blob: caaddd1565ce49960554189ea24c861cb30c155b [file] [log] [blame]
drh9a324642003-09-06 20:12:01 +00001/*
2** 2003 September 6
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12** This file contains code used for creating, destroying, and populating
drh7abda852014-09-19 16:02:06 +000013** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
drh9a324642003-09-06 20:12:01 +000014*/
15#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000016#include "vdbeInt.h"
17
drh9a324642003-09-06 20:12:01 +000018/*
19** Create a new virtual database engine.
20*/
drh9ac79622013-12-18 15:11:47 +000021Vdbe *sqlite3VdbeCreate(Parse *pParse){
22 sqlite3 *db = pParse->db;
drh9a324642003-09-06 20:12:01 +000023 Vdbe *p;
drh17435752007-08-16 04:30:38 +000024 p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
drh9a324642003-09-06 20:12:01 +000025 if( p==0 ) return 0;
26 p->db = db;
27 if( db->pVdbe ){
28 db->pVdbe->pPrev = p;
29 }
30 p->pNext = db->pVdbe;
31 p->pPrev = 0;
32 db->pVdbe = p;
33 p->magic = VDBE_MAGIC_INIT;
drh9ac79622013-12-18 15:11:47 +000034 p->pParse = pParse;
drh73d5b8f2013-12-23 19:09:07 +000035 assert( pParse->aLabel==0 );
36 assert( pParse->nLabel==0 );
37 assert( pParse->nOpAlloc==0 );
drh9a324642003-09-06 20:12:01 +000038 return p;
39}
40
41/*
drhb900aaf2006-11-09 00:24:53 +000042** Remember the SQL string for a prepared statement.
43*/
danielk19776ab3a2e2009-02-19 14:39:25 +000044void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
dan1d2ce4f2009-10-19 18:11:09 +000045 assert( isPrepareV2==1 || isPrepareV2==0 );
drhb900aaf2006-11-09 00:24:53 +000046 if( p==0 ) return;
danac455932012-11-26 19:50:41 +000047#if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG)
danielk19776ab3a2e2009-02-19 14:39:25 +000048 if( !isPrepareV2 ) return;
49#endif
drhb900aaf2006-11-09 00:24:53 +000050 assert( p->zSql==0 );
drh17435752007-08-16 04:30:38 +000051 p->zSql = sqlite3DbStrNDup(p->db, z, n);
shanef639c402009-11-03 19:42:30 +000052 p->isPrepareV2 = (u8)isPrepareV2;
drhb900aaf2006-11-09 00:24:53 +000053}
54
55/*
56** Return the SQL associated with a prepared statement
57*/
danielk1977d0e2a852007-11-14 06:48:48 +000058const char *sqlite3_sql(sqlite3_stmt *pStmt){
danielk19776ab3a2e2009-02-19 14:39:25 +000059 Vdbe *p = (Vdbe *)pStmt;
drh87f5c5f2010-01-20 01:20:56 +000060 return (p && p->isPrepareV2) ? p->zSql : 0;
drhb900aaf2006-11-09 00:24:53 +000061}
62
63/*
drhc5155252007-01-08 21:07:17 +000064** Swap all content between two VDBE structures.
drhb900aaf2006-11-09 00:24:53 +000065*/
drhc5155252007-01-08 21:07:17 +000066void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
67 Vdbe tmp, *pTmp;
68 char *zTmp;
drhc5155252007-01-08 21:07:17 +000069 tmp = *pA;
70 *pA = *pB;
71 *pB = tmp;
72 pTmp = pA->pNext;
73 pA->pNext = pB->pNext;
74 pB->pNext = pTmp;
75 pTmp = pA->pPrev;
76 pA->pPrev = pB->pPrev;
77 pB->pPrev = pTmp;
78 zTmp = pA->zSql;
79 pA->zSql = pB->zSql;
80 pB->zSql = zTmp;
danielk19776ab3a2e2009-02-19 14:39:25 +000081 pB->isPrepareV2 = pA->isPrepareV2;
drhb900aaf2006-11-09 00:24:53 +000082}
83
drh9a324642003-09-06 20:12:01 +000084/*
dan76ccd892014-08-12 13:38:52 +000085** Resize the Vdbe.aOp array so that it is at least nOp elements larger
drh81e069e2014-08-12 14:29:20 +000086** than its current size. nOp is guaranteed to be less than or equal
87** to 1024/sizeof(Op).
danielk1977ace3eb22006-01-26 10:35:04 +000088**
danielk197700e13612008-11-17 19:18:54 +000089** If an out-of-memory error occurs while resizing the array, return
dan76ccd892014-08-12 13:38:52 +000090** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain
danielk197700e13612008-11-17 19:18:54 +000091** unchanged (this is so that any opcodes already allocated can be
92** correctly deallocated along with the rest of the Vdbe).
drh76ff3a02004-09-24 22:32:30 +000093*/
dan76ccd892014-08-12 13:38:52 +000094static int growOpArray(Vdbe *v, int nOp){
drha4e5d582007-10-20 15:41:57 +000095 VdbeOp *pNew;
drh73d5b8f2013-12-23 19:09:07 +000096 Parse *p = v->pParse;
dan76ccd892014-08-12 13:38:52 +000097
drh81e069e2014-08-12 14:29:20 +000098 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
99 ** more frequent reallocs and hence provide more opportunities for
100 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
101 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
102 ** by the minimum* amount required until the size reaches 512. Normal
103 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
104 ** size of the op array or add 1KB of space, whichever is smaller. */
dan76ccd892014-08-12 13:38:52 +0000105#ifdef SQLITE_TEST_REALLOC_STRESS
106 int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp);
107#else
danielk197700e13612008-11-17 19:18:54 +0000108 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
dan76ccd892014-08-12 13:38:52 +0000109 UNUSED_PARAMETER(nOp);
110#endif
111
drh81e069e2014-08-12 14:29:20 +0000112 assert( nOp<=(1024/sizeof(Op)) );
dan76ccd892014-08-12 13:38:52 +0000113 assert( nNew>=(p->nOpAlloc+nOp) );
drh73d5b8f2013-12-23 19:09:07 +0000114 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
drha4e5d582007-10-20 15:41:57 +0000115 if( pNew ){
drhb45f65d2009-03-01 19:42:11 +0000116 p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op);
drh73d5b8f2013-12-23 19:09:07 +0000117 v->aOp = pNew;
drh76ff3a02004-09-24 22:32:30 +0000118 }
danielk197700e13612008-11-17 19:18:54 +0000119 return (pNew ? SQLITE_OK : SQLITE_NOMEM);
drh76ff3a02004-09-24 22:32:30 +0000120}
121
drh313619f2013-10-31 20:34:06 +0000122#ifdef SQLITE_DEBUG
123/* This routine is just a convenient place to set a breakpoint that will
124** fire after each opcode is inserted and displayed using
125** "PRAGMA vdbe_addoptrace=on".
126*/
127static void test_addop_breakpoint(void){
128 static int n = 0;
129 n++;
130}
131#endif
132
drh76ff3a02004-09-24 22:32:30 +0000133/*
drh9a324642003-09-06 20:12:01 +0000134** Add a new instruction to the list of instructions current in the
135** VDBE. Return the address of the new instruction.
136**
137** Parameters:
138**
139** p Pointer to the VDBE
140**
141** op The opcode for this instruction
142**
drh66a51672008-01-03 00:01:23 +0000143** p1, p2, p3 Operands
drh9a324642003-09-06 20:12:01 +0000144**
danielk19774adee202004-05-08 08:23:19 +0000145** Use the sqlite3VdbeResolveLabel() function to fix an address and
drh66a51672008-01-03 00:01:23 +0000146** the sqlite3VdbeChangeP4() function to change the value of the P4
drh9a324642003-09-06 20:12:01 +0000147** operand.
148*/
drh66a51672008-01-03 00:01:23 +0000149int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
drh9a324642003-09-06 20:12:01 +0000150 int i;
drh701a0ae2004-02-22 20:05:00 +0000151 VdbeOp *pOp;
drh9a324642003-09-06 20:12:01 +0000152
153 i = p->nOp;
drh9a324642003-09-06 20:12:01 +0000154 assert( p->magic==VDBE_MAGIC_INIT );
drh8df32842008-12-09 02:51:23 +0000155 assert( op>0 && op<0xff );
drh73d5b8f2013-12-23 19:09:07 +0000156 if( p->pParse->nOpAlloc<=i ){
dan76ccd892014-08-12 13:38:52 +0000157 if( growOpArray(p, 1) ){
drhc42ed162009-06-26 14:04:51 +0000158 return 1;
drhfd2d26b2006-03-15 22:44:36 +0000159 }
drh9a324642003-09-06 20:12:01 +0000160 }
danielk197701256832007-04-18 14:24:32 +0000161 p->nOp++;
drh701a0ae2004-02-22 20:05:00 +0000162 pOp = &p->aOp[i];
drh8df32842008-12-09 02:51:23 +0000163 pOp->opcode = (u8)op;
drh26c9b5e2008-04-11 14:56:53 +0000164 pOp->p5 = 0;
drh701a0ae2004-02-22 20:05:00 +0000165 pOp->p1 = p1;
drh701a0ae2004-02-22 20:05:00 +0000166 pOp->p2 = p2;
drh66a51672008-01-03 00:01:23 +0000167 pOp->p3 = p3;
168 pOp->p4.p = 0;
169 pOp->p4type = P4_NOTUSED;
drhc7379ce2013-10-30 02:28:23 +0000170#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drh26c9b5e2008-04-11 14:56:53 +0000171 pOp->zComment = 0;
drhc7379ce2013-10-30 02:28:23 +0000172#endif
173#ifdef SQLITE_DEBUG
drhe0962052013-01-29 19:14:31 +0000174 if( p->db->flags & SQLITE_VdbeAddopTrace ){
drh9ac79622013-12-18 15:11:47 +0000175 int jj, kk;
176 Parse *pParse = p->pParse;
177 for(jj=kk=0; jj<SQLITE_N_COLCACHE; jj++){
178 struct yColCache *x = pParse->aColCache + jj;
179 if( x->iLevel>pParse->iCacheLevel || x->iReg==0 ) continue;
180 printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn);
181 kk++;
182 }
183 if( kk ) printf("\n");
drhe0962052013-01-29 19:14:31 +0000184 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
drh313619f2013-10-31 20:34:06 +0000185 test_addop_breakpoint();
drhe0962052013-01-29 19:14:31 +0000186 }
drh9a324642003-09-06 20:12:01 +0000187#endif
drh26c9b5e2008-04-11 14:56:53 +0000188#ifdef VDBE_PROFILE
189 pOp->cycles = 0;
190 pOp->cnt = 0;
191#endif
drh688852a2014-02-17 22:40:43 +0000192#ifdef SQLITE_VDBE_COVERAGE
193 pOp->iSrcLine = 0;
194#endif
drh9a324642003-09-06 20:12:01 +0000195 return i;
196}
drh66a51672008-01-03 00:01:23 +0000197int sqlite3VdbeAddOp0(Vdbe *p, int op){
198 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
199}
200int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
201 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
202}
203int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
204 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
drh701a0ae2004-02-22 20:05:00 +0000205}
206
drh66a51672008-01-03 00:01:23 +0000207
drh701a0ae2004-02-22 20:05:00 +0000208/*
drh66a51672008-01-03 00:01:23 +0000209** Add an opcode that includes the p4 value as a pointer.
drhd4e70eb2008-01-02 00:34:36 +0000210*/
drh66a51672008-01-03 00:01:23 +0000211int sqlite3VdbeAddOp4(
drhd4e70eb2008-01-02 00:34:36 +0000212 Vdbe *p, /* Add the opcode to this VM */
213 int op, /* The new opcode */
drh66a51672008-01-03 00:01:23 +0000214 int p1, /* The P1 operand */
215 int p2, /* The P2 operand */
216 int p3, /* The P3 operand */
217 const char *zP4, /* The P4 operand */
218 int p4type /* P4 operand type */
drhd4e70eb2008-01-02 00:34:36 +0000219){
drh66a51672008-01-03 00:01:23 +0000220 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
221 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
drhd4e70eb2008-01-02 00:34:36 +0000222 return addr;
223}
224
225/*
drh5d9c9da2011-06-03 20:11:17 +0000226** Add an OP_ParseSchema opcode. This routine is broken out from
drhe4c88c02012-01-04 12:57:45 +0000227** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
228** as having been used.
drh5d9c9da2011-06-03 20:11:17 +0000229**
230** The zWhere string must have been obtained from sqlite3_malloc().
231** This routine will take ownership of the allocated memory.
232*/
233void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
234 int j;
235 int addr = sqlite3VdbeAddOp3(p, OP_ParseSchema, iDb, 0, 0);
236 sqlite3VdbeChangeP4(p, addr, zWhere, P4_DYNAMIC);
237 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
238}
239
240/*
drh8cff69d2009-11-12 19:59:44 +0000241** Add an opcode that includes the p4 value as an integer.
242*/
243int sqlite3VdbeAddOp4Int(
244 Vdbe *p, /* Add the opcode to this VM */
245 int op, /* The new opcode */
246 int p1, /* The P1 operand */
247 int p2, /* The P2 operand */
248 int p3, /* The P3 operand */
249 int p4 /* The P4 operand as an integer */
250){
251 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
252 sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32);
253 return addr;
254}
255
256/*
drh9a324642003-09-06 20:12:01 +0000257** Create a new symbolic label for an instruction that has yet to be
258** coded. The symbolic label is really just a negative number. The
259** label can be used as the P2 value of an operation. Later, when
260** the label is resolved to a specific address, the VDBE will scan
261** through its operation list and change all values of P2 which match
262** the label into the resolved address.
263**
264** The VDBE knows that a P2 value is a label because labels are
265** always negative and P2 values are suppose to be non-negative.
266** Hence, a negative P2 value is a label that has yet to be resolved.
danielk1977b5548a82004-06-26 13:51:33 +0000267**
268** Zero is returned if a malloc() fails.
drh9a324642003-09-06 20:12:01 +0000269*/
drh73d5b8f2013-12-23 19:09:07 +0000270int sqlite3VdbeMakeLabel(Vdbe *v){
271 Parse *p = v->pParse;
drhc35f3d52012-02-01 19:03:38 +0000272 int i = p->nLabel++;
drh73d5b8f2013-12-23 19:09:07 +0000273 assert( v->magic==VDBE_MAGIC_INIT );
drhc35f3d52012-02-01 19:03:38 +0000274 if( (i & (i-1))==0 ){
275 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
276 (i*2+1)*sizeof(p->aLabel[0]));
drh9a324642003-09-06 20:12:01 +0000277 }
drh76ff3a02004-09-24 22:32:30 +0000278 if( p->aLabel ){
279 p->aLabel[i] = -1;
drh9a324642003-09-06 20:12:01 +0000280 }
drh9a324642003-09-06 20:12:01 +0000281 return -1-i;
282}
283
284/*
285** Resolve label "x" to be the address of the next instruction to
286** be inserted. The parameter "x" must have been obtained from
danielk19774adee202004-05-08 08:23:19 +0000287** a prior call to sqlite3VdbeMakeLabel().
drh9a324642003-09-06 20:12:01 +0000288*/
drh73d5b8f2013-12-23 19:09:07 +0000289void sqlite3VdbeResolveLabel(Vdbe *v, int x){
290 Parse *p = v->pParse;
drh76ff3a02004-09-24 22:32:30 +0000291 int j = -1-x;
drh73d5b8f2013-12-23 19:09:07 +0000292 assert( v->magic==VDBE_MAGIC_INIT );
drhb2b9d3d2013-08-01 01:14:43 +0000293 assert( j<p->nLabel );
drhd2490902014-04-13 19:28:15 +0000294 if( ALWAYS(j>=0) && p->aLabel ){
drh73d5b8f2013-12-23 19:09:07 +0000295 p->aLabel[j] = v->nOp;
drh9a324642003-09-06 20:12:01 +0000296 }
drh61019c72014-01-04 16:49:02 +0000297 p->iFixedOp = v->nOp - 1;
drh9a324642003-09-06 20:12:01 +0000298}
299
drh4611d922010-02-25 14:47:01 +0000300/*
301** Mark the VDBE as one that can only be run one time.
302*/
303void sqlite3VdbeRunOnlyOnce(Vdbe *p){
304 p->runOnlyOnce = 1;
305}
306
drhff738bc2009-09-24 00:09:58 +0000307#ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
dan144926d2009-09-09 11:37:20 +0000308
309/*
310** The following type and function are used to iterate through all opcodes
311** in a Vdbe main program and each of the sub-programs (triggers) it may
312** invoke directly or indirectly. It should be used as follows:
313**
314** Op *pOp;
315** VdbeOpIter sIter;
316**
317** memset(&sIter, 0, sizeof(sIter));
318** sIter.v = v; // v is of type Vdbe*
319** while( (pOp = opIterNext(&sIter)) ){
320** // Do something with pOp
321** }
322** sqlite3DbFree(v->db, sIter.apSub);
323**
324*/
325typedef struct VdbeOpIter VdbeOpIter;
326struct VdbeOpIter {
327 Vdbe *v; /* Vdbe to iterate through the opcodes of */
328 SubProgram **apSub; /* Array of subprograms */
329 int nSub; /* Number of entries in apSub */
330 int iAddr; /* Address of next instruction to return */
331 int iSub; /* 0 = main program, 1 = first sub-program etc. */
332};
333static Op *opIterNext(VdbeOpIter *p){
334 Vdbe *v = p->v;
335 Op *pRet = 0;
336 Op *aOp;
337 int nOp;
338
339 if( p->iSub<=p->nSub ){
340
341 if( p->iSub==0 ){
342 aOp = v->aOp;
343 nOp = v->nOp;
344 }else{
345 aOp = p->apSub[p->iSub-1]->aOp;
346 nOp = p->apSub[p->iSub-1]->nOp;
347 }
348 assert( p->iAddr<nOp );
349
350 pRet = &aOp[p->iAddr];
351 p->iAddr++;
352 if( p->iAddr==nOp ){
353 p->iSub++;
354 p->iAddr = 0;
355 }
356
357 if( pRet->p4type==P4_SUBPROGRAM ){
358 int nByte = (p->nSub+1)*sizeof(SubProgram*);
359 int j;
360 for(j=0; j<p->nSub; j++){
361 if( p->apSub[j]==pRet->p4.pProgram ) break;
362 }
363 if( j==p->nSub ){
364 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
365 if( !p->apSub ){
366 pRet = 0;
367 }else{
368 p->apSub[p->nSub++] = pRet->p4.pProgram;
369 }
370 }
371 }
372 }
373
374 return pRet;
375}
376
377/*
danf3677212009-09-10 16:14:50 +0000378** Check if the program stored in the VM associated with pParse may
drhff738bc2009-09-24 00:09:58 +0000379** throw an ABORT exception (causing the statement, but not entire transaction
dan144926d2009-09-09 11:37:20 +0000380** to be rolled back). This condition is true if the main program or any
381** sub-programs contains any of the following:
382**
383** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
384** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
385** * OP_Destroy
386** * OP_VUpdate
387** * OP_VRename
dan32b09f22009-09-23 17:29:59 +0000388** * OP_FkCounter with P2==0 (immediate foreign key constraint)
dan144926d2009-09-09 11:37:20 +0000389**
danf3677212009-09-10 16:14:50 +0000390** Then check that the value of Parse.mayAbort is true if an
391** ABORT may be thrown, or false otherwise. Return true if it does
392** match, or false otherwise. This function is intended to be used as
393** part of an assert statement in the compiler. Similar to:
394**
395** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
dan144926d2009-09-09 11:37:20 +0000396*/
danf3677212009-09-10 16:14:50 +0000397int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
398 int hasAbort = 0;
dan144926d2009-09-09 11:37:20 +0000399 Op *pOp;
400 VdbeOpIter sIter;
401 memset(&sIter, 0, sizeof(sIter));
402 sIter.v = v;
403
404 while( (pOp = opIterNext(&sIter))!=0 ){
405 int opcode = pOp->opcode;
406 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
dan32b09f22009-09-23 17:29:59 +0000407#ifndef SQLITE_OMIT_FOREIGN_KEY
dan0ff297e2009-09-25 17:03:14 +0000408 || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1)
dan32b09f22009-09-23 17:29:59 +0000409#endif
dan144926d2009-09-09 11:37:20 +0000410 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
drhd91c1a12013-02-09 13:58:25 +0000411 && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
dan144926d2009-09-09 11:37:20 +0000412 ){
danf3677212009-09-10 16:14:50 +0000413 hasAbort = 1;
dan144926d2009-09-09 11:37:20 +0000414 break;
415 }
416 }
dan144926d2009-09-09 11:37:20 +0000417 sqlite3DbFree(v->db, sIter.apSub);
danf3677212009-09-10 16:14:50 +0000418
mistachkin48864df2013-03-21 21:20:32 +0000419 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
danf3677212009-09-10 16:14:50 +0000420 ** If malloc failed, then the while() loop above may not have iterated
421 ** through all opcodes and hasAbort may be set incorrectly. Return
422 ** true for this case to prevent the assert() in the callers frame
423 ** from failing. */
424 return ( v->db->mallocFailed || hasAbort==mayAbort );
dan144926d2009-09-09 11:37:20 +0000425}
drhff738bc2009-09-24 00:09:58 +0000426#endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
dan144926d2009-09-09 11:37:20 +0000427
drh9a324642003-09-06 20:12:01 +0000428/*
drh9cbf3422008-01-17 16:22:13 +0000429** Loop through the program looking for P2 values that are negative
430** on jump instructions. Each such value is a label. Resolve the
431** label by setting the P2 value to its correct non-zero value.
drh76ff3a02004-09-24 22:32:30 +0000432**
433** This routine is called once after all opcodes have been inserted.
danielk1977634f2982005-03-28 08:44:07 +0000434**
drh13449892005-09-07 21:22:45 +0000435** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument
danielk1977399918f2006-06-14 13:03:23 +0000436** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by
danielk1977634f2982005-03-28 08:44:07 +0000437** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
drha6c2ed92009-11-14 23:22:23 +0000438**
439** The Op.opflags field is set on all opcodes.
drh76ff3a02004-09-24 22:32:30 +0000440*/
drh9cbf3422008-01-17 16:22:13 +0000441static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
drh76ff3a02004-09-24 22:32:30 +0000442 int i;
dan165921a2009-08-28 18:53:45 +0000443 int nMaxArgs = *pMaxFuncArgs;
drh76ff3a02004-09-24 22:32:30 +0000444 Op *pOp;
drh73d5b8f2013-12-23 19:09:07 +0000445 Parse *pParse = p->pParse;
446 int *aLabel = pParse->aLabel;
drhad4a4b82008-11-05 16:37:34 +0000447 p->readOnly = 1;
drh1713afb2013-06-28 01:24:57 +0000448 p->bIsReader = 0;
drh76ff3a02004-09-24 22:32:30 +0000449 for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
danielk1977634f2982005-03-28 08:44:07 +0000450 u8 opcode = pOp->opcode;
451
drh8c8a8c42013-08-06 07:45:08 +0000452 /* NOTE: Be sure to update mkopcodeh.awk when adding or removing
453 ** cases from this switch! */
454 switch( opcode ){
455 case OP_Function:
456 case OP_AggStep: {
457 if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
458 break;
459 }
460 case OP_Transaction: {
461 if( pOp->p2!=0 ) p->readOnly = 0;
462 /* fall thru */
463 }
464 case OP_AutoCommit:
465 case OP_Savepoint: {
466 p->bIsReader = 1;
467 break;
468 }
dand9031542013-07-05 16:54:30 +0000469#ifndef SQLITE_OMIT_WAL
drh8c8a8c42013-08-06 07:45:08 +0000470 case OP_Checkpoint:
drh9e92a472013-06-27 17:40:30 +0000471#endif
drh8c8a8c42013-08-06 07:45:08 +0000472 case OP_Vacuum:
473 case OP_JournalMode: {
474 p->readOnly = 0;
475 p->bIsReader = 1;
476 break;
477 }
danielk1977182c4ba2007-06-27 15:53:34 +0000478#ifndef SQLITE_OMIT_VIRTUALTABLE
drh8c8a8c42013-08-06 07:45:08 +0000479 case OP_VUpdate: {
480 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
481 break;
482 }
483 case OP_VFilter: {
484 int n;
485 assert( p->nOp - i >= 3 );
486 assert( pOp[-1].opcode==OP_Integer );
487 n = pOp[-1].p1;
488 if( n>nMaxArgs ) nMaxArgs = n;
489 break;
490 }
danielk1977182c4ba2007-06-27 15:53:34 +0000491#endif
drh8c8a8c42013-08-06 07:45:08 +0000492 case OP_Next:
drhf93cd942013-11-21 03:12:25 +0000493 case OP_NextIfOpen:
drh8c8a8c42013-08-06 07:45:08 +0000494 case OP_SorterNext: {
495 pOp->p4.xAdvance = sqlite3BtreeNext;
496 pOp->p4type = P4_ADVANCE;
497 break;
498 }
drhf93cd942013-11-21 03:12:25 +0000499 case OP_Prev:
500 case OP_PrevIfOpen: {
drh8c8a8c42013-08-06 07:45:08 +0000501 pOp->p4.xAdvance = sqlite3BtreePrevious;
502 pOp->p4type = P4_ADVANCE;
503 break;
504 }
danielk1977bc04f852005-03-29 08:26:13 +0000505 }
danielk1977634f2982005-03-28 08:44:07 +0000506
drh8c8a8c42013-08-06 07:45:08 +0000507 pOp->opflags = sqlite3OpcodeProperty[opcode];
drha6c2ed92009-11-14 23:22:23 +0000508 if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
drh73d5b8f2013-12-23 19:09:07 +0000509 assert( -1-pOp->p2<pParse->nLabel );
drhd2981512008-01-04 19:33:49 +0000510 pOp->p2 = aLabel[-1-pOp->p2];
511 }
drh76ff3a02004-09-24 22:32:30 +0000512 }
drh73d5b8f2013-12-23 19:09:07 +0000513 sqlite3DbFree(p->db, pParse->aLabel);
514 pParse->aLabel = 0;
515 pParse->nLabel = 0;
danielk1977bc04f852005-03-29 08:26:13 +0000516 *pMaxFuncArgs = nMaxArgs;
drha7ab6d82014-07-21 15:44:39 +0000517 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
drh76ff3a02004-09-24 22:32:30 +0000518}
519
520/*
drh9a324642003-09-06 20:12:01 +0000521** Return the address of the next instruction to be inserted.
522*/
danielk19774adee202004-05-08 08:23:19 +0000523int sqlite3VdbeCurrentAddr(Vdbe *p){
drh9a324642003-09-06 20:12:01 +0000524 assert( p->magic==VDBE_MAGIC_INIT );
525 return p->nOp;
526}
527
dan65a7cd12009-09-01 12:16:01 +0000528/*
529** This function returns a pointer to the array of opcodes associated with
530** the Vdbe passed as the first argument. It is the callers responsibility
531** to arrange for the returned array to be eventually freed using the
532** vdbeFreeOpArray() function.
533**
534** Before returning, *pnOp is set to the number of entries in the returned
535** array. Also, *pnMaxArg is set to the larger of its current value and
536** the number of entries in the Vdbe.apArg[] array required to execute the
537** returned program.
538*/
dan165921a2009-08-28 18:53:45 +0000539VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
540 VdbeOp *aOp = p->aOp;
dan523a0872009-08-31 05:23:32 +0000541 assert( aOp && !p->db->mallocFailed );
dan65a7cd12009-09-01 12:16:01 +0000542
543 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
drha7ab6d82014-07-21 15:44:39 +0000544 assert( DbMaskAllZero(p->btreeMask) );
dan65a7cd12009-09-01 12:16:01 +0000545
dan165921a2009-08-28 18:53:45 +0000546 resolveP2Values(p, pnMaxArg);
547 *pnOp = p->nOp;
548 p->aOp = 0;
549 return aOp;
550}
551
drh9a324642003-09-06 20:12:01 +0000552/*
553** Add a whole list of operations to the operation stack. Return the
554** address of the first operation added.
555*/
drh688852a2014-02-17 22:40:43 +0000556int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp, int iLineno){
drh9a324642003-09-06 20:12:01 +0000557 int addr;
558 assert( p->magic==VDBE_MAGIC_INIT );
dan76ccd892014-08-12 13:38:52 +0000559 if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){
drh76ff3a02004-09-24 22:32:30 +0000560 return 0;
drh9a324642003-09-06 20:12:01 +0000561 }
562 addr = p->nOp;
drh7b746032009-06-26 12:15:22 +0000563 if( ALWAYS(nOp>0) ){
drh9a324642003-09-06 20:12:01 +0000564 int i;
drh905793e2004-02-21 13:31:09 +0000565 VdbeOpList const *pIn = aOp;
566 for(i=0; i<nOp; i++, pIn++){
567 int p2 = pIn->p2;
568 VdbeOp *pOut = &p->aOp[i+addr];
569 pOut->opcode = pIn->opcode;
570 pOut->p1 = pIn->p1;
drh4308e342013-11-11 16:55:52 +0000571 if( p2<0 ){
572 assert( sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP );
drh8558cde2008-01-05 05:20:10 +0000573 pOut->p2 = addr + ADDR(p2);
574 }else{
575 pOut->p2 = p2;
576 }
drh24003452008-01-03 01:28:59 +0000577 pOut->p3 = pIn->p3;
578 pOut->p4type = P4_NOTUSED;
579 pOut->p4.p = 0;
580 pOut->p5 = 0;
drhc7379ce2013-10-30 02:28:23 +0000581#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drh26c9b5e2008-04-11 14:56:53 +0000582 pOut->zComment = 0;
drhc7379ce2013-10-30 02:28:23 +0000583#endif
drh688852a2014-02-17 22:40:43 +0000584#ifdef SQLITE_VDBE_COVERAGE
585 pOut->iSrcLine = iLineno+i;
586#else
587 (void)iLineno;
588#endif
drhc7379ce2013-10-30 02:28:23 +0000589#ifdef SQLITE_DEBUG
drhe0962052013-01-29 19:14:31 +0000590 if( p->db->flags & SQLITE_VdbeAddopTrace ){
danielk19774adee202004-05-08 08:23:19 +0000591 sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
drh9a324642003-09-06 20:12:01 +0000592 }
593#endif
594 }
595 p->nOp += nOp;
596 }
597 return addr;
598}
599
danf533dbe2014-10-23 17:26:22 +0000600#if defined(SQLITE_DEBUG) && defined(SQLITE_ENABLE_LOOPCOUNTERS)
601void sqlite3VdbeLoopCounter(
602 Vdbe *p,
603 int addrExplain,
604 int addrTest,
605 int addrBody
606){
607 int nByte = (p->nLoop+1) * sizeof(LoopCounter);
608 if( addrTest>=0 ){
609 p->aLoop = (LoopCounter*)sqlite3DbReallocOrFree(p->db, p->aLoop, nByte);
610 p->nLoop++;
611 }
612 if( p->aLoop ){
613 LoopCounter *pNew = &p->aLoop[p->nLoop-1];
614 pNew->addrExplain = addrExplain;
615 if( addrTest>=0 ){
616 pNew->addrTest = addrTest;
617 pNew->addrBody = addrBody;
618 }
619 }
620}
621#endif
622
drh9a324642003-09-06 20:12:01 +0000623/*
624** Change the value of the P1 operand for a specific instruction.
625** This routine is useful when a large program is loaded from a
danielk19774adee202004-05-08 08:23:19 +0000626** static array using sqlite3VdbeAddOpList but we want to make a
drh9a324642003-09-06 20:12:01 +0000627** few minor changes to the program.
628*/
drh88caeac2011-08-24 15:12:08 +0000629void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
drh7b746032009-06-26 12:15:22 +0000630 assert( p!=0 );
drh88caeac2011-08-24 15:12:08 +0000631 if( ((u32)p->nOp)>addr ){
drh9a324642003-09-06 20:12:01 +0000632 p->aOp[addr].p1 = val;
633 }
634}
635
636/*
637** Change the value of the P2 operand for a specific instruction.
638** This routine is useful for setting a jump destination.
639*/
drh88caeac2011-08-24 15:12:08 +0000640void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
drh7b746032009-06-26 12:15:22 +0000641 assert( p!=0 );
drh88caeac2011-08-24 15:12:08 +0000642 if( ((u32)p->nOp)>addr ){
drh9a324642003-09-06 20:12:01 +0000643 p->aOp[addr].p2 = val;
644 }
645}
646
drhd654be82005-09-20 17:42:23 +0000647/*
danielk19771f4aa332008-01-03 09:51:55 +0000648** Change the value of the P3 operand for a specific instruction.
danielk1977207872a2008-01-03 07:54:23 +0000649*/
drh88caeac2011-08-24 15:12:08 +0000650void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
drh7b746032009-06-26 12:15:22 +0000651 assert( p!=0 );
drh88caeac2011-08-24 15:12:08 +0000652 if( ((u32)p->nOp)>addr ){
danielk1977207872a2008-01-03 07:54:23 +0000653 p->aOp[addr].p3 = val;
654 }
655}
656
657/*
drh35573352008-01-08 23:54:25 +0000658** Change the value of the P5 operand for the most recently
659** added operation.
danielk19771f4aa332008-01-03 09:51:55 +0000660*/
drh35573352008-01-08 23:54:25 +0000661void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
drh7b746032009-06-26 12:15:22 +0000662 assert( p!=0 );
663 if( p->aOp ){
drh35573352008-01-08 23:54:25 +0000664 assert( p->nOp>0 );
665 p->aOp[p->nOp-1].p5 = val;
danielk19771f4aa332008-01-03 09:51:55 +0000666 }
667}
668
669/*
drhf8875402006-03-17 13:56:34 +0000670** Change the P2 operand of instruction addr so that it points to
drhd654be82005-09-20 17:42:23 +0000671** the address of the next instruction to be coded.
672*/
673void sqlite3VdbeJumpHere(Vdbe *p, int addr){
drh61019c72014-01-04 16:49:02 +0000674 sqlite3VdbeChangeP2(p, addr, p->nOp);
675 p->pParse->iFixedOp = p->nOp - 1;
drhd654be82005-09-20 17:42:23 +0000676}
drhb38ad992005-09-16 00:27:01 +0000677
drhb7f6f682006-07-08 17:06:43 +0000678
679/*
680** If the input FuncDef structure is ephemeral, then free it. If
681** the FuncDef is not ephermal, then do nothing.
682*/
drh633e6d52008-07-28 19:34:53 +0000683static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
drhd36e1042013-09-06 13:10:12 +0000684 if( ALWAYS(pDef) && (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
drh633e6d52008-07-28 19:34:53 +0000685 sqlite3DbFree(db, pDef);
drhb7f6f682006-07-08 17:06:43 +0000686 }
687}
688
dand46def72010-07-24 11:28:28 +0000689static void vdbeFreeOpArray(sqlite3 *, Op *, int);
690
drhb38ad992005-09-16 00:27:01 +0000691/*
drh66a51672008-01-03 00:01:23 +0000692** Delete a P4 value if necessary.
drhb38ad992005-09-16 00:27:01 +0000693*/
drh633e6d52008-07-28 19:34:53 +0000694static void freeP4(sqlite3 *db, int p4type, void *p4){
drh0acb7e42008-06-25 00:12:41 +0000695 if( p4 ){
dand46def72010-07-24 11:28:28 +0000696 assert( db );
drh66a51672008-01-03 00:01:23 +0000697 switch( p4type ){
698 case P4_REAL:
699 case P4_INT64:
drh66a51672008-01-03 00:01:23 +0000700 case P4_DYNAMIC:
drh2ec2fb22013-11-06 19:59:23 +0000701 case P4_INTARRAY: {
drh633e6d52008-07-28 19:34:53 +0000702 sqlite3DbFree(db, p4);
drhac1733d2005-09-17 17:58:22 +0000703 break;
704 }
drh2ec2fb22013-11-06 19:59:23 +0000705 case P4_KEYINFO: {
706 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
707 break;
708 }
drhb9755982010-07-24 16:34:37 +0000709 case P4_MPRINTF: {
drh7043db92010-07-26 12:38:12 +0000710 if( db->pnBytesFreed==0 ) sqlite3_free(p4);
drhb9755982010-07-24 16:34:37 +0000711 break;
712 }
drh66a51672008-01-03 00:01:23 +0000713 case P4_FUNCDEF: {
drh633e6d52008-07-28 19:34:53 +0000714 freeEphemeralFunction(db, (FuncDef*)p4);
drhb7f6f682006-07-08 17:06:43 +0000715 break;
716 }
drh66a51672008-01-03 00:01:23 +0000717 case P4_MEM: {
drhc176c272010-07-26 13:57:59 +0000718 if( db->pnBytesFreed==0 ){
719 sqlite3ValueFree((sqlite3_value*)p4);
720 }else{
drhf37c68e2010-07-26 14:20:06 +0000721 Mem *p = (Mem*)p4;
drh17bcb102014-09-18 21:25:33 +0000722 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
drhf37c68e2010-07-26 14:20:06 +0000723 sqlite3DbFree(db, p);
drhc176c272010-07-26 13:57:59 +0000724 }
drhac1733d2005-09-17 17:58:22 +0000725 break;
726 }
danielk1977595a5232009-07-24 17:58:53 +0000727 case P4_VTAB : {
dand46def72010-07-24 11:28:28 +0000728 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
danielk1977595a5232009-07-24 17:58:53 +0000729 break;
730 }
drhb38ad992005-09-16 00:27:01 +0000731 }
732 }
733}
734
dan65a7cd12009-09-01 12:16:01 +0000735/*
736** Free the space allocated for aOp and any p4 values allocated for the
737** opcodes contained within. If aOp is not NULL it is assumed to contain
738** nOp entries.
739*/
dan165921a2009-08-28 18:53:45 +0000740static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
741 if( aOp ){
742 Op *pOp;
743 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
744 freeP4(db, pOp->p4type, pOp->p4.p);
drhc7379ce2013-10-30 02:28:23 +0000745#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
dan165921a2009-08-28 18:53:45 +0000746 sqlite3DbFree(db, pOp->zComment);
747#endif
748 }
749 }
750 sqlite3DbFree(db, aOp);
751}
752
dan65a7cd12009-09-01 12:16:01 +0000753/*
dand19c9332010-07-26 12:05:17 +0000754** Link the SubProgram object passed as the second argument into the linked
755** list at Vdbe.pSubProgram. This list is used to delete all sub-program
756** objects when the VM is no longer required.
dan65a7cd12009-09-01 12:16:01 +0000757*/
dand19c9332010-07-26 12:05:17 +0000758void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
759 p->pNext = pVdbe->pProgram;
760 pVdbe->pProgram = p;
dan165921a2009-08-28 18:53:45 +0000761}
762
drh9a324642003-09-06 20:12:01 +0000763/*
drh48f2d3b2011-09-16 01:34:43 +0000764** Change the opcode at addr into OP_Noop
drhf8875402006-03-17 13:56:34 +0000765*/
drh48f2d3b2011-09-16 01:34:43 +0000766void sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
dan76ccd892014-08-12 13:38:52 +0000767 if( addr<p->nOp ){
danielk197792d4d7a2007-05-04 12:05:56 +0000768 VdbeOp *pOp = &p->aOp[addr];
drh633e6d52008-07-28 19:34:53 +0000769 sqlite3 *db = p->db;
drh48f2d3b2011-09-16 01:34:43 +0000770 freeP4(db, pOp->p4type, pOp->p4.p);
771 memset(pOp, 0, sizeof(pOp[0]));
772 pOp->opcode = OP_Noop;
drh313619f2013-10-31 20:34:06 +0000773 if( addr==p->nOp-1 ) p->nOp--;
drhf8875402006-03-17 13:56:34 +0000774 }
775}
776
777/*
drh39c4b822014-09-29 15:42:01 +0000778** If the last opcode is "op" and it is not a jump destination,
779** then remove it. Return true if and only if an opcode was removed.
drh762c1c42014-01-02 19:35:30 +0000780*/
drh61019c72014-01-04 16:49:02 +0000781int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
782 if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){
783 sqlite3VdbeChangeToNoop(p, p->nOp-1);
784 return 1;
785 }else{
786 return 0;
787 }
drh762c1c42014-01-02 19:35:30 +0000788}
789
790/*
drh66a51672008-01-03 00:01:23 +0000791** Change the value of the P4 operand for a specific instruction.
drh9a324642003-09-06 20:12:01 +0000792** This routine is useful when a large program is loaded from a
danielk19774adee202004-05-08 08:23:19 +0000793** static array using sqlite3VdbeAddOpList but we want to make a
drh9a324642003-09-06 20:12:01 +0000794** few minor changes to the program.
795**
drh66a51672008-01-03 00:01:23 +0000796** If n>=0 then the P4 operand is dynamic, meaning that a copy of
drh17435752007-08-16 04:30:38 +0000797** the string is made into memory obtained from sqlite3_malloc().
drh66a51672008-01-03 00:01:23 +0000798** A value of n==0 means copy bytes of zP4 up to and including the
799** first null byte. If n>0 then copy n+1 bytes of zP4.
danielk19771f55c052005-05-19 08:42:59 +0000800**
drh66a51672008-01-03 00:01:23 +0000801** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
danielk19771f55c052005-05-19 08:42:59 +0000802** to a string or structure that is guaranteed to exist for the lifetime of
803** the Vdbe. In these cases we can just copy the pointer.
drh9a324642003-09-06 20:12:01 +0000804**
drh66a51672008-01-03 00:01:23 +0000805** If addr<0 then change P4 on the most recently inserted instruction.
drh9a324642003-09-06 20:12:01 +0000806*/
drh66a51672008-01-03 00:01:23 +0000807void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
drh9a324642003-09-06 20:12:01 +0000808 Op *pOp;
drh633e6d52008-07-28 19:34:53 +0000809 sqlite3 *db;
drh91fd4d42008-01-19 20:11:25 +0000810 assert( p!=0 );
drh633e6d52008-07-28 19:34:53 +0000811 db = p->db;
drh91fd4d42008-01-19 20:11:25 +0000812 assert( p->magic==VDBE_MAGIC_INIT );
drh633e6d52008-07-28 19:34:53 +0000813 if( p->aOp==0 || db->mallocFailed ){
drh2ec2fb22013-11-06 19:59:23 +0000814 if( n!=P4_VTAB ){
drh633e6d52008-07-28 19:34:53 +0000815 freeP4(db, n, (void*)*(char**)&zP4);
danielk1977261919c2005-12-06 12:52:59 +0000816 }
danielk1977d5d56522005-03-16 12:15:20 +0000817 return;
818 }
drh7b746032009-06-26 12:15:22 +0000819 assert( p->nOp>0 );
drh91fd4d42008-01-19 20:11:25 +0000820 assert( addr<p->nOp );
821 if( addr<0 ){
drh9a324642003-09-06 20:12:01 +0000822 addr = p->nOp - 1;
drh9a324642003-09-06 20:12:01 +0000823 }
824 pOp = &p->aOp[addr];
drh079a3072014-03-19 14:10:55 +0000825 assert( pOp->p4type==P4_NOTUSED
826 || pOp->p4type==P4_INT32
827 || pOp->p4type==P4_KEYINFO );
drh633e6d52008-07-28 19:34:53 +0000828 freeP4(db, pOp->p4type, pOp->p4.p);
drh66a51672008-01-03 00:01:23 +0000829 pOp->p4.p = 0;
drh98757152008-01-09 23:04:12 +0000830 if( n==P4_INT32 ){
mlcreech12d40822008-03-06 07:35:21 +0000831 /* Note: this cast is safe, because the origin data point was an int
832 ** that was cast to a (const char *). */
shane1fc41292008-07-08 22:28:48 +0000833 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
drh8df32842008-12-09 02:51:23 +0000834 pOp->p4type = P4_INT32;
drh98757152008-01-09 23:04:12 +0000835 }else if( zP4==0 ){
drh66a51672008-01-03 00:01:23 +0000836 pOp->p4.p = 0;
837 pOp->p4type = P4_NOTUSED;
838 }else if( n==P4_KEYINFO ){
danielk19772dca4ac2008-01-03 11:50:29 +0000839 pOp->p4.p = (void*)zP4;
drh66a51672008-01-03 00:01:23 +0000840 pOp->p4type = P4_KEYINFO;
danielk1977595a5232009-07-24 17:58:53 +0000841 }else if( n==P4_VTAB ){
842 pOp->p4.p = (void*)zP4;
843 pOp->p4type = P4_VTAB;
844 sqlite3VtabLock((VTable *)zP4);
845 assert( ((VTable *)zP4)->db==p->db );
drh9a324642003-09-06 20:12:01 +0000846 }else if( n<0 ){
danielk19772dca4ac2008-01-03 11:50:29 +0000847 pOp->p4.p = (void*)zP4;
drh8df32842008-12-09 02:51:23 +0000848 pOp->p4type = (signed char)n;
drh9a324642003-09-06 20:12:01 +0000849 }else{
drhea678832008-12-10 19:26:22 +0000850 if( n==0 ) n = sqlite3Strlen30(zP4);
danielk19772dca4ac2008-01-03 11:50:29 +0000851 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
drh66a51672008-01-03 00:01:23 +0000852 pOp->p4type = P4_DYNAMIC;
drh9a324642003-09-06 20:12:01 +0000853 }
854}
855
drh2ec2fb22013-11-06 19:59:23 +0000856/*
857** Set the P4 on the most recently added opcode to the KeyInfo for the
858** index given.
859*/
860void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
861 Vdbe *v = pParse->pVdbe;
862 assert( v!=0 );
863 assert( pIdx!=0 );
864 sqlite3VdbeChangeP4(v, -1, (char*)sqlite3KeyInfoOfIndex(pParse, pIdx),
865 P4_KEYINFO);
866}
867
drhc7379ce2013-10-30 02:28:23 +0000868#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drhad6d9462004-09-19 02:15:24 +0000869/*
mistachkind5578432012-08-25 10:01:29 +0000870** Change the comment on the most recently coded instruction. Or
drh16ee60f2008-06-20 18:13:25 +0000871** insert a No-op and add the comment to that new instruction. This
872** makes the code easier to read during debugging. None of this happens
873** in a production build.
drhad6d9462004-09-19 02:15:24 +0000874*/
drhb07028f2011-10-14 21:49:18 +0000875static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
danielk197701256832007-04-18 14:24:32 +0000876 assert( p->nOp>0 || p->aOp==0 );
drhd4e70eb2008-01-02 00:34:36 +0000877 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
danielk1977dba01372008-01-05 18:44:29 +0000878 if( p->nOp ){
drhb07028f2011-10-14 21:49:18 +0000879 assert( p->aOp );
880 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
881 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
882 }
883}
884void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
885 va_list ap;
886 if( p ){
danielk1977dba01372008-01-05 18:44:29 +0000887 va_start(ap, zFormat);
drhb07028f2011-10-14 21:49:18 +0000888 vdbeVComment(p, zFormat, ap);
danielk1977dba01372008-01-05 18:44:29 +0000889 va_end(ap);
890 }
drhad6d9462004-09-19 02:15:24 +0000891}
drh16ee60f2008-06-20 18:13:25 +0000892void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
893 va_list ap;
drhb07028f2011-10-14 21:49:18 +0000894 if( p ){
895 sqlite3VdbeAddOp0(p, OP_Noop);
drh16ee60f2008-06-20 18:13:25 +0000896 va_start(ap, zFormat);
drhb07028f2011-10-14 21:49:18 +0000897 vdbeVComment(p, zFormat, ap);
drh16ee60f2008-06-20 18:13:25 +0000898 va_end(ap);
899 }
900}
901#endif /* NDEBUG */
drhad6d9462004-09-19 02:15:24 +0000902
drh688852a2014-02-17 22:40:43 +0000903#ifdef SQLITE_VDBE_COVERAGE
904/*
905** Set the value if the iSrcLine field for the previously coded instruction.
906*/
907void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
908 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
909}
910#endif /* SQLITE_VDBE_COVERAGE */
911
drh9a324642003-09-06 20:12:01 +0000912/*
drh20411ea2009-05-29 19:00:12 +0000913** Return the opcode for a given address. If the address is -1, then
914** return the most recently inserted opcode.
915**
916** If a memory allocation error has occurred prior to the calling of this
917** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
drhf83dc1e2010-06-03 12:09:52 +0000918** is readable but not writable, though it is cast to a writable value.
919** The return of a dummy opcode allows the call to continue functioning
peter.d.reid60ec9142014-09-06 16:39:46 +0000920** after an OOM fault without having to check to see if the return from
drhf83dc1e2010-06-03 12:09:52 +0000921** this routine is a valid pointer. But because the dummy.opcode is 0,
922** dummy will never be written to. This is verified by code inspection and
923** by running with Valgrind.
drh9a324642003-09-06 20:12:01 +0000924*/
danielk19774adee202004-05-08 08:23:19 +0000925VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
drha0b75da2010-07-02 18:44:37 +0000926 /* C89 specifies that the constant "dummy" will be initialized to all
927 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
mistachkin0fe5f952011-09-14 18:19:08 +0000928 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
drh9a324642003-09-06 20:12:01 +0000929 assert( p->magic==VDBE_MAGIC_INIT );
drh37b89a02009-06-19 00:33:31 +0000930 if( addr<0 ){
drh37b89a02009-06-19 00:33:31 +0000931 addr = p->nOp - 1;
932 }
drh17435752007-08-16 04:30:38 +0000933 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
drh20411ea2009-05-29 19:00:12 +0000934 if( p->db->mallocFailed ){
drhf83dc1e2010-06-03 12:09:52 +0000935 return (VdbeOp*)&dummy;
drh20411ea2009-05-29 19:00:12 +0000936 }else{
937 return &p->aOp[addr];
938 }
drh9a324642003-09-06 20:12:01 +0000939}
940
drhc7379ce2013-10-30 02:28:23 +0000941#if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
drh81316f82013-10-29 20:40:47 +0000942/*
drhf63552b2013-10-30 00:25:03 +0000943** Return an integer value for one of the parameters to the opcode pOp
944** determined by character c.
945*/
946static int translateP(char c, const Op *pOp){
947 if( c=='1' ) return pOp->p1;
948 if( c=='2' ) return pOp->p2;
949 if( c=='3' ) return pOp->p3;
950 if( c=='4' ) return pOp->p4.i;
951 return pOp->p5;
952}
953
drh81316f82013-10-29 20:40:47 +0000954/*
drh4eded602013-12-20 15:59:20 +0000955** Compute a string for the "comment" field of a VDBE opcode listing.
956**
957** The Synopsis: field in comments in the vdbe.c source file gets converted
958** to an extra string that is appended to the sqlite3OpcodeName(). In the
959** absence of other comments, this synopsis becomes the comment on the opcode.
960** Some translation occurs:
961**
962** "PX" -> "r[X]"
963** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
964** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
965** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
drh81316f82013-10-29 20:40:47 +0000966*/
drhf63552b2013-10-30 00:25:03 +0000967static int displayComment(
968 const Op *pOp, /* The opcode to be commented */
969 const char *zP4, /* Previously obtained value for P4 */
970 char *zTemp, /* Write result here */
971 int nTemp /* Space available in zTemp[] */
972){
drh81316f82013-10-29 20:40:47 +0000973 const char *zOpName;
974 const char *zSynopsis;
975 int nOpName;
976 int ii, jj;
977 zOpName = sqlite3OpcodeName(pOp->opcode);
978 nOpName = sqlite3Strlen30(zOpName);
979 if( zOpName[nOpName+1] ){
980 int seenCom = 0;
drhf63552b2013-10-30 00:25:03 +0000981 char c;
drh81316f82013-10-29 20:40:47 +0000982 zSynopsis = zOpName += nOpName + 1;
drhf63552b2013-10-30 00:25:03 +0000983 for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
984 if( c=='P' ){
985 c = zSynopsis[++ii];
986 if( c=='4' ){
987 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
988 }else if( c=='X' ){
989 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
990 seenCom = 1;
drh81316f82013-10-29 20:40:47 +0000991 }else{
drhf63552b2013-10-30 00:25:03 +0000992 int v1 = translateP(c, pOp);
993 int v2;
994 sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
995 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
996 ii += 3;
997 jj += sqlite3Strlen30(zTemp+jj);
998 v2 = translateP(zSynopsis[ii], pOp);
drh4eded602013-12-20 15:59:20 +0000999 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1000 ii += 2;
1001 v2++;
1002 }
1003 if( v2>1 ){
1004 sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
1005 }
drhf63552b2013-10-30 00:25:03 +00001006 }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1007 ii += 4;
1008 }
drh81316f82013-10-29 20:40:47 +00001009 }
1010 jj += sqlite3Strlen30(zTemp+jj);
1011 }else{
drhf63552b2013-10-30 00:25:03 +00001012 zTemp[jj++] = c;
drh81316f82013-10-29 20:40:47 +00001013 }
1014 }
1015 if( !seenCom && jj<nTemp-5 && pOp->zComment ){
1016 sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
1017 jj += sqlite3Strlen30(zTemp+jj);
1018 }
1019 if( jj<nTemp ) zTemp[jj] = 0;
1020 }else if( pOp->zComment ){
1021 sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
1022 jj = sqlite3Strlen30(zTemp);
1023 }else{
1024 zTemp[0] = 0;
1025 jj = 0;
1026 }
1027 return jj;
1028}
1029#endif /* SQLITE_DEBUG */
1030
1031
drhb7f91642004-10-31 02:22:47 +00001032#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
1033 || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
drh9a324642003-09-06 20:12:01 +00001034/*
drh66a51672008-01-03 00:01:23 +00001035** Compute a string that describes the P4 parameter for an opcode.
drhd3d39e92004-05-20 22:16:29 +00001036** Use zTemp for any required temporary buffer space.
1037*/
drh66a51672008-01-03 00:01:23 +00001038static char *displayP4(Op *pOp, char *zTemp, int nTemp){
1039 char *zP4 = zTemp;
drhd3d39e92004-05-20 22:16:29 +00001040 assert( nTemp>=20 );
drh66a51672008-01-03 00:01:23 +00001041 switch( pOp->p4type ){
1042 case P4_KEYINFO: {
drhd3d39e92004-05-20 22:16:29 +00001043 int i, j;
danielk19772dca4ac2008-01-03 11:50:29 +00001044 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
drhe1a022e2012-09-17 17:16:53 +00001045 assert( pKeyInfo->aSortOrder!=0 );
drh5b843aa2013-10-30 13:46:01 +00001046 sqlite3_snprintf(nTemp, zTemp, "k(%d", pKeyInfo->nField);
drhea678832008-12-10 19:26:22 +00001047 i = sqlite3Strlen30(zTemp);
drhd3d39e92004-05-20 22:16:29 +00001048 for(j=0; j<pKeyInfo->nField; j++){
1049 CollSeq *pColl = pKeyInfo->aColl[j];
drh261d8a52012-12-08 21:36:26 +00001050 const char *zColl = pColl ? pColl->zName : "nil";
1051 int n = sqlite3Strlen30(zColl);
drh5b843aa2013-10-30 13:46:01 +00001052 if( n==6 && memcmp(zColl,"BINARY",6)==0 ){
1053 zColl = "B";
1054 n = 1;
1055 }
drh261d8a52012-12-08 21:36:26 +00001056 if( i+n>nTemp-6 ){
1057 memcpy(&zTemp[i],",...",4);
1058 break;
drhd3d39e92004-05-20 22:16:29 +00001059 }
drh261d8a52012-12-08 21:36:26 +00001060 zTemp[i++] = ',';
1061 if( pKeyInfo->aSortOrder[j] ){
1062 zTemp[i++] = '-';
1063 }
1064 memcpy(&zTemp[i], zColl, n+1);
1065 i += n;
drhd3d39e92004-05-20 22:16:29 +00001066 }
1067 zTemp[i++] = ')';
1068 zTemp[i] = 0;
1069 assert( i<nTemp );
drhd3d39e92004-05-20 22:16:29 +00001070 break;
1071 }
drh66a51672008-01-03 00:01:23 +00001072 case P4_COLLSEQ: {
danielk19772dca4ac2008-01-03 11:50:29 +00001073 CollSeq *pColl = pOp->p4.pColl;
drh5e6790c2013-11-12 20:18:14 +00001074 sqlite3_snprintf(nTemp, zTemp, "(%.20s)", pColl->zName);
drhd3d39e92004-05-20 22:16:29 +00001075 break;
1076 }
drh66a51672008-01-03 00:01:23 +00001077 case P4_FUNCDEF: {
danielk19772dca4ac2008-01-03 11:50:29 +00001078 FuncDef *pDef = pOp->p4.pFunc;
drha967e882006-06-13 01:04:52 +00001079 sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
drhf9b596e2004-05-26 16:54:42 +00001080 break;
1081 }
drh66a51672008-01-03 00:01:23 +00001082 case P4_INT64: {
danielk19772dca4ac2008-01-03 11:50:29 +00001083 sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
drhd4e70eb2008-01-02 00:34:36 +00001084 break;
1085 }
drh66a51672008-01-03 00:01:23 +00001086 case P4_INT32: {
1087 sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
drh598f1342007-10-23 15:39:45 +00001088 break;
1089 }
drh66a51672008-01-03 00:01:23 +00001090 case P4_REAL: {
danielk19772dca4ac2008-01-03 11:50:29 +00001091 sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
drhd4e70eb2008-01-02 00:34:36 +00001092 break;
1093 }
drh66a51672008-01-03 00:01:23 +00001094 case P4_MEM: {
danielk19772dca4ac2008-01-03 11:50:29 +00001095 Mem *pMem = pOp->p4.pMem;
drhd4e70eb2008-01-02 00:34:36 +00001096 if( pMem->flags & MEM_Str ){
drh66a51672008-01-03 00:01:23 +00001097 zP4 = pMem->z;
drhd4e70eb2008-01-02 00:34:36 +00001098 }else if( pMem->flags & MEM_Int ){
1099 sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
1100 }else if( pMem->flags & MEM_Real ){
drh74eaba42014-09-18 17:52:15 +00001101 sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->u.r);
drhb8475df2011-12-09 16:21:19 +00001102 }else if( pMem->flags & MEM_Null ){
1103 sqlite3_snprintf(nTemp, zTemp, "NULL");
drh56016892009-08-25 14:24:04 +00001104 }else{
1105 assert( pMem->flags & MEM_Blob );
1106 zP4 = "(blob)";
drhd4e70eb2008-01-02 00:34:36 +00001107 }
drh598f1342007-10-23 15:39:45 +00001108 break;
1109 }
drha967e882006-06-13 01:04:52 +00001110#ifndef SQLITE_OMIT_VIRTUALTABLE
drh66a51672008-01-03 00:01:23 +00001111 case P4_VTAB: {
danielk1977595a5232009-07-24 17:58:53 +00001112 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
drh19146192006-06-26 19:10:32 +00001113 sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
drha967e882006-06-13 01:04:52 +00001114 break;
1115 }
1116#endif
drh0acb7e42008-06-25 00:12:41 +00001117 case P4_INTARRAY: {
1118 sqlite3_snprintf(nTemp, zTemp, "intarray");
1119 break;
1120 }
dan165921a2009-08-28 18:53:45 +00001121 case P4_SUBPROGRAM: {
1122 sqlite3_snprintf(nTemp, zTemp, "program");
1123 break;
1124 }
drh4a6f3aa2011-08-28 00:19:26 +00001125 case P4_ADVANCE: {
1126 zTemp[0] = 0;
1127 break;
1128 }
drhd3d39e92004-05-20 22:16:29 +00001129 default: {
danielk19772dca4ac2008-01-03 11:50:29 +00001130 zP4 = pOp->p4.z;
drh949f9cd2008-01-12 21:35:57 +00001131 if( zP4==0 ){
drh66a51672008-01-03 00:01:23 +00001132 zP4 = zTemp;
drhd4e70eb2008-01-02 00:34:36 +00001133 zTemp[0] = 0;
drhd3d39e92004-05-20 22:16:29 +00001134 }
1135 }
1136 }
drh66a51672008-01-03 00:01:23 +00001137 assert( zP4!=0 );
drh66a51672008-01-03 00:01:23 +00001138 return zP4;
drhd3d39e92004-05-20 22:16:29 +00001139}
drhb7f91642004-10-31 02:22:47 +00001140#endif
drhd3d39e92004-05-20 22:16:29 +00001141
drh900b31e2007-08-28 02:27:51 +00001142/*
drhd0679ed2007-08-28 22:24:34 +00001143** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
drh3ebaee92010-05-06 21:37:22 +00001144**
drhbdaec522011-04-04 00:14:43 +00001145** The prepared statements need to know in advance the complete set of
drhe4c88c02012-01-04 12:57:45 +00001146** attached databases that will be use. A mask of these databases
1147** is maintained in p->btreeMask. The p->lockMask value is the subset of
1148** p->btreeMask of databases that will require a lock.
drh900b31e2007-08-28 02:27:51 +00001149*/
drhfb982642007-08-30 01:19:59 +00001150void sqlite3VdbeUsesBtree(Vdbe *p, int i){
drhfcd71b62011-04-05 22:08:24 +00001151 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
danielk197700e13612008-11-17 19:18:54 +00001152 assert( i<(int)sizeof(p->btreeMask)*8 );
drha7ab6d82014-07-21 15:44:39 +00001153 DbMaskSet(p->btreeMask, i);
drhdc5b0472011-04-06 22:05:53 +00001154 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
drha7ab6d82014-07-21 15:44:39 +00001155 DbMaskSet(p->lockMask, i);
drhdc5b0472011-04-06 22:05:53 +00001156 }
drh900b31e2007-08-28 02:27:51 +00001157}
1158
drhe54e0512011-04-05 17:31:56 +00001159#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
drhbdaec522011-04-04 00:14:43 +00001160/*
1161** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1162** this routine obtains the mutex associated with each BtShared structure
1163** that may be accessed by the VM passed as an argument. In doing so it also
1164** sets the BtShared.db member of each of the BtShared structures, ensuring
1165** that the correct busy-handler callback is invoked if required.
1166**
1167** If SQLite is not threadsafe but does support shared-cache mode, then
1168** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1169** of all of BtShared structures accessible via the database handle
1170** associated with the VM.
1171**
1172** If SQLite is not threadsafe and does not support shared-cache mode, this
1173** function is a no-op.
1174**
1175** The p->btreeMask field is a bitmask of all btrees that the prepared
1176** statement p will ever use. Let N be the number of bits in p->btreeMask
1177** corresponding to btrees that use shared cache. Then the runtime of
1178** this routine is N*N. But as N is rarely more than 1, this should not
1179** be a problem.
1180*/
1181void sqlite3VdbeEnter(Vdbe *p){
drhbdaec522011-04-04 00:14:43 +00001182 int i;
drhdc5b0472011-04-06 22:05:53 +00001183 sqlite3 *db;
1184 Db *aDb;
1185 int nDb;
drha7ab6d82014-07-21 15:44:39 +00001186 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
drhdc5b0472011-04-06 22:05:53 +00001187 db = p->db;
1188 aDb = db->aDb;
1189 nDb = db->nDb;
drha7ab6d82014-07-21 15:44:39 +00001190 for(i=0; i<nDb; i++){
1191 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
drhbdaec522011-04-04 00:14:43 +00001192 sqlite3BtreeEnter(aDb[i].pBt);
1193 }
1194 }
drhbdaec522011-04-04 00:14:43 +00001195}
drhe54e0512011-04-05 17:31:56 +00001196#endif
drhbdaec522011-04-04 00:14:43 +00001197
drhe54e0512011-04-05 17:31:56 +00001198#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
drhbdaec522011-04-04 00:14:43 +00001199/*
1200** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1201*/
1202void sqlite3VdbeLeave(Vdbe *p){
drhbdaec522011-04-04 00:14:43 +00001203 int i;
drhdc5b0472011-04-06 22:05:53 +00001204 sqlite3 *db;
1205 Db *aDb;
1206 int nDb;
drha7ab6d82014-07-21 15:44:39 +00001207 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
drhdc5b0472011-04-06 22:05:53 +00001208 db = p->db;
1209 aDb = db->aDb;
1210 nDb = db->nDb;
drha7ab6d82014-07-21 15:44:39 +00001211 for(i=0; i<nDb; i++){
1212 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
drhbdaec522011-04-04 00:14:43 +00001213 sqlite3BtreeLeave(aDb[i].pBt);
1214 }
1215 }
drhbdaec522011-04-04 00:14:43 +00001216}
drhbdaec522011-04-04 00:14:43 +00001217#endif
drhd3d39e92004-05-20 22:16:29 +00001218
danielk19778b60e0f2005-01-12 09:10:39 +00001219#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
drh9a324642003-09-06 20:12:01 +00001220/*
1221** Print a single opcode. This routine is used for debugging only.
1222*/
danielk19774adee202004-05-08 08:23:19 +00001223void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
drh66a51672008-01-03 00:01:23 +00001224 char *zP4;
drhd3d39e92004-05-20 22:16:29 +00001225 char zPtr[50];
drh81316f82013-10-29 20:40:47 +00001226 char zCom[100];
drh26198bb2013-10-31 11:15:09 +00001227 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
drh9a324642003-09-06 20:12:01 +00001228 if( pOut==0 ) pOut = stdout;
drh66a51672008-01-03 00:01:23 +00001229 zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
drhc7379ce2013-10-30 02:28:23 +00001230#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drh81316f82013-10-29 20:40:47 +00001231 displayComment(pOp, zP4, zCom, sizeof(zCom));
1232#else
drh2926f962014-02-17 01:13:28 +00001233 zCom[0] = 0;
drh81316f82013-10-29 20:40:47 +00001234#endif
drh4eded602013-12-20 15:59:20 +00001235 /* NB: The sqlite3OpcodeName() function is implemented by code created
1236 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1237 ** information from the vdbe.c source text */
danielk197711641c12008-01-03 08:18:30 +00001238 fprintf(pOut, zFormat1, pc,
drh1db639c2008-01-17 02:36:28 +00001239 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
drh81316f82013-10-29 20:40:47 +00001240 zCom
drh1db639c2008-01-17 02:36:28 +00001241 );
drh9a324642003-09-06 20:12:01 +00001242 fflush(pOut);
1243}
1244#endif
1245
1246/*
drh76ff3a02004-09-24 22:32:30 +00001247** Release an array of N Mem elements
1248*/
drhc890fec2008-08-01 20:10:08 +00001249static void releaseMemArray(Mem *p, int N){
danielk1977a7a8e142008-02-13 18:25:27 +00001250 if( p && N ){
drh069c23c2014-09-19 16:13:12 +00001251 Mem *pEnd = &p[N];
danielk1977a7a8e142008-02-13 18:25:27 +00001252 sqlite3 *db = p->db;
drh8df32842008-12-09 02:51:23 +00001253 u8 malloc_failed = db->mallocFailed;
dand46def72010-07-24 11:28:28 +00001254 if( db->pnBytesFreed ){
drh069c23c2014-09-19 16:13:12 +00001255 do{
drh17bcb102014-09-18 21:25:33 +00001256 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
drh069c23c2014-09-19 16:13:12 +00001257 }while( (++p)<pEnd );
drhc176c272010-07-26 13:57:59 +00001258 return;
1259 }
drh069c23c2014-09-19 16:13:12 +00001260 do{
danielk1977e972e032008-09-19 18:32:26 +00001261 assert( (&p[1])==pEnd || p[0].db==p[1].db );
drh75fd0542014-03-01 16:24:44 +00001262 assert( sqlite3VdbeCheckMemInvariants(p) );
danielk1977e972e032008-09-19 18:32:26 +00001263
1264 /* This block is really an inlined version of sqlite3VdbeMemRelease()
1265 ** that takes advantage of the fact that the memory cell value is
1266 ** being set to NULL after releasing any dynamic resources.
1267 **
1268 ** The justification for duplicating code is that according to
1269 ** callgrind, this causes a certain test case to hit the CPU 4.7
1270 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1271 ** sqlite3MemRelease() were called from here. With -O2, this jumps
1272 ** to 6.6 percent. The test case is inserting 1000 rows into a table
1273 ** with no indexes using a single prepared INSERT statement, bind()
1274 ** and reset(). Inserts are grouped into a transaction.
1275 */
drhb6e8fd12014-03-06 01:56:33 +00001276 testcase( p->flags & MEM_Agg );
1277 testcase( p->flags & MEM_Dyn );
1278 testcase( p->flags & MEM_Frame );
1279 testcase( p->flags & MEM_RowSet );
dan165921a2009-08-28 18:53:45 +00001280 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
danielk1977e972e032008-09-19 18:32:26 +00001281 sqlite3VdbeMemRelease(p);
drh17bcb102014-09-18 21:25:33 +00001282 }else if( p->szMalloc ){
danielk1977e972e032008-09-19 18:32:26 +00001283 sqlite3DbFree(db, p->zMalloc);
drh17bcb102014-09-18 21:25:33 +00001284 p->szMalloc = 0;
danielk1977e972e032008-09-19 18:32:26 +00001285 }
1286
drha5750cf2014-02-07 13:20:31 +00001287 p->flags = MEM_Undefined;
drh069c23c2014-09-19 16:13:12 +00001288 }while( (++p)<pEnd );
danielk1977a7a8e142008-02-13 18:25:27 +00001289 db->mallocFailed = malloc_failed;
drh76ff3a02004-09-24 22:32:30 +00001290 }
1291}
1292
dan65a7cd12009-09-01 12:16:01 +00001293/*
1294** Delete a VdbeFrame object and its contents. VdbeFrame objects are
1295** allocated by the OP_Program opcode in sqlite3VdbeExec().
1296*/
dan165921a2009-08-28 18:53:45 +00001297void sqlite3VdbeFrameDelete(VdbeFrame *p){
1298 int i;
1299 Mem *aMem = VdbeFrameMem(p);
1300 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
1301 for(i=0; i<p->nChildCsr; i++){
1302 sqlite3VdbeFreeCursor(p->v, apCsr[i]);
1303 }
1304 releaseMemArray(aMem, p->nChildMem);
1305 sqlite3DbFree(p->v->db, p);
1306}
1307
drhb7f91642004-10-31 02:22:47 +00001308#ifndef SQLITE_OMIT_EXPLAIN
drh76ff3a02004-09-24 22:32:30 +00001309/*
drh9a324642003-09-06 20:12:01 +00001310** Give a listing of the program in the virtual machine.
1311**
danielk19774adee202004-05-08 08:23:19 +00001312** The interface is the same as sqlite3VdbeExec(). But instead of
drh9a324642003-09-06 20:12:01 +00001313** running the code, it invokes the callback once for each instruction.
1314** This feature is used to implement "EXPLAIN".
drh9cbf3422008-01-17 16:22:13 +00001315**
1316** When p->explain==1, each instruction is listed. When
1317** p->explain==2, only OP_Explain instructions are listed and these
1318** are shown in a different format. p->explain==2 is used to implement
1319** EXPLAIN QUERY PLAN.
drh5cfa5842009-12-31 20:35:08 +00001320**
1321** When p->explain==1, first the main program is listed, then each of
1322** the trigger subprograms are listed one by one.
drh9a324642003-09-06 20:12:01 +00001323*/
danielk19774adee202004-05-08 08:23:19 +00001324int sqlite3VdbeList(
drh9a324642003-09-06 20:12:01 +00001325 Vdbe *p /* The VDBE */
1326){
drh5cfa5842009-12-31 20:35:08 +00001327 int nRow; /* Stop when row count reaches this */
dan165921a2009-08-28 18:53:45 +00001328 int nSub = 0; /* Number of sub-vdbes seen so far */
1329 SubProgram **apSub = 0; /* Array of sub-vdbes */
drh5cfa5842009-12-31 20:35:08 +00001330 Mem *pSub = 0; /* Memory cell hold array of subprogs */
1331 sqlite3 *db = p->db; /* The database connection */
1332 int i; /* Loop counter */
1333 int rc = SQLITE_OK; /* Return code */
drh9734e6e2011-10-07 18:24:25 +00001334 Mem *pMem = &p->aMem[1]; /* First Mem of result set */
drh9a324642003-09-06 20:12:01 +00001335
drh9a324642003-09-06 20:12:01 +00001336 assert( p->explain );
drh5f82e3c2009-07-06 00:44:08 +00001337 assert( p->magic==VDBE_MAGIC_RUN );
danielk19776c359f02008-11-21 16:58:03 +00001338 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
danielk197718f41892004-05-22 07:27:46 +00001339
drh9cbf3422008-01-17 16:22:13 +00001340 /* Even though this opcode does not use dynamic strings for
1341 ** the result, result columns may become dynamic if the user calls
drh4f26d6c2004-05-26 23:25:30 +00001342 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
danielk197718f41892004-05-22 07:27:46 +00001343 */
dan165921a2009-08-28 18:53:45 +00001344 releaseMemArray(pMem, 8);
drh9734e6e2011-10-07 18:24:25 +00001345 p->pResultSet = 0;
danielk197718f41892004-05-22 07:27:46 +00001346
danielk19776c359f02008-11-21 16:58:03 +00001347 if( p->rc==SQLITE_NOMEM ){
1348 /* This happens if a malloc() inside a call to sqlite3_column_text() or
1349 ** sqlite3_column_text16() failed. */
1350 db->mallocFailed = 1;
1351 return SQLITE_ERROR;
1352 }
1353
drh5cfa5842009-12-31 20:35:08 +00001354 /* When the number of output rows reaches nRow, that means the
1355 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1356 ** nRow is the sum of the number of rows in the main program, plus
1357 ** the sum of the number of rows in all trigger subprograms encountered
1358 ** so far. The nRow value will increase as new trigger subprograms are
1359 ** encountered, but p->pc will eventually catch up to nRow.
1360 */
dan165921a2009-08-28 18:53:45 +00001361 nRow = p->nOp;
1362 if( p->explain==1 ){
drh5cfa5842009-12-31 20:35:08 +00001363 /* The first 8 memory cells are used for the result set. So we will
1364 ** commandeer the 9th cell to use as storage for an array of pointers
1365 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
1366 ** cells. */
1367 assert( p->nMem>9 );
dan165921a2009-08-28 18:53:45 +00001368 pSub = &p->aMem[9];
1369 if( pSub->flags&MEM_Blob ){
drh5cfa5842009-12-31 20:35:08 +00001370 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is
1371 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
dan165921a2009-08-28 18:53:45 +00001372 nSub = pSub->n/sizeof(Vdbe*);
1373 apSub = (SubProgram **)pSub->z;
1374 }
1375 for(i=0; i<nSub; i++){
1376 nRow += apSub[i]->nOp;
1377 }
1378 }
1379
drhecc92422005-09-10 16:46:12 +00001380 do{
1381 i = p->pc++;
dan165921a2009-08-28 18:53:45 +00001382 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
1383 if( i>=nRow ){
drh826fb5a2004-02-14 23:59:57 +00001384 p->rc = SQLITE_OK;
1385 rc = SQLITE_DONE;
drh881feaa2006-07-26 01:39:30 +00001386 }else if( db->u1.isInterrupted ){
drhc5cdca62005-01-11 16:54:14 +00001387 p->rc = SQLITE_INTERRUPT;
drh826fb5a2004-02-14 23:59:57 +00001388 rc = SQLITE_ERROR;
drhf089aa42008-07-08 19:34:06 +00001389 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc));
drh826fb5a2004-02-14 23:59:57 +00001390 }else{
drh81316f82013-10-29 20:40:47 +00001391 char *zP4;
dan165921a2009-08-28 18:53:45 +00001392 Op *pOp;
1393 if( i<p->nOp ){
drh5cfa5842009-12-31 20:35:08 +00001394 /* The output line number is small enough that we are still in the
1395 ** main program. */
dan165921a2009-08-28 18:53:45 +00001396 pOp = &p->aOp[i];
1397 }else{
drh5cfa5842009-12-31 20:35:08 +00001398 /* We are currently listing subprograms. Figure out which one and
1399 ** pick up the appropriate opcode. */
dan165921a2009-08-28 18:53:45 +00001400 int j;
1401 i -= p->nOp;
1402 for(j=0; i>=apSub[j]->nOp; j++){
1403 i -= apSub[j]->nOp;
1404 }
1405 pOp = &apSub[j]->aOp[i];
1406 }
danielk19770d78bae2008-01-03 07:09:48 +00001407 if( p->explain==1 ){
1408 pMem->flags = MEM_Int;
danielk19770d78bae2008-01-03 07:09:48 +00001409 pMem->u.i = i; /* Program counter */
1410 pMem++;
1411
1412 pMem->flags = MEM_Static|MEM_Str|MEM_Term;
drh81316f82013-10-29 20:40:47 +00001413 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
danielk19770d78bae2008-01-03 07:09:48 +00001414 assert( pMem->z!=0 );
drhea678832008-12-10 19:26:22 +00001415 pMem->n = sqlite3Strlen30(pMem->z);
danielk19770d78bae2008-01-03 07:09:48 +00001416 pMem->enc = SQLITE_UTF8;
1417 pMem++;
dan165921a2009-08-28 18:53:45 +00001418
drh5cfa5842009-12-31 20:35:08 +00001419 /* When an OP_Program opcode is encounter (the only opcode that has
1420 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
1421 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
1422 ** has not already been seen.
1423 */
dan165921a2009-08-28 18:53:45 +00001424 if( pOp->p4type==P4_SUBPROGRAM ){
1425 int nByte = (nSub+1)*sizeof(SubProgram*);
1426 int j;
1427 for(j=0; j<nSub; j++){
1428 if( apSub[j]==pOp->p4.pProgram ) break;
1429 }
dan2b9ee772012-03-31 09:59:44 +00001430 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){
dan165921a2009-08-28 18:53:45 +00001431 apSub = (SubProgram **)pSub->z;
1432 apSub[nSub++] = pOp->p4.pProgram;
1433 pSub->flags |= MEM_Blob;
1434 pSub->n = nSub*sizeof(SubProgram*);
1435 }
1436 }
danielk19770d78bae2008-01-03 07:09:48 +00001437 }
drheb2e1762004-05-27 01:53:56 +00001438
1439 pMem->flags = MEM_Int;
drh3c024d62007-03-30 11:23:45 +00001440 pMem->u.i = pOp->p1; /* P1 */
drheb2e1762004-05-27 01:53:56 +00001441 pMem++;
1442
1443 pMem->flags = MEM_Int;
drh3c024d62007-03-30 11:23:45 +00001444 pMem->u.i = pOp->p2; /* P2 */
drheb2e1762004-05-27 01:53:56 +00001445 pMem++;
1446
dan2ce22452010-11-08 19:01:16 +00001447 pMem->flags = MEM_Int;
1448 pMem->u.i = pOp->p3; /* P3 */
dan2ce22452010-11-08 19:01:16 +00001449 pMem++;
danielk19770d78bae2008-01-03 07:09:48 +00001450
drh322f2852014-09-19 00:43:39 +00001451 if( sqlite3VdbeMemClearAndResize(pMem, 32) ){ /* P4 */
danielk1977357864e2009-03-25 15:43:08 +00001452 assert( p->db->mallocFailed );
1453 return SQLITE_ERROR;
danielk1977a7a8e142008-02-13 18:25:27 +00001454 }
drhc91b2fd2014-03-01 18:13:23 +00001455 pMem->flags = MEM_Str|MEM_Term;
drh81316f82013-10-29 20:40:47 +00001456 zP4 = displayP4(pOp, pMem->z, 32);
1457 if( zP4!=pMem->z ){
1458 sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
danielk1977a7a8e142008-02-13 18:25:27 +00001459 }else{
1460 assert( pMem->z!=0 );
drhea678832008-12-10 19:26:22 +00001461 pMem->n = sqlite3Strlen30(pMem->z);
danielk1977a7a8e142008-02-13 18:25:27 +00001462 pMem->enc = SQLITE_UTF8;
1463 }
danielk19770d78bae2008-01-03 07:09:48 +00001464 pMem++;
drheb2e1762004-05-27 01:53:56 +00001465
danielk19770d78bae2008-01-03 07:09:48 +00001466 if( p->explain==1 ){
drh322f2852014-09-19 00:43:39 +00001467 if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
danielk1977357864e2009-03-25 15:43:08 +00001468 assert( p->db->mallocFailed );
1469 return SQLITE_ERROR;
danielk1977a7a8e142008-02-13 18:25:27 +00001470 }
drhc91b2fd2014-03-01 18:13:23 +00001471 pMem->flags = MEM_Str|MEM_Term;
drh85e5f0d2008-02-19 18:28:13 +00001472 pMem->n = 2;
1473 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
danielk19770d78bae2008-01-03 07:09:48 +00001474 pMem->enc = SQLITE_UTF8;
1475 pMem++;
1476
drhc7379ce2013-10-30 02:28:23 +00001477#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
drh322f2852014-09-19 00:43:39 +00001478 if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
drh81316f82013-10-29 20:40:47 +00001479 assert( p->db->mallocFailed );
1480 return SQLITE_ERROR;
drh52391cb2008-02-14 23:44:13 +00001481 }
drhc91b2fd2014-03-01 18:13:23 +00001482 pMem->flags = MEM_Str|MEM_Term;
drh81316f82013-10-29 20:40:47 +00001483 pMem->n = displayComment(pOp, zP4, pMem->z, 500);
drh81316f82013-10-29 20:40:47 +00001484 pMem->enc = SQLITE_UTF8;
1485#else
1486 pMem->flags = MEM_Null; /* Comment */
drh81316f82013-10-29 20:40:47 +00001487#endif
danielk19770d78bae2008-01-03 07:09:48 +00001488 }
1489
dan2ce22452010-11-08 19:01:16 +00001490 p->nResColumn = 8 - 4*(p->explain-1);
drh9734e6e2011-10-07 18:24:25 +00001491 p->pResultSet = &p->aMem[1];
drh826fb5a2004-02-14 23:59:57 +00001492 p->rc = SQLITE_OK;
1493 rc = SQLITE_ROW;
drh9a324642003-09-06 20:12:01 +00001494 }
drh826fb5a2004-02-14 23:59:57 +00001495 return rc;
drh9a324642003-09-06 20:12:01 +00001496}
drhb7f91642004-10-31 02:22:47 +00001497#endif /* SQLITE_OMIT_EXPLAIN */
drh9a324642003-09-06 20:12:01 +00001498
drh7c4ac0c2007-04-05 11:25:58 +00001499#ifdef SQLITE_DEBUG
drh9a324642003-09-06 20:12:01 +00001500/*
drh3f7d4e42004-07-24 14:35:58 +00001501** Print the SQL that was used to generate a VDBE program.
1502*/
1503void sqlite3VdbePrintSql(Vdbe *p){
drh84e55a82013-11-13 17:58:23 +00001504 const char *z = 0;
1505 if( p->zSql ){
1506 z = p->zSql;
1507 }else if( p->nOp>=1 ){
1508 const VdbeOp *pOp = &p->aOp[0];
drhaceb31b2014-02-08 01:40:27 +00001509 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
drh84e55a82013-11-13 17:58:23 +00001510 z = pOp->p4.z;
1511 while( sqlite3Isspace(*z) ) z++;
1512 }
drh3f7d4e42004-07-24 14:35:58 +00001513 }
drh84e55a82013-11-13 17:58:23 +00001514 if( z ) printf("SQL: [%s]\n", z);
drh3f7d4e42004-07-24 14:35:58 +00001515}
drh7c4ac0c2007-04-05 11:25:58 +00001516#endif
drh3f7d4e42004-07-24 14:35:58 +00001517
drh602c2372007-03-01 00:29:13 +00001518#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
1519/*
1520** Print an IOTRACE message showing SQL content.
1521*/
1522void sqlite3VdbeIOTraceSql(Vdbe *p){
1523 int nOp = p->nOp;
1524 VdbeOp *pOp;
mlcreech3a00f902008-03-04 17:45:01 +00001525 if( sqlite3IoTrace==0 ) return;
drh602c2372007-03-01 00:29:13 +00001526 if( nOp<1 ) return;
drh949f9cd2008-01-12 21:35:57 +00001527 pOp = &p->aOp[0];
drhaceb31b2014-02-08 01:40:27 +00001528 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
drh602c2372007-03-01 00:29:13 +00001529 int i, j;
drh00a18e42007-08-13 11:10:34 +00001530 char z[1000];
drh949f9cd2008-01-12 21:35:57 +00001531 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
danielk197778ca0e72009-01-20 16:53:39 +00001532 for(i=0; sqlite3Isspace(z[i]); i++){}
drh602c2372007-03-01 00:29:13 +00001533 for(j=0; z[i]; i++){
danielk197778ca0e72009-01-20 16:53:39 +00001534 if( sqlite3Isspace(z[i]) ){
drh602c2372007-03-01 00:29:13 +00001535 if( z[i-1]!=' ' ){
1536 z[j++] = ' ';
1537 }
1538 }else{
1539 z[j++] = z[i];
1540 }
1541 }
1542 z[j] = 0;
mlcreech3a00f902008-03-04 17:45:01 +00001543 sqlite3IoTrace("SQL %s\n", z);
drh602c2372007-03-01 00:29:13 +00001544 }
1545}
1546#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
1547
drhb2771ce2009-02-20 01:28:59 +00001548/*
drh4800b2e2009-12-08 15:35:22 +00001549** Allocate space from a fixed size buffer and return a pointer to
1550** that space. If insufficient space is available, return NULL.
1551**
1552** The pBuf parameter is the initial value of a pointer which will
1553** receive the new memory. pBuf is normally NULL. If pBuf is not
1554** NULL, it means that memory space has already been allocated and that
1555** this routine should not allocate any new memory. When pBuf is not
1556** NULL simply return pBuf. Only allocate new memory space when pBuf
1557** is NULL.
drhb2771ce2009-02-20 01:28:59 +00001558**
1559** nByte is the number of bytes of space needed.
1560**
drh19875c82009-12-08 19:58:19 +00001561** *ppFrom points to available space and pEnd points to the end of the
1562** available space. When space is allocated, *ppFrom is advanced past
1563** the end of the allocated space.
drhb2771ce2009-02-20 01:28:59 +00001564**
1565** *pnByte is a counter of the number of bytes of space that have failed
1566** to allocate. If there is insufficient space in *ppFrom to satisfy the
danielk1977d336e222009-02-20 10:58:41 +00001567** request, then increment *pnByte by the amount of the request.
drhb2771ce2009-02-20 01:28:59 +00001568*/
drh4800b2e2009-12-08 15:35:22 +00001569static void *allocSpace(
1570 void *pBuf, /* Where return pointer will be stored */
drhb2771ce2009-02-20 01:28:59 +00001571 int nByte, /* Number of bytes to allocate */
1572 u8 **ppFrom, /* IN/OUT: Allocate from *ppFrom */
danielk1977d336e222009-02-20 10:58:41 +00001573 u8 *pEnd, /* Pointer to 1 byte past the end of *ppFrom buffer */
drhb2771ce2009-02-20 01:28:59 +00001574 int *pnByte /* If allocation cannot be made, increment *pnByte */
1575){
drhea598cb2009-04-05 12:22:08 +00001576 assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) );
drh4800b2e2009-12-08 15:35:22 +00001577 if( pBuf ) return pBuf;
1578 nByte = ROUND8(nByte);
1579 if( &(*ppFrom)[nByte] <= pEnd ){
1580 pBuf = (void*)*ppFrom;
1581 *ppFrom += nByte;
1582 }else{
1583 *pnByte += nByte;
drhb2771ce2009-02-20 01:28:59 +00001584 }
drh4800b2e2009-12-08 15:35:22 +00001585 return pBuf;
drhb2771ce2009-02-20 01:28:59 +00001586}
drh602c2372007-03-01 00:29:13 +00001587
drh3f7d4e42004-07-24 14:35:58 +00001588/*
drh124c0b42011-06-01 18:15:55 +00001589** Rewind the VDBE back to the beginning in preparation for
1590** running it.
drh9a324642003-09-06 20:12:01 +00001591*/
drh124c0b42011-06-01 18:15:55 +00001592void sqlite3VdbeRewind(Vdbe *p){
1593#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1594 int i;
1595#endif
drh9a324642003-09-06 20:12:01 +00001596 assert( p!=0 );
drh9a324642003-09-06 20:12:01 +00001597 assert( p->magic==VDBE_MAGIC_INIT );
1598
drhc16a03b2004-09-15 13:38:10 +00001599 /* There should be at least one opcode.
drh9a324642003-09-06 20:12:01 +00001600 */
drhc16a03b2004-09-15 13:38:10 +00001601 assert( p->nOp>0 );
drh9a324642003-09-06 20:12:01 +00001602
danielk197700e13612008-11-17 19:18:54 +00001603 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
danielk1977634f2982005-03-28 08:44:07 +00001604 p->magic = VDBE_MAGIC_RUN;
1605
drh124c0b42011-06-01 18:15:55 +00001606#ifdef SQLITE_DEBUG
1607 for(i=1; i<p->nMem; i++){
1608 assert( p->aMem[i].db==p->db );
1609 }
1610#endif
1611 p->pc = -1;
1612 p->rc = SQLITE_OK;
1613 p->errorAction = OE_Abort;
1614 p->magic = VDBE_MAGIC_RUN;
1615 p->nChange = 0;
1616 p->cacheCtr = 1;
1617 p->minWriteFileFormat = 255;
1618 p->iStatement = 0;
1619 p->nFkConstraint = 0;
1620#ifdef VDBE_PROFILE
1621 for(i=0; i<p->nOp; i++){
1622 p->aOp[i].cnt = 0;
1623 p->aOp[i].cycles = 0;
1624 }
1625#endif
1626}
1627
1628/*
1629** Prepare a virtual machine for execution for the first time after
1630** creating the virtual machine. This involves things such
drh7abda852014-09-19 16:02:06 +00001631** as allocating registers and initializing the program counter.
drh124c0b42011-06-01 18:15:55 +00001632** After the VDBE has be prepped, it can be executed by one or more
1633** calls to sqlite3VdbeExec().
1634**
peter.d.reid60ec9142014-09-06 16:39:46 +00001635** This function may be called exactly once on each virtual machine.
drh124c0b42011-06-01 18:15:55 +00001636** After this routine is called the VM has been "packaged" and is ready
peter.d.reid60ec9142014-09-06 16:39:46 +00001637** to run. After this routine is called, further calls to
drh124c0b42011-06-01 18:15:55 +00001638** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
1639** the Vdbe from the Parse object that helped generate it so that the
1640** the Vdbe becomes an independent entity and the Parse object can be
1641** destroyed.
1642**
1643** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
1644** to its initial state after it has been run.
1645*/
1646void sqlite3VdbeMakeReady(
1647 Vdbe *p, /* The VDBE */
1648 Parse *pParse /* Parsing context */
1649){
1650 sqlite3 *db; /* The database connection */
1651 int nVar; /* Number of parameters */
1652 int nMem; /* Number of VM memory registers */
1653 int nCursor; /* Number of cursors required */
1654 int nArg; /* Number of arguments in subprograms */
dan1d8cb212011-12-09 13:24:16 +00001655 int nOnce; /* Number of OP_Once instructions */
drh124c0b42011-06-01 18:15:55 +00001656 int n; /* Loop counter */
1657 u8 *zCsr; /* Memory available for allocation */
1658 u8 *zEnd; /* First byte past allocated memory */
1659 int nByte; /* How much extra memory is needed */
1660
1661 assert( p!=0 );
1662 assert( p->nOp>0 );
1663 assert( pParse!=0 );
1664 assert( p->magic==VDBE_MAGIC_INIT );
drh73d5b8f2013-12-23 19:09:07 +00001665 assert( pParse==p->pParse );
drh124c0b42011-06-01 18:15:55 +00001666 db = p->db;
1667 assert( db->mallocFailed==0 );
1668 nVar = pParse->nVar;
1669 nMem = pParse->nMem;
1670 nCursor = pParse->nTab;
1671 nArg = pParse->nMaxArg;
dan1d8cb212011-12-09 13:24:16 +00001672 nOnce = pParse->nOnce;
drh20e226d2012-01-01 13:58:53 +00001673 if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */
drh124c0b42011-06-01 18:15:55 +00001674
danielk1977cd3e8f72008-03-25 09:47:35 +00001675 /* For each cursor required, also allocate a memory cell. Memory
1676 ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
1677 ** the vdbe program. Instead they are used to allocate space for
drhdfe88ec2008-11-03 20:55:06 +00001678 ** VdbeCursor/BtCursor structures. The blob of memory associated with
danielk1977cd3e8f72008-03-25 09:47:35 +00001679 ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
1680 ** stores the blob of memory associated with cursor 1, etc.
1681 **
1682 ** See also: allocateCursor().
1683 */
1684 nMem += nCursor;
1685
danielk19776ab3a2e2009-02-19 14:39:25 +00001686 /* Allocate space for memory registers, SQL variables, VDBE cursors and
drh124c0b42011-06-01 18:15:55 +00001687 ** an array to marshal SQL function arguments in.
drh9a324642003-09-06 20:12:01 +00001688 */
drh73d5b8f2013-12-23 19:09:07 +00001689 zCsr = (u8*)&p->aOp[p->nOp]; /* Memory avaliable for allocation */
1690 zEnd = (u8*)&p->aOp[pParse->nOpAlloc]; /* First byte past end of zCsr[] */
drh19875c82009-12-08 19:58:19 +00001691
drh124c0b42011-06-01 18:15:55 +00001692 resolveP2Values(p, &nArg);
1693 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
1694 if( pParse->explain && nMem<10 ){
1695 nMem = 10;
1696 }
1697 memset(zCsr, 0, zEnd-zCsr);
1698 zCsr += (zCsr - (u8*)0)&7;
1699 assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
drhaab910c2011-06-27 00:01:22 +00001700 p->expired = 0;
drh124c0b42011-06-01 18:15:55 +00001701
1702 /* Memory for registers, parameters, cursor, etc, is allocated in two
1703 ** passes. On the first pass, we try to reuse unused space at the
1704 ** end of the opcode array. If we are unable to satisfy all memory
1705 ** requirements by reusing the opcode array tail, then the second
1706 ** pass will fill in the rest using a fresh allocation.
1707 **
1708 ** This two-pass approach that reuses as much memory as possible from
1709 ** the leftover space at the end of the opcode array can significantly
1710 ** reduce the amount of memory held by a prepared statement.
1711 */
1712 do {
1713 nByte = 0;
1714 p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
1715 p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
1716 p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
1717 p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
1718 p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
1719 &zCsr, zEnd, &nByte);
drhb8475df2011-12-09 16:21:19 +00001720 p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte);
drh124c0b42011-06-01 18:15:55 +00001721 if( nByte ){
1722 p->pFree = sqlite3DbMallocZero(db, nByte);
drh0f7eb612006-08-08 13:51:43 +00001723 }
drh124c0b42011-06-01 18:15:55 +00001724 zCsr = p->pFree;
1725 zEnd = &zCsr[nByte];
1726 }while( nByte && !db->mallocFailed );
drhb2771ce2009-02-20 01:28:59 +00001727
danf533dbe2014-10-23 17:26:22 +00001728#if defined(SQLITE_DEBUG) && defined(SQLITE_ENABLE_LOOPCOUNTERS)
1729 p->anExec = (int*)sqlite3DbMallocZero(db, sizeof(int) * p->nOp);
1730#endif
1731
drhd2a56232013-01-28 19:00:20 +00001732 p->nCursor = nCursor;
dan1d8cb212011-12-09 13:24:16 +00001733 p->nOnceFlag = nOnce;
drh124c0b42011-06-01 18:15:55 +00001734 if( p->aVar ){
1735 p->nVar = (ynVar)nVar;
1736 for(n=0; n<nVar; n++){
1737 p->aVar[n].flags = MEM_Null;
1738 p->aVar[n].db = db;
danielk197754db47e2004-05-19 10:36:43 +00001739 }
drh82a48512003-09-06 22:45:20 +00001740 }
drh124c0b42011-06-01 18:15:55 +00001741 if( p->azVar ){
1742 p->nzVar = pParse->nzVar;
1743 memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0]));
1744 memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0]));
danielk1977b3bce662005-01-29 08:32:43 +00001745 }
drh124c0b42011-06-01 18:15:55 +00001746 if( p->aMem ){
1747 p->aMem--; /* aMem[] goes from 1..nMem */
1748 p->nMem = nMem; /* not from 0..nMem-1 */
1749 for(n=1; n<=nMem; n++){
drha5750cf2014-02-07 13:20:31 +00001750 p->aMem[n].flags = MEM_Undefined;
drh124c0b42011-06-01 18:15:55 +00001751 p->aMem[n].db = db;
drhcf64d8b2003-12-31 17:57:10 +00001752 }
drh9a324642003-09-06 20:12:01 +00001753 }
drh124c0b42011-06-01 18:15:55 +00001754 p->explain = pParse->explain;
1755 sqlite3VdbeRewind(p);
drh9a324642003-09-06 20:12:01 +00001756}
1757
drh9a324642003-09-06 20:12:01 +00001758/*
danielk1977cd3e8f72008-03-25 09:47:35 +00001759** Close a VDBE cursor and release all the resources that cursor
1760** happens to hold.
drh9a324642003-09-06 20:12:01 +00001761*/
drhdfe88ec2008-11-03 20:55:06 +00001762void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
drh4774b132004-06-12 20:12:51 +00001763 if( pCx==0 ){
1764 return;
1765 }
dana20fde62011-07-12 14:28:05 +00001766 sqlite3VdbeSorterClose(p->db, pCx);
drh9a324642003-09-06 20:12:01 +00001767 if( pCx->pBt ){
danielk19774adee202004-05-08 08:23:19 +00001768 sqlite3BtreeClose(pCx->pBt);
drh34004ce2008-07-11 16:15:17 +00001769 /* The pCx->pCursor will be close automatically, if it exists, by
1770 ** the call above. */
1771 }else if( pCx->pCursor ){
1772 sqlite3BtreeCloseCursor(pCx->pCursor);
drh9a324642003-09-06 20:12:01 +00001773 }
drh9eff6162006-06-12 21:59:13 +00001774#ifndef SQLITE_OMIT_VIRTUALTABLE
drhf526dca2014-10-13 17:42:05 +00001775 else if( pCx->pVtabCursor ){
drh9eff6162006-06-12 21:59:13 +00001776 sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
drh5cc10232013-11-21 01:04:02 +00001777 const sqlite3_module *pModule = pVtabCursor->pVtab->pModule;
danielk1977be718892006-06-23 08:05:19 +00001778 p->inVtabMethod = 1;
drh9eff6162006-06-12 21:59:13 +00001779 pModule->xClose(pVtabCursor);
danielk1977be718892006-06-23 08:05:19 +00001780 p->inVtabMethod = 0;
drh9eff6162006-06-12 21:59:13 +00001781 }
1782#endif
drh9a324642003-09-06 20:12:01 +00001783}
1784
dan65a7cd12009-09-01 12:16:01 +00001785/*
1786** Copy the values stored in the VdbeFrame structure to its Vdbe. This
1787** is used, for example, when a trigger sub-program is halted to restore
1788** control to the main program.
1789*/
dan165921a2009-08-28 18:53:45 +00001790int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
1791 Vdbe *v = pFrame->v;
dan1d8cb212011-12-09 13:24:16 +00001792 v->aOnceFlag = pFrame->aOnceFlag;
1793 v->nOnceFlag = pFrame->nOnceFlag;
dan165921a2009-08-28 18:53:45 +00001794 v->aOp = pFrame->aOp;
1795 v->nOp = pFrame->nOp;
1796 v->aMem = pFrame->aMem;
1797 v->nMem = pFrame->nMem;
1798 v->apCsr = pFrame->apCsr;
1799 v->nCursor = pFrame->nCursor;
dan76d462e2009-08-30 11:42:51 +00001800 v->db->lastRowid = pFrame->lastRowid;
1801 v->nChange = pFrame->nChange;
dan165921a2009-08-28 18:53:45 +00001802 return pFrame->pc;
1803}
1804
drh9a324642003-09-06 20:12:01 +00001805/*
drh5f82e3c2009-07-06 00:44:08 +00001806** Close all cursors.
dan165921a2009-08-28 18:53:45 +00001807**
1808** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
1809** cell array. This is necessary as the memory cell array may contain
1810** pointers to VdbeFrame objects, which may in turn contain pointers to
1811** open cursors.
drh9a324642003-09-06 20:12:01 +00001812*/
drh5f82e3c2009-07-06 00:44:08 +00001813static void closeAllCursors(Vdbe *p){
dan165921a2009-08-28 18:53:45 +00001814 if( p->pFrame ){
drh23272752011-03-06 21:54:33 +00001815 VdbeFrame *pFrame;
dan165921a2009-08-28 18:53:45 +00001816 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
1817 sqlite3VdbeFrameRestore(pFrame);
drhf526dca2014-10-13 17:42:05 +00001818 p->pFrame = 0;
1819 p->nFrame = 0;
dan165921a2009-08-28 18:53:45 +00001820 }
drhf526dca2014-10-13 17:42:05 +00001821 assert( p->nFrame==0 );
dan165921a2009-08-28 18:53:45 +00001822
dan523a0872009-08-31 05:23:32 +00001823 if( p->apCsr ){
1824 int i;
1825 for(i=0; i<p->nCursor; i++){
1826 VdbeCursor *pC = p->apCsr[i];
1827 if( pC ){
1828 sqlite3VdbeFreeCursor(p, pC);
1829 p->apCsr[i] = 0;
1830 }
danielk1977be718892006-06-23 08:05:19 +00001831 }
drh9a324642003-09-06 20:12:01 +00001832 }
dan523a0872009-08-31 05:23:32 +00001833 if( p->aMem ){
1834 releaseMemArray(&p->aMem[1], p->nMem);
1835 }
dan27106572010-12-01 08:04:47 +00001836 while( p->pDelFrame ){
1837 VdbeFrame *pDel = p->pDelFrame;
1838 p->pDelFrame = pDel->pParent;
1839 sqlite3VdbeFrameDelete(pDel);
1840 }
dan0c547792013-07-18 17:12:08 +00001841
1842 /* Delete any auxdata allocations made by the VM */
drhf526dca2014-10-13 17:42:05 +00001843 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p, -1, 0);
dan0c547792013-07-18 17:12:08 +00001844 assert( p->pAuxData==0 );
drh9a324642003-09-06 20:12:01 +00001845}
1846
1847/*
drh7abda852014-09-19 16:02:06 +00001848** Clean up the VM after a single run.
drh9a324642003-09-06 20:12:01 +00001849*/
drhc890fec2008-08-01 20:10:08 +00001850static void Cleanup(Vdbe *p){
drh633e6d52008-07-28 19:34:53 +00001851 sqlite3 *db = p->db;
dan165921a2009-08-28 18:53:45 +00001852
1853#ifdef SQLITE_DEBUG
1854 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
1855 ** Vdbe.aMem[] arrays have already been cleaned up. */
1856 int i;
drhb8475df2011-12-09 16:21:19 +00001857 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
1858 if( p->aMem ){
drha5750cf2014-02-07 13:20:31 +00001859 for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
drhb8475df2011-12-09 16:21:19 +00001860 }
dan165921a2009-08-28 18:53:45 +00001861#endif
1862
drh633e6d52008-07-28 19:34:53 +00001863 sqlite3DbFree(db, p->zErrMsg);
drh9a324642003-09-06 20:12:01 +00001864 p->zErrMsg = 0;
drhd4e70eb2008-01-02 00:34:36 +00001865 p->pResultSet = 0;
drh9a324642003-09-06 20:12:01 +00001866}
1867
1868/*
danielk197722322fd2004-05-25 23:35:17 +00001869** Set the number of result columns that will be returned by this SQL
1870** statement. This is now set at compile time, rather than during
1871** execution of the vdbe program so that sqlite3_column_count() can
1872** be called on an SQL statement before sqlite3_step().
1873*/
1874void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
drh76ff3a02004-09-24 22:32:30 +00001875 Mem *pColName;
1876 int n;
drh633e6d52008-07-28 19:34:53 +00001877 sqlite3 *db = p->db;
drh4a50aac2007-08-23 02:47:53 +00001878
drhc890fec2008-08-01 20:10:08 +00001879 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
drh633e6d52008-07-28 19:34:53 +00001880 sqlite3DbFree(db, p->aColName);
danielk1977955de522006-02-10 02:27:42 +00001881 n = nResColumn*COLNAME_N;
shane36840fd2009-06-26 16:32:13 +00001882 p->nResColumn = (u16)nResColumn;
drh633e6d52008-07-28 19:34:53 +00001883 p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
drh76ff3a02004-09-24 22:32:30 +00001884 if( p->aColName==0 ) return;
1885 while( n-- > 0 ){
drh4a50aac2007-08-23 02:47:53 +00001886 pColName->flags = MEM_Null;
drh153c62c2007-08-24 03:51:33 +00001887 pColName->db = p->db;
drh4a50aac2007-08-23 02:47:53 +00001888 pColName++;
drh76ff3a02004-09-24 22:32:30 +00001889 }
danielk197722322fd2004-05-25 23:35:17 +00001890}
1891
1892/*
danielk19773cf86062004-05-26 10:11:05 +00001893** Set the name of the idx'th column to be returned by the SQL statement.
1894** zName must be a pointer to a nul terminated string.
1895**
1896** This call must be made after a call to sqlite3VdbeSetNumCols().
1897**
danielk197710fb7492008-10-31 10:53:22 +00001898** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
1899** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
1900** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
danielk19773cf86062004-05-26 10:11:05 +00001901*/
danielk197710fb7492008-10-31 10:53:22 +00001902int sqlite3VdbeSetColName(
1903 Vdbe *p, /* Vdbe being configured */
1904 int idx, /* Index of column zName applies to */
1905 int var, /* One of the COLNAME_* constants */
1906 const char *zName, /* Pointer to buffer containing name */
1907 void (*xDel)(void*) /* Memory management strategy for zName */
1908){
danielk19773cf86062004-05-26 10:11:05 +00001909 int rc;
1910 Mem *pColName;
danielk1977955de522006-02-10 02:27:42 +00001911 assert( idx<p->nResColumn );
1912 assert( var<COLNAME_N );
danielk197710fb7492008-10-31 10:53:22 +00001913 if( p->db->mallocFailed ){
1914 assert( !zName || xDel!=SQLITE_DYNAMIC );
1915 return SQLITE_NOMEM;
1916 }
drh76ff3a02004-09-24 22:32:30 +00001917 assert( p->aColName!=0 );
danielk1977955de522006-02-10 02:27:42 +00001918 pColName = &(p->aColName[idx+var*p->nResColumn]);
danielk197710fb7492008-10-31 10:53:22 +00001919 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
drh0793f1b2008-11-05 17:41:19 +00001920 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
danielk19773cf86062004-05-26 10:11:05 +00001921 return rc;
1922}
1923
danielk197713adf8a2004-06-03 16:08:41 +00001924/*
1925** A read or write transaction may or may not be active on database handle
1926** db. If a transaction is active, commit it. If there is a
1927** write-transaction spanning more than one database file, this routine
1928** takes care of the master journal trickery.
1929*/
danielk19773e3a84d2008-08-01 17:37:40 +00001930static int vdbeCommit(sqlite3 *db, Vdbe *p){
danielk197713adf8a2004-06-03 16:08:41 +00001931 int i;
1932 int nTrans = 0; /* Number of databases with an active write-transaction */
1933 int rc = SQLITE_OK;
1934 int needXcommit = 0;
1935
shane36840fd2009-06-26 16:32:13 +00001936#ifdef SQLITE_OMIT_VIRTUALTABLE
1937 /* With this option, sqlite3VtabSync() is defined to be simply
1938 ** SQLITE_OK so p is not used.
1939 */
1940 UNUSED_PARAMETER(p);
1941#endif
1942
danielk19775bd270b2006-07-25 15:14:52 +00001943 /* Before doing anything else, call the xSync() callback for any
1944 ** virtual module tables written in this transaction. This has to
1945 ** be done before determining whether a master journal file is
1946 ** required, as an xSync() callback may add an attached database
1947 ** to the transaction.
1948 */
dan016f7812013-08-21 17:35:48 +00001949 rc = sqlite3VtabSync(db, p);
danielk19775bd270b2006-07-25 15:14:52 +00001950
1951 /* This loop determines (a) if the commit hook should be invoked and
1952 ** (b) how many database files have open write transactions, not
1953 ** including the temp database. (b) is important because if more than
1954 ** one database file has an open write transaction, a master journal
1955 ** file is required for an atomic commit.
1956 */
drhabfb62f2010-07-30 11:20:35 +00001957 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00001958 Btree *pBt = db->aDb[i].pBt;
drhd0679ed2007-08-28 22:24:34 +00001959 if( sqlite3BtreeIsInTrans(pBt) ){
danielk197713adf8a2004-06-03 16:08:41 +00001960 needXcommit = 1;
1961 if( i!=1 ) nTrans++;
dan6b9bb592012-10-05 19:43:02 +00001962 sqlite3BtreeEnter(pBt);
drhabfb62f2010-07-30 11:20:35 +00001963 rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt));
dan6b9bb592012-10-05 19:43:02 +00001964 sqlite3BtreeLeave(pBt);
danielk197713adf8a2004-06-03 16:08:41 +00001965 }
1966 }
drhabfb62f2010-07-30 11:20:35 +00001967 if( rc!=SQLITE_OK ){
1968 return rc;
1969 }
danielk197713adf8a2004-06-03 16:08:41 +00001970
1971 /* If there are any write-transactions at all, invoke the commit hook */
1972 if( needXcommit && db->xCommitCallback ){
drh92f02c32004-09-02 14:57:08 +00001973 rc = db->xCommitCallback(db->pCommitArg);
drh92f02c32004-09-02 14:57:08 +00001974 if( rc ){
drhd91c1a12013-02-09 13:58:25 +00001975 return SQLITE_CONSTRAINT_COMMITHOOK;
danielk197713adf8a2004-06-03 16:08:41 +00001976 }
1977 }
1978
danielk197740b38dc2004-06-26 08:38:24 +00001979 /* The simple case - no more than one database file (not counting the
1980 ** TEMP database) has a transaction active. There is no need for the
drh2ac3ee92004-06-07 16:27:46 +00001981 ** master-journal.
drhc9e06862004-06-09 20:03:08 +00001982 **
danielk197740b38dc2004-06-26 08:38:24 +00001983 ** If the return value of sqlite3BtreeGetFilename() is a zero length
danielk197717b90b52008-06-06 11:11:25 +00001984 ** string, it means the main database is :memory: or a temp file. In
1985 ** that case we do not support atomic multi-file commits, so use the
1986 ** simple case then too.
danielk197713adf8a2004-06-03 16:08:41 +00001987 */
drhea678832008-12-10 19:26:22 +00001988 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
1989 || nTrans<=1
1990 ){
danielk197704103022009-02-03 16:51:24 +00001991 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00001992 Btree *pBt = db->aDb[i].pBt;
1993 if( pBt ){
drh80e35f42007-03-30 14:06:34 +00001994 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
drh2ac3ee92004-06-07 16:27:46 +00001995 }
1996 }
1997
drh80e35f42007-03-30 14:06:34 +00001998 /* Do the commit only if all databases successfully complete phase 1.
1999 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2000 ** IO error while deleting or truncating a journal file. It is unlikely,
2001 ** but could happen. In this case abandon processing and return the error.
danielk1977979f38e2007-03-27 16:19:51 +00002002 */
2003 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2004 Btree *pBt = db->aDb[i].pBt;
2005 if( pBt ){
dan60939d02011-03-29 15:40:55 +00002006 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
danielk197713adf8a2004-06-03 16:08:41 +00002007 }
danielk1977979f38e2007-03-27 16:19:51 +00002008 }
2009 if( rc==SQLITE_OK ){
danielk1977f9e7dda2006-06-16 16:08:53 +00002010 sqlite3VtabCommit(db);
danielk197713adf8a2004-06-03 16:08:41 +00002011 }
2012 }
2013
2014 /* The complex case - There is a multi-file write-transaction active.
2015 ** This requires a master journal file to ensure the transaction is
peter.d.reid60ec9142014-09-06 16:39:46 +00002016 ** committed atomically.
danielk197713adf8a2004-06-03 16:08:41 +00002017 */
danielk197744ee5bf2005-05-27 09:41:12 +00002018#ifndef SQLITE_OMIT_DISKIO
danielk197713adf8a2004-06-03 16:08:41 +00002019 else{
danielk1977b4b47412007-08-17 15:53:36 +00002020 sqlite3_vfs *pVfs = db->pVfs;
drh2c8997b2005-08-27 16:36:48 +00002021 int needSync = 0;
danielk197713adf8a2004-06-03 16:08:41 +00002022 char *zMaster = 0; /* File-name for the master journal */
2023 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
danielk1977b4b47412007-08-17 15:53:36 +00002024 sqlite3_file *pMaster = 0;
danielk197762079062007-08-15 17:08:46 +00002025 i64 offset = 0;
danielk1977861f7452008-06-05 11:39:11 +00002026 int res;
drhf5808602011-12-16 00:33:04 +00002027 int retryCount = 0;
drh5c531a42011-12-16 01:21:31 +00002028 int nMainFile;
danielk197713adf8a2004-06-03 16:08:41 +00002029
2030 /* Select a master journal file name */
drh5c531a42011-12-16 01:21:31 +00002031 nMainFile = sqlite3Strlen30(zMainFile);
drh52bcde02012-01-03 14:50:45 +00002032 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
drh5c531a42011-12-16 01:21:31 +00002033 if( zMaster==0 ) return SQLITE_NOMEM;
danielk197713adf8a2004-06-03 16:08:41 +00002034 do {
drhdc5ea5c2008-12-10 17:19:59 +00002035 u32 iRandom;
drh84968c02011-12-16 15:11:39 +00002036 if( retryCount ){
2037 if( retryCount>100 ){
2038 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
2039 sqlite3OsDelete(pVfs, zMaster, 0);
2040 break;
2041 }else if( retryCount==1 ){
2042 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
2043 }
danielk197713adf8a2004-06-03 16:08:41 +00002044 }
drh84968c02011-12-16 15:11:39 +00002045 retryCount++;
danielk197713adf8a2004-06-03 16:08:41 +00002046 sqlite3_randomness(sizeof(iRandom), &iRandom);
drh5c531a42011-12-16 01:21:31 +00002047 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
drhf5808602011-12-16 00:33:04 +00002048 (iRandom>>8)&0xffffff, iRandom&0xff);
drhf5808602011-12-16 00:33:04 +00002049 /* The antipenultimate character of the master journal name must
2050 ** be "9" to avoid name collisions when using 8+3 filenames. */
drh5c531a42011-12-16 01:21:31 +00002051 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
drh81cc5162011-05-17 20:36:21 +00002052 sqlite3FileSuffix3(zMainFile, zMaster);
danielk1977861f7452008-06-05 11:39:11 +00002053 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
2054 }while( rc==SQLITE_OK && res );
2055 if( rc==SQLITE_OK ){
drh19db9352008-03-27 22:42:51 +00002056 /* Open the master journal. */
2057 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
2058 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2059 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
2060 );
2061 }
danielk197713adf8a2004-06-03 16:08:41 +00002062 if( rc!=SQLITE_OK ){
drh633e6d52008-07-28 19:34:53 +00002063 sqlite3DbFree(db, zMaster);
danielk197713adf8a2004-06-03 16:08:41 +00002064 return rc;
2065 }
2066
2067 /* Write the name of each database file in the transaction into the new
2068 ** master journal file. If an error occurs at this point close
2069 ** and delete the master journal file. All the individual journal files
2070 ** still have 'null' as the master journal pointer, so they will roll
danielk1977aca790a2005-01-13 11:07:52 +00002071 ** back independently if a failure occurs.
danielk197713adf8a2004-06-03 16:08:41 +00002072 */
danielk19771e536952007-08-16 10:09:01 +00002073 for(i=0; i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00002074 Btree *pBt = db->aDb[i].pBt;
drhd0679ed2007-08-28 22:24:34 +00002075 if( sqlite3BtreeIsInTrans(pBt) ){
danielk19775865e3d2004-06-14 06:03:57 +00002076 char const *zFile = sqlite3BtreeGetJournalname(pBt);
drh8c96a6e2010-08-31 01:09:15 +00002077 if( zFile==0 ){
drhb290e1c2009-12-08 13:36:55 +00002078 continue; /* Ignore TEMP and :memory: databases */
2079 }
drh8c96a6e2010-08-31 01:09:15 +00002080 assert( zFile[0]!=0 );
drh2c8997b2005-08-27 16:36:48 +00002081 if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
2082 needSync = 1;
2083 }
drhea678832008-12-10 19:26:22 +00002084 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
2085 offset += sqlite3Strlen30(zFile)+1;
danielk197713adf8a2004-06-03 16:08:41 +00002086 if( rc!=SQLITE_OK ){
danielk1977fee2d252007-08-18 10:59:19 +00002087 sqlite3OsCloseFree(pMaster);
2088 sqlite3OsDelete(pVfs, zMaster, 0);
drh633e6d52008-07-28 19:34:53 +00002089 sqlite3DbFree(db, zMaster);
danielk197713adf8a2004-06-03 16:08:41 +00002090 return rc;
2091 }
2092 }
2093 }
2094
danielk19779663b8f2007-08-24 11:52:28 +00002095 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
2096 ** flag is set this is not required.
2097 */
danielk1977bea2a942009-01-20 17:06:27 +00002098 if( needSync
2099 && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
2100 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
2101 ){
danielk1977fee2d252007-08-18 10:59:19 +00002102 sqlite3OsCloseFree(pMaster);
2103 sqlite3OsDelete(pVfs, zMaster, 0);
drh633e6d52008-07-28 19:34:53 +00002104 sqlite3DbFree(db, zMaster);
danielk19775865e3d2004-06-14 06:03:57 +00002105 return rc;
2106 }
drhc9e06862004-06-09 20:03:08 +00002107
danielk197713adf8a2004-06-03 16:08:41 +00002108 /* Sync all the db files involved in the transaction. The same call
2109 ** sets the master journal pointer in each individual journal. If
2110 ** an error occurs here, do not delete the master journal file.
2111 **
drh80e35f42007-03-30 14:06:34 +00002112 ** If the error occurs during the first call to
2113 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2114 ** master journal file will be orphaned. But we cannot delete it,
2115 ** in case the master journal file name was written into the journal
shanebe217792009-03-05 04:20:31 +00002116 ** file before the failure occurred.
danielk197713adf8a2004-06-03 16:08:41 +00002117 */
danielk19775bd270b2006-07-25 15:14:52 +00002118 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00002119 Btree *pBt = db->aDb[i].pBt;
drhd0679ed2007-08-28 22:24:34 +00002120 if( pBt ){
drh80e35f42007-03-30 14:06:34 +00002121 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
danielk197713adf8a2004-06-03 16:08:41 +00002122 }
2123 }
danielk1977fee2d252007-08-18 10:59:19 +00002124 sqlite3OsCloseFree(pMaster);
drhabfb62f2010-07-30 11:20:35 +00002125 assert( rc!=SQLITE_BUSY );
danielk19775bd270b2006-07-25 15:14:52 +00002126 if( rc!=SQLITE_OK ){
drh633e6d52008-07-28 19:34:53 +00002127 sqlite3DbFree(db, zMaster);
danielk19775bd270b2006-07-25 15:14:52 +00002128 return rc;
2129 }
danielk197713adf8a2004-06-03 16:08:41 +00002130
danielk1977962398d2004-06-14 09:35:16 +00002131 /* Delete the master journal file. This commits the transaction. After
2132 ** doing this the directory is synced again before any individual
2133 ** transaction files are deleted.
2134 */
danielk1977fee2d252007-08-18 10:59:19 +00002135 rc = sqlite3OsDelete(pVfs, zMaster, 1);
drh633e6d52008-07-28 19:34:53 +00002136 sqlite3DbFree(db, zMaster);
drhc416ba92007-03-30 18:42:55 +00002137 zMaster = 0;
drh29a01382006-08-13 19:04:18 +00002138 if( rc ){
2139 return rc;
2140 }
danielk197713adf8a2004-06-03 16:08:41 +00002141
2142 /* All files and directories have already been synced, so the following
drh80e35f42007-03-30 14:06:34 +00002143 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2144 ** deleting or truncating journals. If something goes wrong while
2145 ** this is happening we don't really care. The integrity of the
2146 ** transaction is already guaranteed, but some stray 'cold' journals
2147 ** may be lying around. Returning an error code won't help matters.
danielk197713adf8a2004-06-03 16:08:41 +00002148 */
danielk1977979f38e2007-03-27 16:19:51 +00002149 disable_simulated_io_errors();
danielk19772d1d86f2008-06-20 14:59:51 +00002150 sqlite3BeginBenignMalloc();
danielk197713adf8a2004-06-03 16:08:41 +00002151 for(i=0; i<db->nDb; i++){
2152 Btree *pBt = db->aDb[i].pBt;
2153 if( pBt ){
dan60939d02011-03-29 15:40:55 +00002154 sqlite3BtreeCommitPhaseTwo(pBt, 1);
danielk197713adf8a2004-06-03 16:08:41 +00002155 }
2156 }
danielk19772d1d86f2008-06-20 14:59:51 +00002157 sqlite3EndBenignMalloc();
danielk1977979f38e2007-03-27 16:19:51 +00002158 enable_simulated_io_errors();
2159
danielk1977f9e7dda2006-06-16 16:08:53 +00002160 sqlite3VtabCommit(db);
danielk197713adf8a2004-06-03 16:08:41 +00002161 }
danielk197744ee5bf2005-05-27 09:41:12 +00002162#endif
danielk1977026d2702004-06-14 13:14:59 +00002163
drh2ac3ee92004-06-07 16:27:46 +00002164 return rc;
danielk197713adf8a2004-06-03 16:08:41 +00002165}
2166
danielk19771d850a72004-05-31 08:26:49 +00002167/*
drh4f7d3a52013-06-27 23:54:02 +00002168** This routine checks that the sqlite3.nVdbeActive count variable
danielk19771d850a72004-05-31 08:26:49 +00002169** matches the number of vdbe's in the list sqlite3.pVdbe that are
2170** currently active. An assertion fails if the two counts do not match.
drh92f02c32004-09-02 14:57:08 +00002171** This is an internal self-check only - it is not an essential processing
2172** step.
danielk19771d850a72004-05-31 08:26:49 +00002173**
2174** This is a no-op if NDEBUG is defined.
2175*/
2176#ifndef NDEBUG
drh9bb575f2004-09-06 17:24:11 +00002177static void checkActiveVdbeCnt(sqlite3 *db){
danielk19771d850a72004-05-31 08:26:49 +00002178 Vdbe *p;
2179 int cnt = 0;
drhad4a4b82008-11-05 16:37:34 +00002180 int nWrite = 0;
drh4f7d3a52013-06-27 23:54:02 +00002181 int nRead = 0;
danielk19771d850a72004-05-31 08:26:49 +00002182 p = db->pVdbe;
2183 while( p ){
dan857745c2014-07-19 17:57:10 +00002184 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
danielk19771d850a72004-05-31 08:26:49 +00002185 cnt++;
drhad4a4b82008-11-05 16:37:34 +00002186 if( p->readOnly==0 ) nWrite++;
drh1713afb2013-06-28 01:24:57 +00002187 if( p->bIsReader ) nRead++;
danielk19771d850a72004-05-31 08:26:49 +00002188 }
2189 p = p->pNext;
2190 }
drh4f7d3a52013-06-27 23:54:02 +00002191 assert( cnt==db->nVdbeActive );
2192 assert( nWrite==db->nVdbeWrite );
2193 assert( nRead==db->nVdbeRead );
danielk19771d850a72004-05-31 08:26:49 +00002194}
2195#else
2196#define checkActiveVdbeCnt(x)
2197#endif
2198
danielk19773cf86062004-05-26 10:11:05 +00002199/*
danielk1977bd434552009-03-18 10:33:00 +00002200** If the Vdbe passed as the first argument opened a statement-transaction,
2201** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2202** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2203** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
drhf7b54962013-05-28 12:11:54 +00002204** statement transaction is committed.
danielk1977bd434552009-03-18 10:33:00 +00002205**
2206** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2207** Otherwise SQLITE_OK.
2208*/
2209int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
danielk1977c926b6a2009-03-20 14:42:11 +00002210 sqlite3 *const db = p->db;
danielk1977bd434552009-03-18 10:33:00 +00002211 int rc = SQLITE_OK;
danielk1977ecaecf92009-07-08 08:05:35 +00002212
danielk1977e4948172009-07-17 17:25:43 +00002213 /* If p->iStatement is greater than zero, then this Vdbe opened a
2214 ** statement transaction that should be closed here. The only exception
mistachkin48864df2013-03-21 21:20:32 +00002215 ** is that an IO error may have occurred, causing an emergency rollback.
danielk1977e4948172009-07-17 17:25:43 +00002216 ** In this case (db->nStatement==0), and there is nothing to do.
2217 */
2218 if( db->nStatement && p->iStatement ){
danielk1977bd434552009-03-18 10:33:00 +00002219 int i;
2220 const int iSavepoint = p->iStatement-1;
danielk1977bd434552009-03-18 10:33:00 +00002221
2222 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2223 assert( db->nStatement>0 );
2224 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2225
2226 for(i=0; i<db->nDb; i++){
2227 int rc2 = SQLITE_OK;
2228 Btree *pBt = db->aDb[i].pBt;
2229 if( pBt ){
2230 if( eOp==SAVEPOINT_ROLLBACK ){
2231 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2232 }
2233 if( rc2==SQLITE_OK ){
2234 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2235 }
2236 if( rc==SQLITE_OK ){
2237 rc = rc2;
2238 }
2239 }
2240 }
2241 db->nStatement--;
2242 p->iStatement = 0;
dan1da40a32009-09-19 17:00:31 +00002243
dana311b802011-04-26 19:21:34 +00002244 if( rc==SQLITE_OK ){
2245 if( eOp==SAVEPOINT_ROLLBACK ){
2246 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2247 }
2248 if( rc==SQLITE_OK ){
2249 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2250 }
2251 }
2252
dan1da40a32009-09-19 17:00:31 +00002253 /* If the statement transaction is being rolled back, also restore the
2254 ** database handles deferred constraint counter to the value it had when
2255 ** the statement transaction was opened. */
2256 if( eOp==SAVEPOINT_ROLLBACK ){
2257 db->nDeferredCons = p->nStmtDefCons;
drh648e2642013-07-11 15:03:32 +00002258 db->nDeferredImmCons = p->nStmtDefImmCons;
dan1da40a32009-09-19 17:00:31 +00002259 }
danielk1977bd434552009-03-18 10:33:00 +00002260 }
2261 return rc;
2262}
2263
2264/*
dan1da40a32009-09-19 17:00:31 +00002265** This function is called when a transaction opened by the database
2266** handle associated with the VM passed as an argument is about to be
2267** committed. If there are outstanding deferred foreign key constraint
2268** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2269**
2270** If there are outstanding FK violations and this function returns
drhd91c1a12013-02-09 13:58:25 +00002271** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2272** and write an error message to it. Then return SQLITE_ERROR.
dan1da40a32009-09-19 17:00:31 +00002273*/
2274#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00002275int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
dan1da40a32009-09-19 17:00:31 +00002276 sqlite3 *db = p->db;
drh648e2642013-07-11 15:03:32 +00002277 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2278 || (!deferred && p->nFkConstraint>0)
2279 ){
drhd91c1a12013-02-09 13:58:25 +00002280 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
dan32b09f22009-09-23 17:29:59 +00002281 p->errorAction = OE_Abort;
drhf9c8ce32013-11-05 13:33:55 +00002282 sqlite3SetString(&p->zErrMsg, db, "FOREIGN KEY constraint failed");
dan1da40a32009-09-19 17:00:31 +00002283 return SQLITE_ERROR;
2284 }
2285 return SQLITE_OK;
2286}
2287#endif
2288
2289/*
drh92f02c32004-09-02 14:57:08 +00002290** This routine is called the when a VDBE tries to halt. If the VDBE
2291** has made changes and is in autocommit mode, then commit those
2292** changes. If a rollback is needed, then do the rollback.
drh9a324642003-09-06 20:12:01 +00002293**
drh92f02c32004-09-02 14:57:08 +00002294** This routine is the only way to move the state of a VM from
drhff0587c2007-08-29 17:43:19 +00002295** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
2296** call this on a VM that is in the SQLITE_MAGIC_HALT state.
drh92f02c32004-09-02 14:57:08 +00002297**
2298** Return an error code. If the commit could not complete because of
2299** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
2300** means the close did not happen and needs to be repeated.
drh9a324642003-09-06 20:12:01 +00002301*/
drhff0587c2007-08-29 17:43:19 +00002302int sqlite3VdbeHalt(Vdbe *p){
danielk1977bd434552009-03-18 10:33:00 +00002303 int rc; /* Used to store transient return codes */
drh9bb575f2004-09-06 17:24:11 +00002304 sqlite3 *db = p->db;
danielk197707cb5602006-01-20 10:55:05 +00002305
2306 /* This function contains the logic that determines if a statement or
2307 ** transaction will be committed or rolled back as a result of the
2308 ** execution of this virtual machine.
2309 **
drh71b890a2007-10-03 15:30:52 +00002310 ** If any of the following errors occur:
danielk197707cb5602006-01-20 10:55:05 +00002311 **
drh71b890a2007-10-03 15:30:52 +00002312 ** SQLITE_NOMEM
2313 ** SQLITE_IOERR
2314 ** SQLITE_FULL
2315 ** SQLITE_INTERRUPT
danielk197707cb5602006-01-20 10:55:05 +00002316 **
drh71b890a2007-10-03 15:30:52 +00002317 ** Then the internal cache might have been left in an inconsistent
2318 ** state. We need to rollback the statement transaction, if there is
2319 ** one, or the complete transaction if there is no statement transaction.
danielk197707cb5602006-01-20 10:55:05 +00002320 */
drh9a324642003-09-06 20:12:01 +00002321
drh17435752007-08-16 04:30:38 +00002322 if( p->db->mallocFailed ){
danielk1977261919c2005-12-06 12:52:59 +00002323 p->rc = SQLITE_NOMEM;
2324 }
drh6e856bc2011-12-09 18:06:44 +00002325 if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag);
drh5f82e3c2009-07-06 00:44:08 +00002326 closeAllCursors(p);
drh92f02c32004-09-02 14:57:08 +00002327 if( p->magic!=VDBE_MAGIC_RUN ){
drh92f02c32004-09-02 14:57:08 +00002328 return SQLITE_OK;
drh9a324642003-09-06 20:12:01 +00002329 }
danielk19771d850a72004-05-31 08:26:49 +00002330 checkActiveVdbeCnt(db);
danielk1977261919c2005-12-06 12:52:59 +00002331
danc0537fe2013-06-28 19:41:43 +00002332 /* No commit or rollback needed if the program never started or if the
2333 ** SQL statement does not read or write a database file. */
2334 if( p->pc>=0 && p->bIsReader ){
drhaac2f552006-09-23 21:44:23 +00002335 int mrc; /* Primary error code from p->rc */
danielk1977bd434552009-03-18 10:33:00 +00002336 int eStatementOp = 0;
2337 int isSpecialError; /* Set to true if a 'special' error */
drhff0587c2007-08-29 17:43:19 +00002338
2339 /* Lock all btrees used by the statement */
drhbdaec522011-04-04 00:14:43 +00002340 sqlite3VdbeEnter(p);
drhff0587c2007-08-29 17:43:19 +00002341
drh71b890a2007-10-03 15:30:52 +00002342 /* Check for one of the special errors */
drhaac2f552006-09-23 21:44:23 +00002343 mrc = p->rc & 0xff;
drh71b890a2007-10-03 15:30:52 +00002344 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
drh77658e22007-12-04 16:54:52 +00002345 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
danielk197707cb5602006-01-20 10:55:05 +00002346 if( isSpecialError ){
dan5653e4d2010-08-12 11:25:47 +00002347 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
2348 ** no rollback is necessary. Otherwise, at least a savepoint
2349 ** transaction must be rolled back to restore the database to a
2350 ** consistent state.
2351 **
2352 ** Even if the statement is read-only, it is important to perform
2353 ** a statement or transaction rollback operation. If the error
mistachkin48864df2013-03-21 21:20:32 +00002354 ** occurred while writing to the journal, sub-journal or database
dan5653e4d2010-08-12 11:25:47 +00002355 ** file as part of an effort to free up cache space (see function
2356 ** pagerStress() in pager.c), the rollback is required to restore
2357 ** the pager to a consistent state.
danielk197707cb5602006-01-20 10:55:05 +00002358 */
drhad4a4b82008-11-05 16:37:34 +00002359 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
drhfa3be902009-07-07 02:44:07 +00002360 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
danielk1977bd434552009-03-18 10:33:00 +00002361 eStatementOp = SAVEPOINT_ROLLBACK;
danielk197707cb5602006-01-20 10:55:05 +00002362 }else{
2363 /* We are forced to roll back the active transaction. Before doing
2364 ** so, abort any other statements this handle currently has active.
2365 */
drh21021a52012-02-13 17:01:51 +00002366 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977fc158bf2009-01-07 08:12:16 +00002367 sqlite3CloseSavepoints(db);
danielk197707cb5602006-01-20 10:55:05 +00002368 db->autoCommit = 1;
2369 }
danielk1977261919c2005-12-06 12:52:59 +00002370 }
2371 }
dan32b09f22009-09-23 17:29:59 +00002372
2373 /* Check for immediate foreign key violations. */
2374 if( p->rc==SQLITE_OK ){
2375 sqlite3VdbeCheckFk(p, 0);
2376 }
danielk197707cb5602006-01-20 10:55:05 +00002377
danielk1977bd434552009-03-18 10:33:00 +00002378 /* If the auto-commit flag is set and this is the only active writer
2379 ** VM, then we do either a commit or rollback of the current transaction.
danielk197707cb5602006-01-20 10:55:05 +00002380 **
2381 ** Note: This block also runs if one of the special errors handled
drhad4a4b82008-11-05 16:37:34 +00002382 ** above has occurred.
danielk197707cb5602006-01-20 10:55:05 +00002383 */
danielk1977093e0f62008-11-13 18:00:14 +00002384 if( !sqlite3VtabInSync(db)
2385 && db->autoCommit
drh4f7d3a52013-06-27 23:54:02 +00002386 && db->nVdbeWrite==(p->readOnly==0)
danielk1977093e0f62008-11-13 18:00:14 +00002387 ){
danielk197707cb5602006-01-20 10:55:05 +00002388 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
dan19611b12011-01-24 16:00:58 +00002389 rc = sqlite3VdbeCheckFk(p, 1);
2390 if( rc!=SQLITE_OK ){
drhe9ce5852011-02-11 22:54:28 +00002391 if( NEVER(p->readOnly) ){
drhbdaec522011-04-04 00:14:43 +00002392 sqlite3VdbeLeave(p);
dan19611b12011-01-24 16:00:58 +00002393 return SQLITE_ERROR;
2394 }
drhd91c1a12013-02-09 13:58:25 +00002395 rc = SQLITE_CONSTRAINT_FOREIGNKEY;
dan19611b12011-01-24 16:00:58 +00002396 }else{
2397 /* The auto-commit flag is true, the vdbe program was successful
2398 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
2399 ** key constraints to hold up the transaction. This means a commit
2400 ** is required. */
2401 rc = vdbeCommit(db, p);
dan1da40a32009-09-19 17:00:31 +00002402 }
dan19611b12011-01-24 16:00:58 +00002403 if( rc==SQLITE_BUSY && p->readOnly ){
drhbdaec522011-04-04 00:14:43 +00002404 sqlite3VdbeLeave(p);
danielk197707cb5602006-01-20 10:55:05 +00002405 return SQLITE_BUSY;
2406 }else if( rc!=SQLITE_OK ){
2407 p->rc = rc;
drh0f198a72012-02-13 16:43:16 +00002408 sqlite3RollbackAll(db, SQLITE_OK);
danielk197707cb5602006-01-20 10:55:05 +00002409 }else{
dan1da40a32009-09-19 17:00:31 +00002410 db->nDeferredCons = 0;
drh648e2642013-07-11 15:03:32 +00002411 db->nDeferredImmCons = 0;
2412 db->flags &= ~SQLITE_DeferFKs;
danielk197707cb5602006-01-20 10:55:05 +00002413 sqlite3CommitInternalChanges(db);
2414 }
2415 }else{
drh0f198a72012-02-13 16:43:16 +00002416 sqlite3RollbackAll(db, SQLITE_OK);
danielk197707cb5602006-01-20 10:55:05 +00002417 }
danielk1977bd434552009-03-18 10:33:00 +00002418 db->nStatement = 0;
2419 }else if( eStatementOp==0 ){
danielk197707cb5602006-01-20 10:55:05 +00002420 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
danielk1977bd434552009-03-18 10:33:00 +00002421 eStatementOp = SAVEPOINT_RELEASE;
danielk197707cb5602006-01-20 10:55:05 +00002422 }else if( p->errorAction==OE_Abort ){
danielk1977bd434552009-03-18 10:33:00 +00002423 eStatementOp = SAVEPOINT_ROLLBACK;
danielk197707cb5602006-01-20 10:55:05 +00002424 }else{
drh21021a52012-02-13 17:01:51 +00002425 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977fc158bf2009-01-07 08:12:16 +00002426 sqlite3CloseSavepoints(db);
danielk197707cb5602006-01-20 10:55:05 +00002427 db->autoCommit = 1;
2428 }
danielk19771d850a72004-05-31 08:26:49 +00002429 }
danielk197707cb5602006-01-20 10:55:05 +00002430
danielk1977bd434552009-03-18 10:33:00 +00002431 /* If eStatementOp is non-zero, then a statement transaction needs to
2432 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
2433 ** do so. If this operation returns an error, and the current statement
drh35173242010-03-08 21:40:13 +00002434 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
2435 ** current statement error code.
danielk197707cb5602006-01-20 10:55:05 +00002436 */
danielk1977bd434552009-03-18 10:33:00 +00002437 if( eStatementOp ){
2438 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
dan40ad9d22010-06-03 09:17:38 +00002439 if( rc ){
drhd91c1a12013-02-09 13:58:25 +00002440 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
dan40ad9d22010-06-03 09:17:38 +00002441 p->rc = rc;
2442 sqlite3DbFree(db, p->zErrMsg);
2443 p->zErrMsg = 0;
2444 }
drh21021a52012-02-13 17:01:51 +00002445 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
dan40ad9d22010-06-03 09:17:38 +00002446 sqlite3CloseSavepoints(db);
2447 db->autoCommit = 1;
danielk197707cb5602006-01-20 10:55:05 +00002448 }
danielk197777d83ba2004-05-31 10:08:14 +00002449 }
danielk197707cb5602006-01-20 10:55:05 +00002450
danielk1977bd434552009-03-18 10:33:00 +00002451 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
2452 ** has been rolled back, update the database connection change-counter.
danielk197707cb5602006-01-20 10:55:05 +00002453 */
drh6be240e2009-07-14 02:33:02 +00002454 if( p->changeCntOn ){
danielk1977bd434552009-03-18 10:33:00 +00002455 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
danielk197707cb5602006-01-20 10:55:05 +00002456 sqlite3VdbeSetChanges(db, p->nChange);
2457 }else{
2458 sqlite3VdbeSetChanges(db, 0);
2459 }
2460 p->nChange = 0;
danielk1977b28af712004-06-21 06:50:26 +00002461 }
drhff0587c2007-08-29 17:43:19 +00002462
2463 /* Release the locks */
drhbdaec522011-04-04 00:14:43 +00002464 sqlite3VdbeLeave(p);
drh9a324642003-09-06 20:12:01 +00002465 }
danielk19771d850a72004-05-31 08:26:49 +00002466
danielk197765fd59f2006-06-24 11:51:33 +00002467 /* We have successfully halted and closed the VM. Record this fact. */
2468 if( p->pc>=0 ){
drh4f7d3a52013-06-27 23:54:02 +00002469 db->nVdbeActive--;
2470 if( !p->readOnly ) db->nVdbeWrite--;
drh1713afb2013-06-28 01:24:57 +00002471 if( p->bIsReader ) db->nVdbeRead--;
drh4f7d3a52013-06-27 23:54:02 +00002472 assert( db->nVdbeActive>=db->nVdbeRead );
2473 assert( db->nVdbeRead>=db->nVdbeWrite );
2474 assert( db->nVdbeWrite>=0 );
drh9a324642003-09-06 20:12:01 +00002475 }
drh92f02c32004-09-02 14:57:08 +00002476 p->magic = VDBE_MAGIC_HALT;
2477 checkActiveVdbeCnt(db);
drhff0587c2007-08-29 17:43:19 +00002478 if( p->db->mallocFailed ){
2479 p->rc = SQLITE_NOMEM;
2480 }
danielk19771d850a72004-05-31 08:26:49 +00002481
danielk1977404ca072009-03-16 13:19:36 +00002482 /* If the auto-commit flag is set to true, then any locks that were held
2483 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
2484 ** to invoke any required unlock-notify callbacks.
2485 */
2486 if( db->autoCommit ){
2487 sqlite3ConnectionUnlocked(db);
2488 }
2489
drh4f7d3a52013-06-27 23:54:02 +00002490 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
dan19611b12011-01-24 16:00:58 +00002491 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
drh92f02c32004-09-02 14:57:08 +00002492}
drh4cf7c7f2007-08-28 23:28:07 +00002493
drh92f02c32004-09-02 14:57:08 +00002494
2495/*
drh3c23a882007-01-09 14:01:13 +00002496** Each VDBE holds the result of the most recent sqlite3_step() call
2497** in p->rc. This routine sets that result back to SQLITE_OK.
2498*/
2499void sqlite3VdbeResetStepResult(Vdbe *p){
2500 p->rc = SQLITE_OK;
2501}
2502
2503/*
dan029ead62011-10-27 15:19:58 +00002504** Copy the error code and error message belonging to the VDBE passed
2505** as the first argument to its database handle (so that they will be
2506** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
2507**
2508** This function does not clear the VDBE error code or message, just
2509** copies them to the database handle.
2510*/
2511int sqlite3VdbeTransferError(Vdbe *p){
2512 sqlite3 *db = p->db;
2513 int rc = p->rc;
2514 if( p->zErrMsg ){
drh81bdd6d2011-10-29 01:33:24 +00002515 u8 mallocFailed = db->mallocFailed;
dan029ead62011-10-27 15:19:58 +00002516 sqlite3BeginBenignMalloc();
drha3cc0072013-12-13 16:23:55 +00002517 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
dan029ead62011-10-27 15:19:58 +00002518 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2519 sqlite3EndBenignMalloc();
drh81bdd6d2011-10-29 01:33:24 +00002520 db->mallocFailed = mallocFailed;
dan029ead62011-10-27 15:19:58 +00002521 db->errCode = rc;
2522 }else{
drh13f40da2014-08-22 18:00:11 +00002523 sqlite3Error(db, rc);
dan029ead62011-10-27 15:19:58 +00002524 }
2525 return rc;
2526}
2527
danac455932012-11-26 19:50:41 +00002528#ifdef SQLITE_ENABLE_SQLLOG
2529/*
2530** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
2531** invoke it.
2532*/
2533static void vdbeInvokeSqllog(Vdbe *v){
2534 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
2535 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
2536 assert( v->db->init.busy==0 );
2537 if( zExpanded ){
2538 sqlite3GlobalConfig.xSqllog(
2539 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
2540 );
2541 sqlite3DbFree(v->db, zExpanded);
2542 }
2543 }
2544}
2545#else
2546# define vdbeInvokeSqllog(x)
2547#endif
2548
dan029ead62011-10-27 15:19:58 +00002549/*
drh92f02c32004-09-02 14:57:08 +00002550** Clean up a VDBE after execution but do not delete the VDBE just yet.
2551** Write any error messages into *pzErrMsg. Return the result code.
2552**
2553** After this routine is run, the VDBE should be ready to be executed
2554** again.
2555**
2556** To look at it another way, this routine resets the state of the
2557** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
2558** VDBE_MAGIC_INIT.
2559*/
drhc890fec2008-08-01 20:10:08 +00002560int sqlite3VdbeReset(Vdbe *p){
drh4ac285a2006-09-15 07:28:50 +00002561 sqlite3 *db;
drh4ac285a2006-09-15 07:28:50 +00002562 db = p->db;
drh92f02c32004-09-02 14:57:08 +00002563
2564 /* If the VM did not run to completion or if it encountered an
2565 ** error, then it might not have been halted properly. So halt
2566 ** it now.
2567 */
2568 sqlite3VdbeHalt(p);
2569
drhfb7e7652005-01-24 00:28:42 +00002570 /* If the VDBE has be run even partially, then transfer the error code
2571 ** and error message from the VDBE into the main database structure. But
2572 ** if the VDBE has just been set to run but has not actually executed any
2573 ** instructions yet, leave the main database error information unchanged.
drh92f02c32004-09-02 14:57:08 +00002574 */
drhfb7e7652005-01-24 00:28:42 +00002575 if( p->pc>=0 ){
danac455932012-11-26 19:50:41 +00002576 vdbeInvokeSqllog(p);
dan029ead62011-10-27 15:19:58 +00002577 sqlite3VdbeTransferError(p);
2578 sqlite3DbFree(db, p->zErrMsg);
2579 p->zErrMsg = 0;
drh4611d922010-02-25 14:47:01 +00002580 if( p->runOnlyOnce ) p->expired = 1;
danielk1977a21c6b62005-01-24 10:25:59 +00002581 }else if( p->rc && p->expired ){
2582 /* The expired flag was set on the VDBE before the first call
2583 ** to sqlite3_step(). For consistency (since sqlite3_step() was
2584 ** called), set the database error in this case as well.
2585 */
drh13f40da2014-08-22 18:00:11 +00002586 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
drh633e6d52008-07-28 19:34:53 +00002587 sqlite3DbFree(db, p->zErrMsg);
danielk19778e556522007-11-13 10:30:24 +00002588 p->zErrMsg = 0;
drh92f02c32004-09-02 14:57:08 +00002589 }
2590
2591 /* Reclaim all memory used by the VDBE
2592 */
drhc890fec2008-08-01 20:10:08 +00002593 Cleanup(p);
drh92f02c32004-09-02 14:57:08 +00002594
2595 /* Save profiling information from this VDBE run.
2596 */
drh9a324642003-09-06 20:12:01 +00002597#ifdef VDBE_PROFILE
2598 {
2599 FILE *out = fopen("vdbe_profile.out", "a");
2600 if( out ){
2601 int i;
2602 fprintf(out, "---- ");
2603 for(i=0; i<p->nOp; i++){
2604 fprintf(out, "%02x", p->aOp[i].opcode);
2605 }
2606 fprintf(out, "\n");
drh2926f962014-02-17 01:13:28 +00002607 if( p->zSql ){
2608 char c, pc = 0;
2609 fprintf(out, "-- ");
2610 for(i=0; (c = p->zSql[i])!=0; i++){
2611 if( pc=='\n' ) fprintf(out, "-- ");
2612 putc(c, out);
2613 pc = c;
2614 }
2615 if( pc!='\n' ) fprintf(out, "\n");
2616 }
drh9a324642003-09-06 20:12:01 +00002617 for(i=0; i<p->nOp; i++){
drh15ab9412014-02-24 14:24:01 +00002618 char zHdr[100];
2619 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
drh9a324642003-09-06 20:12:01 +00002620 p->aOp[i].cnt,
2621 p->aOp[i].cycles,
2622 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
2623 );
drh15ab9412014-02-24 14:24:01 +00002624 fprintf(out, "%s", zHdr);
danielk19774adee202004-05-08 08:23:19 +00002625 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
drh9a324642003-09-06 20:12:01 +00002626 }
2627 fclose(out);
2628 }
2629 }
2630#endif
drh7fa20922013-09-17 23:36:33 +00002631 p->iCurrentTime = 0;
drh9a324642003-09-06 20:12:01 +00002632 p->magic = VDBE_MAGIC_INIT;
drh4ac285a2006-09-15 07:28:50 +00002633 return p->rc & db->errMask;
drh9a324642003-09-06 20:12:01 +00002634}
drh92f02c32004-09-02 14:57:08 +00002635
drh9a324642003-09-06 20:12:01 +00002636/*
2637** Clean up and delete a VDBE after execution. Return an integer which is
2638** the result code. Write any error message text into *pzErrMsg.
2639*/
danielk19779e6db7d2004-06-21 08:18:51 +00002640int sqlite3VdbeFinalize(Vdbe *p){
danielk1977b5548a82004-06-26 13:51:33 +00002641 int rc = SQLITE_OK;
danielk1977b5548a82004-06-26 13:51:33 +00002642 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
drhc890fec2008-08-01 20:10:08 +00002643 rc = sqlite3VdbeReset(p);
drh4ac285a2006-09-15 07:28:50 +00002644 assert( (rc & p->db->errMask)==rc );
drh9a324642003-09-06 20:12:01 +00002645 }
danielk19774adee202004-05-08 08:23:19 +00002646 sqlite3VdbeDelete(p);
drh9a324642003-09-06 20:12:01 +00002647 return rc;
2648}
2649
2650/*
dan0c547792013-07-18 17:12:08 +00002651** If parameter iOp is less than zero, then invoke the destructor for
2652** all auxiliary data pointers currently cached by the VM passed as
2653** the first argument.
2654**
2655** Or, if iOp is greater than or equal to zero, then the destructor is
2656** only invoked for those auxiliary data pointers created by the user
2657** function invoked by the OP_Function opcode at instruction iOp of
2658** VM pVdbe, and only then if:
2659**
2660** * the associated function parameter is the 32nd or later (counting
2661** from left to right), or
2662**
2663** * the corresponding bit in argument mask is clear (where the first
peter.d.reid60ec9142014-09-06 16:39:46 +00002664** function parameter corresponds to bit 0 etc.).
drhf92c7ff2004-06-19 15:40:23 +00002665*/
dan0c547792013-07-18 17:12:08 +00002666void sqlite3VdbeDeleteAuxData(Vdbe *pVdbe, int iOp, int mask){
2667 AuxData **pp = &pVdbe->pAuxData;
2668 while( *pp ){
2669 AuxData *pAux = *pp;
2670 if( (iOp<0)
drh693e6712014-01-24 22:58:00 +00002671 || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg))))
dan0c547792013-07-18 17:12:08 +00002672 ){
drh693e6712014-01-24 22:58:00 +00002673 testcase( pAux->iArg==31 );
drhf92c7ff2004-06-19 15:40:23 +00002674 if( pAux->xDelete ){
2675 pAux->xDelete(pAux->pAux);
2676 }
dan0c547792013-07-18 17:12:08 +00002677 *pp = pAux->pNext;
2678 sqlite3DbFree(pVdbe->db, pAux);
2679 }else{
2680 pp= &pAux->pNext;
drhf92c7ff2004-06-19 15:40:23 +00002681 }
2682 }
2683}
2684
2685/*
drhcb103b92012-10-26 00:11:23 +00002686** Free all memory associated with the Vdbe passed as the second argument,
2687** except for object itself, which is preserved.
2688**
dand46def72010-07-24 11:28:28 +00002689** The difference between this function and sqlite3VdbeDelete() is that
2690** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
drhcb103b92012-10-26 00:11:23 +00002691** the database connection and frees the object itself.
dand46def72010-07-24 11:28:28 +00002692*/
drhcb103b92012-10-26 00:11:23 +00002693void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
dand19c9332010-07-26 12:05:17 +00002694 SubProgram *pSub, *pNext;
drh124c0b42011-06-01 18:15:55 +00002695 int i;
dand46def72010-07-24 11:28:28 +00002696 assert( p->db==0 || p->db==db );
2697 releaseMemArray(p->aVar, p->nVar);
2698 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
dand19c9332010-07-26 12:05:17 +00002699 for(pSub=p->pProgram; pSub; pSub=pNext){
2700 pNext = pSub->pNext;
2701 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
2702 sqlite3DbFree(db, pSub);
2703 }
drh124c0b42011-06-01 18:15:55 +00002704 for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
dand46def72010-07-24 11:28:28 +00002705 vdbeFreeOpArray(db, p->aOp, p->nOp);
dand46def72010-07-24 11:28:28 +00002706 sqlite3DbFree(db, p->aColName);
2707 sqlite3DbFree(db, p->zSql);
2708 sqlite3DbFree(db, p->pFree);
danf533dbe2014-10-23 17:26:22 +00002709#if defined(SQLITE_DEBUG) && defined(SQLITE_ENABLE_LOOPCOUNTERS)
2710 sqlite3DbFree(db, p->aLoop);
2711 sqlite3DbFree(db, p->anExec);
2712#endif
dand46def72010-07-24 11:28:28 +00002713}
2714
2715/*
drh9a324642003-09-06 20:12:01 +00002716** Delete an entire VDBE.
2717*/
danielk19774adee202004-05-08 08:23:19 +00002718void sqlite3VdbeDelete(Vdbe *p){
drh633e6d52008-07-28 19:34:53 +00002719 sqlite3 *db;
2720
drhfa3be902009-07-07 02:44:07 +00002721 if( NEVER(p==0) ) return;
drh633e6d52008-07-28 19:34:53 +00002722 db = p->db;
drh4245c402012-06-02 14:32:21 +00002723 assert( sqlite3_mutex_held(db->mutex) );
drhcb103b92012-10-26 00:11:23 +00002724 sqlite3VdbeClearObject(db, p);
drh9a324642003-09-06 20:12:01 +00002725 if( p->pPrev ){
2726 p->pPrev->pNext = p->pNext;
2727 }else{
drh633e6d52008-07-28 19:34:53 +00002728 assert( db->pVdbe==p );
2729 db->pVdbe = p->pNext;
drh9a324642003-09-06 20:12:01 +00002730 }
2731 if( p->pNext ){
2732 p->pNext->pPrev = p->pPrev;
2733 }
drh9a324642003-09-06 20:12:01 +00002734 p->magic = VDBE_MAGIC_DEAD;
drh87f5c5f2010-01-20 01:20:56 +00002735 p->db = 0;
drhcb103b92012-10-26 00:11:23 +00002736 sqlite3DbFree(db, p);
drh9a324642003-09-06 20:12:01 +00002737}
drha11846b2004-01-07 18:52:56 +00002738
2739/*
drh6848dad2014-08-22 23:33:03 +00002740** The cursor "p" has a pending seek operation that has not yet been
2741** carried out. Seek the cursor now. If an error occurs, return
2742** the appropriate error code.
2743*/
2744static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){
2745 int res, rc;
2746#ifdef SQLITE_TEST
2747 extern int sqlite3_search_count;
2748#endif
2749 assert( p->deferredMoveto );
2750 assert( p->isTable );
2751 rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
2752 if( rc ) return rc;
drh6848dad2014-08-22 23:33:03 +00002753 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
drh6848dad2014-08-22 23:33:03 +00002754#ifdef SQLITE_TEST
2755 sqlite3_search_count++;
2756#endif
2757 p->deferredMoveto = 0;
2758 p->cacheStatus = CACHE_STALE;
2759 return SQLITE_OK;
2760}
2761
2762/*
2763** Something has moved cursor "p" out of place. Maybe the row it was
2764** pointed to was deleted out from under it. Or maybe the btree was
2765** rebalanced. Whatever the cause, try to restore "p" to the place it
peter.d.reid60ec9142014-09-06 16:39:46 +00002766** is supposed to be pointing. If the row was deleted out from under the
drh6848dad2014-08-22 23:33:03 +00002767** cursor, set the cursor to point to a NULL row.
2768*/
2769static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
2770 int isDifferentRow, rc;
2771 assert( p->pCursor!=0 );
2772 assert( sqlite3BtreeCursorHasMoved(p->pCursor) );
2773 rc = sqlite3BtreeCursorRestore(p->pCursor, &isDifferentRow);
2774 p->cacheStatus = CACHE_STALE;
2775 if( isDifferentRow ) p->nullRow = 1;
2776 return rc;
2777}
2778
2779/*
drhc22284f2014-10-13 16:02:20 +00002780** Check to ensure that the cursor is valid. Restore the cursor
2781** if need be. Return any I/O error from the restore operation.
2782*/
2783int sqlite3VdbeCursorRestore(VdbeCursor *p){
2784 if( sqlite3BtreeCursorHasMoved(p->pCursor) ){
2785 return handleMovedCursor(p);
2786 }
2787 return SQLITE_OK;
2788}
2789
2790/*
drh9a65f2c2009-06-22 19:05:40 +00002791** Make sure the cursor p is ready to read or write the row to which it
2792** was last positioned. Return an error code if an OOM fault or I/O error
2793** prevents us from positioning the cursor to its correct position.
2794**
drha11846b2004-01-07 18:52:56 +00002795** If a MoveTo operation is pending on the given cursor, then do that
drh9a65f2c2009-06-22 19:05:40 +00002796** MoveTo now. If no move is pending, check to see if the row has been
2797** deleted out from under the cursor and if it has, mark the row as
2798** a NULL row.
2799**
2800** If the cursor is already pointing to the correct row and that row has
2801** not been deleted out from under the cursor, then this routine is a no-op.
drha11846b2004-01-07 18:52:56 +00002802*/
drhdfe88ec2008-11-03 20:55:06 +00002803int sqlite3VdbeCursorMoveto(VdbeCursor *p){
drha11846b2004-01-07 18:52:56 +00002804 if( p->deferredMoveto ){
drh6848dad2014-08-22 23:33:03 +00002805 return handleDeferredMoveto(p);
2806 }
drhc22284f2014-10-13 16:02:20 +00002807 if( p->pCursor && sqlite3BtreeCursorHasMoved(p->pCursor) ){
drh6848dad2014-08-22 23:33:03 +00002808 return handleMovedCursor(p);
drha11846b2004-01-07 18:52:56 +00002809 }
2810 return SQLITE_OK;
2811}
danielk19774adee202004-05-08 08:23:19 +00002812
drhab9f7f12004-05-08 10:56:11 +00002813/*
danielk1977cfcdaef2004-05-12 07:33:33 +00002814** The following functions:
danielk197790e4d952004-05-10 10:05:53 +00002815**
danielk1977cfcdaef2004-05-12 07:33:33 +00002816** sqlite3VdbeSerialType()
2817** sqlite3VdbeSerialTypeLen()
danielk197790e4d952004-05-10 10:05:53 +00002818** sqlite3VdbeSerialLen()
shane92003092008-07-31 01:43:13 +00002819** sqlite3VdbeSerialPut()
2820** sqlite3VdbeSerialGet()
danielk197790e4d952004-05-10 10:05:53 +00002821**
2822** encapsulate the code that serializes values for storage in SQLite
danielk1977cfcdaef2004-05-12 07:33:33 +00002823** data and index records. Each serialized value consists of a
2824** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
2825** integer, stored as a varint.
danielk197790e4d952004-05-10 10:05:53 +00002826**
danielk1977cfcdaef2004-05-12 07:33:33 +00002827** In an SQLite index record, the serial type is stored directly before
2828** the blob of data that it corresponds to. In a table record, all serial
2829** types are stored at the start of the record, and the blobs of data at
2830** the end. Hence these functions allow the caller to handle the
mistachkin48864df2013-03-21 21:20:32 +00002831** serial-type and data blob separately.
danielk1977cfcdaef2004-05-12 07:33:33 +00002832**
2833** The following table describes the various storage classes for data:
2834**
2835** serial type bytes of data type
danielk197790e4d952004-05-10 10:05:53 +00002836** -------------- --------------- ---------------
drha19b7752004-05-30 21:14:58 +00002837** 0 0 NULL
danielk197790e4d952004-05-10 10:05:53 +00002838** 1 1 signed integer
2839** 2 2 signed integer
drha19b7752004-05-30 21:14:58 +00002840** 3 3 signed integer
2841** 4 4 signed integer
2842** 5 6 signed integer
2843** 6 8 signed integer
2844** 7 8 IEEE float
drhd946db02005-12-29 19:23:06 +00002845** 8 0 Integer constant 0
2846** 9 0 Integer constant 1
2847** 10,11 reserved for expansion
danielk197790e4d952004-05-10 10:05:53 +00002848** N>=12 and even (N-12)/2 BLOB
2849** N>=13 and odd (N-13)/2 text
2850**
drh35a59652006-01-02 18:24:40 +00002851** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
2852** of SQLite will not understand those serial types.
danielk197790e4d952004-05-10 10:05:53 +00002853*/
2854
2855/*
danielk1977cfcdaef2004-05-12 07:33:33 +00002856** Return the serial-type for the value stored in pMem.
danielk1977192ac1d2004-05-10 07:17:30 +00002857*/
drhd946db02005-12-29 19:23:06 +00002858u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
danielk1977cfcdaef2004-05-12 07:33:33 +00002859 int flags = pMem->flags;
drheac5bd72014-07-25 21:35:39 +00002860 u32 n;
danielk1977cfcdaef2004-05-12 07:33:33 +00002861
2862 if( flags&MEM_Null ){
drha19b7752004-05-30 21:14:58 +00002863 return 0;
danielk197790e4d952004-05-10 10:05:53 +00002864 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002865 if( flags&MEM_Int ){
drhfe2093d2005-01-20 22:48:47 +00002866 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
drh5284a052008-05-08 15:18:10 +00002867# define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
drh3c024d62007-03-30 11:23:45 +00002868 i64 i = pMem->u.i;
drhd946db02005-12-29 19:23:06 +00002869 u64 u;
drhcfd654b2011-03-05 13:54:15 +00002870 if( i<0 ){
2871 if( i<(-MAX_6BYTE) ) return 6;
2872 /* Previous test prevents: u = -(-9223372036854775808) */
2873 u = -i;
2874 }else{
2875 u = i;
2876 }
drh56690b32012-09-17 15:36:31 +00002877 if( u<=127 ){
2878 return ((i&1)==i && file_format>=4) ? 8+(u32)u : 1;
2879 }
drh5742b632005-01-26 17:47:02 +00002880 if( u<=32767 ) return 2;
2881 if( u<=8388607 ) return 3;
2882 if( u<=2147483647 ) return 4;
2883 if( u<=MAX_6BYTE ) return 5;
drha19b7752004-05-30 21:14:58 +00002884 return 6;
danielk197790e4d952004-05-10 10:05:53 +00002885 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002886 if( flags&MEM_Real ){
drha19b7752004-05-30 21:14:58 +00002887 return 7;
danielk197790e4d952004-05-10 10:05:53 +00002888 }
danielk1977e4359752008-11-03 09:39:45 +00002889 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
drheac5bd72014-07-25 21:35:39 +00002890 assert( pMem->n>=0 );
2891 n = (u32)pMem->n;
drhfdf972a2007-05-02 13:30:27 +00002892 if( flags & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +00002893 n += pMem->u.nZero;
danielk197790e4d952004-05-10 10:05:53 +00002894 }
drhfdf972a2007-05-02 13:30:27 +00002895 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
danielk1977192ac1d2004-05-10 07:17:30 +00002896}
2897
2898/*
danielk1977cfcdaef2004-05-12 07:33:33 +00002899** Return the length of the data corresponding to the supplied serial-type.
danielk1977192ac1d2004-05-10 07:17:30 +00002900*/
drh35cd6432009-06-05 14:17:21 +00002901u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
drha19b7752004-05-30 21:14:58 +00002902 if( serial_type>=12 ){
drh51846b52004-05-28 16:00:21 +00002903 return (serial_type-12)/2;
2904 }else{
drh57196282004-10-06 15:41:16 +00002905 static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
drh51846b52004-05-28 16:00:21 +00002906 return aSize[serial_type];
2907 }
danielk1977192ac1d2004-05-10 07:17:30 +00002908}
2909
2910/*
drh110daac2007-05-04 11:59:31 +00002911** If we are on an architecture with mixed-endian floating
drh7a4f5022007-05-23 07:20:08 +00002912** points (ex: ARM7) then swap the lower 4 bytes with the
drh110daac2007-05-04 11:59:31 +00002913** upper 4 bytes. Return the result.
2914**
drh7a4f5022007-05-23 07:20:08 +00002915** For most architectures, this is a no-op.
2916**
2917** (later): It is reported to me that the mixed-endian problem
2918** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
2919** that early versions of GCC stored the two words of a 64-bit
2920** float in the wrong order. And that error has been propagated
2921** ever since. The blame is not necessarily with GCC, though.
2922** GCC might have just copying the problem from a prior compiler.
2923** I am also told that newer versions of GCC that follow a different
2924** ABI get the byte order right.
2925**
2926** Developers using SQLite on an ARM7 should compile and run their
2927** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
2928** enabled, some asserts below will ensure that the byte order of
2929** floating point values is correct.
drh60d09a72007-08-30 15:05:08 +00002930**
2931** (2007-08-30) Frank van Vugt has studied this problem closely
2932** and has send his findings to the SQLite developers. Frank
2933** writes that some Linux kernels offer floating point hardware
2934** emulation that uses only 32-bit mantissas instead of a full
2935** 48-bits as required by the IEEE standard. (This is the
2936** CONFIG_FPE_FASTFPE option.) On such systems, floating point
2937** byte swapping becomes very complicated. To avoid problems,
2938** the necessary byte swapping is carried out using a 64-bit integer
2939** rather than a 64-bit float. Frank assures us that the code here
2940** works for him. We, the developers, have no way to independently
2941** verify this, but Frank seems to know what he is talking about
2942** so we trust him.
drh110daac2007-05-04 11:59:31 +00002943*/
2944#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
drh60d09a72007-08-30 15:05:08 +00002945static u64 floatSwap(u64 in){
drh110daac2007-05-04 11:59:31 +00002946 union {
drh60d09a72007-08-30 15:05:08 +00002947 u64 r;
drh110daac2007-05-04 11:59:31 +00002948 u32 i[2];
2949 } u;
2950 u32 t;
2951
2952 u.r = in;
2953 t = u.i[0];
2954 u.i[0] = u.i[1];
2955 u.i[1] = t;
2956 return u.r;
2957}
2958# define swapMixedEndianFloat(X) X = floatSwap(X)
2959#else
2960# define swapMixedEndianFloat(X)
2961#endif
2962
2963/*
danielk1977cfcdaef2004-05-12 07:33:33 +00002964** Write the serialized data blob for the value stored in pMem into
2965** buf. It is assumed that the caller has allocated sufficient space.
2966** Return the number of bytes written.
drhfdf972a2007-05-02 13:30:27 +00002967**
drh038b7bc2013-12-09 23:17:22 +00002968** nBuf is the amount of space left in buf[]. The caller is responsible
2969** for allocating enough space to buf[] to hold the entire field, exclusive
2970** of the pMem->u.nZero bytes for a MEM_Zero value.
drhfdf972a2007-05-02 13:30:27 +00002971**
2972** Return the number of bytes actually written into buf[]. The number
2973** of bytes in the zero-filled tail is included in the return value only
2974** if those bytes were zeroed in buf[].
danielk1977cfcdaef2004-05-12 07:33:33 +00002975*/
drha9ab4812013-12-11 11:00:44 +00002976u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
drh35cd6432009-06-05 14:17:21 +00002977 u32 len;
danielk1977183f9f72004-05-13 05:20:26 +00002978
drh1483e142004-05-21 21:12:42 +00002979 /* Integer and Real */
drhd946db02005-12-29 19:23:06 +00002980 if( serial_type<=7 && serial_type>0 ){
drh1483e142004-05-21 21:12:42 +00002981 u64 v;
drh35cd6432009-06-05 14:17:21 +00002982 u32 i;
drha19b7752004-05-30 21:14:58 +00002983 if( serial_type==7 ){
drh74eaba42014-09-18 17:52:15 +00002984 assert( sizeof(v)==sizeof(pMem->u.r) );
2985 memcpy(&v, &pMem->u.r, sizeof(v));
drh60d09a72007-08-30 15:05:08 +00002986 swapMixedEndianFloat(v);
drh1483e142004-05-21 21:12:42 +00002987 }else{
drh3c024d62007-03-30 11:23:45 +00002988 v = pMem->u.i;
danielk1977cfcdaef2004-05-12 07:33:33 +00002989 }
drh1483e142004-05-21 21:12:42 +00002990 len = i = sqlite3VdbeSerialTypeLen(serial_type);
drh3f5b1992014-08-22 13:22:32 +00002991 assert( i>0 );
2992 do{
2993 buf[--i] = (u8)(v&0xFF);
drh1483e142004-05-21 21:12:42 +00002994 v >>= 8;
drh3f5b1992014-08-22 13:22:32 +00002995 }while( i );
drh1483e142004-05-21 21:12:42 +00002996 return len;
danielk1977cfcdaef2004-05-12 07:33:33 +00002997 }
drhd946db02005-12-29 19:23:06 +00002998
danielk1977cfcdaef2004-05-12 07:33:33 +00002999 /* String or blob */
drhd946db02005-12-29 19:23:06 +00003000 if( serial_type>=12 ){
drh8df32842008-12-09 02:51:23 +00003001 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
shane75ac1de2009-06-09 18:58:52 +00003002 == (int)sqlite3VdbeSerialTypeLen(serial_type) );
drhfdf972a2007-05-02 13:30:27 +00003003 len = pMem->n;
drhd946db02005-12-29 19:23:06 +00003004 memcpy(buf, pMem->z, len);
3005 return len;
3006 }
3007
3008 /* NULL or constants 0 or 1 */
3009 return 0;
danielk1977cfcdaef2004-05-12 07:33:33 +00003010}
3011
drhf926d1e2014-03-04 04:04:33 +00003012/* Input "x" is a sequence of unsigned characters that represent a
3013** big-endian integer. Return the equivalent native integer
3014*/
3015#define ONE_BYTE_INT(x) ((i8)(x)[0])
3016#define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
3017#define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3018#define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
drh8932bec2014-08-22 14:56:13 +00003019#define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
drhf926d1e2014-03-04 04:04:33 +00003020
danielk1977cfcdaef2004-05-12 07:33:33 +00003021/*
3022** Deserialize the data blob pointed to by buf as serial type serial_type
3023** and store the result in pMem. Return the number of bytes read.
drh14a924a2014-08-22 14:34:05 +00003024**
3025** This function is implemented as two separate routines for performance.
3026** The few cases that require local variables are broken out into a separate
3027** routine so that in most cases the overhead of moving the stack pointer
3028** is avoided.
danielk1977cfcdaef2004-05-12 07:33:33 +00003029*/
drh14a924a2014-08-22 14:34:05 +00003030static u32 SQLITE_NOINLINE serialGet(
danielk197793d46752004-05-23 13:30:58 +00003031 const unsigned char *buf, /* Buffer to deserialize from */
drh25aa1b42004-05-28 01:39:01 +00003032 u32 serial_type, /* Serial type to deserialize */
3033 Mem *pMem /* Memory cell to write value into */
danielk1977b1bc9532004-05-22 03:05:33 +00003034){
drh8932bec2014-08-22 14:56:13 +00003035 u64 x = FOUR_BYTE_UINT(buf);
3036 u32 y = FOUR_BYTE_UINT(buf+4);
3037 x = (x<<32) + y;
drh14a924a2014-08-22 14:34:05 +00003038 if( serial_type==6 ){
3039 pMem->u.i = *(i64*)&x;
3040 pMem->flags = MEM_Int;
3041 testcase( pMem->u.i<0 );
3042 }else{
3043#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3044 /* Verify that integers and floating point values use the same
3045 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3046 ** defined that 64-bit floating point values really are mixed
3047 ** endian.
3048 */
3049 static const u64 t1 = ((u64)0x3ff00000)<<32;
3050 static const double r1 = 1.0;
3051 u64 t2 = t1;
3052 swapMixedEndianFloat(t2);
3053 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3054#endif
drh74eaba42014-09-18 17:52:15 +00003055 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
drh14a924a2014-08-22 14:34:05 +00003056 swapMixedEndianFloat(x);
drh74eaba42014-09-18 17:52:15 +00003057 memcpy(&pMem->u.r, &x, sizeof(x));
3058 pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real;
drh14a924a2014-08-22 14:34:05 +00003059 }
3060 return 8;
3061}
danielk1977b1bc9532004-05-22 03:05:33 +00003062u32 sqlite3VdbeSerialGet(
3063 const unsigned char *buf, /* Buffer to deserialize from */
3064 u32 serial_type, /* Serial type to deserialize */
3065 Mem *pMem /* Memory cell to write value into */
3066){
drh3c685822005-05-21 18:32:18 +00003067 switch( serial_type ){
drh3c685822005-05-21 18:32:18 +00003068 case 10: /* Reserved for future use */
3069 case 11: /* Reserved for future use */
3070 case 0: { /* NULL */
3071 pMem->flags = MEM_Null;
3072 break;
3073 }
3074 case 1: { /* 1-byte signed integer */
drhf926d1e2014-03-04 04:04:33 +00003075 pMem->u.i = ONE_BYTE_INT(buf);
drh1483e142004-05-21 21:12:42 +00003076 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003077 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003078 return 1;
drh1483e142004-05-21 21:12:42 +00003079 }
drh3c685822005-05-21 18:32:18 +00003080 case 2: { /* 2-byte signed integer */
drhf926d1e2014-03-04 04:04:33 +00003081 pMem->u.i = TWO_BYTE_INT(buf);
drh3c685822005-05-21 18:32:18 +00003082 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003083 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003084 return 2;
3085 }
3086 case 3: { /* 3-byte signed integer */
drhf926d1e2014-03-04 04:04:33 +00003087 pMem->u.i = THREE_BYTE_INT(buf);
drh3c685822005-05-21 18:32:18 +00003088 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003089 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003090 return 3;
3091 }
3092 case 4: { /* 4-byte signed integer */
drh8932bec2014-08-22 14:56:13 +00003093 pMem->u.i = FOUR_BYTE_INT(buf);
drh3c685822005-05-21 18:32:18 +00003094 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003095 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003096 return 4;
3097 }
3098 case 5: { /* 6-byte signed integer */
drhf926d1e2014-03-04 04:04:33 +00003099 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
drh3c685822005-05-21 18:32:18 +00003100 pMem->flags = MEM_Int;
drhb6e8fd12014-03-06 01:56:33 +00003101 testcase( pMem->u.i<0 );
drh3c685822005-05-21 18:32:18 +00003102 return 6;
3103 }
drh91124b32005-08-18 18:15:05 +00003104 case 6: /* 8-byte signed integer */
drh3c685822005-05-21 18:32:18 +00003105 case 7: { /* IEEE floating point */
drh8932bec2014-08-22 14:56:13 +00003106 /* These use local variables, so do them in a separate routine
3107 ** to avoid having to move the frame pointer in the common case */
drh14a924a2014-08-22 14:34:05 +00003108 return serialGet(buf,serial_type,pMem);
drh3c685822005-05-21 18:32:18 +00003109 }
drhd946db02005-12-29 19:23:06 +00003110 case 8: /* Integer 0 */
3111 case 9: { /* Integer 1 */
drh3c024d62007-03-30 11:23:45 +00003112 pMem->u.i = serial_type-8;
drhd946db02005-12-29 19:23:06 +00003113 pMem->flags = MEM_Int;
3114 return 0;
3115 }
drh3c685822005-05-21 18:32:18 +00003116 default: {
drhc138daf2013-11-19 13:55:34 +00003117 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
drh3c685822005-05-21 18:32:18 +00003118 pMem->z = (char *)buf;
drh14a924a2014-08-22 14:34:05 +00003119 pMem->n = (serial_type-12)/2;
drhc138daf2013-11-19 13:55:34 +00003120 pMem->flags = aFlag[serial_type&1];
drh14a924a2014-08-22 14:34:05 +00003121 return pMem->n;
drh696b32f2004-05-30 01:51:52 +00003122 }
danielk1977cfcdaef2004-05-12 07:33:33 +00003123 }
drh3c685822005-05-21 18:32:18 +00003124 return 0;
danielk1977192ac1d2004-05-10 07:17:30 +00003125}
drh1e968a02008-03-25 00:22:21 +00003126/*
dan03e9cfc2011-09-05 14:20:27 +00003127** This routine is used to allocate sufficient space for an UnpackedRecord
3128** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3129** the first argument is a pointer to KeyInfo structure pKeyInfo.
drh1e968a02008-03-25 00:22:21 +00003130**
dan03e9cfc2011-09-05 14:20:27 +00003131** The space is either allocated using sqlite3DbMallocRaw() or from within
3132** the unaligned buffer passed via the second and third arguments (presumably
3133** stack space). If the former, then *ppFree is set to a pointer that should
3134** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3135** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3136** before returning.
drh1e968a02008-03-25 00:22:21 +00003137**
dan03e9cfc2011-09-05 14:20:27 +00003138** If an OOM error occurs, NULL is returned.
3139*/
3140UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3141 KeyInfo *pKeyInfo, /* Description of the record */
3142 char *pSpace, /* Unaligned space available */
3143 int szSpace, /* Size of pSpace[] in bytes */
3144 char **ppFree /* OUT: Caller should free this pointer */
drh1e968a02008-03-25 00:22:21 +00003145){
dan03e9cfc2011-09-05 14:20:27 +00003146 UnpackedRecord *p; /* Unpacked record to return */
3147 int nOff; /* Increment pSpace by nOff to align it */
3148 int nByte; /* Number of bytes required for *p */
3149
3150 /* We want to shift the pointer pSpace up such that it is 8-byte aligned.
shane80167bf2009-04-10 15:42:36 +00003151 ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift
3152 ** it by. If pSpace is already 8-byte aligned, nOff should be zero.
3153 */
3154 nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
drh8c5d1522009-04-10 00:56:28 +00003155 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
dan42acb3e2011-09-05 20:16:38 +00003156 if( nByte>szSpace+nOff ){
dan03e9cfc2011-09-05 14:20:27 +00003157 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
3158 *ppFree = (char *)p;
dan42acb3e2011-09-05 20:16:38 +00003159 if( !p ) return 0;
drh1e968a02008-03-25 00:22:21 +00003160 }else{
dan42acb3e2011-09-05 20:16:38 +00003161 p = (UnpackedRecord*)&pSpace[nOff];
dan03e9cfc2011-09-05 14:20:27 +00003162 *ppFree = 0;
drh1e968a02008-03-25 00:22:21 +00003163 }
dan42acb3e2011-09-05 20:16:38 +00003164
3165 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
drhe1a022e2012-09-17 17:16:53 +00003166 assert( pKeyInfo->aSortOrder!=0 );
drh1e968a02008-03-25 00:22:21 +00003167 p->pKeyInfo = pKeyInfo;
3168 p->nField = pKeyInfo->nField + 1;
dan03e9cfc2011-09-05 14:20:27 +00003169 return p;
3170}
3171
3172/*
3173** Given the nKey-byte encoding of a record in pKey[], populate the
3174** UnpackedRecord structure indicated by the fourth argument with the
3175** contents of the decoded record.
3176*/
3177void sqlite3VdbeRecordUnpack(
3178 KeyInfo *pKeyInfo, /* Information about the record format */
3179 int nKey, /* Size of the binary record */
3180 const void *pKey, /* The binary record */
3181 UnpackedRecord *p /* Populate this structure before returning. */
3182){
3183 const unsigned char *aKey = (const unsigned char *)pKey;
3184 int d;
3185 u32 idx; /* Offset in aKey[] to read from */
3186 u16 u; /* Unsigned loop counter */
3187 u32 szHdr;
dan42acb3e2011-09-05 20:16:38 +00003188 Mem *pMem = p->aMem;
dan03e9cfc2011-09-05 14:20:27 +00003189
dan1fed5da2014-02-25 21:01:25 +00003190 p->default_rc = 0;
drh8c5d1522009-04-10 00:56:28 +00003191 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
shane3f8d5cf2008-04-24 19:15:09 +00003192 idx = getVarint32(aKey, szHdr);
drh1e968a02008-03-25 00:22:21 +00003193 d = szHdr;
shane0b8d2762008-07-22 05:18:00 +00003194 u = 0;
drh7f4b19f2014-09-16 13:30:05 +00003195 while( idx<szHdr && d<=nKey ){
drh1e968a02008-03-25 00:22:21 +00003196 u32 serial_type;
3197
danielk197700e13612008-11-17 19:18:54 +00003198 idx += getVarint32(&aKey[idx], serial_type);
drh1e968a02008-03-25 00:22:21 +00003199 pMem->enc = pKeyInfo->enc;
3200 pMem->db = pKeyInfo->db;
drhc3f1d5f2011-05-30 23:42:16 +00003201 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
drh17bcb102014-09-18 21:25:33 +00003202 pMem->szMalloc = 0;
drh1e968a02008-03-25 00:22:21 +00003203 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
drhe14006d2008-03-25 17:23:32 +00003204 pMem++;
drh7f4b19f2014-09-16 13:30:05 +00003205 if( (++u)>=p->nField ) break;
drh1e968a02008-03-25 00:22:21 +00003206 }
drh7d10d5a2008-08-20 16:35:10 +00003207 assert( u<=pKeyInfo->nField + 1 );
shane0b8d2762008-07-22 05:18:00 +00003208 p->nField = u;
drh1e968a02008-03-25 00:22:21 +00003209}
3210
dan3833e932014-03-01 19:44:56 +00003211#if SQLITE_DEBUG
dan3b9330f2014-02-27 20:44:18 +00003212/*
dan3833e932014-03-01 19:44:56 +00003213** This function compares two index or table record keys in the same way
3214** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
3215** this function deserializes and compares values using the
3216** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
3217** in assert() statements to ensure that the optimized code in
3218** sqlite3VdbeRecordCompare() returns results with these two primitives.
drh79211e12014-05-02 17:33:16 +00003219**
3220** Return true if the result of comparison is equivalent to desiredResult.
3221** Return false if there is a disagreement.
dan3b9330f2014-02-27 20:44:18 +00003222*/
dan3833e932014-03-01 19:44:56 +00003223static int vdbeRecordCompareDebug(
dan1fed5da2014-02-25 21:01:25 +00003224 int nKey1, const void *pKey1, /* Left key */
drh79211e12014-05-02 17:33:16 +00003225 const UnpackedRecord *pPKey2, /* Right key */
3226 int desiredResult /* Correct answer */
dan1fed5da2014-02-25 21:01:25 +00003227){
dan3b9330f2014-02-27 20:44:18 +00003228 u32 d1; /* Offset into aKey[] of next data element */
3229 u32 idx1; /* Offset into aKey[] of next header element */
3230 u32 szHdr1; /* Number of bytes in header */
3231 int i = 0;
3232 int rc = 0;
3233 const unsigned char *aKey1 = (const unsigned char *)pKey1;
3234 KeyInfo *pKeyInfo;
3235 Mem mem1;
dan1fed5da2014-02-25 21:01:25 +00003236
dan3b9330f2014-02-27 20:44:18 +00003237 pKeyInfo = pPKey2->pKeyInfo;
drh84de6902014-05-02 18:46:52 +00003238 if( pKeyInfo->db==0 ) return 1;
dan3b9330f2014-02-27 20:44:18 +00003239 mem1.enc = pKeyInfo->enc;
3240 mem1.db = pKeyInfo->db;
3241 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
drh17bcb102014-09-18 21:25:33 +00003242 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
dan1fed5da2014-02-25 21:01:25 +00003243
dan3b9330f2014-02-27 20:44:18 +00003244 /* Compilers may complain that mem1.u.i is potentially uninitialized.
3245 ** We could initialize it, as shown here, to silence those complaints.
3246 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
3247 ** the unnecessary initialization has a measurable negative performance
3248 ** impact, since this routine is a very high runner. And so, we choose
3249 ** to ignore the compiler warnings and leave this variable uninitialized.
3250 */
3251 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
3252
3253 idx1 = getVarint32(aKey1, szHdr1);
3254 d1 = szHdr1;
3255 assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB );
3256 assert( pKeyInfo->aSortOrder!=0 );
3257 assert( pKeyInfo->nField>0 );
3258 assert( idx1<=szHdr1 || CORRUPT_DB );
3259 do{
3260 u32 serial_type1;
dan1fed5da2014-02-25 21:01:25 +00003261
dan3b9330f2014-02-27 20:44:18 +00003262 /* Read the serial types for the next element in each key. */
3263 idx1 += getVarint32( aKey1+idx1, serial_type1 );
dan1fed5da2014-02-25 21:01:25 +00003264
dan3b9330f2014-02-27 20:44:18 +00003265 /* Verify that there is enough key space remaining to avoid
3266 ** a buffer overread. The "d1+serial_type1+2" subexpression will
3267 ** always be greater than or equal to the amount of required key space.
3268 ** Use that approximation to avoid the more expensive call to
3269 ** sqlite3VdbeSerialTypeLen() in the common case.
3270 */
3271 if( d1+serial_type1+2>(u32)nKey1
3272 && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1
3273 ){
3274 break;
dan1fed5da2014-02-25 21:01:25 +00003275 }
dan1fed5da2014-02-25 21:01:25 +00003276
dan3b9330f2014-02-27 20:44:18 +00003277 /* Extract the values to be compared.
3278 */
3279 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
dan1fed5da2014-02-25 21:01:25 +00003280
dan3b9330f2014-02-27 20:44:18 +00003281 /* Do the comparison
3282 */
3283 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
3284 if( rc!=0 ){
drh17bcb102014-09-18 21:25:33 +00003285 assert( mem1.szMalloc==0 ); /* See comment below */
dan3b9330f2014-02-27 20:44:18 +00003286 if( pKeyInfo->aSortOrder[i] ){
3287 rc = -rc; /* Invert the result for DESC sort order. */
dan1fed5da2014-02-25 21:01:25 +00003288 }
drh79211e12014-05-02 17:33:16 +00003289 goto debugCompareEnd;
dan1fed5da2014-02-25 21:01:25 +00003290 }
dan3b9330f2014-02-27 20:44:18 +00003291 i++;
3292 }while( idx1<szHdr1 && i<pPKey2->nField );
dan1fed5da2014-02-25 21:01:25 +00003293
dan3b9330f2014-02-27 20:44:18 +00003294 /* No memory allocation is ever used on mem1. Prove this using
3295 ** the following assert(). If the assert() fails, it indicates a
3296 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
3297 */
drh17bcb102014-09-18 21:25:33 +00003298 assert( mem1.szMalloc==0 );
dan3b9330f2014-02-27 20:44:18 +00003299
3300 /* rc==0 here means that one of the keys ran out of fields and
peter.d.reid60ec9142014-09-06 16:39:46 +00003301 ** all the fields up to that point were equal. Return the default_rc
dan3b9330f2014-02-27 20:44:18 +00003302 ** value. */
drh79211e12014-05-02 17:33:16 +00003303 rc = pPKey2->default_rc;
3304
3305debugCompareEnd:
3306 if( desiredResult==0 && rc==0 ) return 1;
3307 if( desiredResult<0 && rc<0 ) return 1;
3308 if( desiredResult>0 && rc>0 ) return 1;
3309 if( CORRUPT_DB ) return 1;
3310 if( pKeyInfo->db->mallocFailed ) return 1;
3311 return 0;
dan1fed5da2014-02-25 21:01:25 +00003312}
dan3833e932014-03-01 19:44:56 +00003313#endif
dan1fed5da2014-02-25 21:01:25 +00003314
dan3833e932014-03-01 19:44:56 +00003315/*
3316** Both *pMem1 and *pMem2 contain string values. Compare the two values
3317** using the collation sequence pColl. As usual, return a negative , zero
3318** or positive value if *pMem1 is less than, equal to or greater than
3319** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
3320*/
dan1fed5da2014-02-25 21:01:25 +00003321static int vdbeCompareMemString(
dan3833e932014-03-01 19:44:56 +00003322 const Mem *pMem1,
3323 const Mem *pMem2,
dan38fdead2014-04-01 10:19:02 +00003324 const CollSeq *pColl,
3325 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
dan1fed5da2014-02-25 21:01:25 +00003326){
3327 if( pMem1->enc==pColl->enc ){
3328 /* The strings are already in the correct encoding. Call the
3329 ** comparison function directly */
3330 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
3331 }else{
3332 int rc;
3333 const void *v1, *v2;
3334 int n1, n2;
3335 Mem c1;
3336 Mem c2;
drh17bcb102014-09-18 21:25:33 +00003337 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
3338 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
dan1fed5da2014-02-25 21:01:25 +00003339 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
3340 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
3341 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
3342 n1 = v1==0 ? 0 : c1.n;
3343 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
3344 n2 = v2==0 ? 0 : c2.n;
3345 rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
3346 sqlite3VdbeMemRelease(&c1);
3347 sqlite3VdbeMemRelease(&c2);
dan38fdead2014-04-01 10:19:02 +00003348 if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM;
dan1fed5da2014-02-25 21:01:25 +00003349 return rc;
3350 }
3351}
3352
3353/*
drh982ff722014-09-16 03:24:43 +00003354** Compare two blobs. Return negative, zero, or positive if the first
3355** is less than, equal to, or greater than the second, respectively.
3356** If one blob is a prefix of the other, then the shorter is the lessor.
3357*/
3358static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
3359 int c = memcmp(pB1->z, pB2->z, pB1->n>pB2->n ? pB2->n : pB1->n);
3360 if( c ) return c;
3361 return pB1->n - pB2->n;
3362}
3363
3364
3365/*
dan1fed5da2014-02-25 21:01:25 +00003366** Compare the values contained by the two memory cells, returning
3367** negative, zero or positive if pMem1 is less than, equal to, or greater
3368** than pMem2. Sorting order is NULL's first, followed by numbers (integers
3369** and reals) sorted numerically, followed by text ordered by the collating
3370** sequence pColl and finally blob's ordered by memcmp().
3371**
3372** Two NULL values are considered equal by this function.
3373*/
3374int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
dan1fed5da2014-02-25 21:01:25 +00003375 int f1, f2;
3376 int combined_flags;
3377
3378 f1 = pMem1->flags;
3379 f2 = pMem2->flags;
3380 combined_flags = f1|f2;
3381 assert( (combined_flags & MEM_RowSet)==0 );
3382
3383 /* If one value is NULL, it is less than the other. If both values
3384 ** are NULL, return 0.
3385 */
3386 if( combined_flags&MEM_Null ){
3387 return (f2&MEM_Null) - (f1&MEM_Null);
3388 }
3389
3390 /* If one value is a number and the other is not, the number is less.
3391 ** If both are numbers, compare as reals if one is a real, or as integers
3392 ** if both values are integers.
3393 */
3394 if( combined_flags&(MEM_Int|MEM_Real) ){
3395 double r1, r2;
3396 if( (f1 & f2 & MEM_Int)!=0 ){
3397 if( pMem1->u.i < pMem2->u.i ) return -1;
3398 if( pMem1->u.i > pMem2->u.i ) return 1;
3399 return 0;
3400 }
3401 if( (f1&MEM_Real)!=0 ){
drh74eaba42014-09-18 17:52:15 +00003402 r1 = pMem1->u.r;
dan1fed5da2014-02-25 21:01:25 +00003403 }else if( (f1&MEM_Int)!=0 ){
3404 r1 = (double)pMem1->u.i;
3405 }else{
3406 return 1;
3407 }
3408 if( (f2&MEM_Real)!=0 ){
drh74eaba42014-09-18 17:52:15 +00003409 r2 = pMem2->u.r;
dan1fed5da2014-02-25 21:01:25 +00003410 }else if( (f2&MEM_Int)!=0 ){
3411 r2 = (double)pMem2->u.i;
3412 }else{
3413 return -1;
3414 }
3415 if( r1<r2 ) return -1;
3416 if( r1>r2 ) return 1;
3417 return 0;
3418 }
3419
3420 /* If one value is a string and the other is a blob, the string is less.
3421 ** If both are strings, compare using the collating functions.
3422 */
3423 if( combined_flags&MEM_Str ){
3424 if( (f1 & MEM_Str)==0 ){
3425 return 1;
3426 }
3427 if( (f2 & MEM_Str)==0 ){
3428 return -1;
3429 }
3430
3431 assert( pMem1->enc==pMem2->enc );
3432 assert( pMem1->enc==SQLITE_UTF8 ||
3433 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
3434
3435 /* The collation sequence must be defined at this point, even if
3436 ** the user deletes the collation sequence after the vdbe program is
3437 ** compiled (this was not always the case).
3438 */
3439 assert( !pColl || pColl->xCmp );
3440
3441 if( pColl ){
dan38fdead2014-04-01 10:19:02 +00003442 return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
dan1fed5da2014-02-25 21:01:25 +00003443 }
3444 /* If a NULL pointer was passed as the collate function, fall through
3445 ** to the blob case and use memcmp(). */
3446 }
3447
3448 /* Both values must be blobs. Compare using memcmp(). */
drh982ff722014-09-16 03:24:43 +00003449 return sqlite3BlobCompare(pMem1, pMem2);
dan1fed5da2014-02-25 21:01:25 +00003450}
3451
3452
dan3833e932014-03-01 19:44:56 +00003453/*
3454** The first argument passed to this function is a serial-type that
3455** corresponds to an integer - all values between 1 and 9 inclusive
3456** except 7. The second points to a buffer containing an integer value
3457** serialized according to serial_type. This function deserializes
3458** and returns the value.
3459*/
dan3b9330f2014-02-27 20:44:18 +00003460static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
drhf926d1e2014-03-04 04:04:33 +00003461 u32 y;
dan3833e932014-03-01 19:44:56 +00003462 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
dan3b9330f2014-02-27 20:44:18 +00003463 switch( serial_type ){
dan3833e932014-03-01 19:44:56 +00003464 case 0:
dan3b9330f2014-02-27 20:44:18 +00003465 case 1:
drhb6e8fd12014-03-06 01:56:33 +00003466 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003467 return ONE_BYTE_INT(aKey);
dan3b9330f2014-02-27 20:44:18 +00003468 case 2:
drhb6e8fd12014-03-06 01:56:33 +00003469 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003470 return TWO_BYTE_INT(aKey);
dan3b9330f2014-02-27 20:44:18 +00003471 case 3:
drhb6e8fd12014-03-06 01:56:33 +00003472 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003473 return THREE_BYTE_INT(aKey);
3474 case 4: {
drhb6e8fd12014-03-06 01:56:33 +00003475 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003476 y = FOUR_BYTE_UINT(aKey);
3477 return (i64)*(int*)&y;
3478 }
dan3b9330f2014-02-27 20:44:18 +00003479 case 5: {
drhb6e8fd12014-03-06 01:56:33 +00003480 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003481 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
drhaf5b2af2013-08-05 15:32:09 +00003482 }
dan3b9330f2014-02-27 20:44:18 +00003483 case 6: {
drhf926d1e2014-03-04 04:04:33 +00003484 u64 x = FOUR_BYTE_UINT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00003485 testcase( aKey[0]&0x80 );
drhf926d1e2014-03-04 04:04:33 +00003486 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
3487 return (i64)*(i64*)&x;
drh1e968a02008-03-25 00:22:21 +00003488 }
dan3b9330f2014-02-27 20:44:18 +00003489 }
drh407414c2009-07-14 14:15:27 +00003490
dan3b9330f2014-02-27 20:44:18 +00003491 return (serial_type - 8);
drh1e968a02008-03-25 00:22:21 +00003492}
danielk1977eb015e02004-05-18 01:31:14 +00003493
dan3833e932014-03-01 19:44:56 +00003494/*
3495** This function compares the two table rows or index records
3496** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
3497** or positive integer if key1 is less than, equal to or
3498** greater than key2. The {nKey1, pKey1} key must be a blob
peter.d.reid60ec9142014-09-06 16:39:46 +00003499** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
dan3833e932014-03-01 19:44:56 +00003500** key must be a parsed key such as obtained from
3501** sqlite3VdbeParseRecord.
3502**
3503** If argument bSkip is non-zero, it is assumed that the caller has already
3504** determined that the first fields of the keys are equal.
3505**
3506** Key1 and Key2 do not have to contain the same number of fields. If all
3507** fields that appear in both keys are equal, then pPKey2->default_rc is
3508** returned.
drha1f7c0a2014-03-28 03:12:48 +00003509**
dan38fdead2014-04-01 10:19:02 +00003510** If database corruption is discovered, set pPKey2->errCode to
3511** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
3512** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
3513** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
dan3833e932014-03-01 19:44:56 +00003514*/
drh75179de2014-09-16 14:37:35 +00003515static int vdbeRecordCompareWithSkip(
dan3833e932014-03-01 19:44:56 +00003516 int nKey1, const void *pKey1, /* Left key */
drha1f7c0a2014-03-28 03:12:48 +00003517 UnpackedRecord *pPKey2, /* Right key */
dan3833e932014-03-01 19:44:56 +00003518 int bSkip /* If true, skip the first field */
dan1fed5da2014-02-25 21:01:25 +00003519){
dan3833e932014-03-01 19:44:56 +00003520 u32 d1; /* Offset into aKey[] of next data element */
3521 int i; /* Index of next field to compare */
mistachkinffe6bc22014-03-04 11:16:20 +00003522 u32 szHdr1; /* Size of record header in bytes */
dan3833e932014-03-01 19:44:56 +00003523 u32 idx1; /* Offset of first type in header */
3524 int rc = 0; /* Return value */
3525 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
dan1fed5da2014-02-25 21:01:25 +00003526 KeyInfo *pKeyInfo = pPKey2->pKeyInfo;
3527 const unsigned char *aKey1 = (const unsigned char *)pKey1;
3528 Mem mem1;
3529
dan3833e932014-03-01 19:44:56 +00003530 /* If bSkip is true, then the caller has already determined that the first
3531 ** two elements in the keys are equal. Fix the various stack variables so
dan3b9330f2014-02-27 20:44:18 +00003532 ** that this routine begins comparing at the second field. */
dan3833e932014-03-01 19:44:56 +00003533 if( bSkip ){
dan3b9330f2014-02-27 20:44:18 +00003534 u32 s1;
dan3b9330f2014-02-27 20:44:18 +00003535 idx1 = 1 + getVarint32(&aKey1[1], s1);
dan3833e932014-03-01 19:44:56 +00003536 szHdr1 = aKey1[0];
3537 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
dan3b9330f2014-02-27 20:44:18 +00003538 i = 1;
3539 pRhs++;
dan3833e932014-03-01 19:44:56 +00003540 }else{
3541 idx1 = getVarint32(aKey1, szHdr1);
3542 d1 = szHdr1;
drha1f7c0a2014-03-28 03:12:48 +00003543 if( d1>(unsigned)nKey1 ){
dan38fdead2014-04-01 10:19:02 +00003544 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
drha1f7c0a2014-03-28 03:12:48 +00003545 return 0; /* Corruption */
3546 }
dan3833e932014-03-01 19:44:56 +00003547 i = 0;
dan3b9330f2014-02-27 20:44:18 +00003548 }
3549
drh17bcb102014-09-18 21:25:33 +00003550 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
dan1fed5da2014-02-25 21:01:25 +00003551 assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField
3552 || CORRUPT_DB );
3553 assert( pPKey2->pKeyInfo->aSortOrder!=0 );
3554 assert( pPKey2->pKeyInfo->nField>0 );
3555 assert( idx1<=szHdr1 || CORRUPT_DB );
3556 do{
dan1fed5da2014-02-25 21:01:25 +00003557 u32 serial_type;
3558
3559 /* RHS is an integer */
3560 if( pRhs->flags & MEM_Int ){
3561 serial_type = aKey1[idx1];
drhb6e8fd12014-03-06 01:56:33 +00003562 testcase( serial_type==12 );
dan1fed5da2014-02-25 21:01:25 +00003563 if( serial_type>=12 ){
3564 rc = +1;
3565 }else if( serial_type==0 ){
3566 rc = -1;
dan3b9330f2014-02-27 20:44:18 +00003567 }else if( serial_type==7 ){
3568 double rhs = (double)pRhs->u.i;
dan1fed5da2014-02-25 21:01:25 +00003569 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
drh74eaba42014-09-18 17:52:15 +00003570 if( mem1.u.r<rhs ){
dan3b9330f2014-02-27 20:44:18 +00003571 rc = -1;
drh74eaba42014-09-18 17:52:15 +00003572 }else if( mem1.u.r>rhs ){
dan3b9330f2014-02-27 20:44:18 +00003573 rc = +1;
3574 }
3575 }else{
3576 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
3577 i64 rhs = pRhs->u.i;
3578 if( lhs<rhs ){
3579 rc = -1;
3580 }else if( lhs>rhs ){
3581 rc = +1;
dan1fed5da2014-02-25 21:01:25 +00003582 }
3583 }
3584 }
3585
3586 /* RHS is real */
3587 else if( pRhs->flags & MEM_Real ){
3588 serial_type = aKey1[idx1];
3589 if( serial_type>=12 ){
3590 rc = +1;
3591 }else if( serial_type==0 ){
3592 rc = -1;
3593 }else{
drh74eaba42014-09-18 17:52:15 +00003594 double rhs = pRhs->u.r;
dan1fed5da2014-02-25 21:01:25 +00003595 double lhs;
3596 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
3597 if( serial_type==7 ){
drh74eaba42014-09-18 17:52:15 +00003598 lhs = mem1.u.r;
dan1fed5da2014-02-25 21:01:25 +00003599 }else{
drh295aedf2014-03-03 18:25:24 +00003600 lhs = (double)mem1.u.i;
dan1fed5da2014-02-25 21:01:25 +00003601 }
3602 if( lhs<rhs ){
3603 rc = -1;
3604 }else if( lhs>rhs ){
3605 rc = +1;
3606 }
3607 }
3608 }
3609
3610 /* RHS is a string */
3611 else if( pRhs->flags & MEM_Str ){
3612 getVarint32(&aKey1[idx1], serial_type);
drhb6e8fd12014-03-06 01:56:33 +00003613 testcase( serial_type==12 );
dan1fed5da2014-02-25 21:01:25 +00003614 if( serial_type<12 ){
3615 rc = -1;
3616 }else if( !(serial_type & 0x01) ){
3617 rc = +1;
3618 }else{
3619 mem1.n = (serial_type - 12) / 2;
drhb6e8fd12014-03-06 01:56:33 +00003620 testcase( (d1+mem1.n)==(unsigned)nKey1 );
3621 testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
drh295aedf2014-03-03 18:25:24 +00003622 if( (d1+mem1.n) > (unsigned)nKey1 ){
dan38fdead2014-04-01 10:19:02 +00003623 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
drha1f7c0a2014-03-28 03:12:48 +00003624 return 0; /* Corruption */
dan1fed5da2014-02-25 21:01:25 +00003625 }else if( pKeyInfo->aColl[i] ){
3626 mem1.enc = pKeyInfo->enc;
3627 mem1.db = pKeyInfo->db;
3628 mem1.flags = MEM_Str;
drhfcb44a82014-03-03 15:13:27 +00003629 mem1.z = (char*)&aKey1[d1];
dan38fdead2014-04-01 10:19:02 +00003630 rc = vdbeCompareMemString(
3631 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
3632 );
dan1fed5da2014-02-25 21:01:25 +00003633 }else{
3634 int nCmp = MIN(mem1.n, pRhs->n);
3635 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
3636 if( rc==0 ) rc = mem1.n - pRhs->n;
3637 }
3638 }
3639 }
3640
3641 /* RHS is a blob */
3642 else if( pRhs->flags & MEM_Blob ){
3643 getVarint32(&aKey1[idx1], serial_type);
drhb6e8fd12014-03-06 01:56:33 +00003644 testcase( serial_type==12 );
dan1fed5da2014-02-25 21:01:25 +00003645 if( serial_type<12 || (serial_type & 0x01) ){
3646 rc = -1;
3647 }else{
3648 int nStr = (serial_type - 12) / 2;
drhb6e8fd12014-03-06 01:56:33 +00003649 testcase( (d1+nStr)==(unsigned)nKey1 );
3650 testcase( (d1+nStr+1)==(unsigned)nKey1 );
drh295aedf2014-03-03 18:25:24 +00003651 if( (d1+nStr) > (unsigned)nKey1 ){
dan38fdead2014-04-01 10:19:02 +00003652 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
drha1f7c0a2014-03-28 03:12:48 +00003653 return 0; /* Corruption */
dan1fed5da2014-02-25 21:01:25 +00003654 }else{
3655 int nCmp = MIN(nStr, pRhs->n);
3656 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
3657 if( rc==0 ) rc = nStr - pRhs->n;
3658 }
3659 }
3660 }
3661
3662 /* RHS is null */
3663 else{
3664 serial_type = aKey1[idx1];
3665 rc = (serial_type!=0);
3666 }
3667
3668 if( rc!=0 ){
dan1fed5da2014-02-25 21:01:25 +00003669 if( pKeyInfo->aSortOrder[i] ){
3670 rc = -rc;
dan1fed5da2014-02-25 21:01:25 +00003671 }
drh79211e12014-05-02 17:33:16 +00003672 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
drh17bcb102014-09-18 21:25:33 +00003673 assert( mem1.szMalloc==0 ); /* See comment below */
dan1fed5da2014-02-25 21:01:25 +00003674 return rc;
3675 }
3676
3677 i++;
dan3b9330f2014-02-27 20:44:18 +00003678 pRhs++;
dan1fed5da2014-02-25 21:01:25 +00003679 d1 += sqlite3VdbeSerialTypeLen(serial_type);
3680 idx1 += sqlite3VarintLen(serial_type);
drh295aedf2014-03-03 18:25:24 +00003681 }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );
dan1fed5da2014-02-25 21:01:25 +00003682
3683 /* No memory allocation is ever used on mem1. Prove this using
3684 ** the following assert(). If the assert() fails, it indicates a
dan3833e932014-03-01 19:44:56 +00003685 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
drh17bcb102014-09-18 21:25:33 +00003686 assert( mem1.szMalloc==0 );
dan1fed5da2014-02-25 21:01:25 +00003687
3688 /* rc==0 here means that one or both of the keys ran out of fields and
peter.d.reid60ec9142014-09-06 16:39:46 +00003689 ** all the fields up to that point were equal. Return the default_rc
dan1fed5da2014-02-25 21:01:25 +00003690 ** value. */
dan3833e932014-03-01 19:44:56 +00003691 assert( CORRUPT_DB
drh66141812014-06-30 20:25:03 +00003692 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
dan6696ba32014-06-28 19:06:49 +00003693 || pKeyInfo->db->mallocFailed
dan3833e932014-03-01 19:44:56 +00003694 );
dan1fed5da2014-02-25 21:01:25 +00003695 return pPKey2->default_rc;
3696}
drh75179de2014-09-16 14:37:35 +00003697int sqlite3VdbeRecordCompare(
3698 int nKey1, const void *pKey1, /* Left key */
3699 UnpackedRecord *pPKey2 /* Right key */
3700){
3701 return vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
3702}
3703
dan1fed5da2014-02-25 21:01:25 +00003704
dan3833e932014-03-01 19:44:56 +00003705/*
3706** This function is an optimized version of sqlite3VdbeRecordCompare()
3707** that (a) the first field of pPKey2 is an integer, and (b) the
3708** size-of-header varint at the start of (pKey1/nKey1) fits in a single
3709** byte (i.e. is less than 128).
drhe2ac5062014-03-26 12:02:38 +00003710**
3711** To avoid concerns about buffer overreads, this routine is only used
3712** on schemas where the maximum valid header size is 63 bytes or less.
dan3833e932014-03-01 19:44:56 +00003713*/
dan3b9330f2014-02-27 20:44:18 +00003714static int vdbeRecordCompareInt(
3715 int nKey1, const void *pKey1, /* Left key */
drh75179de2014-09-16 14:37:35 +00003716 UnpackedRecord *pPKey2 /* Right key */
dan3b9330f2014-02-27 20:44:18 +00003717){
dan9b8afef2014-03-03 20:48:50 +00003718 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
dan3b9330f2014-02-27 20:44:18 +00003719 int serial_type = ((const u8*)pKey1)[1];
3720 int res;
drhf926d1e2014-03-04 04:04:33 +00003721 u32 y;
3722 u64 x;
dan3b9330f2014-02-27 20:44:18 +00003723 i64 v = pPKey2->aMem[0].u.i;
3724 i64 lhs;
3725
drhe2ac5062014-03-26 12:02:38 +00003726 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
dan3833e932014-03-01 19:44:56 +00003727 switch( serial_type ){
drhf926d1e2014-03-04 04:04:33 +00003728 case 1: { /* 1-byte signed integer */
3729 lhs = ONE_BYTE_INT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00003730 testcase( lhs<0 );
dan3b9330f2014-02-27 20:44:18 +00003731 break;
3732 }
drhf926d1e2014-03-04 04:04:33 +00003733 case 2: { /* 2-byte signed integer */
3734 lhs = TWO_BYTE_INT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00003735 testcase( lhs<0 );
drhf926d1e2014-03-04 04:04:33 +00003736 break;
3737 }
3738 case 3: { /* 3-byte signed integer */
3739 lhs = THREE_BYTE_INT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00003740 testcase( lhs<0 );
drhf926d1e2014-03-04 04:04:33 +00003741 break;
3742 }
3743 case 4: { /* 4-byte signed integer */
3744 y = FOUR_BYTE_UINT(aKey);
3745 lhs = (i64)*(int*)&y;
drhb6e8fd12014-03-06 01:56:33 +00003746 testcase( lhs<0 );
drhf926d1e2014-03-04 04:04:33 +00003747 break;
3748 }
3749 case 5: { /* 6-byte signed integer */
3750 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
drhb6e8fd12014-03-06 01:56:33 +00003751 testcase( lhs<0 );
drhf926d1e2014-03-04 04:04:33 +00003752 break;
3753 }
3754 case 6: { /* 8-byte signed integer */
3755 x = FOUR_BYTE_UINT(aKey);
3756 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
3757 lhs = *(i64*)&x;
drhb6e8fd12014-03-06 01:56:33 +00003758 testcase( lhs<0 );
dan3b9330f2014-02-27 20:44:18 +00003759 break;
3760 }
dan3b9330f2014-02-27 20:44:18 +00003761 case 8:
3762 lhs = 0;
3763 break;
dan3b9330f2014-02-27 20:44:18 +00003764 case 9:
3765 lhs = 1;
3766 break;
3767
dan063d4a02014-02-28 09:48:30 +00003768 /* This case could be removed without changing the results of running
3769 ** this code. Including it causes gcc to generate a faster switch
3770 ** statement (since the range of switch targets now starts at zero and
dan597515d2014-02-28 18:39:51 +00003771 ** is contiguous) but does not cause any duplicate code to be generated
dan063d4a02014-02-28 09:48:30 +00003772 ** (as gcc is clever enough to combine the two like cases). Other
3773 ** compilers might be similar. */
3774 case 0: case 7:
drh75179de2014-09-16 14:37:35 +00003775 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
dan063d4a02014-02-28 09:48:30 +00003776
dan3b9330f2014-02-27 20:44:18 +00003777 default:
drh75179de2014-09-16 14:37:35 +00003778 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
dan3b9330f2014-02-27 20:44:18 +00003779 }
3780
3781 if( v>lhs ){
3782 res = pPKey2->r1;
3783 }else if( v<lhs ){
3784 res = pPKey2->r2;
3785 }else if( pPKey2->nField>1 ){
dan063d4a02014-02-28 09:48:30 +00003786 /* The first fields of the two keys are equal. Compare the trailing
3787 ** fields. */
drh75179de2014-09-16 14:37:35 +00003788 res = vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
dan3b9330f2014-02-27 20:44:18 +00003789 }else{
dan063d4a02014-02-28 09:48:30 +00003790 /* The first fields of the two keys are equal and there are no trailing
3791 ** fields. Return pPKey2->default_rc in this case. */
dan3b9330f2014-02-27 20:44:18 +00003792 res = pPKey2->default_rc;
3793 }
3794
drh79211e12014-05-02 17:33:16 +00003795 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
dan3b9330f2014-02-27 20:44:18 +00003796 return res;
3797}
3798
dan3833e932014-03-01 19:44:56 +00003799/*
3800** This function is an optimized version of sqlite3VdbeRecordCompare()
3801** that (a) the first field of pPKey2 is a string, that (b) the first field
3802** uses the collation sequence BINARY and (c) that the size-of-header varint
3803** at the start of (pKey1/nKey1) fits in a single byte.
3804*/
dan3b9330f2014-02-27 20:44:18 +00003805static int vdbeRecordCompareString(
3806 int nKey1, const void *pKey1, /* Left key */
drh75179de2014-09-16 14:37:35 +00003807 UnpackedRecord *pPKey2 /* Right key */
dan3b9330f2014-02-27 20:44:18 +00003808){
3809 const u8 *aKey1 = (const u8*)pKey1;
3810 int serial_type;
3811 int res;
3812
3813 getVarint32(&aKey1[1], serial_type);
dan3b9330f2014-02-27 20:44:18 +00003814 if( serial_type<12 ){
3815 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
3816 }else if( !(serial_type & 0x01) ){
3817 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
3818 }else{
3819 int nCmp;
3820 int nStr;
dan3833e932014-03-01 19:44:56 +00003821 int szHdr = aKey1[0];
dan3b9330f2014-02-27 20:44:18 +00003822
3823 nStr = (serial_type-12) / 2;
drha1f7c0a2014-03-28 03:12:48 +00003824 if( (szHdr + nStr) > nKey1 ){
dan38fdead2014-04-01 10:19:02 +00003825 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
drha1f7c0a2014-03-28 03:12:48 +00003826 return 0; /* Corruption */
3827 }
dan3b9330f2014-02-27 20:44:18 +00003828 nCmp = MIN( pPKey2->aMem[0].n, nStr );
dan3833e932014-03-01 19:44:56 +00003829 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
dan3b9330f2014-02-27 20:44:18 +00003830
3831 if( res==0 ){
3832 res = nStr - pPKey2->aMem[0].n;
3833 if( res==0 ){
3834 if( pPKey2->nField>1 ){
drh75179de2014-09-16 14:37:35 +00003835 res = vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
dan3b9330f2014-02-27 20:44:18 +00003836 }else{
3837 res = pPKey2->default_rc;
3838 }
3839 }else if( res>0 ){
3840 res = pPKey2->r2;
3841 }else{
3842 res = pPKey2->r1;
3843 }
3844 }else if( res>0 ){
3845 res = pPKey2->r2;
3846 }else{
3847 res = pPKey2->r1;
3848 }
3849 }
3850
drh66141812014-06-30 20:25:03 +00003851 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
dan3b9330f2014-02-27 20:44:18 +00003852 || CORRUPT_DB
dan6696ba32014-06-28 19:06:49 +00003853 || pPKey2->pKeyInfo->db->mallocFailed
dan3b9330f2014-02-27 20:44:18 +00003854 );
3855 return res;
3856}
3857
dan3833e932014-03-01 19:44:56 +00003858/*
3859** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
3860** suitable for comparing serialized records to the unpacked record passed
3861** as the only argument.
3862*/
dan1fed5da2014-02-25 21:01:25 +00003863RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
dan9b8afef2014-03-03 20:48:50 +00003864 /* varintRecordCompareInt() and varintRecordCompareString() both assume
3865 ** that the size-of-header varint that occurs at the start of each record
3866 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
3867 ** also assumes that it is safe to overread a buffer by at least the
3868 ** maximum possible legal header size plus 8 bytes. Because there is
3869 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
3870 ** buffer passed to varintRecordCompareInt() this makes it convenient to
3871 ** limit the size of the header to 64 bytes in cases where the first field
3872 ** is an integer.
3873 **
3874 ** The easiest way to enforce this limit is to consider only records with
3875 ** 13 fields or less. If the first field is an integer, the maximum legal
3876 ** header size is (12*5 + 1 + 1) bytes. */
3877 if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){
dan1fed5da2014-02-25 21:01:25 +00003878 int flags = p->aMem[0].flags;
dan3b9330f2014-02-27 20:44:18 +00003879 if( p->pKeyInfo->aSortOrder[0] ){
3880 p->r1 = 1;
3881 p->r2 = -1;
3882 }else{
3883 p->r1 = -1;
3884 p->r2 = 1;
3885 }
dan1fed5da2014-02-25 21:01:25 +00003886 if( (flags & MEM_Int) ){
3887 return vdbeRecordCompareInt;
dan3b9330f2014-02-27 20:44:18 +00003888 }
drhb6e8fd12014-03-06 01:56:33 +00003889 testcase( flags & MEM_Real );
3890 testcase( flags & MEM_Null );
3891 testcase( flags & MEM_Blob );
3892 if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){
3893 assert( flags & MEM_Str );
dan1fed5da2014-02-25 21:01:25 +00003894 return vdbeRecordCompareString;
3895 }
3896 }
dan3b9330f2014-02-27 20:44:18 +00003897
dan3833e932014-03-01 19:44:56 +00003898 return sqlite3VdbeRecordCompare;
dan3b9330f2014-02-27 20:44:18 +00003899}
dan1fed5da2014-02-25 21:01:25 +00003900
danielk1977eb015e02004-05-18 01:31:14 +00003901/*
drh7a224de2004-06-02 01:22:02 +00003902** pCur points at an index entry created using the OP_MakeRecord opcode.
3903** Read the rowid (the last field in the record) and store it in *rowid.
3904** Return SQLITE_OK if everything works, or an error code otherwise.
drh88a003e2008-12-11 16:17:03 +00003905**
3906** pCur might be pointing to text obtained from a corrupt database file.
3907** So the content cannot be trusted. Do appropriate checks on the content.
danielk1977183f9f72004-05-13 05:20:26 +00003908*/
drhd3b74202014-09-17 16:41:15 +00003909int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
drh61fc5952007-04-01 23:49:51 +00003910 i64 nCellKey = 0;
danielk1977183f9f72004-05-13 05:20:26 +00003911 int rc;
drhd5788202004-05-28 08:21:05 +00003912 u32 szHdr; /* Size of the header */
3913 u32 typeRowid; /* Serial type of the rowid */
3914 u32 lenRowid; /* Size of the rowid */
3915 Mem m, v;
danielk1977183f9f72004-05-13 05:20:26 +00003916
drh88a003e2008-12-11 16:17:03 +00003917 /* Get the size of the index entry. Only indices entries of less
drh7b746032009-06-26 12:15:22 +00003918 ** than 2GiB are support - anything large must be database corruption.
3919 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
drhc27ae612009-07-14 18:35:44 +00003920 ** this code can safely assume that nCellKey is 32-bits
3921 */
drhea8ffdf2009-07-22 00:35:23 +00003922 assert( sqlite3BtreeCursorIsValid(pCur) );
drhb07028f2011-10-14 21:49:18 +00003923 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
drhc27ae612009-07-14 18:35:44 +00003924 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
drh7b746032009-06-26 12:15:22 +00003925 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
drh88a003e2008-12-11 16:17:03 +00003926
3927 /* Read in the complete content of the index entry */
drhd3b74202014-09-17 16:41:15 +00003928 sqlite3VdbeMemInit(&m, db, 0);
drh501932c2013-11-21 21:59:53 +00003929 rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m);
drhd5788202004-05-28 08:21:05 +00003930 if( rc ){
danielk1977183f9f72004-05-13 05:20:26 +00003931 return rc;
3932 }
drh88a003e2008-12-11 16:17:03 +00003933
3934 /* The index entry must begin with a header size */
shane3f8d5cf2008-04-24 19:15:09 +00003935 (void)getVarint32((u8*)m.z, szHdr);
drh7b746032009-06-26 12:15:22 +00003936 testcase( szHdr==3 );
drh88a003e2008-12-11 16:17:03 +00003937 testcase( szHdr==m.n );
drh7b746032009-06-26 12:15:22 +00003938 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
drh88a003e2008-12-11 16:17:03 +00003939 goto idx_rowid_corruption;
3940 }
3941
3942 /* The last field of the index should be an integer - the ROWID.
3943 ** Verify that the last entry really is an integer. */
shane3f8d5cf2008-04-24 19:15:09 +00003944 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
drh88a003e2008-12-11 16:17:03 +00003945 testcase( typeRowid==1 );
3946 testcase( typeRowid==2 );
3947 testcase( typeRowid==3 );
3948 testcase( typeRowid==4 );
3949 testcase( typeRowid==5 );
3950 testcase( typeRowid==6 );
3951 testcase( typeRowid==8 );
3952 testcase( typeRowid==9 );
3953 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
3954 goto idx_rowid_corruption;
3955 }
drhd5788202004-05-28 08:21:05 +00003956 lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
drheeb844a2009-08-08 18:01:07 +00003957 testcase( (u32)m.n==szHdr+lenRowid );
3958 if( unlikely((u32)m.n<szHdr+lenRowid) ){
drh88a003e2008-12-11 16:17:03 +00003959 goto idx_rowid_corruption;
3960 }
3961
3962 /* Fetch the integer off the end of the index record */
drh2646da72005-12-09 20:02:05 +00003963 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
drh3c024d62007-03-30 11:23:45 +00003964 *rowid = v.u.i;
danielk1977d8123362004-06-12 09:25:12 +00003965 sqlite3VdbeMemRelease(&m);
danielk1977183f9f72004-05-13 05:20:26 +00003966 return SQLITE_OK;
drh88a003e2008-12-11 16:17:03 +00003967
3968 /* Jump here if database corruption is detected after m has been
3969 ** allocated. Free the m object and return SQLITE_CORRUPT. */
3970idx_rowid_corruption:
drh17bcb102014-09-18 21:25:33 +00003971 testcase( m.szMalloc!=0 );
drh88a003e2008-12-11 16:17:03 +00003972 sqlite3VdbeMemRelease(&m);
3973 return SQLITE_CORRUPT_BKPT;
danielk1977183f9f72004-05-13 05:20:26 +00003974}
3975
drh7cf6e4d2004-05-19 14:56:55 +00003976/*
drh5f82e3c2009-07-06 00:44:08 +00003977** Compare the key of the index entry that cursor pC is pointing to against
3978** the key string in pUnpacked. Write into *pRes a number
drh7cf6e4d2004-05-19 14:56:55 +00003979** that is negative, zero, or positive if pC is less than, equal to,
drh5f82e3c2009-07-06 00:44:08 +00003980** or greater than pUnpacked. Return SQLITE_OK on success.
drhd3d39e92004-05-20 22:16:29 +00003981**
drh5f82e3c2009-07-06 00:44:08 +00003982** pUnpacked is either created without a rowid or is truncated so that it
drhd5788202004-05-28 08:21:05 +00003983** omits the rowid at the end. The rowid at the end of the index entry
drhec1fc802008-08-13 14:07:40 +00003984** is ignored as well. Hence, this routine only compares the prefixes
3985** of the keys prior to the final rowid, not the entire key.
drh7cf6e4d2004-05-19 14:56:55 +00003986*/
danielk1977183f9f72004-05-13 05:20:26 +00003987int sqlite3VdbeIdxKeyCompare(
drhd3b74202014-09-17 16:41:15 +00003988 sqlite3 *db, /* Database connection */
drh295aedf2014-03-03 18:25:24 +00003989 VdbeCursor *pC, /* The cursor to compare against */
drha1f7c0a2014-03-28 03:12:48 +00003990 UnpackedRecord *pUnpacked, /* Unpacked version of key */
drh295aedf2014-03-03 18:25:24 +00003991 int *res /* Write the comparison result here */
danielk1977183f9f72004-05-13 05:20:26 +00003992){
drh61fc5952007-04-01 23:49:51 +00003993 i64 nCellKey = 0;
danielk1977183f9f72004-05-13 05:20:26 +00003994 int rc;
danielk19773d1bfea2004-05-14 11:00:53 +00003995 BtCursor *pCur = pC->pCursor;
drhd5788202004-05-28 08:21:05 +00003996 Mem m;
danielk1977183f9f72004-05-13 05:20:26 +00003997
drhea8ffdf2009-07-22 00:35:23 +00003998 assert( sqlite3BtreeCursorIsValid(pCur) );
drhb07028f2011-10-14 21:49:18 +00003999 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
drhc27ae612009-07-14 18:35:44 +00004000 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
drh56689692014-03-03 19:29:28 +00004001 /* nCellKey will always be between 0 and 0xffffffff because of the way
drh407414c2009-07-14 14:15:27 +00004002 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
drhc27ae612009-07-14 18:35:44 +00004003 if( nCellKey<=0 || nCellKey>0x7fffffff ){
danielk1977183f9f72004-05-13 05:20:26 +00004004 *res = 0;
drh9978c972010-02-23 17:36:32 +00004005 return SQLITE_CORRUPT_BKPT;
danielk1977183f9f72004-05-13 05:20:26 +00004006 }
drhd3b74202014-09-17 16:41:15 +00004007 sqlite3VdbeMemInit(&m, db, 0);
drh501932c2013-11-21 21:59:53 +00004008 rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (u32)nCellKey, 1, &m);
drhec1fc802008-08-13 14:07:40 +00004009 if( rc ){
drhd5788202004-05-28 08:21:05 +00004010 return rc;
danielk1977183f9f72004-05-13 05:20:26 +00004011 }
drh75179de2014-09-16 14:37:35 +00004012 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
danielk1977d8123362004-06-12 09:25:12 +00004013 sqlite3VdbeMemRelease(&m);
danielk1977183f9f72004-05-13 05:20:26 +00004014 return SQLITE_OK;
4015}
danielk1977b28af712004-06-21 06:50:26 +00004016
4017/*
4018** This routine sets the value to be returned by subsequent calls to
4019** sqlite3_changes() on the database handle 'db'.
4020*/
4021void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
drhb21c8cd2007-08-21 19:33:56 +00004022 assert( sqlite3_mutex_held(db->mutex) );
danielk1977b28af712004-06-21 06:50:26 +00004023 db->nChange = nChange;
4024 db->nTotalChange += nChange;
4025}
4026
4027/*
4028** Set a flag in the vdbe to update the change counter when it is finalised
4029** or reset.
4030*/
drh4794f732004-11-05 17:17:50 +00004031void sqlite3VdbeCountChanges(Vdbe *v){
4032 v->changeCntOn = 1;
danielk1977b28af712004-06-21 06:50:26 +00004033}
drhd89bd002005-01-22 03:03:54 +00004034
4035/*
4036** Mark every prepared statement associated with a database connection
4037** as expired.
4038**
4039** An expired statement means that recompilation of the statement is
4040** recommend. Statements expire when things happen that make their
4041** programs obsolete. Removing user-defined functions or collating
4042** sequences, or changing an authorization function are the types of
4043** things that make prepared statements obsolete.
4044*/
4045void sqlite3ExpirePreparedStatements(sqlite3 *db){
4046 Vdbe *p;
4047 for(p = db->pVdbe; p; p=p->pNext){
4048 p->expired = 1;
4049 }
4050}
danielk1977aee18ef2005-03-09 12:26:50 +00004051
4052/*
4053** Return the database associated with the Vdbe.
4054*/
4055sqlite3 *sqlite3VdbeDb(Vdbe *v){
4056 return v->db;
4057}
dan937d0de2009-10-15 18:35:38 +00004058
4059/*
4060** Return a pointer to an sqlite3_value structure containing the value bound
4061** parameter iVar of VM v. Except, if the value is an SQL NULL, return
4062** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
4063** constants) to the value before returning it.
4064**
4065** The returned value must be freed by the caller using sqlite3ValueFree().
4066*/
drhcf0fd4a2013-08-01 12:21:58 +00004067sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
dan937d0de2009-10-15 18:35:38 +00004068 assert( iVar>0 );
4069 if( v ){
4070 Mem *pMem = &v->aVar[iVar-1];
4071 if( 0==(pMem->flags & MEM_Null) ){
4072 sqlite3_value *pRet = sqlite3ValueNew(v->db);
4073 if( pRet ){
4074 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
4075 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
dan937d0de2009-10-15 18:35:38 +00004076 }
4077 return pRet;
4078 }
4079 }
4080 return 0;
4081}
4082
4083/*
4084** Configure SQL variable iVar so that binding a new value to it signals
4085** to sqlite3_reoptimize() that re-preparing the statement may result
4086** in a better query plan.
4087*/
dan1d2ce4f2009-10-19 18:11:09 +00004088void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
dan937d0de2009-10-15 18:35:38 +00004089 assert( iVar>0 );
4090 if( iVar>32 ){
dan1d2ce4f2009-10-19 18:11:09 +00004091 v->expmask = 0xffffffff;
dan937d0de2009-10-15 18:35:38 +00004092 }else{
dan1d2ce4f2009-10-19 18:11:09 +00004093 v->expmask |= ((u32)1 << (iVar-1));
dan937d0de2009-10-15 18:35:38 +00004094 }
4095}
dan016f7812013-08-21 17:35:48 +00004096
4097#ifndef SQLITE_OMIT_VIRTUALTABLE
4098/*
4099** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
4100** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
4101** in memory obtained from sqlite3DbMalloc).
4102*/
4103void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
4104 sqlite3 *db = p->db;
4105 sqlite3DbFree(db, p->zErrMsg);
4106 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
4107 sqlite3_free(pVtab->zErrMsg);
4108 pVtab->zErrMsg = 0;
4109}
4110#endif /* SQLITE_OMIT_VIRTUALTABLE */