blob: 7f426cf1962a00769a4f1b9fcb2b4f89f4ed424d [file] [log] [blame]
drh4f26d6c2004-05-26 23:25:30 +00001/*
2** 2004 May 26
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
13** This file contains code use to manipulate "Mem" structure. A "Mem"
14** stores a single value in the VDBE. Mem is an opaque structure visible
15** only within the VDBE. Interface routines refer to a Mem using the
16** name sqlite_value
17*/
18#include "sqliteInt.h"
drh4f26d6c2004-05-26 23:25:30 +000019#include "vdbeInt.h"
20
drh75fd0542014-03-01 16:24:44 +000021#ifdef SQLITE_DEBUG
22/*
23** Check invariants on a Mem object.
24**
25** This routine is intended for use inside of assert() statements, like
26** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
27*/
28int sqlite3VdbeCheckMemInvariants(Mem *p){
drhd3b74202014-09-17 16:41:15 +000029 /* If MEM_Dyn is set then Mem.xDel!=0.
30 ** Mem.xDel is might not be initialized if MEM_Dyn is clear.
drhc91b2fd2014-03-01 18:13:23 +000031 */
32 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
drhc91b2fd2014-03-01 18:13:23 +000033
drh722246e2014-10-07 23:02:24 +000034 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we
35 ** ensure that if Mem.szMalloc>0 then it is safe to do
36 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
37 ** That saves a few cycles in inner loops. */
drh1eda9f72014-09-19 22:30:49 +000038 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );
39
drh74eaba42014-09-18 17:52:15 +000040 /* Cannot be both MEM_Int and MEM_Real at the same time */
41 assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) );
42
drh17bcb102014-09-18 21:25:33 +000043 /* The szMalloc field holds the correct memory allocation size */
44 assert( p->szMalloc==0
45 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) );
46
drhc91b2fd2014-03-01 18:13:23 +000047 /* If p holds a string or blob, the Mem.z must point to exactly
48 ** one of the following:
49 **
50 ** (1) Memory in Mem.zMalloc and managed by the Mem object
51 ** (2) Memory to be freed using Mem.xDel
peter.d.reid60ec9142014-09-06 16:39:46 +000052 ** (3) An ephemeral string or blob
drhc91b2fd2014-03-01 18:13:23 +000053 ** (4) A static string or blob
54 */
drh17bcb102014-09-18 21:25:33 +000055 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
drhc91b2fd2014-03-01 18:13:23 +000056 assert(
drh17bcb102014-09-18 21:25:33 +000057 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
drhc91b2fd2014-03-01 18:13:23 +000058 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
59 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
60 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
61 );
62 }
drh75fd0542014-03-01 16:24:44 +000063 return 1;
64}
65#endif
66
67
drh4f26d6c2004-05-26 23:25:30 +000068/*
danielk1977bfd6cce2004-06-18 04:24:54 +000069** If pMem is an object with a valid string representation, this routine
70** ensures the internal encoding for the string representation is
71** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
drh4f26d6c2004-05-26 23:25:30 +000072**
danielk1977bfd6cce2004-06-18 04:24:54 +000073** If pMem is not a string object, or the encoding of the string
74** representation is already stored using the requested encoding, then this
75** routine is a no-op.
drh4f26d6c2004-05-26 23:25:30 +000076**
77** SQLITE_OK is returned if the conversion is successful (or not required).
78** SQLITE_NOMEM may be returned if a malloc() fails during conversion
79** between formats.
80*/
drhb21c8cd2007-08-21 19:33:56 +000081int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
mistachkinef593f22013-03-07 06:42:53 +000082#ifndef SQLITE_OMIT_UTF16
danielk19772c336542005-01-13 02:14:23 +000083 int rc;
mistachkinef593f22013-03-07 06:42:53 +000084#endif
drh3d4501e2008-12-04 20:40:10 +000085 assert( (pMem->flags&MEM_RowSet)==0 );
drhb27b7f52008-12-10 18:03:45 +000086 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
87 || desiredEnc==SQLITE_UTF16BE );
drheb2e1762004-05-27 01:53:56 +000088 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){
drh4f26d6c2004-05-26 23:25:30 +000089 return SQLITE_OK;
90 }
drhb21c8cd2007-08-21 19:33:56 +000091 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh6c626082004-11-14 21:56:29 +000092#ifdef SQLITE_OMIT_UTF16
93 return SQLITE_ERROR;
94#else
danielk197700fd9572005-12-07 06:27:43 +000095
96 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
97 ** then the encoding of the value may not have changed.
98 */
drhb27b7f52008-12-10 18:03:45 +000099 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
danielk197700fd9572005-12-07 06:27:43 +0000100 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
101 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
102 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
danielk19772c336542005-01-13 02:14:23 +0000103 return rc;
drh6c626082004-11-14 21:56:29 +0000104#endif
drh4f26d6c2004-05-26 23:25:30 +0000105}
106
drheb2e1762004-05-27 01:53:56 +0000107/*
danielk1977a7a8e142008-02-13 18:25:27 +0000108** Make sure pMem->z points to a writable allocation of at least
drhb0e77042013-12-10 19:49:00 +0000109** min(n,32) bytes.
danielk1977a7a8e142008-02-13 18:25:27 +0000110**
drhb0e77042013-12-10 19:49:00 +0000111** If the bPreserve argument is true, then copy of the content of
112** pMem->z into the new allocation. pMem must be either a string or
113** blob if bPreserve is true. If bPreserve is false, any prior content
114** in pMem->z is discarded.
danielk1977a7a8e142008-02-13 18:25:27 +0000115*/
drh322f2852014-09-19 00:43:39 +0000116SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
drh75fd0542014-03-01 16:24:44 +0000117 assert( sqlite3VdbeCheckMemInvariants(pMem) );
drh3d4501e2008-12-04 20:40:10 +0000118 assert( (pMem->flags&MEM_RowSet)==0 );
danielk1977a7a8e142008-02-13 18:25:27 +0000119
drhb0e77042013-12-10 19:49:00 +0000120 /* If the bPreserve flag is set to true, then the memory cell must already
dan2b9ee772012-03-31 09:59:44 +0000121 ** contain a valid string or blob value. */
drhb0e77042013-12-10 19:49:00 +0000122 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
123 testcase( bPreserve && pMem->z==0 );
dan2b9ee772012-03-31 09:59:44 +0000124
drh17bcb102014-09-18 21:25:33 +0000125 assert( pMem->szMalloc==0
126 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) );
127 if( pMem->szMalloc<n ){
drhb0e77042013-12-10 19:49:00 +0000128 if( n<32 ) n = 32;
drh17bcb102014-09-18 21:25:33 +0000129 if( bPreserve && pMem->szMalloc>0 && pMem->z==pMem->zMalloc ){
danielk19775f096132008-03-28 15:44:09 +0000130 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
drhb0e77042013-12-10 19:49:00 +0000131 bPreserve = 0;
danielk19775f096132008-03-28 15:44:09 +0000132 }else{
drh17bcb102014-09-18 21:25:33 +0000133 if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc);
danielk19775f096132008-03-28 15:44:09 +0000134 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
danielk1977a7a8e142008-02-13 18:25:27 +0000135 }
drhb0e77042013-12-10 19:49:00 +0000136 if( pMem->zMalloc==0 ){
drh0725cab2014-09-17 14:52:46 +0000137 sqlite3VdbeMemSetNull(pMem);
drhd1053a42014-03-04 18:06:04 +0000138 pMem->z = 0;
drh17bcb102014-09-18 21:25:33 +0000139 pMem->szMalloc = 0;
drhb0e77042013-12-10 19:49:00 +0000140 return SQLITE_NOMEM;
drh17bcb102014-09-18 21:25:33 +0000141 }else{
142 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
drhb0e77042013-12-10 19:49:00 +0000143 }
danielk1977a7a8e142008-02-13 18:25:27 +0000144 }
danielk19775f096132008-03-28 15:44:09 +0000145
dan74439162014-10-15 11:31:35 +0000146 if( bPreserve && pMem->z && pMem->z!=pMem->zMalloc ){
danielk19775f096132008-03-28 15:44:09 +0000147 memcpy(pMem->zMalloc, pMem->z, pMem->n);
148 }
drhc91b2fd2014-03-01 18:13:23 +0000149 if( (pMem->flags&MEM_Dyn)!=0 ){
150 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
danielk19775f096132008-03-28 15:44:09 +0000151 pMem->xDel((void *)(pMem->z));
152 }
153
154 pMem->z = pMem->zMalloc;
drhc91b2fd2014-03-01 18:13:23 +0000155 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
drhb0e77042013-12-10 19:49:00 +0000156 return SQLITE_OK;
danielk1977a7a8e142008-02-13 18:25:27 +0000157}
158
159/*
drh322f2852014-09-19 00:43:39 +0000160** Change the pMem->zMalloc allocation to be at least szNew bytes.
161** If pMem->zMalloc already meets or exceeds the requested size, this
162** routine is a no-op.
163**
164** Any prior string or blob content in the pMem object may be discarded.
drha5476e92014-09-19 04:42:38 +0000165** The pMem->xDel destructor is called, if it exists. Though MEM_Str
166** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null
167** values are preserved.
drh322f2852014-09-19 00:43:39 +0000168**
169** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
170** if unable to complete the resizing.
171*/
172int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
drh722246e2014-10-07 23:02:24 +0000173 assert( szNew>0 );
174 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 );
drh1eda9f72014-09-19 22:30:49 +0000175 if( pMem->szMalloc<szNew ){
drh322f2852014-09-19 00:43:39 +0000176 return sqlite3VdbeMemGrow(pMem, szNew, 0);
177 }
drh1eda9f72014-09-19 22:30:49 +0000178 assert( (pMem->flags & MEM_Dyn)==0 );
drh322f2852014-09-19 00:43:39 +0000179 pMem->z = pMem->zMalloc;
drha5476e92014-09-19 04:42:38 +0000180 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real);
drh322f2852014-09-19 00:43:39 +0000181 return SQLITE_OK;
182}
183
184/*
drh1eda9f72014-09-19 22:30:49 +0000185** Change pMem so that its MEM_Str or MEM_Blob value is stored in
186** MEM.zMalloc, where it can be safely written.
drheb2e1762004-05-27 01:53:56 +0000187**
188** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
189*/
drhdab898f2008-07-30 13:14:55 +0000190int sqlite3VdbeMemMakeWriteable(Mem *pMem){
danielk1977a7a8e142008-02-13 18:25:27 +0000191 int f;
drhb21c8cd2007-08-21 19:33:56 +0000192 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh3d4501e2008-12-04 20:40:10 +0000193 assert( (pMem->flags&MEM_RowSet)==0 );
drh45d29302012-01-08 22:18:33 +0000194 ExpandBlob(pMem);
danielk1977a7a8e142008-02-13 18:25:27 +0000195 f = pMem->flags;
drh17bcb102014-09-18 21:25:33 +0000196 if( (f&(MEM_Str|MEM_Blob)) && (pMem->szMalloc==0 || pMem->z!=pMem->zMalloc) ){
danielk1977a7a8e142008-02-13 18:25:27 +0000197 if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){
198 return SQLITE_NOMEM;
199 }
200 pMem->z[pMem->n] = 0;
201 pMem->z[pMem->n+1] = 0;
202 pMem->flags |= MEM_Term;
drheb2e1762004-05-27 01:53:56 +0000203 }
drhbd6789e2015-04-28 14:00:02 +0000204 pMem->flags &= ~MEM_Ephem;
205#ifdef SQLITE_DEBUG
206 pMem->pScopyFrom = 0;
207#endif
danielk1977a7a8e142008-02-13 18:25:27 +0000208
drhf4479502004-05-27 03:12:53 +0000209 return SQLITE_OK;
drheb2e1762004-05-27 01:53:56 +0000210}
211
212/*
drhfdf972a2007-05-02 13:30:27 +0000213** If the given Mem* has a zero-filled tail, turn it into an ordinary
drhb026e052007-05-02 01:34:31 +0000214** blob stored in dynamically allocated space.
215*/
danielk1977246ad312007-05-16 14:23:00 +0000216#ifndef SQLITE_OMIT_INCRBLOB
drhb21c8cd2007-08-21 19:33:56 +0000217int sqlite3VdbeMemExpandBlob(Mem *pMem){
drhb026e052007-05-02 01:34:31 +0000218 if( pMem->flags & MEM_Zero ){
drh98640a32007-06-07 19:08:32 +0000219 int nByte;
danielk1977a7a8e142008-02-13 18:25:27 +0000220 assert( pMem->flags&MEM_Blob );
drh3d4501e2008-12-04 20:40:10 +0000221 assert( (pMem->flags&MEM_RowSet)==0 );
drhb21c8cd2007-08-21 19:33:56 +0000222 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
danielk1977a7a8e142008-02-13 18:25:27 +0000223
224 /* Set nByte to the number of bytes required to store the expanded blob. */
drh8df32842008-12-09 02:51:23 +0000225 nByte = pMem->n + pMem->u.nZero;
danielk1977a7a8e142008-02-13 18:25:27 +0000226 if( nByte<=0 ){
227 nByte = 1;
228 }
229 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
drhb026e052007-05-02 01:34:31 +0000230 return SQLITE_NOMEM;
231 }
danielk1977a7a8e142008-02-13 18:25:27 +0000232
drh8df32842008-12-09 02:51:23 +0000233 memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
234 pMem->n += pMem->u.nZero;
danielk1977a7a8e142008-02-13 18:25:27 +0000235 pMem->flags &= ~(MEM_Zero|MEM_Term);
drhb026e052007-05-02 01:34:31 +0000236 }
237 return SQLITE_OK;
238}
danielk1977246ad312007-05-16 14:23:00 +0000239#endif
drhb026e052007-05-02 01:34:31 +0000240
drhb026e052007-05-02 01:34:31 +0000241/*
drhb63388b2014-08-27 00:50:11 +0000242** It is already known that pMem contains an unterminated string.
243** Add the zero terminator.
drheb2e1762004-05-27 01:53:56 +0000244*/
drhb63388b2014-08-27 00:50:11 +0000245static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){
danielk1977a7a8e142008-02-13 18:25:27 +0000246 if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){
247 return SQLITE_NOMEM;
danielk19773f6b0872004-06-17 05:36:44 +0000248 }
danielk1977a7a8e142008-02-13 18:25:27 +0000249 pMem->z[pMem->n] = 0;
250 pMem->z[pMem->n+1] = 0;
251 pMem->flags |= MEM_Term;
danielk19773f6b0872004-06-17 05:36:44 +0000252 return SQLITE_OK;
drheb2e1762004-05-27 01:53:56 +0000253}
254
255/*
drhb63388b2014-08-27 00:50:11 +0000256** Make sure the given Mem is \u0000 terminated.
257*/
258int sqlite3VdbeMemNulTerminate(Mem *pMem){
259 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
260 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) );
261 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 );
262 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){
263 return SQLITE_OK; /* Nothing to do */
264 }else{
265 return vdbeMemAddTerminator(pMem);
266 }
267}
268
269/*
danielk197713073932004-06-30 11:54:06 +0000270** Add MEM_Str to the set of representations for the given Mem. Numbers
271** are converted using sqlite3_snprintf(). Converting a BLOB to a string
272** is a no-op.
drheb2e1762004-05-27 01:53:56 +0000273**
drhbd9507c2014-08-23 17:21:37 +0000274** Existing representations MEM_Int and MEM_Real are invalidated if
275** bForce is true but are retained if bForce is false.
danielk197713073932004-06-30 11:54:06 +0000276**
277** A MEM_Null value will never be passed to this function. This function is
278** used for converting values to text for returning to the user (i.e. via
279** sqlite3_value_text()), or for ensuring that values to be used as btree
280** keys are strings. In the former case a NULL pointer is returned the
peter.d.reid60ec9142014-09-06 16:39:46 +0000281** user and the latter is an internal programming error.
drheb2e1762004-05-27 01:53:56 +0000282*/
drhbd9507c2014-08-23 17:21:37 +0000283int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
drheb2e1762004-05-27 01:53:56 +0000284 int fg = pMem->flags;
danielk1977a7a8e142008-02-13 18:25:27 +0000285 const int nByte = 32;
drheb2e1762004-05-27 01:53:56 +0000286
drhb21c8cd2007-08-21 19:33:56 +0000287 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
danielk1977def0fec2007-05-10 15:37:52 +0000288 assert( !(fg&MEM_Zero) );
drheb2e1762004-05-27 01:53:56 +0000289 assert( !(fg&(MEM_Str|MEM_Blob)) );
danielk197713073932004-06-30 11:54:06 +0000290 assert( fg&(MEM_Int|MEM_Real) );
drh3d4501e2008-12-04 20:40:10 +0000291 assert( (pMem->flags&MEM_RowSet)==0 );
drhea598cb2009-04-05 12:22:08 +0000292 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
drh3d4501e2008-12-04 20:40:10 +0000293
drheb2e1762004-05-27 01:53:56 +0000294
drh322f2852014-09-19 00:43:39 +0000295 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
danielk1977a7a8e142008-02-13 18:25:27 +0000296 return SQLITE_NOMEM;
297 }
298
drhbd9507c2014-08-23 17:21:37 +0000299 /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8
danielk197713073932004-06-30 11:54:06 +0000300 ** string representation of the value. Then, if the required encoding
301 ** is UTF-16le or UTF-16be do a translation.
302 **
303 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
304 */
drh8df447f2005-11-01 15:48:24 +0000305 if( fg & MEM_Int ){
danielk1977a7a8e142008-02-13 18:25:27 +0000306 sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
drh8df447f2005-11-01 15:48:24 +0000307 }else{
308 assert( fg & MEM_Real );
drh74eaba42014-09-18 17:52:15 +0000309 sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r);
drheb2e1762004-05-27 01:53:56 +0000310 }
drhea678832008-12-10 19:26:22 +0000311 pMem->n = sqlite3Strlen30(pMem->z);
danielk197713073932004-06-30 11:54:06 +0000312 pMem->enc = SQLITE_UTF8;
danielk1977a7a8e142008-02-13 18:25:27 +0000313 pMem->flags |= MEM_Str|MEM_Term;
drhbd9507c2014-08-23 17:21:37 +0000314 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real);
drhb21c8cd2007-08-21 19:33:56 +0000315 sqlite3VdbeChangeEncoding(pMem, enc);
drhbd9507c2014-08-23 17:21:37 +0000316 return SQLITE_OK;
drheb2e1762004-05-27 01:53:56 +0000317}
318
319/*
drhabfcea22005-09-06 20:36:48 +0000320** Memory cell pMem contains the context of an aggregate function.
321** This routine calls the finalize method for that function. The
322** result of the aggregate is stored back into pMem.
drh90669c12006-01-20 15:45:36 +0000323**
324** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
325** otherwise.
drhabfcea22005-09-06 20:36:48 +0000326*/
drh90669c12006-01-20 15:45:36 +0000327int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
328 int rc = SQLITE_OK;
drh4c8555f2009-06-25 01:47:11 +0000329 if( ALWAYS(pFunc && pFunc->xFinalize) ){
drha10a34b2005-09-07 22:09:48 +0000330 sqlite3_context ctx;
drh9bd038f2014-08-27 14:14:06 +0000331 Mem t;
drh3c024d62007-03-30 11:23:45 +0000332 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
drhb21c8cd2007-08-21 19:33:56 +0000333 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh709b8cb2008-08-22 14:41:00 +0000334 memset(&ctx, 0, sizeof(ctx));
drh9bd038f2014-08-27 14:14:06 +0000335 memset(&t, 0, sizeof(t));
336 t.flags = MEM_Null;
337 t.db = pMem->db;
338 ctx.pOut = &t;
drha10a34b2005-09-07 22:09:48 +0000339 ctx.pMem = pMem;
340 ctx.pFunc = pFunc;
drhee9ff672010-09-03 18:50:48 +0000341 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
drhd3b74202014-09-17 16:41:15 +0000342 assert( (pMem->flags & MEM_Dyn)==0 );
drh17bcb102014-09-18 21:25:33 +0000343 if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc);
drh9bd038f2014-08-27 14:14:06 +0000344 memcpy(pMem, &t, sizeof(t));
drh4c8555f2009-06-25 01:47:11 +0000345 rc = ctx.isError;
drhabfcea22005-09-06 20:36:48 +0000346 }
drh90669c12006-01-20 15:45:36 +0000347 return rc;
drhabfcea22005-09-06 20:36:48 +0000348}
349
350/*
drh8740a602014-09-16 20:05:21 +0000351** If the memory cell contains a value that must be freed by
drh0725cab2014-09-17 14:52:46 +0000352** invoking the external callback in Mem.xDel, then this routine
353** will free that value. It also sets Mem.flags to MEM_Null.
drh8740a602014-09-16 20:05:21 +0000354**
drh0725cab2014-09-17 14:52:46 +0000355** This is a helper routine for sqlite3VdbeMemSetNull() and
356** for sqlite3VdbeMemRelease(). Use those other routines as the
357** entry point for releasing Mem resources.
danielk19775f096132008-03-28 15:44:09 +0000358*/
drh0725cab2014-09-17 14:52:46 +0000359static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
danielk19775f096132008-03-28 15:44:09 +0000360 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
drh0725cab2014-09-17 14:52:46 +0000361 assert( VdbeMemDynamic(p) );
drh2d36eb42011-08-29 02:49:41 +0000362 if( p->flags&MEM_Agg ){
363 sqlite3VdbeMemFinalize(p, p->u.pDef);
364 assert( (p->flags & MEM_Agg)==0 );
drh0725cab2014-09-17 14:52:46 +0000365 testcase( p->flags & MEM_Dyn );
366 }
367 if( p->flags&MEM_Dyn ){
drh2d36eb42011-08-29 02:49:41 +0000368 assert( (p->flags&MEM_RowSet)==0 );
drhc91b2fd2014-03-01 18:13:23 +0000369 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
drh2d36eb42011-08-29 02:49:41 +0000370 p->xDel((void *)p->z);
drh2d36eb42011-08-29 02:49:41 +0000371 }else if( p->flags&MEM_RowSet ){
372 sqlite3RowSetClear(p->u.pRowSet);
373 }else if( p->flags&MEM_Frame ){
drh6b478bc2014-09-16 21:54:11 +0000374 VdbeFrame *pFrame = p->u.pFrame;
375 pFrame->pParent = pFrame->v->pDelFrame;
376 pFrame->v->pDelFrame = pFrame;
danielk19775f096132008-03-28 15:44:09 +0000377 }
drh6b478bc2014-09-16 21:54:11 +0000378 p->flags = MEM_Null;
danielk19775f096132008-03-28 15:44:09 +0000379}
380
381/*
drh12b7c7d2014-08-25 11:20:27 +0000382** Release memory held by the Mem p, both external memory cleared
383** by p->xDel and memory in p->zMalloc.
384**
385** This is a helper routine invoked by sqlite3VdbeMemRelease() in
drh0725cab2014-09-17 14:52:46 +0000386** the unusual case where there really is memory in p that needs
387** to be freed.
drh12b7c7d2014-08-25 11:20:27 +0000388*/
drh0725cab2014-09-17 14:52:46 +0000389static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
drh12b7c7d2014-08-25 11:20:27 +0000390 if( VdbeMemDynamic(p) ){
drh0725cab2014-09-17 14:52:46 +0000391 vdbeMemClearExternAndSetNull(p);
drh12b7c7d2014-08-25 11:20:27 +0000392 }
drh17bcb102014-09-18 21:25:33 +0000393 if( p->szMalloc ){
drh12b7c7d2014-08-25 11:20:27 +0000394 sqlite3DbFree(p->db, p->zMalloc);
drh17bcb102014-09-18 21:25:33 +0000395 p->szMalloc = 0;
drh12b7c7d2014-08-25 11:20:27 +0000396 }
397 p->z = 0;
398}
399
400/*
drh0725cab2014-09-17 14:52:46 +0000401** Release any memory resources held by the Mem. Both the memory that is
402** free by Mem.xDel and the Mem.zMalloc allocation are freed.
drh8740a602014-09-16 20:05:21 +0000403**
drh0725cab2014-09-17 14:52:46 +0000404** Use this routine prior to clean up prior to abandoning a Mem, or to
405** reset a Mem back to its minimum memory utilization.
406**
407** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
408** prior to inserting new content into the Mem.
drhf4479502004-05-27 03:12:53 +0000409*/
danielk1977d8123362004-06-12 09:25:12 +0000410void sqlite3VdbeMemRelease(Mem *p){
drh75fd0542014-03-01 16:24:44 +0000411 assert( sqlite3VdbeCheckMemInvariants(p) );
drh17bcb102014-09-18 21:25:33 +0000412 if( VdbeMemDynamic(p) || p->szMalloc ){
drh0725cab2014-09-17 14:52:46 +0000413 vdbeMemClear(p);
drh7250c542013-12-09 03:07:21 +0000414 }
drhf4479502004-05-27 03:12:53 +0000415}
416
417/*
drhd8c303f2008-01-11 15:27:03 +0000418** Convert a 64-bit IEEE double into a 64-bit signed integer.
drhde1a8b82013-11-26 15:45:02 +0000419** If the double is out of range of a 64-bit signed integer then
420** return the closest available 64-bit signed integer.
drhd8c303f2008-01-11 15:27:03 +0000421*/
422static i64 doubleToInt64(double r){
drh52d14522010-01-13 15:15:40 +0000423#ifdef SQLITE_OMIT_FLOATING_POINT
424 /* When floating-point is omitted, double and int64 are the same thing */
425 return r;
426#else
drhd8c303f2008-01-11 15:27:03 +0000427 /*
428 ** Many compilers we encounter do not define constants for the
429 ** minimum and maximum 64-bit integers, or they define them
430 ** inconsistently. And many do not understand the "LL" notation.
431 ** So we define our own static constants here using nothing
432 ** larger than a 32-bit integer constant.
433 */
drh0f050352008-05-09 18:03:13 +0000434 static const i64 maxInt = LARGEST_INT64;
435 static const i64 minInt = SMALLEST_INT64;
drhd8c303f2008-01-11 15:27:03 +0000436
drhde1a8b82013-11-26 15:45:02 +0000437 if( r<=(double)minInt ){
drhd8c303f2008-01-11 15:27:03 +0000438 return minInt;
drhde1a8b82013-11-26 15:45:02 +0000439 }else if( r>=(double)maxInt ){
440 return maxInt;
drhd8c303f2008-01-11 15:27:03 +0000441 }else{
442 return (i64)r;
443 }
drh52d14522010-01-13 15:15:40 +0000444#endif
drhd8c303f2008-01-11 15:27:03 +0000445}
446
447/*
drh6a6124e2004-06-27 01:56:33 +0000448** Return some kind of integer value which is the best we can do
449** at representing the value that *pMem describes as an integer.
450** If pMem is an integer, then the value is exact. If pMem is
451** a floating-point then the value returned is the integer part.
452** If pMem is a string or blob, then we make an attempt to convert
peter.d.reid60ec9142014-09-06 16:39:46 +0000453** it into an integer and return that. If pMem represents an
drh347a7cb2009-03-23 21:37:04 +0000454** an SQL-NULL value, return 0.
drh6a6124e2004-06-27 01:56:33 +0000455**
drh347a7cb2009-03-23 21:37:04 +0000456** If pMem represents a string value, its encoding might be changed.
drheb2e1762004-05-27 01:53:56 +0000457*/
drh6a6124e2004-06-27 01:56:33 +0000458i64 sqlite3VdbeIntValue(Mem *pMem){
drhb21c8cd2007-08-21 19:33:56 +0000459 int flags;
460 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drhea598cb2009-04-05 12:22:08 +0000461 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
drhb21c8cd2007-08-21 19:33:56 +0000462 flags = pMem->flags;
drh6fec0762004-05-30 01:38:43 +0000463 if( flags & MEM_Int ){
drh3c024d62007-03-30 11:23:45 +0000464 return pMem->u.i;
drh6fec0762004-05-30 01:38:43 +0000465 }else if( flags & MEM_Real ){
drh74eaba42014-09-18 17:52:15 +0000466 return doubleToInt64(pMem->u.r);
drh6fec0762004-05-30 01:38:43 +0000467 }else if( flags & (MEM_Str|MEM_Blob) ){
drh158b9cb2011-03-05 20:59:46 +0000468 i64 value = 0;
drh9339da12010-09-30 00:50:49 +0000469 assert( pMem->z || pMem->n==0 );
drh9339da12010-09-30 00:50:49 +0000470 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
drh6a6124e2004-06-27 01:56:33 +0000471 return value;
drheb2e1762004-05-27 01:53:56 +0000472 }else{
drh6a6124e2004-06-27 01:56:33 +0000473 return 0;
drheb2e1762004-05-27 01:53:56 +0000474 }
drh6a6124e2004-06-27 01:56:33 +0000475}
476
477/*
drh6a6124e2004-06-27 01:56:33 +0000478** Return the best representation of pMem that we can get into a
479** double. If pMem is already a double or an integer, return its
480** value. If it is a string or blob, try to convert it to a double.
481** If it is a NULL, return 0.0.
drheb2e1762004-05-27 01:53:56 +0000482*/
drh6a6124e2004-06-27 01:56:33 +0000483double sqlite3VdbeRealValue(Mem *pMem){
drhb21c8cd2007-08-21 19:33:56 +0000484 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drhea598cb2009-04-05 12:22:08 +0000485 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
danielk1977f93bbbe2004-05-27 10:30:52 +0000486 if( pMem->flags & MEM_Real ){
drh74eaba42014-09-18 17:52:15 +0000487 return pMem->u.r;
drh6a6124e2004-06-27 01:56:33 +0000488 }else if( pMem->flags & MEM_Int ){
drh3c024d62007-03-30 11:23:45 +0000489 return (double)pMem->u.i;
drheb2e1762004-05-27 01:53:56 +0000490 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
shanefbd60f82009-02-04 03:59:25 +0000491 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
492 double val = (double)0;
drhe062d7b2010-10-05 12:05:32 +0000493 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
drh487e2622005-06-25 18:42:14 +0000494 return val;
drheb2e1762004-05-27 01:53:56 +0000495 }else{
shanefbd60f82009-02-04 03:59:25 +0000496 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
497 return (double)0;
drheb2e1762004-05-27 01:53:56 +0000498 }
drh6a6124e2004-06-27 01:56:33 +0000499}
500
501/*
drh8df447f2005-11-01 15:48:24 +0000502** The MEM structure is already a MEM_Real. Try to also make it a
503** MEM_Int if we can.
504*/
505void sqlite3VdbeIntegerAffinity(Mem *pMem){
drh74eaba42014-09-18 17:52:15 +0000506 i64 ix;
drh8df447f2005-11-01 15:48:24 +0000507 assert( pMem->flags & MEM_Real );
drh3d4501e2008-12-04 20:40:10 +0000508 assert( (pMem->flags & MEM_RowSet)==0 );
drhb21c8cd2007-08-21 19:33:56 +0000509 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drhea598cb2009-04-05 12:22:08 +0000510 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
drhefe3d652008-01-11 00:06:10 +0000511
drh74eaba42014-09-18 17:52:15 +0000512 ix = doubleToInt64(pMem->u.r);
drh94c3a2b2009-06-17 16:20:04 +0000513
514 /* Only mark the value as an integer if
515 **
516 ** (1) the round-trip conversion real->int->real is a no-op, and
517 ** (2) The integer is neither the largest nor the smallest
518 ** possible integer (ticket #3922)
519 **
drhe74871a2009-08-14 17:53:39 +0000520 ** The second and third terms in the following conditional enforces
521 ** the second condition under the assumption that addition overflow causes
drhde1a8b82013-11-26 15:45:02 +0000522 ** values to wrap around.
drh94c3a2b2009-06-17 16:20:04 +0000523 */
drh74eaba42014-09-18 17:52:15 +0000524 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
525 pMem->u.i = ix;
526 MemSetTypeFlag(pMem, MEM_Int);
drh8df447f2005-11-01 15:48:24 +0000527 }
528}
529
drh8a512562005-11-14 22:29:05 +0000530/*
531** Convert pMem to type integer. Invalidate any prior representations.
532*/
533int sqlite3VdbeMemIntegerify(Mem *pMem){
drhb21c8cd2007-08-21 19:33:56 +0000534 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh3d4501e2008-12-04 20:40:10 +0000535 assert( (pMem->flags & MEM_RowSet)==0 );
drhea598cb2009-04-05 12:22:08 +0000536 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
537
drh3c024d62007-03-30 11:23:45 +0000538 pMem->u.i = sqlite3VdbeIntValue(pMem);
drh3d4501e2008-12-04 20:40:10 +0000539 MemSetTypeFlag(pMem, MEM_Int);
drh8a512562005-11-14 22:29:05 +0000540 return SQLITE_OK;
541}
drh8df447f2005-11-01 15:48:24 +0000542
543/*
drh8a512562005-11-14 22:29:05 +0000544** Convert pMem so that it is of type MEM_Real.
545** Invalidate any prior representations.
drh6a6124e2004-06-27 01:56:33 +0000546*/
547int sqlite3VdbeMemRealify(Mem *pMem){
drhb21c8cd2007-08-21 19:33:56 +0000548 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drhea598cb2009-04-05 12:22:08 +0000549 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
550
drh74eaba42014-09-18 17:52:15 +0000551 pMem->u.r = sqlite3VdbeRealValue(pMem);
drh3d4501e2008-12-04 20:40:10 +0000552 MemSetTypeFlag(pMem, MEM_Real);
drh8a512562005-11-14 22:29:05 +0000553 return SQLITE_OK;
554}
555
556/*
557** Convert pMem so that it has types MEM_Real or MEM_Int or both.
558** Invalidate any prior representations.
drh4b5db5a2010-01-21 01:53:07 +0000559**
560** Every effort is made to force the conversion, even if the input
561** is a string that does not look completely like a number. Convert
562** as much of the string as we can and ignore the rest.
drh8a512562005-11-14 22:29:05 +0000563*/
564int sqlite3VdbeMemNumerify(Mem *pMem){
drh93518622010-09-30 14:48:06 +0000565 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){
566 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
567 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
shaneh5f1d6b62010-09-30 16:51:25 +0000568 if( 0==sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc) ){
drh93518622010-09-30 14:48:06 +0000569 MemSetTypeFlag(pMem, MEM_Int);
570 }else{
drh74eaba42014-09-18 17:52:15 +0000571 pMem->u.r = sqlite3VdbeRealValue(pMem);
drh93518622010-09-30 14:48:06 +0000572 MemSetTypeFlag(pMem, MEM_Real);
573 sqlite3VdbeIntegerAffinity(pMem);
574 }
drhcd7b46d2007-05-16 11:55:56 +0000575 }
drh93518622010-09-30 14:48:06 +0000576 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 );
577 pMem->flags &= ~(MEM_Str|MEM_Blob);
drhf4479502004-05-27 03:12:53 +0000578 return SQLITE_OK;
drh4f26d6c2004-05-26 23:25:30 +0000579}
580
581/*
drh4169e432014-08-25 20:11:52 +0000582** Cast the datatype of the value in pMem according to the affinity
583** "aff". Casting is different from applying affinity in that a cast
584** is forced. In other words, the value is converted into the desired
585** affinity even if that results in loss of data. This routine is
586** used (for example) to implement the SQL "cast()" operator.
587*/
588void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){
589 if( pMem->flags & MEM_Null ) return;
590 switch( aff ){
drh05883a32015-06-02 15:32:08 +0000591 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */
drh4169e432014-08-25 20:11:52 +0000592 if( (pMem->flags & MEM_Blob)==0 ){
593 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
594 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
595 MemSetTypeFlag(pMem, MEM_Blob);
596 }else{
597 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob);
598 }
599 break;
600 }
601 case SQLITE_AFF_NUMERIC: {
602 sqlite3VdbeMemNumerify(pMem);
603 break;
604 }
605 case SQLITE_AFF_INTEGER: {
606 sqlite3VdbeMemIntegerify(pMem);
607 break;
608 }
609 case SQLITE_AFF_REAL: {
610 sqlite3VdbeMemRealify(pMem);
611 break;
612 }
613 default: {
614 assert( aff==SQLITE_AFF_TEXT );
615 assert( MEM_Str==(MEM_Blob>>3) );
616 pMem->flags |= (pMem->flags&MEM_Blob)>>3;
617 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
618 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
619 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
620 break;
621 }
622 }
623}
624
drhd3b74202014-09-17 16:41:15 +0000625/*
626** Initialize bulk memory to be a consistent Mem object.
627**
628** The minimum amount of initialization feasible is performed.
629*/
630void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
631 assert( (flags & ~MEM_TypeMask)==0 );
632 pMem->flags = flags;
633 pMem->db = db;
drh17bcb102014-09-18 21:25:33 +0000634 pMem->szMalloc = 0;
drhd3b74202014-09-17 16:41:15 +0000635}
636
drh4169e432014-08-25 20:11:52 +0000637
638/*
drh4f26d6c2004-05-26 23:25:30 +0000639** Delete any previous value and set the value stored in *pMem to NULL.
drh0725cab2014-09-17 14:52:46 +0000640**
641** This routine calls the Mem.xDel destructor to dispose of values that
642** require the destructor. But it preserves the Mem.zMalloc memory allocation.
643** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
644** routine to invoke the destructor and deallocates Mem.zMalloc.
645**
646** Use this routine to reset the Mem prior to insert a new value.
647**
648** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
drh4f26d6c2004-05-26 23:25:30 +0000649*/
650void sqlite3VdbeMemSetNull(Mem *pMem){
drh6b478bc2014-09-16 21:54:11 +0000651 if( VdbeMemDynamic(pMem) ){
drh0725cab2014-09-17 14:52:46 +0000652 vdbeMemClearExternAndSetNull(pMem);
drh6b478bc2014-09-16 21:54:11 +0000653 }else{
654 pMem->flags = MEM_Null;
dan165921a2009-08-28 18:53:45 +0000655 }
drh4f26d6c2004-05-26 23:25:30 +0000656}
drha3cc0072013-12-13 16:23:55 +0000657void sqlite3ValueSetNull(sqlite3_value *p){
658 sqlite3VdbeMemSetNull((Mem*)p);
659}
drh4f26d6c2004-05-26 23:25:30 +0000660
661/*
drhb026e052007-05-02 01:34:31 +0000662** Delete any previous value and set the value to be a BLOB of length
663** n containing all zeros.
664*/
665void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
666 sqlite3VdbeMemRelease(pMem);
danielk1977a7a8e142008-02-13 18:25:27 +0000667 pMem->flags = MEM_Blob|MEM_Zero;
drhb026e052007-05-02 01:34:31 +0000668 pMem->n = 0;
drh98640a32007-06-07 19:08:32 +0000669 if( n<0 ) n = 0;
drh8df32842008-12-09 02:51:23 +0000670 pMem->u.nZero = n;
danielk1977def0fec2007-05-10 15:37:52 +0000671 pMem->enc = SQLITE_UTF8;
drh0725cab2014-09-17 14:52:46 +0000672 pMem->z = 0;
drhb026e052007-05-02 01:34:31 +0000673}
674
675/*
drh9bd038f2014-08-27 14:14:06 +0000676** The pMem is known to contain content that needs to be destroyed prior
677** to a value change. So invoke the destructor, then set the value to
678** a 64-bit integer.
679*/
680static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
drh0725cab2014-09-17 14:52:46 +0000681 sqlite3VdbeMemSetNull(pMem);
drh9bd038f2014-08-27 14:14:06 +0000682 pMem->u.i = val;
683 pMem->flags = MEM_Int;
684}
685
686/*
drh4f26d6c2004-05-26 23:25:30 +0000687** Delete any previous value and set the value stored in *pMem to val,
688** manifest type INTEGER.
689*/
drheb2e1762004-05-27 01:53:56 +0000690void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
drh9bd038f2014-08-27 14:14:06 +0000691 if( VdbeMemDynamic(pMem) ){
692 vdbeReleaseAndSetInt64(pMem, val);
693 }else{
694 pMem->u.i = val;
695 pMem->flags = MEM_Int;
696 }
drh4f26d6c2004-05-26 23:25:30 +0000697}
698
drh7ec5ea92010-01-13 00:04:13 +0000699#ifndef SQLITE_OMIT_FLOATING_POINT
drh4f26d6c2004-05-26 23:25:30 +0000700/*
701** Delete any previous value and set the value stored in *pMem to val,
702** manifest type REAL.
703*/
drheb2e1762004-05-27 01:53:56 +0000704void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
drh0725cab2014-09-17 14:52:46 +0000705 sqlite3VdbeMemSetNull(pMem);
706 if( !sqlite3IsNaN(val) ){
drh74eaba42014-09-18 17:52:15 +0000707 pMem->u.r = val;
drh53c14022007-05-10 17:23:11 +0000708 pMem->flags = MEM_Real;
drh53c14022007-05-10 17:23:11 +0000709 }
drh4f26d6c2004-05-26 23:25:30 +0000710}
drh7ec5ea92010-01-13 00:04:13 +0000711#endif
drh4f26d6c2004-05-26 23:25:30 +0000712
713/*
drh3d4501e2008-12-04 20:40:10 +0000714** Delete any previous value and set the value of pMem to be an
715** empty boolean index.
716*/
717void sqlite3VdbeMemSetRowSet(Mem *pMem){
718 sqlite3 *db = pMem->db;
719 assert( db!=0 );
drh4c8555f2009-06-25 01:47:11 +0000720 assert( (pMem->flags & MEM_RowSet)==0 );
721 sqlite3VdbeMemRelease(pMem);
722 pMem->zMalloc = sqlite3DbMallocRaw(db, 64);
drh8d993632008-12-04 22:17:55 +0000723 if( db->mallocFailed ){
724 pMem->flags = MEM_Null;
drh17bcb102014-09-18 21:25:33 +0000725 pMem->szMalloc = 0;
drh8d993632008-12-04 22:17:55 +0000726 }else{
drh3d4501e2008-12-04 20:40:10 +0000727 assert( pMem->zMalloc );
drh17bcb102014-09-18 21:25:33 +0000728 pMem->szMalloc = sqlite3DbMallocSize(db, pMem->zMalloc);
729 pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, pMem->szMalloc);
drh3d4501e2008-12-04 20:40:10 +0000730 assert( pMem->u.pRowSet!=0 );
drh8d993632008-12-04 22:17:55 +0000731 pMem->flags = MEM_RowSet;
drh3d4501e2008-12-04 20:40:10 +0000732 }
733}
734
735/*
drh023ae032007-05-08 12:12:16 +0000736** Return true if the Mem object contains a TEXT or BLOB that is
737** too large - whose size exceeds SQLITE_MAX_LENGTH.
738*/
739int sqlite3VdbeMemTooBig(Mem *p){
drhfa4a4b92008-03-19 21:45:51 +0000740 assert( p->db!=0 );
drh023ae032007-05-08 12:12:16 +0000741 if( p->flags & (MEM_Str|MEM_Blob) ){
742 int n = p->n;
743 if( p->flags & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +0000744 n += p->u.nZero;
drh023ae032007-05-08 12:12:16 +0000745 }
drhbb4957f2008-03-20 14:03:29 +0000746 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
drh023ae032007-05-08 12:12:16 +0000747 }
748 return 0;
749}
750
drh2b4ded92010-09-27 21:09:31 +0000751#ifdef SQLITE_DEBUG
752/*
peter.d.reid60ec9142014-09-06 16:39:46 +0000753** This routine prepares a memory cell for modification by breaking
drh2b4ded92010-09-27 21:09:31 +0000754** its link to a shallow copy and by marking any current shallow
755** copies of this cell as invalid.
756**
757** This is used for testing and debugging only - to make sure shallow
758** copies are not misused.
759*/
drhe4c88c02012-01-04 12:57:45 +0000760void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
drh2b4ded92010-09-27 21:09:31 +0000761 int i;
762 Mem *pX;
763 for(i=1, pX=&pVdbe->aMem[1]; i<=pVdbe->nMem; i++, pX++){
764 if( pX->pScopyFrom==pMem ){
drha5750cf2014-02-07 13:20:31 +0000765 pX->flags |= MEM_Undefined;
drh2b4ded92010-09-27 21:09:31 +0000766 pX->pScopyFrom = 0;
767 }
768 }
769 pMem->pScopyFrom = 0;
770}
771#endif /* SQLITE_DEBUG */
772
danielk19775f096132008-03-28 15:44:09 +0000773
drh023ae032007-05-08 12:12:16 +0000774/*
drhfebe1062004-08-28 18:17:48 +0000775** Make an shallow copy of pFrom into pTo. Prior contents of
drha05a7222008-01-19 03:35:58 +0000776** pTo are freed. The pFrom->z field is not duplicated. If
drhfebe1062004-08-28 18:17:48 +0000777** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
778** and flags gets srcType (either MEM_Ephem or MEM_Static).
drh4f26d6c2004-05-26 23:25:30 +0000779*/
drhfebe1062004-08-28 18:17:48 +0000780void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
drh3d4501e2008-12-04 20:40:10 +0000781 assert( (pFrom->flags & MEM_RowSet)==0 );
drh035e5632014-09-16 14:16:31 +0000782 assert( pTo->db==pFrom->db );
drh0725cab2014-09-17 14:52:46 +0000783 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
danielk19775f096132008-03-28 15:44:09 +0000784 memcpy(pTo, pFrom, MEMCELLSIZE);
dan5fea9072010-03-05 18:46:12 +0000785 if( (pFrom->flags&MEM_Static)==0 ){
danielk1977a7a8e142008-02-13 18:25:27 +0000786 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
drhfebe1062004-08-28 18:17:48 +0000787 assert( srcType==MEM_Ephem || srcType==MEM_Static );
788 pTo->flags |= srcType;
789 }
790}
791
792/*
793** Make a full copy of pFrom into pTo. Prior contents of pTo are
794** freed before the copy is made.
795*/
drhb21c8cd2007-08-21 19:33:56 +0000796int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
danielk1977a7a8e142008-02-13 18:25:27 +0000797 int rc = SQLITE_OK;
danielk1977a7a8e142008-02-13 18:25:27 +0000798
drh9dfedc82015-05-22 19:55:10 +0000799 /* The pFrom==0 case in the following assert() is when an sqlite3_value
800 ** from sqlite3_value_dup() is used as the argument
801 ** to sqlite3_result_value(). */
802 assert( pTo->db==pFrom->db || pFrom->db==0 );
drh3d4501e2008-12-04 20:40:10 +0000803 assert( (pFrom->flags & MEM_RowSet)==0 );
drh0725cab2014-09-17 14:52:46 +0000804 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
danielk19775f096132008-03-28 15:44:09 +0000805 memcpy(pTo, pFrom, MEMCELLSIZE);
806 pTo->flags &= ~MEM_Dyn;
danielk19775f096132008-03-28 15:44:09 +0000807 if( pTo->flags&(MEM_Str|MEM_Blob) ){
808 if( 0==(pFrom->flags&MEM_Static) ){
809 pTo->flags |= MEM_Ephem;
810 rc = sqlite3VdbeMemMakeWriteable(pTo);
danielk19779172fd82008-02-14 15:31:52 +0000811 }
danielk1977a7a8e142008-02-13 18:25:27 +0000812 }
813
drh71c697e2004-08-08 23:39:19 +0000814 return rc;
drh4f26d6c2004-05-26 23:25:30 +0000815}
816
drheb2e1762004-05-27 01:53:56 +0000817/*
danielk1977369f27e2004-06-15 11:40:04 +0000818** Transfer the contents of pFrom to pTo. Any existing value in pTo is
drhfebe1062004-08-28 18:17:48 +0000819** freed. If pFrom contains ephemeral data, a copy is made.
820**
drh643167f2008-01-22 21:30:53 +0000821** pFrom contains an SQL NULL when this routine returns.
danielk1977369f27e2004-06-15 11:40:04 +0000822*/
drh643167f2008-01-22 21:30:53 +0000823void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
drhb21c8cd2007-08-21 19:33:56 +0000824 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
825 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
826 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
danielk19775f096132008-03-28 15:44:09 +0000827
828 sqlite3VdbeMemRelease(pTo);
danielk197713073932004-06-30 11:54:06 +0000829 memcpy(pTo, pFrom, sizeof(Mem));
danielk197713073932004-06-30 11:54:06 +0000830 pFrom->flags = MEM_Null;
drh17bcb102014-09-18 21:25:33 +0000831 pFrom->szMalloc = 0;
danielk1977369f27e2004-06-15 11:40:04 +0000832}
833
834/*
drheb2e1762004-05-27 01:53:56 +0000835** Change the value of a Mem to be a string or a BLOB.
danielk1977a7a8e142008-02-13 18:25:27 +0000836**
837** The memory management strategy depends on the value of the xDel
838** parameter. If the value passed is SQLITE_TRANSIENT, then the
839** string is copied into a (possibly existing) buffer managed by the
840** Mem structure. Otherwise, any existing buffer is freed and the
841** pointer copied.
drh9a65f2c2009-06-22 19:05:40 +0000842**
843** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
844** size limit) then no memory allocation occurs. If the string can be
845** stored without allocating memory, then it is. If a memory allocation
846** is required to store the string, then value of pMem is unchanged. In
847** either case, SQLITE_TOOBIG is returned.
drheb2e1762004-05-27 01:53:56 +0000848*/
drh4f26d6c2004-05-26 23:25:30 +0000849int sqlite3VdbeMemSetStr(
850 Mem *pMem, /* Memory cell to set to string value */
851 const char *z, /* String pointer */
852 int n, /* Bytes in string, or negative */
drheb2e1762004-05-27 01:53:56 +0000853 u8 enc, /* Encoding of z. 0 for BLOBs */
danielk1977d8123362004-06-12 09:25:12 +0000854 void (*xDel)(void*) /* Destructor function */
drh4f26d6c2004-05-26 23:25:30 +0000855){
danielk1977a7a8e142008-02-13 18:25:27 +0000856 int nByte = n; /* New value for pMem->n */
drh0a687d12008-07-08 14:52:07 +0000857 int iLimit; /* Maximum allowed string or blob size */
drh8df32842008-12-09 02:51:23 +0000858 u16 flags = 0; /* New value for pMem->flags */
danielk1977a7a8e142008-02-13 18:25:27 +0000859
drhb21c8cd2007-08-21 19:33:56 +0000860 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
drh3d4501e2008-12-04 20:40:10 +0000861 assert( (pMem->flags & MEM_RowSet)==0 );
danielk1977a7a8e142008-02-13 18:25:27 +0000862
863 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
drh4f26d6c2004-05-26 23:25:30 +0000864 if( !z ){
danielk1977a7a8e142008-02-13 18:25:27 +0000865 sqlite3VdbeMemSetNull(pMem);
drh4f26d6c2004-05-26 23:25:30 +0000866 return SQLITE_OK;
867 }
danielk1977a7a8e142008-02-13 18:25:27 +0000868
drh0a687d12008-07-08 14:52:07 +0000869 if( pMem->db ){
870 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
871 }else{
872 iLimit = SQLITE_MAX_LENGTH;
873 }
danielk1977a7a8e142008-02-13 18:25:27 +0000874 flags = (enc==0?MEM_Blob:MEM_Str);
875 if( nByte<0 ){
876 assert( enc!=0 );
drh8fd38972008-02-19 15:44:09 +0000877 if( enc==SQLITE_UTF8 ){
drh0725cab2014-09-17 14:52:46 +0000878 nByte = sqlite3Strlen30(z);
879 if( nByte>iLimit ) nByte = iLimit+1;
drh8fd38972008-02-19 15:44:09 +0000880 }else{
drh0a687d12008-07-08 14:52:07 +0000881 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
drh8fd38972008-02-19 15:44:09 +0000882 }
danielk1977a7a8e142008-02-13 18:25:27 +0000883 flags |= MEM_Term;
drh4f26d6c2004-05-26 23:25:30 +0000884 }
danielk1977d8123362004-06-12 09:25:12 +0000885
danielk1977a7a8e142008-02-13 18:25:27 +0000886 /* The following block sets the new values of Mem.z and Mem.xDel. It
887 ** also sets a flag in local variable "flags" to indicate the memory
888 ** management (one of MEM_Dyn or MEM_Static).
889 */
890 if( xDel==SQLITE_TRANSIENT ){
891 int nAlloc = nByte;
892 if( flags&MEM_Term ){
893 nAlloc += (enc==SQLITE_UTF8?1:2);
894 }
drh0793f1b2008-11-05 17:41:19 +0000895 if( nByte>iLimit ){
896 return SQLITE_TOOBIG;
897 }
drh722246e2014-10-07 23:02:24 +0000898 testcase( nAlloc==0 );
899 testcase( nAlloc==31 );
900 testcase( nAlloc==32 );
901 if( sqlite3VdbeMemClearAndResize(pMem, MAX(nAlloc,32)) ){
danielk1977a7a8e142008-02-13 18:25:27 +0000902 return SQLITE_NOMEM;
903 }
904 memcpy(pMem->z, z, nAlloc);
drh633e6d52008-07-28 19:34:53 +0000905 }else if( xDel==SQLITE_DYNAMIC ){
906 sqlite3VdbeMemRelease(pMem);
907 pMem->zMalloc = pMem->z = (char *)z;
drh17bcb102014-09-18 21:25:33 +0000908 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
danielk1977a7a8e142008-02-13 18:25:27 +0000909 }else{
910 sqlite3VdbeMemRelease(pMem);
911 pMem->z = (char *)z;
drhc890fec2008-08-01 20:10:08 +0000912 pMem->xDel = xDel;
913 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
danielk1977a7a8e142008-02-13 18:25:27 +0000914 }
danielk1977d8123362004-06-12 09:25:12 +0000915
danielk1977a7a8e142008-02-13 18:25:27 +0000916 pMem->n = nByte;
917 pMem->flags = flags;
918 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc);
drh4f26d6c2004-05-26 23:25:30 +0000919
drh6c626082004-11-14 21:56:29 +0000920#ifndef SQLITE_OMIT_UTF16
danielk1977a7a8e142008-02-13 18:25:27 +0000921 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
922 return SQLITE_NOMEM;
drh4f26d6c2004-05-26 23:25:30 +0000923 }
danielk1977a7a8e142008-02-13 18:25:27 +0000924#endif
925
drh9a65f2c2009-06-22 19:05:40 +0000926 if( nByte>iLimit ){
927 return SQLITE_TOOBIG;
928 }
929
drhf4479502004-05-27 03:12:53 +0000930 return SQLITE_OK;
drh4f26d6c2004-05-26 23:25:30 +0000931}
932
933/*
drhd5788202004-05-28 08:21:05 +0000934** Move data out of a btree key or data field and into a Mem structure.
935** The data or key is taken from the entry that pCur is currently pointing
936** to. offset and amt determine what portion of the data or key to retrieve.
937** key is true to get the key or false to get data. The result is written
938** into the pMem element.
939**
drh2a2a6962014-09-16 18:22:44 +0000940** The pMem object must have been initialized. This routine will use
941** pMem->zMalloc to hold the content from the btree, if possible. New
942** pMem->zMalloc space will be allocated if necessary. The calling routine
943** is responsible for making sure that the pMem object is eventually
944** destroyed.
drhd5788202004-05-28 08:21:05 +0000945**
946** If this routine fails for any reason (malloc returns NULL or unable
947** to read from the disk) then the pMem is left in an inconsistent state.
948*/
949int sqlite3VdbeMemFromBtree(
950 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
drh501932c2013-11-21 21:59:53 +0000951 u32 offset, /* Offset from the start of data to return bytes from. */
952 u32 amt, /* Number of bytes to return. */
drhd5788202004-05-28 08:21:05 +0000953 int key, /* If true, retrieve from the btree key, not data. */
954 Mem *pMem /* OUT: Return data in this Mem structure. */
955){
danielk19774b0aa4c2009-05-28 11:05:57 +0000956 char *zData; /* Data from the btree layer */
drh501932c2013-11-21 21:59:53 +0000957 u32 available = 0; /* Number of bytes available on the local btree page */
danielk19774b0aa4c2009-05-28 11:05:57 +0000958 int rc = SQLITE_OK; /* Return code */
drhd5788202004-05-28 08:21:05 +0000959
drh5d1a8722009-07-22 18:07:40 +0000960 assert( sqlite3BtreeCursorIsValid(pCur) );
drhd3b74202014-09-17 16:41:15 +0000961 assert( !VdbeMemDynamic(pMem) );
drh5d1a8722009-07-22 18:07:40 +0000962
danielk19774b0aa4c2009-05-28 11:05:57 +0000963 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
964 ** that both the BtShared and database handle mutexes are held. */
drh3d4501e2008-12-04 20:40:10 +0000965 assert( (pMem->flags & MEM_RowSet)==0 );
drhd5788202004-05-28 08:21:05 +0000966 if( key ){
drhe51c44f2004-05-30 20:46:09 +0000967 zData = (char *)sqlite3BtreeKeyFetch(pCur, &available);
drhd5788202004-05-28 08:21:05 +0000968 }else{
drhe51c44f2004-05-30 20:46:09 +0000969 zData = (char *)sqlite3BtreeDataFetch(pCur, &available);
drhd5788202004-05-28 08:21:05 +0000970 }
drh61fc5952007-04-01 23:49:51 +0000971 assert( zData!=0 );
drhd5788202004-05-28 08:21:05 +0000972
drh2b53e002013-11-21 19:05:04 +0000973 if( offset+amt<=available ){
drhd5788202004-05-28 08:21:05 +0000974 pMem->z = &zData[offset];
975 pMem->flags = MEM_Blob|MEM_Ephem;
drh5f1d5362014-03-04 13:18:23 +0000976 pMem->n = (int)amt;
drh8740a602014-09-16 20:05:21 +0000977 }else{
978 pMem->flags = MEM_Null;
drh322f2852014-09-19 00:43:39 +0000979 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+2)) ){
drh8740a602014-09-16 20:05:21 +0000980 if( key ){
981 rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z);
982 }else{
983 rc = sqlite3BtreeData(pCur, offset, amt, pMem->z);
984 }
985 if( rc==SQLITE_OK ){
986 pMem->z[amt] = 0;
987 pMem->z[amt+1] = 0;
988 pMem->flags = MEM_Blob|MEM_Term;
989 pMem->n = (int)amt;
990 }else{
991 sqlite3VdbeMemRelease(pMem);
992 }
drhd5788202004-05-28 08:21:05 +0000993 }
994 }
995
danielk1977a7a8e142008-02-13 18:25:27 +0000996 return rc;
drhd5788202004-05-28 08:21:05 +0000997}
998
drh6c9f8e62014-08-27 03:28:50 +0000999/*
1000** The pVal argument is known to be a value other than NULL.
1001** Convert it into a string with encoding enc and return a pointer
1002** to a zero-terminated version of that string.
1003*/
drh3b335fc2014-10-07 16:59:22 +00001004static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
drh6c9f8e62014-08-27 03:28:50 +00001005 assert( pVal!=0 );
1006 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1007 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1008 assert( (pVal->flags & MEM_RowSet)==0 );
1009 assert( (pVal->flags & (MEM_Null))==0 );
1010 if( pVal->flags & (MEM_Blob|MEM_Str) ){
1011 pVal->flags |= MEM_Str;
1012 if( pVal->flags & MEM_Zero ){
1013 sqlite3VdbeMemExpandBlob(pVal);
1014 }
1015 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){
1016 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
1017 }
1018 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
1019 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
1020 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
1021 return 0;
1022 }
1023 }
1024 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
1025 }else{
1026 sqlite3VdbeMemStringify(pVal, enc, 0);
1027 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
1028 }
1029 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
1030 || pVal->db->mallocFailed );
1031 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
1032 return pVal->z;
1033 }else{
1034 return 0;
1035 }
1036}
1037
danielk19774e6af132004-06-10 14:01:08 +00001038/* This function is only available internally, it is not part of the
1039** external API. It works in a similar way to sqlite3_value_text(),
1040** except the data returned is in the encoding specified by the second
1041** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1042** SQLITE_UTF8.
drh7d9bd4e2006-02-16 18:16:36 +00001043**
1044** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1045** If that is the case, then the result must be aligned on an even byte
1046** boundary.
danielk19774e6af132004-06-10 14:01:08 +00001047*/
drhb21c8cd2007-08-21 19:33:56 +00001048const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
danielk1977bfd6cce2004-06-18 04:24:54 +00001049 if( !pVal ) return 0;
drhb21c8cd2007-08-21 19:33:56 +00001050 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
drh7d9bd4e2006-02-16 18:16:36 +00001051 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
drh3d4501e2008-12-04 20:40:10 +00001052 assert( (pVal->flags & MEM_RowSet)==0 );
drh6c9f8e62014-08-27 03:28:50 +00001053 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){
1054 return pVal->z;
1055 }
danielk19774e6af132004-06-10 14:01:08 +00001056 if( pVal->flags&MEM_Null ){
danielk19774e6af132004-06-10 14:01:08 +00001057 return 0;
1058 }
drh6c9f8e62014-08-27 03:28:50 +00001059 return valueToText(pVal, enc);
danielk19774e6af132004-06-10 14:01:08 +00001060}
1061
drh6a6124e2004-06-27 01:56:33 +00001062/*
1063** Create a new sqlite3_value object.
1064*/
drh17435752007-08-16 04:30:38 +00001065sqlite3_value *sqlite3ValueNew(sqlite3 *db){
danielk197726783a52007-08-29 14:06:22 +00001066 Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
danielk19774e6af132004-06-10 14:01:08 +00001067 if( p ){
1068 p->flags = MEM_Null;
drhb21c8cd2007-08-21 19:33:56 +00001069 p->db = db;
danielk19774e6af132004-06-10 14:01:08 +00001070 }
1071 return p;
1072}
1073
drh6a6124e2004-06-27 01:56:33 +00001074/*
danaf2583c2013-08-15 18:43:21 +00001075** Context object passed by sqlite3Stat4ProbeSetValue() through to
1076** valueNew(). See comments above valueNew() for details.
danielk1977aee18ef2005-03-09 12:26:50 +00001077*/
danaf2583c2013-08-15 18:43:21 +00001078struct ValueNewStat4Ctx {
1079 Parse *pParse;
1080 Index *pIdx;
1081 UnpackedRecord **ppRec;
1082 int iVal;
1083};
1084
1085/*
1086** Allocate and return a pointer to a new sqlite3_value object. If
1087** the second argument to this function is NULL, the object is allocated
1088** by calling sqlite3ValueNew().
1089**
1090** Otherwise, if the second argument is non-zero, then this function is
1091** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1092** already been allocated, allocate the UnpackedRecord structure that
drh96f4ad22015-03-12 21:02:36 +00001093** that function will return to its caller here. Then return a pointer to
danaf2583c2013-08-15 18:43:21 +00001094** an sqlite3_value within the UnpackedRecord.a[] array.
1095*/
1096static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
drh1435a9a2013-08-27 23:15:44 +00001097#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
danaf2583c2013-08-15 18:43:21 +00001098 if( p ){
1099 UnpackedRecord *pRec = p->ppRec[0];
1100
1101 if( pRec==0 ){
1102 Index *pIdx = p->pIdx; /* Index being probed */
1103 int nByte; /* Bytes of space to allocate */
1104 int i; /* Counter variable */
drhd2694612013-11-04 22:04:17 +00001105 int nCol = pIdx->nColumn; /* Number of index columns including rowid */
danaf2583c2013-08-15 18:43:21 +00001106
danb5f68b02013-12-03 18:26:56 +00001107 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
danaf2583c2013-08-15 18:43:21 +00001108 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
1109 if( pRec ){
drh2ec2fb22013-11-06 19:59:23 +00001110 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
danaf2583c2013-08-15 18:43:21 +00001111 if( pRec->pKeyInfo ){
drh1153c7b2013-11-01 22:02:56 +00001112 assert( pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField==nCol );
drh2ec2fb22013-11-06 19:59:23 +00001113 assert( pRec->pKeyInfo->enc==ENC(db) );
danb5f68b02013-12-03 18:26:56 +00001114 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
danaf2583c2013-08-15 18:43:21 +00001115 for(i=0; i<nCol; i++){
1116 pRec->aMem[i].flags = MEM_Null;
danaf2583c2013-08-15 18:43:21 +00001117 pRec->aMem[i].db = db;
1118 }
1119 }else{
1120 sqlite3DbFree(db, pRec);
1121 pRec = 0;
1122 }
1123 }
1124 if( pRec==0 ) return 0;
1125 p->ppRec[0] = pRec;
1126 }
1127
1128 pRec->nField = p->iVal+1;
1129 return &pRec->aMem[p->iVal];
1130 }
drh4f991892013-10-11 15:05:05 +00001131#else
1132 UNUSED_PARAMETER(p);
1133#endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
danaf2583c2013-08-15 18:43:21 +00001134 return sqlite3ValueNew(db);
dan7a419232013-08-06 20:01:43 +00001135}
1136
drh6a6124e2004-06-27 01:56:33 +00001137/*
dan18bf8072015-03-11 20:06:40 +00001138** The expression object indicated by the second argument is guaranteed
1139** to be a scalar SQL function. If
1140**
1141** * all function arguments are SQL literals,
dancdcc11d2015-03-11 20:59:42 +00001142** * the SQLITE_FUNC_CONSTANT function flag is set, and
1143** * the SQLITE_FUNC_NEEDCOLL function flag is not set,
dan18bf8072015-03-11 20:06:40 +00001144**
1145** then this routine attempts to invoke the SQL function. Assuming no
1146** error occurs, output parameter (*ppVal) is set to point to a value
1147** object containing the result before returning SQLITE_OK.
1148**
1149** Affinity aff is applied to the result of the function before returning.
1150** If the result is a text value, the sqlite3_value object uses encoding
1151** enc.
1152**
1153** If the conditions above are not met, this function returns SQLITE_OK
1154** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
1155** NULL and an SQLite error code returned.
1156*/
1157#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1158static int valueFromFunction(
1159 sqlite3 *db, /* The database connection */
1160 Expr *p, /* The expression to evaluate */
1161 u8 enc, /* Encoding to use */
1162 u8 aff, /* Affinity to use */
1163 sqlite3_value **ppVal, /* Write the new value here */
1164 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1165){
1166 sqlite3_context ctx; /* Context object for function invocation */
1167 sqlite3_value **apVal = 0; /* Function arguments */
1168 int nVal = 0; /* Size of apVal[] array */
1169 FuncDef *pFunc = 0; /* Function definition */
1170 sqlite3_value *pVal = 0; /* New value */
1171 int rc = SQLITE_OK; /* Return code */
1172 int nName; /* Size of function name in bytes */
dancdcc11d2015-03-11 20:59:42 +00001173 ExprList *pList = 0; /* Function arguments */
dan18bf8072015-03-11 20:06:40 +00001174 int i; /* Iterator variable */
1175
drh96f4ad22015-03-12 21:02:36 +00001176 assert( pCtx!=0 );
1177 assert( (p->flags & EP_TokenOnly)==0 );
1178 pList = p->x.pList;
1179 if( pList ) nVal = pList->nExpr;
dan18bf8072015-03-11 20:06:40 +00001180 nName = sqlite3Strlen30(p->u.zToken);
1181 pFunc = sqlite3FindFunction(db, p->u.zToken, nName, nVal, enc, 0);
1182 assert( pFunc );
1183 if( (pFunc->funcFlags & SQLITE_FUNC_CONSTANT)==0
1184 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
1185 ){
1186 return SQLITE_OK;
1187 }
1188
1189 if( pList ){
1190 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal);
1191 if( apVal==0 ){
1192 rc = SQLITE_NOMEM;
1193 goto value_from_function_out;
1194 }
1195 for(i=0; i<nVal; i++){
1196 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]);
drha9e03b12015-03-12 06:46:52 +00001197 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out;
dan18bf8072015-03-11 20:06:40 +00001198 }
1199 }
1200
1201 pVal = valueNew(db, pCtx);
1202 if( pVal==0 ){
1203 rc = SQLITE_NOMEM;
1204 goto value_from_function_out;
1205 }
1206
dan3df30592015-03-13 08:31:54 +00001207 assert( pCtx->pParse->rc==SQLITE_OK );
dan18bf8072015-03-11 20:06:40 +00001208 memset(&ctx, 0, sizeof(ctx));
1209 ctx.pOut = pVal;
1210 ctx.pFunc = pFunc;
1211 pFunc->xFunc(&ctx, nVal, apVal);
1212 if( ctx.isError ){
1213 rc = ctx.isError;
drh96f4ad22015-03-12 21:02:36 +00001214 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
dan18bf8072015-03-11 20:06:40 +00001215 }else{
1216 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
drh96f4ad22015-03-12 21:02:36 +00001217 assert( rc==SQLITE_OK );
1218 rc = sqlite3VdbeChangeEncoding(pVal, enc);
dan18bf8072015-03-11 20:06:40 +00001219 if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){
1220 rc = SQLITE_TOOBIG;
dan3df30592015-03-13 08:31:54 +00001221 pCtx->pParse->nErr++;
dan18bf8072015-03-11 20:06:40 +00001222 }
1223 }
dan3df30592015-03-13 08:31:54 +00001224 pCtx->pParse->rc = rc;
dan18bf8072015-03-11 20:06:40 +00001225
1226 value_from_function_out:
1227 if( rc!=SQLITE_OK ){
dan18bf8072015-03-11 20:06:40 +00001228 pVal = 0;
1229 }
drha9e03b12015-03-12 06:46:52 +00001230 if( apVal ){
1231 for(i=0; i<nVal; i++){
1232 sqlite3ValueFree(apVal[i]);
1233 }
1234 sqlite3DbFree(db, apVal);
dan18bf8072015-03-11 20:06:40 +00001235 }
dan18bf8072015-03-11 20:06:40 +00001236
1237 *ppVal = pVal;
1238 return rc;
1239}
1240#else
1241# define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
1242#endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
1243
1244/*
danaf2583c2013-08-15 18:43:21 +00001245** Extract a value from the supplied expression in the manner described
1246** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1247** using valueNew().
1248**
1249** If pCtx is NULL and an error occurs after the sqlite3_value object
1250** has been allocated, it is freed before returning. Or, if pCtx is not
1251** NULL, it is assumed that the caller will free any allocated object
1252** in all cases.
danielk1977aee18ef2005-03-09 12:26:50 +00001253*/
drha7f4bf32013-10-14 13:21:00 +00001254static int valueFromExpr(
danaf2583c2013-08-15 18:43:21 +00001255 sqlite3 *db, /* The database connection */
1256 Expr *pExpr, /* The expression to evaluate */
1257 u8 enc, /* Encoding to use */
1258 u8 affinity, /* Affinity to use */
1259 sqlite3_value **ppVal, /* Write the new value here */
1260 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
danielk1977aee18ef2005-03-09 12:26:50 +00001261){
1262 int op;
1263 char *zVal = 0;
1264 sqlite3_value *pVal = 0;
drh93518622010-09-30 14:48:06 +00001265 int negInt = 1;
1266 const char *zNeg = "";
drh0e1f0022013-08-16 14:49:00 +00001267 int rc = SQLITE_OK;
danielk1977aee18ef2005-03-09 12:26:50 +00001268
1269 if( !pExpr ){
1270 *ppVal = 0;
1271 return SQLITE_OK;
1272 }
drh4169e432014-08-25 20:11:52 +00001273 while( (op = pExpr->op)==TK_UPLUS ) pExpr = pExpr->pLeft;
drh4a466d32010-06-25 14:17:58 +00001274 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;
danielk1977aee18ef2005-03-09 12:26:50 +00001275
drh96f4ad22015-03-12 21:02:36 +00001276 /* Compressed expressions only appear when parsing the DEFAULT clause
1277 ** on a table column definition, and hence only when pCtx==0. This
1278 ** check ensures that an EP_TokenOnly expression is never passed down
1279 ** into valueFromFunction(). */
1280 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );
1281
drh4169e432014-08-25 20:11:52 +00001282 if( op==TK_CAST ){
1283 u8 aff = sqlite3AffinityType(pExpr->u.zToken,0);
1284 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
drhec3e4f72014-08-25 21:11:01 +00001285 testcase( rc!=SQLITE_OK );
1286 if( *ppVal ){
drh4169e432014-08-25 20:11:52 +00001287 sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8);
1288 sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8);
1289 }
1290 return rc;
1291 }
1292
drh93518622010-09-30 14:48:06 +00001293 /* Handle negative integers in a single step. This is needed in the
1294 ** case when the value is -9223372036854775808.
1295 */
1296 if( op==TK_UMINUS
1297 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
1298 pExpr = pExpr->pLeft;
1299 op = pExpr->op;
1300 negInt = -1;
1301 zNeg = "-";
1302 }
1303
danielk1977aee18ef2005-03-09 12:26:50 +00001304 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
danaf2583c2013-08-15 18:43:21 +00001305 pVal = valueNew(db, pCtx);
drh33e619f2009-05-28 01:00:55 +00001306 if( pVal==0 ) goto no_mem;
1307 if( ExprHasProperty(pExpr, EP_IntValue) ){
drh93518622010-09-30 14:48:06 +00001308 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
drh33e619f2009-05-28 01:00:55 +00001309 }else{
drh93518622010-09-30 14:48:06 +00001310 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
drh33e619f2009-05-28 01:00:55 +00001311 if( zVal==0 ) goto no_mem;
1312 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
1313 }
drh05883a32015-06-02 15:32:08 +00001314 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){
drhe3b9bfe2009-05-05 12:54:50 +00001315 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
danielk1977aee18ef2005-03-09 12:26:50 +00001316 }else{
drhe3b9bfe2009-05-05 12:54:50 +00001317 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
1318 }
drh93518622010-09-30 14:48:06 +00001319 if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str;
drhe3b9bfe2009-05-05 12:54:50 +00001320 if( enc!=SQLITE_UTF8 ){
drh0e1f0022013-08-16 14:49:00 +00001321 rc = sqlite3VdbeChangeEncoding(pVal, enc);
danielk1977aee18ef2005-03-09 12:26:50 +00001322 }
1323 }else if( op==TK_UMINUS ) {
drh93518622010-09-30 14:48:06 +00001324 /* This branch happens for multiple negative signs. Ex: -(-5) */
danad45ed72013-08-08 12:21:32 +00001325 if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal)
1326 && pVal!=0
1327 ){
drh93518622010-09-30 14:48:06 +00001328 sqlite3VdbeMemNumerify(pVal);
drh74eaba42014-09-18 17:52:15 +00001329 if( pVal->flags & MEM_Real ){
1330 pVal->u.r = -pVal->u.r;
1331 }else if( pVal->u.i==SMALLEST_INT64 ){
1332 pVal->u.r = -(double)SMALLEST_INT64;
1333 MemSetTypeFlag(pVal, MEM_Real);
drhd50ffc42011-03-08 02:38:28 +00001334 }else{
1335 pVal->u.i = -pVal->u.i;
1336 }
drh93518622010-09-30 14:48:06 +00001337 sqlite3ValueApplyAffinity(pVal, affinity, enc);
danielk1977aee18ef2005-03-09 12:26:50 +00001338 }
drh9b3eb0a2011-01-21 14:37:04 +00001339 }else if( op==TK_NULL ){
danaf2583c2013-08-15 18:43:21 +00001340 pVal = valueNew(db, pCtx);
drhb1aa0ab2011-02-18 17:23:23 +00001341 if( pVal==0 ) goto no_mem;
danielk1977aee18ef2005-03-09 12:26:50 +00001342 }
1343#ifndef SQLITE_OMIT_BLOB_LITERAL
1344 else if( op==TK_BLOB ){
1345 int nVal;
drh33e619f2009-05-28 01:00:55 +00001346 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
1347 assert( pExpr->u.zToken[1]=='\'' );
danaf2583c2013-08-15 18:43:21 +00001348 pVal = valueNew(db, pCtx);
danielk1977f150c9d2008-10-30 17:21:12 +00001349 if( !pVal ) goto no_mem;
drh33e619f2009-05-28 01:00:55 +00001350 zVal = &pExpr->u.zToken[2];
drhb7916a72009-05-27 10:31:29 +00001351 nVal = sqlite3Strlen30(zVal)-1;
1352 assert( zVal[nVal]=='\'' );
drhca48c902008-01-18 14:08:24 +00001353 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
drh633e6d52008-07-28 19:34:53 +00001354 0, SQLITE_DYNAMIC);
danielk1977aee18ef2005-03-09 12:26:50 +00001355 }
1356#endif
1357
drh8cdcd872015-03-16 13:48:23 +00001358#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
drh96f4ad22015-03-12 21:02:36 +00001359 else if( op==TK_FUNCTION && pCtx!=0 ){
dan18bf8072015-03-11 20:06:40 +00001360 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
1361 }
drh8cdcd872015-03-16 13:48:23 +00001362#endif
dan18bf8072015-03-11 20:06:40 +00001363
danielk1977aee18ef2005-03-09 12:26:50 +00001364 *ppVal = pVal;
drh0e1f0022013-08-16 14:49:00 +00001365 return rc;
danielk1977aee18ef2005-03-09 12:26:50 +00001366
1367no_mem:
drh17435752007-08-16 04:30:38 +00001368 db->mallocFailed = 1;
drh633e6d52008-07-28 19:34:53 +00001369 sqlite3DbFree(db, zVal);
danaf2583c2013-08-15 18:43:21 +00001370 assert( *ppVal==0 );
drh1435a9a2013-08-27 23:15:44 +00001371#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
danaf2583c2013-08-15 18:43:21 +00001372 if( pCtx==0 ) sqlite3ValueFree(pVal);
drh1435a9a2013-08-27 23:15:44 +00001373#else
1374 assert( pCtx==0 ); sqlite3ValueFree(pVal);
1375#endif
danielk1977aee18ef2005-03-09 12:26:50 +00001376 return SQLITE_NOMEM;
1377}
1378
1379/*
dan87cd9322013-08-07 15:52:41 +00001380** Create a new sqlite3_value object, containing the value of pExpr.
1381**
1382** This only works for very simple expressions that consist of one constant
1383** token (i.e. "5", "5.1", "'a string'"). If the expression can
1384** be converted directly into a value, then the value is allocated and
1385** a pointer written to *ppVal. The caller is responsible for deallocating
1386** the value by passing it to sqlite3ValueFree() later on. If the expression
1387** cannot be converted to a value, then *ppVal is set to NULL.
1388*/
1389int sqlite3ValueFromExpr(
1390 sqlite3 *db, /* The database connection */
1391 Expr *pExpr, /* The expression to evaluate */
1392 u8 enc, /* Encoding to use */
1393 u8 affinity, /* Affinity to use */
1394 sqlite3_value **ppVal /* Write the new value here */
1395){
danaf2583c2013-08-15 18:43:21 +00001396 return valueFromExpr(db, pExpr, enc, affinity, ppVal, 0);
dan87cd9322013-08-07 15:52:41 +00001397}
1398
drh1435a9a2013-08-27 23:15:44 +00001399#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
dan8ad169a2013-08-12 20:14:04 +00001400/*
1401** The implementation of the sqlite_record() function. This function accepts
1402** a single argument of any type. The return value is a formatted database
1403** record (a blob) containing the argument value.
1404**
1405** This is used to convert the value stored in the 'sample' column of the
1406** sqlite_stat3 table to the record format SQLite uses internally.
1407*/
1408static void recordFunc(
1409 sqlite3_context *context,
1410 int argc,
1411 sqlite3_value **argv
1412){
1413 const int file_format = 1;
1414 int iSerial; /* Serial type */
1415 int nSerial; /* Bytes of space for iSerial as varint */
1416 int nVal; /* Bytes of space required for argv[0] */
1417 int nRet;
1418 sqlite3 *db;
1419 u8 *aRet;
1420
drh4f991892013-10-11 15:05:05 +00001421 UNUSED_PARAMETER( argc );
dan8ad169a2013-08-12 20:14:04 +00001422 iSerial = sqlite3VdbeSerialType(argv[0], file_format);
1423 nSerial = sqlite3VarintLen(iSerial);
1424 nVal = sqlite3VdbeSerialTypeLen(iSerial);
1425 db = sqlite3_context_db_handle(context);
1426
1427 nRet = 1 + nSerial + nVal;
1428 aRet = sqlite3DbMallocRaw(db, nRet);
1429 if( aRet==0 ){
1430 sqlite3_result_error_nomem(context);
1431 }else{
1432 aRet[0] = nSerial+1;
drh2f2b2b82014-08-22 18:48:25 +00001433 putVarint32(&aRet[1], iSerial);
drha9ab4812013-12-11 11:00:44 +00001434 sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial);
dan8ad169a2013-08-12 20:14:04 +00001435 sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT);
1436 sqlite3DbFree(db, aRet);
1437 }
1438}
1439
1440/*
1441** Register built-in functions used to help read ANALYZE data.
1442*/
1443void sqlite3AnalyzeFunctions(void){
1444 static SQLITE_WSD FuncDef aAnalyzeTableFuncs[] = {
1445 FUNCTION(sqlite_record, 1, 0, 0, recordFunc),
1446 };
1447 int i;
1448 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
1449 FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aAnalyzeTableFuncs);
1450 for(i=0; i<ArraySize(aAnalyzeTableFuncs); i++){
1451 sqlite3FuncDefInsert(pHash, &aFunc[i]);
1452 }
1453}
1454
drh0288b212014-06-28 16:06:44 +00001455/*
1456** Attempt to extract a value from pExpr and use it to construct *ppVal.
1457**
1458** If pAlloc is not NULL, then an UnpackedRecord object is created for
1459** pAlloc if one does not exist and the new value is added to the
1460** UnpackedRecord object.
1461**
1462** A value is extracted in the following cases:
1463**
1464** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1465**
1466** * The expression is a bound variable, and this is a reprepare, or
1467**
1468** * The expression is a literal value.
1469**
1470** On success, *ppVal is made to point to the extracted value. The caller
1471** is responsible for ensuring that the value is eventually freed.
1472*/
danb0b82902014-06-26 20:21:46 +00001473static int stat4ValueFromExpr(
1474 Parse *pParse, /* Parse context */
1475 Expr *pExpr, /* The expression to extract a value from */
1476 u8 affinity, /* Affinity to use */
drh0288b212014-06-28 16:06:44 +00001477 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */
danb0b82902014-06-26 20:21:46 +00001478 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1479){
1480 int rc = SQLITE_OK;
1481 sqlite3_value *pVal = 0;
1482 sqlite3 *db = pParse->db;
1483
1484 /* Skip over any TK_COLLATE nodes */
1485 pExpr = sqlite3ExprSkipCollate(pExpr);
1486
1487 if( !pExpr ){
1488 pVal = valueNew(db, pAlloc);
1489 if( pVal ){
1490 sqlite3VdbeMemSetNull((Mem*)pVal);
1491 }
1492 }else if( pExpr->op==TK_VARIABLE
1493 || NEVER(pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE)
1494 ){
1495 Vdbe *v;
1496 int iBindVar = pExpr->iColumn;
1497 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
1498 if( (v = pParse->pReprepare)!=0 ){
1499 pVal = valueNew(db, pAlloc);
1500 if( pVal ){
1501 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
1502 if( rc==SQLITE_OK ){
1503 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
1504 }
1505 pVal->db = pParse->db;
1506 }
1507 }
1508 }else{
1509 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc);
1510 }
1511
1512 assert( pVal==0 || pVal->db==db );
1513 *ppVal = pVal;
1514 return rc;
1515}
1516
dan87cd9322013-08-07 15:52:41 +00001517/*
dan87cd9322013-08-07 15:52:41 +00001518** This function is used to allocate and populate UnpackedRecord
1519** structures intended to be compared against sample index keys stored
1520** in the sqlite_stat4 table.
1521**
1522** A single call to this function attempts to populates field iVal (leftmost
1523** is 0 etc.) of the unpacked record with a value extracted from expression
1524** pExpr. Extraction of values is possible if:
1525**
1526** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1527**
1528** * The expression is a bound variable, and this is a reprepare, or
1529**
1530** * The sqlite3ValueFromExpr() function is able to extract a value
1531** from the expression (i.e. the expression is a literal value).
1532**
1533** If a value can be extracted, the affinity passed as the 5th argument
1534** is applied to it before it is copied into the UnpackedRecord. Output
1535** parameter *pbOk is set to true if a value is extracted, or false
1536** otherwise.
1537**
1538** When this function is called, *ppRec must either point to an object
1539** allocated by an earlier call to this function, or must be NULL. If it
1540** is NULL and a value can be successfully extracted, a new UnpackedRecord
1541** is allocated (and *ppRec set to point to it) before returning.
1542**
1543** Unless an error is encountered, SQLITE_OK is returned. It is not an
1544** error if a value cannot be extracted from pExpr. If an error does
1545** occur, an SQLite error code is returned.
1546*/
dan7a419232013-08-06 20:01:43 +00001547int sqlite3Stat4ProbeSetValue(
1548 Parse *pParse, /* Parse context */
dan87cd9322013-08-07 15:52:41 +00001549 Index *pIdx, /* Index being probed */
1550 UnpackedRecord **ppRec, /* IN/OUT: Probe record */
dan7a419232013-08-06 20:01:43 +00001551 Expr *pExpr, /* The expression to extract a value from */
1552 u8 affinity, /* Affinity to use */
1553 int iVal, /* Array element to populate */
1554 int *pbOk /* OUT: True if value was extracted */
1555){
danb0b82902014-06-26 20:21:46 +00001556 int rc;
dan87cd9322013-08-07 15:52:41 +00001557 sqlite3_value *pVal = 0;
dan87cd9322013-08-07 15:52:41 +00001558 struct ValueNewStat4Ctx alloc;
danb0b82902014-06-26 20:21:46 +00001559
dan87cd9322013-08-07 15:52:41 +00001560 alloc.pParse = pParse;
1561 alloc.pIdx = pIdx;
1562 alloc.ppRec = ppRec;
1563 alloc.iVal = iVal;
dan7a419232013-08-06 20:01:43 +00001564
danb0b82902014-06-26 20:21:46 +00001565 rc = stat4ValueFromExpr(pParse, pExpr, affinity, &alloc, &pVal);
1566 assert( pVal==0 || pVal->db==pParse->db );
drh7190e072013-12-03 19:16:06 +00001567 *pbOk = (pVal!=0);
danb0b82902014-06-26 20:21:46 +00001568 return rc;
1569}
dan87cd9322013-08-07 15:52:41 +00001570
danb0b82902014-06-26 20:21:46 +00001571/*
1572** Attempt to extract a value from expression pExpr using the methods
1573** as described for sqlite3Stat4ProbeSetValue() above.
1574**
1575** If successful, set *ppVal to point to a new value object and return
1576** SQLITE_OK. If no value can be extracted, but no other error occurs
1577** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1578** does occur, return an SQLite error code. The final value of *ppVal
1579** is undefined in this case.
1580*/
1581int sqlite3Stat4ValueFromExpr(
1582 Parse *pParse, /* Parse context */
1583 Expr *pExpr, /* The expression to extract a value from */
1584 u8 affinity, /* Affinity to use */
1585 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1586){
1587 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal);
1588}
1589
drh0288b212014-06-28 16:06:44 +00001590/*
1591** Extract the iCol-th column from the nRec-byte record in pRec. Write
1592** the column value into *ppVal. If *ppVal is initially NULL then a new
1593** sqlite3_value object is allocated.
1594**
1595** If *ppVal is initially NULL then the caller is responsible for
1596** ensuring that the value written into *ppVal is eventually freed.
1597*/
danb0b82902014-06-26 20:21:46 +00001598int sqlite3Stat4Column(
1599 sqlite3 *db, /* Database handle */
1600 const void *pRec, /* Pointer to buffer containing record */
1601 int nRec, /* Size of buffer pRec in bytes */
1602 int iCol, /* Column to extract */
1603 sqlite3_value **ppVal /* OUT: Extracted value */
1604){
drh0288b212014-06-28 16:06:44 +00001605 u32 t; /* a column type code */
1606 int nHdr; /* Size of the header in the record */
1607 int iHdr; /* Next unread header byte */
1608 int iField; /* Next unread data byte */
1609 int szField; /* Size of the current data field */
1610 int i; /* Column index */
1611 u8 *a = (u8*)pRec; /* Typecast byte array */
1612 Mem *pMem = *ppVal; /* Write result into this Mem object */
1613
1614 assert( iCol>0 );
1615 iHdr = getVarint32(a, nHdr);
1616 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT;
1617 iField = nHdr;
1618 for(i=0; i<=iCol; i++){
1619 iHdr += getVarint32(&a[iHdr], t);
1620 testcase( iHdr==nHdr );
1621 testcase( iHdr==nHdr+1 );
1622 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT;
1623 szField = sqlite3VdbeSerialTypeLen(t);
1624 iField += szField;
1625 }
1626 testcase( iField==nRec );
1627 testcase( iField==nRec+1 );
1628 if( iField>nRec ) return SQLITE_CORRUPT_BKPT;
danb0b82902014-06-26 20:21:46 +00001629 if( pMem==0 ){
drh0288b212014-06-28 16:06:44 +00001630 pMem = *ppVal = sqlite3ValueNew(db);
1631 if( pMem==0 ) return SQLITE_NOMEM;
danb0b82902014-06-26 20:21:46 +00001632 }
drh0288b212014-06-28 16:06:44 +00001633 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem);
1634 pMem->enc = ENC(db);
1635 return SQLITE_OK;
dan7a419232013-08-06 20:01:43 +00001636}
1637
dan87cd9322013-08-07 15:52:41 +00001638/*
1639** Unless it is NULL, the argument must be an UnpackedRecord object returned
1640** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1641** the object.
1642*/
dan7a419232013-08-06 20:01:43 +00001643void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
1644 if( pRec ){
1645 int i;
drh1153c7b2013-11-01 22:02:56 +00001646 int nCol = pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField;
dan7a419232013-08-06 20:01:43 +00001647 Mem *aMem = pRec->aMem;
1648 sqlite3 *db = aMem[0].db;
dandd6e1f12013-08-10 19:08:30 +00001649 for(i=0; i<nCol; i++){
drhcef25842015-04-20 13:59:18 +00001650 sqlite3VdbeMemRelease(&aMem[i]);
dan7a419232013-08-06 20:01:43 +00001651 }
drh2ec2fb22013-11-06 19:59:23 +00001652 sqlite3KeyInfoUnref(pRec->pKeyInfo);
dan7a419232013-08-06 20:01:43 +00001653 sqlite3DbFree(db, pRec);
1654 }
1655}
dan7a419232013-08-06 20:01:43 +00001656#endif /* ifdef SQLITE_ENABLE_STAT4 */
1657
drh4f26d6c2004-05-26 23:25:30 +00001658/*
1659** Change the string value of an sqlite3_value object
1660*/
1661void sqlite3ValueSetStr(
drh17435752007-08-16 04:30:38 +00001662 sqlite3_value *v, /* Value to be set */
1663 int n, /* Length of string z */
1664 const void *z, /* Text of the new string */
1665 u8 enc, /* Encoding to use */
1666 void (*xDel)(void*) /* Destructor for the string */
drh4f26d6c2004-05-26 23:25:30 +00001667){
drhb21c8cd2007-08-21 19:33:56 +00001668 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
drh4f26d6c2004-05-26 23:25:30 +00001669}
1670
1671/*
1672** Free an sqlite3_value object
1673*/
1674void sqlite3ValueFree(sqlite3_value *v){
1675 if( !v ) return;
danielk1977a7a8e142008-02-13 18:25:27 +00001676 sqlite3VdbeMemRelease((Mem *)v);
drh633e6d52008-07-28 19:34:53 +00001677 sqlite3DbFree(((Mem*)v)->db, v);
drh4f26d6c2004-05-26 23:25:30 +00001678}
1679
1680/*
1681** Return the number of bytes in the sqlite3_value object assuming
1682** that it uses the encoding "enc"
1683*/
drhb21c8cd2007-08-21 19:33:56 +00001684int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
drh4f26d6c2004-05-26 23:25:30 +00001685 Mem *p = (Mem*)pVal;
drhb21c8cd2007-08-21 19:33:56 +00001686 if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){
drhb026e052007-05-02 01:34:31 +00001687 if( p->flags & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +00001688 return p->n + p->u.nZero;
drhb026e052007-05-02 01:34:31 +00001689 }else{
1690 return p->n;
1691 }
drh4f26d6c2004-05-26 23:25:30 +00001692 }
1693 return 0;
1694}