blob: 1a1705b282c0def6783892ab029bfdd7e2aa36ce [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
adam2e4491d2011-06-24 20:47:06 +000090#if defined(__APPLE__) && !defined(SQLITE_TEST) && !defined(TH3_COMPATIBILITY)
91 /* Enable global shared cache function for debugging and unit tests,
92 ** but not for release */
93 return SQLITE_MISUSE;
94#else
danielk1977502b4e02008-09-02 14:07:24 +000095 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000096 return SQLITE_OK;
adam2e4491d2011-06-24 20:47:06 +000097#endif
drhe53831d2007-08-17 01:14:38 +000098}
99#endif
100
drhd677b3d2007-08-20 22:48:41 +0000101
danielk1977aef0bf62005-12-30 16:28:01 +0000102
103#ifdef SQLITE_OMIT_SHARED_CACHE
104 /*
drhc25eabe2009-02-24 18:57:31 +0000105 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
106 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000107 ** manipulate entries in the BtShared.pLock linked list used to store
108 ** shared-cache table level locks. If the library is compiled with the
109 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000110 ** of each BtShared structure and so this locking is not necessary.
111 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000112 */
drhc25eabe2009-02-24 18:57:31 +0000113 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
114 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
115 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000116 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000117 #define hasSharedCacheTableLock(a,b,c,d) 1
118 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000119#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000120
drhe53831d2007-08-17 01:14:38 +0000121#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000122
123#ifdef SQLITE_DEBUG
124/*
drh0ee3dbe2009-10-16 15:05:18 +0000125**** This function is only used as part of an assert() statement. ***
126**
127** Check to see if pBtree holds the required locks to read or write to the
128** table with root page iRoot. Return 1 if it does and 0 if not.
129**
130** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000131** Btree connection pBtree:
132**
133** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
134**
drh0ee3dbe2009-10-16 15:05:18 +0000135** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000136** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000137** the corresponding table. This makes things a bit more complicated,
138** as this module treats each table as a separate structure. To determine
139** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000140** function has to search through the database schema.
141**
drh0ee3dbe2009-10-16 15:05:18 +0000142** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000143** hold a write-lock on the schema table (root page 1). This is also
144** acceptable.
145*/
146static int hasSharedCacheTableLock(
147 Btree *pBtree, /* Handle that must hold lock */
148 Pgno iRoot, /* Root page of b-tree */
149 int isIndex, /* True if iRoot is the root of an index b-tree */
150 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
151){
152 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
153 Pgno iTab = 0;
154 BtLock *pLock;
155
drh0ee3dbe2009-10-16 15:05:18 +0000156 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000157 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000158 ** Return true immediately.
159 */
danielk197796d48e92009-06-29 06:00:37 +0000160 if( (pBtree->sharable==0)
161 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000162 ){
163 return 1;
164 }
165
drh0ee3dbe2009-10-16 15:05:18 +0000166 /* If the client is reading or writing an index and the schema is
167 ** not loaded, then it is too difficult to actually check to see if
168 ** the correct locks are held. So do not bother - just return true.
169 ** This case does not come up very often anyhow.
170 */
drh2c5e35f2014-08-05 11:04:21 +0000171 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000172 return 1;
173 }
174
danielk197796d48e92009-06-29 06:00:37 +0000175 /* Figure out the root-page that the lock should be held on. For table
176 ** b-trees, this is just the root page of the b-tree being read or
177 ** written. For index b-trees, it is the root page of the associated
178 ** table. */
179 if( isIndex ){
180 HashElem *p;
181 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
182 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000183 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000184 if( iTab ){
185 /* Two or more indexes share the same root page. There must
186 ** be imposter tables. So just return true. The assert is not
187 ** useful in that case. */
188 return 1;
189 }
shane5eff7cf2009-08-10 03:57:58 +0000190 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000191 }
192 }
193 }else{
194 iTab = iRoot;
195 }
196
197 /* Search for the required lock. Either a write-lock on root-page iTab, a
198 ** write-lock on the schema table, or (if the client is reading) a
199 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
200 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
201 if( pLock->pBtree==pBtree
202 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
203 && pLock->eLock>=eLockType
204 ){
205 return 1;
206 }
207 }
208
209 /* Failed to find the required lock. */
210 return 0;
211}
drh0ee3dbe2009-10-16 15:05:18 +0000212#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000213
drh0ee3dbe2009-10-16 15:05:18 +0000214#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000215/*
drh0ee3dbe2009-10-16 15:05:18 +0000216**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000217**
drh0ee3dbe2009-10-16 15:05:18 +0000218** Return true if it would be illegal for pBtree to write into the
219** table or index rooted at iRoot because other shared connections are
220** simultaneously reading that same table or index.
221**
222** It is illegal for pBtree to write if some other Btree object that
223** shares the same BtShared object is currently reading or writing
224** the iRoot table. Except, if the other Btree object has the
225** read-uncommitted flag set, then it is OK for the other object to
226** have a read cursor.
227**
228** For example, before writing to any part of the table or index
229** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000230**
231** assert( !hasReadConflicts(pBtree, iRoot) );
232*/
233static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
234 BtCursor *p;
235 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
236 if( p->pgnoRoot==iRoot
237 && p->pBtree!=pBtree
238 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
239 ){
240 return 1;
241 }
242 }
243 return 0;
244}
245#endif /* #ifdef SQLITE_DEBUG */
246
danielk1977da184232006-01-05 11:34:32 +0000247/*
drh0ee3dbe2009-10-16 15:05:18 +0000248** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000249** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000250** SQLITE_OK if the lock may be obtained (by calling
251** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000252*/
drhc25eabe2009-02-24 18:57:31 +0000253static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000254 BtShared *pBt = p->pBt;
255 BtLock *pIter;
256
drh1fee73e2007-08-29 04:00:57 +0000257 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000258 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
259 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000260 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000261
danielk19775b413d72009-04-01 09:41:54 +0000262 /* If requesting a write-lock, then the Btree must have an open write
263 ** transaction on this file. And, obviously, for this to be so there
264 ** must be an open write transaction on the file itself.
265 */
266 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
267 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
268
drh0ee3dbe2009-10-16 15:05:18 +0000269 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000270 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000271 return SQLITE_OK;
272 }
273
danielk1977641b0f42007-12-21 04:47:25 +0000274 /* If some other connection is holding an exclusive lock, the
275 ** requested lock may not be obtained.
276 */
drhc9166342012-01-05 23:32:06 +0000277 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000278 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
279 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000280 }
281
danielk1977e0d9e6f2009-07-03 16:25:06 +0000282 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
283 /* The condition (pIter->eLock!=eLock) in the following if(...)
284 ** statement is a simplification of:
285 **
286 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
287 **
288 ** since we know that if eLock==WRITE_LOCK, then no other connection
289 ** may hold a WRITE_LOCK on any table in this file (since there can
290 ** only be a single writer).
291 */
292 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
293 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
294 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
295 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
296 if( eLock==WRITE_LOCK ){
297 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000298 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000299 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000300 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000301 }
302 }
303 return SQLITE_OK;
304}
drhe53831d2007-08-17 01:14:38 +0000305#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000306
drhe53831d2007-08-17 01:14:38 +0000307#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000308/*
309** Add a lock on the table with root-page iTable to the shared-btree used
310** by Btree handle p. Parameter eLock must be either READ_LOCK or
311** WRITE_LOCK.
312**
danielk19779d104862009-07-09 08:27:14 +0000313** This function assumes the following:
314**
drh0ee3dbe2009-10-16 15:05:18 +0000315** (a) The specified Btree object p is connected to a sharable
316** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000317**
drh0ee3dbe2009-10-16 15:05:18 +0000318** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000319** with the requested lock (i.e. querySharedCacheTableLock() has
320** already been called and returned SQLITE_OK).
321**
322** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
323** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000324*/
drhc25eabe2009-02-24 18:57:31 +0000325static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000326 BtShared *pBt = p->pBt;
327 BtLock *pLock = 0;
328 BtLock *pIter;
329
drh1fee73e2007-08-29 04:00:57 +0000330 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000331 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
332 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000333
danielk1977e0d9e6f2009-07-03 16:25:06 +0000334 /* A connection with the read-uncommitted flag set will never try to
335 ** obtain a read-lock using this function. The only read-lock obtained
336 ** by a connection in read-uncommitted mode is on the sqlite_master
337 ** table, and that lock is obtained in BtreeBeginTrans(). */
338 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
339
danielk19779d104862009-07-09 08:27:14 +0000340 /* This function should only be called on a sharable b-tree after it
341 ** has been determined that no other b-tree holds a conflicting lock. */
342 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000343 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000344
345 /* First search the list for an existing lock on this table. */
346 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
347 if( pIter->iTable==iTable && pIter->pBtree==p ){
348 pLock = pIter;
349 break;
350 }
351 }
352
353 /* If the above search did not find a BtLock struct associating Btree p
354 ** with table iTable, allocate one and link it into the list.
355 */
356 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000357 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000358 if( !pLock ){
mistachkinfad30392016-02-13 23:43:46 +0000359 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +0000360 }
361 pLock->iTable = iTable;
362 pLock->pBtree = p;
363 pLock->pNext = pBt->pLock;
364 pBt->pLock = pLock;
365 }
366
367 /* Set the BtLock.eLock variable to the maximum of the current lock
368 ** and the requested lock. This means if a write-lock was already held
369 ** and a read-lock requested, we don't incorrectly downgrade the lock.
370 */
371 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000372 if( eLock>pLock->eLock ){
373 pLock->eLock = eLock;
374 }
danielk1977aef0bf62005-12-30 16:28:01 +0000375
376 return SQLITE_OK;
377}
drhe53831d2007-08-17 01:14:38 +0000378#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000379
drhe53831d2007-08-17 01:14:38 +0000380#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000381/*
drhc25eabe2009-02-24 18:57:31 +0000382** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000383** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000384**
drh0ee3dbe2009-10-16 15:05:18 +0000385** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000386** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000387** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000388*/
drhc25eabe2009-02-24 18:57:31 +0000389static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000390 BtShared *pBt = p->pBt;
391 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000392
drh1fee73e2007-08-29 04:00:57 +0000393 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000394 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000395 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000396
danielk1977aef0bf62005-12-30 16:28:01 +0000397 while( *ppIter ){
398 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000399 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000400 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000401 if( pLock->pBtree==p ){
402 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000403 assert( pLock->iTable!=1 || pLock==&p->lock );
404 if( pLock->iTable!=1 ){
405 sqlite3_free(pLock);
406 }
danielk1977aef0bf62005-12-30 16:28:01 +0000407 }else{
408 ppIter = &pLock->pNext;
409 }
410 }
danielk1977641b0f42007-12-21 04:47:25 +0000411
drhc9166342012-01-05 23:32:06 +0000412 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000413 if( pBt->pWriter==p ){
414 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000415 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000416 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000417 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000418 ** transaction. If there currently exists a writer, and p is not
419 ** that writer, then the number of locks held by connections other
420 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000421 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000422 **
drhc9166342012-01-05 23:32:06 +0000423 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000424 ** be zero already. So this next line is harmless in that case.
425 */
drhc9166342012-01-05 23:32:06 +0000426 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000427 }
danielk1977aef0bf62005-12-30 16:28:01 +0000428}
danielk197794b30732009-07-02 17:21:57 +0000429
danielk1977e0d9e6f2009-07-03 16:25:06 +0000430/*
drh0ee3dbe2009-10-16 15:05:18 +0000431** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000432*/
danielk197794b30732009-07-02 17:21:57 +0000433static void downgradeAllSharedCacheTableLocks(Btree *p){
434 BtShared *pBt = p->pBt;
435 if( pBt->pWriter==p ){
436 BtLock *pLock;
437 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000438 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000439 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
440 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
441 pLock->eLock = READ_LOCK;
442 }
443 }
444}
445
danielk1977aef0bf62005-12-30 16:28:01 +0000446#endif /* SQLITE_OMIT_SHARED_CACHE */
447
drh980b1a72006-08-16 16:42:48 +0000448static void releasePage(MemPage *pPage); /* Forward reference */
449
drh1fee73e2007-08-29 04:00:57 +0000450/*
drh0ee3dbe2009-10-16 15:05:18 +0000451***** This routine is used inside of assert() only ****
452**
453** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000454*/
drh0ee3dbe2009-10-16 15:05:18 +0000455#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000456static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000457 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000458}
drh5e08d0f2016-06-04 21:05:54 +0000459
460/* Verify that the cursor and the BtShared agree about what is the current
461** database connetion. This is important in shared-cache mode. If the database
462** connection pointers get out-of-sync, it is possible for routines like
463** btreeInitPage() to reference an stale connection pointer that references a
464** a connection that has already closed. This routine is used inside assert()
465** statements only and for the purpose of double-checking that the btree code
466** does keep the database connection pointers up-to-date.
467*/
dan7a2347e2016-01-07 16:43:54 +0000468static int cursorOwnsBtShared(BtCursor *p){
469 assert( cursorHoldsMutex(p) );
470 return (p->pBtree->db==p->pBt->db);
471}
drh1fee73e2007-08-29 04:00:57 +0000472#endif
473
danielk197792d4d7a2007-05-04 12:05:56 +0000474/*
dan5a500af2014-03-11 20:33:04 +0000475** Invalidate the overflow cache of the cursor passed as the first argument.
476** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000477*/
drh036dbec2014-03-11 23:40:44 +0000478#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000479
480/*
481** Invalidate the overflow page-list cache for all cursors opened
482** on the shared btree structure pBt.
483*/
484static void invalidateAllOverflowCache(BtShared *pBt){
485 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000486 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000487 for(p=pBt->pCursor; p; p=p->pNext){
488 invalidateOverflowCache(p);
489 }
490}
danielk197796d48e92009-06-29 06:00:37 +0000491
dan5a500af2014-03-11 20:33:04 +0000492#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000493/*
494** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000495** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000496** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000497**
498** If argument isClearTable is true, then the entire contents of the
499** table is about to be deleted. In this case invalidate all incrblob
500** cursors open on any row within the table with root-page pgnoRoot.
501**
502** Otherwise, if argument isClearTable is false, then the row with
503** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000504** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000505*/
506static void invalidateIncrblobCursors(
507 Btree *pBtree, /* The database file to check */
drh9ca431a2017-03-29 18:03:50 +0000508 Pgno pgnoRoot, /* The table that might be changing */
danielk197796d48e92009-06-29 06:00:37 +0000509 i64 iRow, /* The rowid that might be changing */
510 int isClearTable /* True if all rows are being deleted */
511){
512 BtCursor *p;
drh69180952015-06-25 13:03:10 +0000513 if( pBtree->hasIncrblobCur==0 ) return;
danielk197796d48e92009-06-29 06:00:37 +0000514 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000515 pBtree->hasIncrblobCur = 0;
516 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
517 if( (p->curFlags & BTCF_Incrblob)!=0 ){
518 pBtree->hasIncrblobCur = 1;
drh9ca431a2017-03-29 18:03:50 +0000519 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
drh69180952015-06-25 13:03:10 +0000520 p->eState = CURSOR_INVALID;
521 }
danielk197796d48e92009-06-29 06:00:37 +0000522 }
523 }
524}
525
danielk197792d4d7a2007-05-04 12:05:56 +0000526#else
dan5a500af2014-03-11 20:33:04 +0000527 /* Stub function when INCRBLOB is omitted */
drh9ca431a2017-03-29 18:03:50 +0000528 #define invalidateIncrblobCursors(w,x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000529#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000530
drh980b1a72006-08-16 16:42:48 +0000531/*
danielk1977bea2a942009-01-20 17:06:27 +0000532** Set bit pgno of the BtShared.pHasContent bitvec. This is called
533** when a page that previously contained data becomes a free-list leaf
534** page.
535**
536** The BtShared.pHasContent bitvec exists to work around an obscure
537** bug caused by the interaction of two useful IO optimizations surrounding
538** free-list leaf pages:
539**
540** 1) When all data is deleted from a page and the page becomes
541** a free-list leaf page, the page is not written to the database
542** (as free-list leaf pages contain no meaningful data). Sometimes
543** such a page is not even journalled (as it will not be modified,
544** why bother journalling it?).
545**
546** 2) When a free-list leaf page is reused, its content is not read
547** from the database or written to the journal file (why should it
548** be, if it is not at all meaningful?).
549**
550** By themselves, these optimizations work fine and provide a handy
551** performance boost to bulk delete or insert operations. However, if
552** a page is moved to the free-list and then reused within the same
553** transaction, a problem comes up. If the page is not journalled when
554** it is moved to the free-list and it is also not journalled when it
555** is extracted from the free-list and reused, then the original data
556** may be lost. In the event of a rollback, it may not be possible
557** to restore the database to its original configuration.
558**
559** The solution is the BtShared.pHasContent bitvec. Whenever a page is
560** moved to become a free-list leaf page, the corresponding bit is
561** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000562** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000563** set in BtShared.pHasContent. The contents of the bitvec are cleared
564** at the end of every transaction.
565*/
566static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
567 int rc = SQLITE_OK;
568 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000569 assert( pgno<=pBt->nPage );
570 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000571 if( !pBt->pHasContent ){
mistachkinfad30392016-02-13 23:43:46 +0000572 rc = SQLITE_NOMEM_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +0000573 }
574 }
575 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
576 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
577 }
578 return rc;
579}
580
581/*
582** Query the BtShared.pHasContent vector.
583**
584** This function is called when a free-list leaf page is removed from the
585** free-list for reuse. It returns false if it is safe to retrieve the
586** page from the pager layer with the 'no-content' flag set. True otherwise.
587*/
588static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
589 Bitvec *p = pBt->pHasContent;
590 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
591}
592
593/*
594** Clear (destroy) the BtShared.pHasContent bitvec. This should be
595** invoked at the conclusion of each write-transaction.
596*/
597static void btreeClearHasContent(BtShared *pBt){
598 sqlite3BitvecDestroy(pBt->pHasContent);
599 pBt->pHasContent = 0;
600}
601
602/*
drh138eeeb2013-03-27 03:15:23 +0000603** Release all of the apPage[] pages for a cursor.
604*/
605static void btreeReleaseAllCursorPages(BtCursor *pCur){
606 int i;
607 for(i=0; i<=pCur->iPage; i++){
608 releasePage(pCur->apPage[i]);
609 pCur->apPage[i] = 0;
610 }
611 pCur->iPage = -1;
612}
613
danf0ee1d32015-09-12 19:26:11 +0000614/*
615** The cursor passed as the only argument must point to a valid entry
616** when this function is called (i.e. have eState==CURSOR_VALID). This
617** function saves the current cursor key in variables pCur->nKey and
618** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
619** code otherwise.
620**
621** If the cursor is open on an intkey table, then the integer key
622** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
623** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
624** set to point to a malloced buffer pCur->nKey bytes in size containing
625** the key.
626*/
627static int saveCursorKey(BtCursor *pCur){
drha7c90c42016-06-04 20:37:10 +0000628 int rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +0000629 assert( CURSOR_VALID==pCur->eState );
630 assert( 0==pCur->pKey );
631 assert( cursorHoldsMutex(pCur) );
632
drha7c90c42016-06-04 20:37:10 +0000633 if( pCur->curIntKey ){
634 /* Only the rowid is required for a table btree */
635 pCur->nKey = sqlite3BtreeIntegerKey(pCur);
636 }else{
637 /* For an index btree, save the complete key content */
drhd66c4f82016-06-04 20:58:35 +0000638 void *pKey;
drha7c90c42016-06-04 20:37:10 +0000639 pCur->nKey = sqlite3BtreePayloadSize(pCur);
drhd66c4f82016-06-04 20:58:35 +0000640 pKey = sqlite3Malloc( pCur->nKey );
danf0ee1d32015-09-12 19:26:11 +0000641 if( pKey ){
drhcb3cabd2016-11-25 19:18:28 +0000642 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
danf0ee1d32015-09-12 19:26:11 +0000643 if( rc==SQLITE_OK ){
644 pCur->pKey = pKey;
645 }else{
646 sqlite3_free(pKey);
647 }
648 }else{
mistachkinfad30392016-02-13 23:43:46 +0000649 rc = SQLITE_NOMEM_BKPT;
danf0ee1d32015-09-12 19:26:11 +0000650 }
651 }
652 assert( !pCur->curIntKey || !pCur->pKey );
653 return rc;
654}
drh138eeeb2013-03-27 03:15:23 +0000655
656/*
drh980b1a72006-08-16 16:42:48 +0000657** Save the current cursor position in the variables BtCursor.nKey
658** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000659**
660** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
661** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000662*/
663static int saveCursorPosition(BtCursor *pCur){
664 int rc;
665
drhd2f83132015-03-25 17:35:01 +0000666 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000667 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000668 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000669
drhd2f83132015-03-25 17:35:01 +0000670 if( pCur->eState==CURSOR_SKIPNEXT ){
671 pCur->eState = CURSOR_VALID;
672 }else{
673 pCur->skipNext = 0;
674 }
drh980b1a72006-08-16 16:42:48 +0000675
danf0ee1d32015-09-12 19:26:11 +0000676 rc = saveCursorKey(pCur);
drh980b1a72006-08-16 16:42:48 +0000677 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000678 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000679 pCur->eState = CURSOR_REQUIRESEEK;
680 }
681
dane755e102015-09-30 12:59:12 +0000682 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
drh980b1a72006-08-16 16:42:48 +0000683 return rc;
684}
685
drh637f3d82014-08-22 22:26:07 +0000686/* Forward reference */
687static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
688
drh980b1a72006-08-16 16:42:48 +0000689/*
drh0ee3dbe2009-10-16 15:05:18 +0000690** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000691** the table with root-page iRoot. "Saving the cursor position" means that
692** the location in the btree is remembered in such a way that it can be
693** moved back to the same spot after the btree has been modified. This
694** routine is called just before cursor pExcept is used to modify the
695** table, for example in BtreeDelete() or BtreeInsert().
696**
drh27fb7462015-06-30 02:47:36 +0000697** If there are two or more cursors on the same btree, then all such
698** cursors should have their BTCF_Multiple flag set. The btreeCursor()
699** routine enforces that rule. This routine only needs to be called in
700** the uncommon case when pExpect has the BTCF_Multiple flag set.
701**
702** If pExpect!=NULL and if no other cursors are found on the same root-page,
703** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
704** pointless call to this routine.
705**
drh637f3d82014-08-22 22:26:07 +0000706** Implementation note: This routine merely checks to see if any cursors
707** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
708** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000709*/
710static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
711 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000712 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000713 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000714 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000715 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
716 }
drh27fb7462015-06-30 02:47:36 +0000717 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
718 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
719 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000720}
721
722/* This helper routine to saveAllCursors does the actual work of saving
723** the cursors if and when a cursor is found that actually requires saving.
724** The common case is that no cursors need to be saved, so this routine is
725** broken out from its caller to avoid unnecessary stack pointer movement.
726*/
727static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000728 BtCursor *p, /* The first cursor that needs saving */
729 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
730 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000731){
732 do{
drh138eeeb2013-03-27 03:15:23 +0000733 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000734 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000735 int rc = saveCursorPosition(p);
736 if( SQLITE_OK!=rc ){
737 return rc;
738 }
739 }else{
740 testcase( p->iPage>0 );
741 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000742 }
743 }
drh637f3d82014-08-22 22:26:07 +0000744 p = p->pNext;
745 }while( p );
drh980b1a72006-08-16 16:42:48 +0000746 return SQLITE_OK;
747}
748
749/*
drhbf700f32007-03-31 02:36:44 +0000750** Clear the current cursor position.
751*/
danielk1977be51a652008-10-08 17:58:48 +0000752void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000753 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000754 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000755 pCur->pKey = 0;
756 pCur->eState = CURSOR_INVALID;
757}
758
759/*
dan434d3cf2017-05-27 18:05:32 +0000760** This is a debugging routine designed to reveal the file (database or
761** wal file) that the page would be read from if it were reread at the
762** current time. It returns the name of the file.
763*/
764static const char *btreePageOriginFile(MemPage *pPage){
765 return sqlite3PagerOrigin(pPage->pDbPage, 0);
766}
767
768/*
769** This is a debugging routine designed to reveal the byte offset that
770** the page would be read from (from either the database or wal file) if it
771** were reread at the current time. The byte offset is returned.
772*/
773static i64 btreePageOriginOffset(MemPage *pPage){
774 i64 iOffset = 0;
775 sqlite3PagerOrigin(pPage->pDbPage, &iOffset);
776 return iOffset;
777}
778
779/*
danielk19773509a652009-07-06 18:56:13 +0000780** In this version of BtreeMoveto, pKey is a packed index record
781** such as is generated by the OP_MakeRecord opcode. Unpack the
782** record and then call BtreeMovetoUnpacked() to do the work.
783*/
784static int btreeMoveto(
785 BtCursor *pCur, /* Cursor open on the btree to be searched */
786 const void *pKey, /* Packed key if the btree is an index */
787 i64 nKey, /* Integer key for tables. Size of pKey for indices */
788 int bias, /* Bias search to the high end */
789 int *pRes /* Write search results here */
790){
791 int rc; /* Status code */
792 UnpackedRecord *pIdxKey; /* Unpacked index key */
danielk19773509a652009-07-06 18:56:13 +0000793
794 if( pKey ){
795 assert( nKey==(i64)(int)nKey );
drha582b012016-12-21 19:45:54 +0000796 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pCur->pKeyInfo);
mistachkinfad30392016-02-13 23:43:46 +0000797 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
mistachkin0fe5f952011-09-14 18:19:08 +0000798 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000799 if( pIdxKey->nField==0 ){
drha582b012016-12-21 19:45:54 +0000800 rc = SQLITE_CORRUPT_BKPT;
801 goto moveto_done;
drh094b7582013-11-30 12:49:28 +0000802 }
danielk19773509a652009-07-06 18:56:13 +0000803 }else{
804 pIdxKey = 0;
805 }
806 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
drha582b012016-12-21 19:45:54 +0000807moveto_done:
808 if( pIdxKey ){
809 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000810 }
811 return rc;
812}
813
814/*
drh980b1a72006-08-16 16:42:48 +0000815** Restore the cursor to the position it was in (or as close to as possible)
816** when saveCursorPosition() was called. Note that this call deletes the
817** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000818** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000819** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000820*/
danielk197730548662009-07-09 05:07:37 +0000821static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000822 int rc;
drhd2f83132015-03-25 17:35:01 +0000823 int skipNext;
dan7a2347e2016-01-07 16:43:54 +0000824 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +0000825 assert( pCur->eState>=CURSOR_REQUIRESEEK );
826 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000827 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000828 }
drh980b1a72006-08-16 16:42:48 +0000829 pCur->eState = CURSOR_INVALID;
drhd2f83132015-03-25 17:35:01 +0000830 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
drh980b1a72006-08-16 16:42:48 +0000831 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000832 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000833 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000834 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drhd2f83132015-03-25 17:35:01 +0000835 pCur->skipNext |= skipNext;
drh9b47ee32013-08-20 03:13:51 +0000836 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
837 pCur->eState = CURSOR_SKIPNEXT;
838 }
drh980b1a72006-08-16 16:42:48 +0000839 }
840 return rc;
841}
842
drha3460582008-07-11 21:02:53 +0000843#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000844 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000845 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000846 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000847
drha3460582008-07-11 21:02:53 +0000848/*
drh6848dad2014-08-22 23:33:03 +0000849** Determine whether or not a cursor has moved from the position where
850** it was last placed, or has been invalidated for any other reason.
851** Cursors can move when the row they are pointing at is deleted out
852** from under them, for example. Cursor might also move if a btree
853** is rebalanced.
drha3460582008-07-11 21:02:53 +0000854**
drh6848dad2014-08-22 23:33:03 +0000855** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000856**
drh6848dad2014-08-22 23:33:03 +0000857** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
858** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000859*/
drh6848dad2014-08-22 23:33:03 +0000860int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drhc22284f2014-10-13 16:02:20 +0000861 return pCur->eState!=CURSOR_VALID;
drh6848dad2014-08-22 23:33:03 +0000862}
863
864/*
865** This routine restores a cursor back to its original position after it
866** has been moved by some outside activity (such as a btree rebalance or
867** a row having been deleted out from under the cursor).
868**
869** On success, the *pDifferentRow parameter is false if the cursor is left
870** pointing at exactly the same row. *pDifferntRow is the row the cursor
871** was pointing to has been deleted, forcing the cursor to point to some
872** nearby row.
873**
874** This routine should only be called for a cursor that just returned
875** TRUE from sqlite3BtreeCursorHasMoved().
876*/
877int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000878 int rc;
879
drh6848dad2014-08-22 23:33:03 +0000880 assert( pCur!=0 );
881 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000882 rc = restoreCursorPosition(pCur);
883 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000884 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000885 return rc;
886 }
drh606a3572015-03-25 18:29:10 +0000887 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000888 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000889 }else{
drh606a3572015-03-25 18:29:10 +0000890 assert( pCur->skipNext==0 );
drh6848dad2014-08-22 23:33:03 +0000891 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000892 }
893 return SQLITE_OK;
894}
895
drhf7854c72015-10-27 13:24:37 +0000896#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh28935362013-12-07 20:39:19 +0000897/*
drh0df57012015-08-14 15:05:55 +0000898** Provide hints to the cursor. The particular hint given (and the type
899** and number of the varargs parameters) is determined by the eHintType
900** parameter. See the definitions of the BTREE_HINT_* macros for details.
drh28935362013-12-07 20:39:19 +0000901*/
drh0df57012015-08-14 15:05:55 +0000902void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
drhf7854c72015-10-27 13:24:37 +0000903 /* Used only by system that substitute their own storage engine */
drh28935362013-12-07 20:39:19 +0000904}
drhf7854c72015-10-27 13:24:37 +0000905#endif
906
907/*
908** Provide flag hints to the cursor.
909*/
910void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
911 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
912 pCur->hints = x;
913}
914
drh28935362013-12-07 20:39:19 +0000915
danielk1977599fcba2004-11-08 07:13:13 +0000916#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000917/*
drha3152892007-05-05 11:48:52 +0000918** Given a page number of a regular database page, return the page
919** number for the pointer-map page that contains the entry for the
920** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000921**
922** Return 0 (not a valid page) for pgno==1 since there is
923** no pointer map associated with page 1. The integrity_check logic
924** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000925*/
danielk1977266664d2006-02-10 08:24:21 +0000926static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000927 int nPagesPerMapPage;
928 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000929 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000930 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000931 nPagesPerMapPage = (pBt->usableSize/5)+1;
932 iPtrMap = (pgno-2)/nPagesPerMapPage;
933 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000934 if( ret==PENDING_BYTE_PAGE(pBt) ){
935 ret++;
936 }
937 return ret;
938}
danielk1977a19df672004-11-03 11:37:07 +0000939
danielk1977afcdd022004-10-31 16:25:42 +0000940/*
danielk1977afcdd022004-10-31 16:25:42 +0000941** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000942**
943** This routine updates the pointer map entry for page number 'key'
944** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000945**
946** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
947** a no-op. If an error occurs, the appropriate error code is written
948** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000949*/
drh98add2e2009-07-20 17:11:49 +0000950static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000951 DbPage *pDbPage; /* The pointer map page */
952 u8 *pPtrmap; /* The pointer map data */
953 Pgno iPtrmap; /* The pointer map page number */
954 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000955 int rc; /* Return code from subfunctions */
956
957 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000958
drh1fee73e2007-08-29 04:00:57 +0000959 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000960 /* The master-journal page number must never be used as a pointer map page */
961 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
962
danielk1977ac11ee62005-01-15 12:45:51 +0000963 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000964 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000965 *pRC = SQLITE_CORRUPT_BKPT;
966 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000967 }
danielk1977266664d2006-02-10 08:24:21 +0000968 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +0000969 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977687566d2004-11-02 12:56:41 +0000970 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000971 *pRC = rc;
972 return;
danielk1977afcdd022004-10-31 16:25:42 +0000973 }
danielk19778c666b12008-07-18 09:34:57 +0000974 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000975 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000976 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000977 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000978 }
drhfc243732011-05-17 15:21:56 +0000979 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000980 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000981
drh615ae552005-01-16 23:21:00 +0000982 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
983 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000984 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000985 if( rc==SQLITE_OK ){
986 pPtrmap[offset] = eType;
987 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000988 }
danielk1977afcdd022004-10-31 16:25:42 +0000989 }
990
drh4925a552009-07-07 11:39:58 +0000991ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000992 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000993}
994
995/*
996** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000997**
998** This routine retrieves the pointer map entry for page 'key', writing
999** the type and parent page number to *pEType and *pPgno respectively.
1000** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +00001001*/
danielk1977aef0bf62005-12-30 16:28:01 +00001002static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +00001003 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +00001004 int iPtrmap; /* Pointer map page index */
1005 u8 *pPtrmap; /* Pointer map page data */
1006 int offset; /* Offset of entry in pointer map */
1007 int rc;
1008
drh1fee73e2007-08-29 04:00:57 +00001009 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001010
danielk1977266664d2006-02-10 08:24:21 +00001011 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +00001012 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00001013 if( rc!=0 ){
1014 return rc;
1015 }
danielk19773b8a05f2007-03-19 17:44:26 +00001016 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001017
danielk19778c666b12008-07-18 09:34:57 +00001018 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +00001019 if( offset<0 ){
1020 sqlite3PagerUnref(pDbPage);
1021 return SQLITE_CORRUPT_BKPT;
1022 }
1023 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +00001024 assert( pEType!=0 );
1025 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +00001026 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +00001027
danielk19773b8a05f2007-03-19 17:44:26 +00001028 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +00001029 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +00001030 return SQLITE_OK;
1031}
1032
danielk197785d90ca2008-07-19 14:25:15 +00001033#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +00001034 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +00001035 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +00001036 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +00001037#endif
danielk1977afcdd022004-10-31 16:25:42 +00001038
drh0d316a42002-08-11 20:10:47 +00001039/*
drh271efa52004-05-30 19:19:05 +00001040** Given a btree page and a cell index (0 means the first cell on
1041** the page, 1 means the second cell, and so forth) return a pointer
1042** to the cell content.
1043**
drhf44890a2015-06-27 03:58:15 +00001044** findCellPastPtr() does the same except it skips past the initial
1045** 4-byte child pointer found on interior pages, if there is one.
1046**
drh271efa52004-05-30 19:19:05 +00001047** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +00001048*/
drh1688c862008-07-18 02:44:17 +00001049#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +00001050 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001051#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +00001052 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +00001053
drh43605152004-05-29 21:46:49 +00001054
1055/*
drh5fa60512015-06-19 17:19:34 +00001056** This is common tail processing for btreeParseCellPtr() and
1057** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1058** on a single B-tree page. Make necessary adjustments to the CellInfo
1059** structure.
drh43605152004-05-29 21:46:49 +00001060*/
drh5fa60512015-06-19 17:19:34 +00001061static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1062 MemPage *pPage, /* Page containing the cell */
1063 u8 *pCell, /* Pointer to the cell text. */
1064 CellInfo *pInfo /* Fill in this structure */
1065){
1066 /* If the payload will not fit completely on the local page, we have
1067 ** to decide how much to store locally and how much to spill onto
1068 ** overflow pages. The strategy is to minimize the amount of unused
1069 ** space on overflow pages while keeping the amount of local storage
1070 ** in between minLocal and maxLocal.
1071 **
1072 ** Warning: changing the way overflow payload is distributed in any
1073 ** way will result in an incompatible file format.
1074 */
1075 int minLocal; /* Minimum amount of payload held locally */
1076 int maxLocal; /* Maximum amount of payload held locally */
1077 int surplus; /* Overflow payload available for local storage */
1078
1079 minLocal = pPage->minLocal;
1080 maxLocal = pPage->maxLocal;
1081 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1082 testcase( surplus==maxLocal );
1083 testcase( surplus==maxLocal+1 );
1084 if( surplus <= maxLocal ){
1085 pInfo->nLocal = (u16)surplus;
1086 }else{
1087 pInfo->nLocal = (u16)minLocal;
drh43605152004-05-29 21:46:49 +00001088 }
drh45ac1c72015-12-18 03:59:16 +00001089 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
drh43605152004-05-29 21:46:49 +00001090}
1091
1092/*
drh5fa60512015-06-19 17:19:34 +00001093** The following routines are implementations of the MemPage.xParseCell()
1094** method.
1095**
1096** Parse a cell content block and fill in the CellInfo structure.
1097**
1098** btreeParseCellPtr() => table btree leaf nodes
1099** btreeParseCellNoPayload() => table btree internal nodes
1100** btreeParseCellPtrIndex() => index btree nodes
1101**
1102** There is also a wrapper function btreeParseCell() that works for
1103** all MemPage types and that references the cell by index rather than
1104** by pointer.
drh43605152004-05-29 21:46:49 +00001105*/
drh5fa60512015-06-19 17:19:34 +00001106static void btreeParseCellPtrNoPayload(
1107 MemPage *pPage, /* Page containing the cell */
1108 u8 *pCell, /* Pointer to the cell text. */
1109 CellInfo *pInfo /* Fill in this structure */
1110){
1111 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1112 assert( pPage->leaf==0 );
drh5fa60512015-06-19 17:19:34 +00001113 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001114#ifndef SQLITE_DEBUG
1115 UNUSED_PARAMETER(pPage);
1116#endif
drh5fa60512015-06-19 17:19:34 +00001117 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1118 pInfo->nPayload = 0;
1119 pInfo->nLocal = 0;
drh5fa60512015-06-19 17:19:34 +00001120 pInfo->pPayload = 0;
1121 return;
1122}
danielk197730548662009-07-09 05:07:37 +00001123static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001124 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001125 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001126 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001127){
drh3e28ff52014-09-24 00:59:08 +00001128 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001129 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001130 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001131
drh1fee73e2007-08-29 04:00:57 +00001132 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001133 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001134 assert( pPage->intKeyLeaf );
1135 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001136 pIter = pCell;
1137
1138 /* The next block of code is equivalent to:
1139 **
1140 ** pIter += getVarint32(pIter, nPayload);
1141 **
1142 ** The code is inlined to avoid a function call.
1143 */
1144 nPayload = *pIter;
1145 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001146 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001147 nPayload &= 0x7f;
1148 do{
1149 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1150 }while( (*pIter)>=0x80 && pIter<pEnd );
drh6f11bef2004-05-13 01:12:56 +00001151 }
drh56cb04e2015-06-19 18:24:37 +00001152 pIter++;
1153
1154 /* The next block of code is equivalent to:
1155 **
1156 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1157 **
1158 ** The code is inlined to avoid a function call.
1159 */
1160 iKey = *pIter;
1161 if( iKey>=0x80 ){
1162 u8 *pEnd = &pIter[7];
1163 iKey &= 0x7f;
1164 while(1){
1165 iKey = (iKey<<7) | (*++pIter & 0x7f);
1166 if( (*pIter)<0x80 ) break;
1167 if( pIter>=pEnd ){
1168 iKey = (iKey<<8) | *++pIter;
1169 break;
1170 }
1171 }
1172 }
1173 pIter++;
1174
1175 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001176 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001177 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001178 testcase( nPayload==pPage->maxLocal );
1179 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001180 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001181 /* This is the (easy) common case where the entire payload fits
1182 ** on the local page. No overflow is required.
1183 */
drhab1cc582014-09-23 21:25:19 +00001184 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1185 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001186 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001187 }else{
drh5fa60512015-06-19 17:19:34 +00001188 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
1189 }
1190}
1191static void btreeParseCellPtrIndex(
1192 MemPage *pPage, /* Page containing the cell */
1193 u8 *pCell, /* Pointer to the cell text. */
1194 CellInfo *pInfo /* Fill in this structure */
1195){
1196 u8 *pIter; /* For scanning through pCell */
1197 u32 nPayload; /* Number of bytes of cell payload */
drh271efa52004-05-30 19:19:05 +00001198
drh5fa60512015-06-19 17:19:34 +00001199 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1200 assert( pPage->leaf==0 || pPage->leaf==1 );
1201 assert( pPage->intKeyLeaf==0 );
drh5fa60512015-06-19 17:19:34 +00001202 pIter = pCell + pPage->childPtrSize;
1203 nPayload = *pIter;
1204 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001205 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001206 nPayload &= 0x7f;
1207 do{
1208 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1209 }while( *(pIter)>=0x80 && pIter<pEnd );
1210 }
1211 pIter++;
1212 pInfo->nKey = nPayload;
1213 pInfo->nPayload = nPayload;
1214 pInfo->pPayload = pIter;
1215 testcase( nPayload==pPage->maxLocal );
1216 testcase( nPayload==pPage->maxLocal+1 );
1217 if( nPayload<=pPage->maxLocal ){
1218 /* This is the (easy) common case where the entire payload fits
1219 ** on the local page. No overflow is required.
1220 */
1221 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1222 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1223 pInfo->nLocal = (u16)nPayload;
drh5fa60512015-06-19 17:19:34 +00001224 }else{
1225 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001226 }
drh3aac2dd2004-04-26 14:10:20 +00001227}
danielk197730548662009-07-09 05:07:37 +00001228static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001229 MemPage *pPage, /* Page containing the cell */
1230 int iCell, /* The cell index. First cell is 0 */
1231 CellInfo *pInfo /* Fill in this structure */
1232){
drh5fa60512015-06-19 17:19:34 +00001233 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001234}
drh3aac2dd2004-04-26 14:10:20 +00001235
1236/*
drh5fa60512015-06-19 17:19:34 +00001237** The following routines are implementations of the MemPage.xCellSize
1238** method.
1239**
drh43605152004-05-29 21:46:49 +00001240** Compute the total number of bytes that a Cell needs in the cell
1241** data area of the btree-page. The return number includes the cell
1242** data header and the local payload, but not any overflow page or
1243** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001244**
drh5fa60512015-06-19 17:19:34 +00001245** cellSizePtrNoPayload() => table internal nodes
1246** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001247*/
danielk1977ae5558b2009-04-29 11:31:47 +00001248static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001249 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1250 u8 *pEnd; /* End mark for a varint */
1251 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001252
1253#ifdef SQLITE_DEBUG
1254 /* The value returned by this function should always be the same as
1255 ** the (CellInfo.nSize) value found by doing a full parse of the
1256 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1257 ** this function verifies that this invariant is not violated. */
1258 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001259 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001260#endif
1261
drh3e28ff52014-09-24 00:59:08 +00001262 nSize = *pIter;
1263 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001264 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001265 nSize &= 0x7f;
1266 do{
1267 nSize = (nSize<<7) | (*++pIter & 0x7f);
1268 }while( *(pIter)>=0x80 && pIter<pEnd );
1269 }
1270 pIter++;
danielk1977ae5558b2009-04-29 11:31:47 +00001271 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001272 /* pIter now points at the 64-bit integer key value, a variable length
1273 ** integer. The following block moves pIter to point at the first byte
1274 ** past the end of the key value. */
1275 pEnd = &pIter[9];
1276 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001277 }
drh0a45c272009-07-08 01:49:11 +00001278 testcase( nSize==pPage->maxLocal );
1279 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001280 if( nSize<=pPage->maxLocal ){
1281 nSize += (u32)(pIter - pCell);
1282 if( nSize<4 ) nSize = 4;
1283 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001284 int minLocal = pPage->minLocal;
1285 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001286 testcase( nSize==pPage->maxLocal );
1287 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001288 if( nSize>pPage->maxLocal ){
1289 nSize = minLocal;
1290 }
drh3e28ff52014-09-24 00:59:08 +00001291 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001292 }
drhdc41d602014-09-22 19:51:35 +00001293 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001294 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001295}
drh25ada072015-06-19 15:07:14 +00001296static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1297 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1298 u8 *pEnd; /* End mark for a varint */
1299
1300#ifdef SQLITE_DEBUG
1301 /* The value returned by this function should always be the same as
1302 ** the (CellInfo.nSize) value found by doing a full parse of the
1303 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1304 ** this function verifies that this invariant is not violated. */
1305 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001306 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001307#else
1308 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001309#endif
1310
1311 assert( pPage->childPtrSize==4 );
1312 pEnd = pIter + 9;
1313 while( (*pIter++)&0x80 && pIter<pEnd );
1314 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1315 return (u16)(pIter - pCell);
1316}
1317
drh0ee3dbe2009-10-16 15:05:18 +00001318
1319#ifdef SQLITE_DEBUG
1320/* This variation on cellSizePtr() is used inside of assert() statements
1321** only. */
drha9121e42008-02-19 14:59:35 +00001322static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001323 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001324}
danielk1977bc6ada42004-06-30 08:20:16 +00001325#endif
drh3b7511c2001-05-26 13:15:44 +00001326
danielk197779a40da2005-01-16 08:00:01 +00001327#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001328/*
danielk197726836652005-01-17 01:33:13 +00001329** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001330** to an overflow page, insert an entry into the pointer-map
1331** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001332*/
drh98add2e2009-07-20 17:11:49 +00001333static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001334 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001335 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001336 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001337 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00001338 if( info.nLocal<info.nPayload ){
1339 Pgno ovfl = get4byte(&pCell[info.nSize-4]);
drh98add2e2009-07-20 17:11:49 +00001340 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001341 }
danielk1977ac11ee62005-01-15 12:45:51 +00001342}
danielk197779a40da2005-01-16 08:00:01 +00001343#endif
1344
danielk1977ac11ee62005-01-15 12:45:51 +00001345
drhda200cc2004-05-09 11:51:38 +00001346/*
dane6d065a2017-02-24 19:58:22 +00001347** Defragment the page given. This routine reorganizes cells within the
1348** page so that there are no free-blocks on the free-block list.
1349**
1350** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1351** present in the page after this routine returns.
drhfdab0262014-11-20 15:30:50 +00001352**
1353** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1354** b-tree page so that there are no freeblocks or fragment bytes, all
1355** unused bytes are contained in the unallocated space region, and all
1356** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001357*/
dane6d065a2017-02-24 19:58:22 +00001358static int defragmentPage(MemPage *pPage, int nMaxFrag){
drh43605152004-05-29 21:46:49 +00001359 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001360 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001361 int hdr; /* Offset to the page header */
1362 int size; /* Size of a cell */
1363 int usableSize; /* Number of usable bytes on a page */
1364 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001365 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001366 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001367 unsigned char *data; /* The page data */
1368 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001369 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001370 int iCellFirst; /* First allowable cell index */
1371 int iCellLast; /* Last possible cell index */
1372
danielk19773b8a05f2007-03-19 17:44:26 +00001373 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001374 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001375 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001376 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001377 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001378 temp = 0;
1379 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001380 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001381 cellOffset = pPage->cellOffset;
1382 nCell = pPage->nCell;
1383 assert( nCell==get2byte(&data[hdr+3]) );
drh17146622009-07-07 17:38:38 +00001384 iCellFirst = cellOffset + 2*nCell;
dan30741eb2017-03-03 20:02:53 +00001385 usableSize = pPage->pBt->usableSize;
dane6d065a2017-02-24 19:58:22 +00001386
1387 /* This block handles pages with two or fewer free blocks and nMaxFrag
1388 ** or fewer fragmented bytes. In this case it is faster to move the
1389 ** two (or one) blocks of cells using memmove() and add the required
1390 ** offsets to each pointer in the cell-pointer array than it is to
1391 ** reconstruct the entire page. */
1392 if( (int)data[hdr+7]<=nMaxFrag ){
1393 int iFree = get2byte(&data[hdr+1]);
1394 if( iFree ){
1395 int iFree2 = get2byte(&data[iFree]);
dan30741eb2017-03-03 20:02:53 +00001396
1397 /* pageFindSlot() has already verified that free blocks are sorted
1398 ** in order of offset within the page, and that no block extends
1399 ** past the end of the page. Provided the two free slots do not
1400 ** overlap, this guarantees that the memmove() calls below will not
1401 ** overwrite the usableSize byte buffer, even if the database page
1402 ** is corrupt. */
1403 assert( iFree2==0 || iFree2>iFree );
1404 assert( iFree+get2byte(&data[iFree+2]) <= usableSize );
1405 assert( iFree2==0 || iFree2+get2byte(&data[iFree2+2]) <= usableSize );
1406
dane6d065a2017-02-24 19:58:22 +00001407 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1408 u8 *pEnd = &data[cellOffset + nCell*2];
1409 u8 *pAddr;
1410 int sz2 = 0;
1411 int sz = get2byte(&data[iFree+2]);
1412 int top = get2byte(&data[hdr+5]);
1413 if( iFree2 ){
dan30741eb2017-03-03 20:02:53 +00001414 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_BKPT;
dane6d065a2017-02-24 19:58:22 +00001415 sz2 = get2byte(&data[iFree2+2]);
dan30741eb2017-03-03 20:02:53 +00001416 assert( iFree+sz+sz2+iFree2-(iFree+sz) <= usableSize );
dane6d065a2017-02-24 19:58:22 +00001417 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1418 sz += sz2;
1419 }
1420 cbrk = top+sz;
dan30741eb2017-03-03 20:02:53 +00001421 assert( cbrk+(iFree-top) <= usableSize );
dane6d065a2017-02-24 19:58:22 +00001422 memmove(&data[cbrk], &data[top], iFree-top);
1423 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1424 pc = get2byte(pAddr);
1425 if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1426 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1427 }
1428 goto defragment_out;
1429 }
1430 }
1431 }
1432
drh281b21d2008-08-22 12:57:08 +00001433 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001434 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001435 for(i=0; i<nCell; i++){
1436 u8 *pAddr; /* The i-th cell pointer */
1437 pAddr = &data[cellOffset + i*2];
1438 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001439 testcase( pc==iCellFirst );
1440 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001441 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001442 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001443 */
1444 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001445 return SQLITE_CORRUPT_BKPT;
1446 }
drh17146622009-07-07 17:38:38 +00001447 assert( pc>=iCellFirst && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001448 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001449 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001450 if( cbrk<iCellFirst || pc+size>usableSize ){
1451 return SQLITE_CORRUPT_BKPT;
1452 }
drh7157e1d2009-07-09 13:25:32 +00001453 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001454 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001455 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001456 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001457 if( temp==0 ){
1458 int x;
1459 if( cbrk==pc ) continue;
1460 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1461 x = get2byte(&data[hdr+5]);
1462 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1463 src = temp;
1464 }
1465 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001466 }
dane6d065a2017-02-24 19:58:22 +00001467 data[hdr+7] = 0;
dane6d065a2017-02-24 19:58:22 +00001468
1469 defragment_out:
dan3b2ede12017-02-25 16:24:02 +00001470 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
1471 return SQLITE_CORRUPT_BKPT;
1472 }
drh17146622009-07-07 17:38:38 +00001473 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001474 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001475 data[hdr+1] = 0;
1476 data[hdr+2] = 0;
drh17146622009-07-07 17:38:38 +00001477 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001478 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shane0af3f892008-11-12 04:55:34 +00001479 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001480}
1481
drha059ad02001-04-17 20:09:11 +00001482/*
dan8e9ba0c2014-10-14 17:27:04 +00001483** Search the free-list on page pPg for space to store a cell nByte bytes in
1484** size. If one can be found, return a pointer to the space and remove it
1485** from the free-list.
1486**
1487** If no suitable space can be found on the free-list, return NULL.
1488**
drhba0f9992014-10-30 20:48:44 +00001489** This function may detect corruption within pPg. If corruption is
1490** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001491**
drhb7580e82015-06-25 18:36:13 +00001492** Slots on the free list that are between 1 and 3 bytes larger than nByte
1493** will be ignored if adding the extra space to the fragmentation count
1494** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001495*/
drhb7580e82015-06-25 18:36:13 +00001496static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
dan8e9ba0c2014-10-14 17:27:04 +00001497 const int hdr = pPg->hdrOffset;
1498 u8 * const aData = pPg->aData;
drhb7580e82015-06-25 18:36:13 +00001499 int iAddr = hdr + 1;
1500 int pc = get2byte(&aData[iAddr]);
1501 int x;
dan8e9ba0c2014-10-14 17:27:04 +00001502 int usableSize = pPg->pBt->usableSize;
1503
drhb7580e82015-06-25 18:36:13 +00001504 assert( pc>0 );
1505 do{
dan8e9ba0c2014-10-14 17:27:04 +00001506 int size; /* Size of the free slot */
drh113762a2014-11-19 16:36:25 +00001507 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
1508 ** increasing offset. */
dan8e9ba0c2014-10-14 17:27:04 +00001509 if( pc>usableSize-4 || pc<iAddr+4 ){
drhba0f9992014-10-30 20:48:44 +00001510 *pRc = SQLITE_CORRUPT_BKPT;
dan8e9ba0c2014-10-14 17:27:04 +00001511 return 0;
1512 }
drh113762a2014-11-19 16:36:25 +00001513 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1514 ** freeblock form a big-endian integer which is the size of the freeblock
1515 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001516 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001517 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001518 testcase( x==4 );
1519 testcase( x==3 );
drh24dee9d2015-06-02 19:36:29 +00001520 if( pc < pPg->cellOffset+2*pPg->nCell || size+pc > usableSize ){
1521 *pRc = SQLITE_CORRUPT_BKPT;
1522 return 0;
1523 }else if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001524 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1525 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001526 if( aData[hdr+7]>57 ) return 0;
1527
dan8e9ba0c2014-10-14 17:27:04 +00001528 /* Remove the slot from the free-list. Update the number of
1529 ** fragmented bytes within the page. */
1530 memcpy(&aData[iAddr], &aData[pc], 2);
1531 aData[hdr+7] += (u8)x;
dan8e9ba0c2014-10-14 17:27:04 +00001532 }else{
1533 /* The slot remains on the free-list. Reduce its size to account
1534 ** for the portion used by the new allocation. */
1535 put2byte(&aData[pc+2], x);
1536 }
1537 return &aData[pc + x];
1538 }
drhb7580e82015-06-25 18:36:13 +00001539 iAddr = pc;
1540 pc = get2byte(&aData[pc]);
1541 }while( pc );
dan8e9ba0c2014-10-14 17:27:04 +00001542
1543 return 0;
1544}
1545
1546/*
danielk19776011a752009-04-01 16:25:32 +00001547** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001548** as the first argument. Write into *pIdx the index into pPage->aData[]
1549** of the first byte of allocated space. Return either SQLITE_OK or
1550** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001551**
drh0a45c272009-07-08 01:49:11 +00001552** The caller guarantees that there is sufficient space to make the
1553** allocation. This routine might need to defragment in order to bring
1554** all the space together, however. This routine will avoid using
1555** the first two bytes past the cell pointer area since presumably this
1556** allocation is being made in order to insert a new cell, so we will
1557** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001558*/
drh0a45c272009-07-08 01:49:11 +00001559static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001560 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1561 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001562 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001563 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001564 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001565
danielk19773b8a05f2007-03-19 17:44:26 +00001566 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001567 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001568 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001569 assert( nByte>=0 ); /* Minimum cell size is 4 */
1570 assert( pPage->nFree>=nByte );
1571 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001572 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001573
drh0a45c272009-07-08 01:49:11 +00001574 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1575 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001576 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001577 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1578 ** and the reserved space is zero (the usual value for reserved space)
1579 ** then the cell content offset of an empty page wants to be 65536.
1580 ** However, that integer is too large to be stored in a 2-byte unsigned
1581 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001582 top = get2byte(&data[hdr+5]);
mistachkin68cdd0e2015-06-26 03:12:27 +00001583 assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
drhded340e2015-06-25 15:04:56 +00001584 if( gap>top ){
1585 if( top==0 && pPage->pBt->usableSize==65536 ){
1586 top = 65536;
1587 }else{
1588 return SQLITE_CORRUPT_BKPT;
1589 }
drhe7266222015-05-29 17:51:16 +00001590 }
drh4c04f3c2014-08-20 11:56:14 +00001591
1592 /* If there is enough space between gap and top for one more cell pointer
1593 ** array entry offset, and if the freelist is not empty, then search the
1594 ** freelist looking for a free slot big enough to satisfy the request.
1595 */
drh0a45c272009-07-08 01:49:11 +00001596 testcase( gap+2==top );
1597 testcase( gap+1==top );
1598 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001599 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001600 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001601 if( pSpace ){
drhfefa0942014-11-05 21:21:08 +00001602 assert( pSpace>=data && (pSpace - data)<65536 );
1603 *pIdx = (int)(pSpace - data);
dan8e9ba0c2014-10-14 17:27:04 +00001604 return SQLITE_OK;
drhb7580e82015-06-25 18:36:13 +00001605 }else if( rc ){
1606 return rc;
drh9e572e62004-04-23 23:43:10 +00001607 }
1608 }
drh43605152004-05-29 21:46:49 +00001609
drh4c04f3c2014-08-20 11:56:14 +00001610 /* The request could not be fulfilled using a freelist slot. Check
1611 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001612 */
1613 testcase( gap+2+nByte==top );
1614 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001615 assert( pPage->nCell>0 || CORRUPT_DB );
dane6d065a2017-02-24 19:58:22 +00001616 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
drh0a45c272009-07-08 01:49:11 +00001617 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001618 top = get2byteNotZero(&data[hdr+5]);
dan3b2ede12017-02-25 16:24:02 +00001619 assert( gap+2+nByte<=top );
drh0a45c272009-07-08 01:49:11 +00001620 }
1621
1622
drh43605152004-05-29 21:46:49 +00001623 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001624 ** and the cell content area. The btreeInitPage() call has already
1625 ** validated the freelist. Given that the freelist is valid, there
1626 ** is no way that the allocation can extend off the end of the page.
1627 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001628 */
drh0a45c272009-07-08 01:49:11 +00001629 top -= nByte;
drh43605152004-05-29 21:46:49 +00001630 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001631 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001632 *pIdx = top;
1633 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001634}
1635
1636/*
drh9e572e62004-04-23 23:43:10 +00001637** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001638** The first byte of the new free block is pPage->aData[iStart]
1639** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001640**
drh5f5c7532014-08-20 17:56:27 +00001641** Adjacent freeblocks are coalesced.
1642**
1643** Note that even though the freeblock list was checked by btreeInitPage(),
1644** that routine will not detect overlap between cells or freeblocks. Nor
1645** does it detect cells or freeblocks that encrouch into the reserved bytes
1646** at the end of the page. So do additional corruption checks inside this
1647** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001648*/
drh5f5c7532014-08-20 17:56:27 +00001649static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001650 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001651 u16 iFreeBlk; /* Address of the next freeblock */
1652 u8 hdr; /* Page header size. 0 or 100 */
1653 u8 nFrag = 0; /* Reduction in fragmentation */
1654 u16 iOrigSize = iSize; /* Original value of iSize */
1655 u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1656 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001657 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001658
drh9e572e62004-04-23 23:43:10 +00001659 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001660 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001661 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001662 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001663 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001664 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5f5c7532014-08-20 17:56:27 +00001665 assert( iStart<=iLast );
drh9e572e62004-04-23 23:43:10 +00001666
drh5f5c7532014-08-20 17:56:27 +00001667 /* Overwrite deleted information with zeros when the secure_delete
1668 ** option is enabled */
drhc9166342012-01-05 23:32:06 +00001669 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh7fb91642014-08-20 14:37:09 +00001670 memset(&data[iStart], 0, iSize);
drh5b47efa2010-02-12 18:18:39 +00001671 }
drhfcce93f2006-02-22 03:08:32 +00001672
drh5f5c7532014-08-20 17:56:27 +00001673 /* The list of freeblocks must be in ascending order. Find the
1674 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001675 */
drh43605152004-05-29 21:46:49 +00001676 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001677 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001678 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1679 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1680 }else{
drh85f071b2016-09-17 19:34:32 +00001681 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1682 if( iFreeBlk<iPtr+4 ){
1683 if( iFreeBlk==0 ) break;
1684 return SQLITE_CORRUPT_BKPT;
1685 }
drh7bc4c452014-08-20 18:43:44 +00001686 iPtr = iFreeBlk;
shanedcc50b72008-11-13 18:29:50 +00001687 }
drh7bc4c452014-08-20 18:43:44 +00001688 if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT;
1689 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1690
1691 /* At this point:
1692 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001693 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001694 **
1695 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1696 */
1697 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1698 nFrag = iFreeBlk - iEnd;
1699 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
1700 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drhae6cd722015-06-25 15:21:52 +00001701 if( iEnd > pPage->pBt->usableSize ) return SQLITE_CORRUPT_BKPT;
drh7bc4c452014-08-20 18:43:44 +00001702 iSize = iEnd - iStart;
1703 iFreeBlk = get2byte(&data[iFreeBlk]);
1704 }
1705
drh3f387402014-09-24 01:23:00 +00001706 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1707 ** pointer in the page header) then check to see if iStart should be
1708 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001709 */
1710 if( iPtr>hdr+1 ){
1711 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1712 if( iPtrEnd+3>=iStart ){
1713 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
1714 nFrag += iStart - iPtrEnd;
1715 iSize = iEnd - iPtr;
1716 iStart = iPtr;
shanedcc50b72008-11-13 18:29:50 +00001717 }
drh9e572e62004-04-23 23:43:10 +00001718 }
drh7bc4c452014-08-20 18:43:44 +00001719 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT;
1720 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001721 }
drh7bc4c452014-08-20 18:43:44 +00001722 if( iStart==get2byte(&data[hdr+5]) ){
drh5f5c7532014-08-20 17:56:27 +00001723 /* The new freeblock is at the beginning of the cell content area,
1724 ** so just extend the cell content area rather than create another
1725 ** freelist entry */
drh7bc4c452014-08-20 18:43:44 +00001726 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT;
drh5f5c7532014-08-20 17:56:27 +00001727 put2byte(&data[hdr+1], iFreeBlk);
1728 put2byte(&data[hdr+5], iEnd);
1729 }else{
1730 /* Insert the new freeblock into the freelist */
1731 put2byte(&data[iPtr], iStart);
1732 put2byte(&data[iStart], iFreeBlk);
1733 put2byte(&data[iStart+2], iSize);
drh4b70f112004-05-02 21:12:19 +00001734 }
drh5f5c7532014-08-20 17:56:27 +00001735 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001736 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001737}
1738
1739/*
drh271efa52004-05-30 19:19:05 +00001740** Decode the flags byte (the first byte of the header) for a page
1741** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001742**
1743** Only the following combinations are supported. Anything different
1744** indicates a corrupt database files:
1745**
1746** PTF_ZERODATA
1747** PTF_ZERODATA | PTF_LEAF
1748** PTF_LEAFDATA | PTF_INTKEY
1749** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001750*/
drh44845222008-07-17 18:39:57 +00001751static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001752 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001753
1754 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001755 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001756 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001757 flagByte &= ~PTF_LEAF;
1758 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001759 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001760 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001761 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drh3791c9c2016-05-09 23:11:47 +00001762 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1763 ** interior table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001764 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
drh3791c9c2016-05-09 23:11:47 +00001765 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1766 ** leaf table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001767 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001768 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001769 if( pPage->leaf ){
1770 pPage->intKeyLeaf = 1;
drh5fa60512015-06-19 17:19:34 +00001771 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001772 }else{
1773 pPage->intKeyLeaf = 0;
drh25ada072015-06-19 15:07:14 +00001774 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001775 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001776 }
drh271efa52004-05-30 19:19:05 +00001777 pPage->maxLocal = pBt->maxLeaf;
1778 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001779 }else if( flagByte==PTF_ZERODATA ){
drh3791c9c2016-05-09 23:11:47 +00001780 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1781 ** interior index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001782 assert( (PTF_ZERODATA)==2 );
drh3791c9c2016-05-09 23:11:47 +00001783 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1784 ** leaf index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001785 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001786 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001787 pPage->intKeyLeaf = 0;
drh5fa60512015-06-19 17:19:34 +00001788 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001789 pPage->maxLocal = pBt->maxLocal;
1790 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001791 }else{
drhfdab0262014-11-20 15:30:50 +00001792 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1793 ** an error. */
drh44845222008-07-17 18:39:57 +00001794 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001795 }
drhc9166342012-01-05 23:32:06 +00001796 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001797 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001798}
1799
1800/*
drh7e3b0a02001-04-28 16:52:40 +00001801** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001802**
1803** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001804** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001805** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1806** guarantee that the page is well-formed. It only shows that
1807** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001808*/
danielk197730548662009-07-09 05:07:37 +00001809static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001810
danielk197771d5d2c2008-09-29 11:49:47 +00001811 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001812 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001813 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001814 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001815 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1816 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001817
1818 if( !pPage->isInit ){
drh380c08e2016-12-13 20:30:29 +00001819 int pc; /* Address of a freeblock within pPage->aData[] */
drhf49661a2008-12-10 16:45:50 +00001820 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001821 u8 *data; /* Equal to pPage->aData */
1822 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001823 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001824 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001825 int nFree; /* Number of unused bytes on the page */
1826 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001827 int iCellFirst; /* First allowable cell or freeblock offset */
1828 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001829
1830 pBt = pPage->pBt;
1831
danielk1977eaa06f62008-09-18 17:34:44 +00001832 hdr = pPage->hdrOffset;
1833 data = pPage->aData;
drhfdab0262014-11-20 15:30:50 +00001834 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1835 ** the b-tree page type. */
danielk1977eaa06f62008-09-18 17:34:44 +00001836 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001837 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1838 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001839 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001840 usableSize = pBt->usableSize;
drhfdab0262014-11-20 15:30:50 +00001841 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
drh3def2352011-11-11 00:27:15 +00001842 pPage->aDataEnd = &data[usableSize];
1843 pPage->aCellIdx = &data[cellOffset];
drhf44890a2015-06-27 03:58:15 +00001844 pPage->aDataOfst = &data[pPage->childPtrSize];
drhfdab0262014-11-20 15:30:50 +00001845 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1846 ** the start of the cell content area. A zero value for this integer is
1847 ** interpreted as 65536. */
drh5d433ce2010-08-14 16:02:52 +00001848 top = get2byteNotZero(&data[hdr+5]);
drhfdab0262014-11-20 15:30:50 +00001849 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1850 ** number of cells on the page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001851 pPage->nCell = get2byte(&data[hdr+3]);
1852 if( pPage->nCell>MX_CELL(pBt) ){
1853 /* To many cells for a single page. The page must be corrupt */
1854 return SQLITE_CORRUPT_BKPT;
1855 }
drhb908d762009-07-08 16:54:40 +00001856 testcase( pPage->nCell==MX_CELL(pBt) );
drhfdab0262014-11-20 15:30:50 +00001857 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1858 ** possible for a root page of a table that contains no rows) then the
1859 ** offset to the cell content area will equal the page size minus the
1860 ** bytes of reserved space. */
1861 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
drh69e931e2009-06-03 21:04:35 +00001862
shane5eff7cf2009-08-10 03:57:58 +00001863 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001864 ** of page when parsing a cell.
1865 **
1866 ** The following block of code checks early to see if a cell extends
1867 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1868 ** returned if it does.
1869 */
drh0a45c272009-07-08 01:49:11 +00001870 iCellFirst = cellOffset + 2*pPage->nCell;
1871 iCellLast = usableSize - 4;
drh1421d982015-05-27 03:46:18 +00001872 if( pBt->db->flags & SQLITE_CellSizeCk ){
drh69e931e2009-06-03 21:04:35 +00001873 int i; /* Index into the cell pointer array */
1874 int sz; /* Size of a cell */
1875
drh69e931e2009-06-03 21:04:35 +00001876 if( !pPage->leaf ) iCellLast--;
1877 for(i=0; i<pPage->nCell; i++){
drh329428e2015-06-30 13:28:18 +00001878 pc = get2byteAligned(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001879 testcase( pc==iCellFirst );
1880 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001881 if( pc<iCellFirst || pc>iCellLast ){
1882 return SQLITE_CORRUPT_BKPT;
1883 }
drh25ada072015-06-19 15:07:14 +00001884 sz = pPage->xCellSize(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001885 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001886 if( pc+sz>usableSize ){
1887 return SQLITE_CORRUPT_BKPT;
1888 }
1889 }
drh0a45c272009-07-08 01:49:11 +00001890 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001891 }
drh69e931e2009-06-03 21:04:35 +00001892
drhfdab0262014-11-20 15:30:50 +00001893 /* Compute the total free space on the page
1894 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1895 ** start of the first freeblock on the page, or is zero if there are no
1896 ** freeblocks. */
danielk1977eaa06f62008-09-18 17:34:44 +00001897 pc = get2byte(&data[hdr+1]);
drhfdab0262014-11-20 15:30:50 +00001898 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
drh77dc0ed2016-12-12 01:30:01 +00001899 if( pc>0 ){
1900 u32 next, size;
1901 if( pc<iCellFirst ){
drhfdab0262014-11-20 15:30:50 +00001902 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1903 ** always be at least one cell before the first freeblock.
drhfdab0262014-11-20 15:30:50 +00001904 */
danielk1977eaa06f62008-09-18 17:34:44 +00001905 return SQLITE_CORRUPT_BKPT;
1906 }
drh77dc0ed2016-12-12 01:30:01 +00001907 while( 1 ){
1908 if( pc>iCellLast ){
1909 return SQLITE_CORRUPT_BKPT; /* Freeblock off the end of the page */
1910 }
1911 next = get2byte(&data[pc]);
1912 size = get2byte(&data[pc+2]);
1913 nFree = nFree + size;
1914 if( next<=pc+size+3 ) break;
1915 pc = next;
danielk1977eaa06f62008-09-18 17:34:44 +00001916 }
drh77dc0ed2016-12-12 01:30:01 +00001917 if( next>0 ){
1918 return SQLITE_CORRUPT_BKPT; /* Freeblock not in ascending order */
1919 }
drh380c08e2016-12-13 20:30:29 +00001920 if( pc+size>(unsigned int)usableSize ){
drh77dc0ed2016-12-12 01:30:01 +00001921 return SQLITE_CORRUPT_BKPT; /* Last freeblock extends past page end */
1922 }
danielk1977eaa06f62008-09-18 17:34:44 +00001923 }
danielk197793c829c2009-06-03 17:26:17 +00001924
1925 /* At this point, nFree contains the sum of the offset to the start
1926 ** of the cell-content area plus the number of free bytes within
1927 ** the cell-content area. If this is greater than the usable-size
1928 ** of the page, then the page must be corrupted. This check also
1929 ** serves to verify that the offset to the start of the cell-content
1930 ** area, according to the page header, lies within the page.
1931 */
1932 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001933 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001934 }
shane5eff7cf2009-08-10 03:57:58 +00001935 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001936 pPage->isInit = 1;
1937 }
drh9e572e62004-04-23 23:43:10 +00001938 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001939}
1940
1941/*
drh8b2f49b2001-06-08 00:21:52 +00001942** Set up a raw page so that it looks like a database page holding
1943** no entries.
drhbd03cae2001-06-02 02:40:57 +00001944*/
drh9e572e62004-04-23 23:43:10 +00001945static void zeroPage(MemPage *pPage, int flags){
1946 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001947 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001948 u8 hdr = pPage->hdrOffset;
1949 u16 first;
drh9e572e62004-04-23 23:43:10 +00001950
danielk19773b8a05f2007-03-19 17:44:26 +00001951 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001952 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1953 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001954 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001955 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001956 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001957 memset(&data[hdr], 0, pBt->usableSize - hdr);
1958 }
drh1bd10f82008-12-10 21:19:56 +00001959 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001960 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001961 memset(&data[hdr+1], 0, 4);
1962 data[hdr+7] = 0;
1963 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001964 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001965 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00001966 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001967 pPage->aDataEnd = &data[pBt->usableSize];
1968 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00001969 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00001970 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001971 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1972 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001973 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001974 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001975}
1976
drh897a8202008-09-18 01:08:15 +00001977
1978/*
1979** Convert a DbPage obtained from the pager into a MemPage used by
1980** the btree layer.
1981*/
1982static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1983 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh8dd1c252015-11-04 22:31:02 +00001984 if( pgno!=pPage->pgno ){
1985 pPage->aData = sqlite3PagerGetData(pDbPage);
1986 pPage->pDbPage = pDbPage;
1987 pPage->pBt = pBt;
1988 pPage->pgno = pgno;
1989 pPage->hdrOffset = pgno==1 ? 100 : 0;
1990 }
1991 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
drh897a8202008-09-18 01:08:15 +00001992 return pPage;
1993}
1994
drhbd03cae2001-06-02 02:40:57 +00001995/*
drh3aac2dd2004-04-26 14:10:20 +00001996** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00001997** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00001998**
drh7e8c6f12015-05-28 03:28:27 +00001999** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2000** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00002001** to fetch the content. Just fill in the content with zeros for now.
2002** If in the future we call sqlite3PagerWrite() on this page, that
2003** means we have started to be concerned about content and the disk
2004** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00002005*/
danielk197730548662009-07-09 05:07:37 +00002006static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00002007 BtShared *pBt, /* The btree */
2008 Pgno pgno, /* Number of the page to fetch */
2009 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00002010 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00002011){
drh3aac2dd2004-04-26 14:10:20 +00002012 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00002013 DbPage *pDbPage;
2014
drhb00fc3b2013-08-21 23:42:32 +00002015 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00002016 assert( sqlite3_mutex_held(pBt->mutex) );
drh9584f582015-11-04 20:22:37 +00002017 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00002018 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00002019 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00002020 return SQLITE_OK;
2021}
2022
2023/*
danielk1977bea2a942009-01-20 17:06:27 +00002024** Retrieve a page from the pager cache. If the requested page is not
2025** already in the pager cache return NULL. Initialize the MemPage.pBt and
2026** MemPage.aData elements if needed.
2027*/
2028static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2029 DbPage *pDbPage;
2030 assert( sqlite3_mutex_held(pBt->mutex) );
2031 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2032 if( pDbPage ){
2033 return btreePageFromDbPage(pDbPage, pgno, pBt);
2034 }
2035 return 0;
2036}
2037
2038/*
danielk197789d40042008-11-17 14:20:56 +00002039** Return the size of the database file in pages. If there is any kind of
2040** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00002041*/
drhb1299152010-03-30 22:58:33 +00002042static Pgno btreePagecount(BtShared *pBt){
2043 return pBt->nPage;
2044}
2045u32 sqlite3BtreeLastPage(Btree *p){
2046 assert( sqlite3BtreeHoldsMutex(p) );
2047 assert( ((p->pBt->nPage)&0x8000000)==0 );
drheac5bd72014-07-25 21:35:39 +00002048 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00002049}
2050
2051/*
drh28f58dd2015-06-27 19:45:03 +00002052** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00002053**
drh15a00212015-06-27 20:55:00 +00002054** If pCur!=0 then the page is being fetched as part of a moveToChild()
2055** call. Do additional sanity checking on the page in this case.
2056** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00002057**
2058** The page is fetched as read-write unless pCur is not NULL and is
2059** a read-only cursor.
2060**
2061** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00002062** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00002063*/
2064static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00002065 BtShared *pBt, /* The database file */
2066 Pgno pgno, /* Number of the page to get */
2067 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00002068 BtCursor *pCur, /* Cursor to receive the page, or NULL */
2069 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00002070){
2071 int rc;
drh28f58dd2015-06-27 19:45:03 +00002072 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00002073 assert( sqlite3_mutex_held(pBt->mutex) );
drh28f58dd2015-06-27 19:45:03 +00002074 assert( pCur==0 || ppPage==&pCur->apPage[pCur->iPage] );
2075 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00002076 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002077
danba3cbf32010-06-30 04:29:03 +00002078 if( pgno>btreePagecount(pBt) ){
2079 rc = SQLITE_CORRUPT_BKPT;
drh28f58dd2015-06-27 19:45:03 +00002080 goto getAndInitPage_error;
2081 }
drh9584f582015-11-04 20:22:37 +00002082 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
drh28f58dd2015-06-27 19:45:03 +00002083 if( rc ){
2084 goto getAndInitPage_error;
2085 }
drh8dd1c252015-11-04 22:31:02 +00002086 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh28f58dd2015-06-27 19:45:03 +00002087 if( (*ppPage)->isInit==0 ){
drh8dd1c252015-11-04 22:31:02 +00002088 btreePageFromDbPage(pDbPage, pgno, pBt);
drh28f58dd2015-06-27 19:45:03 +00002089 rc = btreeInitPage(*ppPage);
2090 if( rc!=SQLITE_OK ){
2091 releasePage(*ppPage);
2092 goto getAndInitPage_error;
danielk197789bc4bc2009-07-21 19:25:24 +00002093 }
drhee696e22004-08-30 16:52:17 +00002094 }
drh8dd1c252015-11-04 22:31:02 +00002095 assert( (*ppPage)->pgno==pgno );
2096 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
danba3cbf32010-06-30 04:29:03 +00002097
drh15a00212015-06-27 20:55:00 +00002098 /* If obtaining a child page for a cursor, we must verify that the page is
2099 ** compatible with the root page. */
drh8dd1c252015-11-04 22:31:02 +00002100 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
drh28f58dd2015-06-27 19:45:03 +00002101 rc = SQLITE_CORRUPT_BKPT;
2102 releasePage(*ppPage);
2103 goto getAndInitPage_error;
2104 }
drh28f58dd2015-06-27 19:45:03 +00002105 return SQLITE_OK;
2106
2107getAndInitPage_error:
2108 if( pCur ) pCur->iPage--;
danba3cbf32010-06-30 04:29:03 +00002109 testcase( pgno==0 );
2110 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00002111 return rc;
2112}
2113
2114/*
drh3aac2dd2004-04-26 14:10:20 +00002115** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002116** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00002117*/
drhbbf0f862015-06-27 14:59:26 +00002118static void releasePageNotNull(MemPage *pPage){
2119 assert( pPage->aData );
2120 assert( pPage->pBt );
2121 assert( pPage->pDbPage!=0 );
2122 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2123 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2124 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2125 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00002126}
drh3aac2dd2004-04-26 14:10:20 +00002127static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002128 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002129}
2130
2131/*
drh7e8c6f12015-05-28 03:28:27 +00002132** Get an unused page.
2133**
2134** This works just like btreeGetPage() with the addition:
2135**
2136** * If the page is already in use for some other purpose, immediately
2137** release it and return an SQLITE_CURRUPT error.
2138** * Make sure the isInit flag is clear
2139*/
2140static int btreeGetUnusedPage(
2141 BtShared *pBt, /* The btree */
2142 Pgno pgno, /* Number of the page to fetch */
2143 MemPage **ppPage, /* Return the page in this parameter */
2144 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2145){
2146 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2147 if( rc==SQLITE_OK ){
2148 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2149 releasePage(*ppPage);
2150 *ppPage = 0;
2151 return SQLITE_CORRUPT_BKPT;
2152 }
2153 (*ppPage)->isInit = 0;
2154 }else{
2155 *ppPage = 0;
2156 }
2157 return rc;
2158}
2159
drha059ad02001-04-17 20:09:11 +00002160
2161/*
drha6abd042004-06-09 17:37:22 +00002162** During a rollback, when the pager reloads information into the cache
2163** so that the cache is restored to its original state at the start of
2164** the transaction, for each page restored this routine is called.
2165**
2166** This routine needs to reset the extra data section at the end of the
2167** page to agree with the restored data.
2168*/
danielk1977eaa06f62008-09-18 17:34:44 +00002169static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002170 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002171 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002172 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002173 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002174 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002175 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002176 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002177 /* pPage might not be a btree page; it might be an overflow page
2178 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002179 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002180 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002181 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002182 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002183 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002184 }
drha6abd042004-06-09 17:37:22 +00002185 }
2186}
2187
2188/*
drhe5fe6902007-12-07 18:55:28 +00002189** Invoke the busy handler for a btree.
2190*/
danielk19771ceedd32008-11-19 10:22:33 +00002191static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002192 BtShared *pBt = (BtShared*)pArg;
2193 assert( pBt->db );
2194 assert( sqlite3_mutex_held(pBt->db->mutex) );
2195 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2196}
2197
2198/*
drhad3e0102004-09-03 23:32:18 +00002199** Open a database file.
2200**
drh382c0242001-10-06 16:33:02 +00002201** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002202** then an ephemeral database is created. The ephemeral database might
2203** be exclusively in memory, or it might use a disk-based memory cache.
2204** Either way, the ephemeral database will be automatically deleted
2205** when sqlite3BtreeClose() is called.
2206**
drhe53831d2007-08-17 01:14:38 +00002207** If zFilename is ":memory:" then an in-memory database is created
2208** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002209**
drh33f111d2012-01-17 15:29:14 +00002210** The "flags" parameter is a bitmask that might contain bits like
2211** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002212**
drhc47fd8e2009-04-30 13:30:32 +00002213** If the database is already opened in the same database connection
2214** and we are in shared cache mode, then the open will fail with an
2215** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2216** objects in the same database connection since doing so will lead
2217** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002218*/
drh23e11ca2004-05-04 17:27:28 +00002219int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002220 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002221 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002222 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002223 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002224 int flags, /* Options */
2225 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002226){
drh7555d8e2009-03-20 13:15:30 +00002227 BtShared *pBt = 0; /* Shared part of btree structure */
2228 Btree *p; /* Handle to return */
2229 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2230 int rc = SQLITE_OK; /* Result code from this function */
2231 u8 nReserve; /* Byte of unused space on each page */
2232 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002233
drh75c014c2010-08-30 15:02:28 +00002234 /* True if opening an ephemeral, temporary database */
2235 const int isTempDb = zFilename==0 || zFilename[0]==0;
2236
danielk1977aef0bf62005-12-30 16:28:01 +00002237 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002238 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002239 */
drhb0a7c9c2010-12-06 21:09:59 +00002240#ifdef SQLITE_OMIT_MEMORYDB
2241 const int isMemdb = 0;
2242#else
2243 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002244 || (isTempDb && sqlite3TempInMemory(db))
2245 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002246#endif
2247
drhe5fe6902007-12-07 18:55:28 +00002248 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002249 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002250 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002251 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2252
2253 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2254 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2255
2256 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2257 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002258
drh75c014c2010-08-30 15:02:28 +00002259 if( isMemdb ){
2260 flags |= BTREE_MEMORY;
2261 }
2262 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2263 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2264 }
drh17435752007-08-16 04:30:38 +00002265 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002266 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00002267 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +00002268 }
2269 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002270 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002271#ifndef SQLITE_OMIT_SHARED_CACHE
2272 p->lock.pBtree = p;
2273 p->lock.iTable = 1;
2274#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002275
drh198bf392006-01-06 21:52:49 +00002276#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002277 /*
2278 ** If this Btree is a candidate for shared cache, try to find an
2279 ** existing BtShared object that we can share with
2280 */
drh4ab9d252012-05-26 20:08:49 +00002281 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002282 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002283 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002284 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002285 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002286 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002287
drhff0587c2007-08-29 17:43:19 +00002288 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002289 if( !zFullPathname ){
2290 sqlite3_free(p);
mistachkinfad30392016-02-13 23:43:46 +00002291 return SQLITE_NOMEM_BKPT;
drhff0587c2007-08-29 17:43:19 +00002292 }
drhafc8b7f2012-05-26 18:06:38 +00002293 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002294 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002295 }else{
2296 rc = sqlite3OsFullPathname(pVfs, zFilename,
2297 nFullPathname, zFullPathname);
2298 if( rc ){
2299 sqlite3_free(zFullPathname);
2300 sqlite3_free(p);
2301 return rc;
2302 }
drh070ad6b2011-11-17 11:43:19 +00002303 }
drh30ddce62011-10-15 00:16:30 +00002304#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002305 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2306 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00002307 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00002308 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002309#endif
drh78f82d12008-09-02 00:52:52 +00002310 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002311 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002312 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002313 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002314 int iDb;
2315 for(iDb=db->nDb-1; iDb>=0; iDb--){
2316 Btree *pExisting = db->aDb[iDb].pBt;
2317 if( pExisting && pExisting->pBt==pBt ){
2318 sqlite3_mutex_leave(mutexShared);
2319 sqlite3_mutex_leave(mutexOpen);
2320 sqlite3_free(zFullPathname);
2321 sqlite3_free(p);
2322 return SQLITE_CONSTRAINT;
2323 }
2324 }
drhff0587c2007-08-29 17:43:19 +00002325 p->pBt = pBt;
2326 pBt->nRef++;
2327 break;
2328 }
2329 }
2330 sqlite3_mutex_leave(mutexShared);
2331 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002332 }
drhff0587c2007-08-29 17:43:19 +00002333#ifdef SQLITE_DEBUG
2334 else{
2335 /* In debug mode, we mark all persistent databases as sharable
2336 ** even when they are not. This exercises the locking code and
2337 ** gives more opportunity for asserts(sqlite3_mutex_held())
2338 ** statements to find locking problems.
2339 */
2340 p->sharable = 1;
2341 }
2342#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002343 }
2344#endif
drha059ad02001-04-17 20:09:11 +00002345 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002346 /*
2347 ** The following asserts make sure that structures used by the btree are
2348 ** the right size. This is to guard against size changes that result
2349 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002350 */
drh062cf272015-03-23 19:03:51 +00002351 assert( sizeof(i64)==8 );
2352 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002353 assert( sizeof(u32)==4 );
2354 assert( sizeof(u16)==2 );
2355 assert( sizeof(Pgno)==4 );
2356
2357 pBt = sqlite3MallocZero( sizeof(*pBt) );
2358 if( pBt==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002359 rc = SQLITE_NOMEM_BKPT;
drhe53831d2007-08-17 01:14:38 +00002360 goto btree_open_out;
2361 }
danielk197771d5d2c2008-09-29 11:49:47 +00002362 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drha2ee5892016-12-09 16:02:00 +00002363 sizeof(MemPage), flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002364 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002365 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002366 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2367 }
2368 if( rc!=SQLITE_OK ){
2369 goto btree_open_out;
2370 }
shanehbd2aaf92010-09-01 02:38:21 +00002371 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002372 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00002373 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002374 p->pBt = pBt;
2375
drhe53831d2007-08-17 01:14:38 +00002376 pBt->pCursor = 0;
2377 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002378 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00002379#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00002380 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002381#endif
drh113762a2014-11-19 16:36:25 +00002382 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2383 ** determined by the 2-byte integer located at an offset of 16 bytes from
2384 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002385 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002386 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2387 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002388 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002389#ifndef SQLITE_OMIT_AUTOVACUUM
2390 /* If the magic name ":memory:" will create an in-memory database, then
2391 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2392 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2393 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2394 ** regular file-name. In this case the auto-vacuum applies as per normal.
2395 */
2396 if( zFilename && !isMemdb ){
2397 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2398 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2399 }
2400#endif
2401 nReserve = 0;
2402 }else{
drh113762a2014-11-19 16:36:25 +00002403 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2404 ** determined by the one-byte unsigned integer found at an offset of 20
2405 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002406 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002407 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002408#ifndef SQLITE_OMIT_AUTOVACUUM
2409 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2410 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2411#endif
2412 }
drhfa9601a2009-06-18 17:22:39 +00002413 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002414 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002415 pBt->usableSize = pBt->pageSize - nReserve;
2416 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002417
2418#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2419 /* Add the new BtShared object to the linked list sharable BtShareds.
2420 */
dan272989b2016-07-06 10:12:02 +00002421 pBt->nRef = 1;
drhe53831d2007-08-17 01:14:38 +00002422 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002423 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh30ddce62011-10-15 00:16:30 +00002424 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002425 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002426 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002427 if( pBt->mutex==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002428 rc = SQLITE_NOMEM_BKPT;
drh3285db22007-09-03 22:00:39 +00002429 goto btree_open_out;
2430 }
drhff0587c2007-08-29 17:43:19 +00002431 }
drhe53831d2007-08-17 01:14:38 +00002432 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002433 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2434 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002435 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002436 }
drheee46cf2004-11-06 00:02:48 +00002437#endif
drh90f5ecb2004-07-22 01:19:35 +00002438 }
danielk1977aef0bf62005-12-30 16:28:01 +00002439
drhcfed7bc2006-03-13 14:28:05 +00002440#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002441 /* If the new Btree uses a sharable pBtShared, then link the new
2442 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002443 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002444 */
drhe53831d2007-08-17 01:14:38 +00002445 if( p->sharable ){
2446 int i;
2447 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002448 for(i=0; i<db->nDb; i++){
2449 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002450 while( pSib->pPrev ){ pSib = pSib->pPrev; }
drh3bfa7e82016-03-22 14:37:59 +00002451 if( (uptr)p->pBt<(uptr)pSib->pBt ){
drhe53831d2007-08-17 01:14:38 +00002452 p->pNext = pSib;
2453 p->pPrev = 0;
2454 pSib->pPrev = p;
2455 }else{
drh3bfa7e82016-03-22 14:37:59 +00002456 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002457 pSib = pSib->pNext;
2458 }
2459 p->pNext = pSib->pNext;
2460 p->pPrev = pSib;
2461 if( p->pNext ){
2462 p->pNext->pPrev = p;
2463 }
2464 pSib->pNext = p;
2465 }
2466 break;
2467 }
2468 }
danielk1977aef0bf62005-12-30 16:28:01 +00002469 }
danielk1977aef0bf62005-12-30 16:28:01 +00002470#endif
2471 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002472
2473btree_open_out:
2474 if( rc!=SQLITE_OK ){
2475 if( pBt && pBt->pPager ){
dan7fb89902016-08-12 16:21:15 +00002476 sqlite3PagerClose(pBt->pPager, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002477 }
drh17435752007-08-16 04:30:38 +00002478 sqlite3_free(pBt);
2479 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002480 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002481 }else{
dan0f5a1862016-08-13 14:30:23 +00002482 sqlite3_file *pFile;
2483
drh75c014c2010-08-30 15:02:28 +00002484 /* If the B-Tree was successfully opened, set the pager-cache size to the
2485 ** default value. Except, when opening on an existing shared pager-cache,
2486 ** do not change the pager-cache size.
2487 */
2488 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2489 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2490 }
dan0f5a1862016-08-13 14:30:23 +00002491
2492 pFile = sqlite3PagerFile(pBt->pPager);
2493 if( pFile->pMethods ){
2494 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2495 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002496 }
drh7555d8e2009-03-20 13:15:30 +00002497 if( mutexOpen ){
2498 assert( sqlite3_mutex_held(mutexOpen) );
2499 sqlite3_mutex_leave(mutexOpen);
2500 }
dan272989b2016-07-06 10:12:02 +00002501 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002502 return rc;
drha059ad02001-04-17 20:09:11 +00002503}
2504
2505/*
drhe53831d2007-08-17 01:14:38 +00002506** Decrement the BtShared.nRef counter. When it reaches zero,
2507** remove the BtShared structure from the sharing list. Return
2508** true if the BtShared.nRef counter reaches zero and return
2509** false if it is still positive.
2510*/
2511static int removeFromSharingList(BtShared *pBt){
2512#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002513 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002514 BtShared *pList;
2515 int removed = 0;
2516
drhd677b3d2007-08-20 22:48:41 +00002517 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002518 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002519 sqlite3_mutex_enter(pMaster);
2520 pBt->nRef--;
2521 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002522 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2523 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002524 }else{
drh78f82d12008-09-02 00:52:52 +00002525 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002526 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002527 pList=pList->pNext;
2528 }
drh34004ce2008-07-11 16:15:17 +00002529 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002530 pList->pNext = pBt->pNext;
2531 }
2532 }
drh3285db22007-09-03 22:00:39 +00002533 if( SQLITE_THREADSAFE ){
2534 sqlite3_mutex_free(pBt->mutex);
2535 }
drhe53831d2007-08-17 01:14:38 +00002536 removed = 1;
2537 }
2538 sqlite3_mutex_leave(pMaster);
2539 return removed;
2540#else
2541 return 1;
2542#endif
2543}
2544
2545/*
drhf7141992008-06-19 00:16:08 +00002546** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002547** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2548** pointer.
drhf7141992008-06-19 00:16:08 +00002549*/
2550static void allocateTempSpace(BtShared *pBt){
2551 if( !pBt->pTmpSpace ){
2552 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002553
2554 /* One of the uses of pBt->pTmpSpace is to format cells before
2555 ** inserting them into a leaf page (function fillInCell()). If
2556 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2557 ** by the various routines that manipulate binary cells. Which
2558 ** can mean that fillInCell() only initializes the first 2 or 3
2559 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2560 ** it into a database page. This is not actually a problem, but it
2561 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2562 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002563 ** zero the first 4 bytes of temp space here.
2564 **
2565 ** Also: Provide four bytes of initialized space before the
2566 ** beginning of pTmpSpace as an area available to prepend the
2567 ** left-child pointer to the beginning of a cell.
2568 */
2569 if( pBt->pTmpSpace ){
2570 memset(pBt->pTmpSpace, 0, 8);
2571 pBt->pTmpSpace += 4;
2572 }
drhf7141992008-06-19 00:16:08 +00002573 }
2574}
2575
2576/*
2577** Free the pBt->pTmpSpace allocation
2578*/
2579static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002580 if( pBt->pTmpSpace ){
2581 pBt->pTmpSpace -= 4;
2582 sqlite3PageFree(pBt->pTmpSpace);
2583 pBt->pTmpSpace = 0;
2584 }
drhf7141992008-06-19 00:16:08 +00002585}
2586
2587/*
drha059ad02001-04-17 20:09:11 +00002588** Close an open database and invalidate all cursors.
2589*/
danielk1977aef0bf62005-12-30 16:28:01 +00002590int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002591 BtShared *pBt = p->pBt;
2592 BtCursor *pCur;
2593
danielk1977aef0bf62005-12-30 16:28:01 +00002594 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002595 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002596 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002597 pCur = pBt->pCursor;
2598 while( pCur ){
2599 BtCursor *pTmp = pCur;
2600 pCur = pCur->pNext;
2601 if( pTmp->pBtree==p ){
2602 sqlite3BtreeCloseCursor(pTmp);
2603 }
drha059ad02001-04-17 20:09:11 +00002604 }
danielk1977aef0bf62005-12-30 16:28:01 +00002605
danielk19778d34dfd2006-01-24 16:37:57 +00002606 /* Rollback any active transaction and free the handle structure.
2607 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2608 ** this handle.
2609 */
drh47b7fc72014-11-11 01:33:57 +00002610 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002611 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002612
danielk1977aef0bf62005-12-30 16:28:01 +00002613 /* If there are still other outstanding references to the shared-btree
2614 ** structure, return now. The remainder of this procedure cleans
2615 ** up the shared-btree.
2616 */
drhe53831d2007-08-17 01:14:38 +00002617 assert( p->wantToLock==0 && p->locked==0 );
2618 if( !p->sharable || removeFromSharingList(pBt) ){
2619 /* The pBt is no longer on the sharing list, so we can access
2620 ** it without having to hold the mutex.
2621 **
2622 ** Clean out and delete the BtShared object.
2623 */
2624 assert( !pBt->pCursor );
dan7fb89902016-08-12 16:21:15 +00002625 sqlite3PagerClose(pBt->pPager, p->db);
drhe53831d2007-08-17 01:14:38 +00002626 if( pBt->xFreeSchema && pBt->pSchema ){
2627 pBt->xFreeSchema(pBt->pSchema);
2628 }
drhb9755982010-07-24 16:34:37 +00002629 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002630 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002631 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002632 }
2633
drhe53831d2007-08-17 01:14:38 +00002634#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002635 assert( p->wantToLock==0 );
2636 assert( p->locked==0 );
2637 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2638 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002639#endif
2640
drhe53831d2007-08-17 01:14:38 +00002641 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002642 return SQLITE_OK;
2643}
2644
2645/*
drh9b0cf342015-11-12 14:57:19 +00002646** Change the "soft" limit on the number of pages in the cache.
2647** Unused and unmodified pages will be recycled when the number of
2648** pages in the cache exceeds this soft limit. But the size of the
2649** cache is allowed to grow larger than this limit if it contains
2650** dirty pages or pages still in active use.
drhf57b14a2001-09-14 18:54:08 +00002651*/
danielk1977aef0bf62005-12-30 16:28:01 +00002652int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2653 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002654 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002655 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002656 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002657 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002658 return SQLITE_OK;
2659}
2660
drh9b0cf342015-11-12 14:57:19 +00002661/*
2662** Change the "spill" limit on the number of pages in the cache.
2663** If the number of pages exceeds this limit during a write transaction,
2664** the pager might attempt to "spill" pages to the journal early in
2665** order to free up memory.
2666**
2667** The value returned is the current spill size. If zero is passed
2668** as an argument, no changes are made to the spill size setting, so
2669** using mxPage of 0 is a way to query the current spill size.
2670*/
2671int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2672 BtShared *pBt = p->pBt;
2673 int res;
2674 assert( sqlite3_mutex_held(p->db->mutex) );
2675 sqlite3BtreeEnter(p);
2676 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2677 sqlite3BtreeLeave(p);
2678 return res;
2679}
2680
drh18c7e402014-03-14 11:46:10 +00002681#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002682/*
dan5d8a1372013-03-19 19:28:06 +00002683** Change the limit on the amount of the database file that may be
2684** memory mapped.
2685*/
drh9b4c59f2013-04-15 17:03:42 +00002686int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002687 BtShared *pBt = p->pBt;
2688 assert( sqlite3_mutex_held(p->db->mutex) );
2689 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002690 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002691 sqlite3BtreeLeave(p);
2692 return SQLITE_OK;
2693}
drh18c7e402014-03-14 11:46:10 +00002694#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002695
drh306dc212001-05-21 13:45:10 +00002696/*
drh973b6e32003-02-12 14:09:42 +00002697** Change the way data is synced to disk in order to increase or decrease
2698** how well the database resists damage due to OS crashes and power
2699** failures. Level 1 is the same as asynchronous (no syncs() occur and
2700** there is a high probability of damage) Level 2 is the default. There
2701** is a very low but non-zero probability of damage. Level 3 reduces the
2702** probability of damage to near zero but with a write performance reduction.
2703*/
danielk197793758c82005-01-21 08:13:14 +00002704#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002705int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002706 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002707 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002708){
danielk1977aef0bf62005-12-30 16:28:01 +00002709 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002710 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002711 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002712 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002713 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002714 return SQLITE_OK;
2715}
danielk197793758c82005-01-21 08:13:14 +00002716#endif
drh973b6e32003-02-12 14:09:42 +00002717
drh2c8997b2005-08-27 16:36:48 +00002718/*
drh90f5ecb2004-07-22 01:19:35 +00002719** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002720** Or, if the page size has already been fixed, return SQLITE_READONLY
2721** without changing anything.
drh06f50212004-11-02 14:24:33 +00002722**
2723** The page size must be a power of 2 between 512 and 65536. If the page
2724** size supplied does not meet this constraint then the page size is not
2725** changed.
2726**
2727** Page sizes are constrained to be a power of two so that the region
2728** of the database file used for locking (beginning at PENDING_BYTE,
2729** the first byte past the 1GB boundary, 0x40000000) needs to occur
2730** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002731**
2732** If parameter nReserve is less than zero, then the number of reserved
2733** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002734**
drhc9166342012-01-05 23:32:06 +00002735** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002736** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002737*/
drhce4869f2009-04-02 20:16:58 +00002738int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002739 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002740 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002741 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002742 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002743#if SQLITE_HAS_CODEC
2744 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2745#endif
drhc9166342012-01-05 23:32:06 +00002746 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002747 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002748 return SQLITE_READONLY;
2749 }
2750 if( nReserve<0 ){
2751 nReserve = pBt->pageSize - pBt->usableSize;
2752 }
drhf49661a2008-12-10 16:45:50 +00002753 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002754 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2755 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002756 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002757 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002758 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002759 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002760 }
drhfa9601a2009-06-18 17:22:39 +00002761 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002762 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002763 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002764 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002765 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002766}
2767
2768/*
2769** Return the currently defined page size
2770*/
danielk1977aef0bf62005-12-30 16:28:01 +00002771int sqlite3BtreeGetPageSize(Btree *p){
2772 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002773}
drh7f751222009-03-17 22:33:00 +00002774
dan0094f372012-09-28 20:23:42 +00002775/*
2776** This function is similar to sqlite3BtreeGetReserve(), except that it
2777** may only be called if it is guaranteed that the b-tree mutex is already
2778** held.
2779**
2780** This is useful in one special case in the backup API code where it is
2781** known that the shared b-tree mutex is held, but the mutex on the
2782** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2783** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002784** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002785*/
2786int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002787 int n;
dan0094f372012-09-28 20:23:42 +00002788 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002789 n = p->pBt->pageSize - p->pBt->usableSize;
2790 return n;
dan0094f372012-09-28 20:23:42 +00002791}
2792
drh7f751222009-03-17 22:33:00 +00002793/*
2794** Return the number of bytes of space at the end of every page that
2795** are intentually left unused. This is the "reserved" space that is
2796** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002797**
2798** If SQLITE_HAS_MUTEX is defined then the number returned is the
2799** greater of the current reserved space and the maximum requested
2800** reserve space.
drh7f751222009-03-17 22:33:00 +00002801*/
drhad0961b2015-02-21 00:19:25 +00002802int sqlite3BtreeGetOptimalReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002803 int n;
2804 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002805 n = sqlite3BtreeGetReserveNoMutex(p);
2806#ifdef SQLITE_HAS_CODEC
2807 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2808#endif
drhd677b3d2007-08-20 22:48:41 +00002809 sqlite3BtreeLeave(p);
2810 return n;
drh2011d5f2004-07-22 02:40:37 +00002811}
drhf8e632b2007-05-08 14:51:36 +00002812
drhad0961b2015-02-21 00:19:25 +00002813
drhf8e632b2007-05-08 14:51:36 +00002814/*
2815** Set the maximum page count for a database if mxPage is positive.
2816** No changes are made if mxPage is 0 or negative.
2817** Regardless of the value of mxPage, return the maximum page count.
2818*/
2819int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002820 int n;
2821 sqlite3BtreeEnter(p);
2822 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2823 sqlite3BtreeLeave(p);
2824 return n;
drhf8e632b2007-05-08 14:51:36 +00002825}
drh5b47efa2010-02-12 18:18:39 +00002826
2827/*
drhc9166342012-01-05 23:32:06 +00002828** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2829** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002830** setting after the change.
2831*/
2832int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2833 int b;
drhaf034ed2010-02-12 19:46:26 +00002834 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002835 sqlite3BtreeEnter(p);
2836 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002837 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2838 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002839 }
drhc9166342012-01-05 23:32:06 +00002840 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002841 sqlite3BtreeLeave(p);
2842 return b;
2843}
drh90f5ecb2004-07-22 01:19:35 +00002844
2845/*
danielk1977951af802004-11-05 15:45:09 +00002846** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2847** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2848** is disabled. The default value for the auto-vacuum property is
2849** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2850*/
danielk1977aef0bf62005-12-30 16:28:01 +00002851int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002852#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002853 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002854#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002855 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002856 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002857 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002858
2859 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002860 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002861 rc = SQLITE_READONLY;
2862 }else{
drh076d4662009-02-18 20:31:18 +00002863 pBt->autoVacuum = av ?1:0;
2864 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002865 }
drhd677b3d2007-08-20 22:48:41 +00002866 sqlite3BtreeLeave(p);
2867 return rc;
danielk1977951af802004-11-05 15:45:09 +00002868#endif
2869}
2870
2871/*
2872** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2873** enabled 1 is returned. Otherwise 0.
2874*/
danielk1977aef0bf62005-12-30 16:28:01 +00002875int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002876#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002877 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002878#else
drhd677b3d2007-08-20 22:48:41 +00002879 int rc;
2880 sqlite3BtreeEnter(p);
2881 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002882 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2883 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2884 BTREE_AUTOVACUUM_INCR
2885 );
drhd677b3d2007-08-20 22:48:41 +00002886 sqlite3BtreeLeave(p);
2887 return rc;
danielk1977951af802004-11-05 15:45:09 +00002888#endif
2889}
2890
danf5da7db2017-03-16 18:14:39 +00002891/*
2892** If the user has not set the safety-level for this database connection
2893** using "PRAGMA synchronous", and if the safety-level is not already
2894** set to the value passed to this function as the second parameter,
2895** set it so.
2896*/
2897#if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS
2898static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
2899 sqlite3 *db;
2900 Db *pDb;
2901 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
2902 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
2903 if( pDb->bSyncSet==0
2904 && pDb->safety_level!=safety_level
2905 && pDb!=&db->aDb[1]
2906 ){
2907 pDb->safety_level = safety_level;
2908 sqlite3PagerSetFlags(pBt->pPager,
2909 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
2910 }
2911 }
2912}
2913#else
danfc8f4b62017-03-16 18:54:42 +00002914# define setDefaultSyncFlag(pBt,safety_level)
danf5da7db2017-03-16 18:14:39 +00002915#endif
danielk1977951af802004-11-05 15:45:09 +00002916
2917/*
drha34b6762004-05-07 13:30:42 +00002918** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002919** also acquire a readlock on that file.
2920**
2921** SQLITE_OK is returned on success. If the file is not a
2922** well-formed database file, then SQLITE_CORRUPT is returned.
2923** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002924** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002925*/
danielk1977aef0bf62005-12-30 16:28:01 +00002926static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002927 int rc; /* Result code from subfunctions */
2928 MemPage *pPage1; /* Page 1 of the database file */
2929 int nPage; /* Number of pages in the database */
2930 int nPageFile = 0; /* Number of pages in the database file */
2931 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002932
drh1fee73e2007-08-29 04:00:57 +00002933 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002934 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002935 rc = sqlite3PagerSharedLock(pBt->pPager);
2936 if( rc!=SQLITE_OK ) return rc;
danielk197730548662009-07-09 05:07:37 +00002937 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002938 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002939
2940 /* Do some checking to help insure the file we opened really is
2941 ** a valid database file.
2942 */
drhc2a4bab2010-04-02 12:46:45 +00002943 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002944 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002945 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002946 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002947 }
2948 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002949 u32 pageSize;
2950 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002951 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002952 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00002953 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
2954 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
2955 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00002956 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002957 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002958 }
dan5cf53532010-05-01 16:40:20 +00002959
2960#ifdef SQLITE_OMIT_WAL
2961 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002962 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002963 }
2964 if( page1[19]>1 ){
2965 goto page1_init_failed;
2966 }
2967#else
dane04dc882010-04-20 18:53:15 +00002968 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002969 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002970 }
dane04dc882010-04-20 18:53:15 +00002971 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002972 goto page1_init_failed;
2973 }
drhe5ae5732008-06-15 02:51:47 +00002974
dana470aeb2010-04-21 11:43:38 +00002975 /* If the write version is set to 2, this database should be accessed
2976 ** in WAL mode. If the log is not already open, open it now. Then
2977 ** return SQLITE_OK and return without populating BtShared.pPage1.
2978 ** The caller detects this and calls this function again. This is
2979 ** required as the version of page 1 currently in the page1 buffer
2980 ** may not be the latest version - there may be a newer one in the log
2981 ** file.
2982 */
drhc9166342012-01-05 23:32:06 +00002983 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002984 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002985 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002986 if( rc!=SQLITE_OK ){
2987 goto page1_init_failed;
drhe243de52016-03-08 15:14:26 +00002988 }else{
danf5da7db2017-03-16 18:14:39 +00002989 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
drhe243de52016-03-08 15:14:26 +00002990 if( isOpen==0 ){
2991 releasePage(pPage1);
2992 return SQLITE_OK;
2993 }
dane04dc882010-04-20 18:53:15 +00002994 }
dan8b5444b2010-04-27 14:37:47 +00002995 rc = SQLITE_NOTADB;
danf5da7db2017-03-16 18:14:39 +00002996 }else{
2997 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
dane04dc882010-04-20 18:53:15 +00002998 }
dan5cf53532010-05-01 16:40:20 +00002999#endif
dane04dc882010-04-20 18:53:15 +00003000
drh113762a2014-11-19 16:36:25 +00003001 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3002 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3003 **
drhe5ae5732008-06-15 02:51:47 +00003004 ** The original design allowed these amounts to vary, but as of
3005 ** version 3.6.0, we require them to be fixed.
3006 */
3007 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3008 goto page1_init_failed;
3009 }
drh113762a2014-11-19 16:36:25 +00003010 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3011 ** determined by the 2-byte integer located at an offset of 16 bytes from
3012 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00003013 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00003014 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3015 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00003016 if( ((pageSize-1)&pageSize)!=0
3017 || pageSize>SQLITE_MAX_PAGE_SIZE
3018 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00003019 ){
drh07d183d2005-05-01 22:52:42 +00003020 goto page1_init_failed;
3021 }
3022 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00003023 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3024 ** integer at offset 20 is the number of bytes of space at the end of
3025 ** each page to reserve for extensions.
3026 **
3027 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3028 ** determined by the one-byte unsigned integer found at an offset of 20
3029 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00003030 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00003031 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00003032 /* After reading the first page of the database assuming a page size
3033 ** of BtShared.pageSize, we have discovered that the page-size is
3034 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3035 ** zero and return SQLITE_OK. The caller will call this function
3036 ** again with the correct page-size.
3037 */
3038 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00003039 pBt->usableSize = usableSize;
3040 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00003041 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00003042 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3043 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00003044 return rc;
danielk1977f653d782008-03-20 11:04:21 +00003045 }
danecac6702011-02-09 18:19:20 +00003046 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00003047 rc = SQLITE_CORRUPT_BKPT;
3048 goto page1_init_failed;
3049 }
drh113762a2014-11-19 16:36:25 +00003050 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3051 ** be less than 480. In other words, if the page size is 512, then the
3052 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00003053 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00003054 goto page1_init_failed;
3055 }
drh43b18e12010-08-17 19:40:08 +00003056 pBt->pageSize = pageSize;
3057 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00003058#ifndef SQLITE_OMIT_AUTOVACUUM
3059 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00003060 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00003061#endif
drh306dc212001-05-21 13:45:10 +00003062 }
drhb6f41482004-05-14 01:58:11 +00003063
3064 /* maxLocal is the maximum amount of payload to store locally for
3065 ** a cell. Make sure it is small enough so that at least minFanout
3066 ** cells can will fit on one page. We assume a 10-byte page header.
3067 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00003068 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00003069 ** 4-byte child pointer
3070 ** 9-byte nKey value
3071 ** 4-byte nData value
3072 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00003073 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00003074 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3075 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00003076 */
shaneh1df2db72010-08-18 02:28:48 +00003077 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3078 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3079 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3080 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00003081 if( pBt->maxLocal>127 ){
3082 pBt->max1bytePayload = 127;
3083 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00003084 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00003085 }
drh2e38c322004-09-03 18:38:44 +00003086 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00003087 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00003088 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00003089 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00003090
drh72f82862001-05-24 21:06:34 +00003091page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00003092 releasePage(pPage1);
3093 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00003094 return rc;
drh306dc212001-05-21 13:45:10 +00003095}
3096
drh85ec3b62013-05-14 23:12:06 +00003097#ifndef NDEBUG
3098/*
3099** Return the number of cursors open on pBt. This is for use
3100** in assert() expressions, so it is only compiled if NDEBUG is not
3101** defined.
3102**
3103** Only write cursors are counted if wrOnly is true. If wrOnly is
3104** false then all cursors are counted.
3105**
3106** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00003107** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00003108** have been tripped into the CURSOR_FAULT state are not counted.
3109*/
3110static int countValidCursors(BtShared *pBt, int wrOnly){
3111 BtCursor *pCur;
3112 int r = 0;
3113 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00003114 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3115 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00003116 }
3117 return r;
3118}
3119#endif
3120
drh306dc212001-05-21 13:45:10 +00003121/*
drhb8ca3072001-12-05 00:21:20 +00003122** If there are no outstanding cursors and we are not in the middle
3123** of a transaction but there is a read lock on the database, then
3124** this routine unrefs the first page of the database file which
3125** has the effect of releasing the read lock.
3126**
drhb8ca3072001-12-05 00:21:20 +00003127** If there is a transaction in progress, this routine is a no-op.
3128*/
danielk1977aef0bf62005-12-30 16:28:01 +00003129static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00003130 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00003131 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00003132 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00003133 MemPage *pPage1 = pBt->pPage1;
3134 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00003135 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00003136 pBt->pPage1 = 0;
drhbbf0f862015-06-27 14:59:26 +00003137 releasePageNotNull(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003138 }
3139}
3140
3141/*
drhe39f2f92009-07-23 01:43:59 +00003142** If pBt points to an empty file then convert that empty file
3143** into a new empty database by initializing the first page of
3144** the database.
drh8b2f49b2001-06-08 00:21:52 +00003145*/
danielk1977aef0bf62005-12-30 16:28:01 +00003146static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003147 MemPage *pP1;
3148 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003149 int rc;
drhd677b3d2007-08-20 22:48:41 +00003150
drh1fee73e2007-08-29 04:00:57 +00003151 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003152 if( pBt->nPage>0 ){
3153 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003154 }
drh3aac2dd2004-04-26 14:10:20 +00003155 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003156 assert( pP1!=0 );
3157 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003158 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003159 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003160 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3161 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003162 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3163 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003164 data[18] = 1;
3165 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003166 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3167 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003168 data[21] = 64;
3169 data[22] = 32;
3170 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003171 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003172 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003173 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003174#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003175 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003176 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003177 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003178 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003179#endif
drhdd3cd972010-03-27 17:12:36 +00003180 pBt->nPage = 1;
3181 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003182 return SQLITE_OK;
3183}
3184
3185/*
danb483eba2012-10-13 19:58:11 +00003186** Initialize the first page of the database file (creating a database
3187** consisting of a single page and no schema objects). Return SQLITE_OK
3188** if successful, or an SQLite error code otherwise.
3189*/
3190int sqlite3BtreeNewDb(Btree *p){
3191 int rc;
3192 sqlite3BtreeEnter(p);
3193 p->pBt->nPage = 0;
3194 rc = newDatabase(p->pBt);
3195 sqlite3BtreeLeave(p);
3196 return rc;
3197}
3198
3199/*
danielk1977ee5741e2004-05-31 10:01:34 +00003200** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003201** is started if the second argument is nonzero, otherwise a read-
3202** transaction. If the second argument is 2 or more and exclusive
3203** transaction is started, meaning that no other process is allowed
3204** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003205** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003206** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003207**
danielk1977ee5741e2004-05-31 10:01:34 +00003208** A write-transaction must be started before attempting any
3209** changes to the database. None of the following routines
3210** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003211**
drh23e11ca2004-05-04 17:27:28 +00003212** sqlite3BtreeCreateTable()
3213** sqlite3BtreeCreateIndex()
3214** sqlite3BtreeClearTable()
3215** sqlite3BtreeDropTable()
3216** sqlite3BtreeInsert()
3217** sqlite3BtreeDelete()
3218** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003219**
drhb8ef32c2005-03-14 02:01:49 +00003220** If an initial attempt to acquire the lock fails because of lock contention
3221** and the database was previously unlocked, then invoke the busy handler
3222** if there is one. But if there was previously a read-lock, do not
3223** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3224** returned when there is already a read-lock in order to avoid a deadlock.
3225**
3226** Suppose there are two processes A and B. A has a read lock and B has
3227** a reserved lock. B tries to promote to exclusive but is blocked because
3228** of A's read lock. A tries to promote to reserved but is blocked by B.
3229** One or the other of the two processes must give way or there can be
3230** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3231** when A already has a read lock, we encourage A to give up and let B
3232** proceed.
drha059ad02001-04-17 20:09:11 +00003233*/
danielk1977aef0bf62005-12-30 16:28:01 +00003234int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
3235 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00003236 int rc = SQLITE_OK;
3237
drhd677b3d2007-08-20 22:48:41 +00003238 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003239 btreeIntegrity(p);
3240
danielk1977ee5741e2004-05-31 10:01:34 +00003241 /* If the btree is already in a write-transaction, or it
3242 ** is already in a read-transaction and a read-transaction
3243 ** is requested, this is a no-op.
3244 */
danielk1977aef0bf62005-12-30 16:28:01 +00003245 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003246 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003247 }
dan56c517a2013-09-26 11:04:33 +00003248 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003249
3250 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003251 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003252 rc = SQLITE_READONLY;
3253 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003254 }
3255
danielk1977404ca072009-03-16 13:19:36 +00003256#ifndef SQLITE_OMIT_SHARED_CACHE
drh5a1fb182016-01-08 19:34:39 +00003257 {
3258 sqlite3 *pBlock = 0;
3259 /* If another database handle has already opened a write transaction
3260 ** on this shared-btree structure and a second write transaction is
3261 ** requested, return SQLITE_LOCKED.
3262 */
3263 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3264 || (pBt->btsFlags & BTS_PENDING)!=0
3265 ){
3266 pBlock = pBt->pWriter->db;
3267 }else if( wrflag>1 ){
3268 BtLock *pIter;
3269 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3270 if( pIter->pBtree!=p ){
3271 pBlock = pIter->pBtree->db;
3272 break;
3273 }
danielk1977641b0f42007-12-21 04:47:25 +00003274 }
3275 }
drh5a1fb182016-01-08 19:34:39 +00003276 if( pBlock ){
3277 sqlite3ConnectionBlocked(p->db, pBlock);
3278 rc = SQLITE_LOCKED_SHAREDCACHE;
3279 goto trans_begun;
3280 }
danielk1977404ca072009-03-16 13:19:36 +00003281 }
danielk1977641b0f42007-12-21 04:47:25 +00003282#endif
3283
danielk1977602b4662009-07-02 07:47:33 +00003284 /* Any read-only or read-write transaction implies a read-lock on
3285 ** page 1. So if some other shared-cache client already has a write-lock
3286 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00003287 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3288 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003289
drhc9166342012-01-05 23:32:06 +00003290 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3291 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003292 do {
danielk1977295dc102009-04-01 19:07:03 +00003293 /* Call lockBtree() until either pBt->pPage1 is populated or
3294 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3295 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3296 ** reading page 1 it discovers that the page-size of the database
3297 ** file is not pBt->pageSize. In this case lockBtree() will update
3298 ** pBt->pageSize to the page-size of the file on disk.
3299 */
3300 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003301
drhb8ef32c2005-03-14 02:01:49 +00003302 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003303 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003304 rc = SQLITE_READONLY;
3305 }else{
danielk1977d8293352009-04-30 09:10:37 +00003306 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003307 if( rc==SQLITE_OK ){
3308 rc = newDatabase(pBt);
3309 }
drhb8ef32c2005-03-14 02:01:49 +00003310 }
3311 }
3312
danielk1977bd434552009-03-18 10:33:00 +00003313 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00003314 unlockBtreeIfUnused(pBt);
3315 }
danf9b76712010-06-01 14:12:45 +00003316 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003317 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00003318
3319 if( rc==SQLITE_OK ){
3320 if( p->inTrans==TRANS_NONE ){
3321 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003322#ifndef SQLITE_OMIT_SHARED_CACHE
3323 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003324 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003325 p->lock.eLock = READ_LOCK;
3326 p->lock.pNext = pBt->pLock;
3327 pBt->pLock = &p->lock;
3328 }
3329#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003330 }
3331 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3332 if( p->inTrans>pBt->inTransaction ){
3333 pBt->inTransaction = p->inTrans;
3334 }
danielk1977404ca072009-03-16 13:19:36 +00003335 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003336 MemPage *pPage1 = pBt->pPage1;
3337#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003338 assert( !pBt->pWriter );
3339 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003340 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3341 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003342#endif
dan59257dc2010-08-04 11:34:31 +00003343
3344 /* If the db-size header field is incorrect (as it may be if an old
3345 ** client has been writing the database file), update it now. Doing
3346 ** this sooner rather than later means the database size can safely
3347 ** re-read the database size from page 1 if a savepoint or transaction
3348 ** rollback occurs within the transaction.
3349 */
3350 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3351 rc = sqlite3PagerWrite(pPage1->pDbPage);
3352 if( rc==SQLITE_OK ){
3353 put4byte(&pPage1->aData[28], pBt->nPage);
3354 }
3355 }
3356 }
danielk1977aef0bf62005-12-30 16:28:01 +00003357 }
3358
drhd677b3d2007-08-20 22:48:41 +00003359
3360trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00003361 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00003362 /* This call makes sure that the pager has the correct number of
3363 ** open savepoints. If the second parameter is greater than 0 and
3364 ** the sub-journal is not already open, then it will be opened here.
3365 */
danielk1977fd7f0452008-12-17 17:30:26 +00003366 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3367 }
danielk197712dd5492008-12-18 15:45:07 +00003368
danielk1977aef0bf62005-12-30 16:28:01 +00003369 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003370 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003371 return rc;
drha059ad02001-04-17 20:09:11 +00003372}
3373
danielk1977687566d2004-11-02 12:56:41 +00003374#ifndef SQLITE_OMIT_AUTOVACUUM
3375
3376/*
3377** Set the pointer-map entries for all children of page pPage. Also, if
3378** pPage contains cells that point to overflow pages, set the pointer
3379** map entries for the overflow pages as well.
3380*/
3381static int setChildPtrmaps(MemPage *pPage){
3382 int i; /* Counter variable */
3383 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003384 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003385 BtShared *pBt = pPage->pBt;
danielk1977687566d2004-11-02 12:56:41 +00003386 Pgno pgno = pPage->pgno;
3387
drh1fee73e2007-08-29 04:00:57 +00003388 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00003389 rc = btreeInitPage(pPage);
drh2a702542016-12-12 18:12:03 +00003390 if( rc!=SQLITE_OK ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003391 nCell = pPage->nCell;
3392
3393 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003394 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003395
drh98add2e2009-07-20 17:11:49 +00003396 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003397
danielk1977687566d2004-11-02 12:56:41 +00003398 if( !pPage->leaf ){
3399 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003400 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003401 }
3402 }
3403
3404 if( !pPage->leaf ){
3405 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003406 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003407 }
3408
danielk1977687566d2004-11-02 12:56:41 +00003409 return rc;
3410}
3411
3412/*
drhf3aed592009-07-08 18:12:49 +00003413** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3414** that it points to iTo. Parameter eType describes the type of pointer to
3415** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003416**
3417** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3418** page of pPage.
3419**
3420** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3421** page pointed to by one of the cells on pPage.
3422**
3423** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3424** overflow page in the list.
3425*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003426static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003427 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003428 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003429 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003430 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003431 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00003432 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003433 }
danielk1977f78fc082004-11-02 14:40:32 +00003434 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003435 }else{
danielk1977687566d2004-11-02 12:56:41 +00003436 int i;
3437 int nCell;
drha1f75d92015-05-24 10:18:12 +00003438 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003439
drha1f75d92015-05-24 10:18:12 +00003440 rc = btreeInitPage(pPage);
3441 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003442 nCell = pPage->nCell;
3443
danielk1977687566d2004-11-02 12:56:41 +00003444 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003445 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003446 if( eType==PTRMAP_OVERFLOW1 ){
3447 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003448 pPage->xParseCell(pPage, pCell, &info);
drhb701c9a2017-01-12 15:11:03 +00003449 if( info.nLocal<info.nPayload ){
3450 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
3451 return SQLITE_CORRUPT_BKPT;
3452 }
3453 if( iFrom==get4byte(pCell+info.nSize-4) ){
3454 put4byte(pCell+info.nSize-4, iTo);
3455 break;
3456 }
danielk1977687566d2004-11-02 12:56:41 +00003457 }
3458 }else{
3459 if( get4byte(pCell)==iFrom ){
3460 put4byte(pCell, iTo);
3461 break;
3462 }
3463 }
3464 }
3465
3466 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003467 if( eType!=PTRMAP_BTREE ||
3468 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00003469 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003470 }
danielk1977687566d2004-11-02 12:56:41 +00003471 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3472 }
danielk1977687566d2004-11-02 12:56:41 +00003473 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003474 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003475}
3476
danielk1977003ba062004-11-04 02:57:33 +00003477
danielk19777701e812005-01-10 12:59:51 +00003478/*
3479** Move the open database page pDbPage to location iFreePage in the
3480** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003481**
3482** The isCommit flag indicates that there is no need to remember that
3483** the journal needs to be sync()ed before database page pDbPage->pgno
3484** can be written to. The caller has already promised not to write to that
3485** page.
danielk19777701e812005-01-10 12:59:51 +00003486*/
danielk1977003ba062004-11-04 02:57:33 +00003487static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003488 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003489 MemPage *pDbPage, /* Open page to move */
3490 u8 eType, /* Pointer map 'type' entry for pDbPage */
3491 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003492 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003493 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003494){
3495 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3496 Pgno iDbPage = pDbPage->pgno;
3497 Pager *pPager = pBt->pPager;
3498 int rc;
3499
danielk1977a0bf2652004-11-04 14:30:04 +00003500 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3501 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003502 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003503 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00003504
drh85b623f2007-12-13 21:54:09 +00003505 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003506 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3507 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003508 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003509 if( rc!=SQLITE_OK ){
3510 return rc;
3511 }
3512 pDbPage->pgno = iFreePage;
3513
3514 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3515 ** that point to overflow pages. The pointer map entries for all these
3516 ** pages need to be changed.
3517 **
3518 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3519 ** pointer to a subsequent overflow page. If this is the case, then
3520 ** the pointer map needs to be updated for the subsequent overflow page.
3521 */
danielk1977a0bf2652004-11-04 14:30:04 +00003522 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003523 rc = setChildPtrmaps(pDbPage);
3524 if( rc!=SQLITE_OK ){
3525 return rc;
3526 }
3527 }else{
3528 Pgno nextOvfl = get4byte(pDbPage->aData);
3529 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003530 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003531 if( rc!=SQLITE_OK ){
3532 return rc;
3533 }
3534 }
3535 }
3536
3537 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3538 ** that it points at iFreePage. Also fix the pointer map entry for
3539 ** iPtrPage.
3540 */
danielk1977a0bf2652004-11-04 14:30:04 +00003541 if( eType!=PTRMAP_ROOTPAGE ){
danielk197730548662009-07-09 05:07:37 +00003542 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003543 if( rc!=SQLITE_OK ){
3544 return rc;
3545 }
danielk19773b8a05f2007-03-19 17:44:26 +00003546 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003547 if( rc!=SQLITE_OK ){
3548 releasePage(pPtrPage);
3549 return rc;
3550 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003551 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003552 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003553 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003554 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003555 }
danielk1977003ba062004-11-04 02:57:33 +00003556 }
danielk1977003ba062004-11-04 02:57:33 +00003557 return rc;
3558}
3559
danielk1977dddbcdc2007-04-26 14:42:34 +00003560/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003561static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003562
3563/*
dan51f0b6d2013-02-22 20:16:34 +00003564** Perform a single step of an incremental-vacuum. If successful, return
3565** SQLITE_OK. If there is no work to do (and therefore no point in
3566** calling this function again), return SQLITE_DONE. Or, if an error
3567** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003568**
peter.d.reid60ec9142014-09-06 16:39:46 +00003569** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003570** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003571**
dan51f0b6d2013-02-22 20:16:34 +00003572** Parameter nFin is the number of pages that this database would contain
3573** were this function called until it returns SQLITE_DONE.
3574**
3575** If the bCommit parameter is non-zero, this function assumes that the
3576** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003577** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003578** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003579*/
dan51f0b6d2013-02-22 20:16:34 +00003580static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003581 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003582 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003583
drh1fee73e2007-08-29 04:00:57 +00003584 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003585 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003586
3587 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003588 u8 eType;
3589 Pgno iPtrPage;
3590
3591 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003592 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003593 return SQLITE_DONE;
3594 }
3595
3596 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3597 if( rc!=SQLITE_OK ){
3598 return rc;
3599 }
3600 if( eType==PTRMAP_ROOTPAGE ){
3601 return SQLITE_CORRUPT_BKPT;
3602 }
3603
3604 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003605 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003606 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003607 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003608 ** truncated to zero after this function returns, so it doesn't
3609 ** matter if it still contains some garbage entries.
3610 */
3611 Pgno iFreePg;
3612 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003613 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003614 if( rc!=SQLITE_OK ){
3615 return rc;
3616 }
3617 assert( iFreePg==iLastPg );
3618 releasePage(pFreePg);
3619 }
3620 } else {
3621 Pgno iFreePg; /* Index of free page to move pLastPg to */
3622 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003623 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3624 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003625
danielk197730548662009-07-09 05:07:37 +00003626 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003627 if( rc!=SQLITE_OK ){
3628 return rc;
3629 }
3630
dan51f0b6d2013-02-22 20:16:34 +00003631 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003632 ** is swapped with the first free page pulled off the free list.
3633 **
dan51f0b6d2013-02-22 20:16:34 +00003634 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003635 ** looping until a free-page located within the first nFin pages
3636 ** of the file is found.
3637 */
dan51f0b6d2013-02-22 20:16:34 +00003638 if( bCommit==0 ){
3639 eMode = BTALLOC_LE;
3640 iNear = nFin;
3641 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003642 do {
3643 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003644 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003645 if( rc!=SQLITE_OK ){
3646 releasePage(pLastPg);
3647 return rc;
3648 }
3649 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003650 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003651 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003652
dane1df4e32013-03-05 11:27:04 +00003653 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003654 releasePage(pLastPg);
3655 if( rc!=SQLITE_OK ){
3656 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003657 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003658 }
3659 }
3660
dan51f0b6d2013-02-22 20:16:34 +00003661 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003662 do {
danielk19773460d192008-12-27 15:23:13 +00003663 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003664 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3665 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003666 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003667 }
3668 return SQLITE_OK;
3669}
3670
3671/*
dan51f0b6d2013-02-22 20:16:34 +00003672** The database opened by the first argument is an auto-vacuum database
3673** nOrig pages in size containing nFree free pages. Return the expected
3674** size of the database in pages following an auto-vacuum operation.
3675*/
3676static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3677 int nEntry; /* Number of entries on one ptrmap page */
3678 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3679 Pgno nFin; /* Return value */
3680
3681 nEntry = pBt->usableSize/5;
3682 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3683 nFin = nOrig - nFree - nPtrmap;
3684 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3685 nFin--;
3686 }
3687 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3688 nFin--;
3689 }
dan51f0b6d2013-02-22 20:16:34 +00003690
3691 return nFin;
3692}
3693
3694/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003695** A write-transaction must be opened before calling this function.
3696** It performs a single unit of work towards an incremental vacuum.
3697**
3698** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003699** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003700** SQLITE_OK is returned. Otherwise an SQLite error code.
3701*/
3702int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003703 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003704 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003705
3706 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003707 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3708 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003709 rc = SQLITE_DONE;
3710 }else{
dan51f0b6d2013-02-22 20:16:34 +00003711 Pgno nOrig = btreePagecount(pBt);
3712 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3713 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3714
dan91384712013-02-24 11:50:43 +00003715 if( nOrig<nFin ){
3716 rc = SQLITE_CORRUPT_BKPT;
3717 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003718 rc = saveAllCursors(pBt, 0, 0);
3719 if( rc==SQLITE_OK ){
3720 invalidateAllOverflowCache(pBt);
3721 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3722 }
dan51f0b6d2013-02-22 20:16:34 +00003723 if( rc==SQLITE_OK ){
3724 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3725 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3726 }
3727 }else{
3728 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003729 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003730 }
drhd677b3d2007-08-20 22:48:41 +00003731 sqlite3BtreeLeave(p);
3732 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003733}
3734
3735/*
danielk19773b8a05f2007-03-19 17:44:26 +00003736** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003737** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003738**
3739** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3740** the database file should be truncated to during the commit process.
3741** i.e. the database has been reorganized so that only the first *pnTrunc
3742** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003743*/
danielk19773460d192008-12-27 15:23:13 +00003744static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003745 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003746 Pager *pPager = pBt->pPager;
mistachkinc29cbb02015-07-02 16:52:01 +00003747 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00003748
drh1fee73e2007-08-29 04:00:57 +00003749 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003750 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003751 assert(pBt->autoVacuum);
3752 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003753 Pgno nFin; /* Number of pages in database after autovacuuming */
3754 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003755 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003756 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003757
drhb1299152010-03-30 22:58:33 +00003758 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003759 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3760 /* It is not possible to create a database for which the final page
3761 ** is either a pointer-map page or the pending-byte page. If one
3762 ** is encountered, this indicates corruption.
3763 */
danielk19773460d192008-12-27 15:23:13 +00003764 return SQLITE_CORRUPT_BKPT;
3765 }
danielk1977ef165ce2009-04-06 17:50:03 +00003766
danielk19773460d192008-12-27 15:23:13 +00003767 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003768 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003769 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003770 if( nFin<nOrig ){
3771 rc = saveAllCursors(pBt, 0, 0);
3772 }
danielk19773460d192008-12-27 15:23:13 +00003773 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003774 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003775 }
danielk19773460d192008-12-27 15:23:13 +00003776 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003777 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3778 put4byte(&pBt->pPage1->aData[32], 0);
3779 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003780 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003781 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003782 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003783 }
3784 if( rc!=SQLITE_OK ){
3785 sqlite3PagerRollback(pPager);
3786 }
danielk1977687566d2004-11-02 12:56:41 +00003787 }
3788
dan0aed84d2013-03-26 14:16:20 +00003789 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003790 return rc;
3791}
danielk1977dddbcdc2007-04-26 14:42:34 +00003792
danielk1977a50d9aa2009-06-08 14:49:45 +00003793#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3794# define setChildPtrmaps(x) SQLITE_OK
3795#endif
danielk1977687566d2004-11-02 12:56:41 +00003796
3797/*
drh80e35f42007-03-30 14:06:34 +00003798** This routine does the first phase of a two-phase commit. This routine
3799** causes a rollback journal to be created (if it does not already exist)
3800** and populated with enough information so that if a power loss occurs
3801** the database can be restored to its original state by playing back
3802** the journal. Then the contents of the journal are flushed out to
3803** the disk. After the journal is safely on oxide, the changes to the
3804** database are written into the database file and flushed to oxide.
3805** At the end of this call, the rollback journal still exists on the
3806** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003807** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003808** commit process.
3809**
3810** This call is a no-op if no write-transaction is currently active on pBt.
3811**
3812** Otherwise, sync the database file for the btree pBt. zMaster points to
3813** the name of a master journal file that should be written into the
3814** individual journal file, or is NULL, indicating no master journal file
3815** (single database transaction).
3816**
3817** When this is called, the master journal should already have been
3818** created, populated with this journal pointer and synced to disk.
3819**
3820** Once this is routine has returned, the only thing required to commit
3821** the write-transaction for this database file is to delete the journal.
3822*/
3823int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3824 int rc = SQLITE_OK;
3825 if( p->inTrans==TRANS_WRITE ){
3826 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003827 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003828#ifndef SQLITE_OMIT_AUTOVACUUM
3829 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003830 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003831 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003832 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003833 return rc;
3834 }
3835 }
danbc1a3c62013-02-23 16:40:46 +00003836 if( pBt->bDoTruncate ){
3837 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3838 }
drh80e35f42007-03-30 14:06:34 +00003839#endif
drh49b9d332009-01-02 18:10:42 +00003840 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003841 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003842 }
3843 return rc;
3844}
3845
3846/*
danielk197794b30732009-07-02 17:21:57 +00003847** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3848** at the conclusion of a transaction.
3849*/
3850static void btreeEndTransaction(Btree *p){
3851 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003852 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003853 assert( sqlite3BtreeHoldsMutex(p) );
3854
danbc1a3c62013-02-23 16:40:46 +00003855#ifndef SQLITE_OMIT_AUTOVACUUM
3856 pBt->bDoTruncate = 0;
3857#endif
danc0537fe2013-06-28 19:41:43 +00003858 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003859 /* If there are other active statements that belong to this database
3860 ** handle, downgrade to a read-only transaction. The other statements
3861 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003862 downgradeAllSharedCacheTableLocks(p);
3863 p->inTrans = TRANS_READ;
3864 }else{
3865 /* If the handle had any kind of transaction open, decrement the
3866 ** transaction count of the shared btree. If the transaction count
3867 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3868 ** call below will unlock the pager. */
3869 if( p->inTrans!=TRANS_NONE ){
3870 clearAllSharedCacheTableLocks(p);
3871 pBt->nTransaction--;
3872 if( 0==pBt->nTransaction ){
3873 pBt->inTransaction = TRANS_NONE;
3874 }
3875 }
3876
3877 /* Set the current transaction state to TRANS_NONE and unlock the
3878 ** pager if this call closed the only read or write transaction. */
3879 p->inTrans = TRANS_NONE;
3880 unlockBtreeIfUnused(pBt);
3881 }
3882
3883 btreeIntegrity(p);
3884}
3885
3886/*
drh2aa679f2001-06-25 02:11:07 +00003887** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003888**
drh6e345992007-03-30 11:12:08 +00003889** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003890** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3891** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3892** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003893** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003894** routine has to do is delete or truncate or zero the header in the
3895** the rollback journal (which causes the transaction to commit) and
3896** drop locks.
drh6e345992007-03-30 11:12:08 +00003897**
dan60939d02011-03-29 15:40:55 +00003898** Normally, if an error occurs while the pager layer is attempting to
3899** finalize the underlying journal file, this function returns an error and
3900** the upper layer will attempt a rollback. However, if the second argument
3901** is non-zero then this b-tree transaction is part of a multi-file
3902** transaction. In this case, the transaction has already been committed
3903** (by deleting a master journal file) and the caller will ignore this
3904** functions return code. So, even if an error occurs in the pager layer,
3905** reset the b-tree objects internal state to indicate that the write
3906** transaction has been closed. This is quite safe, as the pager will have
3907** transitioned to the error state.
3908**
drh5e00f6c2001-09-13 13:46:56 +00003909** This will release the write lock on the database file. If there
3910** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003911*/
dan60939d02011-03-29 15:40:55 +00003912int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003913
drh075ed302010-10-14 01:17:30 +00003914 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003915 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003916 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003917
3918 /* If the handle has a write-transaction open, commit the shared-btrees
3919 ** transaction and set the shared state to TRANS_READ.
3920 */
3921 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003922 int rc;
drh075ed302010-10-14 01:17:30 +00003923 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003924 assert( pBt->inTransaction==TRANS_WRITE );
3925 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003926 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003927 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003928 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003929 return rc;
3930 }
drh3da9c042014-12-22 18:41:21 +00003931 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00003932 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003933 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003934 }
danielk1977aef0bf62005-12-30 16:28:01 +00003935
danielk197794b30732009-07-02 17:21:57 +00003936 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003937 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003938 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003939}
3940
drh80e35f42007-03-30 14:06:34 +00003941/*
3942** Do both phases of a commit.
3943*/
3944int sqlite3BtreeCommit(Btree *p){
3945 int rc;
drhd677b3d2007-08-20 22:48:41 +00003946 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003947 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3948 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003949 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003950 }
drhd677b3d2007-08-20 22:48:41 +00003951 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003952 return rc;
3953}
3954
drhc39e0002004-05-07 23:50:57 +00003955/*
drhfb982642007-08-30 01:19:59 +00003956** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00003957** code to errCode for every cursor on any BtShared that pBtree
3958** references. Or if the writeOnly flag is set to 1, then only
3959** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00003960**
drh47b7fc72014-11-11 01:33:57 +00003961** Every cursor is a candidate to be tripped, including cursors
3962** that belong to other database connections that happen to be
3963** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00003964**
dan80231042014-11-12 14:56:02 +00003965** This routine gets called when a rollback occurs. If the writeOnly
3966** flag is true, then only write-cursors need be tripped - read-only
3967** cursors save their current positions so that they may continue
3968** following the rollback. Or, if writeOnly is false, all cursors are
3969** tripped. In general, writeOnly is false if the transaction being
3970** rolled back modified the database schema. In this case b-tree root
3971** pages may be moved or deleted from the database altogether, making
3972** it unsafe for read cursors to continue.
3973**
3974** If the writeOnly flag is true and an error is encountered while
3975** saving the current position of a read-only cursor, all cursors,
3976** including all read-cursors are tripped.
3977**
3978** SQLITE_OK is returned if successful, or if an error occurs while
3979** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00003980*/
dan80231042014-11-12 14:56:02 +00003981int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00003982 BtCursor *p;
dan80231042014-11-12 14:56:02 +00003983 int rc = SQLITE_OK;
3984
drh47b7fc72014-11-11 01:33:57 +00003985 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00003986 if( pBtree ){
3987 sqlite3BtreeEnter(pBtree);
3988 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
3989 int i;
3990 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00003991 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00003992 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00003993 if( rc!=SQLITE_OK ){
3994 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
3995 break;
3996 }
3997 }
3998 }else{
3999 sqlite3BtreeClearCursor(p);
4000 p->eState = CURSOR_FAULT;
4001 p->skipNext = errCode;
4002 }
4003 for(i=0; i<=p->iPage; i++){
4004 releasePage(p->apPage[i]);
4005 p->apPage[i] = 0;
4006 }
danielk1977bc2ca9e2008-11-13 14:28:28 +00004007 }
dan80231042014-11-12 14:56:02 +00004008 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00004009 }
dan80231042014-11-12 14:56:02 +00004010 return rc;
drhfb982642007-08-30 01:19:59 +00004011}
4012
4013/*
drh47b7fc72014-11-11 01:33:57 +00004014** Rollback the transaction in progress.
4015**
4016** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4017** Only write cursors are tripped if writeOnly is true but all cursors are
4018** tripped if writeOnly is false. Any attempt to use
4019** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00004020**
4021** This will release the write lock on the database file. If there
4022** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004023*/
drh47b7fc72014-11-11 01:33:57 +00004024int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00004025 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004026 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00004027 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00004028
drh47b7fc72014-11-11 01:33:57 +00004029 assert( writeOnly==1 || writeOnly==0 );
4030 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00004031 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00004032 if( tripCode==SQLITE_OK ){
4033 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00004034 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00004035 }else{
4036 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00004037 }
drh0f198a72012-02-13 16:43:16 +00004038 if( tripCode ){
dan80231042014-11-12 14:56:02 +00004039 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4040 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4041 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00004042 }
danielk1977aef0bf62005-12-30 16:28:01 +00004043 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004044
4045 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00004046 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00004047
danielk19778d34dfd2006-01-24 16:37:57 +00004048 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00004049 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00004050 if( rc2!=SQLITE_OK ){
4051 rc = rc2;
4052 }
4053
drh24cd67e2004-05-10 16:18:47 +00004054 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00004055 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00004056 ** sure pPage1->aData is set correctly. */
danielk197730548662009-07-09 05:07:37 +00004057 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00004058 int nPage = get4byte(28+(u8*)pPage1->aData);
4059 testcase( nPage==0 );
4060 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4061 testcase( pBt->nPage!=nPage );
4062 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00004063 releasePage(pPage1);
4064 }
drh85ec3b62013-05-14 23:12:06 +00004065 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00004066 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004067 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00004068 }
danielk1977aef0bf62005-12-30 16:28:01 +00004069
danielk197794b30732009-07-02 17:21:57 +00004070 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004071 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00004072 return rc;
4073}
4074
4075/*
peter.d.reid60ec9142014-09-06 16:39:46 +00004076** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00004077** back independently of the main transaction. You must start a transaction
4078** before starting a subtransaction. The subtransaction is ended automatically
4079** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00004080**
4081** Statement subtransactions are used around individual SQL statements
4082** that are contained within a BEGIN...COMMIT block. If a constraint
4083** error occurs within the statement, the effect of that one statement
4084** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00004085**
4086** A statement sub-transaction is implemented as an anonymous savepoint. The
4087** value passed as the second parameter is the total number of savepoints,
4088** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4089** are no active savepoints and no other statement-transactions open,
4090** iStatement is 1. This anonymous savepoint can be released or rolled back
4091** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00004092*/
danielk1977bd434552009-03-18 10:33:00 +00004093int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00004094 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004095 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004096 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00004097 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00004098 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00004099 assert( iStatement>0 );
4100 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00004101 assert( pBt->inTransaction==TRANS_WRITE );
4102 /* At the pager level, a statement transaction is a savepoint with
4103 ** an index greater than all savepoints created explicitly using
4104 ** SQL statements. It is illegal to open, release or rollback any
4105 ** such savepoints while the statement transaction savepoint is active.
4106 */
4107 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00004108 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00004109 return rc;
4110}
4111
4112/*
danielk1977fd7f0452008-12-17 17:30:26 +00004113** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4114** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00004115** savepoint identified by parameter iSavepoint, depending on the value
4116** of op.
4117**
4118** Normally, iSavepoint is greater than or equal to zero. However, if op is
4119** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4120** contents of the entire transaction are rolled back. This is different
4121** from a normal transaction rollback, as no locks are released and the
4122** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00004123*/
4124int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4125 int rc = SQLITE_OK;
4126 if( p && p->inTrans==TRANS_WRITE ){
4127 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00004128 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4129 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4130 sqlite3BtreeEnter(p);
drh2343c7e2017-02-02 00:46:55 +00004131 if( op==SAVEPOINT_ROLLBACK ){
4132 rc = saveAllCursors(pBt, 0, 0);
4133 }
4134 if( rc==SQLITE_OK ){
4135 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4136 }
drh9f0bbf92009-01-02 21:08:09 +00004137 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00004138 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4139 pBt->nPage = 0;
4140 }
drh9f0bbf92009-01-02 21:08:09 +00004141 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00004142 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00004143
4144 /* The database size was written into the offset 28 of the header
4145 ** when the transaction started, so we know that the value at offset
4146 ** 28 is nonzero. */
4147 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004148 }
danielk1977fd7f0452008-12-17 17:30:26 +00004149 sqlite3BtreeLeave(p);
4150 }
4151 return rc;
4152}
4153
4154/*
drh8b2f49b2001-06-08 00:21:52 +00004155** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004156** iTable. If a read-only cursor is requested, it is assumed that
4157** the caller already has at least a read-only transaction open
4158** on the database already. If a write-cursor is requested, then
4159** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004160**
drhe807bdb2016-01-21 17:06:33 +00004161** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4162** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4163** can be used for reading or for writing if other conditions for writing
4164** are also met. These are the conditions that must be met in order
4165** for writing to be allowed:
drh6446c4d2001-12-15 14:22:18 +00004166**
drhe807bdb2016-01-21 17:06:33 +00004167** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
drhf74b8d92002-09-01 23:20:45 +00004168**
drhfe5d71d2007-03-19 11:54:10 +00004169** 2: Other database connections that share the same pager cache
4170** but which are not in the READ_UNCOMMITTED state may not have
4171** cursors open with wrFlag==0 on the same table. Otherwise
4172** the changes made by this write cursor would be visible to
4173** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004174**
4175** 3: The database must be writable (not on read-only media)
4176**
4177** 4: There must be an active transaction.
4178**
drhe807bdb2016-01-21 17:06:33 +00004179** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4180** is set. If FORDELETE is set, that is a hint to the implementation that
4181** this cursor will only be used to seek to and delete entries of an index
4182** as part of a larger DELETE statement. The FORDELETE hint is not used by
4183** this implementation. But in a hypothetical alternative storage engine
4184** in which index entries are automatically deleted when corresponding table
4185** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4186** operations on this cursor can be no-ops and all READ operations can
4187** return a null row (2-bytes: 0x01 0x00).
4188**
drh6446c4d2001-12-15 14:22:18 +00004189** No checking is done to make sure that page iTable really is the
4190** root page of a b-tree. If it is not, then the cursor acquired
4191** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004192**
drhf25a5072009-11-18 23:01:25 +00004193** It is assumed that the sqlite3BtreeCursorZero() has been called
4194** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004195*/
drhd677b3d2007-08-20 22:48:41 +00004196static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004197 Btree *p, /* The btree */
4198 int iTable, /* Root page of table to open */
4199 int wrFlag, /* 1 to write. 0 read-only */
4200 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4201 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004202){
danielk19773e8add92009-07-04 17:16:00 +00004203 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004204 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004205
drh1fee73e2007-08-29 04:00:57 +00004206 assert( sqlite3BtreeHoldsMutex(p) );
danfd261ec2015-10-22 20:54:33 +00004207 assert( wrFlag==0
4208 || wrFlag==BTREE_WRCSR
4209 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4210 );
danielk197796d48e92009-06-29 06:00:37 +00004211
danielk1977602b4662009-07-02 07:47:33 +00004212 /* The following assert statements verify that if this is a sharable
4213 ** b-tree database, the connection is holding the required table locks,
4214 ** and that no other connection has any open cursor that conflicts with
4215 ** this lock. */
danfd261ec2015-10-22 20:54:33 +00004216 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
danielk197796d48e92009-06-29 06:00:37 +00004217 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4218
danielk19773e8add92009-07-04 17:16:00 +00004219 /* Assert that the caller has opened the required transaction. */
4220 assert( p->inTrans>TRANS_NONE );
4221 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4222 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004223 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004224
drh3fbb0222014-09-24 19:47:27 +00004225 if( wrFlag ){
4226 allocateTempSpace(pBt);
mistachkinfad30392016-02-13 23:43:46 +00004227 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
drh3fbb0222014-09-24 19:47:27 +00004228 }
drhb1299152010-03-30 22:58:33 +00004229 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00004230 assert( wrFlag==0 );
4231 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00004232 }
danielk1977aef0bf62005-12-30 16:28:01 +00004233
danielk1977aef0bf62005-12-30 16:28:01 +00004234 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004235 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00004236 pCur->pgnoRoot = (Pgno)iTable;
4237 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004238 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004239 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004240 pCur->pBt = pBt;
danfd261ec2015-10-22 20:54:33 +00004241 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
drh28f58dd2015-06-27 19:45:03 +00004242 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
drh27fb7462015-06-30 02:47:36 +00004243 /* If there are two or more cursors on the same btree, then all such
4244 ** cursors *must* have the BTCF_Multiple flag set. */
4245 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4246 if( pX->pgnoRoot==(Pgno)iTable ){
4247 pX->curFlags |= BTCF_Multiple;
4248 pCur->curFlags |= BTCF_Multiple;
4249 }
drha059ad02001-04-17 20:09:11 +00004250 }
drh27fb7462015-06-30 02:47:36 +00004251 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004252 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004253 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004254 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004255}
drhd677b3d2007-08-20 22:48:41 +00004256int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004257 Btree *p, /* The btree */
4258 int iTable, /* Root page of table to open */
4259 int wrFlag, /* 1 to write. 0 read-only */
4260 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4261 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004262){
4263 int rc;
dan08f901b2015-05-25 19:24:36 +00004264 if( iTable<1 ){
4265 rc = SQLITE_CORRUPT_BKPT;
4266 }else{
4267 sqlite3BtreeEnter(p);
4268 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4269 sqlite3BtreeLeave(p);
4270 }
drhd677b3d2007-08-20 22:48:41 +00004271 return rc;
4272}
drh7f751222009-03-17 22:33:00 +00004273
4274/*
4275** Return the size of a BtCursor object in bytes.
4276**
4277** This interfaces is needed so that users of cursors can preallocate
4278** sufficient storage to hold a cursor. The BtCursor object is opaque
4279** to users so they cannot do the sizeof() themselves - they must call
4280** this routine.
4281*/
4282int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004283 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004284}
4285
drh7f751222009-03-17 22:33:00 +00004286/*
drhf25a5072009-11-18 23:01:25 +00004287** Initialize memory that will be converted into a BtCursor object.
4288**
4289** The simple approach here would be to memset() the entire object
4290** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4291** do not need to be zeroed and they are large, so we can save a lot
4292** of run-time by skipping the initialization of those elements.
4293*/
4294void sqlite3BtreeCursorZero(BtCursor *p){
4295 memset(p, 0, offsetof(BtCursor, iPage));
4296}
4297
4298/*
drh5e00f6c2001-09-13 13:46:56 +00004299** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004300** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004301*/
drh3aac2dd2004-04-26 14:10:20 +00004302int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004303 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004304 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00004305 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00004306 BtShared *pBt = pCur->pBt;
4307 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00004308 sqlite3BtreeClearCursor(pCur);
drh27fb7462015-06-30 02:47:36 +00004309 assert( pBt->pCursor!=0 );
4310 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004311 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004312 }else{
4313 BtCursor *pPrev = pBt->pCursor;
4314 do{
4315 if( pPrev->pNext==pCur ){
4316 pPrev->pNext = pCur->pNext;
4317 break;
4318 }
4319 pPrev = pPrev->pNext;
4320 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004321 }
danielk197771d5d2c2008-09-29 11:49:47 +00004322 for(i=0; i<=pCur->iPage; i++){
4323 releasePage(pCur->apPage[i]);
4324 }
danielk1977cd3e8f72008-03-25 09:47:35 +00004325 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004326 sqlite3_free(pCur->aOverflow);
danielk1977cd3e8f72008-03-25 09:47:35 +00004327 /* sqlite3_free(pCur); */
4328 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00004329 }
drh8c42ca92001-06-22 19:15:00 +00004330 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004331}
4332
drh5e2f8b92001-05-28 00:41:15 +00004333/*
drh86057612007-06-26 01:04:48 +00004334** Make sure the BtCursor* given in the argument has a valid
4335** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004336** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004337**
4338** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004339** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004340*/
drh9188b382004-05-14 21:12:22 +00004341#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00004342 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004343 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00004344 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00004345 memset(&info, 0, sizeof(info));
drh75e96b32017-04-01 00:20:06 +00004346 btreeParseCell(pCur->apPage[iPage], pCur->ix, &info);
dan7df42ab2014-01-20 18:25:44 +00004347 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00004348 }
danielk19771cc5ed82007-05-16 17:28:43 +00004349#else
4350 #define assertCellInfo(x)
4351#endif
drhc5b41ac2015-06-17 02:11:46 +00004352static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4353 if( pCur->info.nSize==0 ){
4354 int iPage = pCur->iPage;
4355 pCur->curFlags |= BTCF_ValidNKey;
drh75e96b32017-04-01 00:20:06 +00004356 btreeParseCell(pCur->apPage[iPage],pCur->ix,&pCur->info);
drhc5b41ac2015-06-17 02:11:46 +00004357 }else{
4358 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004359 }
drhc5b41ac2015-06-17 02:11:46 +00004360}
drh9188b382004-05-14 21:12:22 +00004361
drhea8ffdf2009-07-22 00:35:23 +00004362#ifndef NDEBUG /* The next routine used only within assert() statements */
4363/*
4364** Return true if the given BtCursor is valid. A valid cursor is one
4365** that is currently pointing to a row in a (non-empty) table.
4366** This is a verification routine is used only within assert() statements.
4367*/
4368int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4369 return pCur && pCur->eState==CURSOR_VALID;
4370}
4371#endif /* NDEBUG */
drhd6ef5af2016-11-15 04:00:24 +00004372int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4373 assert( pCur!=0 );
4374 return pCur->eState==CURSOR_VALID;
4375}
drhea8ffdf2009-07-22 00:35:23 +00004376
drh9188b382004-05-14 21:12:22 +00004377/*
drha7c90c42016-06-04 20:37:10 +00004378** Return the value of the integer key or "rowid" for a table btree.
4379** This routine is only valid for a cursor that is pointing into a
4380** ordinary table btree. If the cursor points to an index btree or
4381** is invalid, the result of this routine is undefined.
drh7e3b0a02001-04-28 16:52:40 +00004382*/
drha7c90c42016-06-04 20:37:10 +00004383i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004384 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004385 assert( pCur->eState==CURSOR_VALID );
drha7c90c42016-06-04 20:37:10 +00004386 assert( pCur->curIntKey );
drhc5352b92014-11-17 20:33:07 +00004387 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004388 return pCur->info.nKey;
drha059ad02001-04-17 20:09:11 +00004389}
drh2af926b2001-05-15 00:39:25 +00004390
drh72f82862001-05-24 21:06:34 +00004391/*
drha7c90c42016-06-04 20:37:10 +00004392** Return the number of bytes of payload for the entry that pCur is
4393** currently pointing to. For table btrees, this will be the amount
4394** of data. For index btrees, this will be the size of the key.
drhea8ffdf2009-07-22 00:35:23 +00004395**
4396** The caller must guarantee that the cursor is pointing to a non-NULL
4397** valid entry. In other words, the calling procedure must guarantee
4398** that the cursor has Cursor.eState==CURSOR_VALID.
drh0e1c19e2004-05-11 00:58:56 +00004399*/
drha7c90c42016-06-04 20:37:10 +00004400u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4401 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004402 assert( pCur->eState==CURSOR_VALID );
4403 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004404 return pCur->info.nPayload;
drh0e1c19e2004-05-11 00:58:56 +00004405}
4406
4407/*
danielk1977d04417962007-05-02 13:16:30 +00004408** Given the page number of an overflow page in the database (parameter
4409** ovfl), this function finds the page number of the next page in the
4410** linked list of overflow pages. If possible, it uses the auto-vacuum
4411** pointer-map data instead of reading the content of page ovfl to do so.
4412**
4413** If an error occurs an SQLite error code is returned. Otherwise:
4414**
danielk1977bea2a942009-01-20 17:06:27 +00004415** The page number of the next overflow page in the linked list is
4416** written to *pPgnoNext. If page ovfl is the last page in its linked
4417** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004418**
danielk1977bea2a942009-01-20 17:06:27 +00004419** If ppPage is not NULL, and a reference to the MemPage object corresponding
4420** to page number pOvfl was obtained, then *ppPage is set to point to that
4421** reference. It is the responsibility of the caller to call releasePage()
4422** on *ppPage to free the reference. In no reference was obtained (because
4423** the pointer-map was used to obtain the value for *pPgnoNext), then
4424** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004425*/
4426static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004427 BtShared *pBt, /* The database file */
4428 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004429 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004430 Pgno *pPgnoNext /* OUT: Next overflow page number */
4431){
4432 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004433 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004434 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004435
drh1fee73e2007-08-29 04:00:57 +00004436 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004437 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004438
4439#ifndef SQLITE_OMIT_AUTOVACUUM
4440 /* Try to find the next page in the overflow list using the
4441 ** autovacuum pointer-map pages. Guess that the next page in
4442 ** the overflow list is page number (ovfl+1). If that guess turns
4443 ** out to be wrong, fall back to loading the data of page
4444 ** number ovfl to determine the next page number.
4445 */
4446 if( pBt->autoVacuum ){
4447 Pgno pgno;
4448 Pgno iGuess = ovfl+1;
4449 u8 eType;
4450
4451 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4452 iGuess++;
4453 }
4454
drhb1299152010-03-30 22:58:33 +00004455 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004456 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004457 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004458 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004459 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004460 }
4461 }
4462 }
4463#endif
4464
danielk1977d8a3f3d2009-07-11 11:45:23 +00004465 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004466 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004467 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004468 assert( rc==SQLITE_OK || pPage==0 );
4469 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004470 next = get4byte(pPage->aData);
4471 }
danielk1977443c0592009-01-16 15:21:05 +00004472 }
danielk197745d68822009-01-16 16:23:38 +00004473
danielk1977bea2a942009-01-20 17:06:27 +00004474 *pPgnoNext = next;
4475 if( ppPage ){
4476 *ppPage = pPage;
4477 }else{
4478 releasePage(pPage);
4479 }
4480 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004481}
4482
danielk1977da107192007-05-04 08:32:13 +00004483/*
4484** Copy data from a buffer to a page, or from a page to a buffer.
4485**
4486** pPayload is a pointer to data stored on database page pDbPage.
4487** If argument eOp is false, then nByte bytes of data are copied
4488** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4489** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4490** of data are copied from the buffer pBuf to pPayload.
4491**
4492** SQLITE_OK is returned on success, otherwise an error code.
4493*/
4494static int copyPayload(
4495 void *pPayload, /* Pointer to page data */
4496 void *pBuf, /* Pointer to buffer */
4497 int nByte, /* Number of bytes to copy */
4498 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4499 DbPage *pDbPage /* Page containing pPayload */
4500){
4501 if( eOp ){
4502 /* Copy data from buffer to page (a write operation) */
4503 int rc = sqlite3PagerWrite(pDbPage);
4504 if( rc!=SQLITE_OK ){
4505 return rc;
4506 }
4507 memcpy(pPayload, pBuf, nByte);
4508 }else{
4509 /* Copy data from page to buffer (a read operation) */
4510 memcpy(pBuf, pPayload, nByte);
4511 }
4512 return SQLITE_OK;
4513}
danielk1977d04417962007-05-02 13:16:30 +00004514
4515/*
danielk19779f8d6402007-05-02 17:48:45 +00004516** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004517** for the entry that the pCur cursor is pointing to. The eOp
4518** argument is interpreted as follows:
4519**
4520** 0: The operation is a read. Populate the overflow cache.
4521** 1: The operation is a write. Populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004522**
4523** A total of "amt" bytes are read or written beginning at "offset".
4524** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004525**
drh3bcdfd22009-07-12 02:32:21 +00004526** The content being read or written might appear on the main page
4527** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004528**
drh42e28f12017-01-27 00:31:59 +00004529** If the current cursor entry uses one or more overflow pages
4530** this function may allocate space for and lazily populate
4531** the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004532** Subsequent calls use this cache to make seeking to the supplied offset
4533** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004534**
drh42e28f12017-01-27 00:31:59 +00004535** Once an overflow page-list cache has been allocated, it must be
danielk1977da107192007-05-04 08:32:13 +00004536** invalidated if some other cursor writes to the same table, or if
4537** the cursor is moved to a different row. Additionally, in auto-vacuum
4538** mode, the following events may invalidate an overflow page-list cache.
4539**
4540** * An incremental vacuum,
4541** * A commit in auto_vacuum="full" mode,
4542** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004543*/
danielk19779f8d6402007-05-02 17:48:45 +00004544static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004545 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004546 u32 offset, /* Begin reading this far into payload */
4547 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004548 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004549 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004550){
4551 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004552 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004553 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004554 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004555 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004556#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh8bb9fd32017-01-26 16:27:32 +00004557 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */
drh4c417182014-03-31 23:57:41 +00004558#endif
drh3aac2dd2004-04-26 14:10:20 +00004559
danielk1977da107192007-05-04 08:32:13 +00004560 assert( pPage );
drh42e28f12017-01-27 00:31:59 +00004561 assert( eOp==0 || eOp==1 );
danielk1977da184232006-01-05 11:34:32 +00004562 assert( pCur->eState==CURSOR_VALID );
drh75e96b32017-04-01 00:20:06 +00004563 assert( pCur->ix<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004564 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00004565
drh86057612007-06-26 01:04:48 +00004566 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004567 aPayload = pCur->info.pPayload;
drhab1cc582014-09-23 21:25:19 +00004568 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004569
drh0b982072016-03-22 14:10:45 +00004570 assert( aPayload > pPage->aData );
drhc5e7f942016-03-22 15:25:16 +00004571 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
drh0b982072016-03-22 14:10:45 +00004572 /* Trying to read or write past the end of the data is an error. The
4573 ** conditional above is really:
4574 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4575 ** but is recast into its current form to avoid integer overflow problems
4576 */
danielk197767fd7a92008-09-10 17:53:35 +00004577 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00004578 }
danielk1977da107192007-05-04 08:32:13 +00004579
4580 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004581 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004582 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004583 if( a+offset>pCur->info.nLocal ){
4584 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004585 }
drh42e28f12017-01-27 00:31:59 +00004586 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004587 offset = 0;
drha34b6762004-05-07 13:30:42 +00004588 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004589 amt -= a;
drhdd793422001-06-28 01:54:48 +00004590 }else{
drhfa1a98a2004-05-14 19:08:17 +00004591 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004592 }
danielk1977da107192007-05-04 08:32:13 +00004593
dan85753662014-12-11 16:38:18 +00004594
danielk1977da107192007-05-04 08:32:13 +00004595 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004596 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004597 Pgno nextPage;
4598
drhfa1a98a2004-05-14 19:08:17 +00004599 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004600
drha38c9512014-04-01 01:24:34 +00004601 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
drha38c9512014-04-01 01:24:34 +00004602 **
4603 ** The aOverflow[] array is sized at one entry for each overflow page
4604 ** in the overflow chain. The page number of the first overflow page is
4605 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4606 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004607 */
drh42e28f12017-01-27 00:31:59 +00004608 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004609 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
dan5a500af2014-03-11 20:33:04 +00004610 if( nOvfl>pCur->nOvflAlloc ){
dan85753662014-12-11 16:38:18 +00004611 Pgno *aNew = (Pgno*)sqlite3Realloc(
4612 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004613 );
4614 if( aNew==0 ){
drhcd645532017-01-20 20:43:14 +00004615 return SQLITE_NOMEM_BKPT;
dan5a500af2014-03-11 20:33:04 +00004616 }else{
4617 pCur->nOvflAlloc = nOvfl*2;
4618 pCur->aOverflow = aNew;
4619 }
4620 }
drhcd645532017-01-20 20:43:14 +00004621 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4622 pCur->curFlags |= BTCF_ValidOvfl;
drhcdf360a2017-01-27 01:13:49 +00004623 }else{
4624 /* If the overflow page-list cache has been allocated and the
4625 ** entry for the first required overflow page is valid, skip
4626 ** directly to it.
4627 */
4628 if( pCur->aOverflow[offset/ovflSize] ){
4629 iIdx = (offset/ovflSize);
4630 nextPage = pCur->aOverflow[iIdx];
4631 offset = (offset%ovflSize);
danielk19772dec9702007-05-02 16:48:37 +00004632 }
4633 }
danielk1977da107192007-05-04 08:32:13 +00004634
drhcd645532017-01-20 20:43:14 +00004635 assert( rc==SQLITE_OK && amt>0 );
4636 while( nextPage ){
danielk1977da107192007-05-04 08:32:13 +00004637 /* If required, populate the overflow page-list cache. */
drh42e28f12017-01-27 00:31:59 +00004638 assert( pCur->aOverflow[iIdx]==0
4639 || pCur->aOverflow[iIdx]==nextPage
4640 || CORRUPT_DB );
4641 pCur->aOverflow[iIdx] = nextPage;
danielk1977da107192007-05-04 08:32:13 +00004642
danielk1977d04417962007-05-02 13:16:30 +00004643 if( offset>=ovflSize ){
4644 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004645 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004646 ** data is not required. So first try to lookup the overflow
4647 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004648 ** function.
danielk1977d04417962007-05-02 13:16:30 +00004649 */
drha38c9512014-04-01 01:24:34 +00004650 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004651 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004652 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004653 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004654 }else{
danielk1977da107192007-05-04 08:32:13 +00004655 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004656 }
danielk1977da107192007-05-04 08:32:13 +00004657 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004658 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004659 /* Need to read this page properly. It contains some of the
4660 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004661 */
danf4ba1092011-10-08 14:57:07 +00004662#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh8bb9fd32017-01-26 16:27:32 +00004663 sqlite3_file *fd; /* File from which to do direct overflow read */
danf4ba1092011-10-08 14:57:07 +00004664#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004665 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004666 if( a + offset > ovflSize ){
4667 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004668 }
danf4ba1092011-10-08 14:57:07 +00004669
4670#ifdef SQLITE_DIRECT_OVERFLOW_READ
4671 /* If all the following are true:
4672 **
4673 ** 1) this is a read operation, and
4674 ** 2) data is required from the start of this overflow page, and
drh8bb9fd32017-01-26 16:27:32 +00004675 ** 3) there is no open write-transaction, and
4676 ** 4) the database is file-backed, and
drhd930b5c2017-01-26 02:26:02 +00004677 ** 5) the page is not in the WAL file
drh8bb9fd32017-01-26 16:27:32 +00004678 ** 6) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004679 **
4680 ** then data can be read directly from the database file into the
4681 ** output buffer, bypassing the page-cache altogether. This speeds
4682 ** up loading large records that span many overflow pages.
4683 */
drh42e28f12017-01-27 00:31:59 +00004684 if( eOp==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004685 && offset==0 /* (2) */
drh8bb9fd32017-01-26 16:27:32 +00004686 && pBt->inTransaction==TRANS_READ /* (3) */
4687 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (4) */
drhd930b5c2017-01-26 02:26:02 +00004688 && 0==sqlite3PagerUseWal(pBt->pPager, nextPage) /* (5) */
drh8bb9fd32017-01-26 16:27:32 +00004689 && &pBuf[-4]>=pBufStart /* (6) */
danf4ba1092011-10-08 14:57:07 +00004690 ){
4691 u8 aSave[4];
4692 u8 *aWrite = &pBuf[-4];
drh8bb9fd32017-01-26 16:27:32 +00004693 assert( aWrite>=pBufStart ); /* due to (6) */
danf4ba1092011-10-08 14:57:07 +00004694 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004695 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004696 nextPage = get4byte(aWrite);
4697 memcpy(aWrite, aSave, 4);
4698 }else
4699#endif
4700
4701 {
4702 DbPage *pDbPage;
drh9584f582015-11-04 20:22:37 +00004703 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
drh42e28f12017-01-27 00:31:59 +00004704 (eOp==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004705 );
danf4ba1092011-10-08 14:57:07 +00004706 if( rc==SQLITE_OK ){
4707 aPayload = sqlite3PagerGetData(pDbPage);
4708 nextPage = get4byte(aPayload);
drh42e28f12017-01-27 00:31:59 +00004709 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
danf4ba1092011-10-08 14:57:07 +00004710 sqlite3PagerUnref(pDbPage);
4711 offset = 0;
4712 }
4713 }
4714 amt -= a;
drh6ee610b2017-01-27 01:25:00 +00004715 if( amt==0 ) return rc;
danf4ba1092011-10-08 14:57:07 +00004716 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004717 }
drhcd645532017-01-20 20:43:14 +00004718 if( rc ) break;
4719 iIdx++;
drh2af926b2001-05-15 00:39:25 +00004720 }
drh2af926b2001-05-15 00:39:25 +00004721 }
danielk1977cfe9a692004-06-16 12:00:29 +00004722
danielk1977da107192007-05-04 08:32:13 +00004723 if( rc==SQLITE_OK && amt>0 ){
drh6ee610b2017-01-27 01:25:00 +00004724 return SQLITE_CORRUPT_BKPT; /* Overflow chain ends prematurely */
drha7fcb052001-12-14 15:09:55 +00004725 }
danielk1977da107192007-05-04 08:32:13 +00004726 return rc;
drh2af926b2001-05-15 00:39:25 +00004727}
4728
drh72f82862001-05-24 21:06:34 +00004729/*
drhcb3cabd2016-11-25 19:18:28 +00004730** Read part of the payload for the row at which that cursor pCur is currently
4731** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004732** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004733**
drhcb3cabd2016-11-25 19:18:28 +00004734** pCur can be pointing to either a table or an index b-tree.
4735** If pointing to a table btree, then the content section is read. If
4736** pCur is pointing to an index b-tree then the key section is read.
4737**
4738** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
4739** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
4740** cursor might be invalid or might need to be restored before being read.
drh5d1a8722009-07-22 18:07:40 +00004741**
drh3aac2dd2004-04-26 14:10:20 +00004742** Return SQLITE_OK on success or an error code if anything goes
4743** wrong. An error is returned if "offset+amt" is larger than
4744** the available payload.
drh72f82862001-05-24 21:06:34 +00004745*/
drhcb3cabd2016-11-25 19:18:28 +00004746int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004747 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004748 assert( pCur->eState==CURSOR_VALID );
4749 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
drh75e96b32017-04-01 00:20:06 +00004750 assert( pCur->ix<pCur->apPage[pCur->iPage]->nCell );
drh5d1a8722009-07-22 18:07:40 +00004751 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004752}
drh83ec2762017-01-26 16:54:47 +00004753
4754/*
4755** This variant of sqlite3BtreePayload() works even if the cursor has not
4756** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
4757** interface.
4758*/
danielk19773588ceb2008-06-10 17:30:26 +00004759#ifndef SQLITE_OMIT_INCRBLOB
drh83ec2762017-01-26 16:54:47 +00004760static SQLITE_NOINLINE int accessPayloadChecked(
4761 BtCursor *pCur,
4762 u32 offset,
4763 u32 amt,
4764 void *pBuf
4765){
drhcb3cabd2016-11-25 19:18:28 +00004766 int rc;
danielk19773588ceb2008-06-10 17:30:26 +00004767 if ( pCur->eState==CURSOR_INVALID ){
4768 return SQLITE_ABORT;
4769 }
dan7a2347e2016-01-07 16:43:54 +00004770 assert( cursorOwnsBtShared(pCur) );
drh945b0942017-01-26 21:30:00 +00004771 rc = btreeRestoreCursorPosition(pCur);
drh83ec2762017-01-26 16:54:47 +00004772 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
4773}
4774int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4775 if( pCur->eState==CURSOR_VALID ){
4776 assert( cursorOwnsBtShared(pCur) );
4777 return accessPayload(pCur, offset, amt, pBuf, 0);
4778 }else{
4779 return accessPayloadChecked(pCur, offset, amt, pBuf);
danielk1977da184232006-01-05 11:34:32 +00004780 }
drh2af926b2001-05-15 00:39:25 +00004781}
drhcb3cabd2016-11-25 19:18:28 +00004782#endif /* SQLITE_OMIT_INCRBLOB */
drh2af926b2001-05-15 00:39:25 +00004783
drh72f82862001-05-24 21:06:34 +00004784/*
drh0e1c19e2004-05-11 00:58:56 +00004785** Return a pointer to payload information from the entry that the
4786** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004787** the key if index btrees (pPage->intKey==0) and is the data for
4788** table btrees (pPage->intKey==1). The number of bytes of available
4789** key/data is written into *pAmt. If *pAmt==0, then the value
4790** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004791**
4792** This routine is an optimization. It is common for the entire key
4793** and data to fit on the local page and for there to be no overflow
4794** pages. When that is so, this routine can be used to access the
4795** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004796** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004797** the key/data and copy it into a preallocated buffer.
4798**
4799** The pointer returned by this routine looks directly into the cached
4800** page of the database. The data might change or move the next time
4801** any btree routine is called.
4802*/
drh2a8d2262013-12-09 20:43:22 +00004803static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004804 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004805 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004806){
drhf3392e32015-04-15 17:26:55 +00004807 u32 amt;
danielk197771d5d2c2008-09-29 11:49:47 +00004808 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004809 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004810 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan7a2347e2016-01-07 16:43:54 +00004811 assert( cursorOwnsBtShared(pCur) );
drh75e96b32017-04-01 00:20:06 +00004812 assert( pCur->ix<pCur->apPage[pCur->iPage]->nCell );
drh86dd3712014-03-25 11:00:21 +00004813 assert( pCur->info.nSize>0 );
drhf3392e32015-04-15 17:26:55 +00004814 assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
4815 assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
4816 amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
4817 if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
4818 *pAmt = amt;
drhab1cc582014-09-23 21:25:19 +00004819 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00004820}
4821
4822
4823/*
drhe51c44f2004-05-30 20:46:09 +00004824** For the entry that cursor pCur is point to, return as
4825** many bytes of the key or data as are available on the local
4826** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004827**
4828** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004829** or be destroyed on the next call to any Btree routine,
4830** including calls from other threads against the same cache.
4831** Hence, a mutex on the BtShared should be held prior to calling
4832** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004833**
4834** These routines is used to get quick access to key and data
4835** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004836*/
drha7c90c42016-06-04 20:37:10 +00004837const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004838 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004839}
4840
4841
4842/*
drh8178a752003-01-05 21:41:40 +00004843** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004844** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004845**
4846** This function returns SQLITE_CORRUPT if the page-header flags field of
4847** the new child page does not match the flags field of the parent (i.e.
4848** if an intkey page appears to be the parent of a non-intkey page, or
4849** vice-versa).
drh72f82862001-05-24 21:06:34 +00004850*/
drh3aac2dd2004-04-26 14:10:20 +00004851static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00004852 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004853
dan7a2347e2016-01-07 16:43:54 +00004854 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004855 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004856 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004857 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004858 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4859 return SQLITE_CORRUPT_BKPT;
4860 }
drh271efa52004-05-30 19:19:05 +00004861 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004862 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh75e96b32017-04-01 00:20:06 +00004863 pCur->aiIdx[pCur->iPage++] = pCur->ix;
4864 pCur->ix = 0;
drh28f58dd2015-06-27 19:45:03 +00004865 return getAndInitPage(pBt, newPgno, &pCur->apPage[pCur->iPage],
4866 pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00004867}
4868
drhd879e3e2017-02-13 13:35:55 +00004869#ifdef SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00004870/*
4871** Page pParent is an internal (non-leaf) tree page. This function
4872** asserts that page number iChild is the left-child if the iIdx'th
4873** cell in page pParent. Or, if iIdx is equal to the total number of
4874** cells in pParent, that page number iChild is the right-child of
4875** the page.
4876*/
4877static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00004878 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
4879 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00004880 assert( iIdx<=pParent->nCell );
4881 if( iIdx==pParent->nCell ){
4882 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4883 }else{
4884 assert( get4byte(findCell(pParent, iIdx))==iChild );
4885 }
4886}
4887#else
4888# define assertParentIndex(x,y,z)
4889#endif
4890
drh72f82862001-05-24 21:06:34 +00004891/*
drh5e2f8b92001-05-28 00:41:15 +00004892** Move the cursor up to the parent page.
4893**
4894** pCur->idx is set to the cell index that contains the pointer
4895** to the page we are coming from. If we are coming from the
4896** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004897** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004898*/
danielk197730548662009-07-09 05:07:37 +00004899static void moveToParent(BtCursor *pCur){
dan7a2347e2016-01-07 16:43:54 +00004900 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004901 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004902 assert( pCur->iPage>0 );
4903 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004904 assertParentIndex(
4905 pCur->apPage[pCur->iPage-1],
4906 pCur->aiIdx[pCur->iPage-1],
4907 pCur->apPage[pCur->iPage]->pgno
4908 );
dan6c2688c2012-01-12 15:05:03 +00004909 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00004910 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004911 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh75e96b32017-04-01 00:20:06 +00004912 pCur->ix = pCur->aiIdx[pCur->iPage-1];
drhbbf0f862015-06-27 14:59:26 +00004913 releasePageNotNull(pCur->apPage[pCur->iPage--]);
drh72f82862001-05-24 21:06:34 +00004914}
4915
4916/*
danielk19778f880a82009-07-13 09:41:45 +00004917** Move the cursor to point to the root page of its b-tree structure.
4918**
4919** If the table has a virtual root page, then the cursor is moved to point
4920** to the virtual root page instead of the actual root page. A table has a
4921** virtual root page when the actual root page contains no cells and a
4922** single child page. This can only happen with the table rooted at page 1.
4923**
4924** If the b-tree structure is empty, the cursor state is set to
4925** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4926** cell located on the root (or virtual root) page and the cursor state
4927** is set to CURSOR_VALID.
4928**
4929** If this function returns successfully, it may be assumed that the
4930** page-header flags indicate that the [virtual] root-page is the expected
4931** kind of b-tree page (i.e. if when opening the cursor the caller did not
4932** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4933** indicating a table b-tree, or if the caller did specify a KeyInfo
4934** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4935** b-tree).
drh72f82862001-05-24 21:06:34 +00004936*/
drh5e2f8b92001-05-28 00:41:15 +00004937static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004938 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004939 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004940
dan7a2347e2016-01-07 16:43:54 +00004941 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +00004942 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4943 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4944 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4945 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4946 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004947 assert( pCur->skipNext!=SQLITE_OK );
4948 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004949 }
danielk1977be51a652008-10-08 17:58:48 +00004950 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004951 }
danielk197771d5d2c2008-09-29 11:49:47 +00004952
4953 if( pCur->iPage>=0 ){
drh7ad3eb62016-10-24 01:01:09 +00004954 if( pCur->iPage ){
4955 do{
4956 assert( pCur->apPage[pCur->iPage]!=0 );
4957 releasePageNotNull(pCur->apPage[pCur->iPage--]);
4958 }while( pCur->iPage);
4959 goto skip_init;
drhbbf0f862015-06-27 14:59:26 +00004960 }
dana205a482011-08-27 18:48:57 +00004961 }else if( pCur->pgnoRoot==0 ){
4962 pCur->eState = CURSOR_INVALID;
4963 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004964 }else{
drh28f58dd2015-06-27 19:45:03 +00004965 assert( pCur->iPage==(-1) );
drh4e8fe3f2013-12-06 23:25:27 +00004966 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
drh15a00212015-06-27 20:55:00 +00004967 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00004968 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004969 pCur->eState = CURSOR_INVALID;
drh7ad3eb62016-10-24 01:01:09 +00004970 return rc;
drh777e4c42006-01-13 04:31:58 +00004971 }
danielk1977172114a2009-07-07 15:47:12 +00004972 pCur->iPage = 0;
drh408efc02015-06-27 22:49:10 +00004973 pCur->curIntKey = pCur->apPage[0]->intKey;
drhc39e0002004-05-07 23:50:57 +00004974 }
danielk197771d5d2c2008-09-29 11:49:47 +00004975 pRoot = pCur->apPage[0];
4976 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00004977
4978 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4979 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4980 ** NULL, the caller expects a table b-tree. If this is not the case,
4981 ** return an SQLITE_CORRUPT error.
4982 **
4983 ** Earlier versions of SQLite assumed that this test could not fail
4984 ** if the root page was already loaded when this function was called (i.e.
4985 ** if pCur->iPage>=0). But this is not so if the database is corrupted
4986 ** in such a way that page pRoot is linked into a second b-tree table
4987 ** (or the freelist). */
4988 assert( pRoot->intKey==1 || pRoot->intKey==0 );
4989 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4990 return SQLITE_CORRUPT_BKPT;
4991 }
danielk19778f880a82009-07-13 09:41:45 +00004992
drh7ad3eb62016-10-24 01:01:09 +00004993skip_init:
drh75e96b32017-04-01 00:20:06 +00004994 pCur->ix = 0;
drh271efa52004-05-30 19:19:05 +00004995 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004996 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00004997
drh7ad3eb62016-10-24 01:01:09 +00004998 pRoot = pCur->apPage[0];
drh4e8fe3f2013-12-06 23:25:27 +00004999 if( pRoot->nCell>0 ){
5000 pCur->eState = CURSOR_VALID;
5001 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00005002 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00005003 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00005004 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00005005 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00005006 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00005007 }else{
drh4e8fe3f2013-12-06 23:25:27 +00005008 pCur->eState = CURSOR_INVALID;
drh8856d6a2004-04-29 14:42:46 +00005009 }
5010 return rc;
drh72f82862001-05-24 21:06:34 +00005011}
drh2af926b2001-05-15 00:39:25 +00005012
drh5e2f8b92001-05-28 00:41:15 +00005013/*
5014** Move the cursor down to the left-most leaf entry beneath the
5015** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00005016**
5017** The left-most leaf is the one with the smallest key - the first
5018** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00005019*/
5020static int moveToLeftmost(BtCursor *pCur){
5021 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005022 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00005023 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00005024
dan7a2347e2016-01-07 16:43:54 +00005025 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005026 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005027 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh75e96b32017-04-01 00:20:06 +00005028 assert( pCur->ix<pPage->nCell );
5029 pgno = get4byte(findCell(pPage, pCur->ix));
drh8178a752003-01-05 21:41:40 +00005030 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00005031 }
drhd677b3d2007-08-20 22:48:41 +00005032 return rc;
drh5e2f8b92001-05-28 00:41:15 +00005033}
5034
drh2dcc9aa2002-12-04 13:40:25 +00005035/*
5036** Move the cursor down to the right-most leaf entry beneath the
5037** page to which it is currently pointing. Notice the difference
5038** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5039** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5040** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00005041**
5042** The right-most entry is the one with the largest key - the last
5043** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00005044*/
5045static int moveToRightmost(BtCursor *pCur){
5046 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005047 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00005048 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00005049
dan7a2347e2016-01-07 16:43:54 +00005050 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005051 assert( pCur->eState==CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005052 while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00005053 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh75e96b32017-04-01 00:20:06 +00005054 pCur->ix = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00005055 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00005056 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005057 }
drh75e96b32017-04-01 00:20:06 +00005058 pCur->ix = pPage->nCell-1;
drhee6438d2014-09-01 13:29:32 +00005059 assert( pCur->info.nSize==0 );
5060 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5061 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00005062}
5063
drh5e00f6c2001-09-13 13:46:56 +00005064/* Move the cursor to the first entry in the table. Return SQLITE_OK
5065** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005066** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00005067*/
drh3aac2dd2004-04-26 14:10:20 +00005068int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00005069 int rc;
drhd677b3d2007-08-20 22:48:41 +00005070
dan7a2347e2016-01-07 16:43:54 +00005071 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005072 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00005073 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005074 if( rc==SQLITE_OK ){
5075 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00005076 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00005077 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00005078 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00005079 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00005080 *pRes = 0;
5081 rc = moveToLeftmost(pCur);
5082 }
drh5e00f6c2001-09-13 13:46:56 +00005083 }
drh5e00f6c2001-09-13 13:46:56 +00005084 return rc;
5085}
drh5e2f8b92001-05-28 00:41:15 +00005086
drh9562b552002-02-19 15:00:07 +00005087/* Move the cursor to the last entry in the table. Return SQLITE_OK
5088** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005089** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00005090*/
drh3aac2dd2004-04-26 14:10:20 +00005091int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00005092 int rc;
drhd677b3d2007-08-20 22:48:41 +00005093
dan7a2347e2016-01-07 16:43:54 +00005094 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005095 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00005096
5097 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00005098 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00005099#ifdef SQLITE_DEBUG
5100 /* This block serves to assert() that the cursor really does point
5101 ** to the last entry in the b-tree. */
5102 int ii;
5103 for(ii=0; ii<pCur->iPage; ii++){
5104 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5105 }
drh75e96b32017-04-01 00:20:06 +00005106 assert( pCur->ix==pCur->apPage[pCur->iPage]->nCell-1 );
danielk19773f632d52009-05-02 10:03:09 +00005107 assert( pCur->apPage[pCur->iPage]->leaf );
5108#endif
5109 return SQLITE_OK;
5110 }
5111
drh9562b552002-02-19 15:00:07 +00005112 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005113 if( rc==SQLITE_OK ){
5114 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00005115 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00005116 *pRes = 1;
5117 }else{
5118 assert( pCur->eState==CURSOR_VALID );
5119 *pRes = 0;
5120 rc = moveToRightmost(pCur);
drh036dbec2014-03-11 23:40:44 +00005121 if( rc==SQLITE_OK ){
5122 pCur->curFlags |= BTCF_AtLast;
5123 }else{
5124 pCur->curFlags &= ~BTCF_AtLast;
5125 }
5126
drhd677b3d2007-08-20 22:48:41 +00005127 }
drh9562b552002-02-19 15:00:07 +00005128 }
drh9562b552002-02-19 15:00:07 +00005129 return rc;
5130}
5131
drhe14006d2008-03-25 17:23:32 +00005132/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00005133** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00005134**
drhe63d9992008-08-13 19:11:48 +00005135** For INTKEY tables, the intKey parameter is used. pIdxKey
5136** must be NULL. For index tables, pIdxKey is used and intKey
5137** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00005138**
drh5e2f8b92001-05-28 00:41:15 +00005139** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00005140** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00005141** were present. The cursor might point to an entry that comes
5142** before or after the key.
5143**
drh64022502009-01-09 14:11:04 +00005144** An integer is written into *pRes which is the result of
5145** comparing the key with the entry to which the cursor is
5146** pointing. The meaning of the integer written into
5147** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005148**
5149** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005150** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005151** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005152**
5153** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005154** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00005155**
5156** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005157** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00005158**
drhb1d607d2015-11-05 22:30:54 +00005159** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5160** exists an entry in the table that exactly matches pIdxKey.
drha059ad02001-04-17 20:09:11 +00005161*/
drhe63d9992008-08-13 19:11:48 +00005162int sqlite3BtreeMovetoUnpacked(
5163 BtCursor *pCur, /* The cursor to be moved */
5164 UnpackedRecord *pIdxKey, /* Unpacked index key */
5165 i64 intKey, /* The table key */
5166 int biasRight, /* If true, bias the search to the high end */
5167 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005168){
drh72f82862001-05-24 21:06:34 +00005169 int rc;
dan3b9330f2014-02-27 20:44:18 +00005170 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00005171
dan7a2347e2016-01-07 16:43:54 +00005172 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005173 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005174 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00005175 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drhdebaa862016-06-13 12:51:20 +00005176 assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
drha2c20e42008-03-29 16:01:04 +00005177
5178 /* If the cursor is already positioned at the point we are trying
5179 ** to move to, then just return without doing any work */
drh05a36092016-06-06 01:54:20 +00005180 if( pIdxKey==0
5181 && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
danielk197771d5d2c2008-09-29 11:49:47 +00005182 ){
drhe63d9992008-08-13 19:11:48 +00005183 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005184 *pRes = 0;
5185 return SQLITE_OK;
5186 }
drh451e76d2017-01-21 16:54:19 +00005187 if( pCur->info.nKey<intKey ){
5188 if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5189 *pRes = -1;
5190 return SQLITE_OK;
5191 }
drh7f11afa2017-01-21 21:47:54 +00005192 /* If the requested key is one more than the previous key, then
5193 ** try to get there using sqlite3BtreeNext() rather than a full
5194 ** binary search. This is an optimization only. The correct answer
5195 ** is still obtained without this ase, only a little more slowely */
5196 if( pCur->info.nKey+1==intKey && !pCur->skipNext ){
5197 *pRes = 0;
5198 rc = sqlite3BtreeNext(pCur, pRes);
5199 if( rc ) return rc;
5200 if( *pRes==0 ){
5201 getCellInfo(pCur);
5202 if( pCur->info.nKey==intKey ){
5203 return SQLITE_OK;
5204 }
drh451e76d2017-01-21 16:54:19 +00005205 }
5206 }
drha2c20e42008-03-29 16:01:04 +00005207 }
5208 }
5209
dan1fed5da2014-02-25 21:01:25 +00005210 if( pIdxKey ){
5211 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00005212 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00005213 assert( pIdxKey->default_rc==1
5214 || pIdxKey->default_rc==0
5215 || pIdxKey->default_rc==-1
5216 );
drh13a747e2014-03-03 21:46:55 +00005217 }else{
drhb6e8fd12014-03-06 01:56:33 +00005218 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00005219 }
5220
drh5e2f8b92001-05-28 00:41:15 +00005221 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005222 if( rc ){
5223 return rc;
5224 }
dana205a482011-08-27 18:48:57 +00005225 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
5226 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
5227 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00005228 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00005229 *pRes = -1;
dana205a482011-08-27 18:48:57 +00005230 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00005231 return SQLITE_OK;
5232 }
drhc75d8862015-06-27 23:55:20 +00005233 assert( pCur->apPage[0]->intKey==pCur->curIntKey );
5234 assert( pCur->curIntKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00005235 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005236 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005237 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00005238 MemPage *pPage = pCur->apPage[pCur->iPage];
drhec3e6b12013-11-25 02:38:55 +00005239 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005240
5241 /* pPage->nCell must be greater than zero. If this is the root-page
5242 ** the cursor would have been INVALID above and this for(;;) loop
5243 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005244 ** would have already detected db corruption. Similarly, pPage must
5245 ** be the right kind (index or table) of b-tree page. Otherwise
5246 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005247 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005248 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005249 lwr = 0;
5250 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00005251 assert( biasRight==0 || biasRight==1 );
5252 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drh75e96b32017-04-01 00:20:06 +00005253 pCur->ix = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00005254 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00005255 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00005256 i64 nCellKey;
drhf44890a2015-06-27 03:58:15 +00005257 pCell = findCellPastPtr(pPage, idx);
drh3e28ff52014-09-24 00:59:08 +00005258 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00005259 while( 0x80 <= *(pCell++) ){
5260 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
5261 }
drhd172f862006-01-12 15:01:15 +00005262 }
drha2c20e42008-03-29 16:01:04 +00005263 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00005264 if( nCellKey<intKey ){
5265 lwr = idx+1;
5266 if( lwr>upr ){ c = -1; break; }
5267 }else if( nCellKey>intKey ){
5268 upr = idx-1;
5269 if( lwr>upr ){ c = +1; break; }
drh41eb9e92008-04-02 18:33:07 +00005270 }else{
drhbb933ef2013-11-25 15:01:38 +00005271 assert( nCellKey==intKey );
drh75e96b32017-04-01 00:20:06 +00005272 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005273 if( !pPage->leaf ){
5274 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00005275 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00005276 }else{
drhd95ef5c2016-11-11 18:19:05 +00005277 pCur->curFlags |= BTCF_ValidNKey;
5278 pCur->info.nKey = nCellKey;
5279 pCur->info.nSize = 0;
drhec3e6b12013-11-25 02:38:55 +00005280 *pRes = 0;
drhd95ef5c2016-11-11 18:19:05 +00005281 return SQLITE_OK;
drhec3e6b12013-11-25 02:38:55 +00005282 }
drh3aac2dd2004-04-26 14:10:20 +00005283 }
drhebf10b12013-11-25 17:38:26 +00005284 assert( lwr+upr>=0 );
5285 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00005286 }
5287 }else{
5288 for(;;){
drhc6827502015-05-28 15:14:32 +00005289 int nCell; /* Size of the pCell cell in bytes */
drhf44890a2015-06-27 03:58:15 +00005290 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005291
drhb2eced52010-08-12 02:41:12 +00005292 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00005293 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00005294 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00005295 ** varint. This information is used to attempt to avoid parsing
5296 ** the entire cell by checking for the cases where the record is
5297 ** stored entirely within the b-tree page by inspecting the first
5298 ** 2 bytes of the cell.
5299 */
drhec3e6b12013-11-25 02:38:55 +00005300 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00005301 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00005302 /* This branch runs if the record-size field of the cell is a
5303 ** single byte varint and the record fits entirely on the main
5304 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00005305 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005306 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00005307 }else if( !(pCell[1] & 0x80)
5308 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5309 ){
5310 /* The record-size field is a 2 byte varint and the record
5311 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00005312 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005313 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00005314 }else{
danielk197711c327a2009-05-04 19:01:26 +00005315 /* The record flows over onto one or more overflow pages. In
5316 ** this case the whole cell needs to be parsed, a buffer allocated
5317 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00005318 ** buffer before VdbeRecordCompare() can be called.
5319 **
5320 ** If the record is corrupt, the xRecordCompare routine may read
5321 ** up to two varints past the end of the buffer. An extra 18
5322 ** bytes of padding is allocated at the end of the buffer in
5323 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00005324 void *pCellKey;
5325 u8 * const pCellBody = pCell - pPage->childPtrSize;
drh5fa60512015-06-19 17:19:34 +00005326 pPage->xParseCell(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00005327 nCell = (int)pCur->info.nKey;
drhc6827502015-05-28 15:14:32 +00005328 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5329 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5330 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5331 testcase( nCell==2 ); /* Minimum legal index key size */
dan3548db72015-05-27 14:21:05 +00005332 if( nCell<2 ){
5333 rc = SQLITE_CORRUPT_BKPT;
5334 goto moveto_finish;
5335 }
5336 pCellKey = sqlite3Malloc( nCell+18 );
danielk19776507ecb2008-03-25 09:56:44 +00005337 if( pCellKey==0 ){
mistachkinfad30392016-02-13 23:43:46 +00005338 rc = SQLITE_NOMEM_BKPT;
danielk19776507ecb2008-03-25 09:56:44 +00005339 goto moveto_finish;
5340 }
drh75e96b32017-04-01 00:20:06 +00005341 pCur->ix = (u16)idx;
drh42e28f12017-01-27 00:31:59 +00005342 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5343 pCur->curFlags &= ~BTCF_ValidOvfl;
drhec9b31f2009-08-25 13:53:49 +00005344 if( rc ){
5345 sqlite3_free(pCellKey);
5346 goto moveto_finish;
5347 }
drh75179de2014-09-16 14:37:35 +00005348 c = xRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00005349 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00005350 }
dan38fdead2014-04-01 10:19:02 +00005351 assert(
5352 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00005353 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00005354 );
drhbb933ef2013-11-25 15:01:38 +00005355 if( c<0 ){
5356 lwr = idx+1;
5357 }else if( c>0 ){
5358 upr = idx-1;
drh8b18dd42004-05-12 19:18:15 +00005359 }else{
drhbb933ef2013-11-25 15:01:38 +00005360 assert( c==0 );
drh64022502009-01-09 14:11:04 +00005361 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00005362 rc = SQLITE_OK;
drh75e96b32017-04-01 00:20:06 +00005363 pCur->ix = (u16)idx;
dan38fdead2014-04-01 10:19:02 +00005364 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00005365 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00005366 }
drhebf10b12013-11-25 17:38:26 +00005367 if( lwr>upr ) break;
5368 assert( lwr+upr>=0 );
5369 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005370 }
drh72f82862001-05-24 21:06:34 +00005371 }
drhb07028f2011-10-14 21:49:18 +00005372 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005373 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005374 if( pPage->leaf ){
drh75e96b32017-04-01 00:20:06 +00005375 assert( pCur->ix<pCur->apPage[pCur->iPage]->nCell );
5376 pCur->ix = (u16)idx;
danielk19775cb09632009-07-09 11:36:01 +00005377 *pRes = c;
drh1e968a02008-03-25 00:22:21 +00005378 rc = SQLITE_OK;
5379 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00005380 }
drhebf10b12013-11-25 17:38:26 +00005381moveto_next_layer:
5382 if( lwr>=pPage->nCell ){
drh72f82862001-05-24 21:06:34 +00005383 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5384 }else{
5385 chldPg = get4byte(findCell(pPage, lwr));
5386 }
drh75e96b32017-04-01 00:20:06 +00005387 pCur->ix = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005388 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005389 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005390 }
drh1e968a02008-03-25 00:22:21 +00005391moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005392 pCur->info.nSize = 0;
drhd95ef5c2016-11-11 18:19:05 +00005393 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhe63d9992008-08-13 19:11:48 +00005394 return rc;
5395}
5396
drhd677b3d2007-08-20 22:48:41 +00005397
drh72f82862001-05-24 21:06:34 +00005398/*
drhc39e0002004-05-07 23:50:57 +00005399** Return TRUE if the cursor is not pointing at an entry of the table.
5400**
5401** TRUE will be returned after a call to sqlite3BtreeNext() moves
5402** past the last entry in the table or sqlite3BtreePrev() moves past
5403** the first entry. TRUE is also returned if the table is empty.
5404*/
5405int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005406 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5407 ** have been deleted? This API will need to change to return an error code
5408 ** as well as the boolean result value.
5409 */
5410 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005411}
5412
5413/*
drh5e98e832017-02-17 19:24:06 +00005414** Return an estimate for the number of rows in the table that pCur is
5415** pointing to. Return a negative number if no estimate is currently
5416** available.
5417*/
5418i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5419 i64 n;
5420 u8 i;
5421
5422 assert( cursorOwnsBtShared(pCur) );
5423 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh555227b2017-02-23 02:15:33 +00005424
5425 /* Currently this interface is only called by the OP_IfSmaller
5426 ** opcode, and it that case the cursor will always be valid and
5427 ** will always point to a leaf node. */
5428 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
5429 if( NEVER(pCur->apPage[pCur->iPage]->leaf==0) ) return -1;
5430
drhdfe11ba2017-02-18 02:42:54 +00005431 for(n=1, i=0; i<=pCur->iPage; i++){
drh5e98e832017-02-17 19:24:06 +00005432 n *= pCur->apPage[i]->nCell;
5433 }
5434 return n;
5435}
5436
5437/*
drhbd03cae2001-06-02 02:40:57 +00005438** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00005439** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00005440** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00005441** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005442**
drhee6438d2014-09-01 13:29:32 +00005443** The main entry point is sqlite3BtreeNext(). That routine is optimized
5444** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5445** to the next cell on the current page. The (slower) btreeNext() helper
5446** routine is called when it is necessary to move to a different page or
5447** to restore the cursor.
5448**
drhe39a7322014-02-03 14:04:11 +00005449** The calling function will set *pRes to 0 or 1. The initial *pRes value
5450** will be 1 if the cursor being stepped corresponds to an SQL index and
5451** if this routine could have been skipped if that SQL index had been
5452** a unique index. Otherwise the caller will have set *pRes to zero.
5453** Zero is the common case. The btree implementation is free to use the
5454** initial *pRes value as a hint to improve performance, but the current
5455** SQLite btree implementation does not. (Note that the comdb2 btree
5456** implementation does use this hint, however.)
drh72f82862001-05-24 21:06:34 +00005457*/
drhee6438d2014-09-01 13:29:32 +00005458static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00005459 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005460 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005461 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005462
dan7a2347e2016-01-07 16:43:54 +00005463 assert( cursorOwnsBtShared(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005464 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005465 assert( *pRes==0 );
drhf66f26a2013-08-19 20:04:10 +00005466 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005467 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005468 rc = restoreCursorPosition(pCur);
5469 if( rc!=SQLITE_OK ){
5470 return rc;
5471 }
5472 if( CURSOR_INVALID==pCur->eState ){
5473 *pRes = 1;
5474 return SQLITE_OK;
5475 }
drh9b47ee32013-08-20 03:13:51 +00005476 if( pCur->skipNext ){
5477 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5478 pCur->eState = CURSOR_VALID;
5479 if( pCur->skipNext>0 ){
5480 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005481 return SQLITE_OK;
5482 }
drhf66f26a2013-08-19 20:04:10 +00005483 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005484 }
drh8c4d3a62007-04-06 01:03:32 +00005485 }
danielk1977da184232006-01-05 11:34:32 +00005486
danielk197771d5d2c2008-09-29 11:49:47 +00005487 pPage = pCur->apPage[pCur->iPage];
drh75e96b32017-04-01 00:20:06 +00005488 idx = ++pCur->ix;
danielk197771d5d2c2008-09-29 11:49:47 +00005489 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00005490
5491 /* If the database file is corrupt, it is possible for the value of idx
5492 ** to be invalid here. This can only occur if a second cursor modifies
5493 ** the page while cursor pCur is holding a reference to it. Which can
5494 ** only happen if the database is corrupt in such a way as to link the
5495 ** page into more than one b-tree structure. */
5496 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005497
danielk197771d5d2c2008-09-29 11:49:47 +00005498 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005499 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005500 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005501 if( rc ) return rc;
5502 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005503 }
drh5e2f8b92001-05-28 00:41:15 +00005504 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005505 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00005506 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00005507 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00005508 return SQLITE_OK;
5509 }
danielk197730548662009-07-09 05:07:37 +00005510 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00005511 pPage = pCur->apPage[pCur->iPage];
drh75e96b32017-04-01 00:20:06 +00005512 }while( pCur->ix>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005513 if( pPage->intKey ){
drhee6438d2014-09-01 13:29:32 +00005514 return sqlite3BtreeNext(pCur, pRes);
drh8b18dd42004-05-12 19:18:15 +00005515 }else{
drhee6438d2014-09-01 13:29:32 +00005516 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005517 }
drh8178a752003-01-05 21:41:40 +00005518 }
drh3aac2dd2004-04-26 14:10:20 +00005519 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005520 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005521 }else{
5522 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005523 }
drh72f82862001-05-24 21:06:34 +00005524}
drhee6438d2014-09-01 13:29:32 +00005525int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
5526 MemPage *pPage;
dan7a2347e2016-01-07 16:43:54 +00005527 assert( cursorOwnsBtShared(pCur) );
drhee6438d2014-09-01 13:29:32 +00005528 assert( pRes!=0 );
5529 assert( *pRes==0 || *pRes==1 );
5530 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5531 pCur->info.nSize = 0;
5532 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5533 *pRes = 0;
5534 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
5535 pPage = pCur->apPage[pCur->iPage];
drh75e96b32017-04-01 00:20:06 +00005536 if( (++pCur->ix)>=pPage->nCell ){
5537 pCur->ix--;
drhee6438d2014-09-01 13:29:32 +00005538 return btreeNext(pCur, pRes);
5539 }
5540 if( pPage->leaf ){
5541 return SQLITE_OK;
5542 }else{
5543 return moveToLeftmost(pCur);
5544 }
5545}
drh72f82862001-05-24 21:06:34 +00005546
drh3b7511c2001-05-26 13:15:44 +00005547/*
drh2dcc9aa2002-12-04 13:40:25 +00005548** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00005549** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00005550** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00005551** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005552**
drhee6438d2014-09-01 13:29:32 +00005553** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5554** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005555** to the previous cell on the current page. The (slower) btreePrevious()
5556** helper routine is called when it is necessary to move to a different page
5557** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005558**
drhe39a7322014-02-03 14:04:11 +00005559** The calling function will set *pRes to 0 or 1. The initial *pRes value
5560** will be 1 if the cursor being stepped corresponds to an SQL index and
5561** if this routine could have been skipped if that SQL index had been
5562** a unique index. Otherwise the caller will have set *pRes to zero.
5563** Zero is the common case. The btree implementation is free to use the
5564** initial *pRes value as a hint to improve performance, but the current
5565** SQLite btree implementation does not. (Note that the comdb2 btree
5566** implementation does use this hint, however.)
drh2dcc9aa2002-12-04 13:40:25 +00005567*/
drhee6438d2014-09-01 13:29:32 +00005568static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00005569 int rc;
drh8178a752003-01-05 21:41:40 +00005570 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005571
dan7a2347e2016-01-07 16:43:54 +00005572 assert( cursorOwnsBtShared(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005573 assert( pRes!=0 );
drhee6438d2014-09-01 13:29:32 +00005574 assert( *pRes==0 );
drh9b47ee32013-08-20 03:13:51 +00005575 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005576 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5577 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005578 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005579 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005580 if( rc!=SQLITE_OK ){
5581 return rc;
drhf66f26a2013-08-19 20:04:10 +00005582 }
5583 if( CURSOR_INVALID==pCur->eState ){
5584 *pRes = 1;
5585 return SQLITE_OK;
5586 }
drh9b47ee32013-08-20 03:13:51 +00005587 if( pCur->skipNext ){
5588 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5589 pCur->eState = CURSOR_VALID;
5590 if( pCur->skipNext<0 ){
5591 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005592 return SQLITE_OK;
5593 }
drhf66f26a2013-08-19 20:04:10 +00005594 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005595 }
danielk1977da184232006-01-05 11:34:32 +00005596 }
danielk1977da184232006-01-05 11:34:32 +00005597
danielk197771d5d2c2008-09-29 11:49:47 +00005598 pPage = pCur->apPage[pCur->iPage];
5599 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005600 if( !pPage->leaf ){
drh75e96b32017-04-01 00:20:06 +00005601 int idx = pCur->ix;
danielk197771d5d2c2008-09-29 11:49:47 +00005602 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005603 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005604 rc = moveToRightmost(pCur);
5605 }else{
drh75e96b32017-04-01 00:20:06 +00005606 while( pCur->ix==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00005607 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005608 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00005609 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00005610 return SQLITE_OK;
5611 }
danielk197730548662009-07-09 05:07:37 +00005612 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005613 }
drhee6438d2014-09-01 13:29:32 +00005614 assert( pCur->info.nSize==0 );
drhd95ef5c2016-11-11 18:19:05 +00005615 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005616
drh75e96b32017-04-01 00:20:06 +00005617 pCur->ix--;
danielk197771d5d2c2008-09-29 11:49:47 +00005618 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00005619 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00005620 rc = sqlite3BtreePrevious(pCur, pRes);
5621 }else{
5622 rc = SQLITE_OK;
5623 }
drh2dcc9aa2002-12-04 13:40:25 +00005624 }
drh2dcc9aa2002-12-04 13:40:25 +00005625 return rc;
5626}
drhee6438d2014-09-01 13:29:32 +00005627int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
dan7a2347e2016-01-07 16:43:54 +00005628 assert( cursorOwnsBtShared(pCur) );
drhee6438d2014-09-01 13:29:32 +00005629 assert( pRes!=0 );
5630 assert( *pRes==0 || *pRes==1 );
5631 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5632 *pRes = 0;
5633 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5634 pCur->info.nSize = 0;
5635 if( pCur->eState!=CURSOR_VALID
drh75e96b32017-04-01 00:20:06 +00005636 || pCur->ix==0
drhee6438d2014-09-01 13:29:32 +00005637 || pCur->apPage[pCur->iPage]->leaf==0
5638 ){
5639 return btreePrevious(pCur, pRes);
5640 }
drh75e96b32017-04-01 00:20:06 +00005641 pCur->ix--;
drhee6438d2014-09-01 13:29:32 +00005642 return SQLITE_OK;
5643}
drh2dcc9aa2002-12-04 13:40:25 +00005644
5645/*
drh3b7511c2001-05-26 13:15:44 +00005646** Allocate a new page from the database file.
5647**
danielk19773b8a05f2007-03-19 17:44:26 +00005648** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005649** has already been called on the new page.) The new page has also
5650** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005651** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005652**
5653** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00005654** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00005655**
drh82e647d2013-03-02 03:25:55 +00005656** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005657** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005658** attempt to keep related pages close to each other in the database file,
5659** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005660**
drh82e647d2013-03-02 03:25:55 +00005661** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5662** anywhere on the free-list, then it is guaranteed to be returned. If
5663** eMode is BTALLOC_LT then the page returned will be less than or equal
5664** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5665** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005666*/
drh4f0c5872007-03-26 22:05:01 +00005667static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005668 BtShared *pBt, /* The btree */
5669 MemPage **ppPage, /* Store pointer to the allocated page here */
5670 Pgno *pPgno, /* Store the page number here */
5671 Pgno nearby, /* Search for a page near this one */
5672 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005673){
drh3aac2dd2004-04-26 14:10:20 +00005674 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005675 int rc;
drh35cd6432009-06-05 14:17:21 +00005676 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005677 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005678 MemPage *pTrunk = 0;
5679 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005680 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005681
drh1fee73e2007-08-29 04:00:57 +00005682 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005683 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005684 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005685 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005686 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5687 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005688 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005689 testcase( n==mxPage-1 );
5690 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005691 return SQLITE_CORRUPT_BKPT;
5692 }
drh3aac2dd2004-04-26 14:10:20 +00005693 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005694 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005695 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005696 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00005697 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005698
drh82e647d2013-03-02 03:25:55 +00005699 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005700 ** shows that the page 'nearby' is somewhere on the free-list, then
5701 ** the entire-list will be searched for that page.
5702 */
5703#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005704 if( eMode==BTALLOC_EXACT ){
5705 if( nearby<=mxPage ){
5706 u8 eType;
5707 assert( nearby>0 );
5708 assert( pBt->autoVacuum );
5709 rc = ptrmapGet(pBt, nearby, &eType, 0);
5710 if( rc ) return rc;
5711 if( eType==PTRMAP_FREEPAGE ){
5712 searchList = 1;
5713 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005714 }
dan51f0b6d2013-02-22 20:16:34 +00005715 }else if( eMode==BTALLOC_LE ){
5716 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005717 }
5718#endif
5719
5720 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5721 ** first free-list trunk page. iPrevTrunk is initially 1.
5722 */
danielk19773b8a05f2007-03-19 17:44:26 +00005723 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005724 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005725 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005726
5727 /* The code within this loop is run only once if the 'searchList' variable
5728 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005729 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5730 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005731 */
5732 do {
5733 pPrevTrunk = pTrunk;
5734 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005735 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5736 ** is the page number of the next freelist trunk page in the list or
5737 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005738 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005739 }else{
drh113762a2014-11-19 16:36:25 +00005740 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5741 ** stores the page number of the first page of the freelist, or zero if
5742 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005743 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005744 }
drhdf35a082009-07-09 02:24:35 +00005745 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00005746 if( iTrunk>mxPage || nSearch++ > n ){
drh1662b5a2009-06-04 19:06:09 +00005747 rc = SQLITE_CORRUPT_BKPT;
5748 }else{
drh7e8c6f12015-05-28 03:28:27 +00005749 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005750 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005751 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005752 pTrunk = 0;
5753 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005754 }
drhb07028f2011-10-14 21:49:18 +00005755 assert( pTrunk!=0 );
5756 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005757 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5758 ** is the number of leaf page pointers to follow. */
5759 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005760 if( k==0 && !searchList ){
5761 /* The trunk has no leaves and the list is not being searched.
5762 ** So extract the trunk page itself and use it as the newly
5763 ** allocated page */
5764 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005765 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005766 if( rc ){
5767 goto end_allocate_page;
5768 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005769 *pPgno = iTrunk;
5770 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5771 *ppPage = pTrunk;
5772 pTrunk = 0;
5773 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005774 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005775 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00005776 rc = SQLITE_CORRUPT_BKPT;
5777 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005778#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005779 }else if( searchList
5780 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5781 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005782 /* The list is being searched and this trunk page is the page
5783 ** to allocate, regardless of whether it has leaves.
5784 */
dan51f0b6d2013-02-22 20:16:34 +00005785 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005786 *ppPage = pTrunk;
5787 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005788 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005789 if( rc ){
5790 goto end_allocate_page;
5791 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005792 if( k==0 ){
5793 if( !pPrevTrunk ){
5794 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5795 }else{
danf48c3552010-08-23 15:41:24 +00005796 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5797 if( rc!=SQLITE_OK ){
5798 goto end_allocate_page;
5799 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005800 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5801 }
5802 }else{
5803 /* The trunk page is required by the caller but it contains
5804 ** pointers to free-list leaves. The first leaf becomes a trunk
5805 ** page in this case.
5806 */
5807 MemPage *pNewTrunk;
5808 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005809 if( iNewTrunk>mxPage ){
5810 rc = SQLITE_CORRUPT_BKPT;
5811 goto end_allocate_page;
5812 }
drhdf35a082009-07-09 02:24:35 +00005813 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00005814 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005815 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005816 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005817 }
danielk19773b8a05f2007-03-19 17:44:26 +00005818 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005819 if( rc!=SQLITE_OK ){
5820 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005821 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005822 }
5823 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5824 put4byte(&pNewTrunk->aData[4], k-1);
5825 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005826 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005827 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005828 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005829 put4byte(&pPage1->aData[32], iNewTrunk);
5830 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005831 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005832 if( rc ){
5833 goto end_allocate_page;
5834 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005835 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5836 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005837 }
5838 pTrunk = 0;
5839 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5840#endif
danielk1977e5765212009-06-17 11:13:28 +00005841 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005842 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005843 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005844 Pgno iPage;
5845 unsigned char *aData = pTrunk->aData;
5846 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005847 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005848 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005849 if( eMode==BTALLOC_LE ){
5850 for(i=0; i<k; i++){
5851 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005852 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005853 closest = i;
5854 break;
5855 }
5856 }
5857 }else{
5858 int dist;
5859 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5860 for(i=1; i<k; i++){
5861 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5862 if( d2<dist ){
5863 closest = i;
5864 dist = d2;
5865 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005866 }
5867 }
5868 }else{
5869 closest = 0;
5870 }
5871
5872 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005873 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005874 if( iPage>mxPage ){
5875 rc = SQLITE_CORRUPT_BKPT;
5876 goto end_allocate_page;
5877 }
drhdf35a082009-07-09 02:24:35 +00005878 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005879 if( !searchList
5880 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5881 ){
danielk1977bea2a942009-01-20 17:06:27 +00005882 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005883 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005884 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5885 ": %d more free pages\n",
5886 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005887 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5888 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005889 if( closest<k-1 ){
5890 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5891 }
5892 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00005893 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00005894 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005895 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005896 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005897 if( rc!=SQLITE_OK ){
5898 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00005899 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005900 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005901 }
5902 searchList = 0;
5903 }
drhee696e22004-08-30 16:52:17 +00005904 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005905 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005906 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005907 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005908 }else{
danbc1a3c62013-02-23 16:40:46 +00005909 /* There are no pages on the freelist, so append a new page to the
5910 ** database image.
5911 **
5912 ** Normally, new pages allocated by this block can be requested from the
5913 ** pager layer with the 'no-content' flag set. This prevents the pager
5914 ** from trying to read the pages content from disk. However, if the
5915 ** current transaction has already run one or more incremental-vacuum
5916 ** steps, then the page we are about to allocate may contain content
5917 ** that is required in the event of a rollback. In this case, do
5918 ** not set the no-content flag. This causes the pager to load and journal
5919 ** the current page content before overwriting it.
5920 **
5921 ** Note that the pager will not actually attempt to load or journal
5922 ** content for any page that really does lie past the end of the database
5923 ** file on disk. So the effects of disabling the no-content optimization
5924 ** here are confined to those pages that lie between the end of the
5925 ** database image and the end of the database file.
5926 */
drh3f387402014-09-24 01:23:00 +00005927 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00005928
drhdd3cd972010-03-27 17:12:36 +00005929 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5930 if( rc ) return rc;
5931 pBt->nPage++;
5932 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005933
danielk1977afcdd022004-10-31 16:25:42 +00005934#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005935 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005936 /* If *pPgno refers to a pointer-map page, allocate two new pages
5937 ** at the end of the file instead of one. The first allocated page
5938 ** becomes a new pointer-map page, the second is used by the caller.
5939 */
danielk1977ac861692009-03-28 10:54:22 +00005940 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005941 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5942 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005943 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005944 if( rc==SQLITE_OK ){
5945 rc = sqlite3PagerWrite(pPg->pDbPage);
5946 releasePage(pPg);
5947 }
5948 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005949 pBt->nPage++;
5950 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005951 }
5952#endif
drhdd3cd972010-03-27 17:12:36 +00005953 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5954 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005955
danielk1977599fcba2004-11-08 07:13:13 +00005956 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005957 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00005958 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005959 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005960 if( rc!=SQLITE_OK ){
5961 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00005962 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005963 }
drh3a4c1412004-05-09 20:40:11 +00005964 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005965 }
danielk1977599fcba2004-11-08 07:13:13 +00005966
5967 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005968
5969end_allocate_page:
5970 releasePage(pTrunk);
5971 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00005972 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
5973 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00005974 return rc;
5975}
5976
5977/*
danielk1977bea2a942009-01-20 17:06:27 +00005978** This function is used to add page iPage to the database file free-list.
5979** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005980**
danielk1977bea2a942009-01-20 17:06:27 +00005981** The value passed as the second argument to this function is optional.
5982** If the caller happens to have a pointer to the MemPage object
5983** corresponding to page iPage handy, it may pass it as the second value.
5984** Otherwise, it may pass NULL.
5985**
5986** If a pointer to a MemPage object is passed as the second argument,
5987** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005988*/
danielk1977bea2a942009-01-20 17:06:27 +00005989static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5990 MemPage *pTrunk = 0; /* Free-list trunk page */
5991 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5992 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5993 MemPage *pPage; /* Page being freed. May be NULL. */
5994 int rc; /* Return Code */
5995 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005996
danielk1977bea2a942009-01-20 17:06:27 +00005997 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00005998 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00005999 assert( !pMemPage || pMemPage->pgno==iPage );
6000
danfb0246b2015-05-26 12:18:17 +00006001 if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +00006002 if( pMemPage ){
6003 pPage = pMemPage;
6004 sqlite3PagerRef(pPage->pDbPage);
6005 }else{
6006 pPage = btreePageLookup(pBt, iPage);
6007 }
drh3aac2dd2004-04-26 14:10:20 +00006008
drha34b6762004-05-07 13:30:42 +00006009 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00006010 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00006011 if( rc ) goto freepage_out;
6012 nFree = get4byte(&pPage1->aData[36]);
6013 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00006014
drhc9166342012-01-05 23:32:06 +00006015 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00006016 /* If the secure_delete option is enabled, then
6017 ** always fully overwrite deleted information with zeros.
6018 */
shaneh84f4b2f2010-02-26 01:46:54 +00006019 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
6020 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00006021 ){
6022 goto freepage_out;
6023 }
6024 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00006025 }
drhfcce93f2006-02-22 03:08:32 +00006026
danielk1977687566d2004-11-02 12:56:41 +00006027 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00006028 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00006029 */
danielk197785d90ca2008-07-19 14:25:15 +00006030 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006031 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00006032 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00006033 }
danielk1977687566d2004-11-02 12:56:41 +00006034
danielk1977bea2a942009-01-20 17:06:27 +00006035 /* Now manipulate the actual database free-list structure. There are two
6036 ** possibilities. If the free-list is currently empty, or if the first
6037 ** trunk page in the free-list is full, then this page will become a
6038 ** new free-list trunk page. Otherwise, it will become a leaf of the
6039 ** first trunk page in the current free-list. This block tests if it
6040 ** is possible to add the page as a new free-list leaf.
6041 */
6042 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00006043 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00006044
6045 iTrunk = get4byte(&pPage1->aData[32]);
danielk197730548662009-07-09 05:07:37 +00006046 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00006047 if( rc!=SQLITE_OK ){
6048 goto freepage_out;
6049 }
6050
6051 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00006052 assert( pBt->usableSize>32 );
6053 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00006054 rc = SQLITE_CORRUPT_BKPT;
6055 goto freepage_out;
6056 }
drheeb844a2009-08-08 18:01:07 +00006057 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00006058 /* In this case there is room on the trunk page to insert the page
6059 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00006060 **
6061 ** Note that the trunk page is not really full until it contains
6062 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6063 ** coded. But due to a coding error in versions of SQLite prior to
6064 ** 3.6.0, databases with freelist trunk pages holding more than
6065 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6066 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00006067 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00006068 ** for now. At some point in the future (once everyone has upgraded
6069 ** to 3.6.0 or later) we should consider fixing the conditional above
6070 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00006071 **
6072 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6073 ** avoid using the last six entries in the freelist trunk page array in
6074 ** order that database files created by newer versions of SQLite can be
6075 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00006076 */
danielk19773b8a05f2007-03-19 17:44:26 +00006077 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00006078 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006079 put4byte(&pTrunk->aData[4], nLeaf+1);
6080 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00006081 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00006082 sqlite3PagerDontWrite(pPage->pDbPage);
6083 }
danielk1977bea2a942009-01-20 17:06:27 +00006084 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00006085 }
drh3a4c1412004-05-09 20:40:11 +00006086 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00006087 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00006088 }
drh3b7511c2001-05-26 13:15:44 +00006089 }
danielk1977bea2a942009-01-20 17:06:27 +00006090
6091 /* If control flows to this point, then it was not possible to add the
6092 ** the page being freed as a leaf page of the first trunk in the free-list.
6093 ** Possibly because the free-list is empty, or possibly because the
6094 ** first trunk in the free-list is full. Either way, the page being freed
6095 ** will become the new first trunk page in the free-list.
6096 */
drhc046e3e2009-07-15 11:26:44 +00006097 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
6098 goto freepage_out;
6099 }
6100 rc = sqlite3PagerWrite(pPage->pDbPage);
6101 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006102 goto freepage_out;
6103 }
6104 put4byte(pPage->aData, iTrunk);
6105 put4byte(&pPage->aData[4], 0);
6106 put4byte(&pPage1->aData[32], iPage);
6107 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6108
6109freepage_out:
6110 if( pPage ){
6111 pPage->isInit = 0;
6112 }
6113 releasePage(pPage);
6114 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00006115 return rc;
6116}
drhc314dc72009-07-21 11:52:34 +00006117static void freePage(MemPage *pPage, int *pRC){
6118 if( (*pRC)==SQLITE_OK ){
6119 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6120 }
danielk1977bea2a942009-01-20 17:06:27 +00006121}
drh3b7511c2001-05-26 13:15:44 +00006122
6123/*
drh9bfdc252014-09-24 02:05:41 +00006124** Free any overflow pages associated with the given Cell. Write the
6125** local Cell size (the number of bytes on the original page, omitting
6126** overflow) into *pnSize.
drh3b7511c2001-05-26 13:15:44 +00006127*/
drh9bfdc252014-09-24 02:05:41 +00006128static int clearCell(
6129 MemPage *pPage, /* The page that contains the Cell */
6130 unsigned char *pCell, /* First byte of the Cell */
drh80159da2016-12-09 17:32:51 +00006131 CellInfo *pInfo /* Size information about the cell */
drh9bfdc252014-09-24 02:05:41 +00006132){
danielk1977aef0bf62005-12-30 16:28:01 +00006133 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00006134 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00006135 int rc;
drh94440812007-03-06 11:42:19 +00006136 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00006137 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00006138
drh1fee73e2007-08-29 04:00:57 +00006139 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh80159da2016-12-09 17:32:51 +00006140 pPage->xParseCell(pPage, pCell, pInfo);
6141 if( pInfo->nLocal==pInfo->nPayload ){
drha34b6762004-05-07 13:30:42 +00006142 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00006143 }
drh80159da2016-12-09 17:32:51 +00006144 if( pCell+pInfo->nSize-1 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00006145 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00006146 }
drh80159da2016-12-09 17:32:51 +00006147 ovflPgno = get4byte(pCell + pInfo->nSize - 4);
shane63207ab2009-02-04 01:49:30 +00006148 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00006149 ovflPageSize = pBt->usableSize - 4;
drh80159da2016-12-09 17:32:51 +00006150 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00006151 assert( nOvfl>0 ||
drh80159da2016-12-09 17:32:51 +00006152 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
dan0f8076d2015-05-25 18:47:26 +00006153 );
drh72365832007-03-06 15:53:44 +00006154 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00006155 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00006156 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00006157 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00006158 /* 0 is not a legal page number and page 1 cannot be an
6159 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6160 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00006161 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006162 }
danielk1977bea2a942009-01-20 17:06:27 +00006163 if( nOvfl ){
6164 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6165 if( rc ) return rc;
6166 }
dan887d4b22010-02-25 12:09:16 +00006167
shaneh1da207e2010-03-09 14:41:12 +00006168 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00006169 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6170 ){
6171 /* There is no reason any cursor should have an outstanding reference
6172 ** to an overflow page belonging to a cell that is being deleted/updated.
6173 ** So if there exists more than one reference to this page, then it
6174 ** must not really be an overflow page and the database must be corrupt.
6175 ** It is helpful to detect this before calling freePage2(), as
6176 ** freePage2() may zero the page contents if secure-delete mode is
6177 ** enabled. If this 'overflow' page happens to be a page that the
6178 ** caller is iterating through or using in some other way, this
6179 ** can be problematic.
6180 */
6181 rc = SQLITE_CORRUPT_BKPT;
6182 }else{
6183 rc = freePage2(pBt, pOvfl, ovflPgno);
6184 }
6185
danielk1977bea2a942009-01-20 17:06:27 +00006186 if( pOvfl ){
6187 sqlite3PagerUnref(pOvfl->pDbPage);
6188 }
drh3b7511c2001-05-26 13:15:44 +00006189 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00006190 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00006191 }
drh5e2f8b92001-05-28 00:41:15 +00006192 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00006193}
6194
6195/*
drh91025292004-05-03 19:49:32 +00006196** Create the byte sequence used to represent a cell on page pPage
6197** and write that byte sequence into pCell[]. Overflow pages are
6198** allocated and filled in as necessary. The calling procedure
6199** is responsible for making sure sufficient space has been allocated
6200** for pCell[].
6201**
6202** Note that pCell does not necessary need to point to the pPage->aData
6203** area. pCell might point to some temporary storage. The cell will
6204** be constructed in this temporary area then copied into pPage->aData
6205** later.
drh3b7511c2001-05-26 13:15:44 +00006206*/
6207static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006208 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006209 unsigned char *pCell, /* Complete text of the cell */
drh8eeb4462016-05-21 20:03:42 +00006210 const BtreePayload *pX, /* Payload with which to construct the cell */
drh4b70f112004-05-02 21:12:19 +00006211 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006212){
drh3b7511c2001-05-26 13:15:44 +00006213 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006214 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00006215 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00006216 int spaceLeft;
6217 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00006218 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00006219 unsigned char *pPrior;
6220 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00006221 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00006222 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00006223 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006224
drh1fee73e2007-08-29 04:00:57 +00006225 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006226
drhc5053fb2008-11-27 02:22:10 +00006227 /* pPage is not necessarily writeable since pCell might be auxiliary
6228 ** buffer space that is separate from the pPage buffer area */
6229 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
6230 || sqlite3PagerIswriteable(pPage->pDbPage) );
6231
drh91025292004-05-03 19:49:32 +00006232 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006233 nHeader = pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00006234 if( pPage->intKey ){
drhdfc2daa2016-05-21 23:25:29 +00006235 nPayload = pX->nData + pX->nZero;
6236 pSrc = pX->pData;
6237 nSrc = pX->nData;
6238 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
drh6200c882014-09-23 22:36:25 +00006239 nHeader += putVarint32(&pCell[nHeader], nPayload);
drhdfc2daa2016-05-21 23:25:29 +00006240 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
drh3b7511c2001-05-26 13:15:44 +00006241 }else{
drh8eeb4462016-05-21 20:03:42 +00006242 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6243 nSrc = nPayload = (int)pX->nKey;
6244 pSrc = pX->pKey;
drhdfc2daa2016-05-21 23:25:29 +00006245 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh3aac2dd2004-04-26 14:10:20 +00006246 }
drhdfc2daa2016-05-21 23:25:29 +00006247
6248 /* Fill in the payload */
drh6200c882014-09-23 22:36:25 +00006249 if( nPayload<=pPage->maxLocal ){
6250 n = nHeader + nPayload;
6251 testcase( n==3 );
6252 testcase( n==4 );
6253 if( n<4 ) n = 4;
6254 *pnSize = n;
6255 spaceLeft = nPayload;
6256 pPrior = pCell;
6257 }else{
6258 int mn = pPage->minLocal;
6259 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6260 testcase( n==pPage->maxLocal );
6261 testcase( n==pPage->maxLocal+1 );
6262 if( n > pPage->maxLocal ) n = mn;
6263 spaceLeft = n;
6264 *pnSize = n + nHeader + 4;
6265 pPrior = &pCell[nHeader+n];
6266 }
drh3aac2dd2004-04-26 14:10:20 +00006267 pPayload = &pCell[nHeader];
drh3b7511c2001-05-26 13:15:44 +00006268
drh6200c882014-09-23 22:36:25 +00006269 /* At this point variables should be set as follows:
6270 **
6271 ** nPayload Total payload size in bytes
6272 ** pPayload Begin writing payload here
6273 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6274 ** that means content must spill into overflow pages.
6275 ** *pnSize Size of the local cell (not counting overflow pages)
6276 ** pPrior Where to write the pgno of the first overflow page
6277 **
6278 ** Use a call to btreeParseCellPtr() to verify that the values above
6279 ** were computed correctly.
6280 */
drhd879e3e2017-02-13 13:35:55 +00006281#ifdef SQLITE_DEBUG
drh6200c882014-09-23 22:36:25 +00006282 {
6283 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006284 pPage->xParseCell(pPage, pCell, &info);
drhcc5f8a42016-02-06 22:32:06 +00006285 assert( nHeader==(int)(info.pPayload - pCell) );
drh8eeb4462016-05-21 20:03:42 +00006286 assert( info.nKey==pX->nKey );
drh6200c882014-09-23 22:36:25 +00006287 assert( *pnSize == info.nSize );
6288 assert( spaceLeft == info.nLocal );
drh6200c882014-09-23 22:36:25 +00006289 }
6290#endif
6291
6292 /* Write the payload into the local Cell and any extra into overflow pages */
drh3b7511c2001-05-26 13:15:44 +00006293 while( nPayload>0 ){
6294 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00006295#ifndef SQLITE_OMIT_AUTOVACUUM
6296 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006297 if( pBt->autoVacuum ){
6298 do{
6299 pgnoOvfl++;
6300 } while(
6301 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6302 );
danielk1977b39f70b2007-05-17 18:28:11 +00006303 }
danielk1977afcdd022004-10-31 16:25:42 +00006304#endif
drhf49661a2008-12-10 16:45:50 +00006305 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006306#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006307 /* If the database supports auto-vacuum, and the second or subsequent
6308 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006309 ** for that page now.
6310 **
6311 ** If this is the first overflow page, then write a partial entry
6312 ** to the pointer-map. If we write nothing to this pointer-map slot,
6313 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006314 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006315 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006316 */
danielk19774ef24492007-05-23 09:52:41 +00006317 if( pBt->autoVacuum && rc==SQLITE_OK ){
6318 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006319 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006320 if( rc ){
6321 releasePage(pOvfl);
6322 }
danielk1977afcdd022004-10-31 16:25:42 +00006323 }
6324#endif
drh3b7511c2001-05-26 13:15:44 +00006325 if( rc ){
drh9b171272004-05-08 02:03:22 +00006326 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006327 return rc;
6328 }
drhc5053fb2008-11-27 02:22:10 +00006329
6330 /* If pToRelease is not zero than pPrior points into the data area
6331 ** of pToRelease. Make sure pToRelease is still writeable. */
6332 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6333
6334 /* If pPrior is part of the data area of pPage, then make sure pPage
6335 ** is still writeable */
6336 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6337 || sqlite3PagerIswriteable(pPage->pDbPage) );
6338
drh3aac2dd2004-04-26 14:10:20 +00006339 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006340 releasePage(pToRelease);
6341 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006342 pPrior = pOvfl->aData;
6343 put4byte(pPrior, 0);
6344 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006345 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006346 }
6347 n = nPayload;
6348 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00006349
6350 /* If pToRelease is not zero than pPayload points into the data area
6351 ** of pToRelease. Make sure pToRelease is still writeable. */
6352 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6353
6354 /* If pPayload is part of the data area of pPage, then make sure pPage
6355 ** is still writeable */
6356 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6357 || sqlite3PagerIswriteable(pPage->pDbPage) );
6358
drhb026e052007-05-02 01:34:31 +00006359 if( nSrc>0 ){
6360 if( n>nSrc ) n = nSrc;
6361 assert( pSrc );
6362 memcpy(pPayload, pSrc, n);
6363 }else{
6364 memset(pPayload, 0, n);
6365 }
drh3b7511c2001-05-26 13:15:44 +00006366 nPayload -= n;
drhde647132004-05-07 17:57:49 +00006367 pPayload += n;
drh9b171272004-05-08 02:03:22 +00006368 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00006369 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00006370 spaceLeft -= n;
drhdd793422001-06-28 01:54:48 +00006371 }
drh9b171272004-05-08 02:03:22 +00006372 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006373 return SQLITE_OK;
6374}
6375
drh14acc042001-06-10 19:56:58 +00006376/*
6377** Remove the i-th cell from pPage. This routine effects pPage only.
6378** The cell content is not freed or deallocated. It is assumed that
6379** the cell content has been copied someplace else. This routine just
6380** removes the reference to the cell from pPage.
6381**
6382** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006383*/
drh98add2e2009-07-20 17:11:49 +00006384static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006385 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006386 u8 *data; /* pPage->aData */
6387 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006388 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006389 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006390
drh98add2e2009-07-20 17:11:49 +00006391 if( *pRC ) return;
drh8c42ca92001-06-22 19:15:00 +00006392 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006393 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006394 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006395 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00006396 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006397 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006398 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006399 hdr = pPage->hdrOffset;
6400 testcase( pc==get2byte(&data[hdr+5]) );
6401 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00006402 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006403 *pRC = SQLITE_CORRUPT_BKPT;
6404 return;
shane0af3f892008-11-12 04:55:34 +00006405 }
shanedcc50b72008-11-13 18:29:50 +00006406 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006407 if( rc ){
6408 *pRC = rc;
6409 return;
shanedcc50b72008-11-13 18:29:50 +00006410 }
drh14acc042001-06-10 19:56:58 +00006411 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006412 if( pPage->nCell==0 ){
6413 memset(&data[hdr+1], 0, 4);
6414 data[hdr+7] = 0;
6415 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6416 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6417 - pPage->childPtrSize - 8;
6418 }else{
6419 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6420 put2byte(&data[hdr+3], pPage->nCell);
6421 pPage->nFree += 2;
6422 }
drh14acc042001-06-10 19:56:58 +00006423}
6424
6425/*
6426** Insert a new cell on pPage at cell index "i". pCell points to the
6427** content of the cell.
6428**
6429** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006430** will not fit, then make a copy of the cell content into pTemp if
6431** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006432** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006433** in pTemp or the original pCell) and also record its index.
6434** Allocating a new entry in pPage->aCell[] implies that
6435** pPage->nOverflow is incremented.
drhcb89f4a2016-05-21 11:23:26 +00006436**
6437** *pRC must be SQLITE_OK when this routine is called.
drh14acc042001-06-10 19:56:58 +00006438*/
drh98add2e2009-07-20 17:11:49 +00006439static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006440 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006441 int i, /* New cell becomes the i-th cell of the page */
6442 u8 *pCell, /* Content of the new cell */
6443 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006444 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006445 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6446 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006447){
drh383d30f2010-02-26 13:07:37 +00006448 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006449 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006450 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006451 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006452
drhcb89f4a2016-05-21 11:23:26 +00006453 assert( *pRC==SQLITE_OK );
drh43605152004-05-29 21:46:49 +00006454 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006455 assert( MX_CELL(pPage->pBt)<=10921 );
6456 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006457 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6458 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006459 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00006460 /* The cell should normally be sized correctly. However, when moving a
6461 ** malformed cell from a leaf page to an interior page, if the cell size
6462 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6463 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6464 ** the term after the || in the following assert(). */
drh25ada072015-06-19 15:07:14 +00006465 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00006466 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006467 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006468 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006469 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006470 }
danielk19774dbaa892009-06-16 16:50:22 +00006471 if( iChild ){
6472 put4byte(pCell, iChild);
6473 }
drh43605152004-05-29 21:46:49 +00006474 j = pPage->nOverflow++;
drha2ee5892016-12-09 16:02:00 +00006475 /* Comparison against ArraySize-1 since we hold back one extra slot
6476 ** as a contingency. In other words, never need more than 3 overflow
6477 ** slots but 4 are allocated, just to be safe. */
6478 assert( j < ArraySize(pPage->apOvfl)-1 );
drh2cbd78b2012-02-02 19:37:18 +00006479 pPage->apOvfl[j] = pCell;
6480 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006481
6482 /* When multiple overflows occur, they are always sequential and in
6483 ** sorted order. This invariants arise because multiple overflows can
6484 ** only occur when inserting divider cells into the parent page during
6485 ** balancing, and the dividers are adjacent and sorted.
6486 */
6487 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6488 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006489 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006490 int rc = sqlite3PagerWrite(pPage->pDbPage);
6491 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006492 *pRC = rc;
6493 return;
danielk19776e465eb2007-08-21 13:11:00 +00006494 }
6495 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006496 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00006497 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00006498 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006499 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006500 /* The allocateSpace() routine guarantees the following properties
6501 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00006502 assert( idx >= 0 );
6503 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00006504 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00006505 pPage->nFree -= (u16)(2 + sz);
drhd6176c42014-10-11 17:22:55 +00006506 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006507 if( iChild ){
6508 put4byte(&data[idx], iChild);
6509 }
drh2c8fb922015-06-25 19:53:48 +00006510 pIns = pPage->aCellIdx + i*2;
6511 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6512 put2byte(pIns, idx);
6513 pPage->nCell++;
6514 /* increment the cell count */
6515 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6516 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
danielk1977a19df672004-11-03 11:37:07 +00006517#ifndef SQLITE_OMIT_AUTOVACUUM
6518 if( pPage->pBt->autoVacuum ){
6519 /* The cell may contain a pointer to an overflow page. If so, write
6520 ** the entry for the overflow page into the pointer map.
6521 */
drh98add2e2009-07-20 17:11:49 +00006522 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006523 }
6524#endif
drh14acc042001-06-10 19:56:58 +00006525 }
6526}
6527
6528/*
drh1ffd2472015-06-23 02:37:30 +00006529** A CellArray object contains a cache of pointers and sizes for a
drhc0d269e2016-08-03 14:51:16 +00006530** consecutive sequence of cells that might be held on multiple pages.
drh1ffd2472015-06-23 02:37:30 +00006531*/
6532typedef struct CellArray CellArray;
6533struct CellArray {
6534 int nCell; /* Number of cells in apCell[] */
6535 MemPage *pRef; /* Reference page */
6536 u8 **apCell; /* All cells begin balanced */
6537 u16 *szCell; /* Local size of all cells in apCell[] */
6538};
6539
6540/*
6541** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6542** computed.
6543*/
6544static void populateCellCache(CellArray *p, int idx, int N){
6545 assert( idx>=0 && idx+N<=p->nCell );
6546 while( N>0 ){
6547 assert( p->apCell[idx]!=0 );
6548 if( p->szCell[idx]==0 ){
6549 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6550 }else{
6551 assert( CORRUPT_DB ||
6552 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6553 }
6554 idx++;
6555 N--;
6556 }
6557}
6558
6559/*
6560** Return the size of the Nth element of the cell array
6561*/
6562static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6563 assert( N>=0 && N<p->nCell );
6564 assert( p->szCell[N]==0 );
6565 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6566 return p->szCell[N];
6567}
6568static u16 cachedCellSize(CellArray *p, int N){
6569 assert( N>=0 && N<p->nCell );
6570 if( p->szCell[N] ) return p->szCell[N];
6571 return computeCellSize(p, N);
6572}
6573
6574/*
dan8e9ba0c2014-10-14 17:27:04 +00006575** Array apCell[] contains pointers to nCell b-tree page cells. The
6576** szCell[] array contains the size in bytes of each cell. This function
6577** replaces the current contents of page pPg with the contents of the cell
6578** array.
6579**
6580** Some of the cells in apCell[] may currently be stored in pPg. This
6581** function works around problems caused by this by making a copy of any
6582** such cells before overwriting the page data.
6583**
6584** The MemPage.nFree field is invalidated by this function. It is the
6585** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006586*/
drh658873b2015-06-22 20:02:04 +00006587static int rebuildPage(
dan33ea4862014-10-09 19:35:37 +00006588 MemPage *pPg, /* Edit this page */
dan33ea4862014-10-09 19:35:37 +00006589 int nCell, /* Final number of cells on page */
dan09c68402014-10-11 20:00:24 +00006590 u8 **apCell, /* Array of cells */
6591 u16 *szCell /* Array of cell sizes */
drhfa1a98a2004-05-14 19:08:17 +00006592){
dan33ea4862014-10-09 19:35:37 +00006593 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6594 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6595 const int usableSize = pPg->pBt->usableSize;
6596 u8 * const pEnd = &aData[usableSize];
6597 int i;
6598 u8 *pCellptr = pPg->aCellIdx;
6599 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6600 u8 *pData;
drhfa1a98a2004-05-14 19:08:17 +00006601
dan33ea4862014-10-09 19:35:37 +00006602 i = get2byte(&aData[hdr+5]);
6603 memcpy(&pTmp[i], &aData[i], usableSize - i);
danielk1977fad91942009-04-29 17:49:59 +00006604
dan8e9ba0c2014-10-14 17:27:04 +00006605 pData = pEnd;
dan33ea4862014-10-09 19:35:37 +00006606 for(i=0; i<nCell; i++){
6607 u8 *pCell = apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00006608 if( SQLITE_WITHIN(pCell,aData,pEnd) ){
dan33ea4862014-10-09 19:35:37 +00006609 pCell = &pTmp[pCell - aData];
6610 }
6611 pData -= szCell[i];
dan33ea4862014-10-09 19:35:37 +00006612 put2byte(pCellptr, (pData - aData));
6613 pCellptr += 2;
drh658873b2015-06-22 20:02:04 +00006614 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6615 memcpy(pData, pCell, szCell[i]);
drh25ada072015-06-19 15:07:14 +00006616 assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
drhea82b372015-06-23 21:35:28 +00006617 testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
drhfa1a98a2004-05-14 19:08:17 +00006618 }
dan33ea4862014-10-09 19:35:37 +00006619
dand7b545b2014-10-13 18:03:27 +00006620 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006621 pPg->nCell = nCell;
6622 pPg->nOverflow = 0;
6623
6624 put2byte(&aData[hdr+1], 0);
6625 put2byte(&aData[hdr+3], pPg->nCell);
6626 put2byte(&aData[hdr+5], pData - aData);
6627 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00006628 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00006629}
6630
dan8e9ba0c2014-10-14 17:27:04 +00006631/*
6632** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6633** contains the size in bytes of each such cell. This function attempts to
6634** add the cells stored in the array to page pPg. If it cannot (because
6635** the page needs to be defragmented before the cells will fit), non-zero
6636** is returned. Otherwise, if the cells are added successfully, zero is
6637** returned.
6638**
6639** Argument pCellptr points to the first entry in the cell-pointer array
6640** (part of page pPg) to populate. After cell apCell[0] is written to the
6641** page body, a 16-bit offset is written to pCellptr. And so on, for each
6642** cell in the array. It is the responsibility of the caller to ensure
6643** that it is safe to overwrite this part of the cell-pointer array.
6644**
6645** When this function is called, *ppData points to the start of the
6646** content area on page pPg. If the size of the content area is extended,
6647** *ppData is updated to point to the new start of the content area
6648** before returning.
6649**
6650** Finally, argument pBegin points to the byte immediately following the
6651** end of the space required by this page for the cell-pointer area (for
6652** all cells - not just those inserted by the current call). If the content
6653** area must be extended to before this point in order to accomodate all
6654** cells in apCell[], then the cells do not fit and non-zero is returned.
6655*/
dand7b545b2014-10-13 18:03:27 +00006656static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00006657 MemPage *pPg, /* Page to add cells to */
6658 u8 *pBegin, /* End of cell-pointer array */
6659 u8 **ppData, /* IN/OUT: Page content -area pointer */
6660 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00006661 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00006662 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00006663 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006664){
6665 int i;
6666 u8 *aData = pPg->aData;
6667 u8 *pData = *ppData;
drhf7838932015-06-23 15:36:34 +00006668 int iEnd = iFirst + nCell;
dan23eba452014-10-24 18:43:57 +00006669 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhf7838932015-06-23 15:36:34 +00006670 for(i=iFirst; i<iEnd; i++){
6671 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00006672 u8 *pSlot;
drhf7838932015-06-23 15:36:34 +00006673 sz = cachedCellSize(pCArray, i);
drhb7580e82015-06-25 18:36:13 +00006674 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
drhcca66982016-04-05 13:19:19 +00006675 if( (pData - pBegin)<sz ) return 1;
dand7b545b2014-10-13 18:03:27 +00006676 pData -= sz;
dand7b545b2014-10-13 18:03:27 +00006677 pSlot = pData;
6678 }
drh48310f82015-10-10 16:41:28 +00006679 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
6680 ** database. But they might for a corrupt database. Hence use memmove()
6681 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
6682 assert( (pSlot+sz)<=pCArray->apCell[i]
6683 || pSlot>=(pCArray->apCell[i]+sz)
6684 || CORRUPT_DB );
6685 memmove(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00006686 put2byte(pCellptr, (pSlot - aData));
6687 pCellptr += 2;
6688 }
6689 *ppData = pData;
6690 return 0;
6691}
6692
dan8e9ba0c2014-10-14 17:27:04 +00006693/*
6694** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6695** contains the size in bytes of each such cell. This function adds the
6696** space associated with each cell in the array that is currently stored
6697** within the body of pPg to the pPg free-list. The cell-pointers and other
6698** fields of the page are not updated.
6699**
6700** This function returns the total number of cells added to the free-list.
6701*/
dand7b545b2014-10-13 18:03:27 +00006702static int pageFreeArray(
6703 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00006704 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00006705 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00006706 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006707){
6708 u8 * const aData = pPg->aData;
6709 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00006710 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00006711 int nRet = 0;
6712 int i;
drhf7838932015-06-23 15:36:34 +00006713 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00006714 u8 *pFree = 0;
6715 int szFree = 0;
6716
drhf7838932015-06-23 15:36:34 +00006717 for(i=iFirst; i<iEnd; i++){
6718 u8 *pCell = pCArray->apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00006719 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
drhf7838932015-06-23 15:36:34 +00006720 int sz;
6721 /* No need to use cachedCellSize() here. The sizes of all cells that
6722 ** are to be freed have already been computing while deciding which
6723 ** cells need freeing */
6724 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00006725 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00006726 if( pFree ){
6727 assert( pFree>aData && (pFree - aData)<65536 );
6728 freeSpace(pPg, (u16)(pFree - aData), szFree);
6729 }
dand7b545b2014-10-13 18:03:27 +00006730 pFree = pCell;
6731 szFree = sz;
dan89ca0b32014-10-25 20:36:28 +00006732 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00006733 }else{
6734 pFree = pCell;
6735 szFree += sz;
6736 }
6737 nRet++;
6738 }
6739 }
drhfefa0942014-11-05 21:21:08 +00006740 if( pFree ){
6741 assert( pFree>aData && (pFree - aData)<65536 );
6742 freeSpace(pPg, (u16)(pFree - aData), szFree);
6743 }
dand7b545b2014-10-13 18:03:27 +00006744 return nRet;
6745}
6746
dand7b545b2014-10-13 18:03:27 +00006747/*
drh5ab63772014-11-27 03:46:04 +00006748** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6749** pages being balanced. The current page, pPg, has pPg->nCell cells starting
6750** with apCell[iOld]. After balancing, this page should hold nNew cells
6751** starting at apCell[iNew].
6752**
6753** This routine makes the necessary adjustments to pPg so that it contains
6754** the correct cells after being balanced.
6755**
dand7b545b2014-10-13 18:03:27 +00006756** The pPg->nFree field is invalid when this function returns. It is the
6757** responsibility of the caller to set it correctly.
6758*/
drh658873b2015-06-22 20:02:04 +00006759static int editPage(
dan09c68402014-10-11 20:00:24 +00006760 MemPage *pPg, /* Edit this page */
6761 int iOld, /* Index of first cell currently on page */
6762 int iNew, /* Index of new first cell on page */
6763 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00006764 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00006765){
dand7b545b2014-10-13 18:03:27 +00006766 u8 * const aData = pPg->aData;
6767 const int hdr = pPg->hdrOffset;
6768 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6769 int nCell = pPg->nCell; /* Cells stored on pPg */
6770 u8 *pData;
6771 u8 *pCellptr;
6772 int i;
6773 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6774 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00006775
6776#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00006777 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6778 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00006779#endif
6780
dand7b545b2014-10-13 18:03:27 +00006781 /* Remove cells from the start and end of the page */
6782 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00006783 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
dand7b545b2014-10-13 18:03:27 +00006784 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6785 nCell -= nShift;
6786 }
6787 if( iNewEnd < iOldEnd ){
drhf7838932015-06-23 15:36:34 +00006788 nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
dand7b545b2014-10-13 18:03:27 +00006789 }
dan09c68402014-10-11 20:00:24 +00006790
drh5ab63772014-11-27 03:46:04 +00006791 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00006792 if( pData<pBegin ) goto editpage_fail;
6793
6794 /* Add cells to the start of the page */
6795 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00006796 int nAdd = MIN(nNew,iOld-iNew);
6797 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
dand7b545b2014-10-13 18:03:27 +00006798 pCellptr = pPg->aCellIdx;
6799 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6800 if( pageInsertArray(
6801 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006802 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00006803 ) ) goto editpage_fail;
6804 nCell += nAdd;
6805 }
6806
6807 /* Add any overflow cells */
6808 for(i=0; i<pPg->nOverflow; i++){
6809 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6810 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00006811 pCellptr = &pPg->aCellIdx[iCell * 2];
dand7b545b2014-10-13 18:03:27 +00006812 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6813 nCell++;
6814 if( pageInsertArray(
6815 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006816 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00006817 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006818 }
dand7b545b2014-10-13 18:03:27 +00006819 }
dan09c68402014-10-11 20:00:24 +00006820
dand7b545b2014-10-13 18:03:27 +00006821 /* Append cells to the end of the page */
6822 pCellptr = &pPg->aCellIdx[nCell*2];
6823 if( pageInsertArray(
6824 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006825 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00006826 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006827
dand7b545b2014-10-13 18:03:27 +00006828 pPg->nCell = nNew;
6829 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00006830
dand7b545b2014-10-13 18:03:27 +00006831 put2byte(&aData[hdr+3], pPg->nCell);
6832 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00006833
6834#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00006835 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00006836 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00006837 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
drh1c715f62016-04-05 13:35:43 +00006838 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
dand7b545b2014-10-13 18:03:27 +00006839 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00006840 }
drh1ffd2472015-06-23 02:37:30 +00006841 assert( 0==memcmp(pCell, &aData[iOff],
6842 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00006843 }
dan09c68402014-10-11 20:00:24 +00006844#endif
6845
drh658873b2015-06-22 20:02:04 +00006846 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00006847 editpage_fail:
dan09c68402014-10-11 20:00:24 +00006848 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00006849 populateCellCache(pCArray, iNew, nNew);
6850 return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
drhfa1a98a2004-05-14 19:08:17 +00006851}
6852
drh14acc042001-06-10 19:56:58 +00006853/*
drhc3b70572003-01-04 19:44:07 +00006854** The following parameters determine how many adjacent pages get involved
6855** in a balancing operation. NN is the number of neighbors on either side
6856** of the page that participate in the balancing operation. NB is the
6857** total number of pages that participate, including the target page and
6858** NN neighbors on either side.
6859**
6860** The minimum value of NN is 1 (of course). Increasing NN above 1
6861** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6862** in exchange for a larger degradation in INSERT and UPDATE performance.
6863** The value of NN appears to give the best results overall.
6864*/
6865#define NN 1 /* Number of neighbors on either side of pPage */
6866#define NB (NN*2+1) /* Total pages involved in the balance */
6867
danielk1977ac245ec2005-01-14 13:50:11 +00006868
drh615ae552005-01-16 23:21:00 +00006869#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00006870/*
6871** This version of balance() handles the common special case where
6872** a new entry is being inserted on the extreme right-end of the
6873** tree, in other words, when the new entry will become the largest
6874** entry in the tree.
6875**
drhc314dc72009-07-21 11:52:34 +00006876** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00006877** a new page to the right-hand side and put the one new entry in
6878** that page. This leaves the right side of the tree somewhat
6879** unbalanced. But odds are that we will be inserting new entries
6880** at the end soon afterwards so the nearly empty page will quickly
6881** fill up. On average.
6882**
6883** pPage is the leaf page which is the right-most page in the tree.
6884** pParent is its parent. pPage must have a single overflow entry
6885** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00006886**
6887** The pSpace buffer is used to store a temporary copy of the divider
6888** cell that will be inserted into pParent. Such a cell consists of a 4
6889** byte page number followed by a variable length integer. In other
6890** words, at most 13 bytes. Hence the pSpace buffer must be at
6891** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00006892*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006893static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6894 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00006895 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00006896 int rc; /* Return Code */
6897 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00006898
drh1fee73e2007-08-29 04:00:57 +00006899 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00006900 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006901 assert( pPage->nOverflow==1 );
6902
drh5d433ce2010-08-14 16:02:52 +00006903 /* This error condition is now caught prior to reaching this function */
drh1fd2d7d2014-12-02 16:16:47 +00006904 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00006905
danielk1977a50d9aa2009-06-08 14:49:45 +00006906 /* Allocate a new page. This page will become the right-sibling of
6907 ** pPage. Make the parent page writable, so that the new divider cell
6908 ** may be inserted. If both these operations are successful, proceed.
6909 */
drh4f0c5872007-03-26 22:05:01 +00006910 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006911
danielk1977eaa06f62008-09-18 17:34:44 +00006912 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006913
6914 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00006915 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00006916 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00006917 u8 *pStop;
6918
drhc5053fb2008-11-27 02:22:10 +00006919 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006920 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6921 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drh658873b2015-06-22 20:02:04 +00006922 rc = rebuildPage(pNew, 1, &pCell, &szCell);
drhea82b372015-06-23 21:35:28 +00006923 if( NEVER(rc) ) return rc;
dan8e9ba0c2014-10-14 17:27:04 +00006924 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00006925
6926 /* If this is an auto-vacuum database, update the pointer map
6927 ** with entries for the new page, and any pointer from the
6928 ** cell on the page to an overflow page. If either of these
6929 ** operations fails, the return code is set, but the contents
6930 ** of the parent page are still manipulated by thh code below.
6931 ** That is Ok, at this point the parent page is guaranteed to
6932 ** be marked as dirty. Returning an error code will cause a
6933 ** rollback, undoing any changes made to the parent page.
6934 */
6935 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006936 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
6937 if( szCell>pNew->minLocal ){
6938 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006939 }
6940 }
danielk1977eaa06f62008-09-18 17:34:44 +00006941
danielk19776f235cc2009-06-04 14:46:08 +00006942 /* Create a divider cell to insert into pParent. The divider cell
6943 ** consists of a 4-byte page number (the page number of pPage) and
6944 ** a variable length key value (which must be the same value as the
6945 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00006946 **
danielk19776f235cc2009-06-04 14:46:08 +00006947 ** To find the largest key value on pPage, first find the right-most
6948 ** cell on pPage. The first two fields of this cell are the
6949 ** record-length (a variable length integer at most 32-bits in size)
6950 ** and the key value (a variable length integer, may have any value).
6951 ** The first of the while(...) loops below skips over the record-length
6952 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00006953 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00006954 */
danielk1977eaa06f62008-09-18 17:34:44 +00006955 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00006956 pStop = &pCell[9];
6957 while( (*(pCell++)&0x80) && pCell<pStop );
6958 pStop = &pCell[9];
6959 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
6960
danielk19774dbaa892009-06-16 16:50:22 +00006961 /* Insert the new divider cell into pParent. */
drhcb89f4a2016-05-21 11:23:26 +00006962 if( rc==SQLITE_OK ){
6963 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
6964 0, pPage->pgno, &rc);
6965 }
danielk19776f235cc2009-06-04 14:46:08 +00006966
6967 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00006968 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
6969
danielk1977e08a3c42008-09-18 18:17:03 +00006970 /* Release the reference to the new page. */
6971 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00006972 }
6973
danielk1977eaa06f62008-09-18 17:34:44 +00006974 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00006975}
drh615ae552005-01-16 23:21:00 +00006976#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00006977
danielk19774dbaa892009-06-16 16:50:22 +00006978#if 0
drhc3b70572003-01-04 19:44:07 +00006979/*
danielk19774dbaa892009-06-16 16:50:22 +00006980** This function does not contribute anything to the operation of SQLite.
6981** it is sometimes activated temporarily while debugging code responsible
6982** for setting pointer-map entries.
6983*/
6984static int ptrmapCheckPages(MemPage **apPage, int nPage){
6985 int i, j;
6986 for(i=0; i<nPage; i++){
6987 Pgno n;
6988 u8 e;
6989 MemPage *pPage = apPage[i];
6990 BtShared *pBt = pPage->pBt;
6991 assert( pPage->isInit );
6992
6993 for(j=0; j<pPage->nCell; j++){
6994 CellInfo info;
6995 u8 *z;
6996
6997 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00006998 pPage->xParseCell(pPage, z, &info);
drh45ac1c72015-12-18 03:59:16 +00006999 if( info.nLocal<info.nPayload ){
7000 Pgno ovfl = get4byte(&z[info.nSize-4]);
danielk19774dbaa892009-06-16 16:50:22 +00007001 ptrmapGet(pBt, ovfl, &e, &n);
7002 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7003 }
7004 if( !pPage->leaf ){
7005 Pgno child = get4byte(z);
7006 ptrmapGet(pBt, child, &e, &n);
7007 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7008 }
7009 }
7010 if( !pPage->leaf ){
7011 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7012 ptrmapGet(pBt, child, &e, &n);
7013 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7014 }
7015 }
7016 return 1;
7017}
7018#endif
7019
danielk1977cd581a72009-06-23 15:43:39 +00007020/*
7021** This function is used to copy the contents of the b-tree node stored
7022** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7023** the pointer-map entries for each child page are updated so that the
7024** parent page stored in the pointer map is page pTo. If pFrom contained
7025** any cells with overflow page pointers, then the corresponding pointer
7026** map entries are also updated so that the parent page is page pTo.
7027**
7028** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00007029** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00007030**
danielk197730548662009-07-09 05:07:37 +00007031** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00007032**
7033** The performance of this function is not critical. It is only used by
7034** the balance_shallower() and balance_deeper() procedures, neither of
7035** which are called often under normal circumstances.
7036*/
drhc314dc72009-07-21 11:52:34 +00007037static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7038 if( (*pRC)==SQLITE_OK ){
7039 BtShared * const pBt = pFrom->pBt;
7040 u8 * const aFrom = pFrom->aData;
7041 u8 * const aTo = pTo->aData;
7042 int const iFromHdr = pFrom->hdrOffset;
7043 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00007044 int rc;
drhc314dc72009-07-21 11:52:34 +00007045 int iData;
7046
7047
7048 assert( pFrom->isInit );
7049 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00007050 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00007051
7052 /* Copy the b-tree node content from page pFrom to page pTo. */
7053 iData = get2byte(&aFrom[iFromHdr+5]);
7054 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7055 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7056
7057 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00007058 ** match the new data. The initialization of pTo can actually fail under
7059 ** fairly obscure circumstances, even though it is a copy of initialized
7060 ** page pFrom.
7061 */
drhc314dc72009-07-21 11:52:34 +00007062 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00007063 rc = btreeInitPage(pTo);
7064 if( rc!=SQLITE_OK ){
7065 *pRC = rc;
7066 return;
7067 }
drhc314dc72009-07-21 11:52:34 +00007068
7069 /* If this is an auto-vacuum database, update the pointer-map entries
7070 ** for any b-tree or overflow pages that pTo now contains the pointers to.
7071 */
7072 if( ISAUTOVACUUM ){
7073 *pRC = setChildPtrmaps(pTo);
7074 }
danielk1977cd581a72009-06-23 15:43:39 +00007075 }
danielk1977cd581a72009-06-23 15:43:39 +00007076}
7077
7078/*
danielk19774dbaa892009-06-16 16:50:22 +00007079** This routine redistributes cells on the iParentIdx'th child of pParent
7080** (hereafter "the page") and up to 2 siblings so that all pages have about the
7081** same amount of free space. Usually a single sibling on either side of the
7082** page are used in the balancing, though both siblings might come from one
7083** side if the page is the first or last child of its parent. If the page
7084** has fewer than 2 siblings (something which can only happen if the page
7085** is a root page or a child of a root page) then all available siblings
7086** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00007087**
danielk19774dbaa892009-06-16 16:50:22 +00007088** The number of siblings of the page might be increased or decreased by
7089** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00007090**
danielk19774dbaa892009-06-16 16:50:22 +00007091** Note that when this routine is called, some of the cells on the page
7092** might not actually be stored in MemPage.aData[]. This can happen
7093** if the page is overfull. This routine ensures that all cells allocated
7094** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00007095**
danielk19774dbaa892009-06-16 16:50:22 +00007096** In the course of balancing the page and its siblings, cells may be
7097** inserted into or removed from the parent page (pParent). Doing so
7098** may cause the parent page to become overfull or underfull. If this
7099** happens, it is the responsibility of the caller to invoke the correct
7100** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00007101**
drh5e00f6c2001-09-13 13:46:56 +00007102** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00007103** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00007104** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00007105**
7106** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00007107** buffer big enough to hold one page. If while inserting cells into the parent
7108** page (pParent) the parent page becomes overfull, this buffer is
7109** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00007110** a maximum of four divider cells into the parent page, and the maximum
7111** size of a cell stored within an internal node is always less than 1/4
7112** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7113** enough for all overflow cells.
7114**
7115** If aOvflSpace is set to a null pointer, this function returns
7116** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00007117*/
danielk19774dbaa892009-06-16 16:50:22 +00007118static int balance_nonroot(
7119 MemPage *pParent, /* Parent page of siblings being balanced */
7120 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00007121 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00007122 int isRoot, /* True if pParent is a root-page */
7123 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00007124){
drh16a9b832007-05-05 18:39:25 +00007125 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00007126 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00007127 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00007128 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00007129 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00007130 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00007131 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00007132 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00007133 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00007134 int usableSpace; /* Bytes in pPage beyond the header */
7135 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00007136 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00007137 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00007138 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00007139 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00007140 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00007141 u8 *pRight; /* Location in parent of right-sibling pointer */
7142 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00007143 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7144 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00007145 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00007146 u8 *aSpace1; /* Space for copies of dividers cells */
7147 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00007148 u8 abDone[NB+2]; /* True after i'th new page is populated */
7149 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00007150 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00007151 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00007152 CellArray b; /* Parsed information on cells being balanced */
drh8b2f49b2001-06-08 00:21:52 +00007153
dan33ea4862014-10-09 19:35:37 +00007154 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00007155 b.nCell = 0;
7156 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007157 pBt = pParent->pBt;
7158 assert( sqlite3_mutex_held(pBt->mutex) );
7159 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00007160
danielk1977e5765212009-06-17 11:13:28 +00007161#if 0
drh43605152004-05-29 21:46:49 +00007162 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00007163#endif
drh2e38c322004-09-03 18:38:44 +00007164
danielk19774dbaa892009-06-16 16:50:22 +00007165 /* At this point pParent may have at most one overflow cell. And if
7166 ** this overflow cell is present, it must be the cell with
7167 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00007168 ** is called (indirectly) from sqlite3BtreeDelete().
7169 */
danielk19774dbaa892009-06-16 16:50:22 +00007170 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00007171 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00007172
danielk197711a8a862009-06-17 11:49:52 +00007173 if( !aOvflSpace ){
mistachkinfad30392016-02-13 23:43:46 +00007174 return SQLITE_NOMEM_BKPT;
danielk197711a8a862009-06-17 11:49:52 +00007175 }
7176
danielk1977a50d9aa2009-06-08 14:49:45 +00007177 /* Find the sibling pages to balance. Also locate the cells in pParent
7178 ** that divide the siblings. An attempt is made to find NN siblings on
7179 ** either side of pPage. More siblings are taken from one side, however,
7180 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00007181 ** has NB or fewer children then all children of pParent are taken.
7182 **
7183 ** This loop also drops the divider cells from the parent page. This
7184 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00007185 ** overflow cells in the parent page, since if any existed they will
7186 ** have already been removed.
7187 */
danielk19774dbaa892009-06-16 16:50:22 +00007188 i = pParent->nOverflow + pParent->nCell;
7189 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00007190 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00007191 }else{
dan7d6885a2012-08-08 14:04:56 +00007192 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00007193 if( iParentIdx==0 ){
7194 nxDiv = 0;
7195 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00007196 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00007197 }else{
danielk19774dbaa892009-06-16 16:50:22 +00007198 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00007199 }
dan7d6885a2012-08-08 14:04:56 +00007200 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00007201 }
dan7d6885a2012-08-08 14:04:56 +00007202 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007203 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7204 pRight = &pParent->aData[pParent->hdrOffset+8];
7205 }else{
7206 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7207 }
7208 pgno = get4byte(pRight);
7209 while( 1 ){
drh28f58dd2015-06-27 19:45:03 +00007210 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007211 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007212 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007213 goto balance_cleanup;
7214 }
danielk1977634f2982005-03-28 08:44:07 +00007215 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00007216 if( (i--)==0 ) break;
7217
drh9cc5b4e2016-12-26 01:41:33 +00007218 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
drh2cbd78b2012-02-02 19:37:18 +00007219 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007220 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007221 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007222 pParent->nOverflow = 0;
7223 }else{
7224 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7225 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007226 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007227
7228 /* Drop the cell from the parent page. apDiv[i] still points to
7229 ** the cell within the parent, even though it has been dropped.
7230 ** This is safe because dropping a cell only overwrites the first
7231 ** four bytes of it, and this function does not need the first
7232 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007233 ** later on.
7234 **
drh8a575d92011-10-12 17:00:28 +00007235 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007236 ** the dropCell() routine will overwrite the entire cell with zeroes.
7237 ** In this case, temporarily copy the cell into the aOvflSpace[]
7238 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7239 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00007240 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00007241 int iOff;
7242
7243 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00007244 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00007245 rc = SQLITE_CORRUPT_BKPT;
7246 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7247 goto balance_cleanup;
7248 }else{
7249 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7250 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7251 }
drh5b47efa2010-02-12 18:18:39 +00007252 }
drh98add2e2009-07-20 17:11:49 +00007253 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007254 }
drh8b2f49b2001-06-08 00:21:52 +00007255 }
7256
drha9121e42008-02-19 14:59:35 +00007257 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007258 ** alignment */
drha9121e42008-02-19 14:59:35 +00007259 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007260
drh8b2f49b2001-06-08 00:21:52 +00007261 /*
danielk1977634f2982005-03-28 08:44:07 +00007262 ** Allocate space for memory structures
7263 */
drhfacf0302008-06-17 15:12:00 +00007264 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007265 nMaxCells*sizeof(u8*) /* b.apCell */
7266 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007267 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007268
drhcbd55b02014-11-04 14:22:27 +00007269 /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer
7270 ** that is more than 6 times the database page size. */
mistachkin0fbd7352014-12-09 04:26:56 +00007271 assert( szScratch<=6*(int)pBt->pageSize );
drh1ffd2472015-06-23 02:37:30 +00007272 b.apCell = sqlite3ScratchMalloc( szScratch );
7273 if( b.apCell==0 ){
mistachkinfad30392016-02-13 23:43:46 +00007274 rc = SQLITE_NOMEM_BKPT;
danielk1977634f2982005-03-28 08:44:07 +00007275 goto balance_cleanup;
7276 }
drh1ffd2472015-06-23 02:37:30 +00007277 b.szCell = (u16*)&b.apCell[nMaxCells];
7278 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007279 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007280
7281 /*
7282 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007283 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007284 ** into space obtained from aSpace1[]. The divider cells have already
7285 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007286 **
7287 ** If the siblings are on leaf pages, then the child pointers of the
7288 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007289 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007290 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007291 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007292 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007293 **
7294 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7295 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007296 */
drh1ffd2472015-06-23 02:37:30 +00007297 b.pRef = apOld[0];
7298 leafCorrection = b.pRef->leaf*4;
7299 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007300 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007301 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007302 int limit = pOld->nCell;
7303 u8 *aData = pOld->aData;
7304 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007305 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007306 u8 *piEnd;
danielk19774dbaa892009-06-16 16:50:22 +00007307
drh73d340a2015-05-28 11:23:11 +00007308 /* Verify that all sibling pages are of the same "type" (table-leaf,
7309 ** table-interior, index-leaf, or index-interior).
7310 */
7311 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7312 rc = SQLITE_CORRUPT_BKPT;
7313 goto balance_cleanup;
7314 }
7315
drhfe647dc2015-06-23 18:24:25 +00007316 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
7317 ** constains overflow cells, include them in the b.apCell[] array
7318 ** in the correct spot.
7319 **
7320 ** Note that when there are multiple overflow cells, it is always the
7321 ** case that they are sequential and adjacent. This invariant arises
7322 ** because multiple overflows can only occurs when inserting divider
7323 ** cells into a parent on a prior balance, and divider cells are always
7324 ** adjacent and are inserted in order. There is an assert() tagged
7325 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7326 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007327 **
7328 ** This must be done in advance. Once the balance starts, the cell
7329 ** offset section of the btree page will be overwritten and we will no
7330 ** long be able to find the cells if a pointer to each cell is not saved
7331 ** first.
7332 */
drh36b78ee2016-01-20 01:32:00 +00007333 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
drh68f2a572011-06-03 17:50:49 +00007334 if( pOld->nOverflow>0 ){
drhfe647dc2015-06-23 18:24:25 +00007335 limit = pOld->aiOvfl[0];
drh68f2a572011-06-03 17:50:49 +00007336 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00007337 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00007338 piCell += 2;
7339 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007340 }
drhfe647dc2015-06-23 18:24:25 +00007341 for(k=0; k<pOld->nOverflow; k++){
7342 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007343 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007344 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007345 }
drh1ffd2472015-06-23 02:37:30 +00007346 }
drhfe647dc2015-06-23 18:24:25 +00007347 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7348 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007349 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00007350 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00007351 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007352 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007353 }
7354
drh1ffd2472015-06-23 02:37:30 +00007355 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007356 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007357 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007358 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007359 assert( b.nCell<nMaxCells );
7360 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007361 pTemp = &aSpace1[iSpace1];
7362 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007363 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007364 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007365 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007366 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007367 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007368 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007369 if( !pOld->leaf ){
7370 assert( leafCorrection==0 );
7371 assert( pOld->hdrOffset==0 );
7372 /* The right pointer of the child page pOld becomes the left
7373 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007374 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007375 }else{
7376 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007377 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007378 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7379 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007380 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7381 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007382 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007383 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007384 }
7385 }
drh1ffd2472015-06-23 02:37:30 +00007386 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007387 }
drh8b2f49b2001-06-08 00:21:52 +00007388 }
7389
7390 /*
drh1ffd2472015-06-23 02:37:30 +00007391 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007392 ** Store this number in "k". Also compute szNew[] which is the total
7393 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007394 ** in b.apCell[] of the cell that divides page i from page i+1.
7395 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007396 **
drh96f5b762004-05-16 16:24:36 +00007397 ** Values computed by this block:
7398 **
7399 ** k: The total number of sibling pages
7400 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007401 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007402 ** the right of the i-th sibling page.
7403 ** usableSpace: Number of bytes of space available on each sibling.
7404 **
drh8b2f49b2001-06-08 00:21:52 +00007405 */
drh43605152004-05-29 21:46:49 +00007406 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh658873b2015-06-22 20:02:04 +00007407 for(i=0; i<nOld; i++){
7408 MemPage *p = apOld[i];
7409 szNew[i] = usableSpace - p->nFree;
drh658873b2015-06-22 20:02:04 +00007410 for(j=0; j<p->nOverflow; j++){
7411 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7412 }
7413 cntNew[i] = cntOld[i];
7414 }
7415 k = nOld;
7416 for(i=0; i<k; i++){
7417 int sz;
7418 while( szNew[i]>usableSpace ){
7419 if( i+1>=k ){
7420 k = i+2;
7421 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7422 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007423 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007424 }
drh1ffd2472015-06-23 02:37:30 +00007425 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007426 szNew[i] -= sz;
7427 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007428 if( cntNew[i]<b.nCell ){
7429 sz = 2 + cachedCellSize(&b, cntNew[i]);
7430 }else{
7431 sz = 0;
7432 }
drh658873b2015-06-22 20:02:04 +00007433 }
7434 szNew[i+1] += sz;
7435 cntNew[i]--;
7436 }
drh1ffd2472015-06-23 02:37:30 +00007437 while( cntNew[i]<b.nCell ){
7438 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007439 if( szNew[i]+sz>usableSpace ) break;
7440 szNew[i] += sz;
7441 cntNew[i]++;
7442 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007443 if( cntNew[i]<b.nCell ){
7444 sz = 2 + cachedCellSize(&b, cntNew[i]);
7445 }else{
7446 sz = 0;
7447 }
drh658873b2015-06-22 20:02:04 +00007448 }
7449 szNew[i+1] -= sz;
7450 }
drh1ffd2472015-06-23 02:37:30 +00007451 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007452 k = i+1;
drh672073a2015-06-24 12:07:40 +00007453 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00007454 rc = SQLITE_CORRUPT_BKPT;
7455 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00007456 }
7457 }
drh96f5b762004-05-16 16:24:36 +00007458
7459 /*
7460 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00007461 ** on the left side (siblings with smaller keys). The left siblings are
7462 ** always nearly full, while the right-most sibling might be nearly empty.
7463 ** The next block of code attempts to adjust the packing of siblings to
7464 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00007465 **
7466 ** This adjustment is more than an optimization. The packing above might
7467 ** be so out of balance as to be illegal. For example, the right-most
7468 ** sibling might be completely empty. This adjustment is not optional.
7469 */
drh6019e162001-07-02 17:51:45 +00007470 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00007471 int szRight = szNew[i]; /* Size of sibling on the right */
7472 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7473 int r; /* Index of right-most cell in left sibling */
7474 int d; /* Index of first cell to the left of right sibling */
7475
7476 r = cntNew[i-1] - 1;
7477 d = r + 1 - leafData;
drh008d64c2015-06-23 16:00:24 +00007478 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00007479 do{
drh1ffd2472015-06-23 02:37:30 +00007480 assert( d<nMaxCells );
7481 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007482 (void)cachedCellSize(&b, r);
7483 if( szRight!=0
drh0b4c0422016-07-14 19:48:08 +00007484 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
drh1ffd2472015-06-23 02:37:30 +00007485 break;
7486 }
7487 szRight += b.szCell[d] + 2;
7488 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00007489 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00007490 r--;
7491 d--;
drh672073a2015-06-24 12:07:40 +00007492 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00007493 szNew[i] = szRight;
7494 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00007495 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7496 rc = SQLITE_CORRUPT_BKPT;
7497 goto balance_cleanup;
7498 }
drh6019e162001-07-02 17:51:45 +00007499 }
drh09d0deb2005-08-02 17:13:09 +00007500
drh2a0df922014-10-30 23:14:56 +00007501 /* Sanity check: For a non-corrupt database file one of the follwing
7502 ** must be true:
7503 ** (1) We found one or more cells (cntNew[0])>0), or
7504 ** (2) pPage is a virtual root page. A virtual root page is when
7505 ** the real root page is page 1 and we are the only child of
7506 ** that page.
drh09d0deb2005-08-02 17:13:09 +00007507 */
drh2a0df922014-10-30 23:14:56 +00007508 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00007509 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7510 apOld[0]->pgno, apOld[0]->nCell,
7511 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7512 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007513 ));
7514
drh8b2f49b2001-06-08 00:21:52 +00007515 /*
drh6b308672002-07-08 02:16:37 +00007516 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007517 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007518 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007519 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007520 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007521 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007522 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007523 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007524 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007525 nNew++;
danielk197728129562005-01-11 10:25:06 +00007526 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007527 }else{
drh7aa8f852006-03-28 00:24:44 +00007528 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007529 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007530 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007531 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007532 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007533 nNew++;
drh1ffd2472015-06-23 02:37:30 +00007534 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007535
7536 /* Set the pointer-map entry for the new sibling page. */
7537 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007538 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007539 if( rc!=SQLITE_OK ){
7540 goto balance_cleanup;
7541 }
7542 }
drh6b308672002-07-08 02:16:37 +00007543 }
drh8b2f49b2001-06-08 00:21:52 +00007544 }
7545
7546 /*
dan33ea4862014-10-09 19:35:37 +00007547 ** Reassign page numbers so that the new pages are in ascending order.
7548 ** This helps to keep entries in the disk file in order so that a scan
7549 ** of the table is closer to a linear scan through the file. That in turn
7550 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007551 **
dan33ea4862014-10-09 19:35:37 +00007552 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7553 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007554 **
dan33ea4862014-10-09 19:35:37 +00007555 ** When NB==3, this one optimization makes the database about 25% faster
7556 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007557 */
dan33ea4862014-10-09 19:35:37 +00007558 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007559 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007560 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007561 for(j=0; j<i; j++){
7562 if( aPgno[j]==aPgno[i] ){
7563 /* This branch is taken if the set of sibling pages somehow contains
7564 ** duplicate entries. This can happen if the database is corrupt.
7565 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007566 ** we do the detection here in order to avoid populating the pager
7567 ** cache with two separate objects associated with the same
7568 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007569 assert( CORRUPT_DB );
7570 rc = SQLITE_CORRUPT_BKPT;
7571 goto balance_cleanup;
drhf9ffac92002-03-02 19:00:31 +00007572 }
7573 }
dan33ea4862014-10-09 19:35:37 +00007574 }
7575 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007576 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007577 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007578 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007579 }
drh00fe08a2014-10-31 00:05:23 +00007580 pgno = aPgOrder[iBest];
7581 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007582 if( iBest!=i ){
7583 if( iBest>i ){
7584 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7585 }
7586 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7587 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007588 }
7589 }
dan33ea4862014-10-09 19:35:37 +00007590
7591 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7592 "%d(%d nc=%d) %d(%d nc=%d)\n",
7593 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007594 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007595 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007596 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007597 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007598 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007599 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7600 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7601 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7602 ));
danielk19774dbaa892009-06-16 16:50:22 +00007603
7604 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7605 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00007606
dan33ea4862014-10-09 19:35:37 +00007607 /* If the sibling pages are not leaves, ensure that the right-child pointer
7608 ** of the right-most new sibling page is set to the value that was
7609 ** originally in the same field of the right-most old sibling page. */
7610 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7611 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7612 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7613 }
danielk1977ac11ee62005-01-15 12:45:51 +00007614
dan33ea4862014-10-09 19:35:37 +00007615 /* Make any required updates to pointer map entries associated with
7616 ** cells stored on sibling pages following the balance operation. Pointer
7617 ** map entries associated with divider cells are set by the insertCell()
7618 ** routine. The associated pointer map entries are:
7619 **
7620 ** a) if the cell contains a reference to an overflow chain, the
7621 ** entry associated with the first page in the overflow chain, and
7622 **
7623 ** b) if the sibling pages are not leaves, the child page associated
7624 ** with the cell.
7625 **
7626 ** If the sibling pages are not leaves, then the pointer map entry
7627 ** associated with the right-child of each sibling may also need to be
7628 ** updated. This happens below, after the sibling pages have been
7629 ** populated, not here.
danielk1977ac11ee62005-01-15 12:45:51 +00007630 */
dan33ea4862014-10-09 19:35:37 +00007631 if( ISAUTOVACUUM ){
7632 MemPage *pNew = apNew[0];
7633 u8 *aOld = pNew->aData;
7634 int cntOldNext = pNew->nCell + pNew->nOverflow;
7635 int usableSize = pBt->usableSize;
7636 int iNew = 0;
7637 int iOld = 0;
danielk1977ac11ee62005-01-15 12:45:51 +00007638
drh1ffd2472015-06-23 02:37:30 +00007639 for(i=0; i<b.nCell; i++){
7640 u8 *pCell = b.apCell[i];
dan33ea4862014-10-09 19:35:37 +00007641 if( i==cntOldNext ){
7642 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7643 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7644 aOld = pOld->aData;
7645 }
7646 if( i==cntNew[iNew] ){
7647 pNew = apNew[++iNew];
7648 if( !leafData ) continue;
7649 }
danielk1977ac11ee62005-01-15 12:45:51 +00007650
dan33ea4862014-10-09 19:35:37 +00007651 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00007652 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00007653 ** or else the divider cell to the left of sibling page iOld. So,
7654 ** if sibling page iOld had the same page number as pNew, and if
7655 ** pCell really was a part of sibling page iOld (not a divider or
7656 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00007657 if( iOld>=nNew
7658 || pNew->pgno!=aPgno[iOld]
drhac536e62015-12-10 15:09:17 +00007659 || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize])
drhd52d52b2014-12-06 02:05:44 +00007660 ){
dan33ea4862014-10-09 19:35:37 +00007661 if( !leafCorrection ){
7662 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7663 }
drh1ffd2472015-06-23 02:37:30 +00007664 if( cachedCellSize(&b,i)>pNew->minLocal ){
dan33ea4862014-10-09 19:35:37 +00007665 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774aeff622007-05-12 09:30:47 +00007666 }
drhea82b372015-06-23 21:35:28 +00007667 if( rc ) goto balance_cleanup;
drh4b70f112004-05-02 21:12:19 +00007668 }
drh14acc042001-06-10 19:56:58 +00007669 }
7670 }
dan33ea4862014-10-09 19:35:37 +00007671
7672 /* Insert new divider cells into pParent. */
7673 for(i=0; i<nNew-1; i++){
7674 u8 *pCell;
7675 u8 *pTemp;
7676 int sz;
7677 MemPage *pNew = apNew[i];
7678 j = cntNew[i];
7679
7680 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007681 assert( b.apCell[j]!=0 );
7682 pCell = b.apCell[j];
7683 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00007684 pTemp = &aOvflSpace[iOvflSpace];
7685 if( !pNew->leaf ){
7686 memcpy(&pNew->aData[8], pCell, 4);
7687 }else if( leafData ){
7688 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00007689 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00007690 ** cell consists of the integer key for the right-most cell of
7691 ** the sibling-page assembled above only.
7692 */
7693 CellInfo info;
7694 j--;
drh1ffd2472015-06-23 02:37:30 +00007695 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00007696 pCell = pTemp;
7697 sz = 4 + putVarint(&pCell[4], info.nKey);
7698 pTemp = 0;
7699 }else{
7700 pCell -= 4;
7701 /* Obscure case for non-leaf-data trees: If the cell at pCell was
7702 ** previously stored on a leaf node, and its reported size was 4
7703 ** bytes, then it may actually be smaller than this
7704 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7705 ** any cell). But it is important to pass the correct size to
7706 ** insertCell(), so reparse the cell now.
7707 **
drhc1fb2b82016-03-09 03:29:27 +00007708 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
7709 ** and WITHOUT ROWID tables with exactly one column which is the
7710 ** primary key.
dan33ea4862014-10-09 19:35:37 +00007711 */
drh1ffd2472015-06-23 02:37:30 +00007712 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00007713 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00007714 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00007715 }
7716 }
7717 iOvflSpace += sz;
7718 assert( sz<=pBt->maxLocal+23 );
7719 assert( iOvflSpace <= (int)pBt->pageSize );
7720 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7721 if( rc!=SQLITE_OK ) goto balance_cleanup;
7722 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7723 }
7724
7725 /* Now update the actual sibling pages. The order in which they are updated
7726 ** is important, as this code needs to avoid disrupting any page from which
7727 ** cells may still to be read. In practice, this means:
7728 **
drhd836d422014-10-31 14:26:36 +00007729 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7730 ** then it is not safe to update page apNew[iPg] until after
7731 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007732 **
drhd836d422014-10-31 14:26:36 +00007733 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7734 ** then it is not safe to update page apNew[iPg] until after
7735 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007736 **
7737 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00007738 **
7739 ** The iPg value in the following loop starts at nNew-1 goes down
7740 ** to 0, then back up to nNew-1 again, thus making two passes over
7741 ** the pages. On the initial downward pass, only condition (1) above
7742 ** needs to be tested because (2) will always be true from the previous
7743 ** step. On the upward pass, both conditions are always true, so the
7744 ** upwards pass simply processes pages that were missed on the downward
7745 ** pass.
dan33ea4862014-10-09 19:35:37 +00007746 */
drhbec021b2014-10-31 12:22:00 +00007747 for(i=1-nNew; i<nNew; i++){
7748 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00007749 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00007750 if( abDone[iPg] ) continue; /* Skip pages already processed */
7751 if( i>=0 /* On the upwards pass, or... */
7752 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00007753 ){
dan09c68402014-10-11 20:00:24 +00007754 int iNew;
7755 int iOld;
7756 int nNewCell;
7757
drhd836d422014-10-31 14:26:36 +00007758 /* Verify condition (1): If cells are moving left, update iPg
7759 ** only after iPg-1 has already been updated. */
7760 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7761
7762 /* Verify condition (2): If cells are moving right, update iPg
7763 ** only after iPg+1 has already been updated. */
7764 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7765
dan09c68402014-10-11 20:00:24 +00007766 if( iPg==0 ){
7767 iNew = iOld = 0;
7768 nNewCell = cntNew[0];
7769 }else{
drh1ffd2472015-06-23 02:37:30 +00007770 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00007771 iNew = cntNew[iPg-1] + !leafData;
7772 nNewCell = cntNew[iPg] - iNew;
7773 }
7774
drh1ffd2472015-06-23 02:37:30 +00007775 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00007776 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00007777 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00007778 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00007779 assert( apNew[iPg]->nOverflow==0 );
7780 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00007781 }
7782 }
drhd836d422014-10-31 14:26:36 +00007783
7784 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00007785 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7786
drh7aa8f852006-03-28 00:24:44 +00007787 assert( nOld>0 );
7788 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00007789
danielk197713bd99f2009-06-24 05:40:34 +00007790 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7791 /* The root page of the b-tree now contains no cells. The only sibling
7792 ** page is the right-child of the parent. Copy the contents of the
7793 ** child page into the parent, decreasing the overall height of the
7794 ** b-tree structure by one. This is described as the "balance-shallower"
7795 ** sub-algorithm in some documentation.
7796 **
7797 ** If this is an auto-vacuum database, the call to copyNodeContent()
7798 ** sets all pointer-map entries corresponding to database image pages
7799 ** for which the pointer is stored within the content being copied.
7800 **
drh768f2902014-10-31 02:51:41 +00007801 ** It is critical that the child page be defragmented before being
7802 ** copied into the parent, because if the parent is page 1 then it will
7803 ** by smaller than the child due to the database header, and so all the
7804 ** free space needs to be up front.
7805 */
drh9b5351d2015-09-30 14:19:08 +00007806 assert( nNew==1 || CORRUPT_DB );
dan3b2ede12017-02-25 16:24:02 +00007807 rc = defragmentPage(apNew[0], -1);
drh768f2902014-10-31 02:51:41 +00007808 testcase( rc!=SQLITE_OK );
7809 assert( apNew[0]->nFree ==
7810 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7811 || rc!=SQLITE_OK
7812 );
7813 copyNodeContent(apNew[0], pParent, &rc);
7814 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00007815 }else if( ISAUTOVACUUM && !leafCorrection ){
7816 /* Fix the pointer map entries associated with the right-child of each
7817 ** sibling page. All other pointer map entries have already been taken
7818 ** care of. */
7819 for(i=0; i<nNew; i++){
7820 u32 key = get4byte(&apNew[i]->aData[8]);
7821 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007822 }
dan33ea4862014-10-09 19:35:37 +00007823 }
danielk19774dbaa892009-06-16 16:50:22 +00007824
dan33ea4862014-10-09 19:35:37 +00007825 assert( pParent->isInit );
7826 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00007827 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00007828
dan33ea4862014-10-09 19:35:37 +00007829 /* Free any old pages that were not reused as new pages.
7830 */
7831 for(i=nNew; i<nOld; i++){
7832 freePage(apOld[i], &rc);
7833 }
danielk19774dbaa892009-06-16 16:50:22 +00007834
7835#if 0
dan33ea4862014-10-09 19:35:37 +00007836 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00007837 /* The ptrmapCheckPages() contains assert() statements that verify that
7838 ** all pointer map pages are set correctly. This is helpful while
7839 ** debugging. This is usually disabled because a corrupt database may
7840 ** cause an assert() statement to fail. */
7841 ptrmapCheckPages(apNew, nNew);
7842 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00007843 }
dan33ea4862014-10-09 19:35:37 +00007844#endif
danielk1977cd581a72009-06-23 15:43:39 +00007845
drh8b2f49b2001-06-08 00:21:52 +00007846 /*
drh14acc042001-06-10 19:56:58 +00007847 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00007848 */
drh14acc042001-06-10 19:56:58 +00007849balance_cleanup:
drh1ffd2472015-06-23 02:37:30 +00007850 sqlite3ScratchFree(b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00007851 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00007852 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00007853 }
drh14acc042001-06-10 19:56:58 +00007854 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00007855 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00007856 }
danielk1977eaa06f62008-09-18 17:34:44 +00007857
drh8b2f49b2001-06-08 00:21:52 +00007858 return rc;
7859}
7860
drh43605152004-05-29 21:46:49 +00007861
7862/*
danielk1977a50d9aa2009-06-08 14:49:45 +00007863** This function is called when the root page of a b-tree structure is
7864** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00007865**
danielk1977a50d9aa2009-06-08 14:49:45 +00007866** A new child page is allocated and the contents of the current root
7867** page, including overflow cells, are copied into the child. The root
7868** page is then overwritten to make it an empty page with the right-child
7869** pointer pointing to the new page.
7870**
7871** Before returning, all pointer-map entries corresponding to pages
7872** that the new child-page now contains pointers to are updated. The
7873** entry corresponding to the new right-child pointer of the root
7874** page is also updated.
7875**
7876** If successful, *ppChild is set to contain a reference to the child
7877** page and SQLITE_OK is returned. In this case the caller is required
7878** to call releasePage() on *ppChild exactly once. If an error occurs,
7879** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00007880*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007881static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7882 int rc; /* Return value from subprocedures */
7883 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00007884 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00007885 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00007886
danielk1977a50d9aa2009-06-08 14:49:45 +00007887 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00007888 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00007889
danielk1977a50d9aa2009-06-08 14:49:45 +00007890 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7891 ** page that will become the new right-child of pPage. Copy the contents
7892 ** of the node stored on pRoot into the new child page.
7893 */
drh98add2e2009-07-20 17:11:49 +00007894 rc = sqlite3PagerWrite(pRoot->pDbPage);
7895 if( rc==SQLITE_OK ){
7896 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00007897 copyNodeContent(pRoot, pChild, &rc);
7898 if( ISAUTOVACUUM ){
7899 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00007900 }
7901 }
7902 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007903 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007904 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00007905 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00007906 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007907 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
7908 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7909 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007910
danielk1977a50d9aa2009-06-08 14:49:45 +00007911 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
7912
7913 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00007914 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
7915 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
7916 memcpy(pChild->apOvfl, pRoot->apOvfl,
7917 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00007918 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00007919
7920 /* Zero the contents of pRoot. Then install pChild as the right-child. */
7921 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
7922 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
7923
7924 *ppChild = pChild;
7925 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00007926}
7927
7928/*
danielk197771d5d2c2008-09-29 11:49:47 +00007929** The page that pCur currently points to has just been modified in
7930** some way. This function figures out if this modification means the
7931** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00007932** routine. Balancing routines are:
7933**
7934** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00007935** balance_deeper()
7936** balance_nonroot()
drh43605152004-05-29 21:46:49 +00007937*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007938static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00007939 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00007940 const int nMin = pCur->pBt->usableSize * 2 / 3;
7941 u8 aBalanceQuickSpace[13];
7942 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007943
drhcc5f8a42016-02-06 22:32:06 +00007944 VVA_ONLY( int balance_quick_called = 0 );
7945 VVA_ONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00007946
7947 do {
7948 int iPage = pCur->iPage;
7949 MemPage *pPage = pCur->apPage[iPage];
7950
7951 if( iPage==0 ){
7952 if( pPage->nOverflow ){
7953 /* The root page of the b-tree is overfull. In this case call the
7954 ** balance_deeper() function to create a new child for the root-page
7955 ** and copy the current contents of the root-page to it. The
7956 ** next iteration of the do-loop will balance the child page.
7957 */
drhcc5f8a42016-02-06 22:32:06 +00007958 assert( balance_deeper_called==0 );
7959 VVA_ONLY( balance_deeper_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00007960 rc = balance_deeper(pPage, &pCur->apPage[1]);
7961 if( rc==SQLITE_OK ){
7962 pCur->iPage = 1;
drh75e96b32017-04-01 00:20:06 +00007963 pCur->ix = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007964 pCur->aiIdx[0] = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007965 assert( pCur->apPage[1]->nOverflow );
7966 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007967 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00007968 break;
7969 }
7970 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
7971 break;
7972 }else{
7973 MemPage * const pParent = pCur->apPage[iPage-1];
7974 int const iIdx = pCur->aiIdx[iPage-1];
7975
7976 rc = sqlite3PagerWrite(pParent->pDbPage);
7977 if( rc==SQLITE_OK ){
7978#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00007979 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00007980 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00007981 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00007982 && pParent->pgno!=1
7983 && pParent->nCell==iIdx
7984 ){
7985 /* Call balance_quick() to create a new sibling of pPage on which
7986 ** to store the overflow cell. balance_quick() inserts a new cell
7987 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00007988 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00007989 ** use either balance_nonroot() or balance_deeper(). Until this
7990 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
7991 ** buffer.
7992 **
7993 ** The purpose of the following assert() is to check that only a
7994 ** single call to balance_quick() is made for each call to this
7995 ** function. If this were not verified, a subtle bug involving reuse
7996 ** of the aBalanceQuickSpace[] might sneak in.
7997 */
drhcc5f8a42016-02-06 22:32:06 +00007998 assert( balance_quick_called==0 );
7999 VVA_ONLY( balance_quick_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008000 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8001 }else
8002#endif
8003 {
8004 /* In this case, call balance_nonroot() to redistribute cells
8005 ** between pPage and up to 2 of its sibling pages. This involves
8006 ** modifying the contents of pParent, which may cause pParent to
8007 ** become overfull or underfull. The next iteration of the do-loop
8008 ** will balance the parent page to correct this.
8009 **
8010 ** If the parent page becomes overfull, the overflow cell or cells
8011 ** are stored in the pSpace buffer allocated immediately below.
8012 ** A subsequent iteration of the do-loop will deal with this by
8013 ** calling balance_nonroot() (balance_deeper() may be called first,
8014 ** but it doesn't deal with overflow cells - just moves them to a
8015 ** different page). Once this subsequent call to balance_nonroot()
8016 ** has completed, it is safe to release the pSpace buffer used by
8017 ** the previous call, as the overflow cell data will have been
8018 ** copied either into the body of a database page or into the new
8019 ** pSpace buffer passed to the latter call to balance_nonroot().
8020 */
8021 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00008022 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8023 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00008024 if( pFree ){
8025 /* If pFree is not NULL, it points to the pSpace buffer used
8026 ** by a previous call to balance_nonroot(). Its contents are
8027 ** now stored either on real database pages or within the
8028 ** new pSpace buffer, so it may be safely freed here. */
8029 sqlite3PageFree(pFree);
8030 }
8031
danielk19774dbaa892009-06-16 16:50:22 +00008032 /* The pSpace buffer will be freed after the next call to
8033 ** balance_nonroot(), or just before this function returns, whichever
8034 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008035 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00008036 }
8037 }
8038
8039 pPage->nOverflow = 0;
8040
8041 /* The next iteration of the do-loop balances the parent page. */
8042 releasePage(pPage);
8043 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00008044 assert( pCur->iPage>=0 );
drh43605152004-05-29 21:46:49 +00008045 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008046 }while( rc==SQLITE_OK );
8047
8048 if( pFree ){
8049 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00008050 }
8051 return rc;
8052}
8053
drhf74b8d92002-09-01 23:20:45 +00008054
8055/*
drh8eeb4462016-05-21 20:03:42 +00008056** Insert a new record into the BTree. The content of the new record
8057** is described by the pX object. The pCur cursor is used only to
8058** define what table the record should be inserted into, and is left
8059** pointing at a random location.
drh4b70f112004-05-02 21:12:19 +00008060**
drh8eeb4462016-05-21 20:03:42 +00008061** For a table btree (used for rowid tables), only the pX.nKey value of
8062** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
8063** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
8064** hold the content of the row.
8065**
8066** For an index btree (used for indexes and WITHOUT ROWID tables), the
8067** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
8068** pX.pData,nData,nZero fields must be zero.
danielk1977de630352009-05-04 11:42:29 +00008069**
8070** If the seekResult parameter is non-zero, then a successful call to
drheaf6ae22016-11-09 20:14:34 +00008071** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8072** been performed. In other words, if seekResult!=0 then the cursor
8073** is currently pointing to a cell that will be adjacent to the cell
8074** to be inserted. If seekResult<0 then pCur points to a cell that is
8075** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
8076** that is larger than (pKey,nKey).
danielk1977de630352009-05-04 11:42:29 +00008077**
drheaf6ae22016-11-09 20:14:34 +00008078** If seekResult==0, that means pCur is pointing at some unknown location.
8079** In that case, this routine must seek the cursor to the correct insertion
8080** point for (pKey,nKey) before doing the insertion. For index btrees,
8081** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8082** key values and pX->aMem can be used instead of pX->pKey to avoid having
8083** to decode the key.
drh3b7511c2001-05-26 13:15:44 +00008084*/
drh3aac2dd2004-04-26 14:10:20 +00008085int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00008086 BtCursor *pCur, /* Insert data into the table of this cursor */
drh8eeb4462016-05-21 20:03:42 +00008087 const BtreePayload *pX, /* Content of the row to be inserted */
danf91c1312017-01-10 20:04:38 +00008088 int flags, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00008089 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00008090){
drh3b7511c2001-05-26 13:15:44 +00008091 int rc;
drh3e9ca092009-09-08 01:14:48 +00008092 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00008093 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008094 int idx;
drh3b7511c2001-05-26 13:15:44 +00008095 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00008096 Btree *p = pCur->pBtree;
8097 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00008098 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00008099 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00008100
danf91c1312017-01-10 20:04:38 +00008101 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags );
8102
drh98add2e2009-07-20 17:11:49 +00008103 if( pCur->eState==CURSOR_FAULT ){
8104 assert( pCur->skipNext!=SQLITE_OK );
8105 return pCur->skipNext;
8106 }
8107
dan7a2347e2016-01-07 16:43:54 +00008108 assert( cursorOwnsBtShared(pCur) );
drh3f387402014-09-24 01:23:00 +00008109 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8110 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00008111 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00008112 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8113
danielk197731d31b82009-07-13 13:18:07 +00008114 /* Assert that the caller has been consistent. If this cursor was opened
8115 ** expecting an index b-tree, then the caller should be inserting blob
8116 ** keys with no associated data. If the cursor was opened expecting an
8117 ** intkey table, the caller should be inserting integer keys with a
8118 ** blob of associated data. */
drh8eeb4462016-05-21 20:03:42 +00008119 assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );
danielk197731d31b82009-07-13 13:18:07 +00008120
danielk19779c3acf32009-05-02 07:36:49 +00008121 /* Save the positions of any other cursors open on this table.
8122 **
danielk19773509a652009-07-06 18:56:13 +00008123 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00008124 ** example, when inserting data into a table with auto-generated integer
8125 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8126 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00008127 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00008128 ** that the cursor is already where it needs to be and returns without
8129 ** doing any work. To avoid thwarting these optimizations, it is important
8130 ** not to clear the cursor here.
8131 */
drh27fb7462015-06-30 02:47:36 +00008132 if( pCur->curFlags & BTCF_Multiple ){
8133 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8134 if( rc ) return rc;
8135 }
drhd60f4f42012-03-23 14:23:52 +00008136
drhd60f4f42012-03-23 14:23:52 +00008137 if( pCur->pKeyInfo==0 ){
drh8eeb4462016-05-21 20:03:42 +00008138 assert( pX->pKey==0 );
drhe0670b62014-02-12 21:31:12 +00008139 /* If this is an insert into a table b-tree, invalidate any incrblob
8140 ** cursors open on the row being replaced */
drh9ca431a2017-03-29 18:03:50 +00008141 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
drhe0670b62014-02-12 21:31:12 +00008142
danf91c1312017-01-10 20:04:38 +00008143 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8144 ** to a row with the same key as the new entry being inserted. */
8145 assert( (flags & BTREE_SAVEPOSITION)==0 ||
8146 ((pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey) );
8147
drhe0670b62014-02-12 21:31:12 +00008148 /* If the cursor is currently on the last row and we are appending a
drh207c8172015-06-29 23:01:32 +00008149 ** new row onto the end, set the "loc" to avoid an unnecessary
8150 ** btreeMoveto() call */
drh7a1c28d2016-11-10 20:42:08 +00008151 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
8152 loc = 0;
drh207c8172015-06-29 23:01:32 +00008153 }else if( loc==0 ){
danf91c1312017-01-10 20:04:38 +00008154 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
drh207c8172015-06-29 23:01:32 +00008155 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00008156 }
danf91c1312017-01-10 20:04:38 +00008157 }else if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
drh9b4eaeb2016-11-09 00:10:33 +00008158 if( pX->nMem ){
8159 UnpackedRecord r;
drh9b4eaeb2016-11-09 00:10:33 +00008160 r.pKeyInfo = pCur->pKeyInfo;
8161 r.aMem = pX->aMem;
8162 r.nField = pX->nMem;
drh8c730bc2016-12-10 13:12:55 +00008163 r.default_rc = 0;
8164 r.errCode = 0;
8165 r.r1 = 0;
8166 r.r2 = 0;
8167 r.eqSeen = 0;
danf91c1312017-01-10 20:04:38 +00008168 rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
drh9b4eaeb2016-11-09 00:10:33 +00008169 }else{
danf91c1312017-01-10 20:04:38 +00008170 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
drh9b4eaeb2016-11-09 00:10:33 +00008171 }
drh4c301aa2009-07-15 17:25:45 +00008172 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00008173 }
danielk1977b980d2212009-06-22 18:03:51 +00008174 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00008175
danielk197771d5d2c2008-09-29 11:49:47 +00008176 pPage = pCur->apPage[pCur->iPage];
drh8eeb4462016-05-21 20:03:42 +00008177 assert( pPage->intKey || pX->nKey>=0 );
drh44845222008-07-17 18:39:57 +00008178 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00008179
drh3a4c1412004-05-09 20:40:11 +00008180 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
drh8eeb4462016-05-21 20:03:42 +00008181 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
drh3a4c1412004-05-09 20:40:11 +00008182 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00008183 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00008184 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008185 assert( newCell!=0 );
drh8eeb4462016-05-21 20:03:42 +00008186 rc = fillInCell(pPage, newCell, pX, &szNew);
drh2e38c322004-09-03 18:38:44 +00008187 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00008188 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00008189 assert( szNew <= MX_CELL_SIZE(pBt) );
drh75e96b32017-04-01 00:20:06 +00008190 idx = pCur->ix;
danielk1977b980d2212009-06-22 18:03:51 +00008191 if( loc==0 ){
drh80159da2016-12-09 17:32:51 +00008192 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00008193 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00008194 rc = sqlite3PagerWrite(pPage->pDbPage);
8195 if( rc ){
8196 goto end_insert;
8197 }
danielk197771d5d2c2008-09-29 11:49:47 +00008198 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00008199 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008200 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00008201 }
drh80159da2016-12-09 17:32:51 +00008202 rc = clearCell(pPage, oldCell, &info);
8203 if( info.nSize==szNew && info.nLocal==info.nPayload ){
drhf9238252016-12-09 18:09:42 +00008204 /* Overwrite the old cell with the new if they are the same size.
8205 ** We could also try to do this if the old cell is smaller, then add
8206 ** the leftover space to the free list. But experiments show that
8207 ** doing that is no faster then skipping this optimization and just
8208 ** calling dropCell() and insertCell(). */
8209 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
drh2d083432016-12-09 19:42:18 +00008210 if( oldCell+szNew > pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
drh80159da2016-12-09 17:32:51 +00008211 memcpy(oldCell, newCell, szNew);
8212 return SQLITE_OK;
8213 }
8214 dropCell(pPage, idx, info.nSize, &rc);
drh2e38c322004-09-03 18:38:44 +00008215 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00008216 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00008217 assert( pPage->leaf );
drh75e96b32017-04-01 00:20:06 +00008218 idx = ++pCur->ix;
dan874080b2017-05-01 18:12:56 +00008219 pCur->curFlags &= ~BTCF_ValidNKey;
drh14acc042001-06-10 19:56:58 +00008220 }else{
drh4b70f112004-05-02 21:12:19 +00008221 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00008222 }
drh98add2e2009-07-20 17:11:49 +00008223 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
drh09a4e922016-05-21 12:29:04 +00008224 assert( pPage->nOverflow==0 || rc==SQLITE_OK );
danielk19773f632d52009-05-02 10:03:09 +00008225 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00008226
mistachkin48864df2013-03-21 21:20:32 +00008227 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00008228 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00008229 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00008230 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00008231 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008232 ** Previous versions of SQLite called moveToRoot() to move the cursor
8233 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00008234 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8235 ** set the cursor state to "invalid". This makes common insert operations
8236 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00008237 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008238 ** There is a subtle but important optimization here too. When inserting
8239 ** multiple records into an intkey b-tree using a single cursor (as can
8240 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8241 ** is advantageous to leave the cursor pointing to the last entry in
8242 ** the b-tree if possible. If the cursor is left pointing to the last
8243 ** entry in the table, and the next row inserted has an integer key
8244 ** larger than the largest existing key, it is possible to insert the
8245 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00008246 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008247 pCur->info.nSize = 0;
drh09a4e922016-05-21 12:29:04 +00008248 if( pPage->nOverflow ){
8249 assert( rc==SQLITE_OK );
drh036dbec2014-03-11 23:40:44 +00008250 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00008251 rc = balance(pCur);
8252
8253 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00008254 ** fails. Internal data structure corruption will result otherwise.
8255 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8256 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008257 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00008258 pCur->eState = CURSOR_INVALID;
danf91c1312017-01-10 20:04:38 +00008259 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
8260 rc = moveToRoot(pCur);
drh7b20a152017-01-12 19:10:55 +00008261 if( pCur->pKeyInfo ){
danf91c1312017-01-10 20:04:38 +00008262 assert( pCur->pKey==0 );
8263 pCur->pKey = sqlite3Malloc( pX->nKey );
8264 if( pCur->pKey==0 ){
8265 rc = SQLITE_NOMEM;
8266 }else{
8267 memcpy(pCur->pKey, pX->pKey, pX->nKey);
8268 }
8269 }
8270 pCur->eState = CURSOR_REQUIRESEEK;
8271 pCur->nKey = pX->nKey;
8272 }
danielk19773f632d52009-05-02 10:03:09 +00008273 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008274 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00008275
drh2e38c322004-09-03 18:38:44 +00008276end_insert:
drh5e2f8b92001-05-28 00:41:15 +00008277 return rc;
8278}
8279
8280/*
danf0ee1d32015-09-12 19:26:11 +00008281** Delete the entry that the cursor is pointing to.
8282**
drhe807bdb2016-01-21 17:06:33 +00008283** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8284** the cursor is left pointing at an arbitrary location after the delete.
8285** But if that bit is set, then the cursor is left in a state such that
8286** the next call to BtreeNext() or BtreePrev() moves it to the same row
8287** as it would have been on if the call to BtreeDelete() had been omitted.
8288**
drhdef19e32016-01-27 16:26:25 +00008289** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8290** associated with a single table entry and its indexes. Only one of those
8291** deletes is considered the "primary" delete. The primary delete occurs
8292** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
8293** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8294** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
drhe807bdb2016-01-21 17:06:33 +00008295** but which might be used by alternative storage engines.
drh3b7511c2001-05-26 13:15:44 +00008296*/
drhe807bdb2016-01-21 17:06:33 +00008297int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
drhd677b3d2007-08-20 22:48:41 +00008298 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00008299 BtShared *pBt = p->pBt;
8300 int rc; /* Return code */
8301 MemPage *pPage; /* Page to delete cell from */
8302 unsigned char *pCell; /* Pointer to cell to delete */
8303 int iCellIdx; /* Index of cell to delete */
8304 int iCellDepth; /* Depth of node containing pCell */
drh80159da2016-12-09 17:32:51 +00008305 CellInfo info; /* Size of the cell being deleted */
danf0ee1d32015-09-12 19:26:11 +00008306 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */
drhe807bdb2016-01-21 17:06:33 +00008307 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */
drh8b2f49b2001-06-08 00:21:52 +00008308
dan7a2347e2016-01-07 16:43:54 +00008309 assert( cursorOwnsBtShared(pCur) );
drh64022502009-01-09 14:11:04 +00008310 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008311 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00008312 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00008313 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8314 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drh75e96b32017-04-01 00:20:06 +00008315 assert( pCur->ix<pCur->apPage[pCur->iPage]->nCell );
drh98ef0f62015-06-30 01:25:52 +00008316 assert( pCur->eState==CURSOR_VALID );
drhdef19e32016-01-27 16:26:25 +00008317 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
danielk1977da184232006-01-05 11:34:32 +00008318
danielk19774dbaa892009-06-16 16:50:22 +00008319 iCellDepth = pCur->iPage;
drh75e96b32017-04-01 00:20:06 +00008320 iCellIdx = pCur->ix;
danielk19774dbaa892009-06-16 16:50:22 +00008321 pPage = pCur->apPage[iCellDepth];
8322 pCell = findCell(pPage, iCellIdx);
8323
drhbfc7a8b2016-04-09 17:04:05 +00008324 /* If the bPreserve flag is set to true, then the cursor position must
8325 ** be preserved following this delete operation. If the current delete
8326 ** will cause a b-tree rebalance, then this is done by saving the cursor
8327 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8328 ** returning.
8329 **
8330 ** Or, if the current delete will not cause a rebalance, then the cursor
8331 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8332 ** before or after the deleted entry. In this case set bSkipnext to true. */
8333 if( bPreserve ){
8334 if( !pPage->leaf
8335 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
8336 ){
8337 /* A b-tree rebalance will be required after deleting this entry.
8338 ** Save the cursor key. */
8339 rc = saveCursorKey(pCur);
8340 if( rc ) return rc;
8341 }else{
8342 bSkipnext = 1;
8343 }
8344 }
8345
danielk19774dbaa892009-06-16 16:50:22 +00008346 /* If the page containing the entry to delete is not a leaf page, move
8347 ** the cursor to the largest entry in the tree that is smaller than
8348 ** the entry being deleted. This cell will replace the cell being deleted
8349 ** from the internal node. The 'previous' entry is used for this instead
8350 ** of the 'next' entry, as the previous entry is always a part of the
8351 ** sub-tree headed by the child page of the cell being deleted. This makes
8352 ** balancing the tree following the delete operation easier. */
8353 if( !pPage->leaf ){
drhe39a7322014-02-03 14:04:11 +00008354 int notUsed = 0;
drh4c301aa2009-07-15 17:25:45 +00008355 rc = sqlite3BtreePrevious(pCur, &notUsed);
8356 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00008357 }
8358
8359 /* Save the positions of any other cursors open on this table before
danf0ee1d32015-09-12 19:26:11 +00008360 ** making any modifications. */
drh27fb7462015-06-30 02:47:36 +00008361 if( pCur->curFlags & BTCF_Multiple ){
8362 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8363 if( rc ) return rc;
8364 }
drhd60f4f42012-03-23 14:23:52 +00008365
8366 /* If this is a delete operation to remove a row from a table b-tree,
8367 ** invalidate any incrblob cursors open on the row being deleted. */
8368 if( pCur->pKeyInfo==0 ){
drh9ca431a2017-03-29 18:03:50 +00008369 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
drhd60f4f42012-03-23 14:23:52 +00008370 }
8371
danf0ee1d32015-09-12 19:26:11 +00008372 /* Make the page containing the entry to be deleted writable. Then free any
8373 ** overflow pages associated with the entry and finally remove the cell
8374 ** itself from within the page. */
drha4ec1d42009-07-11 13:13:11 +00008375 rc = sqlite3PagerWrite(pPage->pDbPage);
8376 if( rc ) return rc;
drh80159da2016-12-09 17:32:51 +00008377 rc = clearCell(pPage, pCell, &info);
8378 dropCell(pPage, iCellIdx, info.nSize, &rc);
drha4ec1d42009-07-11 13:13:11 +00008379 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00008380
danielk19774dbaa892009-06-16 16:50:22 +00008381 /* If the cell deleted was not located on a leaf page, then the cursor
8382 ** is currently pointing to the largest entry in the sub-tree headed
8383 ** by the child-page of the cell that was just deleted from an internal
8384 ** node. The cell from the leaf node needs to be moved to the internal
8385 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00008386 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00008387 MemPage *pLeaf = pCur->apPage[pCur->iPage];
8388 int nCell;
8389 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
8390 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00008391
danielk19774dbaa892009-06-16 16:50:22 +00008392 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00008393 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00008394 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00008395 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00008396 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008397 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00008398 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drhcb89f4a2016-05-21 11:23:26 +00008399 if( rc==SQLITE_OK ){
8400 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8401 }
drh98add2e2009-07-20 17:11:49 +00008402 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008403 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00008404 }
danielk19774dbaa892009-06-16 16:50:22 +00008405
8406 /* Balance the tree. If the entry deleted was located on a leaf page,
8407 ** then the cursor still points to that page. In this case the first
8408 ** call to balance() repairs the tree, and the if(...) condition is
8409 ** never true.
8410 **
8411 ** Otherwise, if the entry deleted was on an internal node page, then
8412 ** pCur is pointing to the leaf page from which a cell was removed to
8413 ** replace the cell deleted from the internal node. This is slightly
8414 ** tricky as the leaf node may be underfull, and the internal node may
8415 ** be either under or overfull. In this case run the balancing algorithm
8416 ** on the leaf node first. If the balance proceeds far enough up the
8417 ** tree that we can be sure that any problem in the internal node has
8418 ** been corrected, so be it. Otherwise, after balancing the leaf node,
8419 ** walk the cursor up the tree to the internal node and balance it as
8420 ** well. */
8421 rc = balance(pCur);
8422 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8423 while( pCur->iPage>iCellDepth ){
8424 releasePage(pCur->apPage[pCur->iPage--]);
8425 }
8426 rc = balance(pCur);
8427 }
8428
danielk19776b456a22005-03-21 04:04:02 +00008429 if( rc==SQLITE_OK ){
danf0ee1d32015-09-12 19:26:11 +00008430 if( bSkipnext ){
drha660caf2016-01-01 03:37:44 +00008431 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
drh38bace82016-02-01 00:21:08 +00008432 assert( pPage==pCur->apPage[pCur->iPage] || CORRUPT_DB );
drh78ac1092015-09-20 22:57:47 +00008433 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
danf0ee1d32015-09-12 19:26:11 +00008434 pCur->eState = CURSOR_SKIPNEXT;
8435 if( iCellIdx>=pPage->nCell ){
8436 pCur->skipNext = -1;
drh75e96b32017-04-01 00:20:06 +00008437 pCur->ix = pPage->nCell-1;
danf0ee1d32015-09-12 19:26:11 +00008438 }else{
8439 pCur->skipNext = 1;
8440 }
8441 }else{
8442 rc = moveToRoot(pCur);
8443 if( bPreserve ){
8444 pCur->eState = CURSOR_REQUIRESEEK;
8445 }
8446 }
danielk19776b456a22005-03-21 04:04:02 +00008447 }
drh5e2f8b92001-05-28 00:41:15 +00008448 return rc;
drh3b7511c2001-05-26 13:15:44 +00008449}
drh8b2f49b2001-06-08 00:21:52 +00008450
8451/*
drhc6b52df2002-01-04 03:09:29 +00008452** Create a new BTree table. Write into *piTable the page
8453** number for the root page of the new table.
8454**
drhab01f612004-05-22 02:55:23 +00008455** The type of type is determined by the flags parameter. Only the
8456** following values of flags are currently in use. Other values for
8457** flags might not work:
8458**
8459** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
8460** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00008461*/
drhd4187c72010-08-30 22:15:45 +00008462static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00008463 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008464 MemPage *pRoot;
8465 Pgno pgnoRoot;
8466 int rc;
drhd4187c72010-08-30 22:15:45 +00008467 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00008468
drh1fee73e2007-08-29 04:00:57 +00008469 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008470 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008471 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00008472
danielk1977003ba062004-11-04 02:57:33 +00008473#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00008474 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00008475 if( rc ){
8476 return rc;
8477 }
danielk1977003ba062004-11-04 02:57:33 +00008478#else
danielk1977687566d2004-11-02 12:56:41 +00008479 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00008480 Pgno pgnoMove; /* Move a page here to make room for the root-page */
8481 MemPage *pPageMove; /* The page to move to. */
8482
danielk197720713f32007-05-03 11:43:33 +00008483 /* Creating a new table may probably require moving an existing database
8484 ** to make room for the new tables root page. In case this page turns
8485 ** out to be an overflow page, delete all overflow page-map caches
8486 ** held by open cursors.
8487 */
danielk197792d4d7a2007-05-04 12:05:56 +00008488 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00008489
danielk1977003ba062004-11-04 02:57:33 +00008490 /* Read the value of meta[3] from the database to determine where the
8491 ** root page of the new table should go. meta[3] is the largest root-page
8492 ** created so far, so the new root-page is (meta[3]+1).
8493 */
danielk1977602b4662009-07-02 07:47:33 +00008494 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00008495 pgnoRoot++;
8496
danielk1977599fcba2004-11-08 07:13:13 +00008497 /* The new root-page may not be allocated on a pointer-map page, or the
8498 ** PENDING_BYTE page.
8499 */
drh72190432008-01-31 14:54:43 +00008500 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00008501 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00008502 pgnoRoot++;
8503 }
drh499e15b2015-05-22 12:37:37 +00008504 assert( pgnoRoot>=3 || CORRUPT_DB );
8505 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00008506
8507 /* Allocate a page. The page that currently resides at pgnoRoot will
8508 ** be moved to the allocated page (unless the allocated page happens
8509 ** to reside at pgnoRoot).
8510 */
dan51f0b6d2013-02-22 20:16:34 +00008511 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00008512 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00008513 return rc;
8514 }
danielk1977003ba062004-11-04 02:57:33 +00008515
8516 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00008517 /* pgnoRoot is the page that will be used for the root-page of
8518 ** the new table (assuming an error did not occur). But we were
8519 ** allocated pgnoMove. If required (i.e. if it was not allocated
8520 ** by extending the file), the current page at position pgnoMove
8521 ** is already journaled.
8522 */
drheeb844a2009-08-08 18:01:07 +00008523 u8 eType = 0;
8524 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00008525
danf7679ad2013-04-03 11:38:36 +00008526 /* Save the positions of any open cursors. This is required in
8527 ** case they are holding a reference to an xFetch reference
8528 ** corresponding to page pgnoRoot. */
8529 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00008530 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00008531 if( rc!=SQLITE_OK ){
8532 return rc;
8533 }
danielk1977f35843b2007-04-07 15:03:17 +00008534
8535 /* Move the page currently at pgnoRoot to pgnoMove. */
danielk197730548662009-07-09 05:07:37 +00008536 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008537 if( rc!=SQLITE_OK ){
8538 return rc;
8539 }
8540 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00008541 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8542 rc = SQLITE_CORRUPT_BKPT;
8543 }
8544 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00008545 releasePage(pRoot);
8546 return rc;
8547 }
drhccae6022005-02-26 17:31:26 +00008548 assert( eType!=PTRMAP_ROOTPAGE );
8549 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00008550 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00008551 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00008552
8553 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00008554 if( rc!=SQLITE_OK ){
8555 return rc;
8556 }
danielk197730548662009-07-09 05:07:37 +00008557 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008558 if( rc!=SQLITE_OK ){
8559 return rc;
8560 }
danielk19773b8a05f2007-03-19 17:44:26 +00008561 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00008562 if( rc!=SQLITE_OK ){
8563 releasePage(pRoot);
8564 return rc;
8565 }
8566 }else{
8567 pRoot = pPageMove;
8568 }
8569
danielk197742741be2005-01-08 12:42:39 +00008570 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00008571 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00008572 if( rc ){
8573 releasePage(pRoot);
8574 return rc;
8575 }
drhbf592832010-03-30 15:51:12 +00008576
8577 /* When the new root page was allocated, page 1 was made writable in
8578 ** order either to increase the database filesize, or to decrement the
8579 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8580 */
8581 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00008582 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00008583 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00008584 releasePage(pRoot);
8585 return rc;
8586 }
danielk197742741be2005-01-08 12:42:39 +00008587
danielk1977003ba062004-11-04 02:57:33 +00008588 }else{
drh4f0c5872007-03-26 22:05:01 +00008589 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00008590 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00008591 }
8592#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008593 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00008594 if( createTabFlags & BTREE_INTKEY ){
8595 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8596 }else{
8597 ptfFlags = PTF_ZERODATA | PTF_LEAF;
8598 }
8599 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00008600 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00008601 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00008602 *piTable = (int)pgnoRoot;
8603 return SQLITE_OK;
8604}
drhd677b3d2007-08-20 22:48:41 +00008605int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8606 int rc;
8607 sqlite3BtreeEnter(p);
8608 rc = btreeCreateTable(p, piTable, flags);
8609 sqlite3BtreeLeave(p);
8610 return rc;
8611}
drh8b2f49b2001-06-08 00:21:52 +00008612
8613/*
8614** Erase the given database page and all its children. Return
8615** the page to the freelist.
8616*/
drh4b70f112004-05-02 21:12:19 +00008617static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00008618 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00008619 Pgno pgno, /* Page number to clear */
8620 int freePageFlag, /* Deallocate page if true */
8621 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00008622){
danielk1977146ba992009-07-22 14:08:13 +00008623 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00008624 int rc;
drh4b70f112004-05-02 21:12:19 +00008625 unsigned char *pCell;
8626 int i;
dan8ce71842014-01-14 20:14:09 +00008627 int hdr;
drh80159da2016-12-09 17:32:51 +00008628 CellInfo info;
drh8b2f49b2001-06-08 00:21:52 +00008629
drh1fee73e2007-08-29 04:00:57 +00008630 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00008631 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00008632 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00008633 }
drh28f58dd2015-06-27 19:45:03 +00008634 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00008635 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00008636 if( pPage->bBusy ){
8637 rc = SQLITE_CORRUPT_BKPT;
8638 goto cleardatabasepage_out;
8639 }
8640 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00008641 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00008642 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00008643 pCell = findCell(pPage, i);
drhccf46d02015-04-01 13:21:33 +00008644 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00008645 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008646 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008647 }
drh80159da2016-12-09 17:32:51 +00008648 rc = clearCell(pPage, pCell, &info);
danielk19776b456a22005-03-21 04:04:02 +00008649 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008650 }
drhccf46d02015-04-01 13:21:33 +00008651 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00008652 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008653 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00008654 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00008655 assert( pPage->intKey || CORRUPT_DB );
8656 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00008657 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00008658 }
8659 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00008660 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00008661 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00008662 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00008663 }
danielk19776b456a22005-03-21 04:04:02 +00008664
8665cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00008666 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00008667 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00008668 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008669}
8670
8671/*
drhab01f612004-05-22 02:55:23 +00008672** Delete all information from a single table in the database. iTable is
8673** the page number of the root of the table. After this routine returns,
8674** the root page is empty, but still exists.
8675**
8676** This routine will fail with SQLITE_LOCKED if there are any open
8677** read cursors on the table. Open write cursors are moved to the
8678** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00008679**
8680** If pnChange is not NULL, then table iTable must be an intkey table. The
8681** integer value pointed to by pnChange is incremented by the number of
8682** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00008683*/
danielk1977c7af4842008-10-27 13:59:33 +00008684int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00008685 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00008686 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00008687 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008688 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008689
drhc046e3e2009-07-15 11:26:44 +00008690 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00008691
drhc046e3e2009-07-15 11:26:44 +00008692 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00008693 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8694 ** is the root of a table b-tree - if it is not, the following call is
8695 ** a no-op). */
drh9ca431a2017-03-29 18:03:50 +00008696 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00008697 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00008698 }
drhd677b3d2007-08-20 22:48:41 +00008699 sqlite3BtreeLeave(p);
8700 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008701}
8702
8703/*
drh079a3072014-03-19 14:10:55 +00008704** Delete all information from the single table that pCur is open on.
8705**
8706** This routine only work for pCur on an ephemeral table.
8707*/
8708int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8709 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8710}
8711
8712/*
drh8b2f49b2001-06-08 00:21:52 +00008713** Erase all information in a table and add the root of the table to
8714** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00008715** page 1) is never added to the freelist.
8716**
8717** This routine will fail with SQLITE_LOCKED if there are any open
8718** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00008719**
8720** If AUTOVACUUM is enabled and the page at iTable is not the last
8721** root page in the database file, then the last root page
8722** in the database file is moved into the slot formerly occupied by
8723** iTable and that last slot formerly occupied by the last root page
8724** is added to the freelist instead of iTable. In this say, all
8725** root pages are kept at the beginning of the database file, which
8726** is necessary for AUTOVACUUM to work right. *piMoved is set to the
8727** page number that used to be the last root page in the file before
8728** the move. If no page gets moved, *piMoved is set to 0.
8729** The last root page is recorded in meta[3] and the value of
8730** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00008731*/
danielk197789d40042008-11-17 14:20:56 +00008732static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00008733 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00008734 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00008735 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00008736
drh1fee73e2007-08-29 04:00:57 +00008737 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008738 assert( p->inTrans==TRANS_WRITE );
drh65f38d92016-11-22 01:26:42 +00008739 assert( iTable>=2 );
drh055f2982016-01-15 15:06:41 +00008740
danielk197730548662009-07-09 05:07:37 +00008741 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00008742 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00008743 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00008744 if( rc ){
8745 releasePage(pPage);
8746 return rc;
8747 }
danielk1977a0bf2652004-11-04 14:30:04 +00008748
drh205f48e2004-11-05 00:43:11 +00008749 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00008750
danielk1977a0bf2652004-11-04 14:30:04 +00008751#ifdef SQLITE_OMIT_AUTOVACUUM
drh055f2982016-01-15 15:06:41 +00008752 freePage(pPage, &rc);
8753 releasePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00008754#else
drh055f2982016-01-15 15:06:41 +00008755 if( pBt->autoVacuum ){
8756 Pgno maxRootPgno;
8757 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008758
drh055f2982016-01-15 15:06:41 +00008759 if( iTable==maxRootPgno ){
8760 /* If the table being dropped is the table with the largest root-page
8761 ** number in the database, put the root page on the free list.
danielk1977599fcba2004-11-08 07:13:13 +00008762 */
drhc314dc72009-07-21 11:52:34 +00008763 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008764 releasePage(pPage);
drh055f2982016-01-15 15:06:41 +00008765 if( rc!=SQLITE_OK ){
8766 return rc;
8767 }
8768 }else{
8769 /* The table being dropped does not have the largest root-page
8770 ** number in the database. So move the page that does into the
8771 ** gap left by the deleted root-page.
8772 */
8773 MemPage *pMove;
8774 releasePage(pPage);
8775 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8776 if( rc!=SQLITE_OK ){
8777 return rc;
8778 }
8779 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
8780 releasePage(pMove);
8781 if( rc!=SQLITE_OK ){
8782 return rc;
8783 }
8784 pMove = 0;
8785 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8786 freePage(pMove, &rc);
8787 releasePage(pMove);
8788 if( rc!=SQLITE_OK ){
8789 return rc;
8790 }
8791 *piMoved = maxRootPgno;
danielk1977a0bf2652004-11-04 14:30:04 +00008792 }
drh055f2982016-01-15 15:06:41 +00008793
8794 /* Set the new 'max-root-page' value in the database header. This
8795 ** is the old value less one, less one more if that happens to
8796 ** be a root-page number, less one again if that is the
8797 ** PENDING_BYTE_PAGE.
drhc046e3e2009-07-15 11:26:44 +00008798 */
drh055f2982016-01-15 15:06:41 +00008799 maxRootPgno--;
8800 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8801 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
8802 maxRootPgno--;
8803 }
8804 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8805
8806 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
8807 }else{
8808 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008809 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00008810 }
drh055f2982016-01-15 15:06:41 +00008811#endif
drh8b2f49b2001-06-08 00:21:52 +00008812 return rc;
8813}
drhd677b3d2007-08-20 22:48:41 +00008814int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8815 int rc;
8816 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00008817 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00008818 sqlite3BtreeLeave(p);
8819 return rc;
8820}
drh8b2f49b2001-06-08 00:21:52 +00008821
drh001bbcb2003-03-19 03:14:00 +00008822
drh8b2f49b2001-06-08 00:21:52 +00008823/*
danielk1977602b4662009-07-02 07:47:33 +00008824** This function may only be called if the b-tree connection already
8825** has a read or write transaction open on the database.
8826**
drh23e11ca2004-05-04 17:27:28 +00008827** Read the meta-information out of a database file. Meta[0]
8828** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00008829** through meta[15] are available for use by higher layers. Meta[0]
8830** is read-only, the others are read/write.
8831**
8832** The schema layer numbers meta values differently. At the schema
8833** layer (and the SetCookie and ReadCookie opcodes) the number of
8834** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00008835**
8836** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
8837** of reading the value out of the header, it instead loads the "DataVersion"
8838** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
8839** database file. It is a number computed by the pager. But its access
8840** pattern is the same as header meta values, and so it is convenient to
8841** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00008842*/
danielk1977602b4662009-07-02 07:47:33 +00008843void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00008844 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008845
drhd677b3d2007-08-20 22:48:41 +00008846 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00008847 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00008848 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00008849 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00008850 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00008851
drh91618562014-12-19 19:28:02 +00008852 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00008853 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00008854 }else{
8855 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
8856 }
drhae157872004-08-14 19:20:09 +00008857
danielk1977602b4662009-07-02 07:47:33 +00008858 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8859 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00008860#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00008861 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8862 pBt->btsFlags |= BTS_READ_ONLY;
8863 }
danielk1977003ba062004-11-04 02:57:33 +00008864#endif
drhae157872004-08-14 19:20:09 +00008865
drhd677b3d2007-08-20 22:48:41 +00008866 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00008867}
8868
8869/*
drh23e11ca2004-05-04 17:27:28 +00008870** Write meta-information back into the database. Meta[0] is
8871** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00008872*/
danielk1977aef0bf62005-12-30 16:28:01 +00008873int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8874 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00008875 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00008876 int rc;
drh23e11ca2004-05-04 17:27:28 +00008877 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00008878 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008879 assert( p->inTrans==TRANS_WRITE );
8880 assert( pBt->pPage1!=0 );
8881 pP1 = pBt->pPage1->aData;
8882 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8883 if( rc==SQLITE_OK ){
8884 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00008885#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00008886 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00008887 assert( pBt->autoVacuum || iMeta==0 );
8888 assert( iMeta==0 || iMeta==1 );
8889 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00008890 }
drh64022502009-01-09 14:11:04 +00008891#endif
drh5df72a52002-06-06 23:16:05 +00008892 }
drhd677b3d2007-08-20 22:48:41 +00008893 sqlite3BtreeLeave(p);
8894 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008895}
drh8c42ca92001-06-22 19:15:00 +00008896
danielk1977a5533162009-02-24 10:01:51 +00008897#ifndef SQLITE_OMIT_BTREECOUNT
8898/*
8899** The first argument, pCur, is a cursor opened on some b-tree. Count the
8900** number of entries in the b-tree and write the result to *pnEntry.
8901**
8902** SQLITE_OK is returned if the operation is successfully executed.
8903** Otherwise, if an error is encountered (i.e. an IO error or database
8904** corruption) an SQLite error code is returned.
8905*/
8906int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
8907 i64 nEntry = 0; /* Value to return in *pnEntry */
8908 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00008909
8910 if( pCur->pgnoRoot==0 ){
8911 *pnEntry = 0;
8912 return SQLITE_OK;
8913 }
danielk1977a5533162009-02-24 10:01:51 +00008914 rc = moveToRoot(pCur);
8915
8916 /* Unless an error occurs, the following loop runs one iteration for each
8917 ** page in the B-Tree structure (not including overflow pages).
8918 */
8919 while( rc==SQLITE_OK ){
8920 int iIdx; /* Index of child node in parent */
8921 MemPage *pPage; /* Current page of the b-tree */
8922
8923 /* If this is a leaf page or the tree is not an int-key tree, then
8924 ** this page contains countable entries. Increment the entry counter
8925 ** accordingly.
8926 */
8927 pPage = pCur->apPage[pCur->iPage];
8928 if( pPage->leaf || !pPage->intKey ){
8929 nEntry += pPage->nCell;
8930 }
8931
8932 /* pPage is a leaf node. This loop navigates the cursor so that it
8933 ** points to the first interior cell that it points to the parent of
8934 ** the next page in the tree that has not yet been visited. The
8935 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
8936 ** of the page, or to the number of cells in the page if the next page
8937 ** to visit is the right-child of its parent.
8938 **
8939 ** If all pages in the tree have been visited, return SQLITE_OK to the
8940 ** caller.
8941 */
8942 if( pPage->leaf ){
8943 do {
8944 if( pCur->iPage==0 ){
8945 /* All pages of the b-tree have been visited. Return successfully. */
8946 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00008947 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008948 }
danielk197730548662009-07-09 05:07:37 +00008949 moveToParent(pCur);
drh75e96b32017-04-01 00:20:06 +00008950 }while ( pCur->ix>=pCur->apPage[pCur->iPage]->nCell );
danielk1977a5533162009-02-24 10:01:51 +00008951
drh75e96b32017-04-01 00:20:06 +00008952 pCur->ix++;
danielk1977a5533162009-02-24 10:01:51 +00008953 pPage = pCur->apPage[pCur->iPage];
8954 }
8955
8956 /* Descend to the child node of the cell that the cursor currently
8957 ** points at. This is the right-child if (iIdx==pPage->nCell).
8958 */
drh75e96b32017-04-01 00:20:06 +00008959 iIdx = pCur->ix;
danielk1977a5533162009-02-24 10:01:51 +00008960 if( iIdx==pPage->nCell ){
8961 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
8962 }else{
8963 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
8964 }
8965 }
8966
shanebe217792009-03-05 04:20:31 +00008967 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00008968 return rc;
8969}
8970#endif
drhdd793422001-06-28 01:54:48 +00008971
drhdd793422001-06-28 01:54:48 +00008972/*
drh5eddca62001-06-30 21:53:53 +00008973** Return the pager associated with a BTree. This routine is used for
8974** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00008975*/
danielk1977aef0bf62005-12-30 16:28:01 +00008976Pager *sqlite3BtreePager(Btree *p){
8977 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00008978}
drh5eddca62001-06-30 21:53:53 +00008979
drhb7f91642004-10-31 02:22:47 +00008980#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008981/*
8982** Append a message to the error message string.
8983*/
drh2e38c322004-09-03 18:38:44 +00008984static void checkAppendMsg(
8985 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00008986 const char *zFormat,
8987 ...
8988){
8989 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00008990 if( !pCheck->mxErr ) return;
8991 pCheck->mxErr--;
8992 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00008993 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00008994 if( pCheck->errMsg.nChar ){
8995 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00008996 }
drh867db832014-09-26 02:41:05 +00008997 if( pCheck->zPfx ){
drh5f4a6862016-01-30 12:50:25 +00008998 sqlite3XPrintf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +00008999 }
drh5f4a6862016-01-30 12:50:25 +00009000 sqlite3VXPrintf(&pCheck->errMsg, zFormat, ap);
drhf089aa42008-07-08 19:34:06 +00009001 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00009002 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00009003 pCheck->mallocFailed = 1;
9004 }
drh5eddca62001-06-30 21:53:53 +00009005}
drhb7f91642004-10-31 02:22:47 +00009006#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009007
drhb7f91642004-10-31 02:22:47 +00009008#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00009009
9010/*
9011** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9012** corresponds to page iPg is already set.
9013*/
9014static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9015 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9016 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
9017}
9018
9019/*
9020** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
9021*/
9022static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9023 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9024 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
9025}
9026
9027
drh5eddca62001-06-30 21:53:53 +00009028/*
9029** Add 1 to the reference count for page iPage. If this is the second
9030** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00009031** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00009032** if this is the first reference to the page.
9033**
9034** Also check that the page number is in bounds.
9035*/
drh867db832014-09-26 02:41:05 +00009036static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh5eddca62001-06-30 21:53:53 +00009037 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00009038 if( iPage>pCheck->nPage ){
drh867db832014-09-26 02:41:05 +00009039 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009040 return 1;
9041 }
dan1235bb12012-04-03 17:43:28 +00009042 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00009043 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009044 return 1;
9045 }
dan1235bb12012-04-03 17:43:28 +00009046 setPageReferenced(pCheck, iPage);
9047 return 0;
drh5eddca62001-06-30 21:53:53 +00009048}
9049
danielk1977afcdd022004-10-31 16:25:42 +00009050#ifndef SQLITE_OMIT_AUTOVACUUM
9051/*
9052** Check that the entry in the pointer-map for page iChild maps to
9053** page iParent, pointer type ptrType. If not, append an error message
9054** to pCheck.
9055*/
9056static void checkPtrmap(
9057 IntegrityCk *pCheck, /* Integrity check context */
9058 Pgno iChild, /* Child page number */
9059 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00009060 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00009061){
9062 int rc;
9063 u8 ePtrmapType;
9064 Pgno iPtrmapParent;
9065
9066 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
9067 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00009068 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00009069 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00009070 return;
9071 }
9072
9073 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00009074 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00009075 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
9076 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
9077 }
9078}
9079#endif
9080
drh5eddca62001-06-30 21:53:53 +00009081/*
9082** Check the integrity of the freelist or of an overflow page list.
9083** Verify that the number of pages on the list is N.
9084*/
drh30e58752002-03-02 20:41:57 +00009085static void checkList(
9086 IntegrityCk *pCheck, /* Integrity checking context */
9087 int isFreeList, /* True for a freelist. False for overflow page list */
9088 int iPage, /* Page number for first page in the list */
drh867db832014-09-26 02:41:05 +00009089 int N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00009090){
9091 int i;
drh3a4c1412004-05-09 20:40:11 +00009092 int expected = N;
9093 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00009094 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00009095 DbPage *pOvflPage;
9096 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00009097 if( iPage<1 ){
drh867db832014-09-26 02:41:05 +00009098 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009099 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00009100 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00009101 break;
9102 }
drh867db832014-09-26 02:41:05 +00009103 if( checkRef(pCheck, iPage) ) break;
drh9584f582015-11-04 20:22:37 +00009104 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
drh867db832014-09-26 02:41:05 +00009105 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009106 break;
9107 }
danielk19773b8a05f2007-03-19 17:44:26 +00009108 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00009109 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00009110 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00009111#ifndef SQLITE_OMIT_AUTOVACUUM
9112 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009113 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009114 }
9115#endif
drh43b18e12010-08-17 19:40:08 +00009116 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00009117 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009118 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00009119 N--;
9120 }else{
9121 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00009122 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00009123#ifndef SQLITE_OMIT_AUTOVACUUM
9124 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009125 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009126 }
9127#endif
drh867db832014-09-26 02:41:05 +00009128 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00009129 }
9130 N -= n;
drh30e58752002-03-02 20:41:57 +00009131 }
drh30e58752002-03-02 20:41:57 +00009132 }
danielk1977afcdd022004-10-31 16:25:42 +00009133#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009134 else{
9135 /* If this database supports auto-vacuum and iPage is not the last
9136 ** page in this overflow list, check that the pointer-map entry for
9137 ** the following page matches iPage.
9138 */
9139 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00009140 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00009141 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00009142 }
danielk1977afcdd022004-10-31 16:25:42 +00009143 }
9144#endif
danielk19773b8a05f2007-03-19 17:44:26 +00009145 iPage = get4byte(pOvflData);
9146 sqlite3PagerUnref(pOvflPage);
danad41f5e2015-09-18 14:45:01 +00009147
9148 if( isFreeList && N<(iPage!=0) ){
9149 checkAppendMsg(pCheck, "free-page count in header is too small");
9150 }
drh5eddca62001-06-30 21:53:53 +00009151 }
9152}
drhb7f91642004-10-31 02:22:47 +00009153#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009154
drh67731a92015-04-16 11:56:03 +00009155/*
9156** An implementation of a min-heap.
9157**
9158** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00009159** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00009160** and aHeap[N*2+1].
9161**
9162** The heap property is this: Every node is less than or equal to both
9163** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00009164** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00009165**
9166** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9167** the heap, preserving the heap property. The btreeHeapPull() routine
9168** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00009169** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00009170** property.
9171**
9172** This heap is used for cell overlap and coverage testing. Each u32
9173** entry represents the span of a cell or freeblock on a btree page.
9174** The upper 16 bits are the index of the first byte of a range and the
9175** lower 16 bits are the index of the last byte of that range.
9176*/
9177static void btreeHeapInsert(u32 *aHeap, u32 x){
9178 u32 j, i = ++aHeap[0];
9179 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00009180 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00009181 x = aHeap[j];
9182 aHeap[j] = aHeap[i];
9183 aHeap[i] = x;
9184 i = j;
9185 }
9186}
9187static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9188 u32 j, i, x;
9189 if( (x = aHeap[0])==0 ) return 0;
9190 *pOut = aHeap[1];
9191 aHeap[1] = aHeap[x];
9192 aHeap[x] = 0xffffffff;
9193 aHeap[0]--;
9194 i = 1;
9195 while( (j = i*2)<=aHeap[0] ){
9196 if( aHeap[j]>aHeap[j+1] ) j++;
9197 if( aHeap[i]<aHeap[j] ) break;
9198 x = aHeap[i];
9199 aHeap[i] = aHeap[j];
9200 aHeap[j] = x;
9201 i = j;
9202 }
9203 return 1;
9204}
9205
drhb7f91642004-10-31 02:22:47 +00009206#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009207/*
9208** Do various sanity checks on a single page of a tree. Return
9209** the tree depth. Root pages return 0. Parents of root pages
9210** return 1, and so forth.
9211**
9212** These checks are done:
9213**
9214** 1. Make sure that cells and freeblocks do not overlap
9215** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +00009216** 2. Make sure integer cell keys are in order.
9217** 3. Check the integrity of overflow pages.
9218** 4. Recursively call checkTreePage on all children.
9219** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +00009220*/
9221static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00009222 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00009223 int iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +00009224 i64 *piMinKey, /* Write minimum integer primary key here */
9225 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +00009226){
drhcbc6b712015-07-02 16:17:30 +00009227 MemPage *pPage = 0; /* The page being analyzed */
9228 int i; /* Loop counter */
9229 int rc; /* Result code from subroutine call */
9230 int depth = -1, d2; /* Depth of a subtree */
9231 int pgno; /* Page number */
9232 int nFrag; /* Number of fragmented bytes on the page */
9233 int hdr; /* Offset to the page header */
9234 int cellStart; /* Offset to the start of the cell pointer array */
9235 int nCell; /* Number of cells */
9236 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9237 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
9238 ** False if IPK must be strictly less than maxKey */
9239 u8 *data; /* Page content */
9240 u8 *pCell; /* Cell content */
9241 u8 *pCellIdx; /* Next element of the cell pointer array */
9242 BtShared *pBt; /* The BtShared object that owns pPage */
9243 u32 pc; /* Address of a cell */
9244 u32 usableSize; /* Usable size of the page */
9245 u32 contentOffset; /* Offset to the start of the cell content area */
9246 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +00009247 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +00009248 const char *saved_zPfx = pCheck->zPfx;
9249 int saved_v1 = pCheck->v1;
9250 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +00009251 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +00009252
drh5eddca62001-06-30 21:53:53 +00009253 /* Check that the page exists
9254 */
drhd9cb6ac2005-10-20 07:28:17 +00009255 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00009256 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00009257 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00009258 if( checkRef(pCheck, iPage) ) return 0;
9259 pCheck->zPfx = "Page %d: ";
9260 pCheck->v1 = iPage;
danielk197730548662009-07-09 05:07:37 +00009261 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00009262 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009263 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00009264 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009265 }
danielk197793caf5a2009-07-11 06:55:33 +00009266
9267 /* Clear MemPage.isInit to make sure the corruption detection code in
9268 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +00009269 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +00009270 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00009271 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00009272 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00009273 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00009274 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +00009275 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009276 }
drhcbc6b712015-07-02 16:17:30 +00009277 data = pPage->aData;
9278 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +00009279
drhcbc6b712015-07-02 16:17:30 +00009280 /* Set up for cell analysis */
drhe05b3f82015-07-01 17:53:49 +00009281 pCheck->zPfx = "On tree page %d cell %d: ";
drhcbc6b712015-07-02 16:17:30 +00009282 contentOffset = get2byteNotZero(&data[hdr+5]);
9283 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
9284
9285 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9286 ** number of cells on the page. */
9287 nCell = get2byte(&data[hdr+3]);
9288 assert( pPage->nCell==nCell );
9289
9290 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9291 ** immediately follows the b-tree page header. */
9292 cellStart = hdr + 12 - 4*pPage->leaf;
9293 assert( pPage->aCellIdx==&data[cellStart] );
9294 pCellIdx = &data[cellStart + 2*(nCell-1)];
9295
9296 if( !pPage->leaf ){
9297 /* Analyze the right-child page of internal pages */
9298 pgno = get4byte(&data[hdr+8]);
9299#ifndef SQLITE_OMIT_AUTOVACUUM
9300 if( pBt->autoVacuum ){
9301 pCheck->zPfx = "On page %d at right child: ";
9302 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9303 }
9304#endif
9305 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9306 keyCanBeEqual = 0;
9307 }else{
9308 /* For leaf pages, the coverage check will occur in the same loop
9309 ** as the other cell checks, so initialize the heap. */
9310 heap = pCheck->heap;
9311 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +00009312 }
9313
9314 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9315 ** integer offsets to the cell contents. */
9316 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +00009317 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00009318
drhcbc6b712015-07-02 16:17:30 +00009319 /* Check cell size */
drh867db832014-09-26 02:41:05 +00009320 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +00009321 assert( pCellIdx==&data[cellStart + i*2] );
9322 pc = get2byteAligned(pCellIdx);
9323 pCellIdx -= 2;
9324 if( pc<contentOffset || pc>usableSize-4 ){
9325 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9326 pc, contentOffset, usableSize-4);
9327 doCoverageCheck = 0;
9328 continue;
shaneh195475d2010-02-19 04:28:08 +00009329 }
drhcbc6b712015-07-02 16:17:30 +00009330 pCell = &data[pc];
9331 pPage->xParseCell(pPage, pCell, &info);
9332 if( pc+info.nSize>usableSize ){
9333 checkAppendMsg(pCheck, "Extends off end of page");
9334 doCoverageCheck = 0;
9335 continue;
9336 }
9337
9338 /* Check for integer primary key out of range */
9339 if( pPage->intKey ){
9340 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9341 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9342 }
9343 maxKey = info.nKey;
dan4b2667c2017-05-01 18:24:01 +00009344 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */
drhcbc6b712015-07-02 16:17:30 +00009345 }
9346
9347 /* Check the content overflow list */
9348 if( info.nPayload>info.nLocal ){
9349 int nPage; /* Number of pages on the overflow chain */
9350 Pgno pgnoOvfl; /* First page of the overflow chain */
drh45ac1c72015-12-18 03:59:16 +00009351 assert( pc + info.nSize - 4 <= usableSize );
drhcbc6b712015-07-02 16:17:30 +00009352 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
drh45ac1c72015-12-18 03:59:16 +00009353 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
danielk1977afcdd022004-10-31 16:25:42 +00009354#ifndef SQLITE_OMIT_AUTOVACUUM
9355 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009356 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009357 }
9358#endif
drh867db832014-09-26 02:41:05 +00009359 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00009360 }
9361
drhda200cc2004-05-09 11:51:38 +00009362 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +00009363 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +00009364 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00009365#ifndef SQLITE_OMIT_AUTOVACUUM
9366 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009367 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009368 }
9369#endif
drhcbc6b712015-07-02 16:17:30 +00009370 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9371 keyCanBeEqual = 0;
9372 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +00009373 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +00009374 depth = d2;
drhda200cc2004-05-09 11:51:38 +00009375 }
drhcbc6b712015-07-02 16:17:30 +00009376 }else{
9377 /* Populate the coverage-checking heap for leaf pages */
9378 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +00009379 }
drh5eddca62001-06-30 21:53:53 +00009380 }
drhcbc6b712015-07-02 16:17:30 +00009381 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +00009382
drh5eddca62001-06-30 21:53:53 +00009383 /* Check for complete coverage of the page
9384 */
drh867db832014-09-26 02:41:05 +00009385 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +00009386 if( doCoverageCheck && pCheck->mxErr>0 ){
9387 /* For leaf pages, the min-heap has already been initialized and the
9388 ** cells have already been inserted. But for internal pages, that has
9389 ** not yet been done, so do it now */
9390 if( !pPage->leaf ){
9391 heap = pCheck->heap;
9392 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +00009393 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +00009394 u32 size;
9395 pc = get2byteAligned(&data[cellStart+i*2]);
9396 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +00009397 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +00009398 }
drh2e38c322004-09-03 18:38:44 +00009399 }
drhcbc6b712015-07-02 16:17:30 +00009400 /* Add the freeblocks to the min-heap
9401 **
9402 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +00009403 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +00009404 ** freeblocks on the page.
9405 */
drh8c2bbb62009-07-10 02:52:20 +00009406 i = get2byte(&data[hdr+1]);
9407 while( i>0 ){
9408 int size, j;
mistachkinc29cbb02015-07-02 16:52:01 +00009409 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009410 size = get2byte(&data[i+2]);
mistachkinc29cbb02015-07-02 16:52:01 +00009411 assert( (u32)(i+size)<=usableSize ); /* Enforced by btreeInitPage() */
drhe56d4302015-07-08 01:22:52 +00009412 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +00009413 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9414 ** big-endian integer which is the offset in the b-tree page of the next
9415 ** freeblock in the chain, or zero if the freeblock is the last on the
9416 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +00009417 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +00009418 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9419 ** increasing offset. */
drh8c2bbb62009-07-10 02:52:20 +00009420 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
mistachkinc29cbb02015-07-02 16:52:01 +00009421 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009422 i = j;
drh2e38c322004-09-03 18:38:44 +00009423 }
drhcbc6b712015-07-02 16:17:30 +00009424 /* Analyze the min-heap looking for overlap between cells and/or
9425 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +00009426 **
9427 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
9428 ** There is an implied first entry the covers the page header, the cell
9429 ** pointer index, and the gap between the cell pointer index and the start
9430 ** of cell content.
9431 **
9432 ** The loop below pulls entries from the min-heap in order and compares
9433 ** the start_address against the previous end_address. If there is an
9434 ** overlap, that means bytes are used multiple times. If there is a gap,
9435 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +00009436 */
9437 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +00009438 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +00009439 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +00009440 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +00009441 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +00009442 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +00009443 break;
drh67731a92015-04-16 11:56:03 +00009444 }else{
drhcbc6b712015-07-02 16:17:30 +00009445 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +00009446 prev = x;
drh2e38c322004-09-03 18:38:44 +00009447 }
9448 }
drhcbc6b712015-07-02 16:17:30 +00009449 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +00009450 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9451 ** is stored in the fifth field of the b-tree page header.
9452 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9453 ** number of fragmented free bytes within the cell content area.
9454 */
drhcbc6b712015-07-02 16:17:30 +00009455 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +00009456 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +00009457 "Fragmentation of %d bytes reported as %d on page %d",
drhcbc6b712015-07-02 16:17:30 +00009458 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00009459 }
9460 }
drh867db832014-09-26 02:41:05 +00009461
9462end_of_check:
drh72e191e2015-07-04 11:14:20 +00009463 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drhe05b3f82015-07-01 17:53:49 +00009464 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00009465 pCheck->zPfx = saved_zPfx;
9466 pCheck->v1 = saved_v1;
9467 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +00009468 return depth+1;
drh5eddca62001-06-30 21:53:53 +00009469}
drhb7f91642004-10-31 02:22:47 +00009470#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009471
drhb7f91642004-10-31 02:22:47 +00009472#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009473/*
9474** This routine does a complete check of the given BTree file. aRoot[] is
9475** an array of pages numbers were each page number is the root page of
9476** a table. nRoot is the number of entries in aRoot.
9477**
danielk19773509a652009-07-06 18:56:13 +00009478** A read-only or read-write transaction must be opened before calling
9479** this function.
9480**
drhc890fec2008-08-01 20:10:08 +00009481** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00009482** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00009483** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00009484** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00009485*/
drh1dcdbc02007-01-27 02:24:54 +00009486char *sqlite3BtreeIntegrityCheck(
9487 Btree *p, /* The btree to be checked */
9488 int *aRoot, /* An array of root pages numbers for individual trees */
9489 int nRoot, /* Number of entries in aRoot[] */
9490 int mxErr, /* Stop reporting errors after this many */
9491 int *pnErr /* Write number of errors seen to this variable */
9492){
danielk197789d40042008-11-17 14:20:56 +00009493 Pgno i;
drhaaab5722002-02-19 13:39:21 +00009494 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00009495 BtShared *pBt = p->pBt;
drhcbc6b712015-07-02 16:17:30 +00009496 int savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +00009497 char zErr[100];
drhcbc6b712015-07-02 16:17:30 +00009498 VVA_ONLY( int nRef );
drh5eddca62001-06-30 21:53:53 +00009499
drhd677b3d2007-08-20 22:48:41 +00009500 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00009501 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhcc5f8a42016-02-06 22:32:06 +00009502 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
9503 assert( nRef>=0 );
drh5eddca62001-06-30 21:53:53 +00009504 sCheck.pBt = pBt;
9505 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00009506 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00009507 sCheck.mxErr = mxErr;
9508 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00009509 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +00009510 sCheck.zPfx = 0;
9511 sCheck.v1 = 0;
9512 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +00009513 sCheck.aPgRef = 0;
9514 sCheck.heap = 0;
9515 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh5f4a6862016-01-30 12:50:25 +00009516 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
drh0de8c112002-07-06 16:32:14 +00009517 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +00009518 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +00009519 }
dan1235bb12012-04-03 17:43:28 +00009520
9521 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9522 if( !sCheck.aPgRef ){
drhe05b3f82015-07-01 17:53:49 +00009523 sCheck.mallocFailed = 1;
9524 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +00009525 }
drhe05b3f82015-07-01 17:53:49 +00009526 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
9527 if( sCheck.heap==0 ){
9528 sCheck.mallocFailed = 1;
9529 goto integrity_ck_cleanup;
9530 }
9531
drh42cac6d2004-11-20 20:31:11 +00009532 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00009533 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +00009534
9535 /* Check the integrity of the freelist
9536 */
drh867db832014-09-26 02:41:05 +00009537 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +00009538 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +00009539 get4byte(&pBt->pPage1->aData[36]));
9540 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00009541
9542 /* Check all the tables.
9543 */
drhcbc6b712015-07-02 16:17:30 +00009544 testcase( pBt->db->flags & SQLITE_CellSizeCk );
9545 pBt->db->flags &= ~SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +00009546 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +00009547 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +00009548 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00009549#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009550 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +00009551 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009552 }
9553#endif
drhcbc6b712015-07-02 16:17:30 +00009554 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +00009555 }
drhcbc6b712015-07-02 16:17:30 +00009556 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +00009557
9558 /* Make sure every page in the file is referenced
9559 */
drh1dcdbc02007-01-27 02:24:54 +00009560 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00009561#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00009562 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +00009563 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00009564 }
danielk1977afcdd022004-10-31 16:25:42 +00009565#else
9566 /* If the database supports auto-vacuum, make sure no tables contain
9567 ** references to pointer-map pages.
9568 */
dan1235bb12012-04-03 17:43:28 +00009569 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00009570 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009571 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +00009572 }
dan1235bb12012-04-03 17:43:28 +00009573 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00009574 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009575 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +00009576 }
9577#endif
drh5eddca62001-06-30 21:53:53 +00009578 }
9579
drh5eddca62001-06-30 21:53:53 +00009580 /* Clean up and report errors.
9581 */
drhe05b3f82015-07-01 17:53:49 +00009582integrity_ck_cleanup:
9583 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +00009584 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00009585 if( sCheck.mallocFailed ){
9586 sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009587 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +00009588 }
drh1dcdbc02007-01-27 02:24:54 +00009589 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00009590 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009591 /* Make sure this analysis did not leave any unref() pages. */
9592 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
9593 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +00009594 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00009595}
drhb7f91642004-10-31 02:22:47 +00009596#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00009597
drh73509ee2003-04-06 20:44:45 +00009598/*
drhd4e0bb02012-05-27 01:19:04 +00009599** Return the full pathname of the underlying database file. Return
9600** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00009601**
9602** The pager filename is invariant as long as the pager is
9603** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00009604*/
danielk1977aef0bf62005-12-30 16:28:01 +00009605const char *sqlite3BtreeGetFilename(Btree *p){
9606 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00009607 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00009608}
9609
9610/*
danielk19775865e3d2004-06-14 06:03:57 +00009611** Return the pathname of the journal file for this database. The return
9612** value of this routine is the same regardless of whether the journal file
9613** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00009614**
9615** The pager journal filename is invariant as long as the pager is
9616** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00009617*/
danielk1977aef0bf62005-12-30 16:28:01 +00009618const char *sqlite3BtreeGetJournalname(Btree *p){
9619 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00009620 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00009621}
9622
danielk19771d850a72004-05-31 08:26:49 +00009623/*
9624** Return non-zero if a transaction is active.
9625*/
danielk1977aef0bf62005-12-30 16:28:01 +00009626int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00009627 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00009628 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00009629}
9630
dana550f2d2010-08-02 10:47:05 +00009631#ifndef SQLITE_OMIT_WAL
9632/*
9633** Run a checkpoint on the Btree passed as the first argument.
9634**
9635** Return SQLITE_LOCKED if this or any other connection has an open
9636** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00009637**
dancdc1f042010-11-18 12:11:05 +00009638** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00009639*/
dancdc1f042010-11-18 12:11:05 +00009640int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00009641 int rc = SQLITE_OK;
9642 if( p ){
9643 BtShared *pBt = p->pBt;
9644 sqlite3BtreeEnter(p);
9645 if( pBt->inTransaction!=TRANS_NONE ){
9646 rc = SQLITE_LOCKED;
9647 }else{
dan7fb89902016-08-12 16:21:15 +00009648 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00009649 }
9650 sqlite3BtreeLeave(p);
9651 }
9652 return rc;
9653}
9654#endif
9655
danielk19771d850a72004-05-31 08:26:49 +00009656/*
danielk19772372c2b2006-06-27 16:34:56 +00009657** Return non-zero if a read (or write) transaction is active.
9658*/
9659int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00009660 assert( p );
drhe5fe6902007-12-07 18:55:28 +00009661 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00009662 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00009663}
9664
danielk197704103022009-02-03 16:51:24 +00009665int sqlite3BtreeIsInBackup(Btree *p){
9666 assert( p );
9667 assert( sqlite3_mutex_held(p->db->mutex) );
9668 return p->nBackup!=0;
9669}
9670
danielk19772372c2b2006-06-27 16:34:56 +00009671/*
danielk1977da184232006-01-05 11:34:32 +00009672** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00009673** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00009674** purposes (for example, to store a high-level schema associated with
9675** the shared-btree). The btree layer manages reference counting issues.
9676**
9677** The first time this is called on a shared-btree, nBytes bytes of memory
9678** are allocated, zeroed, and returned to the caller. For each subsequent
9679** call the nBytes parameter is ignored and a pointer to the same blob
9680** of memory returned.
9681**
danielk1977171bfed2008-06-23 09:50:50 +00009682** If the nBytes parameter is 0 and the blob of memory has not yet been
9683** allocated, a null pointer is returned. If the blob has already been
9684** allocated, it is returned as normal.
9685**
danielk1977da184232006-01-05 11:34:32 +00009686** Just before the shared-btree is closed, the function passed as the
9687** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00009688** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00009689** on the memory, the btree layer does that.
9690*/
9691void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9692 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00009693 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00009694 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00009695 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00009696 pBt->xFreeSchema = xFree;
9697 }
drh27641702007-08-22 02:56:42 +00009698 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00009699 return pBt->pSchema;
9700}
9701
danielk1977c87d34d2006-01-06 13:00:28 +00009702/*
danielk1977404ca072009-03-16 13:19:36 +00009703** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9704** btree as the argument handle holds an exclusive lock on the
9705** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00009706*/
9707int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00009708 int rc;
drhe5fe6902007-12-07 18:55:28 +00009709 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00009710 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00009711 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9712 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00009713 sqlite3BtreeLeave(p);
9714 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00009715}
9716
drha154dcd2006-03-22 22:10:07 +00009717
9718#ifndef SQLITE_OMIT_SHARED_CACHE
9719/*
9720** Obtain a lock on the table whose root page is iTab. The
9721** lock is a write lock if isWritelock is true or a read lock
9722** if it is false.
9723*/
danielk1977c00da102006-01-07 13:21:04 +00009724int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00009725 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00009726 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00009727 if( p->sharable ){
9728 u8 lockType = READ_LOCK + isWriteLock;
9729 assert( READ_LOCK+1==WRITE_LOCK );
9730 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00009731
drh6a9ad3d2008-04-02 16:29:30 +00009732 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00009733 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009734 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00009735 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009736 }
9737 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00009738 }
9739 return rc;
9740}
drha154dcd2006-03-22 22:10:07 +00009741#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00009742
danielk1977b4e9af92007-05-01 17:49:49 +00009743#ifndef SQLITE_OMIT_INCRBLOB
9744/*
9745** Argument pCsr must be a cursor opened for writing on an
9746** INTKEY table currently pointing at a valid table entry.
9747** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00009748**
9749** Only the data content may only be modified, it is not possible to
9750** change the length of the data stored. If this function is called with
9751** parameters that attempt to write past the end of the existing data,
9752** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00009753*/
danielk1977dcbb5d32007-05-04 18:36:44 +00009754int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00009755 int rc;
dan7a2347e2016-01-07 16:43:54 +00009756 assert( cursorOwnsBtShared(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00009757 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +00009758 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +00009759
danielk1977c9000e62009-07-08 13:55:28 +00009760 rc = restoreCursorPosition(pCsr);
9761 if( rc!=SQLITE_OK ){
9762 return rc;
9763 }
danielk19773588ceb2008-06-10 17:30:26 +00009764 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9765 if( pCsr->eState!=CURSOR_VALID ){
9766 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00009767 }
9768
dan227a1c42013-04-03 11:17:39 +00009769 /* Save the positions of all other cursors open on this table. This is
9770 ** required in case any of them are holding references to an xFetch
9771 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00009772 **
drh3f387402014-09-24 01:23:00 +00009773 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +00009774 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9775 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00009776 */
drh370c9f42013-04-03 20:04:04 +00009777 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9778 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00009779
danielk1977c9000e62009-07-08 13:55:28 +00009780 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00009781 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00009782 ** (b) there is a read/write transaction open,
9783 ** (c) the connection holds a write-lock on the table (if required),
9784 ** (d) there are no conflicting read-locks, and
9785 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00009786 */
drh036dbec2014-03-11 23:40:44 +00009787 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +00009788 return SQLITE_READONLY;
9789 }
drhc9166342012-01-05 23:32:06 +00009790 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9791 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009792 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9793 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00009794 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00009795
drhfb192682009-07-11 18:26:28 +00009796 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00009797}
danielk19772dec9702007-05-02 16:48:37 +00009798
9799/*
dan5a500af2014-03-11 20:33:04 +00009800** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +00009801*/
dan5a500af2014-03-11 20:33:04 +00009802void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +00009803 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +00009804 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +00009805}
danielk1977b4e9af92007-05-01 17:49:49 +00009806#endif
dane04dc882010-04-20 18:53:15 +00009807
9808/*
9809** Set both the "read version" (single byte at byte offset 18) and
9810** "write version" (single byte at byte offset 19) fields in the database
9811** header to iVersion.
9812*/
9813int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9814 BtShared *pBt = pBtree->pBt;
9815 int rc; /* Return code */
9816
dane04dc882010-04-20 18:53:15 +00009817 assert( iVersion==1 || iVersion==2 );
9818
danb9780022010-04-21 18:37:57 +00009819 /* If setting the version fields to 1, do not automatically open the
9820 ** WAL connection, even if the version fields are currently set to 2.
9821 */
drhc9166342012-01-05 23:32:06 +00009822 pBt->btsFlags &= ~BTS_NO_WAL;
9823 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00009824
9825 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00009826 if( rc==SQLITE_OK ){
9827 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00009828 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00009829 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00009830 if( rc==SQLITE_OK ){
9831 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9832 if( rc==SQLITE_OK ){
9833 aData[18] = (u8)iVersion;
9834 aData[19] = (u8)iVersion;
9835 }
9836 }
9837 }
dane04dc882010-04-20 18:53:15 +00009838 }
9839
drhc9166342012-01-05 23:32:06 +00009840 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00009841 return rc;
9842}
dan428c2182012-08-06 18:50:11 +00009843
drhe0997b32015-03-20 14:57:50 +00009844/*
9845** Return true if the cursor has a hint specified. This routine is
9846** only used from within assert() statements
9847*/
9848int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
9849 return (pCsr->hints & mask)!=0;
9850}
drhe0997b32015-03-20 14:57:50 +00009851
drh781597f2014-05-21 08:21:07 +00009852/*
9853** Return true if the given Btree is read-only.
9854*/
9855int sqlite3BtreeIsReadonly(Btree *p){
9856 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9857}
drhdef68892014-11-04 12:11:23 +00009858
9859/*
9860** Return the size of the header added to each page by this module.
9861*/
drh37c057b2014-12-30 00:57:29 +00009862int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
dan20d876f2016-01-07 16:06:22 +00009863
drh5a1fb182016-01-08 19:34:39 +00009864#if !defined(SQLITE_OMIT_SHARED_CACHE)
dan20d876f2016-01-07 16:06:22 +00009865/*
9866** Return true if the Btree passed as the only argument is sharable.
9867*/
9868int sqlite3BtreeSharable(Btree *p){
9869 return p->sharable;
9870}
dan272989b2016-07-06 10:12:02 +00009871
9872/*
9873** Return the number of connections to the BtShared object accessed by
9874** the Btree handle passed as the only argument. For private caches
9875** this is always 1. For shared caches it may be 1 or greater.
9876*/
9877int sqlite3BtreeConnectionCount(Btree *p){
9878 testcase( p->sharable );
9879 return p->pBt->nRef;
9880}
drh5a1fb182016-01-08 19:34:39 +00009881#endif