blob: 22f8a50e59bdbf1b03eed87b534e6d3bd819ba6b [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
daneebf2f52017-11-18 17:30:08 +0000115/*
116** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
117** (MemPage*) as an argument. The (MemPage*) must not be NULL.
118**
119** If SQLITE_DEBUG is not defined, then this macro is equivalent to
120** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
121** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
122** with the page number and filename associated with the (MemPage*).
123*/
124#ifdef SQLITE_DEBUG
125int corruptPageError(int lineno, MemPage *p){
drh8bfe66a2018-01-22 15:45:12 +0000126 char *zMsg;
127 sqlite3BeginBenignMalloc();
128 zMsg = sqlite3_mprintf("database corruption page %d of %s",
daneebf2f52017-11-18 17:30:08 +0000129 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
130 );
drh8bfe66a2018-01-22 15:45:12 +0000131 sqlite3EndBenignMalloc();
daneebf2f52017-11-18 17:30:08 +0000132 if( zMsg ){
133 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
134 }
135 sqlite3_free(zMsg);
136 return SQLITE_CORRUPT_BKPT;
137}
138# define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
139#else
140# define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
141#endif
142
drhe53831d2007-08-17 01:14:38 +0000143#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000144
145#ifdef SQLITE_DEBUG
146/*
drh0ee3dbe2009-10-16 15:05:18 +0000147**** This function is only used as part of an assert() statement. ***
148**
149** Check to see if pBtree holds the required locks to read or write to the
150** table with root page iRoot. Return 1 if it does and 0 if not.
151**
152** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000153** Btree connection pBtree:
154**
155** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
156**
drh0ee3dbe2009-10-16 15:05:18 +0000157** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000158** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000159** the corresponding table. This makes things a bit more complicated,
160** as this module treats each table as a separate structure. To determine
161** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000162** function has to search through the database schema.
163**
drh0ee3dbe2009-10-16 15:05:18 +0000164** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000165** hold a write-lock on the schema table (root page 1). This is also
166** acceptable.
167*/
168static int hasSharedCacheTableLock(
169 Btree *pBtree, /* Handle that must hold lock */
170 Pgno iRoot, /* Root page of b-tree */
171 int isIndex, /* True if iRoot is the root of an index b-tree */
172 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
173){
174 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
175 Pgno iTab = 0;
176 BtLock *pLock;
177
drh0ee3dbe2009-10-16 15:05:18 +0000178 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000179 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000180 ** Return true immediately.
181 */
danielk197796d48e92009-06-29 06:00:37 +0000182 if( (pBtree->sharable==0)
drh169dd922017-06-26 13:57:49 +0000183 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
danielk197796d48e92009-06-29 06:00:37 +0000184 ){
185 return 1;
186 }
187
drh0ee3dbe2009-10-16 15:05:18 +0000188 /* If the client is reading or writing an index and the schema is
189 ** not loaded, then it is too difficult to actually check to see if
190 ** the correct locks are held. So do not bother - just return true.
191 ** This case does not come up very often anyhow.
192 */
drh2c5e35f2014-08-05 11:04:21 +0000193 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000194 return 1;
195 }
196
danielk197796d48e92009-06-29 06:00:37 +0000197 /* Figure out the root-page that the lock should be held on. For table
198 ** b-trees, this is just the root page of the b-tree being read or
199 ** written. For index b-trees, it is the root page of the associated
200 ** table. */
201 if( isIndex ){
202 HashElem *p;
203 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
204 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000205 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000206 if( iTab ){
207 /* Two or more indexes share the same root page. There must
208 ** be imposter tables. So just return true. The assert is not
209 ** useful in that case. */
210 return 1;
211 }
shane5eff7cf2009-08-10 03:57:58 +0000212 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000213 }
214 }
215 }else{
216 iTab = iRoot;
217 }
218
219 /* Search for the required lock. Either a write-lock on root-page iTab, a
220 ** write-lock on the schema table, or (if the client is reading) a
221 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
222 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
223 if( pLock->pBtree==pBtree
224 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
225 && pLock->eLock>=eLockType
226 ){
227 return 1;
228 }
229 }
230
231 /* Failed to find the required lock. */
232 return 0;
233}
drh0ee3dbe2009-10-16 15:05:18 +0000234#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000235
drh0ee3dbe2009-10-16 15:05:18 +0000236#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000237/*
drh0ee3dbe2009-10-16 15:05:18 +0000238**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000239**
drh0ee3dbe2009-10-16 15:05:18 +0000240** Return true if it would be illegal for pBtree to write into the
241** table or index rooted at iRoot because other shared connections are
242** simultaneously reading that same table or index.
243**
244** It is illegal for pBtree to write if some other Btree object that
245** shares the same BtShared object is currently reading or writing
246** the iRoot table. Except, if the other Btree object has the
247** read-uncommitted flag set, then it is OK for the other object to
248** have a read cursor.
249**
250** For example, before writing to any part of the table or index
251** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000252**
253** assert( !hasReadConflicts(pBtree, iRoot) );
254*/
255static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
256 BtCursor *p;
257 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
258 if( p->pgnoRoot==iRoot
259 && p->pBtree!=pBtree
drh169dd922017-06-26 13:57:49 +0000260 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
danielk197796d48e92009-06-29 06:00:37 +0000261 ){
262 return 1;
263 }
264 }
265 return 0;
266}
267#endif /* #ifdef SQLITE_DEBUG */
268
danielk1977da184232006-01-05 11:34:32 +0000269/*
drh0ee3dbe2009-10-16 15:05:18 +0000270** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000271** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000272** SQLITE_OK if the lock may be obtained (by calling
273** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000274*/
drhc25eabe2009-02-24 18:57:31 +0000275static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000276 BtShared *pBt = p->pBt;
277 BtLock *pIter;
278
drh1fee73e2007-08-29 04:00:57 +0000279 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000280 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
281 assert( p->db!=0 );
drh169dd922017-06-26 13:57:49 +0000282 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000283
danielk19775b413d72009-04-01 09:41:54 +0000284 /* If requesting a write-lock, then the Btree must have an open write
285 ** transaction on this file. And, obviously, for this to be so there
286 ** must be an open write transaction on the file itself.
287 */
288 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
289 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
290
drh0ee3dbe2009-10-16 15:05:18 +0000291 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000292 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000293 return SQLITE_OK;
294 }
295
danielk1977641b0f42007-12-21 04:47:25 +0000296 /* If some other connection is holding an exclusive lock, the
297 ** requested lock may not be obtained.
298 */
drhc9166342012-01-05 23:32:06 +0000299 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000300 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
301 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000302 }
303
danielk1977e0d9e6f2009-07-03 16:25:06 +0000304 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
305 /* The condition (pIter->eLock!=eLock) in the following if(...)
306 ** statement is a simplification of:
307 **
308 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
309 **
310 ** since we know that if eLock==WRITE_LOCK, then no other connection
311 ** may hold a WRITE_LOCK on any table in this file (since there can
312 ** only be a single writer).
313 */
314 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
315 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
316 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
317 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
318 if( eLock==WRITE_LOCK ){
319 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000320 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000321 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000322 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000323 }
324 }
325 return SQLITE_OK;
326}
drhe53831d2007-08-17 01:14:38 +0000327#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000328
drhe53831d2007-08-17 01:14:38 +0000329#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000330/*
331** Add a lock on the table with root-page iTable to the shared-btree used
332** by Btree handle p. Parameter eLock must be either READ_LOCK or
333** WRITE_LOCK.
334**
danielk19779d104862009-07-09 08:27:14 +0000335** This function assumes the following:
336**
drh0ee3dbe2009-10-16 15:05:18 +0000337** (a) The specified Btree object p is connected to a sharable
338** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000339**
drh0ee3dbe2009-10-16 15:05:18 +0000340** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000341** with the requested lock (i.e. querySharedCacheTableLock() has
342** already been called and returned SQLITE_OK).
343**
344** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
345** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000346*/
drhc25eabe2009-02-24 18:57:31 +0000347static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000348 BtShared *pBt = p->pBt;
349 BtLock *pLock = 0;
350 BtLock *pIter;
351
drh1fee73e2007-08-29 04:00:57 +0000352 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000353 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
354 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000355
danielk1977e0d9e6f2009-07-03 16:25:06 +0000356 /* A connection with the read-uncommitted flag set will never try to
357 ** obtain a read-lock using this function. The only read-lock obtained
358 ** by a connection in read-uncommitted mode is on the sqlite_master
359 ** table, and that lock is obtained in BtreeBeginTrans(). */
drh169dd922017-06-26 13:57:49 +0000360 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000361
danielk19779d104862009-07-09 08:27:14 +0000362 /* This function should only be called on a sharable b-tree after it
363 ** has been determined that no other b-tree holds a conflicting lock. */
364 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000365 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000366
367 /* First search the list for an existing lock on this table. */
368 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
369 if( pIter->iTable==iTable && pIter->pBtree==p ){
370 pLock = pIter;
371 break;
372 }
373 }
374
375 /* If the above search did not find a BtLock struct associating Btree p
376 ** with table iTable, allocate one and link it into the list.
377 */
378 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000379 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000380 if( !pLock ){
mistachkinfad30392016-02-13 23:43:46 +0000381 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +0000382 }
383 pLock->iTable = iTable;
384 pLock->pBtree = p;
385 pLock->pNext = pBt->pLock;
386 pBt->pLock = pLock;
387 }
388
389 /* Set the BtLock.eLock variable to the maximum of the current lock
390 ** and the requested lock. This means if a write-lock was already held
391 ** and a read-lock requested, we don't incorrectly downgrade the lock.
392 */
393 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000394 if( eLock>pLock->eLock ){
395 pLock->eLock = eLock;
396 }
danielk1977aef0bf62005-12-30 16:28:01 +0000397
398 return SQLITE_OK;
399}
drhe53831d2007-08-17 01:14:38 +0000400#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000401
drhe53831d2007-08-17 01:14:38 +0000402#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000403/*
drhc25eabe2009-02-24 18:57:31 +0000404** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000405** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000406**
drh0ee3dbe2009-10-16 15:05:18 +0000407** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000408** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000409** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000410*/
drhc25eabe2009-02-24 18:57:31 +0000411static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000412 BtShared *pBt = p->pBt;
413 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000414
drh1fee73e2007-08-29 04:00:57 +0000415 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000416 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000417 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000418
danielk1977aef0bf62005-12-30 16:28:01 +0000419 while( *ppIter ){
420 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000421 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000422 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000423 if( pLock->pBtree==p ){
424 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000425 assert( pLock->iTable!=1 || pLock==&p->lock );
426 if( pLock->iTable!=1 ){
427 sqlite3_free(pLock);
428 }
danielk1977aef0bf62005-12-30 16:28:01 +0000429 }else{
430 ppIter = &pLock->pNext;
431 }
432 }
danielk1977641b0f42007-12-21 04:47:25 +0000433
drhc9166342012-01-05 23:32:06 +0000434 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000435 if( pBt->pWriter==p ){
436 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000437 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000438 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000439 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000440 ** transaction. If there currently exists a writer, and p is not
441 ** that writer, then the number of locks held by connections other
442 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000443 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000444 **
drhc9166342012-01-05 23:32:06 +0000445 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000446 ** be zero already. So this next line is harmless in that case.
447 */
drhc9166342012-01-05 23:32:06 +0000448 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000449 }
danielk1977aef0bf62005-12-30 16:28:01 +0000450}
danielk197794b30732009-07-02 17:21:57 +0000451
danielk1977e0d9e6f2009-07-03 16:25:06 +0000452/*
drh0ee3dbe2009-10-16 15:05:18 +0000453** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000454*/
danielk197794b30732009-07-02 17:21:57 +0000455static void downgradeAllSharedCacheTableLocks(Btree *p){
456 BtShared *pBt = p->pBt;
457 if( pBt->pWriter==p ){
458 BtLock *pLock;
459 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000460 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000461 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
462 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
463 pLock->eLock = READ_LOCK;
464 }
465 }
466}
467
danielk1977aef0bf62005-12-30 16:28:01 +0000468#endif /* SQLITE_OMIT_SHARED_CACHE */
469
drh3908fe92017-09-01 14:50:19 +0000470static void releasePage(MemPage *pPage); /* Forward reference */
471static void releasePageOne(MemPage *pPage); /* Forward reference */
drh352a35a2017-08-15 03:46:47 +0000472static void releasePageNotNull(MemPage *pPage); /* Forward reference */
drh980b1a72006-08-16 16:42:48 +0000473
drh1fee73e2007-08-29 04:00:57 +0000474/*
drh0ee3dbe2009-10-16 15:05:18 +0000475***** This routine is used inside of assert() only ****
476**
477** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000478*/
drh0ee3dbe2009-10-16 15:05:18 +0000479#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000480static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000481 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000482}
drh5e08d0f2016-06-04 21:05:54 +0000483
484/* Verify that the cursor and the BtShared agree about what is the current
485** database connetion. This is important in shared-cache mode. If the database
486** connection pointers get out-of-sync, it is possible for routines like
487** btreeInitPage() to reference an stale connection pointer that references a
488** a connection that has already closed. This routine is used inside assert()
489** statements only and for the purpose of double-checking that the btree code
490** does keep the database connection pointers up-to-date.
491*/
dan7a2347e2016-01-07 16:43:54 +0000492static int cursorOwnsBtShared(BtCursor *p){
493 assert( cursorHoldsMutex(p) );
494 return (p->pBtree->db==p->pBt->db);
495}
drh1fee73e2007-08-29 04:00:57 +0000496#endif
497
danielk197792d4d7a2007-05-04 12:05:56 +0000498/*
dan5a500af2014-03-11 20:33:04 +0000499** Invalidate the overflow cache of the cursor passed as the first argument.
500** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000501*/
drh036dbec2014-03-11 23:40:44 +0000502#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000503
504/*
505** Invalidate the overflow page-list cache for all cursors opened
506** on the shared btree structure pBt.
507*/
508static void invalidateAllOverflowCache(BtShared *pBt){
509 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000510 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000511 for(p=pBt->pCursor; p; p=p->pNext){
512 invalidateOverflowCache(p);
513 }
514}
danielk197796d48e92009-06-29 06:00:37 +0000515
dan5a500af2014-03-11 20:33:04 +0000516#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000517/*
518** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000519** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000520** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000521**
522** If argument isClearTable is true, then the entire contents of the
523** table is about to be deleted. In this case invalidate all incrblob
524** cursors open on any row within the table with root-page pgnoRoot.
525**
526** Otherwise, if argument isClearTable is false, then the row with
527** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000528** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000529*/
530static void invalidateIncrblobCursors(
531 Btree *pBtree, /* The database file to check */
drh9ca431a2017-03-29 18:03:50 +0000532 Pgno pgnoRoot, /* The table that might be changing */
danielk197796d48e92009-06-29 06:00:37 +0000533 i64 iRow, /* The rowid that might be changing */
534 int isClearTable /* True if all rows are being deleted */
535){
536 BtCursor *p;
drh69180952015-06-25 13:03:10 +0000537 if( pBtree->hasIncrblobCur==0 ) return;
danielk197796d48e92009-06-29 06:00:37 +0000538 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000539 pBtree->hasIncrblobCur = 0;
540 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
541 if( (p->curFlags & BTCF_Incrblob)!=0 ){
542 pBtree->hasIncrblobCur = 1;
drh9ca431a2017-03-29 18:03:50 +0000543 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
drh69180952015-06-25 13:03:10 +0000544 p->eState = CURSOR_INVALID;
545 }
danielk197796d48e92009-06-29 06:00:37 +0000546 }
547 }
548}
549
danielk197792d4d7a2007-05-04 12:05:56 +0000550#else
dan5a500af2014-03-11 20:33:04 +0000551 /* Stub function when INCRBLOB is omitted */
drh9ca431a2017-03-29 18:03:50 +0000552 #define invalidateIncrblobCursors(w,x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000553#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000554
drh980b1a72006-08-16 16:42:48 +0000555/*
danielk1977bea2a942009-01-20 17:06:27 +0000556** Set bit pgno of the BtShared.pHasContent bitvec. This is called
557** when a page that previously contained data becomes a free-list leaf
558** page.
559**
560** The BtShared.pHasContent bitvec exists to work around an obscure
561** bug caused by the interaction of two useful IO optimizations surrounding
562** free-list leaf pages:
563**
564** 1) When all data is deleted from a page and the page becomes
565** a free-list leaf page, the page is not written to the database
566** (as free-list leaf pages contain no meaningful data). Sometimes
567** such a page is not even journalled (as it will not be modified,
568** why bother journalling it?).
569**
570** 2) When a free-list leaf page is reused, its content is not read
571** from the database or written to the journal file (why should it
572** be, if it is not at all meaningful?).
573**
574** By themselves, these optimizations work fine and provide a handy
575** performance boost to bulk delete or insert operations. However, if
576** a page is moved to the free-list and then reused within the same
577** transaction, a problem comes up. If the page is not journalled when
578** it is moved to the free-list and it is also not journalled when it
579** is extracted from the free-list and reused, then the original data
580** may be lost. In the event of a rollback, it may not be possible
581** to restore the database to its original configuration.
582**
583** The solution is the BtShared.pHasContent bitvec. Whenever a page is
584** moved to become a free-list leaf page, the corresponding bit is
585** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000586** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000587** set in BtShared.pHasContent. The contents of the bitvec are cleared
588** at the end of every transaction.
589*/
590static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
591 int rc = SQLITE_OK;
592 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000593 assert( pgno<=pBt->nPage );
594 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000595 if( !pBt->pHasContent ){
mistachkinfad30392016-02-13 23:43:46 +0000596 rc = SQLITE_NOMEM_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +0000597 }
598 }
599 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
600 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
601 }
602 return rc;
603}
604
605/*
606** Query the BtShared.pHasContent vector.
607**
608** This function is called when a free-list leaf page is removed from the
609** free-list for reuse. It returns false if it is safe to retrieve the
610** page from the pager layer with the 'no-content' flag set. True otherwise.
611*/
612static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
613 Bitvec *p = pBt->pHasContent;
614 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
615}
616
617/*
618** Clear (destroy) the BtShared.pHasContent bitvec. This should be
619** invoked at the conclusion of each write-transaction.
620*/
621static void btreeClearHasContent(BtShared *pBt){
622 sqlite3BitvecDestroy(pBt->pHasContent);
623 pBt->pHasContent = 0;
624}
625
626/*
drh138eeeb2013-03-27 03:15:23 +0000627** Release all of the apPage[] pages for a cursor.
628*/
629static void btreeReleaseAllCursorPages(BtCursor *pCur){
630 int i;
drh352a35a2017-08-15 03:46:47 +0000631 if( pCur->iPage>=0 ){
632 for(i=0; i<pCur->iPage; i++){
633 releasePageNotNull(pCur->apPage[i]);
634 }
635 releasePageNotNull(pCur->pPage);
636 pCur->iPage = -1;
drh138eeeb2013-03-27 03:15:23 +0000637 }
drh138eeeb2013-03-27 03:15:23 +0000638}
639
danf0ee1d32015-09-12 19:26:11 +0000640/*
641** The cursor passed as the only argument must point to a valid entry
642** when this function is called (i.e. have eState==CURSOR_VALID). This
643** function saves the current cursor key in variables pCur->nKey and
644** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
645** code otherwise.
646**
647** If the cursor is open on an intkey table, then the integer key
648** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
649** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
650** set to point to a malloced buffer pCur->nKey bytes in size containing
651** the key.
652*/
653static int saveCursorKey(BtCursor *pCur){
drha7c90c42016-06-04 20:37:10 +0000654 int rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +0000655 assert( CURSOR_VALID==pCur->eState );
656 assert( 0==pCur->pKey );
657 assert( cursorHoldsMutex(pCur) );
658
drha7c90c42016-06-04 20:37:10 +0000659 if( pCur->curIntKey ){
660 /* Only the rowid is required for a table btree */
661 pCur->nKey = sqlite3BtreeIntegerKey(pCur);
662 }else{
663 /* For an index btree, save the complete key content */
drhd66c4f82016-06-04 20:58:35 +0000664 void *pKey;
drha7c90c42016-06-04 20:37:10 +0000665 pCur->nKey = sqlite3BtreePayloadSize(pCur);
drhd66c4f82016-06-04 20:58:35 +0000666 pKey = sqlite3Malloc( pCur->nKey );
danf0ee1d32015-09-12 19:26:11 +0000667 if( pKey ){
drhcb3cabd2016-11-25 19:18:28 +0000668 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
danf0ee1d32015-09-12 19:26:11 +0000669 if( rc==SQLITE_OK ){
670 pCur->pKey = pKey;
671 }else{
672 sqlite3_free(pKey);
673 }
674 }else{
mistachkinfad30392016-02-13 23:43:46 +0000675 rc = SQLITE_NOMEM_BKPT;
danf0ee1d32015-09-12 19:26:11 +0000676 }
677 }
678 assert( !pCur->curIntKey || !pCur->pKey );
679 return rc;
680}
drh138eeeb2013-03-27 03:15:23 +0000681
682/*
drh980b1a72006-08-16 16:42:48 +0000683** Save the current cursor position in the variables BtCursor.nKey
684** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000685**
686** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
687** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000688*/
689static int saveCursorPosition(BtCursor *pCur){
690 int rc;
691
drhd2f83132015-03-25 17:35:01 +0000692 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000693 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000694 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000695
drhd2f83132015-03-25 17:35:01 +0000696 if( pCur->eState==CURSOR_SKIPNEXT ){
697 pCur->eState = CURSOR_VALID;
698 }else{
699 pCur->skipNext = 0;
700 }
drh980b1a72006-08-16 16:42:48 +0000701
danf0ee1d32015-09-12 19:26:11 +0000702 rc = saveCursorKey(pCur);
drh980b1a72006-08-16 16:42:48 +0000703 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000704 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000705 pCur->eState = CURSOR_REQUIRESEEK;
706 }
707
dane755e102015-09-30 12:59:12 +0000708 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
drh980b1a72006-08-16 16:42:48 +0000709 return rc;
710}
711
drh637f3d82014-08-22 22:26:07 +0000712/* Forward reference */
713static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
714
drh980b1a72006-08-16 16:42:48 +0000715/*
drh0ee3dbe2009-10-16 15:05:18 +0000716** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000717** the table with root-page iRoot. "Saving the cursor position" means that
718** the location in the btree is remembered in such a way that it can be
719** moved back to the same spot after the btree has been modified. This
720** routine is called just before cursor pExcept is used to modify the
721** table, for example in BtreeDelete() or BtreeInsert().
722**
drh27fb7462015-06-30 02:47:36 +0000723** If there are two or more cursors on the same btree, then all such
724** cursors should have their BTCF_Multiple flag set. The btreeCursor()
725** routine enforces that rule. This routine only needs to be called in
726** the uncommon case when pExpect has the BTCF_Multiple flag set.
727**
728** If pExpect!=NULL and if no other cursors are found on the same root-page,
729** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
730** pointless call to this routine.
731**
drh637f3d82014-08-22 22:26:07 +0000732** Implementation note: This routine merely checks to see if any cursors
733** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
734** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000735*/
736static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
737 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000738 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000739 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000740 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000741 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
742 }
drh27fb7462015-06-30 02:47:36 +0000743 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
744 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
745 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000746}
747
748/* This helper routine to saveAllCursors does the actual work of saving
749** the cursors if and when a cursor is found that actually requires saving.
750** The common case is that no cursors need to be saved, so this routine is
751** broken out from its caller to avoid unnecessary stack pointer movement.
752*/
753static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000754 BtCursor *p, /* The first cursor that needs saving */
755 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
756 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000757){
758 do{
drh138eeeb2013-03-27 03:15:23 +0000759 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000760 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000761 int rc = saveCursorPosition(p);
762 if( SQLITE_OK!=rc ){
763 return rc;
764 }
765 }else{
drh85ef6302017-08-02 15:50:09 +0000766 testcase( p->iPage>=0 );
drh138eeeb2013-03-27 03:15:23 +0000767 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000768 }
769 }
drh637f3d82014-08-22 22:26:07 +0000770 p = p->pNext;
771 }while( p );
drh980b1a72006-08-16 16:42:48 +0000772 return SQLITE_OK;
773}
774
775/*
drhbf700f32007-03-31 02:36:44 +0000776** Clear the current cursor position.
777*/
danielk1977be51a652008-10-08 17:58:48 +0000778void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000779 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000780 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000781 pCur->pKey = 0;
782 pCur->eState = CURSOR_INVALID;
783}
784
785/*
danielk19773509a652009-07-06 18:56:13 +0000786** In this version of BtreeMoveto, pKey is a packed index record
787** such as is generated by the OP_MakeRecord opcode. Unpack the
788** record and then call BtreeMovetoUnpacked() to do the work.
789*/
790static int btreeMoveto(
791 BtCursor *pCur, /* Cursor open on the btree to be searched */
792 const void *pKey, /* Packed key if the btree is an index */
793 i64 nKey, /* Integer key for tables. Size of pKey for indices */
794 int bias, /* Bias search to the high end */
795 int *pRes /* Write search results here */
796){
797 int rc; /* Status code */
798 UnpackedRecord *pIdxKey; /* Unpacked index key */
danielk19773509a652009-07-06 18:56:13 +0000799
800 if( pKey ){
801 assert( nKey==(i64)(int)nKey );
drha582b012016-12-21 19:45:54 +0000802 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pCur->pKeyInfo);
mistachkinfad30392016-02-13 23:43:46 +0000803 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
mistachkin0fe5f952011-09-14 18:19:08 +0000804 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000805 if( pIdxKey->nField==0 ){
mistachkin88a79732017-09-04 19:31:54 +0000806 rc = SQLITE_CORRUPT_BKPT;
drha582b012016-12-21 19:45:54 +0000807 goto moveto_done;
drh094b7582013-11-30 12:49:28 +0000808 }
danielk19773509a652009-07-06 18:56:13 +0000809 }else{
810 pIdxKey = 0;
811 }
812 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
drha582b012016-12-21 19:45:54 +0000813moveto_done:
814 if( pIdxKey ){
815 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000816 }
817 return rc;
818}
819
820/*
drh980b1a72006-08-16 16:42:48 +0000821** Restore the cursor to the position it was in (or as close to as possible)
822** when saveCursorPosition() was called. Note that this call deletes the
823** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000824** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000825** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000826*/
danielk197730548662009-07-09 05:07:37 +0000827static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000828 int rc;
drhd2f83132015-03-25 17:35:01 +0000829 int skipNext;
dan7a2347e2016-01-07 16:43:54 +0000830 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +0000831 assert( pCur->eState>=CURSOR_REQUIRESEEK );
832 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000833 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000834 }
drh980b1a72006-08-16 16:42:48 +0000835 pCur->eState = CURSOR_INVALID;
drhd2f83132015-03-25 17:35:01 +0000836 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
drh980b1a72006-08-16 16:42:48 +0000837 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000838 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000839 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000840 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drhd2f83132015-03-25 17:35:01 +0000841 pCur->skipNext |= skipNext;
drh9b47ee32013-08-20 03:13:51 +0000842 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
843 pCur->eState = CURSOR_SKIPNEXT;
844 }
drh980b1a72006-08-16 16:42:48 +0000845 }
846 return rc;
847}
848
drha3460582008-07-11 21:02:53 +0000849#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000850 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000851 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000852 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000853
drha3460582008-07-11 21:02:53 +0000854/*
drh6848dad2014-08-22 23:33:03 +0000855** Determine whether or not a cursor has moved from the position where
856** it was last placed, or has been invalidated for any other reason.
857** Cursors can move when the row they are pointing at is deleted out
858** from under them, for example. Cursor might also move if a btree
859** is rebalanced.
drha3460582008-07-11 21:02:53 +0000860**
drh6848dad2014-08-22 23:33:03 +0000861** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000862**
drh6848dad2014-08-22 23:33:03 +0000863** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
864** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000865*/
drh6848dad2014-08-22 23:33:03 +0000866int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drhc22284f2014-10-13 16:02:20 +0000867 return pCur->eState!=CURSOR_VALID;
drh6848dad2014-08-22 23:33:03 +0000868}
869
870/*
drhfe0cf7a2017-08-16 19:20:20 +0000871** Return a pointer to a fake BtCursor object that will always answer
872** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
873** cursor returned must not be used with any other Btree interface.
874*/
875BtCursor *sqlite3BtreeFakeValidCursor(void){
876 static u8 fakeCursor = CURSOR_VALID;
877 assert( offsetof(BtCursor, eState)==0 );
878 return (BtCursor*)&fakeCursor;
879}
880
881/*
drh6848dad2014-08-22 23:33:03 +0000882** This routine restores a cursor back to its original position after it
883** has been moved by some outside activity (such as a btree rebalance or
884** a row having been deleted out from under the cursor).
885**
886** On success, the *pDifferentRow parameter is false if the cursor is left
887** pointing at exactly the same row. *pDifferntRow is the row the cursor
888** was pointing to has been deleted, forcing the cursor to point to some
889** nearby row.
890**
891** This routine should only be called for a cursor that just returned
892** TRUE from sqlite3BtreeCursorHasMoved().
893*/
894int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000895 int rc;
896
drh6848dad2014-08-22 23:33:03 +0000897 assert( pCur!=0 );
898 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000899 rc = restoreCursorPosition(pCur);
900 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000901 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000902 return rc;
903 }
drh606a3572015-03-25 18:29:10 +0000904 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000905 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000906 }else{
drh606a3572015-03-25 18:29:10 +0000907 assert( pCur->skipNext==0 );
drh6848dad2014-08-22 23:33:03 +0000908 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000909 }
910 return SQLITE_OK;
911}
912
drhf7854c72015-10-27 13:24:37 +0000913#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh28935362013-12-07 20:39:19 +0000914/*
drh0df57012015-08-14 15:05:55 +0000915** Provide hints to the cursor. The particular hint given (and the type
916** and number of the varargs parameters) is determined by the eHintType
917** parameter. See the definitions of the BTREE_HINT_* macros for details.
drh28935362013-12-07 20:39:19 +0000918*/
drh0df57012015-08-14 15:05:55 +0000919void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
drhf7854c72015-10-27 13:24:37 +0000920 /* Used only by system that substitute their own storage engine */
drh28935362013-12-07 20:39:19 +0000921}
drhf7854c72015-10-27 13:24:37 +0000922#endif
923
924/*
925** Provide flag hints to the cursor.
926*/
927void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
928 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
929 pCur->hints = x;
930}
931
drh28935362013-12-07 20:39:19 +0000932
danielk1977599fcba2004-11-08 07:13:13 +0000933#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000934/*
drha3152892007-05-05 11:48:52 +0000935** Given a page number of a regular database page, return the page
936** number for the pointer-map page that contains the entry for the
937** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000938**
939** Return 0 (not a valid page) for pgno==1 since there is
940** no pointer map associated with page 1. The integrity_check logic
941** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000942*/
danielk1977266664d2006-02-10 08:24:21 +0000943static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000944 int nPagesPerMapPage;
945 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000946 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000947 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000948 nPagesPerMapPage = (pBt->usableSize/5)+1;
949 iPtrMap = (pgno-2)/nPagesPerMapPage;
950 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000951 if( ret==PENDING_BYTE_PAGE(pBt) ){
952 ret++;
953 }
954 return ret;
955}
danielk1977a19df672004-11-03 11:37:07 +0000956
danielk1977afcdd022004-10-31 16:25:42 +0000957/*
danielk1977afcdd022004-10-31 16:25:42 +0000958** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000959**
960** This routine updates the pointer map entry for page number 'key'
961** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000962**
963** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
964** a no-op. If an error occurs, the appropriate error code is written
965** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000966*/
drh98add2e2009-07-20 17:11:49 +0000967static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000968 DbPage *pDbPage; /* The pointer map page */
969 u8 *pPtrmap; /* The pointer map data */
970 Pgno iPtrmap; /* The pointer map page number */
971 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000972 int rc; /* Return code from subfunctions */
973
974 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000975
drh1fee73e2007-08-29 04:00:57 +0000976 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000977 /* The master-journal page number must never be used as a pointer map page */
978 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
979
danielk1977ac11ee62005-01-15 12:45:51 +0000980 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000981 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000982 *pRC = SQLITE_CORRUPT_BKPT;
983 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000984 }
danielk1977266664d2006-02-10 08:24:21 +0000985 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +0000986 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977687566d2004-11-02 12:56:41 +0000987 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000988 *pRC = rc;
989 return;
danielk1977afcdd022004-10-31 16:25:42 +0000990 }
danielk19778c666b12008-07-18 09:34:57 +0000991 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000992 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000993 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000994 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000995 }
drhfc243732011-05-17 15:21:56 +0000996 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000997 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000998
drh615ae552005-01-16 23:21:00 +0000999 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1000 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +00001001 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +00001002 if( rc==SQLITE_OK ){
1003 pPtrmap[offset] = eType;
1004 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +00001005 }
danielk1977afcdd022004-10-31 16:25:42 +00001006 }
1007
drh4925a552009-07-07 11:39:58 +00001008ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +00001009 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001010}
1011
1012/*
1013** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +00001014**
1015** This routine retrieves the pointer map entry for page 'key', writing
1016** the type and parent page number to *pEType and *pPgno respectively.
1017** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +00001018*/
danielk1977aef0bf62005-12-30 16:28:01 +00001019static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +00001020 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +00001021 int iPtrmap; /* Pointer map page index */
1022 u8 *pPtrmap; /* Pointer map page data */
1023 int offset; /* Offset of entry in pointer map */
1024 int rc;
1025
drh1fee73e2007-08-29 04:00:57 +00001026 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001027
danielk1977266664d2006-02-10 08:24:21 +00001028 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +00001029 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00001030 if( rc!=0 ){
1031 return rc;
1032 }
danielk19773b8a05f2007-03-19 17:44:26 +00001033 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001034
danielk19778c666b12008-07-18 09:34:57 +00001035 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +00001036 if( offset<0 ){
1037 sqlite3PagerUnref(pDbPage);
1038 return SQLITE_CORRUPT_BKPT;
1039 }
1040 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +00001041 assert( pEType!=0 );
1042 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +00001043 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +00001044
danielk19773b8a05f2007-03-19 17:44:26 +00001045 sqlite3PagerUnref(pDbPage);
drhcc97ca42017-06-07 22:32:59 +00001046 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
danielk1977afcdd022004-10-31 16:25:42 +00001047 return SQLITE_OK;
1048}
1049
danielk197785d90ca2008-07-19 14:25:15 +00001050#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +00001051 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +00001052 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +00001053 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +00001054#endif
danielk1977afcdd022004-10-31 16:25:42 +00001055
drh0d316a42002-08-11 20:10:47 +00001056/*
drh271efa52004-05-30 19:19:05 +00001057** Given a btree page and a cell index (0 means the first cell on
1058** the page, 1 means the second cell, and so forth) return a pointer
1059** to the cell content.
1060**
drhf44890a2015-06-27 03:58:15 +00001061** findCellPastPtr() does the same except it skips past the initial
1062** 4-byte child pointer found on interior pages, if there is one.
1063**
drh271efa52004-05-30 19:19:05 +00001064** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +00001065*/
drh1688c862008-07-18 02:44:17 +00001066#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +00001067 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001068#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +00001069 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +00001070
drh43605152004-05-29 21:46:49 +00001071
1072/*
drh5fa60512015-06-19 17:19:34 +00001073** This is common tail processing for btreeParseCellPtr() and
1074** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1075** on a single B-tree page. Make necessary adjustments to the CellInfo
1076** structure.
drh43605152004-05-29 21:46:49 +00001077*/
drh5fa60512015-06-19 17:19:34 +00001078static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1079 MemPage *pPage, /* Page containing the cell */
1080 u8 *pCell, /* Pointer to the cell text. */
1081 CellInfo *pInfo /* Fill in this structure */
1082){
1083 /* If the payload will not fit completely on the local page, we have
1084 ** to decide how much to store locally and how much to spill onto
1085 ** overflow pages. The strategy is to minimize the amount of unused
1086 ** space on overflow pages while keeping the amount of local storage
1087 ** in between minLocal and maxLocal.
1088 **
1089 ** Warning: changing the way overflow payload is distributed in any
1090 ** way will result in an incompatible file format.
1091 */
1092 int minLocal; /* Minimum amount of payload held locally */
1093 int maxLocal; /* Maximum amount of payload held locally */
1094 int surplus; /* Overflow payload available for local storage */
1095
1096 minLocal = pPage->minLocal;
1097 maxLocal = pPage->maxLocal;
1098 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1099 testcase( surplus==maxLocal );
1100 testcase( surplus==maxLocal+1 );
1101 if( surplus <= maxLocal ){
1102 pInfo->nLocal = (u16)surplus;
1103 }else{
1104 pInfo->nLocal = (u16)minLocal;
drh43605152004-05-29 21:46:49 +00001105 }
drh45ac1c72015-12-18 03:59:16 +00001106 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
drh43605152004-05-29 21:46:49 +00001107}
1108
1109/*
drh5fa60512015-06-19 17:19:34 +00001110** The following routines are implementations of the MemPage.xParseCell()
1111** method.
danielk19771cc5ed82007-05-16 17:28:43 +00001112**
drh5fa60512015-06-19 17:19:34 +00001113** Parse a cell content block and fill in the CellInfo structure.
1114**
1115** btreeParseCellPtr() => table btree leaf nodes
1116** btreeParseCellNoPayload() => table btree internal nodes
1117** btreeParseCellPtrIndex() => index btree nodes
1118**
1119** There is also a wrapper function btreeParseCell() that works for
1120** all MemPage types and that references the cell by index rather than
1121** by pointer.
drh43605152004-05-29 21:46:49 +00001122*/
drh5fa60512015-06-19 17:19:34 +00001123static void btreeParseCellPtrNoPayload(
1124 MemPage *pPage, /* Page containing the cell */
1125 u8 *pCell, /* Pointer to the cell text. */
1126 CellInfo *pInfo /* Fill in this structure */
1127){
1128 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1129 assert( pPage->leaf==0 );
drh5fa60512015-06-19 17:19:34 +00001130 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001131#ifndef SQLITE_DEBUG
1132 UNUSED_PARAMETER(pPage);
1133#endif
drh5fa60512015-06-19 17:19:34 +00001134 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1135 pInfo->nPayload = 0;
1136 pInfo->nLocal = 0;
drh5fa60512015-06-19 17:19:34 +00001137 pInfo->pPayload = 0;
1138 return;
1139}
danielk197730548662009-07-09 05:07:37 +00001140static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001141 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001142 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001143 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001144){
drh3e28ff52014-09-24 00:59:08 +00001145 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001146 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001147 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001148
drh1fee73e2007-08-29 04:00:57 +00001149 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001150 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001151 assert( pPage->intKeyLeaf );
1152 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001153 pIter = pCell;
1154
1155 /* The next block of code is equivalent to:
1156 **
1157 ** pIter += getVarint32(pIter, nPayload);
1158 **
1159 ** The code is inlined to avoid a function call.
1160 */
1161 nPayload = *pIter;
1162 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001163 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001164 nPayload &= 0x7f;
1165 do{
1166 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1167 }while( (*pIter)>=0x80 && pIter<pEnd );
drh6f11bef2004-05-13 01:12:56 +00001168 }
drh56cb04e2015-06-19 18:24:37 +00001169 pIter++;
1170
1171 /* The next block of code is equivalent to:
1172 **
1173 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1174 **
1175 ** The code is inlined to avoid a function call.
1176 */
1177 iKey = *pIter;
1178 if( iKey>=0x80 ){
1179 u8 *pEnd = &pIter[7];
1180 iKey &= 0x7f;
1181 while(1){
1182 iKey = (iKey<<7) | (*++pIter & 0x7f);
1183 if( (*pIter)<0x80 ) break;
1184 if( pIter>=pEnd ){
1185 iKey = (iKey<<8) | *++pIter;
1186 break;
1187 }
1188 }
1189 }
1190 pIter++;
1191
1192 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001193 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001194 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001195 testcase( nPayload==pPage->maxLocal );
1196 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001197 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001198 /* This is the (easy) common case where the entire payload fits
1199 ** on the local page. No overflow is required.
1200 */
drhab1cc582014-09-23 21:25:19 +00001201 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1202 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001203 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001204 }else{
drh5fa60512015-06-19 17:19:34 +00001205 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001206 }
drh3aac2dd2004-04-26 14:10:20 +00001207}
drh5fa60512015-06-19 17:19:34 +00001208static void btreeParseCellPtrIndex(
1209 MemPage *pPage, /* Page containing the cell */
1210 u8 *pCell, /* Pointer to the cell text. */
1211 CellInfo *pInfo /* Fill in this structure */
1212){
1213 u8 *pIter; /* For scanning through pCell */
1214 u32 nPayload; /* Number of bytes of cell payload */
drh3aac2dd2004-04-26 14:10:20 +00001215
drh5fa60512015-06-19 17:19:34 +00001216 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1217 assert( pPage->leaf==0 || pPage->leaf==1 );
1218 assert( pPage->intKeyLeaf==0 );
drh5fa60512015-06-19 17:19:34 +00001219 pIter = pCell + pPage->childPtrSize;
1220 nPayload = *pIter;
1221 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001222 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001223 nPayload &= 0x7f;
1224 do{
1225 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1226 }while( *(pIter)>=0x80 && pIter<pEnd );
1227 }
1228 pIter++;
1229 pInfo->nKey = nPayload;
1230 pInfo->nPayload = nPayload;
1231 pInfo->pPayload = pIter;
1232 testcase( nPayload==pPage->maxLocal );
1233 testcase( nPayload==pPage->maxLocal+1 );
1234 if( nPayload<=pPage->maxLocal ){
1235 /* This is the (easy) common case where the entire payload fits
1236 ** on the local page. No overflow is required.
1237 */
1238 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1239 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1240 pInfo->nLocal = (u16)nPayload;
drh5fa60512015-06-19 17:19:34 +00001241 }else{
1242 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh3aac2dd2004-04-26 14:10:20 +00001243 }
1244}
danielk197730548662009-07-09 05:07:37 +00001245static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001246 MemPage *pPage, /* Page containing the cell */
1247 int iCell, /* The cell index. First cell is 0 */
1248 CellInfo *pInfo /* Fill in this structure */
1249){
drh5fa60512015-06-19 17:19:34 +00001250 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001251}
drh3aac2dd2004-04-26 14:10:20 +00001252
1253/*
drh5fa60512015-06-19 17:19:34 +00001254** The following routines are implementations of the MemPage.xCellSize
1255** method.
1256**
drh43605152004-05-29 21:46:49 +00001257** Compute the total number of bytes that a Cell needs in the cell
1258** data area of the btree-page. The return number includes the cell
1259** data header and the local payload, but not any overflow page or
1260** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001261**
drh5fa60512015-06-19 17:19:34 +00001262** cellSizePtrNoPayload() => table internal nodes
1263** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001264*/
danielk1977ae5558b2009-04-29 11:31:47 +00001265static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001266 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1267 u8 *pEnd; /* End mark for a varint */
1268 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001269
1270#ifdef SQLITE_DEBUG
1271 /* The value returned by this function should always be the same as
1272 ** the (CellInfo.nSize) value found by doing a full parse of the
1273 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1274 ** this function verifies that this invariant is not violated. */
1275 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001276 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001277#endif
1278
drh3e28ff52014-09-24 00:59:08 +00001279 nSize = *pIter;
1280 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001281 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001282 nSize &= 0x7f;
1283 do{
1284 nSize = (nSize<<7) | (*++pIter & 0x7f);
1285 }while( *(pIter)>=0x80 && pIter<pEnd );
1286 }
1287 pIter++;
danielk1977ae5558b2009-04-29 11:31:47 +00001288 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001289 /* pIter now points at the 64-bit integer key value, a variable length
1290 ** integer. The following block moves pIter to point at the first byte
1291 ** past the end of the key value. */
1292 pEnd = &pIter[9];
1293 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001294 }
drh0a45c272009-07-08 01:49:11 +00001295 testcase( nSize==pPage->maxLocal );
1296 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001297 if( nSize<=pPage->maxLocal ){
1298 nSize += (u32)(pIter - pCell);
1299 if( nSize<4 ) nSize = 4;
1300 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001301 int minLocal = pPage->minLocal;
1302 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001303 testcase( nSize==pPage->maxLocal );
1304 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001305 if( nSize>pPage->maxLocal ){
1306 nSize = minLocal;
1307 }
drh3e28ff52014-09-24 00:59:08 +00001308 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001309 }
drhdc41d602014-09-22 19:51:35 +00001310 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001311 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001312}
drh25ada072015-06-19 15:07:14 +00001313static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1314 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1315 u8 *pEnd; /* End mark for a varint */
1316
1317#ifdef SQLITE_DEBUG
1318 /* The value returned by this function should always be the same as
1319 ** the (CellInfo.nSize) value found by doing a full parse of the
1320 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1321 ** this function verifies that this invariant is not violated. */
1322 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001323 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001324#else
1325 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001326#endif
1327
1328 assert( pPage->childPtrSize==4 );
1329 pEnd = pIter + 9;
1330 while( (*pIter++)&0x80 && pIter<pEnd );
1331 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1332 return (u16)(pIter - pCell);
1333}
1334
drh0ee3dbe2009-10-16 15:05:18 +00001335
1336#ifdef SQLITE_DEBUG
1337/* This variation on cellSizePtr() is used inside of assert() statements
1338** only. */
drha9121e42008-02-19 14:59:35 +00001339static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001340 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001341}
danielk1977bc6ada42004-06-30 08:20:16 +00001342#endif
drh3b7511c2001-05-26 13:15:44 +00001343
danielk197779a40da2005-01-16 08:00:01 +00001344#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001345/*
danielk197726836652005-01-17 01:33:13 +00001346** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001347** to an overflow page, insert an entry into the pointer-map
1348** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001349*/
drh98add2e2009-07-20 17:11:49 +00001350static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001351 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001352 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001353 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001354 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00001355 if( info.nLocal<info.nPayload ){
1356 Pgno ovfl = get4byte(&pCell[info.nSize-4]);
drh98add2e2009-07-20 17:11:49 +00001357 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001358 }
danielk1977ac11ee62005-01-15 12:45:51 +00001359}
danielk197779a40da2005-01-16 08:00:01 +00001360#endif
1361
danielk1977ac11ee62005-01-15 12:45:51 +00001362
drhda200cc2004-05-09 11:51:38 +00001363/*
dane6d065a2017-02-24 19:58:22 +00001364** Defragment the page given. This routine reorganizes cells within the
1365** page so that there are no free-blocks on the free-block list.
1366**
1367** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1368** present in the page after this routine returns.
drhfdab0262014-11-20 15:30:50 +00001369**
1370** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1371** b-tree page so that there are no freeblocks or fragment bytes, all
1372** unused bytes are contained in the unallocated space region, and all
1373** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001374*/
dane6d065a2017-02-24 19:58:22 +00001375static int defragmentPage(MemPage *pPage, int nMaxFrag){
drh43605152004-05-29 21:46:49 +00001376 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001377 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001378 int hdr; /* Offset to the page header */
1379 int size; /* Size of a cell */
1380 int usableSize; /* Number of usable bytes on a page */
1381 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001382 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001383 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001384 unsigned char *data; /* The page data */
1385 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001386 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001387 int iCellFirst; /* First allowable cell index */
1388 int iCellLast; /* Last possible cell index */
1389
danielk19773b8a05f2007-03-19 17:44:26 +00001390 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001391 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001392 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001393 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001394 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001395 temp = 0;
1396 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001397 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001398 cellOffset = pPage->cellOffset;
1399 nCell = pPage->nCell;
1400 assert( nCell==get2byte(&data[hdr+3]) );
dane6d065a2017-02-24 19:58:22 +00001401 iCellFirst = cellOffset + 2*nCell;
dan30741eb2017-03-03 20:02:53 +00001402 usableSize = pPage->pBt->usableSize;
dane6d065a2017-02-24 19:58:22 +00001403
1404 /* This block handles pages with two or fewer free blocks and nMaxFrag
1405 ** or fewer fragmented bytes. In this case it is faster to move the
1406 ** two (or one) blocks of cells using memmove() and add the required
1407 ** offsets to each pointer in the cell-pointer array than it is to
1408 ** reconstruct the entire page. */
1409 if( (int)data[hdr+7]<=nMaxFrag ){
1410 int iFree = get2byte(&data[hdr+1]);
1411 if( iFree ){
1412 int iFree2 = get2byte(&data[iFree]);
dan30741eb2017-03-03 20:02:53 +00001413
1414 /* pageFindSlot() has already verified that free blocks are sorted
1415 ** in order of offset within the page, and that no block extends
1416 ** past the end of the page. Provided the two free slots do not
1417 ** overlap, this guarantees that the memmove() calls below will not
1418 ** overwrite the usableSize byte buffer, even if the database page
1419 ** is corrupt. */
1420 assert( iFree2==0 || iFree2>iFree );
1421 assert( iFree+get2byte(&data[iFree+2]) <= usableSize );
1422 assert( iFree2==0 || iFree2+get2byte(&data[iFree2+2]) <= usableSize );
1423
dane6d065a2017-02-24 19:58:22 +00001424 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1425 u8 *pEnd = &data[cellOffset + nCell*2];
1426 u8 *pAddr;
1427 int sz2 = 0;
1428 int sz = get2byte(&data[iFree+2]);
1429 int top = get2byte(&data[hdr+5]);
drh4e6cec12017-09-28 13:47:35 +00001430 if( top>=iFree ){
daneebf2f52017-11-18 17:30:08 +00001431 return SQLITE_CORRUPT_PAGE(pPage);
drh4e6cec12017-09-28 13:47:35 +00001432 }
dane6d065a2017-02-24 19:58:22 +00001433 if( iFree2 ){
drh60348462017-08-25 13:02:48 +00001434 assert( iFree+sz<=iFree2 ); /* Verified by pageFindSlot() */
dane6d065a2017-02-24 19:58:22 +00001435 sz2 = get2byte(&data[iFree2+2]);
dan30741eb2017-03-03 20:02:53 +00001436 assert( iFree+sz+sz2+iFree2-(iFree+sz) <= usableSize );
dane6d065a2017-02-24 19:58:22 +00001437 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1438 sz += sz2;
1439 }
1440 cbrk = top+sz;
dan30741eb2017-03-03 20:02:53 +00001441 assert( cbrk+(iFree-top) <= usableSize );
dane6d065a2017-02-24 19:58:22 +00001442 memmove(&data[cbrk], &data[top], iFree-top);
1443 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1444 pc = get2byte(pAddr);
1445 if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1446 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1447 }
1448 goto defragment_out;
1449 }
1450 }
1451 }
1452
drh281b21d2008-08-22 12:57:08 +00001453 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001454 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001455 for(i=0; i<nCell; i++){
1456 u8 *pAddr; /* The i-th cell pointer */
1457 pAddr = &data[cellOffset + i*2];
1458 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001459 testcase( pc==iCellFirst );
1460 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001461 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001462 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001463 */
1464 if( pc<iCellFirst || pc>iCellLast ){
daneebf2f52017-11-18 17:30:08 +00001465 return SQLITE_CORRUPT_PAGE(pPage);
shane0af3f892008-11-12 04:55:34 +00001466 }
drh17146622009-07-07 17:38:38 +00001467 assert( pc>=iCellFirst && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001468 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001469 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001470 if( cbrk<iCellFirst || pc+size>usableSize ){
daneebf2f52017-11-18 17:30:08 +00001471 return SQLITE_CORRUPT_PAGE(pPage);
drh17146622009-07-07 17:38:38 +00001472 }
drh7157e1d2009-07-09 13:25:32 +00001473 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001474 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001475 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001476 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001477 if( temp==0 ){
1478 int x;
1479 if( cbrk==pc ) continue;
1480 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1481 x = get2byte(&data[hdr+5]);
1482 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1483 src = temp;
1484 }
1485 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001486 }
dane6d065a2017-02-24 19:58:22 +00001487 data[hdr+7] = 0;
dane6d065a2017-02-24 19:58:22 +00001488
1489 defragment_out:
dan3b2ede12017-02-25 16:24:02 +00001490 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
daneebf2f52017-11-18 17:30:08 +00001491 return SQLITE_CORRUPT_PAGE(pPage);
dan3b2ede12017-02-25 16:24:02 +00001492 }
drh17146622009-07-07 17:38:38 +00001493 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001494 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001495 data[hdr+1] = 0;
1496 data[hdr+2] = 0;
drh17146622009-07-07 17:38:38 +00001497 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001498 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shane0af3f892008-11-12 04:55:34 +00001499 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001500}
1501
drha059ad02001-04-17 20:09:11 +00001502/*
dan8e9ba0c2014-10-14 17:27:04 +00001503** Search the free-list on page pPg for space to store a cell nByte bytes in
1504** size. If one can be found, return a pointer to the space and remove it
1505** from the free-list.
1506**
1507** If no suitable space can be found on the free-list, return NULL.
1508**
drhba0f9992014-10-30 20:48:44 +00001509** This function may detect corruption within pPg. If corruption is
1510** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001511**
drhb7580e82015-06-25 18:36:13 +00001512** Slots on the free list that are between 1 and 3 bytes larger than nByte
1513** will be ignored if adding the extra space to the fragmentation count
1514** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001515*/
drhb7580e82015-06-25 18:36:13 +00001516static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
dan8e9ba0c2014-10-14 17:27:04 +00001517 const int hdr = pPg->hdrOffset;
1518 u8 * const aData = pPg->aData;
drhb7580e82015-06-25 18:36:13 +00001519 int iAddr = hdr + 1;
1520 int pc = get2byte(&aData[iAddr]);
1521 int x;
dan8e9ba0c2014-10-14 17:27:04 +00001522 int usableSize = pPg->pBt->usableSize;
drh87d63c92017-08-23 23:09:03 +00001523 int size; /* Size of the free slot */
dan8e9ba0c2014-10-14 17:27:04 +00001524
drhb7580e82015-06-25 18:36:13 +00001525 assert( pc>0 );
drh87d63c92017-08-23 23:09:03 +00001526 while( pc<=usableSize-4 ){
drh113762a2014-11-19 16:36:25 +00001527 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1528 ** freeblock form a big-endian integer which is the size of the freeblock
1529 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001530 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001531 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001532 testcase( x==4 );
1533 testcase( x==3 );
drh5e398e42017-08-23 20:36:06 +00001534 if( size+pc > usableSize ){
daneebf2f52017-11-18 17:30:08 +00001535 *pRc = SQLITE_CORRUPT_PAGE(pPg);
drh24dee9d2015-06-02 19:36:29 +00001536 return 0;
1537 }else if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001538 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1539 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001540 if( aData[hdr+7]>57 ) return 0;
1541
dan8e9ba0c2014-10-14 17:27:04 +00001542 /* Remove the slot from the free-list. Update the number of
1543 ** fragmented bytes within the page. */
1544 memcpy(&aData[iAddr], &aData[pc], 2);
1545 aData[hdr+7] += (u8)x;
dan8e9ba0c2014-10-14 17:27:04 +00001546 }else{
1547 /* The slot remains on the free-list. Reduce its size to account
1548 ** for the portion used by the new allocation. */
1549 put2byte(&aData[pc+2], x);
1550 }
1551 return &aData[pc + x];
1552 }
drhb7580e82015-06-25 18:36:13 +00001553 iAddr = pc;
1554 pc = get2byte(&aData[pc]);
drh87d63c92017-08-23 23:09:03 +00001555 if( pc<iAddr+size ) break;
1556 }
1557 if( pc ){
daneebf2f52017-11-18 17:30:08 +00001558 *pRc = SQLITE_CORRUPT_PAGE(pPg);
drh87d63c92017-08-23 23:09:03 +00001559 }
dan8e9ba0c2014-10-14 17:27:04 +00001560
1561 return 0;
1562}
1563
1564/*
danielk19776011a752009-04-01 16:25:32 +00001565** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001566** as the first argument. Write into *pIdx the index into pPage->aData[]
1567** of the first byte of allocated space. Return either SQLITE_OK or
1568** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001569**
drh0a45c272009-07-08 01:49:11 +00001570** The caller guarantees that there is sufficient space to make the
1571** allocation. This routine might need to defragment in order to bring
1572** all the space together, however. This routine will avoid using
1573** the first two bytes past the cell pointer area since presumably this
1574** allocation is being made in order to insert a new cell, so we will
1575** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001576*/
drh0a45c272009-07-08 01:49:11 +00001577static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001578 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1579 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001580 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001581 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001582 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001583
danielk19773b8a05f2007-03-19 17:44:26 +00001584 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001585 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001586 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001587 assert( nByte>=0 ); /* Minimum cell size is 4 */
1588 assert( pPage->nFree>=nByte );
1589 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001590 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001591
drh0a45c272009-07-08 01:49:11 +00001592 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1593 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001594 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001595 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1596 ** and the reserved space is zero (the usual value for reserved space)
1597 ** then the cell content offset of an empty page wants to be 65536.
1598 ** However, that integer is too large to be stored in a 2-byte unsigned
1599 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001600 top = get2byte(&data[hdr+5]);
mistachkin68cdd0e2015-06-26 03:12:27 +00001601 assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
drhded340e2015-06-25 15:04:56 +00001602 if( gap>top ){
1603 if( top==0 && pPage->pBt->usableSize==65536 ){
1604 top = 65536;
1605 }else{
daneebf2f52017-11-18 17:30:08 +00001606 return SQLITE_CORRUPT_PAGE(pPage);
drh9e572e62004-04-23 23:43:10 +00001607 }
1608 }
drh43605152004-05-29 21:46:49 +00001609
drh4c04f3c2014-08-20 11:56:14 +00001610 /* If there is enough space between gap and top for one more cell pointer
1611 ** array entry offset, and if the freelist is not empty, then search the
1612 ** freelist looking for a free slot big enough to satisfy the request.
1613 */
drh5e2f8b92001-05-28 00:41:15 +00001614 testcase( gap+2==top );
drh7aa128d2002-06-21 13:09:16 +00001615 testcase( gap+1==top );
drh14acc042001-06-10 19:56:58 +00001616 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001617 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001618 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001619 if( pSpace ){
drhfefa0942014-11-05 21:21:08 +00001620 assert( pSpace>=data && (pSpace - data)<65536 );
1621 *pIdx = (int)(pSpace - data);
dan8e9ba0c2014-10-14 17:27:04 +00001622 return SQLITE_OK;
drhb7580e82015-06-25 18:36:13 +00001623 }else if( rc ){
1624 return rc;
drh9e572e62004-04-23 23:43:10 +00001625 }
1626 }
drh43605152004-05-29 21:46:49 +00001627
drh4c04f3c2014-08-20 11:56:14 +00001628 /* The request could not be fulfilled using a freelist slot. Check
1629 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001630 */
1631 testcase( gap+2+nByte==top );
1632 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001633 assert( pPage->nCell>0 || CORRUPT_DB );
dane6d065a2017-02-24 19:58:22 +00001634 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
drh0a45c272009-07-08 01:49:11 +00001635 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001636 top = get2byteNotZero(&data[hdr+5]);
dan3b2ede12017-02-25 16:24:02 +00001637 assert( gap+2+nByte<=top );
drh0a45c272009-07-08 01:49:11 +00001638 }
1639
1640
drh43605152004-05-29 21:46:49 +00001641 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001642 ** and the cell content area. The btreeInitPage() call has already
1643 ** validated the freelist. Given that the freelist is valid, there
1644 ** is no way that the allocation can extend off the end of the page.
1645 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001646 */
drh0a45c272009-07-08 01:49:11 +00001647 top -= nByte;
drh43605152004-05-29 21:46:49 +00001648 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001649 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001650 *pIdx = top;
1651 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001652}
1653
1654/*
drh9e572e62004-04-23 23:43:10 +00001655** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001656** The first byte of the new free block is pPage->aData[iStart]
1657** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001658**
drh5f5c7532014-08-20 17:56:27 +00001659** Adjacent freeblocks are coalesced.
1660**
1661** Note that even though the freeblock list was checked by btreeInitPage(),
1662** that routine will not detect overlap between cells or freeblocks. Nor
1663** does it detect cells or freeblocks that encrouch into the reserved bytes
1664** at the end of the page. So do additional corruption checks inside this
1665** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001666*/
drh5f5c7532014-08-20 17:56:27 +00001667static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001668 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001669 u16 iFreeBlk; /* Address of the next freeblock */
1670 u8 hdr; /* Page header size. 0 or 100 */
1671 u8 nFrag = 0; /* Reduction in fragmentation */
1672 u16 iOrigSize = iSize; /* Original value of iSize */
drh5e398e42017-08-23 20:36:06 +00001673 u16 x; /* Offset to cell content area */
drh5f5c7532014-08-20 17:56:27 +00001674 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001675 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001676
drh9e572e62004-04-23 23:43:10 +00001677 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001678 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001679 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001680 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001681 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001682 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5e398e42017-08-23 20:36:06 +00001683 assert( iStart<=pPage->pBt->usableSize-4 );
drhfcce93f2006-02-22 03:08:32 +00001684
drh5f5c7532014-08-20 17:56:27 +00001685 /* The list of freeblocks must be in ascending order. Find the
1686 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001687 */
drh43605152004-05-29 21:46:49 +00001688 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001689 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001690 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1691 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1692 }else{
drh85f071b2016-09-17 19:34:32 +00001693 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1694 if( iFreeBlk<iPtr+4 ){
1695 if( iFreeBlk==0 ) break;
daneebf2f52017-11-18 17:30:08 +00001696 return SQLITE_CORRUPT_PAGE(pPage);
drh85f071b2016-09-17 19:34:32 +00001697 }
drh7bc4c452014-08-20 18:43:44 +00001698 iPtr = iFreeBlk;
shanedcc50b72008-11-13 18:29:50 +00001699 }
drh5e398e42017-08-23 20:36:06 +00001700 if( iFreeBlk>pPage->pBt->usableSize-4 ){
daneebf2f52017-11-18 17:30:08 +00001701 return SQLITE_CORRUPT_PAGE(pPage);
drh5e398e42017-08-23 20:36:06 +00001702 }
drh7bc4c452014-08-20 18:43:44 +00001703 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1704
1705 /* At this point:
1706 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001707 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001708 **
1709 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1710 */
1711 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1712 nFrag = iFreeBlk - iEnd;
daneebf2f52017-11-18 17:30:08 +00001713 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001714 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drhcc97ca42017-06-07 22:32:59 +00001715 if( iEnd > pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00001716 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00001717 }
drh7bc4c452014-08-20 18:43:44 +00001718 iSize = iEnd - iStart;
1719 iFreeBlk = get2byte(&data[iFreeBlk]);
1720 }
1721
drh3f387402014-09-24 01:23:00 +00001722 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1723 ** pointer in the page header) then check to see if iStart should be
1724 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001725 */
1726 if( iPtr>hdr+1 ){
1727 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1728 if( iPtrEnd+3>=iStart ){
daneebf2f52017-11-18 17:30:08 +00001729 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001730 nFrag += iStart - iPtrEnd;
1731 iSize = iEnd - iPtr;
1732 iStart = iPtr;
shanedcc50b72008-11-13 18:29:50 +00001733 }
drh9e572e62004-04-23 23:43:10 +00001734 }
daneebf2f52017-11-18 17:30:08 +00001735 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001736 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001737 }
drh5e398e42017-08-23 20:36:06 +00001738 x = get2byte(&data[hdr+5]);
1739 if( iStart<=x ){
drh5f5c7532014-08-20 17:56:27 +00001740 /* The new freeblock is at the beginning of the cell content area,
1741 ** so just extend the cell content area rather than create another
1742 ** freelist entry */
daneebf2f52017-11-18 17:30:08 +00001743 if( iStart<x || iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
drh5f5c7532014-08-20 17:56:27 +00001744 put2byte(&data[hdr+1], iFreeBlk);
1745 put2byte(&data[hdr+5], iEnd);
1746 }else{
1747 /* Insert the new freeblock into the freelist */
1748 put2byte(&data[iPtr], iStart);
drh4b70f112004-05-02 21:12:19 +00001749 }
drh5e398e42017-08-23 20:36:06 +00001750 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1751 /* Overwrite deleted information with zeros when the secure_delete
1752 ** option is enabled */
1753 memset(&data[iStart], 0, iSize);
1754 }
1755 put2byte(&data[iStart], iFreeBlk);
1756 put2byte(&data[iStart+2], iSize);
drh5f5c7532014-08-20 17:56:27 +00001757 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001758 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001759}
1760
1761/*
drh271efa52004-05-30 19:19:05 +00001762** Decode the flags byte (the first byte of the header) for a page
1763** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001764**
1765** Only the following combinations are supported. Anything different
1766** indicates a corrupt database files:
1767**
1768** PTF_ZERODATA
1769** PTF_ZERODATA | PTF_LEAF
1770** PTF_LEAFDATA | PTF_INTKEY
1771** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001772*/
drh44845222008-07-17 18:39:57 +00001773static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001774 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001775
1776 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001777 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001778 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001779 flagByte &= ~PTF_LEAF;
1780 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001781 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001782 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001783 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drh3791c9c2016-05-09 23:11:47 +00001784 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1785 ** interior table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001786 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
drh3791c9c2016-05-09 23:11:47 +00001787 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1788 ** leaf table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001789 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001790 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001791 if( pPage->leaf ){
1792 pPage->intKeyLeaf = 1;
drh5fa60512015-06-19 17:19:34 +00001793 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001794 }else{
1795 pPage->intKeyLeaf = 0;
drh25ada072015-06-19 15:07:14 +00001796 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001797 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001798 }
drh271efa52004-05-30 19:19:05 +00001799 pPage->maxLocal = pBt->maxLeaf;
1800 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001801 }else if( flagByte==PTF_ZERODATA ){
drh3791c9c2016-05-09 23:11:47 +00001802 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1803 ** interior index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001804 assert( (PTF_ZERODATA)==2 );
drh3791c9c2016-05-09 23:11:47 +00001805 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1806 ** leaf index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001807 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001808 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001809 pPage->intKeyLeaf = 0;
drh5fa60512015-06-19 17:19:34 +00001810 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001811 pPage->maxLocal = pBt->maxLocal;
1812 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001813 }else{
drhfdab0262014-11-20 15:30:50 +00001814 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1815 ** an error. */
daneebf2f52017-11-18 17:30:08 +00001816 return SQLITE_CORRUPT_PAGE(pPage);
drh271efa52004-05-30 19:19:05 +00001817 }
drhc9166342012-01-05 23:32:06 +00001818 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001819 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001820}
1821
1822/*
drh7e3b0a02001-04-28 16:52:40 +00001823** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001824**
1825** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001826** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001827** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1828** guarantee that the page is well-formed. It only shows that
1829** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001830*/
danielk197730548662009-07-09 05:07:37 +00001831static int btreeInitPage(MemPage *pPage){
drh14e845a2017-05-25 21:35:56 +00001832 int pc; /* Address of a freeblock within pPage->aData[] */
1833 u8 hdr; /* Offset to beginning of page header */
1834 u8 *data; /* Equal to pPage->aData */
1835 BtShared *pBt; /* The main btree structure */
1836 int usableSize; /* Amount of usable space on each page */
1837 u16 cellOffset; /* Offset from start of page to first cell pointer */
1838 int nFree; /* Number of unused bytes on the page */
1839 int top; /* First byte of the cell content area */
1840 int iCellFirst; /* First allowable cell or freeblock offset */
1841 int iCellLast; /* Last possible cell or freeblock offset */
drh2af926b2001-05-15 00:39:25 +00001842
danielk197771d5d2c2008-09-29 11:49:47 +00001843 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001844 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001845 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001846 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001847 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1848 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
drh14e845a2017-05-25 21:35:56 +00001849 assert( pPage->isInit==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001850
drh14e845a2017-05-25 21:35:56 +00001851 pBt = pPage->pBt;
1852 hdr = pPage->hdrOffset;
1853 data = pPage->aData;
1854 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1855 ** the b-tree page type. */
drhcc97ca42017-06-07 22:32:59 +00001856 if( decodeFlags(pPage, data[hdr]) ){
daneebf2f52017-11-18 17:30:08 +00001857 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00001858 }
drh14e845a2017-05-25 21:35:56 +00001859 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1860 pPage->maskPage = (u16)(pBt->pageSize - 1);
1861 pPage->nOverflow = 0;
1862 usableSize = pBt->usableSize;
1863 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
1864 pPage->aDataEnd = &data[usableSize];
1865 pPage->aCellIdx = &data[cellOffset];
1866 pPage->aDataOfst = &data[pPage->childPtrSize];
1867 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1868 ** the start of the cell content area. A zero value for this integer is
1869 ** interpreted as 65536. */
1870 top = get2byteNotZero(&data[hdr+5]);
1871 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1872 ** number of cells on the page. */
1873 pPage->nCell = get2byte(&data[hdr+3]);
1874 if( pPage->nCell>MX_CELL(pBt) ){
1875 /* To many cells for a single page. The page must be corrupt */
daneebf2f52017-11-18 17:30:08 +00001876 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001877 }
1878 testcase( pPage->nCell==MX_CELL(pBt) );
1879 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1880 ** possible for a root page of a table that contains no rows) then the
1881 ** offset to the cell content area will equal the page size minus the
1882 ** bytes of reserved space. */
1883 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
danielk197771d5d2c2008-09-29 11:49:47 +00001884
drh14e845a2017-05-25 21:35:56 +00001885 /* A malformed database page might cause us to read past the end
1886 ** of page when parsing a cell.
1887 **
1888 ** The following block of code checks early to see if a cell extends
1889 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1890 ** returned if it does.
1891 */
1892 iCellFirst = cellOffset + 2*pPage->nCell;
1893 iCellLast = usableSize - 4;
1894 if( pBt->db->flags & SQLITE_CellSizeCk ){
1895 int i; /* Index into the cell pointer array */
1896 int sz; /* Size of a cell */
danielk197771d5d2c2008-09-29 11:49:47 +00001897
drh14e845a2017-05-25 21:35:56 +00001898 if( !pPage->leaf ) iCellLast--;
1899 for(i=0; i<pPage->nCell; i++){
1900 pc = get2byteAligned(&data[cellOffset+i*2]);
1901 testcase( pc==iCellFirst );
1902 testcase( pc==iCellLast );
1903 if( pc<iCellFirst || pc>iCellLast ){
daneebf2f52017-11-18 17:30:08 +00001904 return SQLITE_CORRUPT_PAGE(pPage);
drh69e931e2009-06-03 21:04:35 +00001905 }
drh14e845a2017-05-25 21:35:56 +00001906 sz = pPage->xCellSize(pPage, &data[pc]);
1907 testcase( pc+sz==usableSize );
1908 if( pc+sz>usableSize ){
daneebf2f52017-11-18 17:30:08 +00001909 return SQLITE_CORRUPT_PAGE(pPage);
drh77dc0ed2016-12-12 01:30:01 +00001910 }
danielk1977eaa06f62008-09-18 17:34:44 +00001911 }
drh14e845a2017-05-25 21:35:56 +00001912 if( !pPage->leaf ) iCellLast++;
1913 }
danielk197793c829c2009-06-03 17:26:17 +00001914
drh14e845a2017-05-25 21:35:56 +00001915 /* Compute the total free space on the page
1916 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1917 ** start of the first freeblock on the page, or is zero if there are no
1918 ** freeblocks. */
1919 pc = get2byte(&data[hdr+1]);
1920 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
1921 if( pc>0 ){
1922 u32 next, size;
1923 if( pc<iCellFirst ){
1924 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1925 ** always be at least one cell before the first freeblock.
1926 */
daneebf2f52017-11-18 17:30:08 +00001927 return SQLITE_CORRUPT_PAGE(pPage);
drhee696e22004-08-30 16:52:17 +00001928 }
drh14e845a2017-05-25 21:35:56 +00001929 while( 1 ){
1930 if( pc>iCellLast ){
drhcc97ca42017-06-07 22:32:59 +00001931 /* Freeblock off the end of the page */
daneebf2f52017-11-18 17:30:08 +00001932 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001933 }
1934 next = get2byte(&data[pc]);
1935 size = get2byte(&data[pc+2]);
1936 nFree = nFree + size;
1937 if( next<=pc+size+3 ) break;
1938 pc = next;
1939 }
1940 if( next>0 ){
drhcc97ca42017-06-07 22:32:59 +00001941 /* Freeblock not in ascending order */
daneebf2f52017-11-18 17:30:08 +00001942 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001943 }
1944 if( pc+size>(unsigned int)usableSize ){
drhcc97ca42017-06-07 22:32:59 +00001945 /* Last freeblock extends past page end */
daneebf2f52017-11-18 17:30:08 +00001946 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001947 }
danielk197771d5d2c2008-09-29 11:49:47 +00001948 }
drh14e845a2017-05-25 21:35:56 +00001949
1950 /* At this point, nFree contains the sum of the offset to the start
1951 ** of the cell-content area plus the number of free bytes within
1952 ** the cell-content area. If this is greater than the usable-size
1953 ** of the page, then the page must be corrupted. This check also
1954 ** serves to verify that the offset to the start of the cell-content
1955 ** area, according to the page header, lies within the page.
1956 */
1957 if( nFree>usableSize ){
daneebf2f52017-11-18 17:30:08 +00001958 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001959 }
1960 pPage->nFree = (u16)(nFree - iCellFirst);
1961 pPage->isInit = 1;
drh9e572e62004-04-23 23:43:10 +00001962 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001963}
1964
1965/*
drh8b2f49b2001-06-08 00:21:52 +00001966** Set up a raw page so that it looks like a database page holding
1967** no entries.
drhbd03cae2001-06-02 02:40:57 +00001968*/
drh9e572e62004-04-23 23:43:10 +00001969static void zeroPage(MemPage *pPage, int flags){
1970 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001971 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001972 u8 hdr = pPage->hdrOffset;
1973 u16 first;
drh9e572e62004-04-23 23:43:10 +00001974
danielk19773b8a05f2007-03-19 17:44:26 +00001975 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001976 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1977 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001978 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001979 assert( sqlite3_mutex_held(pBt->mutex) );
drha5907a82017-06-19 11:44:22 +00001980 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh5b47efa2010-02-12 18:18:39 +00001981 memset(&data[hdr], 0, pBt->usableSize - hdr);
1982 }
drh1bd10f82008-12-10 21:19:56 +00001983 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001984 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001985 memset(&data[hdr+1], 0, 4);
1986 data[hdr+7] = 0;
1987 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001988 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001989 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00001990 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001991 pPage->aDataEnd = &data[pBt->usableSize];
1992 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00001993 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00001994 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001995 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1996 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001997 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001998 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001999}
2000
drh897a8202008-09-18 01:08:15 +00002001
2002/*
2003** Convert a DbPage obtained from the pager into a MemPage used by
2004** the btree layer.
2005*/
2006static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2007 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh8dd1c252015-11-04 22:31:02 +00002008 if( pgno!=pPage->pgno ){
2009 pPage->aData = sqlite3PagerGetData(pDbPage);
2010 pPage->pDbPage = pDbPage;
2011 pPage->pBt = pBt;
2012 pPage->pgno = pgno;
2013 pPage->hdrOffset = pgno==1 ? 100 : 0;
2014 }
2015 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
drh897a8202008-09-18 01:08:15 +00002016 return pPage;
2017}
2018
drhbd03cae2001-06-02 02:40:57 +00002019/*
drh3aac2dd2004-04-26 14:10:20 +00002020** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00002021** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00002022**
drh7e8c6f12015-05-28 03:28:27 +00002023** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2024** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00002025** to fetch the content. Just fill in the content with zeros for now.
2026** If in the future we call sqlite3PagerWrite() on this page, that
2027** means we have started to be concerned about content and the disk
2028** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00002029*/
danielk197730548662009-07-09 05:07:37 +00002030static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00002031 BtShared *pBt, /* The btree */
2032 Pgno pgno, /* Number of the page to fetch */
2033 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00002034 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00002035){
drh3aac2dd2004-04-26 14:10:20 +00002036 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00002037 DbPage *pDbPage;
2038
drhb00fc3b2013-08-21 23:42:32 +00002039 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00002040 assert( sqlite3_mutex_held(pBt->mutex) );
drh9584f582015-11-04 20:22:37 +00002041 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00002042 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00002043 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00002044 return SQLITE_OK;
2045}
2046
2047/*
danielk1977bea2a942009-01-20 17:06:27 +00002048** Retrieve a page from the pager cache. If the requested page is not
2049** already in the pager cache return NULL. Initialize the MemPage.pBt and
2050** MemPage.aData elements if needed.
2051*/
2052static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2053 DbPage *pDbPage;
2054 assert( sqlite3_mutex_held(pBt->mutex) );
2055 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2056 if( pDbPage ){
2057 return btreePageFromDbPage(pDbPage, pgno, pBt);
2058 }
2059 return 0;
2060}
2061
2062/*
danielk197789d40042008-11-17 14:20:56 +00002063** Return the size of the database file in pages. If there is any kind of
2064** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00002065*/
drhb1299152010-03-30 22:58:33 +00002066static Pgno btreePagecount(BtShared *pBt){
2067 return pBt->nPage;
2068}
2069u32 sqlite3BtreeLastPage(Btree *p){
2070 assert( sqlite3BtreeHoldsMutex(p) );
drh8a181002017-10-12 01:19:06 +00002071 assert( ((p->pBt->nPage)&0x80000000)==0 );
drheac5bd72014-07-25 21:35:39 +00002072 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00002073}
2074
2075/*
drh28f58dd2015-06-27 19:45:03 +00002076** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00002077**
drh15a00212015-06-27 20:55:00 +00002078** If pCur!=0 then the page is being fetched as part of a moveToChild()
2079** call. Do additional sanity checking on the page in this case.
2080** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00002081**
2082** The page is fetched as read-write unless pCur is not NULL and is
2083** a read-only cursor.
2084**
2085** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00002086** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00002087*/
2088static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00002089 BtShared *pBt, /* The database file */
2090 Pgno pgno, /* Number of the page to get */
2091 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00002092 BtCursor *pCur, /* Cursor to receive the page, or NULL */
2093 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00002094){
2095 int rc;
drh28f58dd2015-06-27 19:45:03 +00002096 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00002097 assert( sqlite3_mutex_held(pBt->mutex) );
drh352a35a2017-08-15 03:46:47 +00002098 assert( pCur==0 || ppPage==&pCur->pPage );
drh28f58dd2015-06-27 19:45:03 +00002099 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00002100 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002101
danba3cbf32010-06-30 04:29:03 +00002102 if( pgno>btreePagecount(pBt) ){
2103 rc = SQLITE_CORRUPT_BKPT;
drh28f58dd2015-06-27 19:45:03 +00002104 goto getAndInitPage_error;
2105 }
drh9584f582015-11-04 20:22:37 +00002106 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
drh28f58dd2015-06-27 19:45:03 +00002107 if( rc ){
2108 goto getAndInitPage_error;
2109 }
drh8dd1c252015-11-04 22:31:02 +00002110 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh28f58dd2015-06-27 19:45:03 +00002111 if( (*ppPage)->isInit==0 ){
drh8dd1c252015-11-04 22:31:02 +00002112 btreePageFromDbPage(pDbPage, pgno, pBt);
drh28f58dd2015-06-27 19:45:03 +00002113 rc = btreeInitPage(*ppPage);
2114 if( rc!=SQLITE_OK ){
2115 releasePage(*ppPage);
2116 goto getAndInitPage_error;
danielk197789bc4bc2009-07-21 19:25:24 +00002117 }
drhee696e22004-08-30 16:52:17 +00002118 }
drh8dd1c252015-11-04 22:31:02 +00002119 assert( (*ppPage)->pgno==pgno );
2120 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
danba3cbf32010-06-30 04:29:03 +00002121
drh15a00212015-06-27 20:55:00 +00002122 /* If obtaining a child page for a cursor, we must verify that the page is
2123 ** compatible with the root page. */
drh8dd1c252015-11-04 22:31:02 +00002124 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
drhcc97ca42017-06-07 22:32:59 +00002125 rc = SQLITE_CORRUPT_PGNO(pgno);
drh28f58dd2015-06-27 19:45:03 +00002126 releasePage(*ppPage);
2127 goto getAndInitPage_error;
2128 }
drh28f58dd2015-06-27 19:45:03 +00002129 return SQLITE_OK;
2130
2131getAndInitPage_error:
drh352a35a2017-08-15 03:46:47 +00002132 if( pCur ){
2133 pCur->iPage--;
2134 pCur->pPage = pCur->apPage[pCur->iPage];
2135 }
danba3cbf32010-06-30 04:29:03 +00002136 testcase( pgno==0 );
2137 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00002138 return rc;
2139}
2140
2141/*
drh3aac2dd2004-04-26 14:10:20 +00002142** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002143** call to btreeGetPage.
drh3908fe92017-09-01 14:50:19 +00002144**
2145** Page1 is a special case and must be released using releasePageOne().
drh3aac2dd2004-04-26 14:10:20 +00002146*/
drhbbf0f862015-06-27 14:59:26 +00002147static void releasePageNotNull(MemPage *pPage){
2148 assert( pPage->aData );
2149 assert( pPage->pBt );
2150 assert( pPage->pDbPage!=0 );
2151 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2152 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2153 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2154 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00002155}
drh3aac2dd2004-04-26 14:10:20 +00002156static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002157 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002158}
drh3908fe92017-09-01 14:50:19 +00002159static void releasePageOne(MemPage *pPage){
2160 assert( pPage!=0 );
2161 assert( pPage->aData );
2162 assert( pPage->pBt );
2163 assert( pPage->pDbPage!=0 );
2164 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2165 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2166 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2167 sqlite3PagerUnrefPageOne(pPage->pDbPage);
2168}
drh3aac2dd2004-04-26 14:10:20 +00002169
2170/*
drh7e8c6f12015-05-28 03:28:27 +00002171** Get an unused page.
2172**
2173** This works just like btreeGetPage() with the addition:
2174**
2175** * If the page is already in use for some other purpose, immediately
2176** release it and return an SQLITE_CURRUPT error.
2177** * Make sure the isInit flag is clear
2178*/
2179static int btreeGetUnusedPage(
2180 BtShared *pBt, /* The btree */
2181 Pgno pgno, /* Number of the page to fetch */
2182 MemPage **ppPage, /* Return the page in this parameter */
2183 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2184){
2185 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2186 if( rc==SQLITE_OK ){
2187 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2188 releasePage(*ppPage);
2189 *ppPage = 0;
2190 return SQLITE_CORRUPT_BKPT;
2191 }
2192 (*ppPage)->isInit = 0;
2193 }else{
2194 *ppPage = 0;
2195 }
2196 return rc;
2197}
2198
drha059ad02001-04-17 20:09:11 +00002199
2200/*
drha6abd042004-06-09 17:37:22 +00002201** During a rollback, when the pager reloads information into the cache
2202** so that the cache is restored to its original state at the start of
2203** the transaction, for each page restored this routine is called.
2204**
2205** This routine needs to reset the extra data section at the end of the
2206** page to agree with the restored data.
2207*/
danielk1977eaa06f62008-09-18 17:34:44 +00002208static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002209 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002210 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002211 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002212 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002213 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002214 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002215 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002216 /* pPage might not be a btree page; it might be an overflow page
2217 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002218 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002219 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002220 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002221 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002222 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002223 }
drha6abd042004-06-09 17:37:22 +00002224 }
2225}
2226
2227/*
drhe5fe6902007-12-07 18:55:28 +00002228** Invoke the busy handler for a btree.
2229*/
danielk19771ceedd32008-11-19 10:22:33 +00002230static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002231 BtShared *pBt = (BtShared*)pArg;
2232 assert( pBt->db );
2233 assert( sqlite3_mutex_held(pBt->db->mutex) );
2234 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2235}
2236
2237/*
drhad3e0102004-09-03 23:32:18 +00002238** Open a database file.
2239**
drh382c0242001-10-06 16:33:02 +00002240** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002241** then an ephemeral database is created. The ephemeral database might
2242** be exclusively in memory, or it might use a disk-based memory cache.
2243** Either way, the ephemeral database will be automatically deleted
2244** when sqlite3BtreeClose() is called.
2245**
drhe53831d2007-08-17 01:14:38 +00002246** If zFilename is ":memory:" then an in-memory database is created
2247** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002248**
drh33f111d2012-01-17 15:29:14 +00002249** The "flags" parameter is a bitmask that might contain bits like
2250** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002251**
drhc47fd8e2009-04-30 13:30:32 +00002252** If the database is already opened in the same database connection
2253** and we are in shared cache mode, then the open will fail with an
2254** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2255** objects in the same database connection since doing so will lead
2256** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002257*/
drh23e11ca2004-05-04 17:27:28 +00002258int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002259 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002260 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002261 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002262 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002263 int flags, /* Options */
2264 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002265){
drh7555d8e2009-03-20 13:15:30 +00002266 BtShared *pBt = 0; /* Shared part of btree structure */
2267 Btree *p; /* Handle to return */
2268 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2269 int rc = SQLITE_OK; /* Result code from this function */
2270 u8 nReserve; /* Byte of unused space on each page */
2271 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002272
drh75c014c2010-08-30 15:02:28 +00002273 /* True if opening an ephemeral, temporary database */
2274 const int isTempDb = zFilename==0 || zFilename[0]==0;
2275
danielk1977aef0bf62005-12-30 16:28:01 +00002276 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002277 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002278 */
drhb0a7c9c2010-12-06 21:09:59 +00002279#ifdef SQLITE_OMIT_MEMORYDB
2280 const int isMemdb = 0;
2281#else
2282 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002283 || (isTempDb && sqlite3TempInMemory(db))
2284 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002285#endif
2286
drhe5fe6902007-12-07 18:55:28 +00002287 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002288 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002289 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002290 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2291
2292 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2293 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2294
2295 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2296 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002297
drh75c014c2010-08-30 15:02:28 +00002298 if( isMemdb ){
2299 flags |= BTREE_MEMORY;
2300 }
2301 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2302 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2303 }
drh17435752007-08-16 04:30:38 +00002304 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002305 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00002306 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +00002307 }
2308 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002309 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002310#ifndef SQLITE_OMIT_SHARED_CACHE
2311 p->lock.pBtree = p;
2312 p->lock.iTable = 1;
2313#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002314
drh198bf392006-01-06 21:52:49 +00002315#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002316 /*
2317 ** If this Btree is a candidate for shared cache, try to find an
2318 ** existing BtShared object that we can share with
2319 */
drh4ab9d252012-05-26 20:08:49 +00002320 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002321 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002322 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002323 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002324 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002325 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002326
drhff0587c2007-08-29 17:43:19 +00002327 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002328 if( !zFullPathname ){
2329 sqlite3_free(p);
mistachkinfad30392016-02-13 23:43:46 +00002330 return SQLITE_NOMEM_BKPT;
drhff0587c2007-08-29 17:43:19 +00002331 }
drhafc8b7f2012-05-26 18:06:38 +00002332 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002333 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002334 }else{
2335 rc = sqlite3OsFullPathname(pVfs, zFilename,
2336 nFullPathname, zFullPathname);
2337 if( rc ){
2338 sqlite3_free(zFullPathname);
2339 sqlite3_free(p);
2340 return rc;
2341 }
drh070ad6b2011-11-17 11:43:19 +00002342 }
drh30ddce62011-10-15 00:16:30 +00002343#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002344 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2345 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00002346 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00002347 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002348#endif
drh78f82d12008-09-02 00:52:52 +00002349 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002350 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002351 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002352 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002353 int iDb;
2354 for(iDb=db->nDb-1; iDb>=0; iDb--){
2355 Btree *pExisting = db->aDb[iDb].pBt;
2356 if( pExisting && pExisting->pBt==pBt ){
2357 sqlite3_mutex_leave(mutexShared);
2358 sqlite3_mutex_leave(mutexOpen);
2359 sqlite3_free(zFullPathname);
2360 sqlite3_free(p);
2361 return SQLITE_CONSTRAINT;
2362 }
2363 }
drhff0587c2007-08-29 17:43:19 +00002364 p->pBt = pBt;
2365 pBt->nRef++;
2366 break;
2367 }
2368 }
2369 sqlite3_mutex_leave(mutexShared);
2370 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002371 }
drhff0587c2007-08-29 17:43:19 +00002372#ifdef SQLITE_DEBUG
2373 else{
2374 /* In debug mode, we mark all persistent databases as sharable
2375 ** even when they are not. This exercises the locking code and
2376 ** gives more opportunity for asserts(sqlite3_mutex_held())
2377 ** statements to find locking problems.
2378 */
2379 p->sharable = 1;
2380 }
2381#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002382 }
2383#endif
drha059ad02001-04-17 20:09:11 +00002384 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002385 /*
2386 ** The following asserts make sure that structures used by the btree are
2387 ** the right size. This is to guard against size changes that result
2388 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002389 */
drh062cf272015-03-23 19:03:51 +00002390 assert( sizeof(i64)==8 );
2391 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002392 assert( sizeof(u32)==4 );
2393 assert( sizeof(u16)==2 );
2394 assert( sizeof(Pgno)==4 );
2395
2396 pBt = sqlite3MallocZero( sizeof(*pBt) );
2397 if( pBt==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002398 rc = SQLITE_NOMEM_BKPT;
drhe53831d2007-08-17 01:14:38 +00002399 goto btree_open_out;
2400 }
danielk197771d5d2c2008-09-29 11:49:47 +00002401 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drha2ee5892016-12-09 16:02:00 +00002402 sizeof(MemPage), flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002403 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002404 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002405 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2406 }
2407 if( rc!=SQLITE_OK ){
2408 goto btree_open_out;
2409 }
shanehbd2aaf92010-09-01 02:38:21 +00002410 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002411 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00002412 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002413 p->pBt = pBt;
2414
drhe53831d2007-08-17 01:14:38 +00002415 pBt->pCursor = 0;
2416 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002417 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drha5907a82017-06-19 11:44:22 +00002418#if defined(SQLITE_SECURE_DELETE)
drhc9166342012-01-05 23:32:06 +00002419 pBt->btsFlags |= BTS_SECURE_DELETE;
drha5907a82017-06-19 11:44:22 +00002420#elif defined(SQLITE_FAST_SECURE_DELETE)
2421 pBt->btsFlags |= BTS_OVERWRITE;
drh5b47efa2010-02-12 18:18:39 +00002422#endif
drh113762a2014-11-19 16:36:25 +00002423 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2424 ** determined by the 2-byte integer located at an offset of 16 bytes from
2425 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002426 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002427 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2428 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002429 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002430#ifndef SQLITE_OMIT_AUTOVACUUM
2431 /* If the magic name ":memory:" will create an in-memory database, then
2432 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2433 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2434 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2435 ** regular file-name. In this case the auto-vacuum applies as per normal.
2436 */
2437 if( zFilename && !isMemdb ){
2438 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2439 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2440 }
2441#endif
2442 nReserve = 0;
2443 }else{
drh113762a2014-11-19 16:36:25 +00002444 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2445 ** determined by the one-byte unsigned integer found at an offset of 20
2446 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002447 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002448 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002449#ifndef SQLITE_OMIT_AUTOVACUUM
2450 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2451 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2452#endif
2453 }
drhfa9601a2009-06-18 17:22:39 +00002454 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002455 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002456 pBt->usableSize = pBt->pageSize - nReserve;
2457 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002458
2459#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2460 /* Add the new BtShared object to the linked list sharable BtShareds.
2461 */
dan272989b2016-07-06 10:12:02 +00002462 pBt->nRef = 1;
drhe53831d2007-08-17 01:14:38 +00002463 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002464 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh30ddce62011-10-15 00:16:30 +00002465 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002466 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002467 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002468 if( pBt->mutex==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002469 rc = SQLITE_NOMEM_BKPT;
drh3285db22007-09-03 22:00:39 +00002470 goto btree_open_out;
2471 }
drhff0587c2007-08-29 17:43:19 +00002472 }
drhe53831d2007-08-17 01:14:38 +00002473 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002474 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2475 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002476 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002477 }
drheee46cf2004-11-06 00:02:48 +00002478#endif
drh90f5ecb2004-07-22 01:19:35 +00002479 }
danielk1977aef0bf62005-12-30 16:28:01 +00002480
drhcfed7bc2006-03-13 14:28:05 +00002481#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002482 /* If the new Btree uses a sharable pBtShared, then link the new
2483 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002484 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002485 */
drhe53831d2007-08-17 01:14:38 +00002486 if( p->sharable ){
2487 int i;
2488 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002489 for(i=0; i<db->nDb; i++){
2490 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002491 while( pSib->pPrev ){ pSib = pSib->pPrev; }
drh3bfa7e82016-03-22 14:37:59 +00002492 if( (uptr)p->pBt<(uptr)pSib->pBt ){
drhe53831d2007-08-17 01:14:38 +00002493 p->pNext = pSib;
2494 p->pPrev = 0;
2495 pSib->pPrev = p;
2496 }else{
drh3bfa7e82016-03-22 14:37:59 +00002497 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002498 pSib = pSib->pNext;
2499 }
2500 p->pNext = pSib->pNext;
2501 p->pPrev = pSib;
2502 if( p->pNext ){
2503 p->pNext->pPrev = p;
2504 }
2505 pSib->pNext = p;
2506 }
2507 break;
2508 }
2509 }
danielk1977aef0bf62005-12-30 16:28:01 +00002510 }
danielk1977aef0bf62005-12-30 16:28:01 +00002511#endif
2512 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002513
2514btree_open_out:
2515 if( rc!=SQLITE_OK ){
2516 if( pBt && pBt->pPager ){
dan7fb89902016-08-12 16:21:15 +00002517 sqlite3PagerClose(pBt->pPager, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002518 }
drh17435752007-08-16 04:30:38 +00002519 sqlite3_free(pBt);
2520 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002521 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002522 }else{
dan0f5a1862016-08-13 14:30:23 +00002523 sqlite3_file *pFile;
2524
drh75c014c2010-08-30 15:02:28 +00002525 /* If the B-Tree was successfully opened, set the pager-cache size to the
2526 ** default value. Except, when opening on an existing shared pager-cache,
2527 ** do not change the pager-cache size.
2528 */
2529 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2530 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2531 }
dan0f5a1862016-08-13 14:30:23 +00002532
2533 pFile = sqlite3PagerFile(pBt->pPager);
2534 if( pFile->pMethods ){
2535 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2536 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002537 }
drh7555d8e2009-03-20 13:15:30 +00002538 if( mutexOpen ){
2539 assert( sqlite3_mutex_held(mutexOpen) );
2540 sqlite3_mutex_leave(mutexOpen);
2541 }
dan272989b2016-07-06 10:12:02 +00002542 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002543 return rc;
drha059ad02001-04-17 20:09:11 +00002544}
2545
2546/*
drhe53831d2007-08-17 01:14:38 +00002547** Decrement the BtShared.nRef counter. When it reaches zero,
2548** remove the BtShared structure from the sharing list. Return
2549** true if the BtShared.nRef counter reaches zero and return
2550** false if it is still positive.
2551*/
2552static int removeFromSharingList(BtShared *pBt){
2553#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002554 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002555 BtShared *pList;
2556 int removed = 0;
2557
drhd677b3d2007-08-20 22:48:41 +00002558 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002559 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002560 sqlite3_mutex_enter(pMaster);
2561 pBt->nRef--;
2562 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002563 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2564 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002565 }else{
drh78f82d12008-09-02 00:52:52 +00002566 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002567 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002568 pList=pList->pNext;
2569 }
drh34004ce2008-07-11 16:15:17 +00002570 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002571 pList->pNext = pBt->pNext;
2572 }
2573 }
drh3285db22007-09-03 22:00:39 +00002574 if( SQLITE_THREADSAFE ){
2575 sqlite3_mutex_free(pBt->mutex);
2576 }
drhe53831d2007-08-17 01:14:38 +00002577 removed = 1;
2578 }
2579 sqlite3_mutex_leave(pMaster);
2580 return removed;
2581#else
2582 return 1;
2583#endif
2584}
2585
2586/*
drhf7141992008-06-19 00:16:08 +00002587** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002588** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2589** pointer.
drhf7141992008-06-19 00:16:08 +00002590*/
2591static void allocateTempSpace(BtShared *pBt){
2592 if( !pBt->pTmpSpace ){
2593 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002594
2595 /* One of the uses of pBt->pTmpSpace is to format cells before
2596 ** inserting them into a leaf page (function fillInCell()). If
2597 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2598 ** by the various routines that manipulate binary cells. Which
2599 ** can mean that fillInCell() only initializes the first 2 or 3
2600 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2601 ** it into a database page. This is not actually a problem, but it
2602 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2603 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002604 ** zero the first 4 bytes of temp space here.
2605 **
2606 ** Also: Provide four bytes of initialized space before the
2607 ** beginning of pTmpSpace as an area available to prepend the
2608 ** left-child pointer to the beginning of a cell.
2609 */
2610 if( pBt->pTmpSpace ){
2611 memset(pBt->pTmpSpace, 0, 8);
2612 pBt->pTmpSpace += 4;
2613 }
drhf7141992008-06-19 00:16:08 +00002614 }
2615}
2616
2617/*
2618** Free the pBt->pTmpSpace allocation
2619*/
2620static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002621 if( pBt->pTmpSpace ){
2622 pBt->pTmpSpace -= 4;
2623 sqlite3PageFree(pBt->pTmpSpace);
2624 pBt->pTmpSpace = 0;
2625 }
drhf7141992008-06-19 00:16:08 +00002626}
2627
2628/*
drha059ad02001-04-17 20:09:11 +00002629** Close an open database and invalidate all cursors.
2630*/
danielk1977aef0bf62005-12-30 16:28:01 +00002631int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002632 BtShared *pBt = p->pBt;
2633 BtCursor *pCur;
2634
danielk1977aef0bf62005-12-30 16:28:01 +00002635 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002636 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002637 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002638 pCur = pBt->pCursor;
2639 while( pCur ){
2640 BtCursor *pTmp = pCur;
2641 pCur = pCur->pNext;
2642 if( pTmp->pBtree==p ){
2643 sqlite3BtreeCloseCursor(pTmp);
2644 }
drha059ad02001-04-17 20:09:11 +00002645 }
danielk1977aef0bf62005-12-30 16:28:01 +00002646
danielk19778d34dfd2006-01-24 16:37:57 +00002647 /* Rollback any active transaction and free the handle structure.
2648 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2649 ** this handle.
2650 */
drh47b7fc72014-11-11 01:33:57 +00002651 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002652 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002653
danielk1977aef0bf62005-12-30 16:28:01 +00002654 /* If there are still other outstanding references to the shared-btree
2655 ** structure, return now. The remainder of this procedure cleans
2656 ** up the shared-btree.
2657 */
drhe53831d2007-08-17 01:14:38 +00002658 assert( p->wantToLock==0 && p->locked==0 );
2659 if( !p->sharable || removeFromSharingList(pBt) ){
2660 /* The pBt is no longer on the sharing list, so we can access
2661 ** it without having to hold the mutex.
2662 **
2663 ** Clean out and delete the BtShared object.
2664 */
2665 assert( !pBt->pCursor );
dan7fb89902016-08-12 16:21:15 +00002666 sqlite3PagerClose(pBt->pPager, p->db);
drhe53831d2007-08-17 01:14:38 +00002667 if( pBt->xFreeSchema && pBt->pSchema ){
2668 pBt->xFreeSchema(pBt->pSchema);
2669 }
drhb9755982010-07-24 16:34:37 +00002670 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002671 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002672 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002673 }
2674
drhe53831d2007-08-17 01:14:38 +00002675#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002676 assert( p->wantToLock==0 );
2677 assert( p->locked==0 );
2678 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2679 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002680#endif
2681
drhe53831d2007-08-17 01:14:38 +00002682 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002683 return SQLITE_OK;
2684}
2685
2686/*
drh9b0cf342015-11-12 14:57:19 +00002687** Change the "soft" limit on the number of pages in the cache.
2688** Unused and unmodified pages will be recycled when the number of
2689** pages in the cache exceeds this soft limit. But the size of the
2690** cache is allowed to grow larger than this limit if it contains
2691** dirty pages or pages still in active use.
drhf57b14a2001-09-14 18:54:08 +00002692*/
danielk1977aef0bf62005-12-30 16:28:01 +00002693int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2694 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002695 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002696 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002697 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002698 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002699 return SQLITE_OK;
2700}
2701
drh9b0cf342015-11-12 14:57:19 +00002702/*
2703** Change the "spill" limit on the number of pages in the cache.
2704** If the number of pages exceeds this limit during a write transaction,
2705** the pager might attempt to "spill" pages to the journal early in
2706** order to free up memory.
2707**
2708** The value returned is the current spill size. If zero is passed
2709** as an argument, no changes are made to the spill size setting, so
2710** using mxPage of 0 is a way to query the current spill size.
2711*/
2712int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2713 BtShared *pBt = p->pBt;
2714 int res;
2715 assert( sqlite3_mutex_held(p->db->mutex) );
2716 sqlite3BtreeEnter(p);
2717 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2718 sqlite3BtreeLeave(p);
2719 return res;
2720}
2721
drh18c7e402014-03-14 11:46:10 +00002722#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002723/*
dan5d8a1372013-03-19 19:28:06 +00002724** Change the limit on the amount of the database file that may be
2725** memory mapped.
2726*/
drh9b4c59f2013-04-15 17:03:42 +00002727int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002728 BtShared *pBt = p->pBt;
2729 assert( sqlite3_mutex_held(p->db->mutex) );
2730 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002731 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002732 sqlite3BtreeLeave(p);
2733 return SQLITE_OK;
2734}
drh18c7e402014-03-14 11:46:10 +00002735#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002736
2737/*
drh973b6e32003-02-12 14:09:42 +00002738** Change the way data is synced to disk in order to increase or decrease
2739** how well the database resists damage due to OS crashes and power
2740** failures. Level 1 is the same as asynchronous (no syncs() occur and
2741** there is a high probability of damage) Level 2 is the default. There
2742** is a very low but non-zero probability of damage. Level 3 reduces the
2743** probability of damage to near zero but with a write performance reduction.
2744*/
danielk197793758c82005-01-21 08:13:14 +00002745#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002746int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002747 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002748 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002749){
danielk1977aef0bf62005-12-30 16:28:01 +00002750 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002751 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002752 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002753 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002754 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002755 return SQLITE_OK;
2756}
danielk197793758c82005-01-21 08:13:14 +00002757#endif
drh973b6e32003-02-12 14:09:42 +00002758
drh2c8997b2005-08-27 16:36:48 +00002759/*
drh90f5ecb2004-07-22 01:19:35 +00002760** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002761** Or, if the page size has already been fixed, return SQLITE_READONLY
2762** without changing anything.
drh06f50212004-11-02 14:24:33 +00002763**
2764** The page size must be a power of 2 between 512 and 65536. If the page
2765** size supplied does not meet this constraint then the page size is not
2766** changed.
2767**
2768** Page sizes are constrained to be a power of two so that the region
2769** of the database file used for locking (beginning at PENDING_BYTE,
2770** the first byte past the 1GB boundary, 0x40000000) needs to occur
2771** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002772**
2773** If parameter nReserve is less than zero, then the number of reserved
2774** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002775**
drhc9166342012-01-05 23:32:06 +00002776** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002777** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002778*/
drhce4869f2009-04-02 20:16:58 +00002779int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002780 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002781 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002782 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002783 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002784#if SQLITE_HAS_CODEC
2785 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2786#endif
drhc9166342012-01-05 23:32:06 +00002787 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002788 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002789 return SQLITE_READONLY;
2790 }
2791 if( nReserve<0 ){
2792 nReserve = pBt->pageSize - pBt->usableSize;
2793 }
drhf49661a2008-12-10 16:45:50 +00002794 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002795 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2796 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002797 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002798 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002799 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002800 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002801 }
drhfa9601a2009-06-18 17:22:39 +00002802 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002803 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002804 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002805 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002806 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002807}
2808
2809/*
2810** Return the currently defined page size
2811*/
danielk1977aef0bf62005-12-30 16:28:01 +00002812int sqlite3BtreeGetPageSize(Btree *p){
2813 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002814}
drh7f751222009-03-17 22:33:00 +00002815
dan0094f372012-09-28 20:23:42 +00002816/*
2817** This function is similar to sqlite3BtreeGetReserve(), except that it
2818** may only be called if it is guaranteed that the b-tree mutex is already
2819** held.
2820**
2821** This is useful in one special case in the backup API code where it is
2822** known that the shared b-tree mutex is held, but the mutex on the
2823** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2824** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002825** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002826*/
2827int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002828 int n;
dan0094f372012-09-28 20:23:42 +00002829 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002830 n = p->pBt->pageSize - p->pBt->usableSize;
2831 return n;
dan0094f372012-09-28 20:23:42 +00002832}
2833
drh7f751222009-03-17 22:33:00 +00002834/*
2835** Return the number of bytes of space at the end of every page that
2836** are intentually left unused. This is the "reserved" space that is
2837** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002838**
2839** If SQLITE_HAS_MUTEX is defined then the number returned is the
2840** greater of the current reserved space and the maximum requested
2841** reserve space.
drh7f751222009-03-17 22:33:00 +00002842*/
drhad0961b2015-02-21 00:19:25 +00002843int sqlite3BtreeGetOptimalReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002844 int n;
2845 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002846 n = sqlite3BtreeGetReserveNoMutex(p);
2847#ifdef SQLITE_HAS_CODEC
2848 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2849#endif
drhd677b3d2007-08-20 22:48:41 +00002850 sqlite3BtreeLeave(p);
2851 return n;
drh2011d5f2004-07-22 02:40:37 +00002852}
drhf8e632b2007-05-08 14:51:36 +00002853
drhad0961b2015-02-21 00:19:25 +00002854
drhf8e632b2007-05-08 14:51:36 +00002855/*
2856** Set the maximum page count for a database if mxPage is positive.
2857** No changes are made if mxPage is 0 or negative.
2858** Regardless of the value of mxPage, return the maximum page count.
2859*/
2860int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002861 int n;
2862 sqlite3BtreeEnter(p);
2863 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2864 sqlite3BtreeLeave(p);
2865 return n;
drhf8e632b2007-05-08 14:51:36 +00002866}
drh5b47efa2010-02-12 18:18:39 +00002867
2868/*
drha5907a82017-06-19 11:44:22 +00002869** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2870**
2871** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
2872** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
2873** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
2874** newFlag==(-1) No changes
2875**
2876** This routine acts as a query if newFlag is less than zero
2877**
2878** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
2879** freelist leaf pages are not written back to the database. Thus in-page
2880** deleted content is cleared, but freelist deleted content is not.
2881**
2882** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
2883** that freelist leaf pages are written back into the database, increasing
2884** the amount of disk I/O.
drh5b47efa2010-02-12 18:18:39 +00002885*/
2886int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2887 int b;
drhaf034ed2010-02-12 19:46:26 +00002888 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002889 sqlite3BtreeEnter(p);
drha5907a82017-06-19 11:44:22 +00002890 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
2891 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
drh5b47efa2010-02-12 18:18:39 +00002892 if( newFlag>=0 ){
drha5907a82017-06-19 11:44:22 +00002893 p->pBt->btsFlags &= ~BTS_FAST_SECURE;
2894 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
2895 }
2896 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002897 sqlite3BtreeLeave(p);
2898 return b;
2899}
drh90f5ecb2004-07-22 01:19:35 +00002900
2901/*
danielk1977951af802004-11-05 15:45:09 +00002902** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2903** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2904** is disabled. The default value for the auto-vacuum property is
2905** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2906*/
danielk1977aef0bf62005-12-30 16:28:01 +00002907int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002908#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002909 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002910#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002911 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002912 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002913 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002914
2915 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002916 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002917 rc = SQLITE_READONLY;
2918 }else{
drh076d4662009-02-18 20:31:18 +00002919 pBt->autoVacuum = av ?1:0;
2920 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002921 }
drhd677b3d2007-08-20 22:48:41 +00002922 sqlite3BtreeLeave(p);
2923 return rc;
danielk1977951af802004-11-05 15:45:09 +00002924#endif
2925}
2926
2927/*
2928** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2929** enabled 1 is returned. Otherwise 0.
2930*/
danielk1977aef0bf62005-12-30 16:28:01 +00002931int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002932#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002933 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002934#else
drhd677b3d2007-08-20 22:48:41 +00002935 int rc;
2936 sqlite3BtreeEnter(p);
2937 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002938 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2939 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2940 BTREE_AUTOVACUUM_INCR
2941 );
drhd677b3d2007-08-20 22:48:41 +00002942 sqlite3BtreeLeave(p);
2943 return rc;
danielk1977951af802004-11-05 15:45:09 +00002944#endif
2945}
2946
danf5da7db2017-03-16 18:14:39 +00002947/*
2948** If the user has not set the safety-level for this database connection
2949** using "PRAGMA synchronous", and if the safety-level is not already
2950** set to the value passed to this function as the second parameter,
2951** set it so.
2952*/
drh2ed57372017-10-05 20:57:38 +00002953#if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
2954 && !defined(SQLITE_OMIT_WAL)
danf5da7db2017-03-16 18:14:39 +00002955static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
2956 sqlite3 *db;
2957 Db *pDb;
2958 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
2959 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
2960 if( pDb->bSyncSet==0
2961 && pDb->safety_level!=safety_level
2962 && pDb!=&db->aDb[1]
2963 ){
2964 pDb->safety_level = safety_level;
2965 sqlite3PagerSetFlags(pBt->pPager,
2966 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
2967 }
2968 }
2969}
2970#else
danfc8f4b62017-03-16 18:54:42 +00002971# define setDefaultSyncFlag(pBt,safety_level)
danf5da7db2017-03-16 18:14:39 +00002972#endif
danielk1977951af802004-11-05 15:45:09 +00002973
2974/*
drha34b6762004-05-07 13:30:42 +00002975** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002976** also acquire a readlock on that file.
2977**
2978** SQLITE_OK is returned on success. If the file is not a
2979** well-formed database file, then SQLITE_CORRUPT is returned.
2980** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002981** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002982*/
danielk1977aef0bf62005-12-30 16:28:01 +00002983static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002984 int rc; /* Result code from subfunctions */
2985 MemPage *pPage1; /* Page 1 of the database file */
2986 int nPage; /* Number of pages in the database */
2987 int nPageFile = 0; /* Number of pages in the database file */
2988 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002989
drh1fee73e2007-08-29 04:00:57 +00002990 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002991 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002992 rc = sqlite3PagerSharedLock(pBt->pPager);
2993 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002994 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002995 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002996
2997 /* Do some checking to help insure the file we opened really is
2998 ** a valid database file.
2999 */
drhc2a4bab2010-04-02 12:46:45 +00003000 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00003001 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00003002 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00003003 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00003004 }
3005 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00003006 u32 pageSize;
3007 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00003008 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00003009 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00003010 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3011 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3012 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00003013 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00003014 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00003015 }
dan5cf53532010-05-01 16:40:20 +00003016
3017#ifdef SQLITE_OMIT_WAL
3018 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00003019 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00003020 }
3021 if( page1[19]>1 ){
3022 goto page1_init_failed;
3023 }
3024#else
dane04dc882010-04-20 18:53:15 +00003025 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00003026 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00003027 }
dane04dc882010-04-20 18:53:15 +00003028 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00003029 goto page1_init_failed;
3030 }
drhe5ae5732008-06-15 02:51:47 +00003031
dana470aeb2010-04-21 11:43:38 +00003032 /* If the write version is set to 2, this database should be accessed
3033 ** in WAL mode. If the log is not already open, open it now. Then
3034 ** return SQLITE_OK and return without populating BtShared.pPage1.
3035 ** The caller detects this and calls this function again. This is
3036 ** required as the version of page 1 currently in the page1 buffer
3037 ** may not be the latest version - there may be a newer one in the log
3038 ** file.
3039 */
drhc9166342012-01-05 23:32:06 +00003040 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00003041 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00003042 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00003043 if( rc!=SQLITE_OK ){
3044 goto page1_init_failed;
drhe243de52016-03-08 15:14:26 +00003045 }else{
danf5da7db2017-03-16 18:14:39 +00003046 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
drhe243de52016-03-08 15:14:26 +00003047 if( isOpen==0 ){
drh3908fe92017-09-01 14:50:19 +00003048 releasePageOne(pPage1);
drhe243de52016-03-08 15:14:26 +00003049 return SQLITE_OK;
3050 }
dane04dc882010-04-20 18:53:15 +00003051 }
dan8b5444b2010-04-27 14:37:47 +00003052 rc = SQLITE_NOTADB;
danf5da7db2017-03-16 18:14:39 +00003053 }else{
3054 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
dane04dc882010-04-20 18:53:15 +00003055 }
dan5cf53532010-05-01 16:40:20 +00003056#endif
dane04dc882010-04-20 18:53:15 +00003057
drh113762a2014-11-19 16:36:25 +00003058 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3059 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3060 **
drhe5ae5732008-06-15 02:51:47 +00003061 ** The original design allowed these amounts to vary, but as of
3062 ** version 3.6.0, we require them to be fixed.
3063 */
3064 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3065 goto page1_init_failed;
3066 }
drh113762a2014-11-19 16:36:25 +00003067 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3068 ** determined by the 2-byte integer located at an offset of 16 bytes from
3069 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00003070 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00003071 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3072 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00003073 if( ((pageSize-1)&pageSize)!=0
3074 || pageSize>SQLITE_MAX_PAGE_SIZE
3075 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00003076 ){
drh07d183d2005-05-01 22:52:42 +00003077 goto page1_init_failed;
3078 }
3079 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00003080 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3081 ** integer at offset 20 is the number of bytes of space at the end of
3082 ** each page to reserve for extensions.
3083 **
3084 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3085 ** determined by the one-byte unsigned integer found at an offset of 20
3086 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00003087 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00003088 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00003089 /* After reading the first page of the database assuming a page size
3090 ** of BtShared.pageSize, we have discovered that the page-size is
3091 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3092 ** zero and return SQLITE_OK. The caller will call this function
3093 ** again with the correct page-size.
3094 */
drh3908fe92017-09-01 14:50:19 +00003095 releasePageOne(pPage1);
drh43b18e12010-08-17 19:40:08 +00003096 pBt->usableSize = usableSize;
3097 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00003098 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00003099 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3100 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00003101 return rc;
danielk1977f653d782008-03-20 11:04:21 +00003102 }
drh169dd922017-06-26 13:57:49 +00003103 if( (pBt->db->flags & SQLITE_WriteSchema)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00003104 rc = SQLITE_CORRUPT_BKPT;
3105 goto page1_init_failed;
3106 }
drh113762a2014-11-19 16:36:25 +00003107 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3108 ** be less than 480. In other words, if the page size is 512, then the
3109 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00003110 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00003111 goto page1_init_failed;
3112 }
drh43b18e12010-08-17 19:40:08 +00003113 pBt->pageSize = pageSize;
3114 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00003115#ifndef SQLITE_OMIT_AUTOVACUUM
3116 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00003117 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00003118#endif
drh306dc212001-05-21 13:45:10 +00003119 }
drhb6f41482004-05-14 01:58:11 +00003120
3121 /* maxLocal is the maximum amount of payload to store locally for
3122 ** a cell. Make sure it is small enough so that at least minFanout
3123 ** cells can will fit on one page. We assume a 10-byte page header.
3124 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00003125 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00003126 ** 4-byte child pointer
3127 ** 9-byte nKey value
3128 ** 4-byte nData value
3129 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00003130 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00003131 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3132 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00003133 */
shaneh1df2db72010-08-18 02:28:48 +00003134 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3135 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3136 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3137 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00003138 if( pBt->maxLocal>127 ){
3139 pBt->max1bytePayload = 127;
3140 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00003141 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00003142 }
drh2e38c322004-09-03 18:38:44 +00003143 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00003144 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00003145 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00003146 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00003147
drh72f82862001-05-24 21:06:34 +00003148page1_init_failed:
drh3908fe92017-09-01 14:50:19 +00003149 releasePageOne(pPage1);
drh3aac2dd2004-04-26 14:10:20 +00003150 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00003151 return rc;
drh306dc212001-05-21 13:45:10 +00003152}
3153
drh85ec3b62013-05-14 23:12:06 +00003154#ifndef NDEBUG
3155/*
3156** Return the number of cursors open on pBt. This is for use
3157** in assert() expressions, so it is only compiled if NDEBUG is not
3158** defined.
3159**
3160** Only write cursors are counted if wrOnly is true. If wrOnly is
3161** false then all cursors are counted.
3162**
3163** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00003164** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00003165** have been tripped into the CURSOR_FAULT state are not counted.
3166*/
3167static int countValidCursors(BtShared *pBt, int wrOnly){
3168 BtCursor *pCur;
3169 int r = 0;
3170 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00003171 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3172 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00003173 }
3174 return r;
3175}
3176#endif
3177
drh306dc212001-05-21 13:45:10 +00003178/*
drhb8ca3072001-12-05 00:21:20 +00003179** If there are no outstanding cursors and we are not in the middle
3180** of a transaction but there is a read lock on the database, then
3181** this routine unrefs the first page of the database file which
3182** has the effect of releasing the read lock.
3183**
drhb8ca3072001-12-05 00:21:20 +00003184** If there is a transaction in progress, this routine is a no-op.
3185*/
danielk1977aef0bf62005-12-30 16:28:01 +00003186static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00003187 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00003188 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00003189 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00003190 MemPage *pPage1 = pBt->pPage1;
3191 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00003192 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00003193 pBt->pPage1 = 0;
drh3908fe92017-09-01 14:50:19 +00003194 releasePageOne(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003195 }
3196}
3197
3198/*
drhe39f2f92009-07-23 01:43:59 +00003199** If pBt points to an empty file then convert that empty file
3200** into a new empty database by initializing the first page of
3201** the database.
drh8b2f49b2001-06-08 00:21:52 +00003202*/
danielk1977aef0bf62005-12-30 16:28:01 +00003203static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003204 MemPage *pP1;
3205 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003206 int rc;
drhd677b3d2007-08-20 22:48:41 +00003207
drh1fee73e2007-08-29 04:00:57 +00003208 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003209 if( pBt->nPage>0 ){
3210 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003211 }
drh3aac2dd2004-04-26 14:10:20 +00003212 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003213 assert( pP1!=0 );
3214 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003215 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003216 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003217 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3218 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003219 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3220 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003221 data[18] = 1;
3222 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003223 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3224 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003225 data[21] = 64;
3226 data[22] = 32;
3227 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003228 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003229 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003230 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003231#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003232 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003233 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003234 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003235 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003236#endif
drhdd3cd972010-03-27 17:12:36 +00003237 pBt->nPage = 1;
3238 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003239 return SQLITE_OK;
3240}
3241
3242/*
danb483eba2012-10-13 19:58:11 +00003243** Initialize the first page of the database file (creating a database
3244** consisting of a single page and no schema objects). Return SQLITE_OK
3245** if successful, or an SQLite error code otherwise.
3246*/
3247int sqlite3BtreeNewDb(Btree *p){
3248 int rc;
3249 sqlite3BtreeEnter(p);
3250 p->pBt->nPage = 0;
3251 rc = newDatabase(p->pBt);
3252 sqlite3BtreeLeave(p);
3253 return rc;
3254}
3255
3256/*
danielk1977ee5741e2004-05-31 10:01:34 +00003257** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003258** is started if the second argument is nonzero, otherwise a read-
3259** transaction. If the second argument is 2 or more and exclusive
3260** transaction is started, meaning that no other process is allowed
3261** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003262** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003263** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003264**
danielk1977ee5741e2004-05-31 10:01:34 +00003265** A write-transaction must be started before attempting any
3266** changes to the database. None of the following routines
3267** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003268**
drh23e11ca2004-05-04 17:27:28 +00003269** sqlite3BtreeCreateTable()
3270** sqlite3BtreeCreateIndex()
3271** sqlite3BtreeClearTable()
3272** sqlite3BtreeDropTable()
3273** sqlite3BtreeInsert()
3274** sqlite3BtreeDelete()
3275** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003276**
drhb8ef32c2005-03-14 02:01:49 +00003277** If an initial attempt to acquire the lock fails because of lock contention
3278** and the database was previously unlocked, then invoke the busy handler
3279** if there is one. But if there was previously a read-lock, do not
3280** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3281** returned when there is already a read-lock in order to avoid a deadlock.
3282**
3283** Suppose there are two processes A and B. A has a read lock and B has
3284** a reserved lock. B tries to promote to exclusive but is blocked because
3285** of A's read lock. A tries to promote to reserved but is blocked by B.
3286** One or the other of the two processes must give way or there can be
3287** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3288** when A already has a read lock, we encourage A to give up and let B
3289** proceed.
drha059ad02001-04-17 20:09:11 +00003290*/
danielk1977aef0bf62005-12-30 16:28:01 +00003291int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
3292 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00003293 int rc = SQLITE_OK;
3294
drhd677b3d2007-08-20 22:48:41 +00003295 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003296 btreeIntegrity(p);
3297
danielk1977ee5741e2004-05-31 10:01:34 +00003298 /* If the btree is already in a write-transaction, or it
3299 ** is already in a read-transaction and a read-transaction
3300 ** is requested, this is a no-op.
3301 */
danielk1977aef0bf62005-12-30 16:28:01 +00003302 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003303 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003304 }
dan56c517a2013-09-26 11:04:33 +00003305 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003306
3307 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003308 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003309 rc = SQLITE_READONLY;
3310 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003311 }
3312
danielk1977404ca072009-03-16 13:19:36 +00003313#ifndef SQLITE_OMIT_SHARED_CACHE
drh5a1fb182016-01-08 19:34:39 +00003314 {
3315 sqlite3 *pBlock = 0;
3316 /* If another database handle has already opened a write transaction
3317 ** on this shared-btree structure and a second write transaction is
3318 ** requested, return SQLITE_LOCKED.
3319 */
3320 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3321 || (pBt->btsFlags & BTS_PENDING)!=0
3322 ){
3323 pBlock = pBt->pWriter->db;
3324 }else if( wrflag>1 ){
3325 BtLock *pIter;
3326 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3327 if( pIter->pBtree!=p ){
3328 pBlock = pIter->pBtree->db;
3329 break;
3330 }
danielk1977641b0f42007-12-21 04:47:25 +00003331 }
3332 }
drh5a1fb182016-01-08 19:34:39 +00003333 if( pBlock ){
3334 sqlite3ConnectionBlocked(p->db, pBlock);
3335 rc = SQLITE_LOCKED_SHAREDCACHE;
3336 goto trans_begun;
3337 }
danielk1977404ca072009-03-16 13:19:36 +00003338 }
danielk1977641b0f42007-12-21 04:47:25 +00003339#endif
3340
danielk1977602b4662009-07-02 07:47:33 +00003341 /* Any read-only or read-write transaction implies a read-lock on
3342 ** page 1. So if some other shared-cache client already has a write-lock
3343 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00003344 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3345 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003346
drhc9166342012-01-05 23:32:06 +00003347 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3348 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003349 do {
danielk1977295dc102009-04-01 19:07:03 +00003350 /* Call lockBtree() until either pBt->pPage1 is populated or
3351 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3352 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3353 ** reading page 1 it discovers that the page-size of the database
3354 ** file is not pBt->pageSize. In this case lockBtree() will update
3355 ** pBt->pageSize to the page-size of the file on disk.
3356 */
3357 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003358
drhb8ef32c2005-03-14 02:01:49 +00003359 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003360 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003361 rc = SQLITE_READONLY;
3362 }else{
danielk1977d8293352009-04-30 09:10:37 +00003363 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003364 if( rc==SQLITE_OK ){
3365 rc = newDatabase(pBt);
3366 }
drhb8ef32c2005-03-14 02:01:49 +00003367 }
3368 }
3369
danielk1977bd434552009-03-18 10:33:00 +00003370 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00003371 unlockBtreeIfUnused(pBt);
3372 }
danf9b76712010-06-01 14:12:45 +00003373 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003374 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00003375
3376 if( rc==SQLITE_OK ){
3377 if( p->inTrans==TRANS_NONE ){
3378 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003379#ifndef SQLITE_OMIT_SHARED_CACHE
3380 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003381 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003382 p->lock.eLock = READ_LOCK;
3383 p->lock.pNext = pBt->pLock;
3384 pBt->pLock = &p->lock;
3385 }
3386#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003387 }
3388 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3389 if( p->inTrans>pBt->inTransaction ){
3390 pBt->inTransaction = p->inTrans;
3391 }
danielk1977404ca072009-03-16 13:19:36 +00003392 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003393 MemPage *pPage1 = pBt->pPage1;
3394#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003395 assert( !pBt->pWriter );
3396 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003397 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3398 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003399#endif
dan59257dc2010-08-04 11:34:31 +00003400
3401 /* If the db-size header field is incorrect (as it may be if an old
3402 ** client has been writing the database file), update it now. Doing
3403 ** this sooner rather than later means the database size can safely
3404 ** re-read the database size from page 1 if a savepoint or transaction
3405 ** rollback occurs within the transaction.
3406 */
3407 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3408 rc = sqlite3PagerWrite(pPage1->pDbPage);
3409 if( rc==SQLITE_OK ){
3410 put4byte(&pPage1->aData[28], pBt->nPage);
3411 }
3412 }
3413 }
danielk1977aef0bf62005-12-30 16:28:01 +00003414 }
3415
drhd677b3d2007-08-20 22:48:41 +00003416
3417trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00003418 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00003419 /* This call makes sure that the pager has the correct number of
3420 ** open savepoints. If the second parameter is greater than 0 and
3421 ** the sub-journal is not already open, then it will be opened here.
3422 */
danielk1977fd7f0452008-12-17 17:30:26 +00003423 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3424 }
danielk197712dd5492008-12-18 15:45:07 +00003425
danielk1977aef0bf62005-12-30 16:28:01 +00003426 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003427 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003428 return rc;
drha059ad02001-04-17 20:09:11 +00003429}
3430
danielk1977687566d2004-11-02 12:56:41 +00003431#ifndef SQLITE_OMIT_AUTOVACUUM
3432
3433/*
3434** Set the pointer-map entries for all children of page pPage. Also, if
3435** pPage contains cells that point to overflow pages, set the pointer
3436** map entries for the overflow pages as well.
3437*/
3438static int setChildPtrmaps(MemPage *pPage){
3439 int i; /* Counter variable */
3440 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003441 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003442 BtShared *pBt = pPage->pBt;
danielk1977687566d2004-11-02 12:56:41 +00003443 Pgno pgno = pPage->pgno;
3444
drh1fee73e2007-08-29 04:00:57 +00003445 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh14e845a2017-05-25 21:35:56 +00003446 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drh2a702542016-12-12 18:12:03 +00003447 if( rc!=SQLITE_OK ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003448 nCell = pPage->nCell;
3449
3450 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003451 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003452
drh98add2e2009-07-20 17:11:49 +00003453 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003454
danielk1977687566d2004-11-02 12:56:41 +00003455 if( !pPage->leaf ){
3456 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003457 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003458 }
3459 }
3460
3461 if( !pPage->leaf ){
3462 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003463 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003464 }
3465
danielk1977687566d2004-11-02 12:56:41 +00003466 return rc;
3467}
3468
3469/*
drhf3aed592009-07-08 18:12:49 +00003470** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3471** that it points to iTo. Parameter eType describes the type of pointer to
3472** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003473**
3474** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3475** page of pPage.
3476**
3477** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3478** page pointed to by one of the cells on pPage.
3479**
3480** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3481** overflow page in the list.
3482*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003483static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003484 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003485 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003486 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003487 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003488 if( get4byte(pPage->aData)!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003489 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003490 }
danielk1977f78fc082004-11-02 14:40:32 +00003491 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003492 }else{
danielk1977687566d2004-11-02 12:56:41 +00003493 int i;
3494 int nCell;
drha1f75d92015-05-24 10:18:12 +00003495 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003496
drh14e845a2017-05-25 21:35:56 +00003497 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drha1f75d92015-05-24 10:18:12 +00003498 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003499 nCell = pPage->nCell;
3500
danielk1977687566d2004-11-02 12:56:41 +00003501 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003502 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003503 if( eType==PTRMAP_OVERFLOW1 ){
3504 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003505 pPage->xParseCell(pPage, pCell, &info);
drhb701c9a2017-01-12 15:11:03 +00003506 if( info.nLocal<info.nPayload ){
3507 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00003508 return SQLITE_CORRUPT_PAGE(pPage);
drhb701c9a2017-01-12 15:11:03 +00003509 }
3510 if( iFrom==get4byte(pCell+info.nSize-4) ){
3511 put4byte(pCell+info.nSize-4, iTo);
3512 break;
3513 }
danielk1977687566d2004-11-02 12:56:41 +00003514 }
3515 }else{
3516 if( get4byte(pCell)==iFrom ){
3517 put4byte(pCell, iTo);
3518 break;
3519 }
3520 }
3521 }
3522
3523 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003524 if( eType!=PTRMAP_BTREE ||
3525 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003526 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003527 }
danielk1977687566d2004-11-02 12:56:41 +00003528 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3529 }
danielk1977687566d2004-11-02 12:56:41 +00003530 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003531 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003532}
3533
danielk1977003ba062004-11-04 02:57:33 +00003534
danielk19777701e812005-01-10 12:59:51 +00003535/*
3536** Move the open database page pDbPage to location iFreePage in the
3537** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003538**
3539** The isCommit flag indicates that there is no need to remember that
3540** the journal needs to be sync()ed before database page pDbPage->pgno
3541** can be written to. The caller has already promised not to write to that
3542** page.
danielk19777701e812005-01-10 12:59:51 +00003543*/
danielk1977003ba062004-11-04 02:57:33 +00003544static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003545 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003546 MemPage *pDbPage, /* Open page to move */
3547 u8 eType, /* Pointer map 'type' entry for pDbPage */
3548 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003549 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003550 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003551){
3552 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3553 Pgno iDbPage = pDbPage->pgno;
3554 Pager *pPager = pBt->pPager;
3555 int rc;
3556
danielk1977a0bf2652004-11-04 14:30:04 +00003557 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3558 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003559 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003560 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00003561
drh85b623f2007-12-13 21:54:09 +00003562 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003563 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3564 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003565 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003566 if( rc!=SQLITE_OK ){
3567 return rc;
3568 }
3569 pDbPage->pgno = iFreePage;
3570
3571 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3572 ** that point to overflow pages. The pointer map entries for all these
3573 ** pages need to be changed.
3574 **
3575 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3576 ** pointer to a subsequent overflow page. If this is the case, then
3577 ** the pointer map needs to be updated for the subsequent overflow page.
3578 */
danielk1977a0bf2652004-11-04 14:30:04 +00003579 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003580 rc = setChildPtrmaps(pDbPage);
3581 if( rc!=SQLITE_OK ){
3582 return rc;
3583 }
3584 }else{
3585 Pgno nextOvfl = get4byte(pDbPage->aData);
3586 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003587 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003588 if( rc!=SQLITE_OK ){
3589 return rc;
3590 }
3591 }
3592 }
3593
3594 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3595 ** that it points at iFreePage. Also fix the pointer map entry for
3596 ** iPtrPage.
3597 */
danielk1977a0bf2652004-11-04 14:30:04 +00003598 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003599 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003600 if( rc!=SQLITE_OK ){
3601 return rc;
3602 }
danielk19773b8a05f2007-03-19 17:44:26 +00003603 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003604 if( rc!=SQLITE_OK ){
3605 releasePage(pPtrPage);
3606 return rc;
3607 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003608 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003609 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003610 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003611 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003612 }
danielk1977003ba062004-11-04 02:57:33 +00003613 }
danielk1977003ba062004-11-04 02:57:33 +00003614 return rc;
3615}
3616
danielk1977dddbcdc2007-04-26 14:42:34 +00003617/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003618static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003619
3620/*
dan51f0b6d2013-02-22 20:16:34 +00003621** Perform a single step of an incremental-vacuum. If successful, return
3622** SQLITE_OK. If there is no work to do (and therefore no point in
3623** calling this function again), return SQLITE_DONE. Or, if an error
3624** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003625**
peter.d.reid60ec9142014-09-06 16:39:46 +00003626** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003627** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003628**
dan51f0b6d2013-02-22 20:16:34 +00003629** Parameter nFin is the number of pages that this database would contain
3630** were this function called until it returns SQLITE_DONE.
3631**
3632** If the bCommit parameter is non-zero, this function assumes that the
3633** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003634** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003635** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003636*/
dan51f0b6d2013-02-22 20:16:34 +00003637static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003638 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003639 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003640
drh1fee73e2007-08-29 04:00:57 +00003641 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003642 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003643
3644 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003645 u8 eType;
3646 Pgno iPtrPage;
3647
3648 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003649 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003650 return SQLITE_DONE;
3651 }
3652
3653 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3654 if( rc!=SQLITE_OK ){
3655 return rc;
3656 }
3657 if( eType==PTRMAP_ROOTPAGE ){
3658 return SQLITE_CORRUPT_BKPT;
3659 }
3660
3661 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003662 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003663 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003664 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003665 ** truncated to zero after this function returns, so it doesn't
3666 ** matter if it still contains some garbage entries.
3667 */
3668 Pgno iFreePg;
3669 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003670 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003671 if( rc!=SQLITE_OK ){
3672 return rc;
3673 }
3674 assert( iFreePg==iLastPg );
3675 releasePage(pFreePg);
3676 }
3677 } else {
3678 Pgno iFreePg; /* Index of free page to move pLastPg to */
3679 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003680 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3681 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003682
drhb00fc3b2013-08-21 23:42:32 +00003683 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003684 if( rc!=SQLITE_OK ){
3685 return rc;
3686 }
3687
dan51f0b6d2013-02-22 20:16:34 +00003688 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003689 ** is swapped with the first free page pulled off the free list.
3690 **
dan51f0b6d2013-02-22 20:16:34 +00003691 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003692 ** looping until a free-page located within the first nFin pages
3693 ** of the file is found.
3694 */
dan51f0b6d2013-02-22 20:16:34 +00003695 if( bCommit==0 ){
3696 eMode = BTALLOC_LE;
3697 iNear = nFin;
3698 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003699 do {
3700 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003701 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003702 if( rc!=SQLITE_OK ){
3703 releasePage(pLastPg);
3704 return rc;
3705 }
3706 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003707 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003708 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003709
dane1df4e32013-03-05 11:27:04 +00003710 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003711 releasePage(pLastPg);
3712 if( rc!=SQLITE_OK ){
3713 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003714 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003715 }
3716 }
3717
dan51f0b6d2013-02-22 20:16:34 +00003718 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003719 do {
danielk19773460d192008-12-27 15:23:13 +00003720 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003721 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3722 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003723 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003724 }
3725 return SQLITE_OK;
3726}
3727
3728/*
dan51f0b6d2013-02-22 20:16:34 +00003729** The database opened by the first argument is an auto-vacuum database
3730** nOrig pages in size containing nFree free pages. Return the expected
3731** size of the database in pages following an auto-vacuum operation.
3732*/
3733static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3734 int nEntry; /* Number of entries on one ptrmap page */
3735 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3736 Pgno nFin; /* Return value */
3737
3738 nEntry = pBt->usableSize/5;
3739 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3740 nFin = nOrig - nFree - nPtrmap;
3741 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3742 nFin--;
3743 }
3744 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3745 nFin--;
3746 }
dan51f0b6d2013-02-22 20:16:34 +00003747
3748 return nFin;
3749}
3750
3751/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003752** A write-transaction must be opened before calling this function.
3753** It performs a single unit of work towards an incremental vacuum.
3754**
3755** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003756** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003757** SQLITE_OK is returned. Otherwise an SQLite error code.
3758*/
3759int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003760 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003761 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003762
3763 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003764 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3765 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003766 rc = SQLITE_DONE;
3767 }else{
dan51f0b6d2013-02-22 20:16:34 +00003768 Pgno nOrig = btreePagecount(pBt);
3769 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3770 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3771
dan91384712013-02-24 11:50:43 +00003772 if( nOrig<nFin ){
3773 rc = SQLITE_CORRUPT_BKPT;
3774 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003775 rc = saveAllCursors(pBt, 0, 0);
3776 if( rc==SQLITE_OK ){
3777 invalidateAllOverflowCache(pBt);
3778 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3779 }
dan51f0b6d2013-02-22 20:16:34 +00003780 if( rc==SQLITE_OK ){
3781 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3782 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3783 }
3784 }else{
3785 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003786 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003787 }
drhd677b3d2007-08-20 22:48:41 +00003788 sqlite3BtreeLeave(p);
3789 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003790}
3791
3792/*
danielk19773b8a05f2007-03-19 17:44:26 +00003793** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003794** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003795**
3796** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3797** the database file should be truncated to during the commit process.
3798** i.e. the database has been reorganized so that only the first *pnTrunc
3799** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003800*/
danielk19773460d192008-12-27 15:23:13 +00003801static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003802 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003803 Pager *pPager = pBt->pPager;
mistachkinc29cbb02015-07-02 16:52:01 +00003804 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00003805
drh1fee73e2007-08-29 04:00:57 +00003806 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003807 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003808 assert(pBt->autoVacuum);
3809 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003810 Pgno nFin; /* Number of pages in database after autovacuuming */
3811 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003812 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003813 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003814
drhb1299152010-03-30 22:58:33 +00003815 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003816 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3817 /* It is not possible to create a database for which the final page
3818 ** is either a pointer-map page or the pending-byte page. If one
3819 ** is encountered, this indicates corruption.
3820 */
danielk19773460d192008-12-27 15:23:13 +00003821 return SQLITE_CORRUPT_BKPT;
3822 }
danielk1977ef165ce2009-04-06 17:50:03 +00003823
danielk19773460d192008-12-27 15:23:13 +00003824 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003825 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003826 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003827 if( nFin<nOrig ){
3828 rc = saveAllCursors(pBt, 0, 0);
3829 }
danielk19773460d192008-12-27 15:23:13 +00003830 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003831 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003832 }
danielk19773460d192008-12-27 15:23:13 +00003833 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003834 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3835 put4byte(&pBt->pPage1->aData[32], 0);
3836 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003837 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003838 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003839 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003840 }
3841 if( rc!=SQLITE_OK ){
3842 sqlite3PagerRollback(pPager);
3843 }
danielk1977687566d2004-11-02 12:56:41 +00003844 }
3845
dan0aed84d2013-03-26 14:16:20 +00003846 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003847 return rc;
3848}
danielk1977dddbcdc2007-04-26 14:42:34 +00003849
danielk1977a50d9aa2009-06-08 14:49:45 +00003850#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3851# define setChildPtrmaps(x) SQLITE_OK
3852#endif
danielk1977687566d2004-11-02 12:56:41 +00003853
3854/*
drh80e35f42007-03-30 14:06:34 +00003855** This routine does the first phase of a two-phase commit. This routine
3856** causes a rollback journal to be created (if it does not already exist)
3857** and populated with enough information so that if a power loss occurs
3858** the database can be restored to its original state by playing back
3859** the journal. Then the contents of the journal are flushed out to
3860** the disk. After the journal is safely on oxide, the changes to the
3861** database are written into the database file and flushed to oxide.
3862** At the end of this call, the rollback journal still exists on the
3863** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003864** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003865** commit process.
3866**
3867** This call is a no-op if no write-transaction is currently active on pBt.
3868**
3869** Otherwise, sync the database file for the btree pBt. zMaster points to
3870** the name of a master journal file that should be written into the
3871** individual journal file, or is NULL, indicating no master journal file
3872** (single database transaction).
3873**
3874** When this is called, the master journal should already have been
3875** created, populated with this journal pointer and synced to disk.
3876**
3877** Once this is routine has returned, the only thing required to commit
3878** the write-transaction for this database file is to delete the journal.
3879*/
3880int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3881 int rc = SQLITE_OK;
3882 if( p->inTrans==TRANS_WRITE ){
3883 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003884 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003885#ifndef SQLITE_OMIT_AUTOVACUUM
3886 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003887 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003888 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003889 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003890 return rc;
3891 }
3892 }
danbc1a3c62013-02-23 16:40:46 +00003893 if( pBt->bDoTruncate ){
3894 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3895 }
drh80e35f42007-03-30 14:06:34 +00003896#endif
drh49b9d332009-01-02 18:10:42 +00003897 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003898 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003899 }
3900 return rc;
3901}
3902
3903/*
danielk197794b30732009-07-02 17:21:57 +00003904** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3905** at the conclusion of a transaction.
3906*/
3907static void btreeEndTransaction(Btree *p){
3908 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003909 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003910 assert( sqlite3BtreeHoldsMutex(p) );
3911
danbc1a3c62013-02-23 16:40:46 +00003912#ifndef SQLITE_OMIT_AUTOVACUUM
3913 pBt->bDoTruncate = 0;
3914#endif
danc0537fe2013-06-28 19:41:43 +00003915 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003916 /* If there are other active statements that belong to this database
3917 ** handle, downgrade to a read-only transaction. The other statements
3918 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003919 downgradeAllSharedCacheTableLocks(p);
3920 p->inTrans = TRANS_READ;
3921 }else{
3922 /* If the handle had any kind of transaction open, decrement the
3923 ** transaction count of the shared btree. If the transaction count
3924 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3925 ** call below will unlock the pager. */
3926 if( p->inTrans!=TRANS_NONE ){
3927 clearAllSharedCacheTableLocks(p);
3928 pBt->nTransaction--;
3929 if( 0==pBt->nTransaction ){
3930 pBt->inTransaction = TRANS_NONE;
3931 }
3932 }
3933
3934 /* Set the current transaction state to TRANS_NONE and unlock the
3935 ** pager if this call closed the only read or write transaction. */
3936 p->inTrans = TRANS_NONE;
3937 unlockBtreeIfUnused(pBt);
3938 }
3939
3940 btreeIntegrity(p);
3941}
3942
3943/*
drh2aa679f2001-06-25 02:11:07 +00003944** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003945**
drh6e345992007-03-30 11:12:08 +00003946** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003947** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3948** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3949** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003950** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003951** routine has to do is delete or truncate or zero the header in the
3952** the rollback journal (which causes the transaction to commit) and
3953** drop locks.
drh6e345992007-03-30 11:12:08 +00003954**
dan60939d02011-03-29 15:40:55 +00003955** Normally, if an error occurs while the pager layer is attempting to
3956** finalize the underlying journal file, this function returns an error and
3957** the upper layer will attempt a rollback. However, if the second argument
3958** is non-zero then this b-tree transaction is part of a multi-file
3959** transaction. In this case, the transaction has already been committed
3960** (by deleting a master journal file) and the caller will ignore this
3961** functions return code. So, even if an error occurs in the pager layer,
3962** reset the b-tree objects internal state to indicate that the write
3963** transaction has been closed. This is quite safe, as the pager will have
3964** transitioned to the error state.
3965**
drh5e00f6c2001-09-13 13:46:56 +00003966** This will release the write lock on the database file. If there
3967** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003968*/
dan60939d02011-03-29 15:40:55 +00003969int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003970
drh075ed302010-10-14 01:17:30 +00003971 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003972 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003973 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003974
3975 /* If the handle has a write-transaction open, commit the shared-btrees
3976 ** transaction and set the shared state to TRANS_READ.
3977 */
3978 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003979 int rc;
drh075ed302010-10-14 01:17:30 +00003980 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003981 assert( pBt->inTransaction==TRANS_WRITE );
3982 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003983 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003984 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003985 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003986 return rc;
3987 }
drh3da9c042014-12-22 18:41:21 +00003988 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00003989 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003990 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003991 }
danielk1977aef0bf62005-12-30 16:28:01 +00003992
danielk197794b30732009-07-02 17:21:57 +00003993 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003994 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003995 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003996}
3997
drh80e35f42007-03-30 14:06:34 +00003998/*
3999** Do both phases of a commit.
4000*/
4001int sqlite3BtreeCommit(Btree *p){
4002 int rc;
drhd677b3d2007-08-20 22:48:41 +00004003 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00004004 rc = sqlite3BtreeCommitPhaseOne(p, 0);
4005 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00004006 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00004007 }
drhd677b3d2007-08-20 22:48:41 +00004008 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004009 return rc;
4010}
4011
drhc39e0002004-05-07 23:50:57 +00004012/*
drhfb982642007-08-30 01:19:59 +00004013** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00004014** code to errCode for every cursor on any BtShared that pBtree
4015** references. Or if the writeOnly flag is set to 1, then only
4016** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00004017**
drh47b7fc72014-11-11 01:33:57 +00004018** Every cursor is a candidate to be tripped, including cursors
4019** that belong to other database connections that happen to be
4020** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00004021**
dan80231042014-11-12 14:56:02 +00004022** This routine gets called when a rollback occurs. If the writeOnly
4023** flag is true, then only write-cursors need be tripped - read-only
4024** cursors save their current positions so that they may continue
4025** following the rollback. Or, if writeOnly is false, all cursors are
4026** tripped. In general, writeOnly is false if the transaction being
4027** rolled back modified the database schema. In this case b-tree root
4028** pages may be moved or deleted from the database altogether, making
4029** it unsafe for read cursors to continue.
4030**
4031** If the writeOnly flag is true and an error is encountered while
4032** saving the current position of a read-only cursor, all cursors,
4033** including all read-cursors are tripped.
4034**
4035** SQLITE_OK is returned if successful, or if an error occurs while
4036** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00004037*/
dan80231042014-11-12 14:56:02 +00004038int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00004039 BtCursor *p;
dan80231042014-11-12 14:56:02 +00004040 int rc = SQLITE_OK;
4041
drh47b7fc72014-11-11 01:33:57 +00004042 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00004043 if( pBtree ){
4044 sqlite3BtreeEnter(pBtree);
4045 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
dan80231042014-11-12 14:56:02 +00004046 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00004047 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00004048 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00004049 if( rc!=SQLITE_OK ){
4050 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4051 break;
4052 }
4053 }
4054 }else{
4055 sqlite3BtreeClearCursor(p);
4056 p->eState = CURSOR_FAULT;
4057 p->skipNext = errCode;
4058 }
drh85ef6302017-08-02 15:50:09 +00004059 btreeReleaseAllCursorPages(p);
danielk1977bc2ca9e2008-11-13 14:28:28 +00004060 }
dan80231042014-11-12 14:56:02 +00004061 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00004062 }
dan80231042014-11-12 14:56:02 +00004063 return rc;
drhfb982642007-08-30 01:19:59 +00004064}
4065
4066/*
drh47b7fc72014-11-11 01:33:57 +00004067** Rollback the transaction in progress.
4068**
4069** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4070** Only write cursors are tripped if writeOnly is true but all cursors are
4071** tripped if writeOnly is false. Any attempt to use
4072** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00004073**
4074** This will release the write lock on the database file. If there
4075** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004076*/
drh47b7fc72014-11-11 01:33:57 +00004077int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00004078 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004079 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00004080 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00004081
drh47b7fc72014-11-11 01:33:57 +00004082 assert( writeOnly==1 || writeOnly==0 );
4083 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00004084 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00004085 if( tripCode==SQLITE_OK ){
4086 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00004087 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00004088 }else{
4089 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00004090 }
drh0f198a72012-02-13 16:43:16 +00004091 if( tripCode ){
dan80231042014-11-12 14:56:02 +00004092 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4093 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4094 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00004095 }
danielk1977aef0bf62005-12-30 16:28:01 +00004096 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004097
4098 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00004099 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00004100
danielk19778d34dfd2006-01-24 16:37:57 +00004101 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00004102 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00004103 if( rc2!=SQLITE_OK ){
4104 rc = rc2;
4105 }
4106
drh24cd67e2004-05-10 16:18:47 +00004107 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00004108 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00004109 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00004110 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00004111 int nPage = get4byte(28+(u8*)pPage1->aData);
4112 testcase( nPage==0 );
4113 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4114 testcase( pBt->nPage!=nPage );
4115 pBt->nPage = nPage;
drh3908fe92017-09-01 14:50:19 +00004116 releasePageOne(pPage1);
drh24cd67e2004-05-10 16:18:47 +00004117 }
drh85ec3b62013-05-14 23:12:06 +00004118 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00004119 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004120 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00004121 }
danielk1977aef0bf62005-12-30 16:28:01 +00004122
danielk197794b30732009-07-02 17:21:57 +00004123 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004124 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00004125 return rc;
4126}
4127
4128/*
peter.d.reid60ec9142014-09-06 16:39:46 +00004129** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00004130** back independently of the main transaction. You must start a transaction
4131** before starting a subtransaction. The subtransaction is ended automatically
4132** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00004133**
4134** Statement subtransactions are used around individual SQL statements
4135** that are contained within a BEGIN...COMMIT block. If a constraint
4136** error occurs within the statement, the effect of that one statement
4137** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00004138**
4139** A statement sub-transaction is implemented as an anonymous savepoint. The
4140** value passed as the second parameter is the total number of savepoints,
4141** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4142** are no active savepoints and no other statement-transactions open,
4143** iStatement is 1. This anonymous savepoint can be released or rolled back
4144** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00004145*/
danielk1977bd434552009-03-18 10:33:00 +00004146int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00004147 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004148 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004149 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00004150 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00004151 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00004152 assert( iStatement>0 );
4153 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00004154 assert( pBt->inTransaction==TRANS_WRITE );
4155 /* At the pager level, a statement transaction is a savepoint with
4156 ** an index greater than all savepoints created explicitly using
4157 ** SQL statements. It is illegal to open, release or rollback any
4158 ** such savepoints while the statement transaction savepoint is active.
4159 */
4160 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00004161 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00004162 return rc;
4163}
4164
4165/*
danielk1977fd7f0452008-12-17 17:30:26 +00004166** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4167** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00004168** savepoint identified by parameter iSavepoint, depending on the value
4169** of op.
4170**
4171** Normally, iSavepoint is greater than or equal to zero. However, if op is
4172** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4173** contents of the entire transaction are rolled back. This is different
4174** from a normal transaction rollback, as no locks are released and the
4175** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00004176*/
4177int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4178 int rc = SQLITE_OK;
4179 if( p && p->inTrans==TRANS_WRITE ){
4180 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00004181 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4182 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4183 sqlite3BtreeEnter(p);
drh2343c7e2017-02-02 00:46:55 +00004184 if( op==SAVEPOINT_ROLLBACK ){
4185 rc = saveAllCursors(pBt, 0, 0);
4186 }
4187 if( rc==SQLITE_OK ){
4188 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4189 }
drh9f0bbf92009-01-02 21:08:09 +00004190 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00004191 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4192 pBt->nPage = 0;
4193 }
drh9f0bbf92009-01-02 21:08:09 +00004194 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00004195 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00004196
4197 /* The database size was written into the offset 28 of the header
4198 ** when the transaction started, so we know that the value at offset
4199 ** 28 is nonzero. */
4200 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004201 }
danielk1977fd7f0452008-12-17 17:30:26 +00004202 sqlite3BtreeLeave(p);
4203 }
4204 return rc;
4205}
4206
4207/*
drh8b2f49b2001-06-08 00:21:52 +00004208** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004209** iTable. If a read-only cursor is requested, it is assumed that
4210** the caller already has at least a read-only transaction open
4211** on the database already. If a write-cursor is requested, then
4212** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004213**
drhe807bdb2016-01-21 17:06:33 +00004214** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4215** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4216** can be used for reading or for writing if other conditions for writing
4217** are also met. These are the conditions that must be met in order
4218** for writing to be allowed:
drh6446c4d2001-12-15 14:22:18 +00004219**
drhe807bdb2016-01-21 17:06:33 +00004220** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
drhf74b8d92002-09-01 23:20:45 +00004221**
drhfe5d71d2007-03-19 11:54:10 +00004222** 2: Other database connections that share the same pager cache
4223** but which are not in the READ_UNCOMMITTED state may not have
4224** cursors open with wrFlag==0 on the same table. Otherwise
4225** the changes made by this write cursor would be visible to
4226** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004227**
4228** 3: The database must be writable (not on read-only media)
4229**
4230** 4: There must be an active transaction.
4231**
drhe807bdb2016-01-21 17:06:33 +00004232** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4233** is set. If FORDELETE is set, that is a hint to the implementation that
4234** this cursor will only be used to seek to and delete entries of an index
4235** as part of a larger DELETE statement. The FORDELETE hint is not used by
4236** this implementation. But in a hypothetical alternative storage engine
4237** in which index entries are automatically deleted when corresponding table
4238** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4239** operations on this cursor can be no-ops and all READ operations can
4240** return a null row (2-bytes: 0x01 0x00).
4241**
drh6446c4d2001-12-15 14:22:18 +00004242** No checking is done to make sure that page iTable really is the
4243** root page of a b-tree. If it is not, then the cursor acquired
4244** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004245**
drhf25a5072009-11-18 23:01:25 +00004246** It is assumed that the sqlite3BtreeCursorZero() has been called
4247** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004248*/
drhd677b3d2007-08-20 22:48:41 +00004249static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004250 Btree *p, /* The btree */
4251 int iTable, /* Root page of table to open */
4252 int wrFlag, /* 1 to write. 0 read-only */
4253 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4254 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004255){
danielk19773e8add92009-07-04 17:16:00 +00004256 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004257 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004258
drh1fee73e2007-08-29 04:00:57 +00004259 assert( sqlite3BtreeHoldsMutex(p) );
danfd261ec2015-10-22 20:54:33 +00004260 assert( wrFlag==0
4261 || wrFlag==BTREE_WRCSR
4262 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4263 );
danielk197796d48e92009-06-29 06:00:37 +00004264
danielk1977602b4662009-07-02 07:47:33 +00004265 /* The following assert statements verify that if this is a sharable
4266 ** b-tree database, the connection is holding the required table locks,
4267 ** and that no other connection has any open cursor that conflicts with
4268 ** this lock. */
danfd261ec2015-10-22 20:54:33 +00004269 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
danielk197796d48e92009-06-29 06:00:37 +00004270 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4271
danielk19773e8add92009-07-04 17:16:00 +00004272 /* Assert that the caller has opened the required transaction. */
4273 assert( p->inTrans>TRANS_NONE );
4274 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4275 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004276 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004277
drh3fbb0222014-09-24 19:47:27 +00004278 if( wrFlag ){
4279 allocateTempSpace(pBt);
mistachkinfad30392016-02-13 23:43:46 +00004280 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
drha0c9a112004-03-10 13:42:37 +00004281 }
drhb1299152010-03-30 22:58:33 +00004282 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00004283 assert( wrFlag==0 );
4284 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00004285 }
danielk1977aef0bf62005-12-30 16:28:01 +00004286
danielk1977aef0bf62005-12-30 16:28:01 +00004287 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004288 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00004289 pCur->pgnoRoot = (Pgno)iTable;
4290 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004291 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004292 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004293 pCur->pBt = pBt;
danfd261ec2015-10-22 20:54:33 +00004294 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
drh28f58dd2015-06-27 19:45:03 +00004295 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
drh27fb7462015-06-30 02:47:36 +00004296 /* If there are two or more cursors on the same btree, then all such
4297 ** cursors *must* have the BTCF_Multiple flag set. */
4298 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4299 if( pX->pgnoRoot==(Pgno)iTable ){
4300 pX->curFlags |= BTCF_Multiple;
4301 pCur->curFlags |= BTCF_Multiple;
4302 }
drha059ad02001-04-17 20:09:11 +00004303 }
drh27fb7462015-06-30 02:47:36 +00004304 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004305 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004306 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004307 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004308}
drhd677b3d2007-08-20 22:48:41 +00004309int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004310 Btree *p, /* The btree */
4311 int iTable, /* Root page of table to open */
4312 int wrFlag, /* 1 to write. 0 read-only */
4313 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4314 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004315){
4316 int rc;
dan08f901b2015-05-25 19:24:36 +00004317 if( iTable<1 ){
4318 rc = SQLITE_CORRUPT_BKPT;
4319 }else{
4320 sqlite3BtreeEnter(p);
4321 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4322 sqlite3BtreeLeave(p);
4323 }
drhd677b3d2007-08-20 22:48:41 +00004324 return rc;
4325}
drh7f751222009-03-17 22:33:00 +00004326
4327/*
4328** Return the size of a BtCursor object in bytes.
4329**
4330** This interfaces is needed so that users of cursors can preallocate
4331** sufficient storage to hold a cursor. The BtCursor object is opaque
4332** to users so they cannot do the sizeof() themselves - they must call
4333** this routine.
4334*/
4335int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004336 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004337}
4338
drh7f751222009-03-17 22:33:00 +00004339/*
drhf25a5072009-11-18 23:01:25 +00004340** Initialize memory that will be converted into a BtCursor object.
4341**
4342** The simple approach here would be to memset() the entire object
4343** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4344** do not need to be zeroed and they are large, so we can save a lot
4345** of run-time by skipping the initialization of those elements.
4346*/
4347void sqlite3BtreeCursorZero(BtCursor *p){
drhda6bc672018-01-24 16:04:21 +00004348 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
drhf25a5072009-11-18 23:01:25 +00004349}
4350
4351/*
drh5e00f6c2001-09-13 13:46:56 +00004352** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004353** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004354*/
drh3aac2dd2004-04-26 14:10:20 +00004355int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004356 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004357 if( pBtree ){
4358 BtShared *pBt = pCur->pBt;
4359 sqlite3BtreeEnter(pBtree);
drh27fb7462015-06-30 02:47:36 +00004360 assert( pBt->pCursor!=0 );
4361 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004362 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004363 }else{
4364 BtCursor *pPrev = pBt->pCursor;
4365 do{
4366 if( pPrev->pNext==pCur ){
4367 pPrev->pNext = pCur->pNext;
4368 break;
4369 }
4370 pPrev = pPrev->pNext;
4371 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004372 }
drh352a35a2017-08-15 03:46:47 +00004373 btreeReleaseAllCursorPages(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00004374 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004375 sqlite3_free(pCur->aOverflow);
drhf38dd3b2017-08-14 23:53:02 +00004376 sqlite3_free(pCur->pKey);
danielk1977cd3e8f72008-03-25 09:47:35 +00004377 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00004378 }
drh8c42ca92001-06-22 19:15:00 +00004379 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004380}
4381
drh5e2f8b92001-05-28 00:41:15 +00004382/*
drh86057612007-06-26 01:04:48 +00004383** Make sure the BtCursor* given in the argument has a valid
4384** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004385** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004386**
4387** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004388** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004389*/
drh9188b382004-05-14 21:12:22 +00004390#ifndef NDEBUG
drha224ee22018-02-19 13:53:56 +00004391 static int cellInfoEqual(CellInfo *a, CellInfo *b){
4392 if( a->nKey!=b->nKey ) return 0;
4393 if( a->pPayload!=b->pPayload ) return 0;
4394 if( a->nPayload!=b->nPayload ) return 0;
4395 if( a->nLocal!=b->nLocal ) return 0;
4396 if( a->nSize!=b->nSize ) return 0;
4397 return 1;
4398 }
danielk19771cc5ed82007-05-16 17:28:43 +00004399 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004400 CellInfo info;
drh51c6d962004-06-06 00:42:25 +00004401 memset(&info, 0, sizeof(info));
drh352a35a2017-08-15 03:46:47 +00004402 btreeParseCell(pCur->pPage, pCur->ix, &info);
drha224ee22018-02-19 13:53:56 +00004403 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
drh9188b382004-05-14 21:12:22 +00004404 }
danielk19771cc5ed82007-05-16 17:28:43 +00004405#else
4406 #define assertCellInfo(x)
4407#endif
drhc5b41ac2015-06-17 02:11:46 +00004408static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4409 if( pCur->info.nSize==0 ){
drhc5b41ac2015-06-17 02:11:46 +00004410 pCur->curFlags |= BTCF_ValidNKey;
drh352a35a2017-08-15 03:46:47 +00004411 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
drhc5b41ac2015-06-17 02:11:46 +00004412 }else{
4413 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004414 }
drhc5b41ac2015-06-17 02:11:46 +00004415}
drh9188b382004-05-14 21:12:22 +00004416
drhea8ffdf2009-07-22 00:35:23 +00004417#ifndef NDEBUG /* The next routine used only within assert() statements */
4418/*
4419** Return true if the given BtCursor is valid. A valid cursor is one
4420** that is currently pointing to a row in a (non-empty) table.
4421** This is a verification routine is used only within assert() statements.
4422*/
4423int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4424 return pCur && pCur->eState==CURSOR_VALID;
4425}
4426#endif /* NDEBUG */
drhd6ef5af2016-11-15 04:00:24 +00004427int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4428 assert( pCur!=0 );
4429 return pCur->eState==CURSOR_VALID;
4430}
drhea8ffdf2009-07-22 00:35:23 +00004431
drh9188b382004-05-14 21:12:22 +00004432/*
drha7c90c42016-06-04 20:37:10 +00004433** Return the value of the integer key or "rowid" for a table btree.
4434** This routine is only valid for a cursor that is pointing into a
4435** ordinary table btree. If the cursor points to an index btree or
4436** is invalid, the result of this routine is undefined.
drh7e3b0a02001-04-28 16:52:40 +00004437*/
drha7c90c42016-06-04 20:37:10 +00004438i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004439 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004440 assert( pCur->eState==CURSOR_VALID );
drha7c90c42016-06-04 20:37:10 +00004441 assert( pCur->curIntKey );
drhc5352b92014-11-17 20:33:07 +00004442 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004443 return pCur->info.nKey;
drha059ad02001-04-17 20:09:11 +00004444}
drh2af926b2001-05-15 00:39:25 +00004445
drh092457b2017-12-29 15:04:49 +00004446#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
drh72f82862001-05-24 21:06:34 +00004447/*
drh2fc865c2017-12-16 20:20:37 +00004448** Return the offset into the database file for the start of the
4449** payload to which the cursor is pointing.
4450*/
drh092457b2017-12-29 15:04:49 +00004451i64 sqlite3BtreeOffset(BtCursor *pCur){
drh2fc865c2017-12-16 20:20:37 +00004452 assert( cursorHoldsMutex(pCur) );
4453 assert( pCur->eState==CURSOR_VALID );
drh2fc865c2017-12-16 20:20:37 +00004454 getCellInfo(pCur);
drhfe6d20e2017-12-29 14:33:54 +00004455 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
drh2fc865c2017-12-16 20:20:37 +00004456 (i64)(pCur->info.pPayload - pCur->pPage->aData);
4457}
drh092457b2017-12-29 15:04:49 +00004458#endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
drh2fc865c2017-12-16 20:20:37 +00004459
4460/*
drha7c90c42016-06-04 20:37:10 +00004461** Return the number of bytes of payload for the entry that pCur is
4462** currently pointing to. For table btrees, this will be the amount
4463** of data. For index btrees, this will be the size of the key.
drhea8ffdf2009-07-22 00:35:23 +00004464**
4465** The caller must guarantee that the cursor is pointing to a non-NULL
4466** valid entry. In other words, the calling procedure must guarantee
4467** that the cursor has Cursor.eState==CURSOR_VALID.
drh0e1c19e2004-05-11 00:58:56 +00004468*/
drha7c90c42016-06-04 20:37:10 +00004469u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4470 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004471 assert( pCur->eState==CURSOR_VALID );
4472 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004473 return pCur->info.nPayload;
drh0e1c19e2004-05-11 00:58:56 +00004474}
4475
4476/*
danielk1977d04417962007-05-02 13:16:30 +00004477** Given the page number of an overflow page in the database (parameter
4478** ovfl), this function finds the page number of the next page in the
4479** linked list of overflow pages. If possible, it uses the auto-vacuum
4480** pointer-map data instead of reading the content of page ovfl to do so.
4481**
4482** If an error occurs an SQLite error code is returned. Otherwise:
4483**
danielk1977bea2a942009-01-20 17:06:27 +00004484** The page number of the next overflow page in the linked list is
4485** written to *pPgnoNext. If page ovfl is the last page in its linked
4486** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004487**
danielk1977bea2a942009-01-20 17:06:27 +00004488** If ppPage is not NULL, and a reference to the MemPage object corresponding
4489** to page number pOvfl was obtained, then *ppPage is set to point to that
4490** reference. It is the responsibility of the caller to call releasePage()
4491** on *ppPage to free the reference. In no reference was obtained (because
4492** the pointer-map was used to obtain the value for *pPgnoNext), then
4493** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004494*/
4495static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004496 BtShared *pBt, /* The database file */
4497 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004498 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004499 Pgno *pPgnoNext /* OUT: Next overflow page number */
4500){
4501 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004502 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004503 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004504
drh1fee73e2007-08-29 04:00:57 +00004505 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004506 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004507
4508#ifndef SQLITE_OMIT_AUTOVACUUM
4509 /* Try to find the next page in the overflow list using the
4510 ** autovacuum pointer-map pages. Guess that the next page in
4511 ** the overflow list is page number (ovfl+1). If that guess turns
4512 ** out to be wrong, fall back to loading the data of page
4513 ** number ovfl to determine the next page number.
4514 */
4515 if( pBt->autoVacuum ){
4516 Pgno pgno;
4517 Pgno iGuess = ovfl+1;
4518 u8 eType;
4519
4520 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4521 iGuess++;
4522 }
4523
drhb1299152010-03-30 22:58:33 +00004524 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004525 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004526 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004527 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004528 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004529 }
4530 }
4531 }
4532#endif
4533
danielk1977d8a3f3d2009-07-11 11:45:23 +00004534 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004535 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004536 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004537 assert( rc==SQLITE_OK || pPage==0 );
4538 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004539 next = get4byte(pPage->aData);
4540 }
danielk1977443c0592009-01-16 15:21:05 +00004541 }
danielk197745d68822009-01-16 16:23:38 +00004542
danielk1977bea2a942009-01-20 17:06:27 +00004543 *pPgnoNext = next;
4544 if( ppPage ){
4545 *ppPage = pPage;
4546 }else{
4547 releasePage(pPage);
4548 }
4549 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004550}
4551
danielk1977da107192007-05-04 08:32:13 +00004552/*
4553** Copy data from a buffer to a page, or from a page to a buffer.
4554**
4555** pPayload is a pointer to data stored on database page pDbPage.
4556** If argument eOp is false, then nByte bytes of data are copied
4557** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4558** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4559** of data are copied from the buffer pBuf to pPayload.
4560**
4561** SQLITE_OK is returned on success, otherwise an error code.
4562*/
4563static int copyPayload(
4564 void *pPayload, /* Pointer to page data */
4565 void *pBuf, /* Pointer to buffer */
4566 int nByte, /* Number of bytes to copy */
4567 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4568 DbPage *pDbPage /* Page containing pPayload */
4569){
4570 if( eOp ){
4571 /* Copy data from buffer to page (a write operation) */
4572 int rc = sqlite3PagerWrite(pDbPage);
4573 if( rc!=SQLITE_OK ){
4574 return rc;
4575 }
4576 memcpy(pPayload, pBuf, nByte);
4577 }else{
4578 /* Copy data from page to buffer (a read operation) */
4579 memcpy(pBuf, pPayload, nByte);
4580 }
4581 return SQLITE_OK;
4582}
danielk1977d04417962007-05-02 13:16:30 +00004583
4584/*
danielk19779f8d6402007-05-02 17:48:45 +00004585** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004586** for the entry that the pCur cursor is pointing to. The eOp
4587** argument is interpreted as follows:
4588**
4589** 0: The operation is a read. Populate the overflow cache.
4590** 1: The operation is a write. Populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004591**
4592** A total of "amt" bytes are read or written beginning at "offset".
4593** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004594**
drh3bcdfd22009-07-12 02:32:21 +00004595** The content being read or written might appear on the main page
4596** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004597**
drh42e28f12017-01-27 00:31:59 +00004598** If the current cursor entry uses one or more overflow pages
4599** this function may allocate space for and lazily populate
4600** the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004601** Subsequent calls use this cache to make seeking to the supplied offset
4602** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004603**
drh42e28f12017-01-27 00:31:59 +00004604** Once an overflow page-list cache has been allocated, it must be
danielk1977da107192007-05-04 08:32:13 +00004605** invalidated if some other cursor writes to the same table, or if
4606** the cursor is moved to a different row. Additionally, in auto-vacuum
4607** mode, the following events may invalidate an overflow page-list cache.
4608**
4609** * An incremental vacuum,
4610** * A commit in auto_vacuum="full" mode,
4611** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004612*/
danielk19779f8d6402007-05-02 17:48:45 +00004613static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004614 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004615 u32 offset, /* Begin reading this far into payload */
4616 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004617 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004618 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004619){
4620 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004621 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004622 int iIdx = 0;
drh352a35a2017-08-15 03:46:47 +00004623 MemPage *pPage = pCur->pPage; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004624 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004625#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh8bb9fd32017-01-26 16:27:32 +00004626 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */
drh4c417182014-03-31 23:57:41 +00004627#endif
drh3aac2dd2004-04-26 14:10:20 +00004628
danielk1977da107192007-05-04 08:32:13 +00004629 assert( pPage );
drh42e28f12017-01-27 00:31:59 +00004630 assert( eOp==0 || eOp==1 );
danielk1977da184232006-01-05 11:34:32 +00004631 assert( pCur->eState==CURSOR_VALID );
drh75e96b32017-04-01 00:20:06 +00004632 assert( pCur->ix<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004633 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00004634
drh86057612007-06-26 01:04:48 +00004635 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004636 aPayload = pCur->info.pPayload;
drhab1cc582014-09-23 21:25:19 +00004637 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004638
drh0b982072016-03-22 14:10:45 +00004639 assert( aPayload > pPage->aData );
drhc5e7f942016-03-22 15:25:16 +00004640 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
drh0b982072016-03-22 14:10:45 +00004641 /* Trying to read or write past the end of the data is an error. The
4642 ** conditional above is really:
4643 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4644 ** but is recast into its current form to avoid integer overflow problems
4645 */
daneebf2f52017-11-18 17:30:08 +00004646 return SQLITE_CORRUPT_PAGE(pPage);
drh3aac2dd2004-04-26 14:10:20 +00004647 }
danielk1977da107192007-05-04 08:32:13 +00004648
4649 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004650 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004651 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004652 if( a+offset>pCur->info.nLocal ){
4653 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004654 }
drh42e28f12017-01-27 00:31:59 +00004655 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004656 offset = 0;
drha34b6762004-05-07 13:30:42 +00004657 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004658 amt -= a;
drhdd793422001-06-28 01:54:48 +00004659 }else{
drhfa1a98a2004-05-14 19:08:17 +00004660 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004661 }
danielk1977da107192007-05-04 08:32:13 +00004662
dan85753662014-12-11 16:38:18 +00004663
danielk1977da107192007-05-04 08:32:13 +00004664 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004665 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004666 Pgno nextPage;
4667
drhfa1a98a2004-05-14 19:08:17 +00004668 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004669
drha38c9512014-04-01 01:24:34 +00004670 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
drha38c9512014-04-01 01:24:34 +00004671 **
4672 ** The aOverflow[] array is sized at one entry for each overflow page
4673 ** in the overflow chain. The page number of the first overflow page is
4674 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4675 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004676 */
drh42e28f12017-01-27 00:31:59 +00004677 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004678 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drhda6bc672018-01-24 16:04:21 +00004679 if( pCur->aOverflow==0
mistachkin97f90592018-02-04 01:30:54 +00004680 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
drhda6bc672018-01-24 16:04:21 +00004681 ){
dan85753662014-12-11 16:38:18 +00004682 Pgno *aNew = (Pgno*)sqlite3Realloc(
4683 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004684 );
4685 if( aNew==0 ){
drhcd645532017-01-20 20:43:14 +00004686 return SQLITE_NOMEM_BKPT;
dan5a500af2014-03-11 20:33:04 +00004687 }else{
dan5a500af2014-03-11 20:33:04 +00004688 pCur->aOverflow = aNew;
4689 }
4690 }
drhcd645532017-01-20 20:43:14 +00004691 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4692 pCur->curFlags |= BTCF_ValidOvfl;
drhcdf360a2017-01-27 01:13:49 +00004693 }else{
4694 /* If the overflow page-list cache has been allocated and the
4695 ** entry for the first required overflow page is valid, skip
4696 ** directly to it.
4697 */
4698 if( pCur->aOverflow[offset/ovflSize] ){
4699 iIdx = (offset/ovflSize);
4700 nextPage = pCur->aOverflow[iIdx];
4701 offset = (offset%ovflSize);
4702 }
danielk19772dec9702007-05-02 16:48:37 +00004703 }
danielk1977da107192007-05-04 08:32:13 +00004704
drhcd645532017-01-20 20:43:14 +00004705 assert( rc==SQLITE_OK && amt>0 );
4706 while( nextPage ){
danielk1977da107192007-05-04 08:32:13 +00004707 /* If required, populate the overflow page-list cache. */
drh42e28f12017-01-27 00:31:59 +00004708 assert( pCur->aOverflow[iIdx]==0
4709 || pCur->aOverflow[iIdx]==nextPage
4710 || CORRUPT_DB );
4711 pCur->aOverflow[iIdx] = nextPage;
danielk1977da107192007-05-04 08:32:13 +00004712
danielk1977d04417962007-05-02 13:16:30 +00004713 if( offset>=ovflSize ){
4714 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004715 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004716 ** data is not required. So first try to lookup the overflow
4717 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004718 ** function.
danielk1977d04417962007-05-02 13:16:30 +00004719 */
drha38c9512014-04-01 01:24:34 +00004720 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004721 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004722 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004723 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004724 }else{
danielk1977da107192007-05-04 08:32:13 +00004725 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004726 }
danielk1977da107192007-05-04 08:32:13 +00004727 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004728 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004729 /* Need to read this page properly. It contains some of the
4730 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004731 */
danf4ba1092011-10-08 14:57:07 +00004732#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh8bb9fd32017-01-26 16:27:32 +00004733 sqlite3_file *fd; /* File from which to do direct overflow read */
danf4ba1092011-10-08 14:57:07 +00004734#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004735 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004736 if( a + offset > ovflSize ){
4737 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004738 }
danf4ba1092011-10-08 14:57:07 +00004739
4740#ifdef SQLITE_DIRECT_OVERFLOW_READ
4741 /* If all the following are true:
4742 **
4743 ** 1) this is a read operation, and
4744 ** 2) data is required from the start of this overflow page, and
drh8bb9fd32017-01-26 16:27:32 +00004745 ** 3) there is no open write-transaction, and
4746 ** 4) the database is file-backed, and
drhd930b5c2017-01-26 02:26:02 +00004747 ** 5) the page is not in the WAL file
drh8bb9fd32017-01-26 16:27:32 +00004748 ** 6) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004749 **
4750 ** then data can be read directly from the database file into the
4751 ** output buffer, bypassing the page-cache altogether. This speeds
4752 ** up loading large records that span many overflow pages.
4753 */
drh42e28f12017-01-27 00:31:59 +00004754 if( eOp==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004755 && offset==0 /* (2) */
drh8bb9fd32017-01-26 16:27:32 +00004756 && pBt->inTransaction==TRANS_READ /* (3) */
4757 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (4) */
drhd930b5c2017-01-26 02:26:02 +00004758 && 0==sqlite3PagerUseWal(pBt->pPager, nextPage) /* (5) */
drh8bb9fd32017-01-26 16:27:32 +00004759 && &pBuf[-4]>=pBufStart /* (6) */
danf4ba1092011-10-08 14:57:07 +00004760 ){
4761 u8 aSave[4];
4762 u8 *aWrite = &pBuf[-4];
drh8bb9fd32017-01-26 16:27:32 +00004763 assert( aWrite>=pBufStart ); /* due to (6) */
danf4ba1092011-10-08 14:57:07 +00004764 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004765 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004766 nextPage = get4byte(aWrite);
4767 memcpy(aWrite, aSave, 4);
4768 }else
4769#endif
4770
4771 {
4772 DbPage *pDbPage;
drh9584f582015-11-04 20:22:37 +00004773 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
drh42e28f12017-01-27 00:31:59 +00004774 (eOp==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004775 );
danf4ba1092011-10-08 14:57:07 +00004776 if( rc==SQLITE_OK ){
4777 aPayload = sqlite3PagerGetData(pDbPage);
4778 nextPage = get4byte(aPayload);
drh42e28f12017-01-27 00:31:59 +00004779 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
danf4ba1092011-10-08 14:57:07 +00004780 sqlite3PagerUnref(pDbPage);
4781 offset = 0;
4782 }
4783 }
4784 amt -= a;
drh6ee610b2017-01-27 01:25:00 +00004785 if( amt==0 ) return rc;
danf4ba1092011-10-08 14:57:07 +00004786 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004787 }
drhcd645532017-01-20 20:43:14 +00004788 if( rc ) break;
4789 iIdx++;
drh2af926b2001-05-15 00:39:25 +00004790 }
drh2af926b2001-05-15 00:39:25 +00004791 }
danielk1977cfe9a692004-06-16 12:00:29 +00004792
danielk1977da107192007-05-04 08:32:13 +00004793 if( rc==SQLITE_OK && amt>0 ){
drhcc97ca42017-06-07 22:32:59 +00004794 /* Overflow chain ends prematurely */
daneebf2f52017-11-18 17:30:08 +00004795 return SQLITE_CORRUPT_PAGE(pPage);
drha7fcb052001-12-14 15:09:55 +00004796 }
danielk1977da107192007-05-04 08:32:13 +00004797 return rc;
drh2af926b2001-05-15 00:39:25 +00004798}
4799
drh72f82862001-05-24 21:06:34 +00004800/*
drhcb3cabd2016-11-25 19:18:28 +00004801** Read part of the payload for the row at which that cursor pCur is currently
4802** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004803** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004804**
drhcb3cabd2016-11-25 19:18:28 +00004805** pCur can be pointing to either a table or an index b-tree.
4806** If pointing to a table btree, then the content section is read. If
4807** pCur is pointing to an index b-tree then the key section is read.
4808**
4809** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
4810** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
4811** cursor might be invalid or might need to be restored before being read.
drh5d1a8722009-07-22 18:07:40 +00004812**
drh3aac2dd2004-04-26 14:10:20 +00004813** Return SQLITE_OK on success or an error code if anything goes
4814** wrong. An error is returned if "offset+amt" is larger than
4815** the available payload.
drh72f82862001-05-24 21:06:34 +00004816*/
drhcb3cabd2016-11-25 19:18:28 +00004817int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004818 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004819 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00004820 assert( pCur->iPage>=0 && pCur->pPage );
4821 assert( pCur->ix<pCur->pPage->nCell );
drh5d1a8722009-07-22 18:07:40 +00004822 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004823}
drh83ec2762017-01-26 16:54:47 +00004824
4825/*
4826** This variant of sqlite3BtreePayload() works even if the cursor has not
4827** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
4828** interface.
4829*/
danielk19773588ceb2008-06-10 17:30:26 +00004830#ifndef SQLITE_OMIT_INCRBLOB
drh83ec2762017-01-26 16:54:47 +00004831static SQLITE_NOINLINE int accessPayloadChecked(
4832 BtCursor *pCur,
4833 u32 offset,
4834 u32 amt,
4835 void *pBuf
4836){
drhcb3cabd2016-11-25 19:18:28 +00004837 int rc;
danielk19773588ceb2008-06-10 17:30:26 +00004838 if ( pCur->eState==CURSOR_INVALID ){
4839 return SQLITE_ABORT;
4840 }
dan7a2347e2016-01-07 16:43:54 +00004841 assert( cursorOwnsBtShared(pCur) );
drh945b0942017-01-26 21:30:00 +00004842 rc = btreeRestoreCursorPosition(pCur);
drh83ec2762017-01-26 16:54:47 +00004843 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
4844}
4845int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4846 if( pCur->eState==CURSOR_VALID ){
4847 assert( cursorOwnsBtShared(pCur) );
4848 return accessPayload(pCur, offset, amt, pBuf, 0);
4849 }else{
4850 return accessPayloadChecked(pCur, offset, amt, pBuf);
danielk1977da184232006-01-05 11:34:32 +00004851 }
drh2af926b2001-05-15 00:39:25 +00004852}
drhcb3cabd2016-11-25 19:18:28 +00004853#endif /* SQLITE_OMIT_INCRBLOB */
drh2af926b2001-05-15 00:39:25 +00004854
drh72f82862001-05-24 21:06:34 +00004855/*
drh0e1c19e2004-05-11 00:58:56 +00004856** Return a pointer to payload information from the entry that the
4857** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004858** the key if index btrees (pPage->intKey==0) and is the data for
4859** table btrees (pPage->intKey==1). The number of bytes of available
4860** key/data is written into *pAmt. If *pAmt==0, then the value
4861** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004862**
4863** This routine is an optimization. It is common for the entire key
4864** and data to fit on the local page and for there to be no overflow
4865** pages. When that is so, this routine can be used to access the
4866** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004867** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004868** the key/data and copy it into a preallocated buffer.
4869**
4870** The pointer returned by this routine looks directly into the cached
4871** page of the database. The data might change or move the next time
4872** any btree routine is called.
4873*/
drh2a8d2262013-12-09 20:43:22 +00004874static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004875 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004876 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004877){
danf2f72a02017-10-19 15:17:38 +00004878 int amt;
drh352a35a2017-08-15 03:46:47 +00004879 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
danielk1977da184232006-01-05 11:34:32 +00004880 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004881 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan7a2347e2016-01-07 16:43:54 +00004882 assert( cursorOwnsBtShared(pCur) );
drh352a35a2017-08-15 03:46:47 +00004883 assert( pCur->ix<pCur->pPage->nCell );
drh86dd3712014-03-25 11:00:21 +00004884 assert( pCur->info.nSize>0 );
drh352a35a2017-08-15 03:46:47 +00004885 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
4886 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
danf2f72a02017-10-19 15:17:38 +00004887 amt = pCur->info.nLocal;
4888 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
4889 /* There is too little space on the page for the expected amount
4890 ** of local content. Database must be corrupt. */
4891 assert( CORRUPT_DB );
4892 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
4893 }
4894 *pAmt = (u32)amt;
drhab1cc582014-09-23 21:25:19 +00004895 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00004896}
4897
4898
4899/*
drhe51c44f2004-05-30 20:46:09 +00004900** For the entry that cursor pCur is point to, return as
4901** many bytes of the key or data as are available on the local
4902** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004903**
4904** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004905** or be destroyed on the next call to any Btree routine,
4906** including calls from other threads against the same cache.
4907** Hence, a mutex on the BtShared should be held prior to calling
4908** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004909**
4910** These routines is used to get quick access to key and data
4911** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004912*/
drha7c90c42016-06-04 20:37:10 +00004913const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004914 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004915}
4916
4917
4918/*
drh8178a752003-01-05 21:41:40 +00004919** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004920** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004921**
4922** This function returns SQLITE_CORRUPT if the page-header flags field of
4923** the new child page does not match the flags field of the parent (i.e.
4924** if an intkey page appears to be the parent of a non-intkey page, or
4925** vice-versa).
drh72f82862001-05-24 21:06:34 +00004926*/
drh3aac2dd2004-04-26 14:10:20 +00004927static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00004928 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004929
dan7a2347e2016-01-07 16:43:54 +00004930 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004931 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004932 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004933 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004934 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4935 return SQLITE_CORRUPT_BKPT;
4936 }
drh271efa52004-05-30 19:19:05 +00004937 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004938 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh352a35a2017-08-15 03:46:47 +00004939 pCur->aiIdx[pCur->iPage] = pCur->ix;
4940 pCur->apPage[pCur->iPage] = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00004941 pCur->ix = 0;
drh352a35a2017-08-15 03:46:47 +00004942 pCur->iPage++;
4943 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00004944}
4945
drhd879e3e2017-02-13 13:35:55 +00004946#ifdef SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00004947/*
4948** Page pParent is an internal (non-leaf) tree page. This function
4949** asserts that page number iChild is the left-child if the iIdx'th
4950** cell in page pParent. Or, if iIdx is equal to the total number of
4951** cells in pParent, that page number iChild is the right-child of
4952** the page.
4953*/
4954static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00004955 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
4956 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00004957 assert( iIdx<=pParent->nCell );
4958 if( iIdx==pParent->nCell ){
4959 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4960 }else{
4961 assert( get4byte(findCell(pParent, iIdx))==iChild );
4962 }
4963}
4964#else
4965# define assertParentIndex(x,y,z)
4966#endif
4967
drh72f82862001-05-24 21:06:34 +00004968/*
drh5e2f8b92001-05-28 00:41:15 +00004969** Move the cursor up to the parent page.
4970**
4971** pCur->idx is set to the cell index that contains the pointer
4972** to the page we are coming from. If we are coming from the
4973** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004974** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004975*/
danielk197730548662009-07-09 05:07:37 +00004976static void moveToParent(BtCursor *pCur){
drh352a35a2017-08-15 03:46:47 +00004977 MemPage *pLeaf;
dan7a2347e2016-01-07 16:43:54 +00004978 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004979 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004980 assert( pCur->iPage>0 );
drh352a35a2017-08-15 03:46:47 +00004981 assert( pCur->pPage );
danielk1977bf93c562008-09-29 15:53:25 +00004982 assertParentIndex(
4983 pCur->apPage[pCur->iPage-1],
4984 pCur->aiIdx[pCur->iPage-1],
drh352a35a2017-08-15 03:46:47 +00004985 pCur->pPage->pgno
danielk1977bf93c562008-09-29 15:53:25 +00004986 );
dan6c2688c2012-01-12 15:05:03 +00004987 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00004988 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004989 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh75e96b32017-04-01 00:20:06 +00004990 pCur->ix = pCur->aiIdx[pCur->iPage-1];
drh352a35a2017-08-15 03:46:47 +00004991 pLeaf = pCur->pPage;
4992 pCur->pPage = pCur->apPage[--pCur->iPage];
4993 releasePageNotNull(pLeaf);
drh72f82862001-05-24 21:06:34 +00004994}
4995
4996/*
danielk19778f880a82009-07-13 09:41:45 +00004997** Move the cursor to point to the root page of its b-tree structure.
4998**
4999** If the table has a virtual root page, then the cursor is moved to point
5000** to the virtual root page instead of the actual root page. A table has a
5001** virtual root page when the actual root page contains no cells and a
5002** single child page. This can only happen with the table rooted at page 1.
5003**
5004** If the b-tree structure is empty, the cursor state is set to
drh44548e72017-08-14 18:13:52 +00005005** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5006** the cursor is set to point to the first cell located on the root
5007** (or virtual root) page and the cursor state is set to CURSOR_VALID.
danielk19778f880a82009-07-13 09:41:45 +00005008**
5009** If this function returns successfully, it may be assumed that the
5010** page-header flags indicate that the [virtual] root-page is the expected
5011** kind of b-tree page (i.e. if when opening the cursor the caller did not
5012** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5013** indicating a table b-tree, or if the caller did specify a KeyInfo
5014** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5015** b-tree).
drh72f82862001-05-24 21:06:34 +00005016*/
drh5e2f8b92001-05-28 00:41:15 +00005017static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00005018 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00005019 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00005020
dan7a2347e2016-01-07 16:43:54 +00005021 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +00005022 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5023 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
5024 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
drh85ef6302017-08-02 15:50:09 +00005025 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
drh44548e72017-08-14 18:13:52 +00005026 assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005027
5028 if( pCur->iPage>=0 ){
drh7ad3eb62016-10-24 01:01:09 +00005029 if( pCur->iPage ){
drh352a35a2017-08-15 03:46:47 +00005030 releasePageNotNull(pCur->pPage);
5031 while( --pCur->iPage ){
5032 releasePageNotNull(pCur->apPage[pCur->iPage]);
5033 }
5034 pCur->pPage = pCur->apPage[0];
drh7ad3eb62016-10-24 01:01:09 +00005035 goto skip_init;
drhbbf0f862015-06-27 14:59:26 +00005036 }
dana205a482011-08-27 18:48:57 +00005037 }else if( pCur->pgnoRoot==0 ){
5038 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005039 return SQLITE_EMPTY;
drh777e4c42006-01-13 04:31:58 +00005040 }else{
drh28f58dd2015-06-27 19:45:03 +00005041 assert( pCur->iPage==(-1) );
drh85ef6302017-08-02 15:50:09 +00005042 if( pCur->eState>=CURSOR_REQUIRESEEK ){
5043 if( pCur->eState==CURSOR_FAULT ){
5044 assert( pCur->skipNext!=SQLITE_OK );
5045 return pCur->skipNext;
5046 }
5047 sqlite3BtreeClearCursor(pCur);
5048 }
drh352a35a2017-08-15 03:46:47 +00005049 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
drh15a00212015-06-27 20:55:00 +00005050 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00005051 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00005052 pCur->eState = CURSOR_INVALID;
drhf0357d82017-08-14 17:03:58 +00005053 return rc;
drh777e4c42006-01-13 04:31:58 +00005054 }
danielk1977172114a2009-07-07 15:47:12 +00005055 pCur->iPage = 0;
drh352a35a2017-08-15 03:46:47 +00005056 pCur->curIntKey = pCur->pPage->intKey;
drhc39e0002004-05-07 23:50:57 +00005057 }
drh352a35a2017-08-15 03:46:47 +00005058 pRoot = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00005059 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00005060
5061 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5062 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5063 ** NULL, the caller expects a table b-tree. If this is not the case,
5064 ** return an SQLITE_CORRUPT error.
5065 **
5066 ** Earlier versions of SQLite assumed that this test could not fail
5067 ** if the root page was already loaded when this function was called (i.e.
5068 ** if pCur->iPage>=0). But this is not so if the database is corrupted
5069 ** in such a way that page pRoot is linked into a second b-tree table
5070 ** (or the freelist). */
5071 assert( pRoot->intKey==1 || pRoot->intKey==0 );
5072 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
daneebf2f52017-11-18 17:30:08 +00005073 return SQLITE_CORRUPT_PAGE(pCur->pPage);
dan7df42ab2014-01-20 18:25:44 +00005074 }
danielk19778f880a82009-07-13 09:41:45 +00005075
drh7ad3eb62016-10-24 01:01:09 +00005076skip_init:
drh75e96b32017-04-01 00:20:06 +00005077 pCur->ix = 0;
drh271efa52004-05-30 19:19:05 +00005078 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005079 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00005080
drh352a35a2017-08-15 03:46:47 +00005081 pRoot = pCur->pPage;
drh4e8fe3f2013-12-06 23:25:27 +00005082 if( pRoot->nCell>0 ){
5083 pCur->eState = CURSOR_VALID;
5084 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00005085 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00005086 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00005087 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00005088 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00005089 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00005090 }else{
drh4e8fe3f2013-12-06 23:25:27 +00005091 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005092 rc = SQLITE_EMPTY;
drh8856d6a2004-04-29 14:42:46 +00005093 }
5094 return rc;
drh72f82862001-05-24 21:06:34 +00005095}
drh2af926b2001-05-15 00:39:25 +00005096
drh5e2f8b92001-05-28 00:41:15 +00005097/*
5098** Move the cursor down to the left-most leaf entry beneath the
5099** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00005100**
5101** The left-most leaf is the one with the smallest key - the first
5102** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00005103*/
5104static int moveToLeftmost(BtCursor *pCur){
5105 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005106 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00005107 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00005108
dan7a2347e2016-01-07 16:43:54 +00005109 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005110 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005111 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
drh75e96b32017-04-01 00:20:06 +00005112 assert( pCur->ix<pPage->nCell );
5113 pgno = get4byte(findCell(pPage, pCur->ix));
drh8178a752003-01-05 21:41:40 +00005114 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00005115 }
drhd677b3d2007-08-20 22:48:41 +00005116 return rc;
drh5e2f8b92001-05-28 00:41:15 +00005117}
5118
drh2dcc9aa2002-12-04 13:40:25 +00005119/*
5120** Move the cursor down to the right-most leaf entry beneath the
5121** page to which it is currently pointing. Notice the difference
5122** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5123** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5124** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00005125**
5126** The right-most entry is the one with the largest key - the last
5127** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00005128*/
5129static int moveToRightmost(BtCursor *pCur){
5130 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005131 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00005132 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00005133
dan7a2347e2016-01-07 16:43:54 +00005134 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005135 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005136 while( !(pPage = pCur->pPage)->leaf ){
drh43605152004-05-29 21:46:49 +00005137 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh75e96b32017-04-01 00:20:06 +00005138 pCur->ix = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00005139 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00005140 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005141 }
drh75e96b32017-04-01 00:20:06 +00005142 pCur->ix = pPage->nCell-1;
drhee6438d2014-09-01 13:29:32 +00005143 assert( pCur->info.nSize==0 );
5144 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5145 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00005146}
5147
drh5e00f6c2001-09-13 13:46:56 +00005148/* Move the cursor to the first entry in the table. Return SQLITE_OK
5149** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005150** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00005151*/
drh3aac2dd2004-04-26 14:10:20 +00005152int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00005153 int rc;
drhd677b3d2007-08-20 22:48:41 +00005154
dan7a2347e2016-01-07 16:43:54 +00005155 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005156 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00005157 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005158 if( rc==SQLITE_OK ){
drh352a35a2017-08-15 03:46:47 +00005159 assert( pCur->pPage->nCell>0 );
drh44548e72017-08-14 18:13:52 +00005160 *pRes = 0;
5161 rc = moveToLeftmost(pCur);
5162 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005163 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005164 *pRes = 1;
5165 rc = SQLITE_OK;
drh5e00f6c2001-09-13 13:46:56 +00005166 }
drh5e00f6c2001-09-13 13:46:56 +00005167 return rc;
5168}
drh5e2f8b92001-05-28 00:41:15 +00005169
drh9562b552002-02-19 15:00:07 +00005170/* Move the cursor to the last entry in the table. Return SQLITE_OK
5171** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005172** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00005173*/
drh3aac2dd2004-04-26 14:10:20 +00005174int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00005175 int rc;
drhd677b3d2007-08-20 22:48:41 +00005176
dan7a2347e2016-01-07 16:43:54 +00005177 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005178 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00005179
5180 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00005181 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00005182#ifdef SQLITE_DEBUG
5183 /* This block serves to assert() that the cursor really does point
5184 ** to the last entry in the b-tree. */
5185 int ii;
5186 for(ii=0; ii<pCur->iPage; ii++){
5187 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5188 }
drh352a35a2017-08-15 03:46:47 +00005189 assert( pCur->ix==pCur->pPage->nCell-1 );
5190 assert( pCur->pPage->leaf );
danielk19773f632d52009-05-02 10:03:09 +00005191#endif
5192 return SQLITE_OK;
5193 }
5194
drh9562b552002-02-19 15:00:07 +00005195 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005196 if( rc==SQLITE_OK ){
drh44548e72017-08-14 18:13:52 +00005197 assert( pCur->eState==CURSOR_VALID );
5198 *pRes = 0;
5199 rc = moveToRightmost(pCur);
5200 if( rc==SQLITE_OK ){
5201 pCur->curFlags |= BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005202 }else{
drh44548e72017-08-14 18:13:52 +00005203 pCur->curFlags &= ~BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005204 }
drh44548e72017-08-14 18:13:52 +00005205 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005206 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005207 *pRes = 1;
5208 rc = SQLITE_OK;
drh9562b552002-02-19 15:00:07 +00005209 }
drh9562b552002-02-19 15:00:07 +00005210 return rc;
5211}
5212
drhe14006d2008-03-25 17:23:32 +00005213/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00005214** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00005215**
drhe63d9992008-08-13 19:11:48 +00005216** For INTKEY tables, the intKey parameter is used. pIdxKey
5217** must be NULL. For index tables, pIdxKey is used and intKey
5218** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00005219**
drh5e2f8b92001-05-28 00:41:15 +00005220** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00005221** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00005222** were present. The cursor might point to an entry that comes
5223** before or after the key.
5224**
drh64022502009-01-09 14:11:04 +00005225** An integer is written into *pRes which is the result of
5226** comparing the key with the entry to which the cursor is
5227** pointing. The meaning of the integer written into
5228** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005229**
5230** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005231** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005232** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005233**
5234** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005235** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00005236**
5237** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005238** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00005239**
drhb1d607d2015-11-05 22:30:54 +00005240** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5241** exists an entry in the table that exactly matches pIdxKey.
drha059ad02001-04-17 20:09:11 +00005242*/
drhe63d9992008-08-13 19:11:48 +00005243int sqlite3BtreeMovetoUnpacked(
5244 BtCursor *pCur, /* The cursor to be moved */
5245 UnpackedRecord *pIdxKey, /* Unpacked index key */
5246 i64 intKey, /* The table key */
5247 int biasRight, /* If true, bias the search to the high end */
5248 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005249){
drh72f82862001-05-24 21:06:34 +00005250 int rc;
dan3b9330f2014-02-27 20:44:18 +00005251 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00005252
dan7a2347e2016-01-07 16:43:54 +00005253 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005254 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005255 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00005256 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drhdebaa862016-06-13 12:51:20 +00005257 assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
drha2c20e42008-03-29 16:01:04 +00005258
5259 /* If the cursor is already positioned at the point we are trying
5260 ** to move to, then just return without doing any work */
drh05a36092016-06-06 01:54:20 +00005261 if( pIdxKey==0
5262 && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
danielk197771d5d2c2008-09-29 11:49:47 +00005263 ){
drhe63d9992008-08-13 19:11:48 +00005264 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005265 *pRes = 0;
5266 return SQLITE_OK;
5267 }
drh451e76d2017-01-21 16:54:19 +00005268 if( pCur->info.nKey<intKey ){
5269 if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5270 *pRes = -1;
5271 return SQLITE_OK;
5272 }
drh7f11afa2017-01-21 21:47:54 +00005273 /* If the requested key is one more than the previous key, then
5274 ** try to get there using sqlite3BtreeNext() rather than a full
5275 ** binary search. This is an optimization only. The correct answer
drh2ab792e2017-05-30 18:34:07 +00005276 ** is still obtained without this case, only a little more slowely */
drh7f11afa2017-01-21 21:47:54 +00005277 if( pCur->info.nKey+1==intKey && !pCur->skipNext ){
5278 *pRes = 0;
drh2ab792e2017-05-30 18:34:07 +00005279 rc = sqlite3BtreeNext(pCur, 0);
5280 if( rc==SQLITE_OK ){
drh7f11afa2017-01-21 21:47:54 +00005281 getCellInfo(pCur);
5282 if( pCur->info.nKey==intKey ){
5283 return SQLITE_OK;
5284 }
drh2ab792e2017-05-30 18:34:07 +00005285 }else if( rc==SQLITE_DONE ){
5286 rc = SQLITE_OK;
5287 }else{
5288 return rc;
drh451e76d2017-01-21 16:54:19 +00005289 }
5290 }
drha2c20e42008-03-29 16:01:04 +00005291 }
5292 }
5293
dan1fed5da2014-02-25 21:01:25 +00005294 if( pIdxKey ){
5295 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00005296 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00005297 assert( pIdxKey->default_rc==1
5298 || pIdxKey->default_rc==0
5299 || pIdxKey->default_rc==-1
5300 );
drh13a747e2014-03-03 21:46:55 +00005301 }else{
drhb6e8fd12014-03-06 01:56:33 +00005302 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00005303 }
5304
drh5e2f8b92001-05-28 00:41:15 +00005305 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005306 if( rc ){
drh44548e72017-08-14 18:13:52 +00005307 if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005308 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005309 *pRes = -1;
5310 return SQLITE_OK;
5311 }
drhd677b3d2007-08-20 22:48:41 +00005312 return rc;
5313 }
drh352a35a2017-08-15 03:46:47 +00005314 assert( pCur->pPage );
5315 assert( pCur->pPage->isInit );
drh44548e72017-08-14 18:13:52 +00005316 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005317 assert( pCur->pPage->nCell > 0 );
5318 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
drhc75d8862015-06-27 23:55:20 +00005319 assert( pCur->curIntKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00005320 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005321 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005322 Pgno chldPg;
drh352a35a2017-08-15 03:46:47 +00005323 MemPage *pPage = pCur->pPage;
drhec3e6b12013-11-25 02:38:55 +00005324 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005325
5326 /* pPage->nCell must be greater than zero. If this is the root-page
5327 ** the cursor would have been INVALID above and this for(;;) loop
5328 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005329 ** would have already detected db corruption. Similarly, pPage must
5330 ** be the right kind (index or table) of b-tree page. Otherwise
5331 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005332 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005333 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005334 lwr = 0;
5335 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00005336 assert( biasRight==0 || biasRight==1 );
5337 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drh75e96b32017-04-01 00:20:06 +00005338 pCur->ix = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00005339 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00005340 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00005341 i64 nCellKey;
drhf44890a2015-06-27 03:58:15 +00005342 pCell = findCellPastPtr(pPage, idx);
drh3e28ff52014-09-24 00:59:08 +00005343 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00005344 while( 0x80 <= *(pCell++) ){
drhcc97ca42017-06-07 22:32:59 +00005345 if( pCell>=pPage->aDataEnd ){
daneebf2f52017-11-18 17:30:08 +00005346 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00005347 }
drh9b2fc612013-11-25 20:14:13 +00005348 }
drhd172f862006-01-12 15:01:15 +00005349 }
drha2c20e42008-03-29 16:01:04 +00005350 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00005351 if( nCellKey<intKey ){
5352 lwr = idx+1;
5353 if( lwr>upr ){ c = -1; break; }
5354 }else if( nCellKey>intKey ){
5355 upr = idx-1;
5356 if( lwr>upr ){ c = +1; break; }
5357 }else{
5358 assert( nCellKey==intKey );
drh75e96b32017-04-01 00:20:06 +00005359 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005360 if( !pPage->leaf ){
5361 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00005362 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00005363 }else{
drhd95ef5c2016-11-11 18:19:05 +00005364 pCur->curFlags |= BTCF_ValidNKey;
5365 pCur->info.nKey = nCellKey;
5366 pCur->info.nSize = 0;
drhec3e6b12013-11-25 02:38:55 +00005367 *pRes = 0;
drhd95ef5c2016-11-11 18:19:05 +00005368 return SQLITE_OK;
drhec3e6b12013-11-25 02:38:55 +00005369 }
drhd793f442013-11-25 14:10:15 +00005370 }
drhebf10b12013-11-25 17:38:26 +00005371 assert( lwr+upr>=0 );
5372 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00005373 }
5374 }else{
5375 for(;;){
drhc6827502015-05-28 15:14:32 +00005376 int nCell; /* Size of the pCell cell in bytes */
drhf44890a2015-06-27 03:58:15 +00005377 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005378
drhb2eced52010-08-12 02:41:12 +00005379 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00005380 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00005381 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00005382 ** varint. This information is used to attempt to avoid parsing
5383 ** the entire cell by checking for the cases where the record is
5384 ** stored entirely within the b-tree page by inspecting the first
5385 ** 2 bytes of the cell.
5386 */
drhec3e6b12013-11-25 02:38:55 +00005387 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00005388 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00005389 /* This branch runs if the record-size field of the cell is a
5390 ** single byte varint and the record fits entirely on the main
5391 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00005392 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005393 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00005394 }else if( !(pCell[1] & 0x80)
5395 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5396 ){
5397 /* The record-size field is a 2 byte varint and the record
5398 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00005399 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005400 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00005401 }else{
danielk197711c327a2009-05-04 19:01:26 +00005402 /* The record flows over onto one or more overflow pages. In
5403 ** this case the whole cell needs to be parsed, a buffer allocated
5404 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00005405 ** buffer before VdbeRecordCompare() can be called.
5406 **
5407 ** If the record is corrupt, the xRecordCompare routine may read
5408 ** up to two varints past the end of the buffer. An extra 18
5409 ** bytes of padding is allocated at the end of the buffer in
5410 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00005411 void *pCellKey;
5412 u8 * const pCellBody = pCell - pPage->childPtrSize;
drh5fa60512015-06-19 17:19:34 +00005413 pPage->xParseCell(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00005414 nCell = (int)pCur->info.nKey;
drhc6827502015-05-28 15:14:32 +00005415 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5416 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5417 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5418 testcase( nCell==2 ); /* Minimum legal index key size */
dan3548db72015-05-27 14:21:05 +00005419 if( nCell<2 ){
daneebf2f52017-11-18 17:30:08 +00005420 rc = SQLITE_CORRUPT_PAGE(pPage);
dan3548db72015-05-27 14:21:05 +00005421 goto moveto_finish;
5422 }
5423 pCellKey = sqlite3Malloc( nCell+18 );
danielk19776507ecb2008-03-25 09:56:44 +00005424 if( pCellKey==0 ){
mistachkinfad30392016-02-13 23:43:46 +00005425 rc = SQLITE_NOMEM_BKPT;
danielk19776507ecb2008-03-25 09:56:44 +00005426 goto moveto_finish;
5427 }
drh75e96b32017-04-01 00:20:06 +00005428 pCur->ix = (u16)idx;
drh42e28f12017-01-27 00:31:59 +00005429 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5430 pCur->curFlags &= ~BTCF_ValidOvfl;
drhec9b31f2009-08-25 13:53:49 +00005431 if( rc ){
5432 sqlite3_free(pCellKey);
5433 goto moveto_finish;
5434 }
drh75179de2014-09-16 14:37:35 +00005435 c = xRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00005436 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00005437 }
dan38fdead2014-04-01 10:19:02 +00005438 assert(
5439 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00005440 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00005441 );
drhbb933ef2013-11-25 15:01:38 +00005442 if( c<0 ){
5443 lwr = idx+1;
5444 }else if( c>0 ){
5445 upr = idx-1;
5446 }else{
5447 assert( c==0 );
drh64022502009-01-09 14:11:04 +00005448 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00005449 rc = SQLITE_OK;
drh75e96b32017-04-01 00:20:06 +00005450 pCur->ix = (u16)idx;
mistachkin88a79732017-09-04 19:31:54 +00005451 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
drh1e968a02008-03-25 00:22:21 +00005452 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00005453 }
drhebf10b12013-11-25 17:38:26 +00005454 if( lwr>upr ) break;
5455 assert( lwr+upr>=0 );
5456 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005457 }
drh72f82862001-05-24 21:06:34 +00005458 }
drhb07028f2011-10-14 21:49:18 +00005459 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005460 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005461 if( pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00005462 assert( pCur->ix<pCur->pPage->nCell );
drh75e96b32017-04-01 00:20:06 +00005463 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005464 *pRes = c;
5465 rc = SQLITE_OK;
5466 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00005467 }
5468moveto_next_layer:
5469 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005470 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005471 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005472 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005473 }
drh75e96b32017-04-01 00:20:06 +00005474 pCur->ix = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005475 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005476 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005477 }
drh1e968a02008-03-25 00:22:21 +00005478moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005479 pCur->info.nSize = 0;
drhd95ef5c2016-11-11 18:19:05 +00005480 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhe63d9992008-08-13 19:11:48 +00005481 return rc;
5482}
5483
drhd677b3d2007-08-20 22:48:41 +00005484
drh72f82862001-05-24 21:06:34 +00005485/*
drhc39e0002004-05-07 23:50:57 +00005486** Return TRUE if the cursor is not pointing at an entry of the table.
5487**
5488** TRUE will be returned after a call to sqlite3BtreeNext() moves
5489** past the last entry in the table or sqlite3BtreePrev() moves past
5490** the first entry. TRUE is also returned if the table is empty.
5491*/
5492int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005493 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5494 ** have been deleted? This API will need to change to return an error code
5495 ** as well as the boolean result value.
5496 */
5497 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005498}
5499
5500/*
drh5e98e832017-02-17 19:24:06 +00005501** Return an estimate for the number of rows in the table that pCur is
5502** pointing to. Return a negative number if no estimate is currently
5503** available.
5504*/
5505i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5506 i64 n;
5507 u8 i;
5508
5509 assert( cursorOwnsBtShared(pCur) );
5510 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh555227b2017-02-23 02:15:33 +00005511
5512 /* Currently this interface is only called by the OP_IfSmaller
5513 ** opcode, and it that case the cursor will always be valid and
5514 ** will always point to a leaf node. */
5515 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
drh352a35a2017-08-15 03:46:47 +00005516 if( NEVER(pCur->pPage->leaf==0) ) return -1;
drh555227b2017-02-23 02:15:33 +00005517
drh352a35a2017-08-15 03:46:47 +00005518 n = pCur->pPage->nCell;
5519 for(i=0; i<pCur->iPage; i++){
drh5e98e832017-02-17 19:24:06 +00005520 n *= pCur->apPage[i]->nCell;
5521 }
5522 return n;
5523}
5524
5525/*
drh2ab792e2017-05-30 18:34:07 +00005526** Advance the cursor to the next entry in the database.
5527** Return value:
5528**
5529** SQLITE_OK success
5530** SQLITE_DONE cursor is already pointing at the last element
5531** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005532**
drhee6438d2014-09-01 13:29:32 +00005533** The main entry point is sqlite3BtreeNext(). That routine is optimized
5534** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5535** to the next cell on the current page. The (slower) btreeNext() helper
5536** routine is called when it is necessary to move to a different page or
5537** to restore the cursor.
5538**
drh89997982017-07-11 18:11:33 +00005539** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5540** cursor corresponds to an SQL index and this routine could have been
5541** skipped if the SQL index had been a unique index. The F argument
5542** is a hint to the implement. SQLite btree implementation does not use
5543** this hint, but COMDB2 does.
drh72f82862001-05-24 21:06:34 +00005544*/
drh89997982017-07-11 18:11:33 +00005545static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
drh72f82862001-05-24 21:06:34 +00005546 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005547 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005548 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005549
dan7a2347e2016-01-07 16:43:54 +00005550 assert( cursorOwnsBtShared(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005551 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhf66f26a2013-08-19 20:04:10 +00005552 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005553 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005554 rc = restoreCursorPosition(pCur);
5555 if( rc!=SQLITE_OK ){
5556 return rc;
5557 }
5558 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00005559 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00005560 }
drh9b47ee32013-08-20 03:13:51 +00005561 if( pCur->skipNext ){
5562 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5563 pCur->eState = CURSOR_VALID;
5564 if( pCur->skipNext>0 ){
5565 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005566 return SQLITE_OK;
5567 }
drhf66f26a2013-08-19 20:04:10 +00005568 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005569 }
danielk1977da184232006-01-05 11:34:32 +00005570 }
danielk1977da184232006-01-05 11:34:32 +00005571
drh352a35a2017-08-15 03:46:47 +00005572 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005573 idx = ++pCur->ix;
danielk197771d5d2c2008-09-29 11:49:47 +00005574 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00005575
5576 /* If the database file is corrupt, it is possible for the value of idx
5577 ** to be invalid here. This can only occur if a second cursor modifies
5578 ** the page while cursor pCur is holding a reference to it. Which can
5579 ** only happen if the database is corrupt in such a way as to link the
5580 ** page into more than one b-tree structure. */
5581 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005582
danielk197771d5d2c2008-09-29 11:49:47 +00005583 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005584 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005585 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005586 if( rc ) return rc;
5587 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005588 }
drh5e2f8b92001-05-28 00:41:15 +00005589 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005590 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005591 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00005592 return SQLITE_DONE;
drh5e2f8b92001-05-28 00:41:15 +00005593 }
danielk197730548662009-07-09 05:07:37 +00005594 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00005595 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005596 }while( pCur->ix>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005597 if( pPage->intKey ){
drh89997982017-07-11 18:11:33 +00005598 return sqlite3BtreeNext(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00005599 }else{
drhee6438d2014-09-01 13:29:32 +00005600 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005601 }
drh8178a752003-01-05 21:41:40 +00005602 }
drh3aac2dd2004-04-26 14:10:20 +00005603 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005604 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005605 }else{
5606 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005607 }
drh72f82862001-05-24 21:06:34 +00005608}
drh2ab792e2017-05-30 18:34:07 +00005609int sqlite3BtreeNext(BtCursor *pCur, int flags){
drhee6438d2014-09-01 13:29:32 +00005610 MemPage *pPage;
drh89997982017-07-11 18:11:33 +00005611 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
dan7a2347e2016-01-07 16:43:54 +00005612 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00005613 assert( flags==0 || flags==1 );
drhee6438d2014-09-01 13:29:32 +00005614 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5615 pCur->info.nSize = 0;
5616 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh89997982017-07-11 18:11:33 +00005617 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
drh352a35a2017-08-15 03:46:47 +00005618 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005619 if( (++pCur->ix)>=pPage->nCell ){
5620 pCur->ix--;
drh89997982017-07-11 18:11:33 +00005621 return btreeNext(pCur);
drhee6438d2014-09-01 13:29:32 +00005622 }
5623 if( pPage->leaf ){
5624 return SQLITE_OK;
5625 }else{
5626 return moveToLeftmost(pCur);
5627 }
5628}
drh72f82862001-05-24 21:06:34 +00005629
drh3b7511c2001-05-26 13:15:44 +00005630/*
drh2ab792e2017-05-30 18:34:07 +00005631** Step the cursor to the back to the previous entry in the database.
5632** Return values:
5633**
5634** SQLITE_OK success
5635** SQLITE_DONE the cursor is already on the first element of the table
5636** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005637**
drhee6438d2014-09-01 13:29:32 +00005638** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5639** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005640** to the previous cell on the current page. The (slower) btreePrevious()
5641** helper routine is called when it is necessary to move to a different page
5642** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005643**
drh89997982017-07-11 18:11:33 +00005644** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5645** the cursor corresponds to an SQL index and this routine could have been
5646** skipped if the SQL index had been a unique index. The F argument is a
5647** hint to the implement. The native SQLite btree implementation does not
5648** use this hint, but COMDB2 does.
drh2dcc9aa2002-12-04 13:40:25 +00005649*/
drh89997982017-07-11 18:11:33 +00005650static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
drh2dcc9aa2002-12-04 13:40:25 +00005651 int rc;
drh8178a752003-01-05 21:41:40 +00005652 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005653
dan7a2347e2016-01-07 16:43:54 +00005654 assert( cursorOwnsBtShared(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005655 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005656 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5657 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005658 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005659 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005660 if( rc!=SQLITE_OK ){
5661 return rc;
drhf66f26a2013-08-19 20:04:10 +00005662 }
5663 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00005664 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00005665 }
drh9b47ee32013-08-20 03:13:51 +00005666 if( pCur->skipNext ){
5667 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5668 pCur->eState = CURSOR_VALID;
5669 if( pCur->skipNext<0 ){
5670 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005671 return SQLITE_OK;
5672 }
drhf66f26a2013-08-19 20:04:10 +00005673 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005674 }
danielk1977da184232006-01-05 11:34:32 +00005675 }
danielk1977da184232006-01-05 11:34:32 +00005676
drh352a35a2017-08-15 03:46:47 +00005677 pPage = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00005678 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005679 if( !pPage->leaf ){
drh75e96b32017-04-01 00:20:06 +00005680 int idx = pCur->ix;
danielk197771d5d2c2008-09-29 11:49:47 +00005681 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005682 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005683 rc = moveToRightmost(pCur);
5684 }else{
drh75e96b32017-04-01 00:20:06 +00005685 while( pCur->ix==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00005686 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005687 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00005688 return SQLITE_DONE;
drh2dcc9aa2002-12-04 13:40:25 +00005689 }
danielk197730548662009-07-09 05:07:37 +00005690 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005691 }
drhee6438d2014-09-01 13:29:32 +00005692 assert( pCur->info.nSize==0 );
drhd95ef5c2016-11-11 18:19:05 +00005693 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005694
drh75e96b32017-04-01 00:20:06 +00005695 pCur->ix--;
drh352a35a2017-08-15 03:46:47 +00005696 pPage = pCur->pPage;
drh44845222008-07-17 18:39:57 +00005697 if( pPage->intKey && !pPage->leaf ){
drh89997982017-07-11 18:11:33 +00005698 rc = sqlite3BtreePrevious(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00005699 }else{
5700 rc = SQLITE_OK;
5701 }
drh2dcc9aa2002-12-04 13:40:25 +00005702 }
drh2dcc9aa2002-12-04 13:40:25 +00005703 return rc;
5704}
drh2ab792e2017-05-30 18:34:07 +00005705int sqlite3BtreePrevious(BtCursor *pCur, int flags){
dan7a2347e2016-01-07 16:43:54 +00005706 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00005707 assert( flags==0 || flags==1 );
drhee6438d2014-09-01 13:29:32 +00005708 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drh89997982017-07-11 18:11:33 +00005709 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
drhee6438d2014-09-01 13:29:32 +00005710 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5711 pCur->info.nSize = 0;
5712 if( pCur->eState!=CURSOR_VALID
drh75e96b32017-04-01 00:20:06 +00005713 || pCur->ix==0
drh352a35a2017-08-15 03:46:47 +00005714 || pCur->pPage->leaf==0
drhee6438d2014-09-01 13:29:32 +00005715 ){
drh89997982017-07-11 18:11:33 +00005716 return btreePrevious(pCur);
drhee6438d2014-09-01 13:29:32 +00005717 }
drh75e96b32017-04-01 00:20:06 +00005718 pCur->ix--;
drhee6438d2014-09-01 13:29:32 +00005719 return SQLITE_OK;
5720}
drh2dcc9aa2002-12-04 13:40:25 +00005721
5722/*
drh3b7511c2001-05-26 13:15:44 +00005723** Allocate a new page from the database file.
5724**
danielk19773b8a05f2007-03-19 17:44:26 +00005725** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005726** has already been called on the new page.) The new page has also
5727** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005728** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005729**
5730** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00005731** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00005732**
drh82e647d2013-03-02 03:25:55 +00005733** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005734** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005735** attempt to keep related pages close to each other in the database file,
5736** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005737**
drh82e647d2013-03-02 03:25:55 +00005738** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5739** anywhere on the free-list, then it is guaranteed to be returned. If
5740** eMode is BTALLOC_LT then the page returned will be less than or equal
5741** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5742** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005743*/
drh4f0c5872007-03-26 22:05:01 +00005744static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005745 BtShared *pBt, /* The btree */
5746 MemPage **ppPage, /* Store pointer to the allocated page here */
5747 Pgno *pPgno, /* Store the page number here */
5748 Pgno nearby, /* Search for a page near this one */
5749 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005750){
drh3aac2dd2004-04-26 14:10:20 +00005751 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005752 int rc;
drh35cd6432009-06-05 14:17:21 +00005753 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005754 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005755 MemPage *pTrunk = 0;
5756 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005757 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005758
drh1fee73e2007-08-29 04:00:57 +00005759 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005760 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005761 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005762 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005763 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5764 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005765 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005766 testcase( n==mxPage-1 );
5767 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005768 return SQLITE_CORRUPT_BKPT;
5769 }
drh3aac2dd2004-04-26 14:10:20 +00005770 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005771 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005772 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005773 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00005774 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005775
drh82e647d2013-03-02 03:25:55 +00005776 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005777 ** shows that the page 'nearby' is somewhere on the free-list, then
5778 ** the entire-list will be searched for that page.
5779 */
5780#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005781 if( eMode==BTALLOC_EXACT ){
5782 if( nearby<=mxPage ){
5783 u8 eType;
5784 assert( nearby>0 );
5785 assert( pBt->autoVacuum );
5786 rc = ptrmapGet(pBt, nearby, &eType, 0);
5787 if( rc ) return rc;
5788 if( eType==PTRMAP_FREEPAGE ){
5789 searchList = 1;
5790 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005791 }
dan51f0b6d2013-02-22 20:16:34 +00005792 }else if( eMode==BTALLOC_LE ){
5793 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005794 }
5795#endif
5796
5797 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5798 ** first free-list trunk page. iPrevTrunk is initially 1.
5799 */
danielk19773b8a05f2007-03-19 17:44:26 +00005800 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005801 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005802 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005803
5804 /* The code within this loop is run only once if the 'searchList' variable
5805 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005806 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5807 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005808 */
5809 do {
5810 pPrevTrunk = pTrunk;
5811 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005812 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5813 ** is the page number of the next freelist trunk page in the list or
5814 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005815 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005816 }else{
drh113762a2014-11-19 16:36:25 +00005817 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5818 ** stores the page number of the first page of the freelist, or zero if
5819 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005820 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005821 }
drhdf35a082009-07-09 02:24:35 +00005822 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00005823 if( iTrunk>mxPage || nSearch++ > n ){
drhc62aab52017-06-11 18:26:15 +00005824 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
drh1662b5a2009-06-04 19:06:09 +00005825 }else{
drh7e8c6f12015-05-28 03:28:27 +00005826 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005827 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005828 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005829 pTrunk = 0;
5830 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005831 }
drhb07028f2011-10-14 21:49:18 +00005832 assert( pTrunk!=0 );
5833 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005834 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5835 ** is the number of leaf page pointers to follow. */
5836 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005837 if( k==0 && !searchList ){
5838 /* The trunk has no leaves and the list is not being searched.
5839 ** So extract the trunk page itself and use it as the newly
5840 ** allocated page */
5841 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005842 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005843 if( rc ){
5844 goto end_allocate_page;
5845 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005846 *pPgno = iTrunk;
5847 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5848 *ppPage = pTrunk;
5849 pTrunk = 0;
5850 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005851 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005852 /* Value of k is out of range. Database corruption */
drhcc97ca42017-06-07 22:32:59 +00005853 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drhd3627af2006-12-18 18:34:51 +00005854 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005855#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005856 }else if( searchList
5857 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5858 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005859 /* The list is being searched and this trunk page is the page
5860 ** to allocate, regardless of whether it has leaves.
5861 */
dan51f0b6d2013-02-22 20:16:34 +00005862 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005863 *ppPage = pTrunk;
5864 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005865 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005866 if( rc ){
5867 goto end_allocate_page;
5868 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005869 if( k==0 ){
5870 if( !pPrevTrunk ){
5871 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5872 }else{
danf48c3552010-08-23 15:41:24 +00005873 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5874 if( rc!=SQLITE_OK ){
5875 goto end_allocate_page;
5876 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005877 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5878 }
5879 }else{
5880 /* The trunk page is required by the caller but it contains
5881 ** pointers to free-list leaves. The first leaf becomes a trunk
5882 ** page in this case.
5883 */
5884 MemPage *pNewTrunk;
5885 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005886 if( iNewTrunk>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00005887 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00005888 goto end_allocate_page;
5889 }
drhdf35a082009-07-09 02:24:35 +00005890 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00005891 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005892 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005893 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005894 }
danielk19773b8a05f2007-03-19 17:44:26 +00005895 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005896 if( rc!=SQLITE_OK ){
5897 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005898 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005899 }
5900 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5901 put4byte(&pNewTrunk->aData[4], k-1);
5902 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005903 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005904 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005905 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005906 put4byte(&pPage1->aData[32], iNewTrunk);
5907 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005908 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005909 if( rc ){
5910 goto end_allocate_page;
5911 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005912 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5913 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005914 }
5915 pTrunk = 0;
5916 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5917#endif
danielk1977e5765212009-06-17 11:13:28 +00005918 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005919 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005920 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005921 Pgno iPage;
5922 unsigned char *aData = pTrunk->aData;
5923 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005924 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005925 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005926 if( eMode==BTALLOC_LE ){
5927 for(i=0; i<k; i++){
5928 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005929 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005930 closest = i;
5931 break;
5932 }
5933 }
5934 }else{
5935 int dist;
5936 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5937 for(i=1; i<k; i++){
5938 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5939 if( d2<dist ){
5940 closest = i;
5941 dist = d2;
5942 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005943 }
5944 }
5945 }else{
5946 closest = 0;
5947 }
5948
5949 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005950 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005951 if( iPage>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00005952 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00005953 goto end_allocate_page;
5954 }
drhdf35a082009-07-09 02:24:35 +00005955 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005956 if( !searchList
5957 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5958 ){
danielk1977bea2a942009-01-20 17:06:27 +00005959 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005960 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005961 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5962 ": %d more free pages\n",
5963 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005964 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5965 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005966 if( closest<k-1 ){
5967 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5968 }
5969 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00005970 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00005971 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005972 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005973 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005974 if( rc!=SQLITE_OK ){
5975 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00005976 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005977 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005978 }
5979 searchList = 0;
5980 }
drhee696e22004-08-30 16:52:17 +00005981 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005982 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005983 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005984 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005985 }else{
danbc1a3c62013-02-23 16:40:46 +00005986 /* There are no pages on the freelist, so append a new page to the
5987 ** database image.
5988 **
5989 ** Normally, new pages allocated by this block can be requested from the
5990 ** pager layer with the 'no-content' flag set. This prevents the pager
5991 ** from trying to read the pages content from disk. However, if the
5992 ** current transaction has already run one or more incremental-vacuum
5993 ** steps, then the page we are about to allocate may contain content
5994 ** that is required in the event of a rollback. In this case, do
5995 ** not set the no-content flag. This causes the pager to load and journal
5996 ** the current page content before overwriting it.
5997 **
5998 ** Note that the pager will not actually attempt to load or journal
5999 ** content for any page that really does lie past the end of the database
6000 ** file on disk. So the effects of disabling the no-content optimization
6001 ** here are confined to those pages that lie between the end of the
6002 ** database image and the end of the database file.
6003 */
drh3f387402014-09-24 01:23:00 +00006004 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00006005
drhdd3cd972010-03-27 17:12:36 +00006006 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6007 if( rc ) return rc;
6008 pBt->nPage++;
6009 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00006010
danielk1977afcdd022004-10-31 16:25:42 +00006011#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00006012 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00006013 /* If *pPgno refers to a pointer-map page, allocate two new pages
6014 ** at the end of the file instead of one. The first allocated page
6015 ** becomes a new pointer-map page, the second is used by the caller.
6016 */
danielk1977ac861692009-03-28 10:54:22 +00006017 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00006018 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6019 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006020 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00006021 if( rc==SQLITE_OK ){
6022 rc = sqlite3PagerWrite(pPg->pDbPage);
6023 releasePage(pPg);
6024 }
6025 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00006026 pBt->nPage++;
6027 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00006028 }
6029#endif
drhdd3cd972010-03-27 17:12:36 +00006030 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6031 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00006032
danielk1977599fcba2004-11-08 07:13:13 +00006033 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006034 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00006035 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00006036 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006037 if( rc!=SQLITE_OK ){
6038 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00006039 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006040 }
drh3a4c1412004-05-09 20:40:11 +00006041 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00006042 }
danielk1977599fcba2004-11-08 07:13:13 +00006043
6044 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00006045
6046end_allocate_page:
6047 releasePage(pTrunk);
6048 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00006049 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6050 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00006051 return rc;
6052}
6053
6054/*
danielk1977bea2a942009-01-20 17:06:27 +00006055** This function is used to add page iPage to the database file free-list.
6056** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00006057**
danielk1977bea2a942009-01-20 17:06:27 +00006058** The value passed as the second argument to this function is optional.
6059** If the caller happens to have a pointer to the MemPage object
6060** corresponding to page iPage handy, it may pass it as the second value.
6061** Otherwise, it may pass NULL.
6062**
6063** If a pointer to a MemPage object is passed as the second argument,
6064** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00006065*/
danielk1977bea2a942009-01-20 17:06:27 +00006066static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6067 MemPage *pTrunk = 0; /* Free-list trunk page */
6068 Pgno iTrunk = 0; /* Page number of free-list trunk page */
6069 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
6070 MemPage *pPage; /* Page being freed. May be NULL. */
6071 int rc; /* Return Code */
6072 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00006073
danielk1977bea2a942009-01-20 17:06:27 +00006074 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00006075 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00006076 assert( !pMemPage || pMemPage->pgno==iPage );
6077
danfb0246b2015-05-26 12:18:17 +00006078 if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +00006079 if( pMemPage ){
6080 pPage = pMemPage;
6081 sqlite3PagerRef(pPage->pDbPage);
6082 }else{
6083 pPage = btreePageLookup(pBt, iPage);
6084 }
drh3aac2dd2004-04-26 14:10:20 +00006085
drha34b6762004-05-07 13:30:42 +00006086 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00006087 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00006088 if( rc ) goto freepage_out;
6089 nFree = get4byte(&pPage1->aData[36]);
6090 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00006091
drhc9166342012-01-05 23:32:06 +00006092 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00006093 /* If the secure_delete option is enabled, then
6094 ** always fully overwrite deleted information with zeros.
6095 */
drhb00fc3b2013-08-21 23:42:32 +00006096 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00006097 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00006098 ){
6099 goto freepage_out;
6100 }
6101 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00006102 }
drhfcce93f2006-02-22 03:08:32 +00006103
danielk1977687566d2004-11-02 12:56:41 +00006104 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00006105 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00006106 */
danielk197785d90ca2008-07-19 14:25:15 +00006107 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006108 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00006109 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00006110 }
danielk1977687566d2004-11-02 12:56:41 +00006111
danielk1977bea2a942009-01-20 17:06:27 +00006112 /* Now manipulate the actual database free-list structure. There are two
6113 ** possibilities. If the free-list is currently empty, or if the first
6114 ** trunk page in the free-list is full, then this page will become a
6115 ** new free-list trunk page. Otherwise, it will become a leaf of the
6116 ** first trunk page in the current free-list. This block tests if it
6117 ** is possible to add the page as a new free-list leaf.
6118 */
6119 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00006120 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00006121
6122 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00006123 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00006124 if( rc!=SQLITE_OK ){
6125 goto freepage_out;
6126 }
6127
6128 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00006129 assert( pBt->usableSize>32 );
6130 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00006131 rc = SQLITE_CORRUPT_BKPT;
6132 goto freepage_out;
6133 }
drheeb844a2009-08-08 18:01:07 +00006134 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00006135 /* In this case there is room on the trunk page to insert the page
6136 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00006137 **
6138 ** Note that the trunk page is not really full until it contains
6139 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6140 ** coded. But due to a coding error in versions of SQLite prior to
6141 ** 3.6.0, databases with freelist trunk pages holding more than
6142 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6143 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00006144 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00006145 ** for now. At some point in the future (once everyone has upgraded
6146 ** to 3.6.0 or later) we should consider fixing the conditional above
6147 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00006148 **
6149 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6150 ** avoid using the last six entries in the freelist trunk page array in
6151 ** order that database files created by newer versions of SQLite can be
6152 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00006153 */
danielk19773b8a05f2007-03-19 17:44:26 +00006154 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00006155 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006156 put4byte(&pTrunk->aData[4], nLeaf+1);
6157 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00006158 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00006159 sqlite3PagerDontWrite(pPage->pDbPage);
6160 }
danielk1977bea2a942009-01-20 17:06:27 +00006161 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00006162 }
drh3a4c1412004-05-09 20:40:11 +00006163 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00006164 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00006165 }
drh3b7511c2001-05-26 13:15:44 +00006166 }
danielk1977bea2a942009-01-20 17:06:27 +00006167
6168 /* If control flows to this point, then it was not possible to add the
6169 ** the page being freed as a leaf page of the first trunk in the free-list.
6170 ** Possibly because the free-list is empty, or possibly because the
6171 ** first trunk in the free-list is full. Either way, the page being freed
6172 ** will become the new first trunk page in the free-list.
6173 */
drhb00fc3b2013-08-21 23:42:32 +00006174 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00006175 goto freepage_out;
6176 }
6177 rc = sqlite3PagerWrite(pPage->pDbPage);
6178 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006179 goto freepage_out;
6180 }
6181 put4byte(pPage->aData, iTrunk);
6182 put4byte(&pPage->aData[4], 0);
6183 put4byte(&pPage1->aData[32], iPage);
6184 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6185
6186freepage_out:
6187 if( pPage ){
6188 pPage->isInit = 0;
6189 }
6190 releasePage(pPage);
6191 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00006192 return rc;
6193}
drhc314dc72009-07-21 11:52:34 +00006194static void freePage(MemPage *pPage, int *pRC){
6195 if( (*pRC)==SQLITE_OK ){
6196 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6197 }
danielk1977bea2a942009-01-20 17:06:27 +00006198}
drh3b7511c2001-05-26 13:15:44 +00006199
6200/*
drh8d7f1632018-01-23 13:30:38 +00006201** Free any overflow pages associated with the given Cell. Store
6202** size information about the cell in pInfo.
drh3b7511c2001-05-26 13:15:44 +00006203*/
drh9bfdc252014-09-24 02:05:41 +00006204static int clearCell(
6205 MemPage *pPage, /* The page that contains the Cell */
6206 unsigned char *pCell, /* First byte of the Cell */
drh80159da2016-12-09 17:32:51 +00006207 CellInfo *pInfo /* Size information about the cell */
drh9bfdc252014-09-24 02:05:41 +00006208){
drh60172a52017-08-02 18:27:50 +00006209 BtShared *pBt;
drh3aac2dd2004-04-26 14:10:20 +00006210 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00006211 int rc;
drh94440812007-03-06 11:42:19 +00006212 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00006213 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00006214
drh1fee73e2007-08-29 04:00:57 +00006215 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh80159da2016-12-09 17:32:51 +00006216 pPage->xParseCell(pPage, pCell, pInfo);
6217 if( pInfo->nLocal==pInfo->nPayload ){
drha34b6762004-05-07 13:30:42 +00006218 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00006219 }
drh80159da2016-12-09 17:32:51 +00006220 if( pCell+pInfo->nSize-1 > pPage->aData+pPage->maskPage ){
drhcc97ca42017-06-07 22:32:59 +00006221 /* Cell extends past end of page */
daneebf2f52017-11-18 17:30:08 +00006222 return SQLITE_CORRUPT_PAGE(pPage);
drhe42a9b42011-08-31 13:27:19 +00006223 }
drh80159da2016-12-09 17:32:51 +00006224 ovflPgno = get4byte(pCell + pInfo->nSize - 4);
drh60172a52017-08-02 18:27:50 +00006225 pBt = pPage->pBt;
shane63207ab2009-02-04 01:49:30 +00006226 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00006227 ovflPageSize = pBt->usableSize - 4;
drh80159da2016-12-09 17:32:51 +00006228 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00006229 assert( nOvfl>0 ||
drh80159da2016-12-09 17:32:51 +00006230 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
dan0f8076d2015-05-25 18:47:26 +00006231 );
drh72365832007-03-06 15:53:44 +00006232 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00006233 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00006234 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00006235 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00006236 /* 0 is not a legal page number and page 1 cannot be an
6237 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6238 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00006239 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006240 }
danielk1977bea2a942009-01-20 17:06:27 +00006241 if( nOvfl ){
6242 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6243 if( rc ) return rc;
6244 }
dan887d4b22010-02-25 12:09:16 +00006245
shaneh1da207e2010-03-09 14:41:12 +00006246 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00006247 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6248 ){
6249 /* There is no reason any cursor should have an outstanding reference
6250 ** to an overflow page belonging to a cell that is being deleted/updated.
6251 ** So if there exists more than one reference to this page, then it
6252 ** must not really be an overflow page and the database must be corrupt.
6253 ** It is helpful to detect this before calling freePage2(), as
6254 ** freePage2() may zero the page contents if secure-delete mode is
6255 ** enabled. If this 'overflow' page happens to be a page that the
6256 ** caller is iterating through or using in some other way, this
6257 ** can be problematic.
6258 */
6259 rc = SQLITE_CORRUPT_BKPT;
6260 }else{
6261 rc = freePage2(pBt, pOvfl, ovflPgno);
6262 }
6263
danielk1977bea2a942009-01-20 17:06:27 +00006264 if( pOvfl ){
6265 sqlite3PagerUnref(pOvfl->pDbPage);
6266 }
drh3b7511c2001-05-26 13:15:44 +00006267 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00006268 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00006269 }
drh5e2f8b92001-05-28 00:41:15 +00006270 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00006271}
6272
6273/*
drh91025292004-05-03 19:49:32 +00006274** Create the byte sequence used to represent a cell on page pPage
6275** and write that byte sequence into pCell[]. Overflow pages are
6276** allocated and filled in as necessary. The calling procedure
6277** is responsible for making sure sufficient space has been allocated
6278** for pCell[].
6279**
6280** Note that pCell does not necessary need to point to the pPage->aData
6281** area. pCell might point to some temporary storage. The cell will
6282** be constructed in this temporary area then copied into pPage->aData
6283** later.
drh3b7511c2001-05-26 13:15:44 +00006284*/
6285static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006286 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006287 unsigned char *pCell, /* Complete text of the cell */
drh8eeb4462016-05-21 20:03:42 +00006288 const BtreePayload *pX, /* Payload with which to construct the cell */
drh4b70f112004-05-02 21:12:19 +00006289 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006290){
drh3b7511c2001-05-26 13:15:44 +00006291 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006292 const u8 *pSrc;
drh5e27e1d2017-08-23 14:45:59 +00006293 int nSrc, n, rc, mn;
drh3aac2dd2004-04-26 14:10:20 +00006294 int spaceLeft;
drh5e27e1d2017-08-23 14:45:59 +00006295 MemPage *pToRelease;
drh3aac2dd2004-04-26 14:10:20 +00006296 unsigned char *pPrior;
6297 unsigned char *pPayload;
drh5e27e1d2017-08-23 14:45:59 +00006298 BtShared *pBt;
6299 Pgno pgnoOvfl;
drh4b70f112004-05-02 21:12:19 +00006300 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006301
drh1fee73e2007-08-29 04:00:57 +00006302 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006303
drhc5053fb2008-11-27 02:22:10 +00006304 /* pPage is not necessarily writeable since pCell might be auxiliary
6305 ** buffer space that is separate from the pPage buffer area */
drh5e27e1d2017-08-23 14:45:59 +00006306 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
drhc5053fb2008-11-27 02:22:10 +00006307 || sqlite3PagerIswriteable(pPage->pDbPage) );
6308
drh91025292004-05-03 19:49:32 +00006309 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006310 nHeader = pPage->childPtrSize;
drhdfc2daa2016-05-21 23:25:29 +00006311 if( pPage->intKey ){
6312 nPayload = pX->nData + pX->nZero;
6313 pSrc = pX->pData;
6314 nSrc = pX->nData;
6315 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
drh6200c882014-09-23 22:36:25 +00006316 nHeader += putVarint32(&pCell[nHeader], nPayload);
drhdfc2daa2016-05-21 23:25:29 +00006317 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
drh6f11bef2004-05-13 01:12:56 +00006318 }else{
drh8eeb4462016-05-21 20:03:42 +00006319 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6320 nSrc = nPayload = (int)pX->nKey;
6321 pSrc = pX->pKey;
drhdfc2daa2016-05-21 23:25:29 +00006322 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh3aac2dd2004-04-26 14:10:20 +00006323 }
drhdfc2daa2016-05-21 23:25:29 +00006324
6325 /* Fill in the payload */
drh5e27e1d2017-08-23 14:45:59 +00006326 pPayload = &pCell[nHeader];
drh6200c882014-09-23 22:36:25 +00006327 if( nPayload<=pPage->maxLocal ){
drh5e27e1d2017-08-23 14:45:59 +00006328 /* This is the common case where everything fits on the btree page
6329 ** and no overflow pages are required. */
drh6200c882014-09-23 22:36:25 +00006330 n = nHeader + nPayload;
6331 testcase( n==3 );
6332 testcase( n==4 );
6333 if( n<4 ) n = 4;
6334 *pnSize = n;
drh5e27e1d2017-08-23 14:45:59 +00006335 assert( nSrc<=nPayload );
6336 testcase( nSrc<nPayload );
6337 memcpy(pPayload, pSrc, nSrc);
6338 memset(pPayload+nSrc, 0, nPayload-nSrc);
6339 return SQLITE_OK;
drh6200c882014-09-23 22:36:25 +00006340 }
drh5e27e1d2017-08-23 14:45:59 +00006341
6342 /* If we reach this point, it means that some of the content will need
6343 ** to spill onto overflow pages.
6344 */
6345 mn = pPage->minLocal;
6346 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6347 testcase( n==pPage->maxLocal );
6348 testcase( n==pPage->maxLocal+1 );
6349 if( n > pPage->maxLocal ) n = mn;
6350 spaceLeft = n;
6351 *pnSize = n + nHeader + 4;
6352 pPrior = &pCell[nHeader+n];
6353 pToRelease = 0;
6354 pgnoOvfl = 0;
6355 pBt = pPage->pBt;
drh3b7511c2001-05-26 13:15:44 +00006356
drh6200c882014-09-23 22:36:25 +00006357 /* At this point variables should be set as follows:
6358 **
6359 ** nPayload Total payload size in bytes
6360 ** pPayload Begin writing payload here
6361 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6362 ** that means content must spill into overflow pages.
6363 ** *pnSize Size of the local cell (not counting overflow pages)
6364 ** pPrior Where to write the pgno of the first overflow page
6365 **
6366 ** Use a call to btreeParseCellPtr() to verify that the values above
6367 ** were computed correctly.
6368 */
drhd879e3e2017-02-13 13:35:55 +00006369#ifdef SQLITE_DEBUG
drh6200c882014-09-23 22:36:25 +00006370 {
6371 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006372 pPage->xParseCell(pPage, pCell, &info);
drhcc5f8a42016-02-06 22:32:06 +00006373 assert( nHeader==(int)(info.pPayload - pCell) );
drh8eeb4462016-05-21 20:03:42 +00006374 assert( info.nKey==pX->nKey );
drh6200c882014-09-23 22:36:25 +00006375 assert( *pnSize == info.nSize );
6376 assert( spaceLeft == info.nLocal );
drh6200c882014-09-23 22:36:25 +00006377 }
6378#endif
6379
6380 /* Write the payload into the local Cell and any extra into overflow pages */
drh5e27e1d2017-08-23 14:45:59 +00006381 while( 1 ){
6382 n = nPayload;
6383 if( n>spaceLeft ) n = spaceLeft;
6384
6385 /* If pToRelease is not zero than pPayload points into the data area
6386 ** of pToRelease. Make sure pToRelease is still writeable. */
6387 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6388
6389 /* If pPayload is part of the data area of pPage, then make sure pPage
6390 ** is still writeable */
6391 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6392 || sqlite3PagerIswriteable(pPage->pDbPage) );
6393
6394 if( nSrc>=n ){
6395 memcpy(pPayload, pSrc, n);
6396 }else if( nSrc>0 ){
6397 n = nSrc;
6398 memcpy(pPayload, pSrc, n);
6399 }else{
6400 memset(pPayload, 0, n);
6401 }
6402 nPayload -= n;
6403 if( nPayload<=0 ) break;
6404 pPayload += n;
6405 pSrc += n;
6406 nSrc -= n;
6407 spaceLeft -= n;
drh3b7511c2001-05-26 13:15:44 +00006408 if( spaceLeft==0 ){
drh5e27e1d2017-08-23 14:45:59 +00006409 MemPage *pOvfl = 0;
danielk1977afcdd022004-10-31 16:25:42 +00006410#ifndef SQLITE_OMIT_AUTOVACUUM
6411 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006412 if( pBt->autoVacuum ){
6413 do{
6414 pgnoOvfl++;
6415 } while(
6416 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6417 );
danielk1977b39f70b2007-05-17 18:28:11 +00006418 }
danielk1977afcdd022004-10-31 16:25:42 +00006419#endif
drhf49661a2008-12-10 16:45:50 +00006420 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006421#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006422 /* If the database supports auto-vacuum, and the second or subsequent
6423 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006424 ** for that page now.
6425 **
6426 ** If this is the first overflow page, then write a partial entry
6427 ** to the pointer-map. If we write nothing to this pointer-map slot,
6428 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006429 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006430 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006431 */
danielk19774ef24492007-05-23 09:52:41 +00006432 if( pBt->autoVacuum && rc==SQLITE_OK ){
6433 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006434 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006435 if( rc ){
6436 releasePage(pOvfl);
6437 }
danielk1977afcdd022004-10-31 16:25:42 +00006438 }
6439#endif
drh3b7511c2001-05-26 13:15:44 +00006440 if( rc ){
drh9b171272004-05-08 02:03:22 +00006441 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006442 return rc;
6443 }
drhc5053fb2008-11-27 02:22:10 +00006444
6445 /* If pToRelease is not zero than pPrior points into the data area
6446 ** of pToRelease. Make sure pToRelease is still writeable. */
6447 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6448
6449 /* If pPrior is part of the data area of pPage, then make sure pPage
6450 ** is still writeable */
6451 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6452 || sqlite3PagerIswriteable(pPage->pDbPage) );
6453
drh3aac2dd2004-04-26 14:10:20 +00006454 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006455 releasePage(pToRelease);
6456 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006457 pPrior = pOvfl->aData;
6458 put4byte(pPrior, 0);
6459 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006460 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006461 }
drhdd793422001-06-28 01:54:48 +00006462 }
drh9b171272004-05-08 02:03:22 +00006463 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006464 return SQLITE_OK;
6465}
6466
drh14acc042001-06-10 19:56:58 +00006467/*
6468** Remove the i-th cell from pPage. This routine effects pPage only.
6469** The cell content is not freed or deallocated. It is assumed that
6470** the cell content has been copied someplace else. This routine just
6471** removes the reference to the cell from pPage.
6472**
6473** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006474*/
drh98add2e2009-07-20 17:11:49 +00006475static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006476 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006477 u8 *data; /* pPage->aData */
6478 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006479 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006480 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006481
drh98add2e2009-07-20 17:11:49 +00006482 if( *pRC ) return;
drh8c42ca92001-06-22 19:15:00 +00006483 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006484 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006485 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006486 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00006487 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006488 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006489 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006490 hdr = pPage->hdrOffset;
6491 testcase( pc==get2byte(&data[hdr+5]) );
6492 testcase( pc+sz==pPage->pBt->usableSize );
drh5e398e42017-08-23 20:36:06 +00006493 if( pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006494 *pRC = SQLITE_CORRUPT_BKPT;
6495 return;
shane0af3f892008-11-12 04:55:34 +00006496 }
shanedcc50b72008-11-13 18:29:50 +00006497 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006498 if( rc ){
6499 *pRC = rc;
6500 return;
shanedcc50b72008-11-13 18:29:50 +00006501 }
drh14acc042001-06-10 19:56:58 +00006502 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006503 if( pPage->nCell==0 ){
6504 memset(&data[hdr+1], 0, 4);
6505 data[hdr+7] = 0;
6506 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6507 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6508 - pPage->childPtrSize - 8;
6509 }else{
6510 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6511 put2byte(&data[hdr+3], pPage->nCell);
6512 pPage->nFree += 2;
6513 }
drh14acc042001-06-10 19:56:58 +00006514}
6515
6516/*
6517** Insert a new cell on pPage at cell index "i". pCell points to the
6518** content of the cell.
6519**
6520** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006521** will not fit, then make a copy of the cell content into pTemp if
6522** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006523** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006524** in pTemp or the original pCell) and also record its index.
6525** Allocating a new entry in pPage->aCell[] implies that
6526** pPage->nOverflow is incremented.
drhcb89f4a2016-05-21 11:23:26 +00006527**
6528** *pRC must be SQLITE_OK when this routine is called.
drh14acc042001-06-10 19:56:58 +00006529*/
drh98add2e2009-07-20 17:11:49 +00006530static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006531 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006532 int i, /* New cell becomes the i-th cell of the page */
6533 u8 *pCell, /* Content of the new cell */
6534 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006535 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006536 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6537 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006538){
drh383d30f2010-02-26 13:07:37 +00006539 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006540 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006541 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006542 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006543
drhcb89f4a2016-05-21 11:23:26 +00006544 assert( *pRC==SQLITE_OK );
drh43605152004-05-29 21:46:49 +00006545 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006546 assert( MX_CELL(pPage->pBt)<=10921 );
6547 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006548 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6549 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006550 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00006551 /* The cell should normally be sized correctly. However, when moving a
6552 ** malformed cell from a leaf page to an interior page, if the cell size
6553 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6554 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6555 ** the term after the || in the following assert(). */
drh25ada072015-06-19 15:07:14 +00006556 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00006557 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006558 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006559 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006560 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006561 }
danielk19774dbaa892009-06-16 16:50:22 +00006562 if( iChild ){
6563 put4byte(pCell, iChild);
6564 }
drh43605152004-05-29 21:46:49 +00006565 j = pPage->nOverflow++;
drha2ee5892016-12-09 16:02:00 +00006566 /* Comparison against ArraySize-1 since we hold back one extra slot
6567 ** as a contingency. In other words, never need more than 3 overflow
6568 ** slots but 4 are allocated, just to be safe. */
6569 assert( j < ArraySize(pPage->apOvfl)-1 );
drh2cbd78b2012-02-02 19:37:18 +00006570 pPage->apOvfl[j] = pCell;
6571 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006572
6573 /* When multiple overflows occur, they are always sequential and in
6574 ** sorted order. This invariants arise because multiple overflows can
6575 ** only occur when inserting divider cells into the parent page during
6576 ** balancing, and the dividers are adjacent and sorted.
6577 */
6578 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6579 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006580 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006581 int rc = sqlite3PagerWrite(pPage->pDbPage);
6582 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006583 *pRC = rc;
6584 return;
danielk19776e465eb2007-08-21 13:11:00 +00006585 }
6586 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006587 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00006588 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00006589 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006590 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006591 /* The allocateSpace() routine guarantees the following properties
6592 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00006593 assert( idx >= 0 );
6594 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00006595 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00006596 pPage->nFree -= (u16)(2 + sz);
drhd6176c42014-10-11 17:22:55 +00006597 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006598 if( iChild ){
6599 put4byte(&data[idx], iChild);
6600 }
drh2c8fb922015-06-25 19:53:48 +00006601 pIns = pPage->aCellIdx + i*2;
6602 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6603 put2byte(pIns, idx);
6604 pPage->nCell++;
6605 /* increment the cell count */
6606 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6607 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
danielk1977a19df672004-11-03 11:37:07 +00006608#ifndef SQLITE_OMIT_AUTOVACUUM
6609 if( pPage->pBt->autoVacuum ){
6610 /* The cell may contain a pointer to an overflow page. If so, write
6611 ** the entry for the overflow page into the pointer map.
6612 */
drh98add2e2009-07-20 17:11:49 +00006613 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006614 }
6615#endif
drh14acc042001-06-10 19:56:58 +00006616 }
6617}
6618
6619/*
drh1ffd2472015-06-23 02:37:30 +00006620** A CellArray object contains a cache of pointers and sizes for a
drhc0d269e2016-08-03 14:51:16 +00006621** consecutive sequence of cells that might be held on multiple pages.
drhfa1a98a2004-05-14 19:08:17 +00006622*/
drh1ffd2472015-06-23 02:37:30 +00006623typedef struct CellArray CellArray;
6624struct CellArray {
6625 int nCell; /* Number of cells in apCell[] */
6626 MemPage *pRef; /* Reference page */
6627 u8 **apCell; /* All cells begin balanced */
6628 u16 *szCell; /* Local size of all cells in apCell[] */
6629};
drhfa1a98a2004-05-14 19:08:17 +00006630
drh1ffd2472015-06-23 02:37:30 +00006631/*
6632** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6633** computed.
6634*/
6635static void populateCellCache(CellArray *p, int idx, int N){
6636 assert( idx>=0 && idx+N<=p->nCell );
6637 while( N>0 ){
6638 assert( p->apCell[idx]!=0 );
6639 if( p->szCell[idx]==0 ){
6640 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6641 }else{
6642 assert( CORRUPT_DB ||
6643 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6644 }
6645 idx++;
6646 N--;
drhfa1a98a2004-05-14 19:08:17 +00006647 }
drh1ffd2472015-06-23 02:37:30 +00006648}
6649
6650/*
6651** Return the size of the Nth element of the cell array
6652*/
6653static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6654 assert( N>=0 && N<p->nCell );
6655 assert( p->szCell[N]==0 );
6656 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6657 return p->szCell[N];
6658}
6659static u16 cachedCellSize(CellArray *p, int N){
6660 assert( N>=0 && N<p->nCell );
6661 if( p->szCell[N] ) return p->szCell[N];
6662 return computeCellSize(p, N);
6663}
6664
6665/*
dan8e9ba0c2014-10-14 17:27:04 +00006666** Array apCell[] contains pointers to nCell b-tree page cells. The
6667** szCell[] array contains the size in bytes of each cell. This function
6668** replaces the current contents of page pPg with the contents of the cell
6669** array.
6670**
6671** Some of the cells in apCell[] may currently be stored in pPg. This
6672** function works around problems caused by this by making a copy of any
6673** such cells before overwriting the page data.
6674**
6675** The MemPage.nFree field is invalidated by this function. It is the
6676** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006677*/
drh658873b2015-06-22 20:02:04 +00006678static int rebuildPage(
dan33ea4862014-10-09 19:35:37 +00006679 MemPage *pPg, /* Edit this page */
dan33ea4862014-10-09 19:35:37 +00006680 int nCell, /* Final number of cells on page */
dan09c68402014-10-11 20:00:24 +00006681 u8 **apCell, /* Array of cells */
6682 u16 *szCell /* Array of cell sizes */
dan33ea4862014-10-09 19:35:37 +00006683){
6684 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6685 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6686 const int usableSize = pPg->pBt->usableSize;
6687 u8 * const pEnd = &aData[usableSize];
6688 int i;
6689 u8 *pCellptr = pPg->aCellIdx;
6690 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6691 u8 *pData;
6692
6693 i = get2byte(&aData[hdr+5]);
6694 memcpy(&pTmp[i], &aData[i], usableSize - i);
dan33ea4862014-10-09 19:35:37 +00006695
dan8e9ba0c2014-10-14 17:27:04 +00006696 pData = pEnd;
dan33ea4862014-10-09 19:35:37 +00006697 for(i=0; i<nCell; i++){
6698 u8 *pCell = apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00006699 if( SQLITE_WITHIN(pCell,aData,pEnd) ){
dan33ea4862014-10-09 19:35:37 +00006700 pCell = &pTmp[pCell - aData];
6701 }
6702 pData -= szCell[i];
dan33ea4862014-10-09 19:35:37 +00006703 put2byte(pCellptr, (pData - aData));
6704 pCellptr += 2;
drh658873b2015-06-22 20:02:04 +00006705 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6706 memcpy(pData, pCell, szCell[i]);
drh25ada072015-06-19 15:07:14 +00006707 assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
drhea82b372015-06-23 21:35:28 +00006708 testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
dan33ea4862014-10-09 19:35:37 +00006709 }
6710
dand7b545b2014-10-13 18:03:27 +00006711 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006712 pPg->nCell = nCell;
6713 pPg->nOverflow = 0;
6714
6715 put2byte(&aData[hdr+1], 0);
6716 put2byte(&aData[hdr+3], pPg->nCell);
6717 put2byte(&aData[hdr+5], pData - aData);
6718 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00006719 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00006720}
6721
dan8e9ba0c2014-10-14 17:27:04 +00006722/*
6723** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6724** contains the size in bytes of each such cell. This function attempts to
6725** add the cells stored in the array to page pPg. If it cannot (because
6726** the page needs to be defragmented before the cells will fit), non-zero
6727** is returned. Otherwise, if the cells are added successfully, zero is
6728** returned.
6729**
6730** Argument pCellptr points to the first entry in the cell-pointer array
6731** (part of page pPg) to populate. After cell apCell[0] is written to the
6732** page body, a 16-bit offset is written to pCellptr. And so on, for each
6733** cell in the array. It is the responsibility of the caller to ensure
6734** that it is safe to overwrite this part of the cell-pointer array.
6735**
6736** When this function is called, *ppData points to the start of the
6737** content area on page pPg. If the size of the content area is extended,
6738** *ppData is updated to point to the new start of the content area
6739** before returning.
6740**
6741** Finally, argument pBegin points to the byte immediately following the
6742** end of the space required by this page for the cell-pointer area (for
6743** all cells - not just those inserted by the current call). If the content
6744** area must be extended to before this point in order to accomodate all
6745** cells in apCell[], then the cells do not fit and non-zero is returned.
6746*/
dand7b545b2014-10-13 18:03:27 +00006747static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00006748 MemPage *pPg, /* Page to add cells to */
6749 u8 *pBegin, /* End of cell-pointer array */
6750 u8 **ppData, /* IN/OUT: Page content -area pointer */
6751 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00006752 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00006753 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00006754 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006755){
6756 int i;
6757 u8 *aData = pPg->aData;
6758 u8 *pData = *ppData;
drhf7838932015-06-23 15:36:34 +00006759 int iEnd = iFirst + nCell;
dan23eba452014-10-24 18:43:57 +00006760 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhf7838932015-06-23 15:36:34 +00006761 for(i=iFirst; i<iEnd; i++){
6762 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00006763 u8 *pSlot;
drhf7838932015-06-23 15:36:34 +00006764 sz = cachedCellSize(pCArray, i);
drhb7580e82015-06-25 18:36:13 +00006765 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
drhcca66982016-04-05 13:19:19 +00006766 if( (pData - pBegin)<sz ) return 1;
dand7b545b2014-10-13 18:03:27 +00006767 pData -= sz;
dand7b545b2014-10-13 18:03:27 +00006768 pSlot = pData;
6769 }
drh48310f82015-10-10 16:41:28 +00006770 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
6771 ** database. But they might for a corrupt database. Hence use memmove()
6772 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
6773 assert( (pSlot+sz)<=pCArray->apCell[i]
6774 || pSlot>=(pCArray->apCell[i]+sz)
6775 || CORRUPT_DB );
6776 memmove(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00006777 put2byte(pCellptr, (pSlot - aData));
6778 pCellptr += 2;
6779 }
6780 *ppData = pData;
6781 return 0;
6782}
6783
dan8e9ba0c2014-10-14 17:27:04 +00006784/*
6785** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6786** contains the size in bytes of each such cell. This function adds the
6787** space associated with each cell in the array that is currently stored
6788** within the body of pPg to the pPg free-list. The cell-pointers and other
6789** fields of the page are not updated.
6790**
6791** This function returns the total number of cells added to the free-list.
6792*/
dand7b545b2014-10-13 18:03:27 +00006793static int pageFreeArray(
6794 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00006795 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00006796 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00006797 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006798){
6799 u8 * const aData = pPg->aData;
6800 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00006801 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00006802 int nRet = 0;
6803 int i;
drhf7838932015-06-23 15:36:34 +00006804 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00006805 u8 *pFree = 0;
6806 int szFree = 0;
6807
drhf7838932015-06-23 15:36:34 +00006808 for(i=iFirst; i<iEnd; i++){
6809 u8 *pCell = pCArray->apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00006810 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
drhf7838932015-06-23 15:36:34 +00006811 int sz;
6812 /* No need to use cachedCellSize() here. The sizes of all cells that
6813 ** are to be freed have already been computing while deciding which
6814 ** cells need freeing */
6815 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00006816 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00006817 if( pFree ){
6818 assert( pFree>aData && (pFree - aData)<65536 );
6819 freeSpace(pPg, (u16)(pFree - aData), szFree);
6820 }
dand7b545b2014-10-13 18:03:27 +00006821 pFree = pCell;
6822 szFree = sz;
dan89ca0b32014-10-25 20:36:28 +00006823 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00006824 }else{
6825 pFree = pCell;
6826 szFree += sz;
6827 }
6828 nRet++;
6829 }
6830 }
drhfefa0942014-11-05 21:21:08 +00006831 if( pFree ){
6832 assert( pFree>aData && (pFree - aData)<65536 );
6833 freeSpace(pPg, (u16)(pFree - aData), szFree);
6834 }
dand7b545b2014-10-13 18:03:27 +00006835 return nRet;
6836}
6837
dand7b545b2014-10-13 18:03:27 +00006838/*
drh5ab63772014-11-27 03:46:04 +00006839** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6840** pages being balanced. The current page, pPg, has pPg->nCell cells starting
6841** with apCell[iOld]. After balancing, this page should hold nNew cells
6842** starting at apCell[iNew].
6843**
6844** This routine makes the necessary adjustments to pPg so that it contains
6845** the correct cells after being balanced.
6846**
dand7b545b2014-10-13 18:03:27 +00006847** The pPg->nFree field is invalid when this function returns. It is the
6848** responsibility of the caller to set it correctly.
6849*/
drh658873b2015-06-22 20:02:04 +00006850static int editPage(
dan09c68402014-10-11 20:00:24 +00006851 MemPage *pPg, /* Edit this page */
6852 int iOld, /* Index of first cell currently on page */
6853 int iNew, /* Index of new first cell on page */
6854 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00006855 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00006856){
dand7b545b2014-10-13 18:03:27 +00006857 u8 * const aData = pPg->aData;
6858 const int hdr = pPg->hdrOffset;
6859 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6860 int nCell = pPg->nCell; /* Cells stored on pPg */
6861 u8 *pData;
6862 u8 *pCellptr;
6863 int i;
6864 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6865 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00006866
6867#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00006868 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6869 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00006870#endif
6871
dand7b545b2014-10-13 18:03:27 +00006872 /* Remove cells from the start and end of the page */
6873 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00006874 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
dand7b545b2014-10-13 18:03:27 +00006875 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6876 nCell -= nShift;
6877 }
6878 if( iNewEnd < iOldEnd ){
drhf7838932015-06-23 15:36:34 +00006879 nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
dand7b545b2014-10-13 18:03:27 +00006880 }
dan09c68402014-10-11 20:00:24 +00006881
drh5ab63772014-11-27 03:46:04 +00006882 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00006883 if( pData<pBegin ) goto editpage_fail;
6884
6885 /* Add cells to the start of the page */
6886 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00006887 int nAdd = MIN(nNew,iOld-iNew);
6888 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
dand7b545b2014-10-13 18:03:27 +00006889 pCellptr = pPg->aCellIdx;
6890 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6891 if( pageInsertArray(
6892 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006893 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00006894 ) ) goto editpage_fail;
6895 nCell += nAdd;
6896 }
6897
6898 /* Add any overflow cells */
6899 for(i=0; i<pPg->nOverflow; i++){
6900 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6901 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00006902 pCellptr = &pPg->aCellIdx[iCell * 2];
dand7b545b2014-10-13 18:03:27 +00006903 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6904 nCell++;
6905 if( pageInsertArray(
6906 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006907 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00006908 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006909 }
dand7b545b2014-10-13 18:03:27 +00006910 }
dan09c68402014-10-11 20:00:24 +00006911
dand7b545b2014-10-13 18:03:27 +00006912 /* Append cells to the end of the page */
6913 pCellptr = &pPg->aCellIdx[nCell*2];
6914 if( pageInsertArray(
6915 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006916 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00006917 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006918
dand7b545b2014-10-13 18:03:27 +00006919 pPg->nCell = nNew;
6920 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00006921
dand7b545b2014-10-13 18:03:27 +00006922 put2byte(&aData[hdr+3], pPg->nCell);
6923 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00006924
6925#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00006926 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00006927 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00006928 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
drh1c715f62016-04-05 13:35:43 +00006929 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
dand7b545b2014-10-13 18:03:27 +00006930 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00006931 }
drh1ffd2472015-06-23 02:37:30 +00006932 assert( 0==memcmp(pCell, &aData[iOff],
6933 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00006934 }
dan09c68402014-10-11 20:00:24 +00006935#endif
6936
drh658873b2015-06-22 20:02:04 +00006937 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00006938 editpage_fail:
dan09c68402014-10-11 20:00:24 +00006939 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00006940 populateCellCache(pCArray, iNew, nNew);
6941 return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
drhfa1a98a2004-05-14 19:08:17 +00006942}
6943
drh14acc042001-06-10 19:56:58 +00006944/*
drhc3b70572003-01-04 19:44:07 +00006945** The following parameters determine how many adjacent pages get involved
6946** in a balancing operation. NN is the number of neighbors on either side
6947** of the page that participate in the balancing operation. NB is the
6948** total number of pages that participate, including the target page and
6949** NN neighbors on either side.
6950**
6951** The minimum value of NN is 1 (of course). Increasing NN above 1
6952** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6953** in exchange for a larger degradation in INSERT and UPDATE performance.
6954** The value of NN appears to give the best results overall.
6955*/
6956#define NN 1 /* Number of neighbors on either side of pPage */
6957#define NB (NN*2+1) /* Total pages involved in the balance */
6958
danielk1977ac245ec2005-01-14 13:50:11 +00006959
drh615ae552005-01-16 23:21:00 +00006960#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00006961/*
6962** This version of balance() handles the common special case where
6963** a new entry is being inserted on the extreme right-end of the
6964** tree, in other words, when the new entry will become the largest
6965** entry in the tree.
6966**
drhc314dc72009-07-21 11:52:34 +00006967** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00006968** a new page to the right-hand side and put the one new entry in
6969** that page. This leaves the right side of the tree somewhat
6970** unbalanced. But odds are that we will be inserting new entries
6971** at the end soon afterwards so the nearly empty page will quickly
6972** fill up. On average.
6973**
6974** pPage is the leaf page which is the right-most page in the tree.
6975** pParent is its parent. pPage must have a single overflow entry
6976** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00006977**
6978** The pSpace buffer is used to store a temporary copy of the divider
6979** cell that will be inserted into pParent. Such a cell consists of a 4
6980** byte page number followed by a variable length integer. In other
6981** words, at most 13 bytes. Hence the pSpace buffer must be at
6982** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00006983*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006984static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6985 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00006986 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00006987 int rc; /* Return Code */
6988 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00006989
drh1fee73e2007-08-29 04:00:57 +00006990 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00006991 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006992 assert( pPage->nOverflow==1 );
6993
drh5d433ce2010-08-14 16:02:52 +00006994 /* This error condition is now caught prior to reaching this function */
drh1fd2d7d2014-12-02 16:16:47 +00006995 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00006996
danielk1977a50d9aa2009-06-08 14:49:45 +00006997 /* Allocate a new page. This page will become the right-sibling of
6998 ** pPage. Make the parent page writable, so that the new divider cell
6999 ** may be inserted. If both these operations are successful, proceed.
7000 */
drh4f0c5872007-03-26 22:05:01 +00007001 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007002
danielk1977eaa06f62008-09-18 17:34:44 +00007003 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007004
7005 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00007006 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00007007 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00007008 u8 *pStop;
7009
drhc5053fb2008-11-27 02:22:10 +00007010 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00007011 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
7012 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drh658873b2015-06-22 20:02:04 +00007013 rc = rebuildPage(pNew, 1, &pCell, &szCell);
drhea82b372015-06-23 21:35:28 +00007014 if( NEVER(rc) ) return rc;
dan8e9ba0c2014-10-14 17:27:04 +00007015 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00007016
7017 /* If this is an auto-vacuum database, update the pointer map
7018 ** with entries for the new page, and any pointer from the
7019 ** cell on the page to an overflow page. If either of these
7020 ** operations fails, the return code is set, but the contents
7021 ** of the parent page are still manipulated by thh code below.
7022 ** That is Ok, at this point the parent page is guaranteed to
7023 ** be marked as dirty. Returning an error code will cause a
7024 ** rollback, undoing any changes made to the parent page.
7025 */
7026 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007027 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7028 if( szCell>pNew->minLocal ){
7029 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007030 }
7031 }
danielk1977eaa06f62008-09-18 17:34:44 +00007032
danielk19776f235cc2009-06-04 14:46:08 +00007033 /* Create a divider cell to insert into pParent. The divider cell
7034 ** consists of a 4-byte page number (the page number of pPage) and
7035 ** a variable length key value (which must be the same value as the
7036 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00007037 **
danielk19776f235cc2009-06-04 14:46:08 +00007038 ** To find the largest key value on pPage, first find the right-most
7039 ** cell on pPage. The first two fields of this cell are the
7040 ** record-length (a variable length integer at most 32-bits in size)
7041 ** and the key value (a variable length integer, may have any value).
7042 ** The first of the while(...) loops below skips over the record-length
7043 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00007044 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00007045 */
danielk1977eaa06f62008-09-18 17:34:44 +00007046 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00007047 pStop = &pCell[9];
7048 while( (*(pCell++)&0x80) && pCell<pStop );
7049 pStop = &pCell[9];
7050 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7051
danielk19774dbaa892009-06-16 16:50:22 +00007052 /* Insert the new divider cell into pParent. */
drhcb89f4a2016-05-21 11:23:26 +00007053 if( rc==SQLITE_OK ){
7054 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7055 0, pPage->pgno, &rc);
7056 }
danielk19776f235cc2009-06-04 14:46:08 +00007057
7058 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00007059 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7060
danielk1977e08a3c42008-09-18 18:17:03 +00007061 /* Release the reference to the new page. */
7062 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00007063 }
7064
danielk1977eaa06f62008-09-18 17:34:44 +00007065 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00007066}
drh615ae552005-01-16 23:21:00 +00007067#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00007068
danielk19774dbaa892009-06-16 16:50:22 +00007069#if 0
drhc3b70572003-01-04 19:44:07 +00007070/*
danielk19774dbaa892009-06-16 16:50:22 +00007071** This function does not contribute anything to the operation of SQLite.
7072** it is sometimes activated temporarily while debugging code responsible
7073** for setting pointer-map entries.
7074*/
7075static int ptrmapCheckPages(MemPage **apPage, int nPage){
7076 int i, j;
7077 for(i=0; i<nPage; i++){
7078 Pgno n;
7079 u8 e;
7080 MemPage *pPage = apPage[i];
7081 BtShared *pBt = pPage->pBt;
7082 assert( pPage->isInit );
7083
7084 for(j=0; j<pPage->nCell; j++){
7085 CellInfo info;
7086 u8 *z;
7087
7088 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00007089 pPage->xParseCell(pPage, z, &info);
drh45ac1c72015-12-18 03:59:16 +00007090 if( info.nLocal<info.nPayload ){
7091 Pgno ovfl = get4byte(&z[info.nSize-4]);
danielk19774dbaa892009-06-16 16:50:22 +00007092 ptrmapGet(pBt, ovfl, &e, &n);
7093 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7094 }
7095 if( !pPage->leaf ){
7096 Pgno child = get4byte(z);
7097 ptrmapGet(pBt, child, &e, &n);
7098 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7099 }
7100 }
7101 if( !pPage->leaf ){
7102 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7103 ptrmapGet(pBt, child, &e, &n);
7104 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7105 }
7106 }
7107 return 1;
7108}
7109#endif
7110
danielk1977cd581a72009-06-23 15:43:39 +00007111/*
7112** This function is used to copy the contents of the b-tree node stored
7113** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7114** the pointer-map entries for each child page are updated so that the
7115** parent page stored in the pointer map is page pTo. If pFrom contained
7116** any cells with overflow page pointers, then the corresponding pointer
7117** map entries are also updated so that the parent page is page pTo.
7118**
7119** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00007120** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00007121**
danielk197730548662009-07-09 05:07:37 +00007122** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00007123**
7124** The performance of this function is not critical. It is only used by
7125** the balance_shallower() and balance_deeper() procedures, neither of
7126** which are called often under normal circumstances.
7127*/
drhc314dc72009-07-21 11:52:34 +00007128static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7129 if( (*pRC)==SQLITE_OK ){
7130 BtShared * const pBt = pFrom->pBt;
7131 u8 * const aFrom = pFrom->aData;
7132 u8 * const aTo = pTo->aData;
7133 int const iFromHdr = pFrom->hdrOffset;
7134 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00007135 int rc;
drhc314dc72009-07-21 11:52:34 +00007136 int iData;
7137
7138
7139 assert( pFrom->isInit );
7140 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00007141 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00007142
7143 /* Copy the b-tree node content from page pFrom to page pTo. */
7144 iData = get2byte(&aFrom[iFromHdr+5]);
7145 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7146 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7147
7148 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00007149 ** match the new data. The initialization of pTo can actually fail under
7150 ** fairly obscure circumstances, even though it is a copy of initialized
7151 ** page pFrom.
7152 */
drhc314dc72009-07-21 11:52:34 +00007153 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00007154 rc = btreeInitPage(pTo);
7155 if( rc!=SQLITE_OK ){
7156 *pRC = rc;
7157 return;
7158 }
drhc314dc72009-07-21 11:52:34 +00007159
7160 /* If this is an auto-vacuum database, update the pointer-map entries
7161 ** for any b-tree or overflow pages that pTo now contains the pointers to.
7162 */
7163 if( ISAUTOVACUUM ){
7164 *pRC = setChildPtrmaps(pTo);
7165 }
danielk1977cd581a72009-06-23 15:43:39 +00007166 }
danielk1977cd581a72009-06-23 15:43:39 +00007167}
7168
7169/*
danielk19774dbaa892009-06-16 16:50:22 +00007170** This routine redistributes cells on the iParentIdx'th child of pParent
7171** (hereafter "the page") and up to 2 siblings so that all pages have about the
7172** same amount of free space. Usually a single sibling on either side of the
7173** page are used in the balancing, though both siblings might come from one
7174** side if the page is the first or last child of its parent. If the page
7175** has fewer than 2 siblings (something which can only happen if the page
7176** is a root page or a child of a root page) then all available siblings
7177** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00007178**
danielk19774dbaa892009-06-16 16:50:22 +00007179** The number of siblings of the page might be increased or decreased by
7180** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00007181**
danielk19774dbaa892009-06-16 16:50:22 +00007182** Note that when this routine is called, some of the cells on the page
7183** might not actually be stored in MemPage.aData[]. This can happen
7184** if the page is overfull. This routine ensures that all cells allocated
7185** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00007186**
danielk19774dbaa892009-06-16 16:50:22 +00007187** In the course of balancing the page and its siblings, cells may be
7188** inserted into or removed from the parent page (pParent). Doing so
7189** may cause the parent page to become overfull or underfull. If this
7190** happens, it is the responsibility of the caller to invoke the correct
7191** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00007192**
drh5e00f6c2001-09-13 13:46:56 +00007193** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00007194** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00007195** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00007196**
7197** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00007198** buffer big enough to hold one page. If while inserting cells into the parent
7199** page (pParent) the parent page becomes overfull, this buffer is
7200** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00007201** a maximum of four divider cells into the parent page, and the maximum
7202** size of a cell stored within an internal node is always less than 1/4
7203** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7204** enough for all overflow cells.
7205**
7206** If aOvflSpace is set to a null pointer, this function returns
7207** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00007208*/
danielk19774dbaa892009-06-16 16:50:22 +00007209static int balance_nonroot(
7210 MemPage *pParent, /* Parent page of siblings being balanced */
7211 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00007212 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00007213 int isRoot, /* True if pParent is a root-page */
7214 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00007215){
drh16a9b832007-05-05 18:39:25 +00007216 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00007217 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00007218 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00007219 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00007220 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00007221 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00007222 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00007223 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00007224 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00007225 int usableSpace; /* Bytes in pPage beyond the header */
7226 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00007227 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00007228 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00007229 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00007230 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00007231 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00007232 u8 *pRight; /* Location in parent of right-sibling pointer */
7233 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00007234 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7235 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00007236 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00007237 u8 *aSpace1; /* Space for copies of dividers cells */
7238 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00007239 u8 abDone[NB+2]; /* True after i'th new page is populated */
7240 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00007241 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00007242 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00007243 CellArray b; /* Parsed information on cells being balanced */
drh8b2f49b2001-06-08 00:21:52 +00007244
dan33ea4862014-10-09 19:35:37 +00007245 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00007246 b.nCell = 0;
7247 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007248 pBt = pParent->pBt;
7249 assert( sqlite3_mutex_held(pBt->mutex) );
7250 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00007251
danielk1977e5765212009-06-17 11:13:28 +00007252#if 0
drh43605152004-05-29 21:46:49 +00007253 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00007254#endif
drh2e38c322004-09-03 18:38:44 +00007255
danielk19774dbaa892009-06-16 16:50:22 +00007256 /* At this point pParent may have at most one overflow cell. And if
7257 ** this overflow cell is present, it must be the cell with
7258 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00007259 ** is called (indirectly) from sqlite3BtreeDelete().
7260 */
danielk19774dbaa892009-06-16 16:50:22 +00007261 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00007262 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00007263
danielk197711a8a862009-06-17 11:49:52 +00007264 if( !aOvflSpace ){
mistachkinfad30392016-02-13 23:43:46 +00007265 return SQLITE_NOMEM_BKPT;
danielk197711a8a862009-06-17 11:49:52 +00007266 }
7267
danielk1977a50d9aa2009-06-08 14:49:45 +00007268 /* Find the sibling pages to balance. Also locate the cells in pParent
7269 ** that divide the siblings. An attempt is made to find NN siblings on
7270 ** either side of pPage. More siblings are taken from one side, however,
7271 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00007272 ** has NB or fewer children then all children of pParent are taken.
7273 **
7274 ** This loop also drops the divider cells from the parent page. This
7275 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00007276 ** overflow cells in the parent page, since if any existed they will
7277 ** have already been removed.
7278 */
danielk19774dbaa892009-06-16 16:50:22 +00007279 i = pParent->nOverflow + pParent->nCell;
7280 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00007281 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00007282 }else{
dan7d6885a2012-08-08 14:04:56 +00007283 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00007284 if( iParentIdx==0 ){
7285 nxDiv = 0;
7286 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00007287 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00007288 }else{
danielk19774dbaa892009-06-16 16:50:22 +00007289 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00007290 }
dan7d6885a2012-08-08 14:04:56 +00007291 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00007292 }
dan7d6885a2012-08-08 14:04:56 +00007293 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007294 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7295 pRight = &pParent->aData[pParent->hdrOffset+8];
7296 }else{
7297 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7298 }
7299 pgno = get4byte(pRight);
7300 while( 1 ){
drh28f58dd2015-06-27 19:45:03 +00007301 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007302 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007303 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007304 goto balance_cleanup;
7305 }
danielk1977634f2982005-03-28 08:44:07 +00007306 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00007307 if( (i--)==0 ) break;
7308
drh9cc5b4e2016-12-26 01:41:33 +00007309 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
drh2cbd78b2012-02-02 19:37:18 +00007310 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007311 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007312 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007313 pParent->nOverflow = 0;
7314 }else{
7315 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7316 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007317 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007318
7319 /* Drop the cell from the parent page. apDiv[i] still points to
7320 ** the cell within the parent, even though it has been dropped.
7321 ** This is safe because dropping a cell only overwrites the first
7322 ** four bytes of it, and this function does not need the first
7323 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007324 ** later on.
7325 **
drh8a575d92011-10-12 17:00:28 +00007326 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007327 ** the dropCell() routine will overwrite the entire cell with zeroes.
7328 ** In this case, temporarily copy the cell into the aOvflSpace[]
7329 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7330 ** is allocated. */
drha5907a82017-06-19 11:44:22 +00007331 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh8a575d92011-10-12 17:00:28 +00007332 int iOff;
7333
7334 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00007335 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00007336 rc = SQLITE_CORRUPT_BKPT;
7337 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7338 goto balance_cleanup;
7339 }else{
7340 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7341 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7342 }
drh5b47efa2010-02-12 18:18:39 +00007343 }
drh98add2e2009-07-20 17:11:49 +00007344 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007345 }
drh8b2f49b2001-06-08 00:21:52 +00007346 }
7347
drha9121e42008-02-19 14:59:35 +00007348 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007349 ** alignment */
drha9121e42008-02-19 14:59:35 +00007350 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007351
drh8b2f49b2001-06-08 00:21:52 +00007352 /*
danielk1977634f2982005-03-28 08:44:07 +00007353 ** Allocate space for memory structures
7354 */
drhfacf0302008-06-17 15:12:00 +00007355 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007356 nMaxCells*sizeof(u8*) /* b.apCell */
7357 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007358 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007359
mistachkin0fbd7352014-12-09 04:26:56 +00007360 assert( szScratch<=6*(int)pBt->pageSize );
drhb2a0f752017-08-28 15:51:35 +00007361 b.apCell = sqlite3StackAllocRaw(0, szScratch );
drh1ffd2472015-06-23 02:37:30 +00007362 if( b.apCell==0 ){
mistachkinfad30392016-02-13 23:43:46 +00007363 rc = SQLITE_NOMEM_BKPT;
danielk1977634f2982005-03-28 08:44:07 +00007364 goto balance_cleanup;
7365 }
drh1ffd2472015-06-23 02:37:30 +00007366 b.szCell = (u16*)&b.apCell[nMaxCells];
7367 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007368 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007369
7370 /*
7371 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007372 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007373 ** into space obtained from aSpace1[]. The divider cells have already
7374 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007375 **
7376 ** If the siblings are on leaf pages, then the child pointers of the
7377 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007378 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007379 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007380 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007381 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007382 **
7383 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7384 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007385 */
drh1ffd2472015-06-23 02:37:30 +00007386 b.pRef = apOld[0];
7387 leafCorrection = b.pRef->leaf*4;
7388 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007389 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007390 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007391 int limit = pOld->nCell;
7392 u8 *aData = pOld->aData;
7393 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007394 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007395 u8 *piEnd;
danielk19774dbaa892009-06-16 16:50:22 +00007396
drh73d340a2015-05-28 11:23:11 +00007397 /* Verify that all sibling pages are of the same "type" (table-leaf,
7398 ** table-interior, index-leaf, or index-interior).
7399 */
7400 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7401 rc = SQLITE_CORRUPT_BKPT;
7402 goto balance_cleanup;
7403 }
7404
drhfe647dc2015-06-23 18:24:25 +00007405 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
drh8d7f1632018-01-23 13:30:38 +00007406 ** contains overflow cells, include them in the b.apCell[] array
drhfe647dc2015-06-23 18:24:25 +00007407 ** in the correct spot.
7408 **
7409 ** Note that when there are multiple overflow cells, it is always the
7410 ** case that they are sequential and adjacent. This invariant arises
7411 ** because multiple overflows can only occurs when inserting divider
7412 ** cells into a parent on a prior balance, and divider cells are always
7413 ** adjacent and are inserted in order. There is an assert() tagged
7414 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7415 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007416 **
7417 ** This must be done in advance. Once the balance starts, the cell
7418 ** offset section of the btree page will be overwritten and we will no
7419 ** long be able to find the cells if a pointer to each cell is not saved
7420 ** first.
7421 */
drh36b78ee2016-01-20 01:32:00 +00007422 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
drh68f2a572011-06-03 17:50:49 +00007423 if( pOld->nOverflow>0 ){
drhfe647dc2015-06-23 18:24:25 +00007424 limit = pOld->aiOvfl[0];
drh68f2a572011-06-03 17:50:49 +00007425 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00007426 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00007427 piCell += 2;
7428 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007429 }
drhfe647dc2015-06-23 18:24:25 +00007430 for(k=0; k<pOld->nOverflow; k++){
7431 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007432 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007433 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007434 }
drh1ffd2472015-06-23 02:37:30 +00007435 }
drhfe647dc2015-06-23 18:24:25 +00007436 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7437 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007438 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00007439 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00007440 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007441 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007442 }
7443
drh1ffd2472015-06-23 02:37:30 +00007444 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007445 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007446 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007447 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007448 assert( b.nCell<nMaxCells );
7449 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007450 pTemp = &aSpace1[iSpace1];
7451 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007452 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007453 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007454 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007455 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007456 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007457 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007458 if( !pOld->leaf ){
7459 assert( leafCorrection==0 );
7460 assert( pOld->hdrOffset==0 );
7461 /* The right pointer of the child page pOld becomes the left
7462 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007463 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007464 }else{
7465 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007466 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007467 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7468 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007469 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7470 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007471 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007472 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007473 }
7474 }
drh1ffd2472015-06-23 02:37:30 +00007475 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007476 }
drh8b2f49b2001-06-08 00:21:52 +00007477 }
7478
7479 /*
drh1ffd2472015-06-23 02:37:30 +00007480 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007481 ** Store this number in "k". Also compute szNew[] which is the total
7482 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007483 ** in b.apCell[] of the cell that divides page i from page i+1.
7484 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007485 **
drh96f5b762004-05-16 16:24:36 +00007486 ** Values computed by this block:
7487 **
7488 ** k: The total number of sibling pages
7489 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007490 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007491 ** the right of the i-th sibling page.
7492 ** usableSpace: Number of bytes of space available on each sibling.
7493 **
drh8b2f49b2001-06-08 00:21:52 +00007494 */
drh43605152004-05-29 21:46:49 +00007495 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh658873b2015-06-22 20:02:04 +00007496 for(i=0; i<nOld; i++){
7497 MemPage *p = apOld[i];
7498 szNew[i] = usableSpace - p->nFree;
drh658873b2015-06-22 20:02:04 +00007499 for(j=0; j<p->nOverflow; j++){
7500 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7501 }
7502 cntNew[i] = cntOld[i];
7503 }
7504 k = nOld;
7505 for(i=0; i<k; i++){
7506 int sz;
7507 while( szNew[i]>usableSpace ){
7508 if( i+1>=k ){
7509 k = i+2;
7510 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7511 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007512 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007513 }
drh1ffd2472015-06-23 02:37:30 +00007514 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007515 szNew[i] -= sz;
7516 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007517 if( cntNew[i]<b.nCell ){
7518 sz = 2 + cachedCellSize(&b, cntNew[i]);
7519 }else{
7520 sz = 0;
7521 }
drh658873b2015-06-22 20:02:04 +00007522 }
7523 szNew[i+1] += sz;
7524 cntNew[i]--;
7525 }
drh1ffd2472015-06-23 02:37:30 +00007526 while( cntNew[i]<b.nCell ){
7527 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007528 if( szNew[i]+sz>usableSpace ) break;
7529 szNew[i] += sz;
7530 cntNew[i]++;
7531 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007532 if( cntNew[i]<b.nCell ){
7533 sz = 2 + cachedCellSize(&b, cntNew[i]);
7534 }else{
7535 sz = 0;
7536 }
drh658873b2015-06-22 20:02:04 +00007537 }
7538 szNew[i+1] -= sz;
7539 }
drh1ffd2472015-06-23 02:37:30 +00007540 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007541 k = i+1;
drh672073a2015-06-24 12:07:40 +00007542 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00007543 rc = SQLITE_CORRUPT_BKPT;
7544 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00007545 }
7546 }
drh96f5b762004-05-16 16:24:36 +00007547
7548 /*
7549 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00007550 ** on the left side (siblings with smaller keys). The left siblings are
7551 ** always nearly full, while the right-most sibling might be nearly empty.
7552 ** The next block of code attempts to adjust the packing of siblings to
7553 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00007554 **
7555 ** This adjustment is more than an optimization. The packing above might
7556 ** be so out of balance as to be illegal. For example, the right-most
7557 ** sibling might be completely empty. This adjustment is not optional.
7558 */
drh6019e162001-07-02 17:51:45 +00007559 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00007560 int szRight = szNew[i]; /* Size of sibling on the right */
7561 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7562 int r; /* Index of right-most cell in left sibling */
7563 int d; /* Index of first cell to the left of right sibling */
7564
7565 r = cntNew[i-1] - 1;
7566 d = r + 1 - leafData;
drh008d64c2015-06-23 16:00:24 +00007567 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00007568 do{
drh1ffd2472015-06-23 02:37:30 +00007569 assert( d<nMaxCells );
7570 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007571 (void)cachedCellSize(&b, r);
7572 if( szRight!=0
drh0b4c0422016-07-14 19:48:08 +00007573 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
drh1ffd2472015-06-23 02:37:30 +00007574 break;
7575 }
7576 szRight += b.szCell[d] + 2;
7577 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00007578 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00007579 r--;
7580 d--;
drh672073a2015-06-24 12:07:40 +00007581 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00007582 szNew[i] = szRight;
7583 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00007584 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7585 rc = SQLITE_CORRUPT_BKPT;
7586 goto balance_cleanup;
7587 }
drh6019e162001-07-02 17:51:45 +00007588 }
drh09d0deb2005-08-02 17:13:09 +00007589
drh2a0df922014-10-30 23:14:56 +00007590 /* Sanity check: For a non-corrupt database file one of the follwing
7591 ** must be true:
7592 ** (1) We found one or more cells (cntNew[0])>0), or
7593 ** (2) pPage is a virtual root page. A virtual root page is when
7594 ** the real root page is page 1 and we are the only child of
7595 ** that page.
drh09d0deb2005-08-02 17:13:09 +00007596 */
drh2a0df922014-10-30 23:14:56 +00007597 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00007598 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7599 apOld[0]->pgno, apOld[0]->nCell,
7600 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7601 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007602 ));
7603
drh8b2f49b2001-06-08 00:21:52 +00007604 /*
drh6b308672002-07-08 02:16:37 +00007605 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007606 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007607 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007608 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007609 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007610 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007611 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007612 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007613 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007614 nNew++;
danielk197728129562005-01-11 10:25:06 +00007615 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007616 }else{
drh7aa8f852006-03-28 00:24:44 +00007617 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007618 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007619 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007620 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007621 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007622 nNew++;
drh1ffd2472015-06-23 02:37:30 +00007623 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007624
7625 /* Set the pointer-map entry for the new sibling page. */
7626 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007627 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007628 if( rc!=SQLITE_OK ){
7629 goto balance_cleanup;
7630 }
7631 }
drh6b308672002-07-08 02:16:37 +00007632 }
drh8b2f49b2001-06-08 00:21:52 +00007633 }
7634
7635 /*
dan33ea4862014-10-09 19:35:37 +00007636 ** Reassign page numbers so that the new pages are in ascending order.
7637 ** This helps to keep entries in the disk file in order so that a scan
7638 ** of the table is closer to a linear scan through the file. That in turn
7639 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007640 **
dan33ea4862014-10-09 19:35:37 +00007641 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7642 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007643 **
dan33ea4862014-10-09 19:35:37 +00007644 ** When NB==3, this one optimization makes the database about 25% faster
7645 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007646 */
dan33ea4862014-10-09 19:35:37 +00007647 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007648 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007649 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007650 for(j=0; j<i; j++){
7651 if( aPgno[j]==aPgno[i] ){
7652 /* This branch is taken if the set of sibling pages somehow contains
7653 ** duplicate entries. This can happen if the database is corrupt.
7654 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007655 ** we do the detection here in order to avoid populating the pager
7656 ** cache with two separate objects associated with the same
7657 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007658 assert( CORRUPT_DB );
7659 rc = SQLITE_CORRUPT_BKPT;
7660 goto balance_cleanup;
drhf9ffac92002-03-02 19:00:31 +00007661 }
7662 }
dan33ea4862014-10-09 19:35:37 +00007663 }
7664 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007665 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007666 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007667 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007668 }
drh00fe08a2014-10-31 00:05:23 +00007669 pgno = aPgOrder[iBest];
7670 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007671 if( iBest!=i ){
7672 if( iBest>i ){
7673 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7674 }
7675 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7676 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007677 }
7678 }
dan33ea4862014-10-09 19:35:37 +00007679
7680 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7681 "%d(%d nc=%d) %d(%d nc=%d)\n",
7682 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007683 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007684 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007685 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007686 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007687 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007688 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7689 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7690 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7691 ));
danielk19774dbaa892009-06-16 16:50:22 +00007692
7693 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7694 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00007695
dan33ea4862014-10-09 19:35:37 +00007696 /* If the sibling pages are not leaves, ensure that the right-child pointer
7697 ** of the right-most new sibling page is set to the value that was
7698 ** originally in the same field of the right-most old sibling page. */
7699 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7700 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7701 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7702 }
danielk1977ac11ee62005-01-15 12:45:51 +00007703
dan33ea4862014-10-09 19:35:37 +00007704 /* Make any required updates to pointer map entries associated with
7705 ** cells stored on sibling pages following the balance operation. Pointer
7706 ** map entries associated with divider cells are set by the insertCell()
7707 ** routine. The associated pointer map entries are:
7708 **
7709 ** a) if the cell contains a reference to an overflow chain, the
7710 ** entry associated with the first page in the overflow chain, and
7711 **
7712 ** b) if the sibling pages are not leaves, the child page associated
7713 ** with the cell.
7714 **
7715 ** If the sibling pages are not leaves, then the pointer map entry
7716 ** associated with the right-child of each sibling may also need to be
7717 ** updated. This happens below, after the sibling pages have been
7718 ** populated, not here.
danielk1977ac11ee62005-01-15 12:45:51 +00007719 */
dan33ea4862014-10-09 19:35:37 +00007720 if( ISAUTOVACUUM ){
7721 MemPage *pNew = apNew[0];
7722 u8 *aOld = pNew->aData;
7723 int cntOldNext = pNew->nCell + pNew->nOverflow;
7724 int usableSize = pBt->usableSize;
7725 int iNew = 0;
7726 int iOld = 0;
danielk1977ac11ee62005-01-15 12:45:51 +00007727
drh1ffd2472015-06-23 02:37:30 +00007728 for(i=0; i<b.nCell; i++){
7729 u8 *pCell = b.apCell[i];
dan33ea4862014-10-09 19:35:37 +00007730 if( i==cntOldNext ){
7731 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7732 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7733 aOld = pOld->aData;
drh4b70f112004-05-02 21:12:19 +00007734 }
dan33ea4862014-10-09 19:35:37 +00007735 if( i==cntNew[iNew] ){
7736 pNew = apNew[++iNew];
7737 if( !leafData ) continue;
7738 }
danielk197785d90ca2008-07-19 14:25:15 +00007739
dan33ea4862014-10-09 19:35:37 +00007740 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00007741 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00007742 ** or else the divider cell to the left of sibling page iOld. So,
7743 ** if sibling page iOld had the same page number as pNew, and if
7744 ** pCell really was a part of sibling page iOld (not a divider or
7745 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00007746 if( iOld>=nNew
7747 || pNew->pgno!=aPgno[iOld]
drhac536e62015-12-10 15:09:17 +00007748 || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize])
drhd52d52b2014-12-06 02:05:44 +00007749 ){
dan33ea4862014-10-09 19:35:37 +00007750 if( !leafCorrection ){
7751 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7752 }
drh1ffd2472015-06-23 02:37:30 +00007753 if( cachedCellSize(&b,i)>pNew->minLocal ){
dan33ea4862014-10-09 19:35:37 +00007754 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk1977ac11ee62005-01-15 12:45:51 +00007755 }
drhea82b372015-06-23 21:35:28 +00007756 if( rc ) goto balance_cleanup;
drh43605152004-05-29 21:46:49 +00007757 }
drh14acc042001-06-10 19:56:58 +00007758 }
7759 }
dan33ea4862014-10-09 19:35:37 +00007760
7761 /* Insert new divider cells into pParent. */
7762 for(i=0; i<nNew-1; i++){
7763 u8 *pCell;
7764 u8 *pTemp;
7765 int sz;
7766 MemPage *pNew = apNew[i];
7767 j = cntNew[i];
7768
7769 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007770 assert( b.apCell[j]!=0 );
7771 pCell = b.apCell[j];
7772 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00007773 pTemp = &aOvflSpace[iOvflSpace];
7774 if( !pNew->leaf ){
7775 memcpy(&pNew->aData[8], pCell, 4);
7776 }else if( leafData ){
7777 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00007778 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00007779 ** cell consists of the integer key for the right-most cell of
7780 ** the sibling-page assembled above only.
7781 */
7782 CellInfo info;
7783 j--;
drh1ffd2472015-06-23 02:37:30 +00007784 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00007785 pCell = pTemp;
7786 sz = 4 + putVarint(&pCell[4], info.nKey);
7787 pTemp = 0;
7788 }else{
7789 pCell -= 4;
7790 /* Obscure case for non-leaf-data trees: If the cell at pCell was
7791 ** previously stored on a leaf node, and its reported size was 4
7792 ** bytes, then it may actually be smaller than this
7793 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7794 ** any cell). But it is important to pass the correct size to
7795 ** insertCell(), so reparse the cell now.
7796 **
drhc1fb2b82016-03-09 03:29:27 +00007797 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
7798 ** and WITHOUT ROWID tables with exactly one column which is the
7799 ** primary key.
dan33ea4862014-10-09 19:35:37 +00007800 */
drh1ffd2472015-06-23 02:37:30 +00007801 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00007802 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00007803 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00007804 }
7805 }
7806 iOvflSpace += sz;
7807 assert( sz<=pBt->maxLocal+23 );
7808 assert( iOvflSpace <= (int)pBt->pageSize );
7809 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7810 if( rc!=SQLITE_OK ) goto balance_cleanup;
7811 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7812 }
7813
7814 /* Now update the actual sibling pages. The order in which they are updated
7815 ** is important, as this code needs to avoid disrupting any page from which
7816 ** cells may still to be read. In practice, this means:
7817 **
drhd836d422014-10-31 14:26:36 +00007818 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7819 ** then it is not safe to update page apNew[iPg] until after
7820 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007821 **
drhd836d422014-10-31 14:26:36 +00007822 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7823 ** then it is not safe to update page apNew[iPg] until after
7824 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007825 **
7826 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00007827 **
7828 ** The iPg value in the following loop starts at nNew-1 goes down
7829 ** to 0, then back up to nNew-1 again, thus making two passes over
7830 ** the pages. On the initial downward pass, only condition (1) above
7831 ** needs to be tested because (2) will always be true from the previous
7832 ** step. On the upward pass, both conditions are always true, so the
7833 ** upwards pass simply processes pages that were missed on the downward
7834 ** pass.
dan33ea4862014-10-09 19:35:37 +00007835 */
drhbec021b2014-10-31 12:22:00 +00007836 for(i=1-nNew; i<nNew; i++){
7837 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00007838 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00007839 if( abDone[iPg] ) continue; /* Skip pages already processed */
7840 if( i>=0 /* On the upwards pass, or... */
7841 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00007842 ){
dan09c68402014-10-11 20:00:24 +00007843 int iNew;
7844 int iOld;
7845 int nNewCell;
7846
drhd836d422014-10-31 14:26:36 +00007847 /* Verify condition (1): If cells are moving left, update iPg
7848 ** only after iPg-1 has already been updated. */
7849 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7850
7851 /* Verify condition (2): If cells are moving right, update iPg
7852 ** only after iPg+1 has already been updated. */
7853 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7854
dan09c68402014-10-11 20:00:24 +00007855 if( iPg==0 ){
7856 iNew = iOld = 0;
7857 nNewCell = cntNew[0];
7858 }else{
drh1ffd2472015-06-23 02:37:30 +00007859 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00007860 iNew = cntNew[iPg-1] + !leafData;
7861 nNewCell = cntNew[iPg] - iNew;
7862 }
7863
drh1ffd2472015-06-23 02:37:30 +00007864 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00007865 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00007866 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00007867 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00007868 assert( apNew[iPg]->nOverflow==0 );
7869 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00007870 }
7871 }
drhd836d422014-10-31 14:26:36 +00007872
7873 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00007874 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7875
drh7aa8f852006-03-28 00:24:44 +00007876 assert( nOld>0 );
7877 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00007878
danielk197713bd99f2009-06-24 05:40:34 +00007879 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7880 /* The root page of the b-tree now contains no cells. The only sibling
7881 ** page is the right-child of the parent. Copy the contents of the
7882 ** child page into the parent, decreasing the overall height of the
7883 ** b-tree structure by one. This is described as the "balance-shallower"
7884 ** sub-algorithm in some documentation.
7885 **
7886 ** If this is an auto-vacuum database, the call to copyNodeContent()
7887 ** sets all pointer-map entries corresponding to database image pages
7888 ** for which the pointer is stored within the content being copied.
7889 **
drh768f2902014-10-31 02:51:41 +00007890 ** It is critical that the child page be defragmented before being
7891 ** copied into the parent, because if the parent is page 1 then it will
7892 ** by smaller than the child due to the database header, and so all the
7893 ** free space needs to be up front.
7894 */
drh9b5351d2015-09-30 14:19:08 +00007895 assert( nNew==1 || CORRUPT_DB );
dan3b2ede12017-02-25 16:24:02 +00007896 rc = defragmentPage(apNew[0], -1);
drh768f2902014-10-31 02:51:41 +00007897 testcase( rc!=SQLITE_OK );
danielk197713bd99f2009-06-24 05:40:34 +00007898 assert( apNew[0]->nFree ==
drh768f2902014-10-31 02:51:41 +00007899 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7900 || rc!=SQLITE_OK
danielk197713bd99f2009-06-24 05:40:34 +00007901 );
drhc314dc72009-07-21 11:52:34 +00007902 copyNodeContent(apNew[0], pParent, &rc);
7903 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00007904 }else if( ISAUTOVACUUM && !leafCorrection ){
7905 /* Fix the pointer map entries associated with the right-child of each
7906 ** sibling page. All other pointer map entries have already been taken
7907 ** care of. */
7908 for(i=0; i<nNew; i++){
7909 u32 key = get4byte(&apNew[i]->aData[8]);
7910 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007911 }
dan33ea4862014-10-09 19:35:37 +00007912 }
danielk19774dbaa892009-06-16 16:50:22 +00007913
dan33ea4862014-10-09 19:35:37 +00007914 assert( pParent->isInit );
7915 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00007916 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00007917
dan33ea4862014-10-09 19:35:37 +00007918 /* Free any old pages that were not reused as new pages.
7919 */
7920 for(i=nNew; i<nOld; i++){
7921 freePage(apOld[i], &rc);
7922 }
danielk19774dbaa892009-06-16 16:50:22 +00007923
7924#if 0
dan33ea4862014-10-09 19:35:37 +00007925 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00007926 /* The ptrmapCheckPages() contains assert() statements that verify that
7927 ** all pointer map pages are set correctly. This is helpful while
7928 ** debugging. This is usually disabled because a corrupt database may
7929 ** cause an assert() statement to fail. */
7930 ptrmapCheckPages(apNew, nNew);
7931 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00007932 }
dan33ea4862014-10-09 19:35:37 +00007933#endif
danielk1977cd581a72009-06-23 15:43:39 +00007934
drh8b2f49b2001-06-08 00:21:52 +00007935 /*
drh14acc042001-06-10 19:56:58 +00007936 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00007937 */
drh14acc042001-06-10 19:56:58 +00007938balance_cleanup:
drhb2a0f752017-08-28 15:51:35 +00007939 sqlite3StackFree(0, b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00007940 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00007941 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00007942 }
drh14acc042001-06-10 19:56:58 +00007943 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00007944 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00007945 }
danielk1977eaa06f62008-09-18 17:34:44 +00007946
drh8b2f49b2001-06-08 00:21:52 +00007947 return rc;
7948}
7949
drh43605152004-05-29 21:46:49 +00007950
7951/*
danielk1977a50d9aa2009-06-08 14:49:45 +00007952** This function is called when the root page of a b-tree structure is
7953** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00007954**
danielk1977a50d9aa2009-06-08 14:49:45 +00007955** A new child page is allocated and the contents of the current root
7956** page, including overflow cells, are copied into the child. The root
7957** page is then overwritten to make it an empty page with the right-child
7958** pointer pointing to the new page.
7959**
7960** Before returning, all pointer-map entries corresponding to pages
7961** that the new child-page now contains pointers to are updated. The
7962** entry corresponding to the new right-child pointer of the root
7963** page is also updated.
7964**
7965** If successful, *ppChild is set to contain a reference to the child
7966** page and SQLITE_OK is returned. In this case the caller is required
7967** to call releasePage() on *ppChild exactly once. If an error occurs,
7968** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00007969*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007970static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7971 int rc; /* Return value from subprocedures */
7972 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00007973 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00007974 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00007975
danielk1977a50d9aa2009-06-08 14:49:45 +00007976 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00007977 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00007978
danielk1977a50d9aa2009-06-08 14:49:45 +00007979 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7980 ** page that will become the new right-child of pPage. Copy the contents
7981 ** of the node stored on pRoot into the new child page.
7982 */
drh98add2e2009-07-20 17:11:49 +00007983 rc = sqlite3PagerWrite(pRoot->pDbPage);
7984 if( rc==SQLITE_OK ){
7985 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00007986 copyNodeContent(pRoot, pChild, &rc);
7987 if( ISAUTOVACUUM ){
7988 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00007989 }
7990 }
7991 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007992 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007993 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00007994 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00007995 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007996 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
7997 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7998 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007999
danielk1977a50d9aa2009-06-08 14:49:45 +00008000 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8001
8002 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00008003 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8004 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8005 memcpy(pChild->apOvfl, pRoot->apOvfl,
8006 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00008007 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00008008
8009 /* Zero the contents of pRoot. Then install pChild as the right-child. */
8010 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8011 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8012
8013 *ppChild = pChild;
8014 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00008015}
8016
8017/*
danielk197771d5d2c2008-09-29 11:49:47 +00008018** The page that pCur currently points to has just been modified in
8019** some way. This function figures out if this modification means the
8020** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00008021** routine. Balancing routines are:
8022**
8023** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00008024** balance_deeper()
8025** balance_nonroot()
drh43605152004-05-29 21:46:49 +00008026*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008027static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00008028 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00008029 const int nMin = pCur->pBt->usableSize * 2 / 3;
8030 u8 aBalanceQuickSpace[13];
8031 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008032
drhcc5f8a42016-02-06 22:32:06 +00008033 VVA_ONLY( int balance_quick_called = 0 );
8034 VVA_ONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00008035
8036 do {
8037 int iPage = pCur->iPage;
drh352a35a2017-08-15 03:46:47 +00008038 MemPage *pPage = pCur->pPage;
danielk1977a50d9aa2009-06-08 14:49:45 +00008039
8040 if( iPage==0 ){
8041 if( pPage->nOverflow ){
8042 /* The root page of the b-tree is overfull. In this case call the
8043 ** balance_deeper() function to create a new child for the root-page
8044 ** and copy the current contents of the root-page to it. The
8045 ** next iteration of the do-loop will balance the child page.
8046 */
drhcc5f8a42016-02-06 22:32:06 +00008047 assert( balance_deeper_called==0 );
8048 VVA_ONLY( balance_deeper_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008049 rc = balance_deeper(pPage, &pCur->apPage[1]);
8050 if( rc==SQLITE_OK ){
8051 pCur->iPage = 1;
drh75e96b32017-04-01 00:20:06 +00008052 pCur->ix = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00008053 pCur->aiIdx[0] = 0;
drh352a35a2017-08-15 03:46:47 +00008054 pCur->apPage[0] = pPage;
8055 pCur->pPage = pCur->apPage[1];
8056 assert( pCur->pPage->nOverflow );
danielk1977a50d9aa2009-06-08 14:49:45 +00008057 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008058 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00008059 break;
8060 }
8061 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
8062 break;
8063 }else{
8064 MemPage * const pParent = pCur->apPage[iPage-1];
8065 int const iIdx = pCur->aiIdx[iPage-1];
8066
8067 rc = sqlite3PagerWrite(pParent->pDbPage);
8068 if( rc==SQLITE_OK ){
8069#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00008070 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00008071 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00008072 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00008073 && pParent->pgno!=1
8074 && pParent->nCell==iIdx
8075 ){
8076 /* Call balance_quick() to create a new sibling of pPage on which
8077 ** to store the overflow cell. balance_quick() inserts a new cell
8078 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00008079 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00008080 ** use either balance_nonroot() or balance_deeper(). Until this
8081 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8082 ** buffer.
8083 **
8084 ** The purpose of the following assert() is to check that only a
8085 ** single call to balance_quick() is made for each call to this
8086 ** function. If this were not verified, a subtle bug involving reuse
8087 ** of the aBalanceQuickSpace[] might sneak in.
8088 */
drhcc5f8a42016-02-06 22:32:06 +00008089 assert( balance_quick_called==0 );
8090 VVA_ONLY( balance_quick_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008091 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8092 }else
8093#endif
8094 {
8095 /* In this case, call balance_nonroot() to redistribute cells
8096 ** between pPage and up to 2 of its sibling pages. This involves
8097 ** modifying the contents of pParent, which may cause pParent to
8098 ** become overfull or underfull. The next iteration of the do-loop
8099 ** will balance the parent page to correct this.
8100 **
8101 ** If the parent page becomes overfull, the overflow cell or cells
8102 ** are stored in the pSpace buffer allocated immediately below.
8103 ** A subsequent iteration of the do-loop will deal with this by
8104 ** calling balance_nonroot() (balance_deeper() may be called first,
8105 ** but it doesn't deal with overflow cells - just moves them to a
8106 ** different page). Once this subsequent call to balance_nonroot()
8107 ** has completed, it is safe to release the pSpace buffer used by
8108 ** the previous call, as the overflow cell data will have been
8109 ** copied either into the body of a database page or into the new
8110 ** pSpace buffer passed to the latter call to balance_nonroot().
8111 */
8112 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00008113 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8114 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00008115 if( pFree ){
8116 /* If pFree is not NULL, it points to the pSpace buffer used
8117 ** by a previous call to balance_nonroot(). Its contents are
8118 ** now stored either on real database pages or within the
8119 ** new pSpace buffer, so it may be safely freed here. */
8120 sqlite3PageFree(pFree);
8121 }
8122
danielk19774dbaa892009-06-16 16:50:22 +00008123 /* The pSpace buffer will be freed after the next call to
8124 ** balance_nonroot(), or just before this function returns, whichever
8125 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008126 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00008127 }
8128 }
8129
8130 pPage->nOverflow = 0;
8131
8132 /* The next iteration of the do-loop balances the parent page. */
8133 releasePage(pPage);
8134 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00008135 assert( pCur->iPage>=0 );
drh352a35a2017-08-15 03:46:47 +00008136 pCur->pPage = pCur->apPage[pCur->iPage];
drh43605152004-05-29 21:46:49 +00008137 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008138 }while( rc==SQLITE_OK );
8139
8140 if( pFree ){
8141 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00008142 }
8143 return rc;
8144}
8145
drhf74b8d92002-09-01 23:20:45 +00008146
8147/*
drh8eeb4462016-05-21 20:03:42 +00008148** Insert a new record into the BTree. The content of the new record
8149** is described by the pX object. The pCur cursor is used only to
8150** define what table the record should be inserted into, and is left
8151** pointing at a random location.
drh4b70f112004-05-02 21:12:19 +00008152**
drh8eeb4462016-05-21 20:03:42 +00008153** For a table btree (used for rowid tables), only the pX.nKey value of
8154** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
8155** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
8156** hold the content of the row.
8157**
8158** For an index btree (used for indexes and WITHOUT ROWID tables), the
8159** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
8160** pX.pData,nData,nZero fields must be zero.
danielk1977de630352009-05-04 11:42:29 +00008161**
8162** If the seekResult parameter is non-zero, then a successful call to
drheaf6ae22016-11-09 20:14:34 +00008163** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8164** been performed. In other words, if seekResult!=0 then the cursor
8165** is currently pointing to a cell that will be adjacent to the cell
8166** to be inserted. If seekResult<0 then pCur points to a cell that is
8167** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
8168** that is larger than (pKey,nKey).
danielk1977de630352009-05-04 11:42:29 +00008169**
drheaf6ae22016-11-09 20:14:34 +00008170** If seekResult==0, that means pCur is pointing at some unknown location.
8171** In that case, this routine must seek the cursor to the correct insertion
8172** point for (pKey,nKey) before doing the insertion. For index btrees,
8173** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8174** key values and pX->aMem can be used instead of pX->pKey to avoid having
8175** to decode the key.
drh3b7511c2001-05-26 13:15:44 +00008176*/
drh3aac2dd2004-04-26 14:10:20 +00008177int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00008178 BtCursor *pCur, /* Insert data into the table of this cursor */
drh8eeb4462016-05-21 20:03:42 +00008179 const BtreePayload *pX, /* Content of the row to be inserted */
danf91c1312017-01-10 20:04:38 +00008180 int flags, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00008181 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00008182){
drh3b7511c2001-05-26 13:15:44 +00008183 int rc;
drh3e9ca092009-09-08 01:14:48 +00008184 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00008185 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008186 int idx;
drh3b7511c2001-05-26 13:15:44 +00008187 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00008188 Btree *p = pCur->pBtree;
8189 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00008190 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00008191 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00008192
danf91c1312017-01-10 20:04:38 +00008193 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags );
8194
drh98add2e2009-07-20 17:11:49 +00008195 if( pCur->eState==CURSOR_FAULT ){
8196 assert( pCur->skipNext!=SQLITE_OK );
8197 return pCur->skipNext;
8198 }
8199
dan7a2347e2016-01-07 16:43:54 +00008200 assert( cursorOwnsBtShared(pCur) );
drh3f387402014-09-24 01:23:00 +00008201 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8202 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00008203 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00008204 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8205
danielk197731d31b82009-07-13 13:18:07 +00008206 /* Assert that the caller has been consistent. If this cursor was opened
8207 ** expecting an index b-tree, then the caller should be inserting blob
8208 ** keys with no associated data. If the cursor was opened expecting an
8209 ** intkey table, the caller should be inserting integer keys with a
8210 ** blob of associated data. */
drh8eeb4462016-05-21 20:03:42 +00008211 assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );
danielk197731d31b82009-07-13 13:18:07 +00008212
danielk19779c3acf32009-05-02 07:36:49 +00008213 /* Save the positions of any other cursors open on this table.
8214 **
danielk19773509a652009-07-06 18:56:13 +00008215 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00008216 ** example, when inserting data into a table with auto-generated integer
8217 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8218 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00008219 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00008220 ** that the cursor is already where it needs to be and returns without
8221 ** doing any work. To avoid thwarting these optimizations, it is important
8222 ** not to clear the cursor here.
8223 */
drh27fb7462015-06-30 02:47:36 +00008224 if( pCur->curFlags & BTCF_Multiple ){
8225 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8226 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00008227 }
8228
danielk197771d5d2c2008-09-29 11:49:47 +00008229 if( pCur->pKeyInfo==0 ){
drh8eeb4462016-05-21 20:03:42 +00008230 assert( pX->pKey==0 );
drhe0670b62014-02-12 21:31:12 +00008231 /* If this is an insert into a table b-tree, invalidate any incrblob
8232 ** cursors open on the row being replaced */
drh9ca431a2017-03-29 18:03:50 +00008233 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
drhe0670b62014-02-12 21:31:12 +00008234
danf91c1312017-01-10 20:04:38 +00008235 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8236 ** to a row with the same key as the new entry being inserted. */
8237 assert( (flags & BTREE_SAVEPOSITION)==0 ||
8238 ((pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey) );
8239
drhe0670b62014-02-12 21:31:12 +00008240 /* If the cursor is currently on the last row and we are appending a
drh207c8172015-06-29 23:01:32 +00008241 ** new row onto the end, set the "loc" to avoid an unnecessary
8242 ** btreeMoveto() call */
drh7a1c28d2016-11-10 20:42:08 +00008243 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
8244 loc = 0;
drh207c8172015-06-29 23:01:32 +00008245 }else if( loc==0 ){
danf91c1312017-01-10 20:04:38 +00008246 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
drh207c8172015-06-29 23:01:32 +00008247 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00008248 }
danf91c1312017-01-10 20:04:38 +00008249 }else if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
drh9b4eaeb2016-11-09 00:10:33 +00008250 if( pX->nMem ){
8251 UnpackedRecord r;
drh9b4eaeb2016-11-09 00:10:33 +00008252 r.pKeyInfo = pCur->pKeyInfo;
8253 r.aMem = pX->aMem;
8254 r.nField = pX->nMem;
drh8c730bc2016-12-10 13:12:55 +00008255 r.default_rc = 0;
8256 r.errCode = 0;
8257 r.r1 = 0;
8258 r.r2 = 0;
8259 r.eqSeen = 0;
danf91c1312017-01-10 20:04:38 +00008260 rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
drh9b4eaeb2016-11-09 00:10:33 +00008261 }else{
danf91c1312017-01-10 20:04:38 +00008262 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
drh9b4eaeb2016-11-09 00:10:33 +00008263 }
drh4c301aa2009-07-15 17:25:45 +00008264 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00008265 }
danielk1977b980d2212009-06-22 18:03:51 +00008266 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00008267
drh352a35a2017-08-15 03:46:47 +00008268 pPage = pCur->pPage;
drh8eeb4462016-05-21 20:03:42 +00008269 assert( pPage->intKey || pX->nKey>=0 );
drh44845222008-07-17 18:39:57 +00008270 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00008271
drh3a4c1412004-05-09 20:40:11 +00008272 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
drh8eeb4462016-05-21 20:03:42 +00008273 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
drh3a4c1412004-05-09 20:40:11 +00008274 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00008275 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00008276 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008277 assert( newCell!=0 );
drh8eeb4462016-05-21 20:03:42 +00008278 rc = fillInCell(pPage, newCell, pX, &szNew);
drh2e38c322004-09-03 18:38:44 +00008279 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00008280 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00008281 assert( szNew <= MX_CELL_SIZE(pBt) );
drh75e96b32017-04-01 00:20:06 +00008282 idx = pCur->ix;
danielk1977b980d2212009-06-22 18:03:51 +00008283 if( loc==0 ){
drh80159da2016-12-09 17:32:51 +00008284 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00008285 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00008286 rc = sqlite3PagerWrite(pPage->pDbPage);
8287 if( rc ){
8288 goto end_insert;
8289 }
danielk197771d5d2c2008-09-29 11:49:47 +00008290 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00008291 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008292 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00008293 }
drh80159da2016-12-09 17:32:51 +00008294 rc = clearCell(pPage, oldCell, &info);
danca66f6c2017-06-08 11:14:08 +00008295 if( info.nSize==szNew && info.nLocal==info.nPayload
8296 && (!ISAUTOVACUUM || szNew<pPage->minLocal)
8297 ){
drhf9238252016-12-09 18:09:42 +00008298 /* Overwrite the old cell with the new if they are the same size.
8299 ** We could also try to do this if the old cell is smaller, then add
8300 ** the leftover space to the free list. But experiments show that
8301 ** doing that is no faster then skipping this optimization and just
danca66f6c2017-06-08 11:14:08 +00008302 ** calling dropCell() and insertCell().
8303 **
8304 ** This optimization cannot be used on an autovacuum database if the
8305 ** new entry uses overflow pages, as the insertCell() call below is
8306 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
drhf9238252016-12-09 18:09:42 +00008307 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
drh2d083432016-12-09 19:42:18 +00008308 if( oldCell+szNew > pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
drh80159da2016-12-09 17:32:51 +00008309 memcpy(oldCell, newCell, szNew);
8310 return SQLITE_OK;
8311 }
8312 dropCell(pPage, idx, info.nSize, &rc);
drh2e38c322004-09-03 18:38:44 +00008313 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00008314 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00008315 assert( pPage->leaf );
drh75e96b32017-04-01 00:20:06 +00008316 idx = ++pCur->ix;
dan874080b2017-05-01 18:12:56 +00008317 pCur->curFlags &= ~BTCF_ValidNKey;
drh14acc042001-06-10 19:56:58 +00008318 }else{
drh4b70f112004-05-02 21:12:19 +00008319 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00008320 }
drh98add2e2009-07-20 17:11:49 +00008321 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
drh09a4e922016-05-21 12:29:04 +00008322 assert( pPage->nOverflow==0 || rc==SQLITE_OK );
danielk19773f632d52009-05-02 10:03:09 +00008323 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00008324
mistachkin48864df2013-03-21 21:20:32 +00008325 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00008326 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00008327 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00008328 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00008329 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008330 ** Previous versions of SQLite called moveToRoot() to move the cursor
8331 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00008332 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8333 ** set the cursor state to "invalid". This makes common insert operations
8334 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00008335 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008336 ** There is a subtle but important optimization here too. When inserting
8337 ** multiple records into an intkey b-tree using a single cursor (as can
8338 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8339 ** is advantageous to leave the cursor pointing to the last entry in
8340 ** the b-tree if possible. If the cursor is left pointing to the last
8341 ** entry in the table, and the next row inserted has an integer key
8342 ** larger than the largest existing key, it is possible to insert the
8343 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00008344 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008345 pCur->info.nSize = 0;
drh09a4e922016-05-21 12:29:04 +00008346 if( pPage->nOverflow ){
8347 assert( rc==SQLITE_OK );
drh036dbec2014-03-11 23:40:44 +00008348 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00008349 rc = balance(pCur);
8350
8351 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00008352 ** fails. Internal data structure corruption will result otherwise.
8353 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8354 ** from trying to save the current position of the cursor. */
drh352a35a2017-08-15 03:46:47 +00008355 pCur->pPage->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00008356 pCur->eState = CURSOR_INVALID;
danf91c1312017-01-10 20:04:38 +00008357 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
drh85ef6302017-08-02 15:50:09 +00008358 btreeReleaseAllCursorPages(pCur);
drh7b20a152017-01-12 19:10:55 +00008359 if( pCur->pKeyInfo ){
danf91c1312017-01-10 20:04:38 +00008360 assert( pCur->pKey==0 );
8361 pCur->pKey = sqlite3Malloc( pX->nKey );
8362 if( pCur->pKey==0 ){
8363 rc = SQLITE_NOMEM;
8364 }else{
8365 memcpy(pCur->pKey, pX->pKey, pX->nKey);
8366 }
8367 }
8368 pCur->eState = CURSOR_REQUIRESEEK;
8369 pCur->nKey = pX->nKey;
8370 }
danielk19773f632d52009-05-02 10:03:09 +00008371 }
drh352a35a2017-08-15 03:46:47 +00008372 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00008373
drh2e38c322004-09-03 18:38:44 +00008374end_insert:
drh5e2f8b92001-05-28 00:41:15 +00008375 return rc;
8376}
8377
8378/*
danf0ee1d32015-09-12 19:26:11 +00008379** Delete the entry that the cursor is pointing to.
8380**
drhe807bdb2016-01-21 17:06:33 +00008381** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8382** the cursor is left pointing at an arbitrary location after the delete.
8383** But if that bit is set, then the cursor is left in a state such that
8384** the next call to BtreeNext() or BtreePrev() moves it to the same row
8385** as it would have been on if the call to BtreeDelete() had been omitted.
8386**
drhdef19e32016-01-27 16:26:25 +00008387** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8388** associated with a single table entry and its indexes. Only one of those
8389** deletes is considered the "primary" delete. The primary delete occurs
8390** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
8391** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8392** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
drhe807bdb2016-01-21 17:06:33 +00008393** but which might be used by alternative storage engines.
drh3b7511c2001-05-26 13:15:44 +00008394*/
drhe807bdb2016-01-21 17:06:33 +00008395int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
drhd677b3d2007-08-20 22:48:41 +00008396 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00008397 BtShared *pBt = p->pBt;
8398 int rc; /* Return code */
8399 MemPage *pPage; /* Page to delete cell from */
8400 unsigned char *pCell; /* Pointer to cell to delete */
8401 int iCellIdx; /* Index of cell to delete */
8402 int iCellDepth; /* Depth of node containing pCell */
drh80159da2016-12-09 17:32:51 +00008403 CellInfo info; /* Size of the cell being deleted */
danf0ee1d32015-09-12 19:26:11 +00008404 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */
drhe807bdb2016-01-21 17:06:33 +00008405 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */
drh8b2f49b2001-06-08 00:21:52 +00008406
dan7a2347e2016-01-07 16:43:54 +00008407 assert( cursorOwnsBtShared(pCur) );
drh64022502009-01-09 14:11:04 +00008408 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008409 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00008410 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00008411 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8412 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drh352a35a2017-08-15 03:46:47 +00008413 assert( pCur->ix<pCur->pPage->nCell );
drh98ef0f62015-06-30 01:25:52 +00008414 assert( pCur->eState==CURSOR_VALID );
drhdef19e32016-01-27 16:26:25 +00008415 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
danielk1977da184232006-01-05 11:34:32 +00008416
danielk19774dbaa892009-06-16 16:50:22 +00008417 iCellDepth = pCur->iPage;
drh75e96b32017-04-01 00:20:06 +00008418 iCellIdx = pCur->ix;
drh352a35a2017-08-15 03:46:47 +00008419 pPage = pCur->pPage;
danielk19774dbaa892009-06-16 16:50:22 +00008420 pCell = findCell(pPage, iCellIdx);
8421
drhbfc7a8b2016-04-09 17:04:05 +00008422 /* If the bPreserve flag is set to true, then the cursor position must
8423 ** be preserved following this delete operation. If the current delete
8424 ** will cause a b-tree rebalance, then this is done by saving the cursor
8425 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8426 ** returning.
8427 **
8428 ** Or, if the current delete will not cause a rebalance, then the cursor
8429 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8430 ** before or after the deleted entry. In this case set bSkipnext to true. */
8431 if( bPreserve ){
8432 if( !pPage->leaf
8433 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
8434 ){
8435 /* A b-tree rebalance will be required after deleting this entry.
8436 ** Save the cursor key. */
8437 rc = saveCursorKey(pCur);
8438 if( rc ) return rc;
8439 }else{
8440 bSkipnext = 1;
8441 }
8442 }
8443
danielk19774dbaa892009-06-16 16:50:22 +00008444 /* If the page containing the entry to delete is not a leaf page, move
8445 ** the cursor to the largest entry in the tree that is smaller than
8446 ** the entry being deleted. This cell will replace the cell being deleted
8447 ** from the internal node. The 'previous' entry is used for this instead
8448 ** of the 'next' entry, as the previous entry is always a part of the
8449 ** sub-tree headed by the child page of the cell being deleted. This makes
8450 ** balancing the tree following the delete operation easier. */
8451 if( !pPage->leaf ){
drh2ab792e2017-05-30 18:34:07 +00008452 rc = sqlite3BtreePrevious(pCur, 0);
8453 assert( rc!=SQLITE_DONE );
drh4c301aa2009-07-15 17:25:45 +00008454 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00008455 }
8456
8457 /* Save the positions of any other cursors open on this table before
danf0ee1d32015-09-12 19:26:11 +00008458 ** making any modifications. */
drh27fb7462015-06-30 02:47:36 +00008459 if( pCur->curFlags & BTCF_Multiple ){
8460 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8461 if( rc ) return rc;
8462 }
drhd60f4f42012-03-23 14:23:52 +00008463
8464 /* If this is a delete operation to remove a row from a table b-tree,
8465 ** invalidate any incrblob cursors open on the row being deleted. */
8466 if( pCur->pKeyInfo==0 ){
drh9ca431a2017-03-29 18:03:50 +00008467 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
drhd60f4f42012-03-23 14:23:52 +00008468 }
8469
danf0ee1d32015-09-12 19:26:11 +00008470 /* Make the page containing the entry to be deleted writable. Then free any
8471 ** overflow pages associated with the entry and finally remove the cell
8472 ** itself from within the page. */
drha4ec1d42009-07-11 13:13:11 +00008473 rc = sqlite3PagerWrite(pPage->pDbPage);
8474 if( rc ) return rc;
drh80159da2016-12-09 17:32:51 +00008475 rc = clearCell(pPage, pCell, &info);
8476 dropCell(pPage, iCellIdx, info.nSize, &rc);
drha4ec1d42009-07-11 13:13:11 +00008477 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00008478
danielk19774dbaa892009-06-16 16:50:22 +00008479 /* If the cell deleted was not located on a leaf page, then the cursor
8480 ** is currently pointing to the largest entry in the sub-tree headed
8481 ** by the child-page of the cell that was just deleted from an internal
8482 ** node. The cell from the leaf node needs to be moved to the internal
8483 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00008484 if( !pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00008485 MemPage *pLeaf = pCur->pPage;
danielk19774dbaa892009-06-16 16:50:22 +00008486 int nCell;
drh352a35a2017-08-15 03:46:47 +00008487 Pgno n;
danielk19774dbaa892009-06-16 16:50:22 +00008488 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00008489
drh352a35a2017-08-15 03:46:47 +00008490 if( iCellDepth<pCur->iPage-1 ){
8491 n = pCur->apPage[iCellDepth+1]->pgno;
8492 }else{
8493 n = pCur->pPage->pgno;
8494 }
danielk19774dbaa892009-06-16 16:50:22 +00008495 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00008496 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00008497 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00008498 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00008499 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008500 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00008501 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drhcb89f4a2016-05-21 11:23:26 +00008502 if( rc==SQLITE_OK ){
8503 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8504 }
drh98add2e2009-07-20 17:11:49 +00008505 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008506 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00008507 }
danielk19774dbaa892009-06-16 16:50:22 +00008508
8509 /* Balance the tree. If the entry deleted was located on a leaf page,
8510 ** then the cursor still points to that page. In this case the first
8511 ** call to balance() repairs the tree, and the if(...) condition is
8512 ** never true.
8513 **
8514 ** Otherwise, if the entry deleted was on an internal node page, then
8515 ** pCur is pointing to the leaf page from which a cell was removed to
8516 ** replace the cell deleted from the internal node. This is slightly
8517 ** tricky as the leaf node may be underfull, and the internal node may
8518 ** be either under or overfull. In this case run the balancing algorithm
8519 ** on the leaf node first. If the balance proceeds far enough up the
8520 ** tree that we can be sure that any problem in the internal node has
8521 ** been corrected, so be it. Otherwise, after balancing the leaf node,
8522 ** walk the cursor up the tree to the internal node and balance it as
8523 ** well. */
8524 rc = balance(pCur);
8525 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
drh352a35a2017-08-15 03:46:47 +00008526 releasePageNotNull(pCur->pPage);
8527 pCur->iPage--;
danielk19774dbaa892009-06-16 16:50:22 +00008528 while( pCur->iPage>iCellDepth ){
8529 releasePage(pCur->apPage[pCur->iPage--]);
8530 }
drh352a35a2017-08-15 03:46:47 +00008531 pCur->pPage = pCur->apPage[pCur->iPage];
danielk19774dbaa892009-06-16 16:50:22 +00008532 rc = balance(pCur);
8533 }
8534
danielk19776b456a22005-03-21 04:04:02 +00008535 if( rc==SQLITE_OK ){
danf0ee1d32015-09-12 19:26:11 +00008536 if( bSkipnext ){
drha660caf2016-01-01 03:37:44 +00008537 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
drh352a35a2017-08-15 03:46:47 +00008538 assert( pPage==pCur->pPage || CORRUPT_DB );
drh78ac1092015-09-20 22:57:47 +00008539 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
danf0ee1d32015-09-12 19:26:11 +00008540 pCur->eState = CURSOR_SKIPNEXT;
8541 if( iCellIdx>=pPage->nCell ){
8542 pCur->skipNext = -1;
drh75e96b32017-04-01 00:20:06 +00008543 pCur->ix = pPage->nCell-1;
danf0ee1d32015-09-12 19:26:11 +00008544 }else{
8545 pCur->skipNext = 1;
8546 }
8547 }else{
8548 rc = moveToRoot(pCur);
8549 if( bPreserve ){
drh85ef6302017-08-02 15:50:09 +00008550 btreeReleaseAllCursorPages(pCur);
danf0ee1d32015-09-12 19:26:11 +00008551 pCur->eState = CURSOR_REQUIRESEEK;
8552 }
drh44548e72017-08-14 18:13:52 +00008553 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +00008554 }
danielk19776b456a22005-03-21 04:04:02 +00008555 }
drh5e2f8b92001-05-28 00:41:15 +00008556 return rc;
drh3b7511c2001-05-26 13:15:44 +00008557}
drh8b2f49b2001-06-08 00:21:52 +00008558
8559/*
drhc6b52df2002-01-04 03:09:29 +00008560** Create a new BTree table. Write into *piTable the page
8561** number for the root page of the new table.
8562**
drhab01f612004-05-22 02:55:23 +00008563** The type of type is determined by the flags parameter. Only the
8564** following values of flags are currently in use. Other values for
8565** flags might not work:
8566**
8567** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
8568** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00008569*/
drhd4187c72010-08-30 22:15:45 +00008570static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00008571 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008572 MemPage *pRoot;
8573 Pgno pgnoRoot;
8574 int rc;
drhd4187c72010-08-30 22:15:45 +00008575 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00008576
drh1fee73e2007-08-29 04:00:57 +00008577 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008578 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008579 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00008580
danielk1977003ba062004-11-04 02:57:33 +00008581#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00008582 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00008583 if( rc ){
8584 return rc;
8585 }
danielk1977003ba062004-11-04 02:57:33 +00008586#else
danielk1977687566d2004-11-02 12:56:41 +00008587 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00008588 Pgno pgnoMove; /* Move a page here to make room for the root-page */
8589 MemPage *pPageMove; /* The page to move to. */
8590
danielk197720713f32007-05-03 11:43:33 +00008591 /* Creating a new table may probably require moving an existing database
8592 ** to make room for the new tables root page. In case this page turns
8593 ** out to be an overflow page, delete all overflow page-map caches
8594 ** held by open cursors.
8595 */
danielk197792d4d7a2007-05-04 12:05:56 +00008596 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00008597
danielk1977003ba062004-11-04 02:57:33 +00008598 /* Read the value of meta[3] from the database to determine where the
8599 ** root page of the new table should go. meta[3] is the largest root-page
8600 ** created so far, so the new root-page is (meta[3]+1).
8601 */
danielk1977602b4662009-07-02 07:47:33 +00008602 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00008603 pgnoRoot++;
8604
danielk1977599fcba2004-11-08 07:13:13 +00008605 /* The new root-page may not be allocated on a pointer-map page, or the
8606 ** PENDING_BYTE page.
8607 */
drh72190432008-01-31 14:54:43 +00008608 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00008609 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00008610 pgnoRoot++;
8611 }
drh499e15b2015-05-22 12:37:37 +00008612 assert( pgnoRoot>=3 || CORRUPT_DB );
8613 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00008614
8615 /* Allocate a page. The page that currently resides at pgnoRoot will
8616 ** be moved to the allocated page (unless the allocated page happens
8617 ** to reside at pgnoRoot).
8618 */
dan51f0b6d2013-02-22 20:16:34 +00008619 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00008620 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00008621 return rc;
8622 }
danielk1977003ba062004-11-04 02:57:33 +00008623
8624 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00008625 /* pgnoRoot is the page that will be used for the root-page of
8626 ** the new table (assuming an error did not occur). But we were
8627 ** allocated pgnoMove. If required (i.e. if it was not allocated
8628 ** by extending the file), the current page at position pgnoMove
8629 ** is already journaled.
8630 */
drheeb844a2009-08-08 18:01:07 +00008631 u8 eType = 0;
8632 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00008633
danf7679ad2013-04-03 11:38:36 +00008634 /* Save the positions of any open cursors. This is required in
8635 ** case they are holding a reference to an xFetch reference
8636 ** corresponding to page pgnoRoot. */
8637 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00008638 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00008639 if( rc!=SQLITE_OK ){
8640 return rc;
8641 }
danielk1977f35843b2007-04-07 15:03:17 +00008642
8643 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00008644 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008645 if( rc!=SQLITE_OK ){
8646 return rc;
8647 }
8648 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00008649 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8650 rc = SQLITE_CORRUPT_BKPT;
8651 }
8652 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00008653 releasePage(pRoot);
8654 return rc;
8655 }
drhccae6022005-02-26 17:31:26 +00008656 assert( eType!=PTRMAP_ROOTPAGE );
8657 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00008658 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00008659 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00008660
8661 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00008662 if( rc!=SQLITE_OK ){
8663 return rc;
8664 }
drhb00fc3b2013-08-21 23:42:32 +00008665 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008666 if( rc!=SQLITE_OK ){
8667 return rc;
8668 }
danielk19773b8a05f2007-03-19 17:44:26 +00008669 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00008670 if( rc!=SQLITE_OK ){
8671 releasePage(pRoot);
8672 return rc;
8673 }
8674 }else{
8675 pRoot = pPageMove;
8676 }
8677
danielk197742741be2005-01-08 12:42:39 +00008678 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00008679 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00008680 if( rc ){
8681 releasePage(pRoot);
8682 return rc;
8683 }
drhbf592832010-03-30 15:51:12 +00008684
8685 /* When the new root page was allocated, page 1 was made writable in
8686 ** order either to increase the database filesize, or to decrement the
8687 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8688 */
8689 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00008690 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00008691 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00008692 releasePage(pRoot);
8693 return rc;
8694 }
danielk197742741be2005-01-08 12:42:39 +00008695
danielk1977003ba062004-11-04 02:57:33 +00008696 }else{
drh4f0c5872007-03-26 22:05:01 +00008697 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00008698 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00008699 }
8700#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008701 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00008702 if( createTabFlags & BTREE_INTKEY ){
8703 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8704 }else{
8705 ptfFlags = PTF_ZERODATA | PTF_LEAF;
8706 }
8707 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00008708 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00008709 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00008710 *piTable = (int)pgnoRoot;
8711 return SQLITE_OK;
8712}
drhd677b3d2007-08-20 22:48:41 +00008713int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8714 int rc;
8715 sqlite3BtreeEnter(p);
8716 rc = btreeCreateTable(p, piTable, flags);
8717 sqlite3BtreeLeave(p);
8718 return rc;
8719}
drh8b2f49b2001-06-08 00:21:52 +00008720
8721/*
8722** Erase the given database page and all its children. Return
8723** the page to the freelist.
8724*/
drh4b70f112004-05-02 21:12:19 +00008725static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00008726 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00008727 Pgno pgno, /* Page number to clear */
8728 int freePageFlag, /* Deallocate page if true */
8729 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00008730){
danielk1977146ba992009-07-22 14:08:13 +00008731 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00008732 int rc;
drh4b70f112004-05-02 21:12:19 +00008733 unsigned char *pCell;
8734 int i;
dan8ce71842014-01-14 20:14:09 +00008735 int hdr;
drh80159da2016-12-09 17:32:51 +00008736 CellInfo info;
drh8b2f49b2001-06-08 00:21:52 +00008737
drh1fee73e2007-08-29 04:00:57 +00008738 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00008739 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00008740 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00008741 }
drh28f58dd2015-06-27 19:45:03 +00008742 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00008743 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00008744 if( pPage->bBusy ){
8745 rc = SQLITE_CORRUPT_BKPT;
8746 goto cleardatabasepage_out;
8747 }
8748 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00008749 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00008750 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00008751 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00008752 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00008753 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008754 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008755 }
drh80159da2016-12-09 17:32:51 +00008756 rc = clearCell(pPage, pCell, &info);
danielk19776b456a22005-03-21 04:04:02 +00008757 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008758 }
drha34b6762004-05-07 13:30:42 +00008759 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00008760 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008761 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00008762 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00008763 assert( pPage->intKey || CORRUPT_DB );
8764 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00008765 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00008766 }
8767 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00008768 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00008769 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00008770 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00008771 }
danielk19776b456a22005-03-21 04:04:02 +00008772
8773cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00008774 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00008775 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00008776 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008777}
8778
8779/*
drhab01f612004-05-22 02:55:23 +00008780** Delete all information from a single table in the database. iTable is
8781** the page number of the root of the table. After this routine returns,
8782** the root page is empty, but still exists.
8783**
8784** This routine will fail with SQLITE_LOCKED if there are any open
8785** read cursors on the table. Open write cursors are moved to the
8786** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00008787**
8788** If pnChange is not NULL, then table iTable must be an intkey table. The
8789** integer value pointed to by pnChange is incremented by the number of
8790** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00008791*/
danielk1977c7af4842008-10-27 13:59:33 +00008792int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00008793 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00008794 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00008795 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008796 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008797
drhc046e3e2009-07-15 11:26:44 +00008798 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00008799
drhc046e3e2009-07-15 11:26:44 +00008800 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00008801 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8802 ** is the root of a table b-tree - if it is not, the following call is
8803 ** a no-op). */
drh9ca431a2017-03-29 18:03:50 +00008804 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00008805 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00008806 }
drhd677b3d2007-08-20 22:48:41 +00008807 sqlite3BtreeLeave(p);
8808 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008809}
8810
8811/*
drh079a3072014-03-19 14:10:55 +00008812** Delete all information from the single table that pCur is open on.
8813**
8814** This routine only work for pCur on an ephemeral table.
8815*/
8816int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8817 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8818}
8819
8820/*
drh8b2f49b2001-06-08 00:21:52 +00008821** Erase all information in a table and add the root of the table to
8822** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00008823** page 1) is never added to the freelist.
8824**
8825** This routine will fail with SQLITE_LOCKED if there are any open
8826** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00008827**
8828** If AUTOVACUUM is enabled and the page at iTable is not the last
8829** root page in the database file, then the last root page
8830** in the database file is moved into the slot formerly occupied by
8831** iTable and that last slot formerly occupied by the last root page
8832** is added to the freelist instead of iTable. In this say, all
8833** root pages are kept at the beginning of the database file, which
8834** is necessary for AUTOVACUUM to work right. *piMoved is set to the
8835** page number that used to be the last root page in the file before
8836** the move. If no page gets moved, *piMoved is set to 0.
8837** The last root page is recorded in meta[3] and the value of
8838** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00008839*/
danielk197789d40042008-11-17 14:20:56 +00008840static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00008841 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00008842 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00008843 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00008844
drh1fee73e2007-08-29 04:00:57 +00008845 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008846 assert( p->inTrans==TRANS_WRITE );
drh65f38d92016-11-22 01:26:42 +00008847 assert( iTable>=2 );
drh055f2982016-01-15 15:06:41 +00008848
drhb00fc3b2013-08-21 23:42:32 +00008849 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00008850 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00008851 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00008852 if( rc ){
8853 releasePage(pPage);
8854 return rc;
8855 }
danielk1977a0bf2652004-11-04 14:30:04 +00008856
drh205f48e2004-11-05 00:43:11 +00008857 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00008858
danielk1977a0bf2652004-11-04 14:30:04 +00008859#ifdef SQLITE_OMIT_AUTOVACUUM
drh055f2982016-01-15 15:06:41 +00008860 freePage(pPage, &rc);
8861 releasePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00008862#else
drh055f2982016-01-15 15:06:41 +00008863 if( pBt->autoVacuum ){
8864 Pgno maxRootPgno;
8865 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008866
drh055f2982016-01-15 15:06:41 +00008867 if( iTable==maxRootPgno ){
8868 /* If the table being dropped is the table with the largest root-page
8869 ** number in the database, put the root page on the free list.
danielk1977599fcba2004-11-08 07:13:13 +00008870 */
drhc314dc72009-07-21 11:52:34 +00008871 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008872 releasePage(pPage);
drh055f2982016-01-15 15:06:41 +00008873 if( rc!=SQLITE_OK ){
8874 return rc;
8875 }
8876 }else{
8877 /* The table being dropped does not have the largest root-page
8878 ** number in the database. So move the page that does into the
8879 ** gap left by the deleted root-page.
8880 */
8881 MemPage *pMove;
8882 releasePage(pPage);
8883 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8884 if( rc!=SQLITE_OK ){
8885 return rc;
8886 }
8887 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
8888 releasePage(pMove);
8889 if( rc!=SQLITE_OK ){
8890 return rc;
8891 }
8892 pMove = 0;
8893 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8894 freePage(pMove, &rc);
8895 releasePage(pMove);
8896 if( rc!=SQLITE_OK ){
8897 return rc;
8898 }
8899 *piMoved = maxRootPgno;
danielk1977a0bf2652004-11-04 14:30:04 +00008900 }
drh055f2982016-01-15 15:06:41 +00008901
8902 /* Set the new 'max-root-page' value in the database header. This
8903 ** is the old value less one, less one more if that happens to
8904 ** be a root-page number, less one again if that is the
8905 ** PENDING_BYTE_PAGE.
drhc046e3e2009-07-15 11:26:44 +00008906 */
drh055f2982016-01-15 15:06:41 +00008907 maxRootPgno--;
8908 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8909 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
8910 maxRootPgno--;
8911 }
8912 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8913
8914 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
8915 }else{
8916 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008917 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00008918 }
drh055f2982016-01-15 15:06:41 +00008919#endif
drh8b2f49b2001-06-08 00:21:52 +00008920 return rc;
8921}
drhd677b3d2007-08-20 22:48:41 +00008922int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8923 int rc;
8924 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00008925 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00008926 sqlite3BtreeLeave(p);
8927 return rc;
8928}
drh8b2f49b2001-06-08 00:21:52 +00008929
drh001bbcb2003-03-19 03:14:00 +00008930
drh8b2f49b2001-06-08 00:21:52 +00008931/*
danielk1977602b4662009-07-02 07:47:33 +00008932** This function may only be called if the b-tree connection already
8933** has a read or write transaction open on the database.
8934**
drh23e11ca2004-05-04 17:27:28 +00008935** Read the meta-information out of a database file. Meta[0]
8936** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00008937** through meta[15] are available for use by higher layers. Meta[0]
8938** is read-only, the others are read/write.
8939**
8940** The schema layer numbers meta values differently. At the schema
8941** layer (and the SetCookie and ReadCookie opcodes) the number of
8942** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00008943**
8944** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
8945** of reading the value out of the header, it instead loads the "DataVersion"
8946** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
8947** database file. It is a number computed by the pager. But its access
8948** pattern is the same as header meta values, and so it is convenient to
8949** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00008950*/
danielk1977602b4662009-07-02 07:47:33 +00008951void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00008952 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008953
drhd677b3d2007-08-20 22:48:41 +00008954 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00008955 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00008956 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00008957 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00008958 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00008959
drh91618562014-12-19 19:28:02 +00008960 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00008961 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00008962 }else{
8963 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
8964 }
drhae157872004-08-14 19:20:09 +00008965
danielk1977602b4662009-07-02 07:47:33 +00008966 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8967 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00008968#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00008969 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8970 pBt->btsFlags |= BTS_READ_ONLY;
8971 }
danielk1977003ba062004-11-04 02:57:33 +00008972#endif
drhae157872004-08-14 19:20:09 +00008973
drhd677b3d2007-08-20 22:48:41 +00008974 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00008975}
8976
8977/*
drh23e11ca2004-05-04 17:27:28 +00008978** Write meta-information back into the database. Meta[0] is
8979** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00008980*/
danielk1977aef0bf62005-12-30 16:28:01 +00008981int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8982 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00008983 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00008984 int rc;
drh23e11ca2004-05-04 17:27:28 +00008985 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00008986 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008987 assert( p->inTrans==TRANS_WRITE );
8988 assert( pBt->pPage1!=0 );
8989 pP1 = pBt->pPage1->aData;
8990 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8991 if( rc==SQLITE_OK ){
8992 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00008993#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00008994 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00008995 assert( pBt->autoVacuum || iMeta==0 );
8996 assert( iMeta==0 || iMeta==1 );
8997 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00008998 }
drh64022502009-01-09 14:11:04 +00008999#endif
drh5df72a52002-06-06 23:16:05 +00009000 }
drhd677b3d2007-08-20 22:48:41 +00009001 sqlite3BtreeLeave(p);
9002 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009003}
drh8c42ca92001-06-22 19:15:00 +00009004
danielk1977a5533162009-02-24 10:01:51 +00009005#ifndef SQLITE_OMIT_BTREECOUNT
9006/*
9007** The first argument, pCur, is a cursor opened on some b-tree. Count the
9008** number of entries in the b-tree and write the result to *pnEntry.
9009**
9010** SQLITE_OK is returned if the operation is successfully executed.
9011** Otherwise, if an error is encountered (i.e. an IO error or database
9012** corruption) an SQLite error code is returned.
9013*/
9014int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
9015 i64 nEntry = 0; /* Value to return in *pnEntry */
9016 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00009017
drh44548e72017-08-14 18:13:52 +00009018 rc = moveToRoot(pCur);
9019 if( rc==SQLITE_EMPTY ){
dana205a482011-08-27 18:48:57 +00009020 *pnEntry = 0;
9021 return SQLITE_OK;
9022 }
danielk1977a5533162009-02-24 10:01:51 +00009023
9024 /* Unless an error occurs, the following loop runs one iteration for each
9025 ** page in the B-Tree structure (not including overflow pages).
9026 */
9027 while( rc==SQLITE_OK ){
9028 int iIdx; /* Index of child node in parent */
9029 MemPage *pPage; /* Current page of the b-tree */
9030
9031 /* If this is a leaf page or the tree is not an int-key tree, then
9032 ** this page contains countable entries. Increment the entry counter
9033 ** accordingly.
9034 */
drh352a35a2017-08-15 03:46:47 +00009035 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +00009036 if( pPage->leaf || !pPage->intKey ){
9037 nEntry += pPage->nCell;
9038 }
9039
9040 /* pPage is a leaf node. This loop navigates the cursor so that it
9041 ** points to the first interior cell that it points to the parent of
9042 ** the next page in the tree that has not yet been visited. The
9043 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
9044 ** of the page, or to the number of cells in the page if the next page
9045 ** to visit is the right-child of its parent.
9046 **
9047 ** If all pages in the tree have been visited, return SQLITE_OK to the
9048 ** caller.
9049 */
9050 if( pPage->leaf ){
9051 do {
9052 if( pCur->iPage==0 ){
9053 /* All pages of the b-tree have been visited. Return successfully. */
9054 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00009055 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00009056 }
danielk197730548662009-07-09 05:07:37 +00009057 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00009058 }while ( pCur->ix>=pCur->pPage->nCell );
danielk1977a5533162009-02-24 10:01:51 +00009059
drh75e96b32017-04-01 00:20:06 +00009060 pCur->ix++;
drh352a35a2017-08-15 03:46:47 +00009061 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +00009062 }
9063
9064 /* Descend to the child node of the cell that the cursor currently
9065 ** points at. This is the right-child if (iIdx==pPage->nCell).
9066 */
drh75e96b32017-04-01 00:20:06 +00009067 iIdx = pCur->ix;
danielk1977a5533162009-02-24 10:01:51 +00009068 if( iIdx==pPage->nCell ){
9069 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
9070 }else{
9071 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
9072 }
9073 }
9074
shanebe217792009-03-05 04:20:31 +00009075 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00009076 return rc;
9077}
9078#endif
drhdd793422001-06-28 01:54:48 +00009079
drhdd793422001-06-28 01:54:48 +00009080/*
drh5eddca62001-06-30 21:53:53 +00009081** Return the pager associated with a BTree. This routine is used for
9082** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00009083*/
danielk1977aef0bf62005-12-30 16:28:01 +00009084Pager *sqlite3BtreePager(Btree *p){
9085 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00009086}
drh5eddca62001-06-30 21:53:53 +00009087
drhb7f91642004-10-31 02:22:47 +00009088#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009089/*
9090** Append a message to the error message string.
9091*/
drh2e38c322004-09-03 18:38:44 +00009092static void checkAppendMsg(
9093 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00009094 const char *zFormat,
9095 ...
9096){
9097 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00009098 if( !pCheck->mxErr ) return;
9099 pCheck->mxErr--;
9100 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00009101 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00009102 if( pCheck->errMsg.nChar ){
9103 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00009104 }
drh867db832014-09-26 02:41:05 +00009105 if( pCheck->zPfx ){
drh5f4a6862016-01-30 12:50:25 +00009106 sqlite3XPrintf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +00009107 }
drh5f4a6862016-01-30 12:50:25 +00009108 sqlite3VXPrintf(&pCheck->errMsg, zFormat, ap);
drhf089aa42008-07-08 19:34:06 +00009109 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00009110 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00009111 pCheck->mallocFailed = 1;
9112 }
drh5eddca62001-06-30 21:53:53 +00009113}
drhb7f91642004-10-31 02:22:47 +00009114#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009115
drhb7f91642004-10-31 02:22:47 +00009116#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00009117
9118/*
9119** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9120** corresponds to page iPg is already set.
9121*/
9122static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9123 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9124 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
9125}
9126
9127/*
9128** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
9129*/
9130static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9131 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9132 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
9133}
9134
9135
drh5eddca62001-06-30 21:53:53 +00009136/*
9137** Add 1 to the reference count for page iPage. If this is the second
9138** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00009139** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00009140** if this is the first reference to the page.
9141**
9142** Also check that the page number is in bounds.
9143*/
drh867db832014-09-26 02:41:05 +00009144static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh5eddca62001-06-30 21:53:53 +00009145 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00009146 if( iPage>pCheck->nPage ){
drh867db832014-09-26 02:41:05 +00009147 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009148 return 1;
9149 }
dan1235bb12012-04-03 17:43:28 +00009150 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00009151 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009152 return 1;
9153 }
dan1235bb12012-04-03 17:43:28 +00009154 setPageReferenced(pCheck, iPage);
9155 return 0;
drh5eddca62001-06-30 21:53:53 +00009156}
9157
danielk1977afcdd022004-10-31 16:25:42 +00009158#ifndef SQLITE_OMIT_AUTOVACUUM
9159/*
9160** Check that the entry in the pointer-map for page iChild maps to
9161** page iParent, pointer type ptrType. If not, append an error message
9162** to pCheck.
9163*/
9164static void checkPtrmap(
9165 IntegrityCk *pCheck, /* Integrity check context */
9166 Pgno iChild, /* Child page number */
9167 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00009168 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00009169){
9170 int rc;
9171 u8 ePtrmapType;
9172 Pgno iPtrmapParent;
9173
9174 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
9175 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00009176 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00009177 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00009178 return;
9179 }
9180
9181 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00009182 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00009183 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
9184 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
9185 }
9186}
9187#endif
9188
drh5eddca62001-06-30 21:53:53 +00009189/*
9190** Check the integrity of the freelist or of an overflow page list.
9191** Verify that the number of pages on the list is N.
9192*/
drh30e58752002-03-02 20:41:57 +00009193static void checkList(
9194 IntegrityCk *pCheck, /* Integrity checking context */
9195 int isFreeList, /* True for a freelist. False for overflow page list */
9196 int iPage, /* Page number for first page in the list */
drh867db832014-09-26 02:41:05 +00009197 int N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00009198){
9199 int i;
drh3a4c1412004-05-09 20:40:11 +00009200 int expected = N;
9201 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00009202 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00009203 DbPage *pOvflPage;
9204 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00009205 if( iPage<1 ){
drh867db832014-09-26 02:41:05 +00009206 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009207 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00009208 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00009209 break;
9210 }
drh867db832014-09-26 02:41:05 +00009211 if( checkRef(pCheck, iPage) ) break;
drh9584f582015-11-04 20:22:37 +00009212 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
drh867db832014-09-26 02:41:05 +00009213 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009214 break;
9215 }
danielk19773b8a05f2007-03-19 17:44:26 +00009216 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00009217 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00009218 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00009219#ifndef SQLITE_OMIT_AUTOVACUUM
9220 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009221 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009222 }
9223#endif
drh43b18e12010-08-17 19:40:08 +00009224 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00009225 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009226 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00009227 N--;
9228 }else{
9229 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00009230 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00009231#ifndef SQLITE_OMIT_AUTOVACUUM
9232 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009233 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009234 }
9235#endif
drh867db832014-09-26 02:41:05 +00009236 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00009237 }
9238 N -= n;
drh30e58752002-03-02 20:41:57 +00009239 }
drh30e58752002-03-02 20:41:57 +00009240 }
danielk1977afcdd022004-10-31 16:25:42 +00009241#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009242 else{
9243 /* If this database supports auto-vacuum and iPage is not the last
9244 ** page in this overflow list, check that the pointer-map entry for
9245 ** the following page matches iPage.
9246 */
9247 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00009248 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00009249 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00009250 }
danielk1977afcdd022004-10-31 16:25:42 +00009251 }
9252#endif
danielk19773b8a05f2007-03-19 17:44:26 +00009253 iPage = get4byte(pOvflData);
9254 sqlite3PagerUnref(pOvflPage);
danad41f5e2015-09-18 14:45:01 +00009255
9256 if( isFreeList && N<(iPage!=0) ){
9257 checkAppendMsg(pCheck, "free-page count in header is too small");
9258 }
drh5eddca62001-06-30 21:53:53 +00009259 }
9260}
drhb7f91642004-10-31 02:22:47 +00009261#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009262
drh67731a92015-04-16 11:56:03 +00009263/*
9264** An implementation of a min-heap.
9265**
9266** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00009267** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00009268** and aHeap[N*2+1].
9269**
9270** The heap property is this: Every node is less than or equal to both
9271** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00009272** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00009273**
9274** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9275** the heap, preserving the heap property. The btreeHeapPull() routine
9276** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00009277** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00009278** property.
9279**
9280** This heap is used for cell overlap and coverage testing. Each u32
9281** entry represents the span of a cell or freeblock on a btree page.
9282** The upper 16 bits are the index of the first byte of a range and the
9283** lower 16 bits are the index of the last byte of that range.
9284*/
9285static void btreeHeapInsert(u32 *aHeap, u32 x){
9286 u32 j, i = ++aHeap[0];
9287 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00009288 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00009289 x = aHeap[j];
9290 aHeap[j] = aHeap[i];
9291 aHeap[i] = x;
9292 i = j;
9293 }
9294}
9295static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9296 u32 j, i, x;
9297 if( (x = aHeap[0])==0 ) return 0;
9298 *pOut = aHeap[1];
9299 aHeap[1] = aHeap[x];
9300 aHeap[x] = 0xffffffff;
9301 aHeap[0]--;
9302 i = 1;
9303 while( (j = i*2)<=aHeap[0] ){
9304 if( aHeap[j]>aHeap[j+1] ) j++;
9305 if( aHeap[i]<aHeap[j] ) break;
9306 x = aHeap[i];
9307 aHeap[i] = aHeap[j];
9308 aHeap[j] = x;
9309 i = j;
9310 }
9311 return 1;
9312}
9313
drhb7f91642004-10-31 02:22:47 +00009314#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009315/*
9316** Do various sanity checks on a single page of a tree. Return
9317** the tree depth. Root pages return 0. Parents of root pages
9318** return 1, and so forth.
9319**
9320** These checks are done:
9321**
9322** 1. Make sure that cells and freeblocks do not overlap
9323** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +00009324** 2. Make sure integer cell keys are in order.
9325** 3. Check the integrity of overflow pages.
9326** 4. Recursively call checkTreePage on all children.
9327** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +00009328*/
9329static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00009330 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00009331 int iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +00009332 i64 *piMinKey, /* Write minimum integer primary key here */
9333 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +00009334){
drhcbc6b712015-07-02 16:17:30 +00009335 MemPage *pPage = 0; /* The page being analyzed */
9336 int i; /* Loop counter */
9337 int rc; /* Result code from subroutine call */
9338 int depth = -1, d2; /* Depth of a subtree */
9339 int pgno; /* Page number */
9340 int nFrag; /* Number of fragmented bytes on the page */
9341 int hdr; /* Offset to the page header */
9342 int cellStart; /* Offset to the start of the cell pointer array */
9343 int nCell; /* Number of cells */
9344 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9345 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
9346 ** False if IPK must be strictly less than maxKey */
9347 u8 *data; /* Page content */
9348 u8 *pCell; /* Cell content */
9349 u8 *pCellIdx; /* Next element of the cell pointer array */
9350 BtShared *pBt; /* The BtShared object that owns pPage */
9351 u32 pc; /* Address of a cell */
9352 u32 usableSize; /* Usable size of the page */
9353 u32 contentOffset; /* Offset to the start of the cell content area */
9354 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +00009355 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +00009356 const char *saved_zPfx = pCheck->zPfx;
9357 int saved_v1 = pCheck->v1;
9358 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +00009359 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +00009360
drh5eddca62001-06-30 21:53:53 +00009361 /* Check that the page exists
9362 */
drhd9cb6ac2005-10-20 07:28:17 +00009363 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00009364 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00009365 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00009366 if( checkRef(pCheck, iPage) ) return 0;
9367 pCheck->zPfx = "Page %d: ";
9368 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00009369 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00009370 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009371 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00009372 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009373 }
danielk197793caf5a2009-07-11 06:55:33 +00009374
9375 /* Clear MemPage.isInit to make sure the corruption detection code in
9376 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +00009377 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +00009378 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00009379 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00009380 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00009381 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00009382 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +00009383 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009384 }
drhcbc6b712015-07-02 16:17:30 +00009385 data = pPage->aData;
9386 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +00009387
drhcbc6b712015-07-02 16:17:30 +00009388 /* Set up for cell analysis */
drhe05b3f82015-07-01 17:53:49 +00009389 pCheck->zPfx = "On tree page %d cell %d: ";
drhcbc6b712015-07-02 16:17:30 +00009390 contentOffset = get2byteNotZero(&data[hdr+5]);
9391 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
9392
9393 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9394 ** number of cells on the page. */
9395 nCell = get2byte(&data[hdr+3]);
9396 assert( pPage->nCell==nCell );
9397
9398 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9399 ** immediately follows the b-tree page header. */
9400 cellStart = hdr + 12 - 4*pPage->leaf;
9401 assert( pPage->aCellIdx==&data[cellStart] );
9402 pCellIdx = &data[cellStart + 2*(nCell-1)];
9403
9404 if( !pPage->leaf ){
9405 /* Analyze the right-child page of internal pages */
9406 pgno = get4byte(&data[hdr+8]);
9407#ifndef SQLITE_OMIT_AUTOVACUUM
9408 if( pBt->autoVacuum ){
9409 pCheck->zPfx = "On page %d at right child: ";
9410 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9411 }
9412#endif
9413 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9414 keyCanBeEqual = 0;
9415 }else{
9416 /* For leaf pages, the coverage check will occur in the same loop
9417 ** as the other cell checks, so initialize the heap. */
9418 heap = pCheck->heap;
9419 heap[0] = 0;
drh5eddca62001-06-30 21:53:53 +00009420 }
9421
drhcbc6b712015-07-02 16:17:30 +00009422 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9423 ** integer offsets to the cell contents. */
9424 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +00009425 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00009426
drhcbc6b712015-07-02 16:17:30 +00009427 /* Check cell size */
drh867db832014-09-26 02:41:05 +00009428 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +00009429 assert( pCellIdx==&data[cellStart + i*2] );
9430 pc = get2byteAligned(pCellIdx);
9431 pCellIdx -= 2;
9432 if( pc<contentOffset || pc>usableSize-4 ){
9433 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9434 pc, contentOffset, usableSize-4);
9435 doCoverageCheck = 0;
9436 continue;
shaneh195475d2010-02-19 04:28:08 +00009437 }
drhcbc6b712015-07-02 16:17:30 +00009438 pCell = &data[pc];
9439 pPage->xParseCell(pPage, pCell, &info);
9440 if( pc+info.nSize>usableSize ){
9441 checkAppendMsg(pCheck, "Extends off end of page");
9442 doCoverageCheck = 0;
9443 continue;
drh5eddca62001-06-30 21:53:53 +00009444 }
9445
drhcbc6b712015-07-02 16:17:30 +00009446 /* Check for integer primary key out of range */
9447 if( pPage->intKey ){
9448 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9449 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9450 }
9451 maxKey = info.nKey;
dan4b2667c2017-05-01 18:24:01 +00009452 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */
drhcbc6b712015-07-02 16:17:30 +00009453 }
9454
9455 /* Check the content overflow list */
9456 if( info.nPayload>info.nLocal ){
9457 int nPage; /* Number of pages on the overflow chain */
9458 Pgno pgnoOvfl; /* First page of the overflow chain */
drh45ac1c72015-12-18 03:59:16 +00009459 assert( pc + info.nSize - 4 <= usableSize );
drhcbc6b712015-07-02 16:17:30 +00009460 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
drh45ac1c72015-12-18 03:59:16 +00009461 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
drhda200cc2004-05-09 11:51:38 +00009462#ifndef SQLITE_OMIT_AUTOVACUUM
9463 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009464 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
drhda200cc2004-05-09 11:51:38 +00009465 }
9466#endif
drh867db832014-09-26 02:41:05 +00009467 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00009468 }
9469
drh5eddca62001-06-30 21:53:53 +00009470 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +00009471 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +00009472 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00009473#ifndef SQLITE_OMIT_AUTOVACUUM
9474 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009475 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009476 }
9477#endif
drhcbc6b712015-07-02 16:17:30 +00009478 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9479 keyCanBeEqual = 0;
9480 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +00009481 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +00009482 depth = d2;
drh5eddca62001-06-30 21:53:53 +00009483 }
drhcbc6b712015-07-02 16:17:30 +00009484 }else{
9485 /* Populate the coverage-checking heap for leaf pages */
9486 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +00009487 }
9488 }
drhcbc6b712015-07-02 16:17:30 +00009489 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +00009490
drh5eddca62001-06-30 21:53:53 +00009491 /* Check for complete coverage of the page
9492 */
drh867db832014-09-26 02:41:05 +00009493 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +00009494 if( doCoverageCheck && pCheck->mxErr>0 ){
9495 /* For leaf pages, the min-heap has already been initialized and the
9496 ** cells have already been inserted. But for internal pages, that has
9497 ** not yet been done, so do it now */
9498 if( !pPage->leaf ){
9499 heap = pCheck->heap;
9500 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +00009501 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +00009502 u32 size;
9503 pc = get2byteAligned(&data[cellStart+i*2]);
9504 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +00009505 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +00009506 }
drh2e38c322004-09-03 18:38:44 +00009507 }
drhcbc6b712015-07-02 16:17:30 +00009508 /* Add the freeblocks to the min-heap
9509 **
9510 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +00009511 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +00009512 ** freeblocks on the page.
9513 */
drh8c2bbb62009-07-10 02:52:20 +00009514 i = get2byte(&data[hdr+1]);
9515 while( i>0 ){
9516 int size, j;
mistachkinc29cbb02015-07-02 16:52:01 +00009517 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009518 size = get2byte(&data[i+2]);
mistachkinc29cbb02015-07-02 16:52:01 +00009519 assert( (u32)(i+size)<=usableSize ); /* Enforced by btreeInitPage() */
drhe56d4302015-07-08 01:22:52 +00009520 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +00009521 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9522 ** big-endian integer which is the offset in the b-tree page of the next
9523 ** freeblock in the chain, or zero if the freeblock is the last on the
9524 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +00009525 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +00009526 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9527 ** increasing offset. */
drh8c2bbb62009-07-10 02:52:20 +00009528 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
mistachkinc29cbb02015-07-02 16:52:01 +00009529 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009530 i = j;
drh2e38c322004-09-03 18:38:44 +00009531 }
drhcbc6b712015-07-02 16:17:30 +00009532 /* Analyze the min-heap looking for overlap between cells and/or
9533 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +00009534 **
9535 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
9536 ** There is an implied first entry the covers the page header, the cell
9537 ** pointer index, and the gap between the cell pointer index and the start
9538 ** of cell content.
9539 **
9540 ** The loop below pulls entries from the min-heap in order and compares
9541 ** the start_address against the previous end_address. If there is an
9542 ** overlap, that means bytes are used multiple times. If there is a gap,
9543 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +00009544 */
9545 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +00009546 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +00009547 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +00009548 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +00009549 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +00009550 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +00009551 break;
drh67731a92015-04-16 11:56:03 +00009552 }else{
drhcbc6b712015-07-02 16:17:30 +00009553 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +00009554 prev = x;
drh2e38c322004-09-03 18:38:44 +00009555 }
9556 }
drhcbc6b712015-07-02 16:17:30 +00009557 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +00009558 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9559 ** is stored in the fifth field of the b-tree page header.
9560 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9561 ** number of fragmented free bytes within the cell content area.
9562 */
drhcbc6b712015-07-02 16:17:30 +00009563 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +00009564 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +00009565 "Fragmentation of %d bytes reported as %d on page %d",
drhcbc6b712015-07-02 16:17:30 +00009566 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00009567 }
9568 }
drh867db832014-09-26 02:41:05 +00009569
9570end_of_check:
drh72e191e2015-07-04 11:14:20 +00009571 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drh4b70f112004-05-02 21:12:19 +00009572 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00009573 pCheck->zPfx = saved_zPfx;
9574 pCheck->v1 = saved_v1;
9575 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +00009576 return depth+1;
drh5eddca62001-06-30 21:53:53 +00009577}
drhb7f91642004-10-31 02:22:47 +00009578#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009579
drhb7f91642004-10-31 02:22:47 +00009580#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009581/*
9582** This routine does a complete check of the given BTree file. aRoot[] is
9583** an array of pages numbers were each page number is the root page of
9584** a table. nRoot is the number of entries in aRoot.
9585**
danielk19773509a652009-07-06 18:56:13 +00009586** A read-only or read-write transaction must be opened before calling
9587** this function.
9588**
drhc890fec2008-08-01 20:10:08 +00009589** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00009590** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00009591** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00009592** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00009593*/
drh1dcdbc02007-01-27 02:24:54 +00009594char *sqlite3BtreeIntegrityCheck(
9595 Btree *p, /* The btree to be checked */
9596 int *aRoot, /* An array of root pages numbers for individual trees */
9597 int nRoot, /* Number of entries in aRoot[] */
9598 int mxErr, /* Stop reporting errors after this many */
9599 int *pnErr /* Write number of errors seen to this variable */
9600){
danielk197789d40042008-11-17 14:20:56 +00009601 Pgno i;
drhaaab5722002-02-19 13:39:21 +00009602 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00009603 BtShared *pBt = p->pBt;
drhcbc6b712015-07-02 16:17:30 +00009604 int savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +00009605 char zErr[100];
drhcbc6b712015-07-02 16:17:30 +00009606 VVA_ONLY( int nRef );
drh5eddca62001-06-30 21:53:53 +00009607
drhd677b3d2007-08-20 22:48:41 +00009608 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00009609 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhcc5f8a42016-02-06 22:32:06 +00009610 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
9611 assert( nRef>=0 );
drh5eddca62001-06-30 21:53:53 +00009612 sCheck.pBt = pBt;
9613 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00009614 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00009615 sCheck.mxErr = mxErr;
9616 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00009617 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +00009618 sCheck.zPfx = 0;
9619 sCheck.v1 = 0;
9620 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +00009621 sCheck.aPgRef = 0;
9622 sCheck.heap = 0;
9623 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh5f4a6862016-01-30 12:50:25 +00009624 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
drh0de8c112002-07-06 16:32:14 +00009625 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +00009626 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +00009627 }
dan1235bb12012-04-03 17:43:28 +00009628
9629 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9630 if( !sCheck.aPgRef ){
drhe05b3f82015-07-01 17:53:49 +00009631 sCheck.mallocFailed = 1;
9632 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +00009633 }
drhe05b3f82015-07-01 17:53:49 +00009634 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
9635 if( sCheck.heap==0 ){
9636 sCheck.mallocFailed = 1;
9637 goto integrity_ck_cleanup;
9638 }
9639
drh42cac6d2004-11-20 20:31:11 +00009640 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00009641 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +00009642
9643 /* Check the integrity of the freelist
9644 */
drh867db832014-09-26 02:41:05 +00009645 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +00009646 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +00009647 get4byte(&pBt->pPage1->aData[36]));
9648 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00009649
9650 /* Check all the tables.
9651 */
drhcbc6b712015-07-02 16:17:30 +00009652 testcase( pBt->db->flags & SQLITE_CellSizeCk );
9653 pBt->db->flags &= ~SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +00009654 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +00009655 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +00009656 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00009657#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009658 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +00009659 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009660 }
9661#endif
drhcbc6b712015-07-02 16:17:30 +00009662 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +00009663 }
drhcbc6b712015-07-02 16:17:30 +00009664 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +00009665
9666 /* Make sure every page in the file is referenced
9667 */
drh1dcdbc02007-01-27 02:24:54 +00009668 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00009669#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00009670 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +00009671 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00009672 }
danielk1977afcdd022004-10-31 16:25:42 +00009673#else
9674 /* If the database supports auto-vacuum, make sure no tables contain
9675 ** references to pointer-map pages.
9676 */
dan1235bb12012-04-03 17:43:28 +00009677 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00009678 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009679 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +00009680 }
dan1235bb12012-04-03 17:43:28 +00009681 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00009682 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009683 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +00009684 }
9685#endif
drh5eddca62001-06-30 21:53:53 +00009686 }
9687
drh5eddca62001-06-30 21:53:53 +00009688 /* Clean up and report errors.
9689 */
drhe05b3f82015-07-01 17:53:49 +00009690integrity_ck_cleanup:
9691 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +00009692 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00009693 if( sCheck.mallocFailed ){
9694 sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009695 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +00009696 }
drh1dcdbc02007-01-27 02:24:54 +00009697 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00009698 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009699 /* Make sure this analysis did not leave any unref() pages. */
9700 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
9701 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +00009702 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00009703}
drhb7f91642004-10-31 02:22:47 +00009704#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00009705
drh73509ee2003-04-06 20:44:45 +00009706/*
drhd4e0bb02012-05-27 01:19:04 +00009707** Return the full pathname of the underlying database file. Return
9708** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00009709**
9710** The pager filename is invariant as long as the pager is
9711** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00009712*/
danielk1977aef0bf62005-12-30 16:28:01 +00009713const char *sqlite3BtreeGetFilename(Btree *p){
9714 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00009715 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00009716}
9717
9718/*
danielk19775865e3d2004-06-14 06:03:57 +00009719** Return the pathname of the journal file for this database. The return
9720** value of this routine is the same regardless of whether the journal file
9721** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00009722**
9723** The pager journal filename is invariant as long as the pager is
9724** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00009725*/
danielk1977aef0bf62005-12-30 16:28:01 +00009726const char *sqlite3BtreeGetJournalname(Btree *p){
9727 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00009728 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00009729}
9730
danielk19771d850a72004-05-31 08:26:49 +00009731/*
9732** Return non-zero if a transaction is active.
9733*/
danielk1977aef0bf62005-12-30 16:28:01 +00009734int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00009735 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00009736 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00009737}
9738
dana550f2d2010-08-02 10:47:05 +00009739#ifndef SQLITE_OMIT_WAL
9740/*
9741** Run a checkpoint on the Btree passed as the first argument.
9742**
9743** Return SQLITE_LOCKED if this or any other connection has an open
9744** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00009745**
dancdc1f042010-11-18 12:11:05 +00009746** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00009747*/
dancdc1f042010-11-18 12:11:05 +00009748int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00009749 int rc = SQLITE_OK;
9750 if( p ){
9751 BtShared *pBt = p->pBt;
9752 sqlite3BtreeEnter(p);
9753 if( pBt->inTransaction!=TRANS_NONE ){
9754 rc = SQLITE_LOCKED;
9755 }else{
dan7fb89902016-08-12 16:21:15 +00009756 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00009757 }
9758 sqlite3BtreeLeave(p);
9759 }
9760 return rc;
9761}
9762#endif
9763
danielk19771d850a72004-05-31 08:26:49 +00009764/*
danielk19772372c2b2006-06-27 16:34:56 +00009765** Return non-zero if a read (or write) transaction is active.
9766*/
9767int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00009768 assert( p );
drhe5fe6902007-12-07 18:55:28 +00009769 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00009770 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00009771}
9772
danielk197704103022009-02-03 16:51:24 +00009773int sqlite3BtreeIsInBackup(Btree *p){
9774 assert( p );
9775 assert( sqlite3_mutex_held(p->db->mutex) );
9776 return p->nBackup!=0;
9777}
9778
danielk19772372c2b2006-06-27 16:34:56 +00009779/*
danielk1977da184232006-01-05 11:34:32 +00009780** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00009781** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00009782** purposes (for example, to store a high-level schema associated with
9783** the shared-btree). The btree layer manages reference counting issues.
9784**
9785** The first time this is called on a shared-btree, nBytes bytes of memory
9786** are allocated, zeroed, and returned to the caller. For each subsequent
9787** call the nBytes parameter is ignored and a pointer to the same blob
9788** of memory returned.
9789**
danielk1977171bfed2008-06-23 09:50:50 +00009790** If the nBytes parameter is 0 and the blob of memory has not yet been
9791** allocated, a null pointer is returned. If the blob has already been
9792** allocated, it is returned as normal.
9793**
danielk1977da184232006-01-05 11:34:32 +00009794** Just before the shared-btree is closed, the function passed as the
9795** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00009796** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00009797** on the memory, the btree layer does that.
9798*/
9799void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9800 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00009801 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00009802 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00009803 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00009804 pBt->xFreeSchema = xFree;
9805 }
drh27641702007-08-22 02:56:42 +00009806 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00009807 return pBt->pSchema;
9808}
9809
danielk1977c87d34d2006-01-06 13:00:28 +00009810/*
danielk1977404ca072009-03-16 13:19:36 +00009811** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9812** btree as the argument handle holds an exclusive lock on the
9813** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00009814*/
9815int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00009816 int rc;
drhe5fe6902007-12-07 18:55:28 +00009817 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00009818 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00009819 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9820 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00009821 sqlite3BtreeLeave(p);
9822 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00009823}
9824
drha154dcd2006-03-22 22:10:07 +00009825
9826#ifndef SQLITE_OMIT_SHARED_CACHE
9827/*
9828** Obtain a lock on the table whose root page is iTab. The
9829** lock is a write lock if isWritelock is true or a read lock
9830** if it is false.
9831*/
danielk1977c00da102006-01-07 13:21:04 +00009832int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00009833 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00009834 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00009835 if( p->sharable ){
9836 u8 lockType = READ_LOCK + isWriteLock;
9837 assert( READ_LOCK+1==WRITE_LOCK );
9838 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00009839
drh6a9ad3d2008-04-02 16:29:30 +00009840 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00009841 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009842 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00009843 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009844 }
9845 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00009846 }
9847 return rc;
9848}
drha154dcd2006-03-22 22:10:07 +00009849#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00009850
danielk1977b4e9af92007-05-01 17:49:49 +00009851#ifndef SQLITE_OMIT_INCRBLOB
9852/*
9853** Argument pCsr must be a cursor opened for writing on an
9854** INTKEY table currently pointing at a valid table entry.
9855** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00009856**
9857** Only the data content may only be modified, it is not possible to
9858** change the length of the data stored. If this function is called with
9859** parameters that attempt to write past the end of the existing data,
9860** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00009861*/
danielk1977dcbb5d32007-05-04 18:36:44 +00009862int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00009863 int rc;
dan7a2347e2016-01-07 16:43:54 +00009864 assert( cursorOwnsBtShared(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00009865 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +00009866 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +00009867
danielk1977c9000e62009-07-08 13:55:28 +00009868 rc = restoreCursorPosition(pCsr);
9869 if( rc!=SQLITE_OK ){
9870 return rc;
9871 }
danielk19773588ceb2008-06-10 17:30:26 +00009872 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9873 if( pCsr->eState!=CURSOR_VALID ){
9874 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00009875 }
9876
dan227a1c42013-04-03 11:17:39 +00009877 /* Save the positions of all other cursors open on this table. This is
9878 ** required in case any of them are holding references to an xFetch
9879 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00009880 **
drh3f387402014-09-24 01:23:00 +00009881 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +00009882 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9883 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00009884 */
drh370c9f42013-04-03 20:04:04 +00009885 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9886 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00009887
danielk1977c9000e62009-07-08 13:55:28 +00009888 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00009889 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00009890 ** (b) there is a read/write transaction open,
9891 ** (c) the connection holds a write-lock on the table (if required),
9892 ** (d) there are no conflicting read-locks, and
9893 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00009894 */
drh036dbec2014-03-11 23:40:44 +00009895 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +00009896 return SQLITE_READONLY;
9897 }
drhc9166342012-01-05 23:32:06 +00009898 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9899 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009900 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9901 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
drh352a35a2017-08-15 03:46:47 +00009902 assert( pCsr->pPage->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00009903
drhfb192682009-07-11 18:26:28 +00009904 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00009905}
danielk19772dec9702007-05-02 16:48:37 +00009906
9907/*
dan5a500af2014-03-11 20:33:04 +00009908** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +00009909*/
dan5a500af2014-03-11 20:33:04 +00009910void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +00009911 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +00009912 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +00009913}
danielk1977b4e9af92007-05-01 17:49:49 +00009914#endif
dane04dc882010-04-20 18:53:15 +00009915
9916/*
9917** Set both the "read version" (single byte at byte offset 18) and
9918** "write version" (single byte at byte offset 19) fields in the database
9919** header to iVersion.
9920*/
9921int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9922 BtShared *pBt = pBtree->pBt;
9923 int rc; /* Return code */
9924
dane04dc882010-04-20 18:53:15 +00009925 assert( iVersion==1 || iVersion==2 );
9926
danb9780022010-04-21 18:37:57 +00009927 /* If setting the version fields to 1, do not automatically open the
9928 ** WAL connection, even if the version fields are currently set to 2.
9929 */
drhc9166342012-01-05 23:32:06 +00009930 pBt->btsFlags &= ~BTS_NO_WAL;
9931 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00009932
9933 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00009934 if( rc==SQLITE_OK ){
9935 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00009936 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00009937 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00009938 if( rc==SQLITE_OK ){
9939 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9940 if( rc==SQLITE_OK ){
9941 aData[18] = (u8)iVersion;
9942 aData[19] = (u8)iVersion;
9943 }
9944 }
9945 }
dane04dc882010-04-20 18:53:15 +00009946 }
9947
drhc9166342012-01-05 23:32:06 +00009948 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00009949 return rc;
9950}
dan428c2182012-08-06 18:50:11 +00009951
drhe0997b32015-03-20 14:57:50 +00009952/*
9953** Return true if the cursor has a hint specified. This routine is
9954** only used from within assert() statements
9955*/
9956int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
9957 return (pCsr->hints & mask)!=0;
9958}
drhe0997b32015-03-20 14:57:50 +00009959
drh781597f2014-05-21 08:21:07 +00009960/*
9961** Return true if the given Btree is read-only.
9962*/
9963int sqlite3BtreeIsReadonly(Btree *p){
9964 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9965}
drhdef68892014-11-04 12:11:23 +00009966
9967/*
9968** Return the size of the header added to each page by this module.
9969*/
drh37c057b2014-12-30 00:57:29 +00009970int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
dan20d876f2016-01-07 16:06:22 +00009971
drh5a1fb182016-01-08 19:34:39 +00009972#if !defined(SQLITE_OMIT_SHARED_CACHE)
dan20d876f2016-01-07 16:06:22 +00009973/*
9974** Return true if the Btree passed as the only argument is sharable.
9975*/
9976int sqlite3BtreeSharable(Btree *p){
9977 return p->sharable;
9978}
dan272989b2016-07-06 10:12:02 +00009979
9980/*
9981** Return the number of connections to the BtShared object accessed by
9982** the Btree handle passed as the only argument. For private caches
9983** this is always 1. For shared caches it may be 1 or greater.
9984*/
9985int sqlite3BtreeConnectionCount(Btree *p){
9986 testcase( p->sharable );
9987 return p->pBt->nRef;
9988}
drh5a1fb182016-01-08 19:34:39 +00009989#endif