blob: eff211333cd49df27f255e7dcd439693211cb465 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drh8b2f49b2001-06-08 00:21:52 +000012** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drhe53831d2007-08-17 01:14:38 +0000115#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000116
117#ifdef SQLITE_DEBUG
118/*
drh0ee3dbe2009-10-16 15:05:18 +0000119**** This function is only used as part of an assert() statement. ***
120**
121** Check to see if pBtree holds the required locks to read or write to the
122** table with root page iRoot. Return 1 if it does and 0 if not.
123**
124** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000125** Btree connection pBtree:
126**
127** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128**
drh0ee3dbe2009-10-16 15:05:18 +0000129** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000130** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000131** the corresponding table. This makes things a bit more complicated,
132** as this module treats each table as a separate structure. To determine
133** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000134** function has to search through the database schema.
135**
drh0ee3dbe2009-10-16 15:05:18 +0000136** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000137** hold a write-lock on the schema table (root page 1). This is also
138** acceptable.
139*/
140static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
145){
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
149
drh0ee3dbe2009-10-16 15:05:18 +0000150 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000151 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000152 ** Return true immediately.
153 */
danielk197796d48e92009-06-29 06:00:37 +0000154 if( (pBtree->sharable==0)
155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000156 ){
157 return 1;
158 }
159
drh0ee3dbe2009-10-16 15:05:18 +0000160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
164 */
165 if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){
166 return 1;
167 }
168
danielk197796d48e92009-06-29 06:00:37 +0000169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000177 if( pIdx->tnum==(int)iRoot ){
178 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000179 }
180 }
181 }else{
182 iTab = iRoot;
183 }
184
185 /* Search for the required lock. Either a write-lock on root-page iTab, a
186 ** write-lock on the schema table, or (if the client is reading) a
187 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
188 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
189 if( pLock->pBtree==pBtree
190 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
191 && pLock->eLock>=eLockType
192 ){
193 return 1;
194 }
195 }
196
197 /* Failed to find the required lock. */
198 return 0;
199}
drh0ee3dbe2009-10-16 15:05:18 +0000200#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000201
drh0ee3dbe2009-10-16 15:05:18 +0000202#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000203/*
drh0ee3dbe2009-10-16 15:05:18 +0000204**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000205**
drh0ee3dbe2009-10-16 15:05:18 +0000206** Return true if it would be illegal for pBtree to write into the
207** table or index rooted at iRoot because other shared connections are
208** simultaneously reading that same table or index.
209**
210** It is illegal for pBtree to write if some other Btree object that
211** shares the same BtShared object is currently reading or writing
212** the iRoot table. Except, if the other Btree object has the
213** read-uncommitted flag set, then it is OK for the other object to
214** have a read cursor.
215**
216** For example, before writing to any part of the table or index
217** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000218**
219** assert( !hasReadConflicts(pBtree, iRoot) );
220*/
221static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
222 BtCursor *p;
223 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
224 if( p->pgnoRoot==iRoot
225 && p->pBtree!=pBtree
226 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
227 ){
228 return 1;
229 }
230 }
231 return 0;
232}
233#endif /* #ifdef SQLITE_DEBUG */
234
danielk1977da184232006-01-05 11:34:32 +0000235/*
drh0ee3dbe2009-10-16 15:05:18 +0000236** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000237** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000238** SQLITE_OK if the lock may be obtained (by calling
239** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000240*/
drhc25eabe2009-02-24 18:57:31 +0000241static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000242 BtShared *pBt = p->pBt;
243 BtLock *pIter;
244
drh1fee73e2007-08-29 04:00:57 +0000245 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000246 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
247 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000248 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000249
danielk19775b413d72009-04-01 09:41:54 +0000250 /* If requesting a write-lock, then the Btree must have an open write
251 ** transaction on this file. And, obviously, for this to be so there
252 ** must be an open write transaction on the file itself.
253 */
254 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
255 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
256
drh0ee3dbe2009-10-16 15:05:18 +0000257 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000258 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000259 return SQLITE_OK;
260 }
261
danielk1977641b0f42007-12-21 04:47:25 +0000262 /* If some other connection is holding an exclusive lock, the
263 ** requested lock may not be obtained.
264 */
drhc9166342012-01-05 23:32:06 +0000265 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000266 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
267 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000268 }
269
danielk1977e0d9e6f2009-07-03 16:25:06 +0000270 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
271 /* The condition (pIter->eLock!=eLock) in the following if(...)
272 ** statement is a simplification of:
273 **
274 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
275 **
276 ** since we know that if eLock==WRITE_LOCK, then no other connection
277 ** may hold a WRITE_LOCK on any table in this file (since there can
278 ** only be a single writer).
279 */
280 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
281 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
282 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
283 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
284 if( eLock==WRITE_LOCK ){
285 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000286 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000287 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000288 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000289 }
290 }
291 return SQLITE_OK;
292}
drhe53831d2007-08-17 01:14:38 +0000293#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000294
drhe53831d2007-08-17 01:14:38 +0000295#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000296/*
297** Add a lock on the table with root-page iTable to the shared-btree used
298** by Btree handle p. Parameter eLock must be either READ_LOCK or
299** WRITE_LOCK.
300**
danielk19779d104862009-07-09 08:27:14 +0000301** This function assumes the following:
302**
drh0ee3dbe2009-10-16 15:05:18 +0000303** (a) The specified Btree object p is connected to a sharable
304** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000305**
drh0ee3dbe2009-10-16 15:05:18 +0000306** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000307** with the requested lock (i.e. querySharedCacheTableLock() has
308** already been called and returned SQLITE_OK).
309**
310** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
311** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000312*/
drhc25eabe2009-02-24 18:57:31 +0000313static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000314 BtShared *pBt = p->pBt;
315 BtLock *pLock = 0;
316 BtLock *pIter;
317
drh1fee73e2007-08-29 04:00:57 +0000318 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000319 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
320 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000321
danielk1977e0d9e6f2009-07-03 16:25:06 +0000322 /* A connection with the read-uncommitted flag set will never try to
323 ** obtain a read-lock using this function. The only read-lock obtained
324 ** by a connection in read-uncommitted mode is on the sqlite_master
325 ** table, and that lock is obtained in BtreeBeginTrans(). */
326 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
327
danielk19779d104862009-07-09 08:27:14 +0000328 /* This function should only be called on a sharable b-tree after it
329 ** has been determined that no other b-tree holds a conflicting lock. */
330 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000331 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000332
333 /* First search the list for an existing lock on this table. */
334 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
335 if( pIter->iTable==iTable && pIter->pBtree==p ){
336 pLock = pIter;
337 break;
338 }
339 }
340
341 /* If the above search did not find a BtLock struct associating Btree p
342 ** with table iTable, allocate one and link it into the list.
343 */
344 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000345 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000346 if( !pLock ){
347 return SQLITE_NOMEM;
348 }
349 pLock->iTable = iTable;
350 pLock->pBtree = p;
351 pLock->pNext = pBt->pLock;
352 pBt->pLock = pLock;
353 }
354
355 /* Set the BtLock.eLock variable to the maximum of the current lock
356 ** and the requested lock. This means if a write-lock was already held
357 ** and a read-lock requested, we don't incorrectly downgrade the lock.
358 */
359 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000360 if( eLock>pLock->eLock ){
361 pLock->eLock = eLock;
362 }
danielk1977aef0bf62005-12-30 16:28:01 +0000363
364 return SQLITE_OK;
365}
drhe53831d2007-08-17 01:14:38 +0000366#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000367
drhe53831d2007-08-17 01:14:38 +0000368#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000369/*
drhc25eabe2009-02-24 18:57:31 +0000370** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000371** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000372**
drh0ee3dbe2009-10-16 15:05:18 +0000373** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000374** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000375** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000376*/
drhc25eabe2009-02-24 18:57:31 +0000377static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000378 BtShared *pBt = p->pBt;
379 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000380
drh1fee73e2007-08-29 04:00:57 +0000381 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000382 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000383 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000384
danielk1977aef0bf62005-12-30 16:28:01 +0000385 while( *ppIter ){
386 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000387 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000388 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000389 if( pLock->pBtree==p ){
390 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000391 assert( pLock->iTable!=1 || pLock==&p->lock );
392 if( pLock->iTable!=1 ){
393 sqlite3_free(pLock);
394 }
danielk1977aef0bf62005-12-30 16:28:01 +0000395 }else{
396 ppIter = &pLock->pNext;
397 }
398 }
danielk1977641b0f42007-12-21 04:47:25 +0000399
drhc9166342012-01-05 23:32:06 +0000400 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000401 if( pBt->pWriter==p ){
402 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000403 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000404 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000405 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000406 ** transaction. If there currently exists a writer, and p is not
407 ** that writer, then the number of locks held by connections other
408 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000409 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000410 **
drhc9166342012-01-05 23:32:06 +0000411 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000412 ** be zero already. So this next line is harmless in that case.
413 */
drhc9166342012-01-05 23:32:06 +0000414 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000415 }
danielk1977aef0bf62005-12-30 16:28:01 +0000416}
danielk197794b30732009-07-02 17:21:57 +0000417
danielk1977e0d9e6f2009-07-03 16:25:06 +0000418/*
drh0ee3dbe2009-10-16 15:05:18 +0000419** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000420*/
danielk197794b30732009-07-02 17:21:57 +0000421static void downgradeAllSharedCacheTableLocks(Btree *p){
422 BtShared *pBt = p->pBt;
423 if( pBt->pWriter==p ){
424 BtLock *pLock;
425 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000426 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000427 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
428 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
429 pLock->eLock = READ_LOCK;
430 }
431 }
432}
433
danielk1977aef0bf62005-12-30 16:28:01 +0000434#endif /* SQLITE_OMIT_SHARED_CACHE */
435
drh980b1a72006-08-16 16:42:48 +0000436static void releasePage(MemPage *pPage); /* Forward reference */
437
drh1fee73e2007-08-29 04:00:57 +0000438/*
drh0ee3dbe2009-10-16 15:05:18 +0000439***** This routine is used inside of assert() only ****
440**
441** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000442*/
drh0ee3dbe2009-10-16 15:05:18 +0000443#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000444static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000445 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000446}
447#endif
448
449
danielk197792d4d7a2007-05-04 12:05:56 +0000450#ifndef SQLITE_OMIT_INCRBLOB
451/*
452** Invalidate the overflow page-list cache for cursor pCur, if any.
453*/
454static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000455 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000456 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000457 pCur->aOverflow = 0;
458}
459
460/*
461** Invalidate the overflow page-list cache for all cursors opened
462** on the shared btree structure pBt.
463*/
464static void invalidateAllOverflowCache(BtShared *pBt){
465 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000466 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000467 for(p=pBt->pCursor; p; p=p->pNext){
468 invalidateOverflowCache(p);
469 }
470}
danielk197796d48e92009-06-29 06:00:37 +0000471
472/*
473** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000474** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000475** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000476**
477** If argument isClearTable is true, then the entire contents of the
478** table is about to be deleted. In this case invalidate all incrblob
479** cursors open on any row within the table with root-page pgnoRoot.
480**
481** Otherwise, if argument isClearTable is false, then the row with
482** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000483** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000484*/
485static void invalidateIncrblobCursors(
486 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000487 i64 iRow, /* The rowid that might be changing */
488 int isClearTable /* True if all rows are being deleted */
489){
490 BtCursor *p;
491 BtShared *pBt = pBtree->pBt;
492 assert( sqlite3BtreeHoldsMutex(pBtree) );
493 for(p=pBt->pCursor; p; p=p->pNext){
494 if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
495 p->eState = CURSOR_INVALID;
496 }
497 }
498}
499
danielk197792d4d7a2007-05-04 12:05:56 +0000500#else
drh0ee3dbe2009-10-16 15:05:18 +0000501 /* Stub functions when INCRBLOB is omitted */
danielk197792d4d7a2007-05-04 12:05:56 +0000502 #define invalidateOverflowCache(x)
503 #define invalidateAllOverflowCache(x)
drheeb844a2009-08-08 18:01:07 +0000504 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000505#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000506
drh980b1a72006-08-16 16:42:48 +0000507/*
danielk1977bea2a942009-01-20 17:06:27 +0000508** Set bit pgno of the BtShared.pHasContent bitvec. This is called
509** when a page that previously contained data becomes a free-list leaf
510** page.
511**
512** The BtShared.pHasContent bitvec exists to work around an obscure
513** bug caused by the interaction of two useful IO optimizations surrounding
514** free-list leaf pages:
515**
516** 1) When all data is deleted from a page and the page becomes
517** a free-list leaf page, the page is not written to the database
518** (as free-list leaf pages contain no meaningful data). Sometimes
519** such a page is not even journalled (as it will not be modified,
520** why bother journalling it?).
521**
522** 2) When a free-list leaf page is reused, its content is not read
523** from the database or written to the journal file (why should it
524** be, if it is not at all meaningful?).
525**
526** By themselves, these optimizations work fine and provide a handy
527** performance boost to bulk delete or insert operations. However, if
528** a page is moved to the free-list and then reused within the same
529** transaction, a problem comes up. If the page is not journalled when
530** it is moved to the free-list and it is also not journalled when it
531** is extracted from the free-list and reused, then the original data
532** may be lost. In the event of a rollback, it may not be possible
533** to restore the database to its original configuration.
534**
535** The solution is the BtShared.pHasContent bitvec. Whenever a page is
536** moved to become a free-list leaf page, the corresponding bit is
537** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000538** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000539** set in BtShared.pHasContent. The contents of the bitvec are cleared
540** at the end of every transaction.
541*/
542static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
543 int rc = SQLITE_OK;
544 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000545 assert( pgno<=pBt->nPage );
546 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000547 if( !pBt->pHasContent ){
548 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000549 }
550 }
551 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
552 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
553 }
554 return rc;
555}
556
557/*
558** Query the BtShared.pHasContent vector.
559**
560** This function is called when a free-list leaf page is removed from the
561** free-list for reuse. It returns false if it is safe to retrieve the
562** page from the pager layer with the 'no-content' flag set. True otherwise.
563*/
564static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
565 Bitvec *p = pBt->pHasContent;
566 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
567}
568
569/*
570** Clear (destroy) the BtShared.pHasContent bitvec. This should be
571** invoked at the conclusion of each write-transaction.
572*/
573static void btreeClearHasContent(BtShared *pBt){
574 sqlite3BitvecDestroy(pBt->pHasContent);
575 pBt->pHasContent = 0;
576}
577
578/*
drh138eeeb2013-03-27 03:15:23 +0000579** Release all of the apPage[] pages for a cursor.
580*/
581static void btreeReleaseAllCursorPages(BtCursor *pCur){
582 int i;
583 for(i=0; i<=pCur->iPage; i++){
584 releasePage(pCur->apPage[i]);
585 pCur->apPage[i] = 0;
586 }
587 pCur->iPage = -1;
588}
589
590
591/*
drh980b1a72006-08-16 16:42:48 +0000592** Save the current cursor position in the variables BtCursor.nKey
593** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000594**
595** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
596** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000597*/
598static int saveCursorPosition(BtCursor *pCur){
599 int rc;
600
601 assert( CURSOR_VALID==pCur->eState );
602 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000603 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000604
605 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000606 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000607
608 /* If this is an intKey table, then the above call to BtreeKeySize()
609 ** stores the integer key in pCur->nKey. In this case this value is
610 ** all that is required. Otherwise, if pCur is not open on an intKey
611 ** table, then malloc space for and store the pCur->nKey bytes of key
612 ** data.
613 */
drh4c301aa2009-07-15 17:25:45 +0000614 if( 0==pCur->apPage[0]->intKey ){
drhf49661a2008-12-10 16:45:50 +0000615 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000616 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000617 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000618 if( rc==SQLITE_OK ){
619 pCur->pKey = pKey;
620 }else{
drh17435752007-08-16 04:30:38 +0000621 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000622 }
623 }else{
624 rc = SQLITE_NOMEM;
625 }
626 }
danielk197771d5d2c2008-09-29 11:49:47 +0000627 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000628
629 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000630 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000631 pCur->eState = CURSOR_REQUIRESEEK;
632 }
633
danielk197792d4d7a2007-05-04 12:05:56 +0000634 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000635 return rc;
636}
637
638/*
drh0ee3dbe2009-10-16 15:05:18 +0000639** Save the positions of all cursors (except pExcept) that are open on
640** the table with root-page iRoot. Usually, this is called just before cursor
drh980b1a72006-08-16 16:42:48 +0000641** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
642*/
643static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
644 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000645 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000646 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000647 for(p=pBt->pCursor; p; p=p->pNext){
drh138eeeb2013-03-27 03:15:23 +0000648 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
649 if( p->eState==CURSOR_VALID ){
650 int rc = saveCursorPosition(p);
651 if( SQLITE_OK!=rc ){
652 return rc;
653 }
654 }else{
655 testcase( p->iPage>0 );
656 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000657 }
658 }
659 }
660 return SQLITE_OK;
661}
662
663/*
drhbf700f32007-03-31 02:36:44 +0000664** Clear the current cursor position.
665*/
danielk1977be51a652008-10-08 17:58:48 +0000666void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000667 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000668 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000669 pCur->pKey = 0;
670 pCur->eState = CURSOR_INVALID;
671}
672
673/*
danielk19773509a652009-07-06 18:56:13 +0000674** In this version of BtreeMoveto, pKey is a packed index record
675** such as is generated by the OP_MakeRecord opcode. Unpack the
676** record and then call BtreeMovetoUnpacked() to do the work.
677*/
678static int btreeMoveto(
679 BtCursor *pCur, /* Cursor open on the btree to be searched */
680 const void *pKey, /* Packed key if the btree is an index */
681 i64 nKey, /* Integer key for tables. Size of pKey for indices */
682 int bias, /* Bias search to the high end */
683 int *pRes /* Write search results here */
684){
685 int rc; /* Status code */
686 UnpackedRecord *pIdxKey; /* Unpacked index key */
drhb4139222013-11-06 14:36:08 +0000687 char aSpace[200]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000688 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000689
690 if( pKey ){
691 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000692 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
693 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
694 );
danielk19773509a652009-07-06 18:56:13 +0000695 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000696 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000697 }else{
698 pIdxKey = 0;
699 }
700 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000701 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000702 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000703 }
704 return rc;
705}
706
707/*
drh980b1a72006-08-16 16:42:48 +0000708** Restore the cursor to the position it was in (or as close to as possible)
709** when saveCursorPosition() was called. Note that this call deletes the
710** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000711** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000712** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000713*/
danielk197730548662009-07-09 05:07:37 +0000714static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000715 int rc;
drh1fee73e2007-08-29 04:00:57 +0000716 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000717 assert( pCur->eState>=CURSOR_REQUIRESEEK );
718 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000719 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000720 }
drh980b1a72006-08-16 16:42:48 +0000721 pCur->eState = CURSOR_INVALID;
drh4c301aa2009-07-15 17:25:45 +0000722 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
drh980b1a72006-08-16 16:42:48 +0000723 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000724 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000725 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000726 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh9b47ee32013-08-20 03:13:51 +0000727 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
728 pCur->eState = CURSOR_SKIPNEXT;
729 }
drh980b1a72006-08-16 16:42:48 +0000730 }
731 return rc;
732}
733
drha3460582008-07-11 21:02:53 +0000734#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000735 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000736 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000737 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000738
drha3460582008-07-11 21:02:53 +0000739/*
740** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000741** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000742** at is deleted out from under them.
743**
744** This routine returns an error code if something goes wrong. The
745** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
746*/
747int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
748 int rc;
749
750 rc = restoreCursorPosition(pCur);
751 if( rc ){
752 *pHasMoved = 1;
753 return rc;
754 }
drh9b47ee32013-08-20 03:13:51 +0000755 if( pCur->eState!=CURSOR_VALID || NEVER(pCur->skipNext!=0) ){
drha3460582008-07-11 21:02:53 +0000756 *pHasMoved = 1;
757 }else{
758 *pHasMoved = 0;
759 }
760 return SQLITE_OK;
761}
762
danielk1977599fcba2004-11-08 07:13:13 +0000763#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000764/*
drha3152892007-05-05 11:48:52 +0000765** Given a page number of a regular database page, return the page
766** number for the pointer-map page that contains the entry for the
767** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000768**
769** Return 0 (not a valid page) for pgno==1 since there is
770** no pointer map associated with page 1. The integrity_check logic
771** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000772*/
danielk1977266664d2006-02-10 08:24:21 +0000773static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000774 int nPagesPerMapPage;
775 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000776 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000777 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000778 nPagesPerMapPage = (pBt->usableSize/5)+1;
779 iPtrMap = (pgno-2)/nPagesPerMapPage;
780 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000781 if( ret==PENDING_BYTE_PAGE(pBt) ){
782 ret++;
783 }
784 return ret;
785}
danielk1977a19df672004-11-03 11:37:07 +0000786
danielk1977afcdd022004-10-31 16:25:42 +0000787/*
danielk1977afcdd022004-10-31 16:25:42 +0000788** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000789**
790** This routine updates the pointer map entry for page number 'key'
791** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000792**
793** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
794** a no-op. If an error occurs, the appropriate error code is written
795** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000796*/
drh98add2e2009-07-20 17:11:49 +0000797static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000798 DbPage *pDbPage; /* The pointer map page */
799 u8 *pPtrmap; /* The pointer map data */
800 Pgno iPtrmap; /* The pointer map page number */
801 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000802 int rc; /* Return code from subfunctions */
803
804 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000805
drh1fee73e2007-08-29 04:00:57 +0000806 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000807 /* The master-journal page number must never be used as a pointer map page */
808 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
809
danielk1977ac11ee62005-01-15 12:45:51 +0000810 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000811 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000812 *pRC = SQLITE_CORRUPT_BKPT;
813 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000814 }
danielk1977266664d2006-02-10 08:24:21 +0000815 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000816 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000817 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000818 *pRC = rc;
819 return;
danielk1977afcdd022004-10-31 16:25:42 +0000820 }
danielk19778c666b12008-07-18 09:34:57 +0000821 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000822 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000823 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000824 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000825 }
drhfc243732011-05-17 15:21:56 +0000826 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000827 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000828
drh615ae552005-01-16 23:21:00 +0000829 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
830 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000831 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000832 if( rc==SQLITE_OK ){
833 pPtrmap[offset] = eType;
834 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000835 }
danielk1977afcdd022004-10-31 16:25:42 +0000836 }
837
drh4925a552009-07-07 11:39:58 +0000838ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000839 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000840}
841
842/*
843** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000844**
845** This routine retrieves the pointer map entry for page 'key', writing
846** the type and parent page number to *pEType and *pPgno respectively.
847** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000848*/
danielk1977aef0bf62005-12-30 16:28:01 +0000849static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000850 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000851 int iPtrmap; /* Pointer map page index */
852 u8 *pPtrmap; /* Pointer map page data */
853 int offset; /* Offset of entry in pointer map */
854 int rc;
855
drh1fee73e2007-08-29 04:00:57 +0000856 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000857
danielk1977266664d2006-02-10 08:24:21 +0000858 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000859 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000860 if( rc!=0 ){
861 return rc;
862 }
danielk19773b8a05f2007-03-19 17:44:26 +0000863 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000864
danielk19778c666b12008-07-18 09:34:57 +0000865 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000866 if( offset<0 ){
867 sqlite3PagerUnref(pDbPage);
868 return SQLITE_CORRUPT_BKPT;
869 }
870 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000871 assert( pEType!=0 );
872 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000873 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000874
danielk19773b8a05f2007-03-19 17:44:26 +0000875 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000876 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000877 return SQLITE_OK;
878}
879
danielk197785d90ca2008-07-19 14:25:15 +0000880#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000881 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000882 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000883 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000884#endif
danielk1977afcdd022004-10-31 16:25:42 +0000885
drh0d316a42002-08-11 20:10:47 +0000886/*
drh271efa52004-05-30 19:19:05 +0000887** Given a btree page and a cell index (0 means the first cell on
888** the page, 1 means the second cell, and so forth) return a pointer
889** to the cell content.
890**
891** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000892*/
drh1688c862008-07-18 02:44:17 +0000893#define findCell(P,I) \
drh3def2352011-11-11 00:27:15 +0000894 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +0000895#define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I)))))
896
drh43605152004-05-29 21:46:49 +0000897
898/*
drh93a960a2008-07-10 00:32:42 +0000899** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000900** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000901*/
902static u8 *findOverflowCell(MemPage *pPage, int iCell){
903 int i;
drh1fee73e2007-08-29 04:00:57 +0000904 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000905 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000906 int k;
drh2cbd78b2012-02-02 19:37:18 +0000907 k = pPage->aiOvfl[i];
drh6d08b4d2004-07-20 12:45:22 +0000908 if( k<=iCell ){
909 if( k==iCell ){
drh2cbd78b2012-02-02 19:37:18 +0000910 return pPage->apOvfl[i];
drh43605152004-05-29 21:46:49 +0000911 }
912 iCell--;
913 }
914 }
danielk19771cc5ed82007-05-16 17:28:43 +0000915 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000916}
917
918/*
919** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000920** are two versions of this function. btreeParseCell() takes a
921** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000922** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000923**
924** Within this file, the parseCell() macro can be called instead of
danielk197730548662009-07-09 05:07:37 +0000925** btreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000926*/
danielk197730548662009-07-09 05:07:37 +0000927static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000928 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000929 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000930 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000931){
drhf49661a2008-12-10 16:45:50 +0000932 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000933 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000934
drh1fee73e2007-08-29 04:00:57 +0000935 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000936
drh43605152004-05-29 21:46:49 +0000937 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000938 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000939 n = pPage->childPtrSize;
940 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000941 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000942 if( pPage->hasData ){
drh13c77bf2013-08-21 15:52:22 +0000943 assert( n==0 );
944 n = getVarint32(pCell, nPayload);
drh79df1f42008-07-18 00:57:33 +0000945 }else{
946 nPayload = 0;
947 }
drh1bd10f82008-12-10 21:19:56 +0000948 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000949 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000950 }else{
drh79df1f42008-07-18 00:57:33 +0000951 pInfo->nData = 0;
952 n += getVarint32(&pCell[n], nPayload);
953 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000954 }
drh72365832007-03-06 15:53:44 +0000955 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000956 pInfo->nHeader = n;
drh0a45c272009-07-08 01:49:11 +0000957 testcase( nPayload==pPage->maxLocal );
958 testcase( nPayload==pPage->maxLocal+1 );
drh79df1f42008-07-18 00:57:33 +0000959 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000960 /* This is the (easy) common case where the entire payload fits
961 ** on the local page. No overflow is required.
962 */
drh41692e92011-01-25 04:34:51 +0000963 if( (pInfo->nSize = (u16)(n+nPayload))<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +0000964 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000965 pInfo->iOverflow = 0;
drh6f11bef2004-05-13 01:12:56 +0000966 }else{
drh271efa52004-05-30 19:19:05 +0000967 /* If the payload will not fit completely on the local page, we have
968 ** to decide how much to store locally and how much to spill onto
969 ** overflow pages. The strategy is to minimize the amount of unused
970 ** space on overflow pages while keeping the amount of local storage
971 ** in between minLocal and maxLocal.
972 **
973 ** Warning: changing the way overflow payload is distributed in any
974 ** way will result in an incompatible file format.
975 */
976 int minLocal; /* Minimum amount of payload held locally */
977 int maxLocal; /* Maximum amount of payload held locally */
978 int surplus; /* Overflow payload available for local storage */
979
980 minLocal = pPage->minLocal;
981 maxLocal = pPage->maxLocal;
982 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000983 testcase( surplus==maxLocal );
984 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +0000985 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000986 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000987 }else{
drhf49661a2008-12-10 16:45:50 +0000988 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000989 }
drhf49661a2008-12-10 16:45:50 +0000990 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000991 pInfo->nSize = pInfo->iOverflow + 4;
992 }
drh3aac2dd2004-04-26 14:10:20 +0000993}
danielk19771cc5ed82007-05-16 17:28:43 +0000994#define parseCell(pPage, iCell, pInfo) \
danielk197730548662009-07-09 05:07:37 +0000995 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
996static void btreeParseCell(
drh43605152004-05-29 21:46:49 +0000997 MemPage *pPage, /* Page containing the cell */
998 int iCell, /* The cell index. First cell is 0 */
999 CellInfo *pInfo /* Fill in this structure */
1000){
danielk19771cc5ed82007-05-16 17:28:43 +00001001 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +00001002}
drh3aac2dd2004-04-26 14:10:20 +00001003
1004/*
drh43605152004-05-29 21:46:49 +00001005** Compute the total number of bytes that a Cell needs in the cell
1006** data area of the btree-page. The return number includes the cell
1007** data header and the local payload, but not any overflow page or
1008** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +00001009*/
danielk1977ae5558b2009-04-29 11:31:47 +00001010static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1011 u8 *pIter = &pCell[pPage->childPtrSize];
1012 u32 nSize;
1013
1014#ifdef SQLITE_DEBUG
1015 /* The value returned by this function should always be the same as
1016 ** the (CellInfo.nSize) value found by doing a full parse of the
1017 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1018 ** this function verifies that this invariant is not violated. */
1019 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +00001020 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001021#endif
1022
1023 if( pPage->intKey ){
1024 u8 *pEnd;
1025 if( pPage->hasData ){
1026 pIter += getVarint32(pIter, nSize);
1027 }else{
1028 nSize = 0;
1029 }
1030
1031 /* pIter now points at the 64-bit integer key value, a variable length
1032 ** integer. The following block moves pIter to point at the first byte
1033 ** past the end of the key value. */
1034 pEnd = &pIter[9];
1035 while( (*pIter++)&0x80 && pIter<pEnd );
1036 }else{
1037 pIter += getVarint32(pIter, nSize);
1038 }
1039
drh0a45c272009-07-08 01:49:11 +00001040 testcase( nSize==pPage->maxLocal );
1041 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001042 if( nSize>pPage->maxLocal ){
1043 int minLocal = pPage->minLocal;
1044 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001045 testcase( nSize==pPage->maxLocal );
1046 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001047 if( nSize>pPage->maxLocal ){
1048 nSize = minLocal;
1049 }
1050 nSize += 4;
1051 }
shane75ac1de2009-06-09 18:58:52 +00001052 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001053
1054 /* The minimum size of any cell is 4 bytes. */
1055 if( nSize<4 ){
1056 nSize = 4;
1057 }
1058
1059 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +00001060 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001061}
drh0ee3dbe2009-10-16 15:05:18 +00001062
1063#ifdef SQLITE_DEBUG
1064/* This variation on cellSizePtr() is used inside of assert() statements
1065** only. */
drha9121e42008-02-19 14:59:35 +00001066static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +00001067 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001068}
danielk1977bc6ada42004-06-30 08:20:16 +00001069#endif
drh3b7511c2001-05-26 13:15:44 +00001070
danielk197779a40da2005-01-16 08:00:01 +00001071#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001072/*
danielk197726836652005-01-17 01:33:13 +00001073** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001074** to an overflow page, insert an entry into the pointer-map
1075** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001076*/
drh98add2e2009-07-20 17:11:49 +00001077static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001078 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001079 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001080 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001081 btreeParseCellPtr(pPage, pCell, &info);
drhfa67c3c2008-07-11 02:21:40 +00001082 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +00001083 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001084 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001085 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001086 }
danielk1977ac11ee62005-01-15 12:45:51 +00001087}
danielk197779a40da2005-01-16 08:00:01 +00001088#endif
1089
danielk1977ac11ee62005-01-15 12:45:51 +00001090
drhda200cc2004-05-09 11:51:38 +00001091/*
drh72f82862001-05-24 21:06:34 +00001092** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001093** end of the page and all free space is collected into one
1094** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001095** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001096*/
shane0af3f892008-11-12 04:55:34 +00001097static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001098 int i; /* Loop counter */
1099 int pc; /* Address of a i-th cell */
drh43605152004-05-29 21:46:49 +00001100 int hdr; /* Offset to the page header */
1101 int size; /* Size of a cell */
1102 int usableSize; /* Number of usable bytes on a page */
1103 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001104 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001105 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001106 unsigned char *data; /* The page data */
1107 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001108 int iCellFirst; /* First allowable cell index */
1109 int iCellLast; /* Last possible cell index */
1110
drh2af926b2001-05-15 00:39:25 +00001111
danielk19773b8a05f2007-03-19 17:44:26 +00001112 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001113 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001114 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001115 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001116 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001117 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001118 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001119 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001120 cellOffset = pPage->cellOffset;
1121 nCell = pPage->nCell;
1122 assert( nCell==get2byte(&data[hdr+3]) );
1123 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001124 cbrk = get2byte(&data[hdr+5]);
1125 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1126 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001127 iCellFirst = cellOffset + 2*nCell;
1128 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001129 for(i=0; i<nCell; i++){
1130 u8 *pAddr; /* The i-th cell pointer */
1131 pAddr = &data[cellOffset + i*2];
1132 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001133 testcase( pc==iCellFirst );
1134 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001135#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001136 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001137 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1138 */
1139 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001140 return SQLITE_CORRUPT_BKPT;
1141 }
drh17146622009-07-07 17:38:38 +00001142#endif
1143 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001144 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001145 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001146#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1147 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001148 return SQLITE_CORRUPT_BKPT;
1149 }
drh17146622009-07-07 17:38:38 +00001150#else
1151 if( cbrk<iCellFirst || pc+size>usableSize ){
1152 return SQLITE_CORRUPT_BKPT;
1153 }
1154#endif
drh7157e1d2009-07-09 13:25:32 +00001155 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001156 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001157 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001158 memcpy(&data[cbrk], &temp[pc], size);
1159 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001160 }
drh17146622009-07-07 17:38:38 +00001161 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001162 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001163 data[hdr+1] = 0;
1164 data[hdr+2] = 0;
1165 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001166 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001167 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001168 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001169 return SQLITE_CORRUPT_BKPT;
1170 }
shane0af3f892008-11-12 04:55:34 +00001171 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001172}
1173
drha059ad02001-04-17 20:09:11 +00001174/*
danielk19776011a752009-04-01 16:25:32 +00001175** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001176** as the first argument. Write into *pIdx the index into pPage->aData[]
1177** of the first byte of allocated space. Return either SQLITE_OK or
1178** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001179**
drh0a45c272009-07-08 01:49:11 +00001180** The caller guarantees that there is sufficient space to make the
1181** allocation. This routine might need to defragment in order to bring
1182** all the space together, however. This routine will avoid using
1183** the first two bytes past the cell pointer area since presumably this
1184** allocation is being made in order to insert a new cell, so we will
1185** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001186*/
drh0a45c272009-07-08 01:49:11 +00001187static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001188 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1189 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1190 int nFrag; /* Number of fragmented bytes on pPage */
drh0a45c272009-07-08 01:49:11 +00001191 int top; /* First byte of cell content area */
1192 int gap; /* First byte of gap between cell pointers and cell content */
1193 int rc; /* Integer return code */
drh00ce3942009-12-06 03:35:51 +00001194 int usableSize; /* Usable size of the page */
drh43605152004-05-29 21:46:49 +00001195
danielk19773b8a05f2007-03-19 17:44:26 +00001196 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001197 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001198 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001199 assert( nByte>=0 ); /* Minimum cell size is 4 */
1200 assert( pPage->nFree>=nByte );
1201 assert( pPage->nOverflow==0 );
drh00ce3942009-12-06 03:35:51 +00001202 usableSize = pPage->pBt->usableSize;
1203 assert( nByte < usableSize-8 );
drh43605152004-05-29 21:46:49 +00001204
1205 nFrag = data[hdr+7];
drh0a45c272009-07-08 01:49:11 +00001206 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1207 gap = pPage->cellOffset + 2*pPage->nCell;
drh5d433ce2010-08-14 16:02:52 +00001208 top = get2byteNotZero(&data[hdr+5]);
drh7157e1d2009-07-09 13:25:32 +00001209 if( gap>top ) return SQLITE_CORRUPT_BKPT;
drh0a45c272009-07-08 01:49:11 +00001210 testcase( gap+2==top );
1211 testcase( gap+1==top );
1212 testcase( gap==top );
1213
danielk19776011a752009-04-01 16:25:32 +00001214 if( nFrag>=60 ){
drh0a45c272009-07-08 01:49:11 +00001215 /* Always defragment highly fragmented pages */
1216 rc = defragmentPage(pPage);
1217 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001218 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001219 }else if( gap+2<=top ){
danielk19776011a752009-04-01 16:25:32 +00001220 /* Search the freelist looking for a free slot big enough to satisfy
1221 ** the request. The allocation is made from the first free slot in
drhf7b54962013-05-28 12:11:54 +00001222 ** the list that is large enough to accommodate it.
danielk19776011a752009-04-01 16:25:32 +00001223 */
1224 int pc, addr;
1225 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
drh00ce3942009-12-06 03:35:51 +00001226 int size; /* Size of the free slot */
1227 if( pc>usableSize-4 || pc<addr+4 ){
1228 return SQLITE_CORRUPT_BKPT;
1229 }
1230 size = get2byte(&data[pc+2]);
drh43605152004-05-29 21:46:49 +00001231 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001232 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001233 testcase( x==4 );
1234 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001235 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +00001236 /* Remove the slot from the free-list. Update the number of
1237 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001238 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +00001239 data[hdr+7] = (u8)(nFrag + x);
drh00ce3942009-12-06 03:35:51 +00001240 }else if( size+pc > usableSize ){
1241 return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00001242 }else{
danielk1977fad91942009-04-29 17:49:59 +00001243 /* The slot remains on the free-list. Reduce its size to account
1244 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001245 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001246 }
drh0a45c272009-07-08 01:49:11 +00001247 *pIdx = pc + x;
1248 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001249 }
drh9e572e62004-04-23 23:43:10 +00001250 }
1251 }
drh43605152004-05-29 21:46:49 +00001252
drh0a45c272009-07-08 01:49:11 +00001253 /* Check to make sure there is enough space in the gap to satisfy
1254 ** the allocation. If not, defragment.
1255 */
1256 testcase( gap+2+nByte==top );
1257 if( gap+2+nByte>top ){
1258 rc = defragmentPage(pPage);
1259 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001260 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001261 assert( gap+nByte<=top );
1262 }
1263
1264
drh43605152004-05-29 21:46:49 +00001265 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001266 ** and the cell content area. The btreeInitPage() call has already
1267 ** validated the freelist. Given that the freelist is valid, there
1268 ** is no way that the allocation can extend off the end of the page.
1269 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001270 */
drh0a45c272009-07-08 01:49:11 +00001271 top -= nByte;
drh43605152004-05-29 21:46:49 +00001272 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001273 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001274 *pIdx = top;
1275 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001276}
1277
1278/*
drh9e572e62004-04-23 23:43:10 +00001279** Return a section of the pPage->aData to the freelist.
1280** The first byte of the new free block is pPage->aDisk[start]
1281** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001282**
1283** Most of the effort here is involved in coalesing adjacent
1284** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001285*/
shanedcc50b72008-11-13 18:29:50 +00001286static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001287 int addr, pbegin, hdr;
drh0a45c272009-07-08 01:49:11 +00001288 int iLast; /* Largest possible freeblock offset */
drh9e572e62004-04-23 23:43:10 +00001289 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001290
drh9e572e62004-04-23 23:43:10 +00001291 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001292 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drhc046e3e2009-07-15 11:26:44 +00001293 assert( start>=pPage->hdrOffset+6+pPage->childPtrSize );
drhfcd71b62011-04-05 22:08:24 +00001294 assert( (start + size) <= (int)pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001295 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001296 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001297
drhc9166342012-01-05 23:32:06 +00001298 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001299 /* Overwrite deleted information with zeros when the secure_delete
1300 ** option is enabled */
1301 memset(&data[start], 0, size);
1302 }
drhfcce93f2006-02-22 03:08:32 +00001303
drh0a45c272009-07-08 01:49:11 +00001304 /* Add the space back into the linked list of freeblocks. Note that
danielk197730548662009-07-09 05:07:37 +00001305 ** even though the freeblock list was checked by btreeInitPage(),
1306 ** btreeInitPage() did not detect overlapping cells or
drhb908d762009-07-08 16:54:40 +00001307 ** freeblocks that overlapped cells. Nor does it detect when the
1308 ** cell content area exceeds the value in the page header. If these
1309 ** situations arise, then subsequent insert operations might corrupt
1310 ** the freelist. So we do need to check for corruption while scanning
1311 ** the freelist.
drh0a45c272009-07-08 01:49:11 +00001312 */
drh43605152004-05-29 21:46:49 +00001313 hdr = pPage->hdrOffset;
1314 addr = hdr + 1;
drh0a45c272009-07-08 01:49:11 +00001315 iLast = pPage->pBt->usableSize - 4;
drh35a25da2009-07-08 15:14:50 +00001316 assert( start<=iLast );
drh3aac2dd2004-04-26 14:10:20 +00001317 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drh35a25da2009-07-08 15:14:50 +00001318 if( pbegin<addr+4 ){
shanedcc50b72008-11-13 18:29:50 +00001319 return SQLITE_CORRUPT_BKPT;
1320 }
drh3aac2dd2004-04-26 14:10:20 +00001321 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001322 }
drh0a45c272009-07-08 01:49:11 +00001323 if( pbegin>iLast ){
shanedcc50b72008-11-13 18:29:50 +00001324 return SQLITE_CORRUPT_BKPT;
1325 }
drh3aac2dd2004-04-26 14:10:20 +00001326 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001327 put2byte(&data[addr], start);
1328 put2byte(&data[start], pbegin);
1329 put2byte(&data[start+2], size);
shane36840fd2009-06-26 16:32:13 +00001330 pPage->nFree = pPage->nFree + (u16)size;
drh9e572e62004-04-23 23:43:10 +00001331
1332 /* Coalesce adjacent free blocks */
drh0a45c272009-07-08 01:49:11 +00001333 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001334 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001335 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001336 assert( pbegin>addr );
drhfcd71b62011-04-05 22:08:24 +00001337 assert( pbegin <= (int)pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001338 pnext = get2byte(&data[pbegin]);
1339 psize = get2byte(&data[pbegin+2]);
1340 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1341 int frag = pnext - (pbegin+psize);
drh0a45c272009-07-08 01:49:11 +00001342 if( (frag<0) || (frag>(int)data[hdr+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001343 return SQLITE_CORRUPT_BKPT;
1344 }
drh0a45c272009-07-08 01:49:11 +00001345 data[hdr+7] -= (u8)frag;
drhf49661a2008-12-10 16:45:50 +00001346 x = get2byte(&data[pnext]);
1347 put2byte(&data[pbegin], x);
1348 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1349 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001350 }else{
drh3aac2dd2004-04-26 14:10:20 +00001351 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001352 }
1353 }
drh7e3b0a02001-04-28 16:52:40 +00001354
drh43605152004-05-29 21:46:49 +00001355 /* If the cell content area begins with a freeblock, remove it. */
1356 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1357 int top;
1358 pbegin = get2byte(&data[hdr+1]);
1359 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001360 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1361 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001362 }
drhc5053fb2008-11-27 02:22:10 +00001363 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001364 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001365}
1366
1367/*
drh271efa52004-05-30 19:19:05 +00001368** Decode the flags byte (the first byte of the header) for a page
1369** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001370**
1371** Only the following combinations are supported. Anything different
1372** indicates a corrupt database files:
1373**
1374** PTF_ZERODATA
1375** PTF_ZERODATA | PTF_LEAF
1376** PTF_LEAFDATA | PTF_INTKEY
1377** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001378*/
drh44845222008-07-17 18:39:57 +00001379static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001380 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001381
1382 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001383 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001384 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001385 flagByte &= ~PTF_LEAF;
1386 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001387 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001388 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1389 pPage->intKey = 1;
1390 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001391 pPage->maxLocal = pBt->maxLeaf;
1392 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001393 }else if( flagByte==PTF_ZERODATA ){
1394 pPage->intKey = 0;
1395 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001396 pPage->maxLocal = pBt->maxLocal;
1397 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001398 }else{
1399 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001400 }
drhc9166342012-01-05 23:32:06 +00001401 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001402 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001403}
1404
1405/*
drh7e3b0a02001-04-28 16:52:40 +00001406** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001407**
1408** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001409** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001410** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1411** guarantee that the page is well-formed. It only shows that
1412** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001413*/
danielk197730548662009-07-09 05:07:37 +00001414static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001415
danielk197771d5d2c2008-09-29 11:49:47 +00001416 assert( pPage->pBt!=0 );
1417 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001418 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001419 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1420 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001421
1422 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001423 u16 pc; /* Address of a freeblock within pPage->aData[] */
1424 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001425 u8 *data; /* Equal to pPage->aData */
1426 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001427 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001428 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001429 int nFree; /* Number of unused bytes on the page */
1430 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001431 int iCellFirst; /* First allowable cell or freeblock offset */
1432 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001433
1434 pBt = pPage->pBt;
1435
danielk1977eaa06f62008-09-18 17:34:44 +00001436 hdr = pPage->hdrOffset;
1437 data = pPage->aData;
1438 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001439 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1440 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001441 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001442 usableSize = pBt->usableSize;
1443 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
drh3def2352011-11-11 00:27:15 +00001444 pPage->aDataEnd = &data[usableSize];
1445 pPage->aCellIdx = &data[cellOffset];
drh5d433ce2010-08-14 16:02:52 +00001446 top = get2byteNotZero(&data[hdr+5]);
danielk1977eaa06f62008-09-18 17:34:44 +00001447 pPage->nCell = get2byte(&data[hdr+3]);
1448 if( pPage->nCell>MX_CELL(pBt) ){
1449 /* To many cells for a single page. The page must be corrupt */
1450 return SQLITE_CORRUPT_BKPT;
1451 }
drhb908d762009-07-08 16:54:40 +00001452 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001453
shane5eff7cf2009-08-10 03:57:58 +00001454 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001455 ** of page when parsing a cell.
1456 **
1457 ** The following block of code checks early to see if a cell extends
1458 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1459 ** returned if it does.
1460 */
drh0a45c272009-07-08 01:49:11 +00001461 iCellFirst = cellOffset + 2*pPage->nCell;
1462 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001463#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001464 {
drh69e931e2009-06-03 21:04:35 +00001465 int i; /* Index into the cell pointer array */
1466 int sz; /* Size of a cell */
1467
drh69e931e2009-06-03 21:04:35 +00001468 if( !pPage->leaf ) iCellLast--;
1469 for(i=0; i<pPage->nCell; i++){
1470 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001471 testcase( pc==iCellFirst );
1472 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001473 if( pc<iCellFirst || pc>iCellLast ){
1474 return SQLITE_CORRUPT_BKPT;
1475 }
1476 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001477 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001478 if( pc+sz>usableSize ){
1479 return SQLITE_CORRUPT_BKPT;
1480 }
1481 }
drh0a45c272009-07-08 01:49:11 +00001482 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001483 }
1484#endif
1485
danielk1977eaa06f62008-09-18 17:34:44 +00001486 /* Compute the total free space on the page */
1487 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001488 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001489 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001490 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001491 if( pc<iCellFirst || pc>iCellLast ){
dan4361e792009-08-14 17:01:22 +00001492 /* Start of free block is off the page */
danielk1977eaa06f62008-09-18 17:34:44 +00001493 return SQLITE_CORRUPT_BKPT;
1494 }
1495 next = get2byte(&data[pc]);
1496 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001497 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1498 /* Free blocks must be in ascending order. And the last byte of
drhf2f105d2012-08-20 15:53:54 +00001499 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001500 return SQLITE_CORRUPT_BKPT;
1501 }
shane85095702009-06-15 16:27:08 +00001502 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001503 pc = next;
1504 }
danielk197793c829c2009-06-03 17:26:17 +00001505
1506 /* At this point, nFree contains the sum of the offset to the start
1507 ** of the cell-content area plus the number of free bytes within
1508 ** the cell-content area. If this is greater than the usable-size
1509 ** of the page, then the page must be corrupted. This check also
1510 ** serves to verify that the offset to the start of the cell-content
1511 ** area, according to the page header, lies within the page.
1512 */
1513 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001514 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001515 }
shane5eff7cf2009-08-10 03:57:58 +00001516 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001517 pPage->isInit = 1;
1518 }
drh9e572e62004-04-23 23:43:10 +00001519 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001520}
1521
1522/*
drh8b2f49b2001-06-08 00:21:52 +00001523** Set up a raw page so that it looks like a database page holding
1524** no entries.
drhbd03cae2001-06-02 02:40:57 +00001525*/
drh9e572e62004-04-23 23:43:10 +00001526static void zeroPage(MemPage *pPage, int flags){
1527 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001528 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001529 u8 hdr = pPage->hdrOffset;
1530 u16 first;
drh9e572e62004-04-23 23:43:10 +00001531
danielk19773b8a05f2007-03-19 17:44:26 +00001532 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001533 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1534 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001535 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001536 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001537 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001538 memset(&data[hdr], 0, pBt->usableSize - hdr);
1539 }
drh1bd10f82008-12-10 21:19:56 +00001540 data[hdr] = (char)flags;
1541 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001542 memset(&data[hdr+1], 0, 4);
1543 data[hdr+7] = 0;
1544 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001545 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001546 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001547 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001548 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001549 pPage->aDataEnd = &data[pBt->usableSize];
1550 pPage->aCellIdx = &data[first];
drh43605152004-05-29 21:46:49 +00001551 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001552 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1553 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001554 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001555 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001556}
1557
drh897a8202008-09-18 01:08:15 +00001558
1559/*
1560** Convert a DbPage obtained from the pager into a MemPage used by
1561** the btree layer.
1562*/
1563static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1564 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1565 pPage->aData = sqlite3PagerGetData(pDbPage);
1566 pPage->pDbPage = pDbPage;
1567 pPage->pBt = pBt;
1568 pPage->pgno = pgno;
1569 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1570 return pPage;
1571}
1572
drhbd03cae2001-06-02 02:40:57 +00001573/*
drh3aac2dd2004-04-26 14:10:20 +00001574** Get a page from the pager. Initialize the MemPage.pBt and
1575** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001576**
1577** If the noContent flag is set, it means that we do not care about
1578** the content of the page at this time. So do not go to the disk
1579** to fetch the content. Just fill in the content with zeros for now.
1580** If in the future we call sqlite3PagerWrite() on this page, that
1581** means we have started to be concerned about content and the disk
1582** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001583*/
danielk197730548662009-07-09 05:07:37 +00001584static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001585 BtShared *pBt, /* The btree */
1586 Pgno pgno, /* Number of the page to fetch */
1587 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00001588 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00001589){
drh3aac2dd2004-04-26 14:10:20 +00001590 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001591 DbPage *pDbPage;
1592
drhb00fc3b2013-08-21 23:42:32 +00001593 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00001594 assert( sqlite3_mutex_held(pBt->mutex) );
dan11dcd112013-03-15 18:29:18 +00001595 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00001596 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001597 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001598 return SQLITE_OK;
1599}
1600
1601/*
danielk1977bea2a942009-01-20 17:06:27 +00001602** Retrieve a page from the pager cache. If the requested page is not
1603** already in the pager cache return NULL. Initialize the MemPage.pBt and
1604** MemPage.aData elements if needed.
1605*/
1606static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1607 DbPage *pDbPage;
1608 assert( sqlite3_mutex_held(pBt->mutex) );
1609 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1610 if( pDbPage ){
1611 return btreePageFromDbPage(pDbPage, pgno, pBt);
1612 }
1613 return 0;
1614}
1615
1616/*
danielk197789d40042008-11-17 14:20:56 +00001617** Return the size of the database file in pages. If there is any kind of
1618** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001619*/
drhb1299152010-03-30 22:58:33 +00001620static Pgno btreePagecount(BtShared *pBt){
1621 return pBt->nPage;
1622}
1623u32 sqlite3BtreeLastPage(Btree *p){
1624 assert( sqlite3BtreeHoldsMutex(p) );
1625 assert( ((p->pBt->nPage)&0x8000000)==0 );
1626 return (int)btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001627}
1628
1629/*
danielk197789bc4bc2009-07-21 19:25:24 +00001630** Get a page from the pager and initialize it. This routine is just a
1631** convenience wrapper around separate calls to btreeGetPage() and
1632** btreeInitPage().
1633**
1634** If an error occurs, then the value *ppPage is set to is undefined. It
1635** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001636*/
1637static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00001638 BtShared *pBt, /* The database file */
1639 Pgno pgno, /* Number of the page to get */
1640 MemPage **ppPage, /* Write the page pointer here */
drhb00fc3b2013-08-21 23:42:32 +00001641 int bReadonly /* PAGER_GET_READONLY or 0 */
drhde647132004-05-07 17:57:49 +00001642){
1643 int rc;
drh1fee73e2007-08-29 04:00:57 +00001644 assert( sqlite3_mutex_held(pBt->mutex) );
drhb00fc3b2013-08-21 23:42:32 +00001645 assert( bReadonly==PAGER_GET_READONLY || bReadonly==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00001646
danba3cbf32010-06-30 04:29:03 +00001647 if( pgno>btreePagecount(pBt) ){
1648 rc = SQLITE_CORRUPT_BKPT;
1649 }else{
drhb00fc3b2013-08-21 23:42:32 +00001650 rc = btreeGetPage(pBt, pgno, ppPage, bReadonly);
danba3cbf32010-06-30 04:29:03 +00001651 if( rc==SQLITE_OK ){
1652 rc = btreeInitPage(*ppPage);
1653 if( rc!=SQLITE_OK ){
1654 releasePage(*ppPage);
1655 }
danielk197789bc4bc2009-07-21 19:25:24 +00001656 }
drhee696e22004-08-30 16:52:17 +00001657 }
danba3cbf32010-06-30 04:29:03 +00001658
1659 testcase( pgno==0 );
1660 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00001661 return rc;
1662}
1663
1664/*
drh3aac2dd2004-04-26 14:10:20 +00001665** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001666** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001667*/
drh4b70f112004-05-02 21:12:19 +00001668static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001669 if( pPage ){
1670 assert( pPage->aData );
1671 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001672 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1673 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001674 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001675 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001676 }
1677}
1678
1679/*
drha6abd042004-06-09 17:37:22 +00001680** During a rollback, when the pager reloads information into the cache
1681** so that the cache is restored to its original state at the start of
1682** the transaction, for each page restored this routine is called.
1683**
1684** This routine needs to reset the extra data section at the end of the
1685** page to agree with the restored data.
1686*/
danielk1977eaa06f62008-09-18 17:34:44 +00001687static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001688 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001689 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001690 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001691 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001692 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001693 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001694 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001695 /* pPage might not be a btree page; it might be an overflow page
1696 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001697 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001698 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001699 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001700 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001701 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001702 }
drha6abd042004-06-09 17:37:22 +00001703 }
1704}
1705
1706/*
drhe5fe6902007-12-07 18:55:28 +00001707** Invoke the busy handler for a btree.
1708*/
danielk19771ceedd32008-11-19 10:22:33 +00001709static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001710 BtShared *pBt = (BtShared*)pArg;
1711 assert( pBt->db );
1712 assert( sqlite3_mutex_held(pBt->db->mutex) );
1713 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1714}
1715
1716/*
drhad3e0102004-09-03 23:32:18 +00001717** Open a database file.
1718**
drh382c0242001-10-06 16:33:02 +00001719** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00001720** then an ephemeral database is created. The ephemeral database might
1721** be exclusively in memory, or it might use a disk-based memory cache.
1722** Either way, the ephemeral database will be automatically deleted
1723** when sqlite3BtreeClose() is called.
1724**
drhe53831d2007-08-17 01:14:38 +00001725** If zFilename is ":memory:" then an in-memory database is created
1726** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001727**
drh33f111d2012-01-17 15:29:14 +00001728** The "flags" parameter is a bitmask that might contain bits like
1729** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00001730**
drhc47fd8e2009-04-30 13:30:32 +00001731** If the database is already opened in the same database connection
1732** and we are in shared cache mode, then the open will fail with an
1733** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1734** objects in the same database connection since doing so will lead
1735** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001736*/
drh23e11ca2004-05-04 17:27:28 +00001737int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00001738 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00001739 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001740 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001741 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001742 int flags, /* Options */
1743 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001744){
drh7555d8e2009-03-20 13:15:30 +00001745 BtShared *pBt = 0; /* Shared part of btree structure */
1746 Btree *p; /* Handle to return */
1747 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1748 int rc = SQLITE_OK; /* Result code from this function */
1749 u8 nReserve; /* Byte of unused space on each page */
1750 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001751
drh75c014c2010-08-30 15:02:28 +00001752 /* True if opening an ephemeral, temporary database */
1753 const int isTempDb = zFilename==0 || zFilename[0]==0;
1754
danielk1977aef0bf62005-12-30 16:28:01 +00001755 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00001756 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00001757 */
drhb0a7c9c2010-12-06 21:09:59 +00001758#ifdef SQLITE_OMIT_MEMORYDB
1759 const int isMemdb = 0;
1760#else
1761 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00001762 || (isTempDb && sqlite3TempInMemory(db))
1763 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00001764#endif
1765
drhe5fe6902007-12-07 18:55:28 +00001766 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00001767 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00001768 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00001769 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
1770
1771 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
1772 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
1773
1774 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
1775 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00001776
drh75c014c2010-08-30 15:02:28 +00001777 if( isMemdb ){
1778 flags |= BTREE_MEMORY;
1779 }
1780 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
1781 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
1782 }
drh17435752007-08-16 04:30:38 +00001783 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001784 if( !p ){
1785 return SQLITE_NOMEM;
1786 }
1787 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001788 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001789#ifndef SQLITE_OMIT_SHARED_CACHE
1790 p->lock.pBtree = p;
1791 p->lock.iTable = 1;
1792#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001793
drh198bf392006-01-06 21:52:49 +00001794#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001795 /*
1796 ** If this Btree is a candidate for shared cache, try to find an
1797 ** existing BtShared object that we can share with
1798 */
drh4ab9d252012-05-26 20:08:49 +00001799 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00001800 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
danielk1977adfb9b02007-09-17 07:02:56 +00001801 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001802 char *zFullPathname = sqlite3Malloc(nFullPathname);
drh30ddce62011-10-15 00:16:30 +00001803 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhff0587c2007-08-29 17:43:19 +00001804 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00001805 if( !zFullPathname ){
1806 sqlite3_free(p);
1807 return SQLITE_NOMEM;
1808 }
drhafc8b7f2012-05-26 18:06:38 +00001809 if( isMemdb ){
1810 memcpy(zFullPathname, zFilename, sqlite3Strlen30(zFilename)+1);
1811 }else{
1812 rc = sqlite3OsFullPathname(pVfs, zFilename,
1813 nFullPathname, zFullPathname);
1814 if( rc ){
1815 sqlite3_free(zFullPathname);
1816 sqlite3_free(p);
1817 return rc;
1818 }
drh070ad6b2011-11-17 11:43:19 +00001819 }
drh30ddce62011-10-15 00:16:30 +00001820#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00001821 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1822 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001823 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001824 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00001825#endif
drh78f82d12008-09-02 00:52:52 +00001826 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001827 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00001828 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00001829 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001830 int iDb;
1831 for(iDb=db->nDb-1; iDb>=0; iDb--){
1832 Btree *pExisting = db->aDb[iDb].pBt;
1833 if( pExisting && pExisting->pBt==pBt ){
1834 sqlite3_mutex_leave(mutexShared);
1835 sqlite3_mutex_leave(mutexOpen);
1836 sqlite3_free(zFullPathname);
1837 sqlite3_free(p);
1838 return SQLITE_CONSTRAINT;
1839 }
1840 }
drhff0587c2007-08-29 17:43:19 +00001841 p->pBt = pBt;
1842 pBt->nRef++;
1843 break;
1844 }
1845 }
1846 sqlite3_mutex_leave(mutexShared);
1847 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001848 }
drhff0587c2007-08-29 17:43:19 +00001849#ifdef SQLITE_DEBUG
1850 else{
1851 /* In debug mode, we mark all persistent databases as sharable
1852 ** even when they are not. This exercises the locking code and
1853 ** gives more opportunity for asserts(sqlite3_mutex_held())
1854 ** statements to find locking problems.
1855 */
1856 p->sharable = 1;
1857 }
1858#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001859 }
1860#endif
drha059ad02001-04-17 20:09:11 +00001861 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001862 /*
1863 ** The following asserts make sure that structures used by the btree are
1864 ** the right size. This is to guard against size changes that result
1865 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001866 */
drhe53831d2007-08-17 01:14:38 +00001867 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1868 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1869 assert( sizeof(u32)==4 );
1870 assert( sizeof(u16)==2 );
1871 assert( sizeof(Pgno)==4 );
1872
1873 pBt = sqlite3MallocZero( sizeof(*pBt) );
1874 if( pBt==0 ){
1875 rc = SQLITE_NOMEM;
1876 goto btree_open_out;
1877 }
danielk197771d5d2c2008-09-29 11:49:47 +00001878 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00001879 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00001880 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00001881 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00001882 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1883 }
1884 if( rc!=SQLITE_OK ){
1885 goto btree_open_out;
1886 }
shanehbd2aaf92010-09-01 02:38:21 +00001887 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00001888 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001889 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001890 p->pBt = pBt;
1891
drhe53831d2007-08-17 01:14:38 +00001892 pBt->pCursor = 0;
1893 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00001894 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00001895#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00001896 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00001897#endif
drhb2eced52010-08-12 02:41:12 +00001898 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00001899 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1900 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001901 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001902#ifndef SQLITE_OMIT_AUTOVACUUM
1903 /* If the magic name ":memory:" will create an in-memory database, then
1904 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1905 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1906 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1907 ** regular file-name. In this case the auto-vacuum applies as per normal.
1908 */
1909 if( zFilename && !isMemdb ){
1910 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1911 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1912 }
1913#endif
1914 nReserve = 0;
1915 }else{
1916 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00001917 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00001918#ifndef SQLITE_OMIT_AUTOVACUUM
1919 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1920 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1921#endif
1922 }
drhfa9601a2009-06-18 17:22:39 +00001923 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001924 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001925 pBt->usableSize = pBt->pageSize - nReserve;
1926 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001927
1928#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1929 /* Add the new BtShared object to the linked list sharable BtShareds.
1930 */
1931 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00001932 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00001933 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00001934 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00001935 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001936 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001937 if( pBt->mutex==0 ){
1938 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001939 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001940 goto btree_open_out;
1941 }
drhff0587c2007-08-29 17:43:19 +00001942 }
drhe53831d2007-08-17 01:14:38 +00001943 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001944 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1945 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001946 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001947 }
drheee46cf2004-11-06 00:02:48 +00001948#endif
drh90f5ecb2004-07-22 01:19:35 +00001949 }
danielk1977aef0bf62005-12-30 16:28:01 +00001950
drhcfed7bc2006-03-13 14:28:05 +00001951#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001952 /* If the new Btree uses a sharable pBtShared, then link the new
1953 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001954 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001955 */
drhe53831d2007-08-17 01:14:38 +00001956 if( p->sharable ){
1957 int i;
1958 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001959 for(i=0; i<db->nDb; i++){
1960 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001961 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1962 if( p->pBt<pSib->pBt ){
1963 p->pNext = pSib;
1964 p->pPrev = 0;
1965 pSib->pPrev = p;
1966 }else{
drhabddb0c2007-08-20 13:14:28 +00001967 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001968 pSib = pSib->pNext;
1969 }
1970 p->pNext = pSib->pNext;
1971 p->pPrev = pSib;
1972 if( p->pNext ){
1973 p->pNext->pPrev = p;
1974 }
1975 pSib->pNext = p;
1976 }
1977 break;
1978 }
1979 }
danielk1977aef0bf62005-12-30 16:28:01 +00001980 }
danielk1977aef0bf62005-12-30 16:28:01 +00001981#endif
1982 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001983
1984btree_open_out:
1985 if( rc!=SQLITE_OK ){
1986 if( pBt && pBt->pPager ){
1987 sqlite3PagerClose(pBt->pPager);
1988 }
drh17435752007-08-16 04:30:38 +00001989 sqlite3_free(pBt);
1990 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001991 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00001992 }else{
1993 /* If the B-Tree was successfully opened, set the pager-cache size to the
1994 ** default value. Except, when opening on an existing shared pager-cache,
1995 ** do not change the pager-cache size.
1996 */
1997 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
1998 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
1999 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002000 }
drh7555d8e2009-03-20 13:15:30 +00002001 if( mutexOpen ){
2002 assert( sqlite3_mutex_held(mutexOpen) );
2003 sqlite3_mutex_leave(mutexOpen);
2004 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002005 return rc;
drha059ad02001-04-17 20:09:11 +00002006}
2007
2008/*
drhe53831d2007-08-17 01:14:38 +00002009** Decrement the BtShared.nRef counter. When it reaches zero,
2010** remove the BtShared structure from the sharing list. Return
2011** true if the BtShared.nRef counter reaches zero and return
2012** false if it is still positive.
2013*/
2014static int removeFromSharingList(BtShared *pBt){
2015#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002016 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002017 BtShared *pList;
2018 int removed = 0;
2019
drhd677b3d2007-08-20 22:48:41 +00002020 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002021 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002022 sqlite3_mutex_enter(pMaster);
2023 pBt->nRef--;
2024 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002025 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2026 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002027 }else{
drh78f82d12008-09-02 00:52:52 +00002028 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002029 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002030 pList=pList->pNext;
2031 }
drh34004ce2008-07-11 16:15:17 +00002032 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002033 pList->pNext = pBt->pNext;
2034 }
2035 }
drh3285db22007-09-03 22:00:39 +00002036 if( SQLITE_THREADSAFE ){
2037 sqlite3_mutex_free(pBt->mutex);
2038 }
drhe53831d2007-08-17 01:14:38 +00002039 removed = 1;
2040 }
2041 sqlite3_mutex_leave(pMaster);
2042 return removed;
2043#else
2044 return 1;
2045#endif
2046}
2047
2048/*
drhf7141992008-06-19 00:16:08 +00002049** Make sure pBt->pTmpSpace points to an allocation of
2050** MX_CELL_SIZE(pBt) bytes.
2051*/
2052static void allocateTempSpace(BtShared *pBt){
2053 if( !pBt->pTmpSpace ){
2054 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002055
2056 /* One of the uses of pBt->pTmpSpace is to format cells before
2057 ** inserting them into a leaf page (function fillInCell()). If
2058 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2059 ** by the various routines that manipulate binary cells. Which
2060 ** can mean that fillInCell() only initializes the first 2 or 3
2061 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2062 ** it into a database page. This is not actually a problem, but it
2063 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2064 ** data is passed to system call write(). So to avoid this error,
2065 ** zero the first 4 bytes of temp space here. */
2066 if( pBt->pTmpSpace ) memset(pBt->pTmpSpace, 0, 4);
drhf7141992008-06-19 00:16:08 +00002067 }
2068}
2069
2070/*
2071** Free the pBt->pTmpSpace allocation
2072*/
2073static void freeTempSpace(BtShared *pBt){
2074 sqlite3PageFree( pBt->pTmpSpace);
2075 pBt->pTmpSpace = 0;
2076}
2077
2078/*
drha059ad02001-04-17 20:09:11 +00002079** Close an open database and invalidate all cursors.
2080*/
danielk1977aef0bf62005-12-30 16:28:01 +00002081int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002082 BtShared *pBt = p->pBt;
2083 BtCursor *pCur;
2084
danielk1977aef0bf62005-12-30 16:28:01 +00002085 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002086 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002087 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002088 pCur = pBt->pCursor;
2089 while( pCur ){
2090 BtCursor *pTmp = pCur;
2091 pCur = pCur->pNext;
2092 if( pTmp->pBtree==p ){
2093 sqlite3BtreeCloseCursor(pTmp);
2094 }
drha059ad02001-04-17 20:09:11 +00002095 }
danielk1977aef0bf62005-12-30 16:28:01 +00002096
danielk19778d34dfd2006-01-24 16:37:57 +00002097 /* Rollback any active transaction and free the handle structure.
2098 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2099 ** this handle.
2100 */
drh0f198a72012-02-13 16:43:16 +00002101 sqlite3BtreeRollback(p, SQLITE_OK);
drhe53831d2007-08-17 01:14:38 +00002102 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002103
danielk1977aef0bf62005-12-30 16:28:01 +00002104 /* If there are still other outstanding references to the shared-btree
2105 ** structure, return now. The remainder of this procedure cleans
2106 ** up the shared-btree.
2107 */
drhe53831d2007-08-17 01:14:38 +00002108 assert( p->wantToLock==0 && p->locked==0 );
2109 if( !p->sharable || removeFromSharingList(pBt) ){
2110 /* The pBt is no longer on the sharing list, so we can access
2111 ** it without having to hold the mutex.
2112 **
2113 ** Clean out and delete the BtShared object.
2114 */
2115 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002116 sqlite3PagerClose(pBt->pPager);
2117 if( pBt->xFreeSchema && pBt->pSchema ){
2118 pBt->xFreeSchema(pBt->pSchema);
2119 }
drhb9755982010-07-24 16:34:37 +00002120 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002121 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002122 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002123 }
2124
drhe53831d2007-08-17 01:14:38 +00002125#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002126 assert( p->wantToLock==0 );
2127 assert( p->locked==0 );
2128 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2129 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002130#endif
2131
drhe53831d2007-08-17 01:14:38 +00002132 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002133 return SQLITE_OK;
2134}
2135
2136/*
drhda47d772002-12-02 04:25:19 +00002137** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002138**
2139** The maximum number of cache pages is set to the absolute
2140** value of mxPage. If mxPage is negative, the pager will
2141** operate asynchronously - it will not stop to do fsync()s
2142** to insure data is written to the disk surface before
2143** continuing. Transactions still work if synchronous is off,
2144** and the database cannot be corrupted if this program
2145** crashes. But if the operating system crashes or there is
2146** an abrupt power failure when synchronous is off, the database
2147** could be left in an inconsistent and unrecoverable state.
2148** Synchronous is on by default so database corruption is not
2149** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002150*/
danielk1977aef0bf62005-12-30 16:28:01 +00002151int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2152 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002153 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002154 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002155 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002156 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002157 return SQLITE_OK;
2158}
2159
2160/*
dan5d8a1372013-03-19 19:28:06 +00002161** Change the limit on the amount of the database file that may be
2162** memory mapped.
2163*/
drh9b4c59f2013-04-15 17:03:42 +00002164int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002165 BtShared *pBt = p->pBt;
2166 assert( sqlite3_mutex_held(p->db->mutex) );
2167 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002168 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002169 sqlite3BtreeLeave(p);
2170 return SQLITE_OK;
2171}
2172
2173/*
drh973b6e32003-02-12 14:09:42 +00002174** Change the way data is synced to disk in order to increase or decrease
2175** how well the database resists damage due to OS crashes and power
2176** failures. Level 1 is the same as asynchronous (no syncs() occur and
2177** there is a high probability of damage) Level 2 is the default. There
2178** is a very low but non-zero probability of damage. Level 3 reduces the
2179** probability of damage to near zero but with a write performance reduction.
2180*/
danielk197793758c82005-01-21 08:13:14 +00002181#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002182int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002183 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002184 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002185){
danielk1977aef0bf62005-12-30 16:28:01 +00002186 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002187 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002188 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002189 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002190 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002191 return SQLITE_OK;
2192}
danielk197793758c82005-01-21 08:13:14 +00002193#endif
drh973b6e32003-02-12 14:09:42 +00002194
drh2c8997b2005-08-27 16:36:48 +00002195/*
2196** Return TRUE if the given btree is set to safety level 1. In other
2197** words, return TRUE if no sync() occurs on the disk files.
2198*/
danielk1977aef0bf62005-12-30 16:28:01 +00002199int sqlite3BtreeSyncDisabled(Btree *p){
2200 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002201 int rc;
drhe5fe6902007-12-07 18:55:28 +00002202 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002203 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002204 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002205 rc = sqlite3PagerNosync(pBt->pPager);
2206 sqlite3BtreeLeave(p);
2207 return rc;
drh2c8997b2005-08-27 16:36:48 +00002208}
2209
drh973b6e32003-02-12 14:09:42 +00002210/*
drh90f5ecb2004-07-22 01:19:35 +00002211** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002212** Or, if the page size has already been fixed, return SQLITE_READONLY
2213** without changing anything.
drh06f50212004-11-02 14:24:33 +00002214**
2215** The page size must be a power of 2 between 512 and 65536. If the page
2216** size supplied does not meet this constraint then the page size is not
2217** changed.
2218**
2219** Page sizes are constrained to be a power of two so that the region
2220** of the database file used for locking (beginning at PENDING_BYTE,
2221** the first byte past the 1GB boundary, 0x40000000) needs to occur
2222** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002223**
2224** If parameter nReserve is less than zero, then the number of reserved
2225** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002226**
drhc9166342012-01-05 23:32:06 +00002227** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002228** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002229*/
drhce4869f2009-04-02 20:16:58 +00002230int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002231 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002232 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002233 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002234 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002235 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002236 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002237 return SQLITE_READONLY;
2238 }
2239 if( nReserve<0 ){
2240 nReserve = pBt->pageSize - pBt->usableSize;
2241 }
drhf49661a2008-12-10 16:45:50 +00002242 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002243 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2244 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002245 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002246 assert( !pBt->pPage1 && !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002247 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002248 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002249 }
drhfa9601a2009-06-18 17:22:39 +00002250 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002251 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002252 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002253 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002254 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002255}
2256
2257/*
2258** Return the currently defined page size
2259*/
danielk1977aef0bf62005-12-30 16:28:01 +00002260int sqlite3BtreeGetPageSize(Btree *p){
2261 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002262}
drh7f751222009-03-17 22:33:00 +00002263
drha1f38532012-10-01 12:44:26 +00002264#if defined(SQLITE_HAS_CODEC) || defined(SQLITE_DEBUG)
dan0094f372012-09-28 20:23:42 +00002265/*
2266** This function is similar to sqlite3BtreeGetReserve(), except that it
2267** may only be called if it is guaranteed that the b-tree mutex is already
2268** held.
2269**
2270** This is useful in one special case in the backup API code where it is
2271** known that the shared b-tree mutex is held, but the mutex on the
2272** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2273** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002274** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002275*/
2276int sqlite3BtreeGetReserveNoMutex(Btree *p){
2277 assert( sqlite3_mutex_held(p->pBt->mutex) );
2278 return p->pBt->pageSize - p->pBt->usableSize;
2279}
drha1f38532012-10-01 12:44:26 +00002280#endif /* SQLITE_HAS_CODEC || SQLITE_DEBUG */
dan0094f372012-09-28 20:23:42 +00002281
danbb2b4412011-04-06 17:54:31 +00002282#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh7f751222009-03-17 22:33:00 +00002283/*
2284** Return the number of bytes of space at the end of every page that
2285** are intentually left unused. This is the "reserved" space that is
2286** sometimes used by extensions.
2287*/
danielk1977aef0bf62005-12-30 16:28:01 +00002288int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002289 int n;
2290 sqlite3BtreeEnter(p);
2291 n = p->pBt->pageSize - p->pBt->usableSize;
2292 sqlite3BtreeLeave(p);
2293 return n;
drh2011d5f2004-07-22 02:40:37 +00002294}
drhf8e632b2007-05-08 14:51:36 +00002295
2296/*
2297** Set the maximum page count for a database if mxPage is positive.
2298** No changes are made if mxPage is 0 or negative.
2299** Regardless of the value of mxPage, return the maximum page count.
2300*/
2301int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002302 int n;
2303 sqlite3BtreeEnter(p);
2304 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2305 sqlite3BtreeLeave(p);
2306 return n;
drhf8e632b2007-05-08 14:51:36 +00002307}
drh5b47efa2010-02-12 18:18:39 +00002308
2309/*
drhc9166342012-01-05 23:32:06 +00002310** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2311** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002312** setting after the change.
2313*/
2314int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2315 int b;
drhaf034ed2010-02-12 19:46:26 +00002316 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002317 sqlite3BtreeEnter(p);
2318 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002319 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2320 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002321 }
drhc9166342012-01-05 23:32:06 +00002322 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002323 sqlite3BtreeLeave(p);
2324 return b;
2325}
danielk1977576ec6b2005-01-21 11:55:25 +00002326#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002327
2328/*
danielk1977951af802004-11-05 15:45:09 +00002329** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2330** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2331** is disabled. The default value for the auto-vacuum property is
2332** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2333*/
danielk1977aef0bf62005-12-30 16:28:01 +00002334int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002335#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002336 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002337#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002338 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002339 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002340 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002341
2342 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002343 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002344 rc = SQLITE_READONLY;
2345 }else{
drh076d4662009-02-18 20:31:18 +00002346 pBt->autoVacuum = av ?1:0;
2347 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002348 }
drhd677b3d2007-08-20 22:48:41 +00002349 sqlite3BtreeLeave(p);
2350 return rc;
danielk1977951af802004-11-05 15:45:09 +00002351#endif
2352}
2353
2354/*
2355** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2356** enabled 1 is returned. Otherwise 0.
2357*/
danielk1977aef0bf62005-12-30 16:28:01 +00002358int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002359#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002360 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002361#else
drhd677b3d2007-08-20 22:48:41 +00002362 int rc;
2363 sqlite3BtreeEnter(p);
2364 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002365 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2366 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2367 BTREE_AUTOVACUUM_INCR
2368 );
drhd677b3d2007-08-20 22:48:41 +00002369 sqlite3BtreeLeave(p);
2370 return rc;
danielk1977951af802004-11-05 15:45:09 +00002371#endif
2372}
2373
2374
2375/*
drha34b6762004-05-07 13:30:42 +00002376** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002377** also acquire a readlock on that file.
2378**
2379** SQLITE_OK is returned on success. If the file is not a
2380** well-formed database file, then SQLITE_CORRUPT is returned.
2381** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002382** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002383*/
danielk1977aef0bf62005-12-30 16:28:01 +00002384static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002385 int rc; /* Result code from subfunctions */
2386 MemPage *pPage1; /* Page 1 of the database file */
2387 int nPage; /* Number of pages in the database */
2388 int nPageFile = 0; /* Number of pages in the database file */
2389 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002390
drh1fee73e2007-08-29 04:00:57 +00002391 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002392 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002393 rc = sqlite3PagerSharedLock(pBt->pPager);
2394 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002395 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002396 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002397
2398 /* Do some checking to help insure the file we opened really is
2399 ** a valid database file.
2400 */
drhc2a4bab2010-04-02 12:46:45 +00002401 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002402 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002403 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002404 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002405 }
2406 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002407 u32 pageSize;
2408 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002409 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002410 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002411 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002412 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002413 }
dan5cf53532010-05-01 16:40:20 +00002414
2415#ifdef SQLITE_OMIT_WAL
2416 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002417 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002418 }
2419 if( page1[19]>1 ){
2420 goto page1_init_failed;
2421 }
2422#else
dane04dc882010-04-20 18:53:15 +00002423 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002424 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002425 }
dane04dc882010-04-20 18:53:15 +00002426 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002427 goto page1_init_failed;
2428 }
drhe5ae5732008-06-15 02:51:47 +00002429
dana470aeb2010-04-21 11:43:38 +00002430 /* If the write version is set to 2, this database should be accessed
2431 ** in WAL mode. If the log is not already open, open it now. Then
2432 ** return SQLITE_OK and return without populating BtShared.pPage1.
2433 ** The caller detects this and calls this function again. This is
2434 ** required as the version of page 1 currently in the page1 buffer
2435 ** may not be the latest version - there may be a newer one in the log
2436 ** file.
2437 */
drhc9166342012-01-05 23:32:06 +00002438 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002439 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002440 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002441 if( rc!=SQLITE_OK ){
2442 goto page1_init_failed;
2443 }else if( isOpen==0 ){
2444 releasePage(pPage1);
2445 return SQLITE_OK;
2446 }
dan8b5444b2010-04-27 14:37:47 +00002447 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002448 }
dan5cf53532010-05-01 16:40:20 +00002449#endif
dane04dc882010-04-20 18:53:15 +00002450
drhe5ae5732008-06-15 02:51:47 +00002451 /* The maximum embedded fraction must be exactly 25%. And the minimum
2452 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2453 ** The original design allowed these amounts to vary, but as of
2454 ** version 3.6.0, we require them to be fixed.
2455 */
2456 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2457 goto page1_init_failed;
2458 }
drhb2eced52010-08-12 02:41:12 +00002459 pageSize = (page1[16]<<8) | (page1[17]<<16);
2460 if( ((pageSize-1)&pageSize)!=0
2461 || pageSize>SQLITE_MAX_PAGE_SIZE
2462 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002463 ){
drh07d183d2005-05-01 22:52:42 +00002464 goto page1_init_failed;
2465 }
2466 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002467 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002468 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002469 /* After reading the first page of the database assuming a page size
2470 ** of BtShared.pageSize, we have discovered that the page-size is
2471 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2472 ** zero and return SQLITE_OK. The caller will call this function
2473 ** again with the correct page-size.
2474 */
2475 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002476 pBt->usableSize = usableSize;
2477 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002478 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002479 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2480 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002481 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002482 }
danecac6702011-02-09 18:19:20 +00002483 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002484 rc = SQLITE_CORRUPT_BKPT;
2485 goto page1_init_failed;
2486 }
drhb33e1b92009-06-18 11:29:20 +00002487 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002488 goto page1_init_failed;
2489 }
drh43b18e12010-08-17 19:40:08 +00002490 pBt->pageSize = pageSize;
2491 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002492#ifndef SQLITE_OMIT_AUTOVACUUM
2493 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002494 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002495#endif
drh306dc212001-05-21 13:45:10 +00002496 }
drhb6f41482004-05-14 01:58:11 +00002497
2498 /* maxLocal is the maximum amount of payload to store locally for
2499 ** a cell. Make sure it is small enough so that at least minFanout
2500 ** cells can will fit on one page. We assume a 10-byte page header.
2501 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002502 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002503 ** 4-byte child pointer
2504 ** 9-byte nKey value
2505 ** 4-byte nData value
2506 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002507 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002508 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2509 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002510 */
shaneh1df2db72010-08-18 02:28:48 +00002511 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2512 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2513 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2514 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002515 if( pBt->maxLocal>127 ){
2516 pBt->max1bytePayload = 127;
2517 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002518 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002519 }
drh2e38c322004-09-03 18:38:44 +00002520 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002521 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002522 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002523 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002524
drh72f82862001-05-24 21:06:34 +00002525page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002526 releasePage(pPage1);
2527 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002528 return rc;
drh306dc212001-05-21 13:45:10 +00002529}
2530
drh85ec3b62013-05-14 23:12:06 +00002531#ifndef NDEBUG
2532/*
2533** Return the number of cursors open on pBt. This is for use
2534** in assert() expressions, so it is only compiled if NDEBUG is not
2535** defined.
2536**
2537** Only write cursors are counted if wrOnly is true. If wrOnly is
2538** false then all cursors are counted.
2539**
2540** For the purposes of this routine, a cursor is any cursor that
2541** is capable of reading or writing to the databse. Cursors that
2542** have been tripped into the CURSOR_FAULT state are not counted.
2543*/
2544static int countValidCursors(BtShared *pBt, int wrOnly){
2545 BtCursor *pCur;
2546 int r = 0;
2547 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
2548 if( (wrOnly==0 || pCur->wrFlag) && pCur->eState!=CURSOR_FAULT ) r++;
2549 }
2550 return r;
2551}
2552#endif
2553
drh306dc212001-05-21 13:45:10 +00002554/*
drhb8ca3072001-12-05 00:21:20 +00002555** If there are no outstanding cursors and we are not in the middle
2556** of a transaction but there is a read lock on the database, then
2557** this routine unrefs the first page of the database file which
2558** has the effect of releasing the read lock.
2559**
drhb8ca3072001-12-05 00:21:20 +00002560** If there is a transaction in progress, this routine is a no-op.
2561*/
danielk1977aef0bf62005-12-30 16:28:01 +00002562static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002563 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00002564 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00002565 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002566 assert( pBt->pPage1->aData );
2567 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2568 assert( pBt->pPage1->aData );
2569 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002570 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002571 }
2572}
2573
2574/*
drhe39f2f92009-07-23 01:43:59 +00002575** If pBt points to an empty file then convert that empty file
2576** into a new empty database by initializing the first page of
2577** the database.
drh8b2f49b2001-06-08 00:21:52 +00002578*/
danielk1977aef0bf62005-12-30 16:28:01 +00002579static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002580 MemPage *pP1;
2581 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002582 int rc;
drhd677b3d2007-08-20 22:48:41 +00002583
drh1fee73e2007-08-29 04:00:57 +00002584 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002585 if( pBt->nPage>0 ){
2586 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002587 }
drh3aac2dd2004-04-26 14:10:20 +00002588 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002589 assert( pP1!=0 );
2590 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002591 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002592 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002593 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2594 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00002595 data[16] = (u8)((pBt->pageSize>>8)&0xff);
2596 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00002597 data[18] = 1;
2598 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002599 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2600 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002601 data[21] = 64;
2602 data[22] = 32;
2603 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002604 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002605 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00002606 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00002607#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002608 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002609 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002610 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002611 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002612#endif
drhdd3cd972010-03-27 17:12:36 +00002613 pBt->nPage = 1;
2614 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002615 return SQLITE_OK;
2616}
2617
2618/*
danb483eba2012-10-13 19:58:11 +00002619** Initialize the first page of the database file (creating a database
2620** consisting of a single page and no schema objects). Return SQLITE_OK
2621** if successful, or an SQLite error code otherwise.
2622*/
2623int sqlite3BtreeNewDb(Btree *p){
2624 int rc;
2625 sqlite3BtreeEnter(p);
2626 p->pBt->nPage = 0;
2627 rc = newDatabase(p->pBt);
2628 sqlite3BtreeLeave(p);
2629 return rc;
2630}
2631
2632/*
danielk1977ee5741e2004-05-31 10:01:34 +00002633** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002634** is started if the second argument is nonzero, otherwise a read-
2635** transaction. If the second argument is 2 or more and exclusive
2636** transaction is started, meaning that no other process is allowed
2637** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002638** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002639** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002640**
danielk1977ee5741e2004-05-31 10:01:34 +00002641** A write-transaction must be started before attempting any
2642** changes to the database. None of the following routines
2643** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002644**
drh23e11ca2004-05-04 17:27:28 +00002645** sqlite3BtreeCreateTable()
2646** sqlite3BtreeCreateIndex()
2647** sqlite3BtreeClearTable()
2648** sqlite3BtreeDropTable()
2649** sqlite3BtreeInsert()
2650** sqlite3BtreeDelete()
2651** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002652**
drhb8ef32c2005-03-14 02:01:49 +00002653** If an initial attempt to acquire the lock fails because of lock contention
2654** and the database was previously unlocked, then invoke the busy handler
2655** if there is one. But if there was previously a read-lock, do not
2656** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2657** returned when there is already a read-lock in order to avoid a deadlock.
2658**
2659** Suppose there are two processes A and B. A has a read lock and B has
2660** a reserved lock. B tries to promote to exclusive but is blocked because
2661** of A's read lock. A tries to promote to reserved but is blocked by B.
2662** One or the other of the two processes must give way or there can be
2663** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2664** when A already has a read lock, we encourage A to give up and let B
2665** proceed.
drha059ad02001-04-17 20:09:11 +00002666*/
danielk1977aef0bf62005-12-30 16:28:01 +00002667int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002668 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002669 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002670 int rc = SQLITE_OK;
2671
drhd677b3d2007-08-20 22:48:41 +00002672 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002673 btreeIntegrity(p);
2674
danielk1977ee5741e2004-05-31 10:01:34 +00002675 /* If the btree is already in a write-transaction, or it
2676 ** is already in a read-transaction and a read-transaction
2677 ** is requested, this is a no-op.
2678 */
danielk1977aef0bf62005-12-30 16:28:01 +00002679 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002680 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002681 }
dan56c517a2013-09-26 11:04:33 +00002682 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00002683
2684 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00002685 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002686 rc = SQLITE_READONLY;
2687 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002688 }
2689
danielk1977404ca072009-03-16 13:19:36 +00002690#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002691 /* If another database handle has already opened a write transaction
2692 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002693 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002694 */
drhc9166342012-01-05 23:32:06 +00002695 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
2696 || (pBt->btsFlags & BTS_PENDING)!=0
2697 ){
danielk1977404ca072009-03-16 13:19:36 +00002698 pBlock = pBt->pWriter->db;
2699 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002700 BtLock *pIter;
2701 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2702 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002703 pBlock = pIter->pBtree->db;
2704 break;
danielk1977641b0f42007-12-21 04:47:25 +00002705 }
2706 }
2707 }
danielk1977404ca072009-03-16 13:19:36 +00002708 if( pBlock ){
2709 sqlite3ConnectionBlocked(p->db, pBlock);
2710 rc = SQLITE_LOCKED_SHAREDCACHE;
2711 goto trans_begun;
2712 }
danielk1977641b0f42007-12-21 04:47:25 +00002713#endif
2714
danielk1977602b4662009-07-02 07:47:33 +00002715 /* Any read-only or read-write transaction implies a read-lock on
2716 ** page 1. So if some other shared-cache client already has a write-lock
2717 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002718 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2719 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002720
drhc9166342012-01-05 23:32:06 +00002721 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
2722 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00002723 do {
danielk1977295dc102009-04-01 19:07:03 +00002724 /* Call lockBtree() until either pBt->pPage1 is populated or
2725 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2726 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2727 ** reading page 1 it discovers that the page-size of the database
2728 ** file is not pBt->pageSize. In this case lockBtree() will update
2729 ** pBt->pageSize to the page-size of the file on disk.
2730 */
2731 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002732
drhb8ef32c2005-03-14 02:01:49 +00002733 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00002734 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00002735 rc = SQLITE_READONLY;
2736 }else{
danielk1977d8293352009-04-30 09:10:37 +00002737 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002738 if( rc==SQLITE_OK ){
2739 rc = newDatabase(pBt);
2740 }
drhb8ef32c2005-03-14 02:01:49 +00002741 }
2742 }
2743
danielk1977bd434552009-03-18 10:33:00 +00002744 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002745 unlockBtreeIfUnused(pBt);
2746 }
danf9b76712010-06-01 14:12:45 +00002747 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002748 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002749
2750 if( rc==SQLITE_OK ){
2751 if( p->inTrans==TRANS_NONE ){
2752 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002753#ifndef SQLITE_OMIT_SHARED_CACHE
2754 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00002755 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00002756 p->lock.eLock = READ_LOCK;
2757 p->lock.pNext = pBt->pLock;
2758 pBt->pLock = &p->lock;
2759 }
2760#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002761 }
2762 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2763 if( p->inTrans>pBt->inTransaction ){
2764 pBt->inTransaction = p->inTrans;
2765 }
danielk1977404ca072009-03-16 13:19:36 +00002766 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00002767 MemPage *pPage1 = pBt->pPage1;
2768#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002769 assert( !pBt->pWriter );
2770 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00002771 pBt->btsFlags &= ~BTS_EXCLUSIVE;
2772 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00002773#endif
dan59257dc2010-08-04 11:34:31 +00002774
2775 /* If the db-size header field is incorrect (as it may be if an old
2776 ** client has been writing the database file), update it now. Doing
2777 ** this sooner rather than later means the database size can safely
2778 ** re-read the database size from page 1 if a savepoint or transaction
2779 ** rollback occurs within the transaction.
2780 */
2781 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
2782 rc = sqlite3PagerWrite(pPage1->pDbPage);
2783 if( rc==SQLITE_OK ){
2784 put4byte(&pPage1->aData[28], pBt->nPage);
2785 }
2786 }
2787 }
danielk1977aef0bf62005-12-30 16:28:01 +00002788 }
2789
drhd677b3d2007-08-20 22:48:41 +00002790
2791trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002792 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002793 /* This call makes sure that the pager has the correct number of
2794 ** open savepoints. If the second parameter is greater than 0 and
2795 ** the sub-journal is not already open, then it will be opened here.
2796 */
danielk1977fd7f0452008-12-17 17:30:26 +00002797 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2798 }
danielk197712dd5492008-12-18 15:45:07 +00002799
danielk1977aef0bf62005-12-30 16:28:01 +00002800 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002801 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002802 return rc;
drha059ad02001-04-17 20:09:11 +00002803}
2804
danielk1977687566d2004-11-02 12:56:41 +00002805#ifndef SQLITE_OMIT_AUTOVACUUM
2806
2807/*
2808** Set the pointer-map entries for all children of page pPage. Also, if
2809** pPage contains cells that point to overflow pages, set the pointer
2810** map entries for the overflow pages as well.
2811*/
2812static int setChildPtrmaps(MemPage *pPage){
2813 int i; /* Counter variable */
2814 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002815 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002816 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002817 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002818 Pgno pgno = pPage->pgno;
2819
drh1fee73e2007-08-29 04:00:57 +00002820 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00002821 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002822 if( rc!=SQLITE_OK ){
2823 goto set_child_ptrmaps_out;
2824 }
danielk1977687566d2004-11-02 12:56:41 +00002825 nCell = pPage->nCell;
2826
2827 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002828 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002829
drh98add2e2009-07-20 17:11:49 +00002830 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00002831
danielk1977687566d2004-11-02 12:56:41 +00002832 if( !pPage->leaf ){
2833 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00002834 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002835 }
2836 }
2837
2838 if( !pPage->leaf ){
2839 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00002840 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002841 }
2842
2843set_child_ptrmaps_out:
2844 pPage->isInit = isInitOrig;
2845 return rc;
2846}
2847
2848/*
drhf3aed592009-07-08 18:12:49 +00002849** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2850** that it points to iTo. Parameter eType describes the type of pointer to
2851** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00002852**
2853** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2854** page of pPage.
2855**
2856** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2857** page pointed to by one of the cells on pPage.
2858**
2859** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2860** overflow page in the list.
2861*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002862static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002863 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002864 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002865 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002866 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002867 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002868 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002869 }
danielk1977f78fc082004-11-02 14:40:32 +00002870 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002871 }else{
drhf49661a2008-12-10 16:45:50 +00002872 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002873 int i;
2874 int nCell;
2875
danielk197730548662009-07-09 05:07:37 +00002876 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002877 nCell = pPage->nCell;
2878
danielk1977687566d2004-11-02 12:56:41 +00002879 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002880 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002881 if( eType==PTRMAP_OVERFLOW1 ){
2882 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00002883 btreeParseCellPtr(pPage, pCell, &info);
drhe42a9b42011-08-31 13:27:19 +00002884 if( info.iOverflow
2885 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
2886 && iFrom==get4byte(&pCell[info.iOverflow])
2887 ){
2888 put4byte(&pCell[info.iOverflow], iTo);
2889 break;
danielk1977687566d2004-11-02 12:56:41 +00002890 }
2891 }else{
2892 if( get4byte(pCell)==iFrom ){
2893 put4byte(pCell, iTo);
2894 break;
2895 }
2896 }
2897 }
2898
2899 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002900 if( eType!=PTRMAP_BTREE ||
2901 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002902 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002903 }
danielk1977687566d2004-11-02 12:56:41 +00002904 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2905 }
2906
2907 pPage->isInit = isInitOrig;
2908 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002909 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002910}
2911
danielk1977003ba062004-11-04 02:57:33 +00002912
danielk19777701e812005-01-10 12:59:51 +00002913/*
2914** Move the open database page pDbPage to location iFreePage in the
2915** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00002916**
2917** The isCommit flag indicates that there is no need to remember that
2918** the journal needs to be sync()ed before database page pDbPage->pgno
2919** can be written to. The caller has already promised not to write to that
2920** page.
danielk19777701e812005-01-10 12:59:51 +00002921*/
danielk1977003ba062004-11-04 02:57:33 +00002922static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002923 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002924 MemPage *pDbPage, /* Open page to move */
2925 u8 eType, /* Pointer map 'type' entry for pDbPage */
2926 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002927 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00002928 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00002929){
2930 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2931 Pgno iDbPage = pDbPage->pgno;
2932 Pager *pPager = pBt->pPager;
2933 int rc;
2934
danielk1977a0bf2652004-11-04 14:30:04 +00002935 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2936 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002937 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002938 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002939
drh85b623f2007-12-13 21:54:09 +00002940 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002941 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2942 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002943 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002944 if( rc!=SQLITE_OK ){
2945 return rc;
2946 }
2947 pDbPage->pgno = iFreePage;
2948
2949 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2950 ** that point to overflow pages. The pointer map entries for all these
2951 ** pages need to be changed.
2952 **
2953 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2954 ** pointer to a subsequent overflow page. If this is the case, then
2955 ** the pointer map needs to be updated for the subsequent overflow page.
2956 */
danielk1977a0bf2652004-11-04 14:30:04 +00002957 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002958 rc = setChildPtrmaps(pDbPage);
2959 if( rc!=SQLITE_OK ){
2960 return rc;
2961 }
2962 }else{
2963 Pgno nextOvfl = get4byte(pDbPage->aData);
2964 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00002965 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00002966 if( rc!=SQLITE_OK ){
2967 return rc;
2968 }
2969 }
2970 }
2971
2972 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2973 ** that it points at iFreePage. Also fix the pointer map entry for
2974 ** iPtrPage.
2975 */
danielk1977a0bf2652004-11-04 14:30:04 +00002976 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00002977 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002978 if( rc!=SQLITE_OK ){
2979 return rc;
2980 }
danielk19773b8a05f2007-03-19 17:44:26 +00002981 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002982 if( rc!=SQLITE_OK ){
2983 releasePage(pPtrPage);
2984 return rc;
2985 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002986 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002987 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002988 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00002989 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002990 }
danielk1977003ba062004-11-04 02:57:33 +00002991 }
danielk1977003ba062004-11-04 02:57:33 +00002992 return rc;
2993}
2994
danielk1977dddbcdc2007-04-26 14:42:34 +00002995/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002996static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002997
2998/*
dan51f0b6d2013-02-22 20:16:34 +00002999** Perform a single step of an incremental-vacuum. If successful, return
3000** SQLITE_OK. If there is no work to do (and therefore no point in
3001** calling this function again), return SQLITE_DONE. Or, if an error
3002** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003003**
dan51f0b6d2013-02-22 20:16:34 +00003004** More specificly, this function attempts to re-organize the database so
3005** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003006**
dan51f0b6d2013-02-22 20:16:34 +00003007** Parameter nFin is the number of pages that this database would contain
3008** were this function called until it returns SQLITE_DONE.
3009**
3010** If the bCommit parameter is non-zero, this function assumes that the
3011** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3012** or an error. bCommit is passed true for an auto-vacuum-on-commmit
3013** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003014*/
dan51f0b6d2013-02-22 20:16:34 +00003015static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003016 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003017 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003018
drh1fee73e2007-08-29 04:00:57 +00003019 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003020 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003021
3022 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003023 u8 eType;
3024 Pgno iPtrPage;
3025
3026 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003027 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003028 return SQLITE_DONE;
3029 }
3030
3031 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3032 if( rc!=SQLITE_OK ){
3033 return rc;
3034 }
3035 if( eType==PTRMAP_ROOTPAGE ){
3036 return SQLITE_CORRUPT_BKPT;
3037 }
3038
3039 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003040 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003041 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003042 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003043 ** truncated to zero after this function returns, so it doesn't
3044 ** matter if it still contains some garbage entries.
3045 */
3046 Pgno iFreePg;
3047 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003048 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003049 if( rc!=SQLITE_OK ){
3050 return rc;
3051 }
3052 assert( iFreePg==iLastPg );
3053 releasePage(pFreePg);
3054 }
3055 } else {
3056 Pgno iFreePg; /* Index of free page to move pLastPg to */
3057 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003058 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3059 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003060
drhb00fc3b2013-08-21 23:42:32 +00003061 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003062 if( rc!=SQLITE_OK ){
3063 return rc;
3064 }
3065
dan51f0b6d2013-02-22 20:16:34 +00003066 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003067 ** is swapped with the first free page pulled off the free list.
3068 **
dan51f0b6d2013-02-22 20:16:34 +00003069 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003070 ** looping until a free-page located within the first nFin pages
3071 ** of the file is found.
3072 */
dan51f0b6d2013-02-22 20:16:34 +00003073 if( bCommit==0 ){
3074 eMode = BTALLOC_LE;
3075 iNear = nFin;
3076 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003077 do {
3078 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003079 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003080 if( rc!=SQLITE_OK ){
3081 releasePage(pLastPg);
3082 return rc;
3083 }
3084 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003085 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003086 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003087
dane1df4e32013-03-05 11:27:04 +00003088 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003089 releasePage(pLastPg);
3090 if( rc!=SQLITE_OK ){
3091 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003092 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003093 }
3094 }
3095
dan51f0b6d2013-02-22 20:16:34 +00003096 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003097 do {
danielk19773460d192008-12-27 15:23:13 +00003098 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003099 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3100 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003101 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003102 }
3103 return SQLITE_OK;
3104}
3105
3106/*
dan51f0b6d2013-02-22 20:16:34 +00003107** The database opened by the first argument is an auto-vacuum database
3108** nOrig pages in size containing nFree free pages. Return the expected
3109** size of the database in pages following an auto-vacuum operation.
3110*/
3111static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3112 int nEntry; /* Number of entries on one ptrmap page */
3113 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3114 Pgno nFin; /* Return value */
3115
3116 nEntry = pBt->usableSize/5;
3117 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3118 nFin = nOrig - nFree - nPtrmap;
3119 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3120 nFin--;
3121 }
3122 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3123 nFin--;
3124 }
dan51f0b6d2013-02-22 20:16:34 +00003125
3126 return nFin;
3127}
3128
3129/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003130** A write-transaction must be opened before calling this function.
3131** It performs a single unit of work towards an incremental vacuum.
3132**
3133** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003134** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003135** SQLITE_OK is returned. Otherwise an SQLite error code.
3136*/
3137int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003138 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003139 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003140
3141 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003142 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3143 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003144 rc = SQLITE_DONE;
3145 }else{
dan51f0b6d2013-02-22 20:16:34 +00003146 Pgno nOrig = btreePagecount(pBt);
3147 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3148 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3149
dan91384712013-02-24 11:50:43 +00003150 if( nOrig<nFin ){
3151 rc = SQLITE_CORRUPT_BKPT;
3152 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003153 rc = saveAllCursors(pBt, 0, 0);
3154 if( rc==SQLITE_OK ){
3155 invalidateAllOverflowCache(pBt);
3156 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3157 }
dan51f0b6d2013-02-22 20:16:34 +00003158 if( rc==SQLITE_OK ){
3159 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3160 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3161 }
3162 }else{
3163 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003164 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003165 }
drhd677b3d2007-08-20 22:48:41 +00003166 sqlite3BtreeLeave(p);
3167 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003168}
3169
3170/*
danielk19773b8a05f2007-03-19 17:44:26 +00003171** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003172** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003173**
3174** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3175** the database file should be truncated to during the commit process.
3176** i.e. the database has been reorganized so that only the first *pnTrunc
3177** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003178*/
danielk19773460d192008-12-27 15:23:13 +00003179static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003180 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003181 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00003182 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003183
drh1fee73e2007-08-29 04:00:57 +00003184 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003185 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003186 assert(pBt->autoVacuum);
3187 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003188 Pgno nFin; /* Number of pages in database after autovacuuming */
3189 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003190 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003191 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003192
drhb1299152010-03-30 22:58:33 +00003193 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003194 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3195 /* It is not possible to create a database for which the final page
3196 ** is either a pointer-map page or the pending-byte page. If one
3197 ** is encountered, this indicates corruption.
3198 */
danielk19773460d192008-12-27 15:23:13 +00003199 return SQLITE_CORRUPT_BKPT;
3200 }
danielk1977ef165ce2009-04-06 17:50:03 +00003201
danielk19773460d192008-12-27 15:23:13 +00003202 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003203 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003204 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003205 if( nFin<nOrig ){
3206 rc = saveAllCursors(pBt, 0, 0);
3207 }
danielk19773460d192008-12-27 15:23:13 +00003208 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003209 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003210 }
danielk19773460d192008-12-27 15:23:13 +00003211 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003212 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3213 put4byte(&pBt->pPage1->aData[32], 0);
3214 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003215 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003216 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003217 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003218 }
3219 if( rc!=SQLITE_OK ){
3220 sqlite3PagerRollback(pPager);
3221 }
danielk1977687566d2004-11-02 12:56:41 +00003222 }
3223
dan0aed84d2013-03-26 14:16:20 +00003224 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003225 return rc;
3226}
danielk1977dddbcdc2007-04-26 14:42:34 +00003227
danielk1977a50d9aa2009-06-08 14:49:45 +00003228#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3229# define setChildPtrmaps(x) SQLITE_OK
3230#endif
danielk1977687566d2004-11-02 12:56:41 +00003231
3232/*
drh80e35f42007-03-30 14:06:34 +00003233** This routine does the first phase of a two-phase commit. This routine
3234** causes a rollback journal to be created (if it does not already exist)
3235** and populated with enough information so that if a power loss occurs
3236** the database can be restored to its original state by playing back
3237** the journal. Then the contents of the journal are flushed out to
3238** the disk. After the journal is safely on oxide, the changes to the
3239** database are written into the database file and flushed to oxide.
3240** At the end of this call, the rollback journal still exists on the
3241** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003242** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003243** commit process.
3244**
3245** This call is a no-op if no write-transaction is currently active on pBt.
3246**
3247** Otherwise, sync the database file for the btree pBt. zMaster points to
3248** the name of a master journal file that should be written into the
3249** individual journal file, or is NULL, indicating no master journal file
3250** (single database transaction).
3251**
3252** When this is called, the master journal should already have been
3253** created, populated with this journal pointer and synced to disk.
3254**
3255** Once this is routine has returned, the only thing required to commit
3256** the write-transaction for this database file is to delete the journal.
3257*/
3258int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3259 int rc = SQLITE_OK;
3260 if( p->inTrans==TRANS_WRITE ){
3261 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003262 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003263#ifndef SQLITE_OMIT_AUTOVACUUM
3264 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003265 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003266 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003267 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003268 return rc;
3269 }
3270 }
danbc1a3c62013-02-23 16:40:46 +00003271 if( pBt->bDoTruncate ){
3272 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3273 }
drh80e35f42007-03-30 14:06:34 +00003274#endif
drh49b9d332009-01-02 18:10:42 +00003275 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003276 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003277 }
3278 return rc;
3279}
3280
3281/*
danielk197794b30732009-07-02 17:21:57 +00003282** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3283** at the conclusion of a transaction.
3284*/
3285static void btreeEndTransaction(Btree *p){
3286 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003287 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003288 assert( sqlite3BtreeHoldsMutex(p) );
3289
danbc1a3c62013-02-23 16:40:46 +00003290#ifndef SQLITE_OMIT_AUTOVACUUM
3291 pBt->bDoTruncate = 0;
3292#endif
danc0537fe2013-06-28 19:41:43 +00003293 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003294 /* If there are other active statements that belong to this database
3295 ** handle, downgrade to a read-only transaction. The other statements
3296 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003297 downgradeAllSharedCacheTableLocks(p);
3298 p->inTrans = TRANS_READ;
3299 }else{
3300 /* If the handle had any kind of transaction open, decrement the
3301 ** transaction count of the shared btree. If the transaction count
3302 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3303 ** call below will unlock the pager. */
3304 if( p->inTrans!=TRANS_NONE ){
3305 clearAllSharedCacheTableLocks(p);
3306 pBt->nTransaction--;
3307 if( 0==pBt->nTransaction ){
3308 pBt->inTransaction = TRANS_NONE;
3309 }
3310 }
3311
3312 /* Set the current transaction state to TRANS_NONE and unlock the
3313 ** pager if this call closed the only read or write transaction. */
3314 p->inTrans = TRANS_NONE;
3315 unlockBtreeIfUnused(pBt);
3316 }
3317
3318 btreeIntegrity(p);
3319}
3320
3321/*
drh2aa679f2001-06-25 02:11:07 +00003322** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003323**
drh6e345992007-03-30 11:12:08 +00003324** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003325** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3326** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3327** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003328** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003329** routine has to do is delete or truncate or zero the header in the
3330** the rollback journal (which causes the transaction to commit) and
3331** drop locks.
drh6e345992007-03-30 11:12:08 +00003332**
dan60939d02011-03-29 15:40:55 +00003333** Normally, if an error occurs while the pager layer is attempting to
3334** finalize the underlying journal file, this function returns an error and
3335** the upper layer will attempt a rollback. However, if the second argument
3336** is non-zero then this b-tree transaction is part of a multi-file
3337** transaction. In this case, the transaction has already been committed
3338** (by deleting a master journal file) and the caller will ignore this
3339** functions return code. So, even if an error occurs in the pager layer,
3340** reset the b-tree objects internal state to indicate that the write
3341** transaction has been closed. This is quite safe, as the pager will have
3342** transitioned to the error state.
3343**
drh5e00f6c2001-09-13 13:46:56 +00003344** This will release the write lock on the database file. If there
3345** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003346*/
dan60939d02011-03-29 15:40:55 +00003347int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003348
drh075ed302010-10-14 01:17:30 +00003349 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003350 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003351 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003352
3353 /* If the handle has a write-transaction open, commit the shared-btrees
3354 ** transaction and set the shared state to TRANS_READ.
3355 */
3356 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003357 int rc;
drh075ed302010-10-14 01:17:30 +00003358 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003359 assert( pBt->inTransaction==TRANS_WRITE );
3360 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003361 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003362 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003363 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003364 return rc;
3365 }
danielk1977aef0bf62005-12-30 16:28:01 +00003366 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003367 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003368 }
danielk1977aef0bf62005-12-30 16:28:01 +00003369
danielk197794b30732009-07-02 17:21:57 +00003370 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003371 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003372 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003373}
3374
drh80e35f42007-03-30 14:06:34 +00003375/*
3376** Do both phases of a commit.
3377*/
3378int sqlite3BtreeCommit(Btree *p){
3379 int rc;
drhd677b3d2007-08-20 22:48:41 +00003380 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003381 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3382 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003383 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003384 }
drhd677b3d2007-08-20 22:48:41 +00003385 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003386 return rc;
3387}
3388
drhc39e0002004-05-07 23:50:57 +00003389/*
drhfb982642007-08-30 01:19:59 +00003390** This routine sets the state to CURSOR_FAULT and the error
3391** code to errCode for every cursor on BtShared that pBtree
3392** references.
3393**
3394** Every cursor is tripped, including cursors that belong
3395** to other database connections that happen to be sharing
3396** the cache with pBtree.
3397**
3398** This routine gets called when a rollback occurs.
3399** All cursors using the same cache must be tripped
3400** to prevent them from trying to use the btree after
3401** the rollback. The rollback may have deleted tables
3402** or moved root pages, so it is not sufficient to
3403** save the state of the cursor. The cursor must be
3404** invalidated.
3405*/
3406void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3407 BtCursor *p;
drh0f198a72012-02-13 16:43:16 +00003408 if( pBtree==0 ) return;
drhfb982642007-08-30 01:19:59 +00003409 sqlite3BtreeEnter(pBtree);
3410 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003411 int i;
danielk1977be51a652008-10-08 17:58:48 +00003412 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003413 p->eState = CURSOR_FAULT;
drh4c301aa2009-07-15 17:25:45 +00003414 p->skipNext = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003415 for(i=0; i<=p->iPage; i++){
3416 releasePage(p->apPage[i]);
3417 p->apPage[i] = 0;
3418 }
drhfb982642007-08-30 01:19:59 +00003419 }
3420 sqlite3BtreeLeave(pBtree);
3421}
3422
3423/*
drhecdc7532001-09-23 02:35:53 +00003424** Rollback the transaction in progress. All cursors will be
3425** invalided by this operation. Any attempt to use a cursor
3426** that was open at the beginning of this operation will result
3427** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003428**
3429** This will release the write lock on the database file. If there
3430** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003431*/
drh0f198a72012-02-13 16:43:16 +00003432int sqlite3BtreeRollback(Btree *p, int tripCode){
danielk19778d34dfd2006-01-24 16:37:57 +00003433 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003434 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003435 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003436
drhd677b3d2007-08-20 22:48:41 +00003437 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00003438 if( tripCode==SQLITE_OK ){
3439 rc = tripCode = saveAllCursors(pBt, 0, 0);
3440 }else{
3441 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00003442 }
drh0f198a72012-02-13 16:43:16 +00003443 if( tripCode ){
3444 sqlite3BtreeTripAllCursors(p, tripCode);
3445 }
danielk1977aef0bf62005-12-30 16:28:01 +00003446 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003447
3448 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003449 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003450
danielk19778d34dfd2006-01-24 16:37:57 +00003451 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003452 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003453 if( rc2!=SQLITE_OK ){
3454 rc = rc2;
3455 }
3456
drh24cd67e2004-05-10 16:18:47 +00003457 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003458 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003459 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00003460 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003461 int nPage = get4byte(28+(u8*)pPage1->aData);
3462 testcase( nPage==0 );
3463 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3464 testcase( pBt->nPage!=nPage );
3465 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003466 releasePage(pPage1);
3467 }
drh85ec3b62013-05-14 23:12:06 +00003468 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003469 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003470 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00003471 }
danielk1977aef0bf62005-12-30 16:28:01 +00003472
danielk197794b30732009-07-02 17:21:57 +00003473 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003474 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003475 return rc;
3476}
3477
3478/*
danielk1977bd434552009-03-18 10:33:00 +00003479** Start a statement subtransaction. The subtransaction can can be rolled
3480** back independently of the main transaction. You must start a transaction
3481** before starting a subtransaction. The subtransaction is ended automatically
3482** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003483**
3484** Statement subtransactions are used around individual SQL statements
3485** that are contained within a BEGIN...COMMIT block. If a constraint
3486** error occurs within the statement, the effect of that one statement
3487** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003488**
3489** A statement sub-transaction is implemented as an anonymous savepoint. The
3490** value passed as the second parameter is the total number of savepoints,
3491** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3492** are no active savepoints and no other statement-transactions open,
3493** iStatement is 1. This anonymous savepoint can be released or rolled back
3494** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003495*/
danielk1977bd434552009-03-18 10:33:00 +00003496int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003497 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003498 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003499 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003500 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00003501 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00003502 assert( iStatement>0 );
3503 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003504 assert( pBt->inTransaction==TRANS_WRITE );
3505 /* At the pager level, a statement transaction is a savepoint with
3506 ** an index greater than all savepoints created explicitly using
3507 ** SQL statements. It is illegal to open, release or rollback any
3508 ** such savepoints while the statement transaction savepoint is active.
3509 */
3510 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003511 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003512 return rc;
3513}
3514
3515/*
danielk1977fd7f0452008-12-17 17:30:26 +00003516** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3517** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003518** savepoint identified by parameter iSavepoint, depending on the value
3519** of op.
3520**
3521** Normally, iSavepoint is greater than or equal to zero. However, if op is
3522** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3523** contents of the entire transaction are rolled back. This is different
3524** from a normal transaction rollback, as no locks are released and the
3525** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003526*/
3527int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3528 int rc = SQLITE_OK;
3529 if( p && p->inTrans==TRANS_WRITE ){
3530 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003531 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3532 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3533 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003534 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003535 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00003536 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
3537 pBt->nPage = 0;
3538 }
drh9f0bbf92009-01-02 21:08:09 +00003539 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003540 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00003541
3542 /* The database size was written into the offset 28 of the header
3543 ** when the transaction started, so we know that the value at offset
3544 ** 28 is nonzero. */
3545 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00003546 }
danielk1977fd7f0452008-12-17 17:30:26 +00003547 sqlite3BtreeLeave(p);
3548 }
3549 return rc;
3550}
3551
3552/*
drh8b2f49b2001-06-08 00:21:52 +00003553** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003554** iTable. If a read-only cursor is requested, it is assumed that
3555** the caller already has at least a read-only transaction open
3556** on the database already. If a write-cursor is requested, then
3557** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003558**
3559** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003560** If wrFlag==1, then the cursor can be used for reading or for
3561** writing if other conditions for writing are also met. These
3562** are the conditions that must be met in order for writing to
3563** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003564**
drhf74b8d92002-09-01 23:20:45 +00003565** 1: The cursor must have been opened with wrFlag==1
3566**
drhfe5d71d2007-03-19 11:54:10 +00003567** 2: Other database connections that share the same pager cache
3568** but which are not in the READ_UNCOMMITTED state may not have
3569** cursors open with wrFlag==0 on the same table. Otherwise
3570** the changes made by this write cursor would be visible to
3571** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003572**
3573** 3: The database must be writable (not on read-only media)
3574**
3575** 4: There must be an active transaction.
3576**
drh6446c4d2001-12-15 14:22:18 +00003577** No checking is done to make sure that page iTable really is the
3578** root page of a b-tree. If it is not, then the cursor acquired
3579** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003580**
drhf25a5072009-11-18 23:01:25 +00003581** It is assumed that the sqlite3BtreeCursorZero() has been called
3582** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003583*/
drhd677b3d2007-08-20 22:48:41 +00003584static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003585 Btree *p, /* The btree */
3586 int iTable, /* Root page of table to open */
3587 int wrFlag, /* 1 to write. 0 read-only */
3588 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3589 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003590){
danielk19773e8add92009-07-04 17:16:00 +00003591 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003592
drh1fee73e2007-08-29 04:00:57 +00003593 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003594 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003595
danielk1977602b4662009-07-02 07:47:33 +00003596 /* The following assert statements verify that if this is a sharable
3597 ** b-tree database, the connection is holding the required table locks,
3598 ** and that no other connection has any open cursor that conflicts with
3599 ** this lock. */
3600 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003601 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3602
danielk19773e8add92009-07-04 17:16:00 +00003603 /* Assert that the caller has opened the required transaction. */
3604 assert( p->inTrans>TRANS_NONE );
3605 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3606 assert( pBt->pPage1 && pBt->pPage1->aData );
3607
drhc9166342012-01-05 23:32:06 +00003608 if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){
danielk197796d48e92009-06-29 06:00:37 +00003609 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003610 }
drhb1299152010-03-30 22:58:33 +00003611 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00003612 assert( wrFlag==0 );
3613 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00003614 }
danielk1977aef0bf62005-12-30 16:28:01 +00003615
danielk1977aef0bf62005-12-30 16:28:01 +00003616 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003617 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003618 pCur->pgnoRoot = (Pgno)iTable;
3619 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003620 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003621 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003622 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003623 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003624 pCur->pNext = pBt->pCursor;
3625 if( pCur->pNext ){
3626 pCur->pNext->pPrev = pCur;
3627 }
3628 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003629 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003630 pCur->cachedRowid = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003631 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003632}
drhd677b3d2007-08-20 22:48:41 +00003633int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003634 Btree *p, /* The btree */
3635 int iTable, /* Root page of table to open */
3636 int wrFlag, /* 1 to write. 0 read-only */
3637 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3638 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003639){
3640 int rc;
3641 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003642 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003643 sqlite3BtreeLeave(p);
3644 return rc;
3645}
drh7f751222009-03-17 22:33:00 +00003646
3647/*
3648** Return the size of a BtCursor object in bytes.
3649**
3650** This interfaces is needed so that users of cursors can preallocate
3651** sufficient storage to hold a cursor. The BtCursor object is opaque
3652** to users so they cannot do the sizeof() themselves - they must call
3653** this routine.
3654*/
3655int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00003656 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00003657}
3658
drh7f751222009-03-17 22:33:00 +00003659/*
drhf25a5072009-11-18 23:01:25 +00003660** Initialize memory that will be converted into a BtCursor object.
3661**
3662** The simple approach here would be to memset() the entire object
3663** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3664** do not need to be zeroed and they are large, so we can save a lot
3665** of run-time by skipping the initialization of those elements.
3666*/
3667void sqlite3BtreeCursorZero(BtCursor *p){
3668 memset(p, 0, offsetof(BtCursor, iPage));
3669}
3670
3671/*
drh7f751222009-03-17 22:33:00 +00003672** Set the cached rowid value of every cursor in the same database file
3673** as pCur and having the same root page number as pCur. The value is
3674** set to iRowid.
3675**
3676** Only positive rowid values are considered valid for this cache.
3677** The cache is initialized to zero, indicating an invalid cache.
3678** A btree will work fine with zero or negative rowids. We just cannot
3679** cache zero or negative rowids, which means tables that use zero or
3680** negative rowids might run a little slower. But in practice, zero
3681** or negative rowids are very uncommon so this should not be a problem.
3682*/
3683void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3684 BtCursor *p;
3685 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3686 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3687 }
3688 assert( pCur->cachedRowid==iRowid );
3689}
drhd677b3d2007-08-20 22:48:41 +00003690
drh7f751222009-03-17 22:33:00 +00003691/*
3692** Return the cached rowid for the given cursor. A negative or zero
3693** return value indicates that the rowid cache is invalid and should be
3694** ignored. If the rowid cache has never before been set, then a
3695** zero is returned.
3696*/
3697sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3698 return pCur->cachedRowid;
3699}
drha059ad02001-04-17 20:09:11 +00003700
3701/*
drh5e00f6c2001-09-13 13:46:56 +00003702** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003703** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003704*/
drh3aac2dd2004-04-26 14:10:20 +00003705int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003706 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003707 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003708 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003709 BtShared *pBt = pCur->pBt;
3710 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003711 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003712 if( pCur->pPrev ){
3713 pCur->pPrev->pNext = pCur->pNext;
3714 }else{
3715 pBt->pCursor = pCur->pNext;
3716 }
3717 if( pCur->pNext ){
3718 pCur->pNext->pPrev = pCur->pPrev;
3719 }
danielk197771d5d2c2008-09-29 11:49:47 +00003720 for(i=0; i<=pCur->iPage; i++){
3721 releasePage(pCur->apPage[i]);
3722 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003723 unlockBtreeIfUnused(pBt);
3724 invalidateOverflowCache(pCur);
3725 /* sqlite3_free(pCur); */
3726 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003727 }
drh8c42ca92001-06-22 19:15:00 +00003728 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003729}
3730
drh5e2f8b92001-05-28 00:41:15 +00003731/*
drh86057612007-06-26 01:04:48 +00003732** Make sure the BtCursor* given in the argument has a valid
3733** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003734** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003735**
3736** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003737** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003738**
3739** 2007-06-25: There is a bug in some versions of MSVC that cause the
3740** compiler to crash when getCellInfo() is implemented as a macro.
3741** But there is a measureable speed advantage to using the macro on gcc
3742** (when less compiler optimizations like -Os or -O0 are used and the
3743** compiler is not doing agressive inlining.) So we use a real function
3744** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003745*/
drh9188b382004-05-14 21:12:22 +00003746#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003747 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003748 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003749 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003750 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003751 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003752 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003753 }
danielk19771cc5ed82007-05-16 17:28:43 +00003754#else
3755 #define assertCellInfo(x)
3756#endif
drh86057612007-06-26 01:04:48 +00003757#ifdef _MSC_VER
3758 /* Use a real function in MSVC to work around bugs in that compiler. */
3759 static void getCellInfo(BtCursor *pCur){
3760 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003761 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003762 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003763 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003764 }else{
3765 assertCellInfo(pCur);
3766 }
3767 }
3768#else /* if not _MSC_VER */
3769 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003770#define getCellInfo(pCur) \
3771 if( pCur->info.nSize==0 ){ \
3772 int iPage = pCur->iPage; \
danielk197730548662009-07-09 05:07:37 +00003773 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
danielk197771d5d2c2008-09-29 11:49:47 +00003774 pCur->validNKey = 1; \
3775 }else{ \
3776 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003777 }
3778#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003779
drhea8ffdf2009-07-22 00:35:23 +00003780#ifndef NDEBUG /* The next routine used only within assert() statements */
3781/*
3782** Return true if the given BtCursor is valid. A valid cursor is one
3783** that is currently pointing to a row in a (non-empty) table.
3784** This is a verification routine is used only within assert() statements.
3785*/
3786int sqlite3BtreeCursorIsValid(BtCursor *pCur){
3787 return pCur && pCur->eState==CURSOR_VALID;
3788}
3789#endif /* NDEBUG */
3790
drh9188b382004-05-14 21:12:22 +00003791/*
drh3aac2dd2004-04-26 14:10:20 +00003792** Set *pSize to the size of the buffer needed to hold the value of
3793** the key for the current entry. If the cursor is not pointing
3794** to a valid entry, *pSize is set to 0.
3795**
drh4b70f112004-05-02 21:12:19 +00003796** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003797** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00003798**
3799** The caller must position the cursor prior to invoking this routine.
3800**
3801** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00003802*/
drh4a1c3802004-05-12 15:15:47 +00003803int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003804 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003805 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3806 if( pCur->eState!=CURSOR_VALID ){
3807 *pSize = 0;
3808 }else{
3809 getCellInfo(pCur);
3810 *pSize = pCur->info.nKey;
drh72f82862001-05-24 21:06:34 +00003811 }
drhea8ffdf2009-07-22 00:35:23 +00003812 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003813}
drh2af926b2001-05-15 00:39:25 +00003814
drh72f82862001-05-24 21:06:34 +00003815/*
drh0e1c19e2004-05-11 00:58:56 +00003816** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00003817** cursor currently points to.
3818**
3819** The caller must guarantee that the cursor is pointing to a non-NULL
3820** valid entry. In other words, the calling procedure must guarantee
3821** that the cursor has Cursor.eState==CURSOR_VALID.
3822**
3823** Failure is not possible. This function always returns SQLITE_OK.
3824** It might just as well be a procedure (returning void) but we continue
3825** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00003826*/
3827int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003828 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003829 assert( pCur->eState==CURSOR_VALID );
3830 getCellInfo(pCur);
3831 *pSize = pCur->info.nData;
3832 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00003833}
3834
3835/*
danielk1977d04417962007-05-02 13:16:30 +00003836** Given the page number of an overflow page in the database (parameter
3837** ovfl), this function finds the page number of the next page in the
3838** linked list of overflow pages. If possible, it uses the auto-vacuum
3839** pointer-map data instead of reading the content of page ovfl to do so.
3840**
3841** If an error occurs an SQLite error code is returned. Otherwise:
3842**
danielk1977bea2a942009-01-20 17:06:27 +00003843** The page number of the next overflow page in the linked list is
3844** written to *pPgnoNext. If page ovfl is the last page in its linked
3845** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003846**
danielk1977bea2a942009-01-20 17:06:27 +00003847** If ppPage is not NULL, and a reference to the MemPage object corresponding
3848** to page number pOvfl was obtained, then *ppPage is set to point to that
3849** reference. It is the responsibility of the caller to call releasePage()
3850** on *ppPage to free the reference. In no reference was obtained (because
3851** the pointer-map was used to obtain the value for *pPgnoNext), then
3852** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003853*/
3854static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003855 BtShared *pBt, /* The database file */
3856 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003857 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003858 Pgno *pPgnoNext /* OUT: Next overflow page number */
3859){
3860 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003861 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003862 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003863
drh1fee73e2007-08-29 04:00:57 +00003864 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003865 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003866
3867#ifndef SQLITE_OMIT_AUTOVACUUM
3868 /* Try to find the next page in the overflow list using the
3869 ** autovacuum pointer-map pages. Guess that the next page in
3870 ** the overflow list is page number (ovfl+1). If that guess turns
3871 ** out to be wrong, fall back to loading the data of page
3872 ** number ovfl to determine the next page number.
3873 */
3874 if( pBt->autoVacuum ){
3875 Pgno pgno;
3876 Pgno iGuess = ovfl+1;
3877 u8 eType;
3878
3879 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3880 iGuess++;
3881 }
3882
drhb1299152010-03-30 22:58:33 +00003883 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003884 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003885 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003886 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003887 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003888 }
3889 }
3890 }
3891#endif
3892
danielk1977d8a3f3d2009-07-11 11:45:23 +00003893 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00003894 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00003895 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00003896 assert( rc==SQLITE_OK || pPage==0 );
3897 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00003898 next = get4byte(pPage->aData);
3899 }
danielk1977443c0592009-01-16 15:21:05 +00003900 }
danielk197745d68822009-01-16 16:23:38 +00003901
danielk1977bea2a942009-01-20 17:06:27 +00003902 *pPgnoNext = next;
3903 if( ppPage ){
3904 *ppPage = pPage;
3905 }else{
3906 releasePage(pPage);
3907 }
3908 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003909}
3910
danielk1977da107192007-05-04 08:32:13 +00003911/*
3912** Copy data from a buffer to a page, or from a page to a buffer.
3913**
3914** pPayload is a pointer to data stored on database page pDbPage.
3915** If argument eOp is false, then nByte bytes of data are copied
3916** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3917** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3918** of data are copied from the buffer pBuf to pPayload.
3919**
3920** SQLITE_OK is returned on success, otherwise an error code.
3921*/
3922static int copyPayload(
3923 void *pPayload, /* Pointer to page data */
3924 void *pBuf, /* Pointer to buffer */
3925 int nByte, /* Number of bytes to copy */
3926 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3927 DbPage *pDbPage /* Page containing pPayload */
3928){
3929 if( eOp ){
3930 /* Copy data from buffer to page (a write operation) */
3931 int rc = sqlite3PagerWrite(pDbPage);
3932 if( rc!=SQLITE_OK ){
3933 return rc;
3934 }
3935 memcpy(pPayload, pBuf, nByte);
3936 }else{
3937 /* Copy data from page to buffer (a read operation) */
3938 memcpy(pBuf, pPayload, nByte);
3939 }
3940 return SQLITE_OK;
3941}
danielk1977d04417962007-05-02 13:16:30 +00003942
3943/*
danielk19779f8d6402007-05-02 17:48:45 +00003944** This function is used to read or overwrite payload information
3945** for the entry that the pCur cursor is pointing to. If the eOp
3946** parameter is 0, this is a read operation (data copied into
3947** buffer pBuf). If it is non-zero, a write (data copied from
3948** buffer pBuf).
3949**
3950** A total of "amt" bytes are read or written beginning at "offset".
3951** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003952**
drh3bcdfd22009-07-12 02:32:21 +00003953** The content being read or written might appear on the main page
3954** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00003955**
danielk1977dcbb5d32007-05-04 18:36:44 +00003956** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003957** cursor entry uses one or more overflow pages, this function
3958** allocates space for and lazily popluates the overflow page-list
3959** cache array (BtCursor.aOverflow). Subsequent calls use this
3960** cache to make seeking to the supplied offset more efficient.
3961**
3962** Once an overflow page-list cache has been allocated, it may be
3963** invalidated if some other cursor writes to the same table, or if
3964** the cursor is moved to a different row. Additionally, in auto-vacuum
3965** mode, the following events may invalidate an overflow page-list cache.
3966**
3967** * An incremental vacuum,
3968** * A commit in auto_vacuum="full" mode,
3969** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003970*/
danielk19779f8d6402007-05-02 17:48:45 +00003971static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003972 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003973 u32 offset, /* Begin reading this far into payload */
3974 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003975 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003976 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003977){
3978 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003979 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003980 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003981 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003982 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003983 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003984
danielk1977da107192007-05-04 08:32:13 +00003985 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003986 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003987 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003988 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003989
drh86057612007-06-26 01:04:48 +00003990 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003991 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003992 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003993
drh3bcdfd22009-07-12 02:32:21 +00003994 if( NEVER(offset+amt > nKey+pCur->info.nData)
danielk19770d065412008-11-12 18:21:36 +00003995 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3996 ){
danielk1977da107192007-05-04 08:32:13 +00003997 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003998 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003999 }
danielk1977da107192007-05-04 08:32:13 +00004000
4001 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004002 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004003 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004004 if( a+offset>pCur->info.nLocal ){
4005 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004006 }
danielk1977da107192007-05-04 08:32:13 +00004007 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004008 offset = 0;
drha34b6762004-05-07 13:30:42 +00004009 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004010 amt -= a;
drhdd793422001-06-28 01:54:48 +00004011 }else{
drhfa1a98a2004-05-14 19:08:17 +00004012 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004013 }
danielk1977da107192007-05-04 08:32:13 +00004014
4015 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004016 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004017 Pgno nextPage;
4018
drhfa1a98a2004-05-14 19:08:17 +00004019 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004020
danielk19772dec9702007-05-02 16:48:37 +00004021#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00004022 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00004023 ** has not been allocated, allocate it now. The array is sized at
4024 ** one entry for each overflow page in the overflow chain. The
4025 ** page number of the first overflow page is stored in aOverflow[0],
4026 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
4027 ** (the cache is lazily populated).
4028 */
danielk1977dcbb5d32007-05-04 18:36:44 +00004029 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00004030 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00004031 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
drh3bcdfd22009-07-12 02:32:21 +00004032 /* nOvfl is always positive. If it were zero, fetchPayload would have
4033 ** been used instead of this routine. */
4034 if( ALWAYS(nOvfl) && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00004035 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00004036 }
4037 }
danielk1977da107192007-05-04 08:32:13 +00004038
4039 /* If the overflow page-list cache has been allocated and the
4040 ** entry for the first required overflow page is valid, skip
4041 ** directly to it.
4042 */
danielk19772dec9702007-05-02 16:48:37 +00004043 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
4044 iIdx = (offset/ovflSize);
4045 nextPage = pCur->aOverflow[iIdx];
4046 offset = (offset%ovflSize);
4047 }
4048#endif
danielk1977da107192007-05-04 08:32:13 +00004049
4050 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4051
4052#ifndef SQLITE_OMIT_INCRBLOB
4053 /* If required, populate the overflow page-list cache. */
4054 if( pCur->aOverflow ){
4055 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
4056 pCur->aOverflow[iIdx] = nextPage;
4057 }
4058#endif
4059
danielk1977d04417962007-05-02 13:16:30 +00004060 if( offset>=ovflSize ){
4061 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004062 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004063 ** data is not required. So first try to lookup the overflow
4064 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004065 ** function.
danielk1977d04417962007-05-02 13:16:30 +00004066 */
danielk19772dec9702007-05-02 16:48:37 +00004067#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00004068 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
4069 nextPage = pCur->aOverflow[iIdx+1];
4070 } else
danielk19772dec9702007-05-02 16:48:37 +00004071#endif
danielk1977da107192007-05-04 08:32:13 +00004072 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00004073 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004074 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004075 /* Need to read this page properly. It contains some of the
4076 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004077 */
danf4ba1092011-10-08 14:57:07 +00004078#ifdef SQLITE_DIRECT_OVERFLOW_READ
4079 sqlite3_file *fd;
4080#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004081 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004082 if( a + offset > ovflSize ){
4083 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004084 }
danf4ba1092011-10-08 14:57:07 +00004085
4086#ifdef SQLITE_DIRECT_OVERFLOW_READ
4087 /* If all the following are true:
4088 **
4089 ** 1) this is a read operation, and
4090 ** 2) data is required from the start of this overflow page, and
4091 ** 3) the database is file-backed, and
4092 ** 4) there is no open write-transaction, and
4093 ** 5) the database is not a WAL database,
4094 **
4095 ** then data can be read directly from the database file into the
4096 ** output buffer, bypassing the page-cache altogether. This speeds
4097 ** up loading large records that span many overflow pages.
4098 */
4099 if( eOp==0 /* (1) */
4100 && offset==0 /* (2) */
4101 && pBt->inTransaction==TRANS_READ /* (4) */
4102 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
4103 && pBt->pPage1->aData[19]==0x01 /* (5) */
4104 ){
4105 u8 aSave[4];
4106 u8 *aWrite = &pBuf[-4];
4107 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004108 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004109 nextPage = get4byte(aWrite);
4110 memcpy(aWrite, aSave, 4);
4111 }else
4112#endif
4113
4114 {
4115 DbPage *pDbPage;
dan11dcd112013-03-15 18:29:18 +00004116 rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage,
drhb00fc3b2013-08-21 23:42:32 +00004117 (eOp==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004118 );
danf4ba1092011-10-08 14:57:07 +00004119 if( rc==SQLITE_OK ){
4120 aPayload = sqlite3PagerGetData(pDbPage);
4121 nextPage = get4byte(aPayload);
4122 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
4123 sqlite3PagerUnref(pDbPage);
4124 offset = 0;
4125 }
4126 }
4127 amt -= a;
4128 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004129 }
drh2af926b2001-05-15 00:39:25 +00004130 }
drh2af926b2001-05-15 00:39:25 +00004131 }
danielk1977cfe9a692004-06-16 12:00:29 +00004132
danielk1977da107192007-05-04 08:32:13 +00004133 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004134 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004135 }
danielk1977da107192007-05-04 08:32:13 +00004136 return rc;
drh2af926b2001-05-15 00:39:25 +00004137}
4138
drh72f82862001-05-24 21:06:34 +00004139/*
drh3aac2dd2004-04-26 14:10:20 +00004140** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004141** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004142** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004143**
drh5d1a8722009-07-22 18:07:40 +00004144** The caller must ensure that pCur is pointing to a valid row
4145** in the table.
4146**
drh3aac2dd2004-04-26 14:10:20 +00004147** Return SQLITE_OK on success or an error code if anything goes
4148** wrong. An error is returned if "offset+amt" is larger than
4149** the available payload.
drh72f82862001-05-24 21:06:34 +00004150*/
drha34b6762004-05-07 13:30:42 +00004151int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004152 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004153 assert( pCur->eState==CURSOR_VALID );
4154 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4155 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4156 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004157}
4158
4159/*
drh3aac2dd2004-04-26 14:10:20 +00004160** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004161** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004162** begins at "offset".
4163**
4164** Return SQLITE_OK on success or an error code if anything goes
4165** wrong. An error is returned if "offset+amt" is larger than
4166** the available payload.
drh72f82862001-05-24 21:06:34 +00004167*/
drh3aac2dd2004-04-26 14:10:20 +00004168int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004169 int rc;
4170
danielk19773588ceb2008-06-10 17:30:26 +00004171#ifndef SQLITE_OMIT_INCRBLOB
4172 if ( pCur->eState==CURSOR_INVALID ){
4173 return SQLITE_ABORT;
4174 }
4175#endif
4176
drh1fee73e2007-08-29 04:00:57 +00004177 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004178 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004179 if( rc==SQLITE_OK ){
4180 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004181 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4182 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004183 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004184 }
4185 return rc;
drh2af926b2001-05-15 00:39:25 +00004186}
4187
drh72f82862001-05-24 21:06:34 +00004188/*
drh0e1c19e2004-05-11 00:58:56 +00004189** Return a pointer to payload information from the entry that the
4190** pCur cursor is pointing to. The pointer is to the beginning of
4191** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00004192** skipKey==1. The number of bytes of available key/data is written
4193** into *pAmt. If *pAmt==0, then the value returned will not be
4194** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004195**
4196** This routine is an optimization. It is common for the entire key
4197** and data to fit on the local page and for there to be no overflow
4198** pages. When that is so, this routine can be used to access the
4199** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004200** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004201** the key/data and copy it into a preallocated buffer.
4202**
4203** The pointer returned by this routine looks directly into the cached
4204** page of the database. The data might change or move the next time
4205** any btree routine is called.
4206*/
4207static const unsigned char *fetchPayload(
4208 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh501932c2013-11-21 21:59:53 +00004209 u32 *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004210 int skipKey /* read beginning at data if this is true */
4211){
4212 unsigned char *aPayload;
4213 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00004214 u32 nKey;
danielk197789d40042008-11-17 14:20:56 +00004215 u32 nLocal;
drh0e1c19e2004-05-11 00:58:56 +00004216
danielk197771d5d2c2008-09-29 11:49:47 +00004217 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004218 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00004219 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00004220 pPage = pCur->apPage[pCur->iPage];
4221 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh9b2fc612013-11-25 20:14:13 +00004222 if( NEVER(pCur->info.nSize==0) ){
drhfe3313f2009-07-21 19:02:20 +00004223 btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
4224 &pCur->info);
4225 }
drh43605152004-05-29 21:46:49 +00004226 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00004227 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00004228 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00004229 nKey = 0;
4230 }else{
drhf49661a2008-12-10 16:45:50 +00004231 nKey = (int)pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00004232 }
drh0e1c19e2004-05-11 00:58:56 +00004233 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00004234 aPayload += nKey;
4235 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00004236 }else{
drhfa1a98a2004-05-14 19:08:17 +00004237 nLocal = pCur->info.nLocal;
drhfe3313f2009-07-21 19:02:20 +00004238 assert( nLocal<=nKey );
drh0e1c19e2004-05-11 00:58:56 +00004239 }
drhe51c44f2004-05-30 20:46:09 +00004240 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00004241 return aPayload;
4242}
4243
4244
4245/*
drhe51c44f2004-05-30 20:46:09 +00004246** For the entry that cursor pCur is point to, return as
4247** many bytes of the key or data as are available on the local
4248** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004249**
4250** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004251** or be destroyed on the next call to any Btree routine,
4252** including calls from other threads against the same cache.
4253** Hence, a mutex on the BtShared should be held prior to calling
4254** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004255**
4256** These routines is used to get quick access to key and data
4257** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004258*/
drh501932c2013-11-21 21:59:53 +00004259const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004260 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004261 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004262 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004263 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4264 p = (const void*)fetchPayload(pCur, pAmt, 0);
danielk1977da184232006-01-05 11:34:32 +00004265 }
drhfe3313f2009-07-21 19:02:20 +00004266 return p;
drh0e1c19e2004-05-11 00:58:56 +00004267}
drh501932c2013-11-21 21:59:53 +00004268const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004269 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004270 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004271 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004272 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4273 p = (const void*)fetchPayload(pCur, pAmt, 1);
danielk1977da184232006-01-05 11:34:32 +00004274 }
drhfe3313f2009-07-21 19:02:20 +00004275 return p;
drh0e1c19e2004-05-11 00:58:56 +00004276}
4277
4278
4279/*
drh8178a752003-01-05 21:41:40 +00004280** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004281** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004282**
4283** This function returns SQLITE_CORRUPT if the page-header flags field of
4284** the new child page does not match the flags field of the parent (i.e.
4285** if an intkey page appears to be the parent of a non-intkey page, or
4286** vice-versa).
drh72f82862001-05-24 21:06:34 +00004287*/
drh3aac2dd2004-04-26 14:10:20 +00004288static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00004289 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004290 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00004291 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00004292 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004293
drh1fee73e2007-08-29 04:00:57 +00004294 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004295 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004296 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004297 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004298 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4299 return SQLITE_CORRUPT_BKPT;
4300 }
drhb00fc3b2013-08-21 23:42:32 +00004301 rc = getAndInitPage(pBt, newPgno, &pNewPage,
4302 pCur->wrFlag==0 ? PAGER_GET_READONLY : 0);
drh6019e162001-07-02 17:51:45 +00004303 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004304 pCur->apPage[i+1] = pNewPage;
4305 pCur->aiIdx[i+1] = 0;
4306 pCur->iPage++;
4307
drh271efa52004-05-30 19:19:05 +00004308 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004309 pCur->validNKey = 0;
danielk1977bd5969a2009-07-11 17:39:42 +00004310 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004311 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004312 }
drh72f82862001-05-24 21:06:34 +00004313 return SQLITE_OK;
4314}
4315
danbb246c42012-01-12 14:25:55 +00004316#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004317/*
4318** Page pParent is an internal (non-leaf) tree page. This function
4319** asserts that page number iChild is the left-child if the iIdx'th
4320** cell in page pParent. Or, if iIdx is equal to the total number of
4321** cells in pParent, that page number iChild is the right-child of
4322** the page.
4323*/
4324static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4325 assert( iIdx<=pParent->nCell );
4326 if( iIdx==pParent->nCell ){
4327 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4328 }else{
4329 assert( get4byte(findCell(pParent, iIdx))==iChild );
4330 }
4331}
4332#else
4333# define assertParentIndex(x,y,z)
4334#endif
4335
drh72f82862001-05-24 21:06:34 +00004336/*
drh5e2f8b92001-05-28 00:41:15 +00004337** Move the cursor up to the parent page.
4338**
4339** pCur->idx is set to the cell index that contains the pointer
4340** to the page we are coming from. If we are coming from the
4341** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004342** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004343*/
danielk197730548662009-07-09 05:07:37 +00004344static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004345 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004346 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004347 assert( pCur->iPage>0 );
4348 assert( pCur->apPage[pCur->iPage] );
danbb246c42012-01-12 14:25:55 +00004349
4350 /* UPDATE: It is actually possible for the condition tested by the assert
4351 ** below to be untrue if the database file is corrupt. This can occur if
4352 ** one cursor has modified page pParent while a reference to it is held
4353 ** by a second cursor. Which can only happen if a single page is linked
4354 ** into more than one b-tree structure in a corrupt database. */
4355#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004356 assertParentIndex(
4357 pCur->apPage[pCur->iPage-1],
4358 pCur->aiIdx[pCur->iPage-1],
4359 pCur->apPage[pCur->iPage]->pgno
4360 );
danbb246c42012-01-12 14:25:55 +00004361#endif
dan6c2688c2012-01-12 15:05:03 +00004362 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
danbb246c42012-01-12 14:25:55 +00004363
danielk197771d5d2c2008-09-29 11:49:47 +00004364 releasePage(pCur->apPage[pCur->iPage]);
4365 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004366 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004367 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00004368}
4369
4370/*
danielk19778f880a82009-07-13 09:41:45 +00004371** Move the cursor to point to the root page of its b-tree structure.
4372**
4373** If the table has a virtual root page, then the cursor is moved to point
4374** to the virtual root page instead of the actual root page. A table has a
4375** virtual root page when the actual root page contains no cells and a
4376** single child page. This can only happen with the table rooted at page 1.
4377**
4378** If the b-tree structure is empty, the cursor state is set to
4379** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4380** cell located on the root (or virtual root) page and the cursor state
4381** is set to CURSOR_VALID.
4382**
4383** If this function returns successfully, it may be assumed that the
4384** page-header flags indicate that the [virtual] root-page is the expected
4385** kind of b-tree page (i.e. if when opening the cursor the caller did not
4386** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4387** indicating a table b-tree, or if the caller did specify a KeyInfo
4388** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4389** b-tree).
drh72f82862001-05-24 21:06:34 +00004390*/
drh5e2f8b92001-05-28 00:41:15 +00004391static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004392 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004393 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004394 Btree *p = pCur->pBtree;
4395 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00004396
drh1fee73e2007-08-29 04:00:57 +00004397 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004398 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4399 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4400 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4401 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4402 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004403 assert( pCur->skipNext!=SQLITE_OK );
4404 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004405 }
danielk1977be51a652008-10-08 17:58:48 +00004406 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004407 }
danielk197771d5d2c2008-09-29 11:49:47 +00004408
4409 if( pCur->iPage>=0 ){
4410 int i;
4411 for(i=1; i<=pCur->iPage; i++){
4412 releasePage(pCur->apPage[i]);
danielk1977d9f6c532008-09-19 16:39:38 +00004413 }
danielk1977172114a2009-07-07 15:47:12 +00004414 pCur->iPage = 0;
dana205a482011-08-27 18:48:57 +00004415 }else if( pCur->pgnoRoot==0 ){
4416 pCur->eState = CURSOR_INVALID;
4417 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004418 }else{
drhb00fc3b2013-08-21 23:42:32 +00004419 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0],
4420 pCur->wrFlag==0 ? PAGER_GET_READONLY : 0);
drh4c301aa2009-07-15 17:25:45 +00004421 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004422 pCur->eState = CURSOR_INVALID;
4423 return rc;
4424 }
danielk1977172114a2009-07-07 15:47:12 +00004425 pCur->iPage = 0;
4426
4427 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4428 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4429 ** NULL, the caller expects a table b-tree. If this is not the case,
4430 ** return an SQLITE_CORRUPT error. */
4431 assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 );
4432 if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){
4433 return SQLITE_CORRUPT_BKPT;
4434 }
drhc39e0002004-05-07 23:50:57 +00004435 }
danielk197771d5d2c2008-09-29 11:49:47 +00004436
danielk19778f880a82009-07-13 09:41:45 +00004437 /* Assert that the root page is of the correct type. This must be the
4438 ** case as the call to this function that loaded the root-page (either
4439 ** this call or a previous invocation) would have detected corruption
4440 ** if the assumption were not true, and it is not possible for the flags
4441 ** byte to have been modified while this cursor is holding a reference
4442 ** to the page. */
danielk197771d5d2c2008-09-29 11:49:47 +00004443 pRoot = pCur->apPage[0];
4444 assert( pRoot->pgno==pCur->pgnoRoot );
danielk19778f880a82009-07-13 09:41:45 +00004445 assert( pRoot->isInit && (pCur->pKeyInfo==0)==pRoot->intKey );
4446
danielk197771d5d2c2008-09-29 11:49:47 +00004447 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004448 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004449 pCur->atLast = 0;
4450 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004451
drh8856d6a2004-04-29 14:42:46 +00004452 if( pRoot->nCell==0 && !pRoot->leaf ){
4453 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004454 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004455 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004456 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004457 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004458 }else{
4459 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00004460 }
4461 return rc;
drh72f82862001-05-24 21:06:34 +00004462}
drh2af926b2001-05-15 00:39:25 +00004463
drh5e2f8b92001-05-28 00:41:15 +00004464/*
4465** Move the cursor down to the left-most leaf entry beneath the
4466** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004467**
4468** The left-most leaf is the one with the smallest key - the first
4469** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004470*/
4471static int moveToLeftmost(BtCursor *pCur){
4472 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004473 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004474 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004475
drh1fee73e2007-08-29 04:00:57 +00004476 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004477 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004478 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4479 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4480 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004481 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004482 }
drhd677b3d2007-08-20 22:48:41 +00004483 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004484}
4485
drh2dcc9aa2002-12-04 13:40:25 +00004486/*
4487** Move the cursor down to the right-most leaf entry beneath the
4488** page to which it is currently pointing. Notice the difference
4489** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4490** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4491** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004492**
4493** The right-most entry is the one with the largest key - the last
4494** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004495*/
4496static int moveToRightmost(BtCursor *pCur){
4497 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004498 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004499 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004500
drh1fee73e2007-08-29 04:00:57 +00004501 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004502 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004503 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004504 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004505 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004506 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00004507 }
drhd677b3d2007-08-20 22:48:41 +00004508 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00004509 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00004510 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004511 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00004512 }
danielk1977518002e2008-09-05 05:02:46 +00004513 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004514}
4515
drh5e00f6c2001-09-13 13:46:56 +00004516/* Move the cursor to the first entry in the table. Return SQLITE_OK
4517** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004518** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004519*/
drh3aac2dd2004-04-26 14:10:20 +00004520int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004521 int rc;
drhd677b3d2007-08-20 22:48:41 +00004522
drh1fee73e2007-08-29 04:00:57 +00004523 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004524 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004525 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004526 if( rc==SQLITE_OK ){
4527 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004528 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004529 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004530 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004531 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004532 *pRes = 0;
4533 rc = moveToLeftmost(pCur);
4534 }
drh5e00f6c2001-09-13 13:46:56 +00004535 }
drh5e00f6c2001-09-13 13:46:56 +00004536 return rc;
4537}
drh5e2f8b92001-05-28 00:41:15 +00004538
drh9562b552002-02-19 15:00:07 +00004539/* Move the cursor to the last entry in the table. Return SQLITE_OK
4540** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004541** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004542*/
drh3aac2dd2004-04-26 14:10:20 +00004543int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004544 int rc;
drhd677b3d2007-08-20 22:48:41 +00004545
drh1fee73e2007-08-29 04:00:57 +00004546 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004547 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004548
4549 /* If the cursor already points to the last entry, this is a no-op. */
4550 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
4551#ifdef SQLITE_DEBUG
4552 /* This block serves to assert() that the cursor really does point
4553 ** to the last entry in the b-tree. */
4554 int ii;
4555 for(ii=0; ii<pCur->iPage; ii++){
4556 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4557 }
4558 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4559 assert( pCur->apPage[pCur->iPage]->leaf );
4560#endif
4561 return SQLITE_OK;
4562 }
4563
drh9562b552002-02-19 15:00:07 +00004564 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004565 if( rc==SQLITE_OK ){
4566 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00004567 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004568 *pRes = 1;
4569 }else{
4570 assert( pCur->eState==CURSOR_VALID );
4571 *pRes = 0;
4572 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00004573 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00004574 }
drh9562b552002-02-19 15:00:07 +00004575 }
drh9562b552002-02-19 15:00:07 +00004576 return rc;
4577}
4578
drhe14006d2008-03-25 17:23:32 +00004579/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004580** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004581**
drhe63d9992008-08-13 19:11:48 +00004582** For INTKEY tables, the intKey parameter is used. pIdxKey
4583** must be NULL. For index tables, pIdxKey is used and intKey
4584** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004585**
drh5e2f8b92001-05-28 00:41:15 +00004586** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004587** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004588** were present. The cursor might point to an entry that comes
4589** before or after the key.
4590**
drh64022502009-01-09 14:11:04 +00004591** An integer is written into *pRes which is the result of
4592** comparing the key with the entry to which the cursor is
4593** pointing. The meaning of the integer written into
4594** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004595**
4596** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004597** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004598** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004599**
4600** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004601** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004602**
4603** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004604** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004605**
drha059ad02001-04-17 20:09:11 +00004606*/
drhe63d9992008-08-13 19:11:48 +00004607int sqlite3BtreeMovetoUnpacked(
4608 BtCursor *pCur, /* The cursor to be moved */
4609 UnpackedRecord *pIdxKey, /* Unpacked index key */
4610 i64 intKey, /* The table key */
4611 int biasRight, /* If true, bias the search to the high end */
4612 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004613){
drh72f82862001-05-24 21:06:34 +00004614 int rc;
drhd677b3d2007-08-20 22:48:41 +00004615
drh1fee73e2007-08-29 04:00:57 +00004616 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004617 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004618 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004619 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004620
4621 /* If the cursor is already positioned at the point we are trying
4622 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00004623 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4624 && pCur->apPage[0]->intKey
4625 ){
drhe63d9992008-08-13 19:11:48 +00004626 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004627 *pRes = 0;
4628 return SQLITE_OK;
4629 }
drhe63d9992008-08-13 19:11:48 +00004630 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004631 *pRes = -1;
4632 return SQLITE_OK;
4633 }
4634 }
4635
drh5e2f8b92001-05-28 00:41:15 +00004636 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004637 if( rc ){
4638 return rc;
4639 }
dana205a482011-08-27 18:48:57 +00004640 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
4641 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
4642 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00004643 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004644 *pRes = -1;
dana205a482011-08-27 18:48:57 +00004645 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004646 return SQLITE_OK;
4647 }
danielk197771d5d2c2008-09-29 11:49:47 +00004648 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004649 for(;;){
drhec3e6b12013-11-25 02:38:55 +00004650 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00004651 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004652 MemPage *pPage = pCur->apPage[pCur->iPage];
drhec3e6b12013-11-25 02:38:55 +00004653 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00004654
4655 /* pPage->nCell must be greater than zero. If this is the root-page
4656 ** the cursor would have been INVALID above and this for(;;) loop
4657 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004658 ** would have already detected db corruption. Similarly, pPage must
4659 ** be the right kind (index or table) of b-tree page. Otherwise
4660 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004661 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004662 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004663 lwr = 0;
4664 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00004665 assert( biasRight==0 || biasRight==1 );
4666 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drhd793f442013-11-25 14:10:15 +00004667 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00004668 if( pPage->intKey ){
drhec3e6b12013-11-25 02:38:55 +00004669 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004670 i64 nCellKey;
drhec3e6b12013-11-25 02:38:55 +00004671 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drhd172f862006-01-12 15:01:15 +00004672 if( pPage->hasData ){
drh9b2fc612013-11-25 20:14:13 +00004673 while( 0x80 <= *(pCell++) ){
4674 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
4675 }
drhd172f862006-01-12 15:01:15 +00004676 }
drha2c20e42008-03-29 16:01:04 +00004677 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00004678 if( nCellKey<intKey ){
4679 lwr = idx+1;
4680 if( lwr>upr ){ c = -1; break; }
4681 }else if( nCellKey>intKey ){
4682 upr = idx-1;
4683 if( lwr>upr ){ c = +1; break; }
4684 }else{
4685 assert( nCellKey==intKey );
drhec3e6b12013-11-25 02:38:55 +00004686 pCur->validNKey = 1;
4687 pCur->info.nKey = nCellKey;
drhd793f442013-11-25 14:10:15 +00004688 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00004689 if( !pPage->leaf ){
4690 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00004691 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00004692 }else{
4693 *pRes = 0;
4694 rc = SQLITE_OK;
4695 goto moveto_finish;
4696 }
drhd793f442013-11-25 14:10:15 +00004697 }
drhebf10b12013-11-25 17:38:26 +00004698 assert( lwr+upr>=0 );
4699 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00004700 }
4701 }else{
4702 for(;;){
4703 int nCell;
drhec3e6b12013-11-25 02:38:55 +00004704 pCell = findCell(pPage, idx) + pPage->childPtrSize;
4705
drhb2eced52010-08-12 02:41:12 +00004706 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00004707 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00004708 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00004709 ** varint. This information is used to attempt to avoid parsing
4710 ** the entire cell by checking for the cases where the record is
4711 ** stored entirely within the b-tree page by inspecting the first
4712 ** 2 bytes of the cell.
4713 */
drhec3e6b12013-11-25 02:38:55 +00004714 nCell = pCell[0];
drhc9166342012-01-05 23:32:06 +00004715 if( nCell<=pPage->max1bytePayload
4716 /* && (pCell+nCell)<pPage->aDataEnd */
drh3def2352011-11-11 00:27:15 +00004717 ){
danielk197711c327a2009-05-04 19:01:26 +00004718 /* This branch runs if the record-size field of the cell is a
4719 ** single byte varint and the record fits entirely on the main
4720 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00004721 testcase( pCell+nCell+1==pPage->aDataEnd );
danielk197711c327a2009-05-04 19:01:26 +00004722 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4723 }else if( !(pCell[1] & 0x80)
4724 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
drhc9166342012-01-05 23:32:06 +00004725 /* && (pCell+nCell+2)<=pPage->aDataEnd */
danielk197711c327a2009-05-04 19:01:26 +00004726 ){
4727 /* The record-size field is a 2 byte varint and the record
4728 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00004729 testcase( pCell+nCell+2==pPage->aDataEnd );
danielk197711c327a2009-05-04 19:01:26 +00004730 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004731 }else{
danielk197711c327a2009-05-04 19:01:26 +00004732 /* The record flows over onto one or more overflow pages. In
4733 ** this case the whole cell needs to be parsed, a buffer allocated
4734 ** and accessPayload() used to retrieve the record into the
4735 ** buffer before VdbeRecordCompare() can be called. */
4736 void *pCellKey;
4737 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004738 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004739 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004740 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004741 if( pCellKey==0 ){
4742 rc = SQLITE_NOMEM;
4743 goto moveto_finish;
4744 }
drhd793f442013-11-25 14:10:15 +00004745 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhfb192682009-07-11 18:26:28 +00004746 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
drhec9b31f2009-08-25 13:53:49 +00004747 if( rc ){
4748 sqlite3_free(pCellKey);
4749 goto moveto_finish;
4750 }
danielk197711c327a2009-05-04 19:01:26 +00004751 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004752 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00004753 }
drhbb933ef2013-11-25 15:01:38 +00004754 if( c<0 ){
4755 lwr = idx+1;
4756 }else if( c>0 ){
4757 upr = idx-1;
4758 }else{
4759 assert( c==0 );
drh64022502009-01-09 14:11:04 +00004760 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004761 rc = SQLITE_OK;
drhd793f442013-11-25 14:10:15 +00004762 pCur->aiIdx[pCur->iPage] = (u16)idx;
drh1e968a02008-03-25 00:22:21 +00004763 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004764 }
drhebf10b12013-11-25 17:38:26 +00004765 if( lwr>upr ) break;
4766 assert( lwr+upr>=0 );
4767 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00004768 }
drh72f82862001-05-24 21:06:34 +00004769 }
drhb07028f2011-10-14 21:49:18 +00004770 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00004771 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004772 if( pPage->leaf ){
drhec3e6b12013-11-25 02:38:55 +00004773 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhbb933ef2013-11-25 15:01:38 +00004774 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00004775 *pRes = c;
4776 rc = SQLITE_OK;
4777 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00004778 }
4779moveto_next_layer:
4780 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004781 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004782 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004783 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004784 }
drhf49661a2008-12-10 16:45:50 +00004785 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00004786 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00004787 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00004788 }
drh1e968a02008-03-25 00:22:21 +00004789moveto_finish:
drhd2022b02013-11-25 16:23:52 +00004790 pCur->info.nSize = 0;
4791 pCur->validNKey = 0;
drhe63d9992008-08-13 19:11:48 +00004792 return rc;
4793}
4794
drhd677b3d2007-08-20 22:48:41 +00004795
drh72f82862001-05-24 21:06:34 +00004796/*
drhc39e0002004-05-07 23:50:57 +00004797** Return TRUE if the cursor is not pointing at an entry of the table.
4798**
4799** TRUE will be returned after a call to sqlite3BtreeNext() moves
4800** past the last entry in the table or sqlite3BtreePrev() moves past
4801** the first entry. TRUE is also returned if the table is empty.
4802*/
4803int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004804 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4805 ** have been deleted? This API will need to change to return an error code
4806 ** as well as the boolean result value.
4807 */
4808 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004809}
4810
4811/*
drhbd03cae2001-06-02 02:40:57 +00004812** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004813** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004814** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004815** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004816*/
drhd094db12008-04-03 21:46:57 +00004817int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004818 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004819 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004820 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004821
drh1fee73e2007-08-29 04:00:57 +00004822 assert( cursorHoldsMutex(pCur) );
drh8c4d3a62007-04-06 01:03:32 +00004823 assert( pRes!=0 );
drh9b47ee32013-08-20 03:13:51 +00004824 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhf66f26a2013-08-19 20:04:10 +00004825 if( pCur->eState!=CURSOR_VALID ){
4826 rc = restoreCursorPosition(pCur);
4827 if( rc!=SQLITE_OK ){
drh9b47ee32013-08-20 03:13:51 +00004828 *pRes = 0;
drhf66f26a2013-08-19 20:04:10 +00004829 return rc;
4830 }
4831 if( CURSOR_INVALID==pCur->eState ){
4832 *pRes = 1;
4833 return SQLITE_OK;
4834 }
drh9b47ee32013-08-20 03:13:51 +00004835 if( pCur->skipNext ){
4836 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
4837 pCur->eState = CURSOR_VALID;
4838 if( pCur->skipNext>0 ){
4839 pCur->skipNext = 0;
4840 *pRes = 0;
4841 return SQLITE_OK;
4842 }
drhf66f26a2013-08-19 20:04:10 +00004843 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00004844 }
danielk1977da184232006-01-05 11:34:32 +00004845 }
danielk1977da184232006-01-05 11:34:32 +00004846
danielk197771d5d2c2008-09-29 11:49:47 +00004847 pPage = pCur->apPage[pCur->iPage];
4848 idx = ++pCur->aiIdx[pCur->iPage];
4849 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00004850
4851 /* If the database file is corrupt, it is possible for the value of idx
4852 ** to be invalid here. This can only occur if a second cursor modifies
4853 ** the page while cursor pCur is holding a reference to it. Which can
4854 ** only happen if the database is corrupt in such a way as to link the
4855 ** page into more than one b-tree structure. */
4856 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004857
drh271efa52004-05-30 19:19:05 +00004858 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004859 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004860 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004861 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004862 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh9b47ee32013-08-20 03:13:51 +00004863 if( rc ){
4864 *pRes = 0;
4865 return rc;
4866 }
drh5e2f8b92001-05-28 00:41:15 +00004867 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004868 *pRes = 0;
4869 return rc;
drh72f82862001-05-24 21:06:34 +00004870 }
drh5e2f8b92001-05-28 00:41:15 +00004871 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004872 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004873 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004874 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004875 return SQLITE_OK;
4876 }
danielk197730548662009-07-09 05:07:37 +00004877 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004878 pPage = pCur->apPage[pCur->iPage];
4879 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004880 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004881 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004882 rc = sqlite3BtreeNext(pCur, pRes);
4883 }else{
4884 rc = SQLITE_OK;
4885 }
4886 return rc;
drh8178a752003-01-05 21:41:40 +00004887 }
4888 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004889 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004890 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004891 }
drh5e2f8b92001-05-28 00:41:15 +00004892 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004893 return rc;
drh72f82862001-05-24 21:06:34 +00004894}
drhd677b3d2007-08-20 22:48:41 +00004895
drh72f82862001-05-24 21:06:34 +00004896
drh3b7511c2001-05-26 13:15:44 +00004897/*
drh2dcc9aa2002-12-04 13:40:25 +00004898** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004899** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004900** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004901** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004902*/
drhd094db12008-04-03 21:46:57 +00004903int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004904 int rc;
drh8178a752003-01-05 21:41:40 +00004905 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004906
drh1fee73e2007-08-29 04:00:57 +00004907 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00004908 assert( pRes!=0 );
4909 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drha2c20e42008-03-29 16:01:04 +00004910 pCur->atLast = 0;
drhf66f26a2013-08-19 20:04:10 +00004911 if( pCur->eState!=CURSOR_VALID ){
4912 if( ALWAYS(pCur->eState>=CURSOR_REQUIRESEEK) ){
4913 rc = btreeRestoreCursorPosition(pCur);
drh9b47ee32013-08-20 03:13:51 +00004914 if( rc!=SQLITE_OK ){
4915 *pRes = 0;
4916 return rc;
4917 }
drhf66f26a2013-08-19 20:04:10 +00004918 }
4919 if( CURSOR_INVALID==pCur->eState ){
4920 *pRes = 1;
4921 return SQLITE_OK;
4922 }
drh9b47ee32013-08-20 03:13:51 +00004923 if( pCur->skipNext ){
4924 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
4925 pCur->eState = CURSOR_VALID;
4926 if( pCur->skipNext<0 ){
4927 pCur->skipNext = 0;
4928 *pRes = 0;
4929 return SQLITE_OK;
4930 }
drhf66f26a2013-08-19 20:04:10 +00004931 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00004932 }
danielk1977da184232006-01-05 11:34:32 +00004933 }
danielk1977da184232006-01-05 11:34:32 +00004934
danielk197771d5d2c2008-09-29 11:49:47 +00004935 pPage = pCur->apPage[pCur->iPage];
4936 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004937 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004938 int idx = pCur->aiIdx[pCur->iPage];
4939 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004940 if( rc ){
drh9b47ee32013-08-20 03:13:51 +00004941 *pRes = 0;
drhd677b3d2007-08-20 22:48:41 +00004942 return rc;
4943 }
drh2dcc9aa2002-12-04 13:40:25 +00004944 rc = moveToRightmost(pCur);
4945 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004946 while( pCur->aiIdx[pCur->iPage]==0 ){
4947 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004948 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004949 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004950 return SQLITE_OK;
4951 }
danielk197730548662009-07-09 05:07:37 +00004952 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004953 }
drh271efa52004-05-30 19:19:05 +00004954 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004955 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004956
4957 pCur->aiIdx[pCur->iPage]--;
4958 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004959 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004960 rc = sqlite3BtreePrevious(pCur, pRes);
4961 }else{
4962 rc = SQLITE_OK;
4963 }
drh2dcc9aa2002-12-04 13:40:25 +00004964 }
drh8178a752003-01-05 21:41:40 +00004965 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004966 return rc;
4967}
4968
4969/*
drh3b7511c2001-05-26 13:15:44 +00004970** Allocate a new page from the database file.
4971**
danielk19773b8a05f2007-03-19 17:44:26 +00004972** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004973** has already been called on the new page.) The new page has also
4974** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004975** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004976**
4977** SQLITE_OK is returned on success. Any other return value indicates
4978** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004979** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004980**
drh82e647d2013-03-02 03:25:55 +00004981** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00004982** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004983** attempt to keep related pages close to each other in the database file,
4984** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004985**
drh82e647d2013-03-02 03:25:55 +00004986** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
4987** anywhere on the free-list, then it is guaranteed to be returned. If
4988** eMode is BTALLOC_LT then the page returned will be less than or equal
4989** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
4990** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00004991*/
drh4f0c5872007-03-26 22:05:01 +00004992static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00004993 BtShared *pBt, /* The btree */
4994 MemPage **ppPage, /* Store pointer to the allocated page here */
4995 Pgno *pPgno, /* Store the page number here */
4996 Pgno nearby, /* Search for a page near this one */
4997 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004998){
drh3aac2dd2004-04-26 14:10:20 +00004999 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005000 int rc;
drh35cd6432009-06-05 14:17:21 +00005001 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005002 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005003 MemPage *pTrunk = 0;
5004 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005005 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005006
drh1fee73e2007-08-29 04:00:57 +00005007 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005008 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005009 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005010 mxPage = btreePagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00005011 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005012 testcase( n==mxPage-1 );
5013 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005014 return SQLITE_CORRUPT_BKPT;
5015 }
drh3aac2dd2004-04-26 14:10:20 +00005016 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005017 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005018 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005019 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
5020
drh82e647d2013-03-02 03:25:55 +00005021 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005022 ** shows that the page 'nearby' is somewhere on the free-list, then
5023 ** the entire-list will be searched for that page.
5024 */
5025#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005026 if( eMode==BTALLOC_EXACT ){
5027 if( nearby<=mxPage ){
5028 u8 eType;
5029 assert( nearby>0 );
5030 assert( pBt->autoVacuum );
5031 rc = ptrmapGet(pBt, nearby, &eType, 0);
5032 if( rc ) return rc;
5033 if( eType==PTRMAP_FREEPAGE ){
5034 searchList = 1;
5035 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005036 }
dan51f0b6d2013-02-22 20:16:34 +00005037 }else if( eMode==BTALLOC_LE ){
5038 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005039 }
5040#endif
5041
5042 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5043 ** first free-list trunk page. iPrevTrunk is initially 1.
5044 */
danielk19773b8a05f2007-03-19 17:44:26 +00005045 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005046 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005047 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005048
5049 /* The code within this loop is run only once if the 'searchList' variable
5050 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005051 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5052 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005053 */
5054 do {
5055 pPrevTrunk = pTrunk;
5056 if( pPrevTrunk ){
5057 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005058 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00005059 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005060 }
drhdf35a082009-07-09 02:24:35 +00005061 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005062 if( iTrunk>mxPage ){
5063 rc = SQLITE_CORRUPT_BKPT;
5064 }else{
drhb00fc3b2013-08-21 23:42:32 +00005065 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005066 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005067 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005068 pTrunk = 0;
5069 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005070 }
drhb07028f2011-10-14 21:49:18 +00005071 assert( pTrunk!=0 );
5072 assert( pTrunk->aData!=0 );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005073
drh93b4fc72011-04-07 14:47:01 +00005074 k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005075 if( k==0 && !searchList ){
5076 /* The trunk has no leaves and the list is not being searched.
5077 ** So extract the trunk page itself and use it as the newly
5078 ** allocated page */
5079 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005080 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005081 if( rc ){
5082 goto end_allocate_page;
5083 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005084 *pPgno = iTrunk;
5085 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5086 *ppPage = pTrunk;
5087 pTrunk = 0;
5088 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005089 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005090 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00005091 rc = SQLITE_CORRUPT_BKPT;
5092 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005093#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005094 }else if( searchList
5095 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5096 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005097 /* The list is being searched and this trunk page is the page
5098 ** to allocate, regardless of whether it has leaves.
5099 */
dan51f0b6d2013-02-22 20:16:34 +00005100 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005101 *ppPage = pTrunk;
5102 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005103 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005104 if( rc ){
5105 goto end_allocate_page;
5106 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005107 if( k==0 ){
5108 if( !pPrevTrunk ){
5109 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5110 }else{
danf48c3552010-08-23 15:41:24 +00005111 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5112 if( rc!=SQLITE_OK ){
5113 goto end_allocate_page;
5114 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005115 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5116 }
5117 }else{
5118 /* The trunk page is required by the caller but it contains
5119 ** pointers to free-list leaves. The first leaf becomes a trunk
5120 ** page in this case.
5121 */
5122 MemPage *pNewTrunk;
5123 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005124 if( iNewTrunk>mxPage ){
5125 rc = SQLITE_CORRUPT_BKPT;
5126 goto end_allocate_page;
5127 }
drhdf35a082009-07-09 02:24:35 +00005128 testcase( iNewTrunk==mxPage );
drhb00fc3b2013-08-21 23:42:32 +00005129 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005130 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005131 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005132 }
danielk19773b8a05f2007-03-19 17:44:26 +00005133 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005134 if( rc!=SQLITE_OK ){
5135 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005136 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005137 }
5138 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5139 put4byte(&pNewTrunk->aData[4], k-1);
5140 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005141 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005142 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005143 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005144 put4byte(&pPage1->aData[32], iNewTrunk);
5145 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005146 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005147 if( rc ){
5148 goto end_allocate_page;
5149 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005150 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5151 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005152 }
5153 pTrunk = 0;
5154 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5155#endif
danielk1977e5765212009-06-17 11:13:28 +00005156 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005157 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005158 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005159 Pgno iPage;
5160 unsigned char *aData = pTrunk->aData;
5161 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005162 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005163 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005164 if( eMode==BTALLOC_LE ){
5165 for(i=0; i<k; i++){
5166 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005167 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005168 closest = i;
5169 break;
5170 }
5171 }
5172 }else{
5173 int dist;
5174 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5175 for(i=1; i<k; i++){
5176 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5177 if( d2<dist ){
5178 closest = i;
5179 dist = d2;
5180 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005181 }
5182 }
5183 }else{
5184 closest = 0;
5185 }
5186
5187 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005188 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005189 if( iPage>mxPage ){
5190 rc = SQLITE_CORRUPT_BKPT;
5191 goto end_allocate_page;
5192 }
drhdf35a082009-07-09 02:24:35 +00005193 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005194 if( !searchList
5195 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5196 ){
danielk1977bea2a942009-01-20 17:06:27 +00005197 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005198 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005199 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5200 ": %d more free pages\n",
5201 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005202 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5203 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005204 if( closest<k-1 ){
5205 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5206 }
5207 put4byte(&aData[4], k-1);
drhb00fc3b2013-08-21 23:42:32 +00005208 noContent = !btreeGetHasContent(pBt, *pPgno) ? PAGER_GET_NOCONTENT : 0;
5209 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005210 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005211 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005212 if( rc!=SQLITE_OK ){
5213 releasePage(*ppPage);
5214 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005215 }
5216 searchList = 0;
5217 }
drhee696e22004-08-30 16:52:17 +00005218 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005219 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005220 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005221 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005222 }else{
danbc1a3c62013-02-23 16:40:46 +00005223 /* There are no pages on the freelist, so append a new page to the
5224 ** database image.
5225 **
5226 ** Normally, new pages allocated by this block can be requested from the
5227 ** pager layer with the 'no-content' flag set. This prevents the pager
5228 ** from trying to read the pages content from disk. However, if the
5229 ** current transaction has already run one or more incremental-vacuum
5230 ** steps, then the page we are about to allocate may contain content
5231 ** that is required in the event of a rollback. In this case, do
5232 ** not set the no-content flag. This causes the pager to load and journal
5233 ** the current page content before overwriting it.
5234 **
5235 ** Note that the pager will not actually attempt to load or journal
5236 ** content for any page that really does lie past the end of the database
5237 ** file on disk. So the effects of disabling the no-content optimization
5238 ** here are confined to those pages that lie between the end of the
5239 ** database image and the end of the database file.
5240 */
drhb00fc3b2013-08-21 23:42:32 +00005241 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate)) ? PAGER_GET_NOCONTENT : 0;
danbc1a3c62013-02-23 16:40:46 +00005242
drhdd3cd972010-03-27 17:12:36 +00005243 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5244 if( rc ) return rc;
5245 pBt->nPage++;
5246 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005247
danielk1977afcdd022004-10-31 16:25:42 +00005248#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005249 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005250 /* If *pPgno refers to a pointer-map page, allocate two new pages
5251 ** at the end of the file instead of one. The first allocated page
5252 ** becomes a new pointer-map page, the second is used by the caller.
5253 */
danielk1977ac861692009-03-28 10:54:22 +00005254 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005255 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5256 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drhb00fc3b2013-08-21 23:42:32 +00005257 rc = btreeGetPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005258 if( rc==SQLITE_OK ){
5259 rc = sqlite3PagerWrite(pPg->pDbPage);
5260 releasePage(pPg);
5261 }
5262 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005263 pBt->nPage++;
5264 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005265 }
5266#endif
drhdd3cd972010-03-27 17:12:36 +00005267 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5268 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005269
danielk1977599fcba2004-11-08 07:13:13 +00005270 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhb00fc3b2013-08-21 23:42:32 +00005271 rc = btreeGetPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00005272 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005273 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005274 if( rc!=SQLITE_OK ){
5275 releasePage(*ppPage);
5276 }
drh3a4c1412004-05-09 20:40:11 +00005277 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005278 }
danielk1977599fcba2004-11-08 07:13:13 +00005279
5280 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005281
5282end_allocate_page:
5283 releasePage(pTrunk);
5284 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00005285 if( rc==SQLITE_OK ){
5286 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
5287 releasePage(*ppPage);
5288 return SQLITE_CORRUPT_BKPT;
5289 }
5290 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00005291 }else{
5292 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00005293 }
drh93b4fc72011-04-07 14:47:01 +00005294 assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) );
drh3b7511c2001-05-26 13:15:44 +00005295 return rc;
5296}
5297
5298/*
danielk1977bea2a942009-01-20 17:06:27 +00005299** This function is used to add page iPage to the database file free-list.
5300** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005301**
danielk1977bea2a942009-01-20 17:06:27 +00005302** The value passed as the second argument to this function is optional.
5303** If the caller happens to have a pointer to the MemPage object
5304** corresponding to page iPage handy, it may pass it as the second value.
5305** Otherwise, it may pass NULL.
5306**
5307** If a pointer to a MemPage object is passed as the second argument,
5308** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005309*/
danielk1977bea2a942009-01-20 17:06:27 +00005310static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5311 MemPage *pTrunk = 0; /* Free-list trunk page */
5312 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5313 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5314 MemPage *pPage; /* Page being freed. May be NULL. */
5315 int rc; /* Return Code */
5316 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005317
danielk1977bea2a942009-01-20 17:06:27 +00005318 assert( sqlite3_mutex_held(pBt->mutex) );
5319 assert( iPage>1 );
5320 assert( !pMemPage || pMemPage->pgno==iPage );
5321
5322 if( pMemPage ){
5323 pPage = pMemPage;
5324 sqlite3PagerRef(pPage->pDbPage);
5325 }else{
5326 pPage = btreePageLookup(pBt, iPage);
5327 }
drh3aac2dd2004-04-26 14:10:20 +00005328
drha34b6762004-05-07 13:30:42 +00005329 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005330 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005331 if( rc ) goto freepage_out;
5332 nFree = get4byte(&pPage1->aData[36]);
5333 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005334
drhc9166342012-01-05 23:32:06 +00005335 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005336 /* If the secure_delete option is enabled, then
5337 ** always fully overwrite deleted information with zeros.
5338 */
drhb00fc3b2013-08-21 23:42:32 +00005339 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00005340 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005341 ){
5342 goto freepage_out;
5343 }
5344 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005345 }
drhfcce93f2006-02-22 03:08:32 +00005346
danielk1977687566d2004-11-02 12:56:41 +00005347 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005348 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005349 */
danielk197785d90ca2008-07-19 14:25:15 +00005350 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005351 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005352 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005353 }
danielk1977687566d2004-11-02 12:56:41 +00005354
danielk1977bea2a942009-01-20 17:06:27 +00005355 /* Now manipulate the actual database free-list structure. There are two
5356 ** possibilities. If the free-list is currently empty, or if the first
5357 ** trunk page in the free-list is full, then this page will become a
5358 ** new free-list trunk page. Otherwise, it will become a leaf of the
5359 ** first trunk page in the current free-list. This block tests if it
5360 ** is possible to add the page as a new free-list leaf.
5361 */
5362 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005363 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005364
5365 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00005366 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005367 if( rc!=SQLITE_OK ){
5368 goto freepage_out;
5369 }
5370
5371 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005372 assert( pBt->usableSize>32 );
5373 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005374 rc = SQLITE_CORRUPT_BKPT;
5375 goto freepage_out;
5376 }
drheeb844a2009-08-08 18:01:07 +00005377 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005378 /* In this case there is room on the trunk page to insert the page
5379 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005380 **
5381 ** Note that the trunk page is not really full until it contains
5382 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5383 ** coded. But due to a coding error in versions of SQLite prior to
5384 ** 3.6.0, databases with freelist trunk pages holding more than
5385 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5386 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005387 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005388 ** for now. At some point in the future (once everyone has upgraded
5389 ** to 3.6.0 or later) we should consider fixing the conditional above
5390 ** to read "usableSize/4-2" instead of "usableSize/4-8".
5391 */
danielk19773b8a05f2007-03-19 17:44:26 +00005392 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005393 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005394 put4byte(&pTrunk->aData[4], nLeaf+1);
5395 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005396 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005397 sqlite3PagerDontWrite(pPage->pDbPage);
5398 }
danielk1977bea2a942009-01-20 17:06:27 +00005399 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005400 }
drh3a4c1412004-05-09 20:40:11 +00005401 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005402 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005403 }
drh3b7511c2001-05-26 13:15:44 +00005404 }
danielk1977bea2a942009-01-20 17:06:27 +00005405
5406 /* If control flows to this point, then it was not possible to add the
5407 ** the page being freed as a leaf page of the first trunk in the free-list.
5408 ** Possibly because the free-list is empty, or possibly because the
5409 ** first trunk in the free-list is full. Either way, the page being freed
5410 ** will become the new first trunk page in the free-list.
5411 */
drhb00fc3b2013-08-21 23:42:32 +00005412 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00005413 goto freepage_out;
5414 }
5415 rc = sqlite3PagerWrite(pPage->pDbPage);
5416 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005417 goto freepage_out;
5418 }
5419 put4byte(pPage->aData, iTrunk);
5420 put4byte(&pPage->aData[4], 0);
5421 put4byte(&pPage1->aData[32], iPage);
5422 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5423
5424freepage_out:
5425 if( pPage ){
5426 pPage->isInit = 0;
5427 }
5428 releasePage(pPage);
5429 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005430 return rc;
5431}
drhc314dc72009-07-21 11:52:34 +00005432static void freePage(MemPage *pPage, int *pRC){
5433 if( (*pRC)==SQLITE_OK ){
5434 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5435 }
danielk1977bea2a942009-01-20 17:06:27 +00005436}
drh3b7511c2001-05-26 13:15:44 +00005437
5438/*
drh3aac2dd2004-04-26 14:10:20 +00005439** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00005440*/
drh3aac2dd2004-04-26 14:10:20 +00005441static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00005442 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005443 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005444 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005445 int rc;
drh94440812007-03-06 11:42:19 +00005446 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005447 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005448
drh1fee73e2007-08-29 04:00:57 +00005449 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00005450 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005451 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005452 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005453 }
drhe42a9b42011-08-31 13:27:19 +00005454 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00005455 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00005456 }
drh6f11bef2004-05-13 01:12:56 +00005457 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005458 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005459 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005460 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5461 assert( ovflPgno==0 || nOvfl>0 );
5462 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005463 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005464 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005465 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005466 /* 0 is not a legal page number and page 1 cannot be an
5467 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5468 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005469 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005470 }
danielk1977bea2a942009-01-20 17:06:27 +00005471 if( nOvfl ){
5472 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5473 if( rc ) return rc;
5474 }
dan887d4b22010-02-25 12:09:16 +00005475
shaneh1da207e2010-03-09 14:41:12 +00005476 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005477 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5478 ){
5479 /* There is no reason any cursor should have an outstanding reference
5480 ** to an overflow page belonging to a cell that is being deleted/updated.
5481 ** So if there exists more than one reference to this page, then it
5482 ** must not really be an overflow page and the database must be corrupt.
5483 ** It is helpful to detect this before calling freePage2(), as
5484 ** freePage2() may zero the page contents if secure-delete mode is
5485 ** enabled. If this 'overflow' page happens to be a page that the
5486 ** caller is iterating through or using in some other way, this
5487 ** can be problematic.
5488 */
5489 rc = SQLITE_CORRUPT_BKPT;
5490 }else{
5491 rc = freePage2(pBt, pOvfl, ovflPgno);
5492 }
5493
danielk1977bea2a942009-01-20 17:06:27 +00005494 if( pOvfl ){
5495 sqlite3PagerUnref(pOvfl->pDbPage);
5496 }
drh3b7511c2001-05-26 13:15:44 +00005497 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005498 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005499 }
drh5e2f8b92001-05-28 00:41:15 +00005500 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005501}
5502
5503/*
drh91025292004-05-03 19:49:32 +00005504** Create the byte sequence used to represent a cell on page pPage
5505** and write that byte sequence into pCell[]. Overflow pages are
5506** allocated and filled in as necessary. The calling procedure
5507** is responsible for making sure sufficient space has been allocated
5508** for pCell[].
5509**
5510** Note that pCell does not necessary need to point to the pPage->aData
5511** area. pCell might point to some temporary storage. The cell will
5512** be constructed in this temporary area then copied into pPage->aData
5513** later.
drh3b7511c2001-05-26 13:15:44 +00005514*/
5515static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005516 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005517 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005518 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005519 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005520 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005521 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005522){
drh3b7511c2001-05-26 13:15:44 +00005523 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005524 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005525 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005526 int spaceLeft;
5527 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005528 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005529 unsigned char *pPrior;
5530 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005531 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005532 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005533 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005534 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005535
drh1fee73e2007-08-29 04:00:57 +00005536 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005537
drhc5053fb2008-11-27 02:22:10 +00005538 /* pPage is not necessarily writeable since pCell might be auxiliary
5539 ** buffer space that is separate from the pPage buffer area */
5540 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5541 || sqlite3PagerIswriteable(pPage->pDbPage) );
5542
drh91025292004-05-03 19:49:32 +00005543 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005544 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005545 if( !pPage->leaf ){
5546 nHeader += 4;
5547 }
drh8b18dd42004-05-12 19:18:15 +00005548 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00005549 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005550 }else{
drhb026e052007-05-02 01:34:31 +00005551 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005552 }
drh6f11bef2004-05-13 01:12:56 +00005553 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
danielk197730548662009-07-09 05:07:37 +00005554 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005555 assert( info.nHeader==nHeader );
5556 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005557 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005558
5559 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005560 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005561 if( pPage->intKey ){
5562 pSrc = pData;
5563 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005564 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005565 }else{
danielk197731d31b82009-07-13 13:18:07 +00005566 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5567 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005568 }
drhf49661a2008-12-10 16:45:50 +00005569 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005570 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005571 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005572 }
drh6f11bef2004-05-13 01:12:56 +00005573 *pnSize = info.nSize;
5574 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005575 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005576 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005577
drh3b7511c2001-05-26 13:15:44 +00005578 while( nPayload>0 ){
5579 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005580#ifndef SQLITE_OMIT_AUTOVACUUM
5581 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005582 if( pBt->autoVacuum ){
5583 do{
5584 pgnoOvfl++;
5585 } while(
5586 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5587 );
danielk1977b39f70b2007-05-17 18:28:11 +00005588 }
danielk1977afcdd022004-10-31 16:25:42 +00005589#endif
drhf49661a2008-12-10 16:45:50 +00005590 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005591#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005592 /* If the database supports auto-vacuum, and the second or subsequent
5593 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005594 ** for that page now.
5595 **
5596 ** If this is the first overflow page, then write a partial entry
5597 ** to the pointer-map. If we write nothing to this pointer-map slot,
5598 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00005599 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00005600 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005601 */
danielk19774ef24492007-05-23 09:52:41 +00005602 if( pBt->autoVacuum && rc==SQLITE_OK ){
5603 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00005604 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00005605 if( rc ){
5606 releasePage(pOvfl);
5607 }
danielk1977afcdd022004-10-31 16:25:42 +00005608 }
5609#endif
drh3b7511c2001-05-26 13:15:44 +00005610 if( rc ){
drh9b171272004-05-08 02:03:22 +00005611 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005612 return rc;
5613 }
drhc5053fb2008-11-27 02:22:10 +00005614
5615 /* If pToRelease is not zero than pPrior points into the data area
5616 ** of pToRelease. Make sure pToRelease is still writeable. */
5617 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5618
5619 /* If pPrior is part of the data area of pPage, then make sure pPage
5620 ** is still writeable */
5621 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5622 || sqlite3PagerIswriteable(pPage->pDbPage) );
5623
drh3aac2dd2004-04-26 14:10:20 +00005624 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005625 releasePage(pToRelease);
5626 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005627 pPrior = pOvfl->aData;
5628 put4byte(pPrior, 0);
5629 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005630 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005631 }
5632 n = nPayload;
5633 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005634
5635 /* If pToRelease is not zero than pPayload points into the data area
5636 ** of pToRelease. Make sure pToRelease is still writeable. */
5637 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5638
5639 /* If pPayload is part of the data area of pPage, then make sure pPage
5640 ** is still writeable */
5641 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5642 || sqlite3PagerIswriteable(pPage->pDbPage) );
5643
drhb026e052007-05-02 01:34:31 +00005644 if( nSrc>0 ){
5645 if( n>nSrc ) n = nSrc;
5646 assert( pSrc );
5647 memcpy(pPayload, pSrc, n);
5648 }else{
5649 memset(pPayload, 0, n);
5650 }
drh3b7511c2001-05-26 13:15:44 +00005651 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005652 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005653 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005654 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005655 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005656 if( nSrc==0 ){
5657 nSrc = nData;
5658 pSrc = pData;
5659 }
drhdd793422001-06-28 01:54:48 +00005660 }
drh9b171272004-05-08 02:03:22 +00005661 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005662 return SQLITE_OK;
5663}
5664
drh14acc042001-06-10 19:56:58 +00005665/*
5666** Remove the i-th cell from pPage. This routine effects pPage only.
5667** The cell content is not freed or deallocated. It is assumed that
5668** the cell content has been copied someplace else. This routine just
5669** removes the reference to the cell from pPage.
5670**
5671** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005672*/
drh98add2e2009-07-20 17:11:49 +00005673static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00005674 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00005675 u8 *data; /* pPage->aData */
5676 u8 *ptr; /* Used to move bytes around within data[] */
drhc3f1d5f2011-05-30 23:42:16 +00005677 u8 *endPtr; /* End of loop */
shanedcc50b72008-11-13 18:29:50 +00005678 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00005679 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00005680
drh98add2e2009-07-20 17:11:49 +00005681 if( *pRC ) return;
5682
drh8c42ca92001-06-22 19:15:00 +00005683 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005684 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005685 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005686 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005687 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00005688 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00005689 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00005690 hdr = pPage->hdrOffset;
5691 testcase( pc==get2byte(&data[hdr+5]) );
5692 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00005693 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00005694 *pRC = SQLITE_CORRUPT_BKPT;
5695 return;
shane0af3f892008-11-12 04:55:34 +00005696 }
shanedcc50b72008-11-13 18:29:50 +00005697 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00005698 if( rc ){
5699 *pRC = rc;
5700 return;
shanedcc50b72008-11-13 18:29:50 +00005701 }
drh3def2352011-11-11 00:27:15 +00005702 endPtr = &pPage->aCellIdx[2*pPage->nCell - 2];
drh2ce71b42011-06-06 13:38:11 +00005703 assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 ); /* ptr is always 2-byte aligned */
drhc3f1d5f2011-05-30 23:42:16 +00005704 while( ptr<endPtr ){
drh61d2fe92011-06-03 23:28:33 +00005705 *(u16*)ptr = *(u16*)&ptr[2];
drhc3f1d5f2011-05-30 23:42:16 +00005706 ptr += 2;
drh14acc042001-06-10 19:56:58 +00005707 }
5708 pPage->nCell--;
drhc314dc72009-07-21 11:52:34 +00005709 put2byte(&data[hdr+3], pPage->nCell);
drh43605152004-05-29 21:46:49 +00005710 pPage->nFree += 2;
drh14acc042001-06-10 19:56:58 +00005711}
5712
5713/*
5714** Insert a new cell on pPage at cell index "i". pCell points to the
5715** content of the cell.
5716**
5717** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005718** will not fit, then make a copy of the cell content into pTemp if
5719** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00005720** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00005721** in pTemp or the original pCell) and also record its index.
5722** Allocating a new entry in pPage->aCell[] implies that
5723** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005724**
5725** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5726** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005727** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005728** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005729*/
drh98add2e2009-07-20 17:11:49 +00005730static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00005731 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005732 int i, /* New cell becomes the i-th cell of the page */
5733 u8 *pCell, /* Content of the new cell */
5734 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005735 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00005736 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
5737 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00005738){
drh383d30f2010-02-26 13:07:37 +00005739 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00005740 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005741 int end; /* First byte past the last cell pointer in data[] */
5742 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005743 int cellOffset; /* Address of first cell pointer in data[] */
5744 u8 *data; /* The content of the whole page */
5745 u8 *ptr; /* Used for moving information around in data[] */
drh61d2fe92011-06-03 23:28:33 +00005746 u8 *endPtr; /* End of the loop */
drh43605152004-05-29 21:46:49 +00005747
danielk19774dbaa892009-06-16 16:50:22 +00005748 int nSkip = (iChild ? 4 : 0);
5749
drh98add2e2009-07-20 17:11:49 +00005750 if( *pRC ) return;
5751
drh43605152004-05-29 21:46:49 +00005752 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhb2eced52010-08-12 02:41:12 +00005753 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 );
drh2cbd78b2012-02-02 19:37:18 +00005754 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
5755 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00005756 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00005757 /* The cell should normally be sized correctly. However, when moving a
5758 ** malformed cell from a leaf page to an interior page, if the cell size
5759 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5760 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5761 ** the term after the || in the following assert(). */
5762 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00005763 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005764 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005765 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005766 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005767 }
danielk19774dbaa892009-06-16 16:50:22 +00005768 if( iChild ){
5769 put4byte(pCell, iChild);
5770 }
drh43605152004-05-29 21:46:49 +00005771 j = pPage->nOverflow++;
drh2cbd78b2012-02-02 19:37:18 +00005772 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
5773 pPage->apOvfl[j] = pCell;
5774 pPage->aiOvfl[j] = (u16)i;
drh14acc042001-06-10 19:56:58 +00005775 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005776 int rc = sqlite3PagerWrite(pPage->pDbPage);
5777 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00005778 *pRC = rc;
5779 return;
danielk19776e465eb2007-08-21 13:11:00 +00005780 }
5781 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005782 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005783 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005784 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005785 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005786 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00005787 if( rc ){ *pRC = rc; return; }
drhc314dc72009-07-21 11:52:34 +00005788 /* The allocateSpace() routine guarantees the following two properties
5789 ** if it returns success */
5790 assert( idx >= end+2 );
drhfcd71b62011-04-05 22:08:24 +00005791 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00005792 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005793 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005794 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005795 if( iChild ){
5796 put4byte(&data[idx], iChild);
5797 }
drh61d2fe92011-06-03 23:28:33 +00005798 ptr = &data[end];
5799 endPtr = &data[ins];
drh2ce71b42011-06-06 13:38:11 +00005800 assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 ); /* ptr is always 2-byte aligned */
drh61d2fe92011-06-03 23:28:33 +00005801 while( ptr>endPtr ){
5802 *(u16*)ptr = *(u16*)&ptr[-2];
5803 ptr -= 2;
drhda200cc2004-05-09 11:51:38 +00005804 }
drh43605152004-05-29 21:46:49 +00005805 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005806 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005807#ifndef SQLITE_OMIT_AUTOVACUUM
5808 if( pPage->pBt->autoVacuum ){
5809 /* The cell may contain a pointer to an overflow page. If so, write
5810 ** the entry for the overflow page into the pointer map.
5811 */
drh98add2e2009-07-20 17:11:49 +00005812 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00005813 }
5814#endif
drh14acc042001-06-10 19:56:58 +00005815 }
5816}
5817
5818/*
drhfa1a98a2004-05-14 19:08:17 +00005819** Add a list of cells to a page. The page should be initially empty.
5820** The cells are guaranteed to fit on the page.
5821*/
5822static void assemblePage(
5823 MemPage *pPage, /* The page to be assemblied */
5824 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005825 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005826 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005827){
5828 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005829 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005830 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005831 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5832 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5833 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005834
drh43605152004-05-29 21:46:49 +00005835 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005836 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfcd71b62011-04-05 22:08:24 +00005837 assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt)
5838 && (int)MX_CELL(pPage->pBt)<=10921);
drhc5053fb2008-11-27 02:22:10 +00005839 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005840
5841 /* Check that the page has just been zeroed by zeroPage() */
5842 assert( pPage->nCell==0 );
drh5d433ce2010-08-14 16:02:52 +00005843 assert( get2byteNotZero(&data[hdr+5])==nUsable );
danielk1977fad91942009-04-29 17:49:59 +00005844
drh3def2352011-11-11 00:27:15 +00005845 pCellptr = &pPage->aCellIdx[nCell*2];
danielk1977fad91942009-04-29 17:49:59 +00005846 cellbody = nUsable;
5847 for(i=nCell-1; i>=0; i--){
drh61d2fe92011-06-03 23:28:33 +00005848 u16 sz = aSize[i];
danielk1977fad91942009-04-29 17:49:59 +00005849 pCellptr -= 2;
drh61d2fe92011-06-03 23:28:33 +00005850 cellbody -= sz;
danielk1977fad91942009-04-29 17:49:59 +00005851 put2byte(pCellptr, cellbody);
drh61d2fe92011-06-03 23:28:33 +00005852 memcpy(&data[cellbody], apCell[i], sz);
drhfa1a98a2004-05-14 19:08:17 +00005853 }
danielk1977fad91942009-04-29 17:49:59 +00005854 put2byte(&data[hdr+3], nCell);
5855 put2byte(&data[hdr+5], cellbody);
5856 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005857 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005858}
5859
drh14acc042001-06-10 19:56:58 +00005860/*
drhc3b70572003-01-04 19:44:07 +00005861** The following parameters determine how many adjacent pages get involved
5862** in a balancing operation. NN is the number of neighbors on either side
5863** of the page that participate in the balancing operation. NB is the
5864** total number of pages that participate, including the target page and
5865** NN neighbors on either side.
5866**
5867** The minimum value of NN is 1 (of course). Increasing NN above 1
5868** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5869** in exchange for a larger degradation in INSERT and UPDATE performance.
5870** The value of NN appears to give the best results overall.
5871*/
5872#define NN 1 /* Number of neighbors on either side of pPage */
5873#define NB (NN*2+1) /* Total pages involved in the balance */
5874
danielk1977ac245ec2005-01-14 13:50:11 +00005875
drh615ae552005-01-16 23:21:00 +00005876#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005877/*
5878** This version of balance() handles the common special case where
5879** a new entry is being inserted on the extreme right-end of the
5880** tree, in other words, when the new entry will become the largest
5881** entry in the tree.
5882**
drhc314dc72009-07-21 11:52:34 +00005883** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00005884** a new page to the right-hand side and put the one new entry in
5885** that page. This leaves the right side of the tree somewhat
5886** unbalanced. But odds are that we will be inserting new entries
5887** at the end soon afterwards so the nearly empty page will quickly
5888** fill up. On average.
5889**
5890** pPage is the leaf page which is the right-most page in the tree.
5891** pParent is its parent. pPage must have a single overflow entry
5892** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005893**
5894** The pSpace buffer is used to store a temporary copy of the divider
5895** cell that will be inserted into pParent. Such a cell consists of a 4
5896** byte page number followed by a variable length integer. In other
5897** words, at most 13 bytes. Hence the pSpace buffer must be at
5898** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005899*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005900static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5901 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005902 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005903 int rc; /* Return Code */
5904 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005905
drh1fee73e2007-08-29 04:00:57 +00005906 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005907 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005908 assert( pPage->nOverflow==1 );
5909
drh5d433ce2010-08-14 16:02:52 +00005910 /* This error condition is now caught prior to reaching this function */
mistachkin5f070c72012-10-18 10:35:19 +00005911 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005912
danielk1977a50d9aa2009-06-08 14:49:45 +00005913 /* Allocate a new page. This page will become the right-sibling of
5914 ** pPage. Make the parent page writable, so that the new divider cell
5915 ** may be inserted. If both these operations are successful, proceed.
5916 */
drh4f0c5872007-03-26 22:05:01 +00005917 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005918
danielk1977eaa06f62008-09-18 17:34:44 +00005919 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005920
5921 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00005922 u8 *pCell = pPage->apOvfl[0];
danielk19776f235cc2009-06-04 14:46:08 +00005923 u16 szCell = cellSizePtr(pPage, pCell);
5924 u8 *pStop;
5925
drhc5053fb2008-11-27 02:22:10 +00005926 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005927 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5928 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00005929 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00005930
5931 /* If this is an auto-vacuum database, update the pointer map
5932 ** with entries for the new page, and any pointer from the
5933 ** cell on the page to an overflow page. If either of these
5934 ** operations fails, the return code is set, but the contents
5935 ** of the parent page are still manipulated by thh code below.
5936 ** That is Ok, at this point the parent page is guaranteed to
5937 ** be marked as dirty. Returning an error code will cause a
5938 ** rollback, undoing any changes made to the parent page.
5939 */
5940 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005941 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
5942 if( szCell>pNew->minLocal ){
5943 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005944 }
5945 }
danielk1977eaa06f62008-09-18 17:34:44 +00005946
danielk19776f235cc2009-06-04 14:46:08 +00005947 /* Create a divider cell to insert into pParent. The divider cell
5948 ** consists of a 4-byte page number (the page number of pPage) and
5949 ** a variable length key value (which must be the same value as the
5950 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005951 **
danielk19776f235cc2009-06-04 14:46:08 +00005952 ** To find the largest key value on pPage, first find the right-most
5953 ** cell on pPage. The first two fields of this cell are the
5954 ** record-length (a variable length integer at most 32-bits in size)
5955 ** and the key value (a variable length integer, may have any value).
5956 ** The first of the while(...) loops below skips over the record-length
5957 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005958 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005959 */
danielk1977eaa06f62008-09-18 17:34:44 +00005960 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005961 pStop = &pCell[9];
5962 while( (*(pCell++)&0x80) && pCell<pStop );
5963 pStop = &pCell[9];
5964 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5965
danielk19774dbaa892009-06-16 16:50:22 +00005966 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00005967 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
5968 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00005969
5970 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005971 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5972
danielk1977e08a3c42008-09-18 18:17:03 +00005973 /* Release the reference to the new page. */
5974 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005975 }
5976
danielk1977eaa06f62008-09-18 17:34:44 +00005977 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005978}
drh615ae552005-01-16 23:21:00 +00005979#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005980
danielk19774dbaa892009-06-16 16:50:22 +00005981#if 0
drhc3b70572003-01-04 19:44:07 +00005982/*
danielk19774dbaa892009-06-16 16:50:22 +00005983** This function does not contribute anything to the operation of SQLite.
5984** it is sometimes activated temporarily while debugging code responsible
5985** for setting pointer-map entries.
5986*/
5987static int ptrmapCheckPages(MemPage **apPage, int nPage){
5988 int i, j;
5989 for(i=0; i<nPage; i++){
5990 Pgno n;
5991 u8 e;
5992 MemPage *pPage = apPage[i];
5993 BtShared *pBt = pPage->pBt;
5994 assert( pPage->isInit );
5995
5996 for(j=0; j<pPage->nCell; j++){
5997 CellInfo info;
5998 u8 *z;
5999
6000 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00006001 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00006002 if( info.iOverflow ){
6003 Pgno ovfl = get4byte(&z[info.iOverflow]);
6004 ptrmapGet(pBt, ovfl, &e, &n);
6005 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6006 }
6007 if( !pPage->leaf ){
6008 Pgno child = get4byte(z);
6009 ptrmapGet(pBt, child, &e, &n);
6010 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6011 }
6012 }
6013 if( !pPage->leaf ){
6014 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6015 ptrmapGet(pBt, child, &e, &n);
6016 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6017 }
6018 }
6019 return 1;
6020}
6021#endif
6022
danielk1977cd581a72009-06-23 15:43:39 +00006023/*
6024** This function is used to copy the contents of the b-tree node stored
6025** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6026** the pointer-map entries for each child page are updated so that the
6027** parent page stored in the pointer map is page pTo. If pFrom contained
6028** any cells with overflow page pointers, then the corresponding pointer
6029** map entries are also updated so that the parent page is page pTo.
6030**
6031** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00006032** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00006033**
danielk197730548662009-07-09 05:07:37 +00006034** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00006035**
6036** The performance of this function is not critical. It is only used by
6037** the balance_shallower() and balance_deeper() procedures, neither of
6038** which are called often under normal circumstances.
6039*/
drhc314dc72009-07-21 11:52:34 +00006040static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
6041 if( (*pRC)==SQLITE_OK ){
6042 BtShared * const pBt = pFrom->pBt;
6043 u8 * const aFrom = pFrom->aData;
6044 u8 * const aTo = pTo->aData;
6045 int const iFromHdr = pFrom->hdrOffset;
6046 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00006047 int rc;
drhc314dc72009-07-21 11:52:34 +00006048 int iData;
6049
6050
6051 assert( pFrom->isInit );
6052 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00006053 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00006054
6055 /* Copy the b-tree node content from page pFrom to page pTo. */
6056 iData = get2byte(&aFrom[iFromHdr+5]);
6057 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6058 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6059
6060 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00006061 ** match the new data. The initialization of pTo can actually fail under
6062 ** fairly obscure circumstances, even though it is a copy of initialized
6063 ** page pFrom.
6064 */
drhc314dc72009-07-21 11:52:34 +00006065 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00006066 rc = btreeInitPage(pTo);
6067 if( rc!=SQLITE_OK ){
6068 *pRC = rc;
6069 return;
6070 }
drhc314dc72009-07-21 11:52:34 +00006071
6072 /* If this is an auto-vacuum database, update the pointer-map entries
6073 ** for any b-tree or overflow pages that pTo now contains the pointers to.
6074 */
6075 if( ISAUTOVACUUM ){
6076 *pRC = setChildPtrmaps(pTo);
6077 }
danielk1977cd581a72009-06-23 15:43:39 +00006078 }
danielk1977cd581a72009-06-23 15:43:39 +00006079}
6080
6081/*
danielk19774dbaa892009-06-16 16:50:22 +00006082** This routine redistributes cells on the iParentIdx'th child of pParent
6083** (hereafter "the page") and up to 2 siblings so that all pages have about the
6084** same amount of free space. Usually a single sibling on either side of the
6085** page are used in the balancing, though both siblings might come from one
6086** side if the page is the first or last child of its parent. If the page
6087** has fewer than 2 siblings (something which can only happen if the page
6088** is a root page or a child of a root page) then all available siblings
6089** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00006090**
danielk19774dbaa892009-06-16 16:50:22 +00006091** The number of siblings of the page might be increased or decreased by
6092** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00006093**
danielk19774dbaa892009-06-16 16:50:22 +00006094** Note that when this routine is called, some of the cells on the page
6095** might not actually be stored in MemPage.aData[]. This can happen
6096** if the page is overfull. This routine ensures that all cells allocated
6097** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00006098**
danielk19774dbaa892009-06-16 16:50:22 +00006099** In the course of balancing the page and its siblings, cells may be
6100** inserted into or removed from the parent page (pParent). Doing so
6101** may cause the parent page to become overfull or underfull. If this
6102** happens, it is the responsibility of the caller to invoke the correct
6103** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00006104**
drh5e00f6c2001-09-13 13:46:56 +00006105** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00006106** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00006107** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00006108**
6109** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00006110** buffer big enough to hold one page. If while inserting cells into the parent
6111** page (pParent) the parent page becomes overfull, this buffer is
6112** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00006113** a maximum of four divider cells into the parent page, and the maximum
6114** size of a cell stored within an internal node is always less than 1/4
6115** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6116** enough for all overflow cells.
6117**
6118** If aOvflSpace is set to a null pointer, this function returns
6119** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00006120*/
mistachkine7c54162012-10-02 22:54:27 +00006121#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6122#pragma optimize("", off)
6123#endif
danielk19774dbaa892009-06-16 16:50:22 +00006124static int balance_nonroot(
6125 MemPage *pParent, /* Parent page of siblings being balanced */
6126 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00006127 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00006128 int isRoot, /* True if pParent is a root-page */
6129 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00006130){
drh16a9b832007-05-05 18:39:25 +00006131 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00006132 int nCell = 0; /* Number of cells in apCell[] */
6133 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00006134 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00006135 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00006136 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00006137 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00006138 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00006139 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00006140 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00006141 int usableSpace; /* Bytes in pPage beyond the header */
6142 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00006143 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00006144 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00006145 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00006146 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00006147 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00006148 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00006149 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00006150 u8 *pRight; /* Location in parent of right-sibling pointer */
6151 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00006152 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
6153 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00006154 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00006155 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00006156 u8 *aSpace1; /* Space for copies of dividers cells */
6157 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00006158
danielk1977a50d9aa2009-06-08 14:49:45 +00006159 pBt = pParent->pBt;
6160 assert( sqlite3_mutex_held(pBt->mutex) );
6161 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00006162
danielk1977e5765212009-06-17 11:13:28 +00006163#if 0
drh43605152004-05-29 21:46:49 +00006164 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00006165#endif
drh2e38c322004-09-03 18:38:44 +00006166
danielk19774dbaa892009-06-16 16:50:22 +00006167 /* At this point pParent may have at most one overflow cell. And if
6168 ** this overflow cell is present, it must be the cell with
6169 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00006170 ** is called (indirectly) from sqlite3BtreeDelete().
6171 */
danielk19774dbaa892009-06-16 16:50:22 +00006172 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00006173 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00006174
danielk197711a8a862009-06-17 11:49:52 +00006175 if( !aOvflSpace ){
6176 return SQLITE_NOMEM;
6177 }
6178
danielk1977a50d9aa2009-06-08 14:49:45 +00006179 /* Find the sibling pages to balance. Also locate the cells in pParent
6180 ** that divide the siblings. An attempt is made to find NN siblings on
6181 ** either side of pPage. More siblings are taken from one side, however,
6182 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00006183 ** has NB or fewer children then all children of pParent are taken.
6184 **
6185 ** This loop also drops the divider cells from the parent page. This
6186 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00006187 ** overflow cells in the parent page, since if any existed they will
6188 ** have already been removed.
6189 */
danielk19774dbaa892009-06-16 16:50:22 +00006190 i = pParent->nOverflow + pParent->nCell;
6191 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00006192 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00006193 }else{
dan7d6885a2012-08-08 14:04:56 +00006194 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00006195 if( iParentIdx==0 ){
6196 nxDiv = 0;
6197 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00006198 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00006199 }else{
dan7d6885a2012-08-08 14:04:56 +00006200 assert( bBulk==0 );
danielk19774dbaa892009-06-16 16:50:22 +00006201 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00006202 }
dan7d6885a2012-08-08 14:04:56 +00006203 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00006204 }
dan7d6885a2012-08-08 14:04:56 +00006205 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00006206 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
6207 pRight = &pParent->aData[pParent->hdrOffset+8];
6208 }else{
6209 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
6210 }
6211 pgno = get4byte(pRight);
6212 while( 1 ){
dan11dcd112013-03-15 18:29:18 +00006213 rc = getAndInitPage(pBt, pgno, &apOld[i], 0);
danielk19774dbaa892009-06-16 16:50:22 +00006214 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00006215 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00006216 goto balance_cleanup;
6217 }
danielk1977634f2982005-03-28 08:44:07 +00006218 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00006219 if( (i--)==0 ) break;
6220
drh2cbd78b2012-02-02 19:37:18 +00006221 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
6222 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006223 pgno = get4byte(apDiv[i]);
6224 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6225 pParent->nOverflow = 0;
6226 }else{
6227 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
6228 pgno = get4byte(apDiv[i]);
6229 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6230
6231 /* Drop the cell from the parent page. apDiv[i] still points to
6232 ** the cell within the parent, even though it has been dropped.
6233 ** This is safe because dropping a cell only overwrites the first
6234 ** four bytes of it, and this function does not need the first
6235 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00006236 ** later on.
6237 **
drh8a575d92011-10-12 17:00:28 +00006238 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00006239 ** the dropCell() routine will overwrite the entire cell with zeroes.
6240 ** In this case, temporarily copy the cell into the aOvflSpace[]
6241 ** buffer. It will be copied out again as soon as the aSpace[] buffer
6242 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00006243 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00006244 int iOff;
6245
6246 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00006247 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00006248 rc = SQLITE_CORRUPT_BKPT;
6249 memset(apOld, 0, (i+1)*sizeof(MemPage*));
6250 goto balance_cleanup;
6251 }else{
6252 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
6253 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
6254 }
drh5b47efa2010-02-12 18:18:39 +00006255 }
drh98add2e2009-07-20 17:11:49 +00006256 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006257 }
drh8b2f49b2001-06-08 00:21:52 +00006258 }
6259
drha9121e42008-02-19 14:59:35 +00006260 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00006261 ** alignment */
drha9121e42008-02-19 14:59:35 +00006262 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00006263
drh8b2f49b2001-06-08 00:21:52 +00006264 /*
danielk1977634f2982005-03-28 08:44:07 +00006265 ** Allocate space for memory structures
6266 */
danielk19774dbaa892009-06-16 16:50:22 +00006267 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00006268 szScratch =
drha9121e42008-02-19 14:59:35 +00006269 nMaxCells*sizeof(u8*) /* apCell */
6270 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00006271 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00006272 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00006273 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00006274 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00006275 rc = SQLITE_NOMEM;
6276 goto balance_cleanup;
6277 }
drha9121e42008-02-19 14:59:35 +00006278 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00006279 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00006280 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00006281
6282 /*
6283 ** Load pointers to all cells on sibling pages and the divider cells
6284 ** into the local apCell[] array. Make copies of the divider cells
mistachkind5578432012-08-25 10:01:29 +00006285 ** into space obtained from aSpace1[] and remove the divider cells
drhb6f41482004-05-14 01:58:11 +00006286 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00006287 **
6288 ** If the siblings are on leaf pages, then the child pointers of the
6289 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00006290 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00006291 ** child pointers. If siblings are not leaves, then all cell in
6292 ** apCell[] include child pointers. Either way, all cells in apCell[]
6293 ** are alike.
drh96f5b762004-05-16 16:24:36 +00006294 **
6295 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
6296 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00006297 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006298 leafCorrection = apOld[0]->leaf*4;
6299 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00006300 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006301 int limit;
6302
6303 /* Before doing anything else, take a copy of the i'th original sibling
6304 ** The rest of this function will use data from the copies rather
6305 ** that the original pages since the original pages will be in the
6306 ** process of being overwritten. */
6307 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
6308 memcpy(pOld, apOld[i], sizeof(MemPage));
6309 pOld->aData = (void*)&pOld[1];
6310 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
6311
6312 limit = pOld->nCell+pOld->nOverflow;
drh68f2a572011-06-03 17:50:49 +00006313 if( pOld->nOverflow>0 ){
6314 for(j=0; j<limit; j++){
6315 assert( nCell<nMaxCells );
6316 apCell[nCell] = findOverflowCell(pOld, j);
6317 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6318 nCell++;
6319 }
6320 }else{
6321 u8 *aData = pOld->aData;
6322 u16 maskPage = pOld->maskPage;
6323 u16 cellOffset = pOld->cellOffset;
6324 for(j=0; j<limit; j++){
6325 assert( nCell<nMaxCells );
6326 apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j);
6327 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6328 nCell++;
6329 }
6330 }
danielk19774dbaa892009-06-16 16:50:22 +00006331 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00006332 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00006333 u8 *pTemp;
6334 assert( nCell<nMaxCells );
6335 szCell[nCell] = sz;
6336 pTemp = &aSpace1[iSpace1];
6337 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00006338 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006339 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00006340 memcpy(pTemp, apDiv[i], sz);
6341 apCell[nCell] = pTemp+leafCorrection;
6342 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00006343 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00006344 if( !pOld->leaf ){
6345 assert( leafCorrection==0 );
6346 assert( pOld->hdrOffset==0 );
6347 /* The right pointer of the child page pOld becomes the left
6348 ** pointer of the divider cell */
6349 memcpy(apCell[nCell], &pOld->aData[8], 4);
6350 }else{
6351 assert( leafCorrection==4 );
6352 if( szCell[nCell]<4 ){
6353 /* Do not allow any cells smaller than 4 bytes. */
6354 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00006355 }
6356 }
drh14acc042001-06-10 19:56:58 +00006357 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00006358 }
drh8b2f49b2001-06-08 00:21:52 +00006359 }
6360
6361 /*
drh6019e162001-07-02 17:51:45 +00006362 ** Figure out the number of pages needed to hold all nCell cells.
6363 ** Store this number in "k". Also compute szNew[] which is the total
6364 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00006365 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00006366 ** cntNew[k] should equal nCell.
6367 **
drh96f5b762004-05-16 16:24:36 +00006368 ** Values computed by this block:
6369 **
6370 ** k: The total number of sibling pages
6371 ** szNew[i]: Spaced used on the i-th sibling page.
6372 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
6373 ** the right of the i-th sibling page.
6374 ** usableSpace: Number of bytes of space available on each sibling.
6375 **
drh8b2f49b2001-06-08 00:21:52 +00006376 */
drh43605152004-05-29 21:46:49 +00006377 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00006378 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00006379 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00006380 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00006381 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00006382 szNew[k] = subtotal - szCell[i];
6383 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00006384 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00006385 subtotal = 0;
6386 k++;
drh9978c972010-02-23 17:36:32 +00006387 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00006388 }
6389 }
6390 szNew[k] = subtotal;
6391 cntNew[k] = nCell;
6392 k++;
drh96f5b762004-05-16 16:24:36 +00006393
6394 /*
6395 ** The packing computed by the previous block is biased toward the siblings
6396 ** on the left side. The left siblings are always nearly full, while the
6397 ** right-most sibling might be nearly empty. This block of code attempts
6398 ** to adjust the packing of siblings to get a better balance.
6399 **
6400 ** This adjustment is more than an optimization. The packing above might
6401 ** be so out of balance as to be illegal. For example, the right-most
6402 ** sibling might be completely empty. This adjustment is not optional.
6403 */
drh6019e162001-07-02 17:51:45 +00006404 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00006405 int szRight = szNew[i]; /* Size of sibling on the right */
6406 int szLeft = szNew[i-1]; /* Size of sibling on the left */
6407 int r; /* Index of right-most cell in left sibling */
6408 int d; /* Index of first cell to the left of right sibling */
6409
6410 r = cntNew[i-1] - 1;
6411 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00006412 assert( d<nMaxCells );
6413 assert( r<nMaxCells );
danf64cc492012-08-08 11:55:15 +00006414 while( szRight==0
6415 || (!bBulk && szRight+szCell[d]+2<=szLeft-(szCell[r]+2))
6416 ){
drh43605152004-05-29 21:46:49 +00006417 szRight += szCell[d] + 2;
6418 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00006419 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00006420 r = cntNew[i-1] - 1;
6421 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00006422 }
drh96f5b762004-05-16 16:24:36 +00006423 szNew[i] = szRight;
6424 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00006425 }
drh09d0deb2005-08-02 17:13:09 +00006426
danielk19776f235cc2009-06-04 14:46:08 +00006427 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00006428 ** a virtual root page. A virtual root page is when the real root
6429 ** page is page 1 and we are the only child of that page.
drh2f32fba2012-01-02 16:38:57 +00006430 **
6431 ** UPDATE: The assert() below is not necessarily true if the database
6432 ** file is corrupt. The corruption will be detected and reported later
6433 ** in this procedure so there is no need to act upon it now.
drh09d0deb2005-08-02 17:13:09 +00006434 */
drh2f32fba2012-01-02 16:38:57 +00006435#if 0
drh09d0deb2005-08-02 17:13:09 +00006436 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh2f32fba2012-01-02 16:38:57 +00006437#endif
drh8b2f49b2001-06-08 00:21:52 +00006438
danielk1977e5765212009-06-17 11:13:28 +00006439 TRACE(("BALANCE: old: %d %d %d ",
6440 apOld[0]->pgno,
6441 nOld>=2 ? apOld[1]->pgno : 0,
6442 nOld>=3 ? apOld[2]->pgno : 0
6443 ));
6444
drh8b2f49b2001-06-08 00:21:52 +00006445 /*
drh6b308672002-07-08 02:16:37 +00006446 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00006447 */
drheac74422009-06-14 12:47:11 +00006448 if( apOld[0]->pgno<=1 ){
drh9978c972010-02-23 17:36:32 +00006449 rc = SQLITE_CORRUPT_BKPT;
drheac74422009-06-14 12:47:11 +00006450 goto balance_cleanup;
6451 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006452 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00006453 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00006454 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00006455 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00006456 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00006457 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006458 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00006459 nNew++;
danielk197728129562005-01-11 10:25:06 +00006460 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00006461 }else{
drh7aa8f852006-03-28 00:24:44 +00006462 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00006463 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00006464 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00006465 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00006466 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00006467
6468 /* Set the pointer-map entry for the new sibling page. */
6469 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006470 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006471 if( rc!=SQLITE_OK ){
6472 goto balance_cleanup;
6473 }
6474 }
drh6b308672002-07-08 02:16:37 +00006475 }
drh8b2f49b2001-06-08 00:21:52 +00006476 }
6477
danielk1977299b1872004-11-22 10:02:10 +00006478 /* Free any old pages that were not reused as new pages.
6479 */
6480 while( i<nOld ){
drhc314dc72009-07-21 11:52:34 +00006481 freePage(apOld[i], &rc);
danielk1977299b1872004-11-22 10:02:10 +00006482 if( rc ) goto balance_cleanup;
6483 releasePage(apOld[i]);
6484 apOld[i] = 0;
6485 i++;
6486 }
6487
drh8b2f49b2001-06-08 00:21:52 +00006488 /*
drhf9ffac92002-03-02 19:00:31 +00006489 ** Put the new pages in accending order. This helps to
6490 ** keep entries in the disk file in order so that a scan
6491 ** of the table is a linear scan through the file. That
6492 ** in turn helps the operating system to deliver pages
6493 ** from the disk more rapidly.
6494 **
6495 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00006496 ** n is never more than NB (a small constant), that should
6497 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00006498 **
drhc3b70572003-01-04 19:44:07 +00006499 ** When NB==3, this one optimization makes the database
6500 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00006501 */
6502 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006503 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006504 int minI = i;
6505 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00006506 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00006507 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00006508 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006509 }
6510 }
6511 if( minI>i ){
drhf9ffac92002-03-02 19:00:31 +00006512 MemPage *pT;
drhf9ffac92002-03-02 19:00:31 +00006513 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00006514 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00006515 apNew[minI] = pT;
6516 }
6517 }
danielk1977e5765212009-06-17 11:13:28 +00006518 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00006519 apNew[0]->pgno, szNew[0],
6520 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
6521 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
6522 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
6523 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
6524
6525 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6526 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00006527
drhf9ffac92002-03-02 19:00:31 +00006528 /*
drh14acc042001-06-10 19:56:58 +00006529 ** Evenly distribute the data in apCell[] across the new pages.
6530 ** Insert divider cells into pParent as necessary.
6531 */
6532 j = 0;
6533 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00006534 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00006535 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00006536 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00006537 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00006538 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00006539 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00006540 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00006541
danielk1977ac11ee62005-01-15 12:45:51 +00006542 j = cntNew[i];
6543
6544 /* If the sibling page assembled above was not the right-most sibling,
6545 ** insert a divider cell into the parent page.
6546 */
danielk19771c3d2bf2009-06-23 16:40:17 +00006547 assert( i<nNew-1 || j==nCell );
6548 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00006549 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00006550 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00006551 int sz;
danielk1977634f2982005-03-28 08:44:07 +00006552
6553 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00006554 pCell = apCell[j];
6555 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00006556 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00006557 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00006558 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00006559 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00006560 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00006561 ** then there is no divider cell in apCell[]. Instead, the divider
6562 ** cell consists of the integer key for the right-most cell of
6563 ** the sibling-page assembled above only.
6564 */
drh6f11bef2004-05-13 01:12:56 +00006565 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00006566 j--;
danielk197730548662009-07-09 05:07:37 +00006567 btreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00006568 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00006569 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00006570 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00006571 }else{
6572 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00006573 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00006574 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00006575 ** bytes, then it may actually be smaller than this
danielk197730548662009-07-09 05:07:37 +00006576 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006577 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006578 ** insertCell(), so reparse the cell now.
6579 **
6580 ** Note that this can never happen in an SQLite data file, as all
6581 ** cells are at least 4 bytes. It only happens in b-trees used
6582 ** to evaluate "IN (SELECT ...)" and similar clauses.
6583 */
6584 if( szCell[j]==4 ){
6585 assert(leafCorrection==4);
6586 sz = cellSizePtr(pParent, pCell);
6587 }
drh4b70f112004-05-02 21:12:19 +00006588 }
danielk19776067a9b2009-06-09 09:41:00 +00006589 iOvflSpace += sz;
drhe22e03e2010-08-18 21:19:03 +00006590 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006591 assert( iOvflSpace <= (int)pBt->pageSize );
drh98add2e2009-07-20 17:11:49 +00006592 insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
danielk1977e80463b2004-11-03 03:01:16 +00006593 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006594 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006595
drh14acc042001-06-10 19:56:58 +00006596 j++;
6597 nxDiv++;
6598 }
6599 }
drh6019e162001-07-02 17:51:45 +00006600 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006601 assert( nOld>0 );
6602 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006603 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006604 u8 *zChild = &apCopy[nOld-1]->aData[8];
6605 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006606 }
6607
danielk197713bd99f2009-06-24 05:40:34 +00006608 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6609 /* The root page of the b-tree now contains no cells. The only sibling
6610 ** page is the right-child of the parent. Copy the contents of the
6611 ** child page into the parent, decreasing the overall height of the
6612 ** b-tree structure by one. This is described as the "balance-shallower"
6613 ** sub-algorithm in some documentation.
6614 **
6615 ** If this is an auto-vacuum database, the call to copyNodeContent()
6616 ** sets all pointer-map entries corresponding to database image pages
6617 ** for which the pointer is stored within the content being copied.
6618 **
6619 ** The second assert below verifies that the child page is defragmented
6620 ** (it must be, as it was just reconstructed using assemblePage()). This
6621 ** is important if the parent page happens to be page 1 of the database
6622 ** image. */
6623 assert( nNew==1 );
6624 assert( apNew[0]->nFree ==
6625 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6626 );
drhc314dc72009-07-21 11:52:34 +00006627 copyNodeContent(apNew[0], pParent, &rc);
6628 freePage(apNew[0], &rc);
danielk197713bd99f2009-06-24 05:40:34 +00006629 }else if( ISAUTOVACUUM ){
6630 /* Fix the pointer-map entries for all the cells that were shifted around.
6631 ** There are several different types of pointer-map entries that need to
6632 ** be dealt with by this routine. Some of these have been set already, but
6633 ** many have not. The following is a summary:
6634 **
6635 ** 1) The entries associated with new sibling pages that were not
6636 ** siblings when this function was called. These have already
6637 ** been set. We don't need to worry about old siblings that were
6638 ** moved to the free-list - the freePage() code has taken care
6639 ** of those.
6640 **
6641 ** 2) The pointer-map entries associated with the first overflow
6642 ** page in any overflow chains used by new divider cells. These
6643 ** have also already been taken care of by the insertCell() code.
6644 **
6645 ** 3) If the sibling pages are not leaves, then the child pages of
6646 ** cells stored on the sibling pages may need to be updated.
6647 **
6648 ** 4) If the sibling pages are not internal intkey nodes, then any
6649 ** overflow pages used by these cells may need to be updated
6650 ** (internal intkey nodes never contain pointers to overflow pages).
6651 **
6652 ** 5) If the sibling pages are not leaves, then the pointer-map
6653 ** entries for the right-child pages of each sibling may need
6654 ** to be updated.
6655 **
6656 ** Cases 1 and 2 are dealt with above by other code. The next
6657 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6658 ** setting a pointer map entry is a relatively expensive operation, this
6659 ** code only sets pointer map entries for child or overflow pages that have
6660 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006661 MemPage *pNew = apNew[0];
6662 MemPage *pOld = apCopy[0];
6663 int nOverflow = pOld->nOverflow;
6664 int iNextOld = pOld->nCell + nOverflow;
drh2cbd78b2012-02-02 19:37:18 +00006665 int iOverflow = (nOverflow ? pOld->aiOvfl[0] : -1);
danielk19774dbaa892009-06-16 16:50:22 +00006666 j = 0; /* Current 'old' sibling page */
6667 k = 0; /* Current 'new' sibling page */
drhc314dc72009-07-21 11:52:34 +00006668 for(i=0; i<nCell; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006669 int isDivider = 0;
6670 while( i==iNextOld ){
6671 /* Cell i is the cell immediately following the last cell on old
6672 ** sibling page j. If the siblings are not leaf pages of an
6673 ** intkey b-tree, then cell i was a divider cell. */
drhb07028f2011-10-14 21:49:18 +00006674 assert( j+1 < ArraySize(apCopy) );
drhec739302012-08-14 18:43:39 +00006675 assert( j+1 < nOld );
danielk19774dbaa892009-06-16 16:50:22 +00006676 pOld = apCopy[++j];
6677 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6678 if( pOld->nOverflow ){
6679 nOverflow = pOld->nOverflow;
drh2cbd78b2012-02-02 19:37:18 +00006680 iOverflow = i + !leafData + pOld->aiOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006681 }
6682 isDivider = !leafData;
6683 }
6684
6685 assert(nOverflow>0 || iOverflow<i );
drh2cbd78b2012-02-02 19:37:18 +00006686 assert(nOverflow<2 || pOld->aiOvfl[0]==pOld->aiOvfl[1]-1);
6687 assert(nOverflow<3 || pOld->aiOvfl[1]==pOld->aiOvfl[2]-1);
danielk19774dbaa892009-06-16 16:50:22 +00006688 if( i==iOverflow ){
6689 isDivider = 1;
6690 if( (--nOverflow)>0 ){
6691 iOverflow++;
6692 }
6693 }
6694
6695 if( i==cntNew[k] ){
6696 /* Cell i is the cell immediately following the last cell on new
6697 ** sibling page k. If the siblings are not leaf pages of an
6698 ** intkey b-tree, then cell i is a divider cell. */
6699 pNew = apNew[++k];
6700 if( !leafData ) continue;
6701 }
danielk19774dbaa892009-06-16 16:50:22 +00006702 assert( j<nOld );
6703 assert( k<nNew );
6704
6705 /* If the cell was originally divider cell (and is not now) or
6706 ** an overflow cell, or if the cell was located on a different sibling
6707 ** page before the balancing, then the pointer map entries associated
6708 ** with any child or overflow pages need to be updated. */
6709 if( isDivider || pOld->pgno!=pNew->pgno ){
6710 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006711 ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006712 }
drh98add2e2009-07-20 17:11:49 +00006713 if( szCell[i]>pNew->minLocal ){
6714 ptrmapPutOvflPtr(pNew, apCell[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006715 }
6716 }
6717 }
6718
6719 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006720 for(i=0; i<nNew; i++){
6721 u32 key = get4byte(&apNew[i]->aData[8]);
6722 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006723 }
6724 }
6725
6726#if 0
6727 /* The ptrmapCheckPages() contains assert() statements that verify that
6728 ** all pointer map pages are set correctly. This is helpful while
6729 ** debugging. This is usually disabled because a corrupt database may
6730 ** cause an assert() statement to fail. */
6731 ptrmapCheckPages(apNew, nNew);
6732 ptrmapCheckPages(&pParent, 1);
6733#endif
6734 }
6735
danielk197771d5d2c2008-09-29 11:49:47 +00006736 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006737 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6738 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006739
drh8b2f49b2001-06-08 00:21:52 +00006740 /*
drh14acc042001-06-10 19:56:58 +00006741 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006742 */
drh14acc042001-06-10 19:56:58 +00006743balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006744 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006745 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006746 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006747 }
drh14acc042001-06-10 19:56:58 +00006748 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006749 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006750 }
danielk1977eaa06f62008-09-18 17:34:44 +00006751
drh8b2f49b2001-06-08 00:21:52 +00006752 return rc;
6753}
mistachkine7c54162012-10-02 22:54:27 +00006754#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6755#pragma optimize("", on)
6756#endif
drh8b2f49b2001-06-08 00:21:52 +00006757
drh43605152004-05-29 21:46:49 +00006758
6759/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006760** This function is called when the root page of a b-tree structure is
6761** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006762**
danielk1977a50d9aa2009-06-08 14:49:45 +00006763** A new child page is allocated and the contents of the current root
6764** page, including overflow cells, are copied into the child. The root
6765** page is then overwritten to make it an empty page with the right-child
6766** pointer pointing to the new page.
6767**
6768** Before returning, all pointer-map entries corresponding to pages
6769** that the new child-page now contains pointers to are updated. The
6770** entry corresponding to the new right-child pointer of the root
6771** page is also updated.
6772**
6773** If successful, *ppChild is set to contain a reference to the child
6774** page and SQLITE_OK is returned. In this case the caller is required
6775** to call releasePage() on *ppChild exactly once. If an error occurs,
6776** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006777*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006778static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6779 int rc; /* Return value from subprocedures */
6780 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00006781 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00006782 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006783
danielk1977a50d9aa2009-06-08 14:49:45 +00006784 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006785 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006786
danielk1977a50d9aa2009-06-08 14:49:45 +00006787 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6788 ** page that will become the new right-child of pPage. Copy the contents
6789 ** of the node stored on pRoot into the new child page.
6790 */
drh98add2e2009-07-20 17:11:49 +00006791 rc = sqlite3PagerWrite(pRoot->pDbPage);
6792 if( rc==SQLITE_OK ){
6793 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00006794 copyNodeContent(pRoot, pChild, &rc);
6795 if( ISAUTOVACUUM ){
6796 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00006797 }
6798 }
6799 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006800 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006801 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006802 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006803 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006804 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6805 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6806 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006807
danielk1977a50d9aa2009-06-08 14:49:45 +00006808 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6809
6810 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00006811 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
6812 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
6813 memcpy(pChild->apOvfl, pRoot->apOvfl,
6814 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00006815 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006816
6817 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6818 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6819 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6820
6821 *ppChild = pChild;
6822 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006823}
6824
6825/*
danielk197771d5d2c2008-09-29 11:49:47 +00006826** The page that pCur currently points to has just been modified in
6827** some way. This function figures out if this modification means the
6828** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006829** routine. Balancing routines are:
6830**
6831** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006832** balance_deeper()
6833** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006834*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006835static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006836 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006837 const int nMin = pCur->pBt->usableSize * 2 / 3;
6838 u8 aBalanceQuickSpace[13];
6839 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006840
shane75ac1de2009-06-09 18:58:52 +00006841 TESTONLY( int balance_quick_called = 0 );
6842 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006843
6844 do {
6845 int iPage = pCur->iPage;
6846 MemPage *pPage = pCur->apPage[iPage];
6847
6848 if( iPage==0 ){
6849 if( pPage->nOverflow ){
6850 /* The root page of the b-tree is overfull. In this case call the
6851 ** balance_deeper() function to create a new child for the root-page
6852 ** and copy the current contents of the root-page to it. The
6853 ** next iteration of the do-loop will balance the child page.
6854 */
6855 assert( (balance_deeper_called++)==0 );
6856 rc = balance_deeper(pPage, &pCur->apPage[1]);
6857 if( rc==SQLITE_OK ){
6858 pCur->iPage = 1;
6859 pCur->aiIdx[0] = 0;
6860 pCur->aiIdx[1] = 0;
6861 assert( pCur->apPage[1]->nOverflow );
6862 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006863 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006864 break;
6865 }
6866 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6867 break;
6868 }else{
6869 MemPage * const pParent = pCur->apPage[iPage-1];
6870 int const iIdx = pCur->aiIdx[iPage-1];
6871
6872 rc = sqlite3PagerWrite(pParent->pDbPage);
6873 if( rc==SQLITE_OK ){
6874#ifndef SQLITE_OMIT_QUICKBALANCE
6875 if( pPage->hasData
6876 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00006877 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00006878 && pParent->pgno!=1
6879 && pParent->nCell==iIdx
6880 ){
6881 /* Call balance_quick() to create a new sibling of pPage on which
6882 ** to store the overflow cell. balance_quick() inserts a new cell
6883 ** into pParent, which may cause pParent overflow. If this
6884 ** happens, the next interation of the do-loop will balance pParent
6885 ** use either balance_nonroot() or balance_deeper(). Until this
6886 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6887 ** buffer.
6888 **
6889 ** The purpose of the following assert() is to check that only a
6890 ** single call to balance_quick() is made for each call to this
6891 ** function. If this were not verified, a subtle bug involving reuse
6892 ** of the aBalanceQuickSpace[] might sneak in.
6893 */
6894 assert( (balance_quick_called++)==0 );
6895 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6896 }else
6897#endif
6898 {
6899 /* In this case, call balance_nonroot() to redistribute cells
6900 ** between pPage and up to 2 of its sibling pages. This involves
6901 ** modifying the contents of pParent, which may cause pParent to
6902 ** become overfull or underfull. The next iteration of the do-loop
6903 ** will balance the parent page to correct this.
6904 **
6905 ** If the parent page becomes overfull, the overflow cell or cells
6906 ** are stored in the pSpace buffer allocated immediately below.
6907 ** A subsequent iteration of the do-loop will deal with this by
6908 ** calling balance_nonroot() (balance_deeper() may be called first,
6909 ** but it doesn't deal with overflow cells - just moves them to a
6910 ** different page). Once this subsequent call to balance_nonroot()
6911 ** has completed, it is safe to release the pSpace buffer used by
6912 ** the previous call, as the overflow cell data will have been
6913 ** copied either into the body of a database page or into the new
6914 ** pSpace buffer passed to the latter call to balance_nonroot().
6915 */
6916 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
dan428c2182012-08-06 18:50:11 +00006917 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, pCur->hints);
danielk1977a50d9aa2009-06-08 14:49:45 +00006918 if( pFree ){
6919 /* If pFree is not NULL, it points to the pSpace buffer used
6920 ** by a previous call to balance_nonroot(). Its contents are
6921 ** now stored either on real database pages or within the
6922 ** new pSpace buffer, so it may be safely freed here. */
6923 sqlite3PageFree(pFree);
6924 }
6925
danielk19774dbaa892009-06-16 16:50:22 +00006926 /* The pSpace buffer will be freed after the next call to
6927 ** balance_nonroot(), or just before this function returns, whichever
6928 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006929 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00006930 }
6931 }
6932
6933 pPage->nOverflow = 0;
6934
6935 /* The next iteration of the do-loop balances the parent page. */
6936 releasePage(pPage);
6937 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006938 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006939 }while( rc==SQLITE_OK );
6940
6941 if( pFree ){
6942 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006943 }
6944 return rc;
6945}
6946
drhf74b8d92002-09-01 23:20:45 +00006947
6948/*
drh3b7511c2001-05-26 13:15:44 +00006949** Insert a new record into the BTree. The key is given by (pKey,nKey)
6950** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006951** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006952** is left pointing at a random location.
6953**
6954** For an INTKEY table, only the nKey value of the key is used. pKey is
6955** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006956**
6957** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00006958** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00006959** been performed. seekResult is the search result returned (a negative
6960** number if pCur points at an entry that is smaller than (pKey, nKey), or
6961** a positive value if pCur points at an etry that is larger than
6962** (pKey, nKey)).
6963**
drh3e9ca092009-09-08 01:14:48 +00006964** If the seekResult parameter is non-zero, then the caller guarantees that
6965** cursor pCur is pointing at the existing copy of a row that is to be
6966** overwritten. If the seekResult parameter is 0, then cursor pCur may
6967** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00006968** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006969*/
drh3aac2dd2004-04-26 14:10:20 +00006970int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006971 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006972 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006973 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006974 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006975 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00006976 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00006977){
drh3b7511c2001-05-26 13:15:44 +00006978 int rc;
drh3e9ca092009-09-08 01:14:48 +00006979 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00006980 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006981 int idx;
drh3b7511c2001-05-26 13:15:44 +00006982 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006983 Btree *p = pCur->pBtree;
6984 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006985 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006986 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006987
drh98add2e2009-07-20 17:11:49 +00006988 if( pCur->eState==CURSOR_FAULT ){
6989 assert( pCur->skipNext!=SQLITE_OK );
6990 return pCur->skipNext;
6991 }
6992
drh1fee73e2007-08-29 04:00:57 +00006993 assert( cursorHoldsMutex(pCur) );
drhc9166342012-01-05 23:32:06 +00006994 assert( pCur->wrFlag && pBt->inTransaction==TRANS_WRITE
6995 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00006996 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6997
danielk197731d31b82009-07-13 13:18:07 +00006998 /* Assert that the caller has been consistent. If this cursor was opened
6999 ** expecting an index b-tree, then the caller should be inserting blob
7000 ** keys with no associated data. If the cursor was opened expecting an
7001 ** intkey table, the caller should be inserting integer keys with a
7002 ** blob of associated data. */
7003 assert( (pKey==0)==(pCur->pKeyInfo==0) );
7004
danielk19779c3acf32009-05-02 07:36:49 +00007005 /* Save the positions of any other cursors open on this table.
7006 **
danielk19773509a652009-07-06 18:56:13 +00007007 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00007008 ** example, when inserting data into a table with auto-generated integer
7009 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
7010 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00007011 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00007012 ** that the cursor is already where it needs to be and returns without
7013 ** doing any work. To avoid thwarting these optimizations, it is important
7014 ** not to clear the cursor here.
7015 */
drh4c301aa2009-07-15 17:25:45 +00007016 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7017 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007018
7019 /* If this is an insert into a table b-tree, invalidate any incrblob
7020 ** cursors open on the row being replaced (assuming this is a replace
7021 ** operation - if it is not, the following is a no-op). */
7022 if( pCur->pKeyInfo==0 ){
7023 invalidateIncrblobCursors(p, nKey, 0);
7024 }
7025
drh4c301aa2009-07-15 17:25:45 +00007026 if( !loc ){
7027 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
7028 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00007029 }
danielk1977b980d2212009-06-22 18:03:51 +00007030 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00007031
danielk197771d5d2c2008-09-29 11:49:47 +00007032 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00007033 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00007034 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00007035
drh3a4c1412004-05-09 20:40:11 +00007036 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
7037 pCur->pgnoRoot, nKey, nData, pPage->pgno,
7038 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00007039 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00007040 allocateTempSpace(pBt);
7041 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00007042 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00007043 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00007044 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00007045 assert( szNew==cellSizePtr(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00007046 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00007047 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00007048 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00007049 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00007050 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00007051 rc = sqlite3PagerWrite(pPage->pDbPage);
7052 if( rc ){
7053 goto end_insert;
7054 }
danielk197771d5d2c2008-09-29 11:49:47 +00007055 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00007056 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007057 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00007058 }
drh43605152004-05-29 21:46:49 +00007059 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00007060 rc = clearCell(pPage, oldCell);
drh98add2e2009-07-20 17:11:49 +00007061 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00007062 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00007063 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00007064 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00007065 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00007066 }else{
drh4b70f112004-05-02 21:12:19 +00007067 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00007068 }
drh98add2e2009-07-20 17:11:49 +00007069 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00007070 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00007071
mistachkin48864df2013-03-21 21:20:32 +00007072 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00007073 ** to redistribute the cells within the tree. Since balance() may move
7074 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
7075 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00007076 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007077 ** Previous versions of SQLite called moveToRoot() to move the cursor
7078 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00007079 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
7080 ** set the cursor state to "invalid". This makes common insert operations
7081 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00007082 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007083 ** There is a subtle but important optimization here too. When inserting
7084 ** multiple records into an intkey b-tree using a single cursor (as can
7085 ** happen while processing an "INSERT INTO ... SELECT" statement), it
7086 ** is advantageous to leave the cursor pointing to the last entry in
7087 ** the b-tree if possible. If the cursor is left pointing to the last
7088 ** entry in the table, and the next row inserted has an integer key
7089 ** larger than the largest existing key, it is possible to insert the
7090 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00007091 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007092 pCur->info.nSize = 0;
7093 pCur->validNKey = 0;
7094 if( rc==SQLITE_OK && pPage->nOverflow ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007095 rc = balance(pCur);
7096
7097 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00007098 ** fails. Internal data structure corruption will result otherwise.
7099 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
7100 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007101 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00007102 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00007103 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007104 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00007105
drh2e38c322004-09-03 18:38:44 +00007106end_insert:
drh5e2f8b92001-05-28 00:41:15 +00007107 return rc;
7108}
7109
7110/*
drh4b70f112004-05-02 21:12:19 +00007111** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00007112** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00007113*/
drh3aac2dd2004-04-26 14:10:20 +00007114int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00007115 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00007116 BtShared *pBt = p->pBt;
7117 int rc; /* Return code */
7118 MemPage *pPage; /* Page to delete cell from */
7119 unsigned char *pCell; /* Pointer to cell to delete */
7120 int iCellIdx; /* Index of cell to delete */
7121 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00007122
drh1fee73e2007-08-29 04:00:57 +00007123 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00007124 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007125 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh64022502009-01-09 14:11:04 +00007126 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00007127 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7128 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
7129
danielk19774dbaa892009-06-16 16:50:22 +00007130 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
7131 || NEVER(pCur->eState!=CURSOR_VALID)
7132 ){
7133 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00007134 }
danielk1977da184232006-01-05 11:34:32 +00007135
danielk19774dbaa892009-06-16 16:50:22 +00007136 iCellDepth = pCur->iPage;
7137 iCellIdx = pCur->aiIdx[iCellDepth];
7138 pPage = pCur->apPage[iCellDepth];
7139 pCell = findCell(pPage, iCellIdx);
7140
7141 /* If the page containing the entry to delete is not a leaf page, move
7142 ** the cursor to the largest entry in the tree that is smaller than
7143 ** the entry being deleted. This cell will replace the cell being deleted
7144 ** from the internal node. The 'previous' entry is used for this instead
7145 ** of the 'next' entry, as the previous entry is always a part of the
7146 ** sub-tree headed by the child page of the cell being deleted. This makes
7147 ** balancing the tree following the delete operation easier. */
7148 if( !pPage->leaf ){
7149 int notUsed;
drh4c301aa2009-07-15 17:25:45 +00007150 rc = sqlite3BtreePrevious(pCur, &notUsed);
7151 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00007152 }
7153
7154 /* Save the positions of any other cursors open on this table before
7155 ** making any modifications. Make the page containing the entry to be
7156 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00007157 ** entry and finally remove the cell itself from within the page.
7158 */
7159 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7160 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007161
7162 /* If this is a delete operation to remove a row from a table b-tree,
7163 ** invalidate any incrblob cursors open on the row being deleted. */
7164 if( pCur->pKeyInfo==0 ){
7165 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
7166 }
7167
drha4ec1d42009-07-11 13:13:11 +00007168 rc = sqlite3PagerWrite(pPage->pDbPage);
7169 if( rc ) return rc;
7170 rc = clearCell(pPage, pCell);
drh98add2e2009-07-20 17:11:49 +00007171 dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
drha4ec1d42009-07-11 13:13:11 +00007172 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00007173
danielk19774dbaa892009-06-16 16:50:22 +00007174 /* If the cell deleted was not located on a leaf page, then the cursor
7175 ** is currently pointing to the largest entry in the sub-tree headed
7176 ** by the child-page of the cell that was just deleted from an internal
7177 ** node. The cell from the leaf node needs to be moved to the internal
7178 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00007179 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00007180 MemPage *pLeaf = pCur->apPage[pCur->iPage];
7181 int nCell;
7182 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
7183 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00007184
danielk19774dbaa892009-06-16 16:50:22 +00007185 pCell = findCell(pLeaf, pLeaf->nCell-1);
7186 nCell = cellSizePtr(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00007187 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007188
danielk19774dbaa892009-06-16 16:50:22 +00007189 allocateTempSpace(pBt);
7190 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00007191
drha4ec1d42009-07-11 13:13:11 +00007192 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00007193 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
7194 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00007195 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00007196 }
danielk19774dbaa892009-06-16 16:50:22 +00007197
7198 /* Balance the tree. If the entry deleted was located on a leaf page,
7199 ** then the cursor still points to that page. In this case the first
7200 ** call to balance() repairs the tree, and the if(...) condition is
7201 ** never true.
7202 **
7203 ** Otherwise, if the entry deleted was on an internal node page, then
7204 ** pCur is pointing to the leaf page from which a cell was removed to
7205 ** replace the cell deleted from the internal node. This is slightly
7206 ** tricky as the leaf node may be underfull, and the internal node may
7207 ** be either under or overfull. In this case run the balancing algorithm
7208 ** on the leaf node first. If the balance proceeds far enough up the
7209 ** tree that we can be sure that any problem in the internal node has
7210 ** been corrected, so be it. Otherwise, after balancing the leaf node,
7211 ** walk the cursor up the tree to the internal node and balance it as
7212 ** well. */
7213 rc = balance(pCur);
7214 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
7215 while( pCur->iPage>iCellDepth ){
7216 releasePage(pCur->apPage[pCur->iPage--]);
7217 }
7218 rc = balance(pCur);
7219 }
7220
danielk19776b456a22005-03-21 04:04:02 +00007221 if( rc==SQLITE_OK ){
7222 moveToRoot(pCur);
7223 }
drh5e2f8b92001-05-28 00:41:15 +00007224 return rc;
drh3b7511c2001-05-26 13:15:44 +00007225}
drh8b2f49b2001-06-08 00:21:52 +00007226
7227/*
drhc6b52df2002-01-04 03:09:29 +00007228** Create a new BTree table. Write into *piTable the page
7229** number for the root page of the new table.
7230**
drhab01f612004-05-22 02:55:23 +00007231** The type of type is determined by the flags parameter. Only the
7232** following values of flags are currently in use. Other values for
7233** flags might not work:
7234**
7235** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
7236** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00007237*/
drhd4187c72010-08-30 22:15:45 +00007238static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00007239 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007240 MemPage *pRoot;
7241 Pgno pgnoRoot;
7242 int rc;
drhd4187c72010-08-30 22:15:45 +00007243 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00007244
drh1fee73e2007-08-29 04:00:57 +00007245 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007246 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007247 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00007248
danielk1977003ba062004-11-04 02:57:33 +00007249#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00007250 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00007251 if( rc ){
7252 return rc;
7253 }
danielk1977003ba062004-11-04 02:57:33 +00007254#else
danielk1977687566d2004-11-02 12:56:41 +00007255 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00007256 Pgno pgnoMove; /* Move a page here to make room for the root-page */
7257 MemPage *pPageMove; /* The page to move to. */
7258
danielk197720713f32007-05-03 11:43:33 +00007259 /* Creating a new table may probably require moving an existing database
7260 ** to make room for the new tables root page. In case this page turns
7261 ** out to be an overflow page, delete all overflow page-map caches
7262 ** held by open cursors.
7263 */
danielk197792d4d7a2007-05-04 12:05:56 +00007264 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00007265
danielk1977003ba062004-11-04 02:57:33 +00007266 /* Read the value of meta[3] from the database to determine where the
7267 ** root page of the new table should go. meta[3] is the largest root-page
7268 ** created so far, so the new root-page is (meta[3]+1).
7269 */
danielk1977602b4662009-07-02 07:47:33 +00007270 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00007271 pgnoRoot++;
7272
danielk1977599fcba2004-11-08 07:13:13 +00007273 /* The new root-page may not be allocated on a pointer-map page, or the
7274 ** PENDING_BYTE page.
7275 */
drh72190432008-01-31 14:54:43 +00007276 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00007277 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00007278 pgnoRoot++;
7279 }
7280 assert( pgnoRoot>=3 );
7281
7282 /* Allocate a page. The page that currently resides at pgnoRoot will
7283 ** be moved to the allocated page (unless the allocated page happens
7284 ** to reside at pgnoRoot).
7285 */
dan51f0b6d2013-02-22 20:16:34 +00007286 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00007287 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00007288 return rc;
7289 }
danielk1977003ba062004-11-04 02:57:33 +00007290
7291 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00007292 /* pgnoRoot is the page that will be used for the root-page of
7293 ** the new table (assuming an error did not occur). But we were
7294 ** allocated pgnoMove. If required (i.e. if it was not allocated
7295 ** by extending the file), the current page at position pgnoMove
7296 ** is already journaled.
7297 */
drheeb844a2009-08-08 18:01:07 +00007298 u8 eType = 0;
7299 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00007300
danf7679ad2013-04-03 11:38:36 +00007301 /* Save the positions of any open cursors. This is required in
7302 ** case they are holding a reference to an xFetch reference
7303 ** corresponding to page pgnoRoot. */
7304 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00007305 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00007306 if( rc!=SQLITE_OK ){
7307 return rc;
7308 }
danielk1977f35843b2007-04-07 15:03:17 +00007309
7310 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00007311 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007312 if( rc!=SQLITE_OK ){
7313 return rc;
7314 }
7315 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00007316 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
7317 rc = SQLITE_CORRUPT_BKPT;
7318 }
7319 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00007320 releasePage(pRoot);
7321 return rc;
7322 }
drhccae6022005-02-26 17:31:26 +00007323 assert( eType!=PTRMAP_ROOTPAGE );
7324 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00007325 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00007326 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00007327
7328 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00007329 if( rc!=SQLITE_OK ){
7330 return rc;
7331 }
drhb00fc3b2013-08-21 23:42:32 +00007332 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007333 if( rc!=SQLITE_OK ){
7334 return rc;
7335 }
danielk19773b8a05f2007-03-19 17:44:26 +00007336 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00007337 if( rc!=SQLITE_OK ){
7338 releasePage(pRoot);
7339 return rc;
7340 }
7341 }else{
7342 pRoot = pPageMove;
7343 }
7344
danielk197742741be2005-01-08 12:42:39 +00007345 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00007346 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00007347 if( rc ){
7348 releasePage(pRoot);
7349 return rc;
7350 }
drhbf592832010-03-30 15:51:12 +00007351
7352 /* When the new root page was allocated, page 1 was made writable in
7353 ** order either to increase the database filesize, or to decrement the
7354 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
7355 */
7356 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00007357 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00007358 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00007359 releasePage(pRoot);
7360 return rc;
7361 }
danielk197742741be2005-01-08 12:42:39 +00007362
danielk1977003ba062004-11-04 02:57:33 +00007363 }else{
drh4f0c5872007-03-26 22:05:01 +00007364 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00007365 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00007366 }
7367#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007368 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00007369 if( createTabFlags & BTREE_INTKEY ){
7370 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
7371 }else{
7372 ptfFlags = PTF_ZERODATA | PTF_LEAF;
7373 }
7374 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00007375 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00007376 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00007377 *piTable = (int)pgnoRoot;
7378 return SQLITE_OK;
7379}
drhd677b3d2007-08-20 22:48:41 +00007380int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
7381 int rc;
7382 sqlite3BtreeEnter(p);
7383 rc = btreeCreateTable(p, piTable, flags);
7384 sqlite3BtreeLeave(p);
7385 return rc;
7386}
drh8b2f49b2001-06-08 00:21:52 +00007387
7388/*
7389** Erase the given database page and all its children. Return
7390** the page to the freelist.
7391*/
drh4b70f112004-05-02 21:12:19 +00007392static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00007393 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00007394 Pgno pgno, /* Page number to clear */
7395 int freePageFlag, /* Deallocate page if true */
7396 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00007397){
danielk1977146ba992009-07-22 14:08:13 +00007398 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00007399 int rc;
drh4b70f112004-05-02 21:12:19 +00007400 unsigned char *pCell;
7401 int i;
drh8b2f49b2001-06-08 00:21:52 +00007402
drh1fee73e2007-08-29 04:00:57 +00007403 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00007404 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00007405 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00007406 }
7407
dan11dcd112013-03-15 18:29:18 +00007408 rc = getAndInitPage(pBt, pgno, &pPage, 0);
danielk1977146ba992009-07-22 14:08:13 +00007409 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00007410 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00007411 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00007412 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007413 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007414 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007415 }
drh4b70f112004-05-02 21:12:19 +00007416 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00007417 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007418 }
drha34b6762004-05-07 13:30:42 +00007419 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007420 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007421 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00007422 }else if( pnChange ){
7423 assert( pPage->intKey );
7424 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00007425 }
7426 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00007427 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00007428 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00007429 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00007430 }
danielk19776b456a22005-03-21 04:04:02 +00007431
7432cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00007433 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00007434 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007435}
7436
7437/*
drhab01f612004-05-22 02:55:23 +00007438** Delete all information from a single table in the database. iTable is
7439** the page number of the root of the table. After this routine returns,
7440** the root page is empty, but still exists.
7441**
7442** This routine will fail with SQLITE_LOCKED if there are any open
7443** read cursors on the table. Open write cursors are moved to the
7444** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00007445**
7446** If pnChange is not NULL, then table iTable must be an intkey table. The
7447** integer value pointed to by pnChange is incremented by the number of
7448** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00007449*/
danielk1977c7af4842008-10-27 13:59:33 +00007450int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00007451 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00007452 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00007453 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007454 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00007455
drhc046e3e2009-07-15 11:26:44 +00007456 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00007457
drhc046e3e2009-07-15 11:26:44 +00007458 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00007459 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
7460 ** is the root of a table b-tree - if it is not, the following call is
7461 ** a no-op). */
7462 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00007463 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00007464 }
drhd677b3d2007-08-20 22:48:41 +00007465 sqlite3BtreeLeave(p);
7466 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007467}
7468
7469/*
7470** Erase all information in a table and add the root of the table to
7471** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00007472** page 1) is never added to the freelist.
7473**
7474** This routine will fail with SQLITE_LOCKED if there are any open
7475** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00007476**
7477** If AUTOVACUUM is enabled and the page at iTable is not the last
7478** root page in the database file, then the last root page
7479** in the database file is moved into the slot formerly occupied by
7480** iTable and that last slot formerly occupied by the last root page
7481** is added to the freelist instead of iTable. In this say, all
7482** root pages are kept at the beginning of the database file, which
7483** is necessary for AUTOVACUUM to work right. *piMoved is set to the
7484** page number that used to be the last root page in the file before
7485** the move. If no page gets moved, *piMoved is set to 0.
7486** The last root page is recorded in meta[3] and the value of
7487** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00007488*/
danielk197789d40042008-11-17 14:20:56 +00007489static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00007490 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00007491 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00007492 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00007493
drh1fee73e2007-08-29 04:00:57 +00007494 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007495 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00007496
danielk1977e6efa742004-11-10 11:55:10 +00007497 /* It is illegal to drop a table if any cursors are open on the
7498 ** database. This is because in auto-vacuum mode the backend may
7499 ** need to move another root-page to fill a gap left by the deleted
7500 ** root page. If an open cursor was using this page a problem would
7501 ** occur.
drhc046e3e2009-07-15 11:26:44 +00007502 **
7503 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00007504 */
drhc046e3e2009-07-15 11:26:44 +00007505 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00007506 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
7507 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00007508 }
danielk1977a0bf2652004-11-04 14:30:04 +00007509
drhb00fc3b2013-08-21 23:42:32 +00007510 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00007511 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00007512 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00007513 if( rc ){
7514 releasePage(pPage);
7515 return rc;
7516 }
danielk1977a0bf2652004-11-04 14:30:04 +00007517
drh205f48e2004-11-05 00:43:11 +00007518 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00007519
drh4b70f112004-05-02 21:12:19 +00007520 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00007521#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00007522 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007523 releasePage(pPage);
7524#else
7525 if( pBt->autoVacuum ){
7526 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00007527 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007528
7529 if( iTable==maxRootPgno ){
7530 /* If the table being dropped is the table with the largest root-page
7531 ** number in the database, put the root page on the free list.
7532 */
drhc314dc72009-07-21 11:52:34 +00007533 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007534 releasePage(pPage);
7535 if( rc!=SQLITE_OK ){
7536 return rc;
7537 }
7538 }else{
7539 /* The table being dropped does not have the largest root-page
7540 ** number in the database. So move the page that does into the
7541 ** gap left by the deleted root-page.
7542 */
7543 MemPage *pMove;
7544 releasePage(pPage);
drhb00fc3b2013-08-21 23:42:32 +00007545 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007546 if( rc!=SQLITE_OK ){
7547 return rc;
7548 }
danielk19774c999992008-07-16 18:17:55 +00007549 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007550 releasePage(pMove);
7551 if( rc!=SQLITE_OK ){
7552 return rc;
7553 }
drhfe3313f2009-07-21 19:02:20 +00007554 pMove = 0;
drhb00fc3b2013-08-21 23:42:32 +00007555 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00007556 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007557 releasePage(pMove);
7558 if( rc!=SQLITE_OK ){
7559 return rc;
7560 }
7561 *piMoved = maxRootPgno;
7562 }
7563
danielk1977599fcba2004-11-08 07:13:13 +00007564 /* Set the new 'max-root-page' value in the database header. This
7565 ** is the old value less one, less one more if that happens to
7566 ** be a root-page number, less one again if that is the
7567 ** PENDING_BYTE_PAGE.
7568 */
danielk197787a6e732004-11-05 12:58:25 +00007569 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00007570 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
7571 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00007572 maxRootPgno--;
7573 }
danielk1977599fcba2004-11-08 07:13:13 +00007574 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
7575
danielk1977aef0bf62005-12-30 16:28:01 +00007576 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007577 }else{
drhc314dc72009-07-21 11:52:34 +00007578 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007579 releasePage(pPage);
7580 }
7581#endif
drh2aa679f2001-06-25 02:11:07 +00007582 }else{
drhc046e3e2009-07-15 11:26:44 +00007583 /* If sqlite3BtreeDropTable was called on page 1.
7584 ** This really never should happen except in a corrupt
7585 ** database.
7586 */
drha34b6762004-05-07 13:30:42 +00007587 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00007588 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00007589 }
drh8b2f49b2001-06-08 00:21:52 +00007590 return rc;
7591}
drhd677b3d2007-08-20 22:48:41 +00007592int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
7593 int rc;
7594 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00007595 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00007596 sqlite3BtreeLeave(p);
7597 return rc;
7598}
drh8b2f49b2001-06-08 00:21:52 +00007599
drh001bbcb2003-03-19 03:14:00 +00007600
drh8b2f49b2001-06-08 00:21:52 +00007601/*
danielk1977602b4662009-07-02 07:47:33 +00007602** This function may only be called if the b-tree connection already
7603** has a read or write transaction open on the database.
7604**
drh23e11ca2004-05-04 17:27:28 +00007605** Read the meta-information out of a database file. Meta[0]
7606** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00007607** through meta[15] are available for use by higher layers. Meta[0]
7608** is read-only, the others are read/write.
7609**
7610** The schema layer numbers meta values differently. At the schema
7611** layer (and the SetCookie and ReadCookie opcodes) the number of
7612** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00007613*/
danielk1977602b4662009-07-02 07:47:33 +00007614void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007615 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007616
drhd677b3d2007-08-20 22:48:41 +00007617 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007618 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007619 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007620 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007621 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007622
danielk1977602b4662009-07-02 07:47:33 +00007623 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007624
danielk1977602b4662009-07-02 07:47:33 +00007625 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7626 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007627#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00007628 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
7629 pBt->btsFlags |= BTS_READ_ONLY;
7630 }
danielk1977003ba062004-11-04 02:57:33 +00007631#endif
drhae157872004-08-14 19:20:09 +00007632
drhd677b3d2007-08-20 22:48:41 +00007633 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007634}
7635
7636/*
drh23e11ca2004-05-04 17:27:28 +00007637** Write meta-information back into the database. Meta[0] is
7638** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007639*/
danielk1977aef0bf62005-12-30 16:28:01 +00007640int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7641 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007642 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007643 int rc;
drh23e11ca2004-05-04 17:27:28 +00007644 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007645 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007646 assert( p->inTrans==TRANS_WRITE );
7647 assert( pBt->pPage1!=0 );
7648 pP1 = pBt->pPage1->aData;
7649 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7650 if( rc==SQLITE_OK ){
7651 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007652#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007653 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007654 assert( pBt->autoVacuum || iMeta==0 );
7655 assert( iMeta==0 || iMeta==1 );
7656 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007657 }
drh64022502009-01-09 14:11:04 +00007658#endif
drh5df72a52002-06-06 23:16:05 +00007659 }
drhd677b3d2007-08-20 22:48:41 +00007660 sqlite3BtreeLeave(p);
7661 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007662}
drh8c42ca92001-06-22 19:15:00 +00007663
danielk1977a5533162009-02-24 10:01:51 +00007664#ifndef SQLITE_OMIT_BTREECOUNT
7665/*
7666** The first argument, pCur, is a cursor opened on some b-tree. Count the
7667** number of entries in the b-tree and write the result to *pnEntry.
7668**
7669** SQLITE_OK is returned if the operation is successfully executed.
7670** Otherwise, if an error is encountered (i.e. an IO error or database
7671** corruption) an SQLite error code is returned.
7672*/
7673int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7674 i64 nEntry = 0; /* Value to return in *pnEntry */
7675 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00007676
7677 if( pCur->pgnoRoot==0 ){
7678 *pnEntry = 0;
7679 return SQLITE_OK;
7680 }
danielk1977a5533162009-02-24 10:01:51 +00007681 rc = moveToRoot(pCur);
7682
7683 /* Unless an error occurs, the following loop runs one iteration for each
7684 ** page in the B-Tree structure (not including overflow pages).
7685 */
7686 while( rc==SQLITE_OK ){
7687 int iIdx; /* Index of child node in parent */
7688 MemPage *pPage; /* Current page of the b-tree */
7689
7690 /* If this is a leaf page or the tree is not an int-key tree, then
7691 ** this page contains countable entries. Increment the entry counter
7692 ** accordingly.
7693 */
7694 pPage = pCur->apPage[pCur->iPage];
7695 if( pPage->leaf || !pPage->intKey ){
7696 nEntry += pPage->nCell;
7697 }
7698
7699 /* pPage is a leaf node. This loop navigates the cursor so that it
7700 ** points to the first interior cell that it points to the parent of
7701 ** the next page in the tree that has not yet been visited. The
7702 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7703 ** of the page, or to the number of cells in the page if the next page
7704 ** to visit is the right-child of its parent.
7705 **
7706 ** If all pages in the tree have been visited, return SQLITE_OK to the
7707 ** caller.
7708 */
7709 if( pPage->leaf ){
7710 do {
7711 if( pCur->iPage==0 ){
7712 /* All pages of the b-tree have been visited. Return successfully. */
7713 *pnEntry = nEntry;
7714 return SQLITE_OK;
7715 }
danielk197730548662009-07-09 05:07:37 +00007716 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00007717 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7718
7719 pCur->aiIdx[pCur->iPage]++;
7720 pPage = pCur->apPage[pCur->iPage];
7721 }
7722
7723 /* Descend to the child node of the cell that the cursor currently
7724 ** points at. This is the right-child if (iIdx==pPage->nCell).
7725 */
7726 iIdx = pCur->aiIdx[pCur->iPage];
7727 if( iIdx==pPage->nCell ){
7728 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7729 }else{
7730 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7731 }
7732 }
7733
shanebe217792009-03-05 04:20:31 +00007734 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007735 return rc;
7736}
7737#endif
drhdd793422001-06-28 01:54:48 +00007738
drhdd793422001-06-28 01:54:48 +00007739/*
drh5eddca62001-06-30 21:53:53 +00007740** Return the pager associated with a BTree. This routine is used for
7741** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007742*/
danielk1977aef0bf62005-12-30 16:28:01 +00007743Pager *sqlite3BtreePager(Btree *p){
7744 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007745}
drh5eddca62001-06-30 21:53:53 +00007746
drhb7f91642004-10-31 02:22:47 +00007747#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007748/*
7749** Append a message to the error message string.
7750*/
drh2e38c322004-09-03 18:38:44 +00007751static void checkAppendMsg(
7752 IntegrityCk *pCheck,
7753 char *zMsg1,
7754 const char *zFormat,
7755 ...
7756){
7757 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007758 if( !pCheck->mxErr ) return;
7759 pCheck->mxErr--;
7760 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007761 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007762 if( pCheck->errMsg.nChar ){
7763 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007764 }
drhf089aa42008-07-08 19:34:06 +00007765 if( zMsg1 ){
7766 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
7767 }
7768 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7769 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00007770 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00007771 pCheck->mallocFailed = 1;
7772 }
drh5eddca62001-06-30 21:53:53 +00007773}
drhb7f91642004-10-31 02:22:47 +00007774#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007775
drhb7f91642004-10-31 02:22:47 +00007776#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00007777
7778/*
7779** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
7780** corresponds to page iPg is already set.
7781*/
7782static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7783 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7784 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
7785}
7786
7787/*
7788** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
7789*/
7790static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7791 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7792 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
7793}
7794
7795
drh5eddca62001-06-30 21:53:53 +00007796/*
7797** Add 1 to the reference count for page iPage. If this is the second
7798** reference to the page, add an error message to pCheck->zErrMsg.
7799** Return 1 if there are 2 ore more references to the page and 0 if
7800** if this is the first reference to the page.
7801**
7802** Also check that the page number is in bounds.
7803*/
danielk197789d40042008-11-17 14:20:56 +00007804static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007805 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007806 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007807 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007808 return 1;
7809 }
dan1235bb12012-04-03 17:43:28 +00007810 if( getPageReferenced(pCheck, iPage) ){
drh2e38c322004-09-03 18:38:44 +00007811 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007812 return 1;
7813 }
dan1235bb12012-04-03 17:43:28 +00007814 setPageReferenced(pCheck, iPage);
7815 return 0;
drh5eddca62001-06-30 21:53:53 +00007816}
7817
danielk1977afcdd022004-10-31 16:25:42 +00007818#ifndef SQLITE_OMIT_AUTOVACUUM
7819/*
7820** Check that the entry in the pointer-map for page iChild maps to
7821** page iParent, pointer type ptrType. If not, append an error message
7822** to pCheck.
7823*/
7824static void checkPtrmap(
7825 IntegrityCk *pCheck, /* Integrity check context */
7826 Pgno iChild, /* Child page number */
7827 u8 eType, /* Expected pointer map type */
7828 Pgno iParent, /* Expected pointer map parent page number */
7829 char *zContext /* Context description (used for error msg) */
7830){
7831 int rc;
7832 u8 ePtrmapType;
7833 Pgno iPtrmapParent;
7834
7835 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7836 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007837 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007838 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7839 return;
7840 }
7841
7842 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7843 checkAppendMsg(pCheck, zContext,
7844 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7845 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7846 }
7847}
7848#endif
7849
drh5eddca62001-06-30 21:53:53 +00007850/*
7851** Check the integrity of the freelist or of an overflow page list.
7852** Verify that the number of pages on the list is N.
7853*/
drh30e58752002-03-02 20:41:57 +00007854static void checkList(
7855 IntegrityCk *pCheck, /* Integrity checking context */
7856 int isFreeList, /* True for a freelist. False for overflow page list */
7857 int iPage, /* Page number for first page in the list */
7858 int N, /* Expected number of pages in the list */
7859 char *zContext /* Context for error messages */
7860){
7861 int i;
drh3a4c1412004-05-09 20:40:11 +00007862 int expected = N;
7863 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007864 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007865 DbPage *pOvflPage;
7866 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007867 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007868 checkAppendMsg(pCheck, zContext,
7869 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007870 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007871 break;
7872 }
7873 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007874 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007875 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007876 break;
7877 }
danielk19773b8a05f2007-03-19 17:44:26 +00007878 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007879 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007880 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007881#ifndef SQLITE_OMIT_AUTOVACUUM
7882 if( pCheck->pBt->autoVacuum ){
7883 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7884 }
7885#endif
drh43b18e12010-08-17 19:40:08 +00007886 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007887 checkAppendMsg(pCheck, zContext,
7888 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007889 N--;
7890 }else{
7891 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007892 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007893#ifndef SQLITE_OMIT_AUTOVACUUM
7894 if( pCheck->pBt->autoVacuum ){
7895 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7896 }
7897#endif
7898 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007899 }
7900 N -= n;
drh30e58752002-03-02 20:41:57 +00007901 }
drh30e58752002-03-02 20:41:57 +00007902 }
danielk1977afcdd022004-10-31 16:25:42 +00007903#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007904 else{
7905 /* If this database supports auto-vacuum and iPage is not the last
7906 ** page in this overflow list, check that the pointer-map entry for
7907 ** the following page matches iPage.
7908 */
7909 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007910 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007911 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7912 }
danielk1977afcdd022004-10-31 16:25:42 +00007913 }
7914#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007915 iPage = get4byte(pOvflData);
7916 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007917 }
7918}
drhb7f91642004-10-31 02:22:47 +00007919#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007920
drhb7f91642004-10-31 02:22:47 +00007921#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007922/*
7923** Do various sanity checks on a single page of a tree. Return
7924** the tree depth. Root pages return 0. Parents of root pages
7925** return 1, and so forth.
7926**
7927** These checks are done:
7928**
7929** 1. Make sure that cells and freeblocks do not overlap
7930** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007931** NO 2. Make sure cell keys are in order.
7932** NO 3. Make sure no key is less than or equal to zLowerBound.
7933** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007934** 5. Check the integrity of overflow pages.
7935** 6. Recursively call checkTreePage on all children.
7936** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007937** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007938** the root of the tree.
7939*/
7940static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007941 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007942 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00007943 char *zParentContext, /* Parent context */
7944 i64 *pnParentMinKey,
7945 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00007946){
7947 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007948 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007949 int hdr, cellStart;
7950 int nCell;
drhda200cc2004-05-09 11:51:38 +00007951 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007952 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007953 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007954 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007955 char *hit = 0;
shaneh195475d2010-02-19 04:28:08 +00007956 i64 nMinKey = 0;
7957 i64 nMaxKey = 0;
drh5eddca62001-06-30 21:53:53 +00007958
drh5bb3eb92007-05-04 13:15:55 +00007959 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007960
drh5eddca62001-06-30 21:53:53 +00007961 /* Check that the page exists
7962 */
drhd9cb6ac2005-10-20 07:28:17 +00007963 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007964 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007965 if( iPage==0 ) return 0;
7966 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
drhb00fc3b2013-08-21 23:42:32 +00007967 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh2e38c322004-09-03 18:38:44 +00007968 checkAppendMsg(pCheck, zContext,
7969 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007970 return 0;
7971 }
danielk197793caf5a2009-07-11 06:55:33 +00007972
7973 /* Clear MemPage.isInit to make sure the corruption detection code in
7974 ** btreeInitPage() is executed. */
7975 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00007976 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007977 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007978 checkAppendMsg(pCheck, zContext,
danielk197730548662009-07-09 05:07:37 +00007979 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007980 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007981 return 0;
7982 }
7983
7984 /* Check out all the cells.
7985 */
7986 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007987 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007988 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007989 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007990 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007991
7992 /* Check payload overflow pages
7993 */
drh5bb3eb92007-05-04 13:15:55 +00007994 sqlite3_snprintf(sizeof(zContext), zContext,
7995 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007996 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00007997 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007998 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007999 if( !pPage->intKey ) sz += (int)info.nKey;
shaneh195475d2010-02-19 04:28:08 +00008000 /* For intKey pages, check that the keys are in order.
8001 */
8002 else if( i==0 ) nMinKey = nMaxKey = info.nKey;
8003 else{
8004 if( info.nKey <= nMaxKey ){
8005 checkAppendMsg(pCheck, zContext,
8006 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
8007 }
8008 nMaxKey = info.nKey;
8009 }
drh72365832007-03-06 15:53:44 +00008010 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00008011 if( (sz>info.nLocal)
8012 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
8013 ){
drhb6f41482004-05-14 01:58:11 +00008014 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00008015 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
8016#ifndef SQLITE_OMIT_AUTOVACUUM
8017 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00008018 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00008019 }
8020#endif
8021 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00008022 }
8023
8024 /* Check sanity of left child page.
8025 */
drhda200cc2004-05-09 11:51:38 +00008026 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008027 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00008028#ifndef SQLITE_OMIT_AUTOVACUUM
8029 if( pBt->autoVacuum ){
8030 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
8031 }
8032#endif
shaneh195475d2010-02-19 04:28:08 +00008033 d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00008034 if( i>0 && d2!=depth ){
8035 checkAppendMsg(pCheck, zContext, "Child page depth differs");
8036 }
8037 depth = d2;
drh5eddca62001-06-30 21:53:53 +00008038 }
drh5eddca62001-06-30 21:53:53 +00008039 }
shaneh195475d2010-02-19 04:28:08 +00008040
drhda200cc2004-05-09 11:51:38 +00008041 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008042 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00008043 sqlite3_snprintf(sizeof(zContext), zContext,
8044 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008045#ifndef SQLITE_OMIT_AUTOVACUUM
8046 if( pBt->autoVacuum ){
shaneh195475d2010-02-19 04:28:08 +00008047 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00008048 }
8049#endif
shaneh195475d2010-02-19 04:28:08 +00008050 checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00008051 }
drh5eddca62001-06-30 21:53:53 +00008052
shaneh195475d2010-02-19 04:28:08 +00008053 /* For intKey leaf pages, check that the min/max keys are in order
8054 ** with any left/parent/right pages.
8055 */
8056 if( pPage->leaf && pPage->intKey ){
8057 /* if we are a left child page */
8058 if( pnParentMinKey ){
8059 /* if we are the left most child page */
8060 if( !pnParentMaxKey ){
8061 if( nMaxKey > *pnParentMinKey ){
8062 checkAppendMsg(pCheck, zContext,
8063 "Rowid %lld out of order (max larger than parent min of %lld)",
8064 nMaxKey, *pnParentMinKey);
8065 }
8066 }else{
8067 if( nMinKey <= *pnParentMinKey ){
8068 checkAppendMsg(pCheck, zContext,
8069 "Rowid %lld out of order (min less than parent min of %lld)",
8070 nMinKey, *pnParentMinKey);
8071 }
8072 if( nMaxKey > *pnParentMaxKey ){
8073 checkAppendMsg(pCheck, zContext,
8074 "Rowid %lld out of order (max larger than parent max of %lld)",
8075 nMaxKey, *pnParentMaxKey);
8076 }
8077 *pnParentMinKey = nMaxKey;
8078 }
8079 /* else if we're a right child page */
8080 } else if( pnParentMaxKey ){
8081 if( nMinKey <= *pnParentMaxKey ){
8082 checkAppendMsg(pCheck, zContext,
8083 "Rowid %lld out of order (min less than parent max of %lld)",
8084 nMinKey, *pnParentMaxKey);
8085 }
8086 }
8087 }
8088
drh5eddca62001-06-30 21:53:53 +00008089 /* Check for complete coverage of the page
8090 */
drhda200cc2004-05-09 11:51:38 +00008091 data = pPage->aData;
8092 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00008093 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00008094 if( hit==0 ){
8095 pCheck->mallocFailed = 1;
8096 }else{
drh5d433ce2010-08-14 16:02:52 +00008097 int contentOffset = get2byteNotZero(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00008098 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
shane5780ebd2008-11-11 17:36:30 +00008099 memset(hit+contentOffset, 0, usableSize-contentOffset);
8100 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00008101 nCell = get2byte(&data[hdr+3]);
8102 cellStart = hdr + 12 - 4*pPage->leaf;
8103 for(i=0; i<nCell; i++){
8104 int pc = get2byte(&data[cellStart+i*2]);
drh9b78f792010-08-14 21:21:24 +00008105 u32 size = 65536;
drh2e38c322004-09-03 18:38:44 +00008106 int j;
drh8c2bbb62009-07-10 02:52:20 +00008107 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00008108 size = cellSizePtr(pPage, &data[pc]);
8109 }
drh43b18e12010-08-17 19:40:08 +00008110 if( (int)(pc+size-1)>=usableSize ){
danielk19777701e812005-01-10 12:59:51 +00008111 checkAppendMsg(pCheck, 0,
shaneh195475d2010-02-19 04:28:08 +00008112 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00008113 }else{
8114 for(j=pc+size-1; j>=pc; j--) hit[j]++;
8115 }
drh2e38c322004-09-03 18:38:44 +00008116 }
drh8c2bbb62009-07-10 02:52:20 +00008117 i = get2byte(&data[hdr+1]);
8118 while( i>0 ){
8119 int size, j;
8120 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
8121 size = get2byte(&data[i+2]);
8122 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
8123 for(j=i+size-1; j>=i; j--) hit[j]++;
8124 j = get2byte(&data[i]);
8125 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
8126 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
8127 i = j;
drh2e38c322004-09-03 18:38:44 +00008128 }
8129 for(i=cnt=0; i<usableSize; i++){
8130 if( hit[i]==0 ){
8131 cnt++;
8132 }else if( hit[i]>1 ){
8133 checkAppendMsg(pCheck, 0,
8134 "Multiple uses for byte %d of page %d", i, iPage);
8135 break;
8136 }
8137 }
8138 if( cnt!=data[hdr+7] ){
8139 checkAppendMsg(pCheck, 0,
drh8c2bbb62009-07-10 02:52:20 +00008140 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00008141 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00008142 }
8143 }
drh8c2bbb62009-07-10 02:52:20 +00008144 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00008145 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00008146 return depth+1;
drh5eddca62001-06-30 21:53:53 +00008147}
drhb7f91642004-10-31 02:22:47 +00008148#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008149
drhb7f91642004-10-31 02:22:47 +00008150#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008151/*
8152** This routine does a complete check of the given BTree file. aRoot[] is
8153** an array of pages numbers were each page number is the root page of
8154** a table. nRoot is the number of entries in aRoot.
8155**
danielk19773509a652009-07-06 18:56:13 +00008156** A read-only or read-write transaction must be opened before calling
8157** this function.
8158**
drhc890fec2008-08-01 20:10:08 +00008159** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00008160** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00008161** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00008162** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00008163*/
drh1dcdbc02007-01-27 02:24:54 +00008164char *sqlite3BtreeIntegrityCheck(
8165 Btree *p, /* The btree to be checked */
8166 int *aRoot, /* An array of root pages numbers for individual trees */
8167 int nRoot, /* Number of entries in aRoot[] */
8168 int mxErr, /* Stop reporting errors after this many */
8169 int *pnErr /* Write number of errors seen to this variable */
8170){
danielk197789d40042008-11-17 14:20:56 +00008171 Pgno i;
drh5eddca62001-06-30 21:53:53 +00008172 int nRef;
drhaaab5722002-02-19 13:39:21 +00008173 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00008174 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00008175 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00008176
drhd677b3d2007-08-20 22:48:41 +00008177 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00008178 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00008179 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00008180 sCheck.pBt = pBt;
8181 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00008182 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00008183 sCheck.mxErr = mxErr;
8184 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00008185 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00008186 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00008187 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00008188 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00008189 return 0;
8190 }
dan1235bb12012-04-03 17:43:28 +00008191
8192 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
8193 if( !sCheck.aPgRef ){
drh1dcdbc02007-01-27 02:24:54 +00008194 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00008195 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00008196 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00008197 }
drh42cac6d2004-11-20 20:31:11 +00008198 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00008199 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh32055c22012-12-12 14:30:03 +00008200 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drhb9755982010-07-24 16:34:37 +00008201 sCheck.errMsg.useMalloc = 2;
drh5eddca62001-06-30 21:53:53 +00008202
8203 /* Check the integrity of the freelist
8204 */
drha34b6762004-05-07 13:30:42 +00008205 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
8206 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00008207
8208 /* Check all the tables.
8209 */
danielk197789d40042008-11-17 14:20:56 +00008210 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00008211 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00008212#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008213 if( pBt->autoVacuum && aRoot[i]>1 ){
8214 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
8215 }
8216#endif
shaneh195475d2010-02-19 04:28:08 +00008217 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
drh5eddca62001-06-30 21:53:53 +00008218 }
8219
8220 /* Make sure every page in the file is referenced
8221 */
drh1dcdbc02007-01-27 02:24:54 +00008222 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00008223#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00008224 if( getPageReferenced(&sCheck, i)==0 ){
drh2e38c322004-09-03 18:38:44 +00008225 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00008226 }
danielk1977afcdd022004-10-31 16:25:42 +00008227#else
8228 /* If the database supports auto-vacuum, make sure no tables contain
8229 ** references to pointer-map pages.
8230 */
dan1235bb12012-04-03 17:43:28 +00008231 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00008232 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00008233 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
8234 }
dan1235bb12012-04-03 17:43:28 +00008235 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00008236 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00008237 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
8238 }
8239#endif
drh5eddca62001-06-30 21:53:53 +00008240 }
8241
drh64022502009-01-09 14:11:04 +00008242 /* Make sure this analysis did not leave any unref() pages.
8243 ** This is an internal consistency check; an integrity check
8244 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00008245 */
drh64022502009-01-09 14:11:04 +00008246 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00008247 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00008248 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00008249 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00008250 );
drh5eddca62001-06-30 21:53:53 +00008251 }
8252
8253 /* Clean up and report errors.
8254 */
drhd677b3d2007-08-20 22:48:41 +00008255 sqlite3BtreeLeave(p);
dan1235bb12012-04-03 17:43:28 +00008256 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00008257 if( sCheck.mallocFailed ){
8258 sqlite3StrAccumReset(&sCheck.errMsg);
8259 *pnErr = sCheck.nErr+1;
8260 return 0;
8261 }
drh1dcdbc02007-01-27 02:24:54 +00008262 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00008263 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
8264 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00008265}
drhb7f91642004-10-31 02:22:47 +00008266#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00008267
drh73509ee2003-04-06 20:44:45 +00008268/*
drhd4e0bb02012-05-27 01:19:04 +00008269** Return the full pathname of the underlying database file. Return
8270** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00008271**
8272** The pager filename is invariant as long as the pager is
8273** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00008274*/
danielk1977aef0bf62005-12-30 16:28:01 +00008275const char *sqlite3BtreeGetFilename(Btree *p){
8276 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00008277 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00008278}
8279
8280/*
danielk19775865e3d2004-06-14 06:03:57 +00008281** Return the pathname of the journal file for this database. The return
8282** value of this routine is the same regardless of whether the journal file
8283** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00008284**
8285** The pager journal filename is invariant as long as the pager is
8286** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00008287*/
danielk1977aef0bf62005-12-30 16:28:01 +00008288const char *sqlite3BtreeGetJournalname(Btree *p){
8289 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00008290 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00008291}
8292
danielk19771d850a72004-05-31 08:26:49 +00008293/*
8294** Return non-zero if a transaction is active.
8295*/
danielk1977aef0bf62005-12-30 16:28:01 +00008296int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00008297 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00008298 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00008299}
8300
dana550f2d2010-08-02 10:47:05 +00008301#ifndef SQLITE_OMIT_WAL
8302/*
8303** Run a checkpoint on the Btree passed as the first argument.
8304**
8305** Return SQLITE_LOCKED if this or any other connection has an open
8306** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00008307**
dancdc1f042010-11-18 12:11:05 +00008308** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00008309*/
dancdc1f042010-11-18 12:11:05 +00008310int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00008311 int rc = SQLITE_OK;
8312 if( p ){
8313 BtShared *pBt = p->pBt;
8314 sqlite3BtreeEnter(p);
8315 if( pBt->inTransaction!=TRANS_NONE ){
8316 rc = SQLITE_LOCKED;
8317 }else{
dancdc1f042010-11-18 12:11:05 +00008318 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00008319 }
8320 sqlite3BtreeLeave(p);
8321 }
8322 return rc;
8323}
8324#endif
8325
danielk19771d850a72004-05-31 08:26:49 +00008326/*
danielk19772372c2b2006-06-27 16:34:56 +00008327** Return non-zero if a read (or write) transaction is active.
8328*/
8329int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00008330 assert( p );
drhe5fe6902007-12-07 18:55:28 +00008331 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00008332 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00008333}
8334
danielk197704103022009-02-03 16:51:24 +00008335int sqlite3BtreeIsInBackup(Btree *p){
8336 assert( p );
8337 assert( sqlite3_mutex_held(p->db->mutex) );
8338 return p->nBackup!=0;
8339}
8340
danielk19772372c2b2006-06-27 16:34:56 +00008341/*
danielk1977da184232006-01-05 11:34:32 +00008342** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00008343** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00008344** purposes (for example, to store a high-level schema associated with
8345** the shared-btree). The btree layer manages reference counting issues.
8346**
8347** The first time this is called on a shared-btree, nBytes bytes of memory
8348** are allocated, zeroed, and returned to the caller. For each subsequent
8349** call the nBytes parameter is ignored and a pointer to the same blob
8350** of memory returned.
8351**
danielk1977171bfed2008-06-23 09:50:50 +00008352** If the nBytes parameter is 0 and the blob of memory has not yet been
8353** allocated, a null pointer is returned. If the blob has already been
8354** allocated, it is returned as normal.
8355**
danielk1977da184232006-01-05 11:34:32 +00008356** Just before the shared-btree is closed, the function passed as the
8357** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00008358** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00008359** on the memory, the btree layer does that.
8360*/
8361void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
8362 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00008363 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00008364 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00008365 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00008366 pBt->xFreeSchema = xFree;
8367 }
drh27641702007-08-22 02:56:42 +00008368 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00008369 return pBt->pSchema;
8370}
8371
danielk1977c87d34d2006-01-06 13:00:28 +00008372/*
danielk1977404ca072009-03-16 13:19:36 +00008373** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
8374** btree as the argument handle holds an exclusive lock on the
8375** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00008376*/
8377int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00008378 int rc;
drhe5fe6902007-12-07 18:55:28 +00008379 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00008380 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00008381 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
8382 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00008383 sqlite3BtreeLeave(p);
8384 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00008385}
8386
drha154dcd2006-03-22 22:10:07 +00008387
8388#ifndef SQLITE_OMIT_SHARED_CACHE
8389/*
8390** Obtain a lock on the table whose root page is iTab. The
8391** lock is a write lock if isWritelock is true or a read lock
8392** if it is false.
8393*/
danielk1977c00da102006-01-07 13:21:04 +00008394int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00008395 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00008396 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00008397 if( p->sharable ){
8398 u8 lockType = READ_LOCK + isWriteLock;
8399 assert( READ_LOCK+1==WRITE_LOCK );
8400 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00008401
drh6a9ad3d2008-04-02 16:29:30 +00008402 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00008403 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008404 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00008405 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008406 }
8407 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00008408 }
8409 return rc;
8410}
drha154dcd2006-03-22 22:10:07 +00008411#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00008412
danielk1977b4e9af92007-05-01 17:49:49 +00008413#ifndef SQLITE_OMIT_INCRBLOB
8414/*
8415** Argument pCsr must be a cursor opened for writing on an
8416** INTKEY table currently pointing at a valid table entry.
8417** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00008418**
8419** Only the data content may only be modified, it is not possible to
8420** change the length of the data stored. If this function is called with
8421** parameters that attempt to write past the end of the existing data,
8422** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00008423*/
danielk1977dcbb5d32007-05-04 18:36:44 +00008424int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00008425 int rc;
drh1fee73e2007-08-29 04:00:57 +00008426 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00008427 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk197796d48e92009-06-29 06:00:37 +00008428 assert( pCsr->isIncrblobHandle );
danielk19773588ceb2008-06-10 17:30:26 +00008429
danielk1977c9000e62009-07-08 13:55:28 +00008430 rc = restoreCursorPosition(pCsr);
8431 if( rc!=SQLITE_OK ){
8432 return rc;
8433 }
danielk19773588ceb2008-06-10 17:30:26 +00008434 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
8435 if( pCsr->eState!=CURSOR_VALID ){
8436 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00008437 }
8438
dan227a1c42013-04-03 11:17:39 +00008439 /* Save the positions of all other cursors open on this table. This is
8440 ** required in case any of them are holding references to an xFetch
8441 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00008442 **
8443 ** Note that pCsr must be open on a BTREE_INTKEY table and saveCursorPosition()
8444 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
8445 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00008446 */
drh370c9f42013-04-03 20:04:04 +00008447 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
8448 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00008449
danielk1977c9000e62009-07-08 13:55:28 +00008450 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00008451 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00008452 ** (b) there is a read/write transaction open,
8453 ** (c) the connection holds a write-lock on the table (if required),
8454 ** (d) there are no conflicting read-locks, and
8455 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00008456 */
danielk19774f029602009-07-08 18:45:37 +00008457 if( !pCsr->wrFlag ){
8458 return SQLITE_READONLY;
8459 }
drhc9166342012-01-05 23:32:06 +00008460 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
8461 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008462 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
8463 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00008464 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00008465
drhfb192682009-07-11 18:26:28 +00008466 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00008467}
danielk19772dec9702007-05-02 16:48:37 +00008468
8469/*
8470** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00008471** overflow list for the current row. This is used by cursors opened
8472** for incremental blob IO only.
8473**
8474** This function sets a flag only. The actual page location cache
8475** (stored in BtCursor.aOverflow[]) is allocated and used by function
8476** accessPayload() (the worker function for sqlite3BtreeData() and
8477** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00008478*/
8479void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00008480 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00008481 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan4e76cc32010-10-20 18:56:04 +00008482 invalidateOverflowCache(pCur);
danielk1977dcbb5d32007-05-04 18:36:44 +00008483 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00008484}
danielk1977b4e9af92007-05-01 17:49:49 +00008485#endif
dane04dc882010-04-20 18:53:15 +00008486
8487/*
8488** Set both the "read version" (single byte at byte offset 18) and
8489** "write version" (single byte at byte offset 19) fields in the database
8490** header to iVersion.
8491*/
8492int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
8493 BtShared *pBt = pBtree->pBt;
8494 int rc; /* Return code */
8495
dane04dc882010-04-20 18:53:15 +00008496 assert( iVersion==1 || iVersion==2 );
8497
danb9780022010-04-21 18:37:57 +00008498 /* If setting the version fields to 1, do not automatically open the
8499 ** WAL connection, even if the version fields are currently set to 2.
8500 */
drhc9166342012-01-05 23:32:06 +00008501 pBt->btsFlags &= ~BTS_NO_WAL;
8502 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00008503
8504 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00008505 if( rc==SQLITE_OK ){
8506 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00008507 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00008508 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00008509 if( rc==SQLITE_OK ){
8510 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8511 if( rc==SQLITE_OK ){
8512 aData[18] = (u8)iVersion;
8513 aData[19] = (u8)iVersion;
8514 }
8515 }
8516 }
dane04dc882010-04-20 18:53:15 +00008517 }
8518
drhc9166342012-01-05 23:32:06 +00008519 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00008520 return rc;
8521}
dan428c2182012-08-06 18:50:11 +00008522
8523/*
8524** set the mask of hint flags for cursor pCsr. Currently the only valid
8525** values are 0 and BTREE_BULKLOAD.
8526*/
8527void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){
8528 assert( mask==BTREE_BULKLOAD || mask==0 );
8529 pCsr->hints = mask;
8530}