blob: a267d6d84f4129b7d8fd4f96c488b9e937092711 [file] [log] [blame]
drh75897232000-05-29 14:26:00 +00001/*
drhb19a2bc2001-09-16 00:13:26 +00002** 2001 September 15
drh75897232000-05-29 14:26:00 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drh75897232000-05-29 14:26:00 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drh75897232000-05-29 14:26:00 +000010**
11*************************************************************************
drh9a324642003-09-06 20:12:01 +000012** The code in this file implements execution method of the
13** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
14** handles housekeeping details such as creating and deleting
15** VDBE instances. This file is solely interested in executing
16** the VDBE program.
17**
danielk1977fc57d7b2004-05-26 02:04:57 +000018** In the external interface, an "sqlite3_stmt*" is an opaque pointer
drh9a324642003-09-06 20:12:01 +000019** to a VDBE.
drh75897232000-05-29 14:26:00 +000020**
21** The SQL parser generates a program which is then executed by
22** the VDBE to do the work of the SQL statement. VDBE programs are
23** similar in form to assembly language. The program consists of
24** a linear sequence of operations. Each operation has an opcode
drh9cbf3422008-01-17 16:22:13 +000025** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4
26** is a null-terminated string. Operand P5 is an unsigned character.
27** Few opcodes use all 5 operands.
drh75897232000-05-29 14:26:00 +000028**
drh9cbf3422008-01-17 16:22:13 +000029** Computation results are stored on a set of registers numbered beginning
30** with 1 and going up to Vdbe.nMem. Each register can store
31** either an integer, a null-terminated string, a floating point
shane21e7feb2008-05-30 15:59:49 +000032** number, or the SQL "NULL" value. An implicit conversion from one
drhb19a2bc2001-09-16 00:13:26 +000033** type to the other occurs as necessary.
drh75897232000-05-29 14:26:00 +000034**
danielk19774adee202004-05-08 08:23:19 +000035** Most of the code in this file is taken up by the sqlite3VdbeExec()
drh75897232000-05-29 14:26:00 +000036** function which does the work of interpreting a VDBE program.
37** But other routines are also provided to help in building up
38** a program instruction by instruction.
39**
drhac82fcf2002-09-08 17:23:41 +000040** Various scripts scan this source file in order to generate HTML
41** documentation, headers files, or other derived files. The formatting
42** of the code in this file is, therefore, important. See other comments
43** in this file for details. If in doubt, do not deviate from existing
44** commenting and indentation practices when changing or adding code.
drh75897232000-05-29 14:26:00 +000045*/
46#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000047#include "vdbeInt.h"
drh8f619cc2002-09-08 00:04:50 +000048
49/*
drh2b4ded92010-09-27 21:09:31 +000050** Invoke this macro on memory cells just prior to changing the
51** value of the cell. This macro verifies that shallow copies are
52** not misused.
53*/
54#ifdef SQLITE_DEBUG
55# define memAboutToChange(P,M) sqlite3VdbeMemPrepareToChange(P,M)
56#else
57# define memAboutToChange(P,M)
58#endif
59
60/*
drh487ab3c2001-11-08 00:45:21 +000061** The following global variable is incremented every time a cursor
drh959403f2008-12-12 17:56:16 +000062** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
drh487ab3c2001-11-08 00:45:21 +000063** procedures use this information to make sure that indices are
drhac82fcf2002-09-08 17:23:41 +000064** working correctly. This variable has no function other than to
65** help verify the correct operation of the library.
drh487ab3c2001-11-08 00:45:21 +000066*/
drh0f7eb612006-08-08 13:51:43 +000067#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000068int sqlite3_search_count = 0;
drh0f7eb612006-08-08 13:51:43 +000069#endif
drh487ab3c2001-11-08 00:45:21 +000070
drhf6038712004-02-08 18:07:34 +000071/*
72** When this global variable is positive, it gets decremented once before
drh881feaa2006-07-26 01:39:30 +000073** each instruction in the VDBE. When reaches zero, the u1.isInterrupted
74** field of the sqlite3 structure is set in order to simulate and interrupt.
drhf6038712004-02-08 18:07:34 +000075**
76** This facility is used for testing purposes only. It does not function
77** in an ordinary build.
78*/
drh0f7eb612006-08-08 13:51:43 +000079#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000080int sqlite3_interrupt_count = 0;
drh0f7eb612006-08-08 13:51:43 +000081#endif
drh1350b032002-02-27 19:00:20 +000082
danielk19777e18c252004-05-25 11:47:24 +000083/*
drh6bf89572004-11-03 16:27:01 +000084** The next global variable is incremented each type the OP_Sort opcode
85** is executed. The test procedures use this information to make sure that
shane21e7feb2008-05-30 15:59:49 +000086** sorting is occurring or not occurring at appropriate times. This variable
drh6bf89572004-11-03 16:27:01 +000087** has no function other than to help verify the correct operation of the
88** library.
89*/
drh0f7eb612006-08-08 13:51:43 +000090#ifdef SQLITE_TEST
drh6bf89572004-11-03 16:27:01 +000091int sqlite3_sort_count = 0;
drh0f7eb612006-08-08 13:51:43 +000092#endif
drh6bf89572004-11-03 16:27:01 +000093
94/*
drhae7e1512007-05-02 16:51:59 +000095** The next global variable records the size of the largest MEM_Blob
drh9cbf3422008-01-17 16:22:13 +000096** or MEM_Str that has been used by a VDBE opcode. The test procedures
drhae7e1512007-05-02 16:51:59 +000097** use this information to make sure that the zero-blob functionality
98** is working correctly. This variable has no function other than to
99** help verify the correct operation of the library.
100*/
101#ifdef SQLITE_TEST
102int sqlite3_max_blobsize = 0;
drhca48c902008-01-18 14:08:24 +0000103static void updateMaxBlobsize(Mem *p){
104 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
105 sqlite3_max_blobsize = p->n;
106 }
107}
drhae7e1512007-05-02 16:51:59 +0000108#endif
109
110/*
dan0ff297e2009-09-25 17:03:14 +0000111** The next global variable is incremented each type the OP_Found opcode
112** is executed. This is used to test whether or not the foreign key
113** operation implemented using OP_FkIsZero is working. This variable
114** has no function other than to help verify the correct operation of the
115** library.
116*/
117#ifdef SQLITE_TEST
118int sqlite3_found_count = 0;
119#endif
120
121/*
drhb7654112008-01-12 12:48:07 +0000122** Test a register to see if it exceeds the current maximum blob size.
123** If it does, record the new maximum blob size.
124*/
drh678ccce2008-03-31 18:19:54 +0000125#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
drhca48c902008-01-18 14:08:24 +0000126# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
drhb7654112008-01-12 12:48:07 +0000127#else
128# define UPDATE_MAX_BLOBSIZE(P)
129#endif
130
131/*
drh9cbf3422008-01-17 16:22:13 +0000132** Convert the given register into a string if it isn't one
danielk1977bd7e4602004-05-24 07:34:48 +0000133** already. Return non-zero if a malloc() fails.
134*/
drhb21c8cd2007-08-21 19:33:56 +0000135#define Stringify(P, enc) \
136 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
drhf4479502004-05-27 03:12:53 +0000137 { goto no_mem; }
danielk1977bd7e4602004-05-24 07:34:48 +0000138
139/*
danielk1977bd7e4602004-05-24 07:34:48 +0000140** An ephemeral string value (signified by the MEM_Ephem flag) contains
141** a pointer to a dynamically allocated string where some other entity
drh9cbf3422008-01-17 16:22:13 +0000142** is responsible for deallocating that string. Because the register
143** does not control the string, it might be deleted without the register
144** knowing it.
danielk1977bd7e4602004-05-24 07:34:48 +0000145**
146** This routine converts an ephemeral string into a dynamically allocated
drh9cbf3422008-01-17 16:22:13 +0000147** string that the register itself controls. In other words, it
danielk1977bd7e4602004-05-24 07:34:48 +0000148** converts an MEM_Ephem string into an MEM_Dyn string.
149*/
drhb21c8cd2007-08-21 19:33:56 +0000150#define Deephemeralize(P) \
drheb2e1762004-05-27 01:53:56 +0000151 if( ((P)->flags&MEM_Ephem)!=0 \
drhb21c8cd2007-08-21 19:33:56 +0000152 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
danielk197793d46752004-05-23 13:30:58 +0000153
154/*
danielk19771cc5ed82007-05-16 17:28:43 +0000155** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
156** P if required.
157*/
drhb21c8cd2007-08-21 19:33:56 +0000158#define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
danielk19771cc5ed82007-05-16 17:28:43 +0000159
dan689ab892011-08-12 15:02:00 +0000160/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
161#ifdef SQLITE_OMIT_MERGE_SORT
162# define isSorter(x) 0
163#else
164# define isSorter(x) ((x)->pSorter!=0)
165#endif
166
danielk19771cc5ed82007-05-16 17:28:43 +0000167/*
shane21e7feb2008-05-30 15:59:49 +0000168** Argument pMem points at a register that will be passed to a
danielk1977c572ef72004-05-27 09:28:41 +0000169** user-defined function or returned to the user as the result of a query.
dan937d0de2009-10-15 18:35:38 +0000170** This routine sets the pMem->type variable used by the sqlite3_value_*()
171** routines.
danielk1977c572ef72004-05-27 09:28:41 +0000172*/
dan937d0de2009-10-15 18:35:38 +0000173void sqlite3VdbeMemStoreType(Mem *pMem){
danielk1977c572ef72004-05-27 09:28:41 +0000174 int flags = pMem->flags;
175 if( flags & MEM_Null ){
drh9c054832004-05-31 18:51:57 +0000176 pMem->type = SQLITE_NULL;
danielk1977c572ef72004-05-27 09:28:41 +0000177 }
178 else if( flags & MEM_Int ){
drh9c054832004-05-31 18:51:57 +0000179 pMem->type = SQLITE_INTEGER;
danielk1977c572ef72004-05-27 09:28:41 +0000180 }
181 else if( flags & MEM_Real ){
drh9c054832004-05-31 18:51:57 +0000182 pMem->type = SQLITE_FLOAT;
danielk1977c572ef72004-05-27 09:28:41 +0000183 }
184 else if( flags & MEM_Str ){
drh9c054832004-05-31 18:51:57 +0000185 pMem->type = SQLITE_TEXT;
danielk1977c572ef72004-05-27 09:28:41 +0000186 }else{
drh9c054832004-05-31 18:51:57 +0000187 pMem->type = SQLITE_BLOB;
danielk1977c572ef72004-05-27 09:28:41 +0000188 }
189}
danielk19778a6b5412004-05-24 07:04:25 +0000190
191/*
drhdfe88ec2008-11-03 20:55:06 +0000192** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
drh4774b132004-06-12 20:12:51 +0000193** if we run out of memory.
drh8c74a8c2002-08-25 19:20:40 +0000194*/
drhdfe88ec2008-11-03 20:55:06 +0000195static VdbeCursor *allocateCursor(
196 Vdbe *p, /* The virtual machine */
197 int iCur, /* Index of the new VdbeCursor */
danielk1977d336e222009-02-20 10:58:41 +0000198 int nField, /* Number of fields in the table or index */
drh3d4501e2008-12-04 20:40:10 +0000199 int iDb, /* When database the cursor belongs to, or -1 */
drh3e9ca092009-09-08 01:14:48 +0000200 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */
danielk1977cd3e8f72008-03-25 09:47:35 +0000201){
202 /* Find the memory cell that will be used to store the blob of memory
drhdfe88ec2008-11-03 20:55:06 +0000203 ** required for this VdbeCursor structure. It is convenient to use a
danielk1977cd3e8f72008-03-25 09:47:35 +0000204 ** vdbe memory cell to manage the memory allocation required for a
drhdfe88ec2008-11-03 20:55:06 +0000205 ** VdbeCursor structure for the following reasons:
danielk1977cd3e8f72008-03-25 09:47:35 +0000206 **
207 ** * Sometimes cursor numbers are used for a couple of different
208 ** purposes in a vdbe program. The different uses might require
209 ** different sized allocations. Memory cells provide growable
210 ** allocations.
211 **
212 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
213 ** be freed lazily via the sqlite3_release_memory() API. This
214 ** minimizes the number of malloc calls made by the system.
215 **
216 ** Memory cells for cursors are allocated at the top of the address
217 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
218 ** cursor 1 is managed by memory cell (p->nMem-1), etc.
219 */
220 Mem *pMem = &p->aMem[p->nMem-iCur];
221
danielk19775f096132008-03-28 15:44:09 +0000222 int nByte;
drhdfe88ec2008-11-03 20:55:06 +0000223 VdbeCursor *pCx = 0;
danielk19775f096132008-03-28 15:44:09 +0000224 nByte =
drhc54055b2009-11-13 17:05:53 +0000225 ROUND8(sizeof(VdbeCursor)) +
danielk1977cd3e8f72008-03-25 09:47:35 +0000226 (isBtreeCursor?sqlite3BtreeCursorSize():0) +
227 2*nField*sizeof(u32);
228
drh290c1942004-08-21 17:54:45 +0000229 assert( iCur<p->nCursor );
230 if( p->apCsr[iCur] ){
danielk1977be718892006-06-23 08:05:19 +0000231 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
danielk1977cd3e8f72008-03-25 09:47:35 +0000232 p->apCsr[iCur] = 0;
drh8c74a8c2002-08-25 19:20:40 +0000233 }
danielk1977cd3e8f72008-03-25 09:47:35 +0000234 if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
drhdfe88ec2008-11-03 20:55:06 +0000235 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
drhf25a5072009-11-18 23:01:25 +0000236 memset(pCx, 0, sizeof(VdbeCursor));
danielk197794eb6a12005-12-15 15:22:08 +0000237 pCx->iDb = iDb;
danielk1977cd3e8f72008-03-25 09:47:35 +0000238 pCx->nField = nField;
239 if( nField ){
drhc54055b2009-11-13 17:05:53 +0000240 pCx->aType = (u32 *)&pMem->z[ROUND8(sizeof(VdbeCursor))];
danielk1977cd3e8f72008-03-25 09:47:35 +0000241 }
242 if( isBtreeCursor ){
drhdfe88ec2008-11-03 20:55:06 +0000243 pCx->pCursor = (BtCursor*)
drhc54055b2009-11-13 17:05:53 +0000244 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*nField*sizeof(u32)];
drhf25a5072009-11-18 23:01:25 +0000245 sqlite3BtreeCursorZero(pCx->pCursor);
danielk1977cd3e8f72008-03-25 09:47:35 +0000246 }
danielk197794eb6a12005-12-15 15:22:08 +0000247 }
drh4774b132004-06-12 20:12:51 +0000248 return pCx;
drh8c74a8c2002-08-25 19:20:40 +0000249}
250
danielk19773d1bfea2004-05-14 11:00:53 +0000251/*
drh29d72102006-02-09 22:13:41 +0000252** Try to convert a value into a numeric representation if we can
253** do so without loss of information. In other words, if the string
254** looks like a number, convert it into a number. If it does not
255** look like a number, leave it alone.
256*/
drhb21c8cd2007-08-21 19:33:56 +0000257static void applyNumericAffinity(Mem *pRec){
drh29d72102006-02-09 22:13:41 +0000258 if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
drh9339da12010-09-30 00:50:49 +0000259 double rValue;
260 i64 iValue;
danb7dca7d2010-03-05 16:32:12 +0000261 u8 enc = pRec->enc;
drh9339da12010-09-30 00:50:49 +0000262 if( (pRec->flags&MEM_Str)==0 ) return;
263 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
shaneh5f1d6b62010-09-30 16:51:25 +0000264 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
drh9339da12010-09-30 00:50:49 +0000265 pRec->u.i = iValue;
266 pRec->flags |= MEM_Int;
267 }else{
268 pRec->r = rValue;
269 pRec->flags |= MEM_Real;
drh29d72102006-02-09 22:13:41 +0000270 }
271 }
272}
273
274/*
drh8a512562005-11-14 22:29:05 +0000275** Processing is determine by the affinity parameter:
danielk19773d1bfea2004-05-14 11:00:53 +0000276**
drh8a512562005-11-14 22:29:05 +0000277** SQLITE_AFF_INTEGER:
278** SQLITE_AFF_REAL:
279** SQLITE_AFF_NUMERIC:
280** Try to convert pRec to an integer representation or a
281** floating-point representation if an integer representation
282** is not possible. Note that the integer representation is
283** always preferred, even if the affinity is REAL, because
284** an integer representation is more space efficient on disk.
285**
286** SQLITE_AFF_TEXT:
287** Convert pRec to a text representation.
288**
289** SQLITE_AFF_NONE:
290** No-op. pRec is unchanged.
danielk19773d1bfea2004-05-14 11:00:53 +0000291*/
drh17435752007-08-16 04:30:38 +0000292static void applyAffinity(
drh17435752007-08-16 04:30:38 +0000293 Mem *pRec, /* The value to apply affinity to */
294 char affinity, /* The affinity to be applied */
295 u8 enc /* Use this text encoding */
296){
drh8a512562005-11-14 22:29:05 +0000297 if( affinity==SQLITE_AFF_TEXT ){
drh17c40292004-07-21 02:53:29 +0000298 /* Only attempt the conversion to TEXT if there is an integer or real
299 ** representation (blob and NULL do not get converted) but no string
300 ** representation.
301 */
302 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
drhb21c8cd2007-08-21 19:33:56 +0000303 sqlite3VdbeMemStringify(pRec, enc);
drh17c40292004-07-21 02:53:29 +0000304 }
305 pRec->flags &= ~(MEM_Real|MEM_Int);
drh8a512562005-11-14 22:29:05 +0000306 }else if( affinity!=SQLITE_AFF_NONE ){
307 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
308 || affinity==SQLITE_AFF_NUMERIC );
drhb21c8cd2007-08-21 19:33:56 +0000309 applyNumericAffinity(pRec);
drh29d72102006-02-09 22:13:41 +0000310 if( pRec->flags & MEM_Real ){
drh8df447f2005-11-01 15:48:24 +0000311 sqlite3VdbeIntegerAffinity(pRec);
drh17c40292004-07-21 02:53:29 +0000312 }
danielk19773d1bfea2004-05-14 11:00:53 +0000313 }
314}
315
danielk1977aee18ef2005-03-09 12:26:50 +0000316/*
drh29d72102006-02-09 22:13:41 +0000317** Try to convert the type of a function argument or a result column
318** into a numeric representation. Use either INTEGER or REAL whichever
319** is appropriate. But only do the conversion if it is possible without
320** loss of information and return the revised type of the argument.
drh29d72102006-02-09 22:13:41 +0000321*/
322int sqlite3_value_numeric_type(sqlite3_value *pVal){
323 Mem *pMem = (Mem*)pVal;
drhe5a8a1d2010-11-18 12:31:24 +0000324 if( pMem->type==SQLITE_TEXT ){
325 applyNumericAffinity(pMem);
326 sqlite3VdbeMemStoreType(pMem);
327 }
drh29d72102006-02-09 22:13:41 +0000328 return pMem->type;
329}
330
331/*
danielk1977aee18ef2005-03-09 12:26:50 +0000332** Exported version of applyAffinity(). This one works on sqlite3_value*,
333** not the internal Mem* type.
334*/
danielk19771e536952007-08-16 10:09:01 +0000335void sqlite3ValueApplyAffinity(
danielk19771e536952007-08-16 10:09:01 +0000336 sqlite3_value *pVal,
337 u8 affinity,
338 u8 enc
339){
drhb21c8cd2007-08-21 19:33:56 +0000340 applyAffinity((Mem *)pVal, affinity, enc);
danielk1977aee18ef2005-03-09 12:26:50 +0000341}
342
danielk1977b5402fb2005-01-12 07:15:04 +0000343#ifdef SQLITE_DEBUG
drhb6f54522004-05-20 02:42:16 +0000344/*
danielk1977ca6b2912004-05-21 10:49:47 +0000345** Write a nice string representation of the contents of cell pMem
346** into buffer zBuf, length nBuf.
347*/
drh74161702006-02-24 02:53:49 +0000348void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
danielk1977ca6b2912004-05-21 10:49:47 +0000349 char *zCsr = zBuf;
350 int f = pMem->flags;
351
drh57196282004-10-06 15:41:16 +0000352 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
danielk1977bfd6cce2004-06-18 04:24:54 +0000353
danielk1977ca6b2912004-05-21 10:49:47 +0000354 if( f&MEM_Blob ){
355 int i;
356 char c;
357 if( f & MEM_Dyn ){
358 c = 'z';
359 assert( (f & (MEM_Static|MEM_Ephem))==0 );
360 }else if( f & MEM_Static ){
361 c = 't';
362 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
363 }else if( f & MEM_Ephem ){
364 c = 'e';
365 assert( (f & (MEM_Static|MEM_Dyn))==0 );
366 }else{
367 c = 's';
368 }
369
drh5bb3eb92007-05-04 13:15:55 +0000370 sqlite3_snprintf(100, zCsr, "%c", c);
drhea678832008-12-10 19:26:22 +0000371 zCsr += sqlite3Strlen30(zCsr);
drh5bb3eb92007-05-04 13:15:55 +0000372 sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
drhea678832008-12-10 19:26:22 +0000373 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000374 for(i=0; i<16 && i<pMem->n; i++){
drh5bb3eb92007-05-04 13:15:55 +0000375 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
drhea678832008-12-10 19:26:22 +0000376 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000377 }
378 for(i=0; i<16 && i<pMem->n; i++){
379 char z = pMem->z[i];
380 if( z<32 || z>126 ) *zCsr++ = '.';
381 else *zCsr++ = z;
382 }
383
drhe718efe2007-05-10 21:14:03 +0000384 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000385 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000386 if( f & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +0000387 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
drhea678832008-12-10 19:26:22 +0000388 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000389 }
danielk1977b1bc9532004-05-22 03:05:33 +0000390 *zCsr = '\0';
391 }else if( f & MEM_Str ){
392 int j, k;
393 zBuf[0] = ' ';
394 if( f & MEM_Dyn ){
395 zBuf[1] = 'z';
396 assert( (f & (MEM_Static|MEM_Ephem))==0 );
397 }else if( f & MEM_Static ){
398 zBuf[1] = 't';
399 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
400 }else if( f & MEM_Ephem ){
401 zBuf[1] = 'e';
402 assert( (f & (MEM_Static|MEM_Dyn))==0 );
403 }else{
404 zBuf[1] = 's';
405 }
406 k = 2;
drh5bb3eb92007-05-04 13:15:55 +0000407 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
drhea678832008-12-10 19:26:22 +0000408 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000409 zBuf[k++] = '[';
410 for(j=0; j<15 && j<pMem->n; j++){
411 u8 c = pMem->z[j];
danielk1977b1bc9532004-05-22 03:05:33 +0000412 if( c>=0x20 && c<0x7f ){
413 zBuf[k++] = c;
414 }else{
415 zBuf[k++] = '.';
416 }
417 }
418 zBuf[k++] = ']';
drh5bb3eb92007-05-04 13:15:55 +0000419 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000420 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000421 zBuf[k++] = 0;
danielk1977ca6b2912004-05-21 10:49:47 +0000422 }
danielk1977ca6b2912004-05-21 10:49:47 +0000423}
424#endif
425
drh5b6afba2008-01-05 16:29:28 +0000426#ifdef SQLITE_DEBUG
427/*
428** Print the value of a register for tracing purposes:
429*/
430static void memTracePrint(FILE *out, Mem *p){
431 if( p->flags & MEM_Null ){
432 fprintf(out, " NULL");
433 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
434 fprintf(out, " si:%lld", p->u.i);
435 }else if( p->flags & MEM_Int ){
436 fprintf(out, " i:%lld", p->u.i);
drh0b3bf922009-06-15 20:45:34 +0000437#ifndef SQLITE_OMIT_FLOATING_POINT
drh5b6afba2008-01-05 16:29:28 +0000438 }else if( p->flags & MEM_Real ){
439 fprintf(out, " r:%g", p->r);
drh0b3bf922009-06-15 20:45:34 +0000440#endif
drh733bf1b2009-04-22 00:47:00 +0000441 }else if( p->flags & MEM_RowSet ){
442 fprintf(out, " (rowset)");
drh5b6afba2008-01-05 16:29:28 +0000443 }else{
444 char zBuf[200];
445 sqlite3VdbeMemPrettyPrint(p, zBuf);
446 fprintf(out, " ");
447 fprintf(out, "%s", zBuf);
448 }
449}
450static void registerTrace(FILE *out, int iReg, Mem *p){
451 fprintf(out, "REG[%d] = ", iReg);
452 memTracePrint(out, p);
453 fprintf(out, "\n");
454}
455#endif
456
457#ifdef SQLITE_DEBUG
drhb21e7c72008-06-22 12:37:57 +0000458# define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
drh5b6afba2008-01-05 16:29:28 +0000459#else
460# define REGISTER_TRACE(R,M)
461#endif
462
danielk197784ac9d02004-05-18 09:58:06 +0000463
drh7b396862003-01-01 23:06:20 +0000464#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000465
466/*
467** hwtime.h contains inline assembler code for implementing
468** high-performance timing routines.
drh7b396862003-01-01 23:06:20 +0000469*/
shane9bcbdad2008-05-29 20:22:37 +0000470#include "hwtime.h"
471
drh7b396862003-01-01 23:06:20 +0000472#endif
473
drh8c74a8c2002-08-25 19:20:40 +0000474/*
drhcaec2f12003-01-07 02:47:47 +0000475** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
danielk19776f8a5032004-05-10 10:34:51 +0000476** sqlite3_interrupt() routine has been called. If it has been, then
drhcaec2f12003-01-07 02:47:47 +0000477** processing of the VDBE program is interrupted.
478**
479** This macro added to every instruction that does a jump in order to
480** implement a loop. This test used to be on every single instruction,
481** but that meant we more testing that we needed. By only testing the
482** flag on jump instructions, we get a (small) speed improvement.
483*/
484#define CHECK_FOR_INTERRUPT \
drh881feaa2006-07-26 01:39:30 +0000485 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drhcaec2f12003-01-07 02:47:47 +0000486
487
danielk1977fd7f0452008-12-17 17:30:26 +0000488#ifndef NDEBUG
489/*
490** This function is only called from within an assert() expression. It
491** checks that the sqlite3.nTransaction variable is correctly set to
492** the number of non-transaction savepoints currently in the
493** linked list starting at sqlite3.pSavepoint.
494**
495** Usage:
496**
497** assert( checkSavepointCount(db) );
498*/
499static int checkSavepointCount(sqlite3 *db){
500 int n = 0;
501 Savepoint *p;
502 for(p=db->pSavepoint; p; p=p->pNext) n++;
503 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
504 return 1;
505}
506#endif
507
drhcaec2f12003-01-07 02:47:47 +0000508/*
drhb9755982010-07-24 16:34:37 +0000509** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
510** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
511** in memory obtained from sqlite3DbMalloc).
512*/
513static void importVtabErrMsg(Vdbe *p, sqlite3_vtab *pVtab){
514 sqlite3 *db = p->db;
515 sqlite3DbFree(db, p->zErrMsg);
516 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
517 sqlite3_free(pVtab->zErrMsg);
518 pVtab->zErrMsg = 0;
519}
520
dan55388072011-09-20 15:53:02 +0000521/*
522** Call sqlite3PagerCacheStats() on all database pagers used by the VM
523** passed as the first argument, incrementing *pnHit and *pnMiss for
524** with each call.
525*/
526static void vdbeCacheStats(Vdbe *p, int *pnHit, int *pnMiss){
527 int i;
528 yDbMask mask;
529 sqlite3 *db;
530 Db *aDb;
531 int nDb;
532 if( p->lockMask==0 ) return; /* The common case */
533 db = p->db;
534 aDb = db->aDb;
535 nDb = db->nDb;
536 for(i=0, mask=1; i<nDb; i++, mask += mask){
537 if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){
538 sqlite3PagerCacheStats(sqlite3BtreePager(aDb[i].pBt), pnHit, pnMiss);
539 }
540 }
541}
drhb9755982010-07-24 16:34:37 +0000542
543/*
drhb86ccfb2003-01-28 23:13:10 +0000544** Execute as much of a VDBE program as we can then return.
545**
danielk19774adee202004-05-08 08:23:19 +0000546** sqlite3VdbeMakeReady() must be called before this routine in order to
drhb86ccfb2003-01-28 23:13:10 +0000547** close the program with a final OP_Halt and to set up the callbacks
548** and the error message pointer.
549**
550** Whenever a row or result data is available, this routine will either
551** invoke the result callback (if there is one) or return with
drh326dce72003-01-29 14:06:07 +0000552** SQLITE_ROW.
drhb86ccfb2003-01-28 23:13:10 +0000553**
554** If an attempt is made to open a locked database, then this routine
555** will either invoke the busy callback (if there is one) or it will
556** return SQLITE_BUSY.
557**
558** If an error occurs, an error message is written to memory obtained
drh17435752007-08-16 04:30:38 +0000559** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
drhb86ccfb2003-01-28 23:13:10 +0000560** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
561**
562** If the callback ever returns non-zero, then the program exits
563** immediately. There will be no error message but the p->rc field is
564** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
565**
drh9468c7f2003-03-07 19:50:07 +0000566** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
567** routine to return SQLITE_ERROR.
drhb86ccfb2003-01-28 23:13:10 +0000568**
569** Other fatal errors return SQLITE_ERROR.
570**
danielk19774adee202004-05-08 08:23:19 +0000571** After this routine has finished, sqlite3VdbeFinalize() should be
drhb86ccfb2003-01-28 23:13:10 +0000572** used to clean up the mess that was left behind.
573*/
danielk19774adee202004-05-08 08:23:19 +0000574int sqlite3VdbeExec(
drhb86ccfb2003-01-28 23:13:10 +0000575 Vdbe *p /* The VDBE */
576){
shaneh84f4b2f2010-02-26 01:46:54 +0000577 int pc=0; /* The program counter */
drhbbe879d2009-11-14 18:04:35 +0000578 Op *aOp = p->aOp; /* Copy of p->aOp */
drhb86ccfb2003-01-28 23:13:10 +0000579 Op *pOp; /* Current operation */
580 int rc = SQLITE_OK; /* Value to return */
drh9bb575f2004-09-06 17:24:11 +0000581 sqlite3 *db = p->db; /* The database */
drhcdf011d2011-04-04 21:25:28 +0000582 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
drh8079a0d2006-01-12 17:20:50 +0000583 u8 encoding = ENC(db); /* The database encoding */
drha6c2ed92009-11-14 23:22:23 +0000584#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
shaneh5e17e8b2009-12-03 04:40:47 +0000585 int checkProgress; /* True if progress callbacks are enabled */
drha6c2ed92009-11-14 23:22:23 +0000586 int nProgressOps = 0; /* Opcodes executed since progress callback. */
587#endif
588 Mem *aMem = p->aMem; /* Copy of p->aMem */
drhb27b7f52008-12-10 18:03:45 +0000589 Mem *pIn1 = 0; /* 1st input operand */
590 Mem *pIn2 = 0; /* 2nd input operand */
591 Mem *pIn3 = 0; /* 3rd input operand */
592 Mem *pOut = 0; /* Output operand */
drh0acb7e42008-06-25 00:12:41 +0000593 int iCompare = 0; /* Result of last OP_Compare operation */
shanebe217792009-03-05 04:20:31 +0000594 int *aPermute = 0; /* Permutation of columns for OP_Compare */
drh99a66922011-05-13 18:51:42 +0000595 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */
drhb86ccfb2003-01-28 23:13:10 +0000596#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000597 u64 start; /* CPU clock count at start of opcode */
drhb86ccfb2003-01-28 23:13:10 +0000598 int origPc; /* Program counter at start of opcode */
599#endif
dan55388072011-09-20 15:53:02 +0000600 int nHit = 0; /* Cache hits for this call */
601 int nMiss = 0; /* Cache misses for this call */
drh856c1032009-06-02 15:21:42 +0000602 /*** INSERT STACK UNION HERE ***/
drhe63d9992008-08-13 19:11:48 +0000603
drhca48c902008-01-18 14:08:24 +0000604 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
drhbdaec522011-04-04 00:14:43 +0000605 sqlite3VdbeEnter(p);
dan55388072011-09-20 15:53:02 +0000606 vdbeCacheStats(p, &nHit, &nMiss);
danielk19772e588c72005-12-09 14:25:08 +0000607 if( p->rc==SQLITE_NOMEM ){
608 /* This happens if a malloc() inside a call to sqlite3_column_text() or
609 ** sqlite3_column_text16() failed. */
610 goto no_mem;
611 }
drh3a840692003-01-29 22:58:26 +0000612 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
613 p->rc = SQLITE_OK;
drhb86ccfb2003-01-28 23:13:10 +0000614 assert( p->explain==0 );
drhd4e70eb2008-01-02 00:34:36 +0000615 p->pResultSet = 0;
drha4afb652005-07-09 02:16:02 +0000616 db->busyHandler.nBusy = 0;
drh93581642004-02-12 13:02:55 +0000617 CHECK_FOR_INTERRUPT;
drh602c2372007-03-01 00:29:13 +0000618 sqlite3VdbeIOTraceSql(p);
drha6c2ed92009-11-14 23:22:23 +0000619#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
620 checkProgress = db->xProgress!=0;
621#endif
drh3c23a882007-01-09 14:01:13 +0000622#ifdef SQLITE_DEBUG
danielk19772d1d86f2008-06-20 14:59:51 +0000623 sqlite3BeginBenignMalloc();
drh42224412010-05-31 14:28:25 +0000624 if( p->pc==0 && (p->db->flags & SQLITE_VdbeListing)!=0 ){
drh3c23a882007-01-09 14:01:13 +0000625 int i;
626 printf("VDBE Program Listing:\n");
627 sqlite3VdbePrintSql(p);
628 for(i=0; i<p->nOp; i++){
drhbbe879d2009-11-14 18:04:35 +0000629 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
drh3c23a882007-01-09 14:01:13 +0000630 }
631 }
danielk19772d1d86f2008-06-20 14:59:51 +0000632 sqlite3EndBenignMalloc();
drh3c23a882007-01-09 14:01:13 +0000633#endif
drhb86ccfb2003-01-28 23:13:10 +0000634 for(pc=p->pc; rc==SQLITE_OK; pc++){
drhcaec2f12003-01-07 02:47:47 +0000635 assert( pc>=0 && pc<p->nOp );
drh17435752007-08-16 04:30:38 +0000636 if( db->mallocFailed ) goto no_mem;
drh7b396862003-01-01 23:06:20 +0000637#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +0000638 origPc = pc;
shane9bcbdad2008-05-29 20:22:37 +0000639 start = sqlite3Hwtime();
drh7b396862003-01-01 23:06:20 +0000640#endif
drhbbe879d2009-11-14 18:04:35 +0000641 pOp = &aOp[pc];
drh6e142f52000-06-08 13:36:40 +0000642
danielk19778b60e0f2005-01-12 09:10:39 +0000643 /* Only allow tracing if SQLITE_DEBUG is defined.
drh6e142f52000-06-08 13:36:40 +0000644 */
danielk19778b60e0f2005-01-12 09:10:39 +0000645#ifdef SQLITE_DEBUG
drh75897232000-05-29 14:26:00 +0000646 if( p->trace ){
drh3f7d4e42004-07-24 14:35:58 +0000647 if( pc==0 ){
648 printf("VDBE Execution Trace:\n");
649 sqlite3VdbePrintSql(p);
650 }
danielk19774adee202004-05-08 08:23:19 +0000651 sqlite3VdbePrintOp(p->trace, pc, pOp);
drh75897232000-05-29 14:26:00 +0000652 }
drh3f7d4e42004-07-24 14:35:58 +0000653#endif
654
drh6e142f52000-06-08 13:36:40 +0000655
drhf6038712004-02-08 18:07:34 +0000656 /* Check to see if we need to simulate an interrupt. This only happens
657 ** if we have a special test build.
658 */
659#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +0000660 if( sqlite3_interrupt_count>0 ){
661 sqlite3_interrupt_count--;
662 if( sqlite3_interrupt_count==0 ){
663 sqlite3_interrupt(db);
drhf6038712004-02-08 18:07:34 +0000664 }
665 }
666#endif
667
danielk1977348bb5d2003-10-18 09:37:26 +0000668#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
669 /* Call the progress callback if it is configured and the required number
670 ** of VDBE ops have been executed (either since this invocation of
danielk19774adee202004-05-08 08:23:19 +0000671 ** sqlite3VdbeExec() or since last time the progress callback was called).
danielk1977348bb5d2003-10-18 09:37:26 +0000672 ** If the progress callback returns non-zero, exit the virtual machine with
673 ** a return code SQLITE_ABORT.
674 */
drha6c2ed92009-11-14 23:22:23 +0000675 if( checkProgress ){
drh3914aed2004-01-31 20:40:42 +0000676 if( db->nProgressOps==nProgressOps ){
danielk1977de523ac2007-06-15 14:53:53 +0000677 int prc;
drh9978c972010-02-23 17:36:32 +0000678 prc = db->xProgress(db->pProgressArg);
danielk1977de523ac2007-06-15 14:53:53 +0000679 if( prc!=0 ){
680 rc = SQLITE_INTERRUPT;
drha05a7222008-01-19 03:35:58 +0000681 goto vdbe_error_halt;
danielk1977de523ac2007-06-15 14:53:53 +0000682 }
danielk19773fe11f32007-06-13 16:49:48 +0000683 nProgressOps = 0;
danielk1977348bb5d2003-10-18 09:37:26 +0000684 }
drh3914aed2004-01-31 20:40:42 +0000685 nProgressOps++;
danielk1977348bb5d2003-10-18 09:37:26 +0000686 }
danielk1977348bb5d2003-10-18 09:37:26 +0000687#endif
688
drh3c657212009-11-17 23:59:58 +0000689 /* On any opcode with the "out2-prerelase" tag, free any
690 ** external allocations out of mem[p2] and set mem[p2] to be
691 ** an undefined integer. Opcodes will either fill in the integer
692 ** value or convert mem[p2] to a different type.
drh4c583122008-01-04 22:01:03 +0000693 */
drha6c2ed92009-11-14 23:22:23 +0000694 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
drh3c657212009-11-17 23:59:58 +0000695 if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
696 assert( pOp->p2>0 );
697 assert( pOp->p2<=p->nMem );
698 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +0000699 memAboutToChange(p, pOut);
drh2d36eb42011-08-29 02:49:41 +0000700 MemReleaseExt(pOut);
drh3c657212009-11-17 23:59:58 +0000701 pOut->flags = MEM_Int;
drh4c583122008-01-04 22:01:03 +0000702 }
drh3c657212009-11-17 23:59:58 +0000703
704 /* Sanity checking on other operands */
705#ifdef SQLITE_DEBUG
706 if( (pOp->opflags & OPFLG_IN1)!=0 ){
707 assert( pOp->p1>0 );
708 assert( pOp->p1<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000709 assert( memIsValid(&aMem[pOp->p1]) );
drh3c657212009-11-17 23:59:58 +0000710 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
711 }
712 if( (pOp->opflags & OPFLG_IN2)!=0 ){
713 assert( pOp->p2>0 );
714 assert( pOp->p2<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000715 assert( memIsValid(&aMem[pOp->p2]) );
drh3c657212009-11-17 23:59:58 +0000716 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
717 }
718 if( (pOp->opflags & OPFLG_IN3)!=0 ){
719 assert( pOp->p3>0 );
720 assert( pOp->p3<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000721 assert( memIsValid(&aMem[pOp->p3]) );
drh3c657212009-11-17 23:59:58 +0000722 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
723 }
724 if( (pOp->opflags & OPFLG_OUT2)!=0 ){
725 assert( pOp->p2>0 );
726 assert( pOp->p2<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000727 memAboutToChange(p, &aMem[pOp->p2]);
drh3c657212009-11-17 23:59:58 +0000728 }
729 if( (pOp->opflags & OPFLG_OUT3)!=0 ){
730 assert( pOp->p3>0 );
731 assert( pOp->p3<=p->nMem );
drh2b4ded92010-09-27 21:09:31 +0000732 memAboutToChange(p, &aMem[pOp->p3]);
drh3c657212009-11-17 23:59:58 +0000733 }
734#endif
drh93952eb2009-11-13 19:43:43 +0000735
drh75897232000-05-29 14:26:00 +0000736 switch( pOp->opcode ){
drh75897232000-05-29 14:26:00 +0000737
drh5e00f6c2001-09-13 13:46:56 +0000738/*****************************************************************************
739** What follows is a massive switch statement where each case implements a
740** separate instruction in the virtual machine. If we follow the usual
741** indentation conventions, each case should be indented by 6 spaces. But
742** that is a lot of wasted space on the left margin. So the code within
743** the switch statement will break with convention and be flush-left. Another
744** big comment (similar to this one) will mark the point in the code where
745** we transition back to normal indentation.
drhac82fcf2002-09-08 17:23:41 +0000746**
747** The formatting of each case is important. The makefile for SQLite
748** generates two C files "opcodes.h" and "opcodes.c" by scanning this
749** file looking for lines that begin with "case OP_". The opcodes.h files
750** will be filled with #defines that give unique integer values to each
751** opcode and the opcodes.c file is filled with an array of strings where
drhf2bc0132004-10-04 13:19:23 +0000752** each string is the symbolic name for the corresponding opcode. If the
753** case statement is followed by a comment of the form "/# same as ... #/"
754** that comment is used to determine the particular value of the opcode.
drhac82fcf2002-09-08 17:23:41 +0000755**
drh9cbf3422008-01-17 16:22:13 +0000756** Other keywords in the comment that follows each case are used to
757** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
758** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
759** the mkopcodeh.awk script for additional information.
danielk1977bc04f852005-03-29 08:26:13 +0000760**
drhac82fcf2002-09-08 17:23:41 +0000761** Documentation about VDBE opcodes is generated by scanning this file
762** for lines of that contain "Opcode:". That line and all subsequent
763** comment lines are used in the generation of the opcode.html documentation
764** file.
765**
766** SUMMARY:
767**
768** Formatting is important to scripts that scan this file.
769** Do not deviate from the formatting style currently in use.
770**
drh5e00f6c2001-09-13 13:46:56 +0000771*****************************************************************************/
drh75897232000-05-29 14:26:00 +0000772
drh9cbf3422008-01-17 16:22:13 +0000773/* Opcode: Goto * P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000774**
775** An unconditional jump to address P2.
776** The next instruction executed will be
777** the one at index P2 from the beginning of
778** the program.
779*/
drh9cbf3422008-01-17 16:22:13 +0000780case OP_Goto: { /* jump */
drhcaec2f12003-01-07 02:47:47 +0000781 CHECK_FOR_INTERRUPT;
drh5e00f6c2001-09-13 13:46:56 +0000782 pc = pOp->p2 - 1;
783 break;
784}
drh75897232000-05-29 14:26:00 +0000785
drh2eb95372008-06-06 15:04:36 +0000786/* Opcode: Gosub P1 P2 * * *
drh8c74a8c2002-08-25 19:20:40 +0000787**
drh2eb95372008-06-06 15:04:36 +0000788** Write the current address onto register P1
drh8c74a8c2002-08-25 19:20:40 +0000789** and then jump to address P2.
drh8c74a8c2002-08-25 19:20:40 +0000790*/
drh93952eb2009-11-13 19:43:43 +0000791case OP_Gosub: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +0000792 pIn1 = &aMem[pOp->p1];
drh2eb95372008-06-06 15:04:36 +0000793 assert( (pIn1->flags & MEM_Dyn)==0 );
drh2b4ded92010-09-27 21:09:31 +0000794 memAboutToChange(p, pIn1);
drh2eb95372008-06-06 15:04:36 +0000795 pIn1->flags = MEM_Int;
796 pIn1->u.i = pc;
797 REGISTER_TRACE(pOp->p1, pIn1);
drh8c74a8c2002-08-25 19:20:40 +0000798 pc = pOp->p2 - 1;
799 break;
800}
801
drh2eb95372008-06-06 15:04:36 +0000802/* Opcode: Return P1 * * * *
drh8c74a8c2002-08-25 19:20:40 +0000803**
drh2eb95372008-06-06 15:04:36 +0000804** Jump to the next instruction after the address in register P1.
drh8c74a8c2002-08-25 19:20:40 +0000805*/
drh2eb95372008-06-06 15:04:36 +0000806case OP_Return: { /* in1 */
drh3c657212009-11-17 23:59:58 +0000807 pIn1 = &aMem[pOp->p1];
drh2eb95372008-06-06 15:04:36 +0000808 assert( pIn1->flags & MEM_Int );
drh9c1905f2008-12-10 22:32:56 +0000809 pc = (int)pIn1->u.i;
drh8c74a8c2002-08-25 19:20:40 +0000810 break;
811}
812
drhe00ee6e2008-06-20 15:24:01 +0000813/* Opcode: Yield P1 * * * *
814**
815** Swap the program counter with the value in register P1.
816*/
danielk1977f73ab8b2008-12-29 10:39:53 +0000817case OP_Yield: { /* in1 */
drhe00ee6e2008-06-20 15:24:01 +0000818 int pcDest;
drh3c657212009-11-17 23:59:58 +0000819 pIn1 = &aMem[pOp->p1];
drhe00ee6e2008-06-20 15:24:01 +0000820 assert( (pIn1->flags & MEM_Dyn)==0 );
821 pIn1->flags = MEM_Int;
drh9c1905f2008-12-10 22:32:56 +0000822 pcDest = (int)pIn1->u.i;
drhe00ee6e2008-06-20 15:24:01 +0000823 pIn1->u.i = pc;
824 REGISTER_TRACE(pOp->p1, pIn1);
825 pc = pcDest;
826 break;
827}
828
drh5053a792009-02-20 03:02:23 +0000829/* Opcode: HaltIfNull P1 P2 P3 P4 *
830**
drhef8662b2011-06-20 21:47:58 +0000831** Check the value in register P3. If it is NULL then Halt using
drh5053a792009-02-20 03:02:23 +0000832** parameter P1, P2, and P4 as if this were a Halt instruction. If the
833** value in register P3 is not NULL, then this routine is a no-op.
834*/
835case OP_HaltIfNull: { /* in3 */
drh3c657212009-11-17 23:59:58 +0000836 pIn3 = &aMem[pOp->p3];
drh5053a792009-02-20 03:02:23 +0000837 if( (pIn3->flags & MEM_Null)==0 ) break;
838 /* Fall through into OP_Halt */
839}
drhe00ee6e2008-06-20 15:24:01 +0000840
drh9cbf3422008-01-17 16:22:13 +0000841/* Opcode: Halt P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +0000842**
drh3d4501e2008-12-04 20:40:10 +0000843** Exit immediately. All open cursors, etc are closed
drh5e00f6c2001-09-13 13:46:56 +0000844** automatically.
drhb19a2bc2001-09-16 00:13:26 +0000845**
drh92f02c32004-09-02 14:57:08 +0000846** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
847** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
848** For errors, it can be some other value. If P1!=0 then P2 will determine
849** whether or not to rollback the current transaction. Do not rollback
850** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
851** then back out all changes that have occurred during this execution of the
drhb798fa62002-09-03 19:43:23 +0000852** VDBE, but do not rollback the transaction.
drh9cfcf5d2002-01-29 18:41:24 +0000853**
drh66a51672008-01-03 00:01:23 +0000854** If P4 is not null then it is an error message string.
drh7f057c92005-06-24 03:53:06 +0000855**
drh9cfcf5d2002-01-29 18:41:24 +0000856** There is an implied "Halt 0 0 0" instruction inserted at the very end of
drhb19a2bc2001-09-16 00:13:26 +0000857** every program. So a jump past the last instruction of the program
858** is the same as executing Halt.
drh5e00f6c2001-09-13 13:46:56 +0000859*/
drh9cbf3422008-01-17 16:22:13 +0000860case OP_Halt: {
dan165921a2009-08-28 18:53:45 +0000861 if( pOp->p1==SQLITE_OK && p->pFrame ){
dan2832ad42009-08-31 15:27:27 +0000862 /* Halt the sub-program. Return control to the parent frame. */
dan165921a2009-08-28 18:53:45 +0000863 VdbeFrame *pFrame = p->pFrame;
864 p->pFrame = pFrame->pParent;
865 p->nFrame--;
dan2832ad42009-08-31 15:27:27 +0000866 sqlite3VdbeSetChanges(db, p->nChange);
dan165921a2009-08-28 18:53:45 +0000867 pc = sqlite3VdbeFrameRestore(pFrame);
drh99a66922011-05-13 18:51:42 +0000868 lastRowid = db->lastRowid;
dan165921a2009-08-28 18:53:45 +0000869 if( pOp->p2==OE_Ignore ){
dan2832ad42009-08-31 15:27:27 +0000870 /* Instruction pc is the OP_Program that invoked the sub-program
871 ** currently being halted. If the p2 instruction of this OP_Halt
872 ** instruction is set to OE_Ignore, then the sub-program is throwing
873 ** an IGNORE exception. In this case jump to the address specified
874 ** as the p2 of the calling OP_Program. */
dan76d462e2009-08-30 11:42:51 +0000875 pc = p->aOp[pc].p2-1;
dan165921a2009-08-28 18:53:45 +0000876 }
drhbbe879d2009-11-14 18:04:35 +0000877 aOp = p->aOp;
drha6c2ed92009-11-14 23:22:23 +0000878 aMem = p->aMem;
dan165921a2009-08-28 18:53:45 +0000879 break;
880 }
dan2832ad42009-08-31 15:27:27 +0000881
drh92f02c32004-09-02 14:57:08 +0000882 p->rc = pOp->p1;
shane36840fd2009-06-26 16:32:13 +0000883 p->errorAction = (u8)pOp->p2;
dan165921a2009-08-28 18:53:45 +0000884 p->pc = pc;
danielk19772dca4ac2008-01-03 11:50:29 +0000885 if( pOp->p4.z ){
drh413c3d32010-02-23 20:11:56 +0000886 assert( p->rc!=SQLITE_OK );
drhf089aa42008-07-08 19:34:06 +0000887 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
drhaf46dc12010-02-24 21:44:07 +0000888 testcase( sqlite3GlobalConfig.xLog!=0 );
drh413c3d32010-02-23 20:11:56 +0000889 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pc, p->zSql, pOp->p4.z);
drhcda455b2010-02-24 19:23:56 +0000890 }else if( p->rc ){
drhaf46dc12010-02-24 21:44:07 +0000891 testcase( sqlite3GlobalConfig.xLog!=0 );
drhcda455b2010-02-24 19:23:56 +0000892 sqlite3_log(pOp->p1, "constraint failed at %d in [%s]", pc, p->zSql);
drh9cfcf5d2002-01-29 18:41:24 +0000893 }
drh92f02c32004-09-02 14:57:08 +0000894 rc = sqlite3VdbeHalt(p);
dan1da40a32009-09-19 17:00:31 +0000895 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
drh92f02c32004-09-02 14:57:08 +0000896 if( rc==SQLITE_BUSY ){
drh900b31e2007-08-28 02:27:51 +0000897 p->rc = rc = SQLITE_BUSY;
898 }else{
dan1da40a32009-09-19 17:00:31 +0000899 assert( rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT );
900 assert( rc==SQLITE_OK || db->nDeferredCons>0 );
drh900b31e2007-08-28 02:27:51 +0000901 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
drh92f02c32004-09-02 14:57:08 +0000902 }
drh900b31e2007-08-28 02:27:51 +0000903 goto vdbe_return;
drh5e00f6c2001-09-13 13:46:56 +0000904}
drhc61053b2000-06-04 12:58:36 +0000905
drh4c583122008-01-04 22:01:03 +0000906/* Opcode: Integer P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000907**
drh9cbf3422008-01-17 16:22:13 +0000908** The 32-bit integer value P1 is written into register P2.
drh5e00f6c2001-09-13 13:46:56 +0000909*/
drh4c583122008-01-04 22:01:03 +0000910case OP_Integer: { /* out2-prerelease */
drh4c583122008-01-04 22:01:03 +0000911 pOut->u.i = pOp->p1;
drh29dda4a2005-07-21 18:23:20 +0000912 break;
913}
914
drh4c583122008-01-04 22:01:03 +0000915/* Opcode: Int64 * P2 * P4 *
drh29dda4a2005-07-21 18:23:20 +0000916**
drh66a51672008-01-03 00:01:23 +0000917** P4 is a pointer to a 64-bit integer value.
drh9cbf3422008-01-17 16:22:13 +0000918** Write that value into register P2.
drh29dda4a2005-07-21 18:23:20 +0000919*/
drh4c583122008-01-04 22:01:03 +0000920case OP_Int64: { /* out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000921 assert( pOp->p4.pI64!=0 );
drh4c583122008-01-04 22:01:03 +0000922 pOut->u.i = *pOp->p4.pI64;
drhf4479502004-05-27 03:12:53 +0000923 break;
924}
drh4f26d6c2004-05-26 23:25:30 +0000925
drh13573c72010-01-12 17:04:07 +0000926#ifndef SQLITE_OMIT_FLOATING_POINT
drh4c583122008-01-04 22:01:03 +0000927/* Opcode: Real * P2 * P4 *
drhf4479502004-05-27 03:12:53 +0000928**
drh4c583122008-01-04 22:01:03 +0000929** P4 is a pointer to a 64-bit floating point value.
drh9cbf3422008-01-17 16:22:13 +0000930** Write that value into register P2.
drhf4479502004-05-27 03:12:53 +0000931*/
drh4c583122008-01-04 22:01:03 +0000932case OP_Real: { /* same as TK_FLOAT, out2-prerelease */
933 pOut->flags = MEM_Real;
drh2eaf93d2008-04-29 00:15:20 +0000934 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
drh4c583122008-01-04 22:01:03 +0000935 pOut->r = *pOp->p4.pReal;
drhf4479502004-05-27 03:12:53 +0000936 break;
937}
drh13573c72010-01-12 17:04:07 +0000938#endif
danielk1977cbb18d22004-05-28 11:37:27 +0000939
drh3c84ddf2008-01-09 02:15:38 +0000940/* Opcode: String8 * P2 * P4 *
danielk1977cbb18d22004-05-28 11:37:27 +0000941**
drh66a51672008-01-03 00:01:23 +0000942** P4 points to a nul terminated UTF-8 string. This opcode is transformed
danielk19770f69c1e2004-05-29 11:24:50 +0000943** into an OP_String before it is executed for the first time.
danielk1977cbb18d22004-05-28 11:37:27 +0000944*/
drh4c583122008-01-04 22:01:03 +0000945case OP_String8: { /* same as TK_STRING, out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000946 assert( pOp->p4.z!=0 );
drhed2df7f2005-11-16 04:34:32 +0000947 pOp->opcode = OP_String;
drhea678832008-12-10 19:26:22 +0000948 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
drhed2df7f2005-11-16 04:34:32 +0000949
950#ifndef SQLITE_OMIT_UTF16
drh8079a0d2006-01-12 17:20:50 +0000951 if( encoding!=SQLITE_UTF8 ){
drh3a9cf172009-06-17 21:42:33 +0000952 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
953 if( rc==SQLITE_TOOBIG ) goto too_big;
drh4c583122008-01-04 22:01:03 +0000954 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
drh3a9cf172009-06-17 21:42:33 +0000955 assert( pOut->zMalloc==pOut->z );
956 assert( pOut->flags & MEM_Dyn );
danielk19775f096132008-03-28 15:44:09 +0000957 pOut->zMalloc = 0;
drh4c583122008-01-04 22:01:03 +0000958 pOut->flags |= MEM_Static;
drh191b54c2008-04-15 12:14:21 +0000959 pOut->flags &= ~MEM_Dyn;
drh66a51672008-01-03 00:01:23 +0000960 if( pOp->p4type==P4_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +0000961 sqlite3DbFree(db, pOp->p4.z);
danielk1977e0048402004-06-15 16:51:01 +0000962 }
drh66a51672008-01-03 00:01:23 +0000963 pOp->p4type = P4_DYNAMIC;
drh4c583122008-01-04 22:01:03 +0000964 pOp->p4.z = pOut->z;
965 pOp->p1 = pOut->n;
danielk19770f69c1e2004-05-29 11:24:50 +0000966 }
danielk197793758c82005-01-21 08:13:14 +0000967#endif
drhbb4957f2008-03-20 14:03:29 +0000968 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhcbd2da92007-12-17 16:20:06 +0000969 goto too_big;
970 }
971 /* Fall through to the next case, OP_String */
danielk1977cbb18d22004-05-28 11:37:27 +0000972}
drhf4479502004-05-27 03:12:53 +0000973
drh4c583122008-01-04 22:01:03 +0000974/* Opcode: String P1 P2 * P4 *
drhf4479502004-05-27 03:12:53 +0000975**
drh9cbf3422008-01-17 16:22:13 +0000976** The string value P4 of length P1 (bytes) is stored in register P2.
drhf4479502004-05-27 03:12:53 +0000977*/
drh4c583122008-01-04 22:01:03 +0000978case OP_String: { /* out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000979 assert( pOp->p4.z!=0 );
drh4c583122008-01-04 22:01:03 +0000980 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
981 pOut->z = pOp->p4.z;
982 pOut->n = pOp->p1;
983 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +0000984 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977c572ef72004-05-27 09:28:41 +0000985 break;
986}
987
drh4c583122008-01-04 22:01:03 +0000988/* Opcode: Null * P2 * * *
drhf0863fe2005-06-12 21:35:51 +0000989**
drh9cbf3422008-01-17 16:22:13 +0000990** Write a NULL into register P2.
drhf0863fe2005-06-12 21:35:51 +0000991*/
drh4c583122008-01-04 22:01:03 +0000992case OP_Null: { /* out2-prerelease */
drh3c657212009-11-17 23:59:58 +0000993 pOut->flags = MEM_Null;
drhf0863fe2005-06-12 21:35:51 +0000994 break;
995}
996
997
drh9de221d2008-01-05 06:51:30 +0000998/* Opcode: Blob P1 P2 * P4
danielk1977c572ef72004-05-27 09:28:41 +0000999**
drh9de221d2008-01-05 06:51:30 +00001000** P4 points to a blob of data P1 bytes long. Store this
drh710c4842010-08-30 01:17:20 +00001001** blob in register P2.
danielk1977c572ef72004-05-27 09:28:41 +00001002*/
drh4c583122008-01-04 22:01:03 +00001003case OP_Blob: { /* out2-prerelease */
drhcbd2da92007-12-17 16:20:06 +00001004 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
drh4c583122008-01-04 22:01:03 +00001005 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
drh9de221d2008-01-05 06:51:30 +00001006 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001007 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977a37cdde2004-05-16 11:15:36 +00001008 break;
1009}
1010
drheaf52d82010-05-12 13:50:23 +00001011/* Opcode: Variable P1 P2 * P4 *
drh50457892003-09-06 01:10:47 +00001012**
drheaf52d82010-05-12 13:50:23 +00001013** Transfer the values of bound parameter P1 into register P2
drh08de1492009-02-20 03:55:05 +00001014**
1015** If the parameter is named, then its name appears in P4 and P3==1.
1016** The P4 value is used by sqlite3_bind_parameter_name().
drh50457892003-09-06 01:10:47 +00001017*/
drheaf52d82010-05-12 13:50:23 +00001018case OP_Variable: { /* out2-prerelease */
drh856c1032009-06-02 15:21:42 +00001019 Mem *pVar; /* Value being transferred */
1020
drheaf52d82010-05-12 13:50:23 +00001021 assert( pOp->p1>0 && pOp->p1<=p->nVar );
drh04e9eea2011-06-01 19:16:06 +00001022 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
drheaf52d82010-05-12 13:50:23 +00001023 pVar = &p->aVar[pOp->p1 - 1];
1024 if( sqlite3VdbeMemTooBig(pVar) ){
1025 goto too_big;
drh023ae032007-05-08 12:12:16 +00001026 }
drheaf52d82010-05-12 13:50:23 +00001027 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1028 UPDATE_MAX_BLOBSIZE(pOut);
danielk197793d46752004-05-23 13:30:58 +00001029 break;
1030}
danielk1977295ba552004-05-19 10:34:51 +00001031
drhb21e7c72008-06-22 12:37:57 +00001032/* Opcode: Move P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001033**
drhb21e7c72008-06-22 12:37:57 +00001034** Move the values in register P1..P1+P3-1 over into
1035** registers P2..P2+P3-1. Registers P1..P1+P1-1 are
1036** left holding a NULL. It is an error for register ranges
1037** P1..P1+P3-1 and P2..P2+P3-1 to overlap.
drh5e00f6c2001-09-13 13:46:56 +00001038*/
drhe1349cb2008-04-01 00:36:10 +00001039case OP_Move: {
drh856c1032009-06-02 15:21:42 +00001040 char *zMalloc; /* Holding variable for allocated memory */
1041 int n; /* Number of registers left to copy */
1042 int p1; /* Register to copy from */
1043 int p2; /* Register to copy to */
1044
1045 n = pOp->p3;
1046 p1 = pOp->p1;
1047 p2 = pOp->p2;
danielk19776ab3a2e2009-02-19 14:39:25 +00001048 assert( n>0 && p1>0 && p2>0 );
drhb21e7c72008-06-22 12:37:57 +00001049 assert( p1+n<=p2 || p2+n<=p1 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001050
drha6c2ed92009-11-14 23:22:23 +00001051 pIn1 = &aMem[p1];
1052 pOut = &aMem[p2];
drhb21e7c72008-06-22 12:37:57 +00001053 while( n-- ){
drha6c2ed92009-11-14 23:22:23 +00001054 assert( pOut<=&aMem[p->nMem] );
1055 assert( pIn1<=&aMem[p->nMem] );
drh2b4ded92010-09-27 21:09:31 +00001056 assert( memIsValid(pIn1) );
1057 memAboutToChange(p, pOut);
drhb21e7c72008-06-22 12:37:57 +00001058 zMalloc = pOut->zMalloc;
1059 pOut->zMalloc = 0;
1060 sqlite3VdbeMemMove(pOut, pIn1);
drh52043d72011-08-03 16:40:15 +00001061#ifdef SQLITE_DEBUG
1062 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
1063 pOut->pScopyFrom += p1 - pOp->p2;
1064 }
1065#endif
drhb21e7c72008-06-22 12:37:57 +00001066 pIn1->zMalloc = zMalloc;
1067 REGISTER_TRACE(p2++, pOut);
1068 pIn1++;
1069 pOut++;
1070 }
drhe1349cb2008-04-01 00:36:10 +00001071 break;
1072}
1073
drhb1fdb2a2008-01-05 04:06:03 +00001074/* Opcode: Copy P1 P2 * * *
1075**
drh9cbf3422008-01-17 16:22:13 +00001076** Make a copy of register P1 into register P2.
drhb1fdb2a2008-01-05 04:06:03 +00001077**
1078** This instruction makes a deep copy of the value. A duplicate
1079** is made of any string or blob constant. See also OP_SCopy.
1080*/
drh93952eb2009-11-13 19:43:43 +00001081case OP_Copy: { /* in1, out2 */
drh3c657212009-11-17 23:59:58 +00001082 pIn1 = &aMem[pOp->p1];
1083 pOut = &aMem[pOp->p2];
drhe1349cb2008-04-01 00:36:10 +00001084 assert( pOut!=pIn1 );
1085 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1086 Deephemeralize(pOut);
1087 REGISTER_TRACE(pOp->p2, pOut);
1088 break;
1089}
1090
drhb1fdb2a2008-01-05 04:06:03 +00001091/* Opcode: SCopy P1 P2 * * *
1092**
drh9cbf3422008-01-17 16:22:13 +00001093** Make a shallow copy of register P1 into register P2.
drhb1fdb2a2008-01-05 04:06:03 +00001094**
1095** This instruction makes a shallow copy of the value. If the value
1096** is a string or blob, then the copy is only a pointer to the
1097** original and hence if the original changes so will the copy.
1098** Worse, if the original is deallocated, the copy becomes invalid.
1099** Thus the program must guarantee that the original will not change
1100** during the lifetime of the copy. Use OP_Copy to make a complete
1101** copy.
1102*/
drh93952eb2009-11-13 19:43:43 +00001103case OP_SCopy: { /* in1, out2 */
drh3c657212009-11-17 23:59:58 +00001104 pIn1 = &aMem[pOp->p1];
1105 pOut = &aMem[pOp->p2];
drh2d401ab2008-01-10 23:50:11 +00001106 assert( pOut!=pIn1 );
drhe1349cb2008-04-01 00:36:10 +00001107 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
drh2b4ded92010-09-27 21:09:31 +00001108#ifdef SQLITE_DEBUG
1109 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1110#endif
drh5b6afba2008-01-05 16:29:28 +00001111 REGISTER_TRACE(pOp->p2, pOut);
drh5e00f6c2001-09-13 13:46:56 +00001112 break;
1113}
drh75897232000-05-29 14:26:00 +00001114
drh9cbf3422008-01-17 16:22:13 +00001115/* Opcode: ResultRow P1 P2 * * *
drhd4e70eb2008-01-02 00:34:36 +00001116**
shane21e7feb2008-05-30 15:59:49 +00001117** The registers P1 through P1+P2-1 contain a single row of
drhd4e70eb2008-01-02 00:34:36 +00001118** results. This opcode causes the sqlite3_step() call to terminate
1119** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1120** structure to provide access to the top P1 values as the result
drh9cbf3422008-01-17 16:22:13 +00001121** row.
drhd4e70eb2008-01-02 00:34:36 +00001122*/
drh9cbf3422008-01-17 16:22:13 +00001123case OP_ResultRow: {
drhd4e70eb2008-01-02 00:34:36 +00001124 Mem *pMem;
1125 int i;
1126 assert( p->nResColumn==pOp->p2 );
drh0a07c102008-01-03 18:03:08 +00001127 assert( pOp->p1>0 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001128 assert( pOp->p1+pOp->p2<=p->nMem+1 );
drhd4e70eb2008-01-02 00:34:36 +00001129
dan32b09f22009-09-23 17:29:59 +00001130 /* If this statement has violated immediate foreign key constraints, do
1131 ** not return the number of rows modified. And do not RELEASE the statement
1132 ** transaction. It needs to be rolled back. */
1133 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1134 assert( db->flags&SQLITE_CountRows );
1135 assert( p->usesStmtJournal );
1136 break;
1137 }
1138
danielk1977bd434552009-03-18 10:33:00 +00001139 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1140 ** DML statements invoke this opcode to return the number of rows
1141 ** modified to the user. This is the only way that a VM that
1142 ** opens a statement transaction may invoke this opcode.
1143 **
1144 ** In case this is such a statement, close any statement transaction
1145 ** opened by this VM before returning control to the user. This is to
1146 ** ensure that statement-transactions are always nested, not overlapping.
1147 ** If the open statement-transaction is not closed here, then the user
1148 ** may step another VM that opens its own statement transaction. This
1149 ** may lead to overlapping statement transactions.
drhaa736092009-06-22 00:55:30 +00001150 **
1151 ** The statement transaction is never a top-level transaction. Hence
1152 ** the RELEASE call below can never fail.
danielk1977bd434552009-03-18 10:33:00 +00001153 */
1154 assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
drhaa736092009-06-22 00:55:30 +00001155 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1156 if( NEVER(rc!=SQLITE_OK) ){
danielk1977bd434552009-03-18 10:33:00 +00001157 break;
1158 }
1159
drhd4e70eb2008-01-02 00:34:36 +00001160 /* Invalidate all ephemeral cursor row caches */
1161 p->cacheCtr = (p->cacheCtr + 2)|1;
1162
1163 /* Make sure the results of the current row are \000 terminated
shane21e7feb2008-05-30 15:59:49 +00001164 ** and have an assigned type. The results are de-ephemeralized as
drhd4e70eb2008-01-02 00:34:36 +00001165 ** as side effect.
1166 */
drha6c2ed92009-11-14 23:22:23 +00001167 pMem = p->pResultSet = &aMem[pOp->p1];
drhd4e70eb2008-01-02 00:34:36 +00001168 for(i=0; i<pOp->p2; i++){
drh2b4ded92010-09-27 21:09:31 +00001169 assert( memIsValid(&pMem[i]) );
drhebc16712010-09-28 00:25:58 +00001170 Deephemeralize(&pMem[i]);
drh746fd9c2010-09-28 06:00:47 +00001171 assert( (pMem[i].flags & MEM_Ephem)==0
1172 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
drhd4e70eb2008-01-02 00:34:36 +00001173 sqlite3VdbeMemNulTerminate(&pMem[i]);
dan937d0de2009-10-15 18:35:38 +00001174 sqlite3VdbeMemStoreType(&pMem[i]);
drh0acb7e42008-06-25 00:12:41 +00001175 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
drhd4e70eb2008-01-02 00:34:36 +00001176 }
drh28039692008-03-17 16:54:01 +00001177 if( db->mallocFailed ) goto no_mem;
drhd4e70eb2008-01-02 00:34:36 +00001178
1179 /* Return SQLITE_ROW
1180 */
drhd4e70eb2008-01-02 00:34:36 +00001181 p->pc = pc + 1;
drhd4e70eb2008-01-02 00:34:36 +00001182 rc = SQLITE_ROW;
1183 goto vdbe_return;
1184}
1185
drh5b6afba2008-01-05 16:29:28 +00001186/* Opcode: Concat P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001187**
drh5b6afba2008-01-05 16:29:28 +00001188** Add the text in register P1 onto the end of the text in
1189** register P2 and store the result in register P3.
1190** If either the P1 or P2 text are NULL then store NULL in P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001191**
1192** P3 = P2 || P1
1193**
1194** It is illegal for P1 and P3 to be the same register. Sometimes,
1195** if P3 is the same register as P2, the implementation is able
1196** to avoid a memcpy().
drh5e00f6c2001-09-13 13:46:56 +00001197*/
drh5b6afba2008-01-05 16:29:28 +00001198case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
drh023ae032007-05-08 12:12:16 +00001199 i64 nByte;
danielk19778a6b5412004-05-24 07:04:25 +00001200
drh3c657212009-11-17 23:59:58 +00001201 pIn1 = &aMem[pOp->p1];
1202 pIn2 = &aMem[pOp->p2];
1203 pOut = &aMem[pOp->p3];
danielk1977a7a8e142008-02-13 18:25:27 +00001204 assert( pIn1!=pOut );
drh5b6afba2008-01-05 16:29:28 +00001205 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
danielk1977a7a8e142008-02-13 18:25:27 +00001206 sqlite3VdbeMemSetNull(pOut);
drh5b6afba2008-01-05 16:29:28 +00001207 break;
drh5e00f6c2001-09-13 13:46:56 +00001208 }
drha0c06522009-06-17 22:50:41 +00001209 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
drh5b6afba2008-01-05 16:29:28 +00001210 Stringify(pIn1, encoding);
drh5b6afba2008-01-05 16:29:28 +00001211 Stringify(pIn2, encoding);
1212 nByte = pIn1->n + pIn2->n;
drhbb4957f2008-03-20 14:03:29 +00001213 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh5b6afba2008-01-05 16:29:28 +00001214 goto too_big;
drh5e00f6c2001-09-13 13:46:56 +00001215 }
danielk1977a7a8e142008-02-13 18:25:27 +00001216 MemSetTypeFlag(pOut, MEM_Str);
drh9c1905f2008-12-10 22:32:56 +00001217 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
drh5b6afba2008-01-05 16:29:28 +00001218 goto no_mem;
1219 }
danielk1977a7a8e142008-02-13 18:25:27 +00001220 if( pOut!=pIn2 ){
1221 memcpy(pOut->z, pIn2->z, pIn2->n);
1222 }
1223 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1224 pOut->z[nByte] = 0;
1225 pOut->z[nByte+1] = 0;
1226 pOut->flags |= MEM_Term;
drh9c1905f2008-12-10 22:32:56 +00001227 pOut->n = (int)nByte;
drh5b6afba2008-01-05 16:29:28 +00001228 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001229 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001230 break;
1231}
drh75897232000-05-29 14:26:00 +00001232
drh3c84ddf2008-01-09 02:15:38 +00001233/* Opcode: Add P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001234**
drh60a713c2008-01-21 16:22:45 +00001235** Add the value in register P1 to the value in register P2
shane21e7feb2008-05-30 15:59:49 +00001236** and store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001237** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001238*/
drh3c84ddf2008-01-09 02:15:38 +00001239/* Opcode: Multiply P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001240**
drh3c84ddf2008-01-09 02:15:38 +00001241**
shane21e7feb2008-05-30 15:59:49 +00001242** Multiply the value in register P1 by the value in register P2
drh60a713c2008-01-21 16:22:45 +00001243** and store the result in register P3.
1244** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001245*/
drh3c84ddf2008-01-09 02:15:38 +00001246/* Opcode: Subtract P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001247**
drh60a713c2008-01-21 16:22:45 +00001248** Subtract the value in register P1 from the value in register P2
1249** and store the result in register P3.
1250** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001251*/
drh9cbf3422008-01-17 16:22:13 +00001252/* Opcode: Divide P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001253**
drh60a713c2008-01-21 16:22:45 +00001254** Divide the value in register P1 by the value in register P2
dane275dc32009-08-18 16:24:58 +00001255** and store the result in register P3 (P3=P2/P1). If the value in
1256** register P1 is zero, then the result is NULL. If either input is
1257** NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001258*/
drh9cbf3422008-01-17 16:22:13 +00001259/* Opcode: Remainder P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001260**
drh3c84ddf2008-01-09 02:15:38 +00001261** Compute the remainder after integer division of the value in
1262** register P1 by the value in register P2 and store the result in P3.
1263** If the value in register P2 is zero the result is NULL.
drhf5905aa2002-05-26 20:54:33 +00001264** If either operand is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001265*/
drh5b6afba2008-01-05 16:29:28 +00001266case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1267case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1268case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1269case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1270case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00001271 int flags; /* Combined MEM_* flags from both inputs */
1272 i64 iA; /* Integer value of left operand */
1273 i64 iB; /* Integer value of right operand */
1274 double rA; /* Real value of left operand */
1275 double rB; /* Real value of right operand */
1276
drh3c657212009-11-17 23:59:58 +00001277 pIn1 = &aMem[pOp->p1];
drh61669b32008-07-30 13:27:10 +00001278 applyNumericAffinity(pIn1);
drh3c657212009-11-17 23:59:58 +00001279 pIn2 = &aMem[pOp->p2];
drh61669b32008-07-30 13:27:10 +00001280 applyNumericAffinity(pIn2);
drh3c657212009-11-17 23:59:58 +00001281 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001282 flags = pIn1->flags | pIn2->flags;
drha05a7222008-01-19 03:35:58 +00001283 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
1284 if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
drh856c1032009-06-02 15:21:42 +00001285 iA = pIn1->u.i;
1286 iB = pIn2->u.i;
drh5e00f6c2001-09-13 13:46:56 +00001287 switch( pOp->opcode ){
drh158b9cb2011-03-05 20:59:46 +00001288 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
1289 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
1290 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
drhbf4133c2001-10-13 02:59:08 +00001291 case OP_Divide: {
drh856c1032009-06-02 15:21:42 +00001292 if( iA==0 ) goto arithmetic_result_is_null;
drh158b9cb2011-03-05 20:59:46 +00001293 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
drh856c1032009-06-02 15:21:42 +00001294 iB /= iA;
drh75897232000-05-29 14:26:00 +00001295 break;
1296 }
drhbf4133c2001-10-13 02:59:08 +00001297 default: {
drh856c1032009-06-02 15:21:42 +00001298 if( iA==0 ) goto arithmetic_result_is_null;
1299 if( iA==-1 ) iA = 1;
1300 iB %= iA;
drhbf4133c2001-10-13 02:59:08 +00001301 break;
1302 }
drh75897232000-05-29 14:26:00 +00001303 }
drh856c1032009-06-02 15:21:42 +00001304 pOut->u.i = iB;
danielk1977a7a8e142008-02-13 18:25:27 +00001305 MemSetTypeFlag(pOut, MEM_Int);
drh5e00f6c2001-09-13 13:46:56 +00001306 }else{
drh158b9cb2011-03-05 20:59:46 +00001307fp_math:
drh856c1032009-06-02 15:21:42 +00001308 rA = sqlite3VdbeRealValue(pIn1);
1309 rB = sqlite3VdbeRealValue(pIn2);
drh5e00f6c2001-09-13 13:46:56 +00001310 switch( pOp->opcode ){
drh856c1032009-06-02 15:21:42 +00001311 case OP_Add: rB += rA; break;
1312 case OP_Subtract: rB -= rA; break;
1313 case OP_Multiply: rB *= rA; break;
drhbf4133c2001-10-13 02:59:08 +00001314 case OP_Divide: {
shanefbd60f82009-02-04 03:59:25 +00001315 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
drh856c1032009-06-02 15:21:42 +00001316 if( rA==(double)0 ) goto arithmetic_result_is_null;
1317 rB /= rA;
drh5e00f6c2001-09-13 13:46:56 +00001318 break;
1319 }
drhbf4133c2001-10-13 02:59:08 +00001320 default: {
shane75ac1de2009-06-09 18:58:52 +00001321 iA = (i64)rA;
1322 iB = (i64)rB;
drh856c1032009-06-02 15:21:42 +00001323 if( iA==0 ) goto arithmetic_result_is_null;
1324 if( iA==-1 ) iA = 1;
1325 rB = (double)(iB % iA);
drhbf4133c2001-10-13 02:59:08 +00001326 break;
1327 }
drh5e00f6c2001-09-13 13:46:56 +00001328 }
drhc5a7b512010-01-13 16:25:42 +00001329#ifdef SQLITE_OMIT_FLOATING_POINT
1330 pOut->u.i = rB;
1331 MemSetTypeFlag(pOut, MEM_Int);
1332#else
drh856c1032009-06-02 15:21:42 +00001333 if( sqlite3IsNaN(rB) ){
drha05a7222008-01-19 03:35:58 +00001334 goto arithmetic_result_is_null;
drh53c14022007-05-10 17:23:11 +00001335 }
drh856c1032009-06-02 15:21:42 +00001336 pOut->r = rB;
danielk1977a7a8e142008-02-13 18:25:27 +00001337 MemSetTypeFlag(pOut, MEM_Real);
drh8a512562005-11-14 22:29:05 +00001338 if( (flags & MEM_Real)==0 ){
drh5b6afba2008-01-05 16:29:28 +00001339 sqlite3VdbeIntegerAffinity(pOut);
drh8a512562005-11-14 22:29:05 +00001340 }
drhc5a7b512010-01-13 16:25:42 +00001341#endif
drh5e00f6c2001-09-13 13:46:56 +00001342 }
1343 break;
1344
drha05a7222008-01-19 03:35:58 +00001345arithmetic_result_is_null:
1346 sqlite3VdbeMemSetNull(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001347 break;
1348}
1349
drh66a51672008-01-03 00:01:23 +00001350/* Opcode: CollSeq * * P4
danielk1977dc1bdc42004-06-11 10:51:27 +00001351**
drh66a51672008-01-03 00:01:23 +00001352** P4 is a pointer to a CollSeq struct. If the next call to a user function
danielk1977dc1bdc42004-06-11 10:51:27 +00001353** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1354** be returned. This is used by the built-in min(), max() and nullif()
drhe6f85e72004-12-25 01:03:13 +00001355** functions.
danielk1977dc1bdc42004-06-11 10:51:27 +00001356**
1357** The interface used by the implementation of the aforementioned functions
1358** to retrieve the collation sequence set by this opcode is not available
1359** publicly, only to user functions defined in func.c.
1360*/
drh9cbf3422008-01-17 16:22:13 +00001361case OP_CollSeq: {
drh66a51672008-01-03 00:01:23 +00001362 assert( pOp->p4type==P4_COLLSEQ );
danielk1977dc1bdc42004-06-11 10:51:27 +00001363 break;
1364}
1365
drh98757152008-01-09 23:04:12 +00001366/* Opcode: Function P1 P2 P3 P4 P5
drh8e0a2f92002-02-23 23:45:45 +00001367**
drh66a51672008-01-03 00:01:23 +00001368** Invoke a user function (P4 is a pointer to a Function structure that
drh98757152008-01-09 23:04:12 +00001369** defines the function) with P5 arguments taken from register P2 and
drh9cbf3422008-01-17 16:22:13 +00001370** successors. The result of the function is stored in register P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001371** Register P3 must not be one of the function inputs.
danielk1977682f68b2004-06-05 10:22:17 +00001372**
drh13449892005-09-07 21:22:45 +00001373** P1 is a 32-bit bitmask indicating whether or not each argument to the
danielk1977682f68b2004-06-05 10:22:17 +00001374** function was determined to be constant at compile time. If the first
drh13449892005-09-07 21:22:45 +00001375** argument was constant then bit 0 of P1 is set. This is used to determine
danielk1977682f68b2004-06-05 10:22:17 +00001376** whether meta data associated with a user function argument using the
1377** sqlite3_set_auxdata() API may be safely retained until the next
1378** invocation of this opcode.
drh1350b032002-02-27 19:00:20 +00001379**
drh13449892005-09-07 21:22:45 +00001380** See also: AggStep and AggFinal
drh8e0a2f92002-02-23 23:45:45 +00001381*/
drh0bce8352002-02-28 00:41:10 +00001382case OP_Function: {
danielk197751ad0ec2004-05-24 12:39:02 +00001383 int i;
drh6810ce62004-01-31 19:22:56 +00001384 Mem *pArg;
danielk197722322fd2004-05-25 23:35:17 +00001385 sqlite3_context ctx;
danielk197751ad0ec2004-05-24 12:39:02 +00001386 sqlite3_value **apVal;
drh856c1032009-06-02 15:21:42 +00001387 int n;
drh1350b032002-02-27 19:00:20 +00001388
drh856c1032009-06-02 15:21:42 +00001389 n = pOp->p5;
danielk19776ddcca52004-05-24 23:48:25 +00001390 apVal = p->apArg;
danielk197751ad0ec2004-05-24 12:39:02 +00001391 assert( apVal || n==0 );
drhebc16712010-09-28 00:25:58 +00001392 assert( pOp->p3>0 && pOp->p3<=p->nMem );
1393 pOut = &aMem[pOp->p3];
1394 memAboutToChange(p, pOut);
danielk197751ad0ec2004-05-24 12:39:02 +00001395
danielk19776ab3a2e2009-02-19 14:39:25 +00001396 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) );
danielk1977a7a8e142008-02-13 18:25:27 +00001397 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
drha6c2ed92009-11-14 23:22:23 +00001398 pArg = &aMem[pOp->p2];
drh6810ce62004-01-31 19:22:56 +00001399 for(i=0; i<n; i++, pArg++){
drh2b4ded92010-09-27 21:09:31 +00001400 assert( memIsValid(pArg) );
danielk197751ad0ec2004-05-24 12:39:02 +00001401 apVal[i] = pArg;
drhebc16712010-09-28 00:25:58 +00001402 Deephemeralize(pArg);
dan937d0de2009-10-15 18:35:38 +00001403 sqlite3VdbeMemStoreType(pArg);
drhab5cd702010-04-07 14:32:11 +00001404 REGISTER_TRACE(pOp->p2+i, pArg);
drh8e0a2f92002-02-23 23:45:45 +00001405 }
danielk197751ad0ec2004-05-24 12:39:02 +00001406
drh66a51672008-01-03 00:01:23 +00001407 assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
1408 if( pOp->p4type==P4_FUNCDEF ){
danielk19772dca4ac2008-01-03 11:50:29 +00001409 ctx.pFunc = pOp->p4.pFunc;
danielk1977682f68b2004-06-05 10:22:17 +00001410 ctx.pVdbeFunc = 0;
1411 }else{
danielk19772dca4ac2008-01-03 11:50:29 +00001412 ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc;
danielk1977682f68b2004-06-05 10:22:17 +00001413 ctx.pFunc = ctx.pVdbeFunc->pFunc;
1414 }
1415
drh00706be2004-01-30 14:49:16 +00001416 ctx.s.flags = MEM_Null;
drhfa4a4b92008-03-19 21:45:51 +00001417 ctx.s.db = db;
danielk19775f096132008-03-28 15:44:09 +00001418 ctx.s.xDel = 0;
1419 ctx.s.zMalloc = 0;
danielk1977a7a8e142008-02-13 18:25:27 +00001420
1421 /* The output cell may already have a buffer allocated. Move
1422 ** the pointer to ctx.s so in case the user-function can use
1423 ** the already allocated buffer instead of allocating a new one.
1424 */
1425 sqlite3VdbeMemMove(&ctx.s, pOut);
1426 MemSetTypeFlag(&ctx.s, MEM_Null);
1427
drh8e0a2f92002-02-23 23:45:45 +00001428 ctx.isError = 0;
drhe82f5d02008-10-07 19:53:14 +00001429 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
drhbbe879d2009-11-14 18:04:35 +00001430 assert( pOp>aOp );
drh66a51672008-01-03 00:01:23 +00001431 assert( pOp[-1].p4type==P4_COLLSEQ );
danielk1977dc1bdc42004-06-11 10:51:27 +00001432 assert( pOp[-1].opcode==OP_CollSeq );
danielk19772dca4ac2008-01-03 11:50:29 +00001433 ctx.pColl = pOp[-1].p4.pColl;
danielk1977dc1bdc42004-06-11 10:51:27 +00001434 }
drh99a66922011-05-13 18:51:42 +00001435 db->lastRowid = lastRowid;
drhee9ff672010-09-03 18:50:48 +00001436 (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
drh99a66922011-05-13 18:51:42 +00001437 lastRowid = db->lastRowid;
danielk19777e18c252004-05-25 11:47:24 +00001438
shane21e7feb2008-05-30 15:59:49 +00001439 /* If any auxiliary data functions have been called by this user function,
danielk1977682f68b2004-06-05 10:22:17 +00001440 ** immediately call the destructor for any non-static values.
1441 */
1442 if( ctx.pVdbeFunc ){
drh13449892005-09-07 21:22:45 +00001443 sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
danielk19772dca4ac2008-01-03 11:50:29 +00001444 pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
drh66a51672008-01-03 00:01:23 +00001445 pOp->p4type = P4_VDBEFUNC;
danielk1977682f68b2004-06-05 10:22:17 +00001446 }
1447
dan5f84e142011-06-14 14:18:45 +00001448 if( db->mallocFailed ){
1449 /* Even though a malloc() has failed, the implementation of the
1450 ** user function may have called an sqlite3_result_XXX() function
1451 ** to return a value. The following call releases any resources
1452 ** associated with such a value.
1453 */
1454 sqlite3VdbeMemRelease(&ctx.s);
1455 goto no_mem;
1456 }
1457
drh90669c12006-01-20 15:45:36 +00001458 /* If the function returned an error, throw an exception */
1459 if( ctx.isError ){
drhf089aa42008-07-08 19:34:06 +00001460 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
drh69544ec2008-02-06 14:11:34 +00001461 rc = ctx.isError;
drh90669c12006-01-20 15:45:36 +00001462 }
1463
drh9cbf3422008-01-17 16:22:13 +00001464 /* Copy the result of the function into register P3 */
drhb21c8cd2007-08-21 19:33:56 +00001465 sqlite3VdbeChangeEncoding(&ctx.s, encoding);
drh98757152008-01-09 23:04:12 +00001466 sqlite3VdbeMemMove(pOut, &ctx.s);
1467 if( sqlite3VdbeMemTooBig(pOut) ){
drh023ae032007-05-08 12:12:16 +00001468 goto too_big;
1469 }
drh7b94e7f2011-04-04 12:29:20 +00001470
1471#if 0
1472 /* The app-defined function has done something that as caused this
1473 ** statement to expire. (Perhaps the function called sqlite3_exec()
1474 ** with a CREATE TABLE statement.)
1475 */
1476 if( p->expired ) rc = SQLITE_ABORT;
1477#endif
1478
drh2dcef112008-01-12 19:03:48 +00001479 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00001480 UPDATE_MAX_BLOBSIZE(pOut);
drh8e0a2f92002-02-23 23:45:45 +00001481 break;
1482}
1483
drh98757152008-01-09 23:04:12 +00001484/* Opcode: BitAnd P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001485**
drh98757152008-01-09 23:04:12 +00001486** Take the bit-wise AND of the values in register P1 and P2 and
1487** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001488** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001489*/
drh98757152008-01-09 23:04:12 +00001490/* Opcode: BitOr P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001491**
drh98757152008-01-09 23:04:12 +00001492** Take the bit-wise OR of the values in register P1 and P2 and
1493** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001494** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001495*/
drh98757152008-01-09 23:04:12 +00001496/* Opcode: ShiftLeft P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001497**
drh98757152008-01-09 23:04:12 +00001498** Shift the integer value in register P2 to the left by the
drh710c4842010-08-30 01:17:20 +00001499** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001500** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001501** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001502*/
drh98757152008-01-09 23:04:12 +00001503/* Opcode: ShiftRight P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001504**
drh98757152008-01-09 23:04:12 +00001505** Shift the integer value in register P2 to the right by the
drh60a713c2008-01-21 16:22:45 +00001506** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001507** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001508** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001509*/
drh5b6afba2008-01-05 16:29:28 +00001510case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1511case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1512case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1513case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
drh158b9cb2011-03-05 20:59:46 +00001514 i64 iA;
1515 u64 uA;
1516 i64 iB;
1517 u8 op;
drh6810ce62004-01-31 19:22:56 +00001518
drh3c657212009-11-17 23:59:58 +00001519 pIn1 = &aMem[pOp->p1];
1520 pIn2 = &aMem[pOp->p2];
1521 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001522 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
drha05a7222008-01-19 03:35:58 +00001523 sqlite3VdbeMemSetNull(pOut);
drhf5905aa2002-05-26 20:54:33 +00001524 break;
1525 }
drh158b9cb2011-03-05 20:59:46 +00001526 iA = sqlite3VdbeIntValue(pIn2);
1527 iB = sqlite3VdbeIntValue(pIn1);
1528 op = pOp->opcode;
1529 if( op==OP_BitAnd ){
1530 iA &= iB;
1531 }else if( op==OP_BitOr ){
1532 iA |= iB;
1533 }else if( iB!=0 ){
1534 assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1535
1536 /* If shifting by a negative amount, shift in the other direction */
1537 if( iB<0 ){
1538 assert( OP_ShiftRight==OP_ShiftLeft+1 );
1539 op = 2*OP_ShiftLeft + 1 - op;
1540 iB = iB>(-64) ? -iB : 64;
1541 }
1542
1543 if( iB>=64 ){
1544 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1545 }else{
1546 memcpy(&uA, &iA, sizeof(uA));
1547 if( op==OP_ShiftLeft ){
1548 uA <<= iB;
1549 }else{
1550 uA >>= iB;
1551 /* Sign-extend on a right shift of a negative number */
1552 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1553 }
1554 memcpy(&iA, &uA, sizeof(iA));
1555 }
drhbf4133c2001-10-13 02:59:08 +00001556 }
drh158b9cb2011-03-05 20:59:46 +00001557 pOut->u.i = iA;
danielk1977a7a8e142008-02-13 18:25:27 +00001558 MemSetTypeFlag(pOut, MEM_Int);
drhbf4133c2001-10-13 02:59:08 +00001559 break;
1560}
1561
drh8558cde2008-01-05 05:20:10 +00001562/* Opcode: AddImm P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00001563**
danielk19770cdc0222008-06-26 18:04:03 +00001564** Add the constant P2 to the value in register P1.
drh8558cde2008-01-05 05:20:10 +00001565** The result is always an integer.
drh4a324312001-12-21 14:30:42 +00001566**
drh8558cde2008-01-05 05:20:10 +00001567** To force any register to be an integer, just add 0.
drh5e00f6c2001-09-13 13:46:56 +00001568*/
drh9cbf3422008-01-17 16:22:13 +00001569case OP_AddImm: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001570 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001571 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001572 sqlite3VdbeMemIntegerify(pIn1);
1573 pIn1->u.i += pOp->p2;
drh5e00f6c2001-09-13 13:46:56 +00001574 break;
1575}
1576
drh9cbf3422008-01-17 16:22:13 +00001577/* Opcode: MustBeInt P1 P2 * * *
drh8aff1012001-12-22 14:49:24 +00001578**
drh9cbf3422008-01-17 16:22:13 +00001579** Force the value in register P1 to be an integer. If the value
1580** in P1 is not an integer and cannot be converted into an integer
danielk19779a96b662007-11-29 17:05:18 +00001581** without data loss, then jump immediately to P2, or if P2==0
drh8aff1012001-12-22 14:49:24 +00001582** raise an SQLITE_MISMATCH exception.
1583*/
drh9cbf3422008-01-17 16:22:13 +00001584case OP_MustBeInt: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00001585 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00001586 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1587 if( (pIn1->flags & MEM_Int)==0 ){
drh17c40292004-07-21 02:53:29 +00001588 if( pOp->p2==0 ){
1589 rc = SQLITE_MISMATCH;
1590 goto abort_due_to_error;
drh3c84ddf2008-01-09 02:15:38 +00001591 }else{
drh17c40292004-07-21 02:53:29 +00001592 pc = pOp->p2 - 1;
drh8aff1012001-12-22 14:49:24 +00001593 }
drh8aff1012001-12-22 14:49:24 +00001594 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00001595 MemSetTypeFlag(pIn1, MEM_Int);
drh8aff1012001-12-22 14:49:24 +00001596 }
1597 break;
1598}
1599
drh13573c72010-01-12 17:04:07 +00001600#ifndef SQLITE_OMIT_FLOATING_POINT
drh8558cde2008-01-05 05:20:10 +00001601/* Opcode: RealAffinity P1 * * * *
drh487e2622005-06-25 18:42:14 +00001602**
drh2133d822008-01-03 18:44:59 +00001603** If register P1 holds an integer convert it to a real value.
drh487e2622005-06-25 18:42:14 +00001604**
drh8a512562005-11-14 22:29:05 +00001605** This opcode is used when extracting information from a column that
1606** has REAL affinity. Such column values may still be stored as
1607** integers, for space efficiency, but after extraction we want them
1608** to have only a real value.
drh487e2622005-06-25 18:42:14 +00001609*/
drh9cbf3422008-01-17 16:22:13 +00001610case OP_RealAffinity: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001611 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001612 if( pIn1->flags & MEM_Int ){
1613 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001614 }
drh487e2622005-06-25 18:42:14 +00001615 break;
1616}
drh13573c72010-01-12 17:04:07 +00001617#endif
drh487e2622005-06-25 18:42:14 +00001618
drh8df447f2005-11-01 15:48:24 +00001619#ifndef SQLITE_OMIT_CAST
drh8558cde2008-01-05 05:20:10 +00001620/* Opcode: ToText P1 * * * *
drh487e2622005-06-25 18:42:14 +00001621**
drh8558cde2008-01-05 05:20:10 +00001622** Force the value in register P1 to be text.
drh31beae92005-11-24 14:34:36 +00001623** If the value is numeric, convert it to a string using the
drh487e2622005-06-25 18:42:14 +00001624** equivalent of printf(). Blob values are unchanged and
1625** are afterwards simply interpreted as text.
1626**
1627** A NULL value is not changed by this routine. It remains NULL.
1628*/
drh9cbf3422008-01-17 16:22:13 +00001629case OP_ToText: { /* same as TK_TO_TEXT, in1 */
drh3c657212009-11-17 23:59:58 +00001630 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001631 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001632 if( pIn1->flags & MEM_Null ) break;
drh487e2622005-06-25 18:42:14 +00001633 assert( MEM_Str==(MEM_Blob>>3) );
drh8558cde2008-01-05 05:20:10 +00001634 pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
1635 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
1636 rc = ExpandBlob(pIn1);
danielk1977a7a8e142008-02-13 18:25:27 +00001637 assert( pIn1->flags & MEM_Str || db->mallocFailed );
drh68ac65e2009-01-05 18:02:27 +00001638 pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
drhb7654112008-01-12 12:48:07 +00001639 UPDATE_MAX_BLOBSIZE(pIn1);
drh487e2622005-06-25 18:42:14 +00001640 break;
1641}
1642
drh8558cde2008-01-05 05:20:10 +00001643/* Opcode: ToBlob P1 * * * *
drh487e2622005-06-25 18:42:14 +00001644**
drh8558cde2008-01-05 05:20:10 +00001645** Force the value in register P1 to be a BLOB.
drh487e2622005-06-25 18:42:14 +00001646** If the value is numeric, convert it to a string first.
1647** Strings are simply reinterpreted as blobs with no change
1648** to the underlying data.
1649**
1650** A NULL value is not changed by this routine. It remains NULL.
1651*/
drh9cbf3422008-01-17 16:22:13 +00001652case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */
drh3c657212009-11-17 23:59:58 +00001653 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001654 if( pIn1->flags & MEM_Null ) break;
1655 if( (pIn1->flags & MEM_Blob)==0 ){
1656 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
danielk1977a7a8e142008-02-13 18:25:27 +00001657 assert( pIn1->flags & MEM_Str || db->mallocFailed );
drhde58ddb2009-01-05 22:30:38 +00001658 MemSetTypeFlag(pIn1, MEM_Blob);
1659 }else{
1660 pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob);
drh487e2622005-06-25 18:42:14 +00001661 }
drhb7654112008-01-12 12:48:07 +00001662 UPDATE_MAX_BLOBSIZE(pIn1);
drh487e2622005-06-25 18:42:14 +00001663 break;
1664}
drh8a512562005-11-14 22:29:05 +00001665
drh8558cde2008-01-05 05:20:10 +00001666/* Opcode: ToNumeric P1 * * * *
drh8a512562005-11-14 22:29:05 +00001667**
drh8558cde2008-01-05 05:20:10 +00001668** Force the value in register P1 to be numeric (either an
drh8a512562005-11-14 22:29:05 +00001669** integer or a floating-point number.)
1670** If the value is text or blob, try to convert it to an using the
1671** equivalent of atoi() or atof() and store 0 if no such conversion
1672** is possible.
1673**
1674** A NULL value is not changed by this routine. It remains NULL.
1675*/
drh9cbf3422008-01-17 16:22:13 +00001676case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */
drh3c657212009-11-17 23:59:58 +00001677 pIn1 = &aMem[pOp->p1];
drh93518622010-09-30 14:48:06 +00001678 sqlite3VdbeMemNumerify(pIn1);
drh8a512562005-11-14 22:29:05 +00001679 break;
1680}
1681#endif /* SQLITE_OMIT_CAST */
1682
drh8558cde2008-01-05 05:20:10 +00001683/* Opcode: ToInt P1 * * * *
drh8a512562005-11-14 22:29:05 +00001684**
drh710c4842010-08-30 01:17:20 +00001685** Force the value in register P1 to be an integer. If
drh8a512562005-11-14 22:29:05 +00001686** The value is currently a real number, drop its fractional part.
1687** If the value is text or blob, try to convert it to an integer using the
1688** equivalent of atoi() and store 0 if no such conversion is possible.
1689**
1690** A NULL value is not changed by this routine. It remains NULL.
1691*/
drh9cbf3422008-01-17 16:22:13 +00001692case OP_ToInt: { /* same as TK_TO_INT, in1 */
drh3c657212009-11-17 23:59:58 +00001693 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001694 if( (pIn1->flags & MEM_Null)==0 ){
1695 sqlite3VdbeMemIntegerify(pIn1);
drh8a512562005-11-14 22:29:05 +00001696 }
1697 break;
1698}
1699
drh13573c72010-01-12 17:04:07 +00001700#if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT)
drh8558cde2008-01-05 05:20:10 +00001701/* Opcode: ToReal P1 * * * *
drh8a512562005-11-14 22:29:05 +00001702**
drh8558cde2008-01-05 05:20:10 +00001703** Force the value in register P1 to be a floating point number.
drh8a512562005-11-14 22:29:05 +00001704** If The value is currently an integer, convert it.
1705** If the value is text or blob, try to convert it to an integer using the
drh60a713c2008-01-21 16:22:45 +00001706** equivalent of atoi() and store 0.0 if no such conversion is possible.
drh8a512562005-11-14 22:29:05 +00001707**
1708** A NULL value is not changed by this routine. It remains NULL.
1709*/
drh9cbf3422008-01-17 16:22:13 +00001710case OP_ToReal: { /* same as TK_TO_REAL, in1 */
drh3c657212009-11-17 23:59:58 +00001711 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001712 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001713 if( (pIn1->flags & MEM_Null)==0 ){
1714 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001715 }
1716 break;
1717}
drh13573c72010-01-12 17:04:07 +00001718#endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */
drh487e2622005-06-25 18:42:14 +00001719
drh35573352008-01-08 23:54:25 +00001720/* Opcode: Lt P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001721**
drh35573352008-01-08 23:54:25 +00001722** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
1723** jump to address P2.
drhf5905aa2002-05-26 20:54:33 +00001724**
drh35573352008-01-08 23:54:25 +00001725** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1726** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
drh710c4842010-08-30 01:17:20 +00001727** bit is clear then fall through if either operand is NULL.
drh4f686232005-09-20 13:55:18 +00001728**
drh35573352008-01-08 23:54:25 +00001729** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
drh8a512562005-11-14 22:29:05 +00001730** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
drh60a713c2008-01-21 16:22:45 +00001731** to coerce both inputs according to this affinity before the
drh35573352008-01-08 23:54:25 +00001732** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
drh60a713c2008-01-21 16:22:45 +00001733** affinity is used. Note that the affinity conversions are stored
1734** back into the input registers P1 and P3. So this opcode can cause
1735** persistent changes to registers P1 and P3.
danielk1977a37cdde2004-05-16 11:15:36 +00001736**
1737** Once any conversions have taken place, and neither value is NULL,
drh35573352008-01-08 23:54:25 +00001738** the values are compared. If both values are blobs then memcmp() is
1739** used to determine the results of the comparison. If both values
1740** are text, then the appropriate collating function specified in
1741** P4 is used to do the comparison. If P4 is not specified then
1742** memcmp() is used to compare text string. If both values are
1743** numeric, then a numeric comparison is used. If the two values
1744** are of different types, then numbers are considered less than
1745** strings and strings are considered less than blobs.
drhc9b84a12002-06-20 11:36:48 +00001746**
drh35573352008-01-08 23:54:25 +00001747** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
1748** store a boolean result (either 0, or 1, or NULL) in register P2.
drh5e00f6c2001-09-13 13:46:56 +00001749*/
drh9cbf3422008-01-17 16:22:13 +00001750/* Opcode: Ne P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001751**
drh35573352008-01-08 23:54:25 +00001752** This works just like the Lt opcode except that the jump is taken if
1753** the operands in registers P1 and P3 are not equal. See the Lt opcode for
drh53db1452004-05-20 13:54:53 +00001754** additional information.
drh6a2fe092009-09-23 02:29:36 +00001755**
1756** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1757** true or false and is never NULL. If both operands are NULL then the result
1758** of comparison is false. If either operand is NULL then the result is true.
drhef8662b2011-06-20 21:47:58 +00001759** If neither operand is NULL the result is the same as it would be if
drh6a2fe092009-09-23 02:29:36 +00001760** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001761*/
drh9cbf3422008-01-17 16:22:13 +00001762/* Opcode: Eq P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001763**
drh35573352008-01-08 23:54:25 +00001764** This works just like the Lt opcode except that the jump is taken if
1765** the operands in registers P1 and P3 are equal.
1766** See the Lt opcode for additional information.
drh6a2fe092009-09-23 02:29:36 +00001767**
1768** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1769** true or false and is never NULL. If both operands are NULL then the result
1770** of comparison is true. If either operand is NULL then the result is false.
drhef8662b2011-06-20 21:47:58 +00001771** If neither operand is NULL the result is the same as it would be if
drh6a2fe092009-09-23 02:29:36 +00001772** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001773*/
drh9cbf3422008-01-17 16:22:13 +00001774/* Opcode: Le P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001775**
drh35573352008-01-08 23:54:25 +00001776** This works just like the Lt opcode except that the jump is taken if
1777** the content of register P3 is less than or equal to the content of
1778** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001779*/
drh9cbf3422008-01-17 16:22:13 +00001780/* Opcode: Gt P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001781**
drh35573352008-01-08 23:54:25 +00001782** This works just like the Lt opcode except that the jump is taken if
1783** the content of register P3 is greater than the content of
1784** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001785*/
drh9cbf3422008-01-17 16:22:13 +00001786/* Opcode: Ge P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001787**
drh35573352008-01-08 23:54:25 +00001788** This works just like the Lt opcode except that the jump is taken if
1789** the content of register P3 is greater than or equal to the content of
1790** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001791*/
drh9cbf3422008-01-17 16:22:13 +00001792case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
1793case OP_Ne: /* same as TK_NE, jump, in1, in3 */
1794case OP_Lt: /* same as TK_LT, jump, in1, in3 */
1795case OP_Le: /* same as TK_LE, jump, in1, in3 */
1796case OP_Gt: /* same as TK_GT, jump, in1, in3 */
1797case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
drh6a2fe092009-09-23 02:29:36 +00001798 int res; /* Result of the comparison of pIn1 against pIn3 */
1799 char affinity; /* Affinity to use for comparison */
danb7dca7d2010-03-05 16:32:12 +00001800 u16 flags1; /* Copy of initial value of pIn1->flags */
1801 u16 flags3; /* Copy of initial value of pIn3->flags */
danielk1977a37cdde2004-05-16 11:15:36 +00001802
drh3c657212009-11-17 23:59:58 +00001803 pIn1 = &aMem[pOp->p1];
1804 pIn3 = &aMem[pOp->p3];
danb7dca7d2010-03-05 16:32:12 +00001805 flags1 = pIn1->flags;
1806 flags3 = pIn3->flags;
drhc3f1d5f2011-05-30 23:42:16 +00001807 if( (flags1 | flags3)&MEM_Null ){
drh6a2fe092009-09-23 02:29:36 +00001808 /* One or both operands are NULL */
1809 if( pOp->p5 & SQLITE_NULLEQ ){
1810 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1811 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1812 ** or not both operands are null.
1813 */
1814 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
drhc3f1d5f2011-05-30 23:42:16 +00001815 res = (flags1 & flags3 & MEM_Null)==0;
drh6a2fe092009-09-23 02:29:36 +00001816 }else{
1817 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1818 ** then the result is always NULL.
1819 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1820 */
1821 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001822 pOut = &aMem[pOp->p2];
drh6a2fe092009-09-23 02:29:36 +00001823 MemSetTypeFlag(pOut, MEM_Null);
1824 REGISTER_TRACE(pOp->p2, pOut);
1825 }else if( pOp->p5 & SQLITE_JUMPIFNULL ){
1826 pc = pOp->p2-1;
1827 }
1828 break;
danielk1977a37cdde2004-05-16 11:15:36 +00001829 }
drh6a2fe092009-09-23 02:29:36 +00001830 }else{
1831 /* Neither operand is NULL. Do a comparison. */
1832 affinity = pOp->p5 & SQLITE_AFF_MASK;
1833 if( affinity ){
1834 applyAffinity(pIn1, affinity, encoding);
1835 applyAffinity(pIn3, affinity, encoding);
1836 if( db->mallocFailed ) goto no_mem;
1837 }
danielk1977a37cdde2004-05-16 11:15:36 +00001838
drh6a2fe092009-09-23 02:29:36 +00001839 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
1840 ExpandBlob(pIn1);
1841 ExpandBlob(pIn3);
1842 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
drhe51c44f2004-05-30 20:46:09 +00001843 }
danielk1977a37cdde2004-05-16 11:15:36 +00001844 switch( pOp->opcode ){
1845 case OP_Eq: res = res==0; break;
1846 case OP_Ne: res = res!=0; break;
1847 case OP_Lt: res = res<0; break;
1848 case OP_Le: res = res<=0; break;
1849 case OP_Gt: res = res>0; break;
1850 default: res = res>=0; break;
1851 }
1852
drh35573352008-01-08 23:54:25 +00001853 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001854 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00001855 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00001856 MemSetTypeFlag(pOut, MEM_Int);
drh35573352008-01-08 23:54:25 +00001857 pOut->u.i = res;
1858 REGISTER_TRACE(pOp->p2, pOut);
1859 }else if( res ){
1860 pc = pOp->p2-1;
danielk1977a37cdde2004-05-16 11:15:36 +00001861 }
danb7dca7d2010-03-05 16:32:12 +00001862
1863 /* Undo any changes made by applyAffinity() to the input registers. */
1864 pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask);
1865 pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask);
danielk1977a37cdde2004-05-16 11:15:36 +00001866 break;
1867}
drhc9b84a12002-06-20 11:36:48 +00001868
drh0acb7e42008-06-25 00:12:41 +00001869/* Opcode: Permutation * * * P4 *
1870**
shanebe217792009-03-05 04:20:31 +00001871** Set the permutation used by the OP_Compare operator to be the array
drh0acb7e42008-06-25 00:12:41 +00001872** of integers in P4.
1873**
1874** The permutation is only valid until the next OP_Permutation, OP_Compare,
1875** OP_Halt, or OP_ResultRow. Typically the OP_Permutation should occur
1876** immediately prior to the OP_Compare.
1877*/
1878case OP_Permutation: {
1879 assert( pOp->p4type==P4_INTARRAY );
1880 assert( pOp->p4.ai );
1881 aPermute = pOp->p4.ai;
1882 break;
1883}
1884
drh16ee60f2008-06-20 18:13:25 +00001885/* Opcode: Compare P1 P2 P3 P4 *
1886**
drh710c4842010-08-30 01:17:20 +00001887** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
1888** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
drh16ee60f2008-06-20 18:13:25 +00001889** the comparison for use by the next OP_Jump instruct.
1890**
drh0acb7e42008-06-25 00:12:41 +00001891** P4 is a KeyInfo structure that defines collating sequences and sort
1892** orders for the comparison. The permutation applies to registers
1893** only. The KeyInfo elements are used sequentially.
1894**
1895** The comparison is a sort comparison, so NULLs compare equal,
1896** NULLs are less than numbers, numbers are less than strings,
drh16ee60f2008-06-20 18:13:25 +00001897** and strings are less than blobs.
1898*/
1899case OP_Compare: {
drh856c1032009-06-02 15:21:42 +00001900 int n;
1901 int i;
1902 int p1;
1903 int p2;
1904 const KeyInfo *pKeyInfo;
1905 int idx;
1906 CollSeq *pColl; /* Collating sequence to use on this term */
1907 int bRev; /* True for DESCENDING sort order */
1908
1909 n = pOp->p3;
1910 pKeyInfo = pOp->p4.pKeyInfo;
drh16ee60f2008-06-20 18:13:25 +00001911 assert( n>0 );
drh93a960a2008-07-10 00:32:42 +00001912 assert( pKeyInfo!=0 );
drh16ee60f2008-06-20 18:13:25 +00001913 p1 = pOp->p1;
drh16ee60f2008-06-20 18:13:25 +00001914 p2 = pOp->p2;
drh6a2fe092009-09-23 02:29:36 +00001915#if SQLITE_DEBUG
1916 if( aPermute ){
1917 int k, mx = 0;
1918 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
1919 assert( p1>0 && p1+mx<=p->nMem+1 );
1920 assert( p2>0 && p2+mx<=p->nMem+1 );
1921 }else{
1922 assert( p1>0 && p1+n<=p->nMem+1 );
1923 assert( p2>0 && p2+n<=p->nMem+1 );
1924 }
1925#endif /* SQLITE_DEBUG */
drh0acb7e42008-06-25 00:12:41 +00001926 for(i=0; i<n; i++){
drh856c1032009-06-02 15:21:42 +00001927 idx = aPermute ? aPermute[i] : i;
drh2b4ded92010-09-27 21:09:31 +00001928 assert( memIsValid(&aMem[p1+idx]) );
1929 assert( memIsValid(&aMem[p2+idx]) );
drha6c2ed92009-11-14 23:22:23 +00001930 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
1931 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
drh93a960a2008-07-10 00:32:42 +00001932 assert( i<pKeyInfo->nField );
1933 pColl = pKeyInfo->aColl[i];
1934 bRev = pKeyInfo->aSortOrder[i];
drha6c2ed92009-11-14 23:22:23 +00001935 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
drh0acb7e42008-06-25 00:12:41 +00001936 if( iCompare ){
1937 if( bRev ) iCompare = -iCompare;
1938 break;
1939 }
drh16ee60f2008-06-20 18:13:25 +00001940 }
drh0acb7e42008-06-25 00:12:41 +00001941 aPermute = 0;
drh16ee60f2008-06-20 18:13:25 +00001942 break;
1943}
1944
1945/* Opcode: Jump P1 P2 P3 * *
1946**
1947** Jump to the instruction at address P1, P2, or P3 depending on whether
1948** in the most recent OP_Compare instruction the P1 vector was less than
1949** equal to, or greater than the P2 vector, respectively.
1950*/
drh0acb7e42008-06-25 00:12:41 +00001951case OP_Jump: { /* jump */
1952 if( iCompare<0 ){
drh16ee60f2008-06-20 18:13:25 +00001953 pc = pOp->p1 - 1;
drh0acb7e42008-06-25 00:12:41 +00001954 }else if( iCompare==0 ){
drh16ee60f2008-06-20 18:13:25 +00001955 pc = pOp->p2 - 1;
1956 }else{
1957 pc = pOp->p3 - 1;
1958 }
1959 break;
1960}
1961
drh5b6afba2008-01-05 16:29:28 +00001962/* Opcode: And P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001963**
drh5b6afba2008-01-05 16:29:28 +00001964** Take the logical AND of the values in registers P1 and P2 and
1965** write the result into register P3.
drh5e00f6c2001-09-13 13:46:56 +00001966**
drh5b6afba2008-01-05 16:29:28 +00001967** If either P1 or P2 is 0 (false) then the result is 0 even if
1968** the other input is NULL. A NULL and true or two NULLs give
1969** a NULL output.
drh5e00f6c2001-09-13 13:46:56 +00001970*/
drh5b6afba2008-01-05 16:29:28 +00001971/* Opcode: Or P1 P2 P3 * *
1972**
1973** Take the logical OR of the values in register P1 and P2 and
1974** store the answer in register P3.
1975**
1976** If either P1 or P2 is nonzero (true) then the result is 1 (true)
1977** even if the other input is NULL. A NULL and false or two NULLs
1978** give a NULL output.
1979*/
1980case OP_And: /* same as TK_AND, in1, in2, out3 */
1981case OP_Or: { /* same as TK_OR, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00001982 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
1983 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
drhbb113512002-05-27 01:04:51 +00001984
drh3c657212009-11-17 23:59:58 +00001985 pIn1 = &aMem[pOp->p1];
drh5b6afba2008-01-05 16:29:28 +00001986 if( pIn1->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00001987 v1 = 2;
drh5e00f6c2001-09-13 13:46:56 +00001988 }else{
drh5b6afba2008-01-05 16:29:28 +00001989 v1 = sqlite3VdbeIntValue(pIn1)!=0;
drhbb113512002-05-27 01:04:51 +00001990 }
drh3c657212009-11-17 23:59:58 +00001991 pIn2 = &aMem[pOp->p2];
drh5b6afba2008-01-05 16:29:28 +00001992 if( pIn2->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00001993 v2 = 2;
1994 }else{
drh5b6afba2008-01-05 16:29:28 +00001995 v2 = sqlite3VdbeIntValue(pIn2)!=0;
drhbb113512002-05-27 01:04:51 +00001996 }
1997 if( pOp->opcode==OP_And ){
drh5b6afba2008-01-05 16:29:28 +00001998 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
drhbb113512002-05-27 01:04:51 +00001999 v1 = and_logic[v1*3+v2];
2000 }else{
drh5b6afba2008-01-05 16:29:28 +00002001 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
drhbb113512002-05-27 01:04:51 +00002002 v1 = or_logic[v1*3+v2];
drh5e00f6c2001-09-13 13:46:56 +00002003 }
drh3c657212009-11-17 23:59:58 +00002004 pOut = &aMem[pOp->p3];
drhbb113512002-05-27 01:04:51 +00002005 if( v1==2 ){
danielk1977a7a8e142008-02-13 18:25:27 +00002006 MemSetTypeFlag(pOut, MEM_Null);
drhbb113512002-05-27 01:04:51 +00002007 }else{
drh5b6afba2008-01-05 16:29:28 +00002008 pOut->u.i = v1;
danielk1977a7a8e142008-02-13 18:25:27 +00002009 MemSetTypeFlag(pOut, MEM_Int);
drhbb113512002-05-27 01:04:51 +00002010 }
drh5e00f6c2001-09-13 13:46:56 +00002011 break;
2012}
2013
drhe99fa2a2008-12-15 15:27:51 +00002014/* Opcode: Not P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00002015**
drhe99fa2a2008-12-15 15:27:51 +00002016** Interpret the value in register P1 as a boolean value. Store the
2017** boolean complement in register P2. If the value in register P1 is
2018** NULL, then a NULL is stored in P2.
drh5e00f6c2001-09-13 13:46:56 +00002019*/
drh93952eb2009-11-13 19:43:43 +00002020case OP_Not: { /* same as TK_NOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002021 pIn1 = &aMem[pOp->p1];
2022 pOut = &aMem[pOp->p2];
drhe99fa2a2008-12-15 15:27:51 +00002023 if( pIn1->flags & MEM_Null ){
2024 sqlite3VdbeMemSetNull(pOut);
2025 }else{
2026 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1));
2027 }
drh5e00f6c2001-09-13 13:46:56 +00002028 break;
2029}
2030
drhe99fa2a2008-12-15 15:27:51 +00002031/* Opcode: BitNot P1 P2 * * *
drhbf4133c2001-10-13 02:59:08 +00002032**
drhe99fa2a2008-12-15 15:27:51 +00002033** Interpret the content of register P1 as an integer. Store the
2034** ones-complement of the P1 value into register P2. If P1 holds
2035** a NULL then store a NULL in P2.
drhbf4133c2001-10-13 02:59:08 +00002036*/
drh93952eb2009-11-13 19:43:43 +00002037case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002038 pIn1 = &aMem[pOp->p1];
2039 pOut = &aMem[pOp->p2];
drhe99fa2a2008-12-15 15:27:51 +00002040 if( pIn1->flags & MEM_Null ){
2041 sqlite3VdbeMemSetNull(pOut);
2042 }else{
2043 sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1));
2044 }
drhbf4133c2001-10-13 02:59:08 +00002045 break;
2046}
2047
drh48f2d3b2011-09-16 01:34:43 +00002048/* Opcode: Once P1 P2 * * *
2049**
2050** Jump to P2 if the value in register P1 is a not null or zero. If
2051** the value is NULL or zero, fall through and change the P1 register
2052** to an integer 1.
2053**
2054** When P1 is not used otherwise in a program, this opcode falls through
2055** once and jumps on all subsequent invocations. It is the equivalent
2056** of "OP_If P1 P2", followed by "OP_Integer 1 P1".
2057*/
drh3c84ddf2008-01-09 02:15:38 +00002058/* Opcode: If P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00002059**
drhef8662b2011-06-20 21:47:58 +00002060** Jump to P2 if the value in register P1 is true. The value
drh3c84ddf2008-01-09 02:15:38 +00002061** is considered true if it is numeric and non-zero. If the value
2062** in P1 is NULL then take the jump if P3 is true.
drh5e00f6c2001-09-13 13:46:56 +00002063*/
drh3c84ddf2008-01-09 02:15:38 +00002064/* Opcode: IfNot P1 P2 P3 * *
drhf5905aa2002-05-26 20:54:33 +00002065**
drhef8662b2011-06-20 21:47:58 +00002066** Jump to P2 if the value in register P1 is False. The value
drh3c84ddf2008-01-09 02:15:38 +00002067** is considered true if it has a numeric value of zero. If the value
2068** in P1 is NULL then take the jump if P3 is true.
drhf5905aa2002-05-26 20:54:33 +00002069*/
drh48f2d3b2011-09-16 01:34:43 +00002070case OP_Once: /* jump, in1 */
drh9cbf3422008-01-17 16:22:13 +00002071case OP_If: /* jump, in1 */
2072case OP_IfNot: { /* jump, in1 */
drh5e00f6c2001-09-13 13:46:56 +00002073 int c;
drh3c657212009-11-17 23:59:58 +00002074 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00002075 if( pIn1->flags & MEM_Null ){
2076 c = pOp->p3;
drhf5905aa2002-05-26 20:54:33 +00002077 }else{
drhba0232a2005-06-06 17:27:19 +00002078#ifdef SQLITE_OMIT_FLOATING_POINT
shanefbd60f82009-02-04 03:59:25 +00002079 c = sqlite3VdbeIntValue(pIn1)!=0;
drhba0232a2005-06-06 17:27:19 +00002080#else
drh3c84ddf2008-01-09 02:15:38 +00002081 c = sqlite3VdbeRealValue(pIn1)!=0.0;
drhba0232a2005-06-06 17:27:19 +00002082#endif
drhf5905aa2002-05-26 20:54:33 +00002083 if( pOp->opcode==OP_IfNot ) c = !c;
2084 }
drh3c84ddf2008-01-09 02:15:38 +00002085 if( c ){
2086 pc = pOp->p2-1;
drh48f2d3b2011-09-16 01:34:43 +00002087 }else if( pOp->opcode==OP_Once ){
2088 assert( (pIn1->flags & (MEM_Agg|MEM_Dyn|MEM_RowSet|MEM_Frame))==0 );
2089 memAboutToChange(p, pIn1);
2090 pIn1->flags = MEM_Int;
2091 pIn1->u.i = 1;
2092 REGISTER_TRACE(pOp->p1, pIn1);
drh3c84ddf2008-01-09 02:15:38 +00002093 }
drh5e00f6c2001-09-13 13:46:56 +00002094 break;
2095}
2096
drh830ecf92009-06-18 00:41:55 +00002097/* Opcode: IsNull P1 P2 * * *
drh477df4b2008-01-05 18:48:24 +00002098**
drh830ecf92009-06-18 00:41:55 +00002099** Jump to P2 if the value in register P1 is NULL.
drh477df4b2008-01-05 18:48:24 +00002100*/
drh9cbf3422008-01-17 16:22:13 +00002101case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002102 pIn1 = &aMem[pOp->p1];
drh830ecf92009-06-18 00:41:55 +00002103 if( (pIn1->flags & MEM_Null)!=0 ){
2104 pc = pOp->p2 - 1;
2105 }
drh477df4b2008-01-05 18:48:24 +00002106 break;
2107}
2108
drh98757152008-01-09 23:04:12 +00002109/* Opcode: NotNull P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00002110**
drh6a288a32008-01-07 19:20:24 +00002111** Jump to P2 if the value in register P1 is not NULL.
drh5e00f6c2001-09-13 13:46:56 +00002112*/
drh9cbf3422008-01-17 16:22:13 +00002113case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002114 pIn1 = &aMem[pOp->p1];
drh6a288a32008-01-07 19:20:24 +00002115 if( (pIn1->flags & MEM_Null)==0 ){
2116 pc = pOp->p2 - 1;
2117 }
drh5e00f6c2001-09-13 13:46:56 +00002118 break;
2119}
2120
drh3e9ca092009-09-08 01:14:48 +00002121/* Opcode: Column P1 P2 P3 P4 P5
danielk1977192ac1d2004-05-10 07:17:30 +00002122**
danielk1977cfcdaef2004-05-12 07:33:33 +00002123** Interpret the data that cursor P1 points to as a structure built using
2124** the MakeRecord instruction. (See the MakeRecord opcode for additional
drhd4e70eb2008-01-02 00:34:36 +00002125** information about the format of the data.) Extract the P2-th column
2126** from this record. If there are less that (P2+1)
2127** values in the record, extract a NULL.
2128**
drh9cbf3422008-01-17 16:22:13 +00002129** The value extracted is stored in register P3.
danielk1977192ac1d2004-05-10 07:17:30 +00002130**
danielk19771f4aa332008-01-03 09:51:55 +00002131** If the column contains fewer than P2 fields, then extract a NULL. Or,
2132** if the P4 argument is a P4_MEM use the value of the P4 argument as
2133** the result.
drh3e9ca092009-09-08 01:14:48 +00002134**
2135** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2136** then the cache of the cursor is reset prior to extracting the column.
2137** The first OP_Column against a pseudo-table after the value of the content
2138** register has changed should have this bit set.
danielk1977192ac1d2004-05-10 07:17:30 +00002139*/
danielk1977cfcdaef2004-05-12 07:33:33 +00002140case OP_Column: {
drh35cd6432009-06-05 14:17:21 +00002141 u32 payloadSize; /* Number of bytes in the record */
drh856c1032009-06-02 15:21:42 +00002142 i64 payloadSize64; /* Number of bytes in the record */
2143 int p1; /* P1 value of the opcode */
2144 int p2; /* column number to retrieve */
2145 VdbeCursor *pC; /* The VDBE cursor */
drhe61cffc2004-06-12 18:12:15 +00002146 char *zRec; /* Pointer to complete record-data */
drhd3194f52004-05-27 19:59:32 +00002147 BtCursor *pCrsr; /* The BTree cursor */
2148 u32 *aType; /* aType[i] holds the numeric type of the i-th column */
2149 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
danielk197764202cf2008-11-17 15:31:47 +00002150 int nField; /* number of fields in the record */
danielk1977cfcdaef2004-05-12 07:33:33 +00002151 int len; /* The length of the serialized data for the column */
drhd3194f52004-05-27 19:59:32 +00002152 int i; /* Loop counter */
2153 char *zData; /* Part of the record being decoded */
drhd4e70eb2008-01-02 00:34:36 +00002154 Mem *pDest; /* Where to write the extracted value */
drhd3194f52004-05-27 19:59:32 +00002155 Mem sMem; /* For storing the record being decoded */
drh35cd6432009-06-05 14:17:21 +00002156 u8 *zIdx; /* Index into header */
2157 u8 *zEndHdr; /* Pointer to first byte after the header */
2158 u32 offset; /* Offset into the data */
drh6658cd92010-02-05 14:12:53 +00002159 u32 szField; /* Number of bytes in the content of a field */
drh35cd6432009-06-05 14:17:21 +00002160 int szHdr; /* Size of the header size field at start of record */
2161 int avail; /* Number of bytes of available data */
drh5a077b72011-08-29 02:16:18 +00002162 u32 t; /* A type code from the record header */
drh3e9ca092009-09-08 01:14:48 +00002163 Mem *pReg; /* PseudoTable input register */
danielk1977192ac1d2004-05-10 07:17:30 +00002164
drh856c1032009-06-02 15:21:42 +00002165
2166 p1 = pOp->p1;
2167 p2 = pOp->p2;
2168 pC = 0;
drhb27b7f52008-12-10 18:03:45 +00002169 memset(&sMem, 0, sizeof(sMem));
drhd3194f52004-05-27 19:59:32 +00002170 assert( p1<p->nCursor );
drh9cbf3422008-01-17 16:22:13 +00002171 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00002172 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00002173 memAboutToChange(p, pDest);
shane36840fd2009-06-26 16:32:13 +00002174 zRec = 0;
danielk1977cfcdaef2004-05-12 07:33:33 +00002175
drhe61cffc2004-06-12 18:12:15 +00002176 /* This block sets the variable payloadSize to be the total number of
2177 ** bytes in the record.
2178 **
2179 ** zRec is set to be the complete text of the record if it is available.
drhb73857f2006-03-17 00:25:59 +00002180 ** The complete record text is always available for pseudo-tables
2181 ** If the record is stored in a cursor, the complete record text
2182 ** might be available in the pC->aRow cache. Or it might not be.
2183 ** If the data is unavailable, zRec is set to NULL.
drhd3194f52004-05-27 19:59:32 +00002184 **
2185 ** We also compute the number of columns in the record. For cursors,
drhdfe88ec2008-11-03 20:55:06 +00002186 ** the number of columns is stored in the VdbeCursor.nField element.
danielk1977cfcdaef2004-05-12 07:33:33 +00002187 */
drhb73857f2006-03-17 00:25:59 +00002188 pC = p->apCsr[p1];
danielk19776c924092007-11-12 08:09:34 +00002189 assert( pC!=0 );
danielk19770817d0d2007-02-14 09:19:36 +00002190#ifndef SQLITE_OMIT_VIRTUALTABLE
2191 assert( pC->pVtabCursor==0 );
2192#endif
shane36840fd2009-06-26 16:32:13 +00002193 pCrsr = pC->pCursor;
2194 if( pCrsr!=0 ){
drhe61cffc2004-06-12 18:12:15 +00002195 /* The record is stored in a B-Tree */
drh536065a2005-01-26 21:55:31 +00002196 rc = sqlite3VdbeCursorMoveto(pC);
drh52f159e2005-01-27 00:33:21 +00002197 if( rc ) goto abort_due_to_error;
danielk1977192ac1d2004-05-10 07:17:30 +00002198 if( pC->nullRow ){
2199 payloadSize = 0;
drh76873ab2006-01-07 18:48:26 +00002200 }else if( pC->cacheStatus==p->cacheCtr ){
drh9188b382004-05-14 21:12:22 +00002201 payloadSize = pC->payloadSize;
drh2646da72005-12-09 20:02:05 +00002202 zRec = (char*)pC->aRow;
drhf0863fe2005-06-12 21:35:51 +00002203 }else if( pC->isIndex ){
drhea8ffdf2009-07-22 00:35:23 +00002204 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drhc27ae612009-07-14 18:35:44 +00002205 rc = sqlite3BtreeKeySize(pCrsr, &payloadSize64);
2206 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
drhaa736092009-06-22 00:55:30 +00002207 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2208 ** payload size, so it is impossible for payloadSize64 to be
2209 ** larger than 32 bits. */
2210 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
drh35cd6432009-06-05 14:17:21 +00002211 payloadSize = (u32)payloadSize64;
danielk1977192ac1d2004-05-10 07:17:30 +00002212 }else{
drhea8ffdf2009-07-22 00:35:23 +00002213 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drhc27ae612009-07-14 18:35:44 +00002214 rc = sqlite3BtreeDataSize(pCrsr, &payloadSize);
drhea8ffdf2009-07-22 00:35:23 +00002215 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
danielk1977192ac1d2004-05-10 07:17:30 +00002216 }
drh4a6f3aa2011-08-28 00:19:26 +00002217 }else if( ALWAYS(pC->pseudoTableReg>0) ){
drha6c2ed92009-11-14 23:22:23 +00002218 pReg = &aMem[pC->pseudoTableReg];
drh3e9ca092009-09-08 01:14:48 +00002219 assert( pReg->flags & MEM_Blob );
drh2b4ded92010-09-27 21:09:31 +00002220 assert( memIsValid(pReg) );
drh3e9ca092009-09-08 01:14:48 +00002221 payloadSize = pReg->n;
2222 zRec = pReg->z;
2223 pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
danielk1977192ac1d2004-05-10 07:17:30 +00002224 assert( payloadSize==0 || zRec!=0 );
drh9a65f2c2009-06-22 19:05:40 +00002225 }else{
2226 /* Consider the row to be NULL */
2227 payloadSize = 0;
danielk1977192ac1d2004-05-10 07:17:30 +00002228 }
2229
drhe6f43fc2011-08-28 02:15:34 +00002230 /* If payloadSize is 0, then just store a NULL. This can happen because of
2231 ** nullRow or because of a corrupt database. */
danielk1977192ac1d2004-05-10 07:17:30 +00002232 if( payloadSize==0 ){
drhe6f43fc2011-08-28 02:15:34 +00002233 MemSetTypeFlag(pDest, MEM_Null);
drhd4e70eb2008-01-02 00:34:36 +00002234 goto op_column_out;
danielk1977192ac1d2004-05-10 07:17:30 +00002235 }
drh35cd6432009-06-05 14:17:21 +00002236 assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 );
2237 if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002238 goto too_big;
2239 }
danielk1977192ac1d2004-05-10 07:17:30 +00002240
shane36840fd2009-06-26 16:32:13 +00002241 nField = pC->nField;
drhd3194f52004-05-27 19:59:32 +00002242 assert( p2<nField );
danielk1977b4964b72004-05-18 01:23:38 +00002243
drh9188b382004-05-14 21:12:22 +00002244 /* Read and parse the table header. Store the results of the parse
2245 ** into the record header cache fields of the cursor.
danielk1977192ac1d2004-05-10 07:17:30 +00002246 */
danielk1977cd3e8f72008-03-25 09:47:35 +00002247 aType = pC->aType;
drha05a7222008-01-19 03:35:58 +00002248 if( pC->cacheStatus==p->cacheCtr ){
drhd3194f52004-05-27 19:59:32 +00002249 aOffset = pC->aOffset;
2250 }else{
danielk1977cd3e8f72008-03-25 09:47:35 +00002251 assert(aType);
drh856c1032009-06-02 15:21:42 +00002252 avail = 0;
drhb73857f2006-03-17 00:25:59 +00002253 pC->aOffset = aOffset = &aType[nField];
2254 pC->payloadSize = payloadSize;
2255 pC->cacheStatus = p->cacheCtr;
danielk1977192ac1d2004-05-10 07:17:30 +00002256
drhd3194f52004-05-27 19:59:32 +00002257 /* Figure out how many bytes are in the header */
danielk197784ac9d02004-05-18 09:58:06 +00002258 if( zRec ){
2259 zData = zRec;
2260 }else{
drhf0863fe2005-06-12 21:35:51 +00002261 if( pC->isIndex ){
drhe51c44f2004-05-30 20:46:09 +00002262 zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
drhd3194f52004-05-27 19:59:32 +00002263 }else{
drhe51c44f2004-05-30 20:46:09 +00002264 zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
drh9188b382004-05-14 21:12:22 +00002265 }
drhe61cffc2004-06-12 18:12:15 +00002266 /* If KeyFetch()/DataFetch() managed to get the entire payload,
2267 ** save the payload in the pC->aRow cache. That will save us from
2268 ** having to make additional calls to fetch the content portion of
2269 ** the record.
2270 */
drh35cd6432009-06-05 14:17:21 +00002271 assert( avail>=0 );
2272 if( payloadSize <= (u32)avail ){
drh2646da72005-12-09 20:02:05 +00002273 zRec = zData;
2274 pC->aRow = (u8*)zData;
drhe61cffc2004-06-12 18:12:15 +00002275 }else{
2276 pC->aRow = 0;
2277 }
drhd3194f52004-05-27 19:59:32 +00002278 }
drh588f5bc2007-01-02 18:41:54 +00002279 /* The following assert is true in all cases accept when
2280 ** the database file has been corrupted externally.
2281 ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
drh35cd6432009-06-05 14:17:21 +00002282 szHdr = getVarint32((u8*)zData, offset);
2283
2284 /* Make sure a corrupt database has not given us an oversize header.
2285 ** Do this now to avoid an oversize memory allocation.
2286 **
2287 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2288 ** types use so much data space that there can only be 4096 and 32 of
2289 ** them, respectively. So the maximum header length results from a
2290 ** 3-byte type for each of the maximum of 32768 columns plus three
2291 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2292 */
2293 if( offset > 98307 ){
2294 rc = SQLITE_CORRUPT_BKPT;
2295 goto op_column_out;
2296 }
2297
2298 /* Compute in len the number of bytes of data we need to read in order
2299 ** to get nField type values. offset is an upper bound on this. But
2300 ** nField might be significantly less than the true number of columns
2301 ** in the table, and in that case, 5*nField+3 might be smaller than offset.
2302 ** We want to minimize len in order to limit the size of the memory
2303 ** allocation, especially if a corrupt database file has caused offset
2304 ** to be oversized. Offset is limited to 98307 above. But 98307 might
2305 ** still exceed Robson memory allocation limits on some configurations.
2306 ** On systems that cannot tolerate large memory allocations, nField*5+3
2307 ** will likely be much smaller since nField will likely be less than
2308 ** 20 or so. This insures that Robson memory allocation limits are
2309 ** not exceeded even for corrupt database files.
2310 */
2311 len = nField*5 + 3;
shane75ac1de2009-06-09 18:58:52 +00002312 if( len > (int)offset ) len = (int)offset;
drhe61cffc2004-06-12 18:12:15 +00002313
2314 /* The KeyFetch() or DataFetch() above are fast and will get the entire
2315 ** record header in most cases. But they will fail to get the complete
2316 ** record header if the record header does not fit on a single page
2317 ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
2318 ** acquire the complete header text.
2319 */
drh35cd6432009-06-05 14:17:21 +00002320 if( !zRec && avail<len ){
danielk1977a7a8e142008-02-13 18:25:27 +00002321 sMem.flags = 0;
2322 sMem.db = 0;
drh35cd6432009-06-05 14:17:21 +00002323 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, len, pC->isIndex, &sMem);
danielk197784ac9d02004-05-18 09:58:06 +00002324 if( rc!=SQLITE_OK ){
danielk19773c9cc8d2005-01-17 03:40:08 +00002325 goto op_column_out;
drh9188b382004-05-14 21:12:22 +00002326 }
drhb6f54522004-05-20 02:42:16 +00002327 zData = sMem.z;
drh9188b382004-05-14 21:12:22 +00002328 }
drh35cd6432009-06-05 14:17:21 +00002329 zEndHdr = (u8 *)&zData[len];
2330 zIdx = (u8 *)&zData[szHdr];
drh9188b382004-05-14 21:12:22 +00002331
drhd3194f52004-05-27 19:59:32 +00002332 /* Scan the header and use it to fill in the aType[] and aOffset[]
2333 ** arrays. aType[i] will contain the type integer for the i-th
2334 ** column and aOffset[i] will contain the offset from the beginning
2335 ** of the record to the start of the data for the i-th column
drh9188b382004-05-14 21:12:22 +00002336 */
danielk1977dedf45b2006-01-13 17:12:01 +00002337 for(i=0; i<nField; i++){
2338 if( zIdx<zEndHdr ){
drh6658cd92010-02-05 14:12:53 +00002339 aOffset[i] = offset;
drh5a077b72011-08-29 02:16:18 +00002340 if( zIdx[0]<0x80 ){
2341 t = zIdx[0];
2342 zIdx++;
2343 }else{
2344 zIdx += sqlite3GetVarint32(zIdx, &t);
2345 }
2346 aType[i] = t;
2347 szField = sqlite3VdbeSerialTypeLen(t);
drh6658cd92010-02-05 14:12:53 +00002348 offset += szField;
2349 if( offset<szField ){ /* True if offset overflows */
2350 zIdx = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */
2351 break;
2352 }
danielk1977dedf45b2006-01-13 17:12:01 +00002353 }else{
2354 /* If i is less that nField, then there are less fields in this
2355 ** record than SetNumColumns indicated there are columns in the
2356 ** table. Set the offset for any extra columns not present in
drh9cbf3422008-01-17 16:22:13 +00002357 ** the record to 0. This tells code below to store a NULL
2358 ** instead of deserializing a value from the record.
danielk1977dedf45b2006-01-13 17:12:01 +00002359 */
2360 aOffset[i] = 0;
2361 }
drh9188b382004-05-14 21:12:22 +00002362 }
danielk19775f096132008-03-28 15:44:09 +00002363 sqlite3VdbeMemRelease(&sMem);
drhd3194f52004-05-27 19:59:32 +00002364 sMem.flags = MEM_Null;
2365
danielk19779792eef2006-01-13 15:58:43 +00002366 /* If we have read more header data than was contained in the header,
2367 ** or if the end of the last field appears to be past the end of the
shane2ca8bc02008-05-07 18:59:28 +00002368 ** record, or if the end of the last field appears to be before the end
2369 ** of the record (when all fields present), then we must be dealing
2370 ** with a corrupt database.
drhd3194f52004-05-27 19:59:32 +00002371 */
drh6658cd92010-02-05 14:12:53 +00002372 if( (zIdx > zEndHdr) || (offset > payloadSize)
2373 || (zIdx==zEndHdr && offset!=payloadSize) ){
drh49285702005-09-17 15:20:26 +00002374 rc = SQLITE_CORRUPT_BKPT;
danielk19773c9cc8d2005-01-17 03:40:08 +00002375 goto op_column_out;
drhd3194f52004-05-27 19:59:32 +00002376 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002377 }
danielk1977192ac1d2004-05-10 07:17:30 +00002378
danielk197736963fd2005-02-19 08:18:05 +00002379 /* Get the column information. If aOffset[p2] is non-zero, then
2380 ** deserialize the value from the record. If aOffset[p2] is zero,
2381 ** then there are not enough fields in the record to satisfy the
drh66a51672008-01-03 00:01:23 +00002382 ** request. In this case, set the value NULL or to P4 if P4 is
drh29dda4a2005-07-21 18:23:20 +00002383 ** a pointer to a Mem object.
drh9188b382004-05-14 21:12:22 +00002384 */
danielk197736963fd2005-02-19 08:18:05 +00002385 if( aOffset[p2] ){
2386 assert( rc==SQLITE_OK );
2387 if( zRec ){
drh2d36eb42011-08-29 02:49:41 +00002388 MemReleaseExt(pDest);
danielk1977808ec7c2008-07-29 10:18:57 +00002389 sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
danielk197736963fd2005-02-19 08:18:05 +00002390 }else{
2391 len = sqlite3VdbeSerialTypeLen(aType[p2]);
danielk1977a7a8e142008-02-13 18:25:27 +00002392 sqlite3VdbeMemMove(&sMem, pDest);
drhb21c8cd2007-08-21 19:33:56 +00002393 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem);
danielk197736963fd2005-02-19 08:18:05 +00002394 if( rc!=SQLITE_OK ){
2395 goto op_column_out;
2396 }
2397 zData = sMem.z;
danielk1977a7a8e142008-02-13 18:25:27 +00002398 sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest);
danielk19777701e812005-01-10 12:59:51 +00002399 }
drhd4e70eb2008-01-02 00:34:36 +00002400 pDest->enc = encoding;
danielk197736963fd2005-02-19 08:18:05 +00002401 }else{
danielk197760585dd2008-01-03 08:08:40 +00002402 if( pOp->p4type==P4_MEM ){
danielk19772dca4ac2008-01-03 11:50:29 +00002403 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
danielk1977aee18ef2005-03-09 12:26:50 +00002404 }else{
drhe6f43fc2011-08-28 02:15:34 +00002405 MemSetTypeFlag(pDest, MEM_Null);
danielk1977aee18ef2005-03-09 12:26:50 +00002406 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002407 }
drhfebe1062004-08-28 18:17:48 +00002408
2409 /* If we dynamically allocated space to hold the data (in the
2410 ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
drhd4e70eb2008-01-02 00:34:36 +00002411 ** dynamically allocated space over to the pDest structure.
drhfebe1062004-08-28 18:17:48 +00002412 ** This prevents a memory copy.
2413 */
danielk19775f096132008-03-28 15:44:09 +00002414 if( sMem.zMalloc ){
2415 assert( sMem.z==sMem.zMalloc );
danielk1977a7a8e142008-02-13 18:25:27 +00002416 assert( !(pDest->flags & MEM_Dyn) );
2417 assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
2418 pDest->flags &= ~(MEM_Ephem|MEM_Static);
danielk19775f096132008-03-28 15:44:09 +00002419 pDest->flags |= MEM_Term;
danielk1977a7a8e142008-02-13 18:25:27 +00002420 pDest->z = sMem.z;
danielk19775f096132008-03-28 15:44:09 +00002421 pDest->zMalloc = sMem.zMalloc;
danielk1977b1bc9532004-05-22 03:05:33 +00002422 }
drhfebe1062004-08-28 18:17:48 +00002423
drhd4e70eb2008-01-02 00:34:36 +00002424 rc = sqlite3VdbeMemMakeWriteable(pDest);
drhd3194f52004-05-27 19:59:32 +00002425
danielk19773c9cc8d2005-01-17 03:40:08 +00002426op_column_out:
drhb7654112008-01-12 12:48:07 +00002427 UPDATE_MAX_BLOBSIZE(pDest);
drh5b6afba2008-01-05 16:29:28 +00002428 REGISTER_TRACE(pOp->p3, pDest);
danielk1977192ac1d2004-05-10 07:17:30 +00002429 break;
2430}
2431
danielk1977751de562008-04-18 09:01:15 +00002432/* Opcode: Affinity P1 P2 * P4 *
2433**
2434** Apply affinities to a range of P2 registers starting with P1.
2435**
2436** P4 is a string that is P2 characters long. The nth character of the
2437** string indicates the column affinity that should be used for the nth
2438** memory cell in the range.
2439*/
2440case OP_Affinity: {
drh039fc322009-11-17 18:31:47 +00002441 const char *zAffinity; /* The affinity to be applied */
2442 char cAff; /* A single character of affinity */
danielk1977751de562008-04-18 09:01:15 +00002443
drh856c1032009-06-02 15:21:42 +00002444 zAffinity = pOp->p4.z;
drh039fc322009-11-17 18:31:47 +00002445 assert( zAffinity!=0 );
2446 assert( zAffinity[pOp->p2]==0 );
2447 pIn1 = &aMem[pOp->p1];
2448 while( (cAff = *(zAffinity++))!=0 ){
2449 assert( pIn1 <= &p->aMem[p->nMem] );
drh2b4ded92010-09-27 21:09:31 +00002450 assert( memIsValid(pIn1) );
drh039fc322009-11-17 18:31:47 +00002451 ExpandBlob(pIn1);
2452 applyAffinity(pIn1, cAff, encoding);
2453 pIn1++;
danielk1977751de562008-04-18 09:01:15 +00002454 }
2455 break;
2456}
2457
drh1db639c2008-01-17 02:36:28 +00002458/* Opcode: MakeRecord P1 P2 P3 P4 *
drh7a224de2004-06-02 01:22:02 +00002459**
drh710c4842010-08-30 01:17:20 +00002460** Convert P2 registers beginning with P1 into the [record format]
2461** use as a data record in a database table or as a key
2462** in an index. The OP_Column opcode can decode the record later.
drh7a224de2004-06-02 01:22:02 +00002463**
danielk1977751de562008-04-18 09:01:15 +00002464** P4 may be a string that is P2 characters long. The nth character of the
drh7a224de2004-06-02 01:22:02 +00002465** string indicates the column affinity that should be used for the nth
drh9cbf3422008-01-17 16:22:13 +00002466** field of the index key.
drh7a224de2004-06-02 01:22:02 +00002467**
drh8a512562005-11-14 22:29:05 +00002468** The mapping from character to affinity is given by the SQLITE_AFF_
2469** macros defined in sqliteInt.h.
drh7a224de2004-06-02 01:22:02 +00002470**
drh66a51672008-01-03 00:01:23 +00002471** If P4 is NULL then all index fields have the affinity NONE.
drh7f057c92005-06-24 03:53:06 +00002472*/
drh1db639c2008-01-17 02:36:28 +00002473case OP_MakeRecord: {
drh856c1032009-06-02 15:21:42 +00002474 u8 *zNewRecord; /* A buffer to hold the data for the new record */
2475 Mem *pRec; /* The new record */
2476 u64 nData; /* Number of bytes of data space */
2477 int nHdr; /* Number of bytes of header space */
2478 i64 nByte; /* Data space required for this record */
2479 int nZero; /* Number of zero bytes at the end of the record */
2480 int nVarint; /* Number of bytes in a varint */
2481 u32 serial_type; /* Type field */
2482 Mem *pData0; /* First field to be combined into the record */
2483 Mem *pLast; /* Last field of the record */
2484 int nField; /* Number of fields in the record */
2485 char *zAffinity; /* The affinity string for the record */
2486 int file_format; /* File format to use for encoding */
2487 int i; /* Space used in zNewRecord[] */
2488 int len; /* Length of a field */
2489
drhf3218fe2004-05-28 08:21:02 +00002490 /* Assuming the record contains N fields, the record format looks
2491 ** like this:
2492 **
drh7a224de2004-06-02 01:22:02 +00002493 ** ------------------------------------------------------------------------
2494 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2495 ** ------------------------------------------------------------------------
drhf3218fe2004-05-28 08:21:02 +00002496 **
drh9cbf3422008-01-17 16:22:13 +00002497 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
2498 ** and so froth.
drhf3218fe2004-05-28 08:21:02 +00002499 **
2500 ** Each type field is a varint representing the serial type of the
2501 ** corresponding data element (see sqlite3VdbeSerialType()). The
drh7a224de2004-06-02 01:22:02 +00002502 ** hdr-size field is also a varint which is the offset from the beginning
2503 ** of the record to data0.
drhf3218fe2004-05-28 08:21:02 +00002504 */
drh856c1032009-06-02 15:21:42 +00002505 nData = 0; /* Number of bytes of data space */
2506 nHdr = 0; /* Number of bytes of header space */
drh856c1032009-06-02 15:21:42 +00002507 nZero = 0; /* Number of zero bytes at the end of the record */
drh1db639c2008-01-17 02:36:28 +00002508 nField = pOp->p1;
danielk19772dca4ac2008-01-03 11:50:29 +00002509 zAffinity = pOp->p4.z;
danielk19776ab3a2e2009-02-19 14:39:25 +00002510 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 );
drha6c2ed92009-11-14 23:22:23 +00002511 pData0 = &aMem[nField];
drh1db639c2008-01-17 02:36:28 +00002512 nField = pOp->p2;
2513 pLast = &pData0[nField-1];
drhd946db02005-12-29 19:23:06 +00002514 file_format = p->minWriteFileFormat;
danielk19778d059842004-05-12 11:24:02 +00002515
drh2b4ded92010-09-27 21:09:31 +00002516 /* Identify the output register */
2517 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2518 pOut = &aMem[pOp->p3];
2519 memAboutToChange(p, pOut);
2520
drhf3218fe2004-05-28 08:21:02 +00002521 /* Loop through the elements that will make up the record to figure
2522 ** out how much space is required for the new record.
danielk19778d059842004-05-12 11:24:02 +00002523 */
drha2a49dc2008-01-02 14:28:13 +00002524 for(pRec=pData0; pRec<=pLast; pRec++){
drh2b4ded92010-09-27 21:09:31 +00002525 assert( memIsValid(pRec) );
drhd3d39e92004-05-20 22:16:29 +00002526 if( zAffinity ){
drhb21c8cd2007-08-21 19:33:56 +00002527 applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
drhd3d39e92004-05-20 22:16:29 +00002528 }
danielk1977d908f5a2007-05-11 07:08:28 +00002529 if( pRec->flags&MEM_Zero && pRec->n>0 ){
drha05a7222008-01-19 03:35:58 +00002530 sqlite3VdbeMemExpandBlob(pRec);
danielk1977d908f5a2007-05-11 07:08:28 +00002531 }
drhd946db02005-12-29 19:23:06 +00002532 serial_type = sqlite3VdbeSerialType(pRec, file_format);
drhae7e1512007-05-02 16:51:59 +00002533 len = sqlite3VdbeSerialTypeLen(serial_type);
2534 nData += len;
drhf3218fe2004-05-28 08:21:02 +00002535 nHdr += sqlite3VarintLen(serial_type);
drhfdf972a2007-05-02 13:30:27 +00002536 if( pRec->flags & MEM_Zero ){
2537 /* Only pure zero-filled BLOBs can be input to this Opcode.
2538 ** We do not allow blobs with a prefix and a zero-filled tail. */
drh8df32842008-12-09 02:51:23 +00002539 nZero += pRec->u.nZero;
drhae7e1512007-05-02 16:51:59 +00002540 }else if( len ){
drhfdf972a2007-05-02 13:30:27 +00002541 nZero = 0;
2542 }
danielk19778d059842004-05-12 11:24:02 +00002543 }
danielk19773d1bfea2004-05-14 11:00:53 +00002544
drhf3218fe2004-05-28 08:21:02 +00002545 /* Add the initial header varint and total the size */
drhcb9882a2005-03-17 03:15:40 +00002546 nHdr += nVarint = sqlite3VarintLen(nHdr);
2547 if( nVarint<sqlite3VarintLen(nHdr) ){
2548 nHdr++;
2549 }
drhfdf972a2007-05-02 13:30:27 +00002550 nByte = nHdr+nData-nZero;
drhbb4957f2008-03-20 14:03:29 +00002551 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002552 goto too_big;
2553 }
drhf3218fe2004-05-28 08:21:02 +00002554
danielk1977a7a8e142008-02-13 18:25:27 +00002555 /* Make sure the output register has a buffer large enough to store
2556 ** the new record. The output register (pOp->p3) is not allowed to
2557 ** be one of the input registers (because the following call to
2558 ** sqlite3VdbeMemGrow() could clobber the value before it is used).
2559 */
drh9c1905f2008-12-10 22:32:56 +00002560 if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){
danielk1977a7a8e142008-02-13 18:25:27 +00002561 goto no_mem;
danielk19778d059842004-05-12 11:24:02 +00002562 }
danielk1977a7a8e142008-02-13 18:25:27 +00002563 zNewRecord = (u8 *)pOut->z;
drhf3218fe2004-05-28 08:21:02 +00002564
2565 /* Write the record */
shane3f8d5cf2008-04-24 19:15:09 +00002566 i = putVarint32(zNewRecord, nHdr);
drha2a49dc2008-01-02 14:28:13 +00002567 for(pRec=pData0; pRec<=pLast; pRec++){
drhd946db02005-12-29 19:23:06 +00002568 serial_type = sqlite3VdbeSerialType(pRec, file_format);
shane3f8d5cf2008-04-24 19:15:09 +00002569 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
danielk19778d059842004-05-12 11:24:02 +00002570 }
drha2a49dc2008-01-02 14:28:13 +00002571 for(pRec=pData0; pRec<=pLast; pRec++){ /* serial data */
drh9c1905f2008-12-10 22:32:56 +00002572 i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format);
drhf3218fe2004-05-28 08:21:02 +00002573 }
drhfdf972a2007-05-02 13:30:27 +00002574 assert( i==nByte );
drhf3218fe2004-05-28 08:21:02 +00002575
drh9cbf3422008-01-17 16:22:13 +00002576 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drh9c1905f2008-12-10 22:32:56 +00002577 pOut->n = (int)nByte;
danielk1977a7a8e142008-02-13 18:25:27 +00002578 pOut->flags = MEM_Blob | MEM_Dyn;
2579 pOut->xDel = 0;
drhfdf972a2007-05-02 13:30:27 +00002580 if( nZero ){
drh8df32842008-12-09 02:51:23 +00002581 pOut->u.nZero = nZero;
drh477df4b2008-01-05 18:48:24 +00002582 pOut->flags |= MEM_Zero;
drhfdf972a2007-05-02 13:30:27 +00002583 }
drh477df4b2008-01-05 18:48:24 +00002584 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
drh1013c932008-01-06 00:25:21 +00002585 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00002586 UPDATE_MAX_BLOBSIZE(pOut);
danielk19778d059842004-05-12 11:24:02 +00002587 break;
2588}
2589
danielk1977a5533162009-02-24 10:01:51 +00002590/* Opcode: Count P1 P2 * * *
2591**
2592** Store the number of entries (an integer value) in the table or index
2593** opened by cursor P1 in register P2
2594*/
2595#ifndef SQLITE_OMIT_BTREECOUNT
2596case OP_Count: { /* out2-prerelease */
2597 i64 nEntry;
drhc54a6172009-06-02 16:06:03 +00002598 BtCursor *pCrsr;
2599
2600 pCrsr = p->apCsr[pOp->p1]->pCursor;
dana205a482011-08-27 18:48:57 +00002601 if( ALWAYS(pCrsr) ){
drh818e39a2009-04-02 20:27:28 +00002602 rc = sqlite3BtreeCount(pCrsr, &nEntry);
2603 }else{
2604 nEntry = 0;
2605 }
danielk1977a5533162009-02-24 10:01:51 +00002606 pOut->u.i = nEntry;
2607 break;
2608}
2609#endif
2610
danielk1977fd7f0452008-12-17 17:30:26 +00002611/* Opcode: Savepoint P1 * * P4 *
2612**
2613** Open, release or rollback the savepoint named by parameter P4, depending
2614** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2615** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2616*/
2617case OP_Savepoint: {
drh856c1032009-06-02 15:21:42 +00002618 int p1; /* Value of P1 operand */
2619 char *zName; /* Name of savepoint */
2620 int nName;
2621 Savepoint *pNew;
2622 Savepoint *pSavepoint;
2623 Savepoint *pTmp;
2624 int iSavepoint;
2625 int ii;
2626
2627 p1 = pOp->p1;
2628 zName = pOp->p4.z;
danielk1977fd7f0452008-12-17 17:30:26 +00002629
2630 /* Assert that the p1 parameter is valid. Also that if there is no open
2631 ** transaction, then there cannot be any savepoints.
2632 */
2633 assert( db->pSavepoint==0 || db->autoCommit==0 );
2634 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2635 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2636 assert( checkSavepointCount(db) );
2637
2638 if( p1==SAVEPOINT_BEGIN ){
danielk197734cf35d2008-12-18 18:31:38 +00002639 if( db->writeVdbeCnt>0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002640 /* A new savepoint cannot be created if there are active write
2641 ** statements (i.e. open read/write incremental blob handles).
2642 */
2643 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
2644 "SQL statements in progress");
2645 rc = SQLITE_BUSY;
2646 }else{
drh856c1032009-06-02 15:21:42 +00002647 nName = sqlite3Strlen30(zName);
danielk1977fd7f0452008-12-17 17:30:26 +00002648
drhbe07ec52011-06-03 12:15:26 +00002649#ifndef SQLITE_OMIT_VIRTUALTABLE
dand9495cd2011-04-27 12:08:04 +00002650 /* This call is Ok even if this savepoint is actually a transaction
2651 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2652 ** If this is a transaction savepoint being opened, it is guaranteed
2653 ** that the db->aVTrans[] array is empty. */
2654 assert( db->autoCommit==0 || db->nVTrans==0 );
drha24bc9c2011-05-24 00:35:56 +00002655 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2656 db->nStatement+db->nSavepoint);
dand9495cd2011-04-27 12:08:04 +00002657 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh305ebab2011-05-26 14:19:14 +00002658#endif
dand9495cd2011-04-27 12:08:04 +00002659
danielk1977fd7f0452008-12-17 17:30:26 +00002660 /* Create a new savepoint structure. */
2661 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
2662 if( pNew ){
2663 pNew->zName = (char *)&pNew[1];
2664 memcpy(pNew->zName, zName, nName+1);
2665
2666 /* If there is no open transaction, then mark this as a special
2667 ** "transaction savepoint". */
2668 if( db->autoCommit ){
2669 db->autoCommit = 0;
2670 db->isTransactionSavepoint = 1;
2671 }else{
2672 db->nSavepoint++;
danielk1977d8293352009-04-30 09:10:37 +00002673 }
danielk1977fd7f0452008-12-17 17:30:26 +00002674
2675 /* Link the new savepoint into the database handle's list. */
2676 pNew->pNext = db->pSavepoint;
2677 db->pSavepoint = pNew;
danba9108b2009-09-22 07:13:42 +00002678 pNew->nDeferredCons = db->nDeferredCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002679 }
2680 }
2681 }else{
drh856c1032009-06-02 15:21:42 +00002682 iSavepoint = 0;
danielk1977fd7f0452008-12-17 17:30:26 +00002683
2684 /* Find the named savepoint. If there is no such savepoint, then an
2685 ** an error is returned to the user. */
2686 for(
drh856c1032009-06-02 15:21:42 +00002687 pSavepoint = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002688 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
drh856c1032009-06-02 15:21:42 +00002689 pSavepoint = pSavepoint->pNext
danielk1977fd7f0452008-12-17 17:30:26 +00002690 ){
2691 iSavepoint++;
2692 }
2693 if( !pSavepoint ){
2694 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
2695 rc = SQLITE_ERROR;
2696 }else if(
2697 db->writeVdbeCnt>0 || (p1==SAVEPOINT_ROLLBACK && db->activeVdbeCnt>1)
2698 ){
2699 /* It is not possible to release (commit) a savepoint if there are
2700 ** active write statements. It is not possible to rollback a savepoint
2701 ** if there are any active statements at all.
2702 */
2703 sqlite3SetString(&p->zErrMsg, db,
2704 "cannot %s savepoint - SQL statements in progress",
2705 (p1==SAVEPOINT_ROLLBACK ? "rollback": "release")
2706 );
2707 rc = SQLITE_BUSY;
2708 }else{
2709
2710 /* Determine whether or not this is a transaction savepoint. If so,
danielk197734cf35d2008-12-18 18:31:38 +00002711 ** and this is a RELEASE command, then the current transaction
2712 ** is committed.
danielk1977fd7f0452008-12-17 17:30:26 +00002713 */
2714 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2715 if( isTransaction && p1==SAVEPOINT_RELEASE ){
dan32b09f22009-09-23 17:29:59 +00002716 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002717 goto vdbe_return;
2718 }
danielk1977fd7f0452008-12-17 17:30:26 +00002719 db->autoCommit = 1;
2720 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2721 p->pc = pc;
2722 db->autoCommit = 0;
2723 p->rc = rc = SQLITE_BUSY;
2724 goto vdbe_return;
2725 }
danielk197734cf35d2008-12-18 18:31:38 +00002726 db->isTransactionSavepoint = 0;
2727 rc = p->rc;
danielk1977fd7f0452008-12-17 17:30:26 +00002728 }else{
danielk1977fd7f0452008-12-17 17:30:26 +00002729 iSavepoint = db->nSavepoint - iSavepoint - 1;
2730 for(ii=0; ii<db->nDb; ii++){
2731 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2732 if( rc!=SQLITE_OK ){
2733 goto abort_due_to_error;
danielk1977bd434552009-03-18 10:33:00 +00002734 }
danielk1977fd7f0452008-12-17 17:30:26 +00002735 }
drh9f0bbf92009-01-02 21:08:09 +00002736 if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002737 sqlite3ExpirePreparedStatements(db);
drhc7792fa2011-04-02 16:28:52 +00002738 sqlite3ResetInternalSchema(db, -1);
danc311fee2010-08-31 16:25:19 +00002739 db->flags = (db->flags | SQLITE_InternChanges);
danielk1977fd7f0452008-12-17 17:30:26 +00002740 }
2741 }
2742
2743 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2744 ** savepoints nested inside of the savepoint being operated on. */
2745 while( db->pSavepoint!=pSavepoint ){
drh856c1032009-06-02 15:21:42 +00002746 pTmp = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002747 db->pSavepoint = pTmp->pNext;
2748 sqlite3DbFree(db, pTmp);
2749 db->nSavepoint--;
2750 }
2751
dan1da40a32009-09-19 17:00:31 +00002752 /* If it is a RELEASE, then destroy the savepoint being operated on
2753 ** too. If it is a ROLLBACK TO, then set the number of deferred
2754 ** constraint violations present in the database to the value stored
2755 ** when the savepoint was created. */
danielk1977fd7f0452008-12-17 17:30:26 +00002756 if( p1==SAVEPOINT_RELEASE ){
2757 assert( pSavepoint==db->pSavepoint );
2758 db->pSavepoint = pSavepoint->pNext;
2759 sqlite3DbFree(db, pSavepoint);
2760 if( !isTransaction ){
2761 db->nSavepoint--;
2762 }
dan1da40a32009-09-19 17:00:31 +00002763 }else{
2764 db->nDeferredCons = pSavepoint->nDeferredCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002765 }
dand9495cd2011-04-27 12:08:04 +00002766
2767 if( !isTransaction ){
2768 rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
2769 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2770 }
danielk1977fd7f0452008-12-17 17:30:26 +00002771 }
2772 }
2773
2774 break;
2775}
2776
drh98757152008-01-09 23:04:12 +00002777/* Opcode: AutoCommit P1 P2 * * *
danielk19771d850a72004-05-31 08:26:49 +00002778**
2779** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
danielk197746c43ed2004-06-30 06:30:25 +00002780** back any currently active btree transactions. If there are any active
drhc25eabe2009-02-24 18:57:31 +00002781** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
2782** there are active writing VMs or active VMs that use shared cache.
drh92f02c32004-09-02 14:57:08 +00002783**
2784** This instruction causes the VM to halt.
danielk19771d850a72004-05-31 08:26:49 +00002785*/
drh9cbf3422008-01-17 16:22:13 +00002786case OP_AutoCommit: {
drh856c1032009-06-02 15:21:42 +00002787 int desiredAutoCommit;
shane68c02732009-06-09 18:14:18 +00002788 int iRollback;
drh856c1032009-06-02 15:21:42 +00002789 int turnOnAC;
danielk19771d850a72004-05-31 08:26:49 +00002790
drh856c1032009-06-02 15:21:42 +00002791 desiredAutoCommit = pOp->p1;
shane68c02732009-06-09 18:14:18 +00002792 iRollback = pOp->p2;
drh856c1032009-06-02 15:21:42 +00002793 turnOnAC = desiredAutoCommit && !db->autoCommit;
drhad4a4b82008-11-05 16:37:34 +00002794 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
shane68c02732009-06-09 18:14:18 +00002795 assert( desiredAutoCommit==1 || iRollback==0 );
drh92f02c32004-09-02 14:57:08 +00002796 assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */
danielk197746c43ed2004-06-30 06:30:25 +00002797
shane68c02732009-06-09 18:14:18 +00002798 if( turnOnAC && iRollback && db->activeVdbeCnt>1 ){
drhad4a4b82008-11-05 16:37:34 +00002799 /* If this instruction implements a ROLLBACK and other VMs are
danielk197746c43ed2004-06-30 06:30:25 +00002800 ** still running, and a transaction is active, return an error indicating
2801 ** that the other VMs must complete first.
2802 */
drhad4a4b82008-11-05 16:37:34 +00002803 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
2804 "SQL statements in progress");
drh99dfe5e2008-10-30 15:03:15 +00002805 rc = SQLITE_BUSY;
drh9eb8cbe2009-06-19 22:23:41 +00002806 }else if( turnOnAC && !iRollback && db->writeVdbeCnt>0 ){
drhad4a4b82008-11-05 16:37:34 +00002807 /* If this instruction implements a COMMIT and other VMs are writing
2808 ** return an error indicating that the other VMs must complete first.
2809 */
2810 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
2811 "SQL statements in progress");
2812 rc = SQLITE_BUSY;
2813 }else if( desiredAutoCommit!=db->autoCommit ){
shane68c02732009-06-09 18:14:18 +00002814 if( iRollback ){
drhad4a4b82008-11-05 16:37:34 +00002815 assert( desiredAutoCommit==1 );
danielk19771d850a72004-05-31 08:26:49 +00002816 sqlite3RollbackAll(db);
danielk1977f3f06bb2005-12-16 15:24:28 +00002817 db->autoCommit = 1;
dan32b09f22009-09-23 17:29:59 +00002818 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002819 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00002820 }else{
shane7d3846a2008-12-11 02:58:26 +00002821 db->autoCommit = (u8)desiredAutoCommit;
danielk1977f3f06bb2005-12-16 15:24:28 +00002822 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
danielk1977f3f06bb2005-12-16 15:24:28 +00002823 p->pc = pc;
drh9c1905f2008-12-10 22:32:56 +00002824 db->autoCommit = (u8)(1-desiredAutoCommit);
drh900b31e2007-08-28 02:27:51 +00002825 p->rc = rc = SQLITE_BUSY;
2826 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00002827 }
danielk19771d850a72004-05-31 08:26:49 +00002828 }
danielk1977bd434552009-03-18 10:33:00 +00002829 assert( db->nStatement==0 );
danielk1977fd7f0452008-12-17 17:30:26 +00002830 sqlite3CloseSavepoints(db);
drh83968c42007-04-18 16:45:24 +00002831 if( p->rc==SQLITE_OK ){
drh900b31e2007-08-28 02:27:51 +00002832 rc = SQLITE_DONE;
drh83968c42007-04-18 16:45:24 +00002833 }else{
drh900b31e2007-08-28 02:27:51 +00002834 rc = SQLITE_ERROR;
drh83968c42007-04-18 16:45:24 +00002835 }
drh900b31e2007-08-28 02:27:51 +00002836 goto vdbe_return;
danielk19771d850a72004-05-31 08:26:49 +00002837 }else{
drhf089aa42008-07-08 19:34:06 +00002838 sqlite3SetString(&p->zErrMsg, db,
drhad4a4b82008-11-05 16:37:34 +00002839 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
shane68c02732009-06-09 18:14:18 +00002840 (iRollback)?"cannot rollback - no transaction is active":
drhf089aa42008-07-08 19:34:06 +00002841 "cannot commit - no transaction is active"));
danielk19771d850a72004-05-31 08:26:49 +00002842
2843 rc = SQLITE_ERROR;
drh663fc632002-02-02 18:49:19 +00002844 }
2845 break;
2846}
2847
drh98757152008-01-09 23:04:12 +00002848/* Opcode: Transaction P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00002849**
2850** Begin a transaction. The transaction ends when a Commit or Rollback
drh663fc632002-02-02 18:49:19 +00002851** opcode is encountered. Depending on the ON CONFLICT setting, the
2852** transaction might also be rolled back if an error is encountered.
drh5e00f6c2001-09-13 13:46:56 +00002853**
drh001bbcb2003-03-19 03:14:00 +00002854** P1 is the index of the database file on which the transaction is
2855** started. Index 0 is the main database file and index 1 is the
drh60a713c2008-01-21 16:22:45 +00002856** file used for temporary tables. Indices of 2 or more are used for
2857** attached databases.
drhcabb0812002-09-14 13:47:32 +00002858**
drh80242052004-06-09 00:48:12 +00002859** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
danielk1977ee5741e2004-05-31 10:01:34 +00002860** obtained on the database file when a write-transaction is started. No
drh80242052004-06-09 00:48:12 +00002861** other process can start another write transaction while this transaction is
2862** underway. Starting a write transaction also creates a rollback journal. A
2863** write transaction must be started before any changes can be made to the
drh684917c2004-10-05 02:41:42 +00002864** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
2865** on the file.
danielk1977ee5741e2004-05-31 10:01:34 +00002866**
dane0af83a2009-09-08 19:15:01 +00002867** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
2868** true (this flag is set if the Vdbe may modify more than one row and may
2869** throw an ABORT exception), a statement transaction may also be opened.
2870** More specifically, a statement transaction is opened iff the database
2871** connection is currently not in autocommit mode, or if there are other
2872** active statements. A statement transaction allows the affects of this
2873** VDBE to be rolled back after an error without having to roll back the
2874** entire transaction. If no error is encountered, the statement transaction
2875** will automatically commit when the VDBE halts.
2876**
danielk1977ee5741e2004-05-31 10:01:34 +00002877** If P2 is zero, then a read-lock is obtained on the database file.
drh5e00f6c2001-09-13 13:46:56 +00002878*/
drh9cbf3422008-01-17 16:22:13 +00002879case OP_Transaction: {
danielk19771d850a72004-05-31 08:26:49 +00002880 Btree *pBt;
2881
drh653b82a2009-06-22 11:10:47 +00002882 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00002883 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh653b82a2009-06-22 11:10:47 +00002884 pBt = db->aDb[pOp->p1].pBt;
danielk19771d850a72004-05-31 08:26:49 +00002885
danielk197724162fe2004-06-04 06:22:00 +00002886 if( pBt ){
danielk197740b38dc2004-06-26 08:38:24 +00002887 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
danielk197724162fe2004-06-04 06:22:00 +00002888 if( rc==SQLITE_BUSY ){
danielk19772a764eb2004-06-12 01:43:26 +00002889 p->pc = pc;
drh900b31e2007-08-28 02:27:51 +00002890 p->rc = rc = SQLITE_BUSY;
drh900b31e2007-08-28 02:27:51 +00002891 goto vdbe_return;
danielk197724162fe2004-06-04 06:22:00 +00002892 }
drh9e9f1bd2009-10-13 15:36:51 +00002893 if( rc!=SQLITE_OK ){
danielk197724162fe2004-06-04 06:22:00 +00002894 goto abort_due_to_error;
drh90bfcda2001-09-23 19:46:51 +00002895 }
dane0af83a2009-09-08 19:15:01 +00002896
2897 if( pOp->p2 && p->usesStmtJournal
2898 && (db->autoCommit==0 || db->activeVdbeCnt>1)
2899 ){
2900 assert( sqlite3BtreeIsInTrans(pBt) );
2901 if( p->iStatement==0 ){
2902 assert( db->nStatement>=0 && db->nSavepoint>=0 );
2903 db->nStatement++;
2904 p->iStatement = db->nSavepoint + db->nStatement;
2905 }
dana311b802011-04-26 19:21:34 +00002906
drh346506f2011-05-25 01:16:42 +00002907 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
dana311b802011-04-26 19:21:34 +00002908 if( rc==SQLITE_OK ){
2909 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
2910 }
dan1da40a32009-09-19 17:00:31 +00002911
2912 /* Store the current value of the database handles deferred constraint
2913 ** counter. If the statement transaction needs to be rolled back,
2914 ** the value of this counter needs to be restored too. */
2915 p->nStmtDefCons = db->nDeferredCons;
dane0af83a2009-09-08 19:15:01 +00002916 }
drhb86ccfb2003-01-28 23:13:10 +00002917 }
drh5e00f6c2001-09-13 13:46:56 +00002918 break;
2919}
2920
drhb1fdb2a2008-01-05 04:06:03 +00002921/* Opcode: ReadCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00002922**
drh9cbf3422008-01-17 16:22:13 +00002923** Read cookie number P3 from database P1 and write it into register P2.
danielk19770d19f7a2009-06-03 11:25:07 +00002924** P3==1 is the schema version. P3==2 is the database format.
2925** P3==3 is the recommended pager cache size, and so forth. P1==0 is
drh001bbcb2003-03-19 03:14:00 +00002926** the main database file and P1==1 is the database file used to store
2927** temporary tables.
drh4a324312001-12-21 14:30:42 +00002928**
drh50e5dad2001-09-15 00:57:28 +00002929** There must be a read-lock on the database (either a transaction
drhb19a2bc2001-09-16 00:13:26 +00002930** must be started or there must be an open cursor) before
drh50e5dad2001-09-15 00:57:28 +00002931** executing this instruction.
2932*/
drh4c583122008-01-04 22:01:03 +00002933case OP_ReadCookie: { /* out2-prerelease */
drhf328bc82004-05-10 23:29:49 +00002934 int iMeta;
drh856c1032009-06-02 15:21:42 +00002935 int iDb;
2936 int iCookie;
danielk1977180b56a2007-06-24 08:00:42 +00002937
drh856c1032009-06-02 15:21:42 +00002938 iDb = pOp->p1;
2939 iCookie = pOp->p3;
drhb7654112008-01-12 12:48:07 +00002940 assert( pOp->p3<SQLITE_N_BTREE_META );
danielk1977180b56a2007-06-24 08:00:42 +00002941 assert( iDb>=0 && iDb<db->nDb );
2942 assert( db->aDb[iDb].pBt!=0 );
drhdddd7792011-04-03 18:19:25 +00002943 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
danielk19770d19f7a2009-06-03 11:25:07 +00002944
danielk1977602b4662009-07-02 07:47:33 +00002945 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
drh4c583122008-01-04 22:01:03 +00002946 pOut->u.i = iMeta;
drh50e5dad2001-09-15 00:57:28 +00002947 break;
2948}
2949
drh98757152008-01-09 23:04:12 +00002950/* Opcode: SetCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00002951**
drh98757152008-01-09 23:04:12 +00002952** Write the content of register P3 (interpreted as an integer)
danielk19770d19f7a2009-06-03 11:25:07 +00002953** into cookie number P2 of database P1. P2==1 is the schema version.
2954** P2==2 is the database format. P2==3 is the recommended pager cache
2955** size, and so forth. P1==0 is the main database file and P1==1 is the
2956** database file used to store temporary tables.
drh50e5dad2001-09-15 00:57:28 +00002957**
2958** A transaction must be started before executing this opcode.
2959*/
drh9cbf3422008-01-17 16:22:13 +00002960case OP_SetCookie: { /* in3 */
drh3f7d4e42004-07-24 14:35:58 +00002961 Db *pDb;
drh4a324312001-12-21 14:30:42 +00002962 assert( pOp->p2<SQLITE_N_BTREE_META );
drh001bbcb2003-03-19 03:14:00 +00002963 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00002964 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh3f7d4e42004-07-24 14:35:58 +00002965 pDb = &db->aDb[pOp->p1];
2966 assert( pDb->pBt!=0 );
drh21206082011-04-04 18:22:02 +00002967 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
drh3c657212009-11-17 23:59:58 +00002968 pIn3 = &aMem[pOp->p3];
drh98757152008-01-09 23:04:12 +00002969 sqlite3VdbeMemIntegerify(pIn3);
drha3b321d2004-05-11 09:31:31 +00002970 /* See note about index shifting on OP_ReadCookie */
danielk19770d19f7a2009-06-03 11:25:07 +00002971 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
2972 if( pOp->p2==BTREE_SCHEMA_VERSION ){
drh3f7d4e42004-07-24 14:35:58 +00002973 /* When the schema cookie changes, record the new cookie internally */
drh9c1905f2008-12-10 22:32:56 +00002974 pDb->pSchema->schema_cookie = (int)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00002975 db->flags |= SQLITE_InternChanges;
danielk19770d19f7a2009-06-03 11:25:07 +00002976 }else if( pOp->p2==BTREE_FILE_FORMAT ){
drhd28bcb32005-12-21 14:43:11 +00002977 /* Record changes in the file format */
drh9c1905f2008-12-10 22:32:56 +00002978 pDb->pSchema->file_format = (u8)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00002979 }
drhfd426c62006-01-30 15:34:22 +00002980 if( pOp->p1==1 ){
2981 /* Invalidate all prepared statements whenever the TEMP database
2982 ** schema is changed. Ticket #1644 */
2983 sqlite3ExpirePreparedStatements(db);
danfa401de2009-10-16 14:55:03 +00002984 p->expired = 0;
drhfd426c62006-01-30 15:34:22 +00002985 }
drh50e5dad2001-09-15 00:57:28 +00002986 break;
2987}
2988
drhc2a75552011-03-18 21:55:46 +00002989/* Opcode: VerifyCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00002990**
drh001bbcb2003-03-19 03:14:00 +00002991** Check the value of global database parameter number 0 (the
drhc2a75552011-03-18 21:55:46 +00002992** schema version) and make sure it is equal to P2 and that the
2993** generation counter on the local schema parse equals P3.
2994**
drh001bbcb2003-03-19 03:14:00 +00002995** P1 is the database number which is 0 for the main database file
2996** and 1 for the file holding temporary tables and some higher number
2997** for auxiliary databases.
drh50e5dad2001-09-15 00:57:28 +00002998**
2999** The cookie changes its value whenever the database schema changes.
drhb19a2bc2001-09-16 00:13:26 +00003000** This operation is used to detect when that the cookie has changed
drh50e5dad2001-09-15 00:57:28 +00003001** and that the current process needs to reread the schema.
3002**
3003** Either a transaction needs to have been started or an OP_Open needs
3004** to be executed (to establish a read lock) before this opcode is
3005** invoked.
3006*/
drh9cbf3422008-01-17 16:22:13 +00003007case OP_VerifyCookie: {
drhf328bc82004-05-10 23:29:49 +00003008 int iMeta;
drhc2a75552011-03-18 21:55:46 +00003009 int iGen;
drhc275b4e2004-07-19 17:25:24 +00003010 Btree *pBt;
drhc2a75552011-03-18 21:55:46 +00003011
drh001bbcb2003-03-19 03:14:00 +00003012 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00003013 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh21206082011-04-04 18:22:02 +00003014 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
drhc275b4e2004-07-19 17:25:24 +00003015 pBt = db->aDb[pOp->p1].pBt;
3016 if( pBt ){
danielk1977602b4662009-07-02 07:47:33 +00003017 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
drhc2a75552011-03-18 21:55:46 +00003018 iGen = db->aDb[pOp->p1].pSchema->iGeneration;
drhc275b4e2004-07-19 17:25:24 +00003019 }else{
drhfcd71b62011-04-05 22:08:24 +00003020 iGen = iMeta = 0;
drhc275b4e2004-07-19 17:25:24 +00003021 }
drhc2a75552011-03-18 21:55:46 +00003022 if( iMeta!=pOp->p2 || iGen!=pOp->p3 ){
drh633e6d52008-07-28 19:34:53 +00003023 sqlite3DbFree(db, p->zErrMsg);
danielk1977a1644fd2007-08-29 12:31:25 +00003024 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
danielk1977896e7922007-04-17 08:32:33 +00003025 /* If the schema-cookie from the database file matches the cookie
3026 ** stored with the in-memory representation of the schema, do
3027 ** not reload the schema from the database file.
3028 **
shane21e7feb2008-05-30 15:59:49 +00003029 ** If virtual-tables are in use, this is not just an optimization.
danielk1977896e7922007-04-17 08:32:33 +00003030 ** Often, v-tables store their data in other SQLite tables, which
3031 ** are queried from within xNext() and other v-table methods using
3032 ** prepared queries. If such a query is out-of-date, we do not want to
3033 ** discard the database schema, as the user code implementing the
3034 ** v-table would have to be ready for the sqlite3_vtab structure itself
3035 ** to be invalidated whenever sqlite3_step() is called from within
3036 ** a v-table method.
3037 */
3038 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3039 sqlite3ResetInternalSchema(db, pOp->p1);
3040 }
3041
drh5b6c5452011-02-22 03:34:56 +00003042 p->expired = 1;
drh50e5dad2001-09-15 00:57:28 +00003043 rc = SQLITE_SCHEMA;
3044 }
3045 break;
3046}
3047
drh98757152008-01-09 23:04:12 +00003048/* Opcode: OpenRead P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00003049**
drhecdc7532001-09-23 02:35:53 +00003050** Open a read-only cursor for the database table whose root page is
danielk1977207872a2008-01-03 07:54:23 +00003051** P2 in a database file. The database file is determined by P3.
drh60a713c2008-01-21 16:22:45 +00003052** P3==0 means the main database, P3==1 means the database used for
3053** temporary tables, and P3>1 means used the corresponding attached
3054** database. Give the new cursor an identifier of P1. The P1
danielk1977207872a2008-01-03 07:54:23 +00003055** values need not be contiguous but all P1 values should be small integers.
3056** It is an error for P1 to be negative.
drh5e00f6c2001-09-13 13:46:56 +00003057**
drh98757152008-01-09 23:04:12 +00003058** If P5!=0 then use the content of register P2 as the root page, not
3059** the value of P2 itself.
drh5edc3122001-09-13 21:53:09 +00003060**
drhb19a2bc2001-09-16 00:13:26 +00003061** There will be a read lock on the database whenever there is an
3062** open cursor. If the database was unlocked prior to this instruction
3063** then a read lock is acquired as part of this instruction. A read
3064** lock allows other processes to read the database but prohibits
3065** any other process from modifying the database. The read lock is
3066** released when all cursors are closed. If this instruction attempts
3067** to get a read lock but fails, the script terminates with an
3068** SQLITE_BUSY error code.
3069**
danielk1977d336e222009-02-20 10:58:41 +00003070** The P4 value may be either an integer (P4_INT32) or a pointer to
3071** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3072** structure, then said structure defines the content and collating
3073** sequence of the index being opened. Otherwise, if P4 is an integer
3074** value, it is set to the number of columns in the table.
drhf57b3392001-10-08 13:22:32 +00003075**
drh001bbcb2003-03-19 03:14:00 +00003076** See also OpenWrite.
drh5e00f6c2001-09-13 13:46:56 +00003077*/
drh98757152008-01-09 23:04:12 +00003078/* Opcode: OpenWrite P1 P2 P3 P4 P5
drhecdc7532001-09-23 02:35:53 +00003079**
3080** Open a read/write cursor named P1 on the table or index whose root
drh98757152008-01-09 23:04:12 +00003081** page is P2. Or if P5!=0 use the content of register P2 to find the
3082** root page.
drhecdc7532001-09-23 02:35:53 +00003083**
danielk1977d336e222009-02-20 10:58:41 +00003084** The P4 value may be either an integer (P4_INT32) or a pointer to
3085** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3086** structure, then said structure defines the content and collating
3087** sequence of the index being opened. Otherwise, if P4 is an integer
drh35cd6432009-06-05 14:17:21 +00003088** value, it is set to the number of columns in the table, or to the
3089** largest index of any column of the table that is actually used.
jplyon5a564222003-06-02 06:15:58 +00003090**
drh001bbcb2003-03-19 03:14:00 +00003091** This instruction works just like OpenRead except that it opens the cursor
drhecdc7532001-09-23 02:35:53 +00003092** in read/write mode. For a given table, there can be one or more read-only
3093** cursors or a single read/write cursor but not both.
drhf57b3392001-10-08 13:22:32 +00003094**
drh001bbcb2003-03-19 03:14:00 +00003095** See also OpenRead.
drhecdc7532001-09-23 02:35:53 +00003096*/
drh9cbf3422008-01-17 16:22:13 +00003097case OP_OpenRead:
3098case OP_OpenWrite: {
drh856c1032009-06-02 15:21:42 +00003099 int nField;
3100 KeyInfo *pKeyInfo;
drh856c1032009-06-02 15:21:42 +00003101 int p2;
3102 int iDb;
drhf57b3392001-10-08 13:22:32 +00003103 int wrFlag;
3104 Btree *pX;
drhdfe88ec2008-11-03 20:55:06 +00003105 VdbeCursor *pCur;
drhd946db02005-12-29 19:23:06 +00003106 Db *pDb;
drh856c1032009-06-02 15:21:42 +00003107
danfa401de2009-10-16 14:55:03 +00003108 if( p->expired ){
3109 rc = SQLITE_ABORT;
3110 break;
3111 }
3112
drh856c1032009-06-02 15:21:42 +00003113 nField = 0;
3114 pKeyInfo = 0;
drh856c1032009-06-02 15:21:42 +00003115 p2 = pOp->p2;
3116 iDb = pOp->p3;
drh6810ce62004-01-31 19:22:56 +00003117 assert( iDb>=0 && iDb<db->nDb );
drhdddd7792011-04-03 18:19:25 +00003118 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
drhd946db02005-12-29 19:23:06 +00003119 pDb = &db->aDb[iDb];
3120 pX = pDb->pBt;
drh6810ce62004-01-31 19:22:56 +00003121 assert( pX!=0 );
drhd946db02005-12-29 19:23:06 +00003122 if( pOp->opcode==OP_OpenWrite ){
3123 wrFlag = 1;
drh21206082011-04-04 18:22:02 +00003124 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
danielk1977da184232006-01-05 11:34:32 +00003125 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3126 p->minWriteFileFormat = pDb->pSchema->file_format;
drhd946db02005-12-29 19:23:06 +00003127 }
3128 }else{
3129 wrFlag = 0;
3130 }
drh98757152008-01-09 23:04:12 +00003131 if( pOp->p5 ){
drh9cbf3422008-01-17 16:22:13 +00003132 assert( p2>0 );
3133 assert( p2<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00003134 pIn2 = &aMem[p2];
drh2b4ded92010-09-27 21:09:31 +00003135 assert( memIsValid(pIn2) );
3136 assert( (pIn2->flags & MEM_Int)!=0 );
drh9cbf3422008-01-17 16:22:13 +00003137 sqlite3VdbeMemIntegerify(pIn2);
drh9c1905f2008-12-10 22:32:56 +00003138 p2 = (int)pIn2->u.i;
drh9a65f2c2009-06-22 19:05:40 +00003139 /* The p2 value always comes from a prior OP_CreateTable opcode and
3140 ** that opcode will always set the p2 value to 2 or more or else fail.
3141 ** If there were a failure, the prepared statement would have halted
3142 ** before reaching this instruction. */
drh27731d72009-06-22 12:05:10 +00003143 if( NEVER(p2<2) ) {
shanedcc50b72008-11-13 18:29:50 +00003144 rc = SQLITE_CORRUPT_BKPT;
3145 goto abort_due_to_error;
3146 }
drh5edc3122001-09-13 21:53:09 +00003147 }
danielk1977d336e222009-02-20 10:58:41 +00003148 if( pOp->p4type==P4_KEYINFO ){
3149 pKeyInfo = pOp->p4.pKeyInfo;
3150 pKeyInfo->enc = ENC(p->db);
3151 nField = pKeyInfo->nField+1;
3152 }else if( pOp->p4type==P4_INT32 ){
3153 nField = pOp->p4.i;
3154 }
drh653b82a2009-06-22 11:10:47 +00003155 assert( pOp->p1>=0 );
3156 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
drh4774b132004-06-12 20:12:51 +00003157 if( pCur==0 ) goto no_mem;
drhf328bc82004-05-10 23:29:49 +00003158 pCur->nullRow = 1;
drhd4187c72010-08-30 22:15:45 +00003159 pCur->isOrdered = 1;
danielk1977d336e222009-02-20 10:58:41 +00003160 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
3161 pCur->pKeyInfo = pKeyInfo;
3162
dana205a482011-08-27 18:48:57 +00003163 /* Since it performs no memory allocation or IO, the only value that
3164 ** sqlite3BtreeCursor() may return is SQLITE_OK. */
3165 assert( rc==SQLITE_OK );
danielk1977172114a2009-07-07 15:47:12 +00003166
3167 /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
3168 ** SQLite used to check if the root-page flags were sane at this point
3169 ** and report database corruption if they were not, but this check has
3170 ** since moved into the btree layer. */
3171 pCur->isTable = pOp->p4type!=P4_KEYINFO;
3172 pCur->isIndex = !pCur->isTable;
drh5e00f6c2001-09-13 13:46:56 +00003173 break;
3174}
3175
drh2a5d9902011-08-26 00:34:45 +00003176/* Opcode: OpenEphemeral P1 P2 * P4 P5
drh5e00f6c2001-09-13 13:46:56 +00003177**
drhb9bb7c12006-06-11 23:41:55 +00003178** Open a new cursor P1 to a transient table.
drh9170dd72005-07-08 17:13:46 +00003179** The cursor is always opened read/write even if
drh25d3adb2010-04-05 15:11:08 +00003180** the main database is read-only. The ephemeral
drh9170dd72005-07-08 17:13:46 +00003181** table is deleted automatically when the cursor is closed.
drhc6b52df2002-01-04 03:09:29 +00003182**
drh25d3adb2010-04-05 15:11:08 +00003183** P2 is the number of columns in the ephemeral table.
drh66a51672008-01-03 00:01:23 +00003184** The cursor points to a BTree table if P4==0 and to a BTree index
3185** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
drhd3d39e92004-05-20 22:16:29 +00003186** that defines the format of keys in the index.
drhb9bb7c12006-06-11 23:41:55 +00003187**
3188** This opcode was once called OpenTemp. But that created
3189** confusion because the term "temp table", might refer either
3190** to a TEMP table at the SQL level, or to a table opened by
3191** this opcode. Then this opcode was call OpenVirtual. But
3192** that created confusion with the whole virtual-table idea.
drh2a5d9902011-08-26 00:34:45 +00003193**
3194** The P5 parameter can be a mask of the BTREE_* flags defined
3195** in btree.h. These flags control aspects of the operation of
3196** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3197** added automatically.
drh5e00f6c2001-09-13 13:46:56 +00003198*/
drha21a64d2010-04-06 22:33:55 +00003199/* Opcode: OpenAutoindex P1 P2 * P4 *
3200**
3201** This opcode works the same as OP_OpenEphemeral. It has a
3202** different name to distinguish its use. Tables created using
3203** by this opcode will be used for automatically created transient
3204** indices in joins.
3205*/
3206case OP_OpenAutoindex:
drh9cbf3422008-01-17 16:22:13 +00003207case OP_OpenEphemeral: {
drhdfe88ec2008-11-03 20:55:06 +00003208 VdbeCursor *pCx;
drhd4187c72010-08-30 22:15:45 +00003209 static const int vfsFlags =
drh33f4e022007-09-03 15:19:34 +00003210 SQLITE_OPEN_READWRITE |
3211 SQLITE_OPEN_CREATE |
3212 SQLITE_OPEN_EXCLUSIVE |
3213 SQLITE_OPEN_DELETEONCLOSE |
3214 SQLITE_OPEN_TRANSIENT_DB;
3215
drh653b82a2009-06-22 11:10:47 +00003216 assert( pOp->p1>=0 );
3217 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
drh4774b132004-06-12 20:12:51 +00003218 if( pCx==0 ) goto no_mem;
drh17f71932002-02-21 12:01:27 +00003219 pCx->nullRow = 1;
dan689ab892011-08-12 15:02:00 +00003220 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
3221 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
drh5e00f6c2001-09-13 13:46:56 +00003222 if( rc==SQLITE_OK ){
danielk197740b38dc2004-06-26 08:38:24 +00003223 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
drh5e00f6c2001-09-13 13:46:56 +00003224 }
3225 if( rc==SQLITE_OK ){
danielk19774adee202004-05-08 08:23:19 +00003226 /* If a transient index is required, create it by calling
drhd4187c72010-08-30 22:15:45 +00003227 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
danielk19774adee202004-05-08 08:23:19 +00003228 ** opening it. If a transient table is required, just use the
drhd4187c72010-08-30 22:15:45 +00003229 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
danielk19774adee202004-05-08 08:23:19 +00003230 */
danielk19772dca4ac2008-01-03 11:50:29 +00003231 if( pOp->p4.pKeyInfo ){
drhc6b52df2002-01-04 03:09:29 +00003232 int pgno;
drh66a51672008-01-03 00:01:23 +00003233 assert( pOp->p4type==P4_KEYINFO );
drhe1b4f0f2011-06-29 17:11:39 +00003234 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
drhc6b52df2002-01-04 03:09:29 +00003235 if( rc==SQLITE_OK ){
drhf328bc82004-05-10 23:29:49 +00003236 assert( pgno==MASTER_ROOT+1 );
drh1e968a02008-03-25 00:22:21 +00003237 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1,
danielk1977cd3e8f72008-03-25 09:47:35 +00003238 (KeyInfo*)pOp->p4.z, pCx->pCursor);
danielk19772dca4ac2008-01-03 11:50:29 +00003239 pCx->pKeyInfo = pOp->p4.pKeyInfo;
dan689ab892011-08-12 15:02:00 +00003240 pCx->pKeyInfo->enc = ENC(p->db);
drhc6b52df2002-01-04 03:09:29 +00003241 }
drhf0863fe2005-06-12 21:35:51 +00003242 pCx->isTable = 0;
drhc6b52df2002-01-04 03:09:29 +00003243 }else{
danielk1977cd3e8f72008-03-25 09:47:35 +00003244 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
drhf0863fe2005-06-12 21:35:51 +00003245 pCx->isTable = 1;
drhc6b52df2002-01-04 03:09:29 +00003246 }
drh5e00f6c2001-09-13 13:46:56 +00003247 }
drhd4187c72010-08-30 22:15:45 +00003248 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
drhf0863fe2005-06-12 21:35:51 +00003249 pCx->isIndex = !pCx->isTable;
dan5134d132011-09-02 10:31:11 +00003250 break;
3251}
3252
3253/* Opcode: OpenSorter P1 P2 * P4 *
3254**
3255** This opcode works like OP_OpenEphemeral except that it opens
3256** a transient index that is specifically designed to sort large
3257** tables using an external merge-sort algorithm.
3258*/
drhca892a72011-09-03 00:17:51 +00003259case OP_SorterOpen: {
dan5134d132011-09-02 10:31:11 +00003260 VdbeCursor *pCx;
drhca892a72011-09-03 00:17:51 +00003261#ifndef SQLITE_OMIT_MERGE_SORT
dan5134d132011-09-02 10:31:11 +00003262 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
3263 if( pCx==0 ) goto no_mem;
3264 pCx->pKeyInfo = pOp->p4.pKeyInfo;
3265 pCx->pKeyInfo->enc = ENC(p->db);
3266 pCx->isSorter = 1;
3267 rc = sqlite3VdbeSorterInit(db, pCx);
drhca892a72011-09-03 00:17:51 +00003268#else
3269 pOp->opcode = OP_OpenEphemeral;
3270 pc--;
3271#endif
drh5e00f6c2001-09-13 13:46:56 +00003272 break;
3273}
3274
danielk1977d336e222009-02-20 10:58:41 +00003275/* Opcode: OpenPseudo P1 P2 P3 * *
drh70ce3f02003-04-15 19:22:22 +00003276**
3277** Open a new cursor that points to a fake table that contains a single
drh3e9ca092009-09-08 01:14:48 +00003278** row of data. The content of that one row in the content of memory
3279** register P2. In other words, cursor P1 becomes an alias for the
3280** MEM_Blob content contained in register P2.
drh70ce3f02003-04-15 19:22:22 +00003281**
drh2d8d7ce2010-02-15 15:17:05 +00003282** A pseudo-table created by this opcode is used to hold a single
drhcdd536f2006-03-17 00:04:03 +00003283** row output from the sorter so that the row can be decomposed into
drh3e9ca092009-09-08 01:14:48 +00003284** individual columns using the OP_Column opcode. The OP_Column opcode
3285** is the only cursor opcode that works with a pseudo-table.
danielk1977d336e222009-02-20 10:58:41 +00003286**
3287** P3 is the number of fields in the records that will be stored by
3288** the pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00003289*/
drh9cbf3422008-01-17 16:22:13 +00003290case OP_OpenPseudo: {
drhdfe88ec2008-11-03 20:55:06 +00003291 VdbeCursor *pCx;
drh856c1032009-06-02 15:21:42 +00003292
drh653b82a2009-06-22 11:10:47 +00003293 assert( pOp->p1>=0 );
3294 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
drh4774b132004-06-12 20:12:51 +00003295 if( pCx==0 ) goto no_mem;
drh70ce3f02003-04-15 19:22:22 +00003296 pCx->nullRow = 1;
drh3e9ca092009-09-08 01:14:48 +00003297 pCx->pseudoTableReg = pOp->p2;
drhf0863fe2005-06-12 21:35:51 +00003298 pCx->isTable = 1;
3299 pCx->isIndex = 0;
drh70ce3f02003-04-15 19:22:22 +00003300 break;
3301}
3302
drh98757152008-01-09 23:04:12 +00003303/* Opcode: Close P1 * * * *
drh5e00f6c2001-09-13 13:46:56 +00003304**
3305** Close a cursor previously opened as P1. If P1 is not
3306** currently open, this instruction is a no-op.
3307*/
drh9cbf3422008-01-17 16:22:13 +00003308case OP_Close: {
drh653b82a2009-06-22 11:10:47 +00003309 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3310 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3311 p->apCsr[pOp->p1] = 0;
drh5e00f6c2001-09-13 13:46:56 +00003312 break;
3313}
3314
drh959403f2008-12-12 17:56:16 +00003315/* Opcode: SeekGe P1 P2 P3 P4 *
drh5e00f6c2001-09-13 13:46:56 +00003316**
danielk1977b790c6c2008-04-18 10:25:24 +00003317** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003318** use the value in register P3 as the key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003319** to an SQL index, then P3 is the first in an array of P4 registers
3320** that are used as an unpacked index key.
3321**
3322** Reposition cursor P1 so that it points to the smallest entry that
3323** is greater than or equal to the key value. If there are no records
3324** greater than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003325**
drh959403f2008-12-12 17:56:16 +00003326** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003327*/
drh959403f2008-12-12 17:56:16 +00003328/* Opcode: SeekGt P1 P2 P3 P4 *
drh7cf6e4d2004-05-19 14:56:55 +00003329**
danielk1977b790c6c2008-04-18 10:25:24 +00003330** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003331** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003332** to an SQL index, then P3 is the first in an array of P4 registers
3333** that are used as an unpacked index key.
3334**
3335** Reposition cursor P1 so that it points to the smallest entry that
3336** is greater than the key value. If there are no records greater than
3337** the key and P2 is not zero, then jump to P2.
drhb19a2bc2001-09-16 00:13:26 +00003338**
drh959403f2008-12-12 17:56:16 +00003339** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
drh5e00f6c2001-09-13 13:46:56 +00003340*/
drh959403f2008-12-12 17:56:16 +00003341/* Opcode: SeekLt P1 P2 P3 P4 *
drhc045ec52002-12-04 20:01:06 +00003342**
danielk1977b790c6c2008-04-18 10:25:24 +00003343** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003344** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003345** to an SQL index, then P3 is the first in an array of P4 registers
3346** that are used as an unpacked index key.
3347**
3348** Reposition cursor P1 so that it points to the largest entry that
3349** is less than the key value. If there are no records less than
3350** the key and P2 is not zero, then jump to P2.
drhc045ec52002-12-04 20:01:06 +00003351**
drh959403f2008-12-12 17:56:16 +00003352** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003353*/
drh959403f2008-12-12 17:56:16 +00003354/* Opcode: SeekLe P1 P2 P3 P4 *
danielk19773d1bfea2004-05-14 11:00:53 +00003355**
danielk1977b790c6c2008-04-18 10:25:24 +00003356** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003357** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003358** to an SQL index, then P3 is the first in an array of P4 registers
3359** that are used as an unpacked index key.
danielk1977751de562008-04-18 09:01:15 +00003360**
danielk1977b790c6c2008-04-18 10:25:24 +00003361** Reposition cursor P1 so that it points to the largest entry that
3362** is less than or equal to the key value. If there are no records
3363** less than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003364**
drh959403f2008-12-12 17:56:16 +00003365** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
drhc045ec52002-12-04 20:01:06 +00003366*/
drh959403f2008-12-12 17:56:16 +00003367case OP_SeekLt: /* jump, in3 */
3368case OP_SeekLe: /* jump, in3 */
3369case OP_SeekGe: /* jump, in3 */
3370case OP_SeekGt: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003371 int res;
3372 int oc;
drhdfe88ec2008-11-03 20:55:06 +00003373 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003374 UnpackedRecord r;
3375 int nField;
3376 i64 iKey; /* The rowid we are to seek to */
drh80ff32f2001-11-04 18:32:46 +00003377
drh653b82a2009-06-22 11:10:47 +00003378 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh959403f2008-12-12 17:56:16 +00003379 assert( pOp->p2!=0 );
drh653b82a2009-06-22 11:10:47 +00003380 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00003381 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00003382 assert( pC->pseudoTableReg==0 );
drh1f350122009-11-13 20:52:43 +00003383 assert( OP_SeekLe == OP_SeekLt+1 );
3384 assert( OP_SeekGe == OP_SeekLt+2 );
3385 assert( OP_SeekGt == OP_SeekLt+3 );
drhd4187c72010-08-30 22:15:45 +00003386 assert( pC->isOrdered );
dana205a482011-08-27 18:48:57 +00003387 if( ALWAYS(pC->pCursor!=0) ){
drh7cf6e4d2004-05-19 14:56:55 +00003388 oc = pOp->opcode;
drha11846b2004-01-07 18:52:56 +00003389 pC->nullRow = 0;
drhf0863fe2005-06-12 21:35:51 +00003390 if( pC->isTable ){
drh959403f2008-12-12 17:56:16 +00003391 /* The input value in P3 might be of any type: integer, real, string,
3392 ** blob, or NULL. But it needs to be an integer before we can do
3393 ** the seek, so covert it. */
drh3c657212009-11-17 23:59:58 +00003394 pIn3 = &aMem[pOp->p3];
drh959403f2008-12-12 17:56:16 +00003395 applyNumericAffinity(pIn3);
3396 iKey = sqlite3VdbeIntValue(pIn3);
3397 pC->rowidIsValid = 0;
3398
3399 /* If the P3 value could not be converted into an integer without
3400 ** loss of information, then special processing is required... */
3401 if( (pIn3->flags & MEM_Int)==0 ){
3402 if( (pIn3->flags & MEM_Real)==0 ){
3403 /* If the P3 value cannot be converted into any kind of a number,
3404 ** then the seek is not possible, so jump to P2 */
3405 pc = pOp->p2 - 1;
3406 break;
3407 }
3408 /* If we reach this point, then the P3 value must be a floating
3409 ** point number. */
3410 assert( (pIn3->flags & MEM_Real)!=0 );
3411
3412 if( iKey==SMALLEST_INT64 && (pIn3->r<(double)iKey || pIn3->r>0) ){
drhaa736092009-06-22 00:55:30 +00003413 /* The P3 value is too large in magnitude to be expressed as an
drh959403f2008-12-12 17:56:16 +00003414 ** integer. */
3415 res = 1;
3416 if( pIn3->r<0 ){
drh1f350122009-11-13 20:52:43 +00003417 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
drh959403f2008-12-12 17:56:16 +00003418 rc = sqlite3BtreeFirst(pC->pCursor, &res);
3419 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3420 }
3421 }else{
drh1f350122009-11-13 20:52:43 +00003422 if( oc<=OP_SeekLe ){ assert( oc==OP_SeekLt || oc==OP_SeekLe );
drh959403f2008-12-12 17:56:16 +00003423 rc = sqlite3BtreeLast(pC->pCursor, &res);
3424 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3425 }
3426 }
3427 if( res ){
3428 pc = pOp->p2 - 1;
3429 }
3430 break;
3431 }else if( oc==OP_SeekLt || oc==OP_SeekGe ){
3432 /* Use the ceiling() function to convert real->int */
3433 if( pIn3->r > (double)iKey ) iKey++;
3434 }else{
3435 /* Use the floor() function to convert real->int */
3436 assert( oc==OP_SeekLe || oc==OP_SeekGt );
3437 if( pIn3->r < (double)iKey ) iKey--;
3438 }
3439 }
drhe63d9992008-08-13 19:11:48 +00003440 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
danielk197728129562005-01-11 10:25:06 +00003441 if( rc!=SQLITE_OK ){
3442 goto abort_due_to_error;
3443 }
drh959403f2008-12-12 17:56:16 +00003444 if( res==0 ){
3445 pC->rowidIsValid = 1;
3446 pC->lastRowid = iKey;
3447 }
drh5e00f6c2001-09-13 13:46:56 +00003448 }else{
drh856c1032009-06-02 15:21:42 +00003449 nField = pOp->p4.i;
danielk1977b790c6c2008-04-18 10:25:24 +00003450 assert( pOp->p4type==P4_INT32 );
3451 assert( nField>0 );
3452 r.pKeyInfo = pC->pKeyInfo;
drh9c1905f2008-12-10 22:32:56 +00003453 r.nField = (u16)nField;
drh1f350122009-11-13 20:52:43 +00003454
3455 /* The next line of code computes as follows, only faster:
3456 ** if( oc==OP_SeekGt || oc==OP_SeekLe ){
3457 ** r.flags = UNPACKED_INCRKEY;
3458 ** }else{
3459 ** r.flags = 0;
3460 ** }
3461 */
shaneh5e17e8b2009-12-03 04:40:47 +00003462 r.flags = (u16)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt)));
drh1f350122009-11-13 20:52:43 +00003463 assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY );
3464 assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY );
3465 assert( oc!=OP_SeekGe || r.flags==0 );
3466 assert( oc!=OP_SeekLt || r.flags==0 );
3467
drha6c2ed92009-11-14 23:22:23 +00003468 r.aMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00003469#ifdef SQLITE_DEBUG
3470 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3471#endif
drh039fc322009-11-17 18:31:47 +00003472 ExpandBlob(r.aMem);
drhe63d9992008-08-13 19:11:48 +00003473 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
danielk197728129562005-01-11 10:25:06 +00003474 if( rc!=SQLITE_OK ){
3475 goto abort_due_to_error;
3476 }
drhf0863fe2005-06-12 21:35:51 +00003477 pC->rowidIsValid = 0;
drh5e00f6c2001-09-13 13:46:56 +00003478 }
drha11846b2004-01-07 18:52:56 +00003479 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00003480 pC->cacheStatus = CACHE_STALE;
drh0f7eb612006-08-08 13:51:43 +00003481#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +00003482 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00003483#endif
drh1f350122009-11-13 20:52:43 +00003484 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
drh959403f2008-12-12 17:56:16 +00003485 if( res<0 || (res==0 && oc==OP_SeekGt) ){
danielk197728129562005-01-11 10:25:06 +00003486 rc = sqlite3BtreeNext(pC->pCursor, &res);
danielk197701427a62005-01-11 13:02:33 +00003487 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drhf0863fe2005-06-12 21:35:51 +00003488 pC->rowidIsValid = 0;
drh1af3fdb2004-07-18 21:33:01 +00003489 }else{
3490 res = 0;
drh8721ce42001-11-07 14:22:00 +00003491 }
drh7cf6e4d2004-05-19 14:56:55 +00003492 }else{
drh959403f2008-12-12 17:56:16 +00003493 assert( oc==OP_SeekLt || oc==OP_SeekLe );
3494 if( res>0 || (res==0 && oc==OP_SeekLt) ){
danielk197701427a62005-01-11 13:02:33 +00003495 rc = sqlite3BtreePrevious(pC->pCursor, &res);
3496 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drhf0863fe2005-06-12 21:35:51 +00003497 pC->rowidIsValid = 0;
drh1a844c32002-12-04 22:29:28 +00003498 }else{
3499 /* res might be negative because the table is empty. Check to
3500 ** see if this is the case.
3501 */
drhf328bc82004-05-10 23:29:49 +00003502 res = sqlite3BtreeEof(pC->pCursor);
drh1a844c32002-12-04 22:29:28 +00003503 }
drh1af3fdb2004-07-18 21:33:01 +00003504 }
drh91fd4d42008-01-19 20:11:25 +00003505 assert( pOp->p2>0 );
drh1af3fdb2004-07-18 21:33:01 +00003506 if( res ){
drh91fd4d42008-01-19 20:11:25 +00003507 pc = pOp->p2 - 1;
drh8721ce42001-11-07 14:22:00 +00003508 }
drhaa736092009-06-22 00:55:30 +00003509 }else{
danielk1977f7b9d662008-06-23 18:49:43 +00003510 /* This happens when attempting to open the sqlite3_master table
3511 ** for read access returns SQLITE_EMPTY. In this case always
3512 ** take the jump (since there are no records in the table).
3513 */
3514 pc = pOp->p2 - 1;
drh5e00f6c2001-09-13 13:46:56 +00003515 }
drh5e00f6c2001-09-13 13:46:56 +00003516 break;
3517}
3518
drh959403f2008-12-12 17:56:16 +00003519/* Opcode: Seek P1 P2 * * *
3520**
3521** P1 is an open table cursor and P2 is a rowid integer. Arrange
3522** for P1 to move so that it points to the rowid given by P2.
3523**
3524** This is actually a deferred seek. Nothing actually happens until
3525** the cursor is used to read a record. That way, if no reads
3526** occur, no unnecessary I/O happens.
3527*/
3528case OP_Seek: { /* in2 */
drh959403f2008-12-12 17:56:16 +00003529 VdbeCursor *pC;
3530
drh653b82a2009-06-22 11:10:47 +00003531 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3532 pC = p->apCsr[pOp->p1];
drh959403f2008-12-12 17:56:16 +00003533 assert( pC!=0 );
drhaa736092009-06-22 00:55:30 +00003534 if( ALWAYS(pC->pCursor!=0) ){
drh959403f2008-12-12 17:56:16 +00003535 assert( pC->isTable );
3536 pC->nullRow = 0;
drh3c657212009-11-17 23:59:58 +00003537 pIn2 = &aMem[pOp->p2];
drh959403f2008-12-12 17:56:16 +00003538 pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
3539 pC->rowidIsValid = 0;
3540 pC->deferredMoveto = 1;
3541 }
3542 break;
3543}
3544
3545
drh8cff69d2009-11-12 19:59:44 +00003546/* Opcode: Found P1 P2 P3 P4 *
drh5e00f6c2001-09-13 13:46:56 +00003547**
drh8cff69d2009-11-12 19:59:44 +00003548** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3549** P4>0 then register P3 is the first of P4 registers that form an unpacked
3550** record.
3551**
3552** Cursor P1 is on an index btree. If the record identified by P3 and P4
3553** is a prefix of any entry in P1 then a jump is made to P2 and
drhe3365e62009-11-12 17:52:24 +00003554** P1 is left pointing at the matching entry.
drh5e00f6c2001-09-13 13:46:56 +00003555*/
drh8cff69d2009-11-12 19:59:44 +00003556/* Opcode: NotFound P1 P2 P3 P4 *
drh5e00f6c2001-09-13 13:46:56 +00003557**
drh8cff69d2009-11-12 19:59:44 +00003558** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3559** P4>0 then register P3 is the first of P4 registers that form an unpacked
3560** record.
3561**
3562** Cursor P1 is on an index btree. If the record identified by P3 and P4
3563** is not the prefix of any entry in P1 then a jump is made to P2. If P1
3564** does contain an entry whose prefix matches the P3/P4 record then control
3565** falls through to the next instruction and P1 is left pointing at the
3566** matching entry.
drh5e00f6c2001-09-13 13:46:56 +00003567**
drhcb6d50e2008-08-21 19:28:30 +00003568** See also: Found, NotExists, IsUnique
drh5e00f6c2001-09-13 13:46:56 +00003569*/
drh9cbf3422008-01-17 16:22:13 +00003570case OP_NotFound: /* jump, in3 */
3571case OP_Found: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003572 int alreadyExists;
drhdfe88ec2008-11-03 20:55:06 +00003573 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003574 int res;
dan03e9cfc2011-09-05 14:20:27 +00003575 char *pFree;
drh856c1032009-06-02 15:21:42 +00003576 UnpackedRecord *pIdxKey;
drh8cff69d2009-11-12 19:59:44 +00003577 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00003578 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];
3579
dan0ff297e2009-09-25 17:03:14 +00003580#ifdef SQLITE_TEST
3581 sqlite3_found_count++;
3582#endif
3583
drh856c1032009-06-02 15:21:42 +00003584 alreadyExists = 0;
drhaa736092009-06-22 00:55:30 +00003585 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh8cff69d2009-11-12 19:59:44 +00003586 assert( pOp->p4type==P4_INT32 );
drhaa736092009-06-22 00:55:30 +00003587 pC = p->apCsr[pOp->p1];
3588 assert( pC!=0 );
drh3c657212009-11-17 23:59:58 +00003589 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00003590 if( ALWAYS(pC->pCursor!=0) ){
drhe63d9992008-08-13 19:11:48 +00003591
drhf0863fe2005-06-12 21:35:51 +00003592 assert( pC->isTable==0 );
drh8cff69d2009-11-12 19:59:44 +00003593 if( pOp->p4.i>0 ){
3594 r.pKeyInfo = pC->pKeyInfo;
shaneh5e17e8b2009-12-03 04:40:47 +00003595 r.nField = (u16)pOp->p4.i;
drh8cff69d2009-11-12 19:59:44 +00003596 r.aMem = pIn3;
drh2b4ded92010-09-27 21:09:31 +00003597#ifdef SQLITE_DEBUG
3598 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3599#endif
drh8cff69d2009-11-12 19:59:44 +00003600 r.flags = UNPACKED_PREFIX_MATCH;
3601 pIdxKey = &r;
3602 }else{
dan03e9cfc2011-09-05 14:20:27 +00003603 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
3604 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
3605 );
3606 if( pIdxKey==0 ) goto no_mem;
drh8cff69d2009-11-12 19:59:44 +00003607 assert( pIn3->flags & MEM_Blob );
drhd81a1422010-09-28 07:11:24 +00003608 assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */
dan03e9cfc2011-09-05 14:20:27 +00003609 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
drh8cff69d2009-11-12 19:59:44 +00003610 pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
danielk19779a96b662007-11-29 17:05:18 +00003611 }
drhe63d9992008-08-13 19:11:48 +00003612 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
drh8cff69d2009-11-12 19:59:44 +00003613 if( pOp->p4.i==0 ){
dan03e9cfc2011-09-05 14:20:27 +00003614 sqlite3DbFree(db, pFree);
drh8cff69d2009-11-12 19:59:44 +00003615 }
danielk197777519402007-08-30 11:48:31 +00003616 if( rc!=SQLITE_OK ){
3617 break;
3618 }
3619 alreadyExists = (res==0);
drha11846b2004-01-07 18:52:56 +00003620 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00003621 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00003622 }
3623 if( pOp->opcode==OP_Found ){
3624 if( alreadyExists ) pc = pOp->p2 - 1;
3625 }else{
3626 if( !alreadyExists ) pc = pOp->p2 - 1;
3627 }
drh5e00f6c2001-09-13 13:46:56 +00003628 break;
3629}
3630
drh98757152008-01-09 23:04:12 +00003631/* Opcode: IsUnique P1 P2 P3 P4 *
drh9cfcf5d2002-01-29 18:41:24 +00003632**
drh8cff69d2009-11-12 19:59:44 +00003633** Cursor P1 is open on an index b-tree - that is to say, a btree which
3634** no data and where the key are records generated by OP_MakeRecord with
3635** the list field being the integer ROWID of the entry that the index
3636** entry refers to.
danielk1977de630352009-05-04 11:42:29 +00003637**
3638** The P3 register contains an integer record number. Call this record
3639** number R. Register P4 is the first in a set of N contiguous registers
3640** that make up an unpacked index key that can be used with cursor P1.
3641** The value of N can be inferred from the cursor. N includes the rowid
3642** value appended to the end of the index record. This rowid value may
3643** or may not be the same as R.
3644**
3645** If any of the N registers beginning with register P4 contains a NULL
3646** value, jump immediately to P2.
3647**
3648** Otherwise, this instruction checks if cursor P1 contains an entry
3649** where the first (N-1) fields match but the rowid value at the end
3650** of the index entry is not R. If there is no such entry, control jumps
3651** to instruction P2. Otherwise, the rowid of the conflicting index
3652** entry is copied to register P3 and control falls through to the next
3653** instruction.
drh9cfcf5d2002-01-29 18:41:24 +00003654**
drh9cbf3422008-01-17 16:22:13 +00003655** See also: NotFound, NotExists, Found
drh9cfcf5d2002-01-29 18:41:24 +00003656*/
drh9cbf3422008-01-17 16:22:13 +00003657case OP_IsUnique: { /* jump, in3 */
shane60a4b532009-05-06 18:57:09 +00003658 u16 ii;
drhdfe88ec2008-11-03 20:55:06 +00003659 VdbeCursor *pCx;
drh9cfcf5d2002-01-29 18:41:24 +00003660 BtCursor *pCrsr;
shane60a4b532009-05-06 18:57:09 +00003661 u16 nField;
drha6c2ed92009-11-14 23:22:23 +00003662 Mem *aMx;
drh856c1032009-06-02 15:21:42 +00003663 UnpackedRecord r; /* B-Tree index search key */
3664 i64 R; /* Rowid stored in register P3 */
drh9cfcf5d2002-01-29 18:41:24 +00003665
drh3c657212009-11-17 23:59:58 +00003666 pIn3 = &aMem[pOp->p3];
drha6c2ed92009-11-14 23:22:23 +00003667 aMx = &aMem[pOp->p4.i];
danielk1977de630352009-05-04 11:42:29 +00003668 /* Assert that the values of parameters P1 and P4 are in range. */
drh98757152008-01-09 23:04:12 +00003669 assert( pOp->p4type==P4_INT32 );
drh9cbf3422008-01-17 16:22:13 +00003670 assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
danielk1977de630352009-05-04 11:42:29 +00003671 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3672
3673 /* Find the index cursor. */
3674 pCx = p->apCsr[pOp->p1];
3675 assert( pCx->deferredMoveto==0 );
3676 pCx->seekResult = 0;
3677 pCx->cacheStatus = CACHE_STALE;
drhf328bc82004-05-10 23:29:49 +00003678 pCrsr = pCx->pCursor;
danielk1977de630352009-05-04 11:42:29 +00003679
3680 /* If any of the values are NULL, take the jump. */
3681 nField = pCx->pKeyInfo->nField;
3682 for(ii=0; ii<nField; ii++){
drha6c2ed92009-11-14 23:22:23 +00003683 if( aMx[ii].flags & MEM_Null ){
danielk1977de630352009-05-04 11:42:29 +00003684 pc = pOp->p2 - 1;
3685 pCrsr = 0;
3686 break;
3687 }
3688 }
drha6c2ed92009-11-14 23:22:23 +00003689 assert( (aMx[nField].flags & MEM_Null)==0 );
danielk1977de630352009-05-04 11:42:29 +00003690
drhf328bc82004-05-10 23:29:49 +00003691 if( pCrsr!=0 ){
danielk1977de630352009-05-04 11:42:29 +00003692 /* Populate the index search key. */
3693 r.pKeyInfo = pCx->pKeyInfo;
3694 r.nField = nField + 1;
3695 r.flags = UNPACKED_PREFIX_SEARCH;
drha6c2ed92009-11-14 23:22:23 +00003696 r.aMem = aMx;
drh2b4ded92010-09-27 21:09:31 +00003697#ifdef SQLITE_DEBUG
3698 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3699#endif
danielk1977452c9892004-05-13 05:16:15 +00003700
danielk1977de630352009-05-04 11:42:29 +00003701 /* Extract the value of R from register P3. */
3702 sqlite3VdbeMemIntegerify(pIn3);
3703 R = pIn3->u.i;
3704
3705 /* Search the B-Tree index. If no conflicting record is found, jump
3706 ** to P2. Otherwise, copy the rowid of the conflicting record to
3707 ** register P3 and fall through to the next instruction. */
3708 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &pCx->seekResult);
3709 if( (r.flags & UNPACKED_PREFIX_SEARCH) || r.rowid==R ){
drh9cfcf5d2002-01-29 18:41:24 +00003710 pc = pOp->p2 - 1;
danielk1977de630352009-05-04 11:42:29 +00003711 }else{
3712 pIn3->u.i = r.rowid;
drh9cfcf5d2002-01-29 18:41:24 +00003713 }
drh9cfcf5d2002-01-29 18:41:24 +00003714 }
3715 break;
3716}
3717
drh9cbf3422008-01-17 16:22:13 +00003718/* Opcode: NotExists P1 P2 P3 * *
drh6b125452002-01-28 15:53:03 +00003719**
drhef8662b2011-06-20 21:47:58 +00003720** Use the content of register P3 as an integer key. If a record
danielk197796cb76f2008-01-04 13:24:28 +00003721** with that key does not exist in table of P1, then jump to P2.
drh710c4842010-08-30 01:17:20 +00003722** If the record does exist, then fall through. The cursor is left
drh9cbf3422008-01-17 16:22:13 +00003723** pointing to the record if it exists.
drh6b125452002-01-28 15:53:03 +00003724**
3725** The difference between this operation and NotFound is that this
drhf0863fe2005-06-12 21:35:51 +00003726** operation assumes the key is an integer and that P1 is a table whereas
3727** NotFound assumes key is a blob constructed from MakeRecord and
3728** P1 is an index.
drh6b125452002-01-28 15:53:03 +00003729**
drhcb6d50e2008-08-21 19:28:30 +00003730** See also: Found, NotFound, IsUnique
drh6b125452002-01-28 15:53:03 +00003731*/
drh9cbf3422008-01-17 16:22:13 +00003732case OP_NotExists: { /* jump, in3 */
drhdfe88ec2008-11-03 20:55:06 +00003733 VdbeCursor *pC;
drh0ca3e242002-01-29 23:07:02 +00003734 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00003735 int res;
3736 u64 iKey;
3737
drh3c657212009-11-17 23:59:58 +00003738 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00003739 assert( pIn3->flags & MEM_Int );
3740 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3741 pC = p->apCsr[pOp->p1];
3742 assert( pC!=0 );
3743 assert( pC->isTable );
drh3e9ca092009-09-08 01:14:48 +00003744 assert( pC->pseudoTableReg==0 );
drhaa736092009-06-22 00:55:30 +00003745 pCrsr = pC->pCursor;
dana205a482011-08-27 18:48:57 +00003746 if( ALWAYS(pCrsr!=0) ){
drh856c1032009-06-02 15:21:42 +00003747 res = 0;
drhaa736092009-06-22 00:55:30 +00003748 iKey = pIn3->u.i;
danielk1977de630352009-05-04 11:42:29 +00003749 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
drh98757152008-01-09 23:04:12 +00003750 pC->lastRowid = pIn3->u.i;
drh9c1905f2008-12-10 22:32:56 +00003751 pC->rowidIsValid = res==0 ?1:0;
drh9188b382004-05-14 21:12:22 +00003752 pC->nullRow = 0;
drh76873ab2006-01-07 18:48:26 +00003753 pC->cacheStatus = CACHE_STALE;
danielk19771d461462009-04-21 09:02:45 +00003754 pC->deferredMoveto = 0;
danielk197728129562005-01-11 10:25:06 +00003755 if( res!=0 ){
drh17f71932002-02-21 12:01:27 +00003756 pc = pOp->p2 - 1;
drh91fd4d42008-01-19 20:11:25 +00003757 assert( pC->rowidIsValid==0 );
drh6b125452002-01-28 15:53:03 +00003758 }
danielk1977de630352009-05-04 11:42:29 +00003759 pC->seekResult = res;
drhaa736092009-06-22 00:55:30 +00003760 }else{
danielk1977f7b9d662008-06-23 18:49:43 +00003761 /* This happens when an attempt to open a read cursor on the
3762 ** sqlite_master table returns SQLITE_EMPTY.
3763 */
danielk1977f7b9d662008-06-23 18:49:43 +00003764 pc = pOp->p2 - 1;
3765 assert( pC->rowidIsValid==0 );
danielk1977de630352009-05-04 11:42:29 +00003766 pC->seekResult = 0;
drh6b125452002-01-28 15:53:03 +00003767 }
drh6b125452002-01-28 15:53:03 +00003768 break;
3769}
3770
drh4c583122008-01-04 22:01:03 +00003771/* Opcode: Sequence P1 P2 * * *
drh4db38a72005-09-01 12:16:28 +00003772**
drh4c583122008-01-04 22:01:03 +00003773** Find the next available sequence number for cursor P1.
drh9cbf3422008-01-17 16:22:13 +00003774** Write the sequence number into register P2.
drh4c583122008-01-04 22:01:03 +00003775** The sequence number on the cursor is incremented after this
3776** instruction.
drh4db38a72005-09-01 12:16:28 +00003777*/
drh4c583122008-01-04 22:01:03 +00003778case OP_Sequence: { /* out2-prerelease */
drh653b82a2009-06-22 11:10:47 +00003779 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3780 assert( p->apCsr[pOp->p1]!=0 );
3781 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
drh4db38a72005-09-01 12:16:28 +00003782 break;
3783}
3784
3785
drh98757152008-01-09 23:04:12 +00003786/* Opcode: NewRowid P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00003787**
drhf0863fe2005-06-12 21:35:51 +00003788** Get a new integer record number (a.k.a "rowid") used as the key to a table.
drhb19a2bc2001-09-16 00:13:26 +00003789** The record number is not previously used as a key in the database
drh9cbf3422008-01-17 16:22:13 +00003790** table that cursor P1 points to. The new record number is written
3791** written to register P2.
drh205f48e2004-11-05 00:43:11 +00003792**
dan76d462e2009-08-30 11:42:51 +00003793** If P3>0 then P3 is a register in the root frame of this VDBE that holds
3794** the largest previously generated record number. No new record numbers are
3795** allowed to be less than this value. When this value reaches its maximum,
drhef8662b2011-06-20 21:47:58 +00003796** an SQLITE_FULL error is generated. The P3 register is updated with the '
dan76d462e2009-08-30 11:42:51 +00003797** generated record number. This P3 mechanism is used to help implement the
drh205f48e2004-11-05 00:43:11 +00003798** AUTOINCREMENT feature.
drh5e00f6c2001-09-13 13:46:56 +00003799*/
drh4c583122008-01-04 22:01:03 +00003800case OP_NewRowid: { /* out2-prerelease */
drhaa736092009-06-22 00:55:30 +00003801 i64 v; /* The new rowid */
3802 VdbeCursor *pC; /* Cursor of table to get the new rowid */
3803 int res; /* Result of an sqlite3BtreeLast() */
3804 int cnt; /* Counter to limit the number of searches */
3805 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
dan76d462e2009-08-30 11:42:51 +00003806 VdbeFrame *pFrame; /* Root frame of VDBE */
drh856c1032009-06-02 15:21:42 +00003807
drh856c1032009-06-02 15:21:42 +00003808 v = 0;
3809 res = 0;
drhaa736092009-06-22 00:55:30 +00003810 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3811 pC = p->apCsr[pOp->p1];
3812 assert( pC!=0 );
3813 if( NEVER(pC->pCursor==0) ){
drhf328bc82004-05-10 23:29:49 +00003814 /* The zero initialization above is all that is needed */
drh5e00f6c2001-09-13 13:46:56 +00003815 }else{
drh5cf8e8c2002-02-19 22:42:05 +00003816 /* The next rowid or record number (different terms for the same
3817 ** thing) is obtained in a two-step algorithm.
3818 **
3819 ** First we attempt to find the largest existing rowid and add one
3820 ** to that. But if the largest existing rowid is already the maximum
3821 ** positive integer, we have to fall through to the second
3822 ** probabilistic algorithm
3823 **
3824 ** The second algorithm is to select a rowid at random and see if
3825 ** it already exists in the table. If it does not exist, we have
3826 ** succeeded. If the random rowid does exist, we select a new one
drhaa736092009-06-22 00:55:30 +00003827 ** and try again, up to 100 times.
drhdb5ed6d2001-09-18 22:17:44 +00003828 */
drhaa736092009-06-22 00:55:30 +00003829 assert( pC->isTable );
drhfe2093d2005-01-20 22:48:47 +00003830
drh75f86a42005-02-17 00:03:06 +00003831#ifdef SQLITE_32BIT_ROWID
3832# define MAX_ROWID 0x7fffffff
3833#else
drhfe2093d2005-01-20 22:48:47 +00003834 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
3835 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
3836 ** to provide the constant while making all compilers happy.
3837 */
danielk197764202cf2008-11-17 15:31:47 +00003838# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
drh75f86a42005-02-17 00:03:06 +00003839#endif
drhfe2093d2005-01-20 22:48:47 +00003840
drh5cf8e8c2002-02-19 22:42:05 +00003841 if( !pC->useRandomRowid ){
drh7f751222009-03-17 22:33:00 +00003842 v = sqlite3BtreeGetCachedRowid(pC->pCursor);
3843 if( v==0 ){
danielk1977261919c2005-12-06 12:52:59 +00003844 rc = sqlite3BtreeLast(pC->pCursor, &res);
3845 if( rc!=SQLITE_OK ){
3846 goto abort_due_to_error;
3847 }
drh32fbe342002-10-19 20:16:37 +00003848 if( res ){
drhc79c7612010-01-01 18:57:48 +00003849 v = 1; /* IMP: R-61914-48074 */
drh5cf8e8c2002-02-19 22:42:05 +00003850 }else{
drhea8ffdf2009-07-22 00:35:23 +00003851 assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
drhc27ae612009-07-14 18:35:44 +00003852 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
3853 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
drh75f86a42005-02-17 00:03:06 +00003854 if( v==MAX_ROWID ){
drh32fbe342002-10-19 20:16:37 +00003855 pC->useRandomRowid = 1;
3856 }else{
drhc79c7612010-01-01 18:57:48 +00003857 v++; /* IMP: R-29538-34987 */
drh32fbe342002-10-19 20:16:37 +00003858 }
drh5cf8e8c2002-02-19 22:42:05 +00003859 }
drh3fc190c2001-09-14 03:24:23 +00003860 }
drh205f48e2004-11-05 00:43:11 +00003861
3862#ifndef SQLITE_OMIT_AUTOINCREMENT
drh4c583122008-01-04 22:01:03 +00003863 if( pOp->p3 ){
shaneabc6b892009-09-10 19:09:03 +00003864 /* Assert that P3 is a valid memory cell. */
3865 assert( pOp->p3>0 );
dan76d462e2009-08-30 11:42:51 +00003866 if( p->pFrame ){
3867 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
shaneabc6b892009-09-10 19:09:03 +00003868 /* Assert that P3 is a valid memory cell. */
3869 assert( pOp->p3<=pFrame->nMem );
dan76d462e2009-08-30 11:42:51 +00003870 pMem = &pFrame->aMem[pOp->p3];
3871 }else{
shaneabc6b892009-09-10 19:09:03 +00003872 /* Assert that P3 is a valid memory cell. */
3873 assert( pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00003874 pMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00003875 memAboutToChange(p, pMem);
dan76d462e2009-08-30 11:42:51 +00003876 }
drh2b4ded92010-09-27 21:09:31 +00003877 assert( memIsValid(pMem) );
dan76d462e2009-08-30 11:42:51 +00003878
3879 REGISTER_TRACE(pOp->p3, pMem);
drh8a512562005-11-14 22:29:05 +00003880 sqlite3VdbeMemIntegerify(pMem);
drh4c583122008-01-04 22:01:03 +00003881 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
drh3c024d62007-03-30 11:23:45 +00003882 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
drhc79c7612010-01-01 18:57:48 +00003883 rc = SQLITE_FULL; /* IMP: R-12275-61338 */
drh205f48e2004-11-05 00:43:11 +00003884 goto abort_due_to_error;
3885 }
drh3c024d62007-03-30 11:23:45 +00003886 if( v<pMem->u.i+1 ){
3887 v = pMem->u.i + 1;
drh205f48e2004-11-05 00:43:11 +00003888 }
drh3c024d62007-03-30 11:23:45 +00003889 pMem->u.i = v;
drh205f48e2004-11-05 00:43:11 +00003890 }
3891#endif
3892
drh7f751222009-03-17 22:33:00 +00003893 sqlite3BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0);
drh5cf8e8c2002-02-19 22:42:05 +00003894 }
3895 if( pC->useRandomRowid ){
drh748a52c2010-09-01 11:50:08 +00003896 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
drhc79c7612010-01-01 18:57:48 +00003897 ** largest possible integer (9223372036854775807) then the database
drh748a52c2010-09-01 11:50:08 +00003898 ** engine starts picking positive candidate ROWIDs at random until
3899 ** it finds one that is not previously used. */
drhaa736092009-06-22 00:55:30 +00003900 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
3901 ** an AUTOINCREMENT table. */
shanehc4d340a2010-09-01 02:37:56 +00003902 /* on the first attempt, simply do one more than previous */
drh99a66922011-05-13 18:51:42 +00003903 v = lastRowid;
shanehc4d340a2010-09-01 02:37:56 +00003904 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
3905 v++; /* ensure non-zero */
drh5cf8e8c2002-02-19 22:42:05 +00003906 cnt = 0;
drh748a52c2010-09-01 11:50:08 +00003907 while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
3908 0, &res))==SQLITE_OK)
shanehc4d340a2010-09-01 02:37:56 +00003909 && (res==0)
3910 && (++cnt<100)){
3911 /* collision - try another random rowid */
3912 sqlite3_randomness(sizeof(v), &v);
3913 if( cnt<5 ){
3914 /* try "small" random rowids for the initial attempts */
3915 v &= 0xffffff;
drh91fd4d42008-01-19 20:11:25 +00003916 }else{
shanehc4d340a2010-09-01 02:37:56 +00003917 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
drh5cf8e8c2002-02-19 22:42:05 +00003918 }
shanehc4d340a2010-09-01 02:37:56 +00003919 v++; /* ensure non-zero */
3920 }
drhaa736092009-06-22 00:55:30 +00003921 if( rc==SQLITE_OK && res==0 ){
drhc79c7612010-01-01 18:57:48 +00003922 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
drh5cf8e8c2002-02-19 22:42:05 +00003923 goto abort_due_to_error;
3924 }
drh748a52c2010-09-01 11:50:08 +00003925 assert( v>0 ); /* EV: R-40812-03570 */
drh1eaa2692001-09-18 02:02:23 +00003926 }
drhf0863fe2005-06-12 21:35:51 +00003927 pC->rowidIsValid = 0;
drha11846b2004-01-07 18:52:56 +00003928 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00003929 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00003930 }
drh4c583122008-01-04 22:01:03 +00003931 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00003932 break;
3933}
3934
danielk19771f4aa332008-01-03 09:51:55 +00003935/* Opcode: Insert P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00003936**
jplyon5a564222003-06-02 06:15:58 +00003937** Write an entry into the table of cursor P1. A new entry is
drhb19a2bc2001-09-16 00:13:26 +00003938** created if it doesn't already exist or the data for an existing
drh3e9ca092009-09-08 01:14:48 +00003939** entry is overwritten. The data is the value MEM_Blob stored in register
danielk19771f4aa332008-01-03 09:51:55 +00003940** number P2. The key is stored in register P3. The key must
drh3e9ca092009-09-08 01:14:48 +00003941** be a MEM_Int.
drh4a324312001-12-21 14:30:42 +00003942**
danielk19771f4aa332008-01-03 09:51:55 +00003943** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
3944** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
danielk1977b28af712004-06-21 06:50:26 +00003945** then rowid is stored for subsequent return by the
drh85b623f2007-12-13 21:54:09 +00003946** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
drh6b125452002-01-28 15:53:03 +00003947**
drh3e9ca092009-09-08 01:14:48 +00003948** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
3949** the last seek operation (OP_NotExists) was a success, then this
3950** operation will not attempt to find the appropriate row before doing
3951** the insert but will instead overwrite the row that the cursor is
3952** currently pointing to. Presumably, the prior OP_NotExists opcode
3953** has already positioned the cursor correctly. This is an optimization
3954** that boosts performance by avoiding redundant seeks.
3955**
3956** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
3957** UPDATE operation. Otherwise (if the flag is clear) then this opcode
3958** is part of an INSERT operation. The difference is only important to
3959** the update hook.
3960**
drh66a51672008-01-03 00:01:23 +00003961** Parameter P4 may point to a string containing the table-name, or
danielk19771f6eec52006-06-16 06:17:47 +00003962** may be NULL. If it is not NULL, then the update-hook
3963** (sqlite3.xUpdateCallback) is invoked following a successful insert.
3964**
drh93aed5a2008-01-16 17:46:38 +00003965** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
3966** allocated, then ownership of P2 is transferred to the pseudo-cursor
3967** and register P2 becomes ephemeral. If the cursor is changed, the
3968** value of register P2 will then change. Make sure this does not
3969** cause any problems.)
3970**
drhf0863fe2005-06-12 21:35:51 +00003971** This instruction only works on tables. The equivalent instruction
3972** for indices is OP_IdxInsert.
drh6b125452002-01-28 15:53:03 +00003973*/
drhe05c9292009-10-29 13:48:10 +00003974/* Opcode: InsertInt P1 P2 P3 P4 P5
3975**
3976** This works exactly like OP_Insert except that the key is the
3977** integer value P3, not the value of the integer stored in register P3.
3978*/
3979case OP_Insert:
3980case OP_InsertInt: {
drh3e9ca092009-09-08 01:14:48 +00003981 Mem *pData; /* MEM cell holding data for the record to be inserted */
3982 Mem *pKey; /* MEM cell holding key for the record */
3983 i64 iKey; /* The integer ROWID or key for the record to be inserted */
3984 VdbeCursor *pC; /* Cursor to table into which insert is written */
3985 int nZero; /* Number of zero-bytes to append */
3986 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
3987 const char *zDb; /* database name - used by the update hook */
3988 const char *zTbl; /* Table name - used by the opdate hook */
3989 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
drh856c1032009-06-02 15:21:42 +00003990
drha6c2ed92009-11-14 23:22:23 +00003991 pData = &aMem[pOp->p2];
drh653b82a2009-06-22 11:10:47 +00003992 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh2b4ded92010-09-27 21:09:31 +00003993 assert( memIsValid(pData) );
drh653b82a2009-06-22 11:10:47 +00003994 pC = p->apCsr[pOp->p1];
drha05a7222008-01-19 03:35:58 +00003995 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00003996 assert( pC->pCursor!=0 );
3997 assert( pC->pseudoTableReg==0 );
drha05a7222008-01-19 03:35:58 +00003998 assert( pC->isTable );
drh5b6afba2008-01-05 16:29:28 +00003999 REGISTER_TRACE(pOp->p2, pData);
danielk19775f8d8a82004-05-11 00:28:42 +00004000
drhe05c9292009-10-29 13:48:10 +00004001 if( pOp->opcode==OP_Insert ){
drha6c2ed92009-11-14 23:22:23 +00004002 pKey = &aMem[pOp->p3];
drhe05c9292009-10-29 13:48:10 +00004003 assert( pKey->flags & MEM_Int );
drh2b4ded92010-09-27 21:09:31 +00004004 assert( memIsValid(pKey) );
drhe05c9292009-10-29 13:48:10 +00004005 REGISTER_TRACE(pOp->p3, pKey);
4006 iKey = pKey->u.i;
4007 }else{
4008 assert( pOp->opcode==OP_InsertInt );
4009 iKey = pOp->p3;
4010 }
4011
drha05a7222008-01-19 03:35:58 +00004012 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drh99a66922011-05-13 18:51:42 +00004013 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
drha05a7222008-01-19 03:35:58 +00004014 if( pData->flags & MEM_Null ){
4015 pData->z = 0;
4016 pData->n = 0;
4017 }else{
4018 assert( pData->flags & (MEM_Blob|MEM_Str) );
4019 }
drh3e9ca092009-09-08 01:14:48 +00004020 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4021 if( pData->flags & MEM_Zero ){
4022 nZero = pData->u.nZero;
drha05a7222008-01-19 03:35:58 +00004023 }else{
drh3e9ca092009-09-08 01:14:48 +00004024 nZero = 0;
drha05a7222008-01-19 03:35:58 +00004025 }
drh3e9ca092009-09-08 01:14:48 +00004026 sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
4027 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
4028 pData->z, pData->n, nZero,
4029 pOp->p5 & OPFLAG_APPEND, seekResult
4030 );
drha05a7222008-01-19 03:35:58 +00004031 pC->rowidIsValid = 0;
4032 pC->deferredMoveto = 0;
4033 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004034
drha05a7222008-01-19 03:35:58 +00004035 /* Invoke the update-hook if required. */
4036 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
drh856c1032009-06-02 15:21:42 +00004037 zDb = db->aDb[pC->iDb].zName;
4038 zTbl = pOp->p4.z;
4039 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
drha05a7222008-01-19 03:35:58 +00004040 assert( pC->isTable );
4041 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
4042 assert( pC->iDb>=0 );
4043 }
drh5e00f6c2001-09-13 13:46:56 +00004044 break;
4045}
4046
drh98757152008-01-09 23:04:12 +00004047/* Opcode: Delete P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +00004048**
drh5edc3122001-09-13 21:53:09 +00004049** Delete the record at which the P1 cursor is currently pointing.
4050**
4051** The cursor will be left pointing at either the next or the previous
4052** record in the table. If it is left pointing at the next record, then
drhb19a2bc2001-09-16 00:13:26 +00004053** the next Next instruction will be a no-op. Hence it is OK to delete
4054** a record from within an Next loop.
drhc8d30ac2002-04-12 10:08:59 +00004055**
rdcb0c374f2004-02-20 22:53:38 +00004056** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
danielk1977b28af712004-06-21 06:50:26 +00004057** incremented (otherwise not).
drh70ce3f02003-04-15 19:22:22 +00004058**
drh91fd4d42008-01-19 20:11:25 +00004059** P1 must not be pseudo-table. It has to be a real table with
4060** multiple rows.
4061**
4062** If P4 is not NULL, then it is the name of the table that P1 is
4063** pointing to. The update hook will be invoked, if it exists.
4064** If P4 is not NULL then the P1 cursor must have been positioned
4065** using OP_NotFound prior to invoking this opcode.
drh5e00f6c2001-09-13 13:46:56 +00004066*/
drh9cbf3422008-01-17 16:22:13 +00004067case OP_Delete: {
drh856c1032009-06-02 15:21:42 +00004068 i64 iKey;
drhdfe88ec2008-11-03 20:55:06 +00004069 VdbeCursor *pC;
drh91fd4d42008-01-19 20:11:25 +00004070
drh856c1032009-06-02 15:21:42 +00004071 iKey = 0;
drh653b82a2009-06-22 11:10:47 +00004072 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4073 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004074 assert( pC!=0 );
drh91fd4d42008-01-19 20:11:25 +00004075 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
danielk197794eb6a12005-12-15 15:22:08 +00004076
drh91fd4d42008-01-19 20:11:25 +00004077 /* If the update-hook will be invoked, set iKey to the rowid of the
4078 ** row being deleted.
4079 */
4080 if( db->xUpdateCallback && pOp->p4.z ){
4081 assert( pC->isTable );
4082 assert( pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */
4083 iKey = pC->lastRowid;
4084 }
danielk197794eb6a12005-12-15 15:22:08 +00004085
drh9a65f2c2009-06-22 19:05:40 +00004086 /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
4087 ** OP_Column on the same table without any intervening operations that
4088 ** might move or invalidate the cursor. Hence cursor pC is always pointing
4089 ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
4090 ** below is always a no-op and cannot fail. We will run it anyhow, though,
4091 ** to guard against future changes to the code generator.
4092 **/
4093 assert( pC->deferredMoveto==0 );
drh91fd4d42008-01-19 20:11:25 +00004094 rc = sqlite3VdbeCursorMoveto(pC);
drh9a65f2c2009-06-22 19:05:40 +00004095 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4096
drh7f751222009-03-17 22:33:00 +00004097 sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
drh91fd4d42008-01-19 20:11:25 +00004098 rc = sqlite3BtreeDelete(pC->pCursor);
drh91fd4d42008-01-19 20:11:25 +00004099 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004100
drh91fd4d42008-01-19 20:11:25 +00004101 /* Invoke the update-hook if required. */
4102 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
4103 const char *zDb = db->aDb[pC->iDb].zName;
4104 const char *zTbl = pOp->p4.z;
4105 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
4106 assert( pC->iDb>=0 );
drh5e00f6c2001-09-13 13:46:56 +00004107 }
danielk1977b28af712004-06-21 06:50:26 +00004108 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
rdcb0c374f2004-02-20 22:53:38 +00004109 break;
4110}
drhb7f1d9a2009-09-08 02:27:58 +00004111/* Opcode: ResetCount * * * * *
rdcb0c374f2004-02-20 22:53:38 +00004112**
drhb7f1d9a2009-09-08 02:27:58 +00004113** The value of the change counter is copied to the database handle
4114** change counter (returned by subsequent calls to sqlite3_changes()).
4115** Then the VMs internal change counter resets to 0.
4116** This is used by trigger programs.
rdcb0c374f2004-02-20 22:53:38 +00004117*/
drh9cbf3422008-01-17 16:22:13 +00004118case OP_ResetCount: {
drhb7f1d9a2009-09-08 02:27:58 +00004119 sqlite3VdbeSetChanges(db, p->nChange);
danielk1977b28af712004-06-21 06:50:26 +00004120 p->nChange = 0;
drh5e00f6c2001-09-13 13:46:56 +00004121 break;
4122}
4123
dan5134d132011-09-02 10:31:11 +00004124/* Opcode: SorterCompare P1 P2 P3
4125**
4126** P1 is a sorter cursor. This instruction compares the record blob in
4127** register P3 with the entry that the sorter cursor currently points to.
4128** If, excluding the rowid fields at the end, the two records are a match,
4129** fall through to the next instruction. Otherwise, jump to instruction P2.
4130*/
4131case OP_SorterCompare: {
4132 VdbeCursor *pC;
4133 int res;
4134
4135 pC = p->apCsr[pOp->p1];
4136 assert( isSorter(pC) );
4137 pIn3 = &aMem[pOp->p3];
4138 rc = sqlite3VdbeSorterCompare(pC, pIn3, &res);
4139 if( res ){
4140 pc = pOp->p2-1;
4141 }
4142 break;
4143};
4144
4145/* Opcode: SorterData P1 P2 * * *
4146**
4147** Write into register P2 the current sorter data for sorter cursor P1.
4148*/
4149case OP_SorterData: {
4150 VdbeCursor *pC;
drhca892a72011-09-03 00:17:51 +00004151#ifndef SQLITE_OMIT_MERGE_SORT
dan5134d132011-09-02 10:31:11 +00004152 pOut = &aMem[pOp->p2];
4153 pC = p->apCsr[pOp->p1];
4154 assert( pC->isSorter );
4155 rc = sqlite3VdbeSorterRowkey(pC, pOut);
drhca892a72011-09-03 00:17:51 +00004156#else
4157 pOp->opcode = OP_RowKey;
4158 pc--;
4159#endif
dan5134d132011-09-02 10:31:11 +00004160 break;
4161}
4162
drh98757152008-01-09 23:04:12 +00004163/* Opcode: RowData P1 P2 * * *
drh70ce3f02003-04-15 19:22:22 +00004164**
drh98757152008-01-09 23:04:12 +00004165** Write into register P2 the complete row data for cursor P1.
4166** There is no interpretation of the data.
4167** It is just copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004168** it is found in the database file.
drh70ce3f02003-04-15 19:22:22 +00004169**
drhde4fcfd2008-01-19 23:50:26 +00004170** If the P1 cursor must be pointing to a valid row (not a NULL row)
4171** of a real table, not a pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00004172*/
drh98757152008-01-09 23:04:12 +00004173/* Opcode: RowKey P1 P2 * * *
drh143f3c42004-01-07 20:37:52 +00004174**
drh98757152008-01-09 23:04:12 +00004175** Write into register P2 the complete row key for cursor P1.
4176** There is no interpretation of the data.
drh9cbf3422008-01-17 16:22:13 +00004177** The key is copied onto the P3 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004178** it is found in the database file.
drh143f3c42004-01-07 20:37:52 +00004179**
drhde4fcfd2008-01-19 23:50:26 +00004180** If the P1 cursor must be pointing to a valid row (not a NULL row)
4181** of a real table, not a pseudo-table.
drh143f3c42004-01-07 20:37:52 +00004182*/
danielk1977a7a8e142008-02-13 18:25:27 +00004183case OP_RowKey:
4184case OP_RowData: {
drhdfe88ec2008-11-03 20:55:06 +00004185 VdbeCursor *pC;
drhde4fcfd2008-01-19 23:50:26 +00004186 BtCursor *pCrsr;
danielk1977e0d4b062004-06-28 01:11:46 +00004187 u32 n;
drh856c1032009-06-02 15:21:42 +00004188 i64 n64;
drh70ce3f02003-04-15 19:22:22 +00004189
drha6c2ed92009-11-14 23:22:23 +00004190 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00004191 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00004192
drhf0863fe2005-06-12 21:35:51 +00004193 /* Note that RowKey and RowData are really exactly the same instruction */
drh653b82a2009-06-22 11:10:47 +00004194 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4195 pC = p->apCsr[pOp->p1];
dan5134d132011-09-02 10:31:11 +00004196 assert( pC->isSorter==0 );
drhc6aff302011-09-01 15:32:47 +00004197 assert( pC->isTable || pOp->opcode!=OP_RowData );
drhf0863fe2005-06-12 21:35:51 +00004198 assert( pC->isIndex || pOp->opcode==OP_RowData );
drh4774b132004-06-12 20:12:51 +00004199 assert( pC!=0 );
drhde4fcfd2008-01-19 23:50:26 +00004200 assert( pC->nullRow==0 );
drh3e9ca092009-09-08 01:14:48 +00004201 assert( pC->pseudoTableReg==0 );
drhca892a72011-09-03 00:17:51 +00004202 assert( !pC->isSorter );
drhde4fcfd2008-01-19 23:50:26 +00004203 assert( pC->pCursor!=0 );
4204 pCrsr = pC->pCursor;
drhea8ffdf2009-07-22 00:35:23 +00004205 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drh9a65f2c2009-06-22 19:05:40 +00004206
4207 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4208 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
4209 ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always
4210 ** a no-op and can never fail. But we leave it in place as a safety.
4211 */
4212 assert( pC->deferredMoveto==0 );
drhde4fcfd2008-01-19 23:50:26 +00004213 rc = sqlite3VdbeCursorMoveto(pC);
drh9a65f2c2009-06-22 19:05:40 +00004214 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4215
drhde4fcfd2008-01-19 23:50:26 +00004216 if( pC->isIndex ){
drhde4fcfd2008-01-19 23:50:26 +00004217 assert( !pC->isTable );
drhc27ae612009-07-14 18:35:44 +00004218 rc = sqlite3BtreeKeySize(pCrsr, &n64);
4219 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
drhbb4957f2008-03-20 14:03:29 +00004220 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhde4fcfd2008-01-19 23:50:26 +00004221 goto too_big;
drh70ce3f02003-04-15 19:22:22 +00004222 }
drhbfb19dc2009-06-05 16:46:53 +00004223 n = (u32)n64;
drhde4fcfd2008-01-19 23:50:26 +00004224 }else{
drhc27ae612009-07-14 18:35:44 +00004225 rc = sqlite3BtreeDataSize(pCrsr, &n);
drhea8ffdf2009-07-22 00:35:23 +00004226 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
shane75ac1de2009-06-09 18:58:52 +00004227 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00004228 goto too_big;
4229 }
drhde4fcfd2008-01-19 23:50:26 +00004230 }
danielk1977a7a8e142008-02-13 18:25:27 +00004231 if( sqlite3VdbeMemGrow(pOut, n, 0) ){
4232 goto no_mem;
drhde4fcfd2008-01-19 23:50:26 +00004233 }
danielk1977a7a8e142008-02-13 18:25:27 +00004234 pOut->n = n;
4235 MemSetTypeFlag(pOut, MEM_Blob);
drhde4fcfd2008-01-19 23:50:26 +00004236 if( pC->isIndex ){
4237 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4238 }else{
4239 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
drh5e00f6c2001-09-13 13:46:56 +00004240 }
danielk197796cb76f2008-01-04 13:24:28 +00004241 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
drhb7654112008-01-12 12:48:07 +00004242 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00004243 break;
4244}
4245
drh2133d822008-01-03 18:44:59 +00004246/* Opcode: Rowid P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004247**
drh2133d822008-01-03 18:44:59 +00004248** Store in register P2 an integer which is the key of the table entry that
drhbfdc7542008-05-29 03:12:54 +00004249** P1 is currently point to.
drh044925b2009-04-22 17:15:02 +00004250**
4251** P1 can be either an ordinary table or a virtual table. There used to
4252** be a separate OP_VRowid opcode for use with virtual tables, but this
4253** one opcode now works for both table types.
drh5e00f6c2001-09-13 13:46:56 +00004254*/
drh4c583122008-01-04 22:01:03 +00004255case OP_Rowid: { /* out2-prerelease */
drhdfe88ec2008-11-03 20:55:06 +00004256 VdbeCursor *pC;
drhf328bc82004-05-10 23:29:49 +00004257 i64 v;
drh856c1032009-06-02 15:21:42 +00004258 sqlite3_vtab *pVtab;
4259 const sqlite3_module *pModule;
drh5e00f6c2001-09-13 13:46:56 +00004260
drh653b82a2009-06-22 11:10:47 +00004261 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4262 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004263 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00004264 assert( pC->pseudoTableReg==0 );
drh044925b2009-04-22 17:15:02 +00004265 if( pC->nullRow ){
drh3c657212009-11-17 23:59:58 +00004266 pOut->flags = MEM_Null;
drh044925b2009-04-22 17:15:02 +00004267 break;
4268 }else if( pC->deferredMoveto ){
drh61495262009-04-22 15:32:59 +00004269 v = pC->movetoTarget;
drh044925b2009-04-22 17:15:02 +00004270#ifndef SQLITE_OMIT_VIRTUALTABLE
4271 }else if( pC->pVtabCursor ){
drh044925b2009-04-22 17:15:02 +00004272 pVtab = pC->pVtabCursor->pVtab;
4273 pModule = pVtab->pModule;
4274 assert( pModule->xRowid );
drh044925b2009-04-22 17:15:02 +00004275 rc = pModule->xRowid(pC->pVtabCursor, &v);
drhb9755982010-07-24 16:34:37 +00004276 importVtabErrMsg(p, pVtab);
drh044925b2009-04-22 17:15:02 +00004277#endif /* SQLITE_OMIT_VIRTUALTABLE */
drh70ce3f02003-04-15 19:22:22 +00004278 }else{
drh6be240e2009-07-14 02:33:02 +00004279 assert( pC->pCursor!=0 );
drh61495262009-04-22 15:32:59 +00004280 rc = sqlite3VdbeCursorMoveto(pC);
4281 if( rc ) goto abort_due_to_error;
4282 if( pC->rowidIsValid ){
4283 v = pC->lastRowid;
drh61495262009-04-22 15:32:59 +00004284 }else{
drhc27ae612009-07-14 18:35:44 +00004285 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
4286 assert( rc==SQLITE_OK ); /* Always so because of CursorMoveto() above */
drh61495262009-04-22 15:32:59 +00004287 }
drh5e00f6c2001-09-13 13:46:56 +00004288 }
drh4c583122008-01-04 22:01:03 +00004289 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004290 break;
4291}
4292
drh9cbf3422008-01-17 16:22:13 +00004293/* Opcode: NullRow P1 * * * *
drh17f71932002-02-21 12:01:27 +00004294**
4295** Move the cursor P1 to a null row. Any OP_Column operations
drh9cbf3422008-01-17 16:22:13 +00004296** that occur while the cursor is on the null row will always
4297** write a NULL.
drh17f71932002-02-21 12:01:27 +00004298*/
drh9cbf3422008-01-17 16:22:13 +00004299case OP_NullRow: {
drhdfe88ec2008-11-03 20:55:06 +00004300 VdbeCursor *pC;
drh17f71932002-02-21 12:01:27 +00004301
drh653b82a2009-06-22 11:10:47 +00004302 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4303 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004304 assert( pC!=0 );
drhd7556d22004-05-14 21:59:40 +00004305 pC->nullRow = 1;
drhf0863fe2005-06-12 21:35:51 +00004306 pC->rowidIsValid = 0;
dana205a482011-08-27 18:48:57 +00004307 assert( pC->pCursor || pC->pVtabCursor );
danielk1977be51a652008-10-08 17:58:48 +00004308 if( pC->pCursor ){
4309 sqlite3BtreeClearCursor(pC->pCursor);
4310 }
drh17f71932002-02-21 12:01:27 +00004311 break;
4312}
4313
drh9cbf3422008-01-17 16:22:13 +00004314/* Opcode: Last P1 P2 * * *
drh9562b552002-02-19 15:00:07 +00004315**
drhf0863fe2005-06-12 21:35:51 +00004316** The next use of the Rowid or Column or Next instruction for P1
drh9562b552002-02-19 15:00:07 +00004317** will refer to the last entry in the database table or index.
4318** If the table or index is empty and P2>0, then jump immediately to P2.
4319** If P2 is 0 or if the table or index is not empty, fall through
4320** to the following instruction.
4321*/
drh9cbf3422008-01-17 16:22:13 +00004322case OP_Last: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004323 VdbeCursor *pC;
drh9562b552002-02-19 15:00:07 +00004324 BtCursor *pCrsr;
drha05a7222008-01-19 03:35:58 +00004325 int res;
drh9562b552002-02-19 15:00:07 +00004326
drh653b82a2009-06-22 11:10:47 +00004327 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4328 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004329 assert( pC!=0 );
drha05a7222008-01-19 03:35:58 +00004330 pCrsr = pC->pCursor;
dana205a482011-08-27 18:48:57 +00004331 if( NEVER(pCrsr==0) ){
drh9a65f2c2009-06-22 19:05:40 +00004332 res = 1;
4333 }else{
4334 rc = sqlite3BtreeLast(pCrsr, &res);
4335 }
drh9c1905f2008-12-10 22:32:56 +00004336 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004337 pC->deferredMoveto = 0;
drha7e77062009-01-14 00:55:09 +00004338 pC->rowidIsValid = 0;
drha05a7222008-01-19 03:35:58 +00004339 pC->cacheStatus = CACHE_STALE;
drh9a65f2c2009-06-22 19:05:40 +00004340 if( pOp->p2>0 && res ){
drha05a7222008-01-19 03:35:58 +00004341 pc = pOp->p2 - 1;
drh9562b552002-02-19 15:00:07 +00004342 }
4343 break;
4344}
4345
drh0342b1f2005-09-01 03:07:44 +00004346
drh9cbf3422008-01-17 16:22:13 +00004347/* Opcode: Sort P1 P2 * * *
drh0342b1f2005-09-01 03:07:44 +00004348**
4349** This opcode does exactly the same thing as OP_Rewind except that
4350** it increments an undocumented global variable used for testing.
4351**
4352** Sorting is accomplished by writing records into a sorting index,
4353** then rewinding that index and playing it back from beginning to
4354** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4355** rewinding so that the global variable will be incremented and
4356** regression tests can determine whether or not the optimizer is
4357** correctly optimizing out sorts.
4358*/
drhc6aff302011-09-01 15:32:47 +00004359case OP_SorterSort: /* jump */
drhca892a72011-09-03 00:17:51 +00004360#ifdef SQLITE_OMIT_MERGE_SORT
4361 pOp->opcode = OP_Sort;
4362#endif
drh9cbf3422008-01-17 16:22:13 +00004363case OP_Sort: { /* jump */
drh0f7eb612006-08-08 13:51:43 +00004364#ifdef SQLITE_TEST
drh0342b1f2005-09-01 03:07:44 +00004365 sqlite3_sort_count++;
drh4db38a72005-09-01 12:16:28 +00004366 sqlite3_search_count--;
drh0f7eb612006-08-08 13:51:43 +00004367#endif
drhd1d38482008-10-07 23:46:38 +00004368 p->aCounter[SQLITE_STMTSTATUS_SORT-1]++;
drh0342b1f2005-09-01 03:07:44 +00004369 /* Fall through into OP_Rewind */
4370}
drh9cbf3422008-01-17 16:22:13 +00004371/* Opcode: Rewind P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004372**
drhf0863fe2005-06-12 21:35:51 +00004373** The next use of the Rowid or Column or Next instruction for P1
drh8721ce42001-11-07 14:22:00 +00004374** will refer to the first entry in the database table or index.
4375** If the table or index is empty and P2>0, then jump immediately to P2.
4376** If P2 is 0 or if the table or index is not empty, fall through
4377** to the following instruction.
drh5e00f6c2001-09-13 13:46:56 +00004378*/
drh9cbf3422008-01-17 16:22:13 +00004379case OP_Rewind: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004380 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004381 BtCursor *pCrsr;
drhf4dada72004-05-11 09:57:35 +00004382 int res;
drh5e00f6c2001-09-13 13:46:56 +00004383
drh653b82a2009-06-22 11:10:47 +00004384 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4385 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004386 assert( pC!=0 );
drhc6aff302011-09-01 15:32:47 +00004387 assert( pC->isSorter==(pOp->opcode==OP_SorterSort) );
dan2411dea2010-07-03 05:56:09 +00004388 res = 1;
dan689ab892011-08-12 15:02:00 +00004389 if( isSorter(pC) ){
dana20fde62011-07-12 14:28:05 +00004390 rc = sqlite3VdbeSorterRewind(db, pC, &res);
dana205a482011-08-27 18:48:57 +00004391 }else{
4392 pCrsr = pC->pCursor;
4393 assert( pCrsr );
danielk19774adee202004-05-08 08:23:19 +00004394 rc = sqlite3BtreeFirst(pCrsr, &res);
drh9c1905f2008-12-10 22:32:56 +00004395 pC->atFirst = res==0 ?1:0;
drha11846b2004-01-07 18:52:56 +00004396 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004397 pC->cacheStatus = CACHE_STALE;
drha7e77062009-01-14 00:55:09 +00004398 pC->rowidIsValid = 0;
drhf4dada72004-05-11 09:57:35 +00004399 }
drh9c1905f2008-12-10 22:32:56 +00004400 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004401 assert( pOp->p2>0 && pOp->p2<p->nOp );
4402 if( res ){
drhf4dada72004-05-11 09:57:35 +00004403 pc = pOp->p2 - 1;
drh5e00f6c2001-09-13 13:46:56 +00004404 }
4405 break;
4406}
4407
dana205a482011-08-27 18:48:57 +00004408/* Opcode: Next P1 P2 * P4 P5
drh5e00f6c2001-09-13 13:46:56 +00004409**
4410** Advance cursor P1 so that it points to the next key/data pair in its
drh8721ce42001-11-07 14:22:00 +00004411** table or index. If there are no more key/value pairs then fall through
4412** to the following instruction. But if the cursor advance was successful,
4413** jump immediately to P2.
drhc045ec52002-12-04 20:01:06 +00004414**
drh60a713c2008-01-21 16:22:45 +00004415** The P1 cursor must be for a real table, not a pseudo-table.
4416**
dana205a482011-08-27 18:48:57 +00004417** P4 is always of type P4_ADVANCE. The function pointer points to
4418** sqlite3BtreeNext().
4419**
drhafc266a2010-03-31 17:47:44 +00004420** If P5 is positive and the jump is taken, then event counter
4421** number P5-1 in the prepared statement is incremented.
4422**
drhc045ec52002-12-04 20:01:06 +00004423** See also: Prev
drh8721ce42001-11-07 14:22:00 +00004424*/
drhafc266a2010-03-31 17:47:44 +00004425/* Opcode: Prev P1 P2 * * P5
drhc045ec52002-12-04 20:01:06 +00004426**
4427** Back up cursor P1 so that it points to the previous key/data pair in its
4428** table or index. If there is no previous key/value pairs then fall through
4429** to the following instruction. But if the cursor backup was successful,
4430** jump immediately to P2.
drh60a713c2008-01-21 16:22:45 +00004431**
4432** The P1 cursor must be for a real table, not a pseudo-table.
drhafc266a2010-03-31 17:47:44 +00004433**
dana205a482011-08-27 18:48:57 +00004434** P4 is always of type P4_ADVANCE. The function pointer points to
4435** sqlite3BtreePrevious().
4436**
drhafc266a2010-03-31 17:47:44 +00004437** If P5 is positive and the jump is taken, then event counter
4438** number P5-1 in the prepared statement is incremented.
drhc045ec52002-12-04 20:01:06 +00004439*/
drhc6aff302011-09-01 15:32:47 +00004440case OP_SorterNext: /* jump */
drhca892a72011-09-03 00:17:51 +00004441#ifdef SQLITE_OMIT_MERGE_SORT
4442 pOp->opcode = OP_Next;
4443#endif
drh9cbf3422008-01-17 16:22:13 +00004444case OP_Prev: /* jump */
4445case OP_Next: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004446 VdbeCursor *pC;
drha3460582008-07-11 21:02:53 +00004447 int res;
drh8721ce42001-11-07 14:22:00 +00004448
drhcaec2f12003-01-07 02:47:47 +00004449 CHECK_FOR_INTERRUPT;
drh70ce3f02003-04-15 19:22:22 +00004450 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drhafc266a2010-03-31 17:47:44 +00004451 assert( pOp->p5<=ArraySize(p->aCounter) );
drhd7556d22004-05-14 21:59:40 +00004452 pC = p->apCsr[pOp->p1];
drh72e8fa42007-03-28 14:30:06 +00004453 if( pC==0 ){
4454 break; /* See ticket #2273 */
4455 }
drhc6aff302011-09-01 15:32:47 +00004456 assert( pC->isSorter==(pOp->opcode==OP_SorterNext) );
dan689ab892011-08-12 15:02:00 +00004457 if( isSorter(pC) ){
dan5134d132011-09-02 10:31:11 +00004458 assert( pOp->opcode==OP_SorterNext );
dana20fde62011-07-12 14:28:05 +00004459 rc = sqlite3VdbeSorterNext(db, pC, &res);
4460 }else{
dana20fde62011-07-12 14:28:05 +00004461 res = 1;
4462 assert( pC->deferredMoveto==0 );
dana205a482011-08-27 18:48:57 +00004463 assert( pC->pCursor );
4464 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
4465 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
4466 rc = pOp->p4.xAdvance(pC->pCursor, &res);
drh9a65f2c2009-06-22 19:05:40 +00004467 }
drh9c1905f2008-12-10 22:32:56 +00004468 pC->nullRow = (u8)res;
drha3460582008-07-11 21:02:53 +00004469 pC->cacheStatus = CACHE_STALE;
4470 if( res==0 ){
4471 pc = pOp->p2 - 1;
drhd1d38482008-10-07 23:46:38 +00004472 if( pOp->p5 ) p->aCounter[pOp->p5-1]++;
drh0f7eb612006-08-08 13:51:43 +00004473#ifdef SQLITE_TEST
drha3460582008-07-11 21:02:53 +00004474 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00004475#endif
drh8721ce42001-11-07 14:22:00 +00004476 }
drhf0863fe2005-06-12 21:35:51 +00004477 pC->rowidIsValid = 0;
drh8721ce42001-11-07 14:22:00 +00004478 break;
4479}
4480
danielk1977de630352009-05-04 11:42:29 +00004481/* Opcode: IdxInsert P1 P2 P3 * P5
drh5e00f6c2001-09-13 13:46:56 +00004482**
drhef8662b2011-06-20 21:47:58 +00004483** Register P2 holds an SQL index key made using the
drh9437bd22009-02-01 00:29:56 +00004484** MakeRecord instructions. This opcode writes that key
drhee32e0a2006-01-10 19:45:49 +00004485** into the index P1. Data for the entry is nil.
drh717e6402001-09-27 03:22:32 +00004486**
drhaa9b8962008-01-08 02:57:55 +00004487** P3 is a flag that provides a hint to the b-tree layer that this
drhe4d90812007-03-29 05:51:49 +00004488** insert is likely to be an append.
4489**
drhf0863fe2005-06-12 21:35:51 +00004490** This instruction only works for indices. The equivalent instruction
4491** for tables is OP_Insert.
drh5e00f6c2001-09-13 13:46:56 +00004492*/
drhca892a72011-09-03 00:17:51 +00004493case OP_SorterInsert: /* in2 */
4494#ifdef SQLITE_OMIT_MERGE_SORT
4495 pOp->opcode = OP_IdxInsert;
4496#endif
drh9cbf3422008-01-17 16:22:13 +00004497case OP_IdxInsert: { /* in2 */
drhdfe88ec2008-11-03 20:55:06 +00004498 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004499 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00004500 int nKey;
4501 const char *zKey;
4502
drh653b82a2009-06-22 11:10:47 +00004503 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4504 pC = p->apCsr[pOp->p1];
4505 assert( pC!=0 );
drhc6aff302011-09-01 15:32:47 +00004506 assert( pC->isSorter==(pOp->opcode==OP_SorterInsert) );
drh3c657212009-11-17 23:59:58 +00004507 pIn2 = &aMem[pOp->p2];
drhaa9b8962008-01-08 02:57:55 +00004508 assert( pIn2->flags & MEM_Blob );
drh653b82a2009-06-22 11:10:47 +00004509 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004510 if( ALWAYS(pCrsr!=0) ){
drhf0863fe2005-06-12 21:35:51 +00004511 assert( pC->isTable==0 );
drhaa9b8962008-01-08 02:57:55 +00004512 rc = ExpandBlob(pIn2);
danielk1977d908f5a2007-05-11 07:08:28 +00004513 if( rc==SQLITE_OK ){
dan5134d132011-09-02 10:31:11 +00004514 if( isSorter(pC) ){
4515 rc = sqlite3VdbeSorterWrite(db, pC, pIn2);
4516 }else{
4517 nKey = pIn2->n;
4518 zKey = pIn2->z;
dan1e74e602011-08-06 12:01:58 +00004519 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3,
4520 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
dan5134d132011-09-02 10:31:11 +00004521 );
dan1e74e602011-08-06 12:01:58 +00004522 assert( pC->deferredMoveto==0 );
dan5134d132011-09-02 10:31:11 +00004523 pC->cacheStatus = CACHE_STALE;
dan1e74e602011-08-06 12:01:58 +00004524 }
danielk1977d908f5a2007-05-11 07:08:28 +00004525 }
drh5e00f6c2001-09-13 13:46:56 +00004526 }
drh5e00f6c2001-09-13 13:46:56 +00004527 break;
4528}
4529
drhd1d38482008-10-07 23:46:38 +00004530/* Opcode: IdxDelete P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00004531**
drhe14006d2008-03-25 17:23:32 +00004532** The content of P3 registers starting at register P2 form
4533** an unpacked index key. This opcode removes that entry from the
danielk1977a7a8e142008-02-13 18:25:27 +00004534** index opened by cursor P1.
drh5e00f6c2001-09-13 13:46:56 +00004535*/
drhe14006d2008-03-25 17:23:32 +00004536case OP_IdxDelete: {
drhdfe88ec2008-11-03 20:55:06 +00004537 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004538 BtCursor *pCrsr;
drh9a65f2c2009-06-22 19:05:40 +00004539 int res;
4540 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00004541
drhe14006d2008-03-25 17:23:32 +00004542 assert( pOp->p3>0 );
danielk19776ab3a2e2009-02-19 14:39:25 +00004543 assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 );
drh653b82a2009-06-22 11:10:47 +00004544 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4545 pC = p->apCsr[pOp->p1];
4546 assert( pC!=0 );
4547 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004548 if( ALWAYS(pCrsr!=0) ){
drhe14006d2008-03-25 17:23:32 +00004549 r.pKeyInfo = pC->pKeyInfo;
drh9c1905f2008-12-10 22:32:56 +00004550 r.nField = (u16)pOp->p3;
drhe63d9992008-08-13 19:11:48 +00004551 r.flags = 0;
drha6c2ed92009-11-14 23:22:23 +00004552 r.aMem = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00004553#ifdef SQLITE_DEBUG
4554 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4555#endif
drhe63d9992008-08-13 19:11:48 +00004556 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
danielk197775bab7d2006-01-23 13:09:45 +00004557 if( rc==SQLITE_OK && res==0 ){
danielk19774adee202004-05-08 08:23:19 +00004558 rc = sqlite3BtreeDelete(pCrsr);
drh5e00f6c2001-09-13 13:46:56 +00004559 }
drh9188b382004-05-14 21:12:22 +00004560 assert( pC->deferredMoveto==0 );
drh76873ab2006-01-07 18:48:26 +00004561 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004562 }
drh5e00f6c2001-09-13 13:46:56 +00004563 break;
4564}
4565
drh2133d822008-01-03 18:44:59 +00004566/* Opcode: IdxRowid P1 P2 * * *
drh8721ce42001-11-07 14:22:00 +00004567**
drh2133d822008-01-03 18:44:59 +00004568** Write into register P2 an integer which is the last entry in the record at
drhf0863fe2005-06-12 21:35:51 +00004569** the end of the index key pointed to by cursor P1. This integer should be
4570** the rowid of the table entry to which this index entry points.
drh8721ce42001-11-07 14:22:00 +00004571**
drh9437bd22009-02-01 00:29:56 +00004572** See also: Rowid, MakeRecord.
drh8721ce42001-11-07 14:22:00 +00004573*/
drh4c583122008-01-04 22:01:03 +00004574case OP_IdxRowid: { /* out2-prerelease */
drh8721ce42001-11-07 14:22:00 +00004575 BtCursor *pCrsr;
drhdfe88ec2008-11-03 20:55:06 +00004576 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004577 i64 rowid;
drh8721ce42001-11-07 14:22:00 +00004578
drh653b82a2009-06-22 11:10:47 +00004579 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4580 pC = p->apCsr[pOp->p1];
4581 assert( pC!=0 );
4582 pCrsr = pC->pCursor;
drh3c657212009-11-17 23:59:58 +00004583 pOut->flags = MEM_Null;
drh9a65f2c2009-06-22 19:05:40 +00004584 if( ALWAYS(pCrsr!=0) ){
danielk1977c4d201c2009-04-07 09:16:56 +00004585 rc = sqlite3VdbeCursorMoveto(pC);
drh9a65f2c2009-06-22 19:05:40 +00004586 if( NEVER(rc) ) goto abort_due_to_error;
drhd7556d22004-05-14 21:59:40 +00004587 assert( pC->deferredMoveto==0 );
drhf0863fe2005-06-12 21:35:51 +00004588 assert( pC->isTable==0 );
drh4c583122008-01-04 22:01:03 +00004589 if( !pC->nullRow ){
drh35f6b932009-06-23 14:15:04 +00004590 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
danielk19771d850a72004-05-31 08:26:49 +00004591 if( rc!=SQLITE_OK ){
4592 goto abort_due_to_error;
4593 }
drh4c583122008-01-04 22:01:03 +00004594 pOut->u.i = rowid;
drh3c657212009-11-17 23:59:58 +00004595 pOut->flags = MEM_Int;
danielk19773d1bfea2004-05-14 11:00:53 +00004596 }
drh8721ce42001-11-07 14:22:00 +00004597 }
4598 break;
4599}
4600
danielk197761dd5832008-04-18 11:31:12 +00004601/* Opcode: IdxGE P1 P2 P3 P4 P5
drh8721ce42001-11-07 14:22:00 +00004602**
danielk197761dd5832008-04-18 11:31:12 +00004603** The P4 register values beginning with P3 form an unpacked index
4604** key that omits the ROWID. Compare this key value against the index
4605** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00004606**
danielk197761dd5832008-04-18 11:31:12 +00004607** If the P1 index entry is greater than or equal to the key value
4608** then jump to P2. Otherwise fall through to the next instruction.
drh772ae622004-05-19 13:13:08 +00004609**
danielk197761dd5832008-04-18 11:31:12 +00004610** If P5 is non-zero then the key value is increased by an epsilon
4611** prior to the comparison. This make the opcode work like IdxGT except
4612** that if the key from register P3 is a prefix of the key in the cursor,
4613** the result is false whereas it would be true with IdxGT.
drh8721ce42001-11-07 14:22:00 +00004614*/
drh3bb9b932010-08-06 02:10:00 +00004615/* Opcode: IdxLT P1 P2 P3 P4 P5
drhc045ec52002-12-04 20:01:06 +00004616**
danielk197761dd5832008-04-18 11:31:12 +00004617** The P4 register values beginning with P3 form an unpacked index
4618** key that omits the ROWID. Compare this key value against the index
4619** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00004620**
danielk197761dd5832008-04-18 11:31:12 +00004621** If the P1 index entry is less than the key value then jump to P2.
4622** Otherwise fall through to the next instruction.
drh772ae622004-05-19 13:13:08 +00004623**
danielk197761dd5832008-04-18 11:31:12 +00004624** If P5 is non-zero then the key value is increased by an epsilon prior
4625** to the comparison. This makes the opcode work like IdxLE.
drhc045ec52002-12-04 20:01:06 +00004626*/
drh93952eb2009-11-13 19:43:43 +00004627case OP_IdxLT: /* jump */
4628case OP_IdxGE: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004629 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004630 int res;
4631 UnpackedRecord r;
drh8721ce42001-11-07 14:22:00 +00004632
drh653b82a2009-06-22 11:10:47 +00004633 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4634 pC = p->apCsr[pOp->p1];
4635 assert( pC!=0 );
drhd4187c72010-08-30 22:15:45 +00004636 assert( pC->isOrdered );
drh9a65f2c2009-06-22 19:05:40 +00004637 if( ALWAYS(pC->pCursor!=0) ){
drhd7556d22004-05-14 21:59:40 +00004638 assert( pC->deferredMoveto==0 );
drha05a7222008-01-19 03:35:58 +00004639 assert( pOp->p5==0 || pOp->p5==1 );
danielk197761dd5832008-04-18 11:31:12 +00004640 assert( pOp->p4type==P4_INT32 );
4641 r.pKeyInfo = pC->pKeyInfo;
drh9c1905f2008-12-10 22:32:56 +00004642 r.nField = (u16)pOp->p4.i;
drhe63d9992008-08-13 19:11:48 +00004643 if( pOp->p5 ){
4644 r.flags = UNPACKED_INCRKEY | UNPACKED_IGNORE_ROWID;
4645 }else{
4646 r.flags = UNPACKED_IGNORE_ROWID;
4647 }
drha6c2ed92009-11-14 23:22:23 +00004648 r.aMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00004649#ifdef SQLITE_DEBUG
4650 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4651#endif
drhe63d9992008-08-13 19:11:48 +00004652 rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res);
drhc045ec52002-12-04 20:01:06 +00004653 if( pOp->opcode==OP_IdxLT ){
4654 res = -res;
drha05a7222008-01-19 03:35:58 +00004655 }else{
4656 assert( pOp->opcode==OP_IdxGE );
drh8721ce42001-11-07 14:22:00 +00004657 res++;
4658 }
4659 if( res>0 ){
4660 pc = pOp->p2 - 1 ;
4661 }
4662 }
4663 break;
4664}
4665
drh98757152008-01-09 23:04:12 +00004666/* Opcode: Destroy P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00004667**
4668** Delete an entire database table or index whose root page in the database
4669** file is given by P1.
drhb19a2bc2001-09-16 00:13:26 +00004670**
drh98757152008-01-09 23:04:12 +00004671** The table being destroyed is in the main database file if P3==0. If
4672** P3==1 then the table to be clear is in the auxiliary database file
drhf57b3392001-10-08 13:22:32 +00004673** that is used to store tables create using CREATE TEMPORARY TABLE.
4674**
drh205f48e2004-11-05 00:43:11 +00004675** If AUTOVACUUM is enabled then it is possible that another root page
4676** might be moved into the newly deleted root page in order to keep all
4677** root pages contiguous at the beginning of the database. The former
4678** value of the root page that moved - its value before the move occurred -
drh9cbf3422008-01-17 16:22:13 +00004679** is stored in register P2. If no page
drh98757152008-01-09 23:04:12 +00004680** movement was required (because the table being dropped was already
4681** the last one in the database) then a zero is stored in register P2.
4682** If AUTOVACUUM is disabled then a zero is stored in register P2.
drh205f48e2004-11-05 00:43:11 +00004683**
drhb19a2bc2001-09-16 00:13:26 +00004684** See also: Clear
drh5e00f6c2001-09-13 13:46:56 +00004685*/
drh98757152008-01-09 23:04:12 +00004686case OP_Destroy: { /* out2-prerelease */
danielk1977a0bf2652004-11-04 14:30:04 +00004687 int iMoved;
drh3765df42006-06-28 18:18:09 +00004688 int iCnt;
drh5a91a532007-01-05 16:39:43 +00004689 Vdbe *pVdbe;
drh856c1032009-06-02 15:21:42 +00004690 int iDb;
4691#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk1977212b2182006-06-23 14:32:08 +00004692 iCnt = 0;
drh856c1032009-06-02 15:21:42 +00004693 for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
danielk1977212b2182006-06-23 14:32:08 +00004694 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
4695 iCnt++;
4696 }
4697 }
drh3765df42006-06-28 18:18:09 +00004698#else
4699 iCnt = db->activeVdbeCnt;
danielk1977212b2182006-06-23 14:32:08 +00004700#endif
drh3c657212009-11-17 23:59:58 +00004701 pOut->flags = MEM_Null;
danielk1977212b2182006-06-23 14:32:08 +00004702 if( iCnt>1 ){
danielk1977e6efa742004-11-10 11:55:10 +00004703 rc = SQLITE_LOCKED;
drh77658e22007-12-04 16:54:52 +00004704 p->errorAction = OE_Abort;
danielk1977e6efa742004-11-10 11:55:10 +00004705 }else{
drh856c1032009-06-02 15:21:42 +00004706 iDb = pOp->p3;
danielk1977212b2182006-06-23 14:32:08 +00004707 assert( iCnt==1 );
drhdddd7792011-04-03 18:19:25 +00004708 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
drh98757152008-01-09 23:04:12 +00004709 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
drh3c657212009-11-17 23:59:58 +00004710 pOut->flags = MEM_Int;
drh98757152008-01-09 23:04:12 +00004711 pOut->u.i = iMoved;
drh3765df42006-06-28 18:18:09 +00004712#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977e6efa742004-11-10 11:55:10 +00004713 if( rc==SQLITE_OK && iMoved!=0 ){
drhcdf011d2011-04-04 21:25:28 +00004714 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
4715 /* All OP_Destroy operations occur on the same btree */
4716 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
4717 resetSchemaOnFault = iDb+1;
danielk1977e6efa742004-11-10 11:55:10 +00004718 }
drh3765df42006-06-28 18:18:09 +00004719#endif
danielk1977a0bf2652004-11-04 14:30:04 +00004720 }
drh5e00f6c2001-09-13 13:46:56 +00004721 break;
4722}
4723
danielk1977c7af4842008-10-27 13:59:33 +00004724/* Opcode: Clear P1 P2 P3
drh5edc3122001-09-13 21:53:09 +00004725**
4726** Delete all contents of the database table or index whose root page
drhb19a2bc2001-09-16 00:13:26 +00004727** in the database file is given by P1. But, unlike Destroy, do not
drh5edc3122001-09-13 21:53:09 +00004728** remove the table or index from the database file.
drhb19a2bc2001-09-16 00:13:26 +00004729**
drhf57b3392001-10-08 13:22:32 +00004730** The table being clear is in the main database file if P2==0. If
4731** P2==1 then the table to be clear is in the auxiliary database file
4732** that is used to store tables create using CREATE TEMPORARY TABLE.
4733**
shanebe217792009-03-05 04:20:31 +00004734** If the P3 value is non-zero, then the table referred to must be an
danielk1977c7af4842008-10-27 13:59:33 +00004735** intkey table (an SQL table, not an index). In this case the row change
4736** count is incremented by the number of rows in the table being cleared.
4737** If P3 is greater than zero, then the value stored in register P3 is
4738** also incremented by the number of rows in the table being cleared.
4739**
drhb19a2bc2001-09-16 00:13:26 +00004740** See also: Destroy
drh5edc3122001-09-13 21:53:09 +00004741*/
drh9cbf3422008-01-17 16:22:13 +00004742case OP_Clear: {
drh856c1032009-06-02 15:21:42 +00004743 int nChange;
4744
4745 nChange = 0;
drhdddd7792011-04-03 18:19:25 +00004746 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 );
danielk1977c7af4842008-10-27 13:59:33 +00004747 rc = sqlite3BtreeClearTable(
4748 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
4749 );
4750 if( pOp->p3 ){
4751 p->nChange += nChange;
4752 if( pOp->p3>0 ){
drh2b4ded92010-09-27 21:09:31 +00004753 assert( memIsValid(&aMem[pOp->p3]) );
4754 memAboutToChange(p, &aMem[pOp->p3]);
drha6c2ed92009-11-14 23:22:23 +00004755 aMem[pOp->p3].u.i += nChange;
danielk1977c7af4842008-10-27 13:59:33 +00004756 }
4757 }
drh5edc3122001-09-13 21:53:09 +00004758 break;
4759}
4760
drh4c583122008-01-04 22:01:03 +00004761/* Opcode: CreateTable P1 P2 * * *
drh5b2fd562001-09-13 15:21:31 +00004762**
drh4c583122008-01-04 22:01:03 +00004763** Allocate a new table in the main database file if P1==0 or in the
4764** auxiliary database file if P1==1 or in an attached database if
4765** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00004766** register P2
drh5b2fd562001-09-13 15:21:31 +00004767**
drhc6b52df2002-01-04 03:09:29 +00004768** The difference between a table and an index is this: A table must
4769** have a 4-byte integer key and can have arbitrary data. An index
4770** has an arbitrary key but no data.
4771**
drhb19a2bc2001-09-16 00:13:26 +00004772** See also: CreateIndex
drh5b2fd562001-09-13 15:21:31 +00004773*/
drh4c583122008-01-04 22:01:03 +00004774/* Opcode: CreateIndex P1 P2 * * *
drhf57b3392001-10-08 13:22:32 +00004775**
drh4c583122008-01-04 22:01:03 +00004776** Allocate a new index in the main database file if P1==0 or in the
4777** auxiliary database file if P1==1 or in an attached database if
4778** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00004779** register P2.
drhf57b3392001-10-08 13:22:32 +00004780**
drhc6b52df2002-01-04 03:09:29 +00004781** See documentation on OP_CreateTable for additional information.
drhf57b3392001-10-08 13:22:32 +00004782*/
drh4c583122008-01-04 22:01:03 +00004783case OP_CreateIndex: /* out2-prerelease */
4784case OP_CreateTable: { /* out2-prerelease */
drh856c1032009-06-02 15:21:42 +00004785 int pgno;
drhf328bc82004-05-10 23:29:49 +00004786 int flags;
drh234c39d2004-07-24 03:30:47 +00004787 Db *pDb;
drh856c1032009-06-02 15:21:42 +00004788
4789 pgno = 0;
drh234c39d2004-07-24 03:30:47 +00004790 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00004791 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drh234c39d2004-07-24 03:30:47 +00004792 pDb = &db->aDb[pOp->p1];
4793 assert( pDb->pBt!=0 );
drhc6b52df2002-01-04 03:09:29 +00004794 if( pOp->opcode==OP_CreateTable ){
danielk197794076252004-05-14 12:16:11 +00004795 /* flags = BTREE_INTKEY; */
drhd4187c72010-08-30 22:15:45 +00004796 flags = BTREE_INTKEY;
drhc6b52df2002-01-04 03:09:29 +00004797 }else{
drhd4187c72010-08-30 22:15:45 +00004798 flags = BTREE_BLOBKEY;
drhc6b52df2002-01-04 03:09:29 +00004799 }
drh234c39d2004-07-24 03:30:47 +00004800 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
drh88a003e2008-12-11 16:17:03 +00004801 pOut->u.i = pgno;
drh5b2fd562001-09-13 15:21:31 +00004802 break;
4803}
4804
drh22645842011-03-24 01:34:03 +00004805/* Opcode: ParseSchema P1 * * P4 *
drh234c39d2004-07-24 03:30:47 +00004806**
4807** Read and parse all entries from the SQLITE_MASTER table of database P1
drh22645842011-03-24 01:34:03 +00004808** that match the WHERE clause P4.
drh234c39d2004-07-24 03:30:47 +00004809**
4810** This opcode invokes the parser to create a new virtual machine,
shane21e7feb2008-05-30 15:59:49 +00004811** then runs the new virtual machine. It is thus a re-entrant opcode.
drh234c39d2004-07-24 03:30:47 +00004812*/
drh9cbf3422008-01-17 16:22:13 +00004813case OP_ParseSchema: {
drh856c1032009-06-02 15:21:42 +00004814 int iDb;
4815 const char *zMaster;
4816 char *zSql;
4817 InitData initData;
4818
drhbdaec522011-04-04 00:14:43 +00004819 /* Any prepared statement that invokes this opcode will hold mutexes
4820 ** on every btree. This is a prerequisite for invoking
4821 ** sqlite3InitCallback().
4822 */
4823#ifdef SQLITE_DEBUG
4824 for(iDb=0; iDb<db->nDb; iDb++){
4825 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
4826 }
4827#endif
drhbdaec522011-04-04 00:14:43 +00004828
drh856c1032009-06-02 15:21:42 +00004829 iDb = pOp->p1;
drh234c39d2004-07-24 03:30:47 +00004830 assert( iDb>=0 && iDb<db->nDb );
dan6c154872011-04-02 09:44:43 +00004831 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
drhbdaec522011-04-04 00:14:43 +00004832 /* Used to be a conditional */ {
drh856c1032009-06-02 15:21:42 +00004833 zMaster = SCHEMA_TABLE(iDb);
danielk1977a8bbef82009-03-23 17:11:26 +00004834 initData.db = db;
4835 initData.iDb = pOp->p1;
4836 initData.pzErrMsg = &p->zErrMsg;
4837 zSql = sqlite3MPrintf(db,
drh6a9c64b2010-01-12 23:54:14 +00004838 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
danielk1977a8bbef82009-03-23 17:11:26 +00004839 db->aDb[iDb].zName, zMaster, pOp->p4.z);
4840 if( zSql==0 ){
4841 rc = SQLITE_NOMEM;
4842 }else{
danielk1977a8bbef82009-03-23 17:11:26 +00004843 assert( db->init.busy==0 );
4844 db->init.busy = 1;
4845 initData.rc = SQLITE_OK;
4846 assert( !db->mallocFailed );
4847 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
4848 if( rc==SQLITE_OK ) rc = initData.rc;
4849 sqlite3DbFree(db, zSql);
4850 db->init.busy = 0;
danielk1977a8bbef82009-03-23 17:11:26 +00004851 }
drh3c23a882007-01-09 14:01:13 +00004852 }
danielk1977261919c2005-12-06 12:52:59 +00004853 if( rc==SQLITE_NOMEM ){
danielk1977261919c2005-12-06 12:52:59 +00004854 goto no_mem;
4855 }
drh234c39d2004-07-24 03:30:47 +00004856 break;
4857}
4858
drh8bfdf722009-06-19 14:06:03 +00004859#if !defined(SQLITE_OMIT_ANALYZE)
drh98757152008-01-09 23:04:12 +00004860/* Opcode: LoadAnalysis P1 * * * *
drh497e4462005-07-23 03:18:40 +00004861**
4862** Read the sqlite_stat1 table for database P1 and load the content
4863** of that table into the internal index hash table. This will cause
4864** the analysis to be used when preparing all subsequent queries.
4865*/
drh9cbf3422008-01-17 16:22:13 +00004866case OP_LoadAnalysis: {
drh856c1032009-06-02 15:21:42 +00004867 assert( pOp->p1>=0 && pOp->p1<db->nDb );
4868 rc = sqlite3AnalysisLoad(db, pOp->p1);
drh497e4462005-07-23 03:18:40 +00004869 break;
4870}
drh8bfdf722009-06-19 14:06:03 +00004871#endif /* !defined(SQLITE_OMIT_ANALYZE) */
drh497e4462005-07-23 03:18:40 +00004872
drh98757152008-01-09 23:04:12 +00004873/* Opcode: DropTable P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00004874**
4875** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00004876** the table named P4 in database P1. This is called after a table
drh956bc922004-07-24 17:38:29 +00004877** is dropped in order to keep the internal representation of the
4878** schema consistent with what is on disk.
4879*/
drh9cbf3422008-01-17 16:22:13 +00004880case OP_DropTable: {
danielk19772dca4ac2008-01-03 11:50:29 +00004881 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00004882 break;
4883}
4884
drh98757152008-01-09 23:04:12 +00004885/* Opcode: DropIndex P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00004886**
4887** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00004888** the index named P4 in database P1. This is called after an index
drh956bc922004-07-24 17:38:29 +00004889** is dropped in order to keep the internal representation of the
4890** schema consistent with what is on disk.
4891*/
drh9cbf3422008-01-17 16:22:13 +00004892case OP_DropIndex: {
danielk19772dca4ac2008-01-03 11:50:29 +00004893 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00004894 break;
4895}
4896
drh98757152008-01-09 23:04:12 +00004897/* Opcode: DropTrigger P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00004898**
4899** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00004900** the trigger named P4 in database P1. This is called after a trigger
drh956bc922004-07-24 17:38:29 +00004901** is dropped in order to keep the internal representation of the
4902** schema consistent with what is on disk.
4903*/
drh9cbf3422008-01-17 16:22:13 +00004904case OP_DropTrigger: {
danielk19772dca4ac2008-01-03 11:50:29 +00004905 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00004906 break;
4907}
4908
drh234c39d2004-07-24 03:30:47 +00004909
drhb7f91642004-10-31 02:22:47 +00004910#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh98757152008-01-09 23:04:12 +00004911/* Opcode: IntegrityCk P1 P2 P3 * P5
drh5e00f6c2001-09-13 13:46:56 +00004912**
drh98757152008-01-09 23:04:12 +00004913** Do an analysis of the currently open database. Store in
4914** register P1 the text of an error message describing any problems.
4915** If no problems are found, store a NULL in register P1.
drh1dcdbc02007-01-27 02:24:54 +00004916**
drh98757152008-01-09 23:04:12 +00004917** The register P3 contains the maximum number of allowed errors.
drh60a713c2008-01-21 16:22:45 +00004918** At most reg(P3) errors will be reported.
4919** In other words, the analysis stops as soon as reg(P1) errors are
4920** seen. Reg(P1) is updated with the number of errors remaining.
drhb19a2bc2001-09-16 00:13:26 +00004921**
drh79069752004-05-22 21:30:40 +00004922** The root page numbers of all tables in the database are integer
drh60a713c2008-01-21 16:22:45 +00004923** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
drh98757152008-01-09 23:04:12 +00004924** total.
drh21504322002-06-25 13:16:02 +00004925**
drh98757152008-01-09 23:04:12 +00004926** If P5 is not zero, the check is done on the auxiliary database
drh21504322002-06-25 13:16:02 +00004927** file, not the main database file.
drh1dd397f2002-02-03 03:34:07 +00004928**
drh1dcdbc02007-01-27 02:24:54 +00004929** This opcode is used to implement the integrity_check pragma.
drh5e00f6c2001-09-13 13:46:56 +00004930*/
drhaaab5722002-02-19 13:39:21 +00004931case OP_IntegrityCk: {
drh98757152008-01-09 23:04:12 +00004932 int nRoot; /* Number of tables to check. (Number of root pages.) */
4933 int *aRoot; /* Array of rootpage numbers for tables to be checked */
4934 int j; /* Loop counter */
4935 int nErr; /* Number of errors reported */
4936 char *z; /* Text of the error report */
4937 Mem *pnErr; /* Register keeping track of errors remaining */
4938
4939 nRoot = pOp->p2;
drh79069752004-05-22 21:30:40 +00004940 assert( nRoot>0 );
drh633e6d52008-07-28 19:34:53 +00004941 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
drhcaec2f12003-01-07 02:47:47 +00004942 if( aRoot==0 ) goto no_mem;
drh98757152008-01-09 23:04:12 +00004943 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00004944 pnErr = &aMem[pOp->p3];
drh1dcdbc02007-01-27 02:24:54 +00004945 assert( (pnErr->flags & MEM_Int)!=0 );
drh98757152008-01-09 23:04:12 +00004946 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
drha6c2ed92009-11-14 23:22:23 +00004947 pIn1 = &aMem[pOp->p1];
drh79069752004-05-22 21:30:40 +00004948 for(j=0; j<nRoot; j++){
drh9c1905f2008-12-10 22:32:56 +00004949 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
drh1dd397f2002-02-03 03:34:07 +00004950 }
4951 aRoot[j] = 0;
drh98757152008-01-09 23:04:12 +00004952 assert( pOp->p5<db->nDb );
drhdddd7792011-04-03 18:19:25 +00004953 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p5))!=0 );
drh98757152008-01-09 23:04:12 +00004954 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
drh9c1905f2008-12-10 22:32:56 +00004955 (int)pnErr->u.i, &nErr);
drhc890fec2008-08-01 20:10:08 +00004956 sqlite3DbFree(db, aRoot);
drh3c024d62007-03-30 11:23:45 +00004957 pnErr->u.i -= nErr;
drha05a7222008-01-19 03:35:58 +00004958 sqlite3VdbeMemSetNull(pIn1);
drh1dcdbc02007-01-27 02:24:54 +00004959 if( nErr==0 ){
4960 assert( z==0 );
drhc890fec2008-08-01 20:10:08 +00004961 }else if( z==0 ){
4962 goto no_mem;
drh1dd397f2002-02-03 03:34:07 +00004963 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00004964 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
danielk19778a6b5412004-05-24 07:04:25 +00004965 }
drhb7654112008-01-12 12:48:07 +00004966 UPDATE_MAX_BLOBSIZE(pIn1);
drh98757152008-01-09 23:04:12 +00004967 sqlite3VdbeChangeEncoding(pIn1, encoding);
drh5e00f6c2001-09-13 13:46:56 +00004968 break;
4969}
drhb7f91642004-10-31 02:22:47 +00004970#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5e00f6c2001-09-13 13:46:56 +00004971
drh3d4501e2008-12-04 20:40:10 +00004972/* Opcode: RowSetAdd P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004973**
drh3d4501e2008-12-04 20:40:10 +00004974** Insert the integer value held by register P2 into a boolean index
4975** held in register P1.
4976**
4977** An assertion fails if P2 is not an integer.
drh5e00f6c2001-09-13 13:46:56 +00004978*/
drh93952eb2009-11-13 19:43:43 +00004979case OP_RowSetAdd: { /* in1, in2 */
drh3c657212009-11-17 23:59:58 +00004980 pIn1 = &aMem[pOp->p1];
4981 pIn2 = &aMem[pOp->p2];
drh93952eb2009-11-13 19:43:43 +00004982 assert( (pIn2->flags & MEM_Int)!=0 );
4983 if( (pIn1->flags & MEM_RowSet)==0 ){
4984 sqlite3VdbeMemSetRowSet(pIn1);
4985 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
drh3d4501e2008-12-04 20:40:10 +00004986 }
drh93952eb2009-11-13 19:43:43 +00004987 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
drh3d4501e2008-12-04 20:40:10 +00004988 break;
4989}
4990
4991/* Opcode: RowSetRead P1 P2 P3 * *
4992**
4993** Extract the smallest value from boolean index P1 and put that value into
4994** register P3. Or, if boolean index P1 is initially empty, leave P3
4995** unchanged and jump to instruction P2.
4996*/
drh93952eb2009-11-13 19:43:43 +00004997case OP_RowSetRead: { /* jump, in1, out3 */
drh3d4501e2008-12-04 20:40:10 +00004998 i64 val;
drh3d4501e2008-12-04 20:40:10 +00004999 CHECK_FOR_INTERRUPT;
drh3c657212009-11-17 23:59:58 +00005000 pIn1 = &aMem[pOp->p1];
drh93952eb2009-11-13 19:43:43 +00005001 if( (pIn1->flags & MEM_RowSet)==0
5002 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
drh3d4501e2008-12-04 20:40:10 +00005003 ){
5004 /* The boolean index is empty */
drh93952eb2009-11-13 19:43:43 +00005005 sqlite3VdbeMemSetNull(pIn1);
drh3d4501e2008-12-04 20:40:10 +00005006 pc = pOp->p2 - 1;
5007 }else{
5008 /* A value was pulled from the index */
drh3c657212009-11-17 23:59:58 +00005009 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
drh17435752007-08-16 04:30:38 +00005010 }
drh5e00f6c2001-09-13 13:46:56 +00005011 break;
5012}
5013
drh1b26c7c2009-04-22 02:15:47 +00005014/* Opcode: RowSetTest P1 P2 P3 P4
danielk19771d461462009-04-21 09:02:45 +00005015**
drhade97602009-04-21 15:05:18 +00005016** Register P3 is assumed to hold a 64-bit integer value. If register P1
drh1b26c7c2009-04-22 02:15:47 +00005017** contains a RowSet object and that RowSet object contains
danielk19771d461462009-04-21 09:02:45 +00005018** the value held in P3, jump to register P2. Otherwise, insert the
drh1b26c7c2009-04-22 02:15:47 +00005019** integer in P3 into the RowSet and continue on to the
drhade97602009-04-21 15:05:18 +00005020** next opcode.
danielk19771d461462009-04-21 09:02:45 +00005021**
drh1b26c7c2009-04-22 02:15:47 +00005022** The RowSet object is optimized for the case where successive sets
danielk19771d461462009-04-21 09:02:45 +00005023** of integers, where each set contains no duplicates. Each set
5024** of values is identified by a unique P4 value. The first set
drh1b26c7c2009-04-22 02:15:47 +00005025** must have P4==0, the final set P4=-1. P4 must be either -1 or
5026** non-negative. For non-negative values of P4 only the lower 4
5027** bits are significant.
danielk19771d461462009-04-21 09:02:45 +00005028**
5029** This allows optimizations: (a) when P4==0 there is no need to test
drh1b26c7c2009-04-22 02:15:47 +00005030** the rowset object for P3, as it is guaranteed not to contain it,
danielk19771d461462009-04-21 09:02:45 +00005031** (b) when P4==-1 there is no need to insert the value, as it will
5032** never be tested for, and (c) when a value that is part of set X is
5033** inserted, there is no need to search to see if the same value was
5034** previously inserted as part of set X (only if it was previously
5035** inserted as part of some other set).
5036*/
drh1b26c7c2009-04-22 02:15:47 +00005037case OP_RowSetTest: { /* jump, in1, in3 */
drh856c1032009-06-02 15:21:42 +00005038 int iSet;
5039 int exists;
5040
drh3c657212009-11-17 23:59:58 +00005041 pIn1 = &aMem[pOp->p1];
5042 pIn3 = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00005043 iSet = pOp->p4.i;
danielk19771d461462009-04-21 09:02:45 +00005044 assert( pIn3->flags&MEM_Int );
5045
drh1b26c7c2009-04-22 02:15:47 +00005046 /* If there is anything other than a rowset object in memory cell P1,
5047 ** delete it now and initialize P1 with an empty rowset
danielk19771d461462009-04-21 09:02:45 +00005048 */
drh733bf1b2009-04-22 00:47:00 +00005049 if( (pIn1->flags & MEM_RowSet)==0 ){
5050 sqlite3VdbeMemSetRowSet(pIn1);
5051 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
danielk19771d461462009-04-21 09:02:45 +00005052 }
5053
5054 assert( pOp->p4type==P4_INT32 );
drh1b26c7c2009-04-22 02:15:47 +00005055 assert( iSet==-1 || iSet>=0 );
danielk19771d461462009-04-21 09:02:45 +00005056 if( iSet ){
shane60a4b532009-05-06 18:57:09 +00005057 exists = sqlite3RowSetTest(pIn1->u.pRowSet,
5058 (u8)(iSet>=0 ? iSet & 0xf : 0xff),
drh733bf1b2009-04-22 00:47:00 +00005059 pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00005060 if( exists ){
5061 pc = pOp->p2 - 1;
5062 break;
5063 }
5064 }
5065 if( iSet>=0 ){
drh733bf1b2009-04-22 00:47:00 +00005066 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00005067 }
5068 break;
5069}
5070
drh5e00f6c2001-09-13 13:46:56 +00005071
danielk197793758c82005-01-21 08:13:14 +00005072#ifndef SQLITE_OMIT_TRIGGER
dan165921a2009-08-28 18:53:45 +00005073
5074/* Opcode: Program P1 P2 P3 P4 *
5075**
dan76d462e2009-08-30 11:42:51 +00005076** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
dan165921a2009-08-28 18:53:45 +00005077**
dan76d462e2009-08-30 11:42:51 +00005078** P1 contains the address of the memory cell that contains the first memory
5079** cell in an array of values used as arguments to the sub-program. P2
5080** contains the address to jump to if the sub-program throws an IGNORE
5081** exception using the RAISE() function. Register P3 contains the address
5082** of a memory cell in this (the parent) VM that is used to allocate the
5083** memory required by the sub-vdbe at runtime.
dan165921a2009-08-28 18:53:45 +00005084**
5085** P4 is a pointer to the VM containing the trigger program.
5086*/
dan76d462e2009-08-30 11:42:51 +00005087case OP_Program: { /* jump */
dan65a7cd12009-09-01 12:16:01 +00005088 int nMem; /* Number of memory registers for sub-program */
5089 int nByte; /* Bytes of runtime space required for sub-program */
5090 Mem *pRt; /* Register to allocate runtime space */
5091 Mem *pMem; /* Used to iterate through memory cells */
5092 Mem *pEnd; /* Last memory cell in new array */
5093 VdbeFrame *pFrame; /* New vdbe frame to execute in */
5094 SubProgram *pProgram; /* Sub-program to execute */
5095 void *t; /* Token identifying trigger */
5096
5097 pProgram = pOp->p4.pProgram;
drha6c2ed92009-11-14 23:22:23 +00005098 pRt = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00005099 assert( memIsValid(pRt) );
dan165921a2009-08-28 18:53:45 +00005100 assert( pProgram->nOp>0 );
5101
dan1da40a32009-09-19 17:00:31 +00005102 /* If the p5 flag is clear, then recursive invocation of triggers is
5103 ** disabled for backwards compatibility (p5 is set if this sub-program
5104 ** is really a trigger, not a foreign key action, and the flag set
5105 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
dan165921a2009-08-28 18:53:45 +00005106 **
5107 ** It is recursive invocation of triggers, at the SQL level, that is
5108 ** disabled. In some cases a single trigger may generate more than one
5109 ** SubProgram (if the trigger may be executed with more than one different
5110 ** ON CONFLICT algorithm). SubProgram structures associated with a
5111 ** single trigger all have the same value for the SubProgram.token
dan1da40a32009-09-19 17:00:31 +00005112 ** variable. */
5113 if( pOp->p5 ){
dan65a7cd12009-09-01 12:16:01 +00005114 t = pProgram->token;
dan165921a2009-08-28 18:53:45 +00005115 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5116 if( pFrame ) break;
5117 }
5118
danf5894502009-10-07 18:41:19 +00005119 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
dan165921a2009-08-28 18:53:45 +00005120 rc = SQLITE_ERROR;
5121 sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
5122 break;
5123 }
5124
5125 /* Register pRt is used to store the memory required to save the state
5126 ** of the current program, and the memory required at runtime to execute
5127 ** the trigger program. If this trigger has been fired before, then pRt
5128 ** is already allocated. Otherwise, it must be initialized. */
5129 if( (pRt->flags&MEM_Frame)==0 ){
dan165921a2009-08-28 18:53:45 +00005130 /* SubProgram.nMem is set to the number of memory cells used by the
5131 ** program stored in SubProgram.aOp. As well as these, one memory
5132 ** cell is required for each cursor used by the program. Set local
5133 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5134 */
dan65a7cd12009-09-01 12:16:01 +00005135 nMem = pProgram->nMem + pProgram->nCsr;
5136 nByte = ROUND8(sizeof(VdbeFrame))
dan165921a2009-08-28 18:53:45 +00005137 + nMem * sizeof(Mem)
5138 + pProgram->nCsr * sizeof(VdbeCursor *);
5139 pFrame = sqlite3DbMallocZero(db, nByte);
5140 if( !pFrame ){
5141 goto no_mem;
5142 }
5143 sqlite3VdbeMemRelease(pRt);
5144 pRt->flags = MEM_Frame;
5145 pRt->u.pFrame = pFrame;
5146
5147 pFrame->v = p;
5148 pFrame->nChildMem = nMem;
5149 pFrame->nChildCsr = pProgram->nCsr;
5150 pFrame->pc = pc;
5151 pFrame->aMem = p->aMem;
5152 pFrame->nMem = p->nMem;
5153 pFrame->apCsr = p->apCsr;
5154 pFrame->nCursor = p->nCursor;
5155 pFrame->aOp = p->aOp;
5156 pFrame->nOp = p->nOp;
5157 pFrame->token = pProgram->token;
5158
5159 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5160 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
5161 pMem->flags = MEM_Null;
5162 pMem->db = db;
5163 }
5164 }else{
5165 pFrame = pRt->u.pFrame;
5166 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
5167 assert( pProgram->nCsr==pFrame->nChildCsr );
5168 assert( pc==pFrame->pc );
5169 }
5170
5171 p->nFrame++;
5172 pFrame->pParent = p->pFrame;
drh99a66922011-05-13 18:51:42 +00005173 pFrame->lastRowid = lastRowid;
dan76d462e2009-08-30 11:42:51 +00005174 pFrame->nChange = p->nChange;
dan2832ad42009-08-31 15:27:27 +00005175 p->nChange = 0;
dan165921a2009-08-28 18:53:45 +00005176 p->pFrame = pFrame;
drha6c2ed92009-11-14 23:22:23 +00005177 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
dan165921a2009-08-28 18:53:45 +00005178 p->nMem = pFrame->nChildMem;
shanecea72b22009-09-07 04:38:36 +00005179 p->nCursor = (u16)pFrame->nChildCsr;
drha6c2ed92009-11-14 23:22:23 +00005180 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
drhbbe879d2009-11-14 18:04:35 +00005181 p->aOp = aOp = pProgram->aOp;
dan165921a2009-08-28 18:53:45 +00005182 p->nOp = pProgram->nOp;
5183 pc = -1;
5184
5185 break;
5186}
5187
dan76d462e2009-08-30 11:42:51 +00005188/* Opcode: Param P1 P2 * * *
dan165921a2009-08-28 18:53:45 +00005189**
dan76d462e2009-08-30 11:42:51 +00005190** This opcode is only ever present in sub-programs called via the
5191** OP_Program instruction. Copy a value currently stored in a memory
5192** cell of the calling (parent) frame to cell P2 in the current frames
5193** address space. This is used by trigger programs to access the new.*
5194** and old.* values.
dan165921a2009-08-28 18:53:45 +00005195**
dan76d462e2009-08-30 11:42:51 +00005196** The address of the cell in the parent frame is determined by adding
5197** the value of the P1 argument to the value of the P1 argument to the
5198** calling OP_Program instruction.
dan165921a2009-08-28 18:53:45 +00005199*/
dan76d462e2009-08-30 11:42:51 +00005200case OP_Param: { /* out2-prerelease */
dan65a7cd12009-09-01 12:16:01 +00005201 VdbeFrame *pFrame;
5202 Mem *pIn;
5203 pFrame = p->pFrame;
5204 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
dan165921a2009-08-28 18:53:45 +00005205 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5206 break;
5207}
5208
danielk197793758c82005-01-21 08:13:14 +00005209#endif /* #ifndef SQLITE_OMIT_TRIGGER */
rdcb0c374f2004-02-20 22:53:38 +00005210
dan1da40a32009-09-19 17:00:31 +00005211#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00005212/* Opcode: FkCounter P1 P2 * * *
dan1da40a32009-09-19 17:00:31 +00005213**
dan0ff297e2009-09-25 17:03:14 +00005214** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5215** If P1 is non-zero, the database constraint counter is incremented
5216** (deferred foreign key constraints). Otherwise, if P1 is zero, the
dan32b09f22009-09-23 17:29:59 +00005217** statement counter is incremented (immediate foreign key constraints).
dan1da40a32009-09-19 17:00:31 +00005218*/
dan32b09f22009-09-23 17:29:59 +00005219case OP_FkCounter: {
dan0ff297e2009-09-25 17:03:14 +00005220 if( pOp->p1 ){
5221 db->nDeferredCons += pOp->p2;
dan32b09f22009-09-23 17:29:59 +00005222 }else{
dan0ff297e2009-09-25 17:03:14 +00005223 p->nFkConstraint += pOp->p2;
5224 }
5225 break;
5226}
5227
5228/* Opcode: FkIfZero P1 P2 * * *
5229**
5230** This opcode tests if a foreign key constraint-counter is currently zero.
5231** If so, jump to instruction P2. Otherwise, fall through to the next
5232** instruction.
5233**
5234** If P1 is non-zero, then the jump is taken if the database constraint-counter
5235** is zero (the one that counts deferred constraint violations). If P1 is
5236** zero, the jump is taken if the statement constraint-counter is zero
5237** (immediate foreign key constraint violations).
5238*/
5239case OP_FkIfZero: { /* jump */
5240 if( pOp->p1 ){
5241 if( db->nDeferredCons==0 ) pc = pOp->p2-1;
5242 }else{
5243 if( p->nFkConstraint==0 ) pc = pOp->p2-1;
dan32b09f22009-09-23 17:29:59 +00005244 }
dan1da40a32009-09-19 17:00:31 +00005245 break;
5246}
5247#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5248
drh205f48e2004-11-05 00:43:11 +00005249#ifndef SQLITE_OMIT_AUTOINCREMENT
drh98757152008-01-09 23:04:12 +00005250/* Opcode: MemMax P1 P2 * * *
drh205f48e2004-11-05 00:43:11 +00005251**
dan76d462e2009-08-30 11:42:51 +00005252** P1 is a register in the root frame of this VM (the root frame is
5253** different from the current frame if this instruction is being executed
5254** within a sub-program). Set the value of register P1 to the maximum of
5255** its current value and the value in register P2.
drh205f48e2004-11-05 00:43:11 +00005256**
5257** This instruction throws an error if the memory cell is not initially
5258** an integer.
5259*/
dan76d462e2009-08-30 11:42:51 +00005260case OP_MemMax: { /* in2 */
5261 Mem *pIn1;
5262 VdbeFrame *pFrame;
5263 if( p->pFrame ){
5264 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5265 pIn1 = &pFrame->aMem[pOp->p1];
5266 }else{
drha6c2ed92009-11-14 23:22:23 +00005267 pIn1 = &aMem[pOp->p1];
dan76d462e2009-08-30 11:42:51 +00005268 }
drh2b4ded92010-09-27 21:09:31 +00005269 assert( memIsValid(pIn1) );
drh98757152008-01-09 23:04:12 +00005270 sqlite3VdbeMemIntegerify(pIn1);
drh3c657212009-11-17 23:59:58 +00005271 pIn2 = &aMem[pOp->p2];
drh98757152008-01-09 23:04:12 +00005272 sqlite3VdbeMemIntegerify(pIn2);
5273 if( pIn1->u.i<pIn2->u.i){
5274 pIn1->u.i = pIn2->u.i;
drh205f48e2004-11-05 00:43:11 +00005275 }
5276 break;
5277}
5278#endif /* SQLITE_OMIT_AUTOINCREMENT */
5279
drh98757152008-01-09 23:04:12 +00005280/* Opcode: IfPos P1 P2 * * *
danielk1977a2dc3b12005-02-05 12:48:48 +00005281**
drh98757152008-01-09 23:04:12 +00005282** If the value of register P1 is 1 or greater, jump to P2.
drh6f58f702006-01-08 05:26:41 +00005283**
drh98757152008-01-09 23:04:12 +00005284** It is illegal to use this instruction on a register that does
drh6f58f702006-01-08 05:26:41 +00005285** not contain an integer. An assertion fault will result if you try.
danielk1977a2dc3b12005-02-05 12:48:48 +00005286*/
drh9cbf3422008-01-17 16:22:13 +00005287case OP_IfPos: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005288 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005289 assert( pIn1->flags&MEM_Int );
drh3c84ddf2008-01-09 02:15:38 +00005290 if( pIn1->u.i>0 ){
drhec7429a2005-10-06 16:53:14 +00005291 pc = pOp->p2 - 1;
5292 }
5293 break;
5294}
5295
drh98757152008-01-09 23:04:12 +00005296/* Opcode: IfNeg P1 P2 * * *
drh15007a92006-01-08 18:10:17 +00005297**
drh98757152008-01-09 23:04:12 +00005298** If the value of register P1 is less than zero, jump to P2.
drh15007a92006-01-08 18:10:17 +00005299**
drh98757152008-01-09 23:04:12 +00005300** It is illegal to use this instruction on a register that does
drh15007a92006-01-08 18:10:17 +00005301** not contain an integer. An assertion fault will result if you try.
5302*/
drh9cbf3422008-01-17 16:22:13 +00005303case OP_IfNeg: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005304 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005305 assert( pIn1->flags&MEM_Int );
drh3c84ddf2008-01-09 02:15:38 +00005306 if( pIn1->u.i<0 ){
drh15007a92006-01-08 18:10:17 +00005307 pc = pOp->p2 - 1;
5308 }
5309 break;
5310}
5311
drh9b918ed2009-11-12 03:13:26 +00005312/* Opcode: IfZero P1 P2 P3 * *
drhec7429a2005-10-06 16:53:14 +00005313**
drh9b918ed2009-11-12 03:13:26 +00005314** The register P1 must contain an integer. Add literal P3 to the
5315** value in register P1. If the result is exactly 0, jump to P2.
drh6f58f702006-01-08 05:26:41 +00005316**
drh98757152008-01-09 23:04:12 +00005317** It is illegal to use this instruction on a register that does
drh6f58f702006-01-08 05:26:41 +00005318** not contain an integer. An assertion fault will result if you try.
drhec7429a2005-10-06 16:53:14 +00005319*/
drh9cbf3422008-01-17 16:22:13 +00005320case OP_IfZero: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005321 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005322 assert( pIn1->flags&MEM_Int );
drh9b918ed2009-11-12 03:13:26 +00005323 pIn1->u.i += pOp->p3;
drh3c84ddf2008-01-09 02:15:38 +00005324 if( pIn1->u.i==0 ){
drha2a49dc2008-01-02 14:28:13 +00005325 pc = pOp->p2 - 1;
5326 }
5327 break;
5328}
5329
drh98757152008-01-09 23:04:12 +00005330/* Opcode: AggStep * P2 P3 P4 P5
drhe5095352002-02-24 03:25:14 +00005331**
drh0bce8352002-02-28 00:41:10 +00005332** Execute the step function for an aggregate. The
drh98757152008-01-09 23:04:12 +00005333** function has P5 arguments. P4 is a pointer to the FuncDef
5334** structure that specifies the function. Use register
5335** P3 as the accumulator.
drhe5095352002-02-24 03:25:14 +00005336**
drh98757152008-01-09 23:04:12 +00005337** The P5 arguments are taken from register P2 and its
5338** successors.
drhe5095352002-02-24 03:25:14 +00005339*/
drh9cbf3422008-01-17 16:22:13 +00005340case OP_AggStep: {
drh856c1032009-06-02 15:21:42 +00005341 int n;
drhe5095352002-02-24 03:25:14 +00005342 int i;
drhc54a6172009-06-02 16:06:03 +00005343 Mem *pMem;
5344 Mem *pRec;
danielk197722322fd2004-05-25 23:35:17 +00005345 sqlite3_context ctx;
danielk19776ddcca52004-05-24 23:48:25 +00005346 sqlite3_value **apVal;
drhe5095352002-02-24 03:25:14 +00005347
drh856c1032009-06-02 15:21:42 +00005348 n = pOp->p5;
drh6810ce62004-01-31 19:22:56 +00005349 assert( n>=0 );
drha6c2ed92009-11-14 23:22:23 +00005350 pRec = &aMem[pOp->p2];
danielk19776ddcca52004-05-24 23:48:25 +00005351 apVal = p->apArg;
5352 assert( apVal || n==0 );
drh6810ce62004-01-31 19:22:56 +00005353 for(i=0; i<n; i++, pRec++){
drh2b4ded92010-09-27 21:09:31 +00005354 assert( memIsValid(pRec) );
danielk1977c572ef72004-05-27 09:28:41 +00005355 apVal[i] = pRec;
drh2b4ded92010-09-27 21:09:31 +00005356 memAboutToChange(p, pRec);
dan937d0de2009-10-15 18:35:38 +00005357 sqlite3VdbeMemStoreType(pRec);
drhe5095352002-02-24 03:25:14 +00005358 }
danielk19772dca4ac2008-01-03 11:50:29 +00005359 ctx.pFunc = pOp->p4.pFunc;
drh98757152008-01-09 23:04:12 +00005360 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00005361 ctx.pMem = pMem = &aMem[pOp->p3];
drhabfcea22005-09-06 20:36:48 +00005362 pMem->n++;
drh90669c12006-01-20 15:45:36 +00005363 ctx.s.flags = MEM_Null;
5364 ctx.s.z = 0;
danielk19775f096132008-03-28 15:44:09 +00005365 ctx.s.zMalloc = 0;
drh90669c12006-01-20 15:45:36 +00005366 ctx.s.xDel = 0;
drhb21c8cd2007-08-21 19:33:56 +00005367 ctx.s.db = db;
drh1350b032002-02-27 19:00:20 +00005368 ctx.isError = 0;
danielk1977dc1bdc42004-06-11 10:51:27 +00005369 ctx.pColl = 0;
drhe82f5d02008-10-07 19:53:14 +00005370 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
danielk1977dc1bdc42004-06-11 10:51:27 +00005371 assert( pOp>p->aOp );
drh66a51672008-01-03 00:01:23 +00005372 assert( pOp[-1].p4type==P4_COLLSEQ );
danielk1977dc1bdc42004-06-11 10:51:27 +00005373 assert( pOp[-1].opcode==OP_CollSeq );
danielk19772dca4ac2008-01-03 11:50:29 +00005374 ctx.pColl = pOp[-1].p4.pColl;
danielk1977dc1bdc42004-06-11 10:51:27 +00005375 }
drhee9ff672010-09-03 18:50:48 +00005376 (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
drh1350b032002-02-27 19:00:20 +00005377 if( ctx.isError ){
drhf089aa42008-07-08 19:34:06 +00005378 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
drh69544ec2008-02-06 14:11:34 +00005379 rc = ctx.isError;
drh1350b032002-02-27 19:00:20 +00005380 }
drhbdaec522011-04-04 00:14:43 +00005381
drh90669c12006-01-20 15:45:36 +00005382 sqlite3VdbeMemRelease(&ctx.s);
drhbdaec522011-04-04 00:14:43 +00005383
drh5e00f6c2001-09-13 13:46:56 +00005384 break;
5385}
5386
drh98757152008-01-09 23:04:12 +00005387/* Opcode: AggFinal P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +00005388**
drh13449892005-09-07 21:22:45 +00005389** Execute the finalizer function for an aggregate. P1 is
5390** the memory location that is the accumulator for the aggregate.
drha10a34b2005-09-07 22:09:48 +00005391**
5392** P2 is the number of arguments that the step function takes and
drh66a51672008-01-03 00:01:23 +00005393** P4 is a pointer to the FuncDef for this function. The P2
drha10a34b2005-09-07 22:09:48 +00005394** argument is not used by this opcode. It is only there to disambiguate
5395** functions that can take varying numbers of arguments. The
drh66a51672008-01-03 00:01:23 +00005396** P4 argument is only needed for the degenerate case where
drha10a34b2005-09-07 22:09:48 +00005397** the step function was not previously called.
drh5e00f6c2001-09-13 13:46:56 +00005398*/
drh9cbf3422008-01-17 16:22:13 +00005399case OP_AggFinal: {
drh13449892005-09-07 21:22:45 +00005400 Mem *pMem;
drh0a07c102008-01-03 18:03:08 +00005401 assert( pOp->p1>0 && pOp->p1<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00005402 pMem = &aMem[pOp->p1];
drha10a34b2005-09-07 22:09:48 +00005403 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
danielk19772dca4ac2008-01-03 11:50:29 +00005404 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
drh4c8555f2009-06-25 01:47:11 +00005405 if( rc ){
drhf089aa42008-07-08 19:34:06 +00005406 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
drh90669c12006-01-20 15:45:36 +00005407 }
drh2dca8682008-03-21 17:13:13 +00005408 sqlite3VdbeChangeEncoding(pMem, encoding);
drhb7654112008-01-12 12:48:07 +00005409 UPDATE_MAX_BLOBSIZE(pMem);
drh023ae032007-05-08 12:12:16 +00005410 if( sqlite3VdbeMemTooBig(pMem) ){
5411 goto too_big;
5412 }
drh5e00f6c2001-09-13 13:46:56 +00005413 break;
5414}
5415
dan5cf53532010-05-01 16:40:20 +00005416#ifndef SQLITE_OMIT_WAL
dancdc1f042010-11-18 12:11:05 +00005417/* Opcode: Checkpoint P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00005418**
5419** Checkpoint database P1. This is a no-op if P1 is not currently in
dancdc1f042010-11-18 12:11:05 +00005420** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL
drh30aa3b92011-02-07 23:56:01 +00005421** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns
5422** SQLITE_BUSY or not, respectively. Write the number of pages in the
5423** WAL after the checkpoint into mem[P3+1] and the number of pages
5424** in the WAL that have been checkpointed after the checkpoint
5425** completes into mem[P3+2]. However on an error, mem[P3+1] and
5426** mem[P3+2] are initialized to -1.
dan7c246102010-04-12 19:00:29 +00005427*/
5428case OP_Checkpoint: {
drh30aa3b92011-02-07 23:56:01 +00005429 int i; /* Loop counter */
5430 int aRes[3]; /* Results */
5431 Mem *pMem; /* Write results here */
5432
5433 aRes[0] = 0;
5434 aRes[1] = aRes[2] = -1;
dancdc1f042010-11-18 12:11:05 +00005435 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
5436 || pOp->p2==SQLITE_CHECKPOINT_FULL
5437 || pOp->p2==SQLITE_CHECKPOINT_RESTART
5438 );
drh30aa3b92011-02-07 23:56:01 +00005439 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
dancdc1f042010-11-18 12:11:05 +00005440 if( rc==SQLITE_BUSY ){
5441 rc = SQLITE_OK;
drh30aa3b92011-02-07 23:56:01 +00005442 aRes[0] = 1;
dancdc1f042010-11-18 12:11:05 +00005443 }
drh30aa3b92011-02-07 23:56:01 +00005444 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
5445 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
5446 }
dan7c246102010-04-12 19:00:29 +00005447 break;
5448};
dan5cf53532010-05-01 16:40:20 +00005449#endif
drh5e00f6c2001-09-13 13:46:56 +00005450
drhcac29a62010-07-02 19:36:52 +00005451#ifndef SQLITE_OMIT_PRAGMA
drhab9b7442010-05-10 11:20:05 +00005452/* Opcode: JournalMode P1 P2 P3 * P5
dane04dc882010-04-20 18:53:15 +00005453**
5454** Change the journal mode of database P1 to P3. P3 must be one of the
5455** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5456** modes (delete, truncate, persist, off and memory), this is a simple
5457** operation. No IO is required.
5458**
5459** If changing into or out of WAL mode the procedure is more complicated.
5460**
5461** Write a string containing the final journal-mode to register P2.
5462*/
drhd80b2332010-05-01 00:59:37 +00005463case OP_JournalMode: { /* out2-prerelease */
dane04dc882010-04-20 18:53:15 +00005464 Btree *pBt; /* Btree to change journal mode of */
5465 Pager *pPager; /* Pager associated with pBt */
drhd80b2332010-05-01 00:59:37 +00005466 int eNew; /* New journal mode */
5467 int eOld; /* The old journal mode */
drhd80b2332010-05-01 00:59:37 +00005468 const char *zFilename; /* Name of database file for pPager */
dane04dc882010-04-20 18:53:15 +00005469
drhd80b2332010-05-01 00:59:37 +00005470 eNew = pOp->p3;
dane04dc882010-04-20 18:53:15 +00005471 assert( eNew==PAGER_JOURNALMODE_DELETE
5472 || eNew==PAGER_JOURNALMODE_TRUNCATE
5473 || eNew==PAGER_JOURNALMODE_PERSIST
5474 || eNew==PAGER_JOURNALMODE_OFF
5475 || eNew==PAGER_JOURNALMODE_MEMORY
5476 || eNew==PAGER_JOURNALMODE_WAL
5477 || eNew==PAGER_JOURNALMODE_QUERY
5478 );
5479 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drh3ebaee92010-05-06 21:37:22 +00005480
dane04dc882010-04-20 18:53:15 +00005481 pBt = db->aDb[pOp->p1].pBt;
5482 pPager = sqlite3BtreePager(pBt);
drh0b9b4302010-06-11 17:01:24 +00005483 eOld = sqlite3PagerGetJournalMode(pPager);
5484 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
5485 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
dan5cf53532010-05-01 16:40:20 +00005486
5487#ifndef SQLITE_OMIT_WAL
drhd80b2332010-05-01 00:59:37 +00005488 zFilename = sqlite3PagerFilename(pPager);
dane04dc882010-04-20 18:53:15 +00005489
drhd80b2332010-05-01 00:59:37 +00005490 /* Do not allow a transition to journal_mode=WAL for a database
drh6e1f4822010-07-13 23:41:40 +00005491 ** in temporary storage or if the VFS does not support shared memory
drhd80b2332010-05-01 00:59:37 +00005492 */
5493 if( eNew==PAGER_JOURNALMODE_WAL
drhd9e5c4f2010-05-12 18:01:39 +00005494 && (zFilename[0]==0 /* Temp file */
drh6e1f4822010-07-13 23:41:40 +00005495 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
dane180c292010-04-26 17:42:56 +00005496 ){
drh0b9b4302010-06-11 17:01:24 +00005497 eNew = eOld;
dane180c292010-04-26 17:42:56 +00005498 }
5499
drh0b9b4302010-06-11 17:01:24 +00005500 if( (eNew!=eOld)
5501 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
5502 ){
5503 if( !db->autoCommit || db->activeVdbeCnt>1 ){
5504 rc = SQLITE_ERROR;
5505 sqlite3SetString(&p->zErrMsg, db,
5506 "cannot change %s wal mode from within a transaction",
5507 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
5508 );
5509 break;
5510 }else{
5511
5512 if( eOld==PAGER_JOURNALMODE_WAL ){
5513 /* If leaving WAL mode, close the log file. If successful, the call
5514 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
5515 ** file. An EXCLUSIVE lock may still be held on the database file
5516 ** after a successful return.
dane04dc882010-04-20 18:53:15 +00005517 */
drh0b9b4302010-06-11 17:01:24 +00005518 rc = sqlite3PagerCloseWal(pPager);
drhab9b7442010-05-10 11:20:05 +00005519 if( rc==SQLITE_OK ){
drh0b9b4302010-06-11 17:01:24 +00005520 sqlite3PagerSetJournalMode(pPager, eNew);
drh89c3f2f2010-05-15 01:09:38 +00005521 }
drh242c4f72010-06-22 14:49:39 +00005522 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
5523 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
5524 ** as an intermediate */
5525 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
drh0b9b4302010-06-11 17:01:24 +00005526 }
5527
5528 /* Open a transaction on the database file. Regardless of the journal
5529 ** mode, this transaction always uses a rollback journal.
5530 */
5531 assert( sqlite3BtreeIsInTrans(pBt)==0 );
5532 if( rc==SQLITE_OK ){
dan731bf5b2010-06-17 16:44:21 +00005533 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
dane04dc882010-04-20 18:53:15 +00005534 }
5535 }
5536 }
dan5cf53532010-05-01 16:40:20 +00005537#endif /* ifndef SQLITE_OMIT_WAL */
dane04dc882010-04-20 18:53:15 +00005538
dand956efe2010-06-18 16:13:45 +00005539 if( rc ){
dand956efe2010-06-18 16:13:45 +00005540 eNew = eOld;
5541 }
drh0b9b4302010-06-11 17:01:24 +00005542 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
dan731bf5b2010-06-17 16:44:21 +00005543
dane04dc882010-04-20 18:53:15 +00005544 pOut = &aMem[pOp->p2];
5545 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
danb9780022010-04-21 18:37:57 +00005546 pOut->z = (char *)sqlite3JournalModename(eNew);
dane04dc882010-04-20 18:53:15 +00005547 pOut->n = sqlite3Strlen30(pOut->z);
5548 pOut->enc = SQLITE_UTF8;
5549 sqlite3VdbeChangeEncoding(pOut, encoding);
5550 break;
drhcac29a62010-07-02 19:36:52 +00005551};
5552#endif /* SQLITE_OMIT_PRAGMA */
dane04dc882010-04-20 18:53:15 +00005553
drhfdbcdee2007-03-27 14:44:50 +00005554#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
drh98757152008-01-09 23:04:12 +00005555/* Opcode: Vacuum * * * * *
drh6f8c91c2003-12-07 00:24:35 +00005556**
5557** Vacuum the entire database. This opcode will cause other virtual
5558** machines to be created and run. It may not be called from within
5559** a transaction.
5560*/
drh9cbf3422008-01-17 16:22:13 +00005561case OP_Vacuum: {
danielk19774adee202004-05-08 08:23:19 +00005562 rc = sqlite3RunVacuum(&p->zErrMsg, db);
drh6f8c91c2003-12-07 00:24:35 +00005563 break;
5564}
drh154d4b22006-09-21 11:02:16 +00005565#endif
drh6f8c91c2003-12-07 00:24:35 +00005566
danielk1977dddbcdc2007-04-26 14:42:34 +00005567#if !defined(SQLITE_OMIT_AUTOVACUUM)
drh98757152008-01-09 23:04:12 +00005568/* Opcode: IncrVacuum P1 P2 * * *
danielk1977dddbcdc2007-04-26 14:42:34 +00005569**
5570** Perform a single step of the incremental vacuum procedure on
drhca5557f2007-05-04 18:30:40 +00005571** the P1 database. If the vacuum has finished, jump to instruction
danielk1977dddbcdc2007-04-26 14:42:34 +00005572** P2. Otherwise, fall through to the next instruction.
5573*/
drh9cbf3422008-01-17 16:22:13 +00005574case OP_IncrVacuum: { /* jump */
drhca5557f2007-05-04 18:30:40 +00005575 Btree *pBt;
5576
5577 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00005578 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
drhca5557f2007-05-04 18:30:40 +00005579 pBt = db->aDb[pOp->p1].pBt;
danielk1977dddbcdc2007-04-26 14:42:34 +00005580 rc = sqlite3BtreeIncrVacuum(pBt);
5581 if( rc==SQLITE_DONE ){
5582 pc = pOp->p2 - 1;
5583 rc = SQLITE_OK;
5584 }
5585 break;
5586}
5587#endif
5588
drh98757152008-01-09 23:04:12 +00005589/* Opcode: Expire P1 * * * *
danielk1977a21c6b62005-01-24 10:25:59 +00005590**
5591** Cause precompiled statements to become expired. An expired statement
5592** fails with an error code of SQLITE_SCHEMA if it is ever executed
5593** (via sqlite3_step()).
5594**
5595** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
5596** then only the currently executing statement is affected.
5597*/
drh9cbf3422008-01-17 16:22:13 +00005598case OP_Expire: {
danielk1977a21c6b62005-01-24 10:25:59 +00005599 if( !pOp->p1 ){
5600 sqlite3ExpirePreparedStatements(db);
5601 }else{
5602 p->expired = 1;
5603 }
5604 break;
5605}
5606
danielk1977c00da102006-01-07 13:21:04 +00005607#ifndef SQLITE_OMIT_SHARED_CACHE
drh6a9ad3d2008-04-02 16:29:30 +00005608/* Opcode: TableLock P1 P2 P3 P4 *
danielk1977c00da102006-01-07 13:21:04 +00005609**
5610** Obtain a lock on a particular table. This instruction is only used when
5611** the shared-cache feature is enabled.
5612**
danielk197796d48e92009-06-29 06:00:37 +00005613** P1 is the index of the database in sqlite3.aDb[] of the database
drh6a9ad3d2008-04-02 16:29:30 +00005614** on which the lock is acquired. A readlock is obtained if P3==0 or
5615** a write lock if P3==1.
danielk1977c00da102006-01-07 13:21:04 +00005616**
5617** P2 contains the root-page of the table to lock.
5618**
drh66a51672008-01-03 00:01:23 +00005619** P4 contains a pointer to the name of the table being locked. This is only
danielk1977c00da102006-01-07 13:21:04 +00005620** used to generate an error message if the lock cannot be obtained.
5621*/
drh9cbf3422008-01-17 16:22:13 +00005622case OP_TableLock: {
danielk1977e0d9e6f2009-07-03 16:25:06 +00005623 u8 isWriteLock = (u8)pOp->p3;
5624 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
5625 int p1 = pOp->p1;
5626 assert( p1>=0 && p1<db->nDb );
drhdddd7792011-04-03 18:19:25 +00005627 assert( (p->btreeMask & (((yDbMask)1)<<p1))!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +00005628 assert( isWriteLock==0 || isWriteLock==1 );
5629 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
5630 if( (rc&0xFF)==SQLITE_LOCKED ){
5631 const char *z = pOp->p4.z;
5632 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
5633 }
danielk1977c00da102006-01-07 13:21:04 +00005634 }
5635 break;
5636}
drhb9bb7c12006-06-11 23:41:55 +00005637#endif /* SQLITE_OMIT_SHARED_CACHE */
5638
5639#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005640/* Opcode: VBegin * * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00005641**
danielk19773e3a84d2008-08-01 17:37:40 +00005642** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
5643** xBegin method for that table.
5644**
5645** Also, whether or not P4 is set, check that this is not being called from
danielk1977404ca072009-03-16 13:19:36 +00005646** within a callback to a virtual table xSync() method. If it is, the error
5647** code will be set to SQLITE_LOCKED.
drhb9bb7c12006-06-11 23:41:55 +00005648*/
drh9cbf3422008-01-17 16:22:13 +00005649case OP_VBegin: {
danielk1977595a5232009-07-24 17:58:53 +00005650 VTable *pVTab;
5651 pVTab = pOp->p4.pVtab;
5652 rc = sqlite3VtabBegin(db, pVTab);
drhb9755982010-07-24 16:34:37 +00005653 if( pVTab ) importVtabErrMsg(p, pVTab->pVtab);
danielk1977f9e7dda2006-06-16 16:08:53 +00005654 break;
5655}
5656#endif /* SQLITE_OMIT_VIRTUALTABLE */
5657
5658#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005659/* Opcode: VCreate P1 * * P4 *
danielk1977f9e7dda2006-06-16 16:08:53 +00005660**
drh66a51672008-01-03 00:01:23 +00005661** P4 is the name of a virtual table in database P1. Call the xCreate method
danielk1977f9e7dda2006-06-16 16:08:53 +00005662** for that table.
5663*/
drh9cbf3422008-01-17 16:22:13 +00005664case OP_VCreate: {
danielk19772dca4ac2008-01-03 11:50:29 +00005665 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
drhb9bb7c12006-06-11 23:41:55 +00005666 break;
5667}
5668#endif /* SQLITE_OMIT_VIRTUALTABLE */
5669
5670#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005671/* Opcode: VDestroy P1 * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00005672**
drh66a51672008-01-03 00:01:23 +00005673** P4 is the name of a virtual table in database P1. Call the xDestroy method
danielk19779e39ce82006-06-12 16:01:21 +00005674** of that table.
drhb9bb7c12006-06-11 23:41:55 +00005675*/
drh9cbf3422008-01-17 16:22:13 +00005676case OP_VDestroy: {
danielk1977212b2182006-06-23 14:32:08 +00005677 p->inVtabMethod = 2;
danielk19772dca4ac2008-01-03 11:50:29 +00005678 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
danielk1977212b2182006-06-23 14:32:08 +00005679 p->inVtabMethod = 0;
drhb9bb7c12006-06-11 23:41:55 +00005680 break;
5681}
5682#endif /* SQLITE_OMIT_VIRTUALTABLE */
danielk1977c00da102006-01-07 13:21:04 +00005683
drh9eff6162006-06-12 21:59:13 +00005684#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005685/* Opcode: VOpen P1 * * P4 *
drh9eff6162006-06-12 21:59:13 +00005686**
drh66a51672008-01-03 00:01:23 +00005687** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
drh9eff6162006-06-12 21:59:13 +00005688** P1 is a cursor number. This opcode opens a cursor to the virtual
5689** table and stores that cursor in P1.
5690*/
drh9cbf3422008-01-17 16:22:13 +00005691case OP_VOpen: {
drh856c1032009-06-02 15:21:42 +00005692 VdbeCursor *pCur;
5693 sqlite3_vtab_cursor *pVtabCursor;
5694 sqlite3_vtab *pVtab;
5695 sqlite3_module *pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005696
drh856c1032009-06-02 15:21:42 +00005697 pCur = 0;
5698 pVtabCursor = 0;
danielk1977595a5232009-07-24 17:58:53 +00005699 pVtab = pOp->p4.pVtab->pVtab;
drh856c1032009-06-02 15:21:42 +00005700 pModule = (sqlite3_module *)pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005701 assert(pVtab && pModule);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005702 rc = pModule->xOpen(pVtab, &pVtabCursor);
drhb9755982010-07-24 16:34:37 +00005703 importVtabErrMsg(p, pVtab);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005704 if( SQLITE_OK==rc ){
shane21e7feb2008-05-30 15:59:49 +00005705 /* Initialize sqlite3_vtab_cursor base class */
danielk1977b7a7b9a2006-06-13 10:24:42 +00005706 pVtabCursor->pVtab = pVtab;
5707
5708 /* Initialise vdbe cursor object */
danielk1977d336e222009-02-20 10:58:41 +00005709 pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
danielk1977be718892006-06-23 08:05:19 +00005710 if( pCur ){
5711 pCur->pVtabCursor = pVtabCursor;
5712 pCur->pModule = pVtabCursor->pVtab->pModule;
danielk1977b7a2f2e2006-06-23 11:34:54 +00005713 }else{
drh17435752007-08-16 04:30:38 +00005714 db->mallocFailed = 1;
danielk1977b7a2f2e2006-06-23 11:34:54 +00005715 pModule->xClose(pVtabCursor);
danielk1977be718892006-06-23 08:05:19 +00005716 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005717 }
drh9eff6162006-06-12 21:59:13 +00005718 break;
5719}
5720#endif /* SQLITE_OMIT_VIRTUALTABLE */
5721
5722#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk19776dbee812008-01-03 18:39:41 +00005723/* Opcode: VFilter P1 P2 P3 P4 *
drh9eff6162006-06-12 21:59:13 +00005724**
5725** P1 is a cursor opened using VOpen. P2 is an address to jump to if
5726** the filtered result set is empty.
5727**
drh66a51672008-01-03 00:01:23 +00005728** P4 is either NULL or a string that was generated by the xBestIndex
5729** method of the module. The interpretation of the P4 string is left
drh4be8b512006-06-13 23:51:34 +00005730** to the module implementation.
danielk19775fac9f82006-06-13 14:16:58 +00005731**
drh9eff6162006-06-12 21:59:13 +00005732** This opcode invokes the xFilter method on the virtual table specified
danielk19776dbee812008-01-03 18:39:41 +00005733** by P1. The integer query plan parameter to xFilter is stored in register
5734** P3. Register P3+1 stores the argc parameter to be passed to the
drh174edc62008-05-29 05:23:41 +00005735** xFilter method. Registers P3+2..P3+1+argc are the argc
5736** additional parameters which are passed to
danielk19776dbee812008-01-03 18:39:41 +00005737** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
danielk1977b7a7b9a2006-06-13 10:24:42 +00005738**
danielk19776dbee812008-01-03 18:39:41 +00005739** A jump is made to P2 if the result set after filtering would be empty.
drh9eff6162006-06-12 21:59:13 +00005740*/
drh9cbf3422008-01-17 16:22:13 +00005741case OP_VFilter: { /* jump */
danielk1977b7a7b9a2006-06-13 10:24:42 +00005742 int nArg;
danielk19776dbee812008-01-03 18:39:41 +00005743 int iQuery;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005744 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00005745 Mem *pQuery;
5746 Mem *pArgc;
drh4dc754d2008-07-23 18:17:32 +00005747 sqlite3_vtab_cursor *pVtabCursor;
5748 sqlite3_vtab *pVtab;
drh856c1032009-06-02 15:21:42 +00005749 VdbeCursor *pCur;
5750 int res;
5751 int i;
5752 Mem **apArg;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005753
drha6c2ed92009-11-14 23:22:23 +00005754 pQuery = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00005755 pArgc = &pQuery[1];
5756 pCur = p->apCsr[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00005757 assert( memIsValid(pQuery) );
drh5b6afba2008-01-05 16:29:28 +00005758 REGISTER_TRACE(pOp->p3, pQuery);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005759 assert( pCur->pVtabCursor );
drh4dc754d2008-07-23 18:17:32 +00005760 pVtabCursor = pCur->pVtabCursor;
5761 pVtab = pVtabCursor->pVtab;
5762 pModule = pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005763
drh9cbf3422008-01-17 16:22:13 +00005764 /* Grab the index number and argc parameters */
danielk19776dbee812008-01-03 18:39:41 +00005765 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
drh9c1905f2008-12-10 22:32:56 +00005766 nArg = (int)pArgc->u.i;
5767 iQuery = (int)pQuery->u.i;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005768
drh644a5292006-12-20 14:53:38 +00005769 /* Invoke the xFilter method */
5770 {
drh856c1032009-06-02 15:21:42 +00005771 res = 0;
5772 apArg = p->apArg;
drh4be8b512006-06-13 23:51:34 +00005773 for(i = 0; i<nArg; i++){
danielk19776dbee812008-01-03 18:39:41 +00005774 apArg[i] = &pArgc[i+1];
dan937d0de2009-10-15 18:35:38 +00005775 sqlite3VdbeMemStoreType(apArg[i]);
danielk19775fac9f82006-06-13 14:16:58 +00005776 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005777
danielk1977be718892006-06-23 08:05:19 +00005778 p->inVtabMethod = 1;
drh4dc754d2008-07-23 18:17:32 +00005779 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
danielk1977be718892006-06-23 08:05:19 +00005780 p->inVtabMethod = 0;
drhb9755982010-07-24 16:34:37 +00005781 importVtabErrMsg(p, pVtab);
danielk1977a298e902006-06-22 09:53:48 +00005782 if( rc==SQLITE_OK ){
drh4dc754d2008-07-23 18:17:32 +00005783 res = pModule->xEof(pVtabCursor);
danielk1977a298e902006-06-22 09:53:48 +00005784 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005785
danielk1977a298e902006-06-22 09:53:48 +00005786 if( res ){
danielk1977b7a7b9a2006-06-13 10:24:42 +00005787 pc = pOp->p2 - 1;
5788 }
5789 }
drh1d454a32008-01-31 19:34:51 +00005790 pCur->nullRow = 0;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005791
drh9eff6162006-06-12 21:59:13 +00005792 break;
5793}
5794#endif /* SQLITE_OMIT_VIRTUALTABLE */
5795
5796#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005797/* Opcode: VColumn P1 P2 P3 * *
drh9eff6162006-06-12 21:59:13 +00005798**
drh2133d822008-01-03 18:44:59 +00005799** Store the value of the P2-th column of
5800** the row of the virtual-table that the
5801** P1 cursor is pointing to into register P3.
drh9eff6162006-06-12 21:59:13 +00005802*/
5803case OP_VColumn: {
danielk19773e3a84d2008-08-01 17:37:40 +00005804 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005805 const sqlite3_module *pModule;
drhde4fcfd2008-01-19 23:50:26 +00005806 Mem *pDest;
5807 sqlite3_context sContext;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005808
drhdfe88ec2008-11-03 20:55:06 +00005809 VdbeCursor *pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00005810 assert( pCur->pVtabCursor );
drh2945b4a2008-01-31 15:53:45 +00005811 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00005812 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00005813 memAboutToChange(p, pDest);
drh2945b4a2008-01-31 15:53:45 +00005814 if( pCur->nullRow ){
5815 sqlite3VdbeMemSetNull(pDest);
5816 break;
5817 }
danielk19773e3a84d2008-08-01 17:37:40 +00005818 pVtab = pCur->pVtabCursor->pVtab;
5819 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00005820 assert( pModule->xColumn );
5821 memset(&sContext, 0, sizeof(sContext));
danielk1977a7a8e142008-02-13 18:25:27 +00005822
5823 /* The output cell may already have a buffer allocated. Move
5824 ** the current contents to sContext.s so in case the user-function
5825 ** can use the already allocated buffer instead of allocating a
5826 ** new one.
5827 */
5828 sqlite3VdbeMemMove(&sContext.s, pDest);
5829 MemSetTypeFlag(&sContext.s, MEM_Null);
5830
drhde4fcfd2008-01-19 23:50:26 +00005831 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
drhb9755982010-07-24 16:34:37 +00005832 importVtabErrMsg(p, pVtab);
drh4c8555f2009-06-25 01:47:11 +00005833 if( sContext.isError ){
5834 rc = sContext.isError;
5835 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005836
drhde4fcfd2008-01-19 23:50:26 +00005837 /* Copy the result of the function to the P3 register. We
shanebe217792009-03-05 04:20:31 +00005838 ** do this regardless of whether or not an error occurred to ensure any
drhde4fcfd2008-01-19 23:50:26 +00005839 ** dynamic allocation in sContext.s (a Mem struct) is released.
5840 */
5841 sqlite3VdbeChangeEncoding(&sContext.s, encoding);
drhde4fcfd2008-01-19 23:50:26 +00005842 sqlite3VdbeMemMove(pDest, &sContext.s);
drh5ff44372009-11-24 16:26:17 +00005843 REGISTER_TRACE(pOp->p3, pDest);
drhde4fcfd2008-01-19 23:50:26 +00005844 UPDATE_MAX_BLOBSIZE(pDest);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005845
drhde4fcfd2008-01-19 23:50:26 +00005846 if( sqlite3VdbeMemTooBig(pDest) ){
5847 goto too_big;
5848 }
drh9eff6162006-06-12 21:59:13 +00005849 break;
5850}
5851#endif /* SQLITE_OMIT_VIRTUALTABLE */
5852
5853#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005854/* Opcode: VNext P1 P2 * * *
drh9eff6162006-06-12 21:59:13 +00005855**
5856** Advance virtual table P1 to the next row in its result set and
5857** jump to instruction P2. Or, if the virtual table has reached
5858** the end of its result set, then fall through to the next instruction.
5859*/
drh9cbf3422008-01-17 16:22:13 +00005860case OP_VNext: { /* jump */
danielk19773e3a84d2008-08-01 17:37:40 +00005861 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005862 const sqlite3_module *pModule;
drhc54a6172009-06-02 16:06:03 +00005863 int res;
drh856c1032009-06-02 15:21:42 +00005864 VdbeCursor *pCur;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005865
drhc54a6172009-06-02 16:06:03 +00005866 res = 0;
drh856c1032009-06-02 15:21:42 +00005867 pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00005868 assert( pCur->pVtabCursor );
drh2945b4a2008-01-31 15:53:45 +00005869 if( pCur->nullRow ){
5870 break;
5871 }
danielk19773e3a84d2008-08-01 17:37:40 +00005872 pVtab = pCur->pVtabCursor->pVtab;
5873 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00005874 assert( pModule->xNext );
danielk1977b7a7b9a2006-06-13 10:24:42 +00005875
drhde4fcfd2008-01-19 23:50:26 +00005876 /* Invoke the xNext() method of the module. There is no way for the
5877 ** underlying implementation to return an error if one occurs during
5878 ** xNext(). Instead, if an error occurs, true is returned (indicating that
5879 ** data is available) and the error code returned when xColumn or
5880 ** some other method is next invoked on the save virtual table cursor.
5881 */
drhde4fcfd2008-01-19 23:50:26 +00005882 p->inVtabMethod = 1;
5883 rc = pModule->xNext(pCur->pVtabCursor);
5884 p->inVtabMethod = 0;
drhb9755982010-07-24 16:34:37 +00005885 importVtabErrMsg(p, pVtab);
drhde4fcfd2008-01-19 23:50:26 +00005886 if( rc==SQLITE_OK ){
5887 res = pModule->xEof(pCur->pVtabCursor);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005888 }
5889
drhde4fcfd2008-01-19 23:50:26 +00005890 if( !res ){
5891 /* If there is data, jump to P2 */
5892 pc = pOp->p2 - 1;
5893 }
drh9eff6162006-06-12 21:59:13 +00005894 break;
5895}
5896#endif /* SQLITE_OMIT_VIRTUALTABLE */
5897
danielk1977182c4ba2007-06-27 15:53:34 +00005898#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005899/* Opcode: VRename P1 * * P4 *
danielk1977182c4ba2007-06-27 15:53:34 +00005900**
drh66a51672008-01-03 00:01:23 +00005901** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977182c4ba2007-06-27 15:53:34 +00005902** This opcode invokes the corresponding xRename method. The value
danielk19776dbee812008-01-03 18:39:41 +00005903** in register P1 is passed as the zName argument to the xRename method.
danielk1977182c4ba2007-06-27 15:53:34 +00005904*/
drh9cbf3422008-01-17 16:22:13 +00005905case OP_VRename: {
drh856c1032009-06-02 15:21:42 +00005906 sqlite3_vtab *pVtab;
5907 Mem *pName;
5908
danielk1977595a5232009-07-24 17:58:53 +00005909 pVtab = pOp->p4.pVtab->pVtab;
drha6c2ed92009-11-14 23:22:23 +00005910 pName = &aMem[pOp->p1];
danielk1977182c4ba2007-06-27 15:53:34 +00005911 assert( pVtab->pModule->xRename );
drh2b4ded92010-09-27 21:09:31 +00005912 assert( memIsValid(pName) );
drh5b6afba2008-01-05 16:29:28 +00005913 REGISTER_TRACE(pOp->p1, pName);
drh35f6b932009-06-23 14:15:04 +00005914 assert( pName->flags & MEM_Str );
danielk19776dbee812008-01-03 18:39:41 +00005915 rc = pVtab->pModule->xRename(pVtab, pName->z);
drhb9755982010-07-24 16:34:37 +00005916 importVtabErrMsg(p, pVtab);
dana235d0c2010-08-24 16:59:47 +00005917 p->expired = 0;
danielk1977182c4ba2007-06-27 15:53:34 +00005918
danielk1977182c4ba2007-06-27 15:53:34 +00005919 break;
5920}
5921#endif
drh4cbdda92006-06-14 19:00:20 +00005922
5923#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005924/* Opcode: VUpdate P1 P2 P3 P4 *
danielk1977399918f2006-06-14 13:03:23 +00005925**
drh66a51672008-01-03 00:01:23 +00005926** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977399918f2006-06-14 13:03:23 +00005927** This opcode invokes the corresponding xUpdate method. P2 values
danielk19772a339ff2008-01-03 17:31:44 +00005928** are contiguous memory cells starting at P3 to pass to the xUpdate
5929** invocation. The value in register (P3+P2-1) corresponds to the
5930** p2th element of the argv array passed to xUpdate.
drh4cbdda92006-06-14 19:00:20 +00005931**
5932** The xUpdate method will do a DELETE or an INSERT or both.
danielk19772a339ff2008-01-03 17:31:44 +00005933** The argv[0] element (which corresponds to memory cell P3)
5934** is the rowid of a row to delete. If argv[0] is NULL then no
5935** deletion occurs. The argv[1] element is the rowid of the new
5936** row. This can be NULL to have the virtual table select the new
5937** rowid for itself. The subsequent elements in the array are
5938** the values of columns in the new row.
drh4cbdda92006-06-14 19:00:20 +00005939**
5940** If P2==1 then no insert is performed. argv[0] is the rowid of
5941** a row to delete.
danielk19771f6eec52006-06-16 06:17:47 +00005942**
5943** P1 is a boolean flag. If it is set to true and the xUpdate call
5944** is successful, then the value returned by sqlite3_last_insert_rowid()
5945** is set to the value of the rowid for the row just inserted.
danielk1977399918f2006-06-14 13:03:23 +00005946*/
drh9cbf3422008-01-17 16:22:13 +00005947case OP_VUpdate: {
drh856c1032009-06-02 15:21:42 +00005948 sqlite3_vtab *pVtab;
5949 sqlite3_module *pModule;
5950 int nArg;
5951 int i;
5952 sqlite_int64 rowid;
5953 Mem **apArg;
5954 Mem *pX;
5955
danb061d052011-04-25 18:49:57 +00005956 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
5957 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
5958 );
danielk1977595a5232009-07-24 17:58:53 +00005959 pVtab = pOp->p4.pVtab->pVtab;
drh856c1032009-06-02 15:21:42 +00005960 pModule = (sqlite3_module *)pVtab->pModule;
5961 nArg = pOp->p2;
drh66a51672008-01-03 00:01:23 +00005962 assert( pOp->p4type==P4_VTAB );
drh35f6b932009-06-23 14:15:04 +00005963 if( ALWAYS(pModule->xUpdate) ){
danb061d052011-04-25 18:49:57 +00005964 u8 vtabOnConflict = db->vtabOnConflict;
drh856c1032009-06-02 15:21:42 +00005965 apArg = p->apArg;
drha6c2ed92009-11-14 23:22:23 +00005966 pX = &aMem[pOp->p3];
danielk19772a339ff2008-01-03 17:31:44 +00005967 for(i=0; i<nArg; i++){
drh2b4ded92010-09-27 21:09:31 +00005968 assert( memIsValid(pX) );
5969 memAboutToChange(p, pX);
dan937d0de2009-10-15 18:35:38 +00005970 sqlite3VdbeMemStoreType(pX);
drh9c419382006-06-16 21:13:21 +00005971 apArg[i] = pX;
danielk19772a339ff2008-01-03 17:31:44 +00005972 pX++;
danielk1977399918f2006-06-14 13:03:23 +00005973 }
danb061d052011-04-25 18:49:57 +00005974 db->vtabOnConflict = pOp->p5;
danielk19771f6eec52006-06-16 06:17:47 +00005975 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
danb061d052011-04-25 18:49:57 +00005976 db->vtabOnConflict = vtabOnConflict;
drhb9755982010-07-24 16:34:37 +00005977 importVtabErrMsg(p, pVtab);
drh35f6b932009-06-23 14:15:04 +00005978 if( rc==SQLITE_OK && pOp->p1 ){
danielk19771f6eec52006-06-16 06:17:47 +00005979 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
drh99a66922011-05-13 18:51:42 +00005980 db->lastRowid = lastRowid = rowid;
danielk19771f6eec52006-06-16 06:17:47 +00005981 }
danb061d052011-04-25 18:49:57 +00005982 if( rc==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
5983 if( pOp->p5==OE_Ignore ){
5984 rc = SQLITE_OK;
5985 }else{
5986 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
5987 }
5988 }else{
5989 p->nChange++;
5990 }
danielk1977399918f2006-06-14 13:03:23 +00005991 }
drh4cbdda92006-06-14 19:00:20 +00005992 break;
danielk1977399918f2006-06-14 13:03:23 +00005993}
5994#endif /* SQLITE_OMIT_VIRTUALTABLE */
5995
danielk197759a93792008-05-15 17:48:20 +00005996#ifndef SQLITE_OMIT_PAGER_PRAGMAS
5997/* Opcode: Pagecount P1 P2 * * *
5998**
5999** Write the current number of pages in database P1 to memory cell P2.
6000*/
6001case OP_Pagecount: { /* out2-prerelease */
drhb1299152010-03-30 22:58:33 +00006002 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
danielk197759a93792008-05-15 17:48:20 +00006003 break;
6004}
6005#endif
6006
drh60ac3f42010-11-23 18:59:27 +00006007
6008#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6009/* Opcode: MaxPgcnt P1 P2 P3 * *
6010**
6011** Try to set the maximum page count for database P1 to the value in P3.
drhc84e0332010-11-23 20:25:08 +00006012** Do not let the maximum page count fall below the current page count and
6013** do not change the maximum page count value if P3==0.
6014**
drh60ac3f42010-11-23 18:59:27 +00006015** Store the maximum page count after the change in register P2.
6016*/
6017case OP_MaxPgcnt: { /* out2-prerelease */
drhc84e0332010-11-23 20:25:08 +00006018 unsigned int newMax;
drh60ac3f42010-11-23 18:59:27 +00006019 Btree *pBt;
6020
6021 pBt = db->aDb[pOp->p1].pBt;
drhc84e0332010-11-23 20:25:08 +00006022 newMax = 0;
6023 if( pOp->p3 ){
6024 newMax = sqlite3BtreeLastPage(pBt);
drh6ea28d62010-11-26 16:49:59 +00006025 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
drhc84e0332010-11-23 20:25:08 +00006026 }
6027 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
drh60ac3f42010-11-23 18:59:27 +00006028 break;
6029}
6030#endif
6031
6032
drh949f9cd2008-01-12 21:35:57 +00006033#ifndef SQLITE_OMIT_TRACE
6034/* Opcode: Trace * * * P4 *
6035**
6036** If tracing is enabled (by the sqlite3_trace()) interface, then
6037** the UTF-8 string contained in P4 is emitted on the trace callback.
6038*/
6039case OP_Trace: {
drh856c1032009-06-02 15:21:42 +00006040 char *zTrace;
drhc3f1d5f2011-05-30 23:42:16 +00006041 char *z;
drh856c1032009-06-02 15:21:42 +00006042
drhc3f1d5f2011-05-30 23:42:16 +00006043 if( db->xTrace && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 ){
6044 z = sqlite3VdbeExpandSql(p, zTrace);
6045 db->xTrace(db->pTraceArg, z);
6046 sqlite3DbFree(db, z);
drh949f9cd2008-01-12 21:35:57 +00006047 }
drhc3f1d5f2011-05-30 23:42:16 +00006048#ifdef SQLITE_DEBUG
6049 if( (db->flags & SQLITE_SqlTrace)!=0
6050 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6051 ){
6052 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
6053 }
6054#endif /* SQLITE_DEBUG */
drh949f9cd2008-01-12 21:35:57 +00006055 break;
6056}
6057#endif
6058
drh91fd4d42008-01-19 20:11:25 +00006059
6060/* Opcode: Noop * * * * *
6061**
6062** Do nothing. This instruction is often useful as a jump
6063** destination.
drh5e00f6c2001-09-13 13:46:56 +00006064*/
drh91fd4d42008-01-19 20:11:25 +00006065/*
6066** The magic Explain opcode are only inserted when explain==2 (which
6067** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6068** This opcode records information from the optimizer. It is the
6069** the same as a no-op. This opcodesnever appears in a real VM program.
6070*/
6071default: { /* This is really OP_Noop and OP_Explain */
drh13573c72010-01-12 17:04:07 +00006072 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
drh5e00f6c2001-09-13 13:46:56 +00006073 break;
6074}
6075
6076/*****************************************************************************
6077** The cases of the switch statement above this line should all be indented
6078** by 6 spaces. But the left-most 6 spaces have been removed to improve the
6079** readability. From this point on down, the normal indentation rules are
6080** restored.
6081*****************************************************************************/
6082 }
drh6e142f52000-06-08 13:36:40 +00006083
drh7b396862003-01-01 23:06:20 +00006084#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +00006085 {
shane9bcbdad2008-05-29 20:22:37 +00006086 u64 elapsed = sqlite3Hwtime() - start;
6087 pOp->cycles += elapsed;
drh8178a752003-01-05 21:41:40 +00006088 pOp->cnt++;
6089#if 0
shane9bcbdad2008-05-29 20:22:37 +00006090 fprintf(stdout, "%10llu ", elapsed);
drhbbe879d2009-11-14 18:04:35 +00006091 sqlite3VdbePrintOp(stdout, origPc, &aOp[origPc]);
drh8178a752003-01-05 21:41:40 +00006092#endif
6093 }
drh7b396862003-01-01 23:06:20 +00006094#endif
6095
drh6e142f52000-06-08 13:36:40 +00006096 /* The following code adds nothing to the actual functionality
6097 ** of the program. It is only here for testing and debugging.
6098 ** On the other hand, it does burn CPU cycles every time through
6099 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
6100 */
6101#ifndef NDEBUG
drha6110402005-07-28 20:51:19 +00006102 assert( pc>=-1 && pc<p->nOp );
drhae7e1512007-05-02 16:51:59 +00006103
drhcf1023c2007-05-08 20:59:49 +00006104#ifdef SQLITE_DEBUG
drh5b6afba2008-01-05 16:29:28 +00006105 if( p->trace ){
6106 if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
drh3c657212009-11-17 23:59:58 +00006107 if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){
6108 registerTrace(p->trace, pOp->p2, &aMem[pOp->p2]);
drh75897232000-05-29 14:26:00 +00006109 }
drh3c657212009-11-17 23:59:58 +00006110 if( pOp->opflags & OPFLG_OUT3 ){
6111 registerTrace(p->trace, pOp->p3, &aMem[pOp->p3]);
drh5b6afba2008-01-05 16:29:28 +00006112 }
drh75897232000-05-29 14:26:00 +00006113 }
danielk1977b5402fb2005-01-12 07:15:04 +00006114#endif /* SQLITE_DEBUG */
6115#endif /* NDEBUG */
drhb86ccfb2003-01-28 23:13:10 +00006116 } /* The end of the for(;;) loop the loops through opcodes */
drh75897232000-05-29 14:26:00 +00006117
drha05a7222008-01-19 03:35:58 +00006118 /* If we reach this point, it means that execution is finished with
6119 ** an error of some kind.
drhb86ccfb2003-01-28 23:13:10 +00006120 */
drha05a7222008-01-19 03:35:58 +00006121vdbe_error_halt:
6122 assert( rc );
6123 p->rc = rc;
drha64fa912010-03-04 00:53:32 +00006124 testcase( sqlite3GlobalConfig.xLog!=0 );
6125 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
6126 pc, p->zSql, p->zErrMsg);
drh92f02c32004-09-02 14:57:08 +00006127 sqlite3VdbeHalt(p);
danielk19777eaabcd2008-07-07 14:56:56 +00006128 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
6129 rc = SQLITE_ERROR;
drhcdf011d2011-04-04 21:25:28 +00006130 if( resetSchemaOnFault>0 ){
6131 sqlite3ResetInternalSchema(db, resetSchemaOnFault-1);
drhbdaec522011-04-04 00:14:43 +00006132 }
drh900b31e2007-08-28 02:27:51 +00006133
6134 /* This is the only way out of this procedure. We have to
6135 ** release the mutexes on btrees that were acquired at the
6136 ** top. */
6137vdbe_return:
drh99a66922011-05-13 18:51:42 +00006138 db->lastRowid = lastRowid;
dan55388072011-09-20 15:53:02 +00006139
6140 /* Update the statement and database cache hit/miss statistics. */
6141 nHit = -nHit;
6142 nMiss = -nMiss;
6143 vdbeCacheStats(p, &nHit, &nMiss);
6144 p->aCounter[SQLITE_STMTSTATUS_CACHE_HIT-1] += nHit;
6145 p->aCounter[SQLITE_STMTSTATUS_CACHE_MISS-1] += nMiss;
6146 db->aHitMiss[0] += nHit;
6147 db->aHitMiss[1] += nMiss;
6148
drhbdaec522011-04-04 00:14:43 +00006149 sqlite3VdbeLeave(p);
drhb86ccfb2003-01-28 23:13:10 +00006150 return rc;
6151
drh023ae032007-05-08 12:12:16 +00006152 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
6153 ** is encountered.
6154 */
6155too_big:
drhf089aa42008-07-08 19:34:06 +00006156 sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
drh023ae032007-05-08 12:12:16 +00006157 rc = SQLITE_TOOBIG;
drha05a7222008-01-19 03:35:58 +00006158 goto vdbe_error_halt;
drh023ae032007-05-08 12:12:16 +00006159
drh98640a32007-06-07 19:08:32 +00006160 /* Jump to here if a malloc() fails.
drhb86ccfb2003-01-28 23:13:10 +00006161 */
6162no_mem:
drh17435752007-08-16 04:30:38 +00006163 db->mallocFailed = 1;
drhf089aa42008-07-08 19:34:06 +00006164 sqlite3SetString(&p->zErrMsg, db, "out of memory");
drhb86ccfb2003-01-28 23:13:10 +00006165 rc = SQLITE_NOMEM;
drha05a7222008-01-19 03:35:58 +00006166 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006167
drhb86ccfb2003-01-28 23:13:10 +00006168 /* Jump to here for any other kind of fatal error. The "rc" variable
6169 ** should hold the error number.
6170 */
6171abort_due_to_error:
drha05a7222008-01-19 03:35:58 +00006172 assert( p->zErrMsg==0 );
6173 if( db->mallocFailed ) rc = SQLITE_NOMEM;
danielk19777eaabcd2008-07-07 14:56:56 +00006174 if( rc!=SQLITE_IOERR_NOMEM ){
drhf089aa42008-07-08 19:34:06 +00006175 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
danielk19777eaabcd2008-07-07 14:56:56 +00006176 }
drha05a7222008-01-19 03:35:58 +00006177 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006178
danielk19776f8a5032004-05-10 10:34:51 +00006179 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
drhb86ccfb2003-01-28 23:13:10 +00006180 ** flag.
6181 */
6182abort_due_to_interrupt:
drh881feaa2006-07-26 01:39:30 +00006183 assert( db->u1.isInterrupted );
drh7e8b8482008-01-23 03:03:05 +00006184 rc = SQLITE_INTERRUPT;
danielk1977026d2702004-06-14 13:14:59 +00006185 p->rc = rc;
drhf089aa42008-07-08 19:34:06 +00006186 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
drha05a7222008-01-19 03:35:58 +00006187 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006188}