blob: 19c0255b8f2cd74335bf83b64a5b1460e42558fe [file] [log] [blame]
drh75897232000-05-29 14:26:00 +00001/*
drhb19a2bc2001-09-16 00:13:26 +00002** 2001 September 15
drh75897232000-05-29 14:26:00 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drh75897232000-05-29 14:26:00 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drh75897232000-05-29 14:26:00 +000010**
11*************************************************************************
drh9a324642003-09-06 20:12:01 +000012** The code in this file implements execution method of the
13** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
14** handles housekeeping details such as creating and deleting
15** VDBE instances. This file is solely interested in executing
16** the VDBE program.
17**
danielk1977fc57d7b2004-05-26 02:04:57 +000018** In the external interface, an "sqlite3_stmt*" is an opaque pointer
drh9a324642003-09-06 20:12:01 +000019** to a VDBE.
drh75897232000-05-29 14:26:00 +000020**
21** The SQL parser generates a program which is then executed by
22** the VDBE to do the work of the SQL statement. VDBE programs are
23** similar in form to assembly language. The program consists of
24** a linear sequence of operations. Each operation has an opcode
drh9cbf3422008-01-17 16:22:13 +000025** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4
26** is a null-terminated string. Operand P5 is an unsigned character.
27** Few opcodes use all 5 operands.
drh75897232000-05-29 14:26:00 +000028**
drh9cbf3422008-01-17 16:22:13 +000029** Computation results are stored on a set of registers numbered beginning
30** with 1 and going up to Vdbe.nMem. Each register can store
31** either an integer, a null-terminated string, a floating point
shane21e7feb2008-05-30 15:59:49 +000032** number, or the SQL "NULL" value. An implicit conversion from one
drhb19a2bc2001-09-16 00:13:26 +000033** type to the other occurs as necessary.
drh75897232000-05-29 14:26:00 +000034**
danielk19774adee202004-05-08 08:23:19 +000035** Most of the code in this file is taken up by the sqlite3VdbeExec()
drh75897232000-05-29 14:26:00 +000036** function which does the work of interpreting a VDBE program.
37** But other routines are also provided to help in building up
38** a program instruction by instruction.
39**
drhac82fcf2002-09-08 17:23:41 +000040** Various scripts scan this source file in order to generate HTML
41** documentation, headers files, or other derived files. The formatting
42** of the code in this file is, therefore, important. See other comments
43** in this file for details. If in doubt, do not deviate from existing
44** commenting and indentation practices when changing or adding code.
drh75897232000-05-29 14:26:00 +000045*/
46#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000047#include "vdbeInt.h"
drh8f619cc2002-09-08 00:04:50 +000048
49/*
drh2b4ded92010-09-27 21:09:31 +000050** Invoke this macro on memory cells just prior to changing the
51** value of the cell. This macro verifies that shallow copies are
52** not misused.
53*/
54#ifdef SQLITE_DEBUG
drhe4c88c02012-01-04 12:57:45 +000055# define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
drh2b4ded92010-09-27 21:09:31 +000056#else
57# define memAboutToChange(P,M)
58#endif
59
60/*
drh487ab3c2001-11-08 00:45:21 +000061** The following global variable is incremented every time a cursor
drh959403f2008-12-12 17:56:16 +000062** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
drh487ab3c2001-11-08 00:45:21 +000063** procedures use this information to make sure that indices are
drhac82fcf2002-09-08 17:23:41 +000064** working correctly. This variable has no function other than to
65** help verify the correct operation of the library.
drh487ab3c2001-11-08 00:45:21 +000066*/
drh0f7eb612006-08-08 13:51:43 +000067#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000068int sqlite3_search_count = 0;
drh0f7eb612006-08-08 13:51:43 +000069#endif
drh487ab3c2001-11-08 00:45:21 +000070
drhf6038712004-02-08 18:07:34 +000071/*
72** When this global variable is positive, it gets decremented once before
drhe4c88c02012-01-04 12:57:45 +000073** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
74** field of the sqlite3 structure is set in order to simulate an interrupt.
drhf6038712004-02-08 18:07:34 +000075**
76** This facility is used for testing purposes only. It does not function
77** in an ordinary build.
78*/
drh0f7eb612006-08-08 13:51:43 +000079#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000080int sqlite3_interrupt_count = 0;
drh0f7eb612006-08-08 13:51:43 +000081#endif
drh1350b032002-02-27 19:00:20 +000082
danielk19777e18c252004-05-25 11:47:24 +000083/*
drh6bf89572004-11-03 16:27:01 +000084** The next global variable is incremented each type the OP_Sort opcode
85** is executed. The test procedures use this information to make sure that
shane21e7feb2008-05-30 15:59:49 +000086** sorting is occurring or not occurring at appropriate times. This variable
drh6bf89572004-11-03 16:27:01 +000087** has no function other than to help verify the correct operation of the
88** library.
89*/
drh0f7eb612006-08-08 13:51:43 +000090#ifdef SQLITE_TEST
drh6bf89572004-11-03 16:27:01 +000091int sqlite3_sort_count = 0;
drh0f7eb612006-08-08 13:51:43 +000092#endif
drh6bf89572004-11-03 16:27:01 +000093
94/*
drhae7e1512007-05-02 16:51:59 +000095** The next global variable records the size of the largest MEM_Blob
drh9cbf3422008-01-17 16:22:13 +000096** or MEM_Str that has been used by a VDBE opcode. The test procedures
drhae7e1512007-05-02 16:51:59 +000097** use this information to make sure that the zero-blob functionality
98** is working correctly. This variable has no function other than to
99** help verify the correct operation of the library.
100*/
101#ifdef SQLITE_TEST
102int sqlite3_max_blobsize = 0;
drhca48c902008-01-18 14:08:24 +0000103static void updateMaxBlobsize(Mem *p){
104 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
105 sqlite3_max_blobsize = p->n;
106 }
107}
drhae7e1512007-05-02 16:51:59 +0000108#endif
109
110/*
dan0ff297e2009-09-25 17:03:14 +0000111** The next global variable is incremented each type the OP_Found opcode
112** is executed. This is used to test whether or not the foreign key
113** operation implemented using OP_FkIsZero is working. This variable
114** has no function other than to help verify the correct operation of the
115** library.
116*/
117#ifdef SQLITE_TEST
118int sqlite3_found_count = 0;
119#endif
120
121/*
drhb7654112008-01-12 12:48:07 +0000122** Test a register to see if it exceeds the current maximum blob size.
123** If it does, record the new maximum blob size.
124*/
drh678ccce2008-03-31 18:19:54 +0000125#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
drhca48c902008-01-18 14:08:24 +0000126# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
drhb7654112008-01-12 12:48:07 +0000127#else
128# define UPDATE_MAX_BLOBSIZE(P)
129#endif
130
131/*
drh9cbf3422008-01-17 16:22:13 +0000132** Convert the given register into a string if it isn't one
danielk1977bd7e4602004-05-24 07:34:48 +0000133** already. Return non-zero if a malloc() fails.
134*/
drhb21c8cd2007-08-21 19:33:56 +0000135#define Stringify(P, enc) \
136 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
drhf4479502004-05-27 03:12:53 +0000137 { goto no_mem; }
danielk1977bd7e4602004-05-24 07:34:48 +0000138
139/*
danielk1977bd7e4602004-05-24 07:34:48 +0000140** An ephemeral string value (signified by the MEM_Ephem flag) contains
141** a pointer to a dynamically allocated string where some other entity
drh9cbf3422008-01-17 16:22:13 +0000142** is responsible for deallocating that string. Because the register
143** does not control the string, it might be deleted without the register
144** knowing it.
danielk1977bd7e4602004-05-24 07:34:48 +0000145**
146** This routine converts an ephemeral string into a dynamically allocated
drh9cbf3422008-01-17 16:22:13 +0000147** string that the register itself controls. In other words, it
danielk1977bd7e4602004-05-24 07:34:48 +0000148** converts an MEM_Ephem string into an MEM_Dyn string.
149*/
drhb21c8cd2007-08-21 19:33:56 +0000150#define Deephemeralize(P) \
drheb2e1762004-05-27 01:53:56 +0000151 if( ((P)->flags&MEM_Ephem)!=0 \
drhb21c8cd2007-08-21 19:33:56 +0000152 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
danielk197793d46752004-05-23 13:30:58 +0000153
dan689ab892011-08-12 15:02:00 +0000154/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
155#ifdef SQLITE_OMIT_MERGE_SORT
156# define isSorter(x) 0
157#else
158# define isSorter(x) ((x)->pSorter!=0)
159#endif
160
danielk19771cc5ed82007-05-16 17:28:43 +0000161/*
shane21e7feb2008-05-30 15:59:49 +0000162** Argument pMem points at a register that will be passed to a
danielk1977c572ef72004-05-27 09:28:41 +0000163** user-defined function or returned to the user as the result of a query.
dan937d0de2009-10-15 18:35:38 +0000164** This routine sets the pMem->type variable used by the sqlite3_value_*()
165** routines.
danielk1977c572ef72004-05-27 09:28:41 +0000166*/
dan937d0de2009-10-15 18:35:38 +0000167void sqlite3VdbeMemStoreType(Mem *pMem){
danielk1977c572ef72004-05-27 09:28:41 +0000168 int flags = pMem->flags;
169 if( flags & MEM_Null ){
drh9c054832004-05-31 18:51:57 +0000170 pMem->type = SQLITE_NULL;
danielk1977c572ef72004-05-27 09:28:41 +0000171 }
172 else if( flags & MEM_Int ){
drh9c054832004-05-31 18:51:57 +0000173 pMem->type = SQLITE_INTEGER;
danielk1977c572ef72004-05-27 09:28:41 +0000174 }
175 else if( flags & MEM_Real ){
drh9c054832004-05-31 18:51:57 +0000176 pMem->type = SQLITE_FLOAT;
danielk1977c572ef72004-05-27 09:28:41 +0000177 }
178 else if( flags & MEM_Str ){
drh9c054832004-05-31 18:51:57 +0000179 pMem->type = SQLITE_TEXT;
danielk1977c572ef72004-05-27 09:28:41 +0000180 }else{
drh9c054832004-05-31 18:51:57 +0000181 pMem->type = SQLITE_BLOB;
danielk1977c572ef72004-05-27 09:28:41 +0000182 }
183}
danielk19778a6b5412004-05-24 07:04:25 +0000184
185/*
drhdfe88ec2008-11-03 20:55:06 +0000186** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
drh4774b132004-06-12 20:12:51 +0000187** if we run out of memory.
drh8c74a8c2002-08-25 19:20:40 +0000188*/
drhdfe88ec2008-11-03 20:55:06 +0000189static VdbeCursor *allocateCursor(
190 Vdbe *p, /* The virtual machine */
191 int iCur, /* Index of the new VdbeCursor */
danielk1977d336e222009-02-20 10:58:41 +0000192 int nField, /* Number of fields in the table or index */
drhe4c88c02012-01-04 12:57:45 +0000193 int iDb, /* Database the cursor belongs to, or -1 */
drh3e9ca092009-09-08 01:14:48 +0000194 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */
danielk1977cd3e8f72008-03-25 09:47:35 +0000195){
196 /* Find the memory cell that will be used to store the blob of memory
drhdfe88ec2008-11-03 20:55:06 +0000197 ** required for this VdbeCursor structure. It is convenient to use a
danielk1977cd3e8f72008-03-25 09:47:35 +0000198 ** vdbe memory cell to manage the memory allocation required for a
drhdfe88ec2008-11-03 20:55:06 +0000199 ** VdbeCursor structure for the following reasons:
danielk1977cd3e8f72008-03-25 09:47:35 +0000200 **
201 ** * Sometimes cursor numbers are used for a couple of different
202 ** purposes in a vdbe program. The different uses might require
203 ** different sized allocations. Memory cells provide growable
204 ** allocations.
205 **
206 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
207 ** be freed lazily via the sqlite3_release_memory() API. This
208 ** minimizes the number of malloc calls made by the system.
209 **
210 ** Memory cells for cursors are allocated at the top of the address
211 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
212 ** cursor 1 is managed by memory cell (p->nMem-1), etc.
213 */
214 Mem *pMem = &p->aMem[p->nMem-iCur];
215
danielk19775f096132008-03-28 15:44:09 +0000216 int nByte;
drhdfe88ec2008-11-03 20:55:06 +0000217 VdbeCursor *pCx = 0;
danielk19775f096132008-03-28 15:44:09 +0000218 nByte =
drhc54055b2009-11-13 17:05:53 +0000219 ROUND8(sizeof(VdbeCursor)) +
danielk1977cd3e8f72008-03-25 09:47:35 +0000220 (isBtreeCursor?sqlite3BtreeCursorSize():0) +
221 2*nField*sizeof(u32);
222
drh290c1942004-08-21 17:54:45 +0000223 assert( iCur<p->nCursor );
224 if( p->apCsr[iCur] ){
danielk1977be718892006-06-23 08:05:19 +0000225 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
danielk1977cd3e8f72008-03-25 09:47:35 +0000226 p->apCsr[iCur] = 0;
drh8c74a8c2002-08-25 19:20:40 +0000227 }
danielk1977cd3e8f72008-03-25 09:47:35 +0000228 if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
drhdfe88ec2008-11-03 20:55:06 +0000229 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
drhf25a5072009-11-18 23:01:25 +0000230 memset(pCx, 0, sizeof(VdbeCursor));
danielk197794eb6a12005-12-15 15:22:08 +0000231 pCx->iDb = iDb;
danielk1977cd3e8f72008-03-25 09:47:35 +0000232 pCx->nField = nField;
233 if( nField ){
drhc54055b2009-11-13 17:05:53 +0000234 pCx->aType = (u32 *)&pMem->z[ROUND8(sizeof(VdbeCursor))];
danielk1977cd3e8f72008-03-25 09:47:35 +0000235 }
236 if( isBtreeCursor ){
drhdfe88ec2008-11-03 20:55:06 +0000237 pCx->pCursor = (BtCursor*)
drhc54055b2009-11-13 17:05:53 +0000238 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*nField*sizeof(u32)];
drhf25a5072009-11-18 23:01:25 +0000239 sqlite3BtreeCursorZero(pCx->pCursor);
danielk1977cd3e8f72008-03-25 09:47:35 +0000240 }
danielk197794eb6a12005-12-15 15:22:08 +0000241 }
drh4774b132004-06-12 20:12:51 +0000242 return pCx;
drh8c74a8c2002-08-25 19:20:40 +0000243}
244
danielk19773d1bfea2004-05-14 11:00:53 +0000245/*
drh29d72102006-02-09 22:13:41 +0000246** Try to convert a value into a numeric representation if we can
247** do so without loss of information. In other words, if the string
248** looks like a number, convert it into a number. If it does not
249** look like a number, leave it alone.
250*/
drhb21c8cd2007-08-21 19:33:56 +0000251static void applyNumericAffinity(Mem *pRec){
drh29d72102006-02-09 22:13:41 +0000252 if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
drh9339da12010-09-30 00:50:49 +0000253 double rValue;
254 i64 iValue;
danb7dca7d2010-03-05 16:32:12 +0000255 u8 enc = pRec->enc;
drh9339da12010-09-30 00:50:49 +0000256 if( (pRec->flags&MEM_Str)==0 ) return;
257 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
shaneh5f1d6b62010-09-30 16:51:25 +0000258 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
drh9339da12010-09-30 00:50:49 +0000259 pRec->u.i = iValue;
260 pRec->flags |= MEM_Int;
261 }else{
262 pRec->r = rValue;
263 pRec->flags |= MEM_Real;
drh29d72102006-02-09 22:13:41 +0000264 }
265 }
266}
267
268/*
drh8a512562005-11-14 22:29:05 +0000269** Processing is determine by the affinity parameter:
danielk19773d1bfea2004-05-14 11:00:53 +0000270**
drh8a512562005-11-14 22:29:05 +0000271** SQLITE_AFF_INTEGER:
272** SQLITE_AFF_REAL:
273** SQLITE_AFF_NUMERIC:
274** Try to convert pRec to an integer representation or a
275** floating-point representation if an integer representation
276** is not possible. Note that the integer representation is
277** always preferred, even if the affinity is REAL, because
278** an integer representation is more space efficient on disk.
279**
280** SQLITE_AFF_TEXT:
281** Convert pRec to a text representation.
282**
283** SQLITE_AFF_NONE:
284** No-op. pRec is unchanged.
danielk19773d1bfea2004-05-14 11:00:53 +0000285*/
drh17435752007-08-16 04:30:38 +0000286static void applyAffinity(
drh17435752007-08-16 04:30:38 +0000287 Mem *pRec, /* The value to apply affinity to */
288 char affinity, /* The affinity to be applied */
289 u8 enc /* Use this text encoding */
290){
drh8a512562005-11-14 22:29:05 +0000291 if( affinity==SQLITE_AFF_TEXT ){
drh17c40292004-07-21 02:53:29 +0000292 /* Only attempt the conversion to TEXT if there is an integer or real
293 ** representation (blob and NULL do not get converted) but no string
294 ** representation.
295 */
296 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
drhb21c8cd2007-08-21 19:33:56 +0000297 sqlite3VdbeMemStringify(pRec, enc);
drh17c40292004-07-21 02:53:29 +0000298 }
299 pRec->flags &= ~(MEM_Real|MEM_Int);
drh8a512562005-11-14 22:29:05 +0000300 }else if( affinity!=SQLITE_AFF_NONE ){
301 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
302 || affinity==SQLITE_AFF_NUMERIC );
drhb21c8cd2007-08-21 19:33:56 +0000303 applyNumericAffinity(pRec);
drh29d72102006-02-09 22:13:41 +0000304 if( pRec->flags & MEM_Real ){
drh8df447f2005-11-01 15:48:24 +0000305 sqlite3VdbeIntegerAffinity(pRec);
drh17c40292004-07-21 02:53:29 +0000306 }
danielk19773d1bfea2004-05-14 11:00:53 +0000307 }
308}
309
danielk1977aee18ef2005-03-09 12:26:50 +0000310/*
drh29d72102006-02-09 22:13:41 +0000311** Try to convert the type of a function argument or a result column
312** into a numeric representation. Use either INTEGER or REAL whichever
313** is appropriate. But only do the conversion if it is possible without
314** loss of information and return the revised type of the argument.
drh29d72102006-02-09 22:13:41 +0000315*/
316int sqlite3_value_numeric_type(sqlite3_value *pVal){
317 Mem *pMem = (Mem*)pVal;
drhe5a8a1d2010-11-18 12:31:24 +0000318 if( pMem->type==SQLITE_TEXT ){
319 applyNumericAffinity(pMem);
320 sqlite3VdbeMemStoreType(pMem);
321 }
drh29d72102006-02-09 22:13:41 +0000322 return pMem->type;
323}
324
325/*
danielk1977aee18ef2005-03-09 12:26:50 +0000326** Exported version of applyAffinity(). This one works on sqlite3_value*,
327** not the internal Mem* type.
328*/
danielk19771e536952007-08-16 10:09:01 +0000329void sqlite3ValueApplyAffinity(
danielk19771e536952007-08-16 10:09:01 +0000330 sqlite3_value *pVal,
331 u8 affinity,
332 u8 enc
333){
drhb21c8cd2007-08-21 19:33:56 +0000334 applyAffinity((Mem *)pVal, affinity, enc);
danielk1977aee18ef2005-03-09 12:26:50 +0000335}
336
danielk1977b5402fb2005-01-12 07:15:04 +0000337#ifdef SQLITE_DEBUG
drhb6f54522004-05-20 02:42:16 +0000338/*
danielk1977ca6b2912004-05-21 10:49:47 +0000339** Write a nice string representation of the contents of cell pMem
340** into buffer zBuf, length nBuf.
341*/
drh74161702006-02-24 02:53:49 +0000342void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
danielk1977ca6b2912004-05-21 10:49:47 +0000343 char *zCsr = zBuf;
344 int f = pMem->flags;
345
drh57196282004-10-06 15:41:16 +0000346 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
danielk1977bfd6cce2004-06-18 04:24:54 +0000347
danielk1977ca6b2912004-05-21 10:49:47 +0000348 if( f&MEM_Blob ){
349 int i;
350 char c;
351 if( f & MEM_Dyn ){
352 c = 'z';
353 assert( (f & (MEM_Static|MEM_Ephem))==0 );
354 }else if( f & MEM_Static ){
355 c = 't';
356 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
357 }else if( f & MEM_Ephem ){
358 c = 'e';
359 assert( (f & (MEM_Static|MEM_Dyn))==0 );
360 }else{
361 c = 's';
362 }
363
drh5bb3eb92007-05-04 13:15:55 +0000364 sqlite3_snprintf(100, zCsr, "%c", c);
drhea678832008-12-10 19:26:22 +0000365 zCsr += sqlite3Strlen30(zCsr);
drh5bb3eb92007-05-04 13:15:55 +0000366 sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
drhea678832008-12-10 19:26:22 +0000367 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000368 for(i=0; i<16 && i<pMem->n; i++){
drh5bb3eb92007-05-04 13:15:55 +0000369 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
drhea678832008-12-10 19:26:22 +0000370 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000371 }
372 for(i=0; i<16 && i<pMem->n; i++){
373 char z = pMem->z[i];
374 if( z<32 || z>126 ) *zCsr++ = '.';
375 else *zCsr++ = z;
376 }
377
drhe718efe2007-05-10 21:14:03 +0000378 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000379 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000380 if( f & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +0000381 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
drhea678832008-12-10 19:26:22 +0000382 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000383 }
danielk1977b1bc9532004-05-22 03:05:33 +0000384 *zCsr = '\0';
385 }else if( f & MEM_Str ){
386 int j, k;
387 zBuf[0] = ' ';
388 if( f & MEM_Dyn ){
389 zBuf[1] = 'z';
390 assert( (f & (MEM_Static|MEM_Ephem))==0 );
391 }else if( f & MEM_Static ){
392 zBuf[1] = 't';
393 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
394 }else if( f & MEM_Ephem ){
395 zBuf[1] = 'e';
396 assert( (f & (MEM_Static|MEM_Dyn))==0 );
397 }else{
398 zBuf[1] = 's';
399 }
400 k = 2;
drh5bb3eb92007-05-04 13:15:55 +0000401 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
drhea678832008-12-10 19:26:22 +0000402 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000403 zBuf[k++] = '[';
404 for(j=0; j<15 && j<pMem->n; j++){
405 u8 c = pMem->z[j];
danielk1977b1bc9532004-05-22 03:05:33 +0000406 if( c>=0x20 && c<0x7f ){
407 zBuf[k++] = c;
408 }else{
409 zBuf[k++] = '.';
410 }
411 }
412 zBuf[k++] = ']';
drh5bb3eb92007-05-04 13:15:55 +0000413 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000414 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000415 zBuf[k++] = 0;
danielk1977ca6b2912004-05-21 10:49:47 +0000416 }
danielk1977ca6b2912004-05-21 10:49:47 +0000417}
418#endif
419
drh5b6afba2008-01-05 16:29:28 +0000420#ifdef SQLITE_DEBUG
421/*
422** Print the value of a register for tracing purposes:
423*/
424static void memTracePrint(FILE *out, Mem *p){
425 if( p->flags & MEM_Null ){
426 fprintf(out, " NULL");
427 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
428 fprintf(out, " si:%lld", p->u.i);
429 }else if( p->flags & MEM_Int ){
430 fprintf(out, " i:%lld", p->u.i);
drh0b3bf922009-06-15 20:45:34 +0000431#ifndef SQLITE_OMIT_FLOATING_POINT
drh5b6afba2008-01-05 16:29:28 +0000432 }else if( p->flags & MEM_Real ){
433 fprintf(out, " r:%g", p->r);
drh0b3bf922009-06-15 20:45:34 +0000434#endif
drh733bf1b2009-04-22 00:47:00 +0000435 }else if( p->flags & MEM_RowSet ){
436 fprintf(out, " (rowset)");
drh5b6afba2008-01-05 16:29:28 +0000437 }else{
438 char zBuf[200];
439 sqlite3VdbeMemPrettyPrint(p, zBuf);
440 fprintf(out, " ");
441 fprintf(out, "%s", zBuf);
442 }
443}
444static void registerTrace(FILE *out, int iReg, Mem *p){
445 fprintf(out, "REG[%d] = ", iReg);
446 memTracePrint(out, p);
447 fprintf(out, "\n");
448}
449#endif
450
451#ifdef SQLITE_DEBUG
drhb21e7c72008-06-22 12:37:57 +0000452# define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
drh5b6afba2008-01-05 16:29:28 +0000453#else
454# define REGISTER_TRACE(R,M)
455#endif
456
danielk197784ac9d02004-05-18 09:58:06 +0000457
drh7b396862003-01-01 23:06:20 +0000458#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000459
460/*
461** hwtime.h contains inline assembler code for implementing
462** high-performance timing routines.
drh7b396862003-01-01 23:06:20 +0000463*/
shane9bcbdad2008-05-29 20:22:37 +0000464#include "hwtime.h"
465
drh7b396862003-01-01 23:06:20 +0000466#endif
467
drh8c74a8c2002-08-25 19:20:40 +0000468/*
drhcaec2f12003-01-07 02:47:47 +0000469** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
danielk19776f8a5032004-05-10 10:34:51 +0000470** sqlite3_interrupt() routine has been called. If it has been, then
drhcaec2f12003-01-07 02:47:47 +0000471** processing of the VDBE program is interrupted.
472**
473** This macro added to every instruction that does a jump in order to
474** implement a loop. This test used to be on every single instruction,
drhe4c88c02012-01-04 12:57:45 +0000475** but that meant we more testing than we needed. By only testing the
drhcaec2f12003-01-07 02:47:47 +0000476** flag on jump instructions, we get a (small) speed improvement.
477*/
478#define CHECK_FOR_INTERRUPT \
drh881feaa2006-07-26 01:39:30 +0000479 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drhcaec2f12003-01-07 02:47:47 +0000480
481
danielk1977fd7f0452008-12-17 17:30:26 +0000482#ifndef NDEBUG
483/*
484** This function is only called from within an assert() expression. It
485** checks that the sqlite3.nTransaction variable is correctly set to
486** the number of non-transaction savepoints currently in the
487** linked list starting at sqlite3.pSavepoint.
488**
489** Usage:
490**
491** assert( checkSavepointCount(db) );
492*/
493static int checkSavepointCount(sqlite3 *db){
494 int n = 0;
495 Savepoint *p;
496 for(p=db->pSavepoint; p; p=p->pNext) n++;
497 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
498 return 1;
499}
500#endif
501
drhcaec2f12003-01-07 02:47:47 +0000502/*
drhb9755982010-07-24 16:34:37 +0000503** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
504** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
505** in memory obtained from sqlite3DbMalloc).
506*/
507static void importVtabErrMsg(Vdbe *p, sqlite3_vtab *pVtab){
508 sqlite3 *db = p->db;
509 sqlite3DbFree(db, p->zErrMsg);
510 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
511 sqlite3_free(pVtab->zErrMsg);
512 pVtab->zErrMsg = 0;
513}
514
515
516/*
drhb86ccfb2003-01-28 23:13:10 +0000517** Execute as much of a VDBE program as we can then return.
518**
danielk19774adee202004-05-08 08:23:19 +0000519** sqlite3VdbeMakeReady() must be called before this routine in order to
drhb86ccfb2003-01-28 23:13:10 +0000520** close the program with a final OP_Halt and to set up the callbacks
521** and the error message pointer.
522**
523** Whenever a row or result data is available, this routine will either
524** invoke the result callback (if there is one) or return with
drh326dce72003-01-29 14:06:07 +0000525** SQLITE_ROW.
drhb86ccfb2003-01-28 23:13:10 +0000526**
527** If an attempt is made to open a locked database, then this routine
528** will either invoke the busy callback (if there is one) or it will
529** return SQLITE_BUSY.
530**
531** If an error occurs, an error message is written to memory obtained
drh17435752007-08-16 04:30:38 +0000532** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
drhb86ccfb2003-01-28 23:13:10 +0000533** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
534**
535** If the callback ever returns non-zero, then the program exits
536** immediately. There will be no error message but the p->rc field is
537** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
538**
drh9468c7f2003-03-07 19:50:07 +0000539** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
540** routine to return SQLITE_ERROR.
drhb86ccfb2003-01-28 23:13:10 +0000541**
542** Other fatal errors return SQLITE_ERROR.
543**
danielk19774adee202004-05-08 08:23:19 +0000544** After this routine has finished, sqlite3VdbeFinalize() should be
drhb86ccfb2003-01-28 23:13:10 +0000545** used to clean up the mess that was left behind.
546*/
danielk19774adee202004-05-08 08:23:19 +0000547int sqlite3VdbeExec(
drhb86ccfb2003-01-28 23:13:10 +0000548 Vdbe *p /* The VDBE */
549){
shaneh84f4b2f2010-02-26 01:46:54 +0000550 int pc=0; /* The program counter */
drhbbe879d2009-11-14 18:04:35 +0000551 Op *aOp = p->aOp; /* Copy of p->aOp */
drhb86ccfb2003-01-28 23:13:10 +0000552 Op *pOp; /* Current operation */
553 int rc = SQLITE_OK; /* Value to return */
drh9bb575f2004-09-06 17:24:11 +0000554 sqlite3 *db = p->db; /* The database */
drhcdf011d2011-04-04 21:25:28 +0000555 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
drh8079a0d2006-01-12 17:20:50 +0000556 u8 encoding = ENC(db); /* The database encoding */
drha6c2ed92009-11-14 23:22:23 +0000557#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
shaneh5e17e8b2009-12-03 04:40:47 +0000558 int checkProgress; /* True if progress callbacks are enabled */
drha6c2ed92009-11-14 23:22:23 +0000559 int nProgressOps = 0; /* Opcodes executed since progress callback. */
560#endif
561 Mem *aMem = p->aMem; /* Copy of p->aMem */
drhb27b7f52008-12-10 18:03:45 +0000562 Mem *pIn1 = 0; /* 1st input operand */
563 Mem *pIn2 = 0; /* 2nd input operand */
564 Mem *pIn3 = 0; /* 3rd input operand */
565 Mem *pOut = 0; /* Output operand */
drh0acb7e42008-06-25 00:12:41 +0000566 int iCompare = 0; /* Result of last OP_Compare operation */
shanebe217792009-03-05 04:20:31 +0000567 int *aPermute = 0; /* Permutation of columns for OP_Compare */
drh99a66922011-05-13 18:51:42 +0000568 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */
drhb86ccfb2003-01-28 23:13:10 +0000569#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000570 u64 start; /* CPU clock count at start of opcode */
drhb86ccfb2003-01-28 23:13:10 +0000571 int origPc; /* Program counter at start of opcode */
572#endif
drh856c1032009-06-02 15:21:42 +0000573 /*** INSERT STACK UNION HERE ***/
drhe63d9992008-08-13 19:11:48 +0000574
drhca48c902008-01-18 14:08:24 +0000575 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
drhbdaec522011-04-04 00:14:43 +0000576 sqlite3VdbeEnter(p);
danielk19772e588c72005-12-09 14:25:08 +0000577 if( p->rc==SQLITE_NOMEM ){
578 /* This happens if a malloc() inside a call to sqlite3_column_text() or
579 ** sqlite3_column_text16() failed. */
580 goto no_mem;
581 }
drh3a840692003-01-29 22:58:26 +0000582 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
583 p->rc = SQLITE_OK;
drhb86ccfb2003-01-28 23:13:10 +0000584 assert( p->explain==0 );
drhd4e70eb2008-01-02 00:34:36 +0000585 p->pResultSet = 0;
drha4afb652005-07-09 02:16:02 +0000586 db->busyHandler.nBusy = 0;
drh93581642004-02-12 13:02:55 +0000587 CHECK_FOR_INTERRUPT;
drh602c2372007-03-01 00:29:13 +0000588 sqlite3VdbeIOTraceSql(p);
drha6c2ed92009-11-14 23:22:23 +0000589#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
590 checkProgress = db->xProgress!=0;
591#endif
drh3c23a882007-01-09 14:01:13 +0000592#ifdef SQLITE_DEBUG
danielk19772d1d86f2008-06-20 14:59:51 +0000593 sqlite3BeginBenignMalloc();
drh42224412010-05-31 14:28:25 +0000594 if( p->pc==0 && (p->db->flags & SQLITE_VdbeListing)!=0 ){
drh3c23a882007-01-09 14:01:13 +0000595 int i;
596 printf("VDBE Program Listing:\n");
597 sqlite3VdbePrintSql(p);
598 for(i=0; i<p->nOp; i++){
drhbbe879d2009-11-14 18:04:35 +0000599 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
drh3c23a882007-01-09 14:01:13 +0000600 }
601 }
danielk19772d1d86f2008-06-20 14:59:51 +0000602 sqlite3EndBenignMalloc();
drh3c23a882007-01-09 14:01:13 +0000603#endif
drhb86ccfb2003-01-28 23:13:10 +0000604 for(pc=p->pc; rc==SQLITE_OK; pc++){
drhcaec2f12003-01-07 02:47:47 +0000605 assert( pc>=0 && pc<p->nOp );
drh17435752007-08-16 04:30:38 +0000606 if( db->mallocFailed ) goto no_mem;
drh7b396862003-01-01 23:06:20 +0000607#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +0000608 origPc = pc;
shane9bcbdad2008-05-29 20:22:37 +0000609 start = sqlite3Hwtime();
drh7b396862003-01-01 23:06:20 +0000610#endif
drhbbe879d2009-11-14 18:04:35 +0000611 pOp = &aOp[pc];
drh6e142f52000-06-08 13:36:40 +0000612
danielk19778b60e0f2005-01-12 09:10:39 +0000613 /* Only allow tracing if SQLITE_DEBUG is defined.
drh6e142f52000-06-08 13:36:40 +0000614 */
danielk19778b60e0f2005-01-12 09:10:39 +0000615#ifdef SQLITE_DEBUG
drh75897232000-05-29 14:26:00 +0000616 if( p->trace ){
drh3f7d4e42004-07-24 14:35:58 +0000617 if( pc==0 ){
618 printf("VDBE Execution Trace:\n");
619 sqlite3VdbePrintSql(p);
620 }
danielk19774adee202004-05-08 08:23:19 +0000621 sqlite3VdbePrintOp(p->trace, pc, pOp);
drh75897232000-05-29 14:26:00 +0000622 }
drh3f7d4e42004-07-24 14:35:58 +0000623#endif
624
drh6e142f52000-06-08 13:36:40 +0000625
drhf6038712004-02-08 18:07:34 +0000626 /* Check to see if we need to simulate an interrupt. This only happens
627 ** if we have a special test build.
628 */
629#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +0000630 if( sqlite3_interrupt_count>0 ){
631 sqlite3_interrupt_count--;
632 if( sqlite3_interrupt_count==0 ){
633 sqlite3_interrupt(db);
drhf6038712004-02-08 18:07:34 +0000634 }
635 }
636#endif
637
danielk1977348bb5d2003-10-18 09:37:26 +0000638#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
639 /* Call the progress callback if it is configured and the required number
640 ** of VDBE ops have been executed (either since this invocation of
danielk19774adee202004-05-08 08:23:19 +0000641 ** sqlite3VdbeExec() or since last time the progress callback was called).
danielk1977348bb5d2003-10-18 09:37:26 +0000642 ** If the progress callback returns non-zero, exit the virtual machine with
643 ** a return code SQLITE_ABORT.
644 */
drha6c2ed92009-11-14 23:22:23 +0000645 if( checkProgress ){
drh3914aed2004-01-31 20:40:42 +0000646 if( db->nProgressOps==nProgressOps ){
danielk1977de523ac2007-06-15 14:53:53 +0000647 int prc;
drh9978c972010-02-23 17:36:32 +0000648 prc = db->xProgress(db->pProgressArg);
danielk1977de523ac2007-06-15 14:53:53 +0000649 if( prc!=0 ){
650 rc = SQLITE_INTERRUPT;
drha05a7222008-01-19 03:35:58 +0000651 goto vdbe_error_halt;
danielk1977de523ac2007-06-15 14:53:53 +0000652 }
danielk19773fe11f32007-06-13 16:49:48 +0000653 nProgressOps = 0;
danielk1977348bb5d2003-10-18 09:37:26 +0000654 }
drh3914aed2004-01-31 20:40:42 +0000655 nProgressOps++;
danielk1977348bb5d2003-10-18 09:37:26 +0000656 }
danielk1977348bb5d2003-10-18 09:37:26 +0000657#endif
658
drh3c657212009-11-17 23:59:58 +0000659 /* On any opcode with the "out2-prerelase" tag, free any
660 ** external allocations out of mem[p2] and set mem[p2] to be
661 ** an undefined integer. Opcodes will either fill in the integer
662 ** value or convert mem[p2] to a different type.
drh4c583122008-01-04 22:01:03 +0000663 */
drha6c2ed92009-11-14 23:22:23 +0000664 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
drh3c657212009-11-17 23:59:58 +0000665 if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
666 assert( pOp->p2>0 );
667 assert( pOp->p2<=p->nMem );
668 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +0000669 memAboutToChange(p, pOut);
drhe4c88c02012-01-04 12:57:45 +0000670 VdbeMemRelease(pOut);
drh3c657212009-11-17 23:59:58 +0000671 pOut->flags = MEM_Int;
drh4c583122008-01-04 22:01:03 +0000672 }
drh3c657212009-11-17 23:59:58 +0000673
674 /* Sanity checking on other operands */
675#ifdef SQLITE_DEBUG
676 if( (pOp->opflags & OPFLG_IN1)!=0 ){
677 assert( pOp->p1>0 );
678 assert( pOp->p1<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000679 assert( memIsValid(&aMem[pOp->p1]) );
drh3c657212009-11-17 23:59:58 +0000680 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
681 }
682 if( (pOp->opflags & OPFLG_IN2)!=0 ){
683 assert( pOp->p2>0 );
684 assert( pOp->p2<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000685 assert( memIsValid(&aMem[pOp->p2]) );
drh3c657212009-11-17 23:59:58 +0000686 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
687 }
688 if( (pOp->opflags & OPFLG_IN3)!=0 ){
689 assert( pOp->p3>0 );
690 assert( pOp->p3<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000691 assert( memIsValid(&aMem[pOp->p3]) );
drh3c657212009-11-17 23:59:58 +0000692 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
693 }
694 if( (pOp->opflags & OPFLG_OUT2)!=0 ){
695 assert( pOp->p2>0 );
696 assert( pOp->p2<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000697 memAboutToChange(p, &aMem[pOp->p2]);
drh3c657212009-11-17 23:59:58 +0000698 }
699 if( (pOp->opflags & OPFLG_OUT3)!=0 ){
700 assert( pOp->p3>0 );
701 assert( pOp->p3<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000702 memAboutToChange(p, &aMem[pOp->p3]);
drh3c657212009-11-17 23:59:58 +0000703 }
704#endif
drh93952eb2009-11-13 19:43:43 +0000705
drh75897232000-05-29 14:26:00 +0000706 switch( pOp->opcode ){
drh75897232000-05-29 14:26:00 +0000707
drh5e00f6c2001-09-13 13:46:56 +0000708/*****************************************************************************
709** What follows is a massive switch statement where each case implements a
710** separate instruction in the virtual machine. If we follow the usual
711** indentation conventions, each case should be indented by 6 spaces. But
712** that is a lot of wasted space on the left margin. So the code within
713** the switch statement will break with convention and be flush-left. Another
714** big comment (similar to this one) will mark the point in the code where
715** we transition back to normal indentation.
drhac82fcf2002-09-08 17:23:41 +0000716**
717** The formatting of each case is important. The makefile for SQLite
718** generates two C files "opcodes.h" and "opcodes.c" by scanning this
719** file looking for lines that begin with "case OP_". The opcodes.h files
720** will be filled with #defines that give unique integer values to each
721** opcode and the opcodes.c file is filled with an array of strings where
drhf2bc0132004-10-04 13:19:23 +0000722** each string is the symbolic name for the corresponding opcode. If the
723** case statement is followed by a comment of the form "/# same as ... #/"
724** that comment is used to determine the particular value of the opcode.
drhac82fcf2002-09-08 17:23:41 +0000725**
drh9cbf3422008-01-17 16:22:13 +0000726** Other keywords in the comment that follows each case are used to
727** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
728** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
729** the mkopcodeh.awk script for additional information.
danielk1977bc04f852005-03-29 08:26:13 +0000730**
drhac82fcf2002-09-08 17:23:41 +0000731** Documentation about VDBE opcodes is generated by scanning this file
732** for lines of that contain "Opcode:". That line and all subsequent
733** comment lines are used in the generation of the opcode.html documentation
734** file.
735**
736** SUMMARY:
737**
738** Formatting is important to scripts that scan this file.
739** Do not deviate from the formatting style currently in use.
740**
drh5e00f6c2001-09-13 13:46:56 +0000741*****************************************************************************/
drh75897232000-05-29 14:26:00 +0000742
drh9cbf3422008-01-17 16:22:13 +0000743/* Opcode: Goto * P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000744**
745** An unconditional jump to address P2.
746** The next instruction executed will be
747** the one at index P2 from the beginning of
748** the program.
749*/
drh9cbf3422008-01-17 16:22:13 +0000750case OP_Goto: { /* jump */
drhcaec2f12003-01-07 02:47:47 +0000751 CHECK_FOR_INTERRUPT;
drh5e00f6c2001-09-13 13:46:56 +0000752 pc = pOp->p2 - 1;
753 break;
754}
drh75897232000-05-29 14:26:00 +0000755
drh2eb95372008-06-06 15:04:36 +0000756/* Opcode: Gosub P1 P2 * * *
drh8c74a8c2002-08-25 19:20:40 +0000757**
drh2eb95372008-06-06 15:04:36 +0000758** Write the current address onto register P1
drh8c74a8c2002-08-25 19:20:40 +0000759** and then jump to address P2.
drh8c74a8c2002-08-25 19:20:40 +0000760*/
drhb8475df2011-12-09 16:21:19 +0000761case OP_Gosub: { /* jump */
762 assert( pOp->p1>0 && pOp->p1<=p->nMem );
drh3c657212009-11-17 23:59:58 +0000763 pIn1 = &aMem[pOp->p1];
drh2eb95372008-06-06 15:04:36 +0000764 assert( (pIn1->flags & MEM_Dyn)==0 );
drh2b4ded92010-09-27 21:09:31 +0000765 memAboutToChange(p, pIn1);
drh2eb95372008-06-06 15:04:36 +0000766 pIn1->flags = MEM_Int;
767 pIn1->u.i = pc;
768 REGISTER_TRACE(pOp->p1, pIn1);
drh8c74a8c2002-08-25 19:20:40 +0000769 pc = pOp->p2 - 1;
770 break;
771}
772
drh2eb95372008-06-06 15:04:36 +0000773/* Opcode: Return P1 * * * *
drh8c74a8c2002-08-25 19:20:40 +0000774**
drh2eb95372008-06-06 15:04:36 +0000775** Jump to the next instruction after the address in register P1.
drh8c74a8c2002-08-25 19:20:40 +0000776*/
drh2eb95372008-06-06 15:04:36 +0000777case OP_Return: { /* in1 */
drh3c657212009-11-17 23:59:58 +0000778 pIn1 = &aMem[pOp->p1];
drh2eb95372008-06-06 15:04:36 +0000779 assert( pIn1->flags & MEM_Int );
drh9c1905f2008-12-10 22:32:56 +0000780 pc = (int)pIn1->u.i;
drh8c74a8c2002-08-25 19:20:40 +0000781 break;
782}
783
drhe00ee6e2008-06-20 15:24:01 +0000784/* Opcode: Yield P1 * * * *
785**
786** Swap the program counter with the value in register P1.
787*/
danielk1977f73ab8b2008-12-29 10:39:53 +0000788case OP_Yield: { /* in1 */
drhe00ee6e2008-06-20 15:24:01 +0000789 int pcDest;
drh3c657212009-11-17 23:59:58 +0000790 pIn1 = &aMem[pOp->p1];
drhe00ee6e2008-06-20 15:24:01 +0000791 assert( (pIn1->flags & MEM_Dyn)==0 );
792 pIn1->flags = MEM_Int;
drh9c1905f2008-12-10 22:32:56 +0000793 pcDest = (int)pIn1->u.i;
drhe00ee6e2008-06-20 15:24:01 +0000794 pIn1->u.i = pc;
795 REGISTER_TRACE(pOp->p1, pIn1);
796 pc = pcDest;
797 break;
798}
799
drh5053a792009-02-20 03:02:23 +0000800/* Opcode: HaltIfNull P1 P2 P3 P4 *
801**
drhef8662b2011-06-20 21:47:58 +0000802** Check the value in register P3. If it is NULL then Halt using
drh5053a792009-02-20 03:02:23 +0000803** parameter P1, P2, and P4 as if this were a Halt instruction. If the
804** value in register P3 is not NULL, then this routine is a no-op.
805*/
806case OP_HaltIfNull: { /* in3 */
drh3c657212009-11-17 23:59:58 +0000807 pIn3 = &aMem[pOp->p3];
drh5053a792009-02-20 03:02:23 +0000808 if( (pIn3->flags & MEM_Null)==0 ) break;
809 /* Fall through into OP_Halt */
810}
drhe00ee6e2008-06-20 15:24:01 +0000811
drh9cbf3422008-01-17 16:22:13 +0000812/* Opcode: Halt P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +0000813**
drh3d4501e2008-12-04 20:40:10 +0000814** Exit immediately. All open cursors, etc are closed
drh5e00f6c2001-09-13 13:46:56 +0000815** automatically.
drhb19a2bc2001-09-16 00:13:26 +0000816**
drh92f02c32004-09-02 14:57:08 +0000817** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
818** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
819** For errors, it can be some other value. If P1!=0 then P2 will determine
820** whether or not to rollback the current transaction. Do not rollback
821** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
822** then back out all changes that have occurred during this execution of the
drhb798fa62002-09-03 19:43:23 +0000823** VDBE, but do not rollback the transaction.
drh9cfcf5d2002-01-29 18:41:24 +0000824**
drh66a51672008-01-03 00:01:23 +0000825** If P4 is not null then it is an error message string.
drh7f057c92005-06-24 03:53:06 +0000826**
drh9cfcf5d2002-01-29 18:41:24 +0000827** There is an implied "Halt 0 0 0" instruction inserted at the very end of
drhb19a2bc2001-09-16 00:13:26 +0000828** every program. So a jump past the last instruction of the program
829** is the same as executing Halt.
drh5e00f6c2001-09-13 13:46:56 +0000830*/
drh9cbf3422008-01-17 16:22:13 +0000831case OP_Halt: {
dan165921a2009-08-28 18:53:45 +0000832 if( pOp->p1==SQLITE_OK && p->pFrame ){
dan2832ad42009-08-31 15:27:27 +0000833 /* Halt the sub-program. Return control to the parent frame. */
dan165921a2009-08-28 18:53:45 +0000834 VdbeFrame *pFrame = p->pFrame;
835 p->pFrame = pFrame->pParent;
836 p->nFrame--;
dan2832ad42009-08-31 15:27:27 +0000837 sqlite3VdbeSetChanges(db, p->nChange);
dan165921a2009-08-28 18:53:45 +0000838 pc = sqlite3VdbeFrameRestore(pFrame);
drh99a66922011-05-13 18:51:42 +0000839 lastRowid = db->lastRowid;
dan165921a2009-08-28 18:53:45 +0000840 if( pOp->p2==OE_Ignore ){
dan2832ad42009-08-31 15:27:27 +0000841 /* Instruction pc is the OP_Program that invoked the sub-program
842 ** currently being halted. If the p2 instruction of this OP_Halt
843 ** instruction is set to OE_Ignore, then the sub-program is throwing
844 ** an IGNORE exception. In this case jump to the address specified
845 ** as the p2 of the calling OP_Program. */
dan76d462e2009-08-30 11:42:51 +0000846 pc = p->aOp[pc].p2-1;
dan165921a2009-08-28 18:53:45 +0000847 }
drhbbe879d2009-11-14 18:04:35 +0000848 aOp = p->aOp;
drha6c2ed92009-11-14 23:22:23 +0000849 aMem = p->aMem;
dan165921a2009-08-28 18:53:45 +0000850 break;
851 }
dan2832ad42009-08-31 15:27:27 +0000852
drh92f02c32004-09-02 14:57:08 +0000853 p->rc = pOp->p1;
shane36840fd2009-06-26 16:32:13 +0000854 p->errorAction = (u8)pOp->p2;
dan165921a2009-08-28 18:53:45 +0000855 p->pc = pc;
danielk19772dca4ac2008-01-03 11:50:29 +0000856 if( pOp->p4.z ){
drh413c3d32010-02-23 20:11:56 +0000857 assert( p->rc!=SQLITE_OK );
drhf089aa42008-07-08 19:34:06 +0000858 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
drhaf46dc12010-02-24 21:44:07 +0000859 testcase( sqlite3GlobalConfig.xLog!=0 );
drh413c3d32010-02-23 20:11:56 +0000860 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pc, p->zSql, pOp->p4.z);
drhcda455b2010-02-24 19:23:56 +0000861 }else if( p->rc ){
drhaf46dc12010-02-24 21:44:07 +0000862 testcase( sqlite3GlobalConfig.xLog!=0 );
drhcda455b2010-02-24 19:23:56 +0000863 sqlite3_log(pOp->p1, "constraint failed at %d in [%s]", pc, p->zSql);
drh9cfcf5d2002-01-29 18:41:24 +0000864 }
drh92f02c32004-09-02 14:57:08 +0000865 rc = sqlite3VdbeHalt(p);
dan1da40a32009-09-19 17:00:31 +0000866 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
drh92f02c32004-09-02 14:57:08 +0000867 if( rc==SQLITE_BUSY ){
drh900b31e2007-08-28 02:27:51 +0000868 p->rc = rc = SQLITE_BUSY;
869 }else{
dan1da40a32009-09-19 17:00:31 +0000870 assert( rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT );
871 assert( rc==SQLITE_OK || db->nDeferredCons>0 );
drh900b31e2007-08-28 02:27:51 +0000872 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
drh92f02c32004-09-02 14:57:08 +0000873 }
drh900b31e2007-08-28 02:27:51 +0000874 goto vdbe_return;
drh5e00f6c2001-09-13 13:46:56 +0000875}
drhc61053b2000-06-04 12:58:36 +0000876
drh4c583122008-01-04 22:01:03 +0000877/* Opcode: Integer P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000878**
drh9cbf3422008-01-17 16:22:13 +0000879** The 32-bit integer value P1 is written into register P2.
drh5e00f6c2001-09-13 13:46:56 +0000880*/
drh4c583122008-01-04 22:01:03 +0000881case OP_Integer: { /* out2-prerelease */
drh4c583122008-01-04 22:01:03 +0000882 pOut->u.i = pOp->p1;
drh29dda4a2005-07-21 18:23:20 +0000883 break;
884}
885
drh4c583122008-01-04 22:01:03 +0000886/* Opcode: Int64 * P2 * P4 *
drh29dda4a2005-07-21 18:23:20 +0000887**
drh66a51672008-01-03 00:01:23 +0000888** P4 is a pointer to a 64-bit integer value.
drh9cbf3422008-01-17 16:22:13 +0000889** Write that value into register P2.
drh29dda4a2005-07-21 18:23:20 +0000890*/
drh4c583122008-01-04 22:01:03 +0000891case OP_Int64: { /* out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000892 assert( pOp->p4.pI64!=0 );
drh4c583122008-01-04 22:01:03 +0000893 pOut->u.i = *pOp->p4.pI64;
drhf4479502004-05-27 03:12:53 +0000894 break;
895}
drh4f26d6c2004-05-26 23:25:30 +0000896
drh13573c72010-01-12 17:04:07 +0000897#ifndef SQLITE_OMIT_FLOATING_POINT
drh4c583122008-01-04 22:01:03 +0000898/* Opcode: Real * P2 * P4 *
drhf4479502004-05-27 03:12:53 +0000899**
drh4c583122008-01-04 22:01:03 +0000900** P4 is a pointer to a 64-bit floating point value.
drh9cbf3422008-01-17 16:22:13 +0000901** Write that value into register P2.
drhf4479502004-05-27 03:12:53 +0000902*/
drh4c583122008-01-04 22:01:03 +0000903case OP_Real: { /* same as TK_FLOAT, out2-prerelease */
904 pOut->flags = MEM_Real;
drh2eaf93d2008-04-29 00:15:20 +0000905 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
drh4c583122008-01-04 22:01:03 +0000906 pOut->r = *pOp->p4.pReal;
drhf4479502004-05-27 03:12:53 +0000907 break;
908}
drh13573c72010-01-12 17:04:07 +0000909#endif
danielk1977cbb18d22004-05-28 11:37:27 +0000910
drh3c84ddf2008-01-09 02:15:38 +0000911/* Opcode: String8 * P2 * P4 *
danielk1977cbb18d22004-05-28 11:37:27 +0000912**
drh66a51672008-01-03 00:01:23 +0000913** P4 points to a nul terminated UTF-8 string. This opcode is transformed
danielk19770f69c1e2004-05-29 11:24:50 +0000914** into an OP_String before it is executed for the first time.
danielk1977cbb18d22004-05-28 11:37:27 +0000915*/
drh4c583122008-01-04 22:01:03 +0000916case OP_String8: { /* same as TK_STRING, out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000917 assert( pOp->p4.z!=0 );
drhed2df7f2005-11-16 04:34:32 +0000918 pOp->opcode = OP_String;
drhea678832008-12-10 19:26:22 +0000919 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
drhed2df7f2005-11-16 04:34:32 +0000920
921#ifndef SQLITE_OMIT_UTF16
drh8079a0d2006-01-12 17:20:50 +0000922 if( encoding!=SQLITE_UTF8 ){
drh3a9cf172009-06-17 21:42:33 +0000923 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
924 if( rc==SQLITE_TOOBIG ) goto too_big;
drh4c583122008-01-04 22:01:03 +0000925 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
drh3a9cf172009-06-17 21:42:33 +0000926 assert( pOut->zMalloc==pOut->z );
927 assert( pOut->flags & MEM_Dyn );
danielk19775f096132008-03-28 15:44:09 +0000928 pOut->zMalloc = 0;
drh4c583122008-01-04 22:01:03 +0000929 pOut->flags |= MEM_Static;
drh191b54c2008-04-15 12:14:21 +0000930 pOut->flags &= ~MEM_Dyn;
drh66a51672008-01-03 00:01:23 +0000931 if( pOp->p4type==P4_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +0000932 sqlite3DbFree(db, pOp->p4.z);
danielk1977e0048402004-06-15 16:51:01 +0000933 }
drh66a51672008-01-03 00:01:23 +0000934 pOp->p4type = P4_DYNAMIC;
drh4c583122008-01-04 22:01:03 +0000935 pOp->p4.z = pOut->z;
936 pOp->p1 = pOut->n;
danielk19770f69c1e2004-05-29 11:24:50 +0000937 }
danielk197793758c82005-01-21 08:13:14 +0000938#endif
drhbb4957f2008-03-20 14:03:29 +0000939 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhcbd2da92007-12-17 16:20:06 +0000940 goto too_big;
941 }
942 /* Fall through to the next case, OP_String */
danielk1977cbb18d22004-05-28 11:37:27 +0000943}
drhf4479502004-05-27 03:12:53 +0000944
drh4c583122008-01-04 22:01:03 +0000945/* Opcode: String P1 P2 * P4 *
drhf4479502004-05-27 03:12:53 +0000946**
drh9cbf3422008-01-17 16:22:13 +0000947** The string value P4 of length P1 (bytes) is stored in register P2.
drhf4479502004-05-27 03:12:53 +0000948*/
drh4c583122008-01-04 22:01:03 +0000949case OP_String: { /* out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000950 assert( pOp->p4.z!=0 );
drh4c583122008-01-04 22:01:03 +0000951 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
952 pOut->z = pOp->p4.z;
953 pOut->n = pOp->p1;
954 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +0000955 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977c572ef72004-05-27 09:28:41 +0000956 break;
957}
958
drhb8475df2011-12-09 16:21:19 +0000959/* Opcode: Null * P2 P3 * *
drhf0863fe2005-06-12 21:35:51 +0000960**
drhb8475df2011-12-09 16:21:19 +0000961** Write a NULL into registers P2. If P3 greater than P2, then also write
962** NULL into register P3 and ever register in between P2 and P3. If P3
963** is less than P2 (typically P3 is zero) then only register P2 is
964** set to NULL
drhf0863fe2005-06-12 21:35:51 +0000965*/
drh4c583122008-01-04 22:01:03 +0000966case OP_Null: { /* out2-prerelease */
drhb8475df2011-12-09 16:21:19 +0000967 int cnt;
968 cnt = pOp->p3-pOp->p2;
969 assert( pOp->p3<=p->nMem );
drh3c657212009-11-17 23:59:58 +0000970 pOut->flags = MEM_Null;
drhb8475df2011-12-09 16:21:19 +0000971 while( cnt>0 ){
972 pOut++;
973 memAboutToChange(p, pOut);
drhe4c88c02012-01-04 12:57:45 +0000974 VdbeMemRelease(pOut);
drhb8475df2011-12-09 16:21:19 +0000975 pOut->flags = MEM_Null;
976 cnt--;
977 }
drhf0863fe2005-06-12 21:35:51 +0000978 break;
979}
980
981
drh9de221d2008-01-05 06:51:30 +0000982/* Opcode: Blob P1 P2 * P4
danielk1977c572ef72004-05-27 09:28:41 +0000983**
drh9de221d2008-01-05 06:51:30 +0000984** P4 points to a blob of data P1 bytes long. Store this
drh710c4842010-08-30 01:17:20 +0000985** blob in register P2.
danielk1977c572ef72004-05-27 09:28:41 +0000986*/
drh4c583122008-01-04 22:01:03 +0000987case OP_Blob: { /* out2-prerelease */
drhcbd2da92007-12-17 16:20:06 +0000988 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
drh4c583122008-01-04 22:01:03 +0000989 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
drh9de221d2008-01-05 06:51:30 +0000990 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +0000991 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977a37cdde2004-05-16 11:15:36 +0000992 break;
993}
994
drheaf52d82010-05-12 13:50:23 +0000995/* Opcode: Variable P1 P2 * P4 *
drh50457892003-09-06 01:10:47 +0000996**
drheaf52d82010-05-12 13:50:23 +0000997** Transfer the values of bound parameter P1 into register P2
drh08de1492009-02-20 03:55:05 +0000998**
999** If the parameter is named, then its name appears in P4 and P3==1.
1000** The P4 value is used by sqlite3_bind_parameter_name().
drh50457892003-09-06 01:10:47 +00001001*/
drheaf52d82010-05-12 13:50:23 +00001002case OP_Variable: { /* out2-prerelease */
drh856c1032009-06-02 15:21:42 +00001003 Mem *pVar; /* Value being transferred */
1004
drheaf52d82010-05-12 13:50:23 +00001005 assert( pOp->p1>0 && pOp->p1<=p->nVar );
drh04e9eea2011-06-01 19:16:06 +00001006 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
drheaf52d82010-05-12 13:50:23 +00001007 pVar = &p->aVar[pOp->p1 - 1];
1008 if( sqlite3VdbeMemTooBig(pVar) ){
1009 goto too_big;
drh023ae032007-05-08 12:12:16 +00001010 }
drheaf52d82010-05-12 13:50:23 +00001011 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1012 UPDATE_MAX_BLOBSIZE(pOut);
danielk197793d46752004-05-23 13:30:58 +00001013 break;
1014}
danielk1977295ba552004-05-19 10:34:51 +00001015
drhb21e7c72008-06-22 12:37:57 +00001016/* Opcode: Move P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001017**
drhb21e7c72008-06-22 12:37:57 +00001018** Move the values in register P1..P1+P3-1 over into
1019** registers P2..P2+P3-1. Registers P1..P1+P1-1 are
1020** left holding a NULL. It is an error for register ranges
1021** P1..P1+P3-1 and P2..P2+P3-1 to overlap.
drh5e00f6c2001-09-13 13:46:56 +00001022*/
drhe1349cb2008-04-01 00:36:10 +00001023case OP_Move: {
drh856c1032009-06-02 15:21:42 +00001024 char *zMalloc; /* Holding variable for allocated memory */
1025 int n; /* Number of registers left to copy */
1026 int p1; /* Register to copy from */
1027 int p2; /* Register to copy to */
1028
1029 n = pOp->p3;
1030 p1 = pOp->p1;
1031 p2 = pOp->p2;
danielk19776ab3a2e2009-02-19 14:39:25 +00001032 assert( n>0 && p1>0 && p2>0 );
drhb21e7c72008-06-22 12:37:57 +00001033 assert( p1+n<=p2 || p2+n<=p1 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001034
drha6c2ed92009-11-14 23:22:23 +00001035 pIn1 = &aMem[p1];
1036 pOut = &aMem[p2];
drhb21e7c72008-06-22 12:37:57 +00001037 while( n-- ){
drha6c2ed92009-11-14 23:22:23 +00001038 assert( pOut<=&aMem[p->nMem] );
1039 assert( pIn1<=&aMem[p->nMem] );
drh2b4ded92010-09-27 21:09:31 +00001040 assert( memIsValid(pIn1) );
1041 memAboutToChange(p, pOut);
drhb21e7c72008-06-22 12:37:57 +00001042 zMalloc = pOut->zMalloc;
1043 pOut->zMalloc = 0;
1044 sqlite3VdbeMemMove(pOut, pIn1);
drh52043d72011-08-03 16:40:15 +00001045#ifdef SQLITE_DEBUG
1046 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
1047 pOut->pScopyFrom += p1 - pOp->p2;
1048 }
1049#endif
drhb21e7c72008-06-22 12:37:57 +00001050 pIn1->zMalloc = zMalloc;
1051 REGISTER_TRACE(p2++, pOut);
1052 pIn1++;
1053 pOut++;
1054 }
drhe1349cb2008-04-01 00:36:10 +00001055 break;
1056}
1057
drhb1fdb2a2008-01-05 04:06:03 +00001058/* Opcode: Copy P1 P2 * * *
1059**
drh9cbf3422008-01-17 16:22:13 +00001060** Make a copy of register P1 into register P2.
drhb1fdb2a2008-01-05 04:06:03 +00001061**
1062** This instruction makes a deep copy of the value. A duplicate
1063** is made of any string or blob constant. See also OP_SCopy.
1064*/
drh93952eb2009-11-13 19:43:43 +00001065case OP_Copy: { /* in1, out2 */
drh3c657212009-11-17 23:59:58 +00001066 pIn1 = &aMem[pOp->p1];
1067 pOut = &aMem[pOp->p2];
drhe1349cb2008-04-01 00:36:10 +00001068 assert( pOut!=pIn1 );
1069 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1070 Deephemeralize(pOut);
1071 REGISTER_TRACE(pOp->p2, pOut);
1072 break;
1073}
1074
drhb1fdb2a2008-01-05 04:06:03 +00001075/* Opcode: SCopy P1 P2 * * *
1076**
drh9cbf3422008-01-17 16:22:13 +00001077** Make a shallow copy of register P1 into register P2.
drhb1fdb2a2008-01-05 04:06:03 +00001078**
1079** This instruction makes a shallow copy of the value. If the value
1080** is a string or blob, then the copy is only a pointer to the
1081** original and hence if the original changes so will the copy.
1082** Worse, if the original is deallocated, the copy becomes invalid.
1083** Thus the program must guarantee that the original will not change
1084** during the lifetime of the copy. Use OP_Copy to make a complete
1085** copy.
1086*/
drh93952eb2009-11-13 19:43:43 +00001087case OP_SCopy: { /* in1, out2 */
drh3c657212009-11-17 23:59:58 +00001088 pIn1 = &aMem[pOp->p1];
1089 pOut = &aMem[pOp->p2];
drh2d401ab2008-01-10 23:50:11 +00001090 assert( pOut!=pIn1 );
drhe1349cb2008-04-01 00:36:10 +00001091 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
drh2b4ded92010-09-27 21:09:31 +00001092#ifdef SQLITE_DEBUG
1093 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1094#endif
drh5b6afba2008-01-05 16:29:28 +00001095 REGISTER_TRACE(pOp->p2, pOut);
drh5e00f6c2001-09-13 13:46:56 +00001096 break;
1097}
drh75897232000-05-29 14:26:00 +00001098
drh9cbf3422008-01-17 16:22:13 +00001099/* Opcode: ResultRow P1 P2 * * *
drhd4e70eb2008-01-02 00:34:36 +00001100**
shane21e7feb2008-05-30 15:59:49 +00001101** The registers P1 through P1+P2-1 contain a single row of
drhd4e70eb2008-01-02 00:34:36 +00001102** results. This opcode causes the sqlite3_step() call to terminate
1103** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1104** structure to provide access to the top P1 values as the result
drh9cbf3422008-01-17 16:22:13 +00001105** row.
drhd4e70eb2008-01-02 00:34:36 +00001106*/
drh9cbf3422008-01-17 16:22:13 +00001107case OP_ResultRow: {
drhd4e70eb2008-01-02 00:34:36 +00001108 Mem *pMem;
1109 int i;
1110 assert( p->nResColumn==pOp->p2 );
drh0a07c102008-01-03 18:03:08 +00001111 assert( pOp->p1>0 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001112 assert( pOp->p1+pOp->p2<=p->nMem+1 );
drhd4e70eb2008-01-02 00:34:36 +00001113
dan32b09f22009-09-23 17:29:59 +00001114 /* If this statement has violated immediate foreign key constraints, do
1115 ** not return the number of rows modified. And do not RELEASE the statement
1116 ** transaction. It needs to be rolled back. */
1117 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1118 assert( db->flags&SQLITE_CountRows );
1119 assert( p->usesStmtJournal );
1120 break;
1121 }
1122
danielk1977bd434552009-03-18 10:33:00 +00001123 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1124 ** DML statements invoke this opcode to return the number of rows
1125 ** modified to the user. This is the only way that a VM that
1126 ** opens a statement transaction may invoke this opcode.
1127 **
1128 ** In case this is such a statement, close any statement transaction
1129 ** opened by this VM before returning control to the user. This is to
1130 ** ensure that statement-transactions are always nested, not overlapping.
1131 ** If the open statement-transaction is not closed here, then the user
1132 ** may step another VM that opens its own statement transaction. This
1133 ** may lead to overlapping statement transactions.
drhaa736092009-06-22 00:55:30 +00001134 **
1135 ** The statement transaction is never a top-level transaction. Hence
1136 ** the RELEASE call below can never fail.
danielk1977bd434552009-03-18 10:33:00 +00001137 */
1138 assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
drhaa736092009-06-22 00:55:30 +00001139 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1140 if( NEVER(rc!=SQLITE_OK) ){
danielk1977bd434552009-03-18 10:33:00 +00001141 break;
1142 }
1143
drhd4e70eb2008-01-02 00:34:36 +00001144 /* Invalidate all ephemeral cursor row caches */
1145 p->cacheCtr = (p->cacheCtr + 2)|1;
1146
1147 /* Make sure the results of the current row are \000 terminated
shane21e7feb2008-05-30 15:59:49 +00001148 ** and have an assigned type. The results are de-ephemeralized as
drhb8a45bb2011-12-31 21:51:55 +00001149 ** a side effect.
drhd4e70eb2008-01-02 00:34:36 +00001150 */
drha6c2ed92009-11-14 23:22:23 +00001151 pMem = p->pResultSet = &aMem[pOp->p1];
drhd4e70eb2008-01-02 00:34:36 +00001152 for(i=0; i<pOp->p2; i++){
drh2b4ded92010-09-27 21:09:31 +00001153 assert( memIsValid(&pMem[i]) );
drhebc16712010-09-28 00:25:58 +00001154 Deephemeralize(&pMem[i]);
drh746fd9c2010-09-28 06:00:47 +00001155 assert( (pMem[i].flags & MEM_Ephem)==0
1156 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
drhd4e70eb2008-01-02 00:34:36 +00001157 sqlite3VdbeMemNulTerminate(&pMem[i]);
dan937d0de2009-10-15 18:35:38 +00001158 sqlite3VdbeMemStoreType(&pMem[i]);
drh0acb7e42008-06-25 00:12:41 +00001159 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
drhd4e70eb2008-01-02 00:34:36 +00001160 }
drh28039692008-03-17 16:54:01 +00001161 if( db->mallocFailed ) goto no_mem;
drhd4e70eb2008-01-02 00:34:36 +00001162
1163 /* Return SQLITE_ROW
1164 */
drhd4e70eb2008-01-02 00:34:36 +00001165 p->pc = pc + 1;
drhd4e70eb2008-01-02 00:34:36 +00001166 rc = SQLITE_ROW;
1167 goto vdbe_return;
1168}
1169
drh5b6afba2008-01-05 16:29:28 +00001170/* Opcode: Concat P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001171**
drh5b6afba2008-01-05 16:29:28 +00001172** Add the text in register P1 onto the end of the text in
1173** register P2 and store the result in register P3.
1174** If either the P1 or P2 text are NULL then store NULL in P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001175**
1176** P3 = P2 || P1
1177**
1178** It is illegal for P1 and P3 to be the same register. Sometimes,
1179** if P3 is the same register as P2, the implementation is able
1180** to avoid a memcpy().
drh5e00f6c2001-09-13 13:46:56 +00001181*/
drh5b6afba2008-01-05 16:29:28 +00001182case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
drh023ae032007-05-08 12:12:16 +00001183 i64 nByte;
danielk19778a6b5412004-05-24 07:04:25 +00001184
drh3c657212009-11-17 23:59:58 +00001185 pIn1 = &aMem[pOp->p1];
1186 pIn2 = &aMem[pOp->p2];
1187 pOut = &aMem[pOp->p3];
danielk1977a7a8e142008-02-13 18:25:27 +00001188 assert( pIn1!=pOut );
drh5b6afba2008-01-05 16:29:28 +00001189 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
danielk1977a7a8e142008-02-13 18:25:27 +00001190 sqlite3VdbeMemSetNull(pOut);
drh5b6afba2008-01-05 16:29:28 +00001191 break;
drh5e00f6c2001-09-13 13:46:56 +00001192 }
drha0c06522009-06-17 22:50:41 +00001193 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
drh5b6afba2008-01-05 16:29:28 +00001194 Stringify(pIn1, encoding);
drh5b6afba2008-01-05 16:29:28 +00001195 Stringify(pIn2, encoding);
1196 nByte = pIn1->n + pIn2->n;
drhbb4957f2008-03-20 14:03:29 +00001197 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh5b6afba2008-01-05 16:29:28 +00001198 goto too_big;
drh5e00f6c2001-09-13 13:46:56 +00001199 }
danielk1977a7a8e142008-02-13 18:25:27 +00001200 MemSetTypeFlag(pOut, MEM_Str);
drh9c1905f2008-12-10 22:32:56 +00001201 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
drh5b6afba2008-01-05 16:29:28 +00001202 goto no_mem;
1203 }
danielk1977a7a8e142008-02-13 18:25:27 +00001204 if( pOut!=pIn2 ){
1205 memcpy(pOut->z, pIn2->z, pIn2->n);
1206 }
1207 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1208 pOut->z[nByte] = 0;
1209 pOut->z[nByte+1] = 0;
1210 pOut->flags |= MEM_Term;
drh9c1905f2008-12-10 22:32:56 +00001211 pOut->n = (int)nByte;
drh5b6afba2008-01-05 16:29:28 +00001212 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001213 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001214 break;
1215}
drh75897232000-05-29 14:26:00 +00001216
drh3c84ddf2008-01-09 02:15:38 +00001217/* Opcode: Add P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001218**
drh60a713c2008-01-21 16:22:45 +00001219** Add the value in register P1 to the value in register P2
shane21e7feb2008-05-30 15:59:49 +00001220** and store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001221** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001222*/
drh3c84ddf2008-01-09 02:15:38 +00001223/* Opcode: Multiply P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001224**
drh3c84ddf2008-01-09 02:15:38 +00001225**
shane21e7feb2008-05-30 15:59:49 +00001226** Multiply the value in register P1 by the value in register P2
drh60a713c2008-01-21 16:22:45 +00001227** and store the result in register P3.
1228** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001229*/
drh3c84ddf2008-01-09 02:15:38 +00001230/* Opcode: Subtract P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001231**
drh60a713c2008-01-21 16:22:45 +00001232** Subtract the value in register P1 from the value in register P2
1233** and store the result in register P3.
1234** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001235*/
drh9cbf3422008-01-17 16:22:13 +00001236/* Opcode: Divide P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001237**
drh60a713c2008-01-21 16:22:45 +00001238** Divide the value in register P1 by the value in register P2
dane275dc32009-08-18 16:24:58 +00001239** and store the result in register P3 (P3=P2/P1). If the value in
1240** register P1 is zero, then the result is NULL. If either input is
1241** NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001242*/
drh9cbf3422008-01-17 16:22:13 +00001243/* Opcode: Remainder P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001244**
drh3c84ddf2008-01-09 02:15:38 +00001245** Compute the remainder after integer division of the value in
1246** register P1 by the value in register P2 and store the result in P3.
1247** If the value in register P2 is zero the result is NULL.
drhf5905aa2002-05-26 20:54:33 +00001248** If either operand is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001249*/
drh5b6afba2008-01-05 16:29:28 +00001250case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1251case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1252case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1253case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1254case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00001255 int flags; /* Combined MEM_* flags from both inputs */
1256 i64 iA; /* Integer value of left operand */
1257 i64 iB; /* Integer value of right operand */
1258 double rA; /* Real value of left operand */
1259 double rB; /* Real value of right operand */
1260
drh3c657212009-11-17 23:59:58 +00001261 pIn1 = &aMem[pOp->p1];
drh61669b32008-07-30 13:27:10 +00001262 applyNumericAffinity(pIn1);
drh3c657212009-11-17 23:59:58 +00001263 pIn2 = &aMem[pOp->p2];
drh61669b32008-07-30 13:27:10 +00001264 applyNumericAffinity(pIn2);
drh3c657212009-11-17 23:59:58 +00001265 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001266 flags = pIn1->flags | pIn2->flags;
drha05a7222008-01-19 03:35:58 +00001267 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
1268 if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
drh856c1032009-06-02 15:21:42 +00001269 iA = pIn1->u.i;
1270 iB = pIn2->u.i;
drh5e00f6c2001-09-13 13:46:56 +00001271 switch( pOp->opcode ){
drh158b9cb2011-03-05 20:59:46 +00001272 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
1273 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
1274 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
drhbf4133c2001-10-13 02:59:08 +00001275 case OP_Divide: {
drh856c1032009-06-02 15:21:42 +00001276 if( iA==0 ) goto arithmetic_result_is_null;
drh158b9cb2011-03-05 20:59:46 +00001277 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
drh856c1032009-06-02 15:21:42 +00001278 iB /= iA;
drh75897232000-05-29 14:26:00 +00001279 break;
1280 }
drhbf4133c2001-10-13 02:59:08 +00001281 default: {
drh856c1032009-06-02 15:21:42 +00001282 if( iA==0 ) goto arithmetic_result_is_null;
1283 if( iA==-1 ) iA = 1;
1284 iB %= iA;
drhbf4133c2001-10-13 02:59:08 +00001285 break;
1286 }
drh75897232000-05-29 14:26:00 +00001287 }
drh856c1032009-06-02 15:21:42 +00001288 pOut->u.i = iB;
danielk1977a7a8e142008-02-13 18:25:27 +00001289 MemSetTypeFlag(pOut, MEM_Int);
drh5e00f6c2001-09-13 13:46:56 +00001290 }else{
drh158b9cb2011-03-05 20:59:46 +00001291fp_math:
drh856c1032009-06-02 15:21:42 +00001292 rA = sqlite3VdbeRealValue(pIn1);
1293 rB = sqlite3VdbeRealValue(pIn2);
drh5e00f6c2001-09-13 13:46:56 +00001294 switch( pOp->opcode ){
drh856c1032009-06-02 15:21:42 +00001295 case OP_Add: rB += rA; break;
1296 case OP_Subtract: rB -= rA; break;
1297 case OP_Multiply: rB *= rA; break;
drhbf4133c2001-10-13 02:59:08 +00001298 case OP_Divide: {
shanefbd60f82009-02-04 03:59:25 +00001299 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
drh856c1032009-06-02 15:21:42 +00001300 if( rA==(double)0 ) goto arithmetic_result_is_null;
1301 rB /= rA;
drh5e00f6c2001-09-13 13:46:56 +00001302 break;
1303 }
drhbf4133c2001-10-13 02:59:08 +00001304 default: {
shane75ac1de2009-06-09 18:58:52 +00001305 iA = (i64)rA;
1306 iB = (i64)rB;
drh856c1032009-06-02 15:21:42 +00001307 if( iA==0 ) goto arithmetic_result_is_null;
1308 if( iA==-1 ) iA = 1;
1309 rB = (double)(iB % iA);
drhbf4133c2001-10-13 02:59:08 +00001310 break;
1311 }
drh5e00f6c2001-09-13 13:46:56 +00001312 }
drhc5a7b512010-01-13 16:25:42 +00001313#ifdef SQLITE_OMIT_FLOATING_POINT
1314 pOut->u.i = rB;
1315 MemSetTypeFlag(pOut, MEM_Int);
1316#else
drh856c1032009-06-02 15:21:42 +00001317 if( sqlite3IsNaN(rB) ){
drha05a7222008-01-19 03:35:58 +00001318 goto arithmetic_result_is_null;
drh53c14022007-05-10 17:23:11 +00001319 }
drh856c1032009-06-02 15:21:42 +00001320 pOut->r = rB;
danielk1977a7a8e142008-02-13 18:25:27 +00001321 MemSetTypeFlag(pOut, MEM_Real);
drh8a512562005-11-14 22:29:05 +00001322 if( (flags & MEM_Real)==0 ){
drh5b6afba2008-01-05 16:29:28 +00001323 sqlite3VdbeIntegerAffinity(pOut);
drh8a512562005-11-14 22:29:05 +00001324 }
drhc5a7b512010-01-13 16:25:42 +00001325#endif
drh5e00f6c2001-09-13 13:46:56 +00001326 }
1327 break;
1328
drha05a7222008-01-19 03:35:58 +00001329arithmetic_result_is_null:
1330 sqlite3VdbeMemSetNull(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001331 break;
1332}
1333
drh7a957892012-02-02 17:35:43 +00001334/* Opcode: CollSeq P1 * * P4
danielk1977dc1bdc42004-06-11 10:51:27 +00001335**
drh66a51672008-01-03 00:01:23 +00001336** P4 is a pointer to a CollSeq struct. If the next call to a user function
danielk1977dc1bdc42004-06-11 10:51:27 +00001337** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1338** be returned. This is used by the built-in min(), max() and nullif()
drhe6f85e72004-12-25 01:03:13 +00001339** functions.
danielk1977dc1bdc42004-06-11 10:51:27 +00001340**
drh7a957892012-02-02 17:35:43 +00001341** If P1 is not zero, then it is a register that a subsequent min() or
1342** max() aggregate will set to 1 if the current row is not the minimum or
1343** maximum. The P1 register is initialized to 0 by this instruction.
1344**
danielk1977dc1bdc42004-06-11 10:51:27 +00001345** The interface used by the implementation of the aforementioned functions
1346** to retrieve the collation sequence set by this opcode is not available
1347** publicly, only to user functions defined in func.c.
1348*/
drh9cbf3422008-01-17 16:22:13 +00001349case OP_CollSeq: {
drh66a51672008-01-03 00:01:23 +00001350 assert( pOp->p4type==P4_COLLSEQ );
drh7a957892012-02-02 17:35:43 +00001351 if( pOp->p1 ){
1352 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1353 }
danielk1977dc1bdc42004-06-11 10:51:27 +00001354 break;
1355}
1356
drh98757152008-01-09 23:04:12 +00001357/* Opcode: Function P1 P2 P3 P4 P5
drh8e0a2f92002-02-23 23:45:45 +00001358**
drh66a51672008-01-03 00:01:23 +00001359** Invoke a user function (P4 is a pointer to a Function structure that
drh98757152008-01-09 23:04:12 +00001360** defines the function) with P5 arguments taken from register P2 and
drh9cbf3422008-01-17 16:22:13 +00001361** successors. The result of the function is stored in register P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001362** Register P3 must not be one of the function inputs.
danielk1977682f68b2004-06-05 10:22:17 +00001363**
drh13449892005-09-07 21:22:45 +00001364** P1 is a 32-bit bitmask indicating whether or not each argument to the
danielk1977682f68b2004-06-05 10:22:17 +00001365** function was determined to be constant at compile time. If the first
drh13449892005-09-07 21:22:45 +00001366** argument was constant then bit 0 of P1 is set. This is used to determine
danielk1977682f68b2004-06-05 10:22:17 +00001367** whether meta data associated with a user function argument using the
1368** sqlite3_set_auxdata() API may be safely retained until the next
1369** invocation of this opcode.
drh1350b032002-02-27 19:00:20 +00001370**
drh13449892005-09-07 21:22:45 +00001371** See also: AggStep and AggFinal
drh8e0a2f92002-02-23 23:45:45 +00001372*/
drh0bce8352002-02-28 00:41:10 +00001373case OP_Function: {
danielk197751ad0ec2004-05-24 12:39:02 +00001374 int i;
drh6810ce62004-01-31 19:22:56 +00001375 Mem *pArg;
danielk197722322fd2004-05-25 23:35:17 +00001376 sqlite3_context ctx;
danielk197751ad0ec2004-05-24 12:39:02 +00001377 sqlite3_value **apVal;
drh856c1032009-06-02 15:21:42 +00001378 int n;
drh1350b032002-02-27 19:00:20 +00001379
drh856c1032009-06-02 15:21:42 +00001380 n = pOp->p5;
danielk19776ddcca52004-05-24 23:48:25 +00001381 apVal = p->apArg;
danielk197751ad0ec2004-05-24 12:39:02 +00001382 assert( apVal || n==0 );
drhebc16712010-09-28 00:25:58 +00001383 assert( pOp->p3>0 && pOp->p3<=p->nMem );
1384 pOut = &aMem[pOp->p3];
1385 memAboutToChange(p, pOut);
danielk197751ad0ec2004-05-24 12:39:02 +00001386
danielk19776ab3a2e2009-02-19 14:39:25 +00001387 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) );
danielk1977a7a8e142008-02-13 18:25:27 +00001388 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
drha6c2ed92009-11-14 23:22:23 +00001389 pArg = &aMem[pOp->p2];
drh6810ce62004-01-31 19:22:56 +00001390 for(i=0; i<n; i++, pArg++){
drh2b4ded92010-09-27 21:09:31 +00001391 assert( memIsValid(pArg) );
danielk197751ad0ec2004-05-24 12:39:02 +00001392 apVal[i] = pArg;
drhebc16712010-09-28 00:25:58 +00001393 Deephemeralize(pArg);
dan937d0de2009-10-15 18:35:38 +00001394 sqlite3VdbeMemStoreType(pArg);
drhab5cd702010-04-07 14:32:11 +00001395 REGISTER_TRACE(pOp->p2+i, pArg);
drh8e0a2f92002-02-23 23:45:45 +00001396 }
danielk197751ad0ec2004-05-24 12:39:02 +00001397
drh66a51672008-01-03 00:01:23 +00001398 assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
1399 if( pOp->p4type==P4_FUNCDEF ){
danielk19772dca4ac2008-01-03 11:50:29 +00001400 ctx.pFunc = pOp->p4.pFunc;
danielk1977682f68b2004-06-05 10:22:17 +00001401 ctx.pVdbeFunc = 0;
1402 }else{
danielk19772dca4ac2008-01-03 11:50:29 +00001403 ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc;
danielk1977682f68b2004-06-05 10:22:17 +00001404 ctx.pFunc = ctx.pVdbeFunc->pFunc;
1405 }
1406
drh00706be2004-01-30 14:49:16 +00001407 ctx.s.flags = MEM_Null;
drhfa4a4b92008-03-19 21:45:51 +00001408 ctx.s.db = db;
danielk19775f096132008-03-28 15:44:09 +00001409 ctx.s.xDel = 0;
1410 ctx.s.zMalloc = 0;
danielk1977a7a8e142008-02-13 18:25:27 +00001411
1412 /* The output cell may already have a buffer allocated. Move
1413 ** the pointer to ctx.s so in case the user-function can use
1414 ** the already allocated buffer instead of allocating a new one.
1415 */
1416 sqlite3VdbeMemMove(&ctx.s, pOut);
1417 MemSetTypeFlag(&ctx.s, MEM_Null);
1418
drh8e0a2f92002-02-23 23:45:45 +00001419 ctx.isError = 0;
drhe82f5d02008-10-07 19:53:14 +00001420 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
drhbbe879d2009-11-14 18:04:35 +00001421 assert( pOp>aOp );
drh66a51672008-01-03 00:01:23 +00001422 assert( pOp[-1].p4type==P4_COLLSEQ );
danielk1977dc1bdc42004-06-11 10:51:27 +00001423 assert( pOp[-1].opcode==OP_CollSeq );
danielk19772dca4ac2008-01-03 11:50:29 +00001424 ctx.pColl = pOp[-1].p4.pColl;
danielk1977dc1bdc42004-06-11 10:51:27 +00001425 }
drh99a66922011-05-13 18:51:42 +00001426 db->lastRowid = lastRowid;
drhee9ff672010-09-03 18:50:48 +00001427 (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
drh99a66922011-05-13 18:51:42 +00001428 lastRowid = db->lastRowid;
danielk19777e18c252004-05-25 11:47:24 +00001429
shane21e7feb2008-05-30 15:59:49 +00001430 /* If any auxiliary data functions have been called by this user function,
danielk1977682f68b2004-06-05 10:22:17 +00001431 ** immediately call the destructor for any non-static values.
1432 */
1433 if( ctx.pVdbeFunc ){
drh13449892005-09-07 21:22:45 +00001434 sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
danielk19772dca4ac2008-01-03 11:50:29 +00001435 pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
drh66a51672008-01-03 00:01:23 +00001436 pOp->p4type = P4_VDBEFUNC;
danielk1977682f68b2004-06-05 10:22:17 +00001437 }
1438
dan5f84e142011-06-14 14:18:45 +00001439 if( db->mallocFailed ){
1440 /* Even though a malloc() has failed, the implementation of the
1441 ** user function may have called an sqlite3_result_XXX() function
1442 ** to return a value. The following call releases any resources
1443 ** associated with such a value.
1444 */
1445 sqlite3VdbeMemRelease(&ctx.s);
1446 goto no_mem;
1447 }
1448
drh90669c12006-01-20 15:45:36 +00001449 /* If the function returned an error, throw an exception */
1450 if( ctx.isError ){
drhf089aa42008-07-08 19:34:06 +00001451 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
drh69544ec2008-02-06 14:11:34 +00001452 rc = ctx.isError;
drh90669c12006-01-20 15:45:36 +00001453 }
1454
drh9cbf3422008-01-17 16:22:13 +00001455 /* Copy the result of the function into register P3 */
drhb21c8cd2007-08-21 19:33:56 +00001456 sqlite3VdbeChangeEncoding(&ctx.s, encoding);
drh98757152008-01-09 23:04:12 +00001457 sqlite3VdbeMemMove(pOut, &ctx.s);
1458 if( sqlite3VdbeMemTooBig(pOut) ){
drh023ae032007-05-08 12:12:16 +00001459 goto too_big;
1460 }
drh7b94e7f2011-04-04 12:29:20 +00001461
1462#if 0
1463 /* The app-defined function has done something that as caused this
1464 ** statement to expire. (Perhaps the function called sqlite3_exec()
1465 ** with a CREATE TABLE statement.)
1466 */
1467 if( p->expired ) rc = SQLITE_ABORT;
1468#endif
1469
drh2dcef112008-01-12 19:03:48 +00001470 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00001471 UPDATE_MAX_BLOBSIZE(pOut);
drh8e0a2f92002-02-23 23:45:45 +00001472 break;
1473}
1474
drh98757152008-01-09 23:04:12 +00001475/* Opcode: BitAnd P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001476**
drh98757152008-01-09 23:04:12 +00001477** Take the bit-wise AND of the values in register P1 and P2 and
1478** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001479** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001480*/
drh98757152008-01-09 23:04:12 +00001481/* Opcode: BitOr P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001482**
drh98757152008-01-09 23:04:12 +00001483** Take the bit-wise OR of the values in register P1 and P2 and
1484** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001485** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001486*/
drh98757152008-01-09 23:04:12 +00001487/* Opcode: ShiftLeft P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001488**
drh98757152008-01-09 23:04:12 +00001489** Shift the integer value in register P2 to the left by the
drh710c4842010-08-30 01:17:20 +00001490** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001491** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001492** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001493*/
drh98757152008-01-09 23:04:12 +00001494/* Opcode: ShiftRight P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001495**
drh98757152008-01-09 23:04:12 +00001496** Shift the integer value in register P2 to the right by the
drh60a713c2008-01-21 16:22:45 +00001497** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001498** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001499** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001500*/
drh5b6afba2008-01-05 16:29:28 +00001501case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1502case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1503case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1504case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
drh158b9cb2011-03-05 20:59:46 +00001505 i64 iA;
1506 u64 uA;
1507 i64 iB;
1508 u8 op;
drh6810ce62004-01-31 19:22:56 +00001509
drh3c657212009-11-17 23:59:58 +00001510 pIn1 = &aMem[pOp->p1];
1511 pIn2 = &aMem[pOp->p2];
1512 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001513 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
drha05a7222008-01-19 03:35:58 +00001514 sqlite3VdbeMemSetNull(pOut);
drhf5905aa2002-05-26 20:54:33 +00001515 break;
1516 }
drh158b9cb2011-03-05 20:59:46 +00001517 iA = sqlite3VdbeIntValue(pIn2);
1518 iB = sqlite3VdbeIntValue(pIn1);
1519 op = pOp->opcode;
1520 if( op==OP_BitAnd ){
1521 iA &= iB;
1522 }else if( op==OP_BitOr ){
1523 iA |= iB;
1524 }else if( iB!=0 ){
1525 assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1526
1527 /* If shifting by a negative amount, shift in the other direction */
1528 if( iB<0 ){
1529 assert( OP_ShiftRight==OP_ShiftLeft+1 );
1530 op = 2*OP_ShiftLeft + 1 - op;
1531 iB = iB>(-64) ? -iB : 64;
1532 }
1533
1534 if( iB>=64 ){
1535 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1536 }else{
1537 memcpy(&uA, &iA, sizeof(uA));
1538 if( op==OP_ShiftLeft ){
1539 uA <<= iB;
1540 }else{
1541 uA >>= iB;
1542 /* Sign-extend on a right shift of a negative number */
1543 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1544 }
1545 memcpy(&iA, &uA, sizeof(iA));
1546 }
drhbf4133c2001-10-13 02:59:08 +00001547 }
drh158b9cb2011-03-05 20:59:46 +00001548 pOut->u.i = iA;
danielk1977a7a8e142008-02-13 18:25:27 +00001549 MemSetTypeFlag(pOut, MEM_Int);
drhbf4133c2001-10-13 02:59:08 +00001550 break;
1551}
1552
drh8558cde2008-01-05 05:20:10 +00001553/* Opcode: AddImm P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00001554**
danielk19770cdc0222008-06-26 18:04:03 +00001555** Add the constant P2 to the value in register P1.
drh8558cde2008-01-05 05:20:10 +00001556** The result is always an integer.
drh4a324312001-12-21 14:30:42 +00001557**
drh8558cde2008-01-05 05:20:10 +00001558** To force any register to be an integer, just add 0.
drh5e00f6c2001-09-13 13:46:56 +00001559*/
drh9cbf3422008-01-17 16:22:13 +00001560case OP_AddImm: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001561 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001562 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001563 sqlite3VdbeMemIntegerify(pIn1);
1564 pIn1->u.i += pOp->p2;
drh5e00f6c2001-09-13 13:46:56 +00001565 break;
1566}
1567
drh9cbf3422008-01-17 16:22:13 +00001568/* Opcode: MustBeInt P1 P2 * * *
drh8aff1012001-12-22 14:49:24 +00001569**
drh9cbf3422008-01-17 16:22:13 +00001570** Force the value in register P1 to be an integer. If the value
1571** in P1 is not an integer and cannot be converted into an integer
danielk19779a96b662007-11-29 17:05:18 +00001572** without data loss, then jump immediately to P2, or if P2==0
drh8aff1012001-12-22 14:49:24 +00001573** raise an SQLITE_MISMATCH exception.
1574*/
drh9cbf3422008-01-17 16:22:13 +00001575case OP_MustBeInt: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00001576 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00001577 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1578 if( (pIn1->flags & MEM_Int)==0 ){
drh17c40292004-07-21 02:53:29 +00001579 if( pOp->p2==0 ){
1580 rc = SQLITE_MISMATCH;
1581 goto abort_due_to_error;
drh3c84ddf2008-01-09 02:15:38 +00001582 }else{
drh17c40292004-07-21 02:53:29 +00001583 pc = pOp->p2 - 1;
drh8aff1012001-12-22 14:49:24 +00001584 }
drh8aff1012001-12-22 14:49:24 +00001585 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00001586 MemSetTypeFlag(pIn1, MEM_Int);
drh8aff1012001-12-22 14:49:24 +00001587 }
1588 break;
1589}
1590
drh13573c72010-01-12 17:04:07 +00001591#ifndef SQLITE_OMIT_FLOATING_POINT
drh8558cde2008-01-05 05:20:10 +00001592/* Opcode: RealAffinity P1 * * * *
drh487e2622005-06-25 18:42:14 +00001593**
drh2133d822008-01-03 18:44:59 +00001594** If register P1 holds an integer convert it to a real value.
drh487e2622005-06-25 18:42:14 +00001595**
drh8a512562005-11-14 22:29:05 +00001596** This opcode is used when extracting information from a column that
1597** has REAL affinity. Such column values may still be stored as
1598** integers, for space efficiency, but after extraction we want them
1599** to have only a real value.
drh487e2622005-06-25 18:42:14 +00001600*/
drh9cbf3422008-01-17 16:22:13 +00001601case OP_RealAffinity: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001602 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001603 if( pIn1->flags & MEM_Int ){
1604 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001605 }
drh487e2622005-06-25 18:42:14 +00001606 break;
1607}
drh13573c72010-01-12 17:04:07 +00001608#endif
drh487e2622005-06-25 18:42:14 +00001609
drh8df447f2005-11-01 15:48:24 +00001610#ifndef SQLITE_OMIT_CAST
drh8558cde2008-01-05 05:20:10 +00001611/* Opcode: ToText P1 * * * *
drh487e2622005-06-25 18:42:14 +00001612**
drh8558cde2008-01-05 05:20:10 +00001613** Force the value in register P1 to be text.
drh31beae92005-11-24 14:34:36 +00001614** If the value is numeric, convert it to a string using the
drh487e2622005-06-25 18:42:14 +00001615** equivalent of printf(). Blob values are unchanged and
1616** are afterwards simply interpreted as text.
1617**
1618** A NULL value is not changed by this routine. It remains NULL.
1619*/
drh9cbf3422008-01-17 16:22:13 +00001620case OP_ToText: { /* same as TK_TO_TEXT, in1 */
drh3c657212009-11-17 23:59:58 +00001621 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001622 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001623 if( pIn1->flags & MEM_Null ) break;
drh487e2622005-06-25 18:42:14 +00001624 assert( MEM_Str==(MEM_Blob>>3) );
drh8558cde2008-01-05 05:20:10 +00001625 pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
1626 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
1627 rc = ExpandBlob(pIn1);
danielk1977a7a8e142008-02-13 18:25:27 +00001628 assert( pIn1->flags & MEM_Str || db->mallocFailed );
drh68ac65e2009-01-05 18:02:27 +00001629 pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
drhb7654112008-01-12 12:48:07 +00001630 UPDATE_MAX_BLOBSIZE(pIn1);
drh487e2622005-06-25 18:42:14 +00001631 break;
1632}
1633
drh8558cde2008-01-05 05:20:10 +00001634/* Opcode: ToBlob P1 * * * *
drh487e2622005-06-25 18:42:14 +00001635**
drh8558cde2008-01-05 05:20:10 +00001636** Force the value in register P1 to be a BLOB.
drh487e2622005-06-25 18:42:14 +00001637** If the value is numeric, convert it to a string first.
1638** Strings are simply reinterpreted as blobs with no change
1639** to the underlying data.
1640**
1641** A NULL value is not changed by this routine. It remains NULL.
1642*/
drh9cbf3422008-01-17 16:22:13 +00001643case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */
drh3c657212009-11-17 23:59:58 +00001644 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001645 if( pIn1->flags & MEM_Null ) break;
1646 if( (pIn1->flags & MEM_Blob)==0 ){
1647 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
danielk1977a7a8e142008-02-13 18:25:27 +00001648 assert( pIn1->flags & MEM_Str || db->mallocFailed );
drhde58ddb2009-01-05 22:30:38 +00001649 MemSetTypeFlag(pIn1, MEM_Blob);
1650 }else{
1651 pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob);
drh487e2622005-06-25 18:42:14 +00001652 }
drhb7654112008-01-12 12:48:07 +00001653 UPDATE_MAX_BLOBSIZE(pIn1);
drh487e2622005-06-25 18:42:14 +00001654 break;
1655}
drh8a512562005-11-14 22:29:05 +00001656
drh8558cde2008-01-05 05:20:10 +00001657/* Opcode: ToNumeric P1 * * * *
drh8a512562005-11-14 22:29:05 +00001658**
drh8558cde2008-01-05 05:20:10 +00001659** Force the value in register P1 to be numeric (either an
drh8a512562005-11-14 22:29:05 +00001660** integer or a floating-point number.)
1661** If the value is text or blob, try to convert it to an using the
1662** equivalent of atoi() or atof() and store 0 if no such conversion
1663** is possible.
1664**
1665** A NULL value is not changed by this routine. It remains NULL.
1666*/
drh9cbf3422008-01-17 16:22:13 +00001667case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */
drh3c657212009-11-17 23:59:58 +00001668 pIn1 = &aMem[pOp->p1];
drh93518622010-09-30 14:48:06 +00001669 sqlite3VdbeMemNumerify(pIn1);
drh8a512562005-11-14 22:29:05 +00001670 break;
1671}
1672#endif /* SQLITE_OMIT_CAST */
1673
drh8558cde2008-01-05 05:20:10 +00001674/* Opcode: ToInt P1 * * * *
drh8a512562005-11-14 22:29:05 +00001675**
drh710c4842010-08-30 01:17:20 +00001676** Force the value in register P1 to be an integer. If
drh8a512562005-11-14 22:29:05 +00001677** The value is currently a real number, drop its fractional part.
1678** If the value is text or blob, try to convert it to an integer using the
1679** equivalent of atoi() and store 0 if no such conversion is possible.
1680**
1681** A NULL value is not changed by this routine. It remains NULL.
1682*/
drh9cbf3422008-01-17 16:22:13 +00001683case OP_ToInt: { /* same as TK_TO_INT, in1 */
drh3c657212009-11-17 23:59:58 +00001684 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001685 if( (pIn1->flags & MEM_Null)==0 ){
1686 sqlite3VdbeMemIntegerify(pIn1);
drh8a512562005-11-14 22:29:05 +00001687 }
1688 break;
1689}
1690
drh13573c72010-01-12 17:04:07 +00001691#if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT)
drh8558cde2008-01-05 05:20:10 +00001692/* Opcode: ToReal P1 * * * *
drh8a512562005-11-14 22:29:05 +00001693**
drh8558cde2008-01-05 05:20:10 +00001694** Force the value in register P1 to be a floating point number.
drh8a512562005-11-14 22:29:05 +00001695** If The value is currently an integer, convert it.
1696** If the value is text or blob, try to convert it to an integer using the
drh60a713c2008-01-21 16:22:45 +00001697** equivalent of atoi() and store 0.0 if no such conversion is possible.
drh8a512562005-11-14 22:29:05 +00001698**
1699** A NULL value is not changed by this routine. It remains NULL.
1700*/
drh9cbf3422008-01-17 16:22:13 +00001701case OP_ToReal: { /* same as TK_TO_REAL, in1 */
drh3c657212009-11-17 23:59:58 +00001702 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001703 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001704 if( (pIn1->flags & MEM_Null)==0 ){
1705 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001706 }
1707 break;
1708}
drh13573c72010-01-12 17:04:07 +00001709#endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */
drh487e2622005-06-25 18:42:14 +00001710
drh35573352008-01-08 23:54:25 +00001711/* Opcode: Lt P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001712**
drh35573352008-01-08 23:54:25 +00001713** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
1714** jump to address P2.
drhf5905aa2002-05-26 20:54:33 +00001715**
drh35573352008-01-08 23:54:25 +00001716** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1717** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
drh710c4842010-08-30 01:17:20 +00001718** bit is clear then fall through if either operand is NULL.
drh4f686232005-09-20 13:55:18 +00001719**
drh35573352008-01-08 23:54:25 +00001720** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
drh8a512562005-11-14 22:29:05 +00001721** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
drh60a713c2008-01-21 16:22:45 +00001722** to coerce both inputs according to this affinity before the
drh35573352008-01-08 23:54:25 +00001723** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
drh60a713c2008-01-21 16:22:45 +00001724** affinity is used. Note that the affinity conversions are stored
1725** back into the input registers P1 and P3. So this opcode can cause
1726** persistent changes to registers P1 and P3.
danielk1977a37cdde2004-05-16 11:15:36 +00001727**
1728** Once any conversions have taken place, and neither value is NULL,
drh35573352008-01-08 23:54:25 +00001729** the values are compared. If both values are blobs then memcmp() is
1730** used to determine the results of the comparison. If both values
1731** are text, then the appropriate collating function specified in
1732** P4 is used to do the comparison. If P4 is not specified then
1733** memcmp() is used to compare text string. If both values are
1734** numeric, then a numeric comparison is used. If the two values
1735** are of different types, then numbers are considered less than
1736** strings and strings are considered less than blobs.
drhc9b84a12002-06-20 11:36:48 +00001737**
drh35573352008-01-08 23:54:25 +00001738** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
1739** store a boolean result (either 0, or 1, or NULL) in register P2.
drh5e00f6c2001-09-13 13:46:56 +00001740*/
drh9cbf3422008-01-17 16:22:13 +00001741/* Opcode: Ne P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001742**
drh35573352008-01-08 23:54:25 +00001743** This works just like the Lt opcode except that the jump is taken if
1744** the operands in registers P1 and P3 are not equal. See the Lt opcode for
drh53db1452004-05-20 13:54:53 +00001745** additional information.
drh6a2fe092009-09-23 02:29:36 +00001746**
1747** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1748** true or false and is never NULL. If both operands are NULL then the result
1749** of comparison is false. If either operand is NULL then the result is true.
drhef8662b2011-06-20 21:47:58 +00001750** If neither operand is NULL the result is the same as it would be if
drh6a2fe092009-09-23 02:29:36 +00001751** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001752*/
drh9cbf3422008-01-17 16:22:13 +00001753/* Opcode: Eq P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001754**
drh35573352008-01-08 23:54:25 +00001755** This works just like the Lt opcode except that the jump is taken if
1756** the operands in registers P1 and P3 are equal.
1757** See the Lt opcode for additional information.
drh6a2fe092009-09-23 02:29:36 +00001758**
1759** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1760** true or false and is never NULL. If both operands are NULL then the result
1761** of comparison is true. If either operand is NULL then the result is false.
drhef8662b2011-06-20 21:47:58 +00001762** If neither operand is NULL the result is the same as it would be if
drh6a2fe092009-09-23 02:29:36 +00001763** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001764*/
drh9cbf3422008-01-17 16:22:13 +00001765/* Opcode: Le P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001766**
drh35573352008-01-08 23:54:25 +00001767** This works just like the Lt opcode except that the jump is taken if
1768** the content of register P3 is less than or equal to the content of
1769** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001770*/
drh9cbf3422008-01-17 16:22:13 +00001771/* Opcode: Gt P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001772**
drh35573352008-01-08 23:54:25 +00001773** This works just like the Lt opcode except that the jump is taken if
1774** the content of register P3 is greater than the content of
1775** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001776*/
drh9cbf3422008-01-17 16:22:13 +00001777/* Opcode: Ge P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001778**
drh35573352008-01-08 23:54:25 +00001779** This works just like the Lt opcode except that the jump is taken if
1780** the content of register P3 is greater than or equal to the content of
1781** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001782*/
drh9cbf3422008-01-17 16:22:13 +00001783case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
1784case OP_Ne: /* same as TK_NE, jump, in1, in3 */
1785case OP_Lt: /* same as TK_LT, jump, in1, in3 */
1786case OP_Le: /* same as TK_LE, jump, in1, in3 */
1787case OP_Gt: /* same as TK_GT, jump, in1, in3 */
1788case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
drh6a2fe092009-09-23 02:29:36 +00001789 int res; /* Result of the comparison of pIn1 against pIn3 */
1790 char affinity; /* Affinity to use for comparison */
danb7dca7d2010-03-05 16:32:12 +00001791 u16 flags1; /* Copy of initial value of pIn1->flags */
1792 u16 flags3; /* Copy of initial value of pIn3->flags */
danielk1977a37cdde2004-05-16 11:15:36 +00001793
drh3c657212009-11-17 23:59:58 +00001794 pIn1 = &aMem[pOp->p1];
1795 pIn3 = &aMem[pOp->p3];
danb7dca7d2010-03-05 16:32:12 +00001796 flags1 = pIn1->flags;
1797 flags3 = pIn3->flags;
drhc3f1d5f2011-05-30 23:42:16 +00001798 if( (flags1 | flags3)&MEM_Null ){
drh6a2fe092009-09-23 02:29:36 +00001799 /* One or both operands are NULL */
1800 if( pOp->p5 & SQLITE_NULLEQ ){
1801 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1802 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1803 ** or not both operands are null.
1804 */
1805 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
drhc3f1d5f2011-05-30 23:42:16 +00001806 res = (flags1 & flags3 & MEM_Null)==0;
drh6a2fe092009-09-23 02:29:36 +00001807 }else{
1808 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1809 ** then the result is always NULL.
1810 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1811 */
1812 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001813 pOut = &aMem[pOp->p2];
drh6a2fe092009-09-23 02:29:36 +00001814 MemSetTypeFlag(pOut, MEM_Null);
1815 REGISTER_TRACE(pOp->p2, pOut);
1816 }else if( pOp->p5 & SQLITE_JUMPIFNULL ){
1817 pc = pOp->p2-1;
1818 }
1819 break;
danielk1977a37cdde2004-05-16 11:15:36 +00001820 }
drh6a2fe092009-09-23 02:29:36 +00001821 }else{
1822 /* Neither operand is NULL. Do a comparison. */
1823 affinity = pOp->p5 & SQLITE_AFF_MASK;
1824 if( affinity ){
1825 applyAffinity(pIn1, affinity, encoding);
1826 applyAffinity(pIn3, affinity, encoding);
1827 if( db->mallocFailed ) goto no_mem;
1828 }
danielk1977a37cdde2004-05-16 11:15:36 +00001829
drh6a2fe092009-09-23 02:29:36 +00001830 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
1831 ExpandBlob(pIn1);
1832 ExpandBlob(pIn3);
1833 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
drhe51c44f2004-05-30 20:46:09 +00001834 }
danielk1977a37cdde2004-05-16 11:15:36 +00001835 switch( pOp->opcode ){
1836 case OP_Eq: res = res==0; break;
1837 case OP_Ne: res = res!=0; break;
1838 case OP_Lt: res = res<0; break;
1839 case OP_Le: res = res<=0; break;
1840 case OP_Gt: res = res>0; break;
1841 default: res = res>=0; break;
1842 }
1843
drh35573352008-01-08 23:54:25 +00001844 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001845 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00001846 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00001847 MemSetTypeFlag(pOut, MEM_Int);
drh35573352008-01-08 23:54:25 +00001848 pOut->u.i = res;
1849 REGISTER_TRACE(pOp->p2, pOut);
1850 }else if( res ){
1851 pc = pOp->p2-1;
danielk1977a37cdde2004-05-16 11:15:36 +00001852 }
danb7dca7d2010-03-05 16:32:12 +00001853
1854 /* Undo any changes made by applyAffinity() to the input registers. */
1855 pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask);
1856 pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask);
danielk1977a37cdde2004-05-16 11:15:36 +00001857 break;
1858}
drhc9b84a12002-06-20 11:36:48 +00001859
drh0acb7e42008-06-25 00:12:41 +00001860/* Opcode: Permutation * * * P4 *
1861**
shanebe217792009-03-05 04:20:31 +00001862** Set the permutation used by the OP_Compare operator to be the array
drh0acb7e42008-06-25 00:12:41 +00001863** of integers in P4.
1864**
1865** The permutation is only valid until the next OP_Permutation, OP_Compare,
1866** OP_Halt, or OP_ResultRow. Typically the OP_Permutation should occur
1867** immediately prior to the OP_Compare.
1868*/
1869case OP_Permutation: {
1870 assert( pOp->p4type==P4_INTARRAY );
1871 assert( pOp->p4.ai );
1872 aPermute = pOp->p4.ai;
1873 break;
1874}
1875
drh16ee60f2008-06-20 18:13:25 +00001876/* Opcode: Compare P1 P2 P3 P4 *
1877**
drh710c4842010-08-30 01:17:20 +00001878** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
1879** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
drh16ee60f2008-06-20 18:13:25 +00001880** the comparison for use by the next OP_Jump instruct.
1881**
drh0acb7e42008-06-25 00:12:41 +00001882** P4 is a KeyInfo structure that defines collating sequences and sort
1883** orders for the comparison. The permutation applies to registers
1884** only. The KeyInfo elements are used sequentially.
1885**
1886** The comparison is a sort comparison, so NULLs compare equal,
1887** NULLs are less than numbers, numbers are less than strings,
drh16ee60f2008-06-20 18:13:25 +00001888** and strings are less than blobs.
1889*/
1890case OP_Compare: {
drh856c1032009-06-02 15:21:42 +00001891 int n;
1892 int i;
1893 int p1;
1894 int p2;
1895 const KeyInfo *pKeyInfo;
1896 int idx;
1897 CollSeq *pColl; /* Collating sequence to use on this term */
1898 int bRev; /* True for DESCENDING sort order */
1899
1900 n = pOp->p3;
1901 pKeyInfo = pOp->p4.pKeyInfo;
drh16ee60f2008-06-20 18:13:25 +00001902 assert( n>0 );
drh93a960a2008-07-10 00:32:42 +00001903 assert( pKeyInfo!=0 );
drh16ee60f2008-06-20 18:13:25 +00001904 p1 = pOp->p1;
drh16ee60f2008-06-20 18:13:25 +00001905 p2 = pOp->p2;
drh6a2fe092009-09-23 02:29:36 +00001906#if SQLITE_DEBUG
1907 if( aPermute ){
1908 int k, mx = 0;
1909 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
1910 assert( p1>0 && p1+mx<=p->nMem+1 );
1911 assert( p2>0 && p2+mx<=p->nMem+1 );
1912 }else{
1913 assert( p1>0 && p1+n<=p->nMem+1 );
1914 assert( p2>0 && p2+n<=p->nMem+1 );
1915 }
1916#endif /* SQLITE_DEBUG */
drh0acb7e42008-06-25 00:12:41 +00001917 for(i=0; i<n; i++){
drh856c1032009-06-02 15:21:42 +00001918 idx = aPermute ? aPermute[i] : i;
drh2b4ded92010-09-27 21:09:31 +00001919 assert( memIsValid(&aMem[p1+idx]) );
1920 assert( memIsValid(&aMem[p2+idx]) );
drha6c2ed92009-11-14 23:22:23 +00001921 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
1922 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
drh93a960a2008-07-10 00:32:42 +00001923 assert( i<pKeyInfo->nField );
1924 pColl = pKeyInfo->aColl[i];
1925 bRev = pKeyInfo->aSortOrder[i];
drha6c2ed92009-11-14 23:22:23 +00001926 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
drh0acb7e42008-06-25 00:12:41 +00001927 if( iCompare ){
1928 if( bRev ) iCompare = -iCompare;
1929 break;
1930 }
drh16ee60f2008-06-20 18:13:25 +00001931 }
drh0acb7e42008-06-25 00:12:41 +00001932 aPermute = 0;
drh16ee60f2008-06-20 18:13:25 +00001933 break;
1934}
1935
1936/* Opcode: Jump P1 P2 P3 * *
1937**
1938** Jump to the instruction at address P1, P2, or P3 depending on whether
1939** in the most recent OP_Compare instruction the P1 vector was less than
1940** equal to, or greater than the P2 vector, respectively.
1941*/
drh0acb7e42008-06-25 00:12:41 +00001942case OP_Jump: { /* jump */
1943 if( iCompare<0 ){
drh16ee60f2008-06-20 18:13:25 +00001944 pc = pOp->p1 - 1;
drh0acb7e42008-06-25 00:12:41 +00001945 }else if( iCompare==0 ){
drh16ee60f2008-06-20 18:13:25 +00001946 pc = pOp->p2 - 1;
1947 }else{
1948 pc = pOp->p3 - 1;
1949 }
1950 break;
1951}
1952
drh5b6afba2008-01-05 16:29:28 +00001953/* Opcode: And P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001954**
drh5b6afba2008-01-05 16:29:28 +00001955** Take the logical AND of the values in registers P1 and P2 and
1956** write the result into register P3.
drh5e00f6c2001-09-13 13:46:56 +00001957**
drh5b6afba2008-01-05 16:29:28 +00001958** If either P1 or P2 is 0 (false) then the result is 0 even if
1959** the other input is NULL. A NULL and true or two NULLs give
1960** a NULL output.
drh5e00f6c2001-09-13 13:46:56 +00001961*/
drh5b6afba2008-01-05 16:29:28 +00001962/* Opcode: Or P1 P2 P3 * *
1963**
1964** Take the logical OR of the values in register P1 and P2 and
1965** store the answer in register P3.
1966**
1967** If either P1 or P2 is nonzero (true) then the result is 1 (true)
1968** even if the other input is NULL. A NULL and false or two NULLs
1969** give a NULL output.
1970*/
1971case OP_And: /* same as TK_AND, in1, in2, out3 */
1972case OP_Or: { /* same as TK_OR, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00001973 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
1974 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
drhbb113512002-05-27 01:04:51 +00001975
drh3c657212009-11-17 23:59:58 +00001976 pIn1 = &aMem[pOp->p1];
drh5b6afba2008-01-05 16:29:28 +00001977 if( pIn1->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00001978 v1 = 2;
drh5e00f6c2001-09-13 13:46:56 +00001979 }else{
drh5b6afba2008-01-05 16:29:28 +00001980 v1 = sqlite3VdbeIntValue(pIn1)!=0;
drhbb113512002-05-27 01:04:51 +00001981 }
drh3c657212009-11-17 23:59:58 +00001982 pIn2 = &aMem[pOp->p2];
drh5b6afba2008-01-05 16:29:28 +00001983 if( pIn2->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00001984 v2 = 2;
1985 }else{
drh5b6afba2008-01-05 16:29:28 +00001986 v2 = sqlite3VdbeIntValue(pIn2)!=0;
drhbb113512002-05-27 01:04:51 +00001987 }
1988 if( pOp->opcode==OP_And ){
drh5b6afba2008-01-05 16:29:28 +00001989 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
drhbb113512002-05-27 01:04:51 +00001990 v1 = and_logic[v1*3+v2];
1991 }else{
drh5b6afba2008-01-05 16:29:28 +00001992 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
drhbb113512002-05-27 01:04:51 +00001993 v1 = or_logic[v1*3+v2];
drh5e00f6c2001-09-13 13:46:56 +00001994 }
drh3c657212009-11-17 23:59:58 +00001995 pOut = &aMem[pOp->p3];
drhbb113512002-05-27 01:04:51 +00001996 if( v1==2 ){
danielk1977a7a8e142008-02-13 18:25:27 +00001997 MemSetTypeFlag(pOut, MEM_Null);
drhbb113512002-05-27 01:04:51 +00001998 }else{
drh5b6afba2008-01-05 16:29:28 +00001999 pOut->u.i = v1;
danielk1977a7a8e142008-02-13 18:25:27 +00002000 MemSetTypeFlag(pOut, MEM_Int);
drhbb113512002-05-27 01:04:51 +00002001 }
drh5e00f6c2001-09-13 13:46:56 +00002002 break;
2003}
2004
drhe99fa2a2008-12-15 15:27:51 +00002005/* Opcode: Not P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00002006**
drhe99fa2a2008-12-15 15:27:51 +00002007** Interpret the value in register P1 as a boolean value. Store the
2008** boolean complement in register P2. If the value in register P1 is
2009** NULL, then a NULL is stored in P2.
drh5e00f6c2001-09-13 13:46:56 +00002010*/
drh93952eb2009-11-13 19:43:43 +00002011case OP_Not: { /* same as TK_NOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002012 pIn1 = &aMem[pOp->p1];
2013 pOut = &aMem[pOp->p2];
drhe99fa2a2008-12-15 15:27:51 +00002014 if( pIn1->flags & MEM_Null ){
2015 sqlite3VdbeMemSetNull(pOut);
2016 }else{
2017 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1));
2018 }
drh5e00f6c2001-09-13 13:46:56 +00002019 break;
2020}
2021
drhe99fa2a2008-12-15 15:27:51 +00002022/* Opcode: BitNot P1 P2 * * *
drhbf4133c2001-10-13 02:59:08 +00002023**
drhe99fa2a2008-12-15 15:27:51 +00002024** Interpret the content of register P1 as an integer. Store the
2025** ones-complement of the P1 value into register P2. If P1 holds
2026** a NULL then store a NULL in P2.
drhbf4133c2001-10-13 02:59:08 +00002027*/
drh93952eb2009-11-13 19:43:43 +00002028case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002029 pIn1 = &aMem[pOp->p1];
2030 pOut = &aMem[pOp->p2];
drhe99fa2a2008-12-15 15:27:51 +00002031 if( pIn1->flags & MEM_Null ){
2032 sqlite3VdbeMemSetNull(pOut);
2033 }else{
2034 sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1));
2035 }
drhbf4133c2001-10-13 02:59:08 +00002036 break;
2037}
2038
drh48f2d3b2011-09-16 01:34:43 +00002039/* Opcode: Once P1 P2 * * *
2040**
dan1d8cb212011-12-09 13:24:16 +00002041** Check if OP_Once flag P1 is set. If so, jump to instruction P2. Otherwise,
2042** set the flag and fall through to the next instruction.
drhb8475df2011-12-09 16:21:19 +00002043**
2044** See also: JumpOnce
drh48f2d3b2011-09-16 01:34:43 +00002045*/
dan1d8cb212011-12-09 13:24:16 +00002046case OP_Once: { /* jump */
2047 assert( pOp->p1<p->nOnceFlag );
2048 if( p->aOnceFlag[pOp->p1] ){
2049 pc = pOp->p2-1;
2050 }else{
2051 p->aOnceFlag[pOp->p1] = 1;
2052 }
2053 break;
2054}
2055
drh3c84ddf2008-01-09 02:15:38 +00002056/* Opcode: If P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00002057**
drhef8662b2011-06-20 21:47:58 +00002058** Jump to P2 if the value in register P1 is true. The value
drh3c84ddf2008-01-09 02:15:38 +00002059** is considered true if it is numeric and non-zero. If the value
drhb8475df2011-12-09 16:21:19 +00002060** in P1 is NULL then take the jump if P3 is non-zero.
drh5e00f6c2001-09-13 13:46:56 +00002061*/
drh3c84ddf2008-01-09 02:15:38 +00002062/* Opcode: IfNot P1 P2 P3 * *
drhf5905aa2002-05-26 20:54:33 +00002063**
drhef8662b2011-06-20 21:47:58 +00002064** Jump to P2 if the value in register P1 is False. The value
drhb8475df2011-12-09 16:21:19 +00002065** is considered false if it has a numeric value of zero. If the value
2066** in P1 is NULL then take the jump if P3 is zero.
drhf5905aa2002-05-26 20:54:33 +00002067*/
drh9cbf3422008-01-17 16:22:13 +00002068case OP_If: /* jump, in1 */
2069case OP_IfNot: { /* jump, in1 */
drh5e00f6c2001-09-13 13:46:56 +00002070 int c;
drh3c657212009-11-17 23:59:58 +00002071 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00002072 if( pIn1->flags & MEM_Null ){
2073 c = pOp->p3;
drhf5905aa2002-05-26 20:54:33 +00002074 }else{
drhba0232a2005-06-06 17:27:19 +00002075#ifdef SQLITE_OMIT_FLOATING_POINT
shanefbd60f82009-02-04 03:59:25 +00002076 c = sqlite3VdbeIntValue(pIn1)!=0;
drhba0232a2005-06-06 17:27:19 +00002077#else
drh3c84ddf2008-01-09 02:15:38 +00002078 c = sqlite3VdbeRealValue(pIn1)!=0.0;
drhba0232a2005-06-06 17:27:19 +00002079#endif
drhf5905aa2002-05-26 20:54:33 +00002080 if( pOp->opcode==OP_IfNot ) c = !c;
2081 }
drh3c84ddf2008-01-09 02:15:38 +00002082 if( c ){
2083 pc = pOp->p2-1;
2084 }
drh5e00f6c2001-09-13 13:46:56 +00002085 break;
2086}
2087
drh830ecf92009-06-18 00:41:55 +00002088/* Opcode: IsNull P1 P2 * * *
drh477df4b2008-01-05 18:48:24 +00002089**
drh830ecf92009-06-18 00:41:55 +00002090** Jump to P2 if the value in register P1 is NULL.
drh477df4b2008-01-05 18:48:24 +00002091*/
drh9cbf3422008-01-17 16:22:13 +00002092case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002093 pIn1 = &aMem[pOp->p1];
drh830ecf92009-06-18 00:41:55 +00002094 if( (pIn1->flags & MEM_Null)!=0 ){
2095 pc = pOp->p2 - 1;
2096 }
drh477df4b2008-01-05 18:48:24 +00002097 break;
2098}
2099
drh98757152008-01-09 23:04:12 +00002100/* Opcode: NotNull P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00002101**
drh6a288a32008-01-07 19:20:24 +00002102** Jump to P2 if the value in register P1 is not NULL.
drh5e00f6c2001-09-13 13:46:56 +00002103*/
drh9cbf3422008-01-17 16:22:13 +00002104case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002105 pIn1 = &aMem[pOp->p1];
drh6a288a32008-01-07 19:20:24 +00002106 if( (pIn1->flags & MEM_Null)==0 ){
2107 pc = pOp->p2 - 1;
2108 }
drh5e00f6c2001-09-13 13:46:56 +00002109 break;
2110}
2111
drh3e9ca092009-09-08 01:14:48 +00002112/* Opcode: Column P1 P2 P3 P4 P5
danielk1977192ac1d2004-05-10 07:17:30 +00002113**
danielk1977cfcdaef2004-05-12 07:33:33 +00002114** Interpret the data that cursor P1 points to as a structure built using
2115** the MakeRecord instruction. (See the MakeRecord opcode for additional
drhd4e70eb2008-01-02 00:34:36 +00002116** information about the format of the data.) Extract the P2-th column
2117** from this record. If there are less that (P2+1)
2118** values in the record, extract a NULL.
2119**
drh9cbf3422008-01-17 16:22:13 +00002120** The value extracted is stored in register P3.
danielk1977192ac1d2004-05-10 07:17:30 +00002121**
danielk19771f4aa332008-01-03 09:51:55 +00002122** If the column contains fewer than P2 fields, then extract a NULL. Or,
2123** if the P4 argument is a P4_MEM use the value of the P4 argument as
2124** the result.
drh3e9ca092009-09-08 01:14:48 +00002125**
2126** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2127** then the cache of the cursor is reset prior to extracting the column.
2128** The first OP_Column against a pseudo-table after the value of the content
2129** register has changed should have this bit set.
drha748fdc2012-03-28 01:34:47 +00002130**
drhdda5c082012-03-28 13:41:10 +00002131** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
2132** the result is guaranteed to only be used as the argument of a length()
2133** or typeof() function, respectively. The loading of large blobs can be
2134** skipped for length() and all content loading can be skipped for typeof().
danielk1977192ac1d2004-05-10 07:17:30 +00002135*/
danielk1977cfcdaef2004-05-12 07:33:33 +00002136case OP_Column: {
drh35cd6432009-06-05 14:17:21 +00002137 u32 payloadSize; /* Number of bytes in the record */
drh856c1032009-06-02 15:21:42 +00002138 i64 payloadSize64; /* Number of bytes in the record */
2139 int p1; /* P1 value of the opcode */
2140 int p2; /* column number to retrieve */
2141 VdbeCursor *pC; /* The VDBE cursor */
drhe61cffc2004-06-12 18:12:15 +00002142 char *zRec; /* Pointer to complete record-data */
drhd3194f52004-05-27 19:59:32 +00002143 BtCursor *pCrsr; /* The BTree cursor */
2144 u32 *aType; /* aType[i] holds the numeric type of the i-th column */
2145 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
danielk197764202cf2008-11-17 15:31:47 +00002146 int nField; /* number of fields in the record */
danielk1977cfcdaef2004-05-12 07:33:33 +00002147 int len; /* The length of the serialized data for the column */
drhd3194f52004-05-27 19:59:32 +00002148 int i; /* Loop counter */
2149 char *zData; /* Part of the record being decoded */
drhd4e70eb2008-01-02 00:34:36 +00002150 Mem *pDest; /* Where to write the extracted value */
drhd3194f52004-05-27 19:59:32 +00002151 Mem sMem; /* For storing the record being decoded */
drh35cd6432009-06-05 14:17:21 +00002152 u8 *zIdx; /* Index into header */
2153 u8 *zEndHdr; /* Pointer to first byte after the header */
2154 u32 offset; /* Offset into the data */
drh6658cd92010-02-05 14:12:53 +00002155 u32 szField; /* Number of bytes in the content of a field */
drh35cd6432009-06-05 14:17:21 +00002156 int szHdr; /* Size of the header size field at start of record */
2157 int avail; /* Number of bytes of available data */
drh5a077b72011-08-29 02:16:18 +00002158 u32 t; /* A type code from the record header */
drh3e9ca092009-09-08 01:14:48 +00002159 Mem *pReg; /* PseudoTable input register */
danielk1977192ac1d2004-05-10 07:17:30 +00002160
drh856c1032009-06-02 15:21:42 +00002161
2162 p1 = pOp->p1;
2163 p2 = pOp->p2;
2164 pC = 0;
drhb27b7f52008-12-10 18:03:45 +00002165 memset(&sMem, 0, sizeof(sMem));
drhd3194f52004-05-27 19:59:32 +00002166 assert( p1<p->nCursor );
drh9cbf3422008-01-17 16:22:13 +00002167 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00002168 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00002169 memAboutToChange(p, pDest);
shane36840fd2009-06-26 16:32:13 +00002170 zRec = 0;
danielk1977cfcdaef2004-05-12 07:33:33 +00002171
drhe61cffc2004-06-12 18:12:15 +00002172 /* This block sets the variable payloadSize to be the total number of
2173 ** bytes in the record.
2174 **
2175 ** zRec is set to be the complete text of the record if it is available.
drhb73857f2006-03-17 00:25:59 +00002176 ** The complete record text is always available for pseudo-tables
2177 ** If the record is stored in a cursor, the complete record text
2178 ** might be available in the pC->aRow cache. Or it might not be.
2179 ** If the data is unavailable, zRec is set to NULL.
drhd3194f52004-05-27 19:59:32 +00002180 **
2181 ** We also compute the number of columns in the record. For cursors,
drhdfe88ec2008-11-03 20:55:06 +00002182 ** the number of columns is stored in the VdbeCursor.nField element.
danielk1977cfcdaef2004-05-12 07:33:33 +00002183 */
drhb73857f2006-03-17 00:25:59 +00002184 pC = p->apCsr[p1];
danielk19776c924092007-11-12 08:09:34 +00002185 assert( pC!=0 );
danielk19770817d0d2007-02-14 09:19:36 +00002186#ifndef SQLITE_OMIT_VIRTUALTABLE
2187 assert( pC->pVtabCursor==0 );
2188#endif
shane36840fd2009-06-26 16:32:13 +00002189 pCrsr = pC->pCursor;
2190 if( pCrsr!=0 ){
drhe61cffc2004-06-12 18:12:15 +00002191 /* The record is stored in a B-Tree */
drh536065a2005-01-26 21:55:31 +00002192 rc = sqlite3VdbeCursorMoveto(pC);
drh52f159e2005-01-27 00:33:21 +00002193 if( rc ) goto abort_due_to_error;
danielk1977192ac1d2004-05-10 07:17:30 +00002194 if( pC->nullRow ){
2195 payloadSize = 0;
drh76873ab2006-01-07 18:48:26 +00002196 }else if( pC->cacheStatus==p->cacheCtr ){
drh9188b382004-05-14 21:12:22 +00002197 payloadSize = pC->payloadSize;
drh2646da72005-12-09 20:02:05 +00002198 zRec = (char*)pC->aRow;
drhf0863fe2005-06-12 21:35:51 +00002199 }else if( pC->isIndex ){
drhea8ffdf2009-07-22 00:35:23 +00002200 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drhb07028f2011-10-14 21:49:18 +00002201 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
drhc27ae612009-07-14 18:35:44 +00002202 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
drhaa736092009-06-22 00:55:30 +00002203 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2204 ** payload size, so it is impossible for payloadSize64 to be
2205 ** larger than 32 bits. */
2206 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
drh35cd6432009-06-05 14:17:21 +00002207 payloadSize = (u32)payloadSize64;
danielk1977192ac1d2004-05-10 07:17:30 +00002208 }else{
drhea8ffdf2009-07-22 00:35:23 +00002209 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drhb07028f2011-10-14 21:49:18 +00002210 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &payloadSize);
drhea8ffdf2009-07-22 00:35:23 +00002211 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
danielk1977192ac1d2004-05-10 07:17:30 +00002212 }
drh4a6f3aa2011-08-28 00:19:26 +00002213 }else if( ALWAYS(pC->pseudoTableReg>0) ){
drha6c2ed92009-11-14 23:22:23 +00002214 pReg = &aMem[pC->pseudoTableReg];
drh3e9ca092009-09-08 01:14:48 +00002215 assert( pReg->flags & MEM_Blob );
drh2b4ded92010-09-27 21:09:31 +00002216 assert( memIsValid(pReg) );
drh3e9ca092009-09-08 01:14:48 +00002217 payloadSize = pReg->n;
2218 zRec = pReg->z;
2219 pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
danielk1977192ac1d2004-05-10 07:17:30 +00002220 assert( payloadSize==0 || zRec!=0 );
drh9a65f2c2009-06-22 19:05:40 +00002221 }else{
2222 /* Consider the row to be NULL */
2223 payloadSize = 0;
danielk1977192ac1d2004-05-10 07:17:30 +00002224 }
2225
drhe6f43fc2011-08-28 02:15:34 +00002226 /* If payloadSize is 0, then just store a NULL. This can happen because of
2227 ** nullRow or because of a corrupt database. */
danielk1977192ac1d2004-05-10 07:17:30 +00002228 if( payloadSize==0 ){
drhe6f43fc2011-08-28 02:15:34 +00002229 MemSetTypeFlag(pDest, MEM_Null);
drhd4e70eb2008-01-02 00:34:36 +00002230 goto op_column_out;
danielk1977192ac1d2004-05-10 07:17:30 +00002231 }
drh35cd6432009-06-05 14:17:21 +00002232 assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 );
2233 if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002234 goto too_big;
2235 }
danielk1977192ac1d2004-05-10 07:17:30 +00002236
shane36840fd2009-06-26 16:32:13 +00002237 nField = pC->nField;
drhd3194f52004-05-27 19:59:32 +00002238 assert( p2<nField );
danielk1977b4964b72004-05-18 01:23:38 +00002239
drh9188b382004-05-14 21:12:22 +00002240 /* Read and parse the table header. Store the results of the parse
2241 ** into the record header cache fields of the cursor.
danielk1977192ac1d2004-05-10 07:17:30 +00002242 */
danielk1977cd3e8f72008-03-25 09:47:35 +00002243 aType = pC->aType;
drha05a7222008-01-19 03:35:58 +00002244 if( pC->cacheStatus==p->cacheCtr ){
drhd3194f52004-05-27 19:59:32 +00002245 aOffset = pC->aOffset;
2246 }else{
danielk1977cd3e8f72008-03-25 09:47:35 +00002247 assert(aType);
drh856c1032009-06-02 15:21:42 +00002248 avail = 0;
drhb73857f2006-03-17 00:25:59 +00002249 pC->aOffset = aOffset = &aType[nField];
2250 pC->payloadSize = payloadSize;
2251 pC->cacheStatus = p->cacheCtr;
danielk1977192ac1d2004-05-10 07:17:30 +00002252
drhd3194f52004-05-27 19:59:32 +00002253 /* Figure out how many bytes are in the header */
danielk197784ac9d02004-05-18 09:58:06 +00002254 if( zRec ){
2255 zData = zRec;
2256 }else{
drhf0863fe2005-06-12 21:35:51 +00002257 if( pC->isIndex ){
drhe51c44f2004-05-30 20:46:09 +00002258 zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
drhd3194f52004-05-27 19:59:32 +00002259 }else{
drhe51c44f2004-05-30 20:46:09 +00002260 zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
drh9188b382004-05-14 21:12:22 +00002261 }
drhe61cffc2004-06-12 18:12:15 +00002262 /* If KeyFetch()/DataFetch() managed to get the entire payload,
2263 ** save the payload in the pC->aRow cache. That will save us from
2264 ** having to make additional calls to fetch the content portion of
2265 ** the record.
2266 */
drh35cd6432009-06-05 14:17:21 +00002267 assert( avail>=0 );
2268 if( payloadSize <= (u32)avail ){
drh2646da72005-12-09 20:02:05 +00002269 zRec = zData;
2270 pC->aRow = (u8*)zData;
drhe61cffc2004-06-12 18:12:15 +00002271 }else{
2272 pC->aRow = 0;
2273 }
drhd3194f52004-05-27 19:59:32 +00002274 }
drhdda5c082012-03-28 13:41:10 +00002275 /* The following assert is true in all cases except when
drh588f5bc2007-01-02 18:41:54 +00002276 ** the database file has been corrupted externally.
2277 ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
drh35cd6432009-06-05 14:17:21 +00002278 szHdr = getVarint32((u8*)zData, offset);
2279
2280 /* Make sure a corrupt database has not given us an oversize header.
2281 ** Do this now to avoid an oversize memory allocation.
2282 **
2283 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2284 ** types use so much data space that there can only be 4096 and 32 of
2285 ** them, respectively. So the maximum header length results from a
2286 ** 3-byte type for each of the maximum of 32768 columns plus three
2287 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2288 */
2289 if( offset > 98307 ){
2290 rc = SQLITE_CORRUPT_BKPT;
2291 goto op_column_out;
2292 }
2293
2294 /* Compute in len the number of bytes of data we need to read in order
2295 ** to get nField type values. offset is an upper bound on this. But
2296 ** nField might be significantly less than the true number of columns
2297 ** in the table, and in that case, 5*nField+3 might be smaller than offset.
2298 ** We want to minimize len in order to limit the size of the memory
2299 ** allocation, especially if a corrupt database file has caused offset
2300 ** to be oversized. Offset is limited to 98307 above. But 98307 might
2301 ** still exceed Robson memory allocation limits on some configurations.
2302 ** On systems that cannot tolerate large memory allocations, nField*5+3
2303 ** will likely be much smaller since nField will likely be less than
2304 ** 20 or so. This insures that Robson memory allocation limits are
2305 ** not exceeded even for corrupt database files.
2306 */
2307 len = nField*5 + 3;
shane75ac1de2009-06-09 18:58:52 +00002308 if( len > (int)offset ) len = (int)offset;
drhe61cffc2004-06-12 18:12:15 +00002309
2310 /* The KeyFetch() or DataFetch() above are fast and will get the entire
2311 ** record header in most cases. But they will fail to get the complete
2312 ** record header if the record header does not fit on a single page
2313 ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
2314 ** acquire the complete header text.
2315 */
drh35cd6432009-06-05 14:17:21 +00002316 if( !zRec && avail<len ){
danielk1977a7a8e142008-02-13 18:25:27 +00002317 sMem.flags = 0;
2318 sMem.db = 0;
drh35cd6432009-06-05 14:17:21 +00002319 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, len, pC->isIndex, &sMem);
danielk197784ac9d02004-05-18 09:58:06 +00002320 if( rc!=SQLITE_OK ){
danielk19773c9cc8d2005-01-17 03:40:08 +00002321 goto op_column_out;
drh9188b382004-05-14 21:12:22 +00002322 }
drhb6f54522004-05-20 02:42:16 +00002323 zData = sMem.z;
drh9188b382004-05-14 21:12:22 +00002324 }
drh35cd6432009-06-05 14:17:21 +00002325 zEndHdr = (u8 *)&zData[len];
2326 zIdx = (u8 *)&zData[szHdr];
drh9188b382004-05-14 21:12:22 +00002327
drhd3194f52004-05-27 19:59:32 +00002328 /* Scan the header and use it to fill in the aType[] and aOffset[]
2329 ** arrays. aType[i] will contain the type integer for the i-th
2330 ** column and aOffset[i] will contain the offset from the beginning
2331 ** of the record to the start of the data for the i-th column
drh9188b382004-05-14 21:12:22 +00002332 */
danielk1977dedf45b2006-01-13 17:12:01 +00002333 for(i=0; i<nField; i++){
2334 if( zIdx<zEndHdr ){
drh6658cd92010-02-05 14:12:53 +00002335 aOffset[i] = offset;
drh5a077b72011-08-29 02:16:18 +00002336 if( zIdx[0]<0x80 ){
2337 t = zIdx[0];
2338 zIdx++;
2339 }else{
2340 zIdx += sqlite3GetVarint32(zIdx, &t);
2341 }
2342 aType[i] = t;
2343 szField = sqlite3VdbeSerialTypeLen(t);
drh6658cd92010-02-05 14:12:53 +00002344 offset += szField;
2345 if( offset<szField ){ /* True if offset overflows */
2346 zIdx = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */
2347 break;
2348 }
danielk1977dedf45b2006-01-13 17:12:01 +00002349 }else{
drhdda5c082012-03-28 13:41:10 +00002350 /* If i is less that nField, then there are fewer fields in this
danielk1977dedf45b2006-01-13 17:12:01 +00002351 ** record than SetNumColumns indicated there are columns in the
2352 ** table. Set the offset for any extra columns not present in
drhdda5c082012-03-28 13:41:10 +00002353 ** the record to 0. This tells code below to store the default value
2354 ** for the column instead of deserializing a value from the record.
danielk1977dedf45b2006-01-13 17:12:01 +00002355 */
2356 aOffset[i] = 0;
2357 }
drh9188b382004-05-14 21:12:22 +00002358 }
danielk19775f096132008-03-28 15:44:09 +00002359 sqlite3VdbeMemRelease(&sMem);
drhd3194f52004-05-27 19:59:32 +00002360 sMem.flags = MEM_Null;
2361
danielk19779792eef2006-01-13 15:58:43 +00002362 /* If we have read more header data than was contained in the header,
2363 ** or if the end of the last field appears to be past the end of the
shane2ca8bc02008-05-07 18:59:28 +00002364 ** record, or if the end of the last field appears to be before the end
2365 ** of the record (when all fields present), then we must be dealing
2366 ** with a corrupt database.
drhd3194f52004-05-27 19:59:32 +00002367 */
drh6658cd92010-02-05 14:12:53 +00002368 if( (zIdx > zEndHdr) || (offset > payloadSize)
2369 || (zIdx==zEndHdr && offset!=payloadSize) ){
drh49285702005-09-17 15:20:26 +00002370 rc = SQLITE_CORRUPT_BKPT;
danielk19773c9cc8d2005-01-17 03:40:08 +00002371 goto op_column_out;
drhd3194f52004-05-27 19:59:32 +00002372 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002373 }
danielk1977192ac1d2004-05-10 07:17:30 +00002374
danielk197736963fd2005-02-19 08:18:05 +00002375 /* Get the column information. If aOffset[p2] is non-zero, then
2376 ** deserialize the value from the record. If aOffset[p2] is zero,
2377 ** then there are not enough fields in the record to satisfy the
drh66a51672008-01-03 00:01:23 +00002378 ** request. In this case, set the value NULL or to P4 if P4 is
drh29dda4a2005-07-21 18:23:20 +00002379 ** a pointer to a Mem object.
drh9188b382004-05-14 21:12:22 +00002380 */
danielk197736963fd2005-02-19 08:18:05 +00002381 if( aOffset[p2] ){
2382 assert( rc==SQLITE_OK );
2383 if( zRec ){
drhac5e7492012-03-28 16:14:50 +00002384 /* This is the common case where the whole row fits on a single page */
drhe4c88c02012-01-04 12:57:45 +00002385 VdbeMemRelease(pDest);
danielk1977808ec7c2008-07-29 10:18:57 +00002386 sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
danielk197736963fd2005-02-19 08:18:05 +00002387 }else{
drhac5e7492012-03-28 16:14:50 +00002388 /* This branch happens only when the row overflows onto multiple pages */
drhdda5c082012-03-28 13:41:10 +00002389 t = aType[p2];
drha748fdc2012-03-28 01:34:47 +00002390 if( (pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
drhdda5c082012-03-28 13:41:10 +00002391 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)
drha748fdc2012-03-28 01:34:47 +00002392 ){
2393 /* Content is irrelevant for the typeof() function and for
drhdda5c082012-03-28 13:41:10 +00002394 ** the length(X) function if X is a blob. So we might as well use
drha748fdc2012-03-28 01:34:47 +00002395 ** bogus content rather than reading content from disk. NULL works
2396 ** for text and blob and whatever is in the payloadSize64 variable
2397 ** will work for everything else. */
2398 zData = t<12 ? (char*)&payloadSize64 : 0;
2399 }else{
drhac5e7492012-03-28 16:14:50 +00002400 len = sqlite3VdbeSerialTypeLen(t);
drha748fdc2012-03-28 01:34:47 +00002401 sqlite3VdbeMemMove(&sMem, pDest);
2402 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex,
2403 &sMem);
2404 if( rc!=SQLITE_OK ){
2405 goto op_column_out;
2406 }
2407 zData = sMem.z;
danielk197736963fd2005-02-19 08:18:05 +00002408 }
drhdda5c082012-03-28 13:41:10 +00002409 sqlite3VdbeSerialGet((u8*)zData, t, pDest);
danielk19777701e812005-01-10 12:59:51 +00002410 }
drhd4e70eb2008-01-02 00:34:36 +00002411 pDest->enc = encoding;
danielk197736963fd2005-02-19 08:18:05 +00002412 }else{
danielk197760585dd2008-01-03 08:08:40 +00002413 if( pOp->p4type==P4_MEM ){
danielk19772dca4ac2008-01-03 11:50:29 +00002414 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
danielk1977aee18ef2005-03-09 12:26:50 +00002415 }else{
drhe6f43fc2011-08-28 02:15:34 +00002416 MemSetTypeFlag(pDest, MEM_Null);
danielk1977aee18ef2005-03-09 12:26:50 +00002417 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002418 }
drhfebe1062004-08-28 18:17:48 +00002419
2420 /* If we dynamically allocated space to hold the data (in the
2421 ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
drhd4e70eb2008-01-02 00:34:36 +00002422 ** dynamically allocated space over to the pDest structure.
drhfebe1062004-08-28 18:17:48 +00002423 ** This prevents a memory copy.
2424 */
danielk19775f096132008-03-28 15:44:09 +00002425 if( sMem.zMalloc ){
2426 assert( sMem.z==sMem.zMalloc );
danielk1977a7a8e142008-02-13 18:25:27 +00002427 assert( !(pDest->flags & MEM_Dyn) );
2428 assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
2429 pDest->flags &= ~(MEM_Ephem|MEM_Static);
danielk19775f096132008-03-28 15:44:09 +00002430 pDest->flags |= MEM_Term;
danielk1977a7a8e142008-02-13 18:25:27 +00002431 pDest->z = sMem.z;
danielk19775f096132008-03-28 15:44:09 +00002432 pDest->zMalloc = sMem.zMalloc;
danielk1977b1bc9532004-05-22 03:05:33 +00002433 }
drhfebe1062004-08-28 18:17:48 +00002434
drhd4e70eb2008-01-02 00:34:36 +00002435 rc = sqlite3VdbeMemMakeWriteable(pDest);
drhd3194f52004-05-27 19:59:32 +00002436
danielk19773c9cc8d2005-01-17 03:40:08 +00002437op_column_out:
drhb7654112008-01-12 12:48:07 +00002438 UPDATE_MAX_BLOBSIZE(pDest);
drh5b6afba2008-01-05 16:29:28 +00002439 REGISTER_TRACE(pOp->p3, pDest);
danielk1977192ac1d2004-05-10 07:17:30 +00002440 break;
2441}
2442
danielk1977751de562008-04-18 09:01:15 +00002443/* Opcode: Affinity P1 P2 * P4 *
2444**
2445** Apply affinities to a range of P2 registers starting with P1.
2446**
2447** P4 is a string that is P2 characters long. The nth character of the
2448** string indicates the column affinity that should be used for the nth
2449** memory cell in the range.
2450*/
2451case OP_Affinity: {
drh039fc322009-11-17 18:31:47 +00002452 const char *zAffinity; /* The affinity to be applied */
2453 char cAff; /* A single character of affinity */
danielk1977751de562008-04-18 09:01:15 +00002454
drh856c1032009-06-02 15:21:42 +00002455 zAffinity = pOp->p4.z;
drh039fc322009-11-17 18:31:47 +00002456 assert( zAffinity!=0 );
2457 assert( zAffinity[pOp->p2]==0 );
2458 pIn1 = &aMem[pOp->p1];
2459 while( (cAff = *(zAffinity++))!=0 ){
2460 assert( pIn1 <= &p->aMem[p->nMem] );
drh2b4ded92010-09-27 21:09:31 +00002461 assert( memIsValid(pIn1) );
drh039fc322009-11-17 18:31:47 +00002462 ExpandBlob(pIn1);
2463 applyAffinity(pIn1, cAff, encoding);
2464 pIn1++;
danielk1977751de562008-04-18 09:01:15 +00002465 }
2466 break;
2467}
2468
drh1db639c2008-01-17 02:36:28 +00002469/* Opcode: MakeRecord P1 P2 P3 P4 *
drh7a224de2004-06-02 01:22:02 +00002470**
drh710c4842010-08-30 01:17:20 +00002471** Convert P2 registers beginning with P1 into the [record format]
2472** use as a data record in a database table or as a key
2473** in an index. The OP_Column opcode can decode the record later.
drh7a224de2004-06-02 01:22:02 +00002474**
danielk1977751de562008-04-18 09:01:15 +00002475** P4 may be a string that is P2 characters long. The nth character of the
drh7a224de2004-06-02 01:22:02 +00002476** string indicates the column affinity that should be used for the nth
drh9cbf3422008-01-17 16:22:13 +00002477** field of the index key.
drh7a224de2004-06-02 01:22:02 +00002478**
drh8a512562005-11-14 22:29:05 +00002479** The mapping from character to affinity is given by the SQLITE_AFF_
2480** macros defined in sqliteInt.h.
drh7a224de2004-06-02 01:22:02 +00002481**
drh66a51672008-01-03 00:01:23 +00002482** If P4 is NULL then all index fields have the affinity NONE.
drh7f057c92005-06-24 03:53:06 +00002483*/
drh1db639c2008-01-17 02:36:28 +00002484case OP_MakeRecord: {
drh856c1032009-06-02 15:21:42 +00002485 u8 *zNewRecord; /* A buffer to hold the data for the new record */
2486 Mem *pRec; /* The new record */
2487 u64 nData; /* Number of bytes of data space */
2488 int nHdr; /* Number of bytes of header space */
2489 i64 nByte; /* Data space required for this record */
2490 int nZero; /* Number of zero bytes at the end of the record */
2491 int nVarint; /* Number of bytes in a varint */
2492 u32 serial_type; /* Type field */
2493 Mem *pData0; /* First field to be combined into the record */
2494 Mem *pLast; /* Last field of the record */
2495 int nField; /* Number of fields in the record */
2496 char *zAffinity; /* The affinity string for the record */
2497 int file_format; /* File format to use for encoding */
2498 int i; /* Space used in zNewRecord[] */
2499 int len; /* Length of a field */
2500
drhf3218fe2004-05-28 08:21:02 +00002501 /* Assuming the record contains N fields, the record format looks
2502 ** like this:
2503 **
drh7a224de2004-06-02 01:22:02 +00002504 ** ------------------------------------------------------------------------
2505 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2506 ** ------------------------------------------------------------------------
drhf3218fe2004-05-28 08:21:02 +00002507 **
drh9cbf3422008-01-17 16:22:13 +00002508 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
2509 ** and so froth.
drhf3218fe2004-05-28 08:21:02 +00002510 **
2511 ** Each type field is a varint representing the serial type of the
2512 ** corresponding data element (see sqlite3VdbeSerialType()). The
drh7a224de2004-06-02 01:22:02 +00002513 ** hdr-size field is also a varint which is the offset from the beginning
2514 ** of the record to data0.
drhf3218fe2004-05-28 08:21:02 +00002515 */
drh856c1032009-06-02 15:21:42 +00002516 nData = 0; /* Number of bytes of data space */
2517 nHdr = 0; /* Number of bytes of header space */
drh856c1032009-06-02 15:21:42 +00002518 nZero = 0; /* Number of zero bytes at the end of the record */
drh1db639c2008-01-17 02:36:28 +00002519 nField = pOp->p1;
danielk19772dca4ac2008-01-03 11:50:29 +00002520 zAffinity = pOp->p4.z;
danielk19776ab3a2e2009-02-19 14:39:25 +00002521 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 );
drha6c2ed92009-11-14 23:22:23 +00002522 pData0 = &aMem[nField];
drh1db639c2008-01-17 02:36:28 +00002523 nField = pOp->p2;
2524 pLast = &pData0[nField-1];
drhd946db02005-12-29 19:23:06 +00002525 file_format = p->minWriteFileFormat;
danielk19778d059842004-05-12 11:24:02 +00002526
drh2b4ded92010-09-27 21:09:31 +00002527 /* Identify the output register */
2528 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2529 pOut = &aMem[pOp->p3];
2530 memAboutToChange(p, pOut);
2531
drhf3218fe2004-05-28 08:21:02 +00002532 /* Loop through the elements that will make up the record to figure
2533 ** out how much space is required for the new record.
danielk19778d059842004-05-12 11:24:02 +00002534 */
drha2a49dc2008-01-02 14:28:13 +00002535 for(pRec=pData0; pRec<=pLast; pRec++){
drh2b4ded92010-09-27 21:09:31 +00002536 assert( memIsValid(pRec) );
drhd3d39e92004-05-20 22:16:29 +00002537 if( zAffinity ){
drhb21c8cd2007-08-21 19:33:56 +00002538 applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
drhd3d39e92004-05-20 22:16:29 +00002539 }
danielk1977d908f5a2007-05-11 07:08:28 +00002540 if( pRec->flags&MEM_Zero && pRec->n>0 ){
drha05a7222008-01-19 03:35:58 +00002541 sqlite3VdbeMemExpandBlob(pRec);
danielk1977d908f5a2007-05-11 07:08:28 +00002542 }
drhd946db02005-12-29 19:23:06 +00002543 serial_type = sqlite3VdbeSerialType(pRec, file_format);
drhae7e1512007-05-02 16:51:59 +00002544 len = sqlite3VdbeSerialTypeLen(serial_type);
2545 nData += len;
drhf3218fe2004-05-28 08:21:02 +00002546 nHdr += sqlite3VarintLen(serial_type);
drhfdf972a2007-05-02 13:30:27 +00002547 if( pRec->flags & MEM_Zero ){
2548 /* Only pure zero-filled BLOBs can be input to this Opcode.
2549 ** We do not allow blobs with a prefix and a zero-filled tail. */
drh8df32842008-12-09 02:51:23 +00002550 nZero += pRec->u.nZero;
drhae7e1512007-05-02 16:51:59 +00002551 }else if( len ){
drhfdf972a2007-05-02 13:30:27 +00002552 nZero = 0;
2553 }
danielk19778d059842004-05-12 11:24:02 +00002554 }
danielk19773d1bfea2004-05-14 11:00:53 +00002555
drhf3218fe2004-05-28 08:21:02 +00002556 /* Add the initial header varint and total the size */
drhcb9882a2005-03-17 03:15:40 +00002557 nHdr += nVarint = sqlite3VarintLen(nHdr);
2558 if( nVarint<sqlite3VarintLen(nHdr) ){
2559 nHdr++;
2560 }
drhfdf972a2007-05-02 13:30:27 +00002561 nByte = nHdr+nData-nZero;
drhbb4957f2008-03-20 14:03:29 +00002562 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002563 goto too_big;
2564 }
drhf3218fe2004-05-28 08:21:02 +00002565
danielk1977a7a8e142008-02-13 18:25:27 +00002566 /* Make sure the output register has a buffer large enough to store
2567 ** the new record. The output register (pOp->p3) is not allowed to
2568 ** be one of the input registers (because the following call to
2569 ** sqlite3VdbeMemGrow() could clobber the value before it is used).
2570 */
drh9c1905f2008-12-10 22:32:56 +00002571 if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){
danielk1977a7a8e142008-02-13 18:25:27 +00002572 goto no_mem;
danielk19778d059842004-05-12 11:24:02 +00002573 }
danielk1977a7a8e142008-02-13 18:25:27 +00002574 zNewRecord = (u8 *)pOut->z;
drhf3218fe2004-05-28 08:21:02 +00002575
2576 /* Write the record */
shane3f8d5cf2008-04-24 19:15:09 +00002577 i = putVarint32(zNewRecord, nHdr);
drha2a49dc2008-01-02 14:28:13 +00002578 for(pRec=pData0; pRec<=pLast; pRec++){
drhd946db02005-12-29 19:23:06 +00002579 serial_type = sqlite3VdbeSerialType(pRec, file_format);
shane3f8d5cf2008-04-24 19:15:09 +00002580 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
danielk19778d059842004-05-12 11:24:02 +00002581 }
drha2a49dc2008-01-02 14:28:13 +00002582 for(pRec=pData0; pRec<=pLast; pRec++){ /* serial data */
drh9c1905f2008-12-10 22:32:56 +00002583 i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format);
drhf3218fe2004-05-28 08:21:02 +00002584 }
drhfdf972a2007-05-02 13:30:27 +00002585 assert( i==nByte );
drhf3218fe2004-05-28 08:21:02 +00002586
drh9cbf3422008-01-17 16:22:13 +00002587 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drh9c1905f2008-12-10 22:32:56 +00002588 pOut->n = (int)nByte;
danielk1977a7a8e142008-02-13 18:25:27 +00002589 pOut->flags = MEM_Blob | MEM_Dyn;
2590 pOut->xDel = 0;
drhfdf972a2007-05-02 13:30:27 +00002591 if( nZero ){
drh8df32842008-12-09 02:51:23 +00002592 pOut->u.nZero = nZero;
drh477df4b2008-01-05 18:48:24 +00002593 pOut->flags |= MEM_Zero;
drhfdf972a2007-05-02 13:30:27 +00002594 }
drh477df4b2008-01-05 18:48:24 +00002595 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
drh1013c932008-01-06 00:25:21 +00002596 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00002597 UPDATE_MAX_BLOBSIZE(pOut);
danielk19778d059842004-05-12 11:24:02 +00002598 break;
2599}
2600
danielk1977a5533162009-02-24 10:01:51 +00002601/* Opcode: Count P1 P2 * * *
2602**
2603** Store the number of entries (an integer value) in the table or index
2604** opened by cursor P1 in register P2
2605*/
2606#ifndef SQLITE_OMIT_BTREECOUNT
2607case OP_Count: { /* out2-prerelease */
2608 i64 nEntry;
drhc54a6172009-06-02 16:06:03 +00002609 BtCursor *pCrsr;
2610
2611 pCrsr = p->apCsr[pOp->p1]->pCursor;
dana205a482011-08-27 18:48:57 +00002612 if( ALWAYS(pCrsr) ){
drh818e39a2009-04-02 20:27:28 +00002613 rc = sqlite3BtreeCount(pCrsr, &nEntry);
2614 }else{
2615 nEntry = 0;
2616 }
danielk1977a5533162009-02-24 10:01:51 +00002617 pOut->u.i = nEntry;
2618 break;
2619}
2620#endif
2621
danielk1977fd7f0452008-12-17 17:30:26 +00002622/* Opcode: Savepoint P1 * * P4 *
2623**
2624** Open, release or rollback the savepoint named by parameter P4, depending
2625** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2626** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2627*/
2628case OP_Savepoint: {
drh856c1032009-06-02 15:21:42 +00002629 int p1; /* Value of P1 operand */
2630 char *zName; /* Name of savepoint */
2631 int nName;
2632 Savepoint *pNew;
2633 Savepoint *pSavepoint;
2634 Savepoint *pTmp;
2635 int iSavepoint;
2636 int ii;
2637
2638 p1 = pOp->p1;
2639 zName = pOp->p4.z;
danielk1977fd7f0452008-12-17 17:30:26 +00002640
2641 /* Assert that the p1 parameter is valid. Also that if there is no open
2642 ** transaction, then there cannot be any savepoints.
2643 */
2644 assert( db->pSavepoint==0 || db->autoCommit==0 );
2645 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2646 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2647 assert( checkSavepointCount(db) );
2648
2649 if( p1==SAVEPOINT_BEGIN ){
danielk197734cf35d2008-12-18 18:31:38 +00002650 if( db->writeVdbeCnt>0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002651 /* A new savepoint cannot be created if there are active write
2652 ** statements (i.e. open read/write incremental blob handles).
2653 */
2654 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
2655 "SQL statements in progress");
2656 rc = SQLITE_BUSY;
2657 }else{
drh856c1032009-06-02 15:21:42 +00002658 nName = sqlite3Strlen30(zName);
danielk1977fd7f0452008-12-17 17:30:26 +00002659
drhbe07ec52011-06-03 12:15:26 +00002660#ifndef SQLITE_OMIT_VIRTUALTABLE
dand9495cd2011-04-27 12:08:04 +00002661 /* This call is Ok even if this savepoint is actually a transaction
2662 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2663 ** If this is a transaction savepoint being opened, it is guaranteed
2664 ** that the db->aVTrans[] array is empty. */
2665 assert( db->autoCommit==0 || db->nVTrans==0 );
drha24bc9c2011-05-24 00:35:56 +00002666 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2667 db->nStatement+db->nSavepoint);
dand9495cd2011-04-27 12:08:04 +00002668 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh305ebab2011-05-26 14:19:14 +00002669#endif
dand9495cd2011-04-27 12:08:04 +00002670
danielk1977fd7f0452008-12-17 17:30:26 +00002671 /* Create a new savepoint structure. */
2672 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
2673 if( pNew ){
2674 pNew->zName = (char *)&pNew[1];
2675 memcpy(pNew->zName, zName, nName+1);
2676
2677 /* If there is no open transaction, then mark this as a special
2678 ** "transaction savepoint". */
2679 if( db->autoCommit ){
2680 db->autoCommit = 0;
2681 db->isTransactionSavepoint = 1;
2682 }else{
2683 db->nSavepoint++;
danielk1977d8293352009-04-30 09:10:37 +00002684 }
danielk1977fd7f0452008-12-17 17:30:26 +00002685
2686 /* Link the new savepoint into the database handle's list. */
2687 pNew->pNext = db->pSavepoint;
2688 db->pSavepoint = pNew;
danba9108b2009-09-22 07:13:42 +00002689 pNew->nDeferredCons = db->nDeferredCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002690 }
2691 }
2692 }else{
drh856c1032009-06-02 15:21:42 +00002693 iSavepoint = 0;
danielk1977fd7f0452008-12-17 17:30:26 +00002694
2695 /* Find the named savepoint. If there is no such savepoint, then an
2696 ** an error is returned to the user. */
2697 for(
drh856c1032009-06-02 15:21:42 +00002698 pSavepoint = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002699 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
drh856c1032009-06-02 15:21:42 +00002700 pSavepoint = pSavepoint->pNext
danielk1977fd7f0452008-12-17 17:30:26 +00002701 ){
2702 iSavepoint++;
2703 }
2704 if( !pSavepoint ){
2705 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
2706 rc = SQLITE_ERROR;
drh0f198a72012-02-13 16:43:16 +00002707 }else if( db->writeVdbeCnt>0 && p1==SAVEPOINT_RELEASE ){
danielk1977fd7f0452008-12-17 17:30:26 +00002708 /* It is not possible to release (commit) a savepoint if there are
drh0f198a72012-02-13 16:43:16 +00002709 ** active write statements.
danielk1977fd7f0452008-12-17 17:30:26 +00002710 */
2711 sqlite3SetString(&p->zErrMsg, db,
drh0f198a72012-02-13 16:43:16 +00002712 "cannot release savepoint - SQL statements in progress"
danielk1977fd7f0452008-12-17 17:30:26 +00002713 );
2714 rc = SQLITE_BUSY;
2715 }else{
2716
2717 /* Determine whether or not this is a transaction savepoint. If so,
danielk197734cf35d2008-12-18 18:31:38 +00002718 ** and this is a RELEASE command, then the current transaction
2719 ** is committed.
danielk1977fd7f0452008-12-17 17:30:26 +00002720 */
2721 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2722 if( isTransaction && p1==SAVEPOINT_RELEASE ){
dan32b09f22009-09-23 17:29:59 +00002723 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002724 goto vdbe_return;
2725 }
danielk1977fd7f0452008-12-17 17:30:26 +00002726 db->autoCommit = 1;
2727 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2728 p->pc = pc;
2729 db->autoCommit = 0;
2730 p->rc = rc = SQLITE_BUSY;
2731 goto vdbe_return;
2732 }
danielk197734cf35d2008-12-18 18:31:38 +00002733 db->isTransactionSavepoint = 0;
2734 rc = p->rc;
danielk1977fd7f0452008-12-17 17:30:26 +00002735 }else{
danielk1977fd7f0452008-12-17 17:30:26 +00002736 iSavepoint = db->nSavepoint - iSavepoint - 1;
drh31f10052012-03-31 17:17:26 +00002737 if( p1==SAVEPOINT_ROLLBACK ){
2738 for(ii=0; ii<db->nDb; ii++){
2739 sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, SQLITE_ABORT);
2740 }
drh0f198a72012-02-13 16:43:16 +00002741 }
2742 for(ii=0; ii<db->nDb; ii++){
danielk1977fd7f0452008-12-17 17:30:26 +00002743 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2744 if( rc!=SQLITE_OK ){
2745 goto abort_due_to_error;
danielk1977bd434552009-03-18 10:33:00 +00002746 }
danielk1977fd7f0452008-12-17 17:30:26 +00002747 }
drh9f0bbf92009-01-02 21:08:09 +00002748 if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002749 sqlite3ExpirePreparedStatements(db);
drh81028a42012-05-15 18:28:27 +00002750 sqlite3ResetAllSchemasOfConnection(db);
danc311fee2010-08-31 16:25:19 +00002751 db->flags = (db->flags | SQLITE_InternChanges);
danielk1977fd7f0452008-12-17 17:30:26 +00002752 }
2753 }
2754
2755 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2756 ** savepoints nested inside of the savepoint being operated on. */
2757 while( db->pSavepoint!=pSavepoint ){
drh856c1032009-06-02 15:21:42 +00002758 pTmp = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002759 db->pSavepoint = pTmp->pNext;
2760 sqlite3DbFree(db, pTmp);
2761 db->nSavepoint--;
2762 }
2763
dan1da40a32009-09-19 17:00:31 +00002764 /* If it is a RELEASE, then destroy the savepoint being operated on
2765 ** too. If it is a ROLLBACK TO, then set the number of deferred
2766 ** constraint violations present in the database to the value stored
2767 ** when the savepoint was created. */
danielk1977fd7f0452008-12-17 17:30:26 +00002768 if( p1==SAVEPOINT_RELEASE ){
2769 assert( pSavepoint==db->pSavepoint );
2770 db->pSavepoint = pSavepoint->pNext;
2771 sqlite3DbFree(db, pSavepoint);
2772 if( !isTransaction ){
2773 db->nSavepoint--;
2774 }
dan1da40a32009-09-19 17:00:31 +00002775 }else{
2776 db->nDeferredCons = pSavepoint->nDeferredCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002777 }
dand9495cd2011-04-27 12:08:04 +00002778
2779 if( !isTransaction ){
2780 rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
2781 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2782 }
danielk1977fd7f0452008-12-17 17:30:26 +00002783 }
2784 }
2785
2786 break;
2787}
2788
drh98757152008-01-09 23:04:12 +00002789/* Opcode: AutoCommit P1 P2 * * *
danielk19771d850a72004-05-31 08:26:49 +00002790**
2791** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
danielk197746c43ed2004-06-30 06:30:25 +00002792** back any currently active btree transactions. If there are any active
drhc25eabe2009-02-24 18:57:31 +00002793** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
2794** there are active writing VMs or active VMs that use shared cache.
drh92f02c32004-09-02 14:57:08 +00002795**
2796** This instruction causes the VM to halt.
danielk19771d850a72004-05-31 08:26:49 +00002797*/
drh9cbf3422008-01-17 16:22:13 +00002798case OP_AutoCommit: {
drh856c1032009-06-02 15:21:42 +00002799 int desiredAutoCommit;
shane68c02732009-06-09 18:14:18 +00002800 int iRollback;
drh856c1032009-06-02 15:21:42 +00002801 int turnOnAC;
danielk19771d850a72004-05-31 08:26:49 +00002802
drh856c1032009-06-02 15:21:42 +00002803 desiredAutoCommit = pOp->p1;
shane68c02732009-06-09 18:14:18 +00002804 iRollback = pOp->p2;
drh856c1032009-06-02 15:21:42 +00002805 turnOnAC = desiredAutoCommit && !db->autoCommit;
drhad4a4b82008-11-05 16:37:34 +00002806 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
shane68c02732009-06-09 18:14:18 +00002807 assert( desiredAutoCommit==1 || iRollback==0 );
drh92f02c32004-09-02 14:57:08 +00002808 assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */
danielk197746c43ed2004-06-30 06:30:25 +00002809
drh0f198a72012-02-13 16:43:16 +00002810#if 0
shane68c02732009-06-09 18:14:18 +00002811 if( turnOnAC && iRollback && db->activeVdbeCnt>1 ){
drhad4a4b82008-11-05 16:37:34 +00002812 /* If this instruction implements a ROLLBACK and other VMs are
danielk197746c43ed2004-06-30 06:30:25 +00002813 ** still running, and a transaction is active, return an error indicating
2814 ** that the other VMs must complete first.
2815 */
drhad4a4b82008-11-05 16:37:34 +00002816 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
2817 "SQL statements in progress");
drh99dfe5e2008-10-30 15:03:15 +00002818 rc = SQLITE_BUSY;
drh0f198a72012-02-13 16:43:16 +00002819 }else
2820#endif
2821 if( turnOnAC && !iRollback && db->writeVdbeCnt>0 ){
drhad4a4b82008-11-05 16:37:34 +00002822 /* If this instruction implements a COMMIT and other VMs are writing
2823 ** return an error indicating that the other VMs must complete first.
2824 */
2825 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
2826 "SQL statements in progress");
2827 rc = SQLITE_BUSY;
2828 }else if( desiredAutoCommit!=db->autoCommit ){
shane68c02732009-06-09 18:14:18 +00002829 if( iRollback ){
drhad4a4b82008-11-05 16:37:34 +00002830 assert( desiredAutoCommit==1 );
drh21021a52012-02-13 17:01:51 +00002831 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977f3f06bb2005-12-16 15:24:28 +00002832 db->autoCommit = 1;
dan32b09f22009-09-23 17:29:59 +00002833 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002834 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00002835 }else{
shane7d3846a2008-12-11 02:58:26 +00002836 db->autoCommit = (u8)desiredAutoCommit;
danielk1977f3f06bb2005-12-16 15:24:28 +00002837 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
danielk1977f3f06bb2005-12-16 15:24:28 +00002838 p->pc = pc;
drh9c1905f2008-12-10 22:32:56 +00002839 db->autoCommit = (u8)(1-desiredAutoCommit);
drh900b31e2007-08-28 02:27:51 +00002840 p->rc = rc = SQLITE_BUSY;
2841 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00002842 }
danielk19771d850a72004-05-31 08:26:49 +00002843 }
danielk1977bd434552009-03-18 10:33:00 +00002844 assert( db->nStatement==0 );
danielk1977fd7f0452008-12-17 17:30:26 +00002845 sqlite3CloseSavepoints(db);
drh83968c42007-04-18 16:45:24 +00002846 if( p->rc==SQLITE_OK ){
drh900b31e2007-08-28 02:27:51 +00002847 rc = SQLITE_DONE;
drh83968c42007-04-18 16:45:24 +00002848 }else{
drh900b31e2007-08-28 02:27:51 +00002849 rc = SQLITE_ERROR;
drh83968c42007-04-18 16:45:24 +00002850 }
drh900b31e2007-08-28 02:27:51 +00002851 goto vdbe_return;
danielk19771d850a72004-05-31 08:26:49 +00002852 }else{
drhf089aa42008-07-08 19:34:06 +00002853 sqlite3SetString(&p->zErrMsg, db,
drhad4a4b82008-11-05 16:37:34 +00002854 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
shane68c02732009-06-09 18:14:18 +00002855 (iRollback)?"cannot rollback - no transaction is active":
drhf089aa42008-07-08 19:34:06 +00002856 "cannot commit - no transaction is active"));
danielk19771d850a72004-05-31 08:26:49 +00002857
2858 rc = SQLITE_ERROR;
drh663fc632002-02-02 18:49:19 +00002859 }
2860 break;
2861}
2862
drh98757152008-01-09 23:04:12 +00002863/* Opcode: Transaction P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00002864**
2865** Begin a transaction. The transaction ends when a Commit or Rollback
drh663fc632002-02-02 18:49:19 +00002866** opcode is encountered. Depending on the ON CONFLICT setting, the
2867** transaction might also be rolled back if an error is encountered.
drh5e00f6c2001-09-13 13:46:56 +00002868**
drh001bbcb2003-03-19 03:14:00 +00002869** P1 is the index of the database file on which the transaction is
2870** started. Index 0 is the main database file and index 1 is the
drh60a713c2008-01-21 16:22:45 +00002871** file used for temporary tables. Indices of 2 or more are used for
2872** attached databases.
drhcabb0812002-09-14 13:47:32 +00002873**
drh80242052004-06-09 00:48:12 +00002874** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
danielk1977ee5741e2004-05-31 10:01:34 +00002875** obtained on the database file when a write-transaction is started. No
drh80242052004-06-09 00:48:12 +00002876** other process can start another write transaction while this transaction is
2877** underway. Starting a write transaction also creates a rollback journal. A
2878** write transaction must be started before any changes can be made to the
drh684917c2004-10-05 02:41:42 +00002879** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
2880** on the file.
danielk1977ee5741e2004-05-31 10:01:34 +00002881**
dane0af83a2009-09-08 19:15:01 +00002882** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
2883** true (this flag is set if the Vdbe may modify more than one row and may
2884** throw an ABORT exception), a statement transaction may also be opened.
2885** More specifically, a statement transaction is opened iff the database
2886** connection is currently not in autocommit mode, or if there are other
drha4510172012-02-02 15:50:17 +00002887** active statements. A statement transaction allows the changes made by this
dane0af83a2009-09-08 19:15:01 +00002888** VDBE to be rolled back after an error without having to roll back the
2889** entire transaction. If no error is encountered, the statement transaction
2890** will automatically commit when the VDBE halts.
2891**
danielk1977ee5741e2004-05-31 10:01:34 +00002892** If P2 is zero, then a read-lock is obtained on the database file.
drh5e00f6c2001-09-13 13:46:56 +00002893*/
drh9cbf3422008-01-17 16:22:13 +00002894case OP_Transaction: {
danielk19771d850a72004-05-31 08:26:49 +00002895 Btree *pBt;
2896
drh653b82a2009-06-22 11:10:47 +00002897 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00002898 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh653b82a2009-06-22 11:10:47 +00002899 pBt = db->aDb[pOp->p1].pBt;
danielk19771d850a72004-05-31 08:26:49 +00002900
danielk197724162fe2004-06-04 06:22:00 +00002901 if( pBt ){
danielk197740b38dc2004-06-26 08:38:24 +00002902 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
danielk197724162fe2004-06-04 06:22:00 +00002903 if( rc==SQLITE_BUSY ){
danielk19772a764eb2004-06-12 01:43:26 +00002904 p->pc = pc;
drh900b31e2007-08-28 02:27:51 +00002905 p->rc = rc = SQLITE_BUSY;
drh900b31e2007-08-28 02:27:51 +00002906 goto vdbe_return;
danielk197724162fe2004-06-04 06:22:00 +00002907 }
drh9e9f1bd2009-10-13 15:36:51 +00002908 if( rc!=SQLITE_OK ){
danielk197724162fe2004-06-04 06:22:00 +00002909 goto abort_due_to_error;
drh90bfcda2001-09-23 19:46:51 +00002910 }
dane0af83a2009-09-08 19:15:01 +00002911
2912 if( pOp->p2 && p->usesStmtJournal
2913 && (db->autoCommit==0 || db->activeVdbeCnt>1)
2914 ){
2915 assert( sqlite3BtreeIsInTrans(pBt) );
2916 if( p->iStatement==0 ){
2917 assert( db->nStatement>=0 && db->nSavepoint>=0 );
2918 db->nStatement++;
2919 p->iStatement = db->nSavepoint + db->nStatement;
2920 }
dana311b802011-04-26 19:21:34 +00002921
drh346506f2011-05-25 01:16:42 +00002922 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
dana311b802011-04-26 19:21:34 +00002923 if( rc==SQLITE_OK ){
2924 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
2925 }
dan1da40a32009-09-19 17:00:31 +00002926
2927 /* Store the current value of the database handles deferred constraint
2928 ** counter. If the statement transaction needs to be rolled back,
2929 ** the value of this counter needs to be restored too. */
2930 p->nStmtDefCons = db->nDeferredCons;
dane0af83a2009-09-08 19:15:01 +00002931 }
drhb86ccfb2003-01-28 23:13:10 +00002932 }
drh5e00f6c2001-09-13 13:46:56 +00002933 break;
2934}
2935
drhb1fdb2a2008-01-05 04:06:03 +00002936/* Opcode: ReadCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00002937**
drh9cbf3422008-01-17 16:22:13 +00002938** Read cookie number P3 from database P1 and write it into register P2.
danielk19770d19f7a2009-06-03 11:25:07 +00002939** P3==1 is the schema version. P3==2 is the database format.
2940** P3==3 is the recommended pager cache size, and so forth. P1==0 is
drh001bbcb2003-03-19 03:14:00 +00002941** the main database file and P1==1 is the database file used to store
2942** temporary tables.
drh4a324312001-12-21 14:30:42 +00002943**
drh50e5dad2001-09-15 00:57:28 +00002944** There must be a read-lock on the database (either a transaction
drhb19a2bc2001-09-16 00:13:26 +00002945** must be started or there must be an open cursor) before
drh50e5dad2001-09-15 00:57:28 +00002946** executing this instruction.
2947*/
drh4c583122008-01-04 22:01:03 +00002948case OP_ReadCookie: { /* out2-prerelease */
drhf328bc82004-05-10 23:29:49 +00002949 int iMeta;
drh856c1032009-06-02 15:21:42 +00002950 int iDb;
2951 int iCookie;
danielk1977180b56a2007-06-24 08:00:42 +00002952
drh856c1032009-06-02 15:21:42 +00002953 iDb = pOp->p1;
2954 iCookie = pOp->p3;
drhb7654112008-01-12 12:48:07 +00002955 assert( pOp->p3<SQLITE_N_BTREE_META );
danielk1977180b56a2007-06-24 08:00:42 +00002956 assert( iDb>=0 && iDb<db->nDb );
2957 assert( db->aDb[iDb].pBt!=0 );
drhdddd7792011-04-03 18:19:25 +00002958 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
danielk19770d19f7a2009-06-03 11:25:07 +00002959
danielk1977602b4662009-07-02 07:47:33 +00002960 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
drh4c583122008-01-04 22:01:03 +00002961 pOut->u.i = iMeta;
drh50e5dad2001-09-15 00:57:28 +00002962 break;
2963}
2964
drh98757152008-01-09 23:04:12 +00002965/* Opcode: SetCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00002966**
drh98757152008-01-09 23:04:12 +00002967** Write the content of register P3 (interpreted as an integer)
danielk19770d19f7a2009-06-03 11:25:07 +00002968** into cookie number P2 of database P1. P2==1 is the schema version.
2969** P2==2 is the database format. P2==3 is the recommended pager cache
2970** size, and so forth. P1==0 is the main database file and P1==1 is the
2971** database file used to store temporary tables.
drh50e5dad2001-09-15 00:57:28 +00002972**
2973** A transaction must be started before executing this opcode.
2974*/
drh9cbf3422008-01-17 16:22:13 +00002975case OP_SetCookie: { /* in3 */
drh3f7d4e42004-07-24 14:35:58 +00002976 Db *pDb;
drh4a324312001-12-21 14:30:42 +00002977 assert( pOp->p2<SQLITE_N_BTREE_META );
drh001bbcb2003-03-19 03:14:00 +00002978 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00002979 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh3f7d4e42004-07-24 14:35:58 +00002980 pDb = &db->aDb[pOp->p1];
2981 assert( pDb->pBt!=0 );
drh21206082011-04-04 18:22:02 +00002982 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
drh3c657212009-11-17 23:59:58 +00002983 pIn3 = &aMem[pOp->p3];
drh98757152008-01-09 23:04:12 +00002984 sqlite3VdbeMemIntegerify(pIn3);
drha3b321d2004-05-11 09:31:31 +00002985 /* See note about index shifting on OP_ReadCookie */
danielk19770d19f7a2009-06-03 11:25:07 +00002986 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
2987 if( pOp->p2==BTREE_SCHEMA_VERSION ){
drh3f7d4e42004-07-24 14:35:58 +00002988 /* When the schema cookie changes, record the new cookie internally */
drh9c1905f2008-12-10 22:32:56 +00002989 pDb->pSchema->schema_cookie = (int)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00002990 db->flags |= SQLITE_InternChanges;
danielk19770d19f7a2009-06-03 11:25:07 +00002991 }else if( pOp->p2==BTREE_FILE_FORMAT ){
drhd28bcb32005-12-21 14:43:11 +00002992 /* Record changes in the file format */
drh9c1905f2008-12-10 22:32:56 +00002993 pDb->pSchema->file_format = (u8)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00002994 }
drhfd426c62006-01-30 15:34:22 +00002995 if( pOp->p1==1 ){
2996 /* Invalidate all prepared statements whenever the TEMP database
2997 ** schema is changed. Ticket #1644 */
2998 sqlite3ExpirePreparedStatements(db);
danfa401de2009-10-16 14:55:03 +00002999 p->expired = 0;
drhfd426c62006-01-30 15:34:22 +00003000 }
drh50e5dad2001-09-15 00:57:28 +00003001 break;
3002}
3003
drhc2a75552011-03-18 21:55:46 +00003004/* Opcode: VerifyCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003005**
drh001bbcb2003-03-19 03:14:00 +00003006** Check the value of global database parameter number 0 (the
drhc2a75552011-03-18 21:55:46 +00003007** schema version) and make sure it is equal to P2 and that the
3008** generation counter on the local schema parse equals P3.
3009**
drh001bbcb2003-03-19 03:14:00 +00003010** P1 is the database number which is 0 for the main database file
3011** and 1 for the file holding temporary tables and some higher number
3012** for auxiliary databases.
drh50e5dad2001-09-15 00:57:28 +00003013**
3014** The cookie changes its value whenever the database schema changes.
drhb19a2bc2001-09-16 00:13:26 +00003015** This operation is used to detect when that the cookie has changed
drh50e5dad2001-09-15 00:57:28 +00003016** and that the current process needs to reread the schema.
3017**
3018** Either a transaction needs to have been started or an OP_Open needs
3019** to be executed (to establish a read lock) before this opcode is
3020** invoked.
3021*/
drh9cbf3422008-01-17 16:22:13 +00003022case OP_VerifyCookie: {
drhf328bc82004-05-10 23:29:49 +00003023 int iMeta;
drhc2a75552011-03-18 21:55:46 +00003024 int iGen;
drhc275b4e2004-07-19 17:25:24 +00003025 Btree *pBt;
drhc2a75552011-03-18 21:55:46 +00003026
drh001bbcb2003-03-19 03:14:00 +00003027 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00003028 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh21206082011-04-04 18:22:02 +00003029 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
drhc275b4e2004-07-19 17:25:24 +00003030 pBt = db->aDb[pOp->p1].pBt;
3031 if( pBt ){
danielk1977602b4662009-07-02 07:47:33 +00003032 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
drhc2a75552011-03-18 21:55:46 +00003033 iGen = db->aDb[pOp->p1].pSchema->iGeneration;
drhc275b4e2004-07-19 17:25:24 +00003034 }else{
drhfcd71b62011-04-05 22:08:24 +00003035 iGen = iMeta = 0;
drhc275b4e2004-07-19 17:25:24 +00003036 }
drhc2a75552011-03-18 21:55:46 +00003037 if( iMeta!=pOp->p2 || iGen!=pOp->p3 ){
drh633e6d52008-07-28 19:34:53 +00003038 sqlite3DbFree(db, p->zErrMsg);
danielk1977a1644fd2007-08-29 12:31:25 +00003039 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
danielk1977896e7922007-04-17 08:32:33 +00003040 /* If the schema-cookie from the database file matches the cookie
3041 ** stored with the in-memory representation of the schema, do
3042 ** not reload the schema from the database file.
3043 **
shane21e7feb2008-05-30 15:59:49 +00003044 ** If virtual-tables are in use, this is not just an optimization.
danielk1977896e7922007-04-17 08:32:33 +00003045 ** Often, v-tables store their data in other SQLite tables, which
3046 ** are queried from within xNext() and other v-table methods using
3047 ** prepared queries. If such a query is out-of-date, we do not want to
3048 ** discard the database schema, as the user code implementing the
3049 ** v-table would have to be ready for the sqlite3_vtab structure itself
3050 ** to be invalidated whenever sqlite3_step() is called from within
3051 ** a v-table method.
3052 */
3053 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
drh81028a42012-05-15 18:28:27 +00003054 sqlite3ResetOneSchema(db, pOp->p1);
danielk1977896e7922007-04-17 08:32:33 +00003055 }
3056
drh5b6c5452011-02-22 03:34:56 +00003057 p->expired = 1;
drh50e5dad2001-09-15 00:57:28 +00003058 rc = SQLITE_SCHEMA;
3059 }
3060 break;
3061}
3062
drh98757152008-01-09 23:04:12 +00003063/* Opcode: OpenRead P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00003064**
drhecdc7532001-09-23 02:35:53 +00003065** Open a read-only cursor for the database table whose root page is
danielk1977207872a2008-01-03 07:54:23 +00003066** P2 in a database file. The database file is determined by P3.
drh60a713c2008-01-21 16:22:45 +00003067** P3==0 means the main database, P3==1 means the database used for
3068** temporary tables, and P3>1 means used the corresponding attached
3069** database. Give the new cursor an identifier of P1. The P1
danielk1977207872a2008-01-03 07:54:23 +00003070** values need not be contiguous but all P1 values should be small integers.
3071** It is an error for P1 to be negative.
drh5e00f6c2001-09-13 13:46:56 +00003072**
drh98757152008-01-09 23:04:12 +00003073** If P5!=0 then use the content of register P2 as the root page, not
3074** the value of P2 itself.
drh5edc3122001-09-13 21:53:09 +00003075**
drhb19a2bc2001-09-16 00:13:26 +00003076** There will be a read lock on the database whenever there is an
3077** open cursor. If the database was unlocked prior to this instruction
3078** then a read lock is acquired as part of this instruction. A read
3079** lock allows other processes to read the database but prohibits
3080** any other process from modifying the database. The read lock is
3081** released when all cursors are closed. If this instruction attempts
3082** to get a read lock but fails, the script terminates with an
3083** SQLITE_BUSY error code.
3084**
danielk1977d336e222009-02-20 10:58:41 +00003085** The P4 value may be either an integer (P4_INT32) or a pointer to
3086** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3087** structure, then said structure defines the content and collating
3088** sequence of the index being opened. Otherwise, if P4 is an integer
3089** value, it is set to the number of columns in the table.
drhf57b3392001-10-08 13:22:32 +00003090**
drh001bbcb2003-03-19 03:14:00 +00003091** See also OpenWrite.
drh5e00f6c2001-09-13 13:46:56 +00003092*/
drh98757152008-01-09 23:04:12 +00003093/* Opcode: OpenWrite P1 P2 P3 P4 P5
drhecdc7532001-09-23 02:35:53 +00003094**
3095** Open a read/write cursor named P1 on the table or index whose root
drh98757152008-01-09 23:04:12 +00003096** page is P2. Or if P5!=0 use the content of register P2 to find the
3097** root page.
drhecdc7532001-09-23 02:35:53 +00003098**
danielk1977d336e222009-02-20 10:58:41 +00003099** The P4 value may be either an integer (P4_INT32) or a pointer to
3100** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3101** structure, then said structure defines the content and collating
3102** sequence of the index being opened. Otherwise, if P4 is an integer
drh35cd6432009-06-05 14:17:21 +00003103** value, it is set to the number of columns in the table, or to the
3104** largest index of any column of the table that is actually used.
jplyon5a564222003-06-02 06:15:58 +00003105**
drh001bbcb2003-03-19 03:14:00 +00003106** This instruction works just like OpenRead except that it opens the cursor
drhecdc7532001-09-23 02:35:53 +00003107** in read/write mode. For a given table, there can be one or more read-only
3108** cursors or a single read/write cursor but not both.
drhf57b3392001-10-08 13:22:32 +00003109**
drh001bbcb2003-03-19 03:14:00 +00003110** See also OpenRead.
drhecdc7532001-09-23 02:35:53 +00003111*/
drh9cbf3422008-01-17 16:22:13 +00003112case OP_OpenRead:
3113case OP_OpenWrite: {
drh856c1032009-06-02 15:21:42 +00003114 int nField;
3115 KeyInfo *pKeyInfo;
drh856c1032009-06-02 15:21:42 +00003116 int p2;
3117 int iDb;
drhf57b3392001-10-08 13:22:32 +00003118 int wrFlag;
3119 Btree *pX;
drhdfe88ec2008-11-03 20:55:06 +00003120 VdbeCursor *pCur;
drhd946db02005-12-29 19:23:06 +00003121 Db *pDb;
drh856c1032009-06-02 15:21:42 +00003122
danfa401de2009-10-16 14:55:03 +00003123 if( p->expired ){
3124 rc = SQLITE_ABORT;
3125 break;
3126 }
3127
drh856c1032009-06-02 15:21:42 +00003128 nField = 0;
3129 pKeyInfo = 0;
drh856c1032009-06-02 15:21:42 +00003130 p2 = pOp->p2;
3131 iDb = pOp->p3;
drh6810ce62004-01-31 19:22:56 +00003132 assert( iDb>=0 && iDb<db->nDb );
drhdddd7792011-04-03 18:19:25 +00003133 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
drhd946db02005-12-29 19:23:06 +00003134 pDb = &db->aDb[iDb];
3135 pX = pDb->pBt;
drh6810ce62004-01-31 19:22:56 +00003136 assert( pX!=0 );
drhd946db02005-12-29 19:23:06 +00003137 if( pOp->opcode==OP_OpenWrite ){
3138 wrFlag = 1;
drh21206082011-04-04 18:22:02 +00003139 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
danielk1977da184232006-01-05 11:34:32 +00003140 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3141 p->minWriteFileFormat = pDb->pSchema->file_format;
drhd946db02005-12-29 19:23:06 +00003142 }
3143 }else{
3144 wrFlag = 0;
3145 }
drh98757152008-01-09 23:04:12 +00003146 if( pOp->p5 ){
drh9cbf3422008-01-17 16:22:13 +00003147 assert( p2>0 );
3148 assert( p2<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00003149 pIn2 = &aMem[p2];
drh2b4ded92010-09-27 21:09:31 +00003150 assert( memIsValid(pIn2) );
3151 assert( (pIn2->flags & MEM_Int)!=0 );
drh9cbf3422008-01-17 16:22:13 +00003152 sqlite3VdbeMemIntegerify(pIn2);
drh9c1905f2008-12-10 22:32:56 +00003153 p2 = (int)pIn2->u.i;
drh9a65f2c2009-06-22 19:05:40 +00003154 /* The p2 value always comes from a prior OP_CreateTable opcode and
3155 ** that opcode will always set the p2 value to 2 or more or else fail.
3156 ** If there were a failure, the prepared statement would have halted
3157 ** before reaching this instruction. */
drh27731d72009-06-22 12:05:10 +00003158 if( NEVER(p2<2) ) {
shanedcc50b72008-11-13 18:29:50 +00003159 rc = SQLITE_CORRUPT_BKPT;
3160 goto abort_due_to_error;
3161 }
drh5edc3122001-09-13 21:53:09 +00003162 }
danielk1977d336e222009-02-20 10:58:41 +00003163 if( pOp->p4type==P4_KEYINFO ){
3164 pKeyInfo = pOp->p4.pKeyInfo;
3165 pKeyInfo->enc = ENC(p->db);
3166 nField = pKeyInfo->nField+1;
3167 }else if( pOp->p4type==P4_INT32 ){
3168 nField = pOp->p4.i;
3169 }
drh653b82a2009-06-22 11:10:47 +00003170 assert( pOp->p1>=0 );
3171 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
drh4774b132004-06-12 20:12:51 +00003172 if( pCur==0 ) goto no_mem;
drhf328bc82004-05-10 23:29:49 +00003173 pCur->nullRow = 1;
drhd4187c72010-08-30 22:15:45 +00003174 pCur->isOrdered = 1;
danielk1977d336e222009-02-20 10:58:41 +00003175 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
3176 pCur->pKeyInfo = pKeyInfo;
3177
dana205a482011-08-27 18:48:57 +00003178 /* Since it performs no memory allocation or IO, the only value that
3179 ** sqlite3BtreeCursor() may return is SQLITE_OK. */
3180 assert( rc==SQLITE_OK );
danielk1977172114a2009-07-07 15:47:12 +00003181
3182 /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
3183 ** SQLite used to check if the root-page flags were sane at this point
3184 ** and report database corruption if they were not, but this check has
3185 ** since moved into the btree layer. */
3186 pCur->isTable = pOp->p4type!=P4_KEYINFO;
3187 pCur->isIndex = !pCur->isTable;
drh5e00f6c2001-09-13 13:46:56 +00003188 break;
3189}
3190
drh2a5d9902011-08-26 00:34:45 +00003191/* Opcode: OpenEphemeral P1 P2 * P4 P5
drh5e00f6c2001-09-13 13:46:56 +00003192**
drhb9bb7c12006-06-11 23:41:55 +00003193** Open a new cursor P1 to a transient table.
drh9170dd72005-07-08 17:13:46 +00003194** The cursor is always opened read/write even if
drh25d3adb2010-04-05 15:11:08 +00003195** the main database is read-only. The ephemeral
drh9170dd72005-07-08 17:13:46 +00003196** table is deleted automatically when the cursor is closed.
drhc6b52df2002-01-04 03:09:29 +00003197**
drh25d3adb2010-04-05 15:11:08 +00003198** P2 is the number of columns in the ephemeral table.
drh66a51672008-01-03 00:01:23 +00003199** The cursor points to a BTree table if P4==0 and to a BTree index
3200** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
drhd3d39e92004-05-20 22:16:29 +00003201** that defines the format of keys in the index.
drhb9bb7c12006-06-11 23:41:55 +00003202**
3203** This opcode was once called OpenTemp. But that created
3204** confusion because the term "temp table", might refer either
3205** to a TEMP table at the SQL level, or to a table opened by
3206** this opcode. Then this opcode was call OpenVirtual. But
3207** that created confusion with the whole virtual-table idea.
drh2a5d9902011-08-26 00:34:45 +00003208**
3209** The P5 parameter can be a mask of the BTREE_* flags defined
3210** in btree.h. These flags control aspects of the operation of
3211** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3212** added automatically.
drh5e00f6c2001-09-13 13:46:56 +00003213*/
drha21a64d2010-04-06 22:33:55 +00003214/* Opcode: OpenAutoindex P1 P2 * P4 *
3215**
3216** This opcode works the same as OP_OpenEphemeral. It has a
3217** different name to distinguish its use. Tables created using
3218** by this opcode will be used for automatically created transient
3219** indices in joins.
3220*/
3221case OP_OpenAutoindex:
drh9cbf3422008-01-17 16:22:13 +00003222case OP_OpenEphemeral: {
drhdfe88ec2008-11-03 20:55:06 +00003223 VdbeCursor *pCx;
drhd4187c72010-08-30 22:15:45 +00003224 static const int vfsFlags =
drh33f4e022007-09-03 15:19:34 +00003225 SQLITE_OPEN_READWRITE |
3226 SQLITE_OPEN_CREATE |
3227 SQLITE_OPEN_EXCLUSIVE |
3228 SQLITE_OPEN_DELETEONCLOSE |
3229 SQLITE_OPEN_TRANSIENT_DB;
3230
drh653b82a2009-06-22 11:10:47 +00003231 assert( pOp->p1>=0 );
3232 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
drh4774b132004-06-12 20:12:51 +00003233 if( pCx==0 ) goto no_mem;
drh17f71932002-02-21 12:01:27 +00003234 pCx->nullRow = 1;
dan689ab892011-08-12 15:02:00 +00003235 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
3236 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
drh5e00f6c2001-09-13 13:46:56 +00003237 if( rc==SQLITE_OK ){
danielk197740b38dc2004-06-26 08:38:24 +00003238 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
drh5e00f6c2001-09-13 13:46:56 +00003239 }
3240 if( rc==SQLITE_OK ){
danielk19774adee202004-05-08 08:23:19 +00003241 /* If a transient index is required, create it by calling
drhd4187c72010-08-30 22:15:45 +00003242 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
danielk19774adee202004-05-08 08:23:19 +00003243 ** opening it. If a transient table is required, just use the
drhd4187c72010-08-30 22:15:45 +00003244 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
danielk19774adee202004-05-08 08:23:19 +00003245 */
danielk19772dca4ac2008-01-03 11:50:29 +00003246 if( pOp->p4.pKeyInfo ){
drhc6b52df2002-01-04 03:09:29 +00003247 int pgno;
drh66a51672008-01-03 00:01:23 +00003248 assert( pOp->p4type==P4_KEYINFO );
drhe1b4f0f2011-06-29 17:11:39 +00003249 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
drhc6b52df2002-01-04 03:09:29 +00003250 if( rc==SQLITE_OK ){
drhf328bc82004-05-10 23:29:49 +00003251 assert( pgno==MASTER_ROOT+1 );
drh1e968a02008-03-25 00:22:21 +00003252 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1,
danielk1977cd3e8f72008-03-25 09:47:35 +00003253 (KeyInfo*)pOp->p4.z, pCx->pCursor);
danielk19772dca4ac2008-01-03 11:50:29 +00003254 pCx->pKeyInfo = pOp->p4.pKeyInfo;
dan689ab892011-08-12 15:02:00 +00003255 pCx->pKeyInfo->enc = ENC(p->db);
drhc6b52df2002-01-04 03:09:29 +00003256 }
drhf0863fe2005-06-12 21:35:51 +00003257 pCx->isTable = 0;
drhc6b52df2002-01-04 03:09:29 +00003258 }else{
danielk1977cd3e8f72008-03-25 09:47:35 +00003259 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
drhf0863fe2005-06-12 21:35:51 +00003260 pCx->isTable = 1;
drhc6b52df2002-01-04 03:09:29 +00003261 }
drh5e00f6c2001-09-13 13:46:56 +00003262 }
drhd4187c72010-08-30 22:15:45 +00003263 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
drhf0863fe2005-06-12 21:35:51 +00003264 pCx->isIndex = !pCx->isTable;
dan5134d132011-09-02 10:31:11 +00003265 break;
3266}
3267
3268/* Opcode: OpenSorter P1 P2 * P4 *
3269**
3270** This opcode works like OP_OpenEphemeral except that it opens
3271** a transient index that is specifically designed to sort large
3272** tables using an external merge-sort algorithm.
3273*/
drhca892a72011-09-03 00:17:51 +00003274case OP_SorterOpen: {
dan5134d132011-09-02 10:31:11 +00003275 VdbeCursor *pCx;
drhca892a72011-09-03 00:17:51 +00003276#ifndef SQLITE_OMIT_MERGE_SORT
dan5134d132011-09-02 10:31:11 +00003277 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
3278 if( pCx==0 ) goto no_mem;
3279 pCx->pKeyInfo = pOp->p4.pKeyInfo;
3280 pCx->pKeyInfo->enc = ENC(p->db);
3281 pCx->isSorter = 1;
3282 rc = sqlite3VdbeSorterInit(db, pCx);
drhca892a72011-09-03 00:17:51 +00003283#else
3284 pOp->opcode = OP_OpenEphemeral;
3285 pc--;
3286#endif
drh5e00f6c2001-09-13 13:46:56 +00003287 break;
3288}
3289
danielk1977d336e222009-02-20 10:58:41 +00003290/* Opcode: OpenPseudo P1 P2 P3 * *
drh70ce3f02003-04-15 19:22:22 +00003291**
3292** Open a new cursor that points to a fake table that contains a single
drh3e9ca092009-09-08 01:14:48 +00003293** row of data. The content of that one row in the content of memory
3294** register P2. In other words, cursor P1 becomes an alias for the
3295** MEM_Blob content contained in register P2.
drh70ce3f02003-04-15 19:22:22 +00003296**
drh2d8d7ce2010-02-15 15:17:05 +00003297** A pseudo-table created by this opcode is used to hold a single
drhcdd536f2006-03-17 00:04:03 +00003298** row output from the sorter so that the row can be decomposed into
drh3e9ca092009-09-08 01:14:48 +00003299** individual columns using the OP_Column opcode. The OP_Column opcode
3300** is the only cursor opcode that works with a pseudo-table.
danielk1977d336e222009-02-20 10:58:41 +00003301**
3302** P3 is the number of fields in the records that will be stored by
3303** the pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00003304*/
drh9cbf3422008-01-17 16:22:13 +00003305case OP_OpenPseudo: {
drhdfe88ec2008-11-03 20:55:06 +00003306 VdbeCursor *pCx;
drh856c1032009-06-02 15:21:42 +00003307
drh653b82a2009-06-22 11:10:47 +00003308 assert( pOp->p1>=0 );
3309 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
drh4774b132004-06-12 20:12:51 +00003310 if( pCx==0 ) goto no_mem;
drh70ce3f02003-04-15 19:22:22 +00003311 pCx->nullRow = 1;
drh3e9ca092009-09-08 01:14:48 +00003312 pCx->pseudoTableReg = pOp->p2;
drhf0863fe2005-06-12 21:35:51 +00003313 pCx->isTable = 1;
3314 pCx->isIndex = 0;
drh70ce3f02003-04-15 19:22:22 +00003315 break;
3316}
3317
drh98757152008-01-09 23:04:12 +00003318/* Opcode: Close P1 * * * *
drh5e00f6c2001-09-13 13:46:56 +00003319**
3320** Close a cursor previously opened as P1. If P1 is not
3321** currently open, this instruction is a no-op.
3322*/
drh9cbf3422008-01-17 16:22:13 +00003323case OP_Close: {
drh653b82a2009-06-22 11:10:47 +00003324 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3325 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3326 p->apCsr[pOp->p1] = 0;
drh5e00f6c2001-09-13 13:46:56 +00003327 break;
3328}
3329
drh959403f2008-12-12 17:56:16 +00003330/* Opcode: SeekGe P1 P2 P3 P4 *
drh5e00f6c2001-09-13 13:46:56 +00003331**
danielk1977b790c6c2008-04-18 10:25:24 +00003332** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003333** use the value in register P3 as the key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003334** to an SQL index, then P3 is the first in an array of P4 registers
3335** that are used as an unpacked index key.
3336**
3337** Reposition cursor P1 so that it points to the smallest entry that
3338** is greater than or equal to the key value. If there are no records
3339** greater than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003340**
drh959403f2008-12-12 17:56:16 +00003341** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003342*/
drh959403f2008-12-12 17:56:16 +00003343/* Opcode: SeekGt P1 P2 P3 P4 *
drh7cf6e4d2004-05-19 14:56:55 +00003344**
danielk1977b790c6c2008-04-18 10:25:24 +00003345** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003346** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003347** to an SQL index, then P3 is the first in an array of P4 registers
3348** that are used as an unpacked index key.
3349**
3350** Reposition cursor P1 so that it points to the smallest entry that
3351** is greater than the key value. If there are no records greater than
3352** the key and P2 is not zero, then jump to P2.
drhb19a2bc2001-09-16 00:13:26 +00003353**
drh959403f2008-12-12 17:56:16 +00003354** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
drh5e00f6c2001-09-13 13:46:56 +00003355*/
drh959403f2008-12-12 17:56:16 +00003356/* Opcode: SeekLt P1 P2 P3 P4 *
drhc045ec52002-12-04 20:01:06 +00003357**
danielk1977b790c6c2008-04-18 10:25:24 +00003358** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003359** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003360** to an SQL index, then P3 is the first in an array of P4 registers
3361** that are used as an unpacked index key.
3362**
3363** Reposition cursor P1 so that it points to the largest entry that
3364** is less than the key value. If there are no records less than
3365** the key and P2 is not zero, then jump to P2.
drhc045ec52002-12-04 20:01:06 +00003366**
drh959403f2008-12-12 17:56:16 +00003367** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003368*/
drh959403f2008-12-12 17:56:16 +00003369/* Opcode: SeekLe P1 P2 P3 P4 *
danielk19773d1bfea2004-05-14 11:00:53 +00003370**
danielk1977b790c6c2008-04-18 10:25:24 +00003371** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003372** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003373** to an SQL index, then P3 is the first in an array of P4 registers
3374** that are used as an unpacked index key.
danielk1977751de562008-04-18 09:01:15 +00003375**
danielk1977b790c6c2008-04-18 10:25:24 +00003376** Reposition cursor P1 so that it points to the largest entry that
3377** is less than or equal to the key value. If there are no records
3378** less than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003379**
drh959403f2008-12-12 17:56:16 +00003380** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
drhc045ec52002-12-04 20:01:06 +00003381*/
drh959403f2008-12-12 17:56:16 +00003382case OP_SeekLt: /* jump, in3 */
3383case OP_SeekLe: /* jump, in3 */
3384case OP_SeekGe: /* jump, in3 */
3385case OP_SeekGt: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003386 int res;
3387 int oc;
drhdfe88ec2008-11-03 20:55:06 +00003388 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003389 UnpackedRecord r;
3390 int nField;
3391 i64 iKey; /* The rowid we are to seek to */
drh80ff32f2001-11-04 18:32:46 +00003392
drh653b82a2009-06-22 11:10:47 +00003393 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh959403f2008-12-12 17:56:16 +00003394 assert( pOp->p2!=0 );
drh653b82a2009-06-22 11:10:47 +00003395 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00003396 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00003397 assert( pC->pseudoTableReg==0 );
drh1f350122009-11-13 20:52:43 +00003398 assert( OP_SeekLe == OP_SeekLt+1 );
3399 assert( OP_SeekGe == OP_SeekLt+2 );
3400 assert( OP_SeekGt == OP_SeekLt+3 );
drhd4187c72010-08-30 22:15:45 +00003401 assert( pC->isOrdered );
dana205a482011-08-27 18:48:57 +00003402 if( ALWAYS(pC->pCursor!=0) ){
drh7cf6e4d2004-05-19 14:56:55 +00003403 oc = pOp->opcode;
drha11846b2004-01-07 18:52:56 +00003404 pC->nullRow = 0;
drhf0863fe2005-06-12 21:35:51 +00003405 if( pC->isTable ){
drh959403f2008-12-12 17:56:16 +00003406 /* The input value in P3 might be of any type: integer, real, string,
3407 ** blob, or NULL. But it needs to be an integer before we can do
3408 ** the seek, so covert it. */
drh3c657212009-11-17 23:59:58 +00003409 pIn3 = &aMem[pOp->p3];
drh959403f2008-12-12 17:56:16 +00003410 applyNumericAffinity(pIn3);
3411 iKey = sqlite3VdbeIntValue(pIn3);
3412 pC->rowidIsValid = 0;
3413
3414 /* If the P3 value could not be converted into an integer without
3415 ** loss of information, then special processing is required... */
3416 if( (pIn3->flags & MEM_Int)==0 ){
3417 if( (pIn3->flags & MEM_Real)==0 ){
3418 /* If the P3 value cannot be converted into any kind of a number,
3419 ** then the seek is not possible, so jump to P2 */
3420 pc = pOp->p2 - 1;
3421 break;
3422 }
3423 /* If we reach this point, then the P3 value must be a floating
3424 ** point number. */
3425 assert( (pIn3->flags & MEM_Real)!=0 );
3426
3427 if( iKey==SMALLEST_INT64 && (pIn3->r<(double)iKey || pIn3->r>0) ){
drhaa736092009-06-22 00:55:30 +00003428 /* The P3 value is too large in magnitude to be expressed as an
drh959403f2008-12-12 17:56:16 +00003429 ** integer. */
3430 res = 1;
3431 if( pIn3->r<0 ){
drh1f350122009-11-13 20:52:43 +00003432 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
drh959403f2008-12-12 17:56:16 +00003433 rc = sqlite3BtreeFirst(pC->pCursor, &res);
3434 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3435 }
3436 }else{
drh1f350122009-11-13 20:52:43 +00003437 if( oc<=OP_SeekLe ){ assert( oc==OP_SeekLt || oc==OP_SeekLe );
drh959403f2008-12-12 17:56:16 +00003438 rc = sqlite3BtreeLast(pC->pCursor, &res);
3439 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3440 }
3441 }
3442 if( res ){
3443 pc = pOp->p2 - 1;
3444 }
3445 break;
3446 }else if( oc==OP_SeekLt || oc==OP_SeekGe ){
3447 /* Use the ceiling() function to convert real->int */
3448 if( pIn3->r > (double)iKey ) iKey++;
3449 }else{
3450 /* Use the floor() function to convert real->int */
3451 assert( oc==OP_SeekLe || oc==OP_SeekGt );
3452 if( pIn3->r < (double)iKey ) iKey--;
3453 }
3454 }
drhe63d9992008-08-13 19:11:48 +00003455 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
danielk197728129562005-01-11 10:25:06 +00003456 if( rc!=SQLITE_OK ){
3457 goto abort_due_to_error;
3458 }
drh959403f2008-12-12 17:56:16 +00003459 if( res==0 ){
3460 pC->rowidIsValid = 1;
3461 pC->lastRowid = iKey;
3462 }
drh5e00f6c2001-09-13 13:46:56 +00003463 }else{
drh856c1032009-06-02 15:21:42 +00003464 nField = pOp->p4.i;
danielk1977b790c6c2008-04-18 10:25:24 +00003465 assert( pOp->p4type==P4_INT32 );
3466 assert( nField>0 );
3467 r.pKeyInfo = pC->pKeyInfo;
drh9c1905f2008-12-10 22:32:56 +00003468 r.nField = (u16)nField;
drh1f350122009-11-13 20:52:43 +00003469
3470 /* The next line of code computes as follows, only faster:
3471 ** if( oc==OP_SeekGt || oc==OP_SeekLe ){
3472 ** r.flags = UNPACKED_INCRKEY;
3473 ** }else{
3474 ** r.flags = 0;
3475 ** }
3476 */
shaneh5e17e8b2009-12-03 04:40:47 +00003477 r.flags = (u16)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt)));
drh1f350122009-11-13 20:52:43 +00003478 assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY );
3479 assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY );
3480 assert( oc!=OP_SeekGe || r.flags==0 );
3481 assert( oc!=OP_SeekLt || r.flags==0 );
3482
drha6c2ed92009-11-14 23:22:23 +00003483 r.aMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00003484#ifdef SQLITE_DEBUG
3485 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3486#endif
drh039fc322009-11-17 18:31:47 +00003487 ExpandBlob(r.aMem);
drhe63d9992008-08-13 19:11:48 +00003488 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
danielk197728129562005-01-11 10:25:06 +00003489 if( rc!=SQLITE_OK ){
3490 goto abort_due_to_error;
3491 }
drhf0863fe2005-06-12 21:35:51 +00003492 pC->rowidIsValid = 0;
drh5e00f6c2001-09-13 13:46:56 +00003493 }
drha11846b2004-01-07 18:52:56 +00003494 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00003495 pC->cacheStatus = CACHE_STALE;
drh0f7eb612006-08-08 13:51:43 +00003496#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +00003497 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00003498#endif
drh1f350122009-11-13 20:52:43 +00003499 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
drh959403f2008-12-12 17:56:16 +00003500 if( res<0 || (res==0 && oc==OP_SeekGt) ){
danielk197728129562005-01-11 10:25:06 +00003501 rc = sqlite3BtreeNext(pC->pCursor, &res);
danielk197701427a62005-01-11 13:02:33 +00003502 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drhf0863fe2005-06-12 21:35:51 +00003503 pC->rowidIsValid = 0;
drh1af3fdb2004-07-18 21:33:01 +00003504 }else{
3505 res = 0;
drh8721ce42001-11-07 14:22:00 +00003506 }
drh7cf6e4d2004-05-19 14:56:55 +00003507 }else{
drh959403f2008-12-12 17:56:16 +00003508 assert( oc==OP_SeekLt || oc==OP_SeekLe );
3509 if( res>0 || (res==0 && oc==OP_SeekLt) ){
danielk197701427a62005-01-11 13:02:33 +00003510 rc = sqlite3BtreePrevious(pC->pCursor, &res);
3511 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drhf0863fe2005-06-12 21:35:51 +00003512 pC->rowidIsValid = 0;
drh1a844c32002-12-04 22:29:28 +00003513 }else{
3514 /* res might be negative because the table is empty. Check to
3515 ** see if this is the case.
3516 */
drhf328bc82004-05-10 23:29:49 +00003517 res = sqlite3BtreeEof(pC->pCursor);
drh1a844c32002-12-04 22:29:28 +00003518 }
drh1af3fdb2004-07-18 21:33:01 +00003519 }
drh91fd4d42008-01-19 20:11:25 +00003520 assert( pOp->p2>0 );
drh1af3fdb2004-07-18 21:33:01 +00003521 if( res ){
drh91fd4d42008-01-19 20:11:25 +00003522 pc = pOp->p2 - 1;
drh8721ce42001-11-07 14:22:00 +00003523 }
drhaa736092009-06-22 00:55:30 +00003524 }else{
danielk1977f7b9d662008-06-23 18:49:43 +00003525 /* This happens when attempting to open the sqlite3_master table
3526 ** for read access returns SQLITE_EMPTY. In this case always
3527 ** take the jump (since there are no records in the table).
3528 */
3529 pc = pOp->p2 - 1;
drh5e00f6c2001-09-13 13:46:56 +00003530 }
drh5e00f6c2001-09-13 13:46:56 +00003531 break;
3532}
3533
drh959403f2008-12-12 17:56:16 +00003534/* Opcode: Seek P1 P2 * * *
3535**
3536** P1 is an open table cursor and P2 is a rowid integer. Arrange
3537** for P1 to move so that it points to the rowid given by P2.
3538**
3539** This is actually a deferred seek. Nothing actually happens until
3540** the cursor is used to read a record. That way, if no reads
3541** occur, no unnecessary I/O happens.
3542*/
3543case OP_Seek: { /* in2 */
drh959403f2008-12-12 17:56:16 +00003544 VdbeCursor *pC;
3545
drh653b82a2009-06-22 11:10:47 +00003546 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3547 pC = p->apCsr[pOp->p1];
drh959403f2008-12-12 17:56:16 +00003548 assert( pC!=0 );
drhaa736092009-06-22 00:55:30 +00003549 if( ALWAYS(pC->pCursor!=0) ){
drh959403f2008-12-12 17:56:16 +00003550 assert( pC->isTable );
3551 pC->nullRow = 0;
drh3c657212009-11-17 23:59:58 +00003552 pIn2 = &aMem[pOp->p2];
drh959403f2008-12-12 17:56:16 +00003553 pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
3554 pC->rowidIsValid = 0;
3555 pC->deferredMoveto = 1;
3556 }
3557 break;
3558}
3559
3560
drh8cff69d2009-11-12 19:59:44 +00003561/* Opcode: Found P1 P2 P3 P4 *
drh5e00f6c2001-09-13 13:46:56 +00003562**
drh8cff69d2009-11-12 19:59:44 +00003563** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3564** P4>0 then register P3 is the first of P4 registers that form an unpacked
3565** record.
3566**
3567** Cursor P1 is on an index btree. If the record identified by P3 and P4
3568** is a prefix of any entry in P1 then a jump is made to P2 and
drhe3365e62009-11-12 17:52:24 +00003569** P1 is left pointing at the matching entry.
drh5e00f6c2001-09-13 13:46:56 +00003570*/
drh8cff69d2009-11-12 19:59:44 +00003571/* Opcode: NotFound P1 P2 P3 P4 *
drh5e00f6c2001-09-13 13:46:56 +00003572**
drh8cff69d2009-11-12 19:59:44 +00003573** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3574** P4>0 then register P3 is the first of P4 registers that form an unpacked
3575** record.
3576**
3577** Cursor P1 is on an index btree. If the record identified by P3 and P4
3578** is not the prefix of any entry in P1 then a jump is made to P2. If P1
3579** does contain an entry whose prefix matches the P3/P4 record then control
3580** falls through to the next instruction and P1 is left pointing at the
3581** matching entry.
drh5e00f6c2001-09-13 13:46:56 +00003582**
drhcb6d50e2008-08-21 19:28:30 +00003583** See also: Found, NotExists, IsUnique
drh5e00f6c2001-09-13 13:46:56 +00003584*/
drh9cbf3422008-01-17 16:22:13 +00003585case OP_NotFound: /* jump, in3 */
3586case OP_Found: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003587 int alreadyExists;
drhdfe88ec2008-11-03 20:55:06 +00003588 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003589 int res;
dan03e9cfc2011-09-05 14:20:27 +00003590 char *pFree;
drh856c1032009-06-02 15:21:42 +00003591 UnpackedRecord *pIdxKey;
drh8cff69d2009-11-12 19:59:44 +00003592 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00003593 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];
3594
dan0ff297e2009-09-25 17:03:14 +00003595#ifdef SQLITE_TEST
3596 sqlite3_found_count++;
3597#endif
3598
drh856c1032009-06-02 15:21:42 +00003599 alreadyExists = 0;
drhaa736092009-06-22 00:55:30 +00003600 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh8cff69d2009-11-12 19:59:44 +00003601 assert( pOp->p4type==P4_INT32 );
drhaa736092009-06-22 00:55:30 +00003602 pC = p->apCsr[pOp->p1];
3603 assert( pC!=0 );
drh3c657212009-11-17 23:59:58 +00003604 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00003605 if( ALWAYS(pC->pCursor!=0) ){
drhe63d9992008-08-13 19:11:48 +00003606
drhf0863fe2005-06-12 21:35:51 +00003607 assert( pC->isTable==0 );
drh8cff69d2009-11-12 19:59:44 +00003608 if( pOp->p4.i>0 ){
3609 r.pKeyInfo = pC->pKeyInfo;
shaneh5e17e8b2009-12-03 04:40:47 +00003610 r.nField = (u16)pOp->p4.i;
drh8cff69d2009-11-12 19:59:44 +00003611 r.aMem = pIn3;
drh2b4ded92010-09-27 21:09:31 +00003612#ifdef SQLITE_DEBUG
3613 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3614#endif
drh8cff69d2009-11-12 19:59:44 +00003615 r.flags = UNPACKED_PREFIX_MATCH;
3616 pIdxKey = &r;
3617 }else{
dan03e9cfc2011-09-05 14:20:27 +00003618 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
3619 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
3620 );
3621 if( pIdxKey==0 ) goto no_mem;
drh8cff69d2009-11-12 19:59:44 +00003622 assert( pIn3->flags & MEM_Blob );
drhd81a1422010-09-28 07:11:24 +00003623 assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */
dan03e9cfc2011-09-05 14:20:27 +00003624 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
drh8cff69d2009-11-12 19:59:44 +00003625 pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
danielk19779a96b662007-11-29 17:05:18 +00003626 }
drhe63d9992008-08-13 19:11:48 +00003627 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
drh8cff69d2009-11-12 19:59:44 +00003628 if( pOp->p4.i==0 ){
dan03e9cfc2011-09-05 14:20:27 +00003629 sqlite3DbFree(db, pFree);
drh8cff69d2009-11-12 19:59:44 +00003630 }
danielk197777519402007-08-30 11:48:31 +00003631 if( rc!=SQLITE_OK ){
3632 break;
3633 }
3634 alreadyExists = (res==0);
drha11846b2004-01-07 18:52:56 +00003635 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00003636 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00003637 }
3638 if( pOp->opcode==OP_Found ){
3639 if( alreadyExists ) pc = pOp->p2 - 1;
3640 }else{
3641 if( !alreadyExists ) pc = pOp->p2 - 1;
3642 }
drh5e00f6c2001-09-13 13:46:56 +00003643 break;
3644}
3645
drh98757152008-01-09 23:04:12 +00003646/* Opcode: IsUnique P1 P2 P3 P4 *
drh9cfcf5d2002-01-29 18:41:24 +00003647**
drh8cff69d2009-11-12 19:59:44 +00003648** Cursor P1 is open on an index b-tree - that is to say, a btree which
3649** no data and where the key are records generated by OP_MakeRecord with
3650** the list field being the integer ROWID of the entry that the index
3651** entry refers to.
danielk1977de630352009-05-04 11:42:29 +00003652**
3653** The P3 register contains an integer record number. Call this record
3654** number R. Register P4 is the first in a set of N contiguous registers
3655** that make up an unpacked index key that can be used with cursor P1.
3656** The value of N can be inferred from the cursor. N includes the rowid
3657** value appended to the end of the index record. This rowid value may
3658** or may not be the same as R.
3659**
3660** If any of the N registers beginning with register P4 contains a NULL
3661** value, jump immediately to P2.
3662**
3663** Otherwise, this instruction checks if cursor P1 contains an entry
3664** where the first (N-1) fields match but the rowid value at the end
3665** of the index entry is not R. If there is no such entry, control jumps
3666** to instruction P2. Otherwise, the rowid of the conflicting index
3667** entry is copied to register P3 and control falls through to the next
3668** instruction.
drh9cfcf5d2002-01-29 18:41:24 +00003669**
drh9cbf3422008-01-17 16:22:13 +00003670** See also: NotFound, NotExists, Found
drh9cfcf5d2002-01-29 18:41:24 +00003671*/
drh9cbf3422008-01-17 16:22:13 +00003672case OP_IsUnique: { /* jump, in3 */
shane60a4b532009-05-06 18:57:09 +00003673 u16 ii;
drhdfe88ec2008-11-03 20:55:06 +00003674 VdbeCursor *pCx;
drh9cfcf5d2002-01-29 18:41:24 +00003675 BtCursor *pCrsr;
shane60a4b532009-05-06 18:57:09 +00003676 u16 nField;
drha6c2ed92009-11-14 23:22:23 +00003677 Mem *aMx;
drh856c1032009-06-02 15:21:42 +00003678 UnpackedRecord r; /* B-Tree index search key */
3679 i64 R; /* Rowid stored in register P3 */
drh9cfcf5d2002-01-29 18:41:24 +00003680
drh3c657212009-11-17 23:59:58 +00003681 pIn3 = &aMem[pOp->p3];
drha6c2ed92009-11-14 23:22:23 +00003682 aMx = &aMem[pOp->p4.i];
danielk1977de630352009-05-04 11:42:29 +00003683 /* Assert that the values of parameters P1 and P4 are in range. */
drh98757152008-01-09 23:04:12 +00003684 assert( pOp->p4type==P4_INT32 );
drh9cbf3422008-01-17 16:22:13 +00003685 assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
danielk1977de630352009-05-04 11:42:29 +00003686 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3687
3688 /* Find the index cursor. */
3689 pCx = p->apCsr[pOp->p1];
3690 assert( pCx->deferredMoveto==0 );
3691 pCx->seekResult = 0;
3692 pCx->cacheStatus = CACHE_STALE;
drhf328bc82004-05-10 23:29:49 +00003693 pCrsr = pCx->pCursor;
danielk1977de630352009-05-04 11:42:29 +00003694
3695 /* If any of the values are NULL, take the jump. */
3696 nField = pCx->pKeyInfo->nField;
3697 for(ii=0; ii<nField; ii++){
drha6c2ed92009-11-14 23:22:23 +00003698 if( aMx[ii].flags & MEM_Null ){
danielk1977de630352009-05-04 11:42:29 +00003699 pc = pOp->p2 - 1;
3700 pCrsr = 0;
3701 break;
3702 }
3703 }
drha6c2ed92009-11-14 23:22:23 +00003704 assert( (aMx[nField].flags & MEM_Null)==0 );
danielk1977de630352009-05-04 11:42:29 +00003705
drhf328bc82004-05-10 23:29:49 +00003706 if( pCrsr!=0 ){
danielk1977de630352009-05-04 11:42:29 +00003707 /* Populate the index search key. */
3708 r.pKeyInfo = pCx->pKeyInfo;
3709 r.nField = nField + 1;
3710 r.flags = UNPACKED_PREFIX_SEARCH;
drha6c2ed92009-11-14 23:22:23 +00003711 r.aMem = aMx;
drh2b4ded92010-09-27 21:09:31 +00003712#ifdef SQLITE_DEBUG
3713 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3714#endif
danielk1977452c9892004-05-13 05:16:15 +00003715
danielk1977de630352009-05-04 11:42:29 +00003716 /* Extract the value of R from register P3. */
3717 sqlite3VdbeMemIntegerify(pIn3);
3718 R = pIn3->u.i;
3719
3720 /* Search the B-Tree index. If no conflicting record is found, jump
3721 ** to P2. Otherwise, copy the rowid of the conflicting record to
3722 ** register P3 and fall through to the next instruction. */
3723 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &pCx->seekResult);
3724 if( (r.flags & UNPACKED_PREFIX_SEARCH) || r.rowid==R ){
drh9cfcf5d2002-01-29 18:41:24 +00003725 pc = pOp->p2 - 1;
danielk1977de630352009-05-04 11:42:29 +00003726 }else{
3727 pIn3->u.i = r.rowid;
drh9cfcf5d2002-01-29 18:41:24 +00003728 }
drh9cfcf5d2002-01-29 18:41:24 +00003729 }
3730 break;
3731}
3732
drh9cbf3422008-01-17 16:22:13 +00003733/* Opcode: NotExists P1 P2 P3 * *
drh6b125452002-01-28 15:53:03 +00003734**
drhef8662b2011-06-20 21:47:58 +00003735** Use the content of register P3 as an integer key. If a record
danielk197796cb76f2008-01-04 13:24:28 +00003736** with that key does not exist in table of P1, then jump to P2.
drh710c4842010-08-30 01:17:20 +00003737** If the record does exist, then fall through. The cursor is left
drh9cbf3422008-01-17 16:22:13 +00003738** pointing to the record if it exists.
drh6b125452002-01-28 15:53:03 +00003739**
3740** The difference between this operation and NotFound is that this
drhf0863fe2005-06-12 21:35:51 +00003741** operation assumes the key is an integer and that P1 is a table whereas
3742** NotFound assumes key is a blob constructed from MakeRecord and
3743** P1 is an index.
drh6b125452002-01-28 15:53:03 +00003744**
drhcb6d50e2008-08-21 19:28:30 +00003745** See also: Found, NotFound, IsUnique
drh6b125452002-01-28 15:53:03 +00003746*/
drh9cbf3422008-01-17 16:22:13 +00003747case OP_NotExists: { /* jump, in3 */
drhdfe88ec2008-11-03 20:55:06 +00003748 VdbeCursor *pC;
drh0ca3e242002-01-29 23:07:02 +00003749 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00003750 int res;
3751 u64 iKey;
3752
drh3c657212009-11-17 23:59:58 +00003753 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00003754 assert( pIn3->flags & MEM_Int );
3755 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3756 pC = p->apCsr[pOp->p1];
3757 assert( pC!=0 );
3758 assert( pC->isTable );
drh3e9ca092009-09-08 01:14:48 +00003759 assert( pC->pseudoTableReg==0 );
drhaa736092009-06-22 00:55:30 +00003760 pCrsr = pC->pCursor;
dana205a482011-08-27 18:48:57 +00003761 if( ALWAYS(pCrsr!=0) ){
drh856c1032009-06-02 15:21:42 +00003762 res = 0;
drhaa736092009-06-22 00:55:30 +00003763 iKey = pIn3->u.i;
danielk1977de630352009-05-04 11:42:29 +00003764 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
drh98757152008-01-09 23:04:12 +00003765 pC->lastRowid = pIn3->u.i;
drh9c1905f2008-12-10 22:32:56 +00003766 pC->rowidIsValid = res==0 ?1:0;
drh9188b382004-05-14 21:12:22 +00003767 pC->nullRow = 0;
drh76873ab2006-01-07 18:48:26 +00003768 pC->cacheStatus = CACHE_STALE;
danielk19771d461462009-04-21 09:02:45 +00003769 pC->deferredMoveto = 0;
danielk197728129562005-01-11 10:25:06 +00003770 if( res!=0 ){
drh17f71932002-02-21 12:01:27 +00003771 pc = pOp->p2 - 1;
drh91fd4d42008-01-19 20:11:25 +00003772 assert( pC->rowidIsValid==0 );
drh6b125452002-01-28 15:53:03 +00003773 }
danielk1977de630352009-05-04 11:42:29 +00003774 pC->seekResult = res;
drhaa736092009-06-22 00:55:30 +00003775 }else{
danielk1977f7b9d662008-06-23 18:49:43 +00003776 /* This happens when an attempt to open a read cursor on the
3777 ** sqlite_master table returns SQLITE_EMPTY.
3778 */
danielk1977f7b9d662008-06-23 18:49:43 +00003779 pc = pOp->p2 - 1;
3780 assert( pC->rowidIsValid==0 );
danielk1977de630352009-05-04 11:42:29 +00003781 pC->seekResult = 0;
drh6b125452002-01-28 15:53:03 +00003782 }
drh6b125452002-01-28 15:53:03 +00003783 break;
3784}
3785
drh4c583122008-01-04 22:01:03 +00003786/* Opcode: Sequence P1 P2 * * *
drh4db38a72005-09-01 12:16:28 +00003787**
drh4c583122008-01-04 22:01:03 +00003788** Find the next available sequence number for cursor P1.
drh9cbf3422008-01-17 16:22:13 +00003789** Write the sequence number into register P2.
drh4c583122008-01-04 22:01:03 +00003790** The sequence number on the cursor is incremented after this
3791** instruction.
drh4db38a72005-09-01 12:16:28 +00003792*/
drh4c583122008-01-04 22:01:03 +00003793case OP_Sequence: { /* out2-prerelease */
drh653b82a2009-06-22 11:10:47 +00003794 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3795 assert( p->apCsr[pOp->p1]!=0 );
3796 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
drh4db38a72005-09-01 12:16:28 +00003797 break;
3798}
3799
3800
drh98757152008-01-09 23:04:12 +00003801/* Opcode: NewRowid P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00003802**
drhf0863fe2005-06-12 21:35:51 +00003803** Get a new integer record number (a.k.a "rowid") used as the key to a table.
drhb19a2bc2001-09-16 00:13:26 +00003804** The record number is not previously used as a key in the database
drh9cbf3422008-01-17 16:22:13 +00003805** table that cursor P1 points to. The new record number is written
3806** written to register P2.
drh205f48e2004-11-05 00:43:11 +00003807**
dan76d462e2009-08-30 11:42:51 +00003808** If P3>0 then P3 is a register in the root frame of this VDBE that holds
3809** the largest previously generated record number. No new record numbers are
3810** allowed to be less than this value. When this value reaches its maximum,
drhef8662b2011-06-20 21:47:58 +00003811** an SQLITE_FULL error is generated. The P3 register is updated with the '
dan76d462e2009-08-30 11:42:51 +00003812** generated record number. This P3 mechanism is used to help implement the
drh205f48e2004-11-05 00:43:11 +00003813** AUTOINCREMENT feature.
drh5e00f6c2001-09-13 13:46:56 +00003814*/
drh4c583122008-01-04 22:01:03 +00003815case OP_NewRowid: { /* out2-prerelease */
drhaa736092009-06-22 00:55:30 +00003816 i64 v; /* The new rowid */
3817 VdbeCursor *pC; /* Cursor of table to get the new rowid */
3818 int res; /* Result of an sqlite3BtreeLast() */
3819 int cnt; /* Counter to limit the number of searches */
3820 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
dan76d462e2009-08-30 11:42:51 +00003821 VdbeFrame *pFrame; /* Root frame of VDBE */
drh856c1032009-06-02 15:21:42 +00003822
drh856c1032009-06-02 15:21:42 +00003823 v = 0;
3824 res = 0;
drhaa736092009-06-22 00:55:30 +00003825 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3826 pC = p->apCsr[pOp->p1];
3827 assert( pC!=0 );
3828 if( NEVER(pC->pCursor==0) ){
drhf328bc82004-05-10 23:29:49 +00003829 /* The zero initialization above is all that is needed */
drh5e00f6c2001-09-13 13:46:56 +00003830 }else{
drh5cf8e8c2002-02-19 22:42:05 +00003831 /* The next rowid or record number (different terms for the same
3832 ** thing) is obtained in a two-step algorithm.
3833 **
3834 ** First we attempt to find the largest existing rowid and add one
3835 ** to that. But if the largest existing rowid is already the maximum
3836 ** positive integer, we have to fall through to the second
3837 ** probabilistic algorithm
3838 **
3839 ** The second algorithm is to select a rowid at random and see if
3840 ** it already exists in the table. If it does not exist, we have
3841 ** succeeded. If the random rowid does exist, we select a new one
drhaa736092009-06-22 00:55:30 +00003842 ** and try again, up to 100 times.
drhdb5ed6d2001-09-18 22:17:44 +00003843 */
drhaa736092009-06-22 00:55:30 +00003844 assert( pC->isTable );
drhfe2093d2005-01-20 22:48:47 +00003845
drh75f86a42005-02-17 00:03:06 +00003846#ifdef SQLITE_32BIT_ROWID
3847# define MAX_ROWID 0x7fffffff
3848#else
drhfe2093d2005-01-20 22:48:47 +00003849 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
3850 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
3851 ** to provide the constant while making all compilers happy.
3852 */
danielk197764202cf2008-11-17 15:31:47 +00003853# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
drh75f86a42005-02-17 00:03:06 +00003854#endif
drhfe2093d2005-01-20 22:48:47 +00003855
drh5cf8e8c2002-02-19 22:42:05 +00003856 if( !pC->useRandomRowid ){
drh7f751222009-03-17 22:33:00 +00003857 v = sqlite3BtreeGetCachedRowid(pC->pCursor);
3858 if( v==0 ){
danielk1977261919c2005-12-06 12:52:59 +00003859 rc = sqlite3BtreeLast(pC->pCursor, &res);
3860 if( rc!=SQLITE_OK ){
3861 goto abort_due_to_error;
3862 }
drh32fbe342002-10-19 20:16:37 +00003863 if( res ){
drhc79c7612010-01-01 18:57:48 +00003864 v = 1; /* IMP: R-61914-48074 */
drh5cf8e8c2002-02-19 22:42:05 +00003865 }else{
drhea8ffdf2009-07-22 00:35:23 +00003866 assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
drhc27ae612009-07-14 18:35:44 +00003867 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
3868 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
drha40eb7c2012-02-24 00:02:28 +00003869 if( v>=MAX_ROWID ){
drh32fbe342002-10-19 20:16:37 +00003870 pC->useRandomRowid = 1;
3871 }else{
drhc79c7612010-01-01 18:57:48 +00003872 v++; /* IMP: R-29538-34987 */
drh32fbe342002-10-19 20:16:37 +00003873 }
drh5cf8e8c2002-02-19 22:42:05 +00003874 }
drh3fc190c2001-09-14 03:24:23 +00003875 }
drh205f48e2004-11-05 00:43:11 +00003876
3877#ifndef SQLITE_OMIT_AUTOINCREMENT
drh4c583122008-01-04 22:01:03 +00003878 if( pOp->p3 ){
shaneabc6b892009-09-10 19:09:03 +00003879 /* Assert that P3 is a valid memory cell. */
3880 assert( pOp->p3>0 );
dan76d462e2009-08-30 11:42:51 +00003881 if( p->pFrame ){
3882 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
shaneabc6b892009-09-10 19:09:03 +00003883 /* Assert that P3 is a valid memory cell. */
3884 assert( pOp->p3<=pFrame->nMem );
dan76d462e2009-08-30 11:42:51 +00003885 pMem = &pFrame->aMem[pOp->p3];
3886 }else{
shaneabc6b892009-09-10 19:09:03 +00003887 /* Assert that P3 is a valid memory cell. */
3888 assert( pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00003889 pMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00003890 memAboutToChange(p, pMem);
dan76d462e2009-08-30 11:42:51 +00003891 }
drh2b4ded92010-09-27 21:09:31 +00003892 assert( memIsValid(pMem) );
dan76d462e2009-08-30 11:42:51 +00003893
3894 REGISTER_TRACE(pOp->p3, pMem);
drh8a512562005-11-14 22:29:05 +00003895 sqlite3VdbeMemIntegerify(pMem);
drh4c583122008-01-04 22:01:03 +00003896 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
drh3c024d62007-03-30 11:23:45 +00003897 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
drhc79c7612010-01-01 18:57:48 +00003898 rc = SQLITE_FULL; /* IMP: R-12275-61338 */
drh205f48e2004-11-05 00:43:11 +00003899 goto abort_due_to_error;
3900 }
drh3c024d62007-03-30 11:23:45 +00003901 if( v<pMem->u.i+1 ){
3902 v = pMem->u.i + 1;
drh205f48e2004-11-05 00:43:11 +00003903 }
drh3c024d62007-03-30 11:23:45 +00003904 pMem->u.i = v;
drh205f48e2004-11-05 00:43:11 +00003905 }
3906#endif
3907
drh7f751222009-03-17 22:33:00 +00003908 sqlite3BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0);
drh5cf8e8c2002-02-19 22:42:05 +00003909 }
3910 if( pC->useRandomRowid ){
drh748a52c2010-09-01 11:50:08 +00003911 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
drhc79c7612010-01-01 18:57:48 +00003912 ** largest possible integer (9223372036854775807) then the database
drh748a52c2010-09-01 11:50:08 +00003913 ** engine starts picking positive candidate ROWIDs at random until
3914 ** it finds one that is not previously used. */
drhaa736092009-06-22 00:55:30 +00003915 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
3916 ** an AUTOINCREMENT table. */
shanehc4d340a2010-09-01 02:37:56 +00003917 /* on the first attempt, simply do one more than previous */
drh99a66922011-05-13 18:51:42 +00003918 v = lastRowid;
shanehc4d340a2010-09-01 02:37:56 +00003919 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
3920 v++; /* ensure non-zero */
drh5cf8e8c2002-02-19 22:42:05 +00003921 cnt = 0;
drh748a52c2010-09-01 11:50:08 +00003922 while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
3923 0, &res))==SQLITE_OK)
shanehc4d340a2010-09-01 02:37:56 +00003924 && (res==0)
3925 && (++cnt<100)){
3926 /* collision - try another random rowid */
3927 sqlite3_randomness(sizeof(v), &v);
3928 if( cnt<5 ){
3929 /* try "small" random rowids for the initial attempts */
3930 v &= 0xffffff;
drh91fd4d42008-01-19 20:11:25 +00003931 }else{
shanehc4d340a2010-09-01 02:37:56 +00003932 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
drh5cf8e8c2002-02-19 22:42:05 +00003933 }
shanehc4d340a2010-09-01 02:37:56 +00003934 v++; /* ensure non-zero */
3935 }
drhaa736092009-06-22 00:55:30 +00003936 if( rc==SQLITE_OK && res==0 ){
drhc79c7612010-01-01 18:57:48 +00003937 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
drh5cf8e8c2002-02-19 22:42:05 +00003938 goto abort_due_to_error;
3939 }
drh748a52c2010-09-01 11:50:08 +00003940 assert( v>0 ); /* EV: R-40812-03570 */
drh1eaa2692001-09-18 02:02:23 +00003941 }
drhf0863fe2005-06-12 21:35:51 +00003942 pC->rowidIsValid = 0;
drha11846b2004-01-07 18:52:56 +00003943 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00003944 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00003945 }
drh4c583122008-01-04 22:01:03 +00003946 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00003947 break;
3948}
3949
danielk19771f4aa332008-01-03 09:51:55 +00003950/* Opcode: Insert P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00003951**
jplyon5a564222003-06-02 06:15:58 +00003952** Write an entry into the table of cursor P1. A new entry is
drhb19a2bc2001-09-16 00:13:26 +00003953** created if it doesn't already exist or the data for an existing
drh3e9ca092009-09-08 01:14:48 +00003954** entry is overwritten. The data is the value MEM_Blob stored in register
danielk19771f4aa332008-01-03 09:51:55 +00003955** number P2. The key is stored in register P3. The key must
drh3e9ca092009-09-08 01:14:48 +00003956** be a MEM_Int.
drh4a324312001-12-21 14:30:42 +00003957**
danielk19771f4aa332008-01-03 09:51:55 +00003958** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
3959** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
danielk1977b28af712004-06-21 06:50:26 +00003960** then rowid is stored for subsequent return by the
drh85b623f2007-12-13 21:54:09 +00003961** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
drh6b125452002-01-28 15:53:03 +00003962**
drh3e9ca092009-09-08 01:14:48 +00003963** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
3964** the last seek operation (OP_NotExists) was a success, then this
3965** operation will not attempt to find the appropriate row before doing
3966** the insert but will instead overwrite the row that the cursor is
3967** currently pointing to. Presumably, the prior OP_NotExists opcode
3968** has already positioned the cursor correctly. This is an optimization
3969** that boosts performance by avoiding redundant seeks.
3970**
3971** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
3972** UPDATE operation. Otherwise (if the flag is clear) then this opcode
3973** is part of an INSERT operation. The difference is only important to
3974** the update hook.
3975**
drh66a51672008-01-03 00:01:23 +00003976** Parameter P4 may point to a string containing the table-name, or
danielk19771f6eec52006-06-16 06:17:47 +00003977** may be NULL. If it is not NULL, then the update-hook
3978** (sqlite3.xUpdateCallback) is invoked following a successful insert.
3979**
drh93aed5a2008-01-16 17:46:38 +00003980** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
3981** allocated, then ownership of P2 is transferred to the pseudo-cursor
3982** and register P2 becomes ephemeral. If the cursor is changed, the
3983** value of register P2 will then change. Make sure this does not
3984** cause any problems.)
3985**
drhf0863fe2005-06-12 21:35:51 +00003986** This instruction only works on tables. The equivalent instruction
3987** for indices is OP_IdxInsert.
drh6b125452002-01-28 15:53:03 +00003988*/
drhe05c9292009-10-29 13:48:10 +00003989/* Opcode: InsertInt P1 P2 P3 P4 P5
3990**
3991** This works exactly like OP_Insert except that the key is the
3992** integer value P3, not the value of the integer stored in register P3.
3993*/
3994case OP_Insert:
3995case OP_InsertInt: {
drh3e9ca092009-09-08 01:14:48 +00003996 Mem *pData; /* MEM cell holding data for the record to be inserted */
3997 Mem *pKey; /* MEM cell holding key for the record */
3998 i64 iKey; /* The integer ROWID or key for the record to be inserted */
3999 VdbeCursor *pC; /* Cursor to table into which insert is written */
4000 int nZero; /* Number of zero-bytes to append */
4001 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
4002 const char *zDb; /* database name - used by the update hook */
4003 const char *zTbl; /* Table name - used by the opdate hook */
4004 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
drh856c1032009-06-02 15:21:42 +00004005
drha6c2ed92009-11-14 23:22:23 +00004006 pData = &aMem[pOp->p2];
drh653b82a2009-06-22 11:10:47 +00004007 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh2b4ded92010-09-27 21:09:31 +00004008 assert( memIsValid(pData) );
drh653b82a2009-06-22 11:10:47 +00004009 pC = p->apCsr[pOp->p1];
drha05a7222008-01-19 03:35:58 +00004010 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00004011 assert( pC->pCursor!=0 );
4012 assert( pC->pseudoTableReg==0 );
drha05a7222008-01-19 03:35:58 +00004013 assert( pC->isTable );
drh5b6afba2008-01-05 16:29:28 +00004014 REGISTER_TRACE(pOp->p2, pData);
danielk19775f8d8a82004-05-11 00:28:42 +00004015
drhe05c9292009-10-29 13:48:10 +00004016 if( pOp->opcode==OP_Insert ){
drha6c2ed92009-11-14 23:22:23 +00004017 pKey = &aMem[pOp->p3];
drhe05c9292009-10-29 13:48:10 +00004018 assert( pKey->flags & MEM_Int );
drh2b4ded92010-09-27 21:09:31 +00004019 assert( memIsValid(pKey) );
drhe05c9292009-10-29 13:48:10 +00004020 REGISTER_TRACE(pOp->p3, pKey);
4021 iKey = pKey->u.i;
4022 }else{
4023 assert( pOp->opcode==OP_InsertInt );
4024 iKey = pOp->p3;
4025 }
4026
drha05a7222008-01-19 03:35:58 +00004027 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drh99a66922011-05-13 18:51:42 +00004028 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
drha05a7222008-01-19 03:35:58 +00004029 if( pData->flags & MEM_Null ){
4030 pData->z = 0;
4031 pData->n = 0;
4032 }else{
4033 assert( pData->flags & (MEM_Blob|MEM_Str) );
4034 }
drh3e9ca092009-09-08 01:14:48 +00004035 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4036 if( pData->flags & MEM_Zero ){
4037 nZero = pData->u.nZero;
drha05a7222008-01-19 03:35:58 +00004038 }else{
drh3e9ca092009-09-08 01:14:48 +00004039 nZero = 0;
drha05a7222008-01-19 03:35:58 +00004040 }
drh3e9ca092009-09-08 01:14:48 +00004041 sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
4042 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
4043 pData->z, pData->n, nZero,
4044 pOp->p5 & OPFLAG_APPEND, seekResult
4045 );
drha05a7222008-01-19 03:35:58 +00004046 pC->rowidIsValid = 0;
4047 pC->deferredMoveto = 0;
4048 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004049
drha05a7222008-01-19 03:35:58 +00004050 /* Invoke the update-hook if required. */
4051 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
drh856c1032009-06-02 15:21:42 +00004052 zDb = db->aDb[pC->iDb].zName;
4053 zTbl = pOp->p4.z;
4054 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
drha05a7222008-01-19 03:35:58 +00004055 assert( pC->isTable );
4056 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
4057 assert( pC->iDb>=0 );
4058 }
drh5e00f6c2001-09-13 13:46:56 +00004059 break;
4060}
4061
drh98757152008-01-09 23:04:12 +00004062/* Opcode: Delete P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +00004063**
drh5edc3122001-09-13 21:53:09 +00004064** Delete the record at which the P1 cursor is currently pointing.
4065**
4066** The cursor will be left pointing at either the next or the previous
4067** record in the table. If it is left pointing at the next record, then
drhb19a2bc2001-09-16 00:13:26 +00004068** the next Next instruction will be a no-op. Hence it is OK to delete
4069** a record from within an Next loop.
drhc8d30ac2002-04-12 10:08:59 +00004070**
rdcb0c374f2004-02-20 22:53:38 +00004071** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
danielk1977b28af712004-06-21 06:50:26 +00004072** incremented (otherwise not).
drh70ce3f02003-04-15 19:22:22 +00004073**
drh91fd4d42008-01-19 20:11:25 +00004074** P1 must not be pseudo-table. It has to be a real table with
4075** multiple rows.
4076**
4077** If P4 is not NULL, then it is the name of the table that P1 is
4078** pointing to. The update hook will be invoked, if it exists.
4079** If P4 is not NULL then the P1 cursor must have been positioned
4080** using OP_NotFound prior to invoking this opcode.
drh5e00f6c2001-09-13 13:46:56 +00004081*/
drh9cbf3422008-01-17 16:22:13 +00004082case OP_Delete: {
drh856c1032009-06-02 15:21:42 +00004083 i64 iKey;
drhdfe88ec2008-11-03 20:55:06 +00004084 VdbeCursor *pC;
drh91fd4d42008-01-19 20:11:25 +00004085
drh856c1032009-06-02 15:21:42 +00004086 iKey = 0;
drh653b82a2009-06-22 11:10:47 +00004087 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4088 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004089 assert( pC!=0 );
drh91fd4d42008-01-19 20:11:25 +00004090 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
danielk197794eb6a12005-12-15 15:22:08 +00004091
drh91fd4d42008-01-19 20:11:25 +00004092 /* If the update-hook will be invoked, set iKey to the rowid of the
4093 ** row being deleted.
4094 */
4095 if( db->xUpdateCallback && pOp->p4.z ){
4096 assert( pC->isTable );
4097 assert( pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */
4098 iKey = pC->lastRowid;
4099 }
danielk197794eb6a12005-12-15 15:22:08 +00004100
drh9a65f2c2009-06-22 19:05:40 +00004101 /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
4102 ** OP_Column on the same table without any intervening operations that
4103 ** might move or invalidate the cursor. Hence cursor pC is always pointing
4104 ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
4105 ** below is always a no-op and cannot fail. We will run it anyhow, though,
4106 ** to guard against future changes to the code generator.
4107 **/
4108 assert( pC->deferredMoveto==0 );
drh91fd4d42008-01-19 20:11:25 +00004109 rc = sqlite3VdbeCursorMoveto(pC);
drh9a65f2c2009-06-22 19:05:40 +00004110 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4111
drh7f751222009-03-17 22:33:00 +00004112 sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
drh91fd4d42008-01-19 20:11:25 +00004113 rc = sqlite3BtreeDelete(pC->pCursor);
drh91fd4d42008-01-19 20:11:25 +00004114 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004115
drh91fd4d42008-01-19 20:11:25 +00004116 /* Invoke the update-hook if required. */
4117 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
4118 const char *zDb = db->aDb[pC->iDb].zName;
4119 const char *zTbl = pOp->p4.z;
4120 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
4121 assert( pC->iDb>=0 );
drh5e00f6c2001-09-13 13:46:56 +00004122 }
danielk1977b28af712004-06-21 06:50:26 +00004123 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
rdcb0c374f2004-02-20 22:53:38 +00004124 break;
4125}
drhb7f1d9a2009-09-08 02:27:58 +00004126/* Opcode: ResetCount * * * * *
rdcb0c374f2004-02-20 22:53:38 +00004127**
drhb7f1d9a2009-09-08 02:27:58 +00004128** The value of the change counter is copied to the database handle
4129** change counter (returned by subsequent calls to sqlite3_changes()).
4130** Then the VMs internal change counter resets to 0.
4131** This is used by trigger programs.
rdcb0c374f2004-02-20 22:53:38 +00004132*/
drh9cbf3422008-01-17 16:22:13 +00004133case OP_ResetCount: {
drhb7f1d9a2009-09-08 02:27:58 +00004134 sqlite3VdbeSetChanges(db, p->nChange);
danielk1977b28af712004-06-21 06:50:26 +00004135 p->nChange = 0;
drh5e00f6c2001-09-13 13:46:56 +00004136 break;
4137}
4138
dan5134d132011-09-02 10:31:11 +00004139/* Opcode: SorterCompare P1 P2 P3
4140**
4141** P1 is a sorter cursor. This instruction compares the record blob in
4142** register P3 with the entry that the sorter cursor currently points to.
4143** If, excluding the rowid fields at the end, the two records are a match,
4144** fall through to the next instruction. Otherwise, jump to instruction P2.
4145*/
4146case OP_SorterCompare: {
4147 VdbeCursor *pC;
4148 int res;
4149
4150 pC = p->apCsr[pOp->p1];
4151 assert( isSorter(pC) );
4152 pIn3 = &aMem[pOp->p3];
4153 rc = sqlite3VdbeSorterCompare(pC, pIn3, &res);
4154 if( res ){
4155 pc = pOp->p2-1;
4156 }
4157 break;
4158};
4159
4160/* Opcode: SorterData P1 P2 * * *
4161**
4162** Write into register P2 the current sorter data for sorter cursor P1.
4163*/
4164case OP_SorterData: {
4165 VdbeCursor *pC;
drhca892a72011-09-03 00:17:51 +00004166#ifndef SQLITE_OMIT_MERGE_SORT
dan5134d132011-09-02 10:31:11 +00004167 pOut = &aMem[pOp->p2];
4168 pC = p->apCsr[pOp->p1];
4169 assert( pC->isSorter );
4170 rc = sqlite3VdbeSorterRowkey(pC, pOut);
drhca892a72011-09-03 00:17:51 +00004171#else
4172 pOp->opcode = OP_RowKey;
4173 pc--;
4174#endif
dan5134d132011-09-02 10:31:11 +00004175 break;
4176}
4177
drh98757152008-01-09 23:04:12 +00004178/* Opcode: RowData P1 P2 * * *
drh70ce3f02003-04-15 19:22:22 +00004179**
drh98757152008-01-09 23:04:12 +00004180** Write into register P2 the complete row data for cursor P1.
4181** There is no interpretation of the data.
4182** It is just copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004183** it is found in the database file.
drh70ce3f02003-04-15 19:22:22 +00004184**
drhde4fcfd2008-01-19 23:50:26 +00004185** If the P1 cursor must be pointing to a valid row (not a NULL row)
4186** of a real table, not a pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00004187*/
drh98757152008-01-09 23:04:12 +00004188/* Opcode: RowKey P1 P2 * * *
drh143f3c42004-01-07 20:37:52 +00004189**
drh98757152008-01-09 23:04:12 +00004190** Write into register P2 the complete row key for cursor P1.
4191** There is no interpretation of the data.
drh9cbf3422008-01-17 16:22:13 +00004192** The key is copied onto the P3 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004193** it is found in the database file.
drh143f3c42004-01-07 20:37:52 +00004194**
drhde4fcfd2008-01-19 23:50:26 +00004195** If the P1 cursor must be pointing to a valid row (not a NULL row)
4196** of a real table, not a pseudo-table.
drh143f3c42004-01-07 20:37:52 +00004197*/
danielk1977a7a8e142008-02-13 18:25:27 +00004198case OP_RowKey:
4199case OP_RowData: {
drhdfe88ec2008-11-03 20:55:06 +00004200 VdbeCursor *pC;
drhde4fcfd2008-01-19 23:50:26 +00004201 BtCursor *pCrsr;
danielk1977e0d4b062004-06-28 01:11:46 +00004202 u32 n;
drh856c1032009-06-02 15:21:42 +00004203 i64 n64;
drh70ce3f02003-04-15 19:22:22 +00004204
drha6c2ed92009-11-14 23:22:23 +00004205 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00004206 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00004207
drhf0863fe2005-06-12 21:35:51 +00004208 /* Note that RowKey and RowData are really exactly the same instruction */
drh653b82a2009-06-22 11:10:47 +00004209 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4210 pC = p->apCsr[pOp->p1];
dan5134d132011-09-02 10:31:11 +00004211 assert( pC->isSorter==0 );
drhc6aff302011-09-01 15:32:47 +00004212 assert( pC->isTable || pOp->opcode!=OP_RowData );
drhf0863fe2005-06-12 21:35:51 +00004213 assert( pC->isIndex || pOp->opcode==OP_RowData );
drh4774b132004-06-12 20:12:51 +00004214 assert( pC!=0 );
drhde4fcfd2008-01-19 23:50:26 +00004215 assert( pC->nullRow==0 );
drh3e9ca092009-09-08 01:14:48 +00004216 assert( pC->pseudoTableReg==0 );
drhde4fcfd2008-01-19 23:50:26 +00004217 assert( pC->pCursor!=0 );
4218 pCrsr = pC->pCursor;
drhea8ffdf2009-07-22 00:35:23 +00004219 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drh9a65f2c2009-06-22 19:05:40 +00004220
4221 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4222 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
4223 ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always
4224 ** a no-op and can never fail. But we leave it in place as a safety.
4225 */
4226 assert( pC->deferredMoveto==0 );
drhde4fcfd2008-01-19 23:50:26 +00004227 rc = sqlite3VdbeCursorMoveto(pC);
drh9a65f2c2009-06-22 19:05:40 +00004228 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4229
drhde4fcfd2008-01-19 23:50:26 +00004230 if( pC->isIndex ){
drhde4fcfd2008-01-19 23:50:26 +00004231 assert( !pC->isTable );
drhb07028f2011-10-14 21:49:18 +00004232 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
drhc27ae612009-07-14 18:35:44 +00004233 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
drhbb4957f2008-03-20 14:03:29 +00004234 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhde4fcfd2008-01-19 23:50:26 +00004235 goto too_big;
drh70ce3f02003-04-15 19:22:22 +00004236 }
drhbfb19dc2009-06-05 16:46:53 +00004237 n = (u32)n64;
drhde4fcfd2008-01-19 23:50:26 +00004238 }else{
drhb07028f2011-10-14 21:49:18 +00004239 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
drhea8ffdf2009-07-22 00:35:23 +00004240 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
shane75ac1de2009-06-09 18:58:52 +00004241 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00004242 goto too_big;
4243 }
drhde4fcfd2008-01-19 23:50:26 +00004244 }
danielk1977a7a8e142008-02-13 18:25:27 +00004245 if( sqlite3VdbeMemGrow(pOut, n, 0) ){
4246 goto no_mem;
drhde4fcfd2008-01-19 23:50:26 +00004247 }
danielk1977a7a8e142008-02-13 18:25:27 +00004248 pOut->n = n;
4249 MemSetTypeFlag(pOut, MEM_Blob);
drhde4fcfd2008-01-19 23:50:26 +00004250 if( pC->isIndex ){
4251 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4252 }else{
4253 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
drh5e00f6c2001-09-13 13:46:56 +00004254 }
danielk197796cb76f2008-01-04 13:24:28 +00004255 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
drhb7654112008-01-12 12:48:07 +00004256 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00004257 break;
4258}
4259
drh2133d822008-01-03 18:44:59 +00004260/* Opcode: Rowid P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004261**
drh2133d822008-01-03 18:44:59 +00004262** Store in register P2 an integer which is the key of the table entry that
drhbfdc7542008-05-29 03:12:54 +00004263** P1 is currently point to.
drh044925b2009-04-22 17:15:02 +00004264**
4265** P1 can be either an ordinary table or a virtual table. There used to
4266** be a separate OP_VRowid opcode for use with virtual tables, but this
4267** one opcode now works for both table types.
drh5e00f6c2001-09-13 13:46:56 +00004268*/
drh4c583122008-01-04 22:01:03 +00004269case OP_Rowid: { /* out2-prerelease */
drhdfe88ec2008-11-03 20:55:06 +00004270 VdbeCursor *pC;
drhf328bc82004-05-10 23:29:49 +00004271 i64 v;
drh856c1032009-06-02 15:21:42 +00004272 sqlite3_vtab *pVtab;
4273 const sqlite3_module *pModule;
drh5e00f6c2001-09-13 13:46:56 +00004274
drh653b82a2009-06-22 11:10:47 +00004275 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4276 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004277 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00004278 assert( pC->pseudoTableReg==0 );
drh044925b2009-04-22 17:15:02 +00004279 if( pC->nullRow ){
drh3c657212009-11-17 23:59:58 +00004280 pOut->flags = MEM_Null;
drh044925b2009-04-22 17:15:02 +00004281 break;
4282 }else if( pC->deferredMoveto ){
drh61495262009-04-22 15:32:59 +00004283 v = pC->movetoTarget;
drh044925b2009-04-22 17:15:02 +00004284#ifndef SQLITE_OMIT_VIRTUALTABLE
4285 }else if( pC->pVtabCursor ){
drh044925b2009-04-22 17:15:02 +00004286 pVtab = pC->pVtabCursor->pVtab;
4287 pModule = pVtab->pModule;
4288 assert( pModule->xRowid );
drh044925b2009-04-22 17:15:02 +00004289 rc = pModule->xRowid(pC->pVtabCursor, &v);
drhb9755982010-07-24 16:34:37 +00004290 importVtabErrMsg(p, pVtab);
drh044925b2009-04-22 17:15:02 +00004291#endif /* SQLITE_OMIT_VIRTUALTABLE */
drh70ce3f02003-04-15 19:22:22 +00004292 }else{
drh6be240e2009-07-14 02:33:02 +00004293 assert( pC->pCursor!=0 );
drh61495262009-04-22 15:32:59 +00004294 rc = sqlite3VdbeCursorMoveto(pC);
4295 if( rc ) goto abort_due_to_error;
4296 if( pC->rowidIsValid ){
4297 v = pC->lastRowid;
drh61495262009-04-22 15:32:59 +00004298 }else{
drhc27ae612009-07-14 18:35:44 +00004299 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
4300 assert( rc==SQLITE_OK ); /* Always so because of CursorMoveto() above */
drh61495262009-04-22 15:32:59 +00004301 }
drh5e00f6c2001-09-13 13:46:56 +00004302 }
drh4c583122008-01-04 22:01:03 +00004303 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004304 break;
4305}
4306
drh9cbf3422008-01-17 16:22:13 +00004307/* Opcode: NullRow P1 * * * *
drh17f71932002-02-21 12:01:27 +00004308**
4309** Move the cursor P1 to a null row. Any OP_Column operations
drh9cbf3422008-01-17 16:22:13 +00004310** that occur while the cursor is on the null row will always
4311** write a NULL.
drh17f71932002-02-21 12:01:27 +00004312*/
drh9cbf3422008-01-17 16:22:13 +00004313case OP_NullRow: {
drhdfe88ec2008-11-03 20:55:06 +00004314 VdbeCursor *pC;
drh17f71932002-02-21 12:01:27 +00004315
drh653b82a2009-06-22 11:10:47 +00004316 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4317 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004318 assert( pC!=0 );
drhd7556d22004-05-14 21:59:40 +00004319 pC->nullRow = 1;
drhf0863fe2005-06-12 21:35:51 +00004320 pC->rowidIsValid = 0;
dana205a482011-08-27 18:48:57 +00004321 assert( pC->pCursor || pC->pVtabCursor );
danielk1977be51a652008-10-08 17:58:48 +00004322 if( pC->pCursor ){
4323 sqlite3BtreeClearCursor(pC->pCursor);
4324 }
drh17f71932002-02-21 12:01:27 +00004325 break;
4326}
4327
drh9cbf3422008-01-17 16:22:13 +00004328/* Opcode: Last P1 P2 * * *
drh9562b552002-02-19 15:00:07 +00004329**
drhf0863fe2005-06-12 21:35:51 +00004330** The next use of the Rowid or Column or Next instruction for P1
drh9562b552002-02-19 15:00:07 +00004331** will refer to the last entry in the database table or index.
4332** If the table or index is empty and P2>0, then jump immediately to P2.
4333** If P2 is 0 or if the table or index is not empty, fall through
4334** to the following instruction.
4335*/
drh9cbf3422008-01-17 16:22:13 +00004336case OP_Last: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004337 VdbeCursor *pC;
drh9562b552002-02-19 15:00:07 +00004338 BtCursor *pCrsr;
drha05a7222008-01-19 03:35:58 +00004339 int res;
drh9562b552002-02-19 15:00:07 +00004340
drh653b82a2009-06-22 11:10:47 +00004341 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4342 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004343 assert( pC!=0 );
drha05a7222008-01-19 03:35:58 +00004344 pCrsr = pC->pCursor;
drh7abc5402011-10-22 21:00:46 +00004345 res = 0;
4346 if( ALWAYS(pCrsr!=0) ){
drh9a65f2c2009-06-22 19:05:40 +00004347 rc = sqlite3BtreeLast(pCrsr, &res);
4348 }
drh9c1905f2008-12-10 22:32:56 +00004349 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004350 pC->deferredMoveto = 0;
drha7e77062009-01-14 00:55:09 +00004351 pC->rowidIsValid = 0;
drha05a7222008-01-19 03:35:58 +00004352 pC->cacheStatus = CACHE_STALE;
drh9a65f2c2009-06-22 19:05:40 +00004353 if( pOp->p2>0 && res ){
drha05a7222008-01-19 03:35:58 +00004354 pc = pOp->p2 - 1;
drh9562b552002-02-19 15:00:07 +00004355 }
4356 break;
4357}
4358
drh0342b1f2005-09-01 03:07:44 +00004359
drh9cbf3422008-01-17 16:22:13 +00004360/* Opcode: Sort P1 P2 * * *
drh0342b1f2005-09-01 03:07:44 +00004361**
4362** This opcode does exactly the same thing as OP_Rewind except that
4363** it increments an undocumented global variable used for testing.
4364**
4365** Sorting is accomplished by writing records into a sorting index,
4366** then rewinding that index and playing it back from beginning to
4367** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4368** rewinding so that the global variable will be incremented and
4369** regression tests can determine whether or not the optimizer is
4370** correctly optimizing out sorts.
4371*/
drhc6aff302011-09-01 15:32:47 +00004372case OP_SorterSort: /* jump */
drhca892a72011-09-03 00:17:51 +00004373#ifdef SQLITE_OMIT_MERGE_SORT
4374 pOp->opcode = OP_Sort;
4375#endif
drh9cbf3422008-01-17 16:22:13 +00004376case OP_Sort: { /* jump */
drh0f7eb612006-08-08 13:51:43 +00004377#ifdef SQLITE_TEST
drh0342b1f2005-09-01 03:07:44 +00004378 sqlite3_sort_count++;
drh4db38a72005-09-01 12:16:28 +00004379 sqlite3_search_count--;
drh0f7eb612006-08-08 13:51:43 +00004380#endif
drhd1d38482008-10-07 23:46:38 +00004381 p->aCounter[SQLITE_STMTSTATUS_SORT-1]++;
drh0342b1f2005-09-01 03:07:44 +00004382 /* Fall through into OP_Rewind */
4383}
drh9cbf3422008-01-17 16:22:13 +00004384/* Opcode: Rewind P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004385**
drhf0863fe2005-06-12 21:35:51 +00004386** The next use of the Rowid or Column or Next instruction for P1
drh8721ce42001-11-07 14:22:00 +00004387** will refer to the first entry in the database table or index.
4388** If the table or index is empty and P2>0, then jump immediately to P2.
4389** If P2 is 0 or if the table or index is not empty, fall through
4390** to the following instruction.
drh5e00f6c2001-09-13 13:46:56 +00004391*/
drh9cbf3422008-01-17 16:22:13 +00004392case OP_Rewind: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004393 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004394 BtCursor *pCrsr;
drhf4dada72004-05-11 09:57:35 +00004395 int res;
drh5e00f6c2001-09-13 13:46:56 +00004396
drh653b82a2009-06-22 11:10:47 +00004397 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4398 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004399 assert( pC!=0 );
drhc6aff302011-09-01 15:32:47 +00004400 assert( pC->isSorter==(pOp->opcode==OP_SorterSort) );
dan2411dea2010-07-03 05:56:09 +00004401 res = 1;
dan689ab892011-08-12 15:02:00 +00004402 if( isSorter(pC) ){
dana20fde62011-07-12 14:28:05 +00004403 rc = sqlite3VdbeSorterRewind(db, pC, &res);
dana205a482011-08-27 18:48:57 +00004404 }else{
4405 pCrsr = pC->pCursor;
4406 assert( pCrsr );
danielk19774adee202004-05-08 08:23:19 +00004407 rc = sqlite3BtreeFirst(pCrsr, &res);
drh9c1905f2008-12-10 22:32:56 +00004408 pC->atFirst = res==0 ?1:0;
drha11846b2004-01-07 18:52:56 +00004409 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004410 pC->cacheStatus = CACHE_STALE;
drha7e77062009-01-14 00:55:09 +00004411 pC->rowidIsValid = 0;
drhf4dada72004-05-11 09:57:35 +00004412 }
drh9c1905f2008-12-10 22:32:56 +00004413 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004414 assert( pOp->p2>0 && pOp->p2<p->nOp );
4415 if( res ){
drhf4dada72004-05-11 09:57:35 +00004416 pc = pOp->p2 - 1;
drh5e00f6c2001-09-13 13:46:56 +00004417 }
4418 break;
4419}
4420
dana205a482011-08-27 18:48:57 +00004421/* Opcode: Next P1 P2 * P4 P5
drh5e00f6c2001-09-13 13:46:56 +00004422**
4423** Advance cursor P1 so that it points to the next key/data pair in its
drh8721ce42001-11-07 14:22:00 +00004424** table or index. If there are no more key/value pairs then fall through
4425** to the following instruction. But if the cursor advance was successful,
4426** jump immediately to P2.
drhc045ec52002-12-04 20:01:06 +00004427**
drh60a713c2008-01-21 16:22:45 +00004428** The P1 cursor must be for a real table, not a pseudo-table.
4429**
dana205a482011-08-27 18:48:57 +00004430** P4 is always of type P4_ADVANCE. The function pointer points to
4431** sqlite3BtreeNext().
4432**
drhafc266a2010-03-31 17:47:44 +00004433** If P5 is positive and the jump is taken, then event counter
4434** number P5-1 in the prepared statement is incremented.
4435**
drhc045ec52002-12-04 20:01:06 +00004436** See also: Prev
drh8721ce42001-11-07 14:22:00 +00004437*/
drhafc266a2010-03-31 17:47:44 +00004438/* Opcode: Prev P1 P2 * * P5
drhc045ec52002-12-04 20:01:06 +00004439**
4440** Back up cursor P1 so that it points to the previous key/data pair in its
4441** table or index. If there is no previous key/value pairs then fall through
4442** to the following instruction. But if the cursor backup was successful,
4443** jump immediately to P2.
drh60a713c2008-01-21 16:22:45 +00004444**
4445** The P1 cursor must be for a real table, not a pseudo-table.
drhafc266a2010-03-31 17:47:44 +00004446**
dana205a482011-08-27 18:48:57 +00004447** P4 is always of type P4_ADVANCE. The function pointer points to
4448** sqlite3BtreePrevious().
4449**
drhafc266a2010-03-31 17:47:44 +00004450** If P5 is positive and the jump is taken, then event counter
4451** number P5-1 in the prepared statement is incremented.
drhc045ec52002-12-04 20:01:06 +00004452*/
drhc6aff302011-09-01 15:32:47 +00004453case OP_SorterNext: /* jump */
drhca892a72011-09-03 00:17:51 +00004454#ifdef SQLITE_OMIT_MERGE_SORT
4455 pOp->opcode = OP_Next;
4456#endif
drh9cbf3422008-01-17 16:22:13 +00004457case OP_Prev: /* jump */
4458case OP_Next: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004459 VdbeCursor *pC;
drha3460582008-07-11 21:02:53 +00004460 int res;
drh8721ce42001-11-07 14:22:00 +00004461
drhcaec2f12003-01-07 02:47:47 +00004462 CHECK_FOR_INTERRUPT;
drh70ce3f02003-04-15 19:22:22 +00004463 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drhafc266a2010-03-31 17:47:44 +00004464 assert( pOp->p5<=ArraySize(p->aCounter) );
drhd7556d22004-05-14 21:59:40 +00004465 pC = p->apCsr[pOp->p1];
drh72e8fa42007-03-28 14:30:06 +00004466 if( pC==0 ){
4467 break; /* See ticket #2273 */
4468 }
drhc6aff302011-09-01 15:32:47 +00004469 assert( pC->isSorter==(pOp->opcode==OP_SorterNext) );
dan689ab892011-08-12 15:02:00 +00004470 if( isSorter(pC) ){
dan5134d132011-09-02 10:31:11 +00004471 assert( pOp->opcode==OP_SorterNext );
dana20fde62011-07-12 14:28:05 +00004472 rc = sqlite3VdbeSorterNext(db, pC, &res);
4473 }else{
dana20fde62011-07-12 14:28:05 +00004474 res = 1;
4475 assert( pC->deferredMoveto==0 );
dana205a482011-08-27 18:48:57 +00004476 assert( pC->pCursor );
4477 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
4478 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
4479 rc = pOp->p4.xAdvance(pC->pCursor, &res);
drh9a65f2c2009-06-22 19:05:40 +00004480 }
drh9c1905f2008-12-10 22:32:56 +00004481 pC->nullRow = (u8)res;
drha3460582008-07-11 21:02:53 +00004482 pC->cacheStatus = CACHE_STALE;
4483 if( res==0 ){
4484 pc = pOp->p2 - 1;
drhd1d38482008-10-07 23:46:38 +00004485 if( pOp->p5 ) p->aCounter[pOp->p5-1]++;
drh0f7eb612006-08-08 13:51:43 +00004486#ifdef SQLITE_TEST
drha3460582008-07-11 21:02:53 +00004487 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00004488#endif
drh8721ce42001-11-07 14:22:00 +00004489 }
drhf0863fe2005-06-12 21:35:51 +00004490 pC->rowidIsValid = 0;
drh8721ce42001-11-07 14:22:00 +00004491 break;
4492}
4493
danielk1977de630352009-05-04 11:42:29 +00004494/* Opcode: IdxInsert P1 P2 P3 * P5
drh5e00f6c2001-09-13 13:46:56 +00004495**
drhef8662b2011-06-20 21:47:58 +00004496** Register P2 holds an SQL index key made using the
drh9437bd22009-02-01 00:29:56 +00004497** MakeRecord instructions. This opcode writes that key
drhee32e0a2006-01-10 19:45:49 +00004498** into the index P1. Data for the entry is nil.
drh717e6402001-09-27 03:22:32 +00004499**
drhaa9b8962008-01-08 02:57:55 +00004500** P3 is a flag that provides a hint to the b-tree layer that this
drhe4d90812007-03-29 05:51:49 +00004501** insert is likely to be an append.
4502**
drhf0863fe2005-06-12 21:35:51 +00004503** This instruction only works for indices. The equivalent instruction
4504** for tables is OP_Insert.
drh5e00f6c2001-09-13 13:46:56 +00004505*/
drhca892a72011-09-03 00:17:51 +00004506case OP_SorterInsert: /* in2 */
4507#ifdef SQLITE_OMIT_MERGE_SORT
4508 pOp->opcode = OP_IdxInsert;
4509#endif
drh9cbf3422008-01-17 16:22:13 +00004510case OP_IdxInsert: { /* in2 */
drhdfe88ec2008-11-03 20:55:06 +00004511 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004512 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00004513 int nKey;
4514 const char *zKey;
4515
drh653b82a2009-06-22 11:10:47 +00004516 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4517 pC = p->apCsr[pOp->p1];
4518 assert( pC!=0 );
drhc6aff302011-09-01 15:32:47 +00004519 assert( pC->isSorter==(pOp->opcode==OP_SorterInsert) );
drh3c657212009-11-17 23:59:58 +00004520 pIn2 = &aMem[pOp->p2];
drhaa9b8962008-01-08 02:57:55 +00004521 assert( pIn2->flags & MEM_Blob );
drh653b82a2009-06-22 11:10:47 +00004522 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004523 if( ALWAYS(pCrsr!=0) ){
drhf0863fe2005-06-12 21:35:51 +00004524 assert( pC->isTable==0 );
drhaa9b8962008-01-08 02:57:55 +00004525 rc = ExpandBlob(pIn2);
danielk1977d908f5a2007-05-11 07:08:28 +00004526 if( rc==SQLITE_OK ){
dan5134d132011-09-02 10:31:11 +00004527 if( isSorter(pC) ){
4528 rc = sqlite3VdbeSorterWrite(db, pC, pIn2);
4529 }else{
4530 nKey = pIn2->n;
4531 zKey = pIn2->z;
dan1e74e602011-08-06 12:01:58 +00004532 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3,
4533 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
dan5134d132011-09-02 10:31:11 +00004534 );
dan1e74e602011-08-06 12:01:58 +00004535 assert( pC->deferredMoveto==0 );
dan5134d132011-09-02 10:31:11 +00004536 pC->cacheStatus = CACHE_STALE;
dan1e74e602011-08-06 12:01:58 +00004537 }
danielk1977d908f5a2007-05-11 07:08:28 +00004538 }
drh5e00f6c2001-09-13 13:46:56 +00004539 }
drh5e00f6c2001-09-13 13:46:56 +00004540 break;
4541}
4542
drhd1d38482008-10-07 23:46:38 +00004543/* Opcode: IdxDelete P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00004544**
drhe14006d2008-03-25 17:23:32 +00004545** The content of P3 registers starting at register P2 form
4546** an unpacked index key. This opcode removes that entry from the
danielk1977a7a8e142008-02-13 18:25:27 +00004547** index opened by cursor P1.
drh5e00f6c2001-09-13 13:46:56 +00004548*/
drhe14006d2008-03-25 17:23:32 +00004549case OP_IdxDelete: {
drhdfe88ec2008-11-03 20:55:06 +00004550 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004551 BtCursor *pCrsr;
drh9a65f2c2009-06-22 19:05:40 +00004552 int res;
4553 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00004554
drhe14006d2008-03-25 17:23:32 +00004555 assert( pOp->p3>0 );
danielk19776ab3a2e2009-02-19 14:39:25 +00004556 assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 );
drh653b82a2009-06-22 11:10:47 +00004557 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4558 pC = p->apCsr[pOp->p1];
4559 assert( pC!=0 );
4560 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004561 if( ALWAYS(pCrsr!=0) ){
drhe14006d2008-03-25 17:23:32 +00004562 r.pKeyInfo = pC->pKeyInfo;
drh9c1905f2008-12-10 22:32:56 +00004563 r.nField = (u16)pOp->p3;
drhe63d9992008-08-13 19:11:48 +00004564 r.flags = 0;
drha6c2ed92009-11-14 23:22:23 +00004565 r.aMem = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00004566#ifdef SQLITE_DEBUG
4567 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4568#endif
drhe63d9992008-08-13 19:11:48 +00004569 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
danielk197775bab7d2006-01-23 13:09:45 +00004570 if( rc==SQLITE_OK && res==0 ){
danielk19774adee202004-05-08 08:23:19 +00004571 rc = sqlite3BtreeDelete(pCrsr);
drh5e00f6c2001-09-13 13:46:56 +00004572 }
drh9188b382004-05-14 21:12:22 +00004573 assert( pC->deferredMoveto==0 );
drh76873ab2006-01-07 18:48:26 +00004574 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004575 }
drh5e00f6c2001-09-13 13:46:56 +00004576 break;
4577}
4578
drh2133d822008-01-03 18:44:59 +00004579/* Opcode: IdxRowid P1 P2 * * *
drh8721ce42001-11-07 14:22:00 +00004580**
drh2133d822008-01-03 18:44:59 +00004581** Write into register P2 an integer which is the last entry in the record at
drhf0863fe2005-06-12 21:35:51 +00004582** the end of the index key pointed to by cursor P1. This integer should be
4583** the rowid of the table entry to which this index entry points.
drh8721ce42001-11-07 14:22:00 +00004584**
drh9437bd22009-02-01 00:29:56 +00004585** See also: Rowid, MakeRecord.
drh8721ce42001-11-07 14:22:00 +00004586*/
drh4c583122008-01-04 22:01:03 +00004587case OP_IdxRowid: { /* out2-prerelease */
drh8721ce42001-11-07 14:22:00 +00004588 BtCursor *pCrsr;
drhdfe88ec2008-11-03 20:55:06 +00004589 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004590 i64 rowid;
drh8721ce42001-11-07 14:22:00 +00004591
drh653b82a2009-06-22 11:10:47 +00004592 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4593 pC = p->apCsr[pOp->p1];
4594 assert( pC!=0 );
4595 pCrsr = pC->pCursor;
drh3c657212009-11-17 23:59:58 +00004596 pOut->flags = MEM_Null;
drh9a65f2c2009-06-22 19:05:40 +00004597 if( ALWAYS(pCrsr!=0) ){
danielk1977c4d201c2009-04-07 09:16:56 +00004598 rc = sqlite3VdbeCursorMoveto(pC);
drh9a65f2c2009-06-22 19:05:40 +00004599 if( NEVER(rc) ) goto abort_due_to_error;
drhd7556d22004-05-14 21:59:40 +00004600 assert( pC->deferredMoveto==0 );
drhf0863fe2005-06-12 21:35:51 +00004601 assert( pC->isTable==0 );
drh4c583122008-01-04 22:01:03 +00004602 if( !pC->nullRow ){
drh35f6b932009-06-23 14:15:04 +00004603 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
danielk19771d850a72004-05-31 08:26:49 +00004604 if( rc!=SQLITE_OK ){
4605 goto abort_due_to_error;
4606 }
drh4c583122008-01-04 22:01:03 +00004607 pOut->u.i = rowid;
drh3c657212009-11-17 23:59:58 +00004608 pOut->flags = MEM_Int;
danielk19773d1bfea2004-05-14 11:00:53 +00004609 }
drh8721ce42001-11-07 14:22:00 +00004610 }
4611 break;
4612}
4613
danielk197761dd5832008-04-18 11:31:12 +00004614/* Opcode: IdxGE P1 P2 P3 P4 P5
drh8721ce42001-11-07 14:22:00 +00004615**
danielk197761dd5832008-04-18 11:31:12 +00004616** The P4 register values beginning with P3 form an unpacked index
4617** key that omits the ROWID. Compare this key value against the index
4618** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00004619**
danielk197761dd5832008-04-18 11:31:12 +00004620** If the P1 index entry is greater than or equal to the key value
4621** then jump to P2. Otherwise fall through to the next instruction.
drh772ae622004-05-19 13:13:08 +00004622**
danielk197761dd5832008-04-18 11:31:12 +00004623** If P5 is non-zero then the key value is increased by an epsilon
4624** prior to the comparison. This make the opcode work like IdxGT except
4625** that if the key from register P3 is a prefix of the key in the cursor,
4626** the result is false whereas it would be true with IdxGT.
drh8721ce42001-11-07 14:22:00 +00004627*/
drh3bb9b932010-08-06 02:10:00 +00004628/* Opcode: IdxLT P1 P2 P3 P4 P5
drhc045ec52002-12-04 20:01:06 +00004629**
danielk197761dd5832008-04-18 11:31:12 +00004630** The P4 register values beginning with P3 form an unpacked index
4631** key that omits the ROWID. Compare this key value against the index
4632** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00004633**
danielk197761dd5832008-04-18 11:31:12 +00004634** If the P1 index entry is less than the key value then jump to P2.
4635** Otherwise fall through to the next instruction.
drh772ae622004-05-19 13:13:08 +00004636**
danielk197761dd5832008-04-18 11:31:12 +00004637** If P5 is non-zero then the key value is increased by an epsilon prior
4638** to the comparison. This makes the opcode work like IdxLE.
drhc045ec52002-12-04 20:01:06 +00004639*/
drh93952eb2009-11-13 19:43:43 +00004640case OP_IdxLT: /* jump */
4641case OP_IdxGE: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004642 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004643 int res;
4644 UnpackedRecord r;
drh8721ce42001-11-07 14:22:00 +00004645
drh653b82a2009-06-22 11:10:47 +00004646 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4647 pC = p->apCsr[pOp->p1];
4648 assert( pC!=0 );
drhd4187c72010-08-30 22:15:45 +00004649 assert( pC->isOrdered );
drh9a65f2c2009-06-22 19:05:40 +00004650 if( ALWAYS(pC->pCursor!=0) ){
drhd7556d22004-05-14 21:59:40 +00004651 assert( pC->deferredMoveto==0 );
drha05a7222008-01-19 03:35:58 +00004652 assert( pOp->p5==0 || pOp->p5==1 );
danielk197761dd5832008-04-18 11:31:12 +00004653 assert( pOp->p4type==P4_INT32 );
4654 r.pKeyInfo = pC->pKeyInfo;
drh9c1905f2008-12-10 22:32:56 +00004655 r.nField = (u16)pOp->p4.i;
drhe63d9992008-08-13 19:11:48 +00004656 if( pOp->p5 ){
dan0c733f62011-11-16 15:27:09 +00004657 r.flags = UNPACKED_INCRKEY | UNPACKED_PREFIX_MATCH;
drhe63d9992008-08-13 19:11:48 +00004658 }else{
dan0c733f62011-11-16 15:27:09 +00004659 r.flags = UNPACKED_PREFIX_MATCH;
drhe63d9992008-08-13 19:11:48 +00004660 }
drha6c2ed92009-11-14 23:22:23 +00004661 r.aMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00004662#ifdef SQLITE_DEBUG
4663 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4664#endif
drhe63d9992008-08-13 19:11:48 +00004665 rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res);
drhc045ec52002-12-04 20:01:06 +00004666 if( pOp->opcode==OP_IdxLT ){
4667 res = -res;
drha05a7222008-01-19 03:35:58 +00004668 }else{
4669 assert( pOp->opcode==OP_IdxGE );
drh8721ce42001-11-07 14:22:00 +00004670 res++;
4671 }
4672 if( res>0 ){
4673 pc = pOp->p2 - 1 ;
4674 }
4675 }
4676 break;
4677}
4678
drh98757152008-01-09 23:04:12 +00004679/* Opcode: Destroy P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00004680**
4681** Delete an entire database table or index whose root page in the database
4682** file is given by P1.
drhb19a2bc2001-09-16 00:13:26 +00004683**
drh98757152008-01-09 23:04:12 +00004684** The table being destroyed is in the main database file if P3==0. If
4685** P3==1 then the table to be clear is in the auxiliary database file
drhf57b3392001-10-08 13:22:32 +00004686** that is used to store tables create using CREATE TEMPORARY TABLE.
4687**
drh205f48e2004-11-05 00:43:11 +00004688** If AUTOVACUUM is enabled then it is possible that another root page
4689** might be moved into the newly deleted root page in order to keep all
4690** root pages contiguous at the beginning of the database. The former
4691** value of the root page that moved - its value before the move occurred -
drh9cbf3422008-01-17 16:22:13 +00004692** is stored in register P2. If no page
drh98757152008-01-09 23:04:12 +00004693** movement was required (because the table being dropped was already
4694** the last one in the database) then a zero is stored in register P2.
4695** If AUTOVACUUM is disabled then a zero is stored in register P2.
drh205f48e2004-11-05 00:43:11 +00004696**
drhb19a2bc2001-09-16 00:13:26 +00004697** See also: Clear
drh5e00f6c2001-09-13 13:46:56 +00004698*/
drh98757152008-01-09 23:04:12 +00004699case OP_Destroy: { /* out2-prerelease */
danielk1977a0bf2652004-11-04 14:30:04 +00004700 int iMoved;
drh3765df42006-06-28 18:18:09 +00004701 int iCnt;
drh5a91a532007-01-05 16:39:43 +00004702 Vdbe *pVdbe;
drh856c1032009-06-02 15:21:42 +00004703 int iDb;
4704#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk1977212b2182006-06-23 14:32:08 +00004705 iCnt = 0;
drh856c1032009-06-02 15:21:42 +00004706 for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
danielk1977212b2182006-06-23 14:32:08 +00004707 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
4708 iCnt++;
4709 }
4710 }
drh3765df42006-06-28 18:18:09 +00004711#else
4712 iCnt = db->activeVdbeCnt;
danielk1977212b2182006-06-23 14:32:08 +00004713#endif
drh3c657212009-11-17 23:59:58 +00004714 pOut->flags = MEM_Null;
danielk1977212b2182006-06-23 14:32:08 +00004715 if( iCnt>1 ){
danielk1977e6efa742004-11-10 11:55:10 +00004716 rc = SQLITE_LOCKED;
drh77658e22007-12-04 16:54:52 +00004717 p->errorAction = OE_Abort;
danielk1977e6efa742004-11-10 11:55:10 +00004718 }else{
drh856c1032009-06-02 15:21:42 +00004719 iDb = pOp->p3;
danielk1977212b2182006-06-23 14:32:08 +00004720 assert( iCnt==1 );
drhdddd7792011-04-03 18:19:25 +00004721 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
drh98757152008-01-09 23:04:12 +00004722 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
drh3c657212009-11-17 23:59:58 +00004723 pOut->flags = MEM_Int;
drh98757152008-01-09 23:04:12 +00004724 pOut->u.i = iMoved;
drh3765df42006-06-28 18:18:09 +00004725#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977e6efa742004-11-10 11:55:10 +00004726 if( rc==SQLITE_OK && iMoved!=0 ){
drhcdf011d2011-04-04 21:25:28 +00004727 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
4728 /* All OP_Destroy operations occur on the same btree */
4729 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
4730 resetSchemaOnFault = iDb+1;
danielk1977e6efa742004-11-10 11:55:10 +00004731 }
drh3765df42006-06-28 18:18:09 +00004732#endif
danielk1977a0bf2652004-11-04 14:30:04 +00004733 }
drh5e00f6c2001-09-13 13:46:56 +00004734 break;
4735}
4736
danielk1977c7af4842008-10-27 13:59:33 +00004737/* Opcode: Clear P1 P2 P3
drh5edc3122001-09-13 21:53:09 +00004738**
4739** Delete all contents of the database table or index whose root page
drhb19a2bc2001-09-16 00:13:26 +00004740** in the database file is given by P1. But, unlike Destroy, do not
drh5edc3122001-09-13 21:53:09 +00004741** remove the table or index from the database file.
drhb19a2bc2001-09-16 00:13:26 +00004742**
drhf57b3392001-10-08 13:22:32 +00004743** The table being clear is in the main database file if P2==0. If
4744** P2==1 then the table to be clear is in the auxiliary database file
4745** that is used to store tables create using CREATE TEMPORARY TABLE.
4746**
shanebe217792009-03-05 04:20:31 +00004747** If the P3 value is non-zero, then the table referred to must be an
danielk1977c7af4842008-10-27 13:59:33 +00004748** intkey table (an SQL table, not an index). In this case the row change
4749** count is incremented by the number of rows in the table being cleared.
4750** If P3 is greater than zero, then the value stored in register P3 is
4751** also incremented by the number of rows in the table being cleared.
4752**
drhb19a2bc2001-09-16 00:13:26 +00004753** See also: Destroy
drh5edc3122001-09-13 21:53:09 +00004754*/
drh9cbf3422008-01-17 16:22:13 +00004755case OP_Clear: {
drh856c1032009-06-02 15:21:42 +00004756 int nChange;
4757
4758 nChange = 0;
drhdddd7792011-04-03 18:19:25 +00004759 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 );
danielk1977c7af4842008-10-27 13:59:33 +00004760 rc = sqlite3BtreeClearTable(
4761 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
4762 );
4763 if( pOp->p3 ){
4764 p->nChange += nChange;
4765 if( pOp->p3>0 ){
drh2b4ded92010-09-27 21:09:31 +00004766 assert( memIsValid(&aMem[pOp->p3]) );
4767 memAboutToChange(p, &aMem[pOp->p3]);
drha6c2ed92009-11-14 23:22:23 +00004768 aMem[pOp->p3].u.i += nChange;
danielk1977c7af4842008-10-27 13:59:33 +00004769 }
4770 }
drh5edc3122001-09-13 21:53:09 +00004771 break;
4772}
4773
drh4c583122008-01-04 22:01:03 +00004774/* Opcode: CreateTable P1 P2 * * *
drh5b2fd562001-09-13 15:21:31 +00004775**
drh4c583122008-01-04 22:01:03 +00004776** Allocate a new table in the main database file if P1==0 or in the
4777** auxiliary database file if P1==1 or in an attached database if
4778** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00004779** register P2
drh5b2fd562001-09-13 15:21:31 +00004780**
drhc6b52df2002-01-04 03:09:29 +00004781** The difference between a table and an index is this: A table must
4782** have a 4-byte integer key and can have arbitrary data. An index
4783** has an arbitrary key but no data.
4784**
drhb19a2bc2001-09-16 00:13:26 +00004785** See also: CreateIndex
drh5b2fd562001-09-13 15:21:31 +00004786*/
drh4c583122008-01-04 22:01:03 +00004787/* Opcode: CreateIndex P1 P2 * * *
drhf57b3392001-10-08 13:22:32 +00004788**
drh4c583122008-01-04 22:01:03 +00004789** Allocate a new index in the main database file if P1==0 or in the
4790** auxiliary database file if P1==1 or in an attached database if
4791** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00004792** register P2.
drhf57b3392001-10-08 13:22:32 +00004793**
drhc6b52df2002-01-04 03:09:29 +00004794** See documentation on OP_CreateTable for additional information.
drhf57b3392001-10-08 13:22:32 +00004795*/
drh4c583122008-01-04 22:01:03 +00004796case OP_CreateIndex: /* out2-prerelease */
4797case OP_CreateTable: { /* out2-prerelease */
drh856c1032009-06-02 15:21:42 +00004798 int pgno;
drhf328bc82004-05-10 23:29:49 +00004799 int flags;
drh234c39d2004-07-24 03:30:47 +00004800 Db *pDb;
drh856c1032009-06-02 15:21:42 +00004801
4802 pgno = 0;
drh234c39d2004-07-24 03:30:47 +00004803 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00004804 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh234c39d2004-07-24 03:30:47 +00004805 pDb = &db->aDb[pOp->p1];
4806 assert( pDb->pBt!=0 );
drhc6b52df2002-01-04 03:09:29 +00004807 if( pOp->opcode==OP_CreateTable ){
danielk197794076252004-05-14 12:16:11 +00004808 /* flags = BTREE_INTKEY; */
drhd4187c72010-08-30 22:15:45 +00004809 flags = BTREE_INTKEY;
drhc6b52df2002-01-04 03:09:29 +00004810 }else{
drhd4187c72010-08-30 22:15:45 +00004811 flags = BTREE_BLOBKEY;
drhc6b52df2002-01-04 03:09:29 +00004812 }
drh234c39d2004-07-24 03:30:47 +00004813 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
drh88a003e2008-12-11 16:17:03 +00004814 pOut->u.i = pgno;
drh5b2fd562001-09-13 15:21:31 +00004815 break;
4816}
4817
drh22645842011-03-24 01:34:03 +00004818/* Opcode: ParseSchema P1 * * P4 *
drh234c39d2004-07-24 03:30:47 +00004819**
4820** Read and parse all entries from the SQLITE_MASTER table of database P1
drh22645842011-03-24 01:34:03 +00004821** that match the WHERE clause P4.
drh234c39d2004-07-24 03:30:47 +00004822**
4823** This opcode invokes the parser to create a new virtual machine,
shane21e7feb2008-05-30 15:59:49 +00004824** then runs the new virtual machine. It is thus a re-entrant opcode.
drh234c39d2004-07-24 03:30:47 +00004825*/
drh9cbf3422008-01-17 16:22:13 +00004826case OP_ParseSchema: {
drh856c1032009-06-02 15:21:42 +00004827 int iDb;
4828 const char *zMaster;
4829 char *zSql;
4830 InitData initData;
4831
drhbdaec522011-04-04 00:14:43 +00004832 /* Any prepared statement that invokes this opcode will hold mutexes
4833 ** on every btree. This is a prerequisite for invoking
4834 ** sqlite3InitCallback().
4835 */
4836#ifdef SQLITE_DEBUG
4837 for(iDb=0; iDb<db->nDb; iDb++){
4838 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
4839 }
4840#endif
drhbdaec522011-04-04 00:14:43 +00004841
drh856c1032009-06-02 15:21:42 +00004842 iDb = pOp->p1;
drh234c39d2004-07-24 03:30:47 +00004843 assert( iDb>=0 && iDb<db->nDb );
dan6c154872011-04-02 09:44:43 +00004844 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
drhbdaec522011-04-04 00:14:43 +00004845 /* Used to be a conditional */ {
drh856c1032009-06-02 15:21:42 +00004846 zMaster = SCHEMA_TABLE(iDb);
danielk1977a8bbef82009-03-23 17:11:26 +00004847 initData.db = db;
4848 initData.iDb = pOp->p1;
4849 initData.pzErrMsg = &p->zErrMsg;
4850 zSql = sqlite3MPrintf(db,
drh6a9c64b2010-01-12 23:54:14 +00004851 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
danielk1977a8bbef82009-03-23 17:11:26 +00004852 db->aDb[iDb].zName, zMaster, pOp->p4.z);
4853 if( zSql==0 ){
4854 rc = SQLITE_NOMEM;
4855 }else{
danielk1977a8bbef82009-03-23 17:11:26 +00004856 assert( db->init.busy==0 );
4857 db->init.busy = 1;
4858 initData.rc = SQLITE_OK;
4859 assert( !db->mallocFailed );
4860 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
4861 if( rc==SQLITE_OK ) rc = initData.rc;
4862 sqlite3DbFree(db, zSql);
4863 db->init.busy = 0;
danielk1977a8bbef82009-03-23 17:11:26 +00004864 }
drh3c23a882007-01-09 14:01:13 +00004865 }
drh81028a42012-05-15 18:28:27 +00004866 if( rc ) sqlite3ResetAllSchemasOfConnection(db);
danielk1977261919c2005-12-06 12:52:59 +00004867 if( rc==SQLITE_NOMEM ){
danielk1977261919c2005-12-06 12:52:59 +00004868 goto no_mem;
4869 }
drh234c39d2004-07-24 03:30:47 +00004870 break;
4871}
4872
drh8bfdf722009-06-19 14:06:03 +00004873#if !defined(SQLITE_OMIT_ANALYZE)
drh98757152008-01-09 23:04:12 +00004874/* Opcode: LoadAnalysis P1 * * * *
drh497e4462005-07-23 03:18:40 +00004875**
4876** Read the sqlite_stat1 table for database P1 and load the content
4877** of that table into the internal index hash table. This will cause
4878** the analysis to be used when preparing all subsequent queries.
4879*/
drh9cbf3422008-01-17 16:22:13 +00004880case OP_LoadAnalysis: {
drh856c1032009-06-02 15:21:42 +00004881 assert( pOp->p1>=0 && pOp->p1<db->nDb );
4882 rc = sqlite3AnalysisLoad(db, pOp->p1);
drh497e4462005-07-23 03:18:40 +00004883 break;
4884}
drh8bfdf722009-06-19 14:06:03 +00004885#endif /* !defined(SQLITE_OMIT_ANALYZE) */
drh497e4462005-07-23 03:18:40 +00004886
drh98757152008-01-09 23:04:12 +00004887/* Opcode: DropTable P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00004888**
4889** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00004890** the table named P4 in database P1. This is called after a table
drh956bc922004-07-24 17:38:29 +00004891** is dropped in order to keep the internal representation of the
4892** schema consistent with what is on disk.
4893*/
drh9cbf3422008-01-17 16:22:13 +00004894case OP_DropTable: {
danielk19772dca4ac2008-01-03 11:50:29 +00004895 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00004896 break;
4897}
4898
drh98757152008-01-09 23:04:12 +00004899/* Opcode: DropIndex P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00004900**
4901** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00004902** the index named P4 in database P1. This is called after an index
drh956bc922004-07-24 17:38:29 +00004903** is dropped in order to keep the internal representation of the
4904** schema consistent with what is on disk.
4905*/
drh9cbf3422008-01-17 16:22:13 +00004906case OP_DropIndex: {
danielk19772dca4ac2008-01-03 11:50:29 +00004907 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00004908 break;
4909}
4910
drh98757152008-01-09 23:04:12 +00004911/* Opcode: DropTrigger P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00004912**
4913** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00004914** the trigger named P4 in database P1. This is called after a trigger
drh956bc922004-07-24 17:38:29 +00004915** is dropped in order to keep the internal representation of the
4916** schema consistent with what is on disk.
4917*/
drh9cbf3422008-01-17 16:22:13 +00004918case OP_DropTrigger: {
danielk19772dca4ac2008-01-03 11:50:29 +00004919 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00004920 break;
4921}
4922
drh234c39d2004-07-24 03:30:47 +00004923
drhb7f91642004-10-31 02:22:47 +00004924#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh98757152008-01-09 23:04:12 +00004925/* Opcode: IntegrityCk P1 P2 P3 * P5
drh5e00f6c2001-09-13 13:46:56 +00004926**
drh98757152008-01-09 23:04:12 +00004927** Do an analysis of the currently open database. Store in
4928** register P1 the text of an error message describing any problems.
4929** If no problems are found, store a NULL in register P1.
drh1dcdbc02007-01-27 02:24:54 +00004930**
drh98757152008-01-09 23:04:12 +00004931** The register P3 contains the maximum number of allowed errors.
drh60a713c2008-01-21 16:22:45 +00004932** At most reg(P3) errors will be reported.
4933** In other words, the analysis stops as soon as reg(P1) errors are
4934** seen. Reg(P1) is updated with the number of errors remaining.
drhb19a2bc2001-09-16 00:13:26 +00004935**
drh79069752004-05-22 21:30:40 +00004936** The root page numbers of all tables in the database are integer
drh60a713c2008-01-21 16:22:45 +00004937** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
drh98757152008-01-09 23:04:12 +00004938** total.
drh21504322002-06-25 13:16:02 +00004939**
drh98757152008-01-09 23:04:12 +00004940** If P5 is not zero, the check is done on the auxiliary database
drh21504322002-06-25 13:16:02 +00004941** file, not the main database file.
drh1dd397f2002-02-03 03:34:07 +00004942**
drh1dcdbc02007-01-27 02:24:54 +00004943** This opcode is used to implement the integrity_check pragma.
drh5e00f6c2001-09-13 13:46:56 +00004944*/
drhaaab5722002-02-19 13:39:21 +00004945case OP_IntegrityCk: {
drh98757152008-01-09 23:04:12 +00004946 int nRoot; /* Number of tables to check. (Number of root pages.) */
4947 int *aRoot; /* Array of rootpage numbers for tables to be checked */
4948 int j; /* Loop counter */
4949 int nErr; /* Number of errors reported */
4950 char *z; /* Text of the error report */
4951 Mem *pnErr; /* Register keeping track of errors remaining */
4952
4953 nRoot = pOp->p2;
drh79069752004-05-22 21:30:40 +00004954 assert( nRoot>0 );
drh633e6d52008-07-28 19:34:53 +00004955 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
drhcaec2f12003-01-07 02:47:47 +00004956 if( aRoot==0 ) goto no_mem;
drh98757152008-01-09 23:04:12 +00004957 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00004958 pnErr = &aMem[pOp->p3];
drh1dcdbc02007-01-27 02:24:54 +00004959 assert( (pnErr->flags & MEM_Int)!=0 );
drh98757152008-01-09 23:04:12 +00004960 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
drha6c2ed92009-11-14 23:22:23 +00004961 pIn1 = &aMem[pOp->p1];
drh79069752004-05-22 21:30:40 +00004962 for(j=0; j<nRoot; j++){
drh9c1905f2008-12-10 22:32:56 +00004963 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
drh1dd397f2002-02-03 03:34:07 +00004964 }
4965 aRoot[j] = 0;
drh98757152008-01-09 23:04:12 +00004966 assert( pOp->p5<db->nDb );
drhdddd7792011-04-03 18:19:25 +00004967 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p5))!=0 );
drh98757152008-01-09 23:04:12 +00004968 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
drh9c1905f2008-12-10 22:32:56 +00004969 (int)pnErr->u.i, &nErr);
drhc890fec2008-08-01 20:10:08 +00004970 sqlite3DbFree(db, aRoot);
drh3c024d62007-03-30 11:23:45 +00004971 pnErr->u.i -= nErr;
drha05a7222008-01-19 03:35:58 +00004972 sqlite3VdbeMemSetNull(pIn1);
drh1dcdbc02007-01-27 02:24:54 +00004973 if( nErr==0 ){
4974 assert( z==0 );
drhc890fec2008-08-01 20:10:08 +00004975 }else if( z==0 ){
4976 goto no_mem;
drh1dd397f2002-02-03 03:34:07 +00004977 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00004978 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
danielk19778a6b5412004-05-24 07:04:25 +00004979 }
drhb7654112008-01-12 12:48:07 +00004980 UPDATE_MAX_BLOBSIZE(pIn1);
drh98757152008-01-09 23:04:12 +00004981 sqlite3VdbeChangeEncoding(pIn1, encoding);
drh5e00f6c2001-09-13 13:46:56 +00004982 break;
4983}
drhb7f91642004-10-31 02:22:47 +00004984#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5e00f6c2001-09-13 13:46:56 +00004985
drh3d4501e2008-12-04 20:40:10 +00004986/* Opcode: RowSetAdd P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004987**
drh3d4501e2008-12-04 20:40:10 +00004988** Insert the integer value held by register P2 into a boolean index
4989** held in register P1.
4990**
4991** An assertion fails if P2 is not an integer.
drh5e00f6c2001-09-13 13:46:56 +00004992*/
drh93952eb2009-11-13 19:43:43 +00004993case OP_RowSetAdd: { /* in1, in2 */
drh3c657212009-11-17 23:59:58 +00004994 pIn1 = &aMem[pOp->p1];
4995 pIn2 = &aMem[pOp->p2];
drh93952eb2009-11-13 19:43:43 +00004996 assert( (pIn2->flags & MEM_Int)!=0 );
4997 if( (pIn1->flags & MEM_RowSet)==0 ){
4998 sqlite3VdbeMemSetRowSet(pIn1);
4999 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
drh3d4501e2008-12-04 20:40:10 +00005000 }
drh93952eb2009-11-13 19:43:43 +00005001 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
drh3d4501e2008-12-04 20:40:10 +00005002 break;
5003}
5004
5005/* Opcode: RowSetRead P1 P2 P3 * *
5006**
5007** Extract the smallest value from boolean index P1 and put that value into
5008** register P3. Or, if boolean index P1 is initially empty, leave P3
5009** unchanged and jump to instruction P2.
5010*/
drh93952eb2009-11-13 19:43:43 +00005011case OP_RowSetRead: { /* jump, in1, out3 */
drh3d4501e2008-12-04 20:40:10 +00005012 i64 val;
drh3d4501e2008-12-04 20:40:10 +00005013 CHECK_FOR_INTERRUPT;
drh3c657212009-11-17 23:59:58 +00005014 pIn1 = &aMem[pOp->p1];
drh93952eb2009-11-13 19:43:43 +00005015 if( (pIn1->flags & MEM_RowSet)==0
5016 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
drh3d4501e2008-12-04 20:40:10 +00005017 ){
5018 /* The boolean index is empty */
drh93952eb2009-11-13 19:43:43 +00005019 sqlite3VdbeMemSetNull(pIn1);
drh3d4501e2008-12-04 20:40:10 +00005020 pc = pOp->p2 - 1;
5021 }else{
5022 /* A value was pulled from the index */
drh3c657212009-11-17 23:59:58 +00005023 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
drh17435752007-08-16 04:30:38 +00005024 }
drh5e00f6c2001-09-13 13:46:56 +00005025 break;
5026}
5027
drh1b26c7c2009-04-22 02:15:47 +00005028/* Opcode: RowSetTest P1 P2 P3 P4
danielk19771d461462009-04-21 09:02:45 +00005029**
drhade97602009-04-21 15:05:18 +00005030** Register P3 is assumed to hold a 64-bit integer value. If register P1
drh1b26c7c2009-04-22 02:15:47 +00005031** contains a RowSet object and that RowSet object contains
danielk19771d461462009-04-21 09:02:45 +00005032** the value held in P3, jump to register P2. Otherwise, insert the
drh1b26c7c2009-04-22 02:15:47 +00005033** integer in P3 into the RowSet and continue on to the
drhade97602009-04-21 15:05:18 +00005034** next opcode.
danielk19771d461462009-04-21 09:02:45 +00005035**
drh1b26c7c2009-04-22 02:15:47 +00005036** The RowSet object is optimized for the case where successive sets
danielk19771d461462009-04-21 09:02:45 +00005037** of integers, where each set contains no duplicates. Each set
5038** of values is identified by a unique P4 value. The first set
drh1b26c7c2009-04-22 02:15:47 +00005039** must have P4==0, the final set P4=-1. P4 must be either -1 or
5040** non-negative. For non-negative values of P4 only the lower 4
5041** bits are significant.
danielk19771d461462009-04-21 09:02:45 +00005042**
5043** This allows optimizations: (a) when P4==0 there is no need to test
drh1b26c7c2009-04-22 02:15:47 +00005044** the rowset object for P3, as it is guaranteed not to contain it,
danielk19771d461462009-04-21 09:02:45 +00005045** (b) when P4==-1 there is no need to insert the value, as it will
5046** never be tested for, and (c) when a value that is part of set X is
5047** inserted, there is no need to search to see if the same value was
5048** previously inserted as part of set X (only if it was previously
5049** inserted as part of some other set).
5050*/
drh1b26c7c2009-04-22 02:15:47 +00005051case OP_RowSetTest: { /* jump, in1, in3 */
drh856c1032009-06-02 15:21:42 +00005052 int iSet;
5053 int exists;
5054
drh3c657212009-11-17 23:59:58 +00005055 pIn1 = &aMem[pOp->p1];
5056 pIn3 = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00005057 iSet = pOp->p4.i;
danielk19771d461462009-04-21 09:02:45 +00005058 assert( pIn3->flags&MEM_Int );
5059
drh1b26c7c2009-04-22 02:15:47 +00005060 /* If there is anything other than a rowset object in memory cell P1,
5061 ** delete it now and initialize P1 with an empty rowset
danielk19771d461462009-04-21 09:02:45 +00005062 */
drh733bf1b2009-04-22 00:47:00 +00005063 if( (pIn1->flags & MEM_RowSet)==0 ){
5064 sqlite3VdbeMemSetRowSet(pIn1);
5065 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
danielk19771d461462009-04-21 09:02:45 +00005066 }
5067
5068 assert( pOp->p4type==P4_INT32 );
drh1b26c7c2009-04-22 02:15:47 +00005069 assert( iSet==-1 || iSet>=0 );
danielk19771d461462009-04-21 09:02:45 +00005070 if( iSet ){
shane60a4b532009-05-06 18:57:09 +00005071 exists = sqlite3RowSetTest(pIn1->u.pRowSet,
5072 (u8)(iSet>=0 ? iSet & 0xf : 0xff),
drh733bf1b2009-04-22 00:47:00 +00005073 pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00005074 if( exists ){
5075 pc = pOp->p2 - 1;
5076 break;
5077 }
5078 }
5079 if( iSet>=0 ){
drh733bf1b2009-04-22 00:47:00 +00005080 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00005081 }
5082 break;
5083}
5084
drh5e00f6c2001-09-13 13:46:56 +00005085
danielk197793758c82005-01-21 08:13:14 +00005086#ifndef SQLITE_OMIT_TRIGGER
dan165921a2009-08-28 18:53:45 +00005087
5088/* Opcode: Program P1 P2 P3 P4 *
5089**
dan76d462e2009-08-30 11:42:51 +00005090** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
dan165921a2009-08-28 18:53:45 +00005091**
dan76d462e2009-08-30 11:42:51 +00005092** P1 contains the address of the memory cell that contains the first memory
5093** cell in an array of values used as arguments to the sub-program. P2
5094** contains the address to jump to if the sub-program throws an IGNORE
5095** exception using the RAISE() function. Register P3 contains the address
5096** of a memory cell in this (the parent) VM that is used to allocate the
5097** memory required by the sub-vdbe at runtime.
dan165921a2009-08-28 18:53:45 +00005098**
5099** P4 is a pointer to the VM containing the trigger program.
5100*/
dan76d462e2009-08-30 11:42:51 +00005101case OP_Program: { /* jump */
dan65a7cd12009-09-01 12:16:01 +00005102 int nMem; /* Number of memory registers for sub-program */
5103 int nByte; /* Bytes of runtime space required for sub-program */
5104 Mem *pRt; /* Register to allocate runtime space */
5105 Mem *pMem; /* Used to iterate through memory cells */
5106 Mem *pEnd; /* Last memory cell in new array */
5107 VdbeFrame *pFrame; /* New vdbe frame to execute in */
5108 SubProgram *pProgram; /* Sub-program to execute */
5109 void *t; /* Token identifying trigger */
5110
5111 pProgram = pOp->p4.pProgram;
drha6c2ed92009-11-14 23:22:23 +00005112 pRt = &aMem[pOp->p3];
dan165921a2009-08-28 18:53:45 +00005113 assert( pProgram->nOp>0 );
5114
dan1da40a32009-09-19 17:00:31 +00005115 /* If the p5 flag is clear, then recursive invocation of triggers is
5116 ** disabled for backwards compatibility (p5 is set if this sub-program
5117 ** is really a trigger, not a foreign key action, and the flag set
5118 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
dan165921a2009-08-28 18:53:45 +00005119 **
5120 ** It is recursive invocation of triggers, at the SQL level, that is
5121 ** disabled. In some cases a single trigger may generate more than one
5122 ** SubProgram (if the trigger may be executed with more than one different
5123 ** ON CONFLICT algorithm). SubProgram structures associated with a
5124 ** single trigger all have the same value for the SubProgram.token
dan1da40a32009-09-19 17:00:31 +00005125 ** variable. */
5126 if( pOp->p5 ){
dan65a7cd12009-09-01 12:16:01 +00005127 t = pProgram->token;
dan165921a2009-08-28 18:53:45 +00005128 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5129 if( pFrame ) break;
5130 }
5131
danf5894502009-10-07 18:41:19 +00005132 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
dan165921a2009-08-28 18:53:45 +00005133 rc = SQLITE_ERROR;
5134 sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
5135 break;
5136 }
5137
5138 /* Register pRt is used to store the memory required to save the state
5139 ** of the current program, and the memory required at runtime to execute
5140 ** the trigger program. If this trigger has been fired before, then pRt
5141 ** is already allocated. Otherwise, it must be initialized. */
5142 if( (pRt->flags&MEM_Frame)==0 ){
dan165921a2009-08-28 18:53:45 +00005143 /* SubProgram.nMem is set to the number of memory cells used by the
5144 ** program stored in SubProgram.aOp. As well as these, one memory
5145 ** cell is required for each cursor used by the program. Set local
5146 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5147 */
dan65a7cd12009-09-01 12:16:01 +00005148 nMem = pProgram->nMem + pProgram->nCsr;
5149 nByte = ROUND8(sizeof(VdbeFrame))
dan165921a2009-08-28 18:53:45 +00005150 + nMem * sizeof(Mem)
dan1d8cb212011-12-09 13:24:16 +00005151 + pProgram->nCsr * sizeof(VdbeCursor *)
5152 + pProgram->nOnce * sizeof(u8);
dan165921a2009-08-28 18:53:45 +00005153 pFrame = sqlite3DbMallocZero(db, nByte);
5154 if( !pFrame ){
5155 goto no_mem;
5156 }
5157 sqlite3VdbeMemRelease(pRt);
5158 pRt->flags = MEM_Frame;
5159 pRt->u.pFrame = pFrame;
5160
5161 pFrame->v = p;
5162 pFrame->nChildMem = nMem;
5163 pFrame->nChildCsr = pProgram->nCsr;
5164 pFrame->pc = pc;
5165 pFrame->aMem = p->aMem;
5166 pFrame->nMem = p->nMem;
5167 pFrame->apCsr = p->apCsr;
5168 pFrame->nCursor = p->nCursor;
5169 pFrame->aOp = p->aOp;
5170 pFrame->nOp = p->nOp;
5171 pFrame->token = pProgram->token;
dan1d8cb212011-12-09 13:24:16 +00005172 pFrame->aOnceFlag = p->aOnceFlag;
5173 pFrame->nOnceFlag = p->nOnceFlag;
dan165921a2009-08-28 18:53:45 +00005174
5175 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5176 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
drhec86c722011-12-09 17:27:51 +00005177 pMem->flags = MEM_Invalid;
dan165921a2009-08-28 18:53:45 +00005178 pMem->db = db;
5179 }
5180 }else{
5181 pFrame = pRt->u.pFrame;
5182 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
5183 assert( pProgram->nCsr==pFrame->nChildCsr );
5184 assert( pc==pFrame->pc );
5185 }
5186
5187 p->nFrame++;
5188 pFrame->pParent = p->pFrame;
drh99a66922011-05-13 18:51:42 +00005189 pFrame->lastRowid = lastRowid;
dan76d462e2009-08-30 11:42:51 +00005190 pFrame->nChange = p->nChange;
dan2832ad42009-08-31 15:27:27 +00005191 p->nChange = 0;
dan165921a2009-08-28 18:53:45 +00005192 p->pFrame = pFrame;
drha6c2ed92009-11-14 23:22:23 +00005193 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
dan165921a2009-08-28 18:53:45 +00005194 p->nMem = pFrame->nChildMem;
shanecea72b22009-09-07 04:38:36 +00005195 p->nCursor = (u16)pFrame->nChildCsr;
drha6c2ed92009-11-14 23:22:23 +00005196 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
drhbbe879d2009-11-14 18:04:35 +00005197 p->aOp = aOp = pProgram->aOp;
dan165921a2009-08-28 18:53:45 +00005198 p->nOp = pProgram->nOp;
dan1d8cb212011-12-09 13:24:16 +00005199 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
5200 p->nOnceFlag = pProgram->nOnce;
dan165921a2009-08-28 18:53:45 +00005201 pc = -1;
dan1d8cb212011-12-09 13:24:16 +00005202 memset(p->aOnceFlag, 0, p->nOnceFlag);
dan165921a2009-08-28 18:53:45 +00005203
5204 break;
5205}
5206
dan76d462e2009-08-30 11:42:51 +00005207/* Opcode: Param P1 P2 * * *
dan165921a2009-08-28 18:53:45 +00005208**
dan76d462e2009-08-30 11:42:51 +00005209** This opcode is only ever present in sub-programs called via the
5210** OP_Program instruction. Copy a value currently stored in a memory
5211** cell of the calling (parent) frame to cell P2 in the current frames
5212** address space. This is used by trigger programs to access the new.*
5213** and old.* values.
dan165921a2009-08-28 18:53:45 +00005214**
dan76d462e2009-08-30 11:42:51 +00005215** The address of the cell in the parent frame is determined by adding
5216** the value of the P1 argument to the value of the P1 argument to the
5217** calling OP_Program instruction.
dan165921a2009-08-28 18:53:45 +00005218*/
dan76d462e2009-08-30 11:42:51 +00005219case OP_Param: { /* out2-prerelease */
dan65a7cd12009-09-01 12:16:01 +00005220 VdbeFrame *pFrame;
5221 Mem *pIn;
5222 pFrame = p->pFrame;
5223 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
dan165921a2009-08-28 18:53:45 +00005224 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5225 break;
5226}
5227
danielk197793758c82005-01-21 08:13:14 +00005228#endif /* #ifndef SQLITE_OMIT_TRIGGER */
rdcb0c374f2004-02-20 22:53:38 +00005229
dan1da40a32009-09-19 17:00:31 +00005230#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00005231/* Opcode: FkCounter P1 P2 * * *
dan1da40a32009-09-19 17:00:31 +00005232**
dan0ff297e2009-09-25 17:03:14 +00005233** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5234** If P1 is non-zero, the database constraint counter is incremented
5235** (deferred foreign key constraints). Otherwise, if P1 is zero, the
dan32b09f22009-09-23 17:29:59 +00005236** statement counter is incremented (immediate foreign key constraints).
dan1da40a32009-09-19 17:00:31 +00005237*/
dan32b09f22009-09-23 17:29:59 +00005238case OP_FkCounter: {
dan0ff297e2009-09-25 17:03:14 +00005239 if( pOp->p1 ){
5240 db->nDeferredCons += pOp->p2;
dan32b09f22009-09-23 17:29:59 +00005241 }else{
dan0ff297e2009-09-25 17:03:14 +00005242 p->nFkConstraint += pOp->p2;
5243 }
5244 break;
5245}
5246
5247/* Opcode: FkIfZero P1 P2 * * *
5248**
5249** This opcode tests if a foreign key constraint-counter is currently zero.
5250** If so, jump to instruction P2. Otherwise, fall through to the next
5251** instruction.
5252**
5253** If P1 is non-zero, then the jump is taken if the database constraint-counter
5254** is zero (the one that counts deferred constraint violations). If P1 is
5255** zero, the jump is taken if the statement constraint-counter is zero
5256** (immediate foreign key constraint violations).
5257*/
5258case OP_FkIfZero: { /* jump */
5259 if( pOp->p1 ){
5260 if( db->nDeferredCons==0 ) pc = pOp->p2-1;
5261 }else{
5262 if( p->nFkConstraint==0 ) pc = pOp->p2-1;
dan32b09f22009-09-23 17:29:59 +00005263 }
dan1da40a32009-09-19 17:00:31 +00005264 break;
5265}
5266#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5267
drh205f48e2004-11-05 00:43:11 +00005268#ifndef SQLITE_OMIT_AUTOINCREMENT
drh98757152008-01-09 23:04:12 +00005269/* Opcode: MemMax P1 P2 * * *
drh205f48e2004-11-05 00:43:11 +00005270**
dan76d462e2009-08-30 11:42:51 +00005271** P1 is a register in the root frame of this VM (the root frame is
5272** different from the current frame if this instruction is being executed
5273** within a sub-program). Set the value of register P1 to the maximum of
5274** its current value and the value in register P2.
drh205f48e2004-11-05 00:43:11 +00005275**
5276** This instruction throws an error if the memory cell is not initially
5277** an integer.
5278*/
dan76d462e2009-08-30 11:42:51 +00005279case OP_MemMax: { /* in2 */
5280 Mem *pIn1;
5281 VdbeFrame *pFrame;
5282 if( p->pFrame ){
5283 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5284 pIn1 = &pFrame->aMem[pOp->p1];
5285 }else{
drha6c2ed92009-11-14 23:22:23 +00005286 pIn1 = &aMem[pOp->p1];
dan76d462e2009-08-30 11:42:51 +00005287 }
drhec86c722011-12-09 17:27:51 +00005288 assert( memIsValid(pIn1) );
drh98757152008-01-09 23:04:12 +00005289 sqlite3VdbeMemIntegerify(pIn1);
drh3c657212009-11-17 23:59:58 +00005290 pIn2 = &aMem[pOp->p2];
drh98757152008-01-09 23:04:12 +00005291 sqlite3VdbeMemIntegerify(pIn2);
5292 if( pIn1->u.i<pIn2->u.i){
5293 pIn1->u.i = pIn2->u.i;
drh205f48e2004-11-05 00:43:11 +00005294 }
5295 break;
5296}
5297#endif /* SQLITE_OMIT_AUTOINCREMENT */
5298
drh98757152008-01-09 23:04:12 +00005299/* Opcode: IfPos P1 P2 * * *
danielk1977a2dc3b12005-02-05 12:48:48 +00005300**
drh98757152008-01-09 23:04:12 +00005301** If the value of register P1 is 1 or greater, jump to P2.
drh6f58f702006-01-08 05:26:41 +00005302**
drh98757152008-01-09 23:04:12 +00005303** It is illegal to use this instruction on a register that does
drh6f58f702006-01-08 05:26:41 +00005304** not contain an integer. An assertion fault will result if you try.
danielk1977a2dc3b12005-02-05 12:48:48 +00005305*/
drh9cbf3422008-01-17 16:22:13 +00005306case OP_IfPos: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005307 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005308 assert( pIn1->flags&MEM_Int );
drh3c84ddf2008-01-09 02:15:38 +00005309 if( pIn1->u.i>0 ){
drhec7429a2005-10-06 16:53:14 +00005310 pc = pOp->p2 - 1;
5311 }
5312 break;
5313}
5314
drh98757152008-01-09 23:04:12 +00005315/* Opcode: IfNeg P1 P2 * * *
drh15007a92006-01-08 18:10:17 +00005316**
drh98757152008-01-09 23:04:12 +00005317** If the value of register P1 is less than zero, jump to P2.
drh15007a92006-01-08 18:10:17 +00005318**
drh98757152008-01-09 23:04:12 +00005319** It is illegal to use this instruction on a register that does
drh15007a92006-01-08 18:10:17 +00005320** not contain an integer. An assertion fault will result if you try.
5321*/
drh9cbf3422008-01-17 16:22:13 +00005322case OP_IfNeg: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005323 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005324 assert( pIn1->flags&MEM_Int );
drh3c84ddf2008-01-09 02:15:38 +00005325 if( pIn1->u.i<0 ){
drh15007a92006-01-08 18:10:17 +00005326 pc = pOp->p2 - 1;
5327 }
5328 break;
5329}
5330
drh9b918ed2009-11-12 03:13:26 +00005331/* Opcode: IfZero P1 P2 P3 * *
drhec7429a2005-10-06 16:53:14 +00005332**
drh9b918ed2009-11-12 03:13:26 +00005333** The register P1 must contain an integer. Add literal P3 to the
5334** value in register P1. If the result is exactly 0, jump to P2.
drh6f58f702006-01-08 05:26:41 +00005335**
drh98757152008-01-09 23:04:12 +00005336** It is illegal to use this instruction on a register that does
drh6f58f702006-01-08 05:26:41 +00005337** not contain an integer. An assertion fault will result if you try.
drhec7429a2005-10-06 16:53:14 +00005338*/
drh9cbf3422008-01-17 16:22:13 +00005339case OP_IfZero: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005340 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005341 assert( pIn1->flags&MEM_Int );
drh9b918ed2009-11-12 03:13:26 +00005342 pIn1->u.i += pOp->p3;
drh3c84ddf2008-01-09 02:15:38 +00005343 if( pIn1->u.i==0 ){
drha2a49dc2008-01-02 14:28:13 +00005344 pc = pOp->p2 - 1;
5345 }
5346 break;
5347}
5348
drh98757152008-01-09 23:04:12 +00005349/* Opcode: AggStep * P2 P3 P4 P5
drhe5095352002-02-24 03:25:14 +00005350**
drh0bce8352002-02-28 00:41:10 +00005351** Execute the step function for an aggregate. The
drh98757152008-01-09 23:04:12 +00005352** function has P5 arguments. P4 is a pointer to the FuncDef
5353** structure that specifies the function. Use register
5354** P3 as the accumulator.
drhe5095352002-02-24 03:25:14 +00005355**
drh98757152008-01-09 23:04:12 +00005356** The P5 arguments are taken from register P2 and its
5357** successors.
drhe5095352002-02-24 03:25:14 +00005358*/
drh9cbf3422008-01-17 16:22:13 +00005359case OP_AggStep: {
drh856c1032009-06-02 15:21:42 +00005360 int n;
drhe5095352002-02-24 03:25:14 +00005361 int i;
drhc54a6172009-06-02 16:06:03 +00005362 Mem *pMem;
5363 Mem *pRec;
danielk197722322fd2004-05-25 23:35:17 +00005364 sqlite3_context ctx;
danielk19776ddcca52004-05-24 23:48:25 +00005365 sqlite3_value **apVal;
drhe5095352002-02-24 03:25:14 +00005366
drh856c1032009-06-02 15:21:42 +00005367 n = pOp->p5;
drh6810ce62004-01-31 19:22:56 +00005368 assert( n>=0 );
drha6c2ed92009-11-14 23:22:23 +00005369 pRec = &aMem[pOp->p2];
danielk19776ddcca52004-05-24 23:48:25 +00005370 apVal = p->apArg;
5371 assert( apVal || n==0 );
drh6810ce62004-01-31 19:22:56 +00005372 for(i=0; i<n; i++, pRec++){
drh2b4ded92010-09-27 21:09:31 +00005373 assert( memIsValid(pRec) );
danielk1977c572ef72004-05-27 09:28:41 +00005374 apVal[i] = pRec;
drh2b4ded92010-09-27 21:09:31 +00005375 memAboutToChange(p, pRec);
dan937d0de2009-10-15 18:35:38 +00005376 sqlite3VdbeMemStoreType(pRec);
drhe5095352002-02-24 03:25:14 +00005377 }
danielk19772dca4ac2008-01-03 11:50:29 +00005378 ctx.pFunc = pOp->p4.pFunc;
drh98757152008-01-09 23:04:12 +00005379 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00005380 ctx.pMem = pMem = &aMem[pOp->p3];
drhabfcea22005-09-06 20:36:48 +00005381 pMem->n++;
drh90669c12006-01-20 15:45:36 +00005382 ctx.s.flags = MEM_Null;
5383 ctx.s.z = 0;
danielk19775f096132008-03-28 15:44:09 +00005384 ctx.s.zMalloc = 0;
drh90669c12006-01-20 15:45:36 +00005385 ctx.s.xDel = 0;
drhb21c8cd2007-08-21 19:33:56 +00005386 ctx.s.db = db;
drh1350b032002-02-27 19:00:20 +00005387 ctx.isError = 0;
danielk1977dc1bdc42004-06-11 10:51:27 +00005388 ctx.pColl = 0;
drh7a957892012-02-02 17:35:43 +00005389 ctx.skipFlag = 0;
drhe82f5d02008-10-07 19:53:14 +00005390 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
danielk1977dc1bdc42004-06-11 10:51:27 +00005391 assert( pOp>p->aOp );
drh66a51672008-01-03 00:01:23 +00005392 assert( pOp[-1].p4type==P4_COLLSEQ );
danielk1977dc1bdc42004-06-11 10:51:27 +00005393 assert( pOp[-1].opcode==OP_CollSeq );
danielk19772dca4ac2008-01-03 11:50:29 +00005394 ctx.pColl = pOp[-1].p4.pColl;
danielk1977dc1bdc42004-06-11 10:51:27 +00005395 }
drhee9ff672010-09-03 18:50:48 +00005396 (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
drh1350b032002-02-27 19:00:20 +00005397 if( ctx.isError ){
drhf089aa42008-07-08 19:34:06 +00005398 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
drh69544ec2008-02-06 14:11:34 +00005399 rc = ctx.isError;
drh1350b032002-02-27 19:00:20 +00005400 }
drh7a957892012-02-02 17:35:43 +00005401 if( ctx.skipFlag ){
5402 assert( pOp[-1].opcode==OP_CollSeq );
5403 i = pOp[-1].p1;
5404 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
5405 }
drhbdaec522011-04-04 00:14:43 +00005406
drh90669c12006-01-20 15:45:36 +00005407 sqlite3VdbeMemRelease(&ctx.s);
drhbdaec522011-04-04 00:14:43 +00005408
drh5e00f6c2001-09-13 13:46:56 +00005409 break;
5410}
5411
drh98757152008-01-09 23:04:12 +00005412/* Opcode: AggFinal P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +00005413**
drh13449892005-09-07 21:22:45 +00005414** Execute the finalizer function for an aggregate. P1 is
5415** the memory location that is the accumulator for the aggregate.
drha10a34b2005-09-07 22:09:48 +00005416**
5417** P2 is the number of arguments that the step function takes and
drh66a51672008-01-03 00:01:23 +00005418** P4 is a pointer to the FuncDef for this function. The P2
drha10a34b2005-09-07 22:09:48 +00005419** argument is not used by this opcode. It is only there to disambiguate
5420** functions that can take varying numbers of arguments. The
drh66a51672008-01-03 00:01:23 +00005421** P4 argument is only needed for the degenerate case where
drha10a34b2005-09-07 22:09:48 +00005422** the step function was not previously called.
drh5e00f6c2001-09-13 13:46:56 +00005423*/
drh9cbf3422008-01-17 16:22:13 +00005424case OP_AggFinal: {
drh13449892005-09-07 21:22:45 +00005425 Mem *pMem;
drh0a07c102008-01-03 18:03:08 +00005426 assert( pOp->p1>0 && pOp->p1<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00005427 pMem = &aMem[pOp->p1];
drha10a34b2005-09-07 22:09:48 +00005428 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
danielk19772dca4ac2008-01-03 11:50:29 +00005429 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
drh4c8555f2009-06-25 01:47:11 +00005430 if( rc ){
drhf089aa42008-07-08 19:34:06 +00005431 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
drh90669c12006-01-20 15:45:36 +00005432 }
drh2dca8682008-03-21 17:13:13 +00005433 sqlite3VdbeChangeEncoding(pMem, encoding);
drhb7654112008-01-12 12:48:07 +00005434 UPDATE_MAX_BLOBSIZE(pMem);
drh023ae032007-05-08 12:12:16 +00005435 if( sqlite3VdbeMemTooBig(pMem) ){
5436 goto too_big;
5437 }
drh5e00f6c2001-09-13 13:46:56 +00005438 break;
5439}
5440
dan5cf53532010-05-01 16:40:20 +00005441#ifndef SQLITE_OMIT_WAL
dancdc1f042010-11-18 12:11:05 +00005442/* Opcode: Checkpoint P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00005443**
5444** Checkpoint database P1. This is a no-op if P1 is not currently in
dancdc1f042010-11-18 12:11:05 +00005445** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL
drh30aa3b92011-02-07 23:56:01 +00005446** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns
5447** SQLITE_BUSY or not, respectively. Write the number of pages in the
5448** WAL after the checkpoint into mem[P3+1] and the number of pages
5449** in the WAL that have been checkpointed after the checkpoint
5450** completes into mem[P3+2]. However on an error, mem[P3+1] and
5451** mem[P3+2] are initialized to -1.
dan7c246102010-04-12 19:00:29 +00005452*/
5453case OP_Checkpoint: {
drh30aa3b92011-02-07 23:56:01 +00005454 int i; /* Loop counter */
5455 int aRes[3]; /* Results */
5456 Mem *pMem; /* Write results here */
5457
5458 aRes[0] = 0;
5459 aRes[1] = aRes[2] = -1;
dancdc1f042010-11-18 12:11:05 +00005460 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
5461 || pOp->p2==SQLITE_CHECKPOINT_FULL
5462 || pOp->p2==SQLITE_CHECKPOINT_RESTART
5463 );
drh30aa3b92011-02-07 23:56:01 +00005464 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
dancdc1f042010-11-18 12:11:05 +00005465 if( rc==SQLITE_BUSY ){
5466 rc = SQLITE_OK;
drh30aa3b92011-02-07 23:56:01 +00005467 aRes[0] = 1;
dancdc1f042010-11-18 12:11:05 +00005468 }
drh30aa3b92011-02-07 23:56:01 +00005469 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
5470 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
5471 }
dan7c246102010-04-12 19:00:29 +00005472 break;
5473};
dan5cf53532010-05-01 16:40:20 +00005474#endif
drh5e00f6c2001-09-13 13:46:56 +00005475
drhcac29a62010-07-02 19:36:52 +00005476#ifndef SQLITE_OMIT_PRAGMA
drhab9b7442010-05-10 11:20:05 +00005477/* Opcode: JournalMode P1 P2 P3 * P5
dane04dc882010-04-20 18:53:15 +00005478**
5479** Change the journal mode of database P1 to P3. P3 must be one of the
5480** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5481** modes (delete, truncate, persist, off and memory), this is a simple
5482** operation. No IO is required.
5483**
5484** If changing into or out of WAL mode the procedure is more complicated.
5485**
5486** Write a string containing the final journal-mode to register P2.
5487*/
drhd80b2332010-05-01 00:59:37 +00005488case OP_JournalMode: { /* out2-prerelease */
dane04dc882010-04-20 18:53:15 +00005489 Btree *pBt; /* Btree to change journal mode of */
5490 Pager *pPager; /* Pager associated with pBt */
drhd80b2332010-05-01 00:59:37 +00005491 int eNew; /* New journal mode */
5492 int eOld; /* The old journal mode */
drhd80b2332010-05-01 00:59:37 +00005493 const char *zFilename; /* Name of database file for pPager */
dane04dc882010-04-20 18:53:15 +00005494
drhd80b2332010-05-01 00:59:37 +00005495 eNew = pOp->p3;
dane04dc882010-04-20 18:53:15 +00005496 assert( eNew==PAGER_JOURNALMODE_DELETE
5497 || eNew==PAGER_JOURNALMODE_TRUNCATE
5498 || eNew==PAGER_JOURNALMODE_PERSIST
5499 || eNew==PAGER_JOURNALMODE_OFF
5500 || eNew==PAGER_JOURNALMODE_MEMORY
5501 || eNew==PAGER_JOURNALMODE_WAL
5502 || eNew==PAGER_JOURNALMODE_QUERY
5503 );
5504 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drh3ebaee92010-05-06 21:37:22 +00005505
dane04dc882010-04-20 18:53:15 +00005506 pBt = db->aDb[pOp->p1].pBt;
5507 pPager = sqlite3BtreePager(pBt);
drh0b9b4302010-06-11 17:01:24 +00005508 eOld = sqlite3PagerGetJournalMode(pPager);
5509 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
5510 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
dan5cf53532010-05-01 16:40:20 +00005511
5512#ifndef SQLITE_OMIT_WAL
drhd4e0bb02012-05-27 01:19:04 +00005513 zFilename = sqlite3PagerFilename(pPager, 1);
dane04dc882010-04-20 18:53:15 +00005514
drhd80b2332010-05-01 00:59:37 +00005515 /* Do not allow a transition to journal_mode=WAL for a database
drh6e1f4822010-07-13 23:41:40 +00005516 ** in temporary storage or if the VFS does not support shared memory
drhd80b2332010-05-01 00:59:37 +00005517 */
5518 if( eNew==PAGER_JOURNALMODE_WAL
drh057fc812011-10-17 23:15:31 +00005519 && (sqlite3Strlen30(zFilename)==0 /* Temp file */
drh6e1f4822010-07-13 23:41:40 +00005520 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
dane180c292010-04-26 17:42:56 +00005521 ){
drh0b9b4302010-06-11 17:01:24 +00005522 eNew = eOld;
dane180c292010-04-26 17:42:56 +00005523 }
5524
drh0b9b4302010-06-11 17:01:24 +00005525 if( (eNew!=eOld)
5526 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
5527 ){
5528 if( !db->autoCommit || db->activeVdbeCnt>1 ){
5529 rc = SQLITE_ERROR;
5530 sqlite3SetString(&p->zErrMsg, db,
5531 "cannot change %s wal mode from within a transaction",
5532 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
5533 );
5534 break;
5535 }else{
5536
5537 if( eOld==PAGER_JOURNALMODE_WAL ){
5538 /* If leaving WAL mode, close the log file. If successful, the call
5539 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
5540 ** file. An EXCLUSIVE lock may still be held on the database file
5541 ** after a successful return.
dane04dc882010-04-20 18:53:15 +00005542 */
drh0b9b4302010-06-11 17:01:24 +00005543 rc = sqlite3PagerCloseWal(pPager);
drhab9b7442010-05-10 11:20:05 +00005544 if( rc==SQLITE_OK ){
drh0b9b4302010-06-11 17:01:24 +00005545 sqlite3PagerSetJournalMode(pPager, eNew);
drh89c3f2f2010-05-15 01:09:38 +00005546 }
drh242c4f72010-06-22 14:49:39 +00005547 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
5548 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
5549 ** as an intermediate */
5550 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
drh0b9b4302010-06-11 17:01:24 +00005551 }
5552
5553 /* Open a transaction on the database file. Regardless of the journal
5554 ** mode, this transaction always uses a rollback journal.
5555 */
5556 assert( sqlite3BtreeIsInTrans(pBt)==0 );
5557 if( rc==SQLITE_OK ){
dan731bf5b2010-06-17 16:44:21 +00005558 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
dane04dc882010-04-20 18:53:15 +00005559 }
5560 }
5561 }
dan5cf53532010-05-01 16:40:20 +00005562#endif /* ifndef SQLITE_OMIT_WAL */
dane04dc882010-04-20 18:53:15 +00005563
dand956efe2010-06-18 16:13:45 +00005564 if( rc ){
dand956efe2010-06-18 16:13:45 +00005565 eNew = eOld;
5566 }
drh0b9b4302010-06-11 17:01:24 +00005567 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
dan731bf5b2010-06-17 16:44:21 +00005568
dane04dc882010-04-20 18:53:15 +00005569 pOut = &aMem[pOp->p2];
5570 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
danb9780022010-04-21 18:37:57 +00005571 pOut->z = (char *)sqlite3JournalModename(eNew);
dane04dc882010-04-20 18:53:15 +00005572 pOut->n = sqlite3Strlen30(pOut->z);
5573 pOut->enc = SQLITE_UTF8;
5574 sqlite3VdbeChangeEncoding(pOut, encoding);
5575 break;
drhcac29a62010-07-02 19:36:52 +00005576};
5577#endif /* SQLITE_OMIT_PRAGMA */
dane04dc882010-04-20 18:53:15 +00005578
drhfdbcdee2007-03-27 14:44:50 +00005579#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
drh98757152008-01-09 23:04:12 +00005580/* Opcode: Vacuum * * * * *
drh6f8c91c2003-12-07 00:24:35 +00005581**
5582** Vacuum the entire database. This opcode will cause other virtual
5583** machines to be created and run. It may not be called from within
5584** a transaction.
5585*/
drh9cbf3422008-01-17 16:22:13 +00005586case OP_Vacuum: {
danielk19774adee202004-05-08 08:23:19 +00005587 rc = sqlite3RunVacuum(&p->zErrMsg, db);
drh6f8c91c2003-12-07 00:24:35 +00005588 break;
5589}
drh154d4b22006-09-21 11:02:16 +00005590#endif
drh6f8c91c2003-12-07 00:24:35 +00005591
danielk1977dddbcdc2007-04-26 14:42:34 +00005592#if !defined(SQLITE_OMIT_AUTOVACUUM)
drh98757152008-01-09 23:04:12 +00005593/* Opcode: IncrVacuum P1 P2 * * *
danielk1977dddbcdc2007-04-26 14:42:34 +00005594**
5595** Perform a single step of the incremental vacuum procedure on
drhca5557f2007-05-04 18:30:40 +00005596** the P1 database. If the vacuum has finished, jump to instruction
danielk1977dddbcdc2007-04-26 14:42:34 +00005597** P2. Otherwise, fall through to the next instruction.
5598*/
drh9cbf3422008-01-17 16:22:13 +00005599case OP_IncrVacuum: { /* jump */
drhca5557f2007-05-04 18:30:40 +00005600 Btree *pBt;
5601
5602 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00005603 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drhca5557f2007-05-04 18:30:40 +00005604 pBt = db->aDb[pOp->p1].pBt;
danielk1977dddbcdc2007-04-26 14:42:34 +00005605 rc = sqlite3BtreeIncrVacuum(pBt);
5606 if( rc==SQLITE_DONE ){
5607 pc = pOp->p2 - 1;
5608 rc = SQLITE_OK;
5609 }
5610 break;
5611}
5612#endif
5613
drh98757152008-01-09 23:04:12 +00005614/* Opcode: Expire P1 * * * *
danielk1977a21c6b62005-01-24 10:25:59 +00005615**
5616** Cause precompiled statements to become expired. An expired statement
5617** fails with an error code of SQLITE_SCHEMA if it is ever executed
5618** (via sqlite3_step()).
5619**
5620** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
5621** then only the currently executing statement is affected.
5622*/
drh9cbf3422008-01-17 16:22:13 +00005623case OP_Expire: {
danielk1977a21c6b62005-01-24 10:25:59 +00005624 if( !pOp->p1 ){
5625 sqlite3ExpirePreparedStatements(db);
5626 }else{
5627 p->expired = 1;
5628 }
5629 break;
5630}
5631
danielk1977c00da102006-01-07 13:21:04 +00005632#ifndef SQLITE_OMIT_SHARED_CACHE
drh6a9ad3d2008-04-02 16:29:30 +00005633/* Opcode: TableLock P1 P2 P3 P4 *
danielk1977c00da102006-01-07 13:21:04 +00005634**
5635** Obtain a lock on a particular table. This instruction is only used when
5636** the shared-cache feature is enabled.
5637**
danielk197796d48e92009-06-29 06:00:37 +00005638** P1 is the index of the database in sqlite3.aDb[] of the database
drh6a9ad3d2008-04-02 16:29:30 +00005639** on which the lock is acquired. A readlock is obtained if P3==0 or
5640** a write lock if P3==1.
danielk1977c00da102006-01-07 13:21:04 +00005641**
5642** P2 contains the root-page of the table to lock.
5643**
drh66a51672008-01-03 00:01:23 +00005644** P4 contains a pointer to the name of the table being locked. This is only
danielk1977c00da102006-01-07 13:21:04 +00005645** used to generate an error message if the lock cannot be obtained.
5646*/
drh9cbf3422008-01-17 16:22:13 +00005647case OP_TableLock: {
danielk1977e0d9e6f2009-07-03 16:25:06 +00005648 u8 isWriteLock = (u8)pOp->p3;
5649 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
5650 int p1 = pOp->p1;
5651 assert( p1>=0 && p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00005652 assert( (p->btreeMask & (((yDbMask)1)<<p1))!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +00005653 assert( isWriteLock==0 || isWriteLock==1 );
5654 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
5655 if( (rc&0xFF)==SQLITE_LOCKED ){
5656 const char *z = pOp->p4.z;
5657 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
5658 }
danielk1977c00da102006-01-07 13:21:04 +00005659 }
5660 break;
5661}
drhb9bb7c12006-06-11 23:41:55 +00005662#endif /* SQLITE_OMIT_SHARED_CACHE */
5663
5664#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005665/* Opcode: VBegin * * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00005666**
danielk19773e3a84d2008-08-01 17:37:40 +00005667** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
5668** xBegin method for that table.
5669**
5670** Also, whether or not P4 is set, check that this is not being called from
danielk1977404ca072009-03-16 13:19:36 +00005671** within a callback to a virtual table xSync() method. If it is, the error
5672** code will be set to SQLITE_LOCKED.
drhb9bb7c12006-06-11 23:41:55 +00005673*/
drh9cbf3422008-01-17 16:22:13 +00005674case OP_VBegin: {
danielk1977595a5232009-07-24 17:58:53 +00005675 VTable *pVTab;
5676 pVTab = pOp->p4.pVtab;
5677 rc = sqlite3VtabBegin(db, pVTab);
drhb9755982010-07-24 16:34:37 +00005678 if( pVTab ) importVtabErrMsg(p, pVTab->pVtab);
danielk1977f9e7dda2006-06-16 16:08:53 +00005679 break;
5680}
5681#endif /* SQLITE_OMIT_VIRTUALTABLE */
5682
5683#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005684/* Opcode: VCreate P1 * * P4 *
danielk1977f9e7dda2006-06-16 16:08:53 +00005685**
drh66a51672008-01-03 00:01:23 +00005686** P4 is the name of a virtual table in database P1. Call the xCreate method
danielk1977f9e7dda2006-06-16 16:08:53 +00005687** for that table.
5688*/
drh9cbf3422008-01-17 16:22:13 +00005689case OP_VCreate: {
danielk19772dca4ac2008-01-03 11:50:29 +00005690 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
drhb9bb7c12006-06-11 23:41:55 +00005691 break;
5692}
5693#endif /* SQLITE_OMIT_VIRTUALTABLE */
5694
5695#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005696/* Opcode: VDestroy P1 * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00005697**
drh66a51672008-01-03 00:01:23 +00005698** P4 is the name of a virtual table in database P1. Call the xDestroy method
danielk19779e39ce82006-06-12 16:01:21 +00005699** of that table.
drhb9bb7c12006-06-11 23:41:55 +00005700*/
drh9cbf3422008-01-17 16:22:13 +00005701case OP_VDestroy: {
danielk1977212b2182006-06-23 14:32:08 +00005702 p->inVtabMethod = 2;
danielk19772dca4ac2008-01-03 11:50:29 +00005703 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
danielk1977212b2182006-06-23 14:32:08 +00005704 p->inVtabMethod = 0;
drhb9bb7c12006-06-11 23:41:55 +00005705 break;
5706}
5707#endif /* SQLITE_OMIT_VIRTUALTABLE */
danielk1977c00da102006-01-07 13:21:04 +00005708
drh9eff6162006-06-12 21:59:13 +00005709#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005710/* Opcode: VOpen P1 * * P4 *
drh9eff6162006-06-12 21:59:13 +00005711**
drh66a51672008-01-03 00:01:23 +00005712** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
drh9eff6162006-06-12 21:59:13 +00005713** P1 is a cursor number. This opcode opens a cursor to the virtual
5714** table and stores that cursor in P1.
5715*/
drh9cbf3422008-01-17 16:22:13 +00005716case OP_VOpen: {
drh856c1032009-06-02 15:21:42 +00005717 VdbeCursor *pCur;
5718 sqlite3_vtab_cursor *pVtabCursor;
5719 sqlite3_vtab *pVtab;
5720 sqlite3_module *pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005721
drh856c1032009-06-02 15:21:42 +00005722 pCur = 0;
5723 pVtabCursor = 0;
danielk1977595a5232009-07-24 17:58:53 +00005724 pVtab = pOp->p4.pVtab->pVtab;
drh856c1032009-06-02 15:21:42 +00005725 pModule = (sqlite3_module *)pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005726 assert(pVtab && pModule);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005727 rc = pModule->xOpen(pVtab, &pVtabCursor);
drhb9755982010-07-24 16:34:37 +00005728 importVtabErrMsg(p, pVtab);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005729 if( SQLITE_OK==rc ){
shane21e7feb2008-05-30 15:59:49 +00005730 /* Initialize sqlite3_vtab_cursor base class */
danielk1977b7a7b9a2006-06-13 10:24:42 +00005731 pVtabCursor->pVtab = pVtab;
5732
5733 /* Initialise vdbe cursor object */
danielk1977d336e222009-02-20 10:58:41 +00005734 pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
danielk1977be718892006-06-23 08:05:19 +00005735 if( pCur ){
5736 pCur->pVtabCursor = pVtabCursor;
5737 pCur->pModule = pVtabCursor->pVtab->pModule;
danielk1977b7a2f2e2006-06-23 11:34:54 +00005738 }else{
drh17435752007-08-16 04:30:38 +00005739 db->mallocFailed = 1;
danielk1977b7a2f2e2006-06-23 11:34:54 +00005740 pModule->xClose(pVtabCursor);
danielk1977be718892006-06-23 08:05:19 +00005741 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005742 }
drh9eff6162006-06-12 21:59:13 +00005743 break;
5744}
5745#endif /* SQLITE_OMIT_VIRTUALTABLE */
5746
5747#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk19776dbee812008-01-03 18:39:41 +00005748/* Opcode: VFilter P1 P2 P3 P4 *
drh9eff6162006-06-12 21:59:13 +00005749**
5750** P1 is a cursor opened using VOpen. P2 is an address to jump to if
5751** the filtered result set is empty.
5752**
drh66a51672008-01-03 00:01:23 +00005753** P4 is either NULL or a string that was generated by the xBestIndex
5754** method of the module. The interpretation of the P4 string is left
drh4be8b512006-06-13 23:51:34 +00005755** to the module implementation.
danielk19775fac9f82006-06-13 14:16:58 +00005756**
drh9eff6162006-06-12 21:59:13 +00005757** This opcode invokes the xFilter method on the virtual table specified
danielk19776dbee812008-01-03 18:39:41 +00005758** by P1. The integer query plan parameter to xFilter is stored in register
5759** P3. Register P3+1 stores the argc parameter to be passed to the
drh174edc62008-05-29 05:23:41 +00005760** xFilter method. Registers P3+2..P3+1+argc are the argc
5761** additional parameters which are passed to
danielk19776dbee812008-01-03 18:39:41 +00005762** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
danielk1977b7a7b9a2006-06-13 10:24:42 +00005763**
danielk19776dbee812008-01-03 18:39:41 +00005764** A jump is made to P2 if the result set after filtering would be empty.
drh9eff6162006-06-12 21:59:13 +00005765*/
drh9cbf3422008-01-17 16:22:13 +00005766case OP_VFilter: { /* jump */
danielk1977b7a7b9a2006-06-13 10:24:42 +00005767 int nArg;
danielk19776dbee812008-01-03 18:39:41 +00005768 int iQuery;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005769 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00005770 Mem *pQuery;
5771 Mem *pArgc;
drh4dc754d2008-07-23 18:17:32 +00005772 sqlite3_vtab_cursor *pVtabCursor;
5773 sqlite3_vtab *pVtab;
drh856c1032009-06-02 15:21:42 +00005774 VdbeCursor *pCur;
5775 int res;
5776 int i;
5777 Mem **apArg;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005778
drha6c2ed92009-11-14 23:22:23 +00005779 pQuery = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00005780 pArgc = &pQuery[1];
5781 pCur = p->apCsr[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00005782 assert( memIsValid(pQuery) );
drh5b6afba2008-01-05 16:29:28 +00005783 REGISTER_TRACE(pOp->p3, pQuery);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005784 assert( pCur->pVtabCursor );
drh4dc754d2008-07-23 18:17:32 +00005785 pVtabCursor = pCur->pVtabCursor;
5786 pVtab = pVtabCursor->pVtab;
5787 pModule = pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005788
drh9cbf3422008-01-17 16:22:13 +00005789 /* Grab the index number and argc parameters */
danielk19776dbee812008-01-03 18:39:41 +00005790 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
drh9c1905f2008-12-10 22:32:56 +00005791 nArg = (int)pArgc->u.i;
5792 iQuery = (int)pQuery->u.i;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005793
drh644a5292006-12-20 14:53:38 +00005794 /* Invoke the xFilter method */
5795 {
drh856c1032009-06-02 15:21:42 +00005796 res = 0;
5797 apArg = p->apArg;
drh4be8b512006-06-13 23:51:34 +00005798 for(i = 0; i<nArg; i++){
danielk19776dbee812008-01-03 18:39:41 +00005799 apArg[i] = &pArgc[i+1];
dan937d0de2009-10-15 18:35:38 +00005800 sqlite3VdbeMemStoreType(apArg[i]);
danielk19775fac9f82006-06-13 14:16:58 +00005801 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005802
danielk1977be718892006-06-23 08:05:19 +00005803 p->inVtabMethod = 1;
drh4dc754d2008-07-23 18:17:32 +00005804 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
danielk1977be718892006-06-23 08:05:19 +00005805 p->inVtabMethod = 0;
drhb9755982010-07-24 16:34:37 +00005806 importVtabErrMsg(p, pVtab);
danielk1977a298e902006-06-22 09:53:48 +00005807 if( rc==SQLITE_OK ){
drh4dc754d2008-07-23 18:17:32 +00005808 res = pModule->xEof(pVtabCursor);
danielk1977a298e902006-06-22 09:53:48 +00005809 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005810
danielk1977a298e902006-06-22 09:53:48 +00005811 if( res ){
danielk1977b7a7b9a2006-06-13 10:24:42 +00005812 pc = pOp->p2 - 1;
5813 }
5814 }
drh1d454a32008-01-31 19:34:51 +00005815 pCur->nullRow = 0;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005816
drh9eff6162006-06-12 21:59:13 +00005817 break;
5818}
5819#endif /* SQLITE_OMIT_VIRTUALTABLE */
5820
5821#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005822/* Opcode: VColumn P1 P2 P3 * *
drh9eff6162006-06-12 21:59:13 +00005823**
drh2133d822008-01-03 18:44:59 +00005824** Store the value of the P2-th column of
5825** the row of the virtual-table that the
5826** P1 cursor is pointing to into register P3.
drh9eff6162006-06-12 21:59:13 +00005827*/
5828case OP_VColumn: {
danielk19773e3a84d2008-08-01 17:37:40 +00005829 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005830 const sqlite3_module *pModule;
drhde4fcfd2008-01-19 23:50:26 +00005831 Mem *pDest;
5832 sqlite3_context sContext;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005833
drhdfe88ec2008-11-03 20:55:06 +00005834 VdbeCursor *pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00005835 assert( pCur->pVtabCursor );
drh2945b4a2008-01-31 15:53:45 +00005836 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00005837 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00005838 memAboutToChange(p, pDest);
drh2945b4a2008-01-31 15:53:45 +00005839 if( pCur->nullRow ){
5840 sqlite3VdbeMemSetNull(pDest);
5841 break;
5842 }
danielk19773e3a84d2008-08-01 17:37:40 +00005843 pVtab = pCur->pVtabCursor->pVtab;
5844 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00005845 assert( pModule->xColumn );
5846 memset(&sContext, 0, sizeof(sContext));
danielk1977a7a8e142008-02-13 18:25:27 +00005847
5848 /* The output cell may already have a buffer allocated. Move
5849 ** the current contents to sContext.s so in case the user-function
5850 ** can use the already allocated buffer instead of allocating a
5851 ** new one.
5852 */
5853 sqlite3VdbeMemMove(&sContext.s, pDest);
5854 MemSetTypeFlag(&sContext.s, MEM_Null);
5855
drhde4fcfd2008-01-19 23:50:26 +00005856 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
drhb9755982010-07-24 16:34:37 +00005857 importVtabErrMsg(p, pVtab);
drh4c8555f2009-06-25 01:47:11 +00005858 if( sContext.isError ){
5859 rc = sContext.isError;
5860 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005861
drhde4fcfd2008-01-19 23:50:26 +00005862 /* Copy the result of the function to the P3 register. We
shanebe217792009-03-05 04:20:31 +00005863 ** do this regardless of whether or not an error occurred to ensure any
drhde4fcfd2008-01-19 23:50:26 +00005864 ** dynamic allocation in sContext.s (a Mem struct) is released.
5865 */
5866 sqlite3VdbeChangeEncoding(&sContext.s, encoding);
drhde4fcfd2008-01-19 23:50:26 +00005867 sqlite3VdbeMemMove(pDest, &sContext.s);
drh5ff44372009-11-24 16:26:17 +00005868 REGISTER_TRACE(pOp->p3, pDest);
drhde4fcfd2008-01-19 23:50:26 +00005869 UPDATE_MAX_BLOBSIZE(pDest);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005870
drhde4fcfd2008-01-19 23:50:26 +00005871 if( sqlite3VdbeMemTooBig(pDest) ){
5872 goto too_big;
5873 }
drh9eff6162006-06-12 21:59:13 +00005874 break;
5875}
5876#endif /* SQLITE_OMIT_VIRTUALTABLE */
5877
5878#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005879/* Opcode: VNext P1 P2 * * *
drh9eff6162006-06-12 21:59:13 +00005880**
5881** Advance virtual table P1 to the next row in its result set and
5882** jump to instruction P2. Or, if the virtual table has reached
5883** the end of its result set, then fall through to the next instruction.
5884*/
drh9cbf3422008-01-17 16:22:13 +00005885case OP_VNext: { /* jump */
danielk19773e3a84d2008-08-01 17:37:40 +00005886 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005887 const sqlite3_module *pModule;
drhc54a6172009-06-02 16:06:03 +00005888 int res;
drh856c1032009-06-02 15:21:42 +00005889 VdbeCursor *pCur;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005890
drhc54a6172009-06-02 16:06:03 +00005891 res = 0;
drh856c1032009-06-02 15:21:42 +00005892 pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00005893 assert( pCur->pVtabCursor );
drh2945b4a2008-01-31 15:53:45 +00005894 if( pCur->nullRow ){
5895 break;
5896 }
danielk19773e3a84d2008-08-01 17:37:40 +00005897 pVtab = pCur->pVtabCursor->pVtab;
5898 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00005899 assert( pModule->xNext );
danielk1977b7a7b9a2006-06-13 10:24:42 +00005900
drhde4fcfd2008-01-19 23:50:26 +00005901 /* Invoke the xNext() method of the module. There is no way for the
5902 ** underlying implementation to return an error if one occurs during
5903 ** xNext(). Instead, if an error occurs, true is returned (indicating that
5904 ** data is available) and the error code returned when xColumn or
5905 ** some other method is next invoked on the save virtual table cursor.
5906 */
drhde4fcfd2008-01-19 23:50:26 +00005907 p->inVtabMethod = 1;
5908 rc = pModule->xNext(pCur->pVtabCursor);
5909 p->inVtabMethod = 0;
drhb9755982010-07-24 16:34:37 +00005910 importVtabErrMsg(p, pVtab);
drhde4fcfd2008-01-19 23:50:26 +00005911 if( rc==SQLITE_OK ){
5912 res = pModule->xEof(pCur->pVtabCursor);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005913 }
5914
drhde4fcfd2008-01-19 23:50:26 +00005915 if( !res ){
5916 /* If there is data, jump to P2 */
5917 pc = pOp->p2 - 1;
5918 }
drh9eff6162006-06-12 21:59:13 +00005919 break;
5920}
5921#endif /* SQLITE_OMIT_VIRTUALTABLE */
5922
danielk1977182c4ba2007-06-27 15:53:34 +00005923#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005924/* Opcode: VRename P1 * * P4 *
danielk1977182c4ba2007-06-27 15:53:34 +00005925**
drh66a51672008-01-03 00:01:23 +00005926** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977182c4ba2007-06-27 15:53:34 +00005927** This opcode invokes the corresponding xRename method. The value
danielk19776dbee812008-01-03 18:39:41 +00005928** in register P1 is passed as the zName argument to the xRename method.
danielk1977182c4ba2007-06-27 15:53:34 +00005929*/
drh9cbf3422008-01-17 16:22:13 +00005930case OP_VRename: {
drh856c1032009-06-02 15:21:42 +00005931 sqlite3_vtab *pVtab;
5932 Mem *pName;
5933
danielk1977595a5232009-07-24 17:58:53 +00005934 pVtab = pOp->p4.pVtab->pVtab;
drha6c2ed92009-11-14 23:22:23 +00005935 pName = &aMem[pOp->p1];
danielk1977182c4ba2007-06-27 15:53:34 +00005936 assert( pVtab->pModule->xRename );
drh2b4ded92010-09-27 21:09:31 +00005937 assert( memIsValid(pName) );
drh5b6afba2008-01-05 16:29:28 +00005938 REGISTER_TRACE(pOp->p1, pName);
drh35f6b932009-06-23 14:15:04 +00005939 assert( pName->flags & MEM_Str );
drh98655a62011-10-18 22:07:47 +00005940 testcase( pName->enc==SQLITE_UTF8 );
5941 testcase( pName->enc==SQLITE_UTF16BE );
5942 testcase( pName->enc==SQLITE_UTF16LE );
5943 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
5944 if( rc==SQLITE_OK ){
5945 rc = pVtab->pModule->xRename(pVtab, pName->z);
5946 importVtabErrMsg(p, pVtab);
5947 p->expired = 0;
5948 }
danielk1977182c4ba2007-06-27 15:53:34 +00005949 break;
5950}
5951#endif
drh4cbdda92006-06-14 19:00:20 +00005952
5953#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005954/* Opcode: VUpdate P1 P2 P3 P4 *
danielk1977399918f2006-06-14 13:03:23 +00005955**
drh66a51672008-01-03 00:01:23 +00005956** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977399918f2006-06-14 13:03:23 +00005957** This opcode invokes the corresponding xUpdate method. P2 values
danielk19772a339ff2008-01-03 17:31:44 +00005958** are contiguous memory cells starting at P3 to pass to the xUpdate
5959** invocation. The value in register (P3+P2-1) corresponds to the
5960** p2th element of the argv array passed to xUpdate.
drh4cbdda92006-06-14 19:00:20 +00005961**
5962** The xUpdate method will do a DELETE or an INSERT or both.
danielk19772a339ff2008-01-03 17:31:44 +00005963** The argv[0] element (which corresponds to memory cell P3)
5964** is the rowid of a row to delete. If argv[0] is NULL then no
5965** deletion occurs. The argv[1] element is the rowid of the new
5966** row. This can be NULL to have the virtual table select the new
5967** rowid for itself. The subsequent elements in the array are
5968** the values of columns in the new row.
drh4cbdda92006-06-14 19:00:20 +00005969**
5970** If P2==1 then no insert is performed. argv[0] is the rowid of
5971** a row to delete.
danielk19771f6eec52006-06-16 06:17:47 +00005972**
5973** P1 is a boolean flag. If it is set to true and the xUpdate call
5974** is successful, then the value returned by sqlite3_last_insert_rowid()
5975** is set to the value of the rowid for the row just inserted.
danielk1977399918f2006-06-14 13:03:23 +00005976*/
drh9cbf3422008-01-17 16:22:13 +00005977case OP_VUpdate: {
drh856c1032009-06-02 15:21:42 +00005978 sqlite3_vtab *pVtab;
5979 sqlite3_module *pModule;
5980 int nArg;
5981 int i;
5982 sqlite_int64 rowid;
5983 Mem **apArg;
5984 Mem *pX;
5985
danb061d052011-04-25 18:49:57 +00005986 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
5987 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
5988 );
danielk1977595a5232009-07-24 17:58:53 +00005989 pVtab = pOp->p4.pVtab->pVtab;
drh856c1032009-06-02 15:21:42 +00005990 pModule = (sqlite3_module *)pVtab->pModule;
5991 nArg = pOp->p2;
drh66a51672008-01-03 00:01:23 +00005992 assert( pOp->p4type==P4_VTAB );
drh35f6b932009-06-23 14:15:04 +00005993 if( ALWAYS(pModule->xUpdate) ){
danb061d052011-04-25 18:49:57 +00005994 u8 vtabOnConflict = db->vtabOnConflict;
drh856c1032009-06-02 15:21:42 +00005995 apArg = p->apArg;
drha6c2ed92009-11-14 23:22:23 +00005996 pX = &aMem[pOp->p3];
danielk19772a339ff2008-01-03 17:31:44 +00005997 for(i=0; i<nArg; i++){
drh2b4ded92010-09-27 21:09:31 +00005998 assert( memIsValid(pX) );
5999 memAboutToChange(p, pX);
dan937d0de2009-10-15 18:35:38 +00006000 sqlite3VdbeMemStoreType(pX);
drh9c419382006-06-16 21:13:21 +00006001 apArg[i] = pX;
danielk19772a339ff2008-01-03 17:31:44 +00006002 pX++;
danielk1977399918f2006-06-14 13:03:23 +00006003 }
danb061d052011-04-25 18:49:57 +00006004 db->vtabOnConflict = pOp->p5;
danielk19771f6eec52006-06-16 06:17:47 +00006005 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
danb061d052011-04-25 18:49:57 +00006006 db->vtabOnConflict = vtabOnConflict;
drhb9755982010-07-24 16:34:37 +00006007 importVtabErrMsg(p, pVtab);
drh35f6b932009-06-23 14:15:04 +00006008 if( rc==SQLITE_OK && pOp->p1 ){
danielk19771f6eec52006-06-16 06:17:47 +00006009 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
drh99a66922011-05-13 18:51:42 +00006010 db->lastRowid = lastRowid = rowid;
danielk19771f6eec52006-06-16 06:17:47 +00006011 }
danb061d052011-04-25 18:49:57 +00006012 if( rc==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
6013 if( pOp->p5==OE_Ignore ){
6014 rc = SQLITE_OK;
6015 }else{
6016 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
6017 }
6018 }else{
6019 p->nChange++;
6020 }
danielk1977399918f2006-06-14 13:03:23 +00006021 }
drh4cbdda92006-06-14 19:00:20 +00006022 break;
danielk1977399918f2006-06-14 13:03:23 +00006023}
6024#endif /* SQLITE_OMIT_VIRTUALTABLE */
6025
danielk197759a93792008-05-15 17:48:20 +00006026#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6027/* Opcode: Pagecount P1 P2 * * *
6028**
6029** Write the current number of pages in database P1 to memory cell P2.
6030*/
6031case OP_Pagecount: { /* out2-prerelease */
drhb1299152010-03-30 22:58:33 +00006032 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
danielk197759a93792008-05-15 17:48:20 +00006033 break;
6034}
6035#endif
6036
drh60ac3f42010-11-23 18:59:27 +00006037
6038#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6039/* Opcode: MaxPgcnt P1 P2 P3 * *
6040**
6041** Try to set the maximum page count for database P1 to the value in P3.
drhc84e0332010-11-23 20:25:08 +00006042** Do not let the maximum page count fall below the current page count and
6043** do not change the maximum page count value if P3==0.
6044**
drh60ac3f42010-11-23 18:59:27 +00006045** Store the maximum page count after the change in register P2.
6046*/
6047case OP_MaxPgcnt: { /* out2-prerelease */
drhc84e0332010-11-23 20:25:08 +00006048 unsigned int newMax;
drh60ac3f42010-11-23 18:59:27 +00006049 Btree *pBt;
6050
6051 pBt = db->aDb[pOp->p1].pBt;
drhc84e0332010-11-23 20:25:08 +00006052 newMax = 0;
6053 if( pOp->p3 ){
6054 newMax = sqlite3BtreeLastPage(pBt);
drh6ea28d62010-11-26 16:49:59 +00006055 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
drhc84e0332010-11-23 20:25:08 +00006056 }
6057 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
drh60ac3f42010-11-23 18:59:27 +00006058 break;
6059}
6060#endif
6061
6062
drh949f9cd2008-01-12 21:35:57 +00006063#ifndef SQLITE_OMIT_TRACE
6064/* Opcode: Trace * * * P4 *
6065**
6066** If tracing is enabled (by the sqlite3_trace()) interface, then
6067** the UTF-8 string contained in P4 is emitted on the trace callback.
6068*/
6069case OP_Trace: {
drh856c1032009-06-02 15:21:42 +00006070 char *zTrace;
drhc3f1d5f2011-05-30 23:42:16 +00006071 char *z;
drh856c1032009-06-02 15:21:42 +00006072
drhc3f1d5f2011-05-30 23:42:16 +00006073 if( db->xTrace && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 ){
6074 z = sqlite3VdbeExpandSql(p, zTrace);
6075 db->xTrace(db->pTraceArg, z);
6076 sqlite3DbFree(db, z);
drh949f9cd2008-01-12 21:35:57 +00006077 }
drhc3f1d5f2011-05-30 23:42:16 +00006078#ifdef SQLITE_DEBUG
6079 if( (db->flags & SQLITE_SqlTrace)!=0
6080 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6081 ){
6082 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
6083 }
6084#endif /* SQLITE_DEBUG */
drh949f9cd2008-01-12 21:35:57 +00006085 break;
6086}
6087#endif
6088
drh91fd4d42008-01-19 20:11:25 +00006089
6090/* Opcode: Noop * * * * *
6091**
6092** Do nothing. This instruction is often useful as a jump
6093** destination.
drh5e00f6c2001-09-13 13:46:56 +00006094*/
drh91fd4d42008-01-19 20:11:25 +00006095/*
6096** The magic Explain opcode are only inserted when explain==2 (which
6097** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6098** This opcode records information from the optimizer. It is the
6099** the same as a no-op. This opcodesnever appears in a real VM program.
6100*/
6101default: { /* This is really OP_Noop and OP_Explain */
drh13573c72010-01-12 17:04:07 +00006102 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
drh5e00f6c2001-09-13 13:46:56 +00006103 break;
6104}
6105
6106/*****************************************************************************
6107** The cases of the switch statement above this line should all be indented
6108** by 6 spaces. But the left-most 6 spaces have been removed to improve the
6109** readability. From this point on down, the normal indentation rules are
6110** restored.
6111*****************************************************************************/
6112 }
drh6e142f52000-06-08 13:36:40 +00006113
drh7b396862003-01-01 23:06:20 +00006114#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +00006115 {
shane9bcbdad2008-05-29 20:22:37 +00006116 u64 elapsed = sqlite3Hwtime() - start;
6117 pOp->cycles += elapsed;
drh8178a752003-01-05 21:41:40 +00006118 pOp->cnt++;
6119#if 0
shane9bcbdad2008-05-29 20:22:37 +00006120 fprintf(stdout, "%10llu ", elapsed);
drhbbe879d2009-11-14 18:04:35 +00006121 sqlite3VdbePrintOp(stdout, origPc, &aOp[origPc]);
drh8178a752003-01-05 21:41:40 +00006122#endif
6123 }
drh7b396862003-01-01 23:06:20 +00006124#endif
6125
drh6e142f52000-06-08 13:36:40 +00006126 /* The following code adds nothing to the actual functionality
6127 ** of the program. It is only here for testing and debugging.
6128 ** On the other hand, it does burn CPU cycles every time through
6129 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
6130 */
6131#ifndef NDEBUG
drha6110402005-07-28 20:51:19 +00006132 assert( pc>=-1 && pc<p->nOp );
drhae7e1512007-05-02 16:51:59 +00006133
drhcf1023c2007-05-08 20:59:49 +00006134#ifdef SQLITE_DEBUG
drh5b6afba2008-01-05 16:29:28 +00006135 if( p->trace ){
6136 if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
drh3c657212009-11-17 23:59:58 +00006137 if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){
6138 registerTrace(p->trace, pOp->p2, &aMem[pOp->p2]);
drh75897232000-05-29 14:26:00 +00006139 }
drh3c657212009-11-17 23:59:58 +00006140 if( pOp->opflags & OPFLG_OUT3 ){
6141 registerTrace(p->trace, pOp->p3, &aMem[pOp->p3]);
drh5b6afba2008-01-05 16:29:28 +00006142 }
drh75897232000-05-29 14:26:00 +00006143 }
danielk1977b5402fb2005-01-12 07:15:04 +00006144#endif /* SQLITE_DEBUG */
6145#endif /* NDEBUG */
drhb86ccfb2003-01-28 23:13:10 +00006146 } /* The end of the for(;;) loop the loops through opcodes */
drh75897232000-05-29 14:26:00 +00006147
drha05a7222008-01-19 03:35:58 +00006148 /* If we reach this point, it means that execution is finished with
6149 ** an error of some kind.
drhb86ccfb2003-01-28 23:13:10 +00006150 */
drha05a7222008-01-19 03:35:58 +00006151vdbe_error_halt:
6152 assert( rc );
6153 p->rc = rc;
drha64fa912010-03-04 00:53:32 +00006154 testcase( sqlite3GlobalConfig.xLog!=0 );
6155 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
6156 pc, p->zSql, p->zErrMsg);
drh92f02c32004-09-02 14:57:08 +00006157 sqlite3VdbeHalt(p);
danielk19777eaabcd2008-07-07 14:56:56 +00006158 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
6159 rc = SQLITE_ERROR;
drhcdf011d2011-04-04 21:25:28 +00006160 if( resetSchemaOnFault>0 ){
drh81028a42012-05-15 18:28:27 +00006161 sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
drhbdaec522011-04-04 00:14:43 +00006162 }
drh900b31e2007-08-28 02:27:51 +00006163
6164 /* This is the only way out of this procedure. We have to
6165 ** release the mutexes on btrees that were acquired at the
6166 ** top. */
6167vdbe_return:
drh99a66922011-05-13 18:51:42 +00006168 db->lastRowid = lastRowid;
drhbdaec522011-04-04 00:14:43 +00006169 sqlite3VdbeLeave(p);
drhb86ccfb2003-01-28 23:13:10 +00006170 return rc;
6171
drh023ae032007-05-08 12:12:16 +00006172 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
6173 ** is encountered.
6174 */
6175too_big:
drhf089aa42008-07-08 19:34:06 +00006176 sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
drh023ae032007-05-08 12:12:16 +00006177 rc = SQLITE_TOOBIG;
drha05a7222008-01-19 03:35:58 +00006178 goto vdbe_error_halt;
drh023ae032007-05-08 12:12:16 +00006179
drh98640a32007-06-07 19:08:32 +00006180 /* Jump to here if a malloc() fails.
drhb86ccfb2003-01-28 23:13:10 +00006181 */
6182no_mem:
drh17435752007-08-16 04:30:38 +00006183 db->mallocFailed = 1;
drhf089aa42008-07-08 19:34:06 +00006184 sqlite3SetString(&p->zErrMsg, db, "out of memory");
drhb86ccfb2003-01-28 23:13:10 +00006185 rc = SQLITE_NOMEM;
drha05a7222008-01-19 03:35:58 +00006186 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006187
drhb86ccfb2003-01-28 23:13:10 +00006188 /* Jump to here for any other kind of fatal error. The "rc" variable
6189 ** should hold the error number.
6190 */
6191abort_due_to_error:
drha05a7222008-01-19 03:35:58 +00006192 assert( p->zErrMsg==0 );
6193 if( db->mallocFailed ) rc = SQLITE_NOMEM;
danielk19777eaabcd2008-07-07 14:56:56 +00006194 if( rc!=SQLITE_IOERR_NOMEM ){
drhf089aa42008-07-08 19:34:06 +00006195 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
danielk19777eaabcd2008-07-07 14:56:56 +00006196 }
drha05a7222008-01-19 03:35:58 +00006197 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006198
danielk19776f8a5032004-05-10 10:34:51 +00006199 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
drhb86ccfb2003-01-28 23:13:10 +00006200 ** flag.
6201 */
6202abort_due_to_interrupt:
drh881feaa2006-07-26 01:39:30 +00006203 assert( db->u1.isInterrupted );
drh7e8b8482008-01-23 03:03:05 +00006204 rc = SQLITE_INTERRUPT;
danielk1977026d2702004-06-14 13:14:59 +00006205 p->rc = rc;
drhf089aa42008-07-08 19:34:06 +00006206 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
drha05a7222008-01-19 03:35:58 +00006207 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006208}