blob: 962d6fc3e397e3491330b966965d5c1ad38dee14 [file] [log] [blame]
drh75897232000-05-29 14:26:00 +00001/*
drhb19a2bc2001-09-16 00:13:26 +00002** 2001 September 15
drh75897232000-05-29 14:26:00 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drh75897232000-05-29 14:26:00 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drh75897232000-05-29 14:26:00 +000010**
11*************************************************************************
drh0fd61352014-02-07 02:29:45 +000012** The code in this file implements the function that runs the
13** bytecode of a prepared statement.
drh75897232000-05-29 14:26:00 +000014**
drhac82fcf2002-09-08 17:23:41 +000015** Various scripts scan this source file in order to generate HTML
16** documentation, headers files, or other derived files. The formatting
17** of the code in this file is, therefore, important. See other comments
18** in this file for details. If in doubt, do not deviate from existing
19** commenting and indentation practices when changing or adding code.
drh75897232000-05-29 14:26:00 +000020*/
21#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000022#include "vdbeInt.h"
drh8f619cc2002-09-08 00:04:50 +000023
24/*
drh2b4ded92010-09-27 21:09:31 +000025** Invoke this macro on memory cells just prior to changing the
26** value of the cell. This macro verifies that shallow copies are
drh0fd61352014-02-07 02:29:45 +000027** not misused. A shallow copy of a string or blob just copies a
28** pointer to the string or blob, not the content. If the original
29** is changed while the copy is still in use, the string or blob might
30** be changed out from under the copy. This macro verifies that nothing
drhb6e8fd12014-03-06 01:56:33 +000031** like that ever happens.
drh2b4ded92010-09-27 21:09:31 +000032*/
33#ifdef SQLITE_DEBUG
drhe4c88c02012-01-04 12:57:45 +000034# define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
drh2b4ded92010-09-27 21:09:31 +000035#else
36# define memAboutToChange(P,M)
37#endif
38
39/*
drh487ab3c2001-11-08 00:45:21 +000040** The following global variable is incremented every time a cursor
drh959403f2008-12-12 17:56:16 +000041** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
drh487ab3c2001-11-08 00:45:21 +000042** procedures use this information to make sure that indices are
drhac82fcf2002-09-08 17:23:41 +000043** working correctly. This variable has no function other than to
44** help verify the correct operation of the library.
drh487ab3c2001-11-08 00:45:21 +000045*/
drh0f7eb612006-08-08 13:51:43 +000046#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000047int sqlite3_search_count = 0;
drh0f7eb612006-08-08 13:51:43 +000048#endif
drh487ab3c2001-11-08 00:45:21 +000049
drhf6038712004-02-08 18:07:34 +000050/*
51** When this global variable is positive, it gets decremented once before
drhe4c88c02012-01-04 12:57:45 +000052** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
53** field of the sqlite3 structure is set in order to simulate an interrupt.
drhf6038712004-02-08 18:07:34 +000054**
55** This facility is used for testing purposes only. It does not function
56** in an ordinary build.
57*/
drh0f7eb612006-08-08 13:51:43 +000058#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000059int sqlite3_interrupt_count = 0;
drh0f7eb612006-08-08 13:51:43 +000060#endif
drh1350b032002-02-27 19:00:20 +000061
danielk19777e18c252004-05-25 11:47:24 +000062/*
drh6bf89572004-11-03 16:27:01 +000063** The next global variable is incremented each type the OP_Sort opcode
64** is executed. The test procedures use this information to make sure that
shane21e7feb2008-05-30 15:59:49 +000065** sorting is occurring or not occurring at appropriate times. This variable
drh6bf89572004-11-03 16:27:01 +000066** has no function other than to help verify the correct operation of the
67** library.
68*/
drh0f7eb612006-08-08 13:51:43 +000069#ifdef SQLITE_TEST
drh6bf89572004-11-03 16:27:01 +000070int sqlite3_sort_count = 0;
drh0f7eb612006-08-08 13:51:43 +000071#endif
drh6bf89572004-11-03 16:27:01 +000072
73/*
drhae7e1512007-05-02 16:51:59 +000074** The next global variable records the size of the largest MEM_Blob
drh9cbf3422008-01-17 16:22:13 +000075** or MEM_Str that has been used by a VDBE opcode. The test procedures
drhae7e1512007-05-02 16:51:59 +000076** use this information to make sure that the zero-blob functionality
77** is working correctly. This variable has no function other than to
78** help verify the correct operation of the library.
79*/
80#ifdef SQLITE_TEST
81int sqlite3_max_blobsize = 0;
drhca48c902008-01-18 14:08:24 +000082static void updateMaxBlobsize(Mem *p){
83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84 sqlite3_max_blobsize = p->n;
85 }
86}
drhae7e1512007-05-02 16:51:59 +000087#endif
88
89/*
drh0fd61352014-02-07 02:29:45 +000090** The next global variable is incremented each time the OP_Found opcode
dan0ff297e2009-09-25 17:03:14 +000091** is executed. This is used to test whether or not the foreign key
92** operation implemented using OP_FkIsZero is working. This variable
93** has no function other than to help verify the correct operation of the
94** library.
95*/
96#ifdef SQLITE_TEST
97int sqlite3_found_count = 0;
98#endif
99
100/*
drhb7654112008-01-12 12:48:07 +0000101** Test a register to see if it exceeds the current maximum blob size.
102** If it does, record the new maximum blob size.
103*/
drh678ccce2008-03-31 18:19:54 +0000104#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
drhca48c902008-01-18 14:08:24 +0000105# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
drhb7654112008-01-12 12:48:07 +0000106#else
107# define UPDATE_MAX_BLOBSIZE(P)
108#endif
109
110/*
drh5655c542014-02-19 19:14:34 +0000111** Invoke the VDBE coverage callback, if that callback is defined. This
112** feature is used for test suite validation only and does not appear an
113** production builds.
114**
115** M is an integer, 2 or 3, that indices how many different ways the
116** branch can go. It is usually 2. "I" is the direction the branch
117** goes. 0 means falls through. 1 means branch is taken. 2 means the
118** second alternative branch is taken.
drh4336b0e2014-08-05 00:53:51 +0000119**
120** iSrcLine is the source code line (from the __LINE__ macro) that
121** generated the VDBE instruction. This instrumentation assumes that all
122** source code is in a single file (the amalgamation). Special values 1
123** and 2 for the iSrcLine parameter mean that this particular branch is
124** always taken or never taken, respectively.
drh688852a2014-02-17 22:40:43 +0000125*/
126#if !defined(SQLITE_VDBE_COVERAGE)
127# define VdbeBranchTaken(I,M)
128#else
drh5655c542014-02-19 19:14:34 +0000129# define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
130 static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
131 if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
132 M = iSrcLine;
133 /* Assert the truth of VdbeCoverageAlwaysTaken() and
134 ** VdbeCoverageNeverTaken() */
135 assert( (M & I)==I );
136 }else{
137 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/
138 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
139 iSrcLine,I,M);
140 }
141 }
drh688852a2014-02-17 22:40:43 +0000142#endif
143
144/*
drh9cbf3422008-01-17 16:22:13 +0000145** Convert the given register into a string if it isn't one
danielk1977bd7e4602004-05-24 07:34:48 +0000146** already. Return non-zero if a malloc() fails.
147*/
drhb21c8cd2007-08-21 19:33:56 +0000148#define Stringify(P, enc) \
drhbd9507c2014-08-23 17:21:37 +0000149 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \
drhf4479502004-05-27 03:12:53 +0000150 { goto no_mem; }
danielk1977bd7e4602004-05-24 07:34:48 +0000151
152/*
danielk1977bd7e4602004-05-24 07:34:48 +0000153** An ephemeral string value (signified by the MEM_Ephem flag) contains
154** a pointer to a dynamically allocated string where some other entity
drh9cbf3422008-01-17 16:22:13 +0000155** is responsible for deallocating that string. Because the register
156** does not control the string, it might be deleted without the register
157** knowing it.
danielk1977bd7e4602004-05-24 07:34:48 +0000158**
159** This routine converts an ephemeral string into a dynamically allocated
drh9cbf3422008-01-17 16:22:13 +0000160** string that the register itself controls. In other words, it
drhc91b2fd2014-03-01 18:13:23 +0000161** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
danielk1977bd7e4602004-05-24 07:34:48 +0000162*/
drhb21c8cd2007-08-21 19:33:56 +0000163#define Deephemeralize(P) \
drheb2e1762004-05-27 01:53:56 +0000164 if( ((P)->flags&MEM_Ephem)!=0 \
drhb21c8cd2007-08-21 19:33:56 +0000165 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
danielk197793d46752004-05-23 13:30:58 +0000166
dan689ab892011-08-12 15:02:00 +0000167/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
drh0fd61352014-02-07 02:29:45 +0000168#define isSorter(x) ((x)->pSorter!=0)
dan689ab892011-08-12 15:02:00 +0000169
danielk19771cc5ed82007-05-16 17:28:43 +0000170/*
drhdfe88ec2008-11-03 20:55:06 +0000171** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
drh4774b132004-06-12 20:12:51 +0000172** if we run out of memory.
drh8c74a8c2002-08-25 19:20:40 +0000173*/
drhdfe88ec2008-11-03 20:55:06 +0000174static VdbeCursor *allocateCursor(
175 Vdbe *p, /* The virtual machine */
176 int iCur, /* Index of the new VdbeCursor */
danielk1977d336e222009-02-20 10:58:41 +0000177 int nField, /* Number of fields in the table or index */
drhe4c88c02012-01-04 12:57:45 +0000178 int iDb, /* Database the cursor belongs to, or -1 */
drh3e9ca092009-09-08 01:14:48 +0000179 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */
danielk1977cd3e8f72008-03-25 09:47:35 +0000180){
181 /* Find the memory cell that will be used to store the blob of memory
drhdfe88ec2008-11-03 20:55:06 +0000182 ** required for this VdbeCursor structure. It is convenient to use a
danielk1977cd3e8f72008-03-25 09:47:35 +0000183 ** vdbe memory cell to manage the memory allocation required for a
drhdfe88ec2008-11-03 20:55:06 +0000184 ** VdbeCursor structure for the following reasons:
danielk1977cd3e8f72008-03-25 09:47:35 +0000185 **
186 ** * Sometimes cursor numbers are used for a couple of different
187 ** purposes in a vdbe program. The different uses might require
188 ** different sized allocations. Memory cells provide growable
189 ** allocations.
190 **
191 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
192 ** be freed lazily via the sqlite3_release_memory() API. This
193 ** minimizes the number of malloc calls made by the system.
194 **
195 ** Memory cells for cursors are allocated at the top of the address
196 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
197 ** cursor 1 is managed by memory cell (p->nMem-1), etc.
198 */
199 Mem *pMem = &p->aMem[p->nMem-iCur];
200
danielk19775f096132008-03-28 15:44:09 +0000201 int nByte;
drhdfe88ec2008-11-03 20:55:06 +0000202 VdbeCursor *pCx = 0;
danielk19775f096132008-03-28 15:44:09 +0000203 nByte =
drh5cc10232013-11-21 01:04:02 +0000204 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
205 (isBtreeCursor?sqlite3BtreeCursorSize():0);
danielk1977cd3e8f72008-03-25 09:47:35 +0000206
drh290c1942004-08-21 17:54:45 +0000207 assert( iCur<p->nCursor );
208 if( p->apCsr[iCur] ){
danielk1977be718892006-06-23 08:05:19 +0000209 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
danielk1977cd3e8f72008-03-25 09:47:35 +0000210 p->apCsr[iCur] = 0;
drh8c74a8c2002-08-25 19:20:40 +0000211 }
drh322f2852014-09-19 00:43:39 +0000212 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
drhdfe88ec2008-11-03 20:55:06 +0000213 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
drhf25a5072009-11-18 23:01:25 +0000214 memset(pCx, 0, sizeof(VdbeCursor));
danielk197794eb6a12005-12-15 15:22:08 +0000215 pCx->iDb = iDb;
danielk1977cd3e8f72008-03-25 09:47:35 +0000216 pCx->nField = nField;
drhb53a5a92014-10-12 22:37:22 +0000217 pCx->aOffset = &pCx->aType[nField];
danielk1977cd3e8f72008-03-25 09:47:35 +0000218 if( isBtreeCursor ){
drhdfe88ec2008-11-03 20:55:06 +0000219 pCx->pCursor = (BtCursor*)
drh5cc10232013-11-21 01:04:02 +0000220 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
drhf25a5072009-11-18 23:01:25 +0000221 sqlite3BtreeCursorZero(pCx->pCursor);
danielk1977cd3e8f72008-03-25 09:47:35 +0000222 }
danielk197794eb6a12005-12-15 15:22:08 +0000223 }
drh4774b132004-06-12 20:12:51 +0000224 return pCx;
drh8c74a8c2002-08-25 19:20:40 +0000225}
226
danielk19773d1bfea2004-05-14 11:00:53 +0000227/*
drh29d72102006-02-09 22:13:41 +0000228** Try to convert a value into a numeric representation if we can
229** do so without loss of information. In other words, if the string
230** looks like a number, convert it into a number. If it does not
231** look like a number, leave it alone.
drhbd9507c2014-08-23 17:21:37 +0000232**
233** If the bTryForInt flag is true, then extra effort is made to give
234** an integer representation. Strings that look like floating point
235** values but which have no fractional component (example: '48.00')
236** will have a MEM_Int representation when bTryForInt is true.
237**
238** If bTryForInt is false, then if the input string contains a decimal
239** point or exponential notation, the result is only MEM_Real, even
240** if there is an exact integer representation of the quantity.
drh29d72102006-02-09 22:13:41 +0000241*/
drhbd9507c2014-08-23 17:21:37 +0000242static void applyNumericAffinity(Mem *pRec, int bTryForInt){
drh975b4c62014-07-26 16:47:23 +0000243 double rValue;
244 i64 iValue;
245 u8 enc = pRec->enc;
drh11a6eee2014-09-19 22:01:54 +0000246 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str );
drh975b4c62014-07-26 16:47:23 +0000247 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
248 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
249 pRec->u.i = iValue;
250 pRec->flags |= MEM_Int;
251 }else{
drh74eaba42014-09-18 17:52:15 +0000252 pRec->u.r = rValue;
drh975b4c62014-07-26 16:47:23 +0000253 pRec->flags |= MEM_Real;
drhbd9507c2014-08-23 17:21:37 +0000254 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
drh29d72102006-02-09 22:13:41 +0000255 }
256}
257
258/*
drh8a512562005-11-14 22:29:05 +0000259** Processing is determine by the affinity parameter:
danielk19773d1bfea2004-05-14 11:00:53 +0000260**
drh8a512562005-11-14 22:29:05 +0000261** SQLITE_AFF_INTEGER:
262** SQLITE_AFF_REAL:
263** SQLITE_AFF_NUMERIC:
264** Try to convert pRec to an integer representation or a
265** floating-point representation if an integer representation
266** is not possible. Note that the integer representation is
267** always preferred, even if the affinity is REAL, because
268** an integer representation is more space efficient on disk.
269**
270** SQLITE_AFF_TEXT:
271** Convert pRec to a text representation.
272**
drh05883a32015-06-02 15:32:08 +0000273** SQLITE_AFF_BLOB:
drh8a512562005-11-14 22:29:05 +0000274** No-op. pRec is unchanged.
danielk19773d1bfea2004-05-14 11:00:53 +0000275*/
drh17435752007-08-16 04:30:38 +0000276static void applyAffinity(
drh17435752007-08-16 04:30:38 +0000277 Mem *pRec, /* The value to apply affinity to */
278 char affinity, /* The affinity to be applied */
279 u8 enc /* Use this text encoding */
280){
drh7ea31cc2014-09-18 14:36:00 +0000281 if( affinity>=SQLITE_AFF_NUMERIC ){
drh8a512562005-11-14 22:29:05 +0000282 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
283 || affinity==SQLITE_AFF_NUMERIC );
drhbd9507c2014-08-23 17:21:37 +0000284 if( (pRec->flags & MEM_Int)==0 ){
285 if( (pRec->flags & MEM_Real)==0 ){
drh11a6eee2014-09-19 22:01:54 +0000286 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
drhbd9507c2014-08-23 17:21:37 +0000287 }else{
288 sqlite3VdbeIntegerAffinity(pRec);
289 }
drh17c40292004-07-21 02:53:29 +0000290 }
drh7ea31cc2014-09-18 14:36:00 +0000291 }else if( affinity==SQLITE_AFF_TEXT ){
292 /* Only attempt the conversion to TEXT if there is an integer or real
293 ** representation (blob and NULL do not get converted) but no string
294 ** representation.
295 */
296 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
297 sqlite3VdbeMemStringify(pRec, enc, 1);
298 }
dandde548c2015-05-19 19:44:25 +0000299 pRec->flags &= ~(MEM_Real|MEM_Int);
danielk19773d1bfea2004-05-14 11:00:53 +0000300 }
301}
302
danielk1977aee18ef2005-03-09 12:26:50 +0000303/*
drh29d72102006-02-09 22:13:41 +0000304** Try to convert the type of a function argument or a result column
305** into a numeric representation. Use either INTEGER or REAL whichever
306** is appropriate. But only do the conversion if it is possible without
307** loss of information and return the revised type of the argument.
drh29d72102006-02-09 22:13:41 +0000308*/
309int sqlite3_value_numeric_type(sqlite3_value *pVal){
drh1b27b8c2014-02-10 03:21:57 +0000310 int eType = sqlite3_value_type(pVal);
311 if( eType==SQLITE_TEXT ){
312 Mem *pMem = (Mem*)pVal;
drhbd9507c2014-08-23 17:21:37 +0000313 applyNumericAffinity(pMem, 0);
drh1b27b8c2014-02-10 03:21:57 +0000314 eType = sqlite3_value_type(pVal);
drhe5a8a1d2010-11-18 12:31:24 +0000315 }
drh1b27b8c2014-02-10 03:21:57 +0000316 return eType;
drh29d72102006-02-09 22:13:41 +0000317}
318
319/*
danielk1977aee18ef2005-03-09 12:26:50 +0000320** Exported version of applyAffinity(). This one works on sqlite3_value*,
321** not the internal Mem* type.
322*/
danielk19771e536952007-08-16 10:09:01 +0000323void sqlite3ValueApplyAffinity(
danielk19771e536952007-08-16 10:09:01 +0000324 sqlite3_value *pVal,
325 u8 affinity,
326 u8 enc
327){
drhb21c8cd2007-08-21 19:33:56 +0000328 applyAffinity((Mem *)pVal, affinity, enc);
danielk1977aee18ef2005-03-09 12:26:50 +0000329}
330
drh3d1d90a2014-03-24 15:00:15 +0000331/*
drhf1a89ed2014-08-23 17:41:15 +0000332** pMem currently only holds a string type (or maybe a BLOB that we can
333** interpret as a string if we want to). Compute its corresponding
drh74eaba42014-09-18 17:52:15 +0000334** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
drhf1a89ed2014-08-23 17:41:15 +0000335** accordingly.
336*/
337static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
338 assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
339 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
drh74eaba42014-09-18 17:52:15 +0000340 if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){
drhf1a89ed2014-08-23 17:41:15 +0000341 return 0;
342 }
343 if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){
344 return MEM_Int;
345 }
346 return MEM_Real;
347}
348
349/*
drh3d1d90a2014-03-24 15:00:15 +0000350** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
351** none.
352**
353** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
drh74eaba42014-09-18 17:52:15 +0000354** But it does set pMem->u.r and pMem->u.i appropriately.
drh3d1d90a2014-03-24 15:00:15 +0000355*/
356static u16 numericType(Mem *pMem){
357 if( pMem->flags & (MEM_Int|MEM_Real) ){
358 return pMem->flags & (MEM_Int|MEM_Real);
359 }
360 if( pMem->flags & (MEM_Str|MEM_Blob) ){
drhf1a89ed2014-08-23 17:41:15 +0000361 return computeNumericType(pMem);
drh3d1d90a2014-03-24 15:00:15 +0000362 }
363 return 0;
364}
365
danielk1977b5402fb2005-01-12 07:15:04 +0000366#ifdef SQLITE_DEBUG
drhb6f54522004-05-20 02:42:16 +0000367/*
danielk1977ca6b2912004-05-21 10:49:47 +0000368** Write a nice string representation of the contents of cell pMem
369** into buffer zBuf, length nBuf.
370*/
drh74161702006-02-24 02:53:49 +0000371void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
danielk1977ca6b2912004-05-21 10:49:47 +0000372 char *zCsr = zBuf;
373 int f = pMem->flags;
374
drh57196282004-10-06 15:41:16 +0000375 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
danielk1977bfd6cce2004-06-18 04:24:54 +0000376
danielk1977ca6b2912004-05-21 10:49:47 +0000377 if( f&MEM_Blob ){
378 int i;
379 char c;
380 if( f & MEM_Dyn ){
381 c = 'z';
382 assert( (f & (MEM_Static|MEM_Ephem))==0 );
383 }else if( f & MEM_Static ){
384 c = 't';
385 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
386 }else if( f & MEM_Ephem ){
387 c = 'e';
388 assert( (f & (MEM_Static|MEM_Dyn))==0 );
389 }else{
390 c = 's';
391 }
392
drh5bb3eb92007-05-04 13:15:55 +0000393 sqlite3_snprintf(100, zCsr, "%c", c);
drhea678832008-12-10 19:26:22 +0000394 zCsr += sqlite3Strlen30(zCsr);
drh5bb3eb92007-05-04 13:15:55 +0000395 sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
drhea678832008-12-10 19:26:22 +0000396 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000397 for(i=0; i<16 && i<pMem->n; i++){
drh5bb3eb92007-05-04 13:15:55 +0000398 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
drhea678832008-12-10 19:26:22 +0000399 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000400 }
401 for(i=0; i<16 && i<pMem->n; i++){
402 char z = pMem->z[i];
403 if( z<32 || z>126 ) *zCsr++ = '.';
404 else *zCsr++ = z;
405 }
406
drhe718efe2007-05-10 21:14:03 +0000407 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000408 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000409 if( f & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +0000410 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
drhea678832008-12-10 19:26:22 +0000411 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000412 }
danielk1977b1bc9532004-05-22 03:05:33 +0000413 *zCsr = '\0';
414 }else if( f & MEM_Str ){
415 int j, k;
416 zBuf[0] = ' ';
417 if( f & MEM_Dyn ){
418 zBuf[1] = 'z';
419 assert( (f & (MEM_Static|MEM_Ephem))==0 );
420 }else if( f & MEM_Static ){
421 zBuf[1] = 't';
422 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
423 }else if( f & MEM_Ephem ){
424 zBuf[1] = 'e';
425 assert( (f & (MEM_Static|MEM_Dyn))==0 );
426 }else{
427 zBuf[1] = 's';
428 }
429 k = 2;
drh5bb3eb92007-05-04 13:15:55 +0000430 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
drhea678832008-12-10 19:26:22 +0000431 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000432 zBuf[k++] = '[';
433 for(j=0; j<15 && j<pMem->n; j++){
434 u8 c = pMem->z[j];
danielk1977b1bc9532004-05-22 03:05:33 +0000435 if( c>=0x20 && c<0x7f ){
436 zBuf[k++] = c;
437 }else{
438 zBuf[k++] = '.';
439 }
440 }
441 zBuf[k++] = ']';
drh5bb3eb92007-05-04 13:15:55 +0000442 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000443 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000444 zBuf[k++] = 0;
danielk1977ca6b2912004-05-21 10:49:47 +0000445 }
danielk1977ca6b2912004-05-21 10:49:47 +0000446}
447#endif
448
drh5b6afba2008-01-05 16:29:28 +0000449#ifdef SQLITE_DEBUG
450/*
451** Print the value of a register for tracing purposes:
452*/
drh84e55a82013-11-13 17:58:23 +0000453static void memTracePrint(Mem *p){
drha5750cf2014-02-07 13:20:31 +0000454 if( p->flags & MEM_Undefined ){
drh84e55a82013-11-13 17:58:23 +0000455 printf(" undefined");
drh953f7612012-12-07 22:18:54 +0000456 }else if( p->flags & MEM_Null ){
drh84e55a82013-11-13 17:58:23 +0000457 printf(" NULL");
drh5b6afba2008-01-05 16:29:28 +0000458 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
drh84e55a82013-11-13 17:58:23 +0000459 printf(" si:%lld", p->u.i);
drh5b6afba2008-01-05 16:29:28 +0000460 }else if( p->flags & MEM_Int ){
drh84e55a82013-11-13 17:58:23 +0000461 printf(" i:%lld", p->u.i);
drh0b3bf922009-06-15 20:45:34 +0000462#ifndef SQLITE_OMIT_FLOATING_POINT
drh5b6afba2008-01-05 16:29:28 +0000463 }else if( p->flags & MEM_Real ){
drh74eaba42014-09-18 17:52:15 +0000464 printf(" r:%g", p->u.r);
drh0b3bf922009-06-15 20:45:34 +0000465#endif
drh733bf1b2009-04-22 00:47:00 +0000466 }else if( p->flags & MEM_RowSet ){
drh84e55a82013-11-13 17:58:23 +0000467 printf(" (rowset)");
drh5b6afba2008-01-05 16:29:28 +0000468 }else{
469 char zBuf[200];
470 sqlite3VdbeMemPrettyPrint(p, zBuf);
drh84e55a82013-11-13 17:58:23 +0000471 printf(" %s", zBuf);
drh5b6afba2008-01-05 16:29:28 +0000472 }
473}
drh84e55a82013-11-13 17:58:23 +0000474static void registerTrace(int iReg, Mem *p){
475 printf("REG[%d] = ", iReg);
476 memTracePrint(p);
477 printf("\n");
drh5b6afba2008-01-05 16:29:28 +0000478}
479#endif
480
481#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +0000482# define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
drh5b6afba2008-01-05 16:29:28 +0000483#else
484# define REGISTER_TRACE(R,M)
485#endif
486
danielk197784ac9d02004-05-18 09:58:06 +0000487
drh7b396862003-01-01 23:06:20 +0000488#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000489
490/*
491** hwtime.h contains inline assembler code for implementing
492** high-performance timing routines.
drh7b396862003-01-01 23:06:20 +0000493*/
shane9bcbdad2008-05-29 20:22:37 +0000494#include "hwtime.h"
495
drh7b396862003-01-01 23:06:20 +0000496#endif
497
danielk1977fd7f0452008-12-17 17:30:26 +0000498#ifndef NDEBUG
499/*
500** This function is only called from within an assert() expression. It
501** checks that the sqlite3.nTransaction variable is correctly set to
502** the number of non-transaction savepoints currently in the
503** linked list starting at sqlite3.pSavepoint.
504**
505** Usage:
506**
507** assert( checkSavepointCount(db) );
508*/
509static int checkSavepointCount(sqlite3 *db){
510 int n = 0;
511 Savepoint *p;
512 for(p=db->pSavepoint; p; p=p->pNext) n++;
513 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
514 return 1;
515}
516#endif
517
drh27a348c2015-04-13 19:14:06 +0000518/*
519** Return the register of pOp->p2 after first preparing it to be
520** overwritten with an integer value.
521*/
522static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
523 Mem *pOut;
524 assert( pOp->p2>0 );
525 assert( pOp->p2<=(p->nMem-p->nCursor) );
526 pOut = &p->aMem[pOp->p2];
527 memAboutToChange(p, pOut);
528 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
529 pOut->flags = MEM_Int;
530 return pOut;
531}
532
drhb9755982010-07-24 16:34:37 +0000533
534/*
drh0fd61352014-02-07 02:29:45 +0000535** Execute as much of a VDBE program as we can.
536** This is the core of sqlite3_step().
drhb86ccfb2003-01-28 23:13:10 +0000537*/
danielk19774adee202004-05-08 08:23:19 +0000538int sqlite3VdbeExec(
drhb86ccfb2003-01-28 23:13:10 +0000539 Vdbe *p /* The VDBE */
540){
drhbbe879d2009-11-14 18:04:35 +0000541 Op *aOp = p->aOp; /* Copy of p->aOp */
drhf56fa462015-04-13 21:39:54 +0000542 Op *pOp = aOp; /* Current operation */
drh6dc41482015-04-16 17:31:02 +0000543#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
544 Op *pOrigOp; /* Value of pOp at the top of the loop */
545#endif
drhb86ccfb2003-01-28 23:13:10 +0000546 int rc = SQLITE_OK; /* Value to return */
drh9bb575f2004-09-06 17:24:11 +0000547 sqlite3 *db = p->db; /* The database */
drhcdf011d2011-04-04 21:25:28 +0000548 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
drh8079a0d2006-01-12 17:20:50 +0000549 u8 encoding = ENC(db); /* The database encoding */
drhbf159fa2013-06-25 22:01:22 +0000550 int iCompare = 0; /* Result of last OP_Compare operation */
551 unsigned nVmStep = 0; /* Number of virtual machine steps */
drh49afe3a2013-07-10 03:05:14 +0000552#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
drh323df792013-08-05 19:11:29 +0000553 unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
drh49afe3a2013-07-10 03:05:14 +0000554#endif
drha6c2ed92009-11-14 23:22:23 +0000555 Mem *aMem = p->aMem; /* Copy of p->aMem */
drhb27b7f52008-12-10 18:03:45 +0000556 Mem *pIn1 = 0; /* 1st input operand */
557 Mem *pIn2 = 0; /* 2nd input operand */
558 Mem *pIn3 = 0; /* 3rd input operand */
559 Mem *pOut = 0; /* Output operand */
shanebe217792009-03-05 04:20:31 +0000560 int *aPermute = 0; /* Permutation of columns for OP_Compare */
drh99a66922011-05-13 18:51:42 +0000561 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */
drhb86ccfb2003-01-28 23:13:10 +0000562#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000563 u64 start; /* CPU clock count at start of opcode */
drhb86ccfb2003-01-28 23:13:10 +0000564#endif
drh856c1032009-06-02 15:21:42 +0000565 /*** INSERT STACK UNION HERE ***/
drhe63d9992008-08-13 19:11:48 +0000566
drhca48c902008-01-18 14:08:24 +0000567 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
drhbdaec522011-04-04 00:14:43 +0000568 sqlite3VdbeEnter(p);
danielk19772e588c72005-12-09 14:25:08 +0000569 if( p->rc==SQLITE_NOMEM ){
570 /* This happens if a malloc() inside a call to sqlite3_column_text() or
571 ** sqlite3_column_text16() failed. */
572 goto no_mem;
573 }
drh3a840692003-01-29 22:58:26 +0000574 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
drh1713afb2013-06-28 01:24:57 +0000575 assert( p->bIsReader || p->readOnly!=0 );
drh3a840692003-01-29 22:58:26 +0000576 p->rc = SQLITE_OK;
drh95a7b3e2013-09-16 12:57:19 +0000577 p->iCurrentTime = 0;
drhb86ccfb2003-01-28 23:13:10 +0000578 assert( p->explain==0 );
drhd4e70eb2008-01-02 00:34:36 +0000579 p->pResultSet = 0;
drha4afb652005-07-09 02:16:02 +0000580 db->busyHandler.nBusy = 0;
drh0fd61352014-02-07 02:29:45 +0000581 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drh602c2372007-03-01 00:29:13 +0000582 sqlite3VdbeIOTraceSql(p);
drh0d1961e2013-07-25 16:27:51 +0000583#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
584 if( db->xProgress ){
585 assert( 0 < db->nProgressOps );
drh9b47ee32013-08-20 03:13:51 +0000586 nProgressLimit = (unsigned)p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
drh0d1961e2013-07-25 16:27:51 +0000587 if( nProgressLimit==0 ){
588 nProgressLimit = db->nProgressOps;
589 }else{
590 nProgressLimit %= (unsigned)db->nProgressOps;
591 }
592 }
593#endif
drh3c23a882007-01-09 14:01:13 +0000594#ifdef SQLITE_DEBUG
danielk19772d1d86f2008-06-20 14:59:51 +0000595 sqlite3BeginBenignMalloc();
drh84e55a82013-11-13 17:58:23 +0000596 if( p->pc==0
597 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
598 ){
drh3c23a882007-01-09 14:01:13 +0000599 int i;
drh84e55a82013-11-13 17:58:23 +0000600 int once = 1;
drh3c23a882007-01-09 14:01:13 +0000601 sqlite3VdbePrintSql(p);
drh84e55a82013-11-13 17:58:23 +0000602 if( p->db->flags & SQLITE_VdbeListing ){
603 printf("VDBE Program Listing:\n");
604 for(i=0; i<p->nOp; i++){
605 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
606 }
drh3c23a882007-01-09 14:01:13 +0000607 }
drh84e55a82013-11-13 17:58:23 +0000608 if( p->db->flags & SQLITE_VdbeEQP ){
609 for(i=0; i<p->nOp; i++){
610 if( aOp[i].opcode==OP_Explain ){
611 if( once ) printf("VDBE Query Plan:\n");
612 printf("%s\n", aOp[i].p4.z);
613 once = 0;
614 }
615 }
616 }
617 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n");
drh3c23a882007-01-09 14:01:13 +0000618 }
danielk19772d1d86f2008-06-20 14:59:51 +0000619 sqlite3EndBenignMalloc();
drh3c23a882007-01-09 14:01:13 +0000620#endif
drhf56fa462015-04-13 21:39:54 +0000621 for(pOp=&aOp[p->pc]; rc==SQLITE_OK; pOp++){
622 assert( pOp>=aOp && pOp<&aOp[p->nOp]);
drh17435752007-08-16 04:30:38 +0000623 if( db->mallocFailed ) goto no_mem;
drh7b396862003-01-01 23:06:20 +0000624#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000625 start = sqlite3Hwtime();
drh7b396862003-01-01 23:06:20 +0000626#endif
drhbf159fa2013-06-25 22:01:22 +0000627 nVmStep++;
dan6f9702e2014-11-01 20:38:06 +0000628#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
drhf56fa462015-04-13 21:39:54 +0000629 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
dan6f9702e2014-11-01 20:38:06 +0000630#endif
drh6e142f52000-06-08 13:36:40 +0000631
danielk19778b60e0f2005-01-12 09:10:39 +0000632 /* Only allow tracing if SQLITE_DEBUG is defined.
drh6e142f52000-06-08 13:36:40 +0000633 */
danielk19778b60e0f2005-01-12 09:10:39 +0000634#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +0000635 if( db->flags & SQLITE_VdbeTrace ){
drhf56fa462015-04-13 21:39:54 +0000636 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
drh75897232000-05-29 14:26:00 +0000637 }
drh3f7d4e42004-07-24 14:35:58 +0000638#endif
639
drh6e142f52000-06-08 13:36:40 +0000640
drhf6038712004-02-08 18:07:34 +0000641 /* Check to see if we need to simulate an interrupt. This only happens
642 ** if we have a special test build.
643 */
644#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +0000645 if( sqlite3_interrupt_count>0 ){
646 sqlite3_interrupt_count--;
647 if( sqlite3_interrupt_count==0 ){
648 sqlite3_interrupt(db);
drhf6038712004-02-08 18:07:34 +0000649 }
650 }
651#endif
652
drh3c657212009-11-17 23:59:58 +0000653 /* Sanity checking on other operands */
654#ifdef SQLITE_DEBUG
drh27a348c2015-04-13 19:14:06 +0000655 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
drh3c657212009-11-17 23:59:58 +0000656 if( (pOp->opflags & OPFLG_IN1)!=0 ){
657 assert( pOp->p1>0 );
dan3bc9f742013-08-15 16:18:39 +0000658 assert( pOp->p1<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000659 assert( memIsValid(&aMem[pOp->p1]) );
drh75fd0542014-03-01 16:24:44 +0000660 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
drh3c657212009-11-17 23:59:58 +0000661 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
662 }
663 if( (pOp->opflags & OPFLG_IN2)!=0 ){
664 assert( pOp->p2>0 );
dan3bc9f742013-08-15 16:18:39 +0000665 assert( pOp->p2<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000666 assert( memIsValid(&aMem[pOp->p2]) );
drh75fd0542014-03-01 16:24:44 +0000667 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
drh3c657212009-11-17 23:59:58 +0000668 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
669 }
670 if( (pOp->opflags & OPFLG_IN3)!=0 ){
671 assert( pOp->p3>0 );
dan3bc9f742013-08-15 16:18:39 +0000672 assert( pOp->p3<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000673 assert( memIsValid(&aMem[pOp->p3]) );
drh75fd0542014-03-01 16:24:44 +0000674 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
drh3c657212009-11-17 23:59:58 +0000675 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
676 }
677 if( (pOp->opflags & OPFLG_OUT2)!=0 ){
678 assert( pOp->p2>0 );
dan3bc9f742013-08-15 16:18:39 +0000679 assert( pOp->p2<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000680 memAboutToChange(p, &aMem[pOp->p2]);
drh3c657212009-11-17 23:59:58 +0000681 }
682 if( (pOp->opflags & OPFLG_OUT3)!=0 ){
683 assert( pOp->p3>0 );
dan3bc9f742013-08-15 16:18:39 +0000684 assert( pOp->p3<=(p->nMem-p->nCursor) );
drh2b4ded92010-09-27 21:09:31 +0000685 memAboutToChange(p, &aMem[pOp->p3]);
drh3c657212009-11-17 23:59:58 +0000686 }
687#endif
drh6dc41482015-04-16 17:31:02 +0000688#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
689 pOrigOp = pOp;
690#endif
drh93952eb2009-11-13 19:43:43 +0000691
drh75897232000-05-29 14:26:00 +0000692 switch( pOp->opcode ){
drh75897232000-05-29 14:26:00 +0000693
drh5e00f6c2001-09-13 13:46:56 +0000694/*****************************************************************************
695** What follows is a massive switch statement where each case implements a
696** separate instruction in the virtual machine. If we follow the usual
697** indentation conventions, each case should be indented by 6 spaces. But
698** that is a lot of wasted space on the left margin. So the code within
699** the switch statement will break with convention and be flush-left. Another
700** big comment (similar to this one) will mark the point in the code where
701** we transition back to normal indentation.
drhac82fcf2002-09-08 17:23:41 +0000702**
703** The formatting of each case is important. The makefile for SQLite
704** generates two C files "opcodes.h" and "opcodes.c" by scanning this
705** file looking for lines that begin with "case OP_". The opcodes.h files
706** will be filled with #defines that give unique integer values to each
707** opcode and the opcodes.c file is filled with an array of strings where
drhf2bc0132004-10-04 13:19:23 +0000708** each string is the symbolic name for the corresponding opcode. If the
709** case statement is followed by a comment of the form "/# same as ... #/"
710** that comment is used to determine the particular value of the opcode.
drhac82fcf2002-09-08 17:23:41 +0000711**
drh9cbf3422008-01-17 16:22:13 +0000712** Other keywords in the comment that follows each case are used to
713** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
drh27a348c2015-04-13 19:14:06 +0000714** Keywords include: in1, in2, in3, out2, out3. See
drh9cbf3422008-01-17 16:22:13 +0000715** the mkopcodeh.awk script for additional information.
danielk1977bc04f852005-03-29 08:26:13 +0000716**
drhac82fcf2002-09-08 17:23:41 +0000717** Documentation about VDBE opcodes is generated by scanning this file
718** for lines of that contain "Opcode:". That line and all subsequent
719** comment lines are used in the generation of the opcode.html documentation
720** file.
721**
722** SUMMARY:
723**
724** Formatting is important to scripts that scan this file.
725** Do not deviate from the formatting style currently in use.
726**
drh5e00f6c2001-09-13 13:46:56 +0000727*****************************************************************************/
drh75897232000-05-29 14:26:00 +0000728
drh9cbf3422008-01-17 16:22:13 +0000729/* Opcode: Goto * P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000730**
731** An unconditional jump to address P2.
732** The next instruction executed will be
733** the one at index P2 from the beginning of
734** the program.
drhfe705102014-03-06 13:38:37 +0000735**
736** The P1 parameter is not actually used by this opcode. However, it
737** is sometimes set to 1 instead of 0 as a hint to the command-line shell
738** that this Goto is the bottom of a loop and that the lines from P2 down
739** to the current line should be indented for EXPLAIN output.
drh5e00f6c2001-09-13 13:46:56 +0000740*/
drh9cbf3422008-01-17 16:22:13 +0000741case OP_Goto: { /* jump */
drhf56fa462015-04-13 21:39:54 +0000742jump_to_p2_and_check_for_interrupt:
743 pOp = &aOp[pOp->p2 - 1];
drh49afe3a2013-07-10 03:05:14 +0000744
745 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
746 ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon
747 ** completion. Check to see if sqlite3_interrupt() has been called
748 ** or if the progress callback needs to be invoked.
749 **
750 ** This code uses unstructured "goto" statements and does not look clean.
751 ** But that is not due to sloppy coding habits. The code is written this
752 ** way for performance, to avoid having to run the interrupt and progress
753 ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
754 ** faster according to "valgrind --tool=cachegrind" */
755check_for_interrupt:
drh0fd61352014-02-07 02:29:45 +0000756 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drh49afe3a2013-07-10 03:05:14 +0000757#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
758 /* Call the progress callback if it is configured and the required number
759 ** of VDBE ops have been executed (either since this invocation of
760 ** sqlite3VdbeExec() or since last time the progress callback was called).
761 ** If the progress callback returns non-zero, exit the virtual machine with
762 ** a return code SQLITE_ABORT.
763 */
drh0d1961e2013-07-25 16:27:51 +0000764 if( db->xProgress!=0 && nVmStep>=nProgressLimit ){
drh400fcba2013-11-14 00:09:48 +0000765 assert( db->nProgressOps!=0 );
766 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
767 if( db->xProgress(db->pProgressArg) ){
drh49afe3a2013-07-10 03:05:14 +0000768 rc = SQLITE_INTERRUPT;
769 goto vdbe_error_halt;
770 }
drh49afe3a2013-07-10 03:05:14 +0000771 }
772#endif
773
drh5e00f6c2001-09-13 13:46:56 +0000774 break;
775}
drh75897232000-05-29 14:26:00 +0000776
drh2eb95372008-06-06 15:04:36 +0000777/* Opcode: Gosub P1 P2 * * *
drh8c74a8c2002-08-25 19:20:40 +0000778**
drh2eb95372008-06-06 15:04:36 +0000779** Write the current address onto register P1
drh8c74a8c2002-08-25 19:20:40 +0000780** and then jump to address P2.
drh8c74a8c2002-08-25 19:20:40 +0000781*/
drhb8475df2011-12-09 16:21:19 +0000782case OP_Gosub: { /* jump */
dan3bc9f742013-08-15 16:18:39 +0000783 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
drh3c657212009-11-17 23:59:58 +0000784 pIn1 = &aMem[pOp->p1];
drhc91b2fd2014-03-01 18:13:23 +0000785 assert( VdbeMemDynamic(pIn1)==0 );
drh2b4ded92010-09-27 21:09:31 +0000786 memAboutToChange(p, pIn1);
drh2eb95372008-06-06 15:04:36 +0000787 pIn1->flags = MEM_Int;
drhf56fa462015-04-13 21:39:54 +0000788 pIn1->u.i = (int)(pOp-aOp);
drh2eb95372008-06-06 15:04:36 +0000789 REGISTER_TRACE(pOp->p1, pIn1);
drhf56fa462015-04-13 21:39:54 +0000790
791 /* Most jump operations do a goto to this spot in order to update
792 ** the pOp pointer. */
793jump_to_p2:
794 pOp = &aOp[pOp->p2 - 1];
drh8c74a8c2002-08-25 19:20:40 +0000795 break;
796}
797
drh2eb95372008-06-06 15:04:36 +0000798/* Opcode: Return P1 * * * *
drh8c74a8c2002-08-25 19:20:40 +0000799**
drh81cf13e2014-02-07 18:27:53 +0000800** Jump to the next instruction after the address in register P1. After
801** the jump, register P1 becomes undefined.
drh8c74a8c2002-08-25 19:20:40 +0000802*/
drh2eb95372008-06-06 15:04:36 +0000803case OP_Return: { /* in1 */
drh3c657212009-11-17 23:59:58 +0000804 pIn1 = &aMem[pOp->p1];
drh81cf13e2014-02-07 18:27:53 +0000805 assert( pIn1->flags==MEM_Int );
drhf56fa462015-04-13 21:39:54 +0000806 pOp = &aOp[pIn1->u.i];
drh81cf13e2014-02-07 18:27:53 +0000807 pIn1->flags = MEM_Undefined;
drh8c74a8c2002-08-25 19:20:40 +0000808 break;
809}
810
drhed71a832014-02-07 19:18:10 +0000811/* Opcode: InitCoroutine P1 P2 P3 * *
drh81cf13e2014-02-07 18:27:53 +0000812**
drh5dad9a32014-07-25 18:37:42 +0000813** Set up register P1 so that it will Yield to the coroutine
drhed71a832014-02-07 19:18:10 +0000814** located at address P3.
815**
drh5dad9a32014-07-25 18:37:42 +0000816** If P2!=0 then the coroutine implementation immediately follows
817** this opcode. So jump over the coroutine implementation to
drhed71a832014-02-07 19:18:10 +0000818** address P2.
drh5dad9a32014-07-25 18:37:42 +0000819**
820** See also: EndCoroutine
drh81cf13e2014-02-07 18:27:53 +0000821*/
822case OP_InitCoroutine: { /* jump */
drhed71a832014-02-07 19:18:10 +0000823 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
824 assert( pOp->p2>=0 && pOp->p2<p->nOp );
825 assert( pOp->p3>=0 && pOp->p3<p->nOp );
drh81cf13e2014-02-07 18:27:53 +0000826 pOut = &aMem[pOp->p1];
drhed71a832014-02-07 19:18:10 +0000827 assert( !VdbeMemDynamic(pOut) );
828 pOut->u.i = pOp->p3 - 1;
drh81cf13e2014-02-07 18:27:53 +0000829 pOut->flags = MEM_Int;
drhf56fa462015-04-13 21:39:54 +0000830 if( pOp->p2 ) goto jump_to_p2;
drh81cf13e2014-02-07 18:27:53 +0000831 break;
832}
833
834/* Opcode: EndCoroutine P1 * * * *
835**
drhbc5cf382014-08-06 01:08:07 +0000836** The instruction at the address in register P1 is a Yield.
drh5dad9a32014-07-25 18:37:42 +0000837** Jump to the P2 parameter of that Yield.
drh81cf13e2014-02-07 18:27:53 +0000838** After the jump, register P1 becomes undefined.
drh5dad9a32014-07-25 18:37:42 +0000839**
840** See also: InitCoroutine
drh81cf13e2014-02-07 18:27:53 +0000841*/
842case OP_EndCoroutine: { /* in1 */
843 VdbeOp *pCaller;
844 pIn1 = &aMem[pOp->p1];
845 assert( pIn1->flags==MEM_Int );
846 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
847 pCaller = &aOp[pIn1->u.i];
848 assert( pCaller->opcode==OP_Yield );
849 assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
drhf56fa462015-04-13 21:39:54 +0000850 pOp = &aOp[pCaller->p2 - 1];
drh81cf13e2014-02-07 18:27:53 +0000851 pIn1->flags = MEM_Undefined;
852 break;
853}
854
855/* Opcode: Yield P1 P2 * * *
drhe00ee6e2008-06-20 15:24:01 +0000856**
drh5dad9a32014-07-25 18:37:42 +0000857** Swap the program counter with the value in register P1. This
858** has the effect of yielding to a coroutine.
drh81cf13e2014-02-07 18:27:53 +0000859**
drh5dad9a32014-07-25 18:37:42 +0000860** If the coroutine that is launched by this instruction ends with
861** Yield or Return then continue to the next instruction. But if
862** the coroutine launched by this instruction ends with
863** EndCoroutine, then jump to P2 rather than continuing with the
864** next instruction.
865**
866** See also: InitCoroutine
drhe00ee6e2008-06-20 15:24:01 +0000867*/
drh81cf13e2014-02-07 18:27:53 +0000868case OP_Yield: { /* in1, jump */
drhe00ee6e2008-06-20 15:24:01 +0000869 int pcDest;
drh3c657212009-11-17 23:59:58 +0000870 pIn1 = &aMem[pOp->p1];
drhc91b2fd2014-03-01 18:13:23 +0000871 assert( VdbeMemDynamic(pIn1)==0 );
drhe00ee6e2008-06-20 15:24:01 +0000872 pIn1->flags = MEM_Int;
drh9c1905f2008-12-10 22:32:56 +0000873 pcDest = (int)pIn1->u.i;
drhf56fa462015-04-13 21:39:54 +0000874 pIn1->u.i = (int)(pOp - aOp);
drhe00ee6e2008-06-20 15:24:01 +0000875 REGISTER_TRACE(pOp->p1, pIn1);
drhf56fa462015-04-13 21:39:54 +0000876 pOp = &aOp[pcDest];
drhe00ee6e2008-06-20 15:24:01 +0000877 break;
878}
879
drhf9c8ce32013-11-05 13:33:55 +0000880/* Opcode: HaltIfNull P1 P2 P3 P4 P5
drh0fd61352014-02-07 02:29:45 +0000881** Synopsis: if r[P3]=null halt
drh5053a792009-02-20 03:02:23 +0000882**
drhef8662b2011-06-20 21:47:58 +0000883** Check the value in register P3. If it is NULL then Halt using
drh5053a792009-02-20 03:02:23 +0000884** parameter P1, P2, and P4 as if this were a Halt instruction. If the
885** value in register P3 is not NULL, then this routine is a no-op.
drhf9c8ce32013-11-05 13:33:55 +0000886** The P5 parameter should be 1.
drh5053a792009-02-20 03:02:23 +0000887*/
888case OP_HaltIfNull: { /* in3 */
drh3c657212009-11-17 23:59:58 +0000889 pIn3 = &aMem[pOp->p3];
drh5053a792009-02-20 03:02:23 +0000890 if( (pIn3->flags & MEM_Null)==0 ) break;
891 /* Fall through into OP_Halt */
892}
drhe00ee6e2008-06-20 15:24:01 +0000893
drhf9c8ce32013-11-05 13:33:55 +0000894/* Opcode: Halt P1 P2 * P4 P5
drh5e00f6c2001-09-13 13:46:56 +0000895**
drh3d4501e2008-12-04 20:40:10 +0000896** Exit immediately. All open cursors, etc are closed
drh5e00f6c2001-09-13 13:46:56 +0000897** automatically.
drhb19a2bc2001-09-16 00:13:26 +0000898**
drh92f02c32004-09-02 14:57:08 +0000899** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
900** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
901** For errors, it can be some other value. If P1!=0 then P2 will determine
902** whether or not to rollback the current transaction. Do not rollback
903** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
904** then back out all changes that have occurred during this execution of the
drhb798fa62002-09-03 19:43:23 +0000905** VDBE, but do not rollback the transaction.
drh9cfcf5d2002-01-29 18:41:24 +0000906**
drh66a51672008-01-03 00:01:23 +0000907** If P4 is not null then it is an error message string.
drh7f057c92005-06-24 03:53:06 +0000908**
drhf9c8ce32013-11-05 13:33:55 +0000909** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
910**
911** 0: (no change)
912** 1: NOT NULL contraint failed: P4
913** 2: UNIQUE constraint failed: P4
914** 3: CHECK constraint failed: P4
915** 4: FOREIGN KEY constraint failed: P4
916**
917** If P5 is not zero and P4 is NULL, then everything after the ":" is
918** omitted.
919**
drh9cfcf5d2002-01-29 18:41:24 +0000920** There is an implied "Halt 0 0 0" instruction inserted at the very end of
drhb19a2bc2001-09-16 00:13:26 +0000921** every program. So a jump past the last instruction of the program
922** is the same as executing Halt.
drh5e00f6c2001-09-13 13:46:56 +0000923*/
drh9cbf3422008-01-17 16:22:13 +0000924case OP_Halt: {
drhf9c8ce32013-11-05 13:33:55 +0000925 const char *zType;
926 const char *zLogFmt;
drhf56fa462015-04-13 21:39:54 +0000927 VdbeFrame *pFrame;
928 int pcx;
drhf9c8ce32013-11-05 13:33:55 +0000929
drhf56fa462015-04-13 21:39:54 +0000930 pcx = (int)(pOp - aOp);
dan165921a2009-08-28 18:53:45 +0000931 if( pOp->p1==SQLITE_OK && p->pFrame ){
dan2832ad42009-08-31 15:27:27 +0000932 /* Halt the sub-program. Return control to the parent frame. */
drhf56fa462015-04-13 21:39:54 +0000933 pFrame = p->pFrame;
dan165921a2009-08-28 18:53:45 +0000934 p->pFrame = pFrame->pParent;
935 p->nFrame--;
dan2832ad42009-08-31 15:27:27 +0000936 sqlite3VdbeSetChanges(db, p->nChange);
drhf56fa462015-04-13 21:39:54 +0000937 pcx = sqlite3VdbeFrameRestore(pFrame);
drh99a66922011-05-13 18:51:42 +0000938 lastRowid = db->lastRowid;
dan165921a2009-08-28 18:53:45 +0000939 if( pOp->p2==OE_Ignore ){
drhf56fa462015-04-13 21:39:54 +0000940 /* Instruction pcx is the OP_Program that invoked the sub-program
dan2832ad42009-08-31 15:27:27 +0000941 ** currently being halted. If the p2 instruction of this OP_Halt
942 ** instruction is set to OE_Ignore, then the sub-program is throwing
943 ** an IGNORE exception. In this case jump to the address specified
944 ** as the p2 of the calling OP_Program. */
drhf56fa462015-04-13 21:39:54 +0000945 pcx = p->aOp[pcx].p2-1;
dan165921a2009-08-28 18:53:45 +0000946 }
drhbbe879d2009-11-14 18:04:35 +0000947 aOp = p->aOp;
drha6c2ed92009-11-14 23:22:23 +0000948 aMem = p->aMem;
drhf56fa462015-04-13 21:39:54 +0000949 pOp = &aOp[pcx];
dan165921a2009-08-28 18:53:45 +0000950 break;
951 }
drh92f02c32004-09-02 14:57:08 +0000952 p->rc = pOp->p1;
shane36840fd2009-06-26 16:32:13 +0000953 p->errorAction = (u8)pOp->p2;
drhf56fa462015-04-13 21:39:54 +0000954 p->pc = pcx;
drhf9c8ce32013-11-05 13:33:55 +0000955 if( p->rc ){
drhd9b7ec92013-11-06 14:05:21 +0000956 if( pOp->p5 ){
957 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
958 "FOREIGN KEY" };
959 assert( pOp->p5>=1 && pOp->p5<=4 );
960 testcase( pOp->p5==1 );
961 testcase( pOp->p5==2 );
962 testcase( pOp->p5==3 );
963 testcase( pOp->p5==4 );
964 zType = azType[pOp->p5-1];
965 }else{
966 zType = 0;
967 }
drh4308e342013-11-11 16:55:52 +0000968 assert( zType!=0 || pOp->p4.z!=0 );
drhf9c8ce32013-11-05 13:33:55 +0000969 zLogFmt = "abort at %d in [%s]: %s";
970 if( zType && pOp->p4.z ){
drh22c17b82015-05-15 04:13:15 +0000971 sqlite3VdbeError(p, "%s constraint failed: %s", zType, pOp->p4.z);
drhf9c8ce32013-11-05 13:33:55 +0000972 }else if( pOp->p4.z ){
drh22c17b82015-05-15 04:13:15 +0000973 sqlite3VdbeError(p, "%s", pOp->p4.z);
drhf9c8ce32013-11-05 13:33:55 +0000974 }else{
drh22c17b82015-05-15 04:13:15 +0000975 sqlite3VdbeError(p, "%s constraint failed", zType);
drhf9c8ce32013-11-05 13:33:55 +0000976 }
drhf56fa462015-04-13 21:39:54 +0000977 sqlite3_log(pOp->p1, zLogFmt, pcx, p->zSql, p->zErrMsg);
drh9cfcf5d2002-01-29 18:41:24 +0000978 }
drh92f02c32004-09-02 14:57:08 +0000979 rc = sqlite3VdbeHalt(p);
dan1da40a32009-09-19 17:00:31 +0000980 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
drh92f02c32004-09-02 14:57:08 +0000981 if( rc==SQLITE_BUSY ){
drh900b31e2007-08-28 02:27:51 +0000982 p->rc = rc = SQLITE_BUSY;
983 }else{
drhd91c1a12013-02-09 13:58:25 +0000984 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
drh648e2642013-07-11 15:03:32 +0000985 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
drh900b31e2007-08-28 02:27:51 +0000986 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
drh92f02c32004-09-02 14:57:08 +0000987 }
drh900b31e2007-08-28 02:27:51 +0000988 goto vdbe_return;
drh5e00f6c2001-09-13 13:46:56 +0000989}
drhc61053b2000-06-04 12:58:36 +0000990
drh4c583122008-01-04 22:01:03 +0000991/* Opcode: Integer P1 P2 * * *
drh81316f82013-10-29 20:40:47 +0000992** Synopsis: r[P2]=P1
drh5e00f6c2001-09-13 13:46:56 +0000993**
drh9cbf3422008-01-17 16:22:13 +0000994** The 32-bit integer value P1 is written into register P2.
drh5e00f6c2001-09-13 13:46:56 +0000995*/
drh27a348c2015-04-13 19:14:06 +0000996case OP_Integer: { /* out2 */
997 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +0000998 pOut->u.i = pOp->p1;
drh29dda4a2005-07-21 18:23:20 +0000999 break;
1000}
1001
drh4c583122008-01-04 22:01:03 +00001002/* Opcode: Int64 * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001003** Synopsis: r[P2]=P4
drh29dda4a2005-07-21 18:23:20 +00001004**
drh66a51672008-01-03 00:01:23 +00001005** P4 is a pointer to a 64-bit integer value.
drh9cbf3422008-01-17 16:22:13 +00001006** Write that value into register P2.
drh29dda4a2005-07-21 18:23:20 +00001007*/
drh27a348c2015-04-13 19:14:06 +00001008case OP_Int64: { /* out2 */
1009 pOut = out2Prerelease(p, pOp);
danielk19772dca4ac2008-01-03 11:50:29 +00001010 assert( pOp->p4.pI64!=0 );
drh4c583122008-01-04 22:01:03 +00001011 pOut->u.i = *pOp->p4.pI64;
drhf4479502004-05-27 03:12:53 +00001012 break;
1013}
drh4f26d6c2004-05-26 23:25:30 +00001014
drh13573c72010-01-12 17:04:07 +00001015#ifndef SQLITE_OMIT_FLOATING_POINT
drh4c583122008-01-04 22:01:03 +00001016/* Opcode: Real * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001017** Synopsis: r[P2]=P4
drhf4479502004-05-27 03:12:53 +00001018**
drh4c583122008-01-04 22:01:03 +00001019** P4 is a pointer to a 64-bit floating point value.
drh9cbf3422008-01-17 16:22:13 +00001020** Write that value into register P2.
drhf4479502004-05-27 03:12:53 +00001021*/
drh27a348c2015-04-13 19:14:06 +00001022case OP_Real: { /* same as TK_FLOAT, out2 */
1023 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001024 pOut->flags = MEM_Real;
drh2eaf93d2008-04-29 00:15:20 +00001025 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
drh74eaba42014-09-18 17:52:15 +00001026 pOut->u.r = *pOp->p4.pReal;
drhf4479502004-05-27 03:12:53 +00001027 break;
1028}
drh13573c72010-01-12 17:04:07 +00001029#endif
danielk1977cbb18d22004-05-28 11:37:27 +00001030
drh3c84ddf2008-01-09 02:15:38 +00001031/* Opcode: String8 * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001032** Synopsis: r[P2]='P4'
danielk1977cbb18d22004-05-28 11:37:27 +00001033**
drh66a51672008-01-03 00:01:23 +00001034** P4 points to a nul terminated UTF-8 string. This opcode is transformed
drhf07cf6e2015-03-06 16:45:16 +00001035** into a String opcode before it is executed for the first time. During
drh0fd61352014-02-07 02:29:45 +00001036** this transformation, the length of string P4 is computed and stored
1037** as the P1 parameter.
danielk1977cbb18d22004-05-28 11:37:27 +00001038*/
drh27a348c2015-04-13 19:14:06 +00001039case OP_String8: { /* same as TK_STRING, out2 */
danielk19772dca4ac2008-01-03 11:50:29 +00001040 assert( pOp->p4.z!=0 );
drh27a348c2015-04-13 19:14:06 +00001041 pOut = out2Prerelease(p, pOp);
drhed2df7f2005-11-16 04:34:32 +00001042 pOp->opcode = OP_String;
drhea678832008-12-10 19:26:22 +00001043 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
drhed2df7f2005-11-16 04:34:32 +00001044
1045#ifndef SQLITE_OMIT_UTF16
drh8079a0d2006-01-12 17:20:50 +00001046 if( encoding!=SQLITE_UTF8 ){
drh3a9cf172009-06-17 21:42:33 +00001047 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1048 if( rc==SQLITE_TOOBIG ) goto too_big;
drh4c583122008-01-04 22:01:03 +00001049 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
drh17bcb102014-09-18 21:25:33 +00001050 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
drhc91b2fd2014-03-01 18:13:23 +00001051 assert( VdbeMemDynamic(pOut)==0 );
drh17bcb102014-09-18 21:25:33 +00001052 pOut->szMalloc = 0;
drh4c583122008-01-04 22:01:03 +00001053 pOut->flags |= MEM_Static;
drh66a51672008-01-03 00:01:23 +00001054 if( pOp->p4type==P4_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +00001055 sqlite3DbFree(db, pOp->p4.z);
danielk1977e0048402004-06-15 16:51:01 +00001056 }
drh66a51672008-01-03 00:01:23 +00001057 pOp->p4type = P4_DYNAMIC;
drh4c583122008-01-04 22:01:03 +00001058 pOp->p4.z = pOut->z;
1059 pOp->p1 = pOut->n;
danielk19770f69c1e2004-05-29 11:24:50 +00001060 }
danielk197793758c82005-01-21 08:13:14 +00001061#endif
drhbb4957f2008-03-20 14:03:29 +00001062 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhcbd2da92007-12-17 16:20:06 +00001063 goto too_big;
1064 }
1065 /* Fall through to the next case, OP_String */
danielk1977cbb18d22004-05-28 11:37:27 +00001066}
drhf4479502004-05-27 03:12:53 +00001067
drhf07cf6e2015-03-06 16:45:16 +00001068/* Opcode: String P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00001069** Synopsis: r[P2]='P4' (len=P1)
drhf4479502004-05-27 03:12:53 +00001070**
drh9cbf3422008-01-17 16:22:13 +00001071** The string value P4 of length P1 (bytes) is stored in register P2.
drhf07cf6e2015-03-06 16:45:16 +00001072**
1073** If P5!=0 and the content of register P3 is greater than zero, then
drha9c18a92015-03-06 20:49:52 +00001074** the datatype of the register P2 is converted to BLOB. The content is
1075** the same sequence of bytes, it is merely interpreted as a BLOB instead
1076** of a string, as if it had been CAST.
drhf4479502004-05-27 03:12:53 +00001077*/
drh27a348c2015-04-13 19:14:06 +00001078case OP_String: { /* out2 */
danielk19772dca4ac2008-01-03 11:50:29 +00001079 assert( pOp->p4.z!=0 );
drh27a348c2015-04-13 19:14:06 +00001080 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001081 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1082 pOut->z = pOp->p4.z;
1083 pOut->n = pOp->p1;
1084 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001085 UPDATE_MAX_BLOBSIZE(pOut);
drhf07cf6e2015-03-06 16:45:16 +00001086 if( pOp->p5 ){
1087 assert( pOp->p3>0 );
1088 assert( pOp->p3<=(p->nMem-p->nCursor) );
1089 pIn3 = &aMem[pOp->p3];
1090 assert( pIn3->flags & MEM_Int );
1091 if( pIn3->u.i ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1092 }
danielk1977c572ef72004-05-27 09:28:41 +00001093 break;
1094}
1095
drh053a1282012-09-19 21:15:46 +00001096/* Opcode: Null P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001097** Synopsis: r[P2..P3]=NULL
drhf0863fe2005-06-12 21:35:51 +00001098**
drhb8475df2011-12-09 16:21:19 +00001099** Write a NULL into registers P2. If P3 greater than P2, then also write
drh053a1282012-09-19 21:15:46 +00001100** NULL into register P3 and every register in between P2 and P3. If P3
drhb8475df2011-12-09 16:21:19 +00001101** is less than P2 (typically P3 is zero) then only register P2 is
drh053a1282012-09-19 21:15:46 +00001102** set to NULL.
1103**
1104** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1105** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1106** OP_Ne or OP_Eq.
drhf0863fe2005-06-12 21:35:51 +00001107*/
drh27a348c2015-04-13 19:14:06 +00001108case OP_Null: { /* out2 */
drhb8475df2011-12-09 16:21:19 +00001109 int cnt;
drh053a1282012-09-19 21:15:46 +00001110 u16 nullFlag;
drh27a348c2015-04-13 19:14:06 +00001111 pOut = out2Prerelease(p, pOp);
drhb8475df2011-12-09 16:21:19 +00001112 cnt = pOp->p3-pOp->p2;
dan3bc9f742013-08-15 16:18:39 +00001113 assert( pOp->p3<=(p->nMem-p->nCursor) );
drh053a1282012-09-19 21:15:46 +00001114 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
drhb8475df2011-12-09 16:21:19 +00001115 while( cnt>0 ){
1116 pOut++;
1117 memAboutToChange(p, pOut);
drh0725cab2014-09-17 14:52:46 +00001118 sqlite3VdbeMemSetNull(pOut);
drh053a1282012-09-19 21:15:46 +00001119 pOut->flags = nullFlag;
drhb8475df2011-12-09 16:21:19 +00001120 cnt--;
1121 }
drhf0863fe2005-06-12 21:35:51 +00001122 break;
1123}
1124
drh05a86c52014-02-16 01:55:49 +00001125/* Opcode: SoftNull P1 * * * *
1126** Synopsis: r[P1]=NULL
1127**
1128** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1129** instruction, but do not free any string or blob memory associated with
1130** the register, so that if the value was a string or blob that was
1131** previously copied using OP_SCopy, the copies will continue to be valid.
1132*/
1133case OP_SoftNull: {
1134 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
1135 pOut = &aMem[pOp->p1];
1136 pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined;
1137 break;
1138}
drhf0863fe2005-06-12 21:35:51 +00001139
drha5750cf2014-02-07 13:20:31 +00001140/* Opcode: Blob P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001141** Synopsis: r[P2]=P4 (len=P1)
danielk1977c572ef72004-05-27 09:28:41 +00001142**
drh9de221d2008-01-05 06:51:30 +00001143** P4 points to a blob of data P1 bytes long. Store this
drh710c4842010-08-30 01:17:20 +00001144** blob in register P2.
danielk1977c572ef72004-05-27 09:28:41 +00001145*/
drh27a348c2015-04-13 19:14:06 +00001146case OP_Blob: { /* out2 */
drhcbd2da92007-12-17 16:20:06 +00001147 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
drh27a348c2015-04-13 19:14:06 +00001148 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001149 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
drh9de221d2008-01-05 06:51:30 +00001150 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001151 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977a37cdde2004-05-16 11:15:36 +00001152 break;
1153}
1154
drheaf52d82010-05-12 13:50:23 +00001155/* Opcode: Variable P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001156** Synopsis: r[P2]=parameter(P1,P4)
drh50457892003-09-06 01:10:47 +00001157**
drheaf52d82010-05-12 13:50:23 +00001158** Transfer the values of bound parameter P1 into register P2
drh08de1492009-02-20 03:55:05 +00001159**
drh0fd61352014-02-07 02:29:45 +00001160** If the parameter is named, then its name appears in P4.
drh08de1492009-02-20 03:55:05 +00001161** The P4 value is used by sqlite3_bind_parameter_name().
drh50457892003-09-06 01:10:47 +00001162*/
drh27a348c2015-04-13 19:14:06 +00001163case OP_Variable: { /* out2 */
drh856c1032009-06-02 15:21:42 +00001164 Mem *pVar; /* Value being transferred */
1165
drheaf52d82010-05-12 13:50:23 +00001166 assert( pOp->p1>0 && pOp->p1<=p->nVar );
drh04e9eea2011-06-01 19:16:06 +00001167 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
drheaf52d82010-05-12 13:50:23 +00001168 pVar = &p->aVar[pOp->p1 - 1];
1169 if( sqlite3VdbeMemTooBig(pVar) ){
1170 goto too_big;
drh023ae032007-05-08 12:12:16 +00001171 }
drh27a348c2015-04-13 19:14:06 +00001172 pOut = out2Prerelease(p, pOp);
drheaf52d82010-05-12 13:50:23 +00001173 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1174 UPDATE_MAX_BLOBSIZE(pOut);
danielk197793d46752004-05-23 13:30:58 +00001175 break;
1176}
danielk1977295ba552004-05-19 10:34:51 +00001177
drhb21e7c72008-06-22 12:37:57 +00001178/* Opcode: Move P1 P2 P3 * *
drhf63552b2013-10-30 00:25:03 +00001179** Synopsis: r[P2@P3]=r[P1@P3]
drh5e00f6c2001-09-13 13:46:56 +00001180**
drh079a3072014-03-19 14:10:55 +00001181** Move the P3 values in register P1..P1+P3-1 over into
1182** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
drhb21e7c72008-06-22 12:37:57 +00001183** left holding a NULL. It is an error for register ranges
drh079a3072014-03-19 14:10:55 +00001184** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
1185** for P3 to be less than 1.
drh5e00f6c2001-09-13 13:46:56 +00001186*/
drhe1349cb2008-04-01 00:36:10 +00001187case OP_Move: {
drh856c1032009-06-02 15:21:42 +00001188 int n; /* Number of registers left to copy */
1189 int p1; /* Register to copy from */
1190 int p2; /* Register to copy to */
1191
drhe09f43f2013-11-21 04:18:31 +00001192 n = pOp->p3;
drh856c1032009-06-02 15:21:42 +00001193 p1 = pOp->p1;
1194 p2 = pOp->p2;
drh079a3072014-03-19 14:10:55 +00001195 assert( n>0 && p1>0 && p2>0 );
drhb21e7c72008-06-22 12:37:57 +00001196 assert( p1+n<=p2 || p2+n<=p1 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001197
drha6c2ed92009-11-14 23:22:23 +00001198 pIn1 = &aMem[p1];
1199 pOut = &aMem[p2];
drhe09f43f2013-11-21 04:18:31 +00001200 do{
dan3bc9f742013-08-15 16:18:39 +00001201 assert( pOut<=&aMem[(p->nMem-p->nCursor)] );
1202 assert( pIn1<=&aMem[(p->nMem-p->nCursor)] );
drh2b4ded92010-09-27 21:09:31 +00001203 assert( memIsValid(pIn1) );
1204 memAboutToChange(p, pOut);
drh17bcb102014-09-18 21:25:33 +00001205 sqlite3VdbeMemMove(pOut, pIn1);
drh52043d72011-08-03 16:40:15 +00001206#ifdef SQLITE_DEBUG
drhbd6789e2015-04-28 14:00:02 +00001207 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){
drh5fb71252015-04-28 12:44:55 +00001208 pOut->pScopyFrom += pOp->p2 - p1;
drh52043d72011-08-03 16:40:15 +00001209 }
1210#endif
drhbd6789e2015-04-28 14:00:02 +00001211 Deephemeralize(pOut);
drhb21e7c72008-06-22 12:37:57 +00001212 REGISTER_TRACE(p2++, pOut);
1213 pIn1++;
1214 pOut++;
drh079a3072014-03-19 14:10:55 +00001215 }while( --n );
drhe1349cb2008-04-01 00:36:10 +00001216 break;
1217}
1218
drhe8e4af72012-09-21 00:04:28 +00001219/* Opcode: Copy P1 P2 P3 * *
drh4eded602013-12-20 15:59:20 +00001220** Synopsis: r[P2@P3+1]=r[P1@P3+1]
drhb1fdb2a2008-01-05 04:06:03 +00001221**
drhe8e4af72012-09-21 00:04:28 +00001222** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
drhb1fdb2a2008-01-05 04:06:03 +00001223**
1224** This instruction makes a deep copy of the value. A duplicate
1225** is made of any string or blob constant. See also OP_SCopy.
1226*/
drhe8e4af72012-09-21 00:04:28 +00001227case OP_Copy: {
1228 int n;
1229
1230 n = pOp->p3;
drh3c657212009-11-17 23:59:58 +00001231 pIn1 = &aMem[pOp->p1];
1232 pOut = &aMem[pOp->p2];
drhe1349cb2008-04-01 00:36:10 +00001233 assert( pOut!=pIn1 );
drhe8e4af72012-09-21 00:04:28 +00001234 while( 1 ){
1235 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1236 Deephemeralize(pOut);
drh953f7612012-12-07 22:18:54 +00001237#ifdef SQLITE_DEBUG
1238 pOut->pScopyFrom = 0;
1239#endif
drhe8e4af72012-09-21 00:04:28 +00001240 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1241 if( (n--)==0 ) break;
1242 pOut++;
1243 pIn1++;
1244 }
drhe1349cb2008-04-01 00:36:10 +00001245 break;
1246}
1247
drhb1fdb2a2008-01-05 04:06:03 +00001248/* Opcode: SCopy P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00001249** Synopsis: r[P2]=r[P1]
drhb1fdb2a2008-01-05 04:06:03 +00001250**
drh9cbf3422008-01-17 16:22:13 +00001251** Make a shallow copy of register P1 into register P2.
drhb1fdb2a2008-01-05 04:06:03 +00001252**
1253** This instruction makes a shallow copy of the value. If the value
1254** is a string or blob, then the copy is only a pointer to the
1255** original and hence if the original changes so will the copy.
1256** Worse, if the original is deallocated, the copy becomes invalid.
1257** Thus the program must guarantee that the original will not change
1258** during the lifetime of the copy. Use OP_Copy to make a complete
1259** copy.
1260*/
drh26198bb2013-10-31 11:15:09 +00001261case OP_SCopy: { /* out2 */
drh3c657212009-11-17 23:59:58 +00001262 pIn1 = &aMem[pOp->p1];
1263 pOut = &aMem[pOp->p2];
drh2d401ab2008-01-10 23:50:11 +00001264 assert( pOut!=pIn1 );
drhe1349cb2008-04-01 00:36:10 +00001265 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
drh2b4ded92010-09-27 21:09:31 +00001266#ifdef SQLITE_DEBUG
1267 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1268#endif
drh5e00f6c2001-09-13 13:46:56 +00001269 break;
1270}
drh75897232000-05-29 14:26:00 +00001271
drh9cbf3422008-01-17 16:22:13 +00001272/* Opcode: ResultRow P1 P2 * * *
drh4af5bee2013-10-30 02:37:50 +00001273** Synopsis: output=r[P1@P2]
drhd4e70eb2008-01-02 00:34:36 +00001274**
shane21e7feb2008-05-30 15:59:49 +00001275** The registers P1 through P1+P2-1 contain a single row of
drhd4e70eb2008-01-02 00:34:36 +00001276** results. This opcode causes the sqlite3_step() call to terminate
1277** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
drh4d87aae2014-02-20 19:42:00 +00001278** structure to provide access to the r(P1)..r(P1+P2-1) values as
drh0fd61352014-02-07 02:29:45 +00001279** the result row.
drhd4e70eb2008-01-02 00:34:36 +00001280*/
drh9cbf3422008-01-17 16:22:13 +00001281case OP_ResultRow: {
drhd4e70eb2008-01-02 00:34:36 +00001282 Mem *pMem;
1283 int i;
1284 assert( p->nResColumn==pOp->p2 );
drh0a07c102008-01-03 18:03:08 +00001285 assert( pOp->p1>0 );
dan3bc9f742013-08-15 16:18:39 +00001286 assert( pOp->p1+pOp->p2<=(p->nMem-p->nCursor)+1 );
drhd4e70eb2008-01-02 00:34:36 +00001287
drhe6400b92013-11-13 23:48:46 +00001288#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1289 /* Run the progress counter just before returning.
1290 */
1291 if( db->xProgress!=0
1292 && nVmStep>=nProgressLimit
1293 && db->xProgress(db->pProgressArg)!=0
1294 ){
1295 rc = SQLITE_INTERRUPT;
1296 goto vdbe_error_halt;
1297 }
1298#endif
1299
dan32b09f22009-09-23 17:29:59 +00001300 /* If this statement has violated immediate foreign key constraints, do
1301 ** not return the number of rows modified. And do not RELEASE the statement
1302 ** transaction. It needs to be rolled back. */
1303 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1304 assert( db->flags&SQLITE_CountRows );
1305 assert( p->usesStmtJournal );
1306 break;
1307 }
1308
danielk1977bd434552009-03-18 10:33:00 +00001309 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1310 ** DML statements invoke this opcode to return the number of rows
1311 ** modified to the user. This is the only way that a VM that
1312 ** opens a statement transaction may invoke this opcode.
1313 **
1314 ** In case this is such a statement, close any statement transaction
1315 ** opened by this VM before returning control to the user. This is to
1316 ** ensure that statement-transactions are always nested, not overlapping.
1317 ** If the open statement-transaction is not closed here, then the user
1318 ** may step another VM that opens its own statement transaction. This
1319 ** may lead to overlapping statement transactions.
drhaa736092009-06-22 00:55:30 +00001320 **
1321 ** The statement transaction is never a top-level transaction. Hence
1322 ** the RELEASE call below can never fail.
danielk1977bd434552009-03-18 10:33:00 +00001323 */
1324 assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
drhaa736092009-06-22 00:55:30 +00001325 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1326 if( NEVER(rc!=SQLITE_OK) ){
danielk1977bd434552009-03-18 10:33:00 +00001327 break;
1328 }
1329
drhd4e70eb2008-01-02 00:34:36 +00001330 /* Invalidate all ephemeral cursor row caches */
1331 p->cacheCtr = (p->cacheCtr + 2)|1;
1332
1333 /* Make sure the results of the current row are \000 terminated
shane21e7feb2008-05-30 15:59:49 +00001334 ** and have an assigned type. The results are de-ephemeralized as
drhb8a45bb2011-12-31 21:51:55 +00001335 ** a side effect.
drhd4e70eb2008-01-02 00:34:36 +00001336 */
drha6c2ed92009-11-14 23:22:23 +00001337 pMem = p->pResultSet = &aMem[pOp->p1];
drhd4e70eb2008-01-02 00:34:36 +00001338 for(i=0; i<pOp->p2; i++){
drh2b4ded92010-09-27 21:09:31 +00001339 assert( memIsValid(&pMem[i]) );
drhebc16712010-09-28 00:25:58 +00001340 Deephemeralize(&pMem[i]);
drh746fd9c2010-09-28 06:00:47 +00001341 assert( (pMem[i].flags & MEM_Ephem)==0
1342 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
drhd4e70eb2008-01-02 00:34:36 +00001343 sqlite3VdbeMemNulTerminate(&pMem[i]);
drh0acb7e42008-06-25 00:12:41 +00001344 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
drhd4e70eb2008-01-02 00:34:36 +00001345 }
drh28039692008-03-17 16:54:01 +00001346 if( db->mallocFailed ) goto no_mem;
drhd4e70eb2008-01-02 00:34:36 +00001347
1348 /* Return SQLITE_ROW
1349 */
drhf56fa462015-04-13 21:39:54 +00001350 p->pc = (int)(pOp - aOp) + 1;
drhd4e70eb2008-01-02 00:34:36 +00001351 rc = SQLITE_ROW;
1352 goto vdbe_return;
1353}
1354
drh5b6afba2008-01-05 16:29:28 +00001355/* Opcode: Concat P1 P2 P3 * *
drh313619f2013-10-31 20:34:06 +00001356** Synopsis: r[P3]=r[P2]+r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001357**
drh5b6afba2008-01-05 16:29:28 +00001358** Add the text in register P1 onto the end of the text in
1359** register P2 and store the result in register P3.
1360** If either the P1 or P2 text are NULL then store NULL in P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001361**
1362** P3 = P2 || P1
1363**
1364** It is illegal for P1 and P3 to be the same register. Sometimes,
1365** if P3 is the same register as P2, the implementation is able
1366** to avoid a memcpy().
drh5e00f6c2001-09-13 13:46:56 +00001367*/
drh5b6afba2008-01-05 16:29:28 +00001368case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
drh023ae032007-05-08 12:12:16 +00001369 i64 nByte;
danielk19778a6b5412004-05-24 07:04:25 +00001370
drh3c657212009-11-17 23:59:58 +00001371 pIn1 = &aMem[pOp->p1];
1372 pIn2 = &aMem[pOp->p2];
1373 pOut = &aMem[pOp->p3];
danielk1977a7a8e142008-02-13 18:25:27 +00001374 assert( pIn1!=pOut );
drh5b6afba2008-01-05 16:29:28 +00001375 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
danielk1977a7a8e142008-02-13 18:25:27 +00001376 sqlite3VdbeMemSetNull(pOut);
drh5b6afba2008-01-05 16:29:28 +00001377 break;
drh5e00f6c2001-09-13 13:46:56 +00001378 }
drha0c06522009-06-17 22:50:41 +00001379 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
drh5b6afba2008-01-05 16:29:28 +00001380 Stringify(pIn1, encoding);
drh5b6afba2008-01-05 16:29:28 +00001381 Stringify(pIn2, encoding);
1382 nByte = pIn1->n + pIn2->n;
drhbb4957f2008-03-20 14:03:29 +00001383 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh5b6afba2008-01-05 16:29:28 +00001384 goto too_big;
drh5e00f6c2001-09-13 13:46:56 +00001385 }
drh9c1905f2008-12-10 22:32:56 +00001386 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
drh5b6afba2008-01-05 16:29:28 +00001387 goto no_mem;
1388 }
drhc91b2fd2014-03-01 18:13:23 +00001389 MemSetTypeFlag(pOut, MEM_Str);
danielk1977a7a8e142008-02-13 18:25:27 +00001390 if( pOut!=pIn2 ){
1391 memcpy(pOut->z, pIn2->z, pIn2->n);
1392 }
1393 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
drh81316f82013-10-29 20:40:47 +00001394 pOut->z[nByte]=0;
danielk1977a7a8e142008-02-13 18:25:27 +00001395 pOut->z[nByte+1] = 0;
1396 pOut->flags |= MEM_Term;
drh9c1905f2008-12-10 22:32:56 +00001397 pOut->n = (int)nByte;
drh5b6afba2008-01-05 16:29:28 +00001398 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001399 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001400 break;
1401}
drh75897232000-05-29 14:26:00 +00001402
drh3c84ddf2008-01-09 02:15:38 +00001403/* Opcode: Add P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001404** Synopsis: r[P3]=r[P1]+r[P2]
drh5e00f6c2001-09-13 13:46:56 +00001405**
drh60a713c2008-01-21 16:22:45 +00001406** Add the value in register P1 to the value in register P2
shane21e7feb2008-05-30 15:59:49 +00001407** and store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001408** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001409*/
drh3c84ddf2008-01-09 02:15:38 +00001410/* Opcode: Multiply P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001411** Synopsis: r[P3]=r[P1]*r[P2]
drh5e00f6c2001-09-13 13:46:56 +00001412**
drh3c84ddf2008-01-09 02:15:38 +00001413**
shane21e7feb2008-05-30 15:59:49 +00001414** Multiply the value in register P1 by the value in register P2
drh60a713c2008-01-21 16:22:45 +00001415** and store the result in register P3.
1416** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001417*/
drh3c84ddf2008-01-09 02:15:38 +00001418/* Opcode: Subtract P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001419** Synopsis: r[P3]=r[P2]-r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001420**
drh60a713c2008-01-21 16:22:45 +00001421** Subtract the value in register P1 from the value in register P2
1422** and store the result in register P3.
1423** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001424*/
drh9cbf3422008-01-17 16:22:13 +00001425/* Opcode: Divide P1 P2 P3 * *
drh40864a12013-11-15 18:58:37 +00001426** Synopsis: r[P3]=r[P2]/r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001427**
drh60a713c2008-01-21 16:22:45 +00001428** Divide the value in register P1 by the value in register P2
dane275dc32009-08-18 16:24:58 +00001429** and store the result in register P3 (P3=P2/P1). If the value in
1430** register P1 is zero, then the result is NULL. If either input is
1431** NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001432*/
drh9cbf3422008-01-17 16:22:13 +00001433/* Opcode: Remainder P1 P2 P3 * *
drh40864a12013-11-15 18:58:37 +00001434** Synopsis: r[P3]=r[P2]%r[P1]
drhbf4133c2001-10-13 02:59:08 +00001435**
drh40864a12013-11-15 18:58:37 +00001436** Compute the remainder after integer register P2 is divided by
1437** register P1 and store the result in register P3.
1438** If the value in register P1 is zero the result is NULL.
drhf5905aa2002-05-26 20:54:33 +00001439** If either operand is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001440*/
drh5b6afba2008-01-05 16:29:28 +00001441case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1442case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1443case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1444case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1445case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
drhbe707b32012-12-10 22:19:14 +00001446 char bIntint; /* Started out as two integer operands */
drh3d1d90a2014-03-24 15:00:15 +00001447 u16 flags; /* Combined MEM_* flags from both inputs */
1448 u16 type1; /* Numeric type of left operand */
1449 u16 type2; /* Numeric type of right operand */
drh856c1032009-06-02 15:21:42 +00001450 i64 iA; /* Integer value of left operand */
1451 i64 iB; /* Integer value of right operand */
1452 double rA; /* Real value of left operand */
1453 double rB; /* Real value of right operand */
1454
drh3c657212009-11-17 23:59:58 +00001455 pIn1 = &aMem[pOp->p1];
drh3d1d90a2014-03-24 15:00:15 +00001456 type1 = numericType(pIn1);
drh3c657212009-11-17 23:59:58 +00001457 pIn2 = &aMem[pOp->p2];
drh3d1d90a2014-03-24 15:00:15 +00001458 type2 = numericType(pIn2);
drh3c657212009-11-17 23:59:58 +00001459 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001460 flags = pIn1->flags | pIn2->flags;
drha05a7222008-01-19 03:35:58 +00001461 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
drh3d1d90a2014-03-24 15:00:15 +00001462 if( (type1 & type2 & MEM_Int)!=0 ){
drh856c1032009-06-02 15:21:42 +00001463 iA = pIn1->u.i;
1464 iB = pIn2->u.i;
drhbe707b32012-12-10 22:19:14 +00001465 bIntint = 1;
drh5e00f6c2001-09-13 13:46:56 +00001466 switch( pOp->opcode ){
drh158b9cb2011-03-05 20:59:46 +00001467 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
1468 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
1469 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
drhbf4133c2001-10-13 02:59:08 +00001470 case OP_Divide: {
drh856c1032009-06-02 15:21:42 +00001471 if( iA==0 ) goto arithmetic_result_is_null;
drh158b9cb2011-03-05 20:59:46 +00001472 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
drh856c1032009-06-02 15:21:42 +00001473 iB /= iA;
drh75897232000-05-29 14:26:00 +00001474 break;
1475 }
drhbf4133c2001-10-13 02:59:08 +00001476 default: {
drh856c1032009-06-02 15:21:42 +00001477 if( iA==0 ) goto arithmetic_result_is_null;
1478 if( iA==-1 ) iA = 1;
1479 iB %= iA;
drhbf4133c2001-10-13 02:59:08 +00001480 break;
1481 }
drh75897232000-05-29 14:26:00 +00001482 }
drh856c1032009-06-02 15:21:42 +00001483 pOut->u.i = iB;
danielk1977a7a8e142008-02-13 18:25:27 +00001484 MemSetTypeFlag(pOut, MEM_Int);
drh5e00f6c2001-09-13 13:46:56 +00001485 }else{
drhbe707b32012-12-10 22:19:14 +00001486 bIntint = 0;
drh158b9cb2011-03-05 20:59:46 +00001487fp_math:
drh856c1032009-06-02 15:21:42 +00001488 rA = sqlite3VdbeRealValue(pIn1);
1489 rB = sqlite3VdbeRealValue(pIn2);
drh5e00f6c2001-09-13 13:46:56 +00001490 switch( pOp->opcode ){
drh856c1032009-06-02 15:21:42 +00001491 case OP_Add: rB += rA; break;
1492 case OP_Subtract: rB -= rA; break;
1493 case OP_Multiply: rB *= rA; break;
drhbf4133c2001-10-13 02:59:08 +00001494 case OP_Divide: {
shanefbd60f82009-02-04 03:59:25 +00001495 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
drh856c1032009-06-02 15:21:42 +00001496 if( rA==(double)0 ) goto arithmetic_result_is_null;
1497 rB /= rA;
drh5e00f6c2001-09-13 13:46:56 +00001498 break;
1499 }
drhbf4133c2001-10-13 02:59:08 +00001500 default: {
shane75ac1de2009-06-09 18:58:52 +00001501 iA = (i64)rA;
1502 iB = (i64)rB;
drh856c1032009-06-02 15:21:42 +00001503 if( iA==0 ) goto arithmetic_result_is_null;
1504 if( iA==-1 ) iA = 1;
1505 rB = (double)(iB % iA);
drhbf4133c2001-10-13 02:59:08 +00001506 break;
1507 }
drh5e00f6c2001-09-13 13:46:56 +00001508 }
drhc5a7b512010-01-13 16:25:42 +00001509#ifdef SQLITE_OMIT_FLOATING_POINT
1510 pOut->u.i = rB;
1511 MemSetTypeFlag(pOut, MEM_Int);
1512#else
drh856c1032009-06-02 15:21:42 +00001513 if( sqlite3IsNaN(rB) ){
drha05a7222008-01-19 03:35:58 +00001514 goto arithmetic_result_is_null;
drh53c14022007-05-10 17:23:11 +00001515 }
drh74eaba42014-09-18 17:52:15 +00001516 pOut->u.r = rB;
danielk1977a7a8e142008-02-13 18:25:27 +00001517 MemSetTypeFlag(pOut, MEM_Real);
drh3d1d90a2014-03-24 15:00:15 +00001518 if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
drh5b6afba2008-01-05 16:29:28 +00001519 sqlite3VdbeIntegerAffinity(pOut);
drh8a512562005-11-14 22:29:05 +00001520 }
drhc5a7b512010-01-13 16:25:42 +00001521#endif
drh5e00f6c2001-09-13 13:46:56 +00001522 }
1523 break;
1524
drha05a7222008-01-19 03:35:58 +00001525arithmetic_result_is_null:
1526 sqlite3VdbeMemSetNull(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001527 break;
1528}
1529
drh7a957892012-02-02 17:35:43 +00001530/* Opcode: CollSeq P1 * * P4
danielk1977dc1bdc42004-06-11 10:51:27 +00001531**
drh66a51672008-01-03 00:01:23 +00001532** P4 is a pointer to a CollSeq struct. If the next call to a user function
danielk1977dc1bdc42004-06-11 10:51:27 +00001533** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1534** be returned. This is used by the built-in min(), max() and nullif()
drhe6f85e72004-12-25 01:03:13 +00001535** functions.
danielk1977dc1bdc42004-06-11 10:51:27 +00001536**
drh7a957892012-02-02 17:35:43 +00001537** If P1 is not zero, then it is a register that a subsequent min() or
1538** max() aggregate will set to 1 if the current row is not the minimum or
1539** maximum. The P1 register is initialized to 0 by this instruction.
1540**
danielk1977dc1bdc42004-06-11 10:51:27 +00001541** The interface used by the implementation of the aforementioned functions
1542** to retrieve the collation sequence set by this opcode is not available
drh0a0d0562015-03-12 05:08:34 +00001543** publicly. Only built-in functions have access to this feature.
danielk1977dc1bdc42004-06-11 10:51:27 +00001544*/
drh9cbf3422008-01-17 16:22:13 +00001545case OP_CollSeq: {
drh66a51672008-01-03 00:01:23 +00001546 assert( pOp->p4type==P4_COLLSEQ );
drh7a957892012-02-02 17:35:43 +00001547 if( pOp->p1 ){
1548 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1549 }
danielk1977dc1bdc42004-06-11 10:51:27 +00001550 break;
1551}
1552
drh98757152008-01-09 23:04:12 +00001553/* Opcode: Function P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00001554** Synopsis: r[P3]=func(r[P2@P5])
drh8e0a2f92002-02-23 23:45:45 +00001555**
drh66a51672008-01-03 00:01:23 +00001556** Invoke a user function (P4 is a pointer to a Function structure that
drh98757152008-01-09 23:04:12 +00001557** defines the function) with P5 arguments taken from register P2 and
drh9cbf3422008-01-17 16:22:13 +00001558** successors. The result of the function is stored in register P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001559** Register P3 must not be one of the function inputs.
danielk1977682f68b2004-06-05 10:22:17 +00001560**
drh13449892005-09-07 21:22:45 +00001561** P1 is a 32-bit bitmask indicating whether or not each argument to the
danielk1977682f68b2004-06-05 10:22:17 +00001562** function was determined to be constant at compile time. If the first
drh13449892005-09-07 21:22:45 +00001563** argument was constant then bit 0 of P1 is set. This is used to determine
danielk1977682f68b2004-06-05 10:22:17 +00001564** whether meta data associated with a user function argument using the
1565** sqlite3_set_auxdata() API may be safely retained until the next
1566** invocation of this opcode.
drh1350b032002-02-27 19:00:20 +00001567**
drh13449892005-09-07 21:22:45 +00001568** See also: AggStep and AggFinal
drh8e0a2f92002-02-23 23:45:45 +00001569*/
drh0bce8352002-02-28 00:41:10 +00001570case OP_Function: {
danielk197751ad0ec2004-05-24 12:39:02 +00001571 int i;
drh6810ce62004-01-31 19:22:56 +00001572 Mem *pArg;
danielk197722322fd2004-05-25 23:35:17 +00001573 sqlite3_context ctx;
danielk197751ad0ec2004-05-24 12:39:02 +00001574 sqlite3_value **apVal;
drh856c1032009-06-02 15:21:42 +00001575 int n;
drh1350b032002-02-27 19:00:20 +00001576
drh856c1032009-06-02 15:21:42 +00001577 n = pOp->p5;
danielk19776ddcca52004-05-24 23:48:25 +00001578 apVal = p->apArg;
danielk197751ad0ec2004-05-24 12:39:02 +00001579 assert( apVal || n==0 );
dan3bc9f742013-08-15 16:18:39 +00001580 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drh9bd038f2014-08-27 14:14:06 +00001581 ctx.pOut = &aMem[pOp->p3];
1582 memAboutToChange(p, ctx.pOut);
danielk197751ad0ec2004-05-24 12:39:02 +00001583
dan3bc9f742013-08-15 16:18:39 +00001584 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
danielk1977a7a8e142008-02-13 18:25:27 +00001585 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
drha6c2ed92009-11-14 23:22:23 +00001586 pArg = &aMem[pOp->p2];
drh6810ce62004-01-31 19:22:56 +00001587 for(i=0; i<n; i++, pArg++){
drh2b4ded92010-09-27 21:09:31 +00001588 assert( memIsValid(pArg) );
danielk197751ad0ec2004-05-24 12:39:02 +00001589 apVal[i] = pArg;
drhebc16712010-09-28 00:25:58 +00001590 Deephemeralize(pArg);
drhab5cd702010-04-07 14:32:11 +00001591 REGISTER_TRACE(pOp->p2+i, pArg);
drh8e0a2f92002-02-23 23:45:45 +00001592 }
danielk197751ad0ec2004-05-24 12:39:02 +00001593
dan0c547792013-07-18 17:12:08 +00001594 assert( pOp->p4type==P4_FUNCDEF );
1595 ctx.pFunc = pOp->p4.pFunc;
drhf56fa462015-04-13 21:39:54 +00001596 ctx.iOp = (int)(pOp - aOp);
dan0c547792013-07-18 17:12:08 +00001597 ctx.pVdbe = p;
drh9bd038f2014-08-27 14:14:06 +00001598 MemSetTypeFlag(ctx.pOut, MEM_Null);
drh9b47ee32013-08-20 03:13:51 +00001599 ctx.fErrorOrAux = 0;
drhf6aff802014-10-08 14:28:31 +00001600 db->lastRowid = lastRowid;
drhee9ff672010-09-03 18:50:48 +00001601 (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
drh3b130be2014-09-26 01:10:02 +00001602 lastRowid = db->lastRowid; /* Remember rowid changes made by xFunc */
danielk19777e18c252004-05-25 11:47:24 +00001603
drh90669c12006-01-20 15:45:36 +00001604 /* If the function returned an error, throw an exception */
drh9b47ee32013-08-20 03:13:51 +00001605 if( ctx.fErrorOrAux ){
1606 if( ctx.isError ){
drh22c17b82015-05-15 04:13:15 +00001607 sqlite3VdbeError(p, "%s", sqlite3_value_text(ctx.pOut));
drh9b47ee32013-08-20 03:13:51 +00001608 rc = ctx.isError;
1609 }
drhf56fa462015-04-13 21:39:54 +00001610 sqlite3VdbeDeleteAuxData(p, (int)(pOp - aOp), pOp->p1);
drh90669c12006-01-20 15:45:36 +00001611 }
1612
drh9cbf3422008-01-17 16:22:13 +00001613 /* Copy the result of the function into register P3 */
drh9bd038f2014-08-27 14:14:06 +00001614 sqlite3VdbeChangeEncoding(ctx.pOut, encoding);
1615 if( sqlite3VdbeMemTooBig(ctx.pOut) ){
drh023ae032007-05-08 12:12:16 +00001616 goto too_big;
1617 }
drh7b94e7f2011-04-04 12:29:20 +00001618
drh9bd038f2014-08-27 14:14:06 +00001619 REGISTER_TRACE(pOp->p3, ctx.pOut);
1620 UPDATE_MAX_BLOBSIZE(ctx.pOut);
drh8e0a2f92002-02-23 23:45:45 +00001621 break;
1622}
1623
drh98757152008-01-09 23:04:12 +00001624/* Opcode: BitAnd P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001625** Synopsis: r[P3]=r[P1]&r[P2]
drhbf4133c2001-10-13 02:59:08 +00001626**
drh98757152008-01-09 23:04:12 +00001627** Take the bit-wise AND of the values in register P1 and P2 and
1628** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001629** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001630*/
drh98757152008-01-09 23:04:12 +00001631/* Opcode: BitOr P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001632** Synopsis: r[P3]=r[P1]|r[P2]
drhbf4133c2001-10-13 02:59:08 +00001633**
drh98757152008-01-09 23:04:12 +00001634** Take the bit-wise OR of the values in register P1 and P2 and
1635** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001636** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001637*/
drh98757152008-01-09 23:04:12 +00001638/* Opcode: ShiftLeft P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001639** Synopsis: r[P3]=r[P2]<<r[P1]
drhbf4133c2001-10-13 02:59:08 +00001640**
drh98757152008-01-09 23:04:12 +00001641** Shift the integer value in register P2 to the left by the
drh710c4842010-08-30 01:17:20 +00001642** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001643** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001644** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001645*/
drh98757152008-01-09 23:04:12 +00001646/* Opcode: ShiftRight P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00001647** Synopsis: r[P3]=r[P2]>>r[P1]
drhbf4133c2001-10-13 02:59:08 +00001648**
drh98757152008-01-09 23:04:12 +00001649** Shift the integer value in register P2 to the right by the
drh60a713c2008-01-21 16:22:45 +00001650** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001651** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001652** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001653*/
drh5b6afba2008-01-05 16:29:28 +00001654case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1655case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1656case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1657case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
drh158b9cb2011-03-05 20:59:46 +00001658 i64 iA;
1659 u64 uA;
1660 i64 iB;
1661 u8 op;
drh6810ce62004-01-31 19:22:56 +00001662
drh3c657212009-11-17 23:59:58 +00001663 pIn1 = &aMem[pOp->p1];
1664 pIn2 = &aMem[pOp->p2];
1665 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001666 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
drha05a7222008-01-19 03:35:58 +00001667 sqlite3VdbeMemSetNull(pOut);
drhf5905aa2002-05-26 20:54:33 +00001668 break;
1669 }
drh158b9cb2011-03-05 20:59:46 +00001670 iA = sqlite3VdbeIntValue(pIn2);
1671 iB = sqlite3VdbeIntValue(pIn1);
1672 op = pOp->opcode;
1673 if( op==OP_BitAnd ){
1674 iA &= iB;
1675 }else if( op==OP_BitOr ){
1676 iA |= iB;
1677 }else if( iB!=0 ){
1678 assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1679
1680 /* If shifting by a negative amount, shift in the other direction */
1681 if( iB<0 ){
1682 assert( OP_ShiftRight==OP_ShiftLeft+1 );
1683 op = 2*OP_ShiftLeft + 1 - op;
1684 iB = iB>(-64) ? -iB : 64;
1685 }
1686
1687 if( iB>=64 ){
1688 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1689 }else{
1690 memcpy(&uA, &iA, sizeof(uA));
1691 if( op==OP_ShiftLeft ){
1692 uA <<= iB;
1693 }else{
1694 uA >>= iB;
1695 /* Sign-extend on a right shift of a negative number */
1696 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1697 }
1698 memcpy(&iA, &uA, sizeof(iA));
1699 }
drhbf4133c2001-10-13 02:59:08 +00001700 }
drh158b9cb2011-03-05 20:59:46 +00001701 pOut->u.i = iA;
danielk1977a7a8e142008-02-13 18:25:27 +00001702 MemSetTypeFlag(pOut, MEM_Int);
drhbf4133c2001-10-13 02:59:08 +00001703 break;
1704}
1705
drh8558cde2008-01-05 05:20:10 +00001706/* Opcode: AddImm P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00001707** Synopsis: r[P1]=r[P1]+P2
drh5e00f6c2001-09-13 13:46:56 +00001708**
danielk19770cdc0222008-06-26 18:04:03 +00001709** Add the constant P2 to the value in register P1.
drh8558cde2008-01-05 05:20:10 +00001710** The result is always an integer.
drh4a324312001-12-21 14:30:42 +00001711**
drh8558cde2008-01-05 05:20:10 +00001712** To force any register to be an integer, just add 0.
drh5e00f6c2001-09-13 13:46:56 +00001713*/
drh9cbf3422008-01-17 16:22:13 +00001714case OP_AddImm: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001715 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001716 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001717 sqlite3VdbeMemIntegerify(pIn1);
1718 pIn1->u.i += pOp->p2;
drh5e00f6c2001-09-13 13:46:56 +00001719 break;
1720}
1721
drh9cbf3422008-01-17 16:22:13 +00001722/* Opcode: MustBeInt P1 P2 * * *
drh8aff1012001-12-22 14:49:24 +00001723**
drh9cbf3422008-01-17 16:22:13 +00001724** Force the value in register P1 to be an integer. If the value
1725** in P1 is not an integer and cannot be converted into an integer
danielk19779a96b662007-11-29 17:05:18 +00001726** without data loss, then jump immediately to P2, or if P2==0
drh8aff1012001-12-22 14:49:24 +00001727** raise an SQLITE_MISMATCH exception.
1728*/
drh9cbf3422008-01-17 16:22:13 +00001729case OP_MustBeInt: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00001730 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00001731 if( (pIn1->flags & MEM_Int)==0 ){
drh83b301b2013-11-20 00:59:02 +00001732 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
drh688852a2014-02-17 22:40:43 +00001733 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
drh83b301b2013-11-20 00:59:02 +00001734 if( (pIn1->flags & MEM_Int)==0 ){
1735 if( pOp->p2==0 ){
1736 rc = SQLITE_MISMATCH;
1737 goto abort_due_to_error;
1738 }else{
drhf56fa462015-04-13 21:39:54 +00001739 goto jump_to_p2;
drh83b301b2013-11-20 00:59:02 +00001740 }
drh8aff1012001-12-22 14:49:24 +00001741 }
drh8aff1012001-12-22 14:49:24 +00001742 }
drh83b301b2013-11-20 00:59:02 +00001743 MemSetTypeFlag(pIn1, MEM_Int);
drh8aff1012001-12-22 14:49:24 +00001744 break;
1745}
1746
drh13573c72010-01-12 17:04:07 +00001747#ifndef SQLITE_OMIT_FLOATING_POINT
drh8558cde2008-01-05 05:20:10 +00001748/* Opcode: RealAffinity P1 * * * *
drh487e2622005-06-25 18:42:14 +00001749**
drh2133d822008-01-03 18:44:59 +00001750** If register P1 holds an integer convert it to a real value.
drh487e2622005-06-25 18:42:14 +00001751**
drh8a512562005-11-14 22:29:05 +00001752** This opcode is used when extracting information from a column that
1753** has REAL affinity. Such column values may still be stored as
1754** integers, for space efficiency, but after extraction we want them
1755** to have only a real value.
drh487e2622005-06-25 18:42:14 +00001756*/
drh9cbf3422008-01-17 16:22:13 +00001757case OP_RealAffinity: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001758 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001759 if( pIn1->flags & MEM_Int ){
1760 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001761 }
drh487e2622005-06-25 18:42:14 +00001762 break;
1763}
drh13573c72010-01-12 17:04:07 +00001764#endif
drh487e2622005-06-25 18:42:14 +00001765
drh8df447f2005-11-01 15:48:24 +00001766#ifndef SQLITE_OMIT_CAST
drh4169e432014-08-25 20:11:52 +00001767/* Opcode: Cast P1 P2 * * *
mistachkina1dc42a2014-08-27 17:53:40 +00001768** Synopsis: affinity(r[P1])
drh487e2622005-06-25 18:42:14 +00001769**
drh4169e432014-08-25 20:11:52 +00001770** Force the value in register P1 to be the type defined by P2.
1771**
1772** <ul>
1773** <li value="97"> TEXT
1774** <li value="98"> BLOB
1775** <li value="99"> NUMERIC
1776** <li value="100"> INTEGER
1777** <li value="101"> REAL
1778** </ul>
drh487e2622005-06-25 18:42:14 +00001779**
1780** A NULL value is not changed by this routine. It remains NULL.
1781*/
drh4169e432014-08-25 20:11:52 +00001782case OP_Cast: { /* in1 */
drh05883a32015-06-02 15:32:08 +00001783 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
drh05bbb2e2014-08-25 22:37:19 +00001784 testcase( pOp->p2==SQLITE_AFF_TEXT );
drh05883a32015-06-02 15:32:08 +00001785 testcase( pOp->p2==SQLITE_AFF_BLOB );
drh05bbb2e2014-08-25 22:37:19 +00001786 testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1787 testcase( pOp->p2==SQLITE_AFF_INTEGER );
1788 testcase( pOp->p2==SQLITE_AFF_REAL );
drh3c657212009-11-17 23:59:58 +00001789 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001790 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001791 rc = ExpandBlob(pIn1);
drh4169e432014-08-25 20:11:52 +00001792 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
drhb7654112008-01-12 12:48:07 +00001793 UPDATE_MAX_BLOBSIZE(pIn1);
drh487e2622005-06-25 18:42:14 +00001794 break;
1795}
drh8a512562005-11-14 22:29:05 +00001796#endif /* SQLITE_OMIT_CAST */
1797
drh35573352008-01-08 23:54:25 +00001798/* Opcode: Lt P1 P2 P3 P4 P5
drh72dbffd2013-11-15 03:21:43 +00001799** Synopsis: if r[P1]<r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001800**
drh35573352008-01-08 23:54:25 +00001801** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
1802** jump to address P2.
drhf5905aa2002-05-26 20:54:33 +00001803**
drh35573352008-01-08 23:54:25 +00001804** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1805** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
drh710c4842010-08-30 01:17:20 +00001806** bit is clear then fall through if either operand is NULL.
drh4f686232005-09-20 13:55:18 +00001807**
drh35573352008-01-08 23:54:25 +00001808** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
drh8a512562005-11-14 22:29:05 +00001809** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
drh60a713c2008-01-21 16:22:45 +00001810** to coerce both inputs according to this affinity before the
drh35573352008-01-08 23:54:25 +00001811** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
drh60a713c2008-01-21 16:22:45 +00001812** affinity is used. Note that the affinity conversions are stored
1813** back into the input registers P1 and P3. So this opcode can cause
1814** persistent changes to registers P1 and P3.
danielk1977a37cdde2004-05-16 11:15:36 +00001815**
1816** Once any conversions have taken place, and neither value is NULL,
drh35573352008-01-08 23:54:25 +00001817** the values are compared. If both values are blobs then memcmp() is
1818** used to determine the results of the comparison. If both values
1819** are text, then the appropriate collating function specified in
1820** P4 is used to do the comparison. If P4 is not specified then
1821** memcmp() is used to compare text string. If both values are
1822** numeric, then a numeric comparison is used. If the two values
1823** are of different types, then numbers are considered less than
1824** strings and strings are considered less than blobs.
drhc9b84a12002-06-20 11:36:48 +00001825**
drh35573352008-01-08 23:54:25 +00001826** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
1827** store a boolean result (either 0, or 1, or NULL) in register P2.
drh053a1282012-09-19 21:15:46 +00001828**
1829** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
1830** equal to one another, provided that they do not have their MEM_Cleared
1831** bit set.
drh5e00f6c2001-09-13 13:46:56 +00001832*/
drh9cbf3422008-01-17 16:22:13 +00001833/* Opcode: Ne P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001834** Synopsis: if r[P1]!=r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001835**
drh35573352008-01-08 23:54:25 +00001836** This works just like the Lt opcode except that the jump is taken if
1837** the operands in registers P1 and P3 are not equal. See the Lt opcode for
drh53db1452004-05-20 13:54:53 +00001838** additional information.
drh6a2fe092009-09-23 02:29:36 +00001839**
1840** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1841** true or false and is never NULL. If both operands are NULL then the result
1842** of comparison is false. If either operand is NULL then the result is true.
drhef8662b2011-06-20 21:47:58 +00001843** If neither operand is NULL the result is the same as it would be if
drh6a2fe092009-09-23 02:29:36 +00001844** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001845*/
drh9cbf3422008-01-17 16:22:13 +00001846/* Opcode: Eq P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001847** Synopsis: if r[P1]==r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001848**
drh35573352008-01-08 23:54:25 +00001849** This works just like the Lt opcode except that the jump is taken if
1850** the operands in registers P1 and P3 are equal.
1851** See the Lt opcode for additional information.
drh6a2fe092009-09-23 02:29:36 +00001852**
1853** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1854** true or false and is never NULL. If both operands are NULL then the result
1855** of comparison is true. If either operand is NULL then the result is false.
drhef8662b2011-06-20 21:47:58 +00001856** If neither operand is NULL the result is the same as it would be if
drh6a2fe092009-09-23 02:29:36 +00001857** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001858*/
drh9cbf3422008-01-17 16:22:13 +00001859/* Opcode: Le P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001860** Synopsis: if r[P1]<=r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001861**
drh35573352008-01-08 23:54:25 +00001862** This works just like the Lt opcode except that the jump is taken if
1863** the content of register P3 is less than or equal to the content of
1864** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001865*/
drh9cbf3422008-01-17 16:22:13 +00001866/* Opcode: Gt P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001867** Synopsis: if r[P1]>r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001868**
drh35573352008-01-08 23:54:25 +00001869** This works just like the Lt opcode except that the jump is taken if
1870** the content of register P3 is greater than the content of
1871** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001872*/
drh9cbf3422008-01-17 16:22:13 +00001873/* Opcode: Ge P1 P2 P3 P4 P5
drh2552d432013-11-02 22:29:34 +00001874** Synopsis: if r[P1]>=r[P3] goto P2
drh5e00f6c2001-09-13 13:46:56 +00001875**
drh35573352008-01-08 23:54:25 +00001876** This works just like the Lt opcode except that the jump is taken if
1877** the content of register P3 is greater than or equal to the content of
1878** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001879*/
drh9cbf3422008-01-17 16:22:13 +00001880case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
1881case OP_Ne: /* same as TK_NE, jump, in1, in3 */
1882case OP_Lt: /* same as TK_LT, jump, in1, in3 */
1883case OP_Le: /* same as TK_LE, jump, in1, in3 */
1884case OP_Gt: /* same as TK_GT, jump, in1, in3 */
1885case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
drh6a2fe092009-09-23 02:29:36 +00001886 int res; /* Result of the comparison of pIn1 against pIn3 */
1887 char affinity; /* Affinity to use for comparison */
danb7dca7d2010-03-05 16:32:12 +00001888 u16 flags1; /* Copy of initial value of pIn1->flags */
1889 u16 flags3; /* Copy of initial value of pIn3->flags */
danielk1977a37cdde2004-05-16 11:15:36 +00001890
drh3c657212009-11-17 23:59:58 +00001891 pIn1 = &aMem[pOp->p1];
1892 pIn3 = &aMem[pOp->p3];
danb7dca7d2010-03-05 16:32:12 +00001893 flags1 = pIn1->flags;
1894 flags3 = pIn3->flags;
drhc3f1d5f2011-05-30 23:42:16 +00001895 if( (flags1 | flags3)&MEM_Null ){
drh6a2fe092009-09-23 02:29:36 +00001896 /* One or both operands are NULL */
1897 if( pOp->p5 & SQLITE_NULLEQ ){
1898 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1899 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1900 ** or not both operands are null.
1901 */
1902 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
drh053a1282012-09-19 21:15:46 +00001903 assert( (flags1 & MEM_Cleared)==0 );
drh3d77dee2014-02-19 14:20:49 +00001904 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
drh053a1282012-09-19 21:15:46 +00001905 if( (flags1&MEM_Null)!=0
1906 && (flags3&MEM_Null)!=0
1907 && (flags3&MEM_Cleared)==0
1908 ){
1909 res = 0; /* Results are equal */
1910 }else{
1911 res = 1; /* Results are not equal */
1912 }
drh6a2fe092009-09-23 02:29:36 +00001913 }else{
1914 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1915 ** then the result is always NULL.
1916 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1917 */
drh688852a2014-02-17 22:40:43 +00001918 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001919 pOut = &aMem[pOp->p2];
drh6a2fe092009-09-23 02:29:36 +00001920 MemSetTypeFlag(pOut, MEM_Null);
1921 REGISTER_TRACE(pOp->p2, pOut);
drh688852a2014-02-17 22:40:43 +00001922 }else{
drhf4345e42014-02-18 11:31:59 +00001923 VdbeBranchTaken(2,3);
drh688852a2014-02-17 22:40:43 +00001924 if( pOp->p5 & SQLITE_JUMPIFNULL ){
drhf56fa462015-04-13 21:39:54 +00001925 goto jump_to_p2;
drh688852a2014-02-17 22:40:43 +00001926 }
drh6a2fe092009-09-23 02:29:36 +00001927 }
1928 break;
danielk1977a37cdde2004-05-16 11:15:36 +00001929 }
drh6a2fe092009-09-23 02:29:36 +00001930 }else{
1931 /* Neither operand is NULL. Do a comparison. */
1932 affinity = pOp->p5 & SQLITE_AFF_MASK;
drh24a09622014-09-18 16:28:59 +00001933 if( affinity>=SQLITE_AFF_NUMERIC ){
drhe7a34662014-09-19 22:44:20 +00001934 if( (pIn1->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
drh24a09622014-09-18 16:28:59 +00001935 applyNumericAffinity(pIn1,0);
1936 }
drhe7a34662014-09-19 22:44:20 +00001937 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
drh24a09622014-09-18 16:28:59 +00001938 applyNumericAffinity(pIn3,0);
1939 }
1940 }else if( affinity==SQLITE_AFF_TEXT ){
1941 if( (pIn1->flags & MEM_Str)==0 && (pIn1->flags & (MEM_Int|MEM_Real))!=0 ){
drhe7a34662014-09-19 22:44:20 +00001942 testcase( pIn1->flags & MEM_Int );
1943 testcase( pIn1->flags & MEM_Real );
drh24a09622014-09-18 16:28:59 +00001944 sqlite3VdbeMemStringify(pIn1, encoding, 1);
drhbc8a6b32015-03-31 11:42:23 +00001945 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
1946 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
drh24a09622014-09-18 16:28:59 +00001947 }
1948 if( (pIn3->flags & MEM_Str)==0 && (pIn3->flags & (MEM_Int|MEM_Real))!=0 ){
drhe7a34662014-09-19 22:44:20 +00001949 testcase( pIn3->flags & MEM_Int );
1950 testcase( pIn3->flags & MEM_Real );
drh24a09622014-09-18 16:28:59 +00001951 sqlite3VdbeMemStringify(pIn3, encoding, 1);
drhbc8a6b32015-03-31 11:42:23 +00001952 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
1953 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
drh24a09622014-09-18 16:28:59 +00001954 }
drh6a2fe092009-09-23 02:29:36 +00001955 }
drh6a2fe092009-09-23 02:29:36 +00001956 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
drhca5506b2014-09-17 23:37:38 +00001957 if( pIn1->flags & MEM_Zero ){
1958 sqlite3VdbeMemExpandBlob(pIn1);
1959 flags1 &= ~MEM_Zero;
1960 }
1961 if( pIn3->flags & MEM_Zero ){
1962 sqlite3VdbeMemExpandBlob(pIn3);
1963 flags3 &= ~MEM_Zero;
1964 }
drh24a09622014-09-18 16:28:59 +00001965 if( db->mallocFailed ) goto no_mem;
drh6a2fe092009-09-23 02:29:36 +00001966 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
drhe51c44f2004-05-30 20:46:09 +00001967 }
danielk1977a37cdde2004-05-16 11:15:36 +00001968 switch( pOp->opcode ){
1969 case OP_Eq: res = res==0; break;
1970 case OP_Ne: res = res!=0; break;
1971 case OP_Lt: res = res<0; break;
1972 case OP_Le: res = res<=0; break;
1973 case OP_Gt: res = res>0; break;
1974 default: res = res>=0; break;
1975 }
1976
drhf56fa462015-04-13 21:39:54 +00001977 /* Undo any changes made by applyAffinity() to the input registers. */
1978 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
1979 pIn1->flags = flags1;
1980 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
1981 pIn3->flags = flags3;
1982
drh35573352008-01-08 23:54:25 +00001983 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001984 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00001985 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00001986 MemSetTypeFlag(pOut, MEM_Int);
drh35573352008-01-08 23:54:25 +00001987 pOut->u.i = res;
1988 REGISTER_TRACE(pOp->p2, pOut);
drh688852a2014-02-17 22:40:43 +00001989 }else{
drhf4345e42014-02-18 11:31:59 +00001990 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
drh688852a2014-02-17 22:40:43 +00001991 if( res ){
drhf56fa462015-04-13 21:39:54 +00001992 goto jump_to_p2;
drh688852a2014-02-17 22:40:43 +00001993 }
danielk1977a37cdde2004-05-16 11:15:36 +00001994 }
1995 break;
1996}
drhc9b84a12002-06-20 11:36:48 +00001997
drh0acb7e42008-06-25 00:12:41 +00001998/* Opcode: Permutation * * * P4 *
1999**
shanebe217792009-03-05 04:20:31 +00002000** Set the permutation used by the OP_Compare operator to be the array
drh0acb7e42008-06-25 00:12:41 +00002001** of integers in P4.
2002**
drh953f7612012-12-07 22:18:54 +00002003** The permutation is only valid until the next OP_Compare that has
2004** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
2005** occur immediately prior to the OP_Compare.
drh0acb7e42008-06-25 00:12:41 +00002006*/
2007case OP_Permutation: {
2008 assert( pOp->p4type==P4_INTARRAY );
2009 assert( pOp->p4.ai );
2010 aPermute = pOp->p4.ai;
2011 break;
2012}
2013
drh953f7612012-12-07 22:18:54 +00002014/* Opcode: Compare P1 P2 P3 P4 P5
drh079a3072014-03-19 14:10:55 +00002015** Synopsis: r[P1@P3] <-> r[P2@P3]
drh16ee60f2008-06-20 18:13:25 +00002016**
drh710c4842010-08-30 01:17:20 +00002017** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2018** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
drh16ee60f2008-06-20 18:13:25 +00002019** the comparison for use by the next OP_Jump instruct.
2020**
drh0ca10df2012-12-08 13:26:23 +00002021** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2022** determined by the most recent OP_Permutation operator. If the
2023** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2024** order.
2025**
drh0acb7e42008-06-25 00:12:41 +00002026** P4 is a KeyInfo structure that defines collating sequences and sort
2027** orders for the comparison. The permutation applies to registers
2028** only. The KeyInfo elements are used sequentially.
2029**
2030** The comparison is a sort comparison, so NULLs compare equal,
2031** NULLs are less than numbers, numbers are less than strings,
drh16ee60f2008-06-20 18:13:25 +00002032** and strings are less than blobs.
2033*/
2034case OP_Compare: {
drh856c1032009-06-02 15:21:42 +00002035 int n;
2036 int i;
2037 int p1;
2038 int p2;
2039 const KeyInfo *pKeyInfo;
2040 int idx;
2041 CollSeq *pColl; /* Collating sequence to use on this term */
2042 int bRev; /* True for DESCENDING sort order */
2043
drh953f7612012-12-07 22:18:54 +00002044 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0;
drh856c1032009-06-02 15:21:42 +00002045 n = pOp->p3;
2046 pKeyInfo = pOp->p4.pKeyInfo;
drh16ee60f2008-06-20 18:13:25 +00002047 assert( n>0 );
drh93a960a2008-07-10 00:32:42 +00002048 assert( pKeyInfo!=0 );
drh16ee60f2008-06-20 18:13:25 +00002049 p1 = pOp->p1;
drh16ee60f2008-06-20 18:13:25 +00002050 p2 = pOp->p2;
drh6a2fe092009-09-23 02:29:36 +00002051#if SQLITE_DEBUG
2052 if( aPermute ){
2053 int k, mx = 0;
2054 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
dan3bc9f742013-08-15 16:18:39 +00002055 assert( p1>0 && p1+mx<=(p->nMem-p->nCursor)+1 );
2056 assert( p2>0 && p2+mx<=(p->nMem-p->nCursor)+1 );
drh6a2fe092009-09-23 02:29:36 +00002057 }else{
dan3bc9f742013-08-15 16:18:39 +00002058 assert( p1>0 && p1+n<=(p->nMem-p->nCursor)+1 );
2059 assert( p2>0 && p2+n<=(p->nMem-p->nCursor)+1 );
drh6a2fe092009-09-23 02:29:36 +00002060 }
2061#endif /* SQLITE_DEBUG */
drh0acb7e42008-06-25 00:12:41 +00002062 for(i=0; i<n; i++){
drh856c1032009-06-02 15:21:42 +00002063 idx = aPermute ? aPermute[i] : i;
drh2b4ded92010-09-27 21:09:31 +00002064 assert( memIsValid(&aMem[p1+idx]) );
2065 assert( memIsValid(&aMem[p2+idx]) );
drha6c2ed92009-11-14 23:22:23 +00002066 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2067 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
drh93a960a2008-07-10 00:32:42 +00002068 assert( i<pKeyInfo->nField );
2069 pColl = pKeyInfo->aColl[i];
2070 bRev = pKeyInfo->aSortOrder[i];
drha6c2ed92009-11-14 23:22:23 +00002071 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
drh0acb7e42008-06-25 00:12:41 +00002072 if( iCompare ){
2073 if( bRev ) iCompare = -iCompare;
2074 break;
2075 }
drh16ee60f2008-06-20 18:13:25 +00002076 }
drh0acb7e42008-06-25 00:12:41 +00002077 aPermute = 0;
drh16ee60f2008-06-20 18:13:25 +00002078 break;
2079}
2080
2081/* Opcode: Jump P1 P2 P3 * *
2082**
2083** Jump to the instruction at address P1, P2, or P3 depending on whether
2084** in the most recent OP_Compare instruction the P1 vector was less than
2085** equal to, or greater than the P2 vector, respectively.
2086*/
drh0acb7e42008-06-25 00:12:41 +00002087case OP_Jump: { /* jump */
2088 if( iCompare<0 ){
drhf56fa462015-04-13 21:39:54 +00002089 VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1];
drh0acb7e42008-06-25 00:12:41 +00002090 }else if( iCompare==0 ){
drhf56fa462015-04-13 21:39:54 +00002091 VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1];
drh16ee60f2008-06-20 18:13:25 +00002092 }else{
drhf56fa462015-04-13 21:39:54 +00002093 VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1];
drh16ee60f2008-06-20 18:13:25 +00002094 }
2095 break;
2096}
2097
drh5b6afba2008-01-05 16:29:28 +00002098/* Opcode: And P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00002099** Synopsis: r[P3]=(r[P1] && r[P2])
drh5e00f6c2001-09-13 13:46:56 +00002100**
drh5b6afba2008-01-05 16:29:28 +00002101** Take the logical AND of the values in registers P1 and P2 and
2102** write the result into register P3.
drh5e00f6c2001-09-13 13:46:56 +00002103**
drh5b6afba2008-01-05 16:29:28 +00002104** If either P1 or P2 is 0 (false) then the result is 0 even if
2105** the other input is NULL. A NULL and true or two NULLs give
2106** a NULL output.
drh5e00f6c2001-09-13 13:46:56 +00002107*/
drh5b6afba2008-01-05 16:29:28 +00002108/* Opcode: Or P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00002109** Synopsis: r[P3]=(r[P1] || r[P2])
drh5b6afba2008-01-05 16:29:28 +00002110**
2111** Take the logical OR of the values in register P1 and P2 and
2112** store the answer in register P3.
2113**
2114** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2115** even if the other input is NULL. A NULL and false or two NULLs
2116** give a NULL output.
2117*/
2118case OP_And: /* same as TK_AND, in1, in2, out3 */
2119case OP_Or: { /* same as TK_OR, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00002120 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2121 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
drhbb113512002-05-27 01:04:51 +00002122
drh3c657212009-11-17 23:59:58 +00002123 pIn1 = &aMem[pOp->p1];
drh5b6afba2008-01-05 16:29:28 +00002124 if( pIn1->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00002125 v1 = 2;
drh5e00f6c2001-09-13 13:46:56 +00002126 }else{
drh5b6afba2008-01-05 16:29:28 +00002127 v1 = sqlite3VdbeIntValue(pIn1)!=0;
drhbb113512002-05-27 01:04:51 +00002128 }
drh3c657212009-11-17 23:59:58 +00002129 pIn2 = &aMem[pOp->p2];
drh5b6afba2008-01-05 16:29:28 +00002130 if( pIn2->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00002131 v2 = 2;
2132 }else{
drh5b6afba2008-01-05 16:29:28 +00002133 v2 = sqlite3VdbeIntValue(pIn2)!=0;
drhbb113512002-05-27 01:04:51 +00002134 }
2135 if( pOp->opcode==OP_And ){
drh5b6afba2008-01-05 16:29:28 +00002136 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
drhbb113512002-05-27 01:04:51 +00002137 v1 = and_logic[v1*3+v2];
2138 }else{
drh5b6afba2008-01-05 16:29:28 +00002139 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
drhbb113512002-05-27 01:04:51 +00002140 v1 = or_logic[v1*3+v2];
drh5e00f6c2001-09-13 13:46:56 +00002141 }
drh3c657212009-11-17 23:59:58 +00002142 pOut = &aMem[pOp->p3];
drhbb113512002-05-27 01:04:51 +00002143 if( v1==2 ){
danielk1977a7a8e142008-02-13 18:25:27 +00002144 MemSetTypeFlag(pOut, MEM_Null);
drhbb113512002-05-27 01:04:51 +00002145 }else{
drh5b6afba2008-01-05 16:29:28 +00002146 pOut->u.i = v1;
danielk1977a7a8e142008-02-13 18:25:27 +00002147 MemSetTypeFlag(pOut, MEM_Int);
drhbb113512002-05-27 01:04:51 +00002148 }
drh5e00f6c2001-09-13 13:46:56 +00002149 break;
2150}
2151
drhe99fa2a2008-12-15 15:27:51 +00002152/* Opcode: Not P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002153** Synopsis: r[P2]= !r[P1]
drh5e00f6c2001-09-13 13:46:56 +00002154**
drhe99fa2a2008-12-15 15:27:51 +00002155** Interpret the value in register P1 as a boolean value. Store the
2156** boolean complement in register P2. If the value in register P1 is
2157** NULL, then a NULL is stored in P2.
drh5e00f6c2001-09-13 13:46:56 +00002158*/
drh93952eb2009-11-13 19:43:43 +00002159case OP_Not: { /* same as TK_NOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002160 pIn1 = &aMem[pOp->p1];
2161 pOut = &aMem[pOp->p2];
drh0725cab2014-09-17 14:52:46 +00002162 sqlite3VdbeMemSetNull(pOut);
2163 if( (pIn1->flags & MEM_Null)==0 ){
2164 pOut->flags = MEM_Int;
2165 pOut->u.i = !sqlite3VdbeIntValue(pIn1);
drhe99fa2a2008-12-15 15:27:51 +00002166 }
drh5e00f6c2001-09-13 13:46:56 +00002167 break;
2168}
2169
drhe99fa2a2008-12-15 15:27:51 +00002170/* Opcode: BitNot P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002171** Synopsis: r[P1]= ~r[P1]
drhbf4133c2001-10-13 02:59:08 +00002172**
drhe99fa2a2008-12-15 15:27:51 +00002173** Interpret the content of register P1 as an integer. Store the
2174** ones-complement of the P1 value into register P2. If P1 holds
2175** a NULL then store a NULL in P2.
drhbf4133c2001-10-13 02:59:08 +00002176*/
drh93952eb2009-11-13 19:43:43 +00002177case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002178 pIn1 = &aMem[pOp->p1];
2179 pOut = &aMem[pOp->p2];
drh0725cab2014-09-17 14:52:46 +00002180 sqlite3VdbeMemSetNull(pOut);
2181 if( (pIn1->flags & MEM_Null)==0 ){
2182 pOut->flags = MEM_Int;
2183 pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
drhe99fa2a2008-12-15 15:27:51 +00002184 }
drhbf4133c2001-10-13 02:59:08 +00002185 break;
2186}
2187
drh48f2d3b2011-09-16 01:34:43 +00002188/* Opcode: Once P1 P2 * * *
2189**
drh5dad9a32014-07-25 18:37:42 +00002190** Check the "once" flag number P1. If it is set, jump to instruction P2.
2191** Otherwise, set the flag and fall through to the next instruction.
2192** In other words, this opcode causes all following opcodes up through P2
2193** (but not including P2) to run just once and to be skipped on subsequent
2194** times through the loop.
2195**
2196** All "once" flags are initially cleared whenever a prepared statement
2197** first begins to run.
drh48f2d3b2011-09-16 01:34:43 +00002198*/
dan1d8cb212011-12-09 13:24:16 +00002199case OP_Once: { /* jump */
2200 assert( pOp->p1<p->nOnceFlag );
drh688852a2014-02-17 22:40:43 +00002201 VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2);
dan1d8cb212011-12-09 13:24:16 +00002202 if( p->aOnceFlag[pOp->p1] ){
drhf56fa462015-04-13 21:39:54 +00002203 goto jump_to_p2;
dan1d8cb212011-12-09 13:24:16 +00002204 }else{
2205 p->aOnceFlag[pOp->p1] = 1;
2206 }
2207 break;
2208}
2209
drh3c84ddf2008-01-09 02:15:38 +00002210/* Opcode: If P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00002211**
drhef8662b2011-06-20 21:47:58 +00002212** Jump to P2 if the value in register P1 is true. The value
drh3c84ddf2008-01-09 02:15:38 +00002213** is considered true if it is numeric and non-zero. If the value
drhe21a6e12014-08-01 18:00:24 +00002214** in P1 is NULL then take the jump if and only if P3 is non-zero.
drh5e00f6c2001-09-13 13:46:56 +00002215*/
drh3c84ddf2008-01-09 02:15:38 +00002216/* Opcode: IfNot P1 P2 P3 * *
drhf5905aa2002-05-26 20:54:33 +00002217**
drhef8662b2011-06-20 21:47:58 +00002218** Jump to P2 if the value in register P1 is False. The value
drhb8475df2011-12-09 16:21:19 +00002219** is considered false if it has a numeric value of zero. If the value
drhe21a6e12014-08-01 18:00:24 +00002220** in P1 is NULL then take the jump if and only if P3 is non-zero.
drhf5905aa2002-05-26 20:54:33 +00002221*/
drh9cbf3422008-01-17 16:22:13 +00002222case OP_If: /* jump, in1 */
2223case OP_IfNot: { /* jump, in1 */
drh5e00f6c2001-09-13 13:46:56 +00002224 int c;
drh3c657212009-11-17 23:59:58 +00002225 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00002226 if( pIn1->flags & MEM_Null ){
2227 c = pOp->p3;
drhf5905aa2002-05-26 20:54:33 +00002228 }else{
drhba0232a2005-06-06 17:27:19 +00002229#ifdef SQLITE_OMIT_FLOATING_POINT
shanefbd60f82009-02-04 03:59:25 +00002230 c = sqlite3VdbeIntValue(pIn1)!=0;
drhba0232a2005-06-06 17:27:19 +00002231#else
drh3c84ddf2008-01-09 02:15:38 +00002232 c = sqlite3VdbeRealValue(pIn1)!=0.0;
drhba0232a2005-06-06 17:27:19 +00002233#endif
drhf5905aa2002-05-26 20:54:33 +00002234 if( pOp->opcode==OP_IfNot ) c = !c;
2235 }
drh688852a2014-02-17 22:40:43 +00002236 VdbeBranchTaken(c!=0, 2);
drh3c84ddf2008-01-09 02:15:38 +00002237 if( c ){
drhf56fa462015-04-13 21:39:54 +00002238 goto jump_to_p2;
drh3c84ddf2008-01-09 02:15:38 +00002239 }
drh5e00f6c2001-09-13 13:46:56 +00002240 break;
2241}
2242
drh830ecf92009-06-18 00:41:55 +00002243/* Opcode: IsNull P1 P2 * * *
drhfc8d4f92013-11-08 15:19:46 +00002244** Synopsis: if r[P1]==NULL goto P2
drh477df4b2008-01-05 18:48:24 +00002245**
drh830ecf92009-06-18 00:41:55 +00002246** Jump to P2 if the value in register P1 is NULL.
drh477df4b2008-01-05 18:48:24 +00002247*/
drh9cbf3422008-01-17 16:22:13 +00002248case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002249 pIn1 = &aMem[pOp->p1];
drh688852a2014-02-17 22:40:43 +00002250 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
drh830ecf92009-06-18 00:41:55 +00002251 if( (pIn1->flags & MEM_Null)!=0 ){
drhf56fa462015-04-13 21:39:54 +00002252 goto jump_to_p2;
drh830ecf92009-06-18 00:41:55 +00002253 }
drh477df4b2008-01-05 18:48:24 +00002254 break;
2255}
2256
drh98757152008-01-09 23:04:12 +00002257/* Opcode: NotNull P1 P2 * * *
drhfc8d4f92013-11-08 15:19:46 +00002258** Synopsis: if r[P1]!=NULL goto P2
drh5e00f6c2001-09-13 13:46:56 +00002259**
drh6a288a32008-01-07 19:20:24 +00002260** Jump to P2 if the value in register P1 is not NULL.
drh5e00f6c2001-09-13 13:46:56 +00002261*/
drh9cbf3422008-01-17 16:22:13 +00002262case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002263 pIn1 = &aMem[pOp->p1];
drh688852a2014-02-17 22:40:43 +00002264 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
drh6a288a32008-01-07 19:20:24 +00002265 if( (pIn1->flags & MEM_Null)==0 ){
drhf56fa462015-04-13 21:39:54 +00002266 goto jump_to_p2;
drh6a288a32008-01-07 19:20:24 +00002267 }
drh5e00f6c2001-09-13 13:46:56 +00002268 break;
2269}
2270
drh3e9ca092009-09-08 01:14:48 +00002271/* Opcode: Column P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00002272** Synopsis: r[P3]=PX
danielk1977192ac1d2004-05-10 07:17:30 +00002273**
danielk1977cfcdaef2004-05-12 07:33:33 +00002274** Interpret the data that cursor P1 points to as a structure built using
2275** the MakeRecord instruction. (See the MakeRecord opcode for additional
drhd4e70eb2008-01-02 00:34:36 +00002276** information about the format of the data.) Extract the P2-th column
2277** from this record. If there are less that (P2+1)
2278** values in the record, extract a NULL.
2279**
drh9cbf3422008-01-17 16:22:13 +00002280** The value extracted is stored in register P3.
danielk1977192ac1d2004-05-10 07:17:30 +00002281**
danielk19771f4aa332008-01-03 09:51:55 +00002282** If the column contains fewer than P2 fields, then extract a NULL. Or,
2283** if the P4 argument is a P4_MEM use the value of the P4 argument as
2284** the result.
drh3e9ca092009-09-08 01:14:48 +00002285**
2286** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2287** then the cache of the cursor is reset prior to extracting the column.
2288** The first OP_Column against a pseudo-table after the value of the content
2289** register has changed should have this bit set.
drha748fdc2012-03-28 01:34:47 +00002290**
drhdda5c082012-03-28 13:41:10 +00002291** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
2292** the result is guaranteed to only be used as the argument of a length()
2293** or typeof() function, respectively. The loading of large blobs can be
2294** skipped for length() and all content loading can be skipped for typeof().
danielk1977192ac1d2004-05-10 07:17:30 +00002295*/
danielk1977cfcdaef2004-05-12 07:33:33 +00002296case OP_Column: {
drh856c1032009-06-02 15:21:42 +00002297 i64 payloadSize64; /* Number of bytes in the record */
drh856c1032009-06-02 15:21:42 +00002298 int p2; /* column number to retrieve */
2299 VdbeCursor *pC; /* The VDBE cursor */
drhd3194f52004-05-27 19:59:32 +00002300 BtCursor *pCrsr; /* The BTree cursor */
drhd3194f52004-05-27 19:59:32 +00002301 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
danielk1977cfcdaef2004-05-12 07:33:33 +00002302 int len; /* The length of the serialized data for the column */
drhd3194f52004-05-27 19:59:32 +00002303 int i; /* Loop counter */
drhd4e70eb2008-01-02 00:34:36 +00002304 Mem *pDest; /* Where to write the extracted value */
drhd3194f52004-05-27 19:59:32 +00002305 Mem sMem; /* For storing the record being decoded */
drh399af1d2013-11-20 17:25:55 +00002306 const u8 *zData; /* Part of the record being decoded */
2307 const u8 *zHdr; /* Next unparsed byte of the header */
2308 const u8 *zEndHdr; /* Pointer to first byte after the header */
drh35cd6432009-06-05 14:17:21 +00002309 u32 offset; /* Offset into the data */
drh6658cd92010-02-05 14:12:53 +00002310 u32 szField; /* Number of bytes in the content of a field */
drh501932c2013-11-21 21:59:53 +00002311 u32 avail; /* Number of bytes of available data */
drh5a077b72011-08-29 02:16:18 +00002312 u32 t; /* A type code from the record header */
drh0c8f7602014-09-19 16:56:45 +00002313 u16 fx; /* pDest->flags value */
drh3e9ca092009-09-08 01:14:48 +00002314 Mem *pReg; /* PseudoTable input register */
danielk1977192ac1d2004-05-10 07:17:30 +00002315
drh399af1d2013-11-20 17:25:55 +00002316 p2 = pOp->p2;
dan3bc9f742013-08-15 16:18:39 +00002317 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00002318 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00002319 memAboutToChange(p, pDest);
drhc8606e42013-11-20 19:28:03 +00002320 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2321 pC = p->apCsr[pOp->p1];
drha5759672012-10-30 14:39:12 +00002322 assert( pC!=0 );
drhc8606e42013-11-20 19:28:03 +00002323 assert( p2<pC->nField );
drhb53a5a92014-10-12 22:37:22 +00002324 aOffset = pC->aOffset;
danielk19770817d0d2007-02-14 09:19:36 +00002325#ifndef SQLITE_OMIT_VIRTUALTABLE
drh380d6852013-11-20 20:58:00 +00002326 assert( pC->pVtabCursor==0 ); /* OP_Column never called on virtual table */
danielk19770817d0d2007-02-14 09:19:36 +00002327#endif
shane36840fd2009-06-26 16:32:13 +00002328 pCrsr = pC->pCursor;
drh380d6852013-11-20 20:58:00 +00002329 assert( pCrsr!=0 || pC->pseudoTableReg>0 ); /* pCrsr NULL on PseudoTables */
2330 assert( pCrsr!=0 || pC->nullRow ); /* pC->nullRow on PseudoTables */
drh399af1d2013-11-20 17:25:55 +00002331
2332 /* If the cursor cache is stale, bring it up-to-date */
2333 rc = sqlite3VdbeCursorMoveto(pC);
2334 if( rc ) goto abort_due_to_error;
drh6cf4a7d2014-10-13 13:00:58 +00002335 if( pC->cacheStatus!=p->cacheCtr ){
drhc8606e42013-11-20 19:28:03 +00002336 if( pC->nullRow ){
2337 if( pCrsr==0 ){
2338 assert( pC->pseudoTableReg>0 );
2339 pReg = &aMem[pC->pseudoTableReg];
drhc8606e42013-11-20 19:28:03 +00002340 assert( pReg->flags & MEM_Blob );
2341 assert( memIsValid(pReg) );
2342 pC->payloadSize = pC->szRow = avail = pReg->n;
2343 pC->aRow = (u8*)pReg->z;
2344 }else{
drh6b5631e2014-11-05 15:57:39 +00002345 sqlite3VdbeMemSetNull(pDest);
drh399af1d2013-11-20 17:25:55 +00002346 goto op_column_out;
2347 }
danielk197784ac9d02004-05-18 09:58:06 +00002348 }else{
drhc8606e42013-11-20 19:28:03 +00002349 assert( pCrsr );
drh14da87f2013-11-20 21:51:33 +00002350 if( pC->isTable==0 ){
drh399af1d2013-11-20 17:25:55 +00002351 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2352 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
2353 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
2354 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2355 ** payload size, so it is impossible for payloadSize64 to be
2356 ** larger than 32 bits. */
2357 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
2358 pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail);
2359 pC->payloadSize = (u32)payloadSize64;
drhd3194f52004-05-27 19:59:32 +00002360 }else{
drh399af1d2013-11-20 17:25:55 +00002361 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2362 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize);
2363 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
2364 pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail);
drh9188b382004-05-14 21:12:22 +00002365 }
drh399af1d2013-11-20 17:25:55 +00002366 assert( avail<=65536 ); /* Maximum page size is 64KiB */
2367 if( pC->payloadSize <= (u32)avail ){
2368 pC->szRow = pC->payloadSize;
drhe61cffc2004-06-12 18:12:15 +00002369 }else{
drh399af1d2013-11-20 17:25:55 +00002370 pC->szRow = avail;
2371 }
2372 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2373 goto too_big;
drhe61cffc2004-06-12 18:12:15 +00002374 }
drhd3194f52004-05-27 19:59:32 +00002375 }
drh399af1d2013-11-20 17:25:55 +00002376 pC->cacheStatus = p->cacheCtr;
2377 pC->iHdrOffset = getVarint32(pC->aRow, offset);
2378 pC->nHdrParsed = 0;
2379 aOffset[0] = offset;
drh35cd6432009-06-05 14:17:21 +00002380
2381 /* Make sure a corrupt database has not given us an oversize header.
2382 ** Do this now to avoid an oversize memory allocation.
2383 **
2384 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2385 ** types use so much data space that there can only be 4096 and 32 of
2386 ** them, respectively. So the maximum header length results from a
2387 ** 3-byte type for each of the maximum of 32768 columns plus three
2388 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2389 */
drh399af1d2013-11-20 17:25:55 +00002390 if( offset > 98307 || offset > pC->payloadSize ){
drh35cd6432009-06-05 14:17:21 +00002391 rc = SQLITE_CORRUPT_BKPT;
drhc8606e42013-11-20 19:28:03 +00002392 goto op_column_error;
drh35cd6432009-06-05 14:17:21 +00002393 }
drhc81aa2e2014-10-11 23:31:52 +00002394
2395 if( avail<offset ){
2396 /* pC->aRow does not have to hold the entire row, but it does at least
2397 ** need to cover the header of the record. If pC->aRow does not contain
2398 ** the complete header, then set it to zero, forcing the header to be
2399 ** dynamically allocated. */
2400 pC->aRow = 0;
2401 pC->szRow = 0;
2402 }
2403
2404 /* The following goto is an optimization. It can be omitted and
2405 ** everything will still work. But OP_Column is measurably faster
2406 ** by skipping the subsequent conditional, which is always true.
2407 */
2408 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */
2409 goto op_column_read_header;
drh399af1d2013-11-20 17:25:55 +00002410 }
drh35cd6432009-06-05 14:17:21 +00002411
drh399af1d2013-11-20 17:25:55 +00002412 /* Make sure at least the first p2+1 entries of the header have been
drh0c8f7602014-09-19 16:56:45 +00002413 ** parsed and valid information is in aOffset[] and pC->aType[].
drh399af1d2013-11-20 17:25:55 +00002414 */
drhc8606e42013-11-20 19:28:03 +00002415 if( pC->nHdrParsed<=p2 ){
drh380d6852013-11-20 20:58:00 +00002416 /* If there is more header available for parsing in the record, try
2417 ** to extract additional fields up through the p2+1-th field
drhd3194f52004-05-27 19:59:32 +00002418 */
drhc81aa2e2014-10-11 23:31:52 +00002419 op_column_read_header:
drhc8606e42013-11-20 19:28:03 +00002420 if( pC->iHdrOffset<aOffset[0] ){
2421 /* Make sure zData points to enough of the record to cover the header. */
2422 if( pC->aRow==0 ){
2423 memset(&sMem, 0, sizeof(sMem));
drh14da87f2013-11-20 21:51:33 +00002424 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0],
2425 !pC->isTable, &sMem);
drhc8606e42013-11-20 19:28:03 +00002426 if( rc!=SQLITE_OK ){
2427 goto op_column_error;
2428 }
2429 zData = (u8*)sMem.z;
2430 }else{
2431 zData = pC->aRow;
2432 }
2433
drh0c8f7602014-09-19 16:56:45 +00002434 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
drhc8606e42013-11-20 19:28:03 +00002435 i = pC->nHdrParsed;
2436 offset = aOffset[i];
2437 zHdr = zData + pC->iHdrOffset;
2438 zEndHdr = zData + aOffset[0];
2439 assert( i<=p2 && zHdr<zEndHdr );
2440 do{
2441 if( zHdr[0]<0x80 ){
2442 t = zHdr[0];
2443 zHdr++;
2444 }else{
2445 zHdr += sqlite3GetVarint32(zHdr, &t);
2446 }
drh0c8f7602014-09-19 16:56:45 +00002447 pC->aType[i] = t;
drhc8606e42013-11-20 19:28:03 +00002448 szField = sqlite3VdbeSerialTypeLen(t);
2449 offset += szField;
2450 if( offset<szField ){ /* True if offset overflows */
2451 zHdr = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */
2452 break;
2453 }
2454 i++;
2455 aOffset[i] = offset;
2456 }while( i<=p2 && zHdr<zEndHdr );
2457 pC->nHdrParsed = i;
2458 pC->iHdrOffset = (u32)(zHdr - zData);
2459 if( pC->aRow==0 ){
2460 sqlite3VdbeMemRelease(&sMem);
2461 sMem.flags = MEM_Null;
2462 }
2463
drh8dd83622014-10-13 23:39:02 +00002464 /* The record is corrupt if any of the following are true:
2465 ** (1) the bytes of the header extend past the declared header size
2466 ** (zHdr>zEndHdr)
2467 ** (2) the entire header was used but not all data was used
2468 ** (zHdr==zEndHdr && offset!=pC->payloadSize)
2469 ** (3) the end of the data extends beyond the end of the record.
2470 ** (offset > pC->payloadSize)
drhc8606e42013-11-20 19:28:03 +00002471 */
drh8dd83622014-10-13 23:39:02 +00002472 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset!=pC->payloadSize))
drhc8606e42013-11-20 19:28:03 +00002473 || (offset > pC->payloadSize)
drhc8606e42013-11-20 19:28:03 +00002474 ){
2475 rc = SQLITE_CORRUPT_BKPT;
2476 goto op_column_error;
2477 }
2478 }
2479
drhf2db3382015-04-30 20:33:25 +00002480 /* If after trying to extract new entries from the header, nHdrParsed is
drh380d6852013-11-20 20:58:00 +00002481 ** still not up to p2, that means that the record has fewer than p2
2482 ** columns. So the result will be either the default value or a NULL.
2483 */
drhc8606e42013-11-20 19:28:03 +00002484 if( pC->nHdrParsed<=p2 ){
2485 if( pOp->p4type==P4_MEM ){
2486 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2487 }else{
drh22e8d832014-10-29 00:58:38 +00002488 sqlite3VdbeMemSetNull(pDest);
drhc8606e42013-11-20 19:28:03 +00002489 }
danielk19773c9cc8d2005-01-17 03:40:08 +00002490 goto op_column_out;
drhd3194f52004-05-27 19:59:32 +00002491 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002492 }
danielk1977192ac1d2004-05-10 07:17:30 +00002493
drh380d6852013-11-20 20:58:00 +00002494 /* Extract the content for the p2+1-th column. Control can only
drh0c8f7602014-09-19 16:56:45 +00002495 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
drh380d6852013-11-20 20:58:00 +00002496 ** all valid.
drh9188b382004-05-14 21:12:22 +00002497 */
drhc8606e42013-11-20 19:28:03 +00002498 assert( p2<pC->nHdrParsed );
2499 assert( rc==SQLITE_OK );
drh75fd0542014-03-01 16:24:44 +00002500 assert( sqlite3VdbeCheckMemInvariants(pDest) );
drh0725cab2014-09-17 14:52:46 +00002501 if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest);
drh0c8f7602014-09-19 16:56:45 +00002502 t = pC->aType[p2];
drhc8606e42013-11-20 19:28:03 +00002503 if( pC->szRow>=aOffset[p2+1] ){
drh380d6852013-11-20 20:58:00 +00002504 /* This is the common case where the desired content fits on the original
2505 ** page - where the content is not on an overflow page */
drh0c8f7602014-09-19 16:56:45 +00002506 sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], t, pDest);
danielk197736963fd2005-02-19 08:18:05 +00002507 }else{
drh58c96082013-12-23 11:33:32 +00002508 /* This branch happens only when content is on overflow pages */
drh380d6852013-11-20 20:58:00 +00002509 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2510 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2511 || (len = sqlite3VdbeSerialTypeLen(t))==0
drhc8606e42013-11-20 19:28:03 +00002512 ){
drh2a2a6962014-09-16 18:22:44 +00002513 /* Content is irrelevant for
2514 ** 1. the typeof() function,
2515 ** 2. the length(X) function if X is a blob, and
2516 ** 3. if the content length is zero.
2517 ** So we might as well use bogus content rather than reading
2518 ** content from disk. NULL will work for the value for strings
2519 ** and blobs and whatever is in the payloadSize64 variable
2520 ** will work for everything else. */
2521 sqlite3VdbeSerialGet(t<=13 ? (u8*)&payloadSize64 : 0, t, pDest);
danielk1977aee18ef2005-03-09 12:26:50 +00002522 }else{
drh14da87f2013-11-20 21:51:33 +00002523 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable,
drh2a2a6962014-09-16 18:22:44 +00002524 pDest);
drhc8606e42013-11-20 19:28:03 +00002525 if( rc!=SQLITE_OK ){
2526 goto op_column_error;
2527 }
drh2a2a6962014-09-16 18:22:44 +00002528 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2529 pDest->flags &= ~MEM_Ephem;
danielk1977aee18ef2005-03-09 12:26:50 +00002530 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002531 }
drhc8606e42013-11-20 19:28:03 +00002532 pDest->enc = encoding;
drhd3194f52004-05-27 19:59:32 +00002533
danielk19773c9cc8d2005-01-17 03:40:08 +00002534op_column_out:
drh7b5ebca2014-09-19 15:28:33 +00002535 /* If the column value is an ephemeral string, go ahead and persist
2536 ** that string in case the cursor moves before the column value is
2537 ** used. The following code does the equivalent of Deephemeralize()
2538 ** but does it faster. */
2539 if( (pDest->flags & MEM_Ephem)!=0 && pDest->z ){
drh0c8f7602014-09-19 16:56:45 +00002540 fx = pDest->flags & (MEM_Str|MEM_Blob);
2541 assert( fx!=0 );
drh7b5ebca2014-09-19 15:28:33 +00002542 zData = (const u8*)pDest->z;
2543 len = pDest->n;
2544 if( sqlite3VdbeMemClearAndResize(pDest, len+2) ) goto no_mem;
2545 memcpy(pDest->z, zData, len);
2546 pDest->z[len] = 0;
2547 pDest->z[len+1] = 0;
drh0c8f7602014-09-19 16:56:45 +00002548 pDest->flags = fx|MEM_Term;
drh7b5ebca2014-09-19 15:28:33 +00002549 }
drhc8606e42013-11-20 19:28:03 +00002550op_column_error:
drhb7654112008-01-12 12:48:07 +00002551 UPDATE_MAX_BLOBSIZE(pDest);
drh5b6afba2008-01-05 16:29:28 +00002552 REGISTER_TRACE(pOp->p3, pDest);
danielk1977192ac1d2004-05-10 07:17:30 +00002553 break;
2554}
2555
danielk1977751de562008-04-18 09:01:15 +00002556/* Opcode: Affinity P1 P2 * P4 *
drhf63552b2013-10-30 00:25:03 +00002557** Synopsis: affinity(r[P1@P2])
danielk1977751de562008-04-18 09:01:15 +00002558**
2559** Apply affinities to a range of P2 registers starting with P1.
2560**
2561** P4 is a string that is P2 characters long. The nth character of the
2562** string indicates the column affinity that should be used for the nth
2563** memory cell in the range.
2564*/
2565case OP_Affinity: {
drh039fc322009-11-17 18:31:47 +00002566 const char *zAffinity; /* The affinity to be applied */
2567 char cAff; /* A single character of affinity */
danielk1977751de562008-04-18 09:01:15 +00002568
drh856c1032009-06-02 15:21:42 +00002569 zAffinity = pOp->p4.z;
drh039fc322009-11-17 18:31:47 +00002570 assert( zAffinity!=0 );
2571 assert( zAffinity[pOp->p2]==0 );
2572 pIn1 = &aMem[pOp->p1];
2573 while( (cAff = *(zAffinity++))!=0 ){
dan3bc9f742013-08-15 16:18:39 +00002574 assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] );
drh2b4ded92010-09-27 21:09:31 +00002575 assert( memIsValid(pIn1) );
drh039fc322009-11-17 18:31:47 +00002576 applyAffinity(pIn1, cAff, encoding);
2577 pIn1++;
danielk1977751de562008-04-18 09:01:15 +00002578 }
2579 break;
2580}
2581
drh1db639c2008-01-17 02:36:28 +00002582/* Opcode: MakeRecord P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00002583** Synopsis: r[P3]=mkrec(r[P1@P2])
drh7a224de2004-06-02 01:22:02 +00002584**
drh710c4842010-08-30 01:17:20 +00002585** Convert P2 registers beginning with P1 into the [record format]
2586** use as a data record in a database table or as a key
2587** in an index. The OP_Column opcode can decode the record later.
drh7a224de2004-06-02 01:22:02 +00002588**
danielk1977751de562008-04-18 09:01:15 +00002589** P4 may be a string that is P2 characters long. The nth character of the
drh7a224de2004-06-02 01:22:02 +00002590** string indicates the column affinity that should be used for the nth
drh9cbf3422008-01-17 16:22:13 +00002591** field of the index key.
drh7a224de2004-06-02 01:22:02 +00002592**
drh8a512562005-11-14 22:29:05 +00002593** The mapping from character to affinity is given by the SQLITE_AFF_
2594** macros defined in sqliteInt.h.
drh7a224de2004-06-02 01:22:02 +00002595**
drh05883a32015-06-02 15:32:08 +00002596** If P4 is NULL then all index fields have the affinity BLOB.
drh7f057c92005-06-24 03:53:06 +00002597*/
drh1db639c2008-01-17 02:36:28 +00002598case OP_MakeRecord: {
drh856c1032009-06-02 15:21:42 +00002599 u8 *zNewRecord; /* A buffer to hold the data for the new record */
2600 Mem *pRec; /* The new record */
2601 u64 nData; /* Number of bytes of data space */
2602 int nHdr; /* Number of bytes of header space */
2603 i64 nByte; /* Data space required for this record */
drh4a335072015-04-11 02:08:48 +00002604 i64 nZero; /* Number of zero bytes at the end of the record */
drh856c1032009-06-02 15:21:42 +00002605 int nVarint; /* Number of bytes in a varint */
2606 u32 serial_type; /* Type field */
2607 Mem *pData0; /* First field to be combined into the record */
2608 Mem *pLast; /* Last field of the record */
2609 int nField; /* Number of fields in the record */
2610 char *zAffinity; /* The affinity string for the record */
2611 int file_format; /* File format to use for encoding */
drh59bf00c2013-12-08 23:33:28 +00002612 int i; /* Space used in zNewRecord[] header */
2613 int j; /* Space used in zNewRecord[] content */
drh856c1032009-06-02 15:21:42 +00002614 int len; /* Length of a field */
2615
drhf3218fe2004-05-28 08:21:02 +00002616 /* Assuming the record contains N fields, the record format looks
2617 ** like this:
2618 **
drh7a224de2004-06-02 01:22:02 +00002619 ** ------------------------------------------------------------------------
2620 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2621 ** ------------------------------------------------------------------------
drhf3218fe2004-05-28 08:21:02 +00002622 **
drh9cbf3422008-01-17 16:22:13 +00002623 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
peter.d.reid60ec9142014-09-06 16:39:46 +00002624 ** and so forth.
drhf3218fe2004-05-28 08:21:02 +00002625 **
2626 ** Each type field is a varint representing the serial type of the
2627 ** corresponding data element (see sqlite3VdbeSerialType()). The
drh7a224de2004-06-02 01:22:02 +00002628 ** hdr-size field is also a varint which is the offset from the beginning
2629 ** of the record to data0.
drhf3218fe2004-05-28 08:21:02 +00002630 */
drh856c1032009-06-02 15:21:42 +00002631 nData = 0; /* Number of bytes of data space */
2632 nHdr = 0; /* Number of bytes of header space */
drh856c1032009-06-02 15:21:42 +00002633 nZero = 0; /* Number of zero bytes at the end of the record */
drh1db639c2008-01-17 02:36:28 +00002634 nField = pOp->p1;
danielk19772dca4ac2008-01-03 11:50:29 +00002635 zAffinity = pOp->p4.z;
dan3bc9f742013-08-15 16:18:39 +00002636 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem-p->nCursor)+1 );
drha6c2ed92009-11-14 23:22:23 +00002637 pData0 = &aMem[nField];
drh1db639c2008-01-17 02:36:28 +00002638 nField = pOp->p2;
2639 pLast = &pData0[nField-1];
drhd946db02005-12-29 19:23:06 +00002640 file_format = p->minWriteFileFormat;
danielk19778d059842004-05-12 11:24:02 +00002641
drh2b4ded92010-09-27 21:09:31 +00002642 /* Identify the output register */
2643 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2644 pOut = &aMem[pOp->p3];
2645 memAboutToChange(p, pOut);
2646
drh3e6c0602013-12-10 20:53:01 +00002647 /* Apply the requested affinity to all inputs
2648 */
2649 assert( pData0<=pLast );
2650 if( zAffinity ){
2651 pRec = pData0;
2652 do{
drh57bf4a82014-02-17 14:59:22 +00002653 applyAffinity(pRec++, *(zAffinity++), encoding);
2654 assert( zAffinity[0]==0 || pRec<=pLast );
2655 }while( zAffinity[0] );
drh3e6c0602013-12-10 20:53:01 +00002656 }
2657
drhf3218fe2004-05-28 08:21:02 +00002658 /* Loop through the elements that will make up the record to figure
2659 ** out how much space is required for the new record.
danielk19778d059842004-05-12 11:24:02 +00002660 */
drh038b7bc2013-12-09 23:17:22 +00002661 pRec = pLast;
drh59bf00c2013-12-08 23:33:28 +00002662 do{
drh2b4ded92010-09-27 21:09:31 +00002663 assert( memIsValid(pRec) );
drhfacf47a2014-10-13 20:12:47 +00002664 pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format);
drhae7e1512007-05-02 16:51:59 +00002665 len = sqlite3VdbeSerialTypeLen(serial_type);
drh038b7bc2013-12-09 23:17:22 +00002666 if( pRec->flags & MEM_Zero ){
2667 if( nData ){
2668 sqlite3VdbeMemExpandBlob(pRec);
2669 }else{
2670 nZero += pRec->u.nZero;
2671 len -= pRec->u.nZero;
2672 }
2673 }
drhae7e1512007-05-02 16:51:59 +00002674 nData += len;
drh59bf00c2013-12-08 23:33:28 +00002675 testcase( serial_type==127 );
2676 testcase( serial_type==128 );
drh2a242872013-12-08 22:59:29 +00002677 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
drh038b7bc2013-12-09 23:17:22 +00002678 }while( (--pRec)>=pData0 );
danielk19773d1bfea2004-05-14 11:00:53 +00002679
drh654858d2014-11-20 02:18:14 +00002680 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
2681 ** which determines the total number of bytes in the header. The varint
2682 ** value is the size of the header in bytes including the size varint
2683 ** itself. */
drh59bf00c2013-12-08 23:33:28 +00002684 testcase( nHdr==126 );
2685 testcase( nHdr==127 );
drh2a242872013-12-08 22:59:29 +00002686 if( nHdr<=126 ){
2687 /* The common case */
2688 nHdr += 1;
2689 }else{
2690 /* Rare case of a really large header */
2691 nVarint = sqlite3VarintLen(nHdr);
2692 nHdr += nVarint;
2693 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
drhcb9882a2005-03-17 03:15:40 +00002694 }
drh038b7bc2013-12-09 23:17:22 +00002695 nByte = nHdr+nData;
drh4a335072015-04-11 02:08:48 +00002696 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002697 goto too_big;
2698 }
drhf3218fe2004-05-28 08:21:02 +00002699
danielk1977a7a8e142008-02-13 18:25:27 +00002700 /* Make sure the output register has a buffer large enough to store
2701 ** the new record. The output register (pOp->p3) is not allowed to
2702 ** be one of the input registers (because the following call to
drh322f2852014-09-19 00:43:39 +00002703 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
danielk1977a7a8e142008-02-13 18:25:27 +00002704 */
drh322f2852014-09-19 00:43:39 +00002705 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
danielk1977a7a8e142008-02-13 18:25:27 +00002706 goto no_mem;
danielk19778d059842004-05-12 11:24:02 +00002707 }
danielk1977a7a8e142008-02-13 18:25:27 +00002708 zNewRecord = (u8 *)pOut->z;
drhf3218fe2004-05-28 08:21:02 +00002709
2710 /* Write the record */
shane3f8d5cf2008-04-24 19:15:09 +00002711 i = putVarint32(zNewRecord, nHdr);
drh59bf00c2013-12-08 23:33:28 +00002712 j = nHdr;
2713 assert( pData0<=pLast );
2714 pRec = pData0;
2715 do{
drhfacf47a2014-10-13 20:12:47 +00002716 serial_type = pRec->uTemp;
drh654858d2014-11-20 02:18:14 +00002717 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
2718 ** additional varints, one per column. */
drh038b7bc2013-12-09 23:17:22 +00002719 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
drh654858d2014-11-20 02:18:14 +00002720 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
2721 ** immediately follow the header. */
drha9ab4812013-12-11 11:00:44 +00002722 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
drh59bf00c2013-12-08 23:33:28 +00002723 }while( (++pRec)<=pLast );
2724 assert( i==nHdr );
2725 assert( j==nByte );
drhf3218fe2004-05-28 08:21:02 +00002726
dan3bc9f742013-08-15 16:18:39 +00002727 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drh9c1905f2008-12-10 22:32:56 +00002728 pOut->n = (int)nByte;
drhc91b2fd2014-03-01 18:13:23 +00002729 pOut->flags = MEM_Blob;
drhfdf972a2007-05-02 13:30:27 +00002730 if( nZero ){
drh8df32842008-12-09 02:51:23 +00002731 pOut->u.nZero = nZero;
drh477df4b2008-01-05 18:48:24 +00002732 pOut->flags |= MEM_Zero;
drhfdf972a2007-05-02 13:30:27 +00002733 }
drh477df4b2008-01-05 18:48:24 +00002734 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
drh1013c932008-01-06 00:25:21 +00002735 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00002736 UPDATE_MAX_BLOBSIZE(pOut);
danielk19778d059842004-05-12 11:24:02 +00002737 break;
2738}
2739
danielk1977a5533162009-02-24 10:01:51 +00002740/* Opcode: Count P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002741** Synopsis: r[P2]=count()
danielk1977a5533162009-02-24 10:01:51 +00002742**
2743** Store the number of entries (an integer value) in the table or index
2744** opened by cursor P1 in register P2
2745*/
2746#ifndef SQLITE_OMIT_BTREECOUNT
drh27a348c2015-04-13 19:14:06 +00002747case OP_Count: { /* out2 */
danielk1977a5533162009-02-24 10:01:51 +00002748 i64 nEntry;
drhc54a6172009-06-02 16:06:03 +00002749 BtCursor *pCrsr;
2750
2751 pCrsr = p->apCsr[pOp->p1]->pCursor;
drh3da046d2013-11-11 03:24:11 +00002752 assert( pCrsr );
drh2dc06482013-12-11 00:59:10 +00002753 nEntry = 0; /* Not needed. Only used to silence a warning. */
drh3da046d2013-11-11 03:24:11 +00002754 rc = sqlite3BtreeCount(pCrsr, &nEntry);
drh27a348c2015-04-13 19:14:06 +00002755 pOut = out2Prerelease(p, pOp);
danielk1977a5533162009-02-24 10:01:51 +00002756 pOut->u.i = nEntry;
2757 break;
2758}
2759#endif
2760
danielk1977fd7f0452008-12-17 17:30:26 +00002761/* Opcode: Savepoint P1 * * P4 *
2762**
2763** Open, release or rollback the savepoint named by parameter P4, depending
2764** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2765** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2766*/
2767case OP_Savepoint: {
drh856c1032009-06-02 15:21:42 +00002768 int p1; /* Value of P1 operand */
2769 char *zName; /* Name of savepoint */
2770 int nName;
2771 Savepoint *pNew;
2772 Savepoint *pSavepoint;
2773 Savepoint *pTmp;
2774 int iSavepoint;
2775 int ii;
2776
2777 p1 = pOp->p1;
2778 zName = pOp->p4.z;
danielk1977fd7f0452008-12-17 17:30:26 +00002779
2780 /* Assert that the p1 parameter is valid. Also that if there is no open
2781 ** transaction, then there cannot be any savepoints.
2782 */
2783 assert( db->pSavepoint==0 || db->autoCommit==0 );
2784 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2785 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2786 assert( checkSavepointCount(db) );
danc0537fe2013-06-28 19:41:43 +00002787 assert( p->bIsReader );
danielk1977fd7f0452008-12-17 17:30:26 +00002788
2789 if( p1==SAVEPOINT_BEGIN ){
drh4f7d3a52013-06-27 23:54:02 +00002790 if( db->nVdbeWrite>0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002791 /* A new savepoint cannot be created if there are active write
2792 ** statements (i.e. open read/write incremental blob handles).
2793 */
drh22c17b82015-05-15 04:13:15 +00002794 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
danielk1977fd7f0452008-12-17 17:30:26 +00002795 rc = SQLITE_BUSY;
2796 }else{
drh856c1032009-06-02 15:21:42 +00002797 nName = sqlite3Strlen30(zName);
danielk1977fd7f0452008-12-17 17:30:26 +00002798
drhbe07ec52011-06-03 12:15:26 +00002799#ifndef SQLITE_OMIT_VIRTUALTABLE
dand9495cd2011-04-27 12:08:04 +00002800 /* This call is Ok even if this savepoint is actually a transaction
2801 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2802 ** If this is a transaction savepoint being opened, it is guaranteed
2803 ** that the db->aVTrans[] array is empty. */
2804 assert( db->autoCommit==0 || db->nVTrans==0 );
drha24bc9c2011-05-24 00:35:56 +00002805 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2806 db->nStatement+db->nSavepoint);
dand9495cd2011-04-27 12:08:04 +00002807 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh305ebab2011-05-26 14:19:14 +00002808#endif
dand9495cd2011-04-27 12:08:04 +00002809
danielk1977fd7f0452008-12-17 17:30:26 +00002810 /* Create a new savepoint structure. */
2811 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
2812 if( pNew ){
2813 pNew->zName = (char *)&pNew[1];
2814 memcpy(pNew->zName, zName, nName+1);
2815
2816 /* If there is no open transaction, then mark this as a special
2817 ** "transaction savepoint". */
2818 if( db->autoCommit ){
2819 db->autoCommit = 0;
2820 db->isTransactionSavepoint = 1;
2821 }else{
2822 db->nSavepoint++;
danielk1977d8293352009-04-30 09:10:37 +00002823 }
danielk1977fd7f0452008-12-17 17:30:26 +00002824
2825 /* Link the new savepoint into the database handle's list. */
2826 pNew->pNext = db->pSavepoint;
2827 db->pSavepoint = pNew;
danba9108b2009-09-22 07:13:42 +00002828 pNew->nDeferredCons = db->nDeferredCons;
drh648e2642013-07-11 15:03:32 +00002829 pNew->nDeferredImmCons = db->nDeferredImmCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002830 }
2831 }
2832 }else{
drh856c1032009-06-02 15:21:42 +00002833 iSavepoint = 0;
danielk1977fd7f0452008-12-17 17:30:26 +00002834
2835 /* Find the named savepoint. If there is no such savepoint, then an
2836 ** an error is returned to the user. */
2837 for(
drh856c1032009-06-02 15:21:42 +00002838 pSavepoint = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002839 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
drh856c1032009-06-02 15:21:42 +00002840 pSavepoint = pSavepoint->pNext
danielk1977fd7f0452008-12-17 17:30:26 +00002841 ){
2842 iSavepoint++;
2843 }
2844 if( !pSavepoint ){
drh22c17b82015-05-15 04:13:15 +00002845 sqlite3VdbeError(p, "no such savepoint: %s", zName);
danielk1977fd7f0452008-12-17 17:30:26 +00002846 rc = SQLITE_ERROR;
drh4f7d3a52013-06-27 23:54:02 +00002847 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
danielk1977fd7f0452008-12-17 17:30:26 +00002848 /* It is not possible to release (commit) a savepoint if there are
drh0f198a72012-02-13 16:43:16 +00002849 ** active write statements.
danielk1977fd7f0452008-12-17 17:30:26 +00002850 */
drh22c17b82015-05-15 04:13:15 +00002851 sqlite3VdbeError(p, "cannot release savepoint - "
2852 "SQL statements in progress");
danielk1977fd7f0452008-12-17 17:30:26 +00002853 rc = SQLITE_BUSY;
2854 }else{
2855
2856 /* Determine whether or not this is a transaction savepoint. If so,
danielk197734cf35d2008-12-18 18:31:38 +00002857 ** and this is a RELEASE command, then the current transaction
2858 ** is committed.
danielk1977fd7f0452008-12-17 17:30:26 +00002859 */
2860 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2861 if( isTransaction && p1==SAVEPOINT_RELEASE ){
dan32b09f22009-09-23 17:29:59 +00002862 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002863 goto vdbe_return;
2864 }
danielk1977fd7f0452008-12-17 17:30:26 +00002865 db->autoCommit = 1;
2866 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
drhf56fa462015-04-13 21:39:54 +00002867 p->pc = (int)(pOp - aOp);
danielk1977fd7f0452008-12-17 17:30:26 +00002868 db->autoCommit = 0;
2869 p->rc = rc = SQLITE_BUSY;
2870 goto vdbe_return;
2871 }
danielk197734cf35d2008-12-18 18:31:38 +00002872 db->isTransactionSavepoint = 0;
2873 rc = p->rc;
danielk1977fd7f0452008-12-17 17:30:26 +00002874 }else{
drh47b7fc72014-11-11 01:33:57 +00002875 int isSchemaChange;
danielk1977fd7f0452008-12-17 17:30:26 +00002876 iSavepoint = db->nSavepoint - iSavepoint - 1;
drh31f10052012-03-31 17:17:26 +00002877 if( p1==SAVEPOINT_ROLLBACK ){
drh47b7fc72014-11-11 01:33:57 +00002878 isSchemaChange = (db->flags & SQLITE_InternChanges)!=0;
drh31f10052012-03-31 17:17:26 +00002879 for(ii=0; ii<db->nDb; ii++){
drh77b1dee2014-11-17 17:13:06 +00002880 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
2881 SQLITE_ABORT_ROLLBACK,
drh47b7fc72014-11-11 01:33:57 +00002882 isSchemaChange==0);
dan80231042014-11-12 14:56:02 +00002883 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh31f10052012-03-31 17:17:26 +00002884 }
drh47b7fc72014-11-11 01:33:57 +00002885 }else{
2886 isSchemaChange = 0;
drh0f198a72012-02-13 16:43:16 +00002887 }
2888 for(ii=0; ii<db->nDb; ii++){
danielk1977fd7f0452008-12-17 17:30:26 +00002889 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2890 if( rc!=SQLITE_OK ){
2891 goto abort_due_to_error;
danielk1977bd434552009-03-18 10:33:00 +00002892 }
danielk1977fd7f0452008-12-17 17:30:26 +00002893 }
drh47b7fc72014-11-11 01:33:57 +00002894 if( isSchemaChange ){
danielk1977fd7f0452008-12-17 17:30:26 +00002895 sqlite3ExpirePreparedStatements(db);
drh81028a42012-05-15 18:28:27 +00002896 sqlite3ResetAllSchemasOfConnection(db);
danc311fee2010-08-31 16:25:19 +00002897 db->flags = (db->flags | SQLITE_InternChanges);
danielk1977fd7f0452008-12-17 17:30:26 +00002898 }
2899 }
2900
2901 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2902 ** savepoints nested inside of the savepoint being operated on. */
2903 while( db->pSavepoint!=pSavepoint ){
drh856c1032009-06-02 15:21:42 +00002904 pTmp = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002905 db->pSavepoint = pTmp->pNext;
2906 sqlite3DbFree(db, pTmp);
2907 db->nSavepoint--;
2908 }
2909
dan1da40a32009-09-19 17:00:31 +00002910 /* If it is a RELEASE, then destroy the savepoint being operated on
2911 ** too. If it is a ROLLBACK TO, then set the number of deferred
2912 ** constraint violations present in the database to the value stored
2913 ** when the savepoint was created. */
danielk1977fd7f0452008-12-17 17:30:26 +00002914 if( p1==SAVEPOINT_RELEASE ){
2915 assert( pSavepoint==db->pSavepoint );
2916 db->pSavepoint = pSavepoint->pNext;
2917 sqlite3DbFree(db, pSavepoint);
2918 if( !isTransaction ){
2919 db->nSavepoint--;
2920 }
dan1da40a32009-09-19 17:00:31 +00002921 }else{
2922 db->nDeferredCons = pSavepoint->nDeferredCons;
drh648e2642013-07-11 15:03:32 +00002923 db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002924 }
dand9495cd2011-04-27 12:08:04 +00002925
danea8562e2015-04-18 16:25:54 +00002926 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
dand9495cd2011-04-27 12:08:04 +00002927 rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
2928 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2929 }
danielk1977fd7f0452008-12-17 17:30:26 +00002930 }
2931 }
2932
2933 break;
2934}
2935
drh98757152008-01-09 23:04:12 +00002936/* Opcode: AutoCommit P1 P2 * * *
danielk19771d850a72004-05-31 08:26:49 +00002937**
2938** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
danielk197746c43ed2004-06-30 06:30:25 +00002939** back any currently active btree transactions. If there are any active
drhc25eabe2009-02-24 18:57:31 +00002940** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
2941** there are active writing VMs or active VMs that use shared cache.
drh92f02c32004-09-02 14:57:08 +00002942**
2943** This instruction causes the VM to halt.
danielk19771d850a72004-05-31 08:26:49 +00002944*/
drh9cbf3422008-01-17 16:22:13 +00002945case OP_AutoCommit: {
drh856c1032009-06-02 15:21:42 +00002946 int desiredAutoCommit;
shane68c02732009-06-09 18:14:18 +00002947 int iRollback;
drh856c1032009-06-02 15:21:42 +00002948 int turnOnAC;
danielk19771d850a72004-05-31 08:26:49 +00002949
drh856c1032009-06-02 15:21:42 +00002950 desiredAutoCommit = pOp->p1;
shane68c02732009-06-09 18:14:18 +00002951 iRollback = pOp->p2;
drh856c1032009-06-02 15:21:42 +00002952 turnOnAC = desiredAutoCommit && !db->autoCommit;
drhad4a4b82008-11-05 16:37:34 +00002953 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
shane68c02732009-06-09 18:14:18 +00002954 assert( desiredAutoCommit==1 || iRollback==0 );
drh4f7d3a52013-06-27 23:54:02 +00002955 assert( db->nVdbeActive>0 ); /* At least this one VM is active */
danc0537fe2013-06-28 19:41:43 +00002956 assert( p->bIsReader );
danielk197746c43ed2004-06-30 06:30:25 +00002957
drh4f7d3a52013-06-27 23:54:02 +00002958 if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){
drhad4a4b82008-11-05 16:37:34 +00002959 /* If this instruction implements a COMMIT and other VMs are writing
2960 ** return an error indicating that the other VMs must complete first.
2961 */
drh22c17b82015-05-15 04:13:15 +00002962 sqlite3VdbeError(p, "cannot commit transaction - "
2963 "SQL statements in progress");
drhad4a4b82008-11-05 16:37:34 +00002964 rc = SQLITE_BUSY;
2965 }else if( desiredAutoCommit!=db->autoCommit ){
shane68c02732009-06-09 18:14:18 +00002966 if( iRollback ){
drhad4a4b82008-11-05 16:37:34 +00002967 assert( desiredAutoCommit==1 );
drh21021a52012-02-13 17:01:51 +00002968 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977f3f06bb2005-12-16 15:24:28 +00002969 db->autoCommit = 1;
dan32b09f22009-09-23 17:29:59 +00002970 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002971 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00002972 }else{
shane7d3846a2008-12-11 02:58:26 +00002973 db->autoCommit = (u8)desiredAutoCommit;
danielk1977f3f06bb2005-12-16 15:24:28 +00002974 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
drhf56fa462015-04-13 21:39:54 +00002975 p->pc = (int)(pOp - aOp);
drh9c1905f2008-12-10 22:32:56 +00002976 db->autoCommit = (u8)(1-desiredAutoCommit);
drh900b31e2007-08-28 02:27:51 +00002977 p->rc = rc = SQLITE_BUSY;
2978 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00002979 }
danielk19771d850a72004-05-31 08:26:49 +00002980 }
danielk1977bd434552009-03-18 10:33:00 +00002981 assert( db->nStatement==0 );
danielk1977fd7f0452008-12-17 17:30:26 +00002982 sqlite3CloseSavepoints(db);
drh83968c42007-04-18 16:45:24 +00002983 if( p->rc==SQLITE_OK ){
drh900b31e2007-08-28 02:27:51 +00002984 rc = SQLITE_DONE;
drh83968c42007-04-18 16:45:24 +00002985 }else{
drh900b31e2007-08-28 02:27:51 +00002986 rc = SQLITE_ERROR;
drh83968c42007-04-18 16:45:24 +00002987 }
drh900b31e2007-08-28 02:27:51 +00002988 goto vdbe_return;
danielk19771d850a72004-05-31 08:26:49 +00002989 }else{
drh22c17b82015-05-15 04:13:15 +00002990 sqlite3VdbeError(p,
drhad4a4b82008-11-05 16:37:34 +00002991 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
shane68c02732009-06-09 18:14:18 +00002992 (iRollback)?"cannot rollback - no transaction is active":
drhf089aa42008-07-08 19:34:06 +00002993 "cannot commit - no transaction is active"));
danielk19771d850a72004-05-31 08:26:49 +00002994
2995 rc = SQLITE_ERROR;
drh663fc632002-02-02 18:49:19 +00002996 }
2997 break;
2998}
2999
drhb22f7c82014-02-06 23:56:27 +00003000/* Opcode: Transaction P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00003001**
drh05a86c52014-02-16 01:55:49 +00003002** Begin a transaction on database P1 if a transaction is not already
3003** active.
3004** If P2 is non-zero, then a write-transaction is started, or if a
3005** read-transaction is already active, it is upgraded to a write-transaction.
3006** If P2 is zero, then a read-transaction is started.
drh5e00f6c2001-09-13 13:46:56 +00003007**
drh001bbcb2003-03-19 03:14:00 +00003008** P1 is the index of the database file on which the transaction is
3009** started. Index 0 is the main database file and index 1 is the
drh60a713c2008-01-21 16:22:45 +00003010** file used for temporary tables. Indices of 2 or more are used for
3011** attached databases.
drhcabb0812002-09-14 13:47:32 +00003012**
dane0af83a2009-09-08 19:15:01 +00003013** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3014** true (this flag is set if the Vdbe may modify more than one row and may
3015** throw an ABORT exception), a statement transaction may also be opened.
3016** More specifically, a statement transaction is opened iff the database
3017** connection is currently not in autocommit mode, or if there are other
drha4510172012-02-02 15:50:17 +00003018** active statements. A statement transaction allows the changes made by this
dane0af83a2009-09-08 19:15:01 +00003019** VDBE to be rolled back after an error without having to roll back the
3020** entire transaction. If no error is encountered, the statement transaction
3021** will automatically commit when the VDBE halts.
3022**
drhb22f7c82014-02-06 23:56:27 +00003023** If P5!=0 then this opcode also checks the schema cookie against P3
3024** and the schema generation counter against P4.
3025** The cookie changes its value whenever the database schema changes.
3026** This operation is used to detect when that the cookie has changed
drh05a86c52014-02-16 01:55:49 +00003027** and that the current process needs to reread the schema. If the schema
3028** cookie in P3 differs from the schema cookie in the database header or
3029** if the schema generation counter in P4 differs from the current
3030** generation counter, then an SQLITE_SCHEMA error is raised and execution
3031** halts. The sqlite3_step() wrapper function might then reprepare the
3032** statement and rerun it from the beginning.
drh5e00f6c2001-09-13 13:46:56 +00003033*/
drh9cbf3422008-01-17 16:22:13 +00003034case OP_Transaction: {
danielk19771d850a72004-05-31 08:26:49 +00003035 Btree *pBt;
drhb22f7c82014-02-06 23:56:27 +00003036 int iMeta;
3037 int iGen;
danielk19771d850a72004-05-31 08:26:49 +00003038
drh1713afb2013-06-28 01:24:57 +00003039 assert( p->bIsReader );
drh9e92a472013-06-27 17:40:30 +00003040 assert( p->readOnly==0 || pOp->p2==0 );
drh653b82a2009-06-22 11:10:47 +00003041 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003042 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh13447bf2013-07-10 13:33:49 +00003043 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3044 rc = SQLITE_READONLY;
3045 goto abort_due_to_error;
3046 }
drh653b82a2009-06-22 11:10:47 +00003047 pBt = db->aDb[pOp->p1].pBt;
danielk19771d850a72004-05-31 08:26:49 +00003048
danielk197724162fe2004-06-04 06:22:00 +00003049 if( pBt ){
danielk197740b38dc2004-06-26 08:38:24 +00003050 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
danielk197724162fe2004-06-04 06:22:00 +00003051 if( rc==SQLITE_BUSY ){
drhf56fa462015-04-13 21:39:54 +00003052 p->pc = (int)(pOp - aOp);
drh900b31e2007-08-28 02:27:51 +00003053 p->rc = rc = SQLITE_BUSY;
drh900b31e2007-08-28 02:27:51 +00003054 goto vdbe_return;
danielk197724162fe2004-06-04 06:22:00 +00003055 }
drh9e9f1bd2009-10-13 15:36:51 +00003056 if( rc!=SQLITE_OK ){
danielk197724162fe2004-06-04 06:22:00 +00003057 goto abort_due_to_error;
drh90bfcda2001-09-23 19:46:51 +00003058 }
dane0af83a2009-09-08 19:15:01 +00003059
3060 if( pOp->p2 && p->usesStmtJournal
danc0537fe2013-06-28 19:41:43 +00003061 && (db->autoCommit==0 || db->nVdbeRead>1)
dane0af83a2009-09-08 19:15:01 +00003062 ){
3063 assert( sqlite3BtreeIsInTrans(pBt) );
3064 if( p->iStatement==0 ){
3065 assert( db->nStatement>=0 && db->nSavepoint>=0 );
3066 db->nStatement++;
3067 p->iStatement = db->nSavepoint + db->nStatement;
3068 }
dana311b802011-04-26 19:21:34 +00003069
drh346506f2011-05-25 01:16:42 +00003070 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
dana311b802011-04-26 19:21:34 +00003071 if( rc==SQLITE_OK ){
3072 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3073 }
dan1da40a32009-09-19 17:00:31 +00003074
3075 /* Store the current value of the database handles deferred constraint
3076 ** counter. If the statement transaction needs to be rolled back,
3077 ** the value of this counter needs to be restored too. */
3078 p->nStmtDefCons = db->nDeferredCons;
drh648e2642013-07-11 15:03:32 +00003079 p->nStmtDefImmCons = db->nDeferredImmCons;
dane0af83a2009-09-08 19:15:01 +00003080 }
drhb22f7c82014-02-06 23:56:27 +00003081
drh51a74d42015-02-28 01:04:27 +00003082 /* Gather the schema version number for checking:
3083 ** IMPLEMENTATION-OF: R-32195-19465 The schema version is used by SQLite
3084 ** each time a query is executed to ensure that the internal cache of the
3085 ** schema used when compiling the SQL query matches the schema of the
3086 ** database against which the compiled query is actually executed.
3087 */
drhb22f7c82014-02-06 23:56:27 +00003088 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
3089 iGen = db->aDb[pOp->p1].pSchema->iGeneration;
3090 }else{
3091 iGen = iMeta = 0;
3092 }
3093 assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3094 if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
3095 sqlite3DbFree(db, p->zErrMsg);
3096 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3097 /* If the schema-cookie from the database file matches the cookie
3098 ** stored with the in-memory representation of the schema, do
3099 ** not reload the schema from the database file.
3100 **
3101 ** If virtual-tables are in use, this is not just an optimization.
3102 ** Often, v-tables store their data in other SQLite tables, which
3103 ** are queried from within xNext() and other v-table methods using
3104 ** prepared queries. If such a query is out-of-date, we do not want to
3105 ** discard the database schema, as the user code implementing the
3106 ** v-table would have to be ready for the sqlite3_vtab structure itself
3107 ** to be invalidated whenever sqlite3_step() is called from within
3108 ** a v-table method.
3109 */
3110 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3111 sqlite3ResetOneSchema(db, pOp->p1);
3112 }
3113 p->expired = 1;
3114 rc = SQLITE_SCHEMA;
drhb86ccfb2003-01-28 23:13:10 +00003115 }
drh5e00f6c2001-09-13 13:46:56 +00003116 break;
3117}
3118
drhb1fdb2a2008-01-05 04:06:03 +00003119/* Opcode: ReadCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003120**
drh9cbf3422008-01-17 16:22:13 +00003121** Read cookie number P3 from database P1 and write it into register P2.
danielk19770d19f7a2009-06-03 11:25:07 +00003122** P3==1 is the schema version. P3==2 is the database format.
3123** P3==3 is the recommended pager cache size, and so forth. P1==0 is
drh001bbcb2003-03-19 03:14:00 +00003124** the main database file and P1==1 is the database file used to store
3125** temporary tables.
drh4a324312001-12-21 14:30:42 +00003126**
drh50e5dad2001-09-15 00:57:28 +00003127** There must be a read-lock on the database (either a transaction
drhb19a2bc2001-09-16 00:13:26 +00003128** must be started or there must be an open cursor) before
drh50e5dad2001-09-15 00:57:28 +00003129** executing this instruction.
3130*/
drh27a348c2015-04-13 19:14:06 +00003131case OP_ReadCookie: { /* out2 */
drhf328bc82004-05-10 23:29:49 +00003132 int iMeta;
drh856c1032009-06-02 15:21:42 +00003133 int iDb;
3134 int iCookie;
danielk1977180b56a2007-06-24 08:00:42 +00003135
drh1713afb2013-06-28 01:24:57 +00003136 assert( p->bIsReader );
drh856c1032009-06-02 15:21:42 +00003137 iDb = pOp->p1;
3138 iCookie = pOp->p3;
drhb7654112008-01-12 12:48:07 +00003139 assert( pOp->p3<SQLITE_N_BTREE_META );
danielk1977180b56a2007-06-24 08:00:42 +00003140 assert( iDb>=0 && iDb<db->nDb );
3141 assert( db->aDb[iDb].pBt!=0 );
drha7ab6d82014-07-21 15:44:39 +00003142 assert( DbMaskTest(p->btreeMask, iDb) );
danielk19770d19f7a2009-06-03 11:25:07 +00003143
danielk1977602b4662009-07-02 07:47:33 +00003144 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
drh27a348c2015-04-13 19:14:06 +00003145 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00003146 pOut->u.i = iMeta;
drh50e5dad2001-09-15 00:57:28 +00003147 break;
3148}
3149
drh98757152008-01-09 23:04:12 +00003150/* Opcode: SetCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003151**
drh98757152008-01-09 23:04:12 +00003152** Write the content of register P3 (interpreted as an integer)
danielk19770d19f7a2009-06-03 11:25:07 +00003153** into cookie number P2 of database P1. P2==1 is the schema version.
3154** P2==2 is the database format. P2==3 is the recommended pager cache
3155** size, and so forth. P1==0 is the main database file and P1==1 is the
3156** database file used to store temporary tables.
drh50e5dad2001-09-15 00:57:28 +00003157**
3158** A transaction must be started before executing this opcode.
3159*/
drh9cbf3422008-01-17 16:22:13 +00003160case OP_SetCookie: { /* in3 */
drh3f7d4e42004-07-24 14:35:58 +00003161 Db *pDb;
drh4a324312001-12-21 14:30:42 +00003162 assert( pOp->p2<SQLITE_N_BTREE_META );
drh001bbcb2003-03-19 03:14:00 +00003163 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003164 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00003165 assert( p->readOnly==0 );
drh3f7d4e42004-07-24 14:35:58 +00003166 pDb = &db->aDb[pOp->p1];
3167 assert( pDb->pBt!=0 );
drh21206082011-04-04 18:22:02 +00003168 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
drh3c657212009-11-17 23:59:58 +00003169 pIn3 = &aMem[pOp->p3];
drh98757152008-01-09 23:04:12 +00003170 sqlite3VdbeMemIntegerify(pIn3);
drha3b321d2004-05-11 09:31:31 +00003171 /* See note about index shifting on OP_ReadCookie */
danielk19770d19f7a2009-06-03 11:25:07 +00003172 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
3173 if( pOp->p2==BTREE_SCHEMA_VERSION ){
drh3f7d4e42004-07-24 14:35:58 +00003174 /* When the schema cookie changes, record the new cookie internally */
drh9c1905f2008-12-10 22:32:56 +00003175 pDb->pSchema->schema_cookie = (int)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00003176 db->flags |= SQLITE_InternChanges;
danielk19770d19f7a2009-06-03 11:25:07 +00003177 }else if( pOp->p2==BTREE_FILE_FORMAT ){
drhd28bcb32005-12-21 14:43:11 +00003178 /* Record changes in the file format */
drh9c1905f2008-12-10 22:32:56 +00003179 pDb->pSchema->file_format = (u8)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00003180 }
drhfd426c62006-01-30 15:34:22 +00003181 if( pOp->p1==1 ){
3182 /* Invalidate all prepared statements whenever the TEMP database
3183 ** schema is changed. Ticket #1644 */
3184 sqlite3ExpirePreparedStatements(db);
danfa401de2009-10-16 14:55:03 +00003185 p->expired = 0;
drhfd426c62006-01-30 15:34:22 +00003186 }
drh50e5dad2001-09-15 00:57:28 +00003187 break;
3188}
3189
drh98757152008-01-09 23:04:12 +00003190/* Opcode: OpenRead P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00003191** Synopsis: root=P2 iDb=P3
drh5e00f6c2001-09-13 13:46:56 +00003192**
drhecdc7532001-09-23 02:35:53 +00003193** Open a read-only cursor for the database table whose root page is
danielk1977207872a2008-01-03 07:54:23 +00003194** P2 in a database file. The database file is determined by P3.
drh60a713c2008-01-21 16:22:45 +00003195** P3==0 means the main database, P3==1 means the database used for
3196** temporary tables, and P3>1 means used the corresponding attached
3197** database. Give the new cursor an identifier of P1. The P1
danielk1977207872a2008-01-03 07:54:23 +00003198** values need not be contiguous but all P1 values should be small integers.
3199** It is an error for P1 to be negative.
drh5e00f6c2001-09-13 13:46:56 +00003200**
drh98757152008-01-09 23:04:12 +00003201** If P5!=0 then use the content of register P2 as the root page, not
3202** the value of P2 itself.
drh5edc3122001-09-13 21:53:09 +00003203**
drhb19a2bc2001-09-16 00:13:26 +00003204** There will be a read lock on the database whenever there is an
3205** open cursor. If the database was unlocked prior to this instruction
3206** then a read lock is acquired as part of this instruction. A read
3207** lock allows other processes to read the database but prohibits
3208** any other process from modifying the database. The read lock is
3209** released when all cursors are closed. If this instruction attempts
3210** to get a read lock but fails, the script terminates with an
3211** SQLITE_BUSY error code.
3212**
danielk1977d336e222009-02-20 10:58:41 +00003213** The P4 value may be either an integer (P4_INT32) or a pointer to
3214** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3215** structure, then said structure defines the content and collating
3216** sequence of the index being opened. Otherwise, if P4 is an integer
3217** value, it is set to the number of columns in the table.
drhf57b3392001-10-08 13:22:32 +00003218**
drh35263192014-07-22 20:02:19 +00003219** See also: OpenWrite, ReopenIdx
3220*/
3221/* Opcode: ReopenIdx P1 P2 P3 P4 P5
3222** Synopsis: root=P2 iDb=P3
3223**
3224** The ReopenIdx opcode works exactly like ReadOpen except that it first
3225** checks to see if the cursor on P1 is already open with a root page
3226** number of P2 and if it is this opcode becomes a no-op. In other words,
3227** if the cursor is already open, do not reopen it.
3228**
3229** The ReopenIdx opcode may only be used with P5==0 and with P4 being
3230** a P4_KEYINFO object. Furthermore, the P3 value must be the same as
3231** every other ReopenIdx or OpenRead for the same cursor number.
3232**
3233** See the OpenRead opcode documentation for additional information.
drh5e00f6c2001-09-13 13:46:56 +00003234*/
drh98757152008-01-09 23:04:12 +00003235/* Opcode: OpenWrite P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00003236** Synopsis: root=P2 iDb=P3
drhecdc7532001-09-23 02:35:53 +00003237**
3238** Open a read/write cursor named P1 on the table or index whose root
drh98757152008-01-09 23:04:12 +00003239** page is P2. Or if P5!=0 use the content of register P2 to find the
3240** root page.
drhecdc7532001-09-23 02:35:53 +00003241**
danielk1977d336e222009-02-20 10:58:41 +00003242** The P4 value may be either an integer (P4_INT32) or a pointer to
3243** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3244** structure, then said structure defines the content and collating
3245** sequence of the index being opened. Otherwise, if P4 is an integer
drh35cd6432009-06-05 14:17:21 +00003246** value, it is set to the number of columns in the table, or to the
3247** largest index of any column of the table that is actually used.
jplyon5a564222003-06-02 06:15:58 +00003248**
drh001bbcb2003-03-19 03:14:00 +00003249** This instruction works just like OpenRead except that it opens the cursor
drhecdc7532001-09-23 02:35:53 +00003250** in read/write mode. For a given table, there can be one or more read-only
3251** cursors or a single read/write cursor but not both.
drhf57b3392001-10-08 13:22:32 +00003252**
drh001bbcb2003-03-19 03:14:00 +00003253** See also OpenRead.
drhecdc7532001-09-23 02:35:53 +00003254*/
drh35263192014-07-22 20:02:19 +00003255case OP_ReopenIdx: {
drh1fa509a2015-03-20 16:34:49 +00003256 int nField;
3257 KeyInfo *pKeyInfo;
3258 int p2;
3259 int iDb;
3260 int wrFlag;
3261 Btree *pX;
drh35263192014-07-22 20:02:19 +00003262 VdbeCursor *pCur;
drh1fa509a2015-03-20 16:34:49 +00003263 Db *pDb;
drh35263192014-07-22 20:02:19 +00003264
drhe0997b32015-03-20 14:57:50 +00003265 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
drh35263192014-07-22 20:02:19 +00003266 assert( pOp->p4type==P4_KEYINFO );
3267 pCur = p->apCsr[pOp->p1];
drhe8f2c9d2014-08-06 17:49:13 +00003268 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
drh35263192014-07-22 20:02:19 +00003269 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */
drhe0997b32015-03-20 14:57:50 +00003270 goto open_cursor_set_hints;
drh35263192014-07-22 20:02:19 +00003271 }
3272 /* If the cursor is not currently open or is open on a different
3273 ** index, then fall through into OP_OpenRead to force a reopen */
drh9cbf3422008-01-17 16:22:13 +00003274case OP_OpenRead:
drh1fa509a2015-03-20 16:34:49 +00003275case OP_OpenWrite:
drh856c1032009-06-02 15:21:42 +00003276
drhe0997b32015-03-20 14:57:50 +00003277 assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR|OPFLAG_SEEKEQ))==pOp->p5 );
3278 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
drh1713afb2013-06-28 01:24:57 +00003279 assert( p->bIsReader );
drh35263192014-07-22 20:02:19 +00003280 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3281 || p->readOnly==0 );
dan428c2182012-08-06 18:50:11 +00003282
danfa401de2009-10-16 14:55:03 +00003283 if( p->expired ){
drh47b7fc72014-11-11 01:33:57 +00003284 rc = SQLITE_ABORT_ROLLBACK;
danfa401de2009-10-16 14:55:03 +00003285 break;
3286 }
3287
drh856c1032009-06-02 15:21:42 +00003288 nField = 0;
3289 pKeyInfo = 0;
drh856c1032009-06-02 15:21:42 +00003290 p2 = pOp->p2;
3291 iDb = pOp->p3;
drh6810ce62004-01-31 19:22:56 +00003292 assert( iDb>=0 && iDb<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003293 assert( DbMaskTest(p->btreeMask, iDb) );
drhd946db02005-12-29 19:23:06 +00003294 pDb = &db->aDb[iDb];
3295 pX = pDb->pBt;
drh6810ce62004-01-31 19:22:56 +00003296 assert( pX!=0 );
drhd946db02005-12-29 19:23:06 +00003297 if( pOp->opcode==OP_OpenWrite ){
3298 wrFlag = 1;
drh21206082011-04-04 18:22:02 +00003299 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
danielk1977da184232006-01-05 11:34:32 +00003300 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3301 p->minWriteFileFormat = pDb->pSchema->file_format;
drhd946db02005-12-29 19:23:06 +00003302 }
3303 }else{
3304 wrFlag = 0;
3305 }
dan428c2182012-08-06 18:50:11 +00003306 if( pOp->p5 & OPFLAG_P2ISREG ){
drh9cbf3422008-01-17 16:22:13 +00003307 assert( p2>0 );
dan3bc9f742013-08-15 16:18:39 +00003308 assert( p2<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00003309 pIn2 = &aMem[p2];
drh2b4ded92010-09-27 21:09:31 +00003310 assert( memIsValid(pIn2) );
3311 assert( (pIn2->flags & MEM_Int)!=0 );
drh9cbf3422008-01-17 16:22:13 +00003312 sqlite3VdbeMemIntegerify(pIn2);
drh9c1905f2008-12-10 22:32:56 +00003313 p2 = (int)pIn2->u.i;
drh9a65f2c2009-06-22 19:05:40 +00003314 /* The p2 value always comes from a prior OP_CreateTable opcode and
3315 ** that opcode will always set the p2 value to 2 or more or else fail.
3316 ** If there were a failure, the prepared statement would have halted
3317 ** before reaching this instruction. */
drh27731d72009-06-22 12:05:10 +00003318 if( NEVER(p2<2) ) {
shanedcc50b72008-11-13 18:29:50 +00003319 rc = SQLITE_CORRUPT_BKPT;
3320 goto abort_due_to_error;
3321 }
drh5edc3122001-09-13 21:53:09 +00003322 }
danielk1977d336e222009-02-20 10:58:41 +00003323 if( pOp->p4type==P4_KEYINFO ){
3324 pKeyInfo = pOp->p4.pKeyInfo;
drh41e13e12013-11-07 14:09:39 +00003325 assert( pKeyInfo->enc==ENC(db) );
3326 assert( pKeyInfo->db==db );
drhad124322013-10-23 13:30:58 +00003327 nField = pKeyInfo->nField+pKeyInfo->nXField;
danielk1977d336e222009-02-20 10:58:41 +00003328 }else if( pOp->p4type==P4_INT32 ){
3329 nField = pOp->p4.i;
3330 }
drh653b82a2009-06-22 11:10:47 +00003331 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003332 assert( nField>=0 );
3333 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
drh653b82a2009-06-22 11:10:47 +00003334 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
drh4774b132004-06-12 20:12:51 +00003335 if( pCur==0 ) goto no_mem;
drhf328bc82004-05-10 23:29:49 +00003336 pCur->nullRow = 1;
drhd4187c72010-08-30 22:15:45 +00003337 pCur->isOrdered = 1;
drh35263192014-07-22 20:02:19 +00003338 pCur->pgnoRoot = p2;
danielk1977d336e222009-02-20 10:58:41 +00003339 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
3340 pCur->pKeyInfo = pKeyInfo;
drh14da87f2013-11-20 21:51:33 +00003341 /* Set the VdbeCursor.isTable variable. Previous versions of
danielk1977172114a2009-07-07 15:47:12 +00003342 ** SQLite used to check if the root-page flags were sane at this point
3343 ** and report database corruption if they were not, but this check has
3344 ** since moved into the btree layer. */
3345 pCur->isTable = pOp->p4type!=P4_KEYINFO;
drhe0997b32015-03-20 14:57:50 +00003346
3347open_cursor_set_hints:
3348 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3349 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
3350 sqlite3BtreeCursorHints(pCur->pCursor,
3351 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
drh5e00f6c2001-09-13 13:46:56 +00003352 break;
3353}
3354
drh2a5d9902011-08-26 00:34:45 +00003355/* Opcode: OpenEphemeral P1 P2 * P4 P5
drh81316f82013-10-29 20:40:47 +00003356** Synopsis: nColumn=P2
drh5e00f6c2001-09-13 13:46:56 +00003357**
drhb9bb7c12006-06-11 23:41:55 +00003358** Open a new cursor P1 to a transient table.
drh9170dd72005-07-08 17:13:46 +00003359** The cursor is always opened read/write even if
drh25d3adb2010-04-05 15:11:08 +00003360** the main database is read-only. The ephemeral
drh9170dd72005-07-08 17:13:46 +00003361** table is deleted automatically when the cursor is closed.
drhc6b52df2002-01-04 03:09:29 +00003362**
drh25d3adb2010-04-05 15:11:08 +00003363** P2 is the number of columns in the ephemeral table.
drh66a51672008-01-03 00:01:23 +00003364** The cursor points to a BTree table if P4==0 and to a BTree index
3365** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
drhd3d39e92004-05-20 22:16:29 +00003366** that defines the format of keys in the index.
drhb9bb7c12006-06-11 23:41:55 +00003367**
drh2a5d9902011-08-26 00:34:45 +00003368** The P5 parameter can be a mask of the BTREE_* flags defined
3369** in btree.h. These flags control aspects of the operation of
3370** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3371** added automatically.
drh5e00f6c2001-09-13 13:46:56 +00003372*/
drha21a64d2010-04-06 22:33:55 +00003373/* Opcode: OpenAutoindex P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00003374** Synopsis: nColumn=P2
drha21a64d2010-04-06 22:33:55 +00003375**
3376** This opcode works the same as OP_OpenEphemeral. It has a
3377** different name to distinguish its use. Tables created using
3378** by this opcode will be used for automatically created transient
3379** indices in joins.
3380*/
3381case OP_OpenAutoindex:
drh9cbf3422008-01-17 16:22:13 +00003382case OP_OpenEphemeral: {
drhdfe88ec2008-11-03 20:55:06 +00003383 VdbeCursor *pCx;
drh41e13e12013-11-07 14:09:39 +00003384 KeyInfo *pKeyInfo;
3385
drhd4187c72010-08-30 22:15:45 +00003386 static const int vfsFlags =
drh33f4e022007-09-03 15:19:34 +00003387 SQLITE_OPEN_READWRITE |
3388 SQLITE_OPEN_CREATE |
3389 SQLITE_OPEN_EXCLUSIVE |
3390 SQLITE_OPEN_DELETEONCLOSE |
3391 SQLITE_OPEN_TRANSIENT_DB;
drh653b82a2009-06-22 11:10:47 +00003392 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003393 assert( pOp->p2>=0 );
drh653b82a2009-06-22 11:10:47 +00003394 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
drh4774b132004-06-12 20:12:51 +00003395 if( pCx==0 ) goto no_mem;
drh17f71932002-02-21 12:01:27 +00003396 pCx->nullRow = 1;
drh079a3072014-03-19 14:10:55 +00003397 pCx->isEphemeral = 1;
dan689ab892011-08-12 15:02:00 +00003398 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
3399 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
drh5e00f6c2001-09-13 13:46:56 +00003400 if( rc==SQLITE_OK ){
danielk197740b38dc2004-06-26 08:38:24 +00003401 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
drh5e00f6c2001-09-13 13:46:56 +00003402 }
3403 if( rc==SQLITE_OK ){
danielk19774adee202004-05-08 08:23:19 +00003404 /* If a transient index is required, create it by calling
drhd4187c72010-08-30 22:15:45 +00003405 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
danielk19774adee202004-05-08 08:23:19 +00003406 ** opening it. If a transient table is required, just use the
drhd4187c72010-08-30 22:15:45 +00003407 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
danielk19774adee202004-05-08 08:23:19 +00003408 */
drh41e13e12013-11-07 14:09:39 +00003409 if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
drhc6b52df2002-01-04 03:09:29 +00003410 int pgno;
drh66a51672008-01-03 00:01:23 +00003411 assert( pOp->p4type==P4_KEYINFO );
drhe1b4f0f2011-06-29 17:11:39 +00003412 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
drhc6b52df2002-01-04 03:09:29 +00003413 if( rc==SQLITE_OK ){
drhf328bc82004-05-10 23:29:49 +00003414 assert( pgno==MASTER_ROOT+1 );
drh41e13e12013-11-07 14:09:39 +00003415 assert( pKeyInfo->db==db );
3416 assert( pKeyInfo->enc==ENC(db) );
3417 pCx->pKeyInfo = pKeyInfo;
3418 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, pKeyInfo, pCx->pCursor);
drhc6b52df2002-01-04 03:09:29 +00003419 }
drhf0863fe2005-06-12 21:35:51 +00003420 pCx->isTable = 0;
drhc6b52df2002-01-04 03:09:29 +00003421 }else{
danielk1977cd3e8f72008-03-25 09:47:35 +00003422 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
drhf0863fe2005-06-12 21:35:51 +00003423 pCx->isTable = 1;
drhc6b52df2002-01-04 03:09:29 +00003424 }
drh5e00f6c2001-09-13 13:46:56 +00003425 }
drhd4187c72010-08-30 22:15:45 +00003426 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
dan5134d132011-09-02 10:31:11 +00003427 break;
3428}
3429
danfad9f9a2014-04-01 18:41:51 +00003430/* Opcode: SorterOpen P1 P2 P3 P4 *
dan5134d132011-09-02 10:31:11 +00003431**
3432** This opcode works like OP_OpenEphemeral except that it opens
3433** a transient index that is specifically designed to sort large
3434** tables using an external merge-sort algorithm.
danfad9f9a2014-04-01 18:41:51 +00003435**
3436** If argument P3 is non-zero, then it indicates that the sorter may
3437** assume that a stable sort considering the first P3 fields of each
3438** key is sufficient to produce the required results.
dan5134d132011-09-02 10:31:11 +00003439*/
drhca892a72011-09-03 00:17:51 +00003440case OP_SorterOpen: {
dan5134d132011-09-02 10:31:11 +00003441 VdbeCursor *pCx;
drh3a949872012-09-18 13:20:13 +00003442
drh399af1d2013-11-20 17:25:55 +00003443 assert( pOp->p1>=0 );
3444 assert( pOp->p2>=0 );
dan5134d132011-09-02 10:31:11 +00003445 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
3446 if( pCx==0 ) goto no_mem;
3447 pCx->pKeyInfo = pOp->p4.pKeyInfo;
drh41e13e12013-11-07 14:09:39 +00003448 assert( pCx->pKeyInfo->db==db );
3449 assert( pCx->pKeyInfo->enc==ENC(db) );
danfad9f9a2014-04-01 18:41:51 +00003450 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
drh5e00f6c2001-09-13 13:46:56 +00003451 break;
3452}
3453
dan78d58432014-03-25 15:04:07 +00003454/* Opcode: SequenceTest P1 P2 * * *
3455** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3456**
3457** P1 is a sorter cursor. If the sequence counter is currently zero, jump
3458** to P2. Regardless of whether or not the jump is taken, increment the
3459** the sequence value.
3460*/
3461case OP_SequenceTest: {
3462 VdbeCursor *pC;
3463 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3464 pC = p->apCsr[pOp->p1];
3465 assert( pC->pSorter );
3466 if( (pC->seqCount++)==0 ){
drhf56fa462015-04-13 21:39:54 +00003467 goto jump_to_p2;
dan78d58432014-03-25 15:04:07 +00003468 }
3469 break;
3470}
3471
drh5f612292014-02-08 23:20:32 +00003472/* Opcode: OpenPseudo P1 P2 P3 * *
drh60830e32014-02-10 15:56:34 +00003473** Synopsis: P3 columns in r[P2]
drh70ce3f02003-04-15 19:22:22 +00003474**
3475** Open a new cursor that points to a fake table that contains a single
drh5f612292014-02-08 23:20:32 +00003476** row of data. The content of that one row is the content of memory
3477** register P2. In other words, cursor P1 becomes an alias for the
3478** MEM_Blob content contained in register P2.
drh70ce3f02003-04-15 19:22:22 +00003479**
drh2d8d7ce2010-02-15 15:17:05 +00003480** A pseudo-table created by this opcode is used to hold a single
drhcdd536f2006-03-17 00:04:03 +00003481** row output from the sorter so that the row can be decomposed into
drh3e9ca092009-09-08 01:14:48 +00003482** individual columns using the OP_Column opcode. The OP_Column opcode
3483** is the only cursor opcode that works with a pseudo-table.
danielk1977d336e222009-02-20 10:58:41 +00003484**
3485** P3 is the number of fields in the records that will be stored by
3486** the pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00003487*/
drh9cbf3422008-01-17 16:22:13 +00003488case OP_OpenPseudo: {
drhdfe88ec2008-11-03 20:55:06 +00003489 VdbeCursor *pCx;
drh856c1032009-06-02 15:21:42 +00003490
drh653b82a2009-06-22 11:10:47 +00003491 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003492 assert( pOp->p3>=0 );
drh653b82a2009-06-22 11:10:47 +00003493 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
drh4774b132004-06-12 20:12:51 +00003494 if( pCx==0 ) goto no_mem;
drh70ce3f02003-04-15 19:22:22 +00003495 pCx->nullRow = 1;
drh3e9ca092009-09-08 01:14:48 +00003496 pCx->pseudoTableReg = pOp->p2;
drhf0863fe2005-06-12 21:35:51 +00003497 pCx->isTable = 1;
drh5f612292014-02-08 23:20:32 +00003498 assert( pOp->p5==0 );
drh70ce3f02003-04-15 19:22:22 +00003499 break;
3500}
3501
drh98757152008-01-09 23:04:12 +00003502/* Opcode: Close P1 * * * *
drh5e00f6c2001-09-13 13:46:56 +00003503**
3504** Close a cursor previously opened as P1. If P1 is not
3505** currently open, this instruction is a no-op.
3506*/
drh9cbf3422008-01-17 16:22:13 +00003507case OP_Close: {
drh653b82a2009-06-22 11:10:47 +00003508 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3509 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3510 p->apCsr[pOp->p1] = 0;
drh5e00f6c2001-09-13 13:46:56 +00003511 break;
3512}
3513
drh8af3f772014-07-25 18:01:06 +00003514/* Opcode: SeekGE P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003515** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003516**
danielk1977b790c6c2008-04-18 10:25:24 +00003517** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003518** use the value in register P3 as the key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003519** to an SQL index, then P3 is the first in an array of P4 registers
3520** that are used as an unpacked index key.
3521**
3522** Reposition cursor P1 so that it points to the smallest entry that
3523** is greater than or equal to the key value. If there are no records
3524** greater than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003525**
drh8af3f772014-07-25 18:01:06 +00003526** This opcode leaves the cursor configured to move in forward order,
drhbc5cf382014-08-06 01:08:07 +00003527** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003528** configured to use Next, not Prev.
drh8af3f772014-07-25 18:01:06 +00003529**
drh935850e2014-05-24 17:15:15 +00003530** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003531*/
drh8af3f772014-07-25 18:01:06 +00003532/* Opcode: SeekGT P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003533** Synopsis: key=r[P3@P4]
drh7cf6e4d2004-05-19 14:56:55 +00003534**
danielk1977b790c6c2008-04-18 10:25:24 +00003535** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003536** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003537** to an SQL index, then P3 is the first in an array of P4 registers
3538** that are used as an unpacked index key.
3539**
3540** Reposition cursor P1 so that it points to the smallest entry that
3541** is greater than the key value. If there are no records greater than
3542** the key and P2 is not zero, then jump to P2.
drhb19a2bc2001-09-16 00:13:26 +00003543**
drh8af3f772014-07-25 18:01:06 +00003544** This opcode leaves the cursor configured to move in forward order,
drh4ed2fb92014-08-14 13:06:25 +00003545** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003546** configured to use Next, not Prev.
drh8af3f772014-07-25 18:01:06 +00003547**
drh935850e2014-05-24 17:15:15 +00003548** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
drh5e00f6c2001-09-13 13:46:56 +00003549*/
drh8af3f772014-07-25 18:01:06 +00003550/* Opcode: SeekLT P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003551** Synopsis: key=r[P3@P4]
drhc045ec52002-12-04 20:01:06 +00003552**
danielk1977b790c6c2008-04-18 10:25:24 +00003553** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003554** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003555** to an SQL index, then P3 is the first in an array of P4 registers
3556** that are used as an unpacked index key.
3557**
3558** Reposition cursor P1 so that it points to the largest entry that
3559** is less than the key value. If there are no records less than
3560** the key and P2 is not zero, then jump to P2.
drhc045ec52002-12-04 20:01:06 +00003561**
drh8af3f772014-07-25 18:01:06 +00003562** This opcode leaves the cursor configured to move in reverse order,
3563** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003564** configured to use Prev, not Next.
drh8af3f772014-07-25 18:01:06 +00003565**
drh935850e2014-05-24 17:15:15 +00003566** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003567*/
drh8af3f772014-07-25 18:01:06 +00003568/* Opcode: SeekLE P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003569** Synopsis: key=r[P3@P4]
danielk19773d1bfea2004-05-14 11:00:53 +00003570**
danielk1977b790c6c2008-04-18 10:25:24 +00003571** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003572** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003573** to an SQL index, then P3 is the first in an array of P4 registers
3574** that are used as an unpacked index key.
danielk1977751de562008-04-18 09:01:15 +00003575**
danielk1977b790c6c2008-04-18 10:25:24 +00003576** Reposition cursor P1 so that it points to the largest entry that
3577** is less than or equal to the key value. If there are no records
3578** less than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003579**
drh8af3f772014-07-25 18:01:06 +00003580** This opcode leaves the cursor configured to move in reverse order,
3581** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003582** configured to use Prev, not Next.
drh8af3f772014-07-25 18:01:06 +00003583**
drh935850e2014-05-24 17:15:15 +00003584** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
drhc045ec52002-12-04 20:01:06 +00003585*/
drh4a1d3652014-02-14 15:13:36 +00003586case OP_SeekLT: /* jump, in3 */
3587case OP_SeekLE: /* jump, in3 */
3588case OP_SeekGE: /* jump, in3 */
3589case OP_SeekGT: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003590 int res;
3591 int oc;
drhdfe88ec2008-11-03 20:55:06 +00003592 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003593 UnpackedRecord r;
3594 int nField;
3595 i64 iKey; /* The rowid we are to seek to */
drh80ff32f2001-11-04 18:32:46 +00003596
drh653b82a2009-06-22 11:10:47 +00003597 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh959403f2008-12-12 17:56:16 +00003598 assert( pOp->p2!=0 );
drh653b82a2009-06-22 11:10:47 +00003599 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00003600 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00003601 assert( pC->pseudoTableReg==0 );
drh4a1d3652014-02-14 15:13:36 +00003602 assert( OP_SeekLE == OP_SeekLT+1 );
3603 assert( OP_SeekGE == OP_SeekLT+2 );
3604 assert( OP_SeekGT == OP_SeekLT+3 );
drhd4187c72010-08-30 22:15:45 +00003605 assert( pC->isOrdered );
drh3da046d2013-11-11 03:24:11 +00003606 assert( pC->pCursor!=0 );
3607 oc = pOp->opcode;
3608 pC->nullRow = 0;
drh8af3f772014-07-25 18:01:06 +00003609#ifdef SQLITE_DEBUG
3610 pC->seekOp = pOp->opcode;
3611#endif
drhe0997b32015-03-20 14:57:50 +00003612
3613 /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
3614 ** OP_SeekLE opcodes are allowed, and these must be immediately followed
3615 ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
3616 */
3617#ifdef SQLITE_DEBUG
3618 if( sqlite3BtreeCursorHasHint(pC->pCursor, BTREE_SEEK_EQ) ){
3619 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
3620 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3621 assert( pOp[1].p1==pOp[0].p1 );
3622 assert( pOp[1].p2==pOp[0].p2 );
3623 assert( pOp[1].p3==pOp[0].p3 );
3624 assert( pOp[1].p4.i==pOp[0].p4.i );
3625 }
3626#endif
3627
drh3da046d2013-11-11 03:24:11 +00003628 if( pC->isTable ){
3629 /* The input value in P3 might be of any type: integer, real, string,
3630 ** blob, or NULL. But it needs to be an integer before we can do
peter.d.reid60ec9142014-09-06 16:39:46 +00003631 ** the seek, so convert it. */
drh3da046d2013-11-11 03:24:11 +00003632 pIn3 = &aMem[pOp->p3];
drh11a6eee2014-09-19 22:01:54 +00003633 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
drhbd9507c2014-08-23 17:21:37 +00003634 applyNumericAffinity(pIn3, 0);
3635 }
drh3da046d2013-11-11 03:24:11 +00003636 iKey = sqlite3VdbeIntValue(pIn3);
drh959403f2008-12-12 17:56:16 +00003637
drh3da046d2013-11-11 03:24:11 +00003638 /* If the P3 value could not be converted into an integer without
3639 ** loss of information, then special processing is required... */
3640 if( (pIn3->flags & MEM_Int)==0 ){
3641 if( (pIn3->flags & MEM_Real)==0 ){
3642 /* If the P3 value cannot be converted into any kind of a number,
3643 ** then the seek is not possible, so jump to P2 */
drhf56fa462015-04-13 21:39:54 +00003644 VdbeBranchTaken(1,2); goto jump_to_p2;
drh3da046d2013-11-11 03:24:11 +00003645 break;
3646 }
drh959403f2008-12-12 17:56:16 +00003647
danaa1776f2013-11-26 18:22:59 +00003648 /* If the approximation iKey is larger than the actual real search
3649 ** term, substitute >= for > and < for <=. e.g. if the search term
3650 ** is 4.9 and the integer approximation 5:
3651 **
3652 ** (x > 4.9) -> (x >= 5)
3653 ** (x <= 4.9) -> (x < 5)
3654 */
drh74eaba42014-09-18 17:52:15 +00003655 if( pIn3->u.r<(double)iKey ){
drh4a1d3652014-02-14 15:13:36 +00003656 assert( OP_SeekGE==(OP_SeekGT-1) );
3657 assert( OP_SeekLT==(OP_SeekLE-1) );
3658 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
3659 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
danaa1776f2013-11-26 18:22:59 +00003660 }
3661
3662 /* If the approximation iKey is smaller than the actual real search
3663 ** term, substitute <= for < and > for >=. */
drh74eaba42014-09-18 17:52:15 +00003664 else if( pIn3->u.r>(double)iKey ){
drh4a1d3652014-02-14 15:13:36 +00003665 assert( OP_SeekLE==(OP_SeekLT+1) );
3666 assert( OP_SeekGT==(OP_SeekGE+1) );
3667 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
3668 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
drh8721ce42001-11-07 14:22:00 +00003669 }
drh3da046d2013-11-11 03:24:11 +00003670 }
3671 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
drhb53a5a92014-10-12 22:37:22 +00003672 pC->movetoTarget = iKey; /* Used by OP_Delete */
drh3da046d2013-11-11 03:24:11 +00003673 if( rc!=SQLITE_OK ){
3674 goto abort_due_to_error;
drh1af3fdb2004-07-18 21:33:01 +00003675 }
drhaa736092009-06-22 00:55:30 +00003676 }else{
drh3da046d2013-11-11 03:24:11 +00003677 nField = pOp->p4.i;
3678 assert( pOp->p4type==P4_INT32 );
3679 assert( nField>0 );
3680 r.pKeyInfo = pC->pKeyInfo;
3681 r.nField = (u16)nField;
3682
3683 /* The next line of code computes as follows, only faster:
drh4a1d3652014-02-14 15:13:36 +00003684 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
dan1fed5da2014-02-25 21:01:25 +00003685 ** r.default_rc = -1;
drh3da046d2013-11-11 03:24:11 +00003686 ** }else{
dan1fed5da2014-02-25 21:01:25 +00003687 ** r.default_rc = +1;
drh3da046d2013-11-11 03:24:11 +00003688 ** }
danielk1977f7b9d662008-06-23 18:49:43 +00003689 */
dan1fed5da2014-02-25 21:01:25 +00003690 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
3691 assert( oc!=OP_SeekGT || r.default_rc==-1 );
3692 assert( oc!=OP_SeekLE || r.default_rc==-1 );
3693 assert( oc!=OP_SeekGE || r.default_rc==+1 );
3694 assert( oc!=OP_SeekLT || r.default_rc==+1 );
drh3da046d2013-11-11 03:24:11 +00003695
3696 r.aMem = &aMem[pOp->p3];
3697#ifdef SQLITE_DEBUG
3698 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3699#endif
3700 ExpandBlob(r.aMem);
3701 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
3702 if( rc!=SQLITE_OK ){
3703 goto abort_due_to_error;
3704 }
drh3da046d2013-11-11 03:24:11 +00003705 }
3706 pC->deferredMoveto = 0;
3707 pC->cacheStatus = CACHE_STALE;
3708#ifdef SQLITE_TEST
3709 sqlite3_search_count++;
3710#endif
drh4a1d3652014-02-14 15:13:36 +00003711 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT );
3712 if( res<0 || (res==0 && oc==OP_SeekGT) ){
drhe39a7322014-02-03 14:04:11 +00003713 res = 0;
drh3da046d2013-11-11 03:24:11 +00003714 rc = sqlite3BtreeNext(pC->pCursor, &res);
3715 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh3da046d2013-11-11 03:24:11 +00003716 }else{
3717 res = 0;
3718 }
3719 }else{
drh4a1d3652014-02-14 15:13:36 +00003720 assert( oc==OP_SeekLT || oc==OP_SeekLE );
3721 if( res>0 || (res==0 && oc==OP_SeekLT) ){
drhe39a7322014-02-03 14:04:11 +00003722 res = 0;
drh3da046d2013-11-11 03:24:11 +00003723 rc = sqlite3BtreePrevious(pC->pCursor, &res);
3724 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh3da046d2013-11-11 03:24:11 +00003725 }else{
3726 /* res might be negative because the table is empty. Check to
3727 ** see if this is the case.
3728 */
3729 res = sqlite3BtreeEof(pC->pCursor);
3730 }
3731 }
3732 assert( pOp->p2>0 );
drh688852a2014-02-17 22:40:43 +00003733 VdbeBranchTaken(res!=0,2);
drh3da046d2013-11-11 03:24:11 +00003734 if( res ){
drhf56fa462015-04-13 21:39:54 +00003735 goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00003736 }
drh5e00f6c2001-09-13 13:46:56 +00003737 break;
3738}
3739
drh959403f2008-12-12 17:56:16 +00003740/* Opcode: Seek P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00003741** Synopsis: intkey=r[P2]
drh959403f2008-12-12 17:56:16 +00003742**
3743** P1 is an open table cursor and P2 is a rowid integer. Arrange
3744** for P1 to move so that it points to the rowid given by P2.
3745**
3746** This is actually a deferred seek. Nothing actually happens until
3747** the cursor is used to read a record. That way, if no reads
3748** occur, no unnecessary I/O happens.
3749*/
3750case OP_Seek: { /* in2 */
drh959403f2008-12-12 17:56:16 +00003751 VdbeCursor *pC;
3752
drh653b82a2009-06-22 11:10:47 +00003753 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3754 pC = p->apCsr[pOp->p1];
drh959403f2008-12-12 17:56:16 +00003755 assert( pC!=0 );
drh3da046d2013-11-11 03:24:11 +00003756 assert( pC->pCursor!=0 );
3757 assert( pC->isTable );
3758 pC->nullRow = 0;
3759 pIn2 = &aMem[pOp->p2];
3760 pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
drh3da046d2013-11-11 03:24:11 +00003761 pC->deferredMoveto = 1;
drh959403f2008-12-12 17:56:16 +00003762 break;
3763}
3764
3765
drh8cff69d2009-11-12 19:59:44 +00003766/* Opcode: Found P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003767** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003768**
drh8cff69d2009-11-12 19:59:44 +00003769** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3770** P4>0 then register P3 is the first of P4 registers that form an unpacked
3771** record.
3772**
3773** Cursor P1 is on an index btree. If the record identified by P3 and P4
3774** is a prefix of any entry in P1 then a jump is made to P2 and
drhe3365e62009-11-12 17:52:24 +00003775** P1 is left pointing at the matching entry.
drh6f225d02013-10-26 13:36:51 +00003776**
drhcefc87f2014-08-01 01:40:33 +00003777** This operation leaves the cursor in a state where it can be
3778** advanced in the forward direction. The Next instruction will work,
3779** but not the Prev instruction.
drh8af3f772014-07-25 18:01:06 +00003780**
drh6f225d02013-10-26 13:36:51 +00003781** See also: NotFound, NoConflict, NotExists. SeekGe
drh5e00f6c2001-09-13 13:46:56 +00003782*/
drh8cff69d2009-11-12 19:59:44 +00003783/* Opcode: NotFound P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003784** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003785**
drh8cff69d2009-11-12 19:59:44 +00003786** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3787** P4>0 then register P3 is the first of P4 registers that form an unpacked
3788** record.
3789**
3790** Cursor P1 is on an index btree. If the record identified by P3 and P4
3791** is not the prefix of any entry in P1 then a jump is made to P2. If P1
3792** does contain an entry whose prefix matches the P3/P4 record then control
3793** falls through to the next instruction and P1 is left pointing at the
3794** matching entry.
drh5e00f6c2001-09-13 13:46:56 +00003795**
drh8af3f772014-07-25 18:01:06 +00003796** This operation leaves the cursor in a state where it cannot be
3797** advanced in either direction. In other words, the Next and Prev
3798** opcodes do not work after this operation.
3799**
drh6f225d02013-10-26 13:36:51 +00003800** See also: Found, NotExists, NoConflict
drh5e00f6c2001-09-13 13:46:56 +00003801*/
drh6f225d02013-10-26 13:36:51 +00003802/* Opcode: NoConflict P1 P2 P3 P4 *
drh4af5bee2013-10-30 02:37:50 +00003803** Synopsis: key=r[P3@P4]
drh6f225d02013-10-26 13:36:51 +00003804**
3805** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3806** P4>0 then register P3 is the first of P4 registers that form an unpacked
3807** record.
3808**
3809** Cursor P1 is on an index btree. If the record identified by P3 and P4
3810** contains any NULL value, jump immediately to P2. If all terms of the
3811** record are not-NULL then a check is done to determine if any row in the
3812** P1 index btree has a matching key prefix. If there are no matches, jump
3813** immediately to P2. If there is a match, fall through and leave the P1
3814** cursor pointing to the matching row.
3815**
3816** This opcode is similar to OP_NotFound with the exceptions that the
3817** branch is always taken if any part of the search key input is NULL.
3818**
drh8af3f772014-07-25 18:01:06 +00003819** This operation leaves the cursor in a state where it cannot be
3820** advanced in either direction. In other words, the Next and Prev
3821** opcodes do not work after this operation.
3822**
drh6f225d02013-10-26 13:36:51 +00003823** See also: NotFound, Found, NotExists
3824*/
3825case OP_NoConflict: /* jump, in3 */
drh9cbf3422008-01-17 16:22:13 +00003826case OP_NotFound: /* jump, in3 */
3827case OP_Found: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003828 int alreadyExists;
drhf56fa462015-04-13 21:39:54 +00003829 int takeJump;
drh6f225d02013-10-26 13:36:51 +00003830 int ii;
drhdfe88ec2008-11-03 20:55:06 +00003831 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003832 int res;
dan03e9cfc2011-09-05 14:20:27 +00003833 char *pFree;
drh856c1032009-06-02 15:21:42 +00003834 UnpackedRecord *pIdxKey;
drh8cff69d2009-11-12 19:59:44 +00003835 UnpackedRecord r;
drhb4139222013-11-06 14:36:08 +00003836 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7];
drh856c1032009-06-02 15:21:42 +00003837
dan0ff297e2009-09-25 17:03:14 +00003838#ifdef SQLITE_TEST
drh6f225d02013-10-26 13:36:51 +00003839 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
dan0ff297e2009-09-25 17:03:14 +00003840#endif
3841
drhaa736092009-06-22 00:55:30 +00003842 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh8cff69d2009-11-12 19:59:44 +00003843 assert( pOp->p4type==P4_INT32 );
drhaa736092009-06-22 00:55:30 +00003844 pC = p->apCsr[pOp->p1];
3845 assert( pC!=0 );
drh8af3f772014-07-25 18:01:06 +00003846#ifdef SQLITE_DEBUG
drhcefc87f2014-08-01 01:40:33 +00003847 pC->seekOp = pOp->opcode;
drh8af3f772014-07-25 18:01:06 +00003848#endif
drh3c657212009-11-17 23:59:58 +00003849 pIn3 = &aMem[pOp->p3];
drh3da046d2013-11-11 03:24:11 +00003850 assert( pC->pCursor!=0 );
3851 assert( pC->isTable==0 );
drhf56fa462015-04-13 21:39:54 +00003852 pFree = 0;
drh3da046d2013-11-11 03:24:11 +00003853 if( pOp->p4.i>0 ){
3854 r.pKeyInfo = pC->pKeyInfo;
3855 r.nField = (u16)pOp->p4.i;
3856 r.aMem = pIn3;
drh826af372014-02-08 19:12:21 +00003857 for(ii=0; ii<r.nField; ii++){
3858 assert( memIsValid(&r.aMem[ii]) );
3859 ExpandBlob(&r.aMem[ii]);
drh2b4ded92010-09-27 21:09:31 +00003860#ifdef SQLITE_DEBUG
drh826af372014-02-08 19:12:21 +00003861 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
drh2b4ded92010-09-27 21:09:31 +00003862#endif
drh826af372014-02-08 19:12:21 +00003863 }
drh3da046d2013-11-11 03:24:11 +00003864 pIdxKey = &r;
3865 }else{
3866 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
3867 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
danb391b942014-11-07 14:41:11 +00003868 );
drh3da046d2013-11-11 03:24:11 +00003869 if( pIdxKey==0 ) goto no_mem;
3870 assert( pIn3->flags & MEM_Blob );
danb391b942014-11-07 14:41:11 +00003871 ExpandBlob(pIn3);
drh3da046d2013-11-11 03:24:11 +00003872 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
drh3da046d2013-11-11 03:24:11 +00003873 }
dan1fed5da2014-02-25 21:01:25 +00003874 pIdxKey->default_rc = 0;
drhf56fa462015-04-13 21:39:54 +00003875 takeJump = 0;
drh3da046d2013-11-11 03:24:11 +00003876 if( pOp->opcode==OP_NoConflict ){
3877 /* For the OP_NoConflict opcode, take the jump if any of the
3878 ** input fields are NULL, since any key with a NULL will not
3879 ** conflict */
mistachkin7bb6e8e2015-01-12 18:52:41 +00003880 for(ii=0; ii<pIdxKey->nField; ii++){
3881 if( pIdxKey->aMem[ii].flags & MEM_Null ){
drhf56fa462015-04-13 21:39:54 +00003882 takeJump = 1;
drh3da046d2013-11-11 03:24:11 +00003883 break;
drh6f225d02013-10-26 13:36:51 +00003884 }
3885 }
drh5e00f6c2001-09-13 13:46:56 +00003886 }
drh3da046d2013-11-11 03:24:11 +00003887 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
drhf56fa462015-04-13 21:39:54 +00003888 sqlite3DbFree(db, pFree);
drh3da046d2013-11-11 03:24:11 +00003889 if( rc!=SQLITE_OK ){
3890 break;
3891 }
drh1fd522f2013-11-21 00:10:35 +00003892 pC->seekResult = res;
drh3da046d2013-11-11 03:24:11 +00003893 alreadyExists = (res==0);
3894 pC->nullRow = 1-alreadyExists;
3895 pC->deferredMoveto = 0;
3896 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00003897 if( pOp->opcode==OP_Found ){
drh688852a2014-02-17 22:40:43 +00003898 VdbeBranchTaken(alreadyExists!=0,2);
drhf56fa462015-04-13 21:39:54 +00003899 if( alreadyExists ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00003900 }else{
drhf56fa462015-04-13 21:39:54 +00003901 VdbeBranchTaken(takeJump||alreadyExists==0,2);
3902 if( takeJump || !alreadyExists ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00003903 }
drh5e00f6c2001-09-13 13:46:56 +00003904 break;
3905}
3906
drh9cbf3422008-01-17 16:22:13 +00003907/* Opcode: NotExists P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00003908** Synopsis: intkey=r[P3]
drh6b125452002-01-28 15:53:03 +00003909**
drh261c02d2013-10-25 14:46:15 +00003910** P1 is the index of a cursor open on an SQL table btree (with integer
3911** keys). P3 is an integer rowid. If P1 does not contain a record with
3912** rowid P3 then jump immediately to P2. If P1 does contain a record
3913** with rowid P3 then leave the cursor pointing at that record and fall
3914** through to the next instruction.
drh6b125452002-01-28 15:53:03 +00003915**
drh261c02d2013-10-25 14:46:15 +00003916** The OP_NotFound opcode performs the same operation on index btrees
3917** (with arbitrary multi-value keys).
drh6b125452002-01-28 15:53:03 +00003918**
drh8af3f772014-07-25 18:01:06 +00003919** This opcode leaves the cursor in a state where it cannot be advanced
3920** in either direction. In other words, the Next and Prev opcodes will
3921** not work following this opcode.
3922**
drh11e85272013-10-26 15:40:48 +00003923** See also: Found, NotFound, NoConflict
drh6b125452002-01-28 15:53:03 +00003924*/
drh9cbf3422008-01-17 16:22:13 +00003925case OP_NotExists: { /* jump, in3 */
drhdfe88ec2008-11-03 20:55:06 +00003926 VdbeCursor *pC;
drh0ca3e242002-01-29 23:07:02 +00003927 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00003928 int res;
3929 u64 iKey;
3930
drh3c657212009-11-17 23:59:58 +00003931 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00003932 assert( pIn3->flags & MEM_Int );
3933 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3934 pC = p->apCsr[pOp->p1];
3935 assert( pC!=0 );
drh8af3f772014-07-25 18:01:06 +00003936#ifdef SQLITE_DEBUG
3937 pC->seekOp = 0;
3938#endif
drhaa736092009-06-22 00:55:30 +00003939 assert( pC->isTable );
drh3e9ca092009-09-08 01:14:48 +00003940 assert( pC->pseudoTableReg==0 );
drhaa736092009-06-22 00:55:30 +00003941 pCrsr = pC->pCursor;
drh3da046d2013-11-11 03:24:11 +00003942 assert( pCrsr!=0 );
3943 res = 0;
3944 iKey = pIn3->u.i;
3945 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
drhb53a5a92014-10-12 22:37:22 +00003946 pC->movetoTarget = iKey; /* Used by OP_Delete */
drh3da046d2013-11-11 03:24:11 +00003947 pC->nullRow = 0;
3948 pC->cacheStatus = CACHE_STALE;
3949 pC->deferredMoveto = 0;
drh688852a2014-02-17 22:40:43 +00003950 VdbeBranchTaken(res!=0,2);
drh1fd522f2013-11-21 00:10:35 +00003951 pC->seekResult = res;
drhf56fa462015-04-13 21:39:54 +00003952 if( res!=0 ) goto jump_to_p2;
drh6b125452002-01-28 15:53:03 +00003953 break;
3954}
3955
drh4c583122008-01-04 22:01:03 +00003956/* Opcode: Sequence P1 P2 * * *
drh079a3072014-03-19 14:10:55 +00003957** Synopsis: r[P2]=cursor[P1].ctr++
drh4db38a72005-09-01 12:16:28 +00003958**
drh4c583122008-01-04 22:01:03 +00003959** Find the next available sequence number for cursor P1.
drh9cbf3422008-01-17 16:22:13 +00003960** Write the sequence number into register P2.
drh4c583122008-01-04 22:01:03 +00003961** The sequence number on the cursor is incremented after this
3962** instruction.
drh4db38a72005-09-01 12:16:28 +00003963*/
drh27a348c2015-04-13 19:14:06 +00003964case OP_Sequence: { /* out2 */
drh653b82a2009-06-22 11:10:47 +00003965 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3966 assert( p->apCsr[pOp->p1]!=0 );
drh27a348c2015-04-13 19:14:06 +00003967 pOut = out2Prerelease(p, pOp);
drh653b82a2009-06-22 11:10:47 +00003968 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
drh4db38a72005-09-01 12:16:28 +00003969 break;
3970}
3971
3972
drh98757152008-01-09 23:04:12 +00003973/* Opcode: NewRowid P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00003974** Synopsis: r[P2]=rowid
drh5e00f6c2001-09-13 13:46:56 +00003975**
drhf0863fe2005-06-12 21:35:51 +00003976** Get a new integer record number (a.k.a "rowid") used as the key to a table.
drhb19a2bc2001-09-16 00:13:26 +00003977** The record number is not previously used as a key in the database
drh9cbf3422008-01-17 16:22:13 +00003978** table that cursor P1 points to. The new record number is written
3979** written to register P2.
drh205f48e2004-11-05 00:43:11 +00003980**
dan76d462e2009-08-30 11:42:51 +00003981** If P3>0 then P3 is a register in the root frame of this VDBE that holds
3982** the largest previously generated record number. No new record numbers are
3983** allowed to be less than this value. When this value reaches its maximum,
drhef8662b2011-06-20 21:47:58 +00003984** an SQLITE_FULL error is generated. The P3 register is updated with the '
dan76d462e2009-08-30 11:42:51 +00003985** generated record number. This P3 mechanism is used to help implement the
drh205f48e2004-11-05 00:43:11 +00003986** AUTOINCREMENT feature.
drh5e00f6c2001-09-13 13:46:56 +00003987*/
drh27a348c2015-04-13 19:14:06 +00003988case OP_NewRowid: { /* out2 */
drhaa736092009-06-22 00:55:30 +00003989 i64 v; /* The new rowid */
3990 VdbeCursor *pC; /* Cursor of table to get the new rowid */
3991 int res; /* Result of an sqlite3BtreeLast() */
3992 int cnt; /* Counter to limit the number of searches */
3993 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
dan76d462e2009-08-30 11:42:51 +00003994 VdbeFrame *pFrame; /* Root frame of VDBE */
drh856c1032009-06-02 15:21:42 +00003995
drh856c1032009-06-02 15:21:42 +00003996 v = 0;
3997 res = 0;
drh27a348c2015-04-13 19:14:06 +00003998 pOut = out2Prerelease(p, pOp);
drhaa736092009-06-22 00:55:30 +00003999 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4000 pC = p->apCsr[pOp->p1];
4001 assert( pC!=0 );
4002 if( NEVER(pC->pCursor==0) ){
drhf328bc82004-05-10 23:29:49 +00004003 /* The zero initialization above is all that is needed */
drh5e00f6c2001-09-13 13:46:56 +00004004 }else{
drh5cf8e8c2002-02-19 22:42:05 +00004005 /* The next rowid or record number (different terms for the same
4006 ** thing) is obtained in a two-step algorithm.
4007 **
4008 ** First we attempt to find the largest existing rowid and add one
4009 ** to that. But if the largest existing rowid is already the maximum
4010 ** positive integer, we have to fall through to the second
4011 ** probabilistic algorithm
4012 **
4013 ** The second algorithm is to select a rowid at random and see if
4014 ** it already exists in the table. If it does not exist, we have
4015 ** succeeded. If the random rowid does exist, we select a new one
drhaa736092009-06-22 00:55:30 +00004016 ** and try again, up to 100 times.
drhdb5ed6d2001-09-18 22:17:44 +00004017 */
drhaa736092009-06-22 00:55:30 +00004018 assert( pC->isTable );
drhfe2093d2005-01-20 22:48:47 +00004019
drh75f86a42005-02-17 00:03:06 +00004020#ifdef SQLITE_32BIT_ROWID
4021# define MAX_ROWID 0x7fffffff
4022#else
drhfe2093d2005-01-20 22:48:47 +00004023 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
4024 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
4025 ** to provide the constant while making all compilers happy.
4026 */
danielk197764202cf2008-11-17 15:31:47 +00004027# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
drh75f86a42005-02-17 00:03:06 +00004028#endif
drhfe2093d2005-01-20 22:48:47 +00004029
drh5cf8e8c2002-02-19 22:42:05 +00004030 if( !pC->useRandomRowid ){
drhe0670b62014-02-12 21:31:12 +00004031 rc = sqlite3BtreeLast(pC->pCursor, &res);
4032 if( rc!=SQLITE_OK ){
4033 goto abort_due_to_error;
4034 }
4035 if( res ){
4036 v = 1; /* IMP: R-61914-48074 */
4037 }else{
4038 assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
4039 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
4040 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
4041 if( v>=MAX_ROWID ){
4042 pC->useRandomRowid = 1;
drh5cf8e8c2002-02-19 22:42:05 +00004043 }else{
drhe0670b62014-02-12 21:31:12 +00004044 v++; /* IMP: R-29538-34987 */
drh5cf8e8c2002-02-19 22:42:05 +00004045 }
drh3fc190c2001-09-14 03:24:23 +00004046 }
drhe0670b62014-02-12 21:31:12 +00004047 }
drh205f48e2004-11-05 00:43:11 +00004048
4049#ifndef SQLITE_OMIT_AUTOINCREMENT
drhe0670b62014-02-12 21:31:12 +00004050 if( pOp->p3 ){
4051 /* Assert that P3 is a valid memory cell. */
4052 assert( pOp->p3>0 );
4053 if( p->pFrame ){
4054 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
shaneabc6b892009-09-10 19:09:03 +00004055 /* Assert that P3 is a valid memory cell. */
drhe0670b62014-02-12 21:31:12 +00004056 assert( pOp->p3<=pFrame->nMem );
4057 pMem = &pFrame->aMem[pOp->p3];
4058 }else{
4059 /* Assert that P3 is a valid memory cell. */
4060 assert( pOp->p3<=(p->nMem-p->nCursor) );
4061 pMem = &aMem[pOp->p3];
4062 memAboutToChange(p, pMem);
drh205f48e2004-11-05 00:43:11 +00004063 }
drhe0670b62014-02-12 21:31:12 +00004064 assert( memIsValid(pMem) );
drh205f48e2004-11-05 00:43:11 +00004065
drhe0670b62014-02-12 21:31:12 +00004066 REGISTER_TRACE(pOp->p3, pMem);
4067 sqlite3VdbeMemIntegerify(pMem);
4068 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
4069 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
4070 rc = SQLITE_FULL; /* IMP: R-12275-61338 */
4071 goto abort_due_to_error;
4072 }
4073 if( v<pMem->u.i+1 ){
4074 v = pMem->u.i + 1;
4075 }
4076 pMem->u.i = v;
drh5cf8e8c2002-02-19 22:42:05 +00004077 }
drhe0670b62014-02-12 21:31:12 +00004078#endif
drh5cf8e8c2002-02-19 22:42:05 +00004079 if( pC->useRandomRowid ){
drh748a52c2010-09-01 11:50:08 +00004080 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
drhc79c7612010-01-01 18:57:48 +00004081 ** largest possible integer (9223372036854775807) then the database
drh748a52c2010-09-01 11:50:08 +00004082 ** engine starts picking positive candidate ROWIDs at random until
4083 ** it finds one that is not previously used. */
drhaa736092009-06-22 00:55:30 +00004084 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
4085 ** an AUTOINCREMENT table. */
drh5cf8e8c2002-02-19 22:42:05 +00004086 cnt = 0;
drh2c4dc632014-09-25 12:31:28 +00004087 do{
4088 sqlite3_randomness(sizeof(v), &v);
drhd8633462014-09-25 17:42:41 +00004089 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */
drh2c4dc632014-09-25 12:31:28 +00004090 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
drh748a52c2010-09-01 11:50:08 +00004091 0, &res))==SQLITE_OK)
shanehc4d340a2010-09-01 02:37:56 +00004092 && (res==0)
drh2c4dc632014-09-25 12:31:28 +00004093 && (++cnt<100));
drhaa736092009-06-22 00:55:30 +00004094 if( rc==SQLITE_OK && res==0 ){
drhc79c7612010-01-01 18:57:48 +00004095 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
drh5cf8e8c2002-02-19 22:42:05 +00004096 goto abort_due_to_error;
4097 }
drh748a52c2010-09-01 11:50:08 +00004098 assert( v>0 ); /* EV: R-40812-03570 */
drh1eaa2692001-09-18 02:02:23 +00004099 }
drha11846b2004-01-07 18:52:56 +00004100 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004101 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004102 }
drh4c583122008-01-04 22:01:03 +00004103 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004104 break;
4105}
4106
danielk19771f4aa332008-01-03 09:51:55 +00004107/* Opcode: Insert P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00004108** Synopsis: intkey=r[P3] data=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00004109**
jplyon5a564222003-06-02 06:15:58 +00004110** Write an entry into the table of cursor P1. A new entry is
drhb19a2bc2001-09-16 00:13:26 +00004111** created if it doesn't already exist or the data for an existing
drh3e9ca092009-09-08 01:14:48 +00004112** entry is overwritten. The data is the value MEM_Blob stored in register
danielk19771f4aa332008-01-03 09:51:55 +00004113** number P2. The key is stored in register P3. The key must
drh3e9ca092009-09-08 01:14:48 +00004114** be a MEM_Int.
drh4a324312001-12-21 14:30:42 +00004115**
danielk19771f4aa332008-01-03 09:51:55 +00004116** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4117** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
danielk1977b28af712004-06-21 06:50:26 +00004118** then rowid is stored for subsequent return by the
drh85b623f2007-12-13 21:54:09 +00004119** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
drh6b125452002-01-28 15:53:03 +00004120**
drh3e9ca092009-09-08 01:14:48 +00004121** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
4122** the last seek operation (OP_NotExists) was a success, then this
4123** operation will not attempt to find the appropriate row before doing
4124** the insert but will instead overwrite the row that the cursor is
4125** currently pointing to. Presumably, the prior OP_NotExists opcode
4126** has already positioned the cursor correctly. This is an optimization
4127** that boosts performance by avoiding redundant seeks.
4128**
4129** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4130** UPDATE operation. Otherwise (if the flag is clear) then this opcode
4131** is part of an INSERT operation. The difference is only important to
4132** the update hook.
4133**
drh66a51672008-01-03 00:01:23 +00004134** Parameter P4 may point to a string containing the table-name, or
danielk19771f6eec52006-06-16 06:17:47 +00004135** may be NULL. If it is not NULL, then the update-hook
4136** (sqlite3.xUpdateCallback) is invoked following a successful insert.
4137**
drh93aed5a2008-01-16 17:46:38 +00004138** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4139** allocated, then ownership of P2 is transferred to the pseudo-cursor
4140** and register P2 becomes ephemeral. If the cursor is changed, the
4141** value of register P2 will then change. Make sure this does not
4142** cause any problems.)
4143**
drhf0863fe2005-06-12 21:35:51 +00004144** This instruction only works on tables. The equivalent instruction
4145** for indices is OP_IdxInsert.
drh6b125452002-01-28 15:53:03 +00004146*/
drhe05c9292009-10-29 13:48:10 +00004147/* Opcode: InsertInt P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00004148** Synopsis: intkey=P3 data=r[P2]
drhe05c9292009-10-29 13:48:10 +00004149**
4150** This works exactly like OP_Insert except that the key is the
4151** integer value P3, not the value of the integer stored in register P3.
4152*/
4153case OP_Insert:
4154case OP_InsertInt: {
drh3e9ca092009-09-08 01:14:48 +00004155 Mem *pData; /* MEM cell holding data for the record to be inserted */
4156 Mem *pKey; /* MEM cell holding key for the record */
4157 i64 iKey; /* The integer ROWID or key for the record to be inserted */
4158 VdbeCursor *pC; /* Cursor to table into which insert is written */
4159 int nZero; /* Number of zero-bytes to append */
drh1fd522f2013-11-21 00:10:35 +00004160 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
drh3e9ca092009-09-08 01:14:48 +00004161 const char *zDb; /* database name - used by the update hook */
4162 const char *zTbl; /* Table name - used by the opdate hook */
4163 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
drh856c1032009-06-02 15:21:42 +00004164
drha6c2ed92009-11-14 23:22:23 +00004165 pData = &aMem[pOp->p2];
drh653b82a2009-06-22 11:10:47 +00004166 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh2b4ded92010-09-27 21:09:31 +00004167 assert( memIsValid(pData) );
drh653b82a2009-06-22 11:10:47 +00004168 pC = p->apCsr[pOp->p1];
drha05a7222008-01-19 03:35:58 +00004169 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00004170 assert( pC->pCursor!=0 );
4171 assert( pC->pseudoTableReg==0 );
drha05a7222008-01-19 03:35:58 +00004172 assert( pC->isTable );
drh5b6afba2008-01-05 16:29:28 +00004173 REGISTER_TRACE(pOp->p2, pData);
danielk19775f8d8a82004-05-11 00:28:42 +00004174
drhe05c9292009-10-29 13:48:10 +00004175 if( pOp->opcode==OP_Insert ){
drha6c2ed92009-11-14 23:22:23 +00004176 pKey = &aMem[pOp->p3];
drhe05c9292009-10-29 13:48:10 +00004177 assert( pKey->flags & MEM_Int );
drh2b4ded92010-09-27 21:09:31 +00004178 assert( memIsValid(pKey) );
drhe05c9292009-10-29 13:48:10 +00004179 REGISTER_TRACE(pOp->p3, pKey);
4180 iKey = pKey->u.i;
4181 }else{
4182 assert( pOp->opcode==OP_InsertInt );
4183 iKey = pOp->p3;
4184 }
4185
drha05a7222008-01-19 03:35:58 +00004186 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drh99a66922011-05-13 18:51:42 +00004187 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
drha05a7222008-01-19 03:35:58 +00004188 if( pData->flags & MEM_Null ){
4189 pData->z = 0;
4190 pData->n = 0;
4191 }else{
4192 assert( pData->flags & (MEM_Blob|MEM_Str) );
4193 }
drh3e9ca092009-09-08 01:14:48 +00004194 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4195 if( pData->flags & MEM_Zero ){
4196 nZero = pData->u.nZero;
drha05a7222008-01-19 03:35:58 +00004197 }else{
drh3e9ca092009-09-08 01:14:48 +00004198 nZero = 0;
drha05a7222008-01-19 03:35:58 +00004199 }
drh3e9ca092009-09-08 01:14:48 +00004200 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
4201 pData->z, pData->n, nZero,
drhebf10b12013-11-25 17:38:26 +00004202 (pOp->p5 & OPFLAG_APPEND)!=0, seekResult
drh3e9ca092009-09-08 01:14:48 +00004203 );
drha05a7222008-01-19 03:35:58 +00004204 pC->deferredMoveto = 0;
4205 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004206
drha05a7222008-01-19 03:35:58 +00004207 /* Invoke the update-hook if required. */
4208 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
drh856c1032009-06-02 15:21:42 +00004209 zDb = db->aDb[pC->iDb].zName;
4210 zTbl = pOp->p4.z;
4211 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
drha05a7222008-01-19 03:35:58 +00004212 assert( pC->isTable );
4213 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
4214 assert( pC->iDb>=0 );
4215 }
drh5e00f6c2001-09-13 13:46:56 +00004216 break;
4217}
4218
drh98757152008-01-09 23:04:12 +00004219/* Opcode: Delete P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +00004220**
drh5edc3122001-09-13 21:53:09 +00004221** Delete the record at which the P1 cursor is currently pointing.
4222**
4223** The cursor will be left pointing at either the next or the previous
4224** record in the table. If it is left pointing at the next record, then
drhb19a2bc2001-09-16 00:13:26 +00004225** the next Next instruction will be a no-op. Hence it is OK to delete
drhbc5cf382014-08-06 01:08:07 +00004226** a record from within a Next loop.
drhc8d30ac2002-04-12 10:08:59 +00004227**
rdcb0c374f2004-02-20 22:53:38 +00004228** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
danielk1977b28af712004-06-21 06:50:26 +00004229** incremented (otherwise not).
drh70ce3f02003-04-15 19:22:22 +00004230**
drh91fd4d42008-01-19 20:11:25 +00004231** P1 must not be pseudo-table. It has to be a real table with
4232** multiple rows.
4233**
4234** If P4 is not NULL, then it is the name of the table that P1 is
4235** pointing to. The update hook will be invoked, if it exists.
4236** If P4 is not NULL then the P1 cursor must have been positioned
4237** using OP_NotFound prior to invoking this opcode.
drh5e00f6c2001-09-13 13:46:56 +00004238*/
drh9cbf3422008-01-17 16:22:13 +00004239case OP_Delete: {
drhdfe88ec2008-11-03 20:55:06 +00004240 VdbeCursor *pC;
drh91fd4d42008-01-19 20:11:25 +00004241
drh653b82a2009-06-22 11:10:47 +00004242 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4243 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004244 assert( pC!=0 );
drh91fd4d42008-01-19 20:11:25 +00004245 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
drh9a65f2c2009-06-22 19:05:40 +00004246 assert( pC->deferredMoveto==0 );
drh9a65f2c2009-06-22 19:05:40 +00004247
drhb53a5a92014-10-12 22:37:22 +00004248#ifdef SQLITE_DEBUG
4249 /* The seek operation that positioned the cursor prior to OP_Delete will
4250 ** have also set the pC->movetoTarget field to the rowid of the row that
4251 ** is being deleted */
4252 if( pOp->p4.z && pC->isTable ){
4253 i64 iKey = 0;
4254 sqlite3BtreeKeySize(pC->pCursor, &iKey);
4255 assert( pC->movetoTarget==iKey );
4256 }
4257#endif
4258
drh91fd4d42008-01-19 20:11:25 +00004259 rc = sqlite3BtreeDelete(pC->pCursor);
drh91fd4d42008-01-19 20:11:25 +00004260 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004261
drh91fd4d42008-01-19 20:11:25 +00004262 /* Invoke the update-hook if required. */
drhbbbb0e82013-11-26 23:27:07 +00004263 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z && pC->isTable ){
drh2c77be02013-11-27 21:07:03 +00004264 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE,
drhb53a5a92014-10-12 22:37:22 +00004265 db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget);
drh91fd4d42008-01-19 20:11:25 +00004266 assert( pC->iDb>=0 );
drh5e00f6c2001-09-13 13:46:56 +00004267 }
danielk1977b28af712004-06-21 06:50:26 +00004268 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
rdcb0c374f2004-02-20 22:53:38 +00004269 break;
4270}
drhb7f1d9a2009-09-08 02:27:58 +00004271/* Opcode: ResetCount * * * * *
rdcb0c374f2004-02-20 22:53:38 +00004272**
drhb7f1d9a2009-09-08 02:27:58 +00004273** The value of the change counter is copied to the database handle
4274** change counter (returned by subsequent calls to sqlite3_changes()).
4275** Then the VMs internal change counter resets to 0.
4276** This is used by trigger programs.
rdcb0c374f2004-02-20 22:53:38 +00004277*/
drh9cbf3422008-01-17 16:22:13 +00004278case OP_ResetCount: {
drhb7f1d9a2009-09-08 02:27:58 +00004279 sqlite3VdbeSetChanges(db, p->nChange);
danielk1977b28af712004-06-21 06:50:26 +00004280 p->nChange = 0;
drh5e00f6c2001-09-13 13:46:56 +00004281 break;
4282}
4283
drh1153c7b2013-11-01 22:02:56 +00004284/* Opcode: SorterCompare P1 P2 P3 P4
drhac502322014-07-30 13:56:48 +00004285** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
dan5134d132011-09-02 10:31:11 +00004286**
drh1153c7b2013-11-01 22:02:56 +00004287** P1 is a sorter cursor. This instruction compares a prefix of the
drhbc5cf382014-08-06 01:08:07 +00004288** record blob in register P3 against a prefix of the entry that
drhac502322014-07-30 13:56:48 +00004289** the sorter cursor currently points to. Only the first P4 fields
4290** of r[P3] and the sorter record are compared.
drh1153c7b2013-11-01 22:02:56 +00004291**
4292** If either P3 or the sorter contains a NULL in one of their significant
4293** fields (not counting the P4 fields at the end which are ignored) then
4294** the comparison is assumed to be equal.
4295**
4296** Fall through to next instruction if the two records compare equal to
4297** each other. Jump to P2 if they are different.
dan5134d132011-09-02 10:31:11 +00004298*/
4299case OP_SorterCompare: {
4300 VdbeCursor *pC;
4301 int res;
drhac502322014-07-30 13:56:48 +00004302 int nKeyCol;
dan5134d132011-09-02 10:31:11 +00004303
4304 pC = p->apCsr[pOp->p1];
4305 assert( isSorter(pC) );
drh1153c7b2013-11-01 22:02:56 +00004306 assert( pOp->p4type==P4_INT32 );
dan5134d132011-09-02 10:31:11 +00004307 pIn3 = &aMem[pOp->p3];
drhac502322014-07-30 13:56:48 +00004308 nKeyCol = pOp->p4.i;
drh958d2612014-04-18 13:40:07 +00004309 res = 0;
drhac502322014-07-30 13:56:48 +00004310 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
drh688852a2014-02-17 22:40:43 +00004311 VdbeBranchTaken(res!=0,2);
drhf56fa462015-04-13 21:39:54 +00004312 if( res ) goto jump_to_p2;
dan5134d132011-09-02 10:31:11 +00004313 break;
4314};
4315
drh6cf4a7d2014-10-13 13:00:58 +00004316/* Opcode: SorterData P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00004317** Synopsis: r[P2]=data
dan5134d132011-09-02 10:31:11 +00004318**
4319** Write into register P2 the current sorter data for sorter cursor P1.
drh6cf4a7d2014-10-13 13:00:58 +00004320** Then clear the column header cache on cursor P3.
4321**
4322** This opcode is normally use to move a record out of the sorter and into
4323** a register that is the source for a pseudo-table cursor created using
4324** OpenPseudo. That pseudo-table cursor is the one that is identified by
4325** parameter P3. Clearing the P3 column cache as part of this opcode saves
4326** us from having to issue a separate NullRow instruction to clear that cache.
dan5134d132011-09-02 10:31:11 +00004327*/
4328case OP_SorterData: {
4329 VdbeCursor *pC;
drh3a949872012-09-18 13:20:13 +00004330
dan5134d132011-09-02 10:31:11 +00004331 pOut = &aMem[pOp->p2];
4332 pC = p->apCsr[pOp->p1];
drh14da87f2013-11-20 21:51:33 +00004333 assert( isSorter(pC) );
dan5134d132011-09-02 10:31:11 +00004334 rc = sqlite3VdbeSorterRowkey(pC, pOut);
dan38524132014-05-01 20:26:48 +00004335 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
drh6cf4a7d2014-10-13 13:00:58 +00004336 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4337 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
dan5134d132011-09-02 10:31:11 +00004338 break;
4339}
4340
drh98757152008-01-09 23:04:12 +00004341/* Opcode: RowData P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004342** Synopsis: r[P2]=data
drh70ce3f02003-04-15 19:22:22 +00004343**
drh98757152008-01-09 23:04:12 +00004344** Write into register P2 the complete row data for cursor P1.
4345** There is no interpretation of the data.
4346** It is just copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004347** it is found in the database file.
drh70ce3f02003-04-15 19:22:22 +00004348**
drhde4fcfd2008-01-19 23:50:26 +00004349** If the P1 cursor must be pointing to a valid row (not a NULL row)
4350** of a real table, not a pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00004351*/
drh98757152008-01-09 23:04:12 +00004352/* Opcode: RowKey P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004353** Synopsis: r[P2]=key
drh143f3c42004-01-07 20:37:52 +00004354**
drh98757152008-01-09 23:04:12 +00004355** Write into register P2 the complete row key for cursor P1.
4356** There is no interpretation of the data.
drh0fd61352014-02-07 02:29:45 +00004357** The key is copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004358** it is found in the database file.
drh143f3c42004-01-07 20:37:52 +00004359**
drhde4fcfd2008-01-19 23:50:26 +00004360** If the P1 cursor must be pointing to a valid row (not a NULL row)
4361** of a real table, not a pseudo-table.
drh143f3c42004-01-07 20:37:52 +00004362*/
danielk1977a7a8e142008-02-13 18:25:27 +00004363case OP_RowKey:
4364case OP_RowData: {
drhdfe88ec2008-11-03 20:55:06 +00004365 VdbeCursor *pC;
drhde4fcfd2008-01-19 23:50:26 +00004366 BtCursor *pCrsr;
danielk1977e0d4b062004-06-28 01:11:46 +00004367 u32 n;
drh856c1032009-06-02 15:21:42 +00004368 i64 n64;
drh70ce3f02003-04-15 19:22:22 +00004369
drha6c2ed92009-11-14 23:22:23 +00004370 pOut = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00004371 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00004372
drhf0863fe2005-06-12 21:35:51 +00004373 /* Note that RowKey and RowData are really exactly the same instruction */
drh653b82a2009-06-22 11:10:47 +00004374 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4375 pC = p->apCsr[pOp->p1];
drh14da87f2013-11-20 21:51:33 +00004376 assert( isSorter(pC)==0 );
drhc6aff302011-09-01 15:32:47 +00004377 assert( pC->isTable || pOp->opcode!=OP_RowData );
drh14da87f2013-11-20 21:51:33 +00004378 assert( pC->isTable==0 || pOp->opcode==OP_RowData );
drh4774b132004-06-12 20:12:51 +00004379 assert( pC!=0 );
drhde4fcfd2008-01-19 23:50:26 +00004380 assert( pC->nullRow==0 );
drh3e9ca092009-09-08 01:14:48 +00004381 assert( pC->pseudoTableReg==0 );
drhde4fcfd2008-01-19 23:50:26 +00004382 assert( pC->pCursor!=0 );
4383 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004384
4385 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4386 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
drhc22284f2014-10-13 16:02:20 +00004387 ** the cursor. If this where not the case, on of the following assert()s
4388 ** would fail. Should this ever change (because of changes in the code
4389 ** generator) then the fix would be to insert a call to
4390 ** sqlite3VdbeCursorMoveto().
drh9a65f2c2009-06-22 19:05:40 +00004391 */
4392 assert( pC->deferredMoveto==0 );
drhc22284f2014-10-13 16:02:20 +00004393 assert( sqlite3BtreeCursorIsValid(pCrsr) );
4394#if 0 /* Not required due to the previous to assert() statements */
drhde4fcfd2008-01-19 23:50:26 +00004395 rc = sqlite3VdbeCursorMoveto(pC);
drhc22284f2014-10-13 16:02:20 +00004396 if( rc!=SQLITE_OK ) goto abort_due_to_error;
4397#endif
drh9a65f2c2009-06-22 19:05:40 +00004398
drh14da87f2013-11-20 21:51:33 +00004399 if( pC->isTable==0 ){
drhde4fcfd2008-01-19 23:50:26 +00004400 assert( !pC->isTable );
drhb07028f2011-10-14 21:49:18 +00004401 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
drhc27ae612009-07-14 18:35:44 +00004402 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
drhbb4957f2008-03-20 14:03:29 +00004403 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhde4fcfd2008-01-19 23:50:26 +00004404 goto too_big;
drh70ce3f02003-04-15 19:22:22 +00004405 }
drhbfb19dc2009-06-05 16:46:53 +00004406 n = (u32)n64;
drhde4fcfd2008-01-19 23:50:26 +00004407 }else{
drhb07028f2011-10-14 21:49:18 +00004408 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
drhea8ffdf2009-07-22 00:35:23 +00004409 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
shane75ac1de2009-06-09 18:58:52 +00004410 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00004411 goto too_big;
4412 }
drhde4fcfd2008-01-19 23:50:26 +00004413 }
drh722246e2014-10-07 23:02:24 +00004414 testcase( n==0 );
4415 if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){
danielk1977a7a8e142008-02-13 18:25:27 +00004416 goto no_mem;
drhde4fcfd2008-01-19 23:50:26 +00004417 }
danielk1977a7a8e142008-02-13 18:25:27 +00004418 pOut->n = n;
4419 MemSetTypeFlag(pOut, MEM_Blob);
drh14da87f2013-11-20 21:51:33 +00004420 if( pC->isTable==0 ){
drhde4fcfd2008-01-19 23:50:26 +00004421 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4422 }else{
4423 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
drh5e00f6c2001-09-13 13:46:56 +00004424 }
danielk197796cb76f2008-01-04 13:24:28 +00004425 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
drhb7654112008-01-12 12:48:07 +00004426 UPDATE_MAX_BLOBSIZE(pOut);
drhee0ec8e2013-10-31 17:38:01 +00004427 REGISTER_TRACE(pOp->p2, pOut);
drh5e00f6c2001-09-13 13:46:56 +00004428 break;
4429}
4430
drh2133d822008-01-03 18:44:59 +00004431/* Opcode: Rowid P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004432** Synopsis: r[P2]=rowid
drh5e00f6c2001-09-13 13:46:56 +00004433**
drh2133d822008-01-03 18:44:59 +00004434** Store in register P2 an integer which is the key of the table entry that
drhbfdc7542008-05-29 03:12:54 +00004435** P1 is currently point to.
drh044925b2009-04-22 17:15:02 +00004436**
4437** P1 can be either an ordinary table or a virtual table. There used to
4438** be a separate OP_VRowid opcode for use with virtual tables, but this
4439** one opcode now works for both table types.
drh5e00f6c2001-09-13 13:46:56 +00004440*/
drh27a348c2015-04-13 19:14:06 +00004441case OP_Rowid: { /* out2 */
drhdfe88ec2008-11-03 20:55:06 +00004442 VdbeCursor *pC;
drhf328bc82004-05-10 23:29:49 +00004443 i64 v;
drh856c1032009-06-02 15:21:42 +00004444 sqlite3_vtab *pVtab;
4445 const sqlite3_module *pModule;
drh5e00f6c2001-09-13 13:46:56 +00004446
drh27a348c2015-04-13 19:14:06 +00004447 pOut = out2Prerelease(p, pOp);
drh653b82a2009-06-22 11:10:47 +00004448 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4449 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004450 assert( pC!=0 );
drh21172c42012-10-30 00:29:07 +00004451 assert( pC->pseudoTableReg==0 || pC->nullRow );
drh044925b2009-04-22 17:15:02 +00004452 if( pC->nullRow ){
drh3c657212009-11-17 23:59:58 +00004453 pOut->flags = MEM_Null;
drh044925b2009-04-22 17:15:02 +00004454 break;
4455 }else if( pC->deferredMoveto ){
drh61495262009-04-22 15:32:59 +00004456 v = pC->movetoTarget;
drh044925b2009-04-22 17:15:02 +00004457#ifndef SQLITE_OMIT_VIRTUALTABLE
4458 }else if( pC->pVtabCursor ){
drh044925b2009-04-22 17:15:02 +00004459 pVtab = pC->pVtabCursor->pVtab;
4460 pModule = pVtab->pModule;
4461 assert( pModule->xRowid );
drh044925b2009-04-22 17:15:02 +00004462 rc = pModule->xRowid(pC->pVtabCursor, &v);
dan016f7812013-08-21 17:35:48 +00004463 sqlite3VtabImportErrmsg(p, pVtab);
drh044925b2009-04-22 17:15:02 +00004464#endif /* SQLITE_OMIT_VIRTUALTABLE */
drh70ce3f02003-04-15 19:22:22 +00004465 }else{
drh6be240e2009-07-14 02:33:02 +00004466 assert( pC->pCursor!=0 );
drhc22284f2014-10-13 16:02:20 +00004467 rc = sqlite3VdbeCursorRestore(pC);
drh61495262009-04-22 15:32:59 +00004468 if( rc ) goto abort_due_to_error;
dan2b8669a2014-11-17 19:42:48 +00004469 if( pC->nullRow ){
4470 pOut->flags = MEM_Null;
4471 break;
4472 }
drhb53a5a92014-10-12 22:37:22 +00004473 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
drhc22284f2014-10-13 16:02:20 +00004474 assert( rc==SQLITE_OK ); /* Always so because of CursorRestore() above */
drh5e00f6c2001-09-13 13:46:56 +00004475 }
drh4c583122008-01-04 22:01:03 +00004476 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004477 break;
4478}
4479
drh9cbf3422008-01-17 16:22:13 +00004480/* Opcode: NullRow P1 * * * *
drh17f71932002-02-21 12:01:27 +00004481**
4482** Move the cursor P1 to a null row. Any OP_Column operations
drh9cbf3422008-01-17 16:22:13 +00004483** that occur while the cursor is on the null row will always
4484** write a NULL.
drh17f71932002-02-21 12:01:27 +00004485*/
drh9cbf3422008-01-17 16:22:13 +00004486case OP_NullRow: {
drhdfe88ec2008-11-03 20:55:06 +00004487 VdbeCursor *pC;
drh17f71932002-02-21 12:01:27 +00004488
drh653b82a2009-06-22 11:10:47 +00004489 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4490 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004491 assert( pC!=0 );
drhd7556d22004-05-14 21:59:40 +00004492 pC->nullRow = 1;
drh399af1d2013-11-20 17:25:55 +00004493 pC->cacheStatus = CACHE_STALE;
danielk1977be51a652008-10-08 17:58:48 +00004494 if( pC->pCursor ){
4495 sqlite3BtreeClearCursor(pC->pCursor);
4496 }
drh17f71932002-02-21 12:01:27 +00004497 break;
4498}
4499
danb18e60b2015-04-01 16:18:00 +00004500/* Opcode: Last P1 P2 P3 * *
drh9562b552002-02-19 15:00:07 +00004501**
drh8af3f772014-07-25 18:01:06 +00004502** The next use of the Rowid or Column or Prev instruction for P1
drh9562b552002-02-19 15:00:07 +00004503** will refer to the last entry in the database table or index.
4504** If the table or index is empty and P2>0, then jump immediately to P2.
4505** If P2 is 0 or if the table or index is not empty, fall through
4506** to the following instruction.
drh8af3f772014-07-25 18:01:06 +00004507**
4508** This opcode leaves the cursor configured to move in reverse order,
4509** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00004510** configured to use Prev, not Next.
drh9562b552002-02-19 15:00:07 +00004511*/
drh9cbf3422008-01-17 16:22:13 +00004512case OP_Last: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004513 VdbeCursor *pC;
drh9562b552002-02-19 15:00:07 +00004514 BtCursor *pCrsr;
drha05a7222008-01-19 03:35:58 +00004515 int res;
drh9562b552002-02-19 15:00:07 +00004516
drh653b82a2009-06-22 11:10:47 +00004517 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4518 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004519 assert( pC!=0 );
drha05a7222008-01-19 03:35:58 +00004520 pCrsr = pC->pCursor;
drh7abc5402011-10-22 21:00:46 +00004521 res = 0;
drh3da046d2013-11-11 03:24:11 +00004522 assert( pCrsr!=0 );
4523 rc = sqlite3BtreeLast(pCrsr, &res);
drh9c1905f2008-12-10 22:32:56 +00004524 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004525 pC->deferredMoveto = 0;
4526 pC->cacheStatus = CACHE_STALE;
danb18e60b2015-04-01 16:18:00 +00004527 pC->seekResult = pOp->p3;
drh8af3f772014-07-25 18:01:06 +00004528#ifdef SQLITE_DEBUG
4529 pC->seekOp = OP_Last;
4530#endif
drh688852a2014-02-17 22:40:43 +00004531 if( pOp->p2>0 ){
4532 VdbeBranchTaken(res!=0,2);
drhf56fa462015-04-13 21:39:54 +00004533 if( res ) goto jump_to_p2;
drh9562b552002-02-19 15:00:07 +00004534 }
4535 break;
4536}
4537
drh0342b1f2005-09-01 03:07:44 +00004538
drh9cbf3422008-01-17 16:22:13 +00004539/* Opcode: Sort P1 P2 * * *
drh0342b1f2005-09-01 03:07:44 +00004540**
4541** This opcode does exactly the same thing as OP_Rewind except that
4542** it increments an undocumented global variable used for testing.
4543**
4544** Sorting is accomplished by writing records into a sorting index,
4545** then rewinding that index and playing it back from beginning to
4546** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4547** rewinding so that the global variable will be incremented and
4548** regression tests can determine whether or not the optimizer is
4549** correctly optimizing out sorts.
4550*/
drhc6aff302011-09-01 15:32:47 +00004551case OP_SorterSort: /* jump */
drh9cbf3422008-01-17 16:22:13 +00004552case OP_Sort: { /* jump */
drh0f7eb612006-08-08 13:51:43 +00004553#ifdef SQLITE_TEST
drh0342b1f2005-09-01 03:07:44 +00004554 sqlite3_sort_count++;
drh4db38a72005-09-01 12:16:28 +00004555 sqlite3_search_count--;
drh0f7eb612006-08-08 13:51:43 +00004556#endif
drh9b47ee32013-08-20 03:13:51 +00004557 p->aCounter[SQLITE_STMTSTATUS_SORT]++;
drh0342b1f2005-09-01 03:07:44 +00004558 /* Fall through into OP_Rewind */
4559}
drh9cbf3422008-01-17 16:22:13 +00004560/* Opcode: Rewind P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004561**
drhf0863fe2005-06-12 21:35:51 +00004562** The next use of the Rowid or Column or Next instruction for P1
drh8721ce42001-11-07 14:22:00 +00004563** will refer to the first entry in the database table or index.
dan04489b62014-10-31 20:11:32 +00004564** If the table or index is empty, jump immediately to P2.
4565** If the table or index is not empty, fall through to the following
4566** instruction.
drh8af3f772014-07-25 18:01:06 +00004567**
4568** This opcode leaves the cursor configured to move in forward order,
drh4ed2fb92014-08-14 13:06:25 +00004569** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00004570** configured to use Next, not Prev.
drh5e00f6c2001-09-13 13:46:56 +00004571*/
drh9cbf3422008-01-17 16:22:13 +00004572case OP_Rewind: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004573 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004574 BtCursor *pCrsr;
drhf4dada72004-05-11 09:57:35 +00004575 int res;
drh5e00f6c2001-09-13 13:46:56 +00004576
drh653b82a2009-06-22 11:10:47 +00004577 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4578 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004579 assert( pC!=0 );
drh14da87f2013-11-20 21:51:33 +00004580 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
dan2411dea2010-07-03 05:56:09 +00004581 res = 1;
drh8af3f772014-07-25 18:01:06 +00004582#ifdef SQLITE_DEBUG
4583 pC->seekOp = OP_Rewind;
4584#endif
dan689ab892011-08-12 15:02:00 +00004585 if( isSorter(pC) ){
drh958d2612014-04-18 13:40:07 +00004586 rc = sqlite3VdbeSorterRewind(pC, &res);
dana205a482011-08-27 18:48:57 +00004587 }else{
4588 pCrsr = pC->pCursor;
4589 assert( pCrsr );
danielk19774adee202004-05-08 08:23:19 +00004590 rc = sqlite3BtreeFirst(pCrsr, &res);
drha11846b2004-01-07 18:52:56 +00004591 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004592 pC->cacheStatus = CACHE_STALE;
drhf4dada72004-05-11 09:57:35 +00004593 }
drh9c1905f2008-12-10 22:32:56 +00004594 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004595 assert( pOp->p2>0 && pOp->p2<p->nOp );
drh688852a2014-02-17 22:40:43 +00004596 VdbeBranchTaken(res!=0,2);
drhf56fa462015-04-13 21:39:54 +00004597 if( res ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00004598 break;
4599}
4600
drh0fd61352014-02-07 02:29:45 +00004601/* Opcode: Next P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00004602**
4603** Advance cursor P1 so that it points to the next key/data pair in its
drh8721ce42001-11-07 14:22:00 +00004604** table or index. If there are no more key/value pairs then fall through
4605** to the following instruction. But if the cursor advance was successful,
4606** jump immediately to P2.
drhc045ec52002-12-04 20:01:06 +00004607**
drh5dad9a32014-07-25 18:37:42 +00004608** The Next opcode is only valid following an SeekGT, SeekGE, or
4609** OP_Rewind opcode used to position the cursor. Next is not allowed
4610** to follow SeekLT, SeekLE, or OP_Last.
drh8af3f772014-07-25 18:01:06 +00004611**
drhf93cd942013-11-21 03:12:25 +00004612** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
4613** been opened prior to this opcode or the program will segfault.
drh60a713c2008-01-21 16:22:45 +00004614**
drhe39a7322014-02-03 14:04:11 +00004615** The P3 value is a hint to the btree implementation. If P3==1, that
4616** means P1 is an SQL index and that this instruction could have been
4617** omitted if that index had been unique. P3 is usually 0. P3 is
4618** always either 0 or 1.
4619**
dana205a482011-08-27 18:48:57 +00004620** P4 is always of type P4_ADVANCE. The function pointer points to
4621** sqlite3BtreeNext().
4622**
drhafc266a2010-03-31 17:47:44 +00004623** If P5 is positive and the jump is taken, then event counter
4624** number P5-1 in the prepared statement is incremented.
4625**
drhf93cd942013-11-21 03:12:25 +00004626** See also: Prev, NextIfOpen
4627*/
drh0fd61352014-02-07 02:29:45 +00004628/* Opcode: NextIfOpen P1 P2 P3 P4 P5
drhf93cd942013-11-21 03:12:25 +00004629**
drh5dad9a32014-07-25 18:37:42 +00004630** This opcode works just like Next except that if cursor P1 is not
drhf93cd942013-11-21 03:12:25 +00004631** open it behaves a no-op.
drh8721ce42001-11-07 14:22:00 +00004632*/
drh0fd61352014-02-07 02:29:45 +00004633/* Opcode: Prev P1 P2 P3 P4 P5
drhc045ec52002-12-04 20:01:06 +00004634**
4635** Back up cursor P1 so that it points to the previous key/data pair in its
4636** table or index. If there is no previous key/value pairs then fall through
4637** to the following instruction. But if the cursor backup was successful,
4638** jump immediately to P2.
drh60a713c2008-01-21 16:22:45 +00004639**
drh8af3f772014-07-25 18:01:06 +00004640**
drh5dad9a32014-07-25 18:37:42 +00004641** The Prev opcode is only valid following an SeekLT, SeekLE, or
4642** OP_Last opcode used to position the cursor. Prev is not allowed
4643** to follow SeekGT, SeekGE, or OP_Rewind.
drh8af3f772014-07-25 18:01:06 +00004644**
drhf93cd942013-11-21 03:12:25 +00004645** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
4646** not open then the behavior is undefined.
drhafc266a2010-03-31 17:47:44 +00004647**
drhe39a7322014-02-03 14:04:11 +00004648** The P3 value is a hint to the btree implementation. If P3==1, that
4649** means P1 is an SQL index and that this instruction could have been
4650** omitted if that index had been unique. P3 is usually 0. P3 is
4651** always either 0 or 1.
4652**
dana205a482011-08-27 18:48:57 +00004653** P4 is always of type P4_ADVANCE. The function pointer points to
4654** sqlite3BtreePrevious().
4655**
drhafc266a2010-03-31 17:47:44 +00004656** If P5 is positive and the jump is taken, then event counter
4657** number P5-1 in the prepared statement is incremented.
drhc045ec52002-12-04 20:01:06 +00004658*/
drh0fd61352014-02-07 02:29:45 +00004659/* Opcode: PrevIfOpen P1 P2 P3 P4 P5
drhf93cd942013-11-21 03:12:25 +00004660**
drh5dad9a32014-07-25 18:37:42 +00004661** This opcode works just like Prev except that if cursor P1 is not
drhf93cd942013-11-21 03:12:25 +00004662** open it behaves a no-op.
4663*/
4664case OP_SorterNext: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004665 VdbeCursor *pC;
drha3460582008-07-11 21:02:53 +00004666 int res;
drh8721ce42001-11-07 14:22:00 +00004667
drhf93cd942013-11-21 03:12:25 +00004668 pC = p->apCsr[pOp->p1];
4669 assert( isSorter(pC) );
drh323913c2014-03-23 16:29:23 +00004670 res = 0;
drhf93cd942013-11-21 03:12:25 +00004671 rc = sqlite3VdbeSorterNext(db, pC, &res);
4672 goto next_tail;
4673case OP_PrevIfOpen: /* jump */
4674case OP_NextIfOpen: /* jump */
4675 if( p->apCsr[pOp->p1]==0 ) break;
4676 /* Fall through */
4677case OP_Prev: /* jump */
4678case OP_Next: /* jump */
drh70ce3f02003-04-15 19:22:22 +00004679 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh9b47ee32013-08-20 03:13:51 +00004680 assert( pOp->p5<ArraySize(p->aCounter) );
drhd7556d22004-05-14 21:59:40 +00004681 pC = p->apCsr[pOp->p1];
drhe39a7322014-02-03 14:04:11 +00004682 res = pOp->p3;
drhf93cd942013-11-21 03:12:25 +00004683 assert( pC!=0 );
4684 assert( pC->deferredMoveto==0 );
4685 assert( pC->pCursor );
drhe39a7322014-02-03 14:04:11 +00004686 assert( res==0 || (res==1 && pC->isTable==0) );
4687 testcase( res==1 );
drhf93cd942013-11-21 03:12:25 +00004688 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
4689 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
4690 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
4691 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
drh8af3f772014-07-25 18:01:06 +00004692
4693 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
4694 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
4695 assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
4696 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
drhcefc87f2014-08-01 01:40:33 +00004697 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
drh8af3f772014-07-25 18:01:06 +00004698 assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
4699 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
4700 || pC->seekOp==OP_Last );
4701
drhf93cd942013-11-21 03:12:25 +00004702 rc = pOp->p4.xAdvance(pC->pCursor, &res);
4703next_tail:
drha3460582008-07-11 21:02:53 +00004704 pC->cacheStatus = CACHE_STALE;
drh688852a2014-02-17 22:40:43 +00004705 VdbeBranchTaken(res==0,2);
drha3460582008-07-11 21:02:53 +00004706 if( res==0 ){
drhf93cd942013-11-21 03:12:25 +00004707 pC->nullRow = 0;
drh9b47ee32013-08-20 03:13:51 +00004708 p->aCounter[pOp->p5]++;
drh0f7eb612006-08-08 13:51:43 +00004709#ifdef SQLITE_TEST
drha3460582008-07-11 21:02:53 +00004710 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00004711#endif
drhf56fa462015-04-13 21:39:54 +00004712 goto jump_to_p2_and_check_for_interrupt;
drhf93cd942013-11-21 03:12:25 +00004713 }else{
4714 pC->nullRow = 1;
drh8721ce42001-11-07 14:22:00 +00004715 }
drh49afe3a2013-07-10 03:05:14 +00004716 goto check_for_interrupt;
drh8721ce42001-11-07 14:22:00 +00004717}
4718
danielk1977de630352009-05-04 11:42:29 +00004719/* Opcode: IdxInsert P1 P2 P3 * P5
drh81316f82013-10-29 20:40:47 +00004720** Synopsis: key=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00004721**
drhef8662b2011-06-20 21:47:58 +00004722** Register P2 holds an SQL index key made using the
drh9437bd22009-02-01 00:29:56 +00004723** MakeRecord instructions. This opcode writes that key
drhee32e0a2006-01-10 19:45:49 +00004724** into the index P1. Data for the entry is nil.
drh717e6402001-09-27 03:22:32 +00004725**
drhaa9b8962008-01-08 02:57:55 +00004726** P3 is a flag that provides a hint to the b-tree layer that this
drhe4d90812007-03-29 05:51:49 +00004727** insert is likely to be an append.
4728**
mistachkin21a919f2014-02-07 03:28:02 +00004729** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
4730** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
4731** then the change counter is unchanged.
drh0fd61352014-02-07 02:29:45 +00004732**
mistachkin21a919f2014-02-07 03:28:02 +00004733** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have
4734** just done a seek to the spot where the new entry is to be inserted.
4735** This flag avoids doing an extra seek.
drh0fd61352014-02-07 02:29:45 +00004736**
drhf0863fe2005-06-12 21:35:51 +00004737** This instruction only works for indices. The equivalent instruction
4738** for tables is OP_Insert.
drh5e00f6c2001-09-13 13:46:56 +00004739*/
drhca892a72011-09-03 00:17:51 +00004740case OP_SorterInsert: /* in2 */
drh9cbf3422008-01-17 16:22:13 +00004741case OP_IdxInsert: { /* in2 */
drhdfe88ec2008-11-03 20:55:06 +00004742 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004743 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00004744 int nKey;
4745 const char *zKey;
4746
drh653b82a2009-06-22 11:10:47 +00004747 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4748 pC = p->apCsr[pOp->p1];
4749 assert( pC!=0 );
drh14da87f2013-11-20 21:51:33 +00004750 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
drh3c657212009-11-17 23:59:58 +00004751 pIn2 = &aMem[pOp->p2];
drhaa9b8962008-01-08 02:57:55 +00004752 assert( pIn2->flags & MEM_Blob );
drh653b82a2009-06-22 11:10:47 +00004753 pCrsr = pC->pCursor;
drh6546af12013-11-04 15:23:25 +00004754 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drh3da046d2013-11-11 03:24:11 +00004755 assert( pCrsr!=0 );
4756 assert( pC->isTable==0 );
4757 rc = ExpandBlob(pIn2);
4758 if( rc==SQLITE_OK ){
4759 if( isSorter(pC) ){
drh958d2612014-04-18 13:40:07 +00004760 rc = sqlite3VdbeSorterWrite(pC, pIn2);
drh3da046d2013-11-11 03:24:11 +00004761 }else{
4762 nKey = pIn2->n;
4763 zKey = pIn2->z;
4764 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3,
4765 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
4766 );
4767 assert( pC->deferredMoveto==0 );
4768 pC->cacheStatus = CACHE_STALE;
danielk1977d908f5a2007-05-11 07:08:28 +00004769 }
drh5e00f6c2001-09-13 13:46:56 +00004770 }
drh5e00f6c2001-09-13 13:46:56 +00004771 break;
4772}
4773
drh4308e342013-11-11 16:55:52 +00004774/* Opcode: IdxDelete P1 P2 P3 * *
drhf63552b2013-10-30 00:25:03 +00004775** Synopsis: key=r[P2@P3]
drh5e00f6c2001-09-13 13:46:56 +00004776**
drhe14006d2008-03-25 17:23:32 +00004777** The content of P3 registers starting at register P2 form
4778** an unpacked index key. This opcode removes that entry from the
danielk1977a7a8e142008-02-13 18:25:27 +00004779** index opened by cursor P1.
drh5e00f6c2001-09-13 13:46:56 +00004780*/
drhe14006d2008-03-25 17:23:32 +00004781case OP_IdxDelete: {
drhdfe88ec2008-11-03 20:55:06 +00004782 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004783 BtCursor *pCrsr;
drh9a65f2c2009-06-22 19:05:40 +00004784 int res;
4785 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00004786
drhe14006d2008-03-25 17:23:32 +00004787 assert( pOp->p3>0 );
dan3bc9f742013-08-15 16:18:39 +00004788 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 );
drh653b82a2009-06-22 11:10:47 +00004789 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4790 pC = p->apCsr[pOp->p1];
4791 assert( pC!=0 );
4792 pCrsr = pC->pCursor;
drh3da046d2013-11-11 03:24:11 +00004793 assert( pCrsr!=0 );
drh4308e342013-11-11 16:55:52 +00004794 assert( pOp->p5==0 );
drh3da046d2013-11-11 03:24:11 +00004795 r.pKeyInfo = pC->pKeyInfo;
4796 r.nField = (u16)pOp->p3;
dan1fed5da2014-02-25 21:01:25 +00004797 r.default_rc = 0;
drh3da046d2013-11-11 03:24:11 +00004798 r.aMem = &aMem[pOp->p2];
drh2b4ded92010-09-27 21:09:31 +00004799#ifdef SQLITE_DEBUG
drh3da046d2013-11-11 03:24:11 +00004800 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
drh2b4ded92010-09-27 21:09:31 +00004801#endif
drh3da046d2013-11-11 03:24:11 +00004802 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
4803 if( rc==SQLITE_OK && res==0 ){
4804 rc = sqlite3BtreeDelete(pCrsr);
drh5e00f6c2001-09-13 13:46:56 +00004805 }
drh3da046d2013-11-11 03:24:11 +00004806 assert( pC->deferredMoveto==0 );
4807 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004808 break;
4809}
4810
drh2133d822008-01-03 18:44:59 +00004811/* Opcode: IdxRowid P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004812** Synopsis: r[P2]=rowid
drh8721ce42001-11-07 14:22:00 +00004813**
drh2133d822008-01-03 18:44:59 +00004814** Write into register P2 an integer which is the last entry in the record at
drhf0863fe2005-06-12 21:35:51 +00004815** the end of the index key pointed to by cursor P1. This integer should be
4816** the rowid of the table entry to which this index entry points.
drh8721ce42001-11-07 14:22:00 +00004817**
drh9437bd22009-02-01 00:29:56 +00004818** See also: Rowid, MakeRecord.
drh8721ce42001-11-07 14:22:00 +00004819*/
drh27a348c2015-04-13 19:14:06 +00004820case OP_IdxRowid: { /* out2 */
drh8721ce42001-11-07 14:22:00 +00004821 BtCursor *pCrsr;
drhdfe88ec2008-11-03 20:55:06 +00004822 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004823 i64 rowid;
drh8721ce42001-11-07 14:22:00 +00004824
drh27a348c2015-04-13 19:14:06 +00004825 pOut = out2Prerelease(p, pOp);
drh653b82a2009-06-22 11:10:47 +00004826 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4827 pC = p->apCsr[pOp->p1];
4828 assert( pC!=0 );
4829 pCrsr = pC->pCursor;
drh3da046d2013-11-11 03:24:11 +00004830 assert( pCrsr!=0 );
drh3c657212009-11-17 23:59:58 +00004831 pOut->flags = MEM_Null;
drh3da046d2013-11-11 03:24:11 +00004832 assert( pC->isTable==0 );
drhc22284f2014-10-13 16:02:20 +00004833 assert( pC->deferredMoveto==0 );
4834
4835 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
4836 ** out from under the cursor. That will never happend for an IdxRowid
4837 ** opcode, hence the NEVER() arround the check of the return value.
4838 */
4839 rc = sqlite3VdbeCursorRestore(pC);
4840 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4841
drh3da046d2013-11-11 03:24:11 +00004842 if( !pC->nullRow ){
drh2dc06482013-12-11 00:59:10 +00004843 rowid = 0; /* Not needed. Only used to silence a warning. */
drhd3b74202014-09-17 16:41:15 +00004844 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
drh3da046d2013-11-11 03:24:11 +00004845 if( rc!=SQLITE_OK ){
4846 goto abort_due_to_error;
danielk19773d1bfea2004-05-14 11:00:53 +00004847 }
drh3da046d2013-11-11 03:24:11 +00004848 pOut->u.i = rowid;
4849 pOut->flags = MEM_Int;
drh8721ce42001-11-07 14:22:00 +00004850 }
4851 break;
4852}
4853
danielk197761dd5832008-04-18 11:31:12 +00004854/* Opcode: IdxGE P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00004855** Synopsis: key=r[P3@P4]
drh8721ce42001-11-07 14:22:00 +00004856**
danielk197761dd5832008-04-18 11:31:12 +00004857** The P4 register values beginning with P3 form an unpacked index
drh4a1d3652014-02-14 15:13:36 +00004858** key that omits the PRIMARY KEY. Compare this key value against the index
4859** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
4860** fields at the end.
drhf3218fe2004-05-28 08:21:02 +00004861**
danielk197761dd5832008-04-18 11:31:12 +00004862** If the P1 index entry is greater than or equal to the key value
4863** then jump to P2. Otherwise fall through to the next instruction.
drh4a1d3652014-02-14 15:13:36 +00004864*/
4865/* Opcode: IdxGT P1 P2 P3 P4 P5
4866** Synopsis: key=r[P3@P4]
drh772ae622004-05-19 13:13:08 +00004867**
drh4a1d3652014-02-14 15:13:36 +00004868** The P4 register values beginning with P3 form an unpacked index
4869** key that omits the PRIMARY KEY. Compare this key value against the index
4870** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
4871** fields at the end.
4872**
4873** If the P1 index entry is greater than the key value
4874** then jump to P2. Otherwise fall through to the next instruction.
drh8721ce42001-11-07 14:22:00 +00004875*/
drh3bb9b932010-08-06 02:10:00 +00004876/* Opcode: IdxLT P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00004877** Synopsis: key=r[P3@P4]
drhc045ec52002-12-04 20:01:06 +00004878**
danielk197761dd5832008-04-18 11:31:12 +00004879** The P4 register values beginning with P3 form an unpacked index
drh4a1d3652014-02-14 15:13:36 +00004880** key that omits the PRIMARY KEY or ROWID. Compare this key value against
4881** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
4882** ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00004883**
danielk197761dd5832008-04-18 11:31:12 +00004884** If the P1 index entry is less than the key value then jump to P2.
4885** Otherwise fall through to the next instruction.
drhc045ec52002-12-04 20:01:06 +00004886*/
drh4a1d3652014-02-14 15:13:36 +00004887/* Opcode: IdxLE P1 P2 P3 P4 P5
4888** Synopsis: key=r[P3@P4]
4889**
4890** The P4 register values beginning with P3 form an unpacked index
4891** key that omits the PRIMARY KEY or ROWID. Compare this key value against
4892** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
4893** ROWID on the P1 index.
4894**
4895** If the P1 index entry is less than or equal to the key value then jump
4896** to P2. Otherwise fall through to the next instruction.
4897*/
4898case OP_IdxLE: /* jump */
4899case OP_IdxGT: /* jump */
drh93952eb2009-11-13 19:43:43 +00004900case OP_IdxLT: /* jump */
drh4a1d3652014-02-14 15:13:36 +00004901case OP_IdxGE: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004902 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004903 int res;
4904 UnpackedRecord r;
drh8721ce42001-11-07 14:22:00 +00004905
drh653b82a2009-06-22 11:10:47 +00004906 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4907 pC = p->apCsr[pOp->p1];
4908 assert( pC!=0 );
drhd4187c72010-08-30 22:15:45 +00004909 assert( pC->isOrdered );
drh3da046d2013-11-11 03:24:11 +00004910 assert( pC->pCursor!=0);
4911 assert( pC->deferredMoveto==0 );
4912 assert( pOp->p5==0 || pOp->p5==1 );
4913 assert( pOp->p4type==P4_INT32 );
4914 r.pKeyInfo = pC->pKeyInfo;
4915 r.nField = (u16)pOp->p4.i;
drh4a1d3652014-02-14 15:13:36 +00004916 if( pOp->opcode<OP_IdxLT ){
4917 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
dan1fed5da2014-02-25 21:01:25 +00004918 r.default_rc = -1;
drh3da046d2013-11-11 03:24:11 +00004919 }else{
drh4a1d3652014-02-14 15:13:36 +00004920 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
dan1fed5da2014-02-25 21:01:25 +00004921 r.default_rc = 0;
drh3da046d2013-11-11 03:24:11 +00004922 }
4923 r.aMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00004924#ifdef SQLITE_DEBUG
drh3da046d2013-11-11 03:24:11 +00004925 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
drh2b4ded92010-09-27 21:09:31 +00004926#endif
drh2dc06482013-12-11 00:59:10 +00004927 res = 0; /* Not needed. Only used to silence a warning. */
drhd3b74202014-09-17 16:41:15 +00004928 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
drh4a1d3652014-02-14 15:13:36 +00004929 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
4930 if( (pOp->opcode&1)==(OP_IdxLT&1) ){
4931 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
drh3da046d2013-11-11 03:24:11 +00004932 res = -res;
4933 }else{
drh4a1d3652014-02-14 15:13:36 +00004934 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
drh3da046d2013-11-11 03:24:11 +00004935 res++;
4936 }
drh688852a2014-02-17 22:40:43 +00004937 VdbeBranchTaken(res>0,2);
drhf56fa462015-04-13 21:39:54 +00004938 if( res>0 ) goto jump_to_p2;
drh8721ce42001-11-07 14:22:00 +00004939 break;
4940}
4941
drh98757152008-01-09 23:04:12 +00004942/* Opcode: Destroy P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00004943**
4944** Delete an entire database table or index whose root page in the database
4945** file is given by P1.
drhb19a2bc2001-09-16 00:13:26 +00004946**
drh98757152008-01-09 23:04:12 +00004947** The table being destroyed is in the main database file if P3==0. If
4948** P3==1 then the table to be clear is in the auxiliary database file
drhf57b3392001-10-08 13:22:32 +00004949** that is used to store tables create using CREATE TEMPORARY TABLE.
4950**
drh205f48e2004-11-05 00:43:11 +00004951** If AUTOVACUUM is enabled then it is possible that another root page
4952** might be moved into the newly deleted root page in order to keep all
4953** root pages contiguous at the beginning of the database. The former
4954** value of the root page that moved - its value before the move occurred -
drh9cbf3422008-01-17 16:22:13 +00004955** is stored in register P2. If no page
drh98757152008-01-09 23:04:12 +00004956** movement was required (because the table being dropped was already
4957** the last one in the database) then a zero is stored in register P2.
4958** If AUTOVACUUM is disabled then a zero is stored in register P2.
drh205f48e2004-11-05 00:43:11 +00004959**
drhb19a2bc2001-09-16 00:13:26 +00004960** See also: Clear
drh5e00f6c2001-09-13 13:46:56 +00004961*/
drh27a348c2015-04-13 19:14:06 +00004962case OP_Destroy: { /* out2 */
danielk1977a0bf2652004-11-04 14:30:04 +00004963 int iMoved;
drh856c1032009-06-02 15:21:42 +00004964 int iDb;
drh3a949872012-09-18 13:20:13 +00004965
drh9e92a472013-06-27 17:40:30 +00004966 assert( p->readOnly==0 );
drh27a348c2015-04-13 19:14:06 +00004967 pOut = out2Prerelease(p, pOp);
drh3c657212009-11-17 23:59:58 +00004968 pOut->flags = MEM_Null;
drh086723a2015-03-24 12:51:52 +00004969 if( db->nVdbeRead > db->nVDestroy+1 ){
danielk1977e6efa742004-11-10 11:55:10 +00004970 rc = SQLITE_LOCKED;
drh77658e22007-12-04 16:54:52 +00004971 p->errorAction = OE_Abort;
danielk1977e6efa742004-11-10 11:55:10 +00004972 }else{
drh856c1032009-06-02 15:21:42 +00004973 iDb = pOp->p3;
drha7ab6d82014-07-21 15:44:39 +00004974 assert( DbMaskTest(p->btreeMask, iDb) );
drh2dc06482013-12-11 00:59:10 +00004975 iMoved = 0; /* Not needed. Only to silence a warning. */
drh98757152008-01-09 23:04:12 +00004976 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
drh3c657212009-11-17 23:59:58 +00004977 pOut->flags = MEM_Int;
drh98757152008-01-09 23:04:12 +00004978 pOut->u.i = iMoved;
drh3765df42006-06-28 18:18:09 +00004979#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977e6efa742004-11-10 11:55:10 +00004980 if( rc==SQLITE_OK && iMoved!=0 ){
drhcdf011d2011-04-04 21:25:28 +00004981 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
4982 /* All OP_Destroy operations occur on the same btree */
4983 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
4984 resetSchemaOnFault = iDb+1;
danielk1977e6efa742004-11-10 11:55:10 +00004985 }
drh3765df42006-06-28 18:18:09 +00004986#endif
danielk1977a0bf2652004-11-04 14:30:04 +00004987 }
drh5e00f6c2001-09-13 13:46:56 +00004988 break;
4989}
4990
danielk1977c7af4842008-10-27 13:59:33 +00004991/* Opcode: Clear P1 P2 P3
drh5edc3122001-09-13 21:53:09 +00004992**
4993** Delete all contents of the database table or index whose root page
drhb19a2bc2001-09-16 00:13:26 +00004994** in the database file is given by P1. But, unlike Destroy, do not
drh5edc3122001-09-13 21:53:09 +00004995** remove the table or index from the database file.
drhb19a2bc2001-09-16 00:13:26 +00004996**
drhf57b3392001-10-08 13:22:32 +00004997** The table being clear is in the main database file if P2==0. If
4998** P2==1 then the table to be clear is in the auxiliary database file
4999** that is used to store tables create using CREATE TEMPORARY TABLE.
5000**
shanebe217792009-03-05 04:20:31 +00005001** If the P3 value is non-zero, then the table referred to must be an
danielk1977c7af4842008-10-27 13:59:33 +00005002** intkey table (an SQL table, not an index). In this case the row change
5003** count is incremented by the number of rows in the table being cleared.
5004** If P3 is greater than zero, then the value stored in register P3 is
5005** also incremented by the number of rows in the table being cleared.
5006**
drhb19a2bc2001-09-16 00:13:26 +00005007** See also: Destroy
drh5edc3122001-09-13 21:53:09 +00005008*/
drh9cbf3422008-01-17 16:22:13 +00005009case OP_Clear: {
drh856c1032009-06-02 15:21:42 +00005010 int nChange;
5011
5012 nChange = 0;
drh9e92a472013-06-27 17:40:30 +00005013 assert( p->readOnly==0 );
drha7ab6d82014-07-21 15:44:39 +00005014 assert( DbMaskTest(p->btreeMask, pOp->p2) );
danielk1977c7af4842008-10-27 13:59:33 +00005015 rc = sqlite3BtreeClearTable(
5016 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
5017 );
5018 if( pOp->p3 ){
5019 p->nChange += nChange;
5020 if( pOp->p3>0 ){
drh2b4ded92010-09-27 21:09:31 +00005021 assert( memIsValid(&aMem[pOp->p3]) );
5022 memAboutToChange(p, &aMem[pOp->p3]);
drha6c2ed92009-11-14 23:22:23 +00005023 aMem[pOp->p3].u.i += nChange;
danielk1977c7af4842008-10-27 13:59:33 +00005024 }
5025 }
drh5edc3122001-09-13 21:53:09 +00005026 break;
5027}
5028
drh65ea12c2014-03-19 17:41:36 +00005029/* Opcode: ResetSorter P1 * * * *
drh079a3072014-03-19 14:10:55 +00005030**
drh65ea12c2014-03-19 17:41:36 +00005031** Delete all contents from the ephemeral table or sorter
5032** that is open on cursor P1.
drh079a3072014-03-19 14:10:55 +00005033**
drh65ea12c2014-03-19 17:41:36 +00005034** This opcode only works for cursors used for sorting and
5035** opened with OP_OpenEphemeral or OP_SorterOpen.
drh079a3072014-03-19 14:10:55 +00005036*/
drh65ea12c2014-03-19 17:41:36 +00005037case OP_ResetSorter: {
drh079a3072014-03-19 14:10:55 +00005038 VdbeCursor *pC;
5039
5040 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5041 pC = p->apCsr[pOp->p1];
5042 assert( pC!=0 );
drh65ea12c2014-03-19 17:41:36 +00005043 if( pC->pSorter ){
5044 sqlite3VdbeSorterReset(db, pC->pSorter);
5045 }else{
5046 assert( pC->isEphemeral );
5047 rc = sqlite3BtreeClearTableOfCursor(pC->pCursor);
5048 }
drh079a3072014-03-19 14:10:55 +00005049 break;
5050}
5051
drh4c583122008-01-04 22:01:03 +00005052/* Opcode: CreateTable P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005053** Synopsis: r[P2]=root iDb=P1
drh5b2fd562001-09-13 15:21:31 +00005054**
drh4c583122008-01-04 22:01:03 +00005055** Allocate a new table in the main database file if P1==0 or in the
5056** auxiliary database file if P1==1 or in an attached database if
5057** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00005058** register P2
drh5b2fd562001-09-13 15:21:31 +00005059**
drhc6b52df2002-01-04 03:09:29 +00005060** The difference between a table and an index is this: A table must
5061** have a 4-byte integer key and can have arbitrary data. An index
5062** has an arbitrary key but no data.
5063**
drhb19a2bc2001-09-16 00:13:26 +00005064** See also: CreateIndex
drh5b2fd562001-09-13 15:21:31 +00005065*/
drh4c583122008-01-04 22:01:03 +00005066/* Opcode: CreateIndex P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005067** Synopsis: r[P2]=root iDb=P1
drhf57b3392001-10-08 13:22:32 +00005068**
drh4c583122008-01-04 22:01:03 +00005069** Allocate a new index in the main database file if P1==0 or in the
5070** auxiliary database file if P1==1 or in an attached database if
5071** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00005072** register P2.
drhf57b3392001-10-08 13:22:32 +00005073**
drhc6b52df2002-01-04 03:09:29 +00005074** See documentation on OP_CreateTable for additional information.
drhf57b3392001-10-08 13:22:32 +00005075*/
drh27a348c2015-04-13 19:14:06 +00005076case OP_CreateIndex: /* out2 */
5077case OP_CreateTable: { /* out2 */
drh856c1032009-06-02 15:21:42 +00005078 int pgno;
drhf328bc82004-05-10 23:29:49 +00005079 int flags;
drh234c39d2004-07-24 03:30:47 +00005080 Db *pDb;
drh856c1032009-06-02 15:21:42 +00005081
drh27a348c2015-04-13 19:14:06 +00005082 pOut = out2Prerelease(p, pOp);
drh856c1032009-06-02 15:21:42 +00005083 pgno = 0;
drh234c39d2004-07-24 03:30:47 +00005084 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005085 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00005086 assert( p->readOnly==0 );
drh234c39d2004-07-24 03:30:47 +00005087 pDb = &db->aDb[pOp->p1];
5088 assert( pDb->pBt!=0 );
drhc6b52df2002-01-04 03:09:29 +00005089 if( pOp->opcode==OP_CreateTable ){
danielk197794076252004-05-14 12:16:11 +00005090 /* flags = BTREE_INTKEY; */
drhd4187c72010-08-30 22:15:45 +00005091 flags = BTREE_INTKEY;
drhc6b52df2002-01-04 03:09:29 +00005092 }else{
drhd4187c72010-08-30 22:15:45 +00005093 flags = BTREE_BLOBKEY;
drhc6b52df2002-01-04 03:09:29 +00005094 }
drh234c39d2004-07-24 03:30:47 +00005095 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
drh88a003e2008-12-11 16:17:03 +00005096 pOut->u.i = pgno;
drh5b2fd562001-09-13 15:21:31 +00005097 break;
5098}
5099
drh22645842011-03-24 01:34:03 +00005100/* Opcode: ParseSchema P1 * * P4 *
drh234c39d2004-07-24 03:30:47 +00005101**
5102** Read and parse all entries from the SQLITE_MASTER table of database P1
drh22645842011-03-24 01:34:03 +00005103** that match the WHERE clause P4.
drh234c39d2004-07-24 03:30:47 +00005104**
5105** This opcode invokes the parser to create a new virtual machine,
shane21e7feb2008-05-30 15:59:49 +00005106** then runs the new virtual machine. It is thus a re-entrant opcode.
drh234c39d2004-07-24 03:30:47 +00005107*/
drh9cbf3422008-01-17 16:22:13 +00005108case OP_ParseSchema: {
drh856c1032009-06-02 15:21:42 +00005109 int iDb;
5110 const char *zMaster;
5111 char *zSql;
5112 InitData initData;
5113
drhbdaec522011-04-04 00:14:43 +00005114 /* Any prepared statement that invokes this opcode will hold mutexes
5115 ** on every btree. This is a prerequisite for invoking
5116 ** sqlite3InitCallback().
5117 */
5118#ifdef SQLITE_DEBUG
5119 for(iDb=0; iDb<db->nDb; iDb++){
5120 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
5121 }
5122#endif
drhbdaec522011-04-04 00:14:43 +00005123
drh856c1032009-06-02 15:21:42 +00005124 iDb = pOp->p1;
drh234c39d2004-07-24 03:30:47 +00005125 assert( iDb>=0 && iDb<db->nDb );
dan6c154872011-04-02 09:44:43 +00005126 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
drhbdaec522011-04-04 00:14:43 +00005127 /* Used to be a conditional */ {
drh856c1032009-06-02 15:21:42 +00005128 zMaster = SCHEMA_TABLE(iDb);
danielk1977a8bbef82009-03-23 17:11:26 +00005129 initData.db = db;
5130 initData.iDb = pOp->p1;
5131 initData.pzErrMsg = &p->zErrMsg;
5132 zSql = sqlite3MPrintf(db,
drh6a9c64b2010-01-12 23:54:14 +00005133 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
danielk1977a8bbef82009-03-23 17:11:26 +00005134 db->aDb[iDb].zName, zMaster, pOp->p4.z);
5135 if( zSql==0 ){
5136 rc = SQLITE_NOMEM;
5137 }else{
danielk1977a8bbef82009-03-23 17:11:26 +00005138 assert( db->init.busy==0 );
5139 db->init.busy = 1;
5140 initData.rc = SQLITE_OK;
5141 assert( !db->mallocFailed );
5142 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
5143 if( rc==SQLITE_OK ) rc = initData.rc;
5144 sqlite3DbFree(db, zSql);
5145 db->init.busy = 0;
danielk1977a8bbef82009-03-23 17:11:26 +00005146 }
drh3c23a882007-01-09 14:01:13 +00005147 }
drh81028a42012-05-15 18:28:27 +00005148 if( rc ) sqlite3ResetAllSchemasOfConnection(db);
danielk1977261919c2005-12-06 12:52:59 +00005149 if( rc==SQLITE_NOMEM ){
danielk1977261919c2005-12-06 12:52:59 +00005150 goto no_mem;
5151 }
drh234c39d2004-07-24 03:30:47 +00005152 break;
5153}
5154
drh8bfdf722009-06-19 14:06:03 +00005155#if !defined(SQLITE_OMIT_ANALYZE)
drh98757152008-01-09 23:04:12 +00005156/* Opcode: LoadAnalysis P1 * * * *
drh497e4462005-07-23 03:18:40 +00005157**
5158** Read the sqlite_stat1 table for database P1 and load the content
5159** of that table into the internal index hash table. This will cause
5160** the analysis to be used when preparing all subsequent queries.
5161*/
drh9cbf3422008-01-17 16:22:13 +00005162case OP_LoadAnalysis: {
drh856c1032009-06-02 15:21:42 +00005163 assert( pOp->p1>=0 && pOp->p1<db->nDb );
5164 rc = sqlite3AnalysisLoad(db, pOp->p1);
drh497e4462005-07-23 03:18:40 +00005165 break;
5166}
drh8bfdf722009-06-19 14:06:03 +00005167#endif /* !defined(SQLITE_OMIT_ANALYZE) */
drh497e4462005-07-23 03:18:40 +00005168
drh98757152008-01-09 23:04:12 +00005169/* Opcode: DropTable P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005170**
5171** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005172** the table named P4 in database P1. This is called after a table
drh5dad9a32014-07-25 18:37:42 +00005173** is dropped from disk (using the Destroy opcode) in order to keep
5174** the internal representation of the
drh956bc922004-07-24 17:38:29 +00005175** schema consistent with what is on disk.
5176*/
drh9cbf3422008-01-17 16:22:13 +00005177case OP_DropTable: {
danielk19772dca4ac2008-01-03 11:50:29 +00005178 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005179 break;
5180}
5181
drh98757152008-01-09 23:04:12 +00005182/* Opcode: DropIndex P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005183**
5184** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005185** the index named P4 in database P1. This is called after an index
drh5dad9a32014-07-25 18:37:42 +00005186** is dropped from disk (using the Destroy opcode)
5187** in order to keep the internal representation of the
drh956bc922004-07-24 17:38:29 +00005188** schema consistent with what is on disk.
5189*/
drh9cbf3422008-01-17 16:22:13 +00005190case OP_DropIndex: {
danielk19772dca4ac2008-01-03 11:50:29 +00005191 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005192 break;
5193}
5194
drh98757152008-01-09 23:04:12 +00005195/* Opcode: DropTrigger P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005196**
5197** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005198** the trigger named P4 in database P1. This is called after a trigger
drh5dad9a32014-07-25 18:37:42 +00005199** is dropped from disk (using the Destroy opcode) in order to keep
5200** the internal representation of the
drh956bc922004-07-24 17:38:29 +00005201** schema consistent with what is on disk.
5202*/
drh9cbf3422008-01-17 16:22:13 +00005203case OP_DropTrigger: {
danielk19772dca4ac2008-01-03 11:50:29 +00005204 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005205 break;
5206}
5207
drh234c39d2004-07-24 03:30:47 +00005208
drhb7f91642004-10-31 02:22:47 +00005209#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh98757152008-01-09 23:04:12 +00005210/* Opcode: IntegrityCk P1 P2 P3 * P5
drh5e00f6c2001-09-13 13:46:56 +00005211**
drh98757152008-01-09 23:04:12 +00005212** Do an analysis of the currently open database. Store in
5213** register P1 the text of an error message describing any problems.
5214** If no problems are found, store a NULL in register P1.
drh1dcdbc02007-01-27 02:24:54 +00005215**
drh98757152008-01-09 23:04:12 +00005216** The register P3 contains the maximum number of allowed errors.
drh60a713c2008-01-21 16:22:45 +00005217** At most reg(P3) errors will be reported.
5218** In other words, the analysis stops as soon as reg(P1) errors are
5219** seen. Reg(P1) is updated with the number of errors remaining.
drhb19a2bc2001-09-16 00:13:26 +00005220**
drh79069752004-05-22 21:30:40 +00005221** The root page numbers of all tables in the database are integer
drh60a713c2008-01-21 16:22:45 +00005222** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
drh98757152008-01-09 23:04:12 +00005223** total.
drh21504322002-06-25 13:16:02 +00005224**
drh98757152008-01-09 23:04:12 +00005225** If P5 is not zero, the check is done on the auxiliary database
drh21504322002-06-25 13:16:02 +00005226** file, not the main database file.
drh1dd397f2002-02-03 03:34:07 +00005227**
drh1dcdbc02007-01-27 02:24:54 +00005228** This opcode is used to implement the integrity_check pragma.
drh5e00f6c2001-09-13 13:46:56 +00005229*/
drhaaab5722002-02-19 13:39:21 +00005230case OP_IntegrityCk: {
drh98757152008-01-09 23:04:12 +00005231 int nRoot; /* Number of tables to check. (Number of root pages.) */
5232 int *aRoot; /* Array of rootpage numbers for tables to be checked */
5233 int j; /* Loop counter */
5234 int nErr; /* Number of errors reported */
5235 char *z; /* Text of the error report */
5236 Mem *pnErr; /* Register keeping track of errors remaining */
drh9e92a472013-06-27 17:40:30 +00005237
drh1713afb2013-06-28 01:24:57 +00005238 assert( p->bIsReader );
drh98757152008-01-09 23:04:12 +00005239 nRoot = pOp->p2;
drh79069752004-05-22 21:30:40 +00005240 assert( nRoot>0 );
drh633e6d52008-07-28 19:34:53 +00005241 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
drhcaec2f12003-01-07 02:47:47 +00005242 if( aRoot==0 ) goto no_mem;
dan3bc9f742013-08-15 16:18:39 +00005243 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00005244 pnErr = &aMem[pOp->p3];
drh1dcdbc02007-01-27 02:24:54 +00005245 assert( (pnErr->flags & MEM_Int)!=0 );
drh98757152008-01-09 23:04:12 +00005246 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
drha6c2ed92009-11-14 23:22:23 +00005247 pIn1 = &aMem[pOp->p1];
drh79069752004-05-22 21:30:40 +00005248 for(j=0; j<nRoot; j++){
drh9c1905f2008-12-10 22:32:56 +00005249 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
drh1dd397f2002-02-03 03:34:07 +00005250 }
5251 aRoot[j] = 0;
drh98757152008-01-09 23:04:12 +00005252 assert( pOp->p5<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005253 assert( DbMaskTest(p->btreeMask, pOp->p5) );
drh98757152008-01-09 23:04:12 +00005254 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
drh9c1905f2008-12-10 22:32:56 +00005255 (int)pnErr->u.i, &nErr);
drhc890fec2008-08-01 20:10:08 +00005256 sqlite3DbFree(db, aRoot);
drh3c024d62007-03-30 11:23:45 +00005257 pnErr->u.i -= nErr;
drha05a7222008-01-19 03:35:58 +00005258 sqlite3VdbeMemSetNull(pIn1);
drh1dcdbc02007-01-27 02:24:54 +00005259 if( nErr==0 ){
5260 assert( z==0 );
drhc890fec2008-08-01 20:10:08 +00005261 }else if( z==0 ){
5262 goto no_mem;
drh1dd397f2002-02-03 03:34:07 +00005263 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00005264 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
danielk19778a6b5412004-05-24 07:04:25 +00005265 }
drhb7654112008-01-12 12:48:07 +00005266 UPDATE_MAX_BLOBSIZE(pIn1);
drh98757152008-01-09 23:04:12 +00005267 sqlite3VdbeChangeEncoding(pIn1, encoding);
drh5e00f6c2001-09-13 13:46:56 +00005268 break;
5269}
drhb7f91642004-10-31 02:22:47 +00005270#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5e00f6c2001-09-13 13:46:56 +00005271
drh3d4501e2008-12-04 20:40:10 +00005272/* Opcode: RowSetAdd P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005273** Synopsis: rowset(P1)=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00005274**
drh3d4501e2008-12-04 20:40:10 +00005275** Insert the integer value held by register P2 into a boolean index
5276** held in register P1.
5277**
5278** An assertion fails if P2 is not an integer.
drh5e00f6c2001-09-13 13:46:56 +00005279*/
drh93952eb2009-11-13 19:43:43 +00005280case OP_RowSetAdd: { /* in1, in2 */
drh3c657212009-11-17 23:59:58 +00005281 pIn1 = &aMem[pOp->p1];
5282 pIn2 = &aMem[pOp->p2];
drh93952eb2009-11-13 19:43:43 +00005283 assert( (pIn2->flags & MEM_Int)!=0 );
5284 if( (pIn1->flags & MEM_RowSet)==0 ){
5285 sqlite3VdbeMemSetRowSet(pIn1);
5286 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
drh3d4501e2008-12-04 20:40:10 +00005287 }
drh93952eb2009-11-13 19:43:43 +00005288 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
drh3d4501e2008-12-04 20:40:10 +00005289 break;
5290}
5291
5292/* Opcode: RowSetRead P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00005293** Synopsis: r[P3]=rowset(P1)
drh3d4501e2008-12-04 20:40:10 +00005294**
5295** Extract the smallest value from boolean index P1 and put that value into
5296** register P3. Or, if boolean index P1 is initially empty, leave P3
5297** unchanged and jump to instruction P2.
5298*/
drh93952eb2009-11-13 19:43:43 +00005299case OP_RowSetRead: { /* jump, in1, out3 */
drh3d4501e2008-12-04 20:40:10 +00005300 i64 val;
drh49afe3a2013-07-10 03:05:14 +00005301
drh3c657212009-11-17 23:59:58 +00005302 pIn1 = &aMem[pOp->p1];
drh93952eb2009-11-13 19:43:43 +00005303 if( (pIn1->flags & MEM_RowSet)==0
5304 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
drh3d4501e2008-12-04 20:40:10 +00005305 ){
5306 /* The boolean index is empty */
drh93952eb2009-11-13 19:43:43 +00005307 sqlite3VdbeMemSetNull(pIn1);
drh688852a2014-02-17 22:40:43 +00005308 VdbeBranchTaken(1,2);
drhf56fa462015-04-13 21:39:54 +00005309 goto jump_to_p2_and_check_for_interrupt;
drh3d4501e2008-12-04 20:40:10 +00005310 }else{
5311 /* A value was pulled from the index */
drh688852a2014-02-17 22:40:43 +00005312 VdbeBranchTaken(0,2);
drhf56fa462015-04-13 21:39:54 +00005313 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
drh17435752007-08-16 04:30:38 +00005314 }
drh49afe3a2013-07-10 03:05:14 +00005315 goto check_for_interrupt;
drh5e00f6c2001-09-13 13:46:56 +00005316}
5317
drh1b26c7c2009-04-22 02:15:47 +00005318/* Opcode: RowSetTest P1 P2 P3 P4
drh81316f82013-10-29 20:40:47 +00005319** Synopsis: if r[P3] in rowset(P1) goto P2
danielk19771d461462009-04-21 09:02:45 +00005320**
drhade97602009-04-21 15:05:18 +00005321** Register P3 is assumed to hold a 64-bit integer value. If register P1
drh1b26c7c2009-04-22 02:15:47 +00005322** contains a RowSet object and that RowSet object contains
danielk19771d461462009-04-21 09:02:45 +00005323** the value held in P3, jump to register P2. Otherwise, insert the
drh1b26c7c2009-04-22 02:15:47 +00005324** integer in P3 into the RowSet and continue on to the
drhade97602009-04-21 15:05:18 +00005325** next opcode.
danielk19771d461462009-04-21 09:02:45 +00005326**
drh1b26c7c2009-04-22 02:15:47 +00005327** The RowSet object is optimized for the case where successive sets
danielk19771d461462009-04-21 09:02:45 +00005328** of integers, where each set contains no duplicates. Each set
5329** of values is identified by a unique P4 value. The first set
drh1b26c7c2009-04-22 02:15:47 +00005330** must have P4==0, the final set P4=-1. P4 must be either -1 or
5331** non-negative. For non-negative values of P4 only the lower 4
5332** bits are significant.
danielk19771d461462009-04-21 09:02:45 +00005333**
5334** This allows optimizations: (a) when P4==0 there is no need to test
drh1b26c7c2009-04-22 02:15:47 +00005335** the rowset object for P3, as it is guaranteed not to contain it,
danielk19771d461462009-04-21 09:02:45 +00005336** (b) when P4==-1 there is no need to insert the value, as it will
5337** never be tested for, and (c) when a value that is part of set X is
5338** inserted, there is no need to search to see if the same value was
5339** previously inserted as part of set X (only if it was previously
5340** inserted as part of some other set).
5341*/
drh1b26c7c2009-04-22 02:15:47 +00005342case OP_RowSetTest: { /* jump, in1, in3 */
drh856c1032009-06-02 15:21:42 +00005343 int iSet;
5344 int exists;
5345
drh3c657212009-11-17 23:59:58 +00005346 pIn1 = &aMem[pOp->p1];
5347 pIn3 = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00005348 iSet = pOp->p4.i;
danielk19771d461462009-04-21 09:02:45 +00005349 assert( pIn3->flags&MEM_Int );
5350
drh1b26c7c2009-04-22 02:15:47 +00005351 /* If there is anything other than a rowset object in memory cell P1,
5352 ** delete it now and initialize P1 with an empty rowset
danielk19771d461462009-04-21 09:02:45 +00005353 */
drh733bf1b2009-04-22 00:47:00 +00005354 if( (pIn1->flags & MEM_RowSet)==0 ){
5355 sqlite3VdbeMemSetRowSet(pIn1);
5356 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
danielk19771d461462009-04-21 09:02:45 +00005357 }
5358
5359 assert( pOp->p4type==P4_INT32 );
drh1b26c7c2009-04-22 02:15:47 +00005360 assert( iSet==-1 || iSet>=0 );
danielk19771d461462009-04-21 09:02:45 +00005361 if( iSet ){
drhd83cad22014-04-10 02:24:48 +00005362 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
drh688852a2014-02-17 22:40:43 +00005363 VdbeBranchTaken(exists!=0,2);
drhf56fa462015-04-13 21:39:54 +00005364 if( exists ) goto jump_to_p2;
danielk19771d461462009-04-21 09:02:45 +00005365 }
5366 if( iSet>=0 ){
drh733bf1b2009-04-22 00:47:00 +00005367 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00005368 }
5369 break;
5370}
5371
drh5e00f6c2001-09-13 13:46:56 +00005372
danielk197793758c82005-01-21 08:13:14 +00005373#ifndef SQLITE_OMIT_TRIGGER
dan165921a2009-08-28 18:53:45 +00005374
drh0fd61352014-02-07 02:29:45 +00005375/* Opcode: Program P1 P2 P3 P4 P5
dan165921a2009-08-28 18:53:45 +00005376**
dan76d462e2009-08-30 11:42:51 +00005377** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
dan165921a2009-08-28 18:53:45 +00005378**
dan76d462e2009-08-30 11:42:51 +00005379** P1 contains the address of the memory cell that contains the first memory
5380** cell in an array of values used as arguments to the sub-program. P2
5381** contains the address to jump to if the sub-program throws an IGNORE
5382** exception using the RAISE() function. Register P3 contains the address
5383** of a memory cell in this (the parent) VM that is used to allocate the
5384** memory required by the sub-vdbe at runtime.
dan165921a2009-08-28 18:53:45 +00005385**
5386** P4 is a pointer to the VM containing the trigger program.
drh0fd61352014-02-07 02:29:45 +00005387**
5388** If P5 is non-zero, then recursive program invocation is enabled.
dan165921a2009-08-28 18:53:45 +00005389*/
dan76d462e2009-08-30 11:42:51 +00005390case OP_Program: { /* jump */
dan65a7cd12009-09-01 12:16:01 +00005391 int nMem; /* Number of memory registers for sub-program */
5392 int nByte; /* Bytes of runtime space required for sub-program */
5393 Mem *pRt; /* Register to allocate runtime space */
5394 Mem *pMem; /* Used to iterate through memory cells */
5395 Mem *pEnd; /* Last memory cell in new array */
5396 VdbeFrame *pFrame; /* New vdbe frame to execute in */
5397 SubProgram *pProgram; /* Sub-program to execute */
5398 void *t; /* Token identifying trigger */
5399
5400 pProgram = pOp->p4.pProgram;
drha6c2ed92009-11-14 23:22:23 +00005401 pRt = &aMem[pOp->p3];
dan165921a2009-08-28 18:53:45 +00005402 assert( pProgram->nOp>0 );
5403
dan1da40a32009-09-19 17:00:31 +00005404 /* If the p5 flag is clear, then recursive invocation of triggers is
5405 ** disabled for backwards compatibility (p5 is set if this sub-program
5406 ** is really a trigger, not a foreign key action, and the flag set
5407 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
dan165921a2009-08-28 18:53:45 +00005408 **
5409 ** It is recursive invocation of triggers, at the SQL level, that is
5410 ** disabled. In some cases a single trigger may generate more than one
5411 ** SubProgram (if the trigger may be executed with more than one different
5412 ** ON CONFLICT algorithm). SubProgram structures associated with a
5413 ** single trigger all have the same value for the SubProgram.token
dan1da40a32009-09-19 17:00:31 +00005414 ** variable. */
5415 if( pOp->p5 ){
dan65a7cd12009-09-01 12:16:01 +00005416 t = pProgram->token;
dan165921a2009-08-28 18:53:45 +00005417 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5418 if( pFrame ) break;
5419 }
5420
danf5894502009-10-07 18:41:19 +00005421 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
dan165921a2009-08-28 18:53:45 +00005422 rc = SQLITE_ERROR;
drh22c17b82015-05-15 04:13:15 +00005423 sqlite3VdbeError(p, "too many levels of trigger recursion");
dan165921a2009-08-28 18:53:45 +00005424 break;
5425 }
5426
5427 /* Register pRt is used to store the memory required to save the state
5428 ** of the current program, and the memory required at runtime to execute
5429 ** the trigger program. If this trigger has been fired before, then pRt
5430 ** is already allocated. Otherwise, it must be initialized. */
5431 if( (pRt->flags&MEM_Frame)==0 ){
dan165921a2009-08-28 18:53:45 +00005432 /* SubProgram.nMem is set to the number of memory cells used by the
5433 ** program stored in SubProgram.aOp. As well as these, one memory
5434 ** cell is required for each cursor used by the program. Set local
5435 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5436 */
dan65a7cd12009-09-01 12:16:01 +00005437 nMem = pProgram->nMem + pProgram->nCsr;
5438 nByte = ROUND8(sizeof(VdbeFrame))
dan165921a2009-08-28 18:53:45 +00005439 + nMem * sizeof(Mem)
dan1d8cb212011-12-09 13:24:16 +00005440 + pProgram->nCsr * sizeof(VdbeCursor *)
5441 + pProgram->nOnce * sizeof(u8);
dan165921a2009-08-28 18:53:45 +00005442 pFrame = sqlite3DbMallocZero(db, nByte);
5443 if( !pFrame ){
5444 goto no_mem;
5445 }
5446 sqlite3VdbeMemRelease(pRt);
5447 pRt->flags = MEM_Frame;
5448 pRt->u.pFrame = pFrame;
5449
5450 pFrame->v = p;
5451 pFrame->nChildMem = nMem;
5452 pFrame->nChildCsr = pProgram->nCsr;
drhf56fa462015-04-13 21:39:54 +00005453 pFrame->pc = (int)(pOp - aOp);
dan165921a2009-08-28 18:53:45 +00005454 pFrame->aMem = p->aMem;
5455 pFrame->nMem = p->nMem;
5456 pFrame->apCsr = p->apCsr;
5457 pFrame->nCursor = p->nCursor;
5458 pFrame->aOp = p->aOp;
5459 pFrame->nOp = p->nOp;
5460 pFrame->token = pProgram->token;
dan1d8cb212011-12-09 13:24:16 +00005461 pFrame->aOnceFlag = p->aOnceFlag;
5462 pFrame->nOnceFlag = p->nOnceFlag;
dane2f771b2014-11-03 15:33:17 +00005463#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00005464 pFrame->anExec = p->anExec;
dane2f771b2014-11-03 15:33:17 +00005465#endif
dan165921a2009-08-28 18:53:45 +00005466
5467 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5468 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
drha5750cf2014-02-07 13:20:31 +00005469 pMem->flags = MEM_Undefined;
dan165921a2009-08-28 18:53:45 +00005470 pMem->db = db;
5471 }
5472 }else{
5473 pFrame = pRt->u.pFrame;
5474 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
5475 assert( pProgram->nCsr==pFrame->nChildCsr );
drhf56fa462015-04-13 21:39:54 +00005476 assert( (int)(pOp - aOp)==pFrame->pc );
dan165921a2009-08-28 18:53:45 +00005477 }
5478
5479 p->nFrame++;
5480 pFrame->pParent = p->pFrame;
drh99a66922011-05-13 18:51:42 +00005481 pFrame->lastRowid = lastRowid;
dan76d462e2009-08-30 11:42:51 +00005482 pFrame->nChange = p->nChange;
danc3da6672014-10-28 18:24:16 +00005483 pFrame->nDbChange = p->db->nChange;
dan2832ad42009-08-31 15:27:27 +00005484 p->nChange = 0;
dan165921a2009-08-28 18:53:45 +00005485 p->pFrame = pFrame;
drha6c2ed92009-11-14 23:22:23 +00005486 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
dan165921a2009-08-28 18:53:45 +00005487 p->nMem = pFrame->nChildMem;
shanecea72b22009-09-07 04:38:36 +00005488 p->nCursor = (u16)pFrame->nChildCsr;
drha6c2ed92009-11-14 23:22:23 +00005489 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
drhbbe879d2009-11-14 18:04:35 +00005490 p->aOp = aOp = pProgram->aOp;
dan165921a2009-08-28 18:53:45 +00005491 p->nOp = pProgram->nOp;
dan1d8cb212011-12-09 13:24:16 +00005492 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
5493 p->nOnceFlag = pProgram->nOnce;
dane2f771b2014-11-03 15:33:17 +00005494#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00005495 p->anExec = 0;
dane2f771b2014-11-03 15:33:17 +00005496#endif
drhf56fa462015-04-13 21:39:54 +00005497 pOp = &aOp[-1];
dan1d8cb212011-12-09 13:24:16 +00005498 memset(p->aOnceFlag, 0, p->nOnceFlag);
dan165921a2009-08-28 18:53:45 +00005499
5500 break;
5501}
5502
dan76d462e2009-08-30 11:42:51 +00005503/* Opcode: Param P1 P2 * * *
dan165921a2009-08-28 18:53:45 +00005504**
dan76d462e2009-08-30 11:42:51 +00005505** This opcode is only ever present in sub-programs called via the
5506** OP_Program instruction. Copy a value currently stored in a memory
5507** cell of the calling (parent) frame to cell P2 in the current frames
5508** address space. This is used by trigger programs to access the new.*
5509** and old.* values.
dan165921a2009-08-28 18:53:45 +00005510**
dan76d462e2009-08-30 11:42:51 +00005511** The address of the cell in the parent frame is determined by adding
5512** the value of the P1 argument to the value of the P1 argument to the
5513** calling OP_Program instruction.
dan165921a2009-08-28 18:53:45 +00005514*/
drh27a348c2015-04-13 19:14:06 +00005515case OP_Param: { /* out2 */
dan65a7cd12009-09-01 12:16:01 +00005516 VdbeFrame *pFrame;
5517 Mem *pIn;
drh27a348c2015-04-13 19:14:06 +00005518 pOut = out2Prerelease(p, pOp);
dan65a7cd12009-09-01 12:16:01 +00005519 pFrame = p->pFrame;
5520 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
dan165921a2009-08-28 18:53:45 +00005521 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5522 break;
5523}
5524
danielk197793758c82005-01-21 08:13:14 +00005525#endif /* #ifndef SQLITE_OMIT_TRIGGER */
rdcb0c374f2004-02-20 22:53:38 +00005526
dan1da40a32009-09-19 17:00:31 +00005527#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00005528/* Opcode: FkCounter P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005529** Synopsis: fkctr[P1]+=P2
dan1da40a32009-09-19 17:00:31 +00005530**
dan0ff297e2009-09-25 17:03:14 +00005531** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5532** If P1 is non-zero, the database constraint counter is incremented
5533** (deferred foreign key constraints). Otherwise, if P1 is zero, the
dan32b09f22009-09-23 17:29:59 +00005534** statement counter is incremented (immediate foreign key constraints).
dan1da40a32009-09-19 17:00:31 +00005535*/
dan32b09f22009-09-23 17:29:59 +00005536case OP_FkCounter: {
drh648e2642013-07-11 15:03:32 +00005537 if( db->flags & SQLITE_DeferFKs ){
5538 db->nDeferredImmCons += pOp->p2;
5539 }else if( pOp->p1 ){
dan0ff297e2009-09-25 17:03:14 +00005540 db->nDeferredCons += pOp->p2;
dan32b09f22009-09-23 17:29:59 +00005541 }else{
dan0ff297e2009-09-25 17:03:14 +00005542 p->nFkConstraint += pOp->p2;
5543 }
5544 break;
5545}
5546
5547/* Opcode: FkIfZero P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005548** Synopsis: if fkctr[P1]==0 goto P2
dan0ff297e2009-09-25 17:03:14 +00005549**
5550** This opcode tests if a foreign key constraint-counter is currently zero.
5551** If so, jump to instruction P2. Otherwise, fall through to the next
5552** instruction.
5553**
5554** If P1 is non-zero, then the jump is taken if the database constraint-counter
5555** is zero (the one that counts deferred constraint violations). If P1 is
5556** zero, the jump is taken if the statement constraint-counter is zero
5557** (immediate foreign key constraint violations).
5558*/
5559case OP_FkIfZero: { /* jump */
5560 if( pOp->p1 ){
drh688852a2014-02-17 22:40:43 +00005561 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
drhf56fa462015-04-13 21:39:54 +00005562 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
dan0ff297e2009-09-25 17:03:14 +00005563 }else{
drh688852a2014-02-17 22:40:43 +00005564 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
drhf56fa462015-04-13 21:39:54 +00005565 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
dan32b09f22009-09-23 17:29:59 +00005566 }
dan1da40a32009-09-19 17:00:31 +00005567 break;
5568}
5569#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5570
drh205f48e2004-11-05 00:43:11 +00005571#ifndef SQLITE_OMIT_AUTOINCREMENT
drh98757152008-01-09 23:04:12 +00005572/* Opcode: MemMax P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005573** Synopsis: r[P1]=max(r[P1],r[P2])
drh205f48e2004-11-05 00:43:11 +00005574**
dan76d462e2009-08-30 11:42:51 +00005575** P1 is a register in the root frame of this VM (the root frame is
5576** different from the current frame if this instruction is being executed
5577** within a sub-program). Set the value of register P1 to the maximum of
5578** its current value and the value in register P2.
drh205f48e2004-11-05 00:43:11 +00005579**
5580** This instruction throws an error if the memory cell is not initially
5581** an integer.
5582*/
dan76d462e2009-08-30 11:42:51 +00005583case OP_MemMax: { /* in2 */
dan76d462e2009-08-30 11:42:51 +00005584 VdbeFrame *pFrame;
5585 if( p->pFrame ){
5586 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5587 pIn1 = &pFrame->aMem[pOp->p1];
5588 }else{
drha6c2ed92009-11-14 23:22:23 +00005589 pIn1 = &aMem[pOp->p1];
dan76d462e2009-08-30 11:42:51 +00005590 }
drhec86c722011-12-09 17:27:51 +00005591 assert( memIsValid(pIn1) );
drh98757152008-01-09 23:04:12 +00005592 sqlite3VdbeMemIntegerify(pIn1);
drh3c657212009-11-17 23:59:58 +00005593 pIn2 = &aMem[pOp->p2];
drh98757152008-01-09 23:04:12 +00005594 sqlite3VdbeMemIntegerify(pIn2);
5595 if( pIn1->u.i<pIn2->u.i){
5596 pIn1->u.i = pIn2->u.i;
drh205f48e2004-11-05 00:43:11 +00005597 }
5598 break;
5599}
5600#endif /* SQLITE_OMIT_AUTOINCREMENT */
5601
drh98757152008-01-09 23:04:12 +00005602/* Opcode: IfPos P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005603** Synopsis: if r[P1]>0 goto P2
danielk1977a2dc3b12005-02-05 12:48:48 +00005604**
drh16897072015-03-07 00:57:37 +00005605** Register P1 must contain an integer.
5606** If the value of register P1 is 1 or greater, jump to P2 and
5607** add the literal value P3 to register P1.
drh6f58f702006-01-08 05:26:41 +00005608**
drh16897072015-03-07 00:57:37 +00005609** If the initial value of register P1 is less than 1, then the
5610** value is unchanged and control passes through to the next instruction.
danielk1977a2dc3b12005-02-05 12:48:48 +00005611*/
drh9cbf3422008-01-17 16:22:13 +00005612case OP_IfPos: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005613 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005614 assert( pIn1->flags&MEM_Int );
drh688852a2014-02-17 22:40:43 +00005615 VdbeBranchTaken( pIn1->u.i>0, 2);
drhf56fa462015-04-13 21:39:54 +00005616 if( pIn1->u.i>0 ) goto jump_to_p2;
drhec7429a2005-10-06 16:53:14 +00005617 break;
5618}
5619
drh4336b0e2014-08-05 00:53:51 +00005620/* Opcode: IfNeg P1 P2 P3 * *
5621** Synopsis: r[P1]+=P3, if r[P1]<0 goto P2
drh15007a92006-01-08 18:10:17 +00005622**
drhbc5cf382014-08-06 01:08:07 +00005623** Register P1 must contain an integer. Add literal P3 to the value in
drh4336b0e2014-08-05 00:53:51 +00005624** register P1 then if the value of register P1 is less than zero, jump to P2.
drh15007a92006-01-08 18:10:17 +00005625*/
drh9cbf3422008-01-17 16:22:13 +00005626case OP_IfNeg: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005627 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005628 assert( pIn1->flags&MEM_Int );
drh4336b0e2014-08-05 00:53:51 +00005629 pIn1->u.i += pOp->p3;
drh688852a2014-02-17 22:40:43 +00005630 VdbeBranchTaken(pIn1->u.i<0, 2);
drhf56fa462015-04-13 21:39:54 +00005631 if( pIn1->u.i<0 ) goto jump_to_p2;
drh15007a92006-01-08 18:10:17 +00005632 break;
5633}
5634
drh16897072015-03-07 00:57:37 +00005635/* Opcode: IfNotZero P1 P2 P3 * *
5636** Synopsis: if r[P1]!=0 then r[P1]+=P3, goto P2
drhec7429a2005-10-06 16:53:14 +00005637**
drh16897072015-03-07 00:57:37 +00005638** Register P1 must contain an integer. If the content of register P1 is
5639** initially nonzero, then add P3 to P1 and jump to P2. If register P1 is
5640** initially zero, leave it unchanged and fall through.
drhec7429a2005-10-06 16:53:14 +00005641*/
drh16897072015-03-07 00:57:37 +00005642case OP_IfNotZero: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005643 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005644 assert( pIn1->flags&MEM_Int );
drh16897072015-03-07 00:57:37 +00005645 VdbeBranchTaken(pIn1->u.i<0, 2);
5646 if( pIn1->u.i ){
5647 pIn1->u.i += pOp->p3;
drhf56fa462015-04-13 21:39:54 +00005648 goto jump_to_p2;
drh16897072015-03-07 00:57:37 +00005649 }
5650 break;
5651}
5652
5653/* Opcode: DecrJumpZero P1 P2 * * *
5654** Synopsis: if (--r[P1])==0 goto P2
5655**
5656** Register P1 must hold an integer. Decrement the value in register P1
5657** then jump to P2 if the new value is exactly zero.
5658*/
5659case OP_DecrJumpZero: { /* jump, in1 */
5660 pIn1 = &aMem[pOp->p1];
5661 assert( pIn1->flags&MEM_Int );
5662 pIn1->u.i--;
drh688852a2014-02-17 22:40:43 +00005663 VdbeBranchTaken(pIn1->u.i==0, 2);
drhf56fa462015-04-13 21:39:54 +00005664 if( pIn1->u.i==0 ) goto jump_to_p2;
drha2a49dc2008-01-02 14:28:13 +00005665 break;
5666}
5667
drh16897072015-03-07 00:57:37 +00005668
5669/* Opcode: JumpZeroIncr P1 P2 * * *
5670** Synopsis: if (r[P1]++)==0 ) goto P2
5671**
5672** The register P1 must contain an integer. If register P1 is initially
5673** zero, then jump to P2. Increment register P1 regardless of whether or
5674** not the jump is taken.
5675*/
5676case OP_JumpZeroIncr: { /* jump, in1 */
5677 pIn1 = &aMem[pOp->p1];
5678 assert( pIn1->flags&MEM_Int );
5679 VdbeBranchTaken(pIn1->u.i==0, 2);
drhf56fa462015-04-13 21:39:54 +00005680 if( (pIn1->u.i++)==0 ) goto jump_to_p2;
drh16897072015-03-07 00:57:37 +00005681 break;
5682}
5683
drh98757152008-01-09 23:04:12 +00005684/* Opcode: AggStep * P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00005685** Synopsis: accum=r[P3] step(r[P2@P5])
drhe5095352002-02-24 03:25:14 +00005686**
drh0bce8352002-02-28 00:41:10 +00005687** Execute the step function for an aggregate. The
drh98757152008-01-09 23:04:12 +00005688** function has P5 arguments. P4 is a pointer to the FuncDef
5689** structure that specifies the function. Use register
5690** P3 as the accumulator.
drhe5095352002-02-24 03:25:14 +00005691**
drh98757152008-01-09 23:04:12 +00005692** The P5 arguments are taken from register P2 and its
5693** successors.
drhe5095352002-02-24 03:25:14 +00005694*/
drh9cbf3422008-01-17 16:22:13 +00005695case OP_AggStep: {
drh856c1032009-06-02 15:21:42 +00005696 int n;
drhe5095352002-02-24 03:25:14 +00005697 int i;
drhc54a6172009-06-02 16:06:03 +00005698 Mem *pMem;
5699 Mem *pRec;
drh9bd038f2014-08-27 14:14:06 +00005700 Mem t;
danielk197722322fd2004-05-25 23:35:17 +00005701 sqlite3_context ctx;
danielk19776ddcca52004-05-24 23:48:25 +00005702 sqlite3_value **apVal;
drhe5095352002-02-24 03:25:14 +00005703
drh856c1032009-06-02 15:21:42 +00005704 n = pOp->p5;
drh6810ce62004-01-31 19:22:56 +00005705 assert( n>=0 );
drha6c2ed92009-11-14 23:22:23 +00005706 pRec = &aMem[pOp->p2];
danielk19776ddcca52004-05-24 23:48:25 +00005707 apVal = p->apArg;
5708 assert( apVal || n==0 );
drh6810ce62004-01-31 19:22:56 +00005709 for(i=0; i<n; i++, pRec++){
drh2b4ded92010-09-27 21:09:31 +00005710 assert( memIsValid(pRec) );
danielk1977c572ef72004-05-27 09:28:41 +00005711 apVal[i] = pRec;
drh2b4ded92010-09-27 21:09:31 +00005712 memAboutToChange(p, pRec);
drhe5095352002-02-24 03:25:14 +00005713 }
danielk19772dca4ac2008-01-03 11:50:29 +00005714 ctx.pFunc = pOp->p4.pFunc;
dan3bc9f742013-08-15 16:18:39 +00005715 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00005716 ctx.pMem = pMem = &aMem[pOp->p3];
drhabfcea22005-09-06 20:36:48 +00005717 pMem->n++;
drhd3b74202014-09-17 16:41:15 +00005718 sqlite3VdbeMemInit(&t, db, MEM_Null);
drh9bd038f2014-08-27 14:14:06 +00005719 ctx.pOut = &t;
drh1350b032002-02-27 19:00:20 +00005720 ctx.isError = 0;
drha15cc472014-09-25 13:17:30 +00005721 ctx.pVdbe = p;
drhf56fa462015-04-13 21:39:54 +00005722 ctx.iOp = (int)(pOp - aOp);
drh7a957892012-02-02 17:35:43 +00005723 ctx.skipFlag = 0;
drhee9ff672010-09-03 18:50:48 +00005724 (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
drh1350b032002-02-27 19:00:20 +00005725 if( ctx.isError ){
drh22c17b82015-05-15 04:13:15 +00005726 sqlite3VdbeError(p, "%s", sqlite3_value_text(&t));
drh69544ec2008-02-06 14:11:34 +00005727 rc = ctx.isError;
drh1350b032002-02-27 19:00:20 +00005728 }
drh7a957892012-02-02 17:35:43 +00005729 if( ctx.skipFlag ){
5730 assert( pOp[-1].opcode==OP_CollSeq );
5731 i = pOp[-1].p1;
5732 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
5733 }
drh9bd038f2014-08-27 14:14:06 +00005734 sqlite3VdbeMemRelease(&t);
drh5e00f6c2001-09-13 13:46:56 +00005735 break;
5736}
5737
drh98757152008-01-09 23:04:12 +00005738/* Opcode: AggFinal P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00005739** Synopsis: accum=r[P1] N=P2
drh5e00f6c2001-09-13 13:46:56 +00005740**
drh13449892005-09-07 21:22:45 +00005741** Execute the finalizer function for an aggregate. P1 is
5742** the memory location that is the accumulator for the aggregate.
drha10a34b2005-09-07 22:09:48 +00005743**
5744** P2 is the number of arguments that the step function takes and
drh66a51672008-01-03 00:01:23 +00005745** P4 is a pointer to the FuncDef for this function. The P2
drha10a34b2005-09-07 22:09:48 +00005746** argument is not used by this opcode. It is only there to disambiguate
5747** functions that can take varying numbers of arguments. The
drh66a51672008-01-03 00:01:23 +00005748** P4 argument is only needed for the degenerate case where
drha10a34b2005-09-07 22:09:48 +00005749** the step function was not previously called.
drh5e00f6c2001-09-13 13:46:56 +00005750*/
drh9cbf3422008-01-17 16:22:13 +00005751case OP_AggFinal: {
drh13449892005-09-07 21:22:45 +00005752 Mem *pMem;
dan3bc9f742013-08-15 16:18:39 +00005753 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00005754 pMem = &aMem[pOp->p1];
drha10a34b2005-09-07 22:09:48 +00005755 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
danielk19772dca4ac2008-01-03 11:50:29 +00005756 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
drh4c8555f2009-06-25 01:47:11 +00005757 if( rc ){
drh22c17b82015-05-15 04:13:15 +00005758 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
drh90669c12006-01-20 15:45:36 +00005759 }
drh2dca8682008-03-21 17:13:13 +00005760 sqlite3VdbeChangeEncoding(pMem, encoding);
drhb7654112008-01-12 12:48:07 +00005761 UPDATE_MAX_BLOBSIZE(pMem);
drh023ae032007-05-08 12:12:16 +00005762 if( sqlite3VdbeMemTooBig(pMem) ){
5763 goto too_big;
5764 }
drh5e00f6c2001-09-13 13:46:56 +00005765 break;
5766}
5767
dan5cf53532010-05-01 16:40:20 +00005768#ifndef SQLITE_OMIT_WAL
dancdc1f042010-11-18 12:11:05 +00005769/* Opcode: Checkpoint P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00005770**
5771** Checkpoint database P1. This is a no-op if P1 is not currently in
drha25165f2014-12-04 04:50:59 +00005772** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
5773** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns
drh30aa3b92011-02-07 23:56:01 +00005774** SQLITE_BUSY or not, respectively. Write the number of pages in the
5775** WAL after the checkpoint into mem[P3+1] and the number of pages
5776** in the WAL that have been checkpointed after the checkpoint
5777** completes into mem[P3+2]. However on an error, mem[P3+1] and
5778** mem[P3+2] are initialized to -1.
dan7c246102010-04-12 19:00:29 +00005779*/
5780case OP_Checkpoint: {
drh30aa3b92011-02-07 23:56:01 +00005781 int i; /* Loop counter */
5782 int aRes[3]; /* Results */
5783 Mem *pMem; /* Write results here */
5784
drh9e92a472013-06-27 17:40:30 +00005785 assert( p->readOnly==0 );
drh30aa3b92011-02-07 23:56:01 +00005786 aRes[0] = 0;
5787 aRes[1] = aRes[2] = -1;
dancdc1f042010-11-18 12:11:05 +00005788 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
5789 || pOp->p2==SQLITE_CHECKPOINT_FULL
5790 || pOp->p2==SQLITE_CHECKPOINT_RESTART
danf26a1542014-12-02 19:04:54 +00005791 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
dancdc1f042010-11-18 12:11:05 +00005792 );
drh30aa3b92011-02-07 23:56:01 +00005793 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
dancdc1f042010-11-18 12:11:05 +00005794 if( rc==SQLITE_BUSY ){
5795 rc = SQLITE_OK;
drh30aa3b92011-02-07 23:56:01 +00005796 aRes[0] = 1;
dancdc1f042010-11-18 12:11:05 +00005797 }
drh30aa3b92011-02-07 23:56:01 +00005798 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
5799 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
5800 }
dan7c246102010-04-12 19:00:29 +00005801 break;
5802};
dan5cf53532010-05-01 16:40:20 +00005803#endif
drh5e00f6c2001-09-13 13:46:56 +00005804
drhcac29a62010-07-02 19:36:52 +00005805#ifndef SQLITE_OMIT_PRAGMA
drh0fd61352014-02-07 02:29:45 +00005806/* Opcode: JournalMode P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00005807**
5808** Change the journal mode of database P1 to P3. P3 must be one of the
5809** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5810** modes (delete, truncate, persist, off and memory), this is a simple
5811** operation. No IO is required.
5812**
5813** If changing into or out of WAL mode the procedure is more complicated.
5814**
5815** Write a string containing the final journal-mode to register P2.
5816*/
drh27a348c2015-04-13 19:14:06 +00005817case OP_JournalMode: { /* out2 */
dane04dc882010-04-20 18:53:15 +00005818 Btree *pBt; /* Btree to change journal mode of */
5819 Pager *pPager; /* Pager associated with pBt */
drhd80b2332010-05-01 00:59:37 +00005820 int eNew; /* New journal mode */
5821 int eOld; /* The old journal mode */
mistachkin59ee77c2012-09-13 15:26:44 +00005822#ifndef SQLITE_OMIT_WAL
drhd80b2332010-05-01 00:59:37 +00005823 const char *zFilename; /* Name of database file for pPager */
mistachkin59ee77c2012-09-13 15:26:44 +00005824#endif
dane04dc882010-04-20 18:53:15 +00005825
drh27a348c2015-04-13 19:14:06 +00005826 pOut = out2Prerelease(p, pOp);
drhd80b2332010-05-01 00:59:37 +00005827 eNew = pOp->p3;
dane04dc882010-04-20 18:53:15 +00005828 assert( eNew==PAGER_JOURNALMODE_DELETE
5829 || eNew==PAGER_JOURNALMODE_TRUNCATE
5830 || eNew==PAGER_JOURNALMODE_PERSIST
5831 || eNew==PAGER_JOURNALMODE_OFF
5832 || eNew==PAGER_JOURNALMODE_MEMORY
5833 || eNew==PAGER_JOURNALMODE_WAL
5834 || eNew==PAGER_JOURNALMODE_QUERY
5835 );
5836 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drh9e92a472013-06-27 17:40:30 +00005837 assert( p->readOnly==0 );
drh3ebaee92010-05-06 21:37:22 +00005838
dane04dc882010-04-20 18:53:15 +00005839 pBt = db->aDb[pOp->p1].pBt;
5840 pPager = sqlite3BtreePager(pBt);
drh0b9b4302010-06-11 17:01:24 +00005841 eOld = sqlite3PagerGetJournalMode(pPager);
5842 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
5843 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
dan5cf53532010-05-01 16:40:20 +00005844
5845#ifndef SQLITE_OMIT_WAL
drhd4e0bb02012-05-27 01:19:04 +00005846 zFilename = sqlite3PagerFilename(pPager, 1);
dane04dc882010-04-20 18:53:15 +00005847
drhd80b2332010-05-01 00:59:37 +00005848 /* Do not allow a transition to journal_mode=WAL for a database
drh6e1f4822010-07-13 23:41:40 +00005849 ** in temporary storage or if the VFS does not support shared memory
drhd80b2332010-05-01 00:59:37 +00005850 */
5851 if( eNew==PAGER_JOURNALMODE_WAL
drh057fc812011-10-17 23:15:31 +00005852 && (sqlite3Strlen30(zFilename)==0 /* Temp file */
drh6e1f4822010-07-13 23:41:40 +00005853 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
dane180c292010-04-26 17:42:56 +00005854 ){
drh0b9b4302010-06-11 17:01:24 +00005855 eNew = eOld;
dane180c292010-04-26 17:42:56 +00005856 }
5857
drh0b9b4302010-06-11 17:01:24 +00005858 if( (eNew!=eOld)
5859 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
5860 ){
danc0537fe2013-06-28 19:41:43 +00005861 if( !db->autoCommit || db->nVdbeRead>1 ){
drh0b9b4302010-06-11 17:01:24 +00005862 rc = SQLITE_ERROR;
drh22c17b82015-05-15 04:13:15 +00005863 sqlite3VdbeError(p,
drh0b9b4302010-06-11 17:01:24 +00005864 "cannot change %s wal mode from within a transaction",
5865 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
5866 );
5867 break;
5868 }else{
5869
5870 if( eOld==PAGER_JOURNALMODE_WAL ){
5871 /* If leaving WAL mode, close the log file. If successful, the call
5872 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
5873 ** file. An EXCLUSIVE lock may still be held on the database file
5874 ** after a successful return.
dane04dc882010-04-20 18:53:15 +00005875 */
drh0b9b4302010-06-11 17:01:24 +00005876 rc = sqlite3PagerCloseWal(pPager);
drhab9b7442010-05-10 11:20:05 +00005877 if( rc==SQLITE_OK ){
drh0b9b4302010-06-11 17:01:24 +00005878 sqlite3PagerSetJournalMode(pPager, eNew);
drh89c3f2f2010-05-15 01:09:38 +00005879 }
drh242c4f72010-06-22 14:49:39 +00005880 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
5881 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
5882 ** as an intermediate */
5883 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
drh0b9b4302010-06-11 17:01:24 +00005884 }
5885
5886 /* Open a transaction on the database file. Regardless of the journal
5887 ** mode, this transaction always uses a rollback journal.
5888 */
5889 assert( sqlite3BtreeIsInTrans(pBt)==0 );
5890 if( rc==SQLITE_OK ){
dan731bf5b2010-06-17 16:44:21 +00005891 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
dane04dc882010-04-20 18:53:15 +00005892 }
5893 }
5894 }
dan5cf53532010-05-01 16:40:20 +00005895#endif /* ifndef SQLITE_OMIT_WAL */
dane04dc882010-04-20 18:53:15 +00005896
dand956efe2010-06-18 16:13:45 +00005897 if( rc ){
dand956efe2010-06-18 16:13:45 +00005898 eNew = eOld;
5899 }
drh0b9b4302010-06-11 17:01:24 +00005900 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
dan731bf5b2010-06-17 16:44:21 +00005901
dane04dc882010-04-20 18:53:15 +00005902 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
danb9780022010-04-21 18:37:57 +00005903 pOut->z = (char *)sqlite3JournalModename(eNew);
dane04dc882010-04-20 18:53:15 +00005904 pOut->n = sqlite3Strlen30(pOut->z);
5905 pOut->enc = SQLITE_UTF8;
5906 sqlite3VdbeChangeEncoding(pOut, encoding);
5907 break;
drhcac29a62010-07-02 19:36:52 +00005908};
5909#endif /* SQLITE_OMIT_PRAGMA */
dane04dc882010-04-20 18:53:15 +00005910
drhfdbcdee2007-03-27 14:44:50 +00005911#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
drh98757152008-01-09 23:04:12 +00005912/* Opcode: Vacuum * * * * *
drh6f8c91c2003-12-07 00:24:35 +00005913**
5914** Vacuum the entire database. This opcode will cause other virtual
5915** machines to be created and run. It may not be called from within
5916** a transaction.
5917*/
drh9cbf3422008-01-17 16:22:13 +00005918case OP_Vacuum: {
drh9e92a472013-06-27 17:40:30 +00005919 assert( p->readOnly==0 );
danielk19774adee202004-05-08 08:23:19 +00005920 rc = sqlite3RunVacuum(&p->zErrMsg, db);
drh6f8c91c2003-12-07 00:24:35 +00005921 break;
5922}
drh154d4b22006-09-21 11:02:16 +00005923#endif
drh6f8c91c2003-12-07 00:24:35 +00005924
danielk1977dddbcdc2007-04-26 14:42:34 +00005925#if !defined(SQLITE_OMIT_AUTOVACUUM)
drh98757152008-01-09 23:04:12 +00005926/* Opcode: IncrVacuum P1 P2 * * *
danielk1977dddbcdc2007-04-26 14:42:34 +00005927**
5928** Perform a single step of the incremental vacuum procedure on
drhca5557f2007-05-04 18:30:40 +00005929** the P1 database. If the vacuum has finished, jump to instruction
danielk1977dddbcdc2007-04-26 14:42:34 +00005930** P2. Otherwise, fall through to the next instruction.
5931*/
drh9cbf3422008-01-17 16:22:13 +00005932case OP_IncrVacuum: { /* jump */
drhca5557f2007-05-04 18:30:40 +00005933 Btree *pBt;
5934
5935 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005936 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00005937 assert( p->readOnly==0 );
drhca5557f2007-05-04 18:30:40 +00005938 pBt = db->aDb[pOp->p1].pBt;
danielk1977dddbcdc2007-04-26 14:42:34 +00005939 rc = sqlite3BtreeIncrVacuum(pBt);
drh688852a2014-02-17 22:40:43 +00005940 VdbeBranchTaken(rc==SQLITE_DONE,2);
danielk1977dddbcdc2007-04-26 14:42:34 +00005941 if( rc==SQLITE_DONE ){
danielk1977dddbcdc2007-04-26 14:42:34 +00005942 rc = SQLITE_OK;
drhf56fa462015-04-13 21:39:54 +00005943 goto jump_to_p2;
danielk1977dddbcdc2007-04-26 14:42:34 +00005944 }
5945 break;
5946}
5947#endif
5948
drh98757152008-01-09 23:04:12 +00005949/* Opcode: Expire P1 * * * *
danielk1977a21c6b62005-01-24 10:25:59 +00005950**
drh25df48d2014-07-22 14:58:12 +00005951** Cause precompiled statements to expire. When an expired statement
5952** is executed using sqlite3_step() it will either automatically
5953** reprepare itself (if it was originally created using sqlite3_prepare_v2())
5954** or it will fail with SQLITE_SCHEMA.
danielk1977a21c6b62005-01-24 10:25:59 +00005955**
5956** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
drh25df48d2014-07-22 14:58:12 +00005957** then only the currently executing statement is expired.
danielk1977a21c6b62005-01-24 10:25:59 +00005958*/
drh9cbf3422008-01-17 16:22:13 +00005959case OP_Expire: {
danielk1977a21c6b62005-01-24 10:25:59 +00005960 if( !pOp->p1 ){
5961 sqlite3ExpirePreparedStatements(db);
5962 }else{
5963 p->expired = 1;
5964 }
5965 break;
5966}
5967
danielk1977c00da102006-01-07 13:21:04 +00005968#ifndef SQLITE_OMIT_SHARED_CACHE
drh6a9ad3d2008-04-02 16:29:30 +00005969/* Opcode: TableLock P1 P2 P3 P4 *
drh81316f82013-10-29 20:40:47 +00005970** Synopsis: iDb=P1 root=P2 write=P3
danielk1977c00da102006-01-07 13:21:04 +00005971**
5972** Obtain a lock on a particular table. This instruction is only used when
5973** the shared-cache feature is enabled.
5974**
danielk197796d48e92009-06-29 06:00:37 +00005975** P1 is the index of the database in sqlite3.aDb[] of the database
drh6a9ad3d2008-04-02 16:29:30 +00005976** on which the lock is acquired. A readlock is obtained if P3==0 or
5977** a write lock if P3==1.
danielk1977c00da102006-01-07 13:21:04 +00005978**
5979** P2 contains the root-page of the table to lock.
5980**
drh66a51672008-01-03 00:01:23 +00005981** P4 contains a pointer to the name of the table being locked. This is only
danielk1977c00da102006-01-07 13:21:04 +00005982** used to generate an error message if the lock cannot be obtained.
5983*/
drh9cbf3422008-01-17 16:22:13 +00005984case OP_TableLock: {
danielk1977e0d9e6f2009-07-03 16:25:06 +00005985 u8 isWriteLock = (u8)pOp->p3;
5986 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
5987 int p1 = pOp->p1;
5988 assert( p1>=0 && p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005989 assert( DbMaskTest(p->btreeMask, p1) );
danielk1977e0d9e6f2009-07-03 16:25:06 +00005990 assert( isWriteLock==0 || isWriteLock==1 );
5991 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
5992 if( (rc&0xFF)==SQLITE_LOCKED ){
5993 const char *z = pOp->p4.z;
drh22c17b82015-05-15 04:13:15 +00005994 sqlite3VdbeError(p, "database table is locked: %s", z);
danielk1977e0d9e6f2009-07-03 16:25:06 +00005995 }
danielk1977c00da102006-01-07 13:21:04 +00005996 }
5997 break;
5998}
drhb9bb7c12006-06-11 23:41:55 +00005999#endif /* SQLITE_OMIT_SHARED_CACHE */
6000
6001#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006002/* Opcode: VBegin * * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00006003**
danielk19773e3a84d2008-08-01 17:37:40 +00006004** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
6005** xBegin method for that table.
6006**
6007** Also, whether or not P4 is set, check that this is not being called from
danielk1977404ca072009-03-16 13:19:36 +00006008** within a callback to a virtual table xSync() method. If it is, the error
6009** code will be set to SQLITE_LOCKED.
drhb9bb7c12006-06-11 23:41:55 +00006010*/
drh9cbf3422008-01-17 16:22:13 +00006011case OP_VBegin: {
danielk1977595a5232009-07-24 17:58:53 +00006012 VTable *pVTab;
6013 pVTab = pOp->p4.pVtab;
6014 rc = sqlite3VtabBegin(db, pVTab);
dan016f7812013-08-21 17:35:48 +00006015 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
danielk1977f9e7dda2006-06-16 16:08:53 +00006016 break;
6017}
6018#endif /* SQLITE_OMIT_VIRTUALTABLE */
6019
6020#ifndef SQLITE_OMIT_VIRTUALTABLE
dan73779452015-03-19 18:56:17 +00006021/* Opcode: VCreate P1 P2 * * *
danielk1977f9e7dda2006-06-16 16:08:53 +00006022**
dan73779452015-03-19 18:56:17 +00006023** P2 is a register that holds the name of a virtual table in database
6024** P1. Call the xCreate method for that table.
danielk1977f9e7dda2006-06-16 16:08:53 +00006025*/
drh9cbf3422008-01-17 16:22:13 +00006026case OP_VCreate: {
dan73779452015-03-19 18:56:17 +00006027 Mem sMem; /* For storing the record being decoded */
drh47464062015-03-21 12:22:16 +00006028 const char *zTab; /* Name of the virtual table */
6029
dan73779452015-03-19 18:56:17 +00006030 memset(&sMem, 0, sizeof(sMem));
6031 sMem.db = db;
drh47464062015-03-21 12:22:16 +00006032 /* Because P2 is always a static string, it is impossible for the
6033 ** sqlite3VdbeMemCopy() to fail */
6034 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
6035 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
dan73779452015-03-19 18:56:17 +00006036 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
drh47464062015-03-21 12:22:16 +00006037 assert( rc==SQLITE_OK );
6038 zTab = (const char*)sqlite3_value_text(&sMem);
6039 assert( zTab || db->mallocFailed );
6040 if( zTab ){
6041 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
dan73779452015-03-19 18:56:17 +00006042 }
6043 sqlite3VdbeMemRelease(&sMem);
drhb9bb7c12006-06-11 23:41:55 +00006044 break;
6045}
6046#endif /* SQLITE_OMIT_VIRTUALTABLE */
6047
6048#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006049/* Opcode: VDestroy P1 * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00006050**
drh66a51672008-01-03 00:01:23 +00006051** P4 is the name of a virtual table in database P1. Call the xDestroy method
danielk19779e39ce82006-06-12 16:01:21 +00006052** of that table.
drhb9bb7c12006-06-11 23:41:55 +00006053*/
drh9cbf3422008-01-17 16:22:13 +00006054case OP_VDestroy: {
drh086723a2015-03-24 12:51:52 +00006055 db->nVDestroy++;
danielk19772dca4ac2008-01-03 11:50:29 +00006056 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
drh086723a2015-03-24 12:51:52 +00006057 db->nVDestroy--;
drhb9bb7c12006-06-11 23:41:55 +00006058 break;
6059}
6060#endif /* SQLITE_OMIT_VIRTUALTABLE */
danielk1977c00da102006-01-07 13:21:04 +00006061
drh9eff6162006-06-12 21:59:13 +00006062#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006063/* Opcode: VOpen P1 * * P4 *
drh9eff6162006-06-12 21:59:13 +00006064**
drh66a51672008-01-03 00:01:23 +00006065** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
drh9eff6162006-06-12 21:59:13 +00006066** P1 is a cursor number. This opcode opens a cursor to the virtual
6067** table and stores that cursor in P1.
6068*/
drh9cbf3422008-01-17 16:22:13 +00006069case OP_VOpen: {
drh856c1032009-06-02 15:21:42 +00006070 VdbeCursor *pCur;
6071 sqlite3_vtab_cursor *pVtabCursor;
6072 sqlite3_vtab *pVtab;
drhf496a7d2015-03-24 14:05:50 +00006073 const sqlite3_module *pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006074
drh1713afb2013-06-28 01:24:57 +00006075 assert( p->bIsReader );
drh856c1032009-06-02 15:21:42 +00006076 pCur = 0;
6077 pVtabCursor = 0;
danielk1977595a5232009-07-24 17:58:53 +00006078 pVtab = pOp->p4.pVtab->pVtab;
drhf496a7d2015-03-24 14:05:50 +00006079 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6080 rc = SQLITE_LOCKED;
6081 break;
6082 }
6083 pModule = pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006084 rc = pModule->xOpen(pVtab, &pVtabCursor);
dan016f7812013-08-21 17:35:48 +00006085 sqlite3VtabImportErrmsg(p, pVtab);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006086 if( SQLITE_OK==rc ){
shane21e7feb2008-05-30 15:59:49 +00006087 /* Initialize sqlite3_vtab_cursor base class */
danielk1977b7a7b9a2006-06-13 10:24:42 +00006088 pVtabCursor->pVtab = pVtab;
6089
mistachkin48864df2013-03-21 21:20:32 +00006090 /* Initialize vdbe cursor object */
danielk1977d336e222009-02-20 10:58:41 +00006091 pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
danielk1977be718892006-06-23 08:05:19 +00006092 if( pCur ){
6093 pCur->pVtabCursor = pVtabCursor;
drha68d6282015-03-24 13:32:53 +00006094 pVtab->nRef++;
danielk1977b7a2f2e2006-06-23 11:34:54 +00006095 }else{
dan995f8b92015-04-27 19:53:55 +00006096 assert( db->mallocFailed );
danielk1977b7a2f2e2006-06-23 11:34:54 +00006097 pModule->xClose(pVtabCursor);
dan995f8b92015-04-27 19:53:55 +00006098 goto no_mem;
danielk1977be718892006-06-23 08:05:19 +00006099 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00006100 }
drh9eff6162006-06-12 21:59:13 +00006101 break;
6102}
6103#endif /* SQLITE_OMIT_VIRTUALTABLE */
6104
6105#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk19776dbee812008-01-03 18:39:41 +00006106/* Opcode: VFilter P1 P2 P3 P4 *
drh831116d2014-04-03 14:31:00 +00006107** Synopsis: iplan=r[P3] zplan='P4'
drh9eff6162006-06-12 21:59:13 +00006108**
6109** P1 is a cursor opened using VOpen. P2 is an address to jump to if
6110** the filtered result set is empty.
6111**
drh66a51672008-01-03 00:01:23 +00006112** P4 is either NULL or a string that was generated by the xBestIndex
6113** method of the module. The interpretation of the P4 string is left
drh4be8b512006-06-13 23:51:34 +00006114** to the module implementation.
danielk19775fac9f82006-06-13 14:16:58 +00006115**
drh9eff6162006-06-12 21:59:13 +00006116** This opcode invokes the xFilter method on the virtual table specified
danielk19776dbee812008-01-03 18:39:41 +00006117** by P1. The integer query plan parameter to xFilter is stored in register
6118** P3. Register P3+1 stores the argc parameter to be passed to the
drh174edc62008-05-29 05:23:41 +00006119** xFilter method. Registers P3+2..P3+1+argc are the argc
6120** additional parameters which are passed to
danielk19776dbee812008-01-03 18:39:41 +00006121** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
danielk1977b7a7b9a2006-06-13 10:24:42 +00006122**
danielk19776dbee812008-01-03 18:39:41 +00006123** A jump is made to P2 if the result set after filtering would be empty.
drh9eff6162006-06-12 21:59:13 +00006124*/
drh9cbf3422008-01-17 16:22:13 +00006125case OP_VFilter: { /* jump */
danielk1977b7a7b9a2006-06-13 10:24:42 +00006126 int nArg;
danielk19776dbee812008-01-03 18:39:41 +00006127 int iQuery;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006128 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00006129 Mem *pQuery;
6130 Mem *pArgc;
drh4dc754d2008-07-23 18:17:32 +00006131 sqlite3_vtab_cursor *pVtabCursor;
6132 sqlite3_vtab *pVtab;
drh856c1032009-06-02 15:21:42 +00006133 VdbeCursor *pCur;
6134 int res;
6135 int i;
6136 Mem **apArg;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006137
drha6c2ed92009-11-14 23:22:23 +00006138 pQuery = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00006139 pArgc = &pQuery[1];
6140 pCur = p->apCsr[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00006141 assert( memIsValid(pQuery) );
drh5b6afba2008-01-05 16:29:28 +00006142 REGISTER_TRACE(pOp->p3, pQuery);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006143 assert( pCur->pVtabCursor );
drh4dc754d2008-07-23 18:17:32 +00006144 pVtabCursor = pCur->pVtabCursor;
6145 pVtab = pVtabCursor->pVtab;
6146 pModule = pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006147
drh9cbf3422008-01-17 16:22:13 +00006148 /* Grab the index number and argc parameters */
danielk19776dbee812008-01-03 18:39:41 +00006149 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
drh9c1905f2008-12-10 22:32:56 +00006150 nArg = (int)pArgc->u.i;
6151 iQuery = (int)pQuery->u.i;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006152
drh644a5292006-12-20 14:53:38 +00006153 /* Invoke the xFilter method */
drhf56fa462015-04-13 21:39:54 +00006154 res = 0;
6155 apArg = p->apArg;
6156 for(i = 0; i<nArg; i++){
6157 apArg[i] = &pArgc[i+1];
6158 }
6159 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
6160 sqlite3VtabImportErrmsg(p, pVtab);
6161 if( rc==SQLITE_OK ){
6162 res = pModule->xEof(pVtabCursor);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006163 }
drh1d454a32008-01-31 19:34:51 +00006164 pCur->nullRow = 0;
drhf56fa462015-04-13 21:39:54 +00006165 VdbeBranchTaken(res!=0,2);
6166 if( res ) goto jump_to_p2;
drh9eff6162006-06-12 21:59:13 +00006167 break;
6168}
6169#endif /* SQLITE_OMIT_VIRTUALTABLE */
6170
6171#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006172/* Opcode: VColumn P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00006173** Synopsis: r[P3]=vcolumn(P2)
drh9eff6162006-06-12 21:59:13 +00006174**
drh2133d822008-01-03 18:44:59 +00006175** Store the value of the P2-th column of
6176** the row of the virtual-table that the
6177** P1 cursor is pointing to into register P3.
drh9eff6162006-06-12 21:59:13 +00006178*/
6179case OP_VColumn: {
danielk19773e3a84d2008-08-01 17:37:40 +00006180 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006181 const sqlite3_module *pModule;
drhde4fcfd2008-01-19 23:50:26 +00006182 Mem *pDest;
6183 sqlite3_context sContext;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006184
drhdfe88ec2008-11-03 20:55:06 +00006185 VdbeCursor *pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00006186 assert( pCur->pVtabCursor );
dan3bc9f742013-08-15 16:18:39 +00006187 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00006188 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00006189 memAboutToChange(p, pDest);
drh2945b4a2008-01-31 15:53:45 +00006190 if( pCur->nullRow ){
6191 sqlite3VdbeMemSetNull(pDest);
6192 break;
6193 }
danielk19773e3a84d2008-08-01 17:37:40 +00006194 pVtab = pCur->pVtabCursor->pVtab;
6195 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00006196 assert( pModule->xColumn );
6197 memset(&sContext, 0, sizeof(sContext));
drh9bd038f2014-08-27 14:14:06 +00006198 sContext.pOut = pDest;
6199 MemSetTypeFlag(pDest, MEM_Null);
drhde4fcfd2008-01-19 23:50:26 +00006200 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
dan016f7812013-08-21 17:35:48 +00006201 sqlite3VtabImportErrmsg(p, pVtab);
drh4c8555f2009-06-25 01:47:11 +00006202 if( sContext.isError ){
6203 rc = sContext.isError;
6204 }
drh9bd038f2014-08-27 14:14:06 +00006205 sqlite3VdbeChangeEncoding(pDest, encoding);
drh5ff44372009-11-24 16:26:17 +00006206 REGISTER_TRACE(pOp->p3, pDest);
drhde4fcfd2008-01-19 23:50:26 +00006207 UPDATE_MAX_BLOBSIZE(pDest);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006208
drhde4fcfd2008-01-19 23:50:26 +00006209 if( sqlite3VdbeMemTooBig(pDest) ){
6210 goto too_big;
6211 }
drh9eff6162006-06-12 21:59:13 +00006212 break;
6213}
6214#endif /* SQLITE_OMIT_VIRTUALTABLE */
6215
6216#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006217/* Opcode: VNext P1 P2 * * *
drh9eff6162006-06-12 21:59:13 +00006218**
6219** Advance virtual table P1 to the next row in its result set and
6220** jump to instruction P2. Or, if the virtual table has reached
6221** the end of its result set, then fall through to the next instruction.
6222*/
drh9cbf3422008-01-17 16:22:13 +00006223case OP_VNext: { /* jump */
danielk19773e3a84d2008-08-01 17:37:40 +00006224 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006225 const sqlite3_module *pModule;
drhc54a6172009-06-02 16:06:03 +00006226 int res;
drh856c1032009-06-02 15:21:42 +00006227 VdbeCursor *pCur;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006228
drhc54a6172009-06-02 16:06:03 +00006229 res = 0;
drh856c1032009-06-02 15:21:42 +00006230 pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00006231 assert( pCur->pVtabCursor );
drh2945b4a2008-01-31 15:53:45 +00006232 if( pCur->nullRow ){
6233 break;
6234 }
danielk19773e3a84d2008-08-01 17:37:40 +00006235 pVtab = pCur->pVtabCursor->pVtab;
6236 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00006237 assert( pModule->xNext );
danielk1977b7a7b9a2006-06-13 10:24:42 +00006238
drhde4fcfd2008-01-19 23:50:26 +00006239 /* Invoke the xNext() method of the module. There is no way for the
6240 ** underlying implementation to return an error if one occurs during
6241 ** xNext(). Instead, if an error occurs, true is returned (indicating that
6242 ** data is available) and the error code returned when xColumn or
6243 ** some other method is next invoked on the save virtual table cursor.
6244 */
drhde4fcfd2008-01-19 23:50:26 +00006245 rc = pModule->xNext(pCur->pVtabCursor);
dan016f7812013-08-21 17:35:48 +00006246 sqlite3VtabImportErrmsg(p, pVtab);
drhde4fcfd2008-01-19 23:50:26 +00006247 if( rc==SQLITE_OK ){
6248 res = pModule->xEof(pCur->pVtabCursor);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006249 }
drh688852a2014-02-17 22:40:43 +00006250 VdbeBranchTaken(!res,2);
drhde4fcfd2008-01-19 23:50:26 +00006251 if( !res ){
6252 /* If there is data, jump to P2 */
drhf56fa462015-04-13 21:39:54 +00006253 goto jump_to_p2_and_check_for_interrupt;
drhde4fcfd2008-01-19 23:50:26 +00006254 }
drh49afe3a2013-07-10 03:05:14 +00006255 goto check_for_interrupt;
drh9eff6162006-06-12 21:59:13 +00006256}
6257#endif /* SQLITE_OMIT_VIRTUALTABLE */
6258
danielk1977182c4ba2007-06-27 15:53:34 +00006259#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006260/* Opcode: VRename P1 * * P4 *
danielk1977182c4ba2007-06-27 15:53:34 +00006261**
drh66a51672008-01-03 00:01:23 +00006262** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977182c4ba2007-06-27 15:53:34 +00006263** This opcode invokes the corresponding xRename method. The value
danielk19776dbee812008-01-03 18:39:41 +00006264** in register P1 is passed as the zName argument to the xRename method.
danielk1977182c4ba2007-06-27 15:53:34 +00006265*/
drh9cbf3422008-01-17 16:22:13 +00006266case OP_VRename: {
drh856c1032009-06-02 15:21:42 +00006267 sqlite3_vtab *pVtab;
6268 Mem *pName;
6269
danielk1977595a5232009-07-24 17:58:53 +00006270 pVtab = pOp->p4.pVtab->pVtab;
drha6c2ed92009-11-14 23:22:23 +00006271 pName = &aMem[pOp->p1];
danielk1977182c4ba2007-06-27 15:53:34 +00006272 assert( pVtab->pModule->xRename );
drh2b4ded92010-09-27 21:09:31 +00006273 assert( memIsValid(pName) );
drh9e92a472013-06-27 17:40:30 +00006274 assert( p->readOnly==0 );
drh5b6afba2008-01-05 16:29:28 +00006275 REGISTER_TRACE(pOp->p1, pName);
drh35f6b932009-06-23 14:15:04 +00006276 assert( pName->flags & MEM_Str );
drh98655a62011-10-18 22:07:47 +00006277 testcase( pName->enc==SQLITE_UTF8 );
6278 testcase( pName->enc==SQLITE_UTF16BE );
6279 testcase( pName->enc==SQLITE_UTF16LE );
6280 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
6281 if( rc==SQLITE_OK ){
6282 rc = pVtab->pModule->xRename(pVtab, pName->z);
dan016f7812013-08-21 17:35:48 +00006283 sqlite3VtabImportErrmsg(p, pVtab);
drh98655a62011-10-18 22:07:47 +00006284 p->expired = 0;
6285 }
danielk1977182c4ba2007-06-27 15:53:34 +00006286 break;
6287}
6288#endif
drh4cbdda92006-06-14 19:00:20 +00006289
6290#ifndef SQLITE_OMIT_VIRTUALTABLE
drh0fd61352014-02-07 02:29:45 +00006291/* Opcode: VUpdate P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00006292** Synopsis: data=r[P3@P2]
danielk1977399918f2006-06-14 13:03:23 +00006293**
drh66a51672008-01-03 00:01:23 +00006294** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977399918f2006-06-14 13:03:23 +00006295** This opcode invokes the corresponding xUpdate method. P2 values
danielk19772a339ff2008-01-03 17:31:44 +00006296** are contiguous memory cells starting at P3 to pass to the xUpdate
6297** invocation. The value in register (P3+P2-1) corresponds to the
6298** p2th element of the argv array passed to xUpdate.
drh4cbdda92006-06-14 19:00:20 +00006299**
6300** The xUpdate method will do a DELETE or an INSERT or both.
danielk19772a339ff2008-01-03 17:31:44 +00006301** The argv[0] element (which corresponds to memory cell P3)
6302** is the rowid of a row to delete. If argv[0] is NULL then no
6303** deletion occurs. The argv[1] element is the rowid of the new
6304** row. This can be NULL to have the virtual table select the new
6305** rowid for itself. The subsequent elements in the array are
6306** the values of columns in the new row.
drh4cbdda92006-06-14 19:00:20 +00006307**
6308** If P2==1 then no insert is performed. argv[0] is the rowid of
6309** a row to delete.
danielk19771f6eec52006-06-16 06:17:47 +00006310**
6311** P1 is a boolean flag. If it is set to true and the xUpdate call
6312** is successful, then the value returned by sqlite3_last_insert_rowid()
6313** is set to the value of the rowid for the row just inserted.
drh0fd61352014-02-07 02:29:45 +00006314**
6315** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
6316** apply in the case of a constraint failure on an insert or update.
danielk1977399918f2006-06-14 13:03:23 +00006317*/
drh9cbf3422008-01-17 16:22:13 +00006318case OP_VUpdate: {
drh856c1032009-06-02 15:21:42 +00006319 sqlite3_vtab *pVtab;
drhf496a7d2015-03-24 14:05:50 +00006320 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00006321 int nArg;
6322 int i;
6323 sqlite_int64 rowid;
6324 Mem **apArg;
6325 Mem *pX;
6326
danb061d052011-04-25 18:49:57 +00006327 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
6328 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
6329 );
drh9e92a472013-06-27 17:40:30 +00006330 assert( p->readOnly==0 );
danielk1977595a5232009-07-24 17:58:53 +00006331 pVtab = pOp->p4.pVtab->pVtab;
drhf496a7d2015-03-24 14:05:50 +00006332 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6333 rc = SQLITE_LOCKED;
6334 break;
6335 }
6336 pModule = pVtab->pModule;
drh856c1032009-06-02 15:21:42 +00006337 nArg = pOp->p2;
drh66a51672008-01-03 00:01:23 +00006338 assert( pOp->p4type==P4_VTAB );
drh35f6b932009-06-23 14:15:04 +00006339 if( ALWAYS(pModule->xUpdate) ){
danb061d052011-04-25 18:49:57 +00006340 u8 vtabOnConflict = db->vtabOnConflict;
drh856c1032009-06-02 15:21:42 +00006341 apArg = p->apArg;
drha6c2ed92009-11-14 23:22:23 +00006342 pX = &aMem[pOp->p3];
danielk19772a339ff2008-01-03 17:31:44 +00006343 for(i=0; i<nArg; i++){
drh2b4ded92010-09-27 21:09:31 +00006344 assert( memIsValid(pX) );
6345 memAboutToChange(p, pX);
drh9c419382006-06-16 21:13:21 +00006346 apArg[i] = pX;
danielk19772a339ff2008-01-03 17:31:44 +00006347 pX++;
danielk1977399918f2006-06-14 13:03:23 +00006348 }
danb061d052011-04-25 18:49:57 +00006349 db->vtabOnConflict = pOp->p5;
danielk19771f6eec52006-06-16 06:17:47 +00006350 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
danb061d052011-04-25 18:49:57 +00006351 db->vtabOnConflict = vtabOnConflict;
dan016f7812013-08-21 17:35:48 +00006352 sqlite3VtabImportErrmsg(p, pVtab);
drh35f6b932009-06-23 14:15:04 +00006353 if( rc==SQLITE_OK && pOp->p1 ){
danielk19771f6eec52006-06-16 06:17:47 +00006354 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
drh99a66922011-05-13 18:51:42 +00006355 db->lastRowid = lastRowid = rowid;
danielk19771f6eec52006-06-16 06:17:47 +00006356 }
drhd91c1a12013-02-09 13:58:25 +00006357 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
danb061d052011-04-25 18:49:57 +00006358 if( pOp->p5==OE_Ignore ){
6359 rc = SQLITE_OK;
6360 }else{
6361 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
6362 }
6363 }else{
6364 p->nChange++;
6365 }
danielk1977399918f2006-06-14 13:03:23 +00006366 }
drh4cbdda92006-06-14 19:00:20 +00006367 break;
danielk1977399918f2006-06-14 13:03:23 +00006368}
6369#endif /* SQLITE_OMIT_VIRTUALTABLE */
6370
danielk197759a93792008-05-15 17:48:20 +00006371#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6372/* Opcode: Pagecount P1 P2 * * *
6373**
6374** Write the current number of pages in database P1 to memory cell P2.
6375*/
drh27a348c2015-04-13 19:14:06 +00006376case OP_Pagecount: { /* out2 */
6377 pOut = out2Prerelease(p, pOp);
drhb1299152010-03-30 22:58:33 +00006378 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
danielk197759a93792008-05-15 17:48:20 +00006379 break;
6380}
6381#endif
6382
drh60ac3f42010-11-23 18:59:27 +00006383
6384#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6385/* Opcode: MaxPgcnt P1 P2 P3 * *
6386**
6387** Try to set the maximum page count for database P1 to the value in P3.
drhc84e0332010-11-23 20:25:08 +00006388** Do not let the maximum page count fall below the current page count and
6389** do not change the maximum page count value if P3==0.
6390**
drh60ac3f42010-11-23 18:59:27 +00006391** Store the maximum page count after the change in register P2.
6392*/
drh27a348c2015-04-13 19:14:06 +00006393case OP_MaxPgcnt: { /* out2 */
drhc84e0332010-11-23 20:25:08 +00006394 unsigned int newMax;
drh60ac3f42010-11-23 18:59:27 +00006395 Btree *pBt;
6396
drh27a348c2015-04-13 19:14:06 +00006397 pOut = out2Prerelease(p, pOp);
drh60ac3f42010-11-23 18:59:27 +00006398 pBt = db->aDb[pOp->p1].pBt;
drhc84e0332010-11-23 20:25:08 +00006399 newMax = 0;
6400 if( pOp->p3 ){
6401 newMax = sqlite3BtreeLastPage(pBt);
drh6ea28d62010-11-26 16:49:59 +00006402 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
drhc84e0332010-11-23 20:25:08 +00006403 }
6404 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
drh60ac3f42010-11-23 18:59:27 +00006405 break;
6406}
6407#endif
6408
6409
drhaceb31b2014-02-08 01:40:27 +00006410/* Opcode: Init * P2 * P4 *
6411** Synopsis: Start at P2
6412**
6413** Programs contain a single instance of this opcode as the very first
6414** opcode.
drh949f9cd2008-01-12 21:35:57 +00006415**
6416** If tracing is enabled (by the sqlite3_trace()) interface, then
6417** the UTF-8 string contained in P4 is emitted on the trace callback.
drhaceb31b2014-02-08 01:40:27 +00006418** Or if P4 is blank, use the string returned by sqlite3_sql().
6419**
6420** If P2 is not zero, jump to instruction P2.
drh949f9cd2008-01-12 21:35:57 +00006421*/
drhaceb31b2014-02-08 01:40:27 +00006422case OP_Init: { /* jump */
drh856c1032009-06-02 15:21:42 +00006423 char *zTrace;
drhc3f1d5f2011-05-30 23:42:16 +00006424 char *z;
drh856c1032009-06-02 15:21:42 +00006425
drhaceb31b2014-02-08 01:40:27 +00006426#ifndef SQLITE_OMIT_TRACE
drh37f58e92012-09-04 21:34:26 +00006427 if( db->xTrace
6428 && !p->doingRerun
6429 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6430 ){
drhc3f1d5f2011-05-30 23:42:16 +00006431 z = sqlite3VdbeExpandSql(p, zTrace);
6432 db->xTrace(db->pTraceArg, z);
6433 sqlite3DbFree(db, z);
drh949f9cd2008-01-12 21:35:57 +00006434 }
drh8f8b2312013-10-18 20:03:43 +00006435#ifdef SQLITE_USE_FCNTL_TRACE
6436 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
6437 if( zTrace ){
6438 int i;
6439 for(i=0; i<db->nDb; i++){
drha7ab6d82014-07-21 15:44:39 +00006440 if( DbMaskTest(p->btreeMask, i)==0 ) continue;
drh8f8b2312013-10-18 20:03:43 +00006441 sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace);
6442 }
6443 }
6444#endif /* SQLITE_USE_FCNTL_TRACE */
drhc3f1d5f2011-05-30 23:42:16 +00006445#ifdef SQLITE_DEBUG
6446 if( (db->flags & SQLITE_SqlTrace)!=0
6447 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6448 ){
6449 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
6450 }
6451#endif /* SQLITE_DEBUG */
drhaceb31b2014-02-08 01:40:27 +00006452#endif /* SQLITE_OMIT_TRACE */
drhf56fa462015-04-13 21:39:54 +00006453 if( pOp->p2 ) goto jump_to_p2;
drh949f9cd2008-01-12 21:35:57 +00006454 break;
6455}
drh949f9cd2008-01-12 21:35:57 +00006456
drh91fd4d42008-01-19 20:11:25 +00006457
6458/* Opcode: Noop * * * * *
6459**
6460** Do nothing. This instruction is often useful as a jump
6461** destination.
drh5e00f6c2001-09-13 13:46:56 +00006462*/
drh91fd4d42008-01-19 20:11:25 +00006463/*
6464** The magic Explain opcode are only inserted when explain==2 (which
6465** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6466** This opcode records information from the optimizer. It is the
6467** the same as a no-op. This opcodesnever appears in a real VM program.
6468*/
6469default: { /* This is really OP_Noop and OP_Explain */
drh13573c72010-01-12 17:04:07 +00006470 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
drh5e00f6c2001-09-13 13:46:56 +00006471 break;
6472}
6473
6474/*****************************************************************************
6475** The cases of the switch statement above this line should all be indented
6476** by 6 spaces. But the left-most 6 spaces have been removed to improve the
6477** readability. From this point on down, the normal indentation rules are
6478** restored.
6479*****************************************************************************/
6480 }
drh6e142f52000-06-08 13:36:40 +00006481
drh7b396862003-01-01 23:06:20 +00006482#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +00006483 {
drha01c7c72014-04-25 12:35:31 +00006484 u64 endTime = sqlite3Hwtime();
drh6dc41482015-04-16 17:31:02 +00006485 if( endTime>start ) pOrigOp->cycles += endTime - start;
6486 pOrigOp->cnt++;
drh8178a752003-01-05 21:41:40 +00006487 }
drh7b396862003-01-01 23:06:20 +00006488#endif
6489
drh6e142f52000-06-08 13:36:40 +00006490 /* The following code adds nothing to the actual functionality
6491 ** of the program. It is only here for testing and debugging.
6492 ** On the other hand, it does burn CPU cycles every time through
6493 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
6494 */
6495#ifndef NDEBUG
drh6dc41482015-04-16 17:31:02 +00006496 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
drhae7e1512007-05-02 16:51:59 +00006497
drhcf1023c2007-05-08 20:59:49 +00006498#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +00006499 if( db->flags & SQLITE_VdbeTrace ){
6500 if( rc!=0 ) printf("rc=%d\n",rc);
drh6dc41482015-04-16 17:31:02 +00006501 if( pOrigOp->opflags & (OPFLG_OUT2) ){
6502 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
drh75897232000-05-29 14:26:00 +00006503 }
drh6dc41482015-04-16 17:31:02 +00006504 if( pOrigOp->opflags & OPFLG_OUT3 ){
6505 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
drh5b6afba2008-01-05 16:29:28 +00006506 }
drh75897232000-05-29 14:26:00 +00006507 }
danielk1977b5402fb2005-01-12 07:15:04 +00006508#endif /* SQLITE_DEBUG */
6509#endif /* NDEBUG */
drhb86ccfb2003-01-28 23:13:10 +00006510 } /* The end of the for(;;) loop the loops through opcodes */
drh75897232000-05-29 14:26:00 +00006511
drha05a7222008-01-19 03:35:58 +00006512 /* If we reach this point, it means that execution is finished with
6513 ** an error of some kind.
drhb86ccfb2003-01-28 23:13:10 +00006514 */
drha05a7222008-01-19 03:35:58 +00006515vdbe_error_halt:
6516 assert( rc );
6517 p->rc = rc;
drha64fa912010-03-04 00:53:32 +00006518 testcase( sqlite3GlobalConfig.xLog!=0 );
6519 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
drhf56fa462015-04-13 21:39:54 +00006520 (int)(pOp - aOp), p->zSql, p->zErrMsg);
drh92f02c32004-09-02 14:57:08 +00006521 sqlite3VdbeHalt(p);
danielk19777eaabcd2008-07-07 14:56:56 +00006522 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
6523 rc = SQLITE_ERROR;
drhcdf011d2011-04-04 21:25:28 +00006524 if( resetSchemaOnFault>0 ){
drh81028a42012-05-15 18:28:27 +00006525 sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
drhbdaec522011-04-04 00:14:43 +00006526 }
drh900b31e2007-08-28 02:27:51 +00006527
6528 /* This is the only way out of this procedure. We have to
6529 ** release the mutexes on btrees that were acquired at the
6530 ** top. */
6531vdbe_return:
drh99a66922011-05-13 18:51:42 +00006532 db->lastRowid = lastRowid;
drh77dfd5b2013-08-19 11:15:48 +00006533 testcase( nVmStep>0 );
drh9b47ee32013-08-20 03:13:51 +00006534 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
drhbdaec522011-04-04 00:14:43 +00006535 sqlite3VdbeLeave(p);
drhb86ccfb2003-01-28 23:13:10 +00006536 return rc;
6537
drh023ae032007-05-08 12:12:16 +00006538 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
6539 ** is encountered.
6540 */
6541too_big:
drh22c17b82015-05-15 04:13:15 +00006542 sqlite3VdbeError(p, "string or blob too big");
drh023ae032007-05-08 12:12:16 +00006543 rc = SQLITE_TOOBIG;
drha05a7222008-01-19 03:35:58 +00006544 goto vdbe_error_halt;
drh023ae032007-05-08 12:12:16 +00006545
drh98640a32007-06-07 19:08:32 +00006546 /* Jump to here if a malloc() fails.
drhb86ccfb2003-01-28 23:13:10 +00006547 */
6548no_mem:
drh17435752007-08-16 04:30:38 +00006549 db->mallocFailed = 1;
drh22c17b82015-05-15 04:13:15 +00006550 sqlite3VdbeError(p, "out of memory");
drhb86ccfb2003-01-28 23:13:10 +00006551 rc = SQLITE_NOMEM;
drha05a7222008-01-19 03:35:58 +00006552 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006553
drhb86ccfb2003-01-28 23:13:10 +00006554 /* Jump to here for any other kind of fatal error. The "rc" variable
6555 ** should hold the error number.
6556 */
6557abort_due_to_error:
drha05a7222008-01-19 03:35:58 +00006558 assert( p->zErrMsg==0 );
6559 if( db->mallocFailed ) rc = SQLITE_NOMEM;
danielk19777eaabcd2008-07-07 14:56:56 +00006560 if( rc!=SQLITE_IOERR_NOMEM ){
drh22c17b82015-05-15 04:13:15 +00006561 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
danielk19777eaabcd2008-07-07 14:56:56 +00006562 }
drha05a7222008-01-19 03:35:58 +00006563 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006564
danielk19776f8a5032004-05-10 10:34:51 +00006565 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
drhb86ccfb2003-01-28 23:13:10 +00006566 ** flag.
6567 */
6568abort_due_to_interrupt:
drh881feaa2006-07-26 01:39:30 +00006569 assert( db->u1.isInterrupted );
drh7e8b8482008-01-23 03:03:05 +00006570 rc = SQLITE_INTERRUPT;
danielk1977026d2702004-06-14 13:14:59 +00006571 p->rc = rc;
drh22c17b82015-05-15 04:13:15 +00006572 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
drha05a7222008-01-19 03:35:58 +00006573 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00006574}