobalConfig.xLog!=0 );
drh413c3d32010-02-23 20:11:56 +00001250 logBadConnection("unopened");
1251 }
drhc81c11f2009-11-10 01:30:52 +00001252 return 0;
1253 }else{
1254 return 1;
1255 }
1256}
1257int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1258 u32 magic;
1259 magic = db->magic;
1260 if( magic!=SQLITE_MAGIC_SICK &&
1261 magic!=SQLITE_MAGIC_OPEN &&
drh413c3d32010-02-23 20:11:56 +00001262 magic!=SQLITE_MAGIC_BUSY ){
drhe294da02010-02-25 23:44:15 +00001263 testcase( sqlite3GlobalConfig.xLog!=0 );
drhaf46dc12010-02-24 21:44:07 +00001264 logBadConnection("invalid");
drh413c3d32010-02-23 20:11:56 +00001265 return 0;
1266 }else{
1267 return 1;
1268 }
drhc81c11f2009-11-10 01:30:52 +00001269}
drh158b9cb2011-03-05 20:59:46 +00001270
1271/*
1272** Attempt to add, substract, or multiply the 64-bit signed value iB against
1273** the other 64-bit signed integer at *pA and store the result in *pA.
1274** Return 0 on success. Or if the operation would have resulted in an
1275** overflow, leave *pA unchanged and return 1.
1276*/
1277int sqlite3AddInt64(i64 *pA, i64 iB){
drhdc5ece82017-02-15 15:09:09 +00001278#if GCC_VERSION>=5004000
drh4a477612017-01-03 17:33:43 +00001279 return __builtin_add_overflow(*pA, iB, pA);
1280#else
drh158b9cb2011-03-05 20:59:46 +00001281 i64 iA = *pA;
1282 testcase( iA==0 ); testcase( iA==1 );
1283 testcase( iB==-1 ); testcase( iB==0 );
1284 if( iB>=0 ){
1285 testcase( iA>0 && LARGEST_INT64 - iA == iB );
1286 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1287 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
drh158b9cb2011-03-05 20:59:46 +00001288 }else{
1289 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1290 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1291 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
drh158b9cb2011-03-05 20:59:46 +00001292 }
drh53a6eb32014-02-10 12:59:15 +00001293 *pA += iB;
drh158b9cb2011-03-05 20:59:46 +00001294 return 0;
drh4a477612017-01-03 17:33:43 +00001295#endif
drh158b9cb2011-03-05 20:59:46 +00001296}
1297int sqlite3SubInt64(i64 *pA, i64 iB){
drhdc5ece82017-02-15 15:09:09 +00001298#if GCC_VERSION>=5004000
drh4a477612017-01-03 17:33:43 +00001299 return __builtin_sub_overflow(*pA, iB, pA);
1300#else
drh158b9cb2011-03-05 20:59:46 +00001301 testcase( iB==SMALLEST_INT64+1 );
1302 if( iB==SMALLEST_INT64 ){
1303 testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1304 if( (*pA)>=0 ) return 1;
1305 *pA -= iB;
1306 return 0;
1307 }else{
1308 return sqlite3AddInt64(pA, -iB);
1309 }
drh4a477612017-01-03 17:33:43 +00001310#endif
drh158b9cb2011-03-05 20:59:46 +00001311}
drh158b9cb2011-03-05 20:59:46 +00001312int sqlite3MulInt64(i64 *pA, i64 iB){
drhdc5ece82017-02-15 15:09:09 +00001313#if GCC_VERSION>=5004000
drh4a477612017-01-03 17:33:43 +00001314 return __builtin_mul_overflow(*pA, iB, pA);
1315#else
drh158b9cb2011-03-05 20:59:46 +00001316 i64 iA = *pA;
drh09952c62016-09-20 22:04:05 +00001317 if( iB>0 ){
1318 if( iA>LARGEST_INT64/iB ) return 1;
1319 if( iA<SMALLEST_INT64/iB ) return 1;
1320 }else if( iB<0 ){
1321 if( iA>0 ){
1322 if( iB<SMALLEST_INT64/iA ) return 1;
1323 }else if( iA<0 ){
1324 if( iB==SMALLEST_INT64 ) return 1;
1325 if( iA==SMALLEST_INT64 ) return 1;
1326 if( -iA>LARGEST_INT64/-iB ) return 1;
drh53a6eb32014-02-10 12:59:15 +00001327 }
drh53a6eb32014-02-10 12:59:15 +00001328 }
drh09952c62016-09-20 22:04:05 +00001329 *pA = iA*iB;
drh158b9cb2011-03-05 20:59:46 +00001330 return 0;
drh4a477612017-01-03 17:33:43 +00001331#endif
drh158b9cb2011-03-05 20:59:46 +00001332}
drhd50ffc42011-03-08 02:38:28 +00001333
1334/*
1335** Compute the absolute value of a 32-bit signed integer, of possible. Or
1336** if the integer has a value of -2147483648, return +2147483647
1337*/
1338int sqlite3AbsInt32(int x){
1339 if( x>=0 ) return x;
drh87e79ae2011-03-08 13:06:41 +00001340 if( x==(int)0x80000000 ) return 0x7fffffff;
drhd50ffc42011-03-08 02:38:28 +00001341 return -x;
1342}
drh81cc5162011-05-17 20:36:21 +00001343
1344#ifdef SQLITE_ENABLE_8_3_NAMES
1345/*
drhb51bf432011-07-21 21:29:35 +00001346** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
drh81cc5162011-05-17 20:36:21 +00001347** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1348** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1349** three characters, then shorten the suffix on z[] to be the last three
1350** characters of the original suffix.
1351**
drhb51bf432011-07-21 21:29:35 +00001352** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1353** do the suffix shortening regardless of URI parameter.
1354**
drh81cc5162011-05-17 20:36:21 +00001355** Examples:
1356**
1357** test.db-journal => test.nal
1358** test.db-wal => test.wal
1359** test.db-shm => test.shm
drhf5808602011-12-16 00:33:04 +00001360** test.db-mj7f3319fa => test.9fa
drh81cc5162011-05-17 20:36:21 +00001361*/
1362void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
drhb51bf432011-07-21 21:29:35 +00001363#if SQLITE_ENABLE_8_3_NAMES<2
drh7d39e172012-01-02 12:41:53 +00001364 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
drhb51bf432011-07-21 21:29:35 +00001365#endif
1366 {
drh81cc5162011-05-17 20:36:21 +00001367 int i, sz;
1368 sz = sqlite3Strlen30(z);
drhc83f2d42011-05-18 02:41:10 +00001369 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
drhc02a43a2012-01-10 23:18:38 +00001370 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
drh81cc5162011-05-17 20:36:21 +00001371 }
1372}
1373#endif
drhbf539c42013-10-05 18:16:02 +00001374
1375/*
1376** Find (an approximate) sum of two LogEst values. This computation is
1377** not a simple "+" operator because LogEst is stored as a logarithmic
1378** value.
1379**
1380*/
1381LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1382 static const unsigned char x[] = {
1383 10, 10, /* 0,1 */
1384 9, 9, /* 2,3 */
1385 8, 8, /* 4,5 */
1386 7, 7, 7, /* 6,7,8 */
1387 6, 6, 6, /* 9,10,11 */
1388 5, 5, 5, /* 12-14 */
1389 4, 4, 4, 4, /* 15-18 */
1390 3, 3, 3, 3, 3, 3, /* 19-24 */
1391 2, 2, 2, 2, 2, 2, 2, /* 25-31 */
1392 };
1393 if( a>=b ){
1394 if( a>b+49 ) return a;
1395 if( a>b+31 ) return a+1;
1396 return a+x[a-b];
1397 }else{
1398 if( b>a+49 ) return b;
1399 if( b>a+31 ) return b+1;
1400 return b+x[b-a];
1401 }
1402}
1403
1404/*
drh224155d2014-04-30 13:19:09 +00001405** Convert an integer into a LogEst. In other words, compute an
1406** approximation for 10*log2(x).
drhbf539c42013-10-05 18:16:02 +00001407*/
1408LogEst sqlite3LogEst(u64 x){
1409 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1410 LogEst y = 40;
1411 if( x<8 ){
1412 if( x<2 ) return 0;
1413 while( x<8 ){ y -= 10; x <<= 1; }
1414 }else{
drh75ab50c2016-04-28 14:15:12 +00001415 while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/
drhbf539c42013-10-05 18:16:02 +00001416 while( x>15 ){ y += 10; x >>= 1; }
1417 }
1418 return a[x&7] + y - 10;
1419}
1420
1421#ifndef SQLITE_OMIT_VIRTUALTABLE
1422/*
1423** Convert a double into a LogEst
1424** In other words, compute an approximation for 10*log2(x).
1425*/
1426LogEst sqlite3LogEstFromDouble(double x){
1427 u64 a;
1428 LogEst e;
1429 assert( sizeof(x)==8 && sizeof(a)==8 );
1430 if( x<=1 ) return 0;
1431 if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1432 memcpy(&a, &x, 8);
1433 e = (a>>52) - 1022;
1434 return e*10;
1435}
1436#endif /* SQLITE_OMIT_VIRTUALTABLE */
1437
drh14bfd992016-03-05 14:00:09 +00001438#if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
drhd566c952016-02-25 21:19:03 +00001439 defined(SQLITE_ENABLE_STAT3_OR_STAT4) || \
1440 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
drhbf539c42013-10-05 18:16:02 +00001441/*
1442** Convert a LogEst into an integer.
drhd566c952016-02-25 21:19:03 +00001443**
1444** Note that this routine is only used when one or more of various
1445** non-standard compile-time options is enabled.
drhbf539c42013-10-05 18:16:02 +00001446*/
1447u64 sqlite3LogEstToInt(LogEst x){
1448 u64 n;
drhbf539c42013-10-05 18:16:02 +00001449 n = x%10;
1450 x /= 10;
1451 if( n>=5 ) n -= 2;
1452 else if( n>=1 ) n -= 1;
drhecdf20d2016-03-10 14:28:24 +00001453#if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1454 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1455 if( x>60 ) return (u64)LARGEST_INT64;
1456#else
1457 /* If only SQLITE_ENABLE_STAT3_OR_STAT4 is on, then the largest input
1458 ** possible to this routine is 310, resulting in a maximum x of 31 */
1459 assert( x<=60 );
1460#endif
1461 return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x);
drhbf539c42013-10-05 18:16:02 +00001462}
drhd566c952016-02-25 21:19:03 +00001463#endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */
drh9bf755c2016-12-23 03:59:31 +00001464
1465/*
1466** Add a new name/number pair to a VList. This might require that the
1467** VList object be reallocated, so return the new VList. If an OOM
drhce1bbe52016-12-23 13:52:45 +00001468** error occurs, the original VList returned and the
drh9bf755c2016-12-23 03:59:31 +00001469** db->mallocFailed flag is set.
1470**
1471** A VList is really just an array of integers. To destroy a VList,
1472** simply pass it to sqlite3DbFree().
1473**
1474** The first integer is the number of integers allocated for the whole
1475** VList. The second integer is the number of integers actually used.
1476** Each name/number pair is encoded by subsequent groups of 3 or more
1477** integers.
1478**
drhce1bbe52016-12-23 13:52:45 +00001479** Each name/number pair starts with two integers which are the numeric
drh9bf755c2016-12-23 03:59:31 +00001480** value for the pair and the size of the name/number pair, respectively.
1481** The text name overlays one or more following integers. The text name
1482** is always zero-terminated.
drhce1bbe52016-12-23 13:52:45 +00001483**
1484** Conceptually:
1485**
1486** struct VList {
1487** int nAlloc; // Number of allocated slots
1488** int nUsed; // Number of used slots
1489** struct VListEntry {
1490** int iValue; // Value for this entry
1491** int nSlot; // Slots used by this entry
1492** // ... variable name goes here
1493** } a[0];
1494** }
1495**
1496** During code generation, pointers to the variable names within the
1497** VList are taken. When that happens, nAlloc is set to zero as an
1498** indication that the VList may never again be enlarged, since the
1499** accompanying realloc() would invalidate the pointers.
drh9bf755c2016-12-23 03:59:31 +00001500*/
1501VList *sqlite3VListAdd(
1502 sqlite3 *db, /* The database connection used for malloc() */
1503 VList *pIn, /* The input VList. Might be NULL */
1504 const char *zName, /* Name of symbol to add */
1505 int nName, /* Bytes of text in zName */
1506 int iVal /* Value to associate with zName */
1507){
1508 int nInt; /* number of sizeof(int) objects needed for zName */
drhce1bbe52016-12-23 13:52:45 +00001509 char *z; /* Pointer to where zName will be stored */
1510 int i; /* Index in pIn[] where zName is stored */
drh9bf755c2016-12-23 03:59:31 +00001511
1512 nInt = nName/4 + 3;
drhce1bbe52016-12-23 13:52:45 +00001513 assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */
drh9bf755c2016-12-23 03:59:31 +00001514 if( pIn==0 || pIn[1]+nInt > pIn[0] ){
1515 /* Enlarge the allocation */
1516 int nAlloc = (pIn ? pIn[0]*2 : 10) + nInt;
1517 VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int));
drhce1bbe52016-12-23 13:52:45 +00001518 if( pOut==0 ) return pIn;
drh9bf755c2016-12-23 03:59:31 +00001519 if( pIn==0 ) pOut[1] = 2;
1520 pIn = pOut;
1521 pIn[0] = nAlloc;
1522 }
1523 i = pIn[1];
1524 pIn[i] = iVal;
1525 pIn[i+1] = nInt;
1526 z = (char*)&pIn[i+2];
1527 pIn[1] = i+nInt;
1528 assert( pIn[1]<=pIn[0] );
1529 memcpy(z, zName, nName);
1530 z[nName] = 0;
1531 return pIn;
1532}
1533
1534/*
1535** Return a pointer to the name of a variable in the given VList that
1536** has the value iVal. Or return a NULL if there is no such variable in
1537** the list
1538*/
1539const char *sqlite3VListNumToName(VList *pIn, int iVal){
1540 int i, mx;
1541 if( pIn==0 ) return 0;
1542 mx = pIn[1];
1543 i = 2;
1544 do{
1545 if( pIn[i]==iVal ) return (char*)&pIn[i+2];
1546 i += pIn[i+1];
1547 }while( i<mx );
1548 return 0;
1549}
1550
1551/*
1552** Return the number of the variable named zName, if it is in VList.
1553** or return 0 if there is no such variable.
1554*/
1555int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){
1556 int i, mx;
1557 if( pIn==0 ) return 0;
1558 mx = pIn[1];
1559 i = 2;
1560 do{
1561 const char *z = (const char*)&pIn[i+2];
1562 if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i];
1563 i += pIn[i+1];
1564 }while( i<mx );
1565 return 0;
1566}