blob: 4d38315f309ca25a827641ff4756b9f9e7f5384c [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drhe53831d2007-08-17 01:14:38 +0000115#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000116
117#ifdef SQLITE_DEBUG
118/*
drh0ee3dbe2009-10-16 15:05:18 +0000119**** This function is only used as part of an assert() statement. ***
120**
121** Check to see if pBtree holds the required locks to read or write to the
122** table with root page iRoot. Return 1 if it does and 0 if not.
123**
124** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000125** Btree connection pBtree:
126**
127** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128**
drh0ee3dbe2009-10-16 15:05:18 +0000129** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000130** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000131** the corresponding table. This makes things a bit more complicated,
132** as this module treats each table as a separate structure. To determine
133** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000134** function has to search through the database schema.
135**
drh0ee3dbe2009-10-16 15:05:18 +0000136** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000137** hold a write-lock on the schema table (root page 1). This is also
138** acceptable.
139*/
140static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
145){
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
149
drh0ee3dbe2009-10-16 15:05:18 +0000150 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000151 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000152 ** Return true immediately.
153 */
danielk197796d48e92009-06-29 06:00:37 +0000154 if( (pBtree->sharable==0)
drh169dd922017-06-26 13:57:49 +0000155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
danielk197796d48e92009-06-29 06:00:37 +0000156 ){
157 return 1;
158 }
159
drh0ee3dbe2009-10-16 15:05:18 +0000160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
164 */
drh2c5e35f2014-08-05 11:04:21 +0000165 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000166 return 1;
167 }
168
danielk197796d48e92009-06-29 06:00:37 +0000169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000177 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000178 if( iTab ){
179 /* Two or more indexes share the same root page. There must
180 ** be imposter tables. So just return true. The assert is not
181 ** useful in that case. */
182 return 1;
183 }
shane5eff7cf2009-08-10 03:57:58 +0000184 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000185 }
186 }
187 }else{
188 iTab = iRoot;
189 }
190
191 /* Search for the required lock. Either a write-lock on root-page iTab, a
192 ** write-lock on the schema table, or (if the client is reading) a
193 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
194 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
195 if( pLock->pBtree==pBtree
196 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
197 && pLock->eLock>=eLockType
198 ){
199 return 1;
200 }
201 }
202
203 /* Failed to find the required lock. */
204 return 0;
205}
drh0ee3dbe2009-10-16 15:05:18 +0000206#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000207
drh0ee3dbe2009-10-16 15:05:18 +0000208#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000209/*
drh0ee3dbe2009-10-16 15:05:18 +0000210**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000211**
drh0ee3dbe2009-10-16 15:05:18 +0000212** Return true if it would be illegal for pBtree to write into the
213** table or index rooted at iRoot because other shared connections are
214** simultaneously reading that same table or index.
215**
216** It is illegal for pBtree to write if some other Btree object that
217** shares the same BtShared object is currently reading or writing
218** the iRoot table. Except, if the other Btree object has the
219** read-uncommitted flag set, then it is OK for the other object to
220** have a read cursor.
221**
222** For example, before writing to any part of the table or index
223** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000224**
225** assert( !hasReadConflicts(pBtree, iRoot) );
226*/
227static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
228 BtCursor *p;
229 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
230 if( p->pgnoRoot==iRoot
231 && p->pBtree!=pBtree
drh169dd922017-06-26 13:57:49 +0000232 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
danielk197796d48e92009-06-29 06:00:37 +0000233 ){
234 return 1;
235 }
236 }
237 return 0;
238}
239#endif /* #ifdef SQLITE_DEBUG */
240
danielk1977da184232006-01-05 11:34:32 +0000241/*
drh0ee3dbe2009-10-16 15:05:18 +0000242** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000243** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000244** SQLITE_OK if the lock may be obtained (by calling
245** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000246*/
drhc25eabe2009-02-24 18:57:31 +0000247static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000248 BtShared *pBt = p->pBt;
249 BtLock *pIter;
250
drh1fee73e2007-08-29 04:00:57 +0000251 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000252 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
253 assert( p->db!=0 );
drh169dd922017-06-26 13:57:49 +0000254 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000255
danielk19775b413d72009-04-01 09:41:54 +0000256 /* If requesting a write-lock, then the Btree must have an open write
257 ** transaction on this file. And, obviously, for this to be so there
258 ** must be an open write transaction on the file itself.
259 */
260 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
261 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
262
drh0ee3dbe2009-10-16 15:05:18 +0000263 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000264 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000265 return SQLITE_OK;
266 }
267
danielk1977641b0f42007-12-21 04:47:25 +0000268 /* If some other connection is holding an exclusive lock, the
269 ** requested lock may not be obtained.
270 */
drhc9166342012-01-05 23:32:06 +0000271 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000272 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
273 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000274 }
275
danielk1977e0d9e6f2009-07-03 16:25:06 +0000276 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
277 /* The condition (pIter->eLock!=eLock) in the following if(...)
278 ** statement is a simplification of:
279 **
280 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
281 **
282 ** since we know that if eLock==WRITE_LOCK, then no other connection
283 ** may hold a WRITE_LOCK on any table in this file (since there can
284 ** only be a single writer).
285 */
286 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
287 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
288 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
289 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
290 if( eLock==WRITE_LOCK ){
291 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000292 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000293 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000294 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000295 }
296 }
297 return SQLITE_OK;
298}
drhe53831d2007-08-17 01:14:38 +0000299#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000300
drhe53831d2007-08-17 01:14:38 +0000301#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000302/*
303** Add a lock on the table with root-page iTable to the shared-btree used
304** by Btree handle p. Parameter eLock must be either READ_LOCK or
305** WRITE_LOCK.
306**
danielk19779d104862009-07-09 08:27:14 +0000307** This function assumes the following:
308**
drh0ee3dbe2009-10-16 15:05:18 +0000309** (a) The specified Btree object p is connected to a sharable
310** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000311**
drh0ee3dbe2009-10-16 15:05:18 +0000312** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000313** with the requested lock (i.e. querySharedCacheTableLock() has
314** already been called and returned SQLITE_OK).
315**
316** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
317** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000318*/
drhc25eabe2009-02-24 18:57:31 +0000319static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000320 BtShared *pBt = p->pBt;
321 BtLock *pLock = 0;
322 BtLock *pIter;
323
drh1fee73e2007-08-29 04:00:57 +0000324 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000325 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
326 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000327
danielk1977e0d9e6f2009-07-03 16:25:06 +0000328 /* A connection with the read-uncommitted flag set will never try to
329 ** obtain a read-lock using this function. The only read-lock obtained
330 ** by a connection in read-uncommitted mode is on the sqlite_master
331 ** table, and that lock is obtained in BtreeBeginTrans(). */
drh169dd922017-06-26 13:57:49 +0000332 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000333
danielk19779d104862009-07-09 08:27:14 +0000334 /* This function should only be called on a sharable b-tree after it
335 ** has been determined that no other b-tree holds a conflicting lock. */
336 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000337 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000338
339 /* First search the list for an existing lock on this table. */
340 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
341 if( pIter->iTable==iTable && pIter->pBtree==p ){
342 pLock = pIter;
343 break;
344 }
345 }
346
347 /* If the above search did not find a BtLock struct associating Btree p
348 ** with table iTable, allocate one and link it into the list.
349 */
350 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000351 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000352 if( !pLock ){
mistachkinfad30392016-02-13 23:43:46 +0000353 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +0000354 }
355 pLock->iTable = iTable;
356 pLock->pBtree = p;
357 pLock->pNext = pBt->pLock;
358 pBt->pLock = pLock;
359 }
360
361 /* Set the BtLock.eLock variable to the maximum of the current lock
362 ** and the requested lock. This means if a write-lock was already held
363 ** and a read-lock requested, we don't incorrectly downgrade the lock.
364 */
365 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000366 if( eLock>pLock->eLock ){
367 pLock->eLock = eLock;
368 }
danielk1977aef0bf62005-12-30 16:28:01 +0000369
370 return SQLITE_OK;
371}
drhe53831d2007-08-17 01:14:38 +0000372#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000373
drhe53831d2007-08-17 01:14:38 +0000374#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000375/*
drhc25eabe2009-02-24 18:57:31 +0000376** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000377** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000378**
drh0ee3dbe2009-10-16 15:05:18 +0000379** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000380** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000381** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000382*/
drhc25eabe2009-02-24 18:57:31 +0000383static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000384 BtShared *pBt = p->pBt;
385 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000386
drh1fee73e2007-08-29 04:00:57 +0000387 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000388 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000389 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000390
danielk1977aef0bf62005-12-30 16:28:01 +0000391 while( *ppIter ){
392 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000393 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000394 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000395 if( pLock->pBtree==p ){
396 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000397 assert( pLock->iTable!=1 || pLock==&p->lock );
398 if( pLock->iTable!=1 ){
399 sqlite3_free(pLock);
400 }
danielk1977aef0bf62005-12-30 16:28:01 +0000401 }else{
402 ppIter = &pLock->pNext;
403 }
404 }
danielk1977641b0f42007-12-21 04:47:25 +0000405
drhc9166342012-01-05 23:32:06 +0000406 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000407 if( pBt->pWriter==p ){
408 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000409 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000410 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000411 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000412 ** transaction. If there currently exists a writer, and p is not
413 ** that writer, then the number of locks held by connections other
414 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000415 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000416 **
drhc9166342012-01-05 23:32:06 +0000417 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000418 ** be zero already. So this next line is harmless in that case.
419 */
drhc9166342012-01-05 23:32:06 +0000420 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000421 }
danielk1977aef0bf62005-12-30 16:28:01 +0000422}
danielk197794b30732009-07-02 17:21:57 +0000423
danielk1977e0d9e6f2009-07-03 16:25:06 +0000424/*
drh0ee3dbe2009-10-16 15:05:18 +0000425** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000426*/
danielk197794b30732009-07-02 17:21:57 +0000427static void downgradeAllSharedCacheTableLocks(Btree *p){
428 BtShared *pBt = p->pBt;
429 if( pBt->pWriter==p ){
430 BtLock *pLock;
431 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000432 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000433 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
434 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
435 pLock->eLock = READ_LOCK;
436 }
437 }
438}
439
danielk1977aef0bf62005-12-30 16:28:01 +0000440#endif /* SQLITE_OMIT_SHARED_CACHE */
441
drh980b1a72006-08-16 16:42:48 +0000442static void releasePage(MemPage *pPage); /* Forward reference */
443
drh1fee73e2007-08-29 04:00:57 +0000444/*
drh0ee3dbe2009-10-16 15:05:18 +0000445***** This routine is used inside of assert() only ****
446**
447** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000448*/
drh0ee3dbe2009-10-16 15:05:18 +0000449#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000450static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000451 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000452}
drh5e08d0f2016-06-04 21:05:54 +0000453
454/* Verify that the cursor and the BtShared agree about what is the current
455** database connetion. This is important in shared-cache mode. If the database
456** connection pointers get out-of-sync, it is possible for routines like
457** btreeInitPage() to reference an stale connection pointer that references a
458** a connection that has already closed. This routine is used inside assert()
459** statements only and for the purpose of double-checking that the btree code
460** does keep the database connection pointers up-to-date.
461*/
dan7a2347e2016-01-07 16:43:54 +0000462static int cursorOwnsBtShared(BtCursor *p){
463 assert( cursorHoldsMutex(p) );
464 return (p->pBtree->db==p->pBt->db);
465}
drh1fee73e2007-08-29 04:00:57 +0000466#endif
467
danielk197792d4d7a2007-05-04 12:05:56 +0000468/*
dan5a500af2014-03-11 20:33:04 +0000469** Invalidate the overflow cache of the cursor passed as the first argument.
470** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000471*/
drh036dbec2014-03-11 23:40:44 +0000472#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000473
474/*
475** Invalidate the overflow page-list cache for all cursors opened
476** on the shared btree structure pBt.
477*/
478static void invalidateAllOverflowCache(BtShared *pBt){
479 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000480 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000481 for(p=pBt->pCursor; p; p=p->pNext){
482 invalidateOverflowCache(p);
483 }
484}
danielk197796d48e92009-06-29 06:00:37 +0000485
dan5a500af2014-03-11 20:33:04 +0000486#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000487/*
488** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000489** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000490** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000491**
492** If argument isClearTable is true, then the entire contents of the
493** table is about to be deleted. In this case invalidate all incrblob
494** cursors open on any row within the table with root-page pgnoRoot.
495**
496** Otherwise, if argument isClearTable is false, then the row with
497** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000498** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000499*/
500static void invalidateIncrblobCursors(
501 Btree *pBtree, /* The database file to check */
drh9ca431a2017-03-29 18:03:50 +0000502 Pgno pgnoRoot, /* The table that might be changing */
danielk197796d48e92009-06-29 06:00:37 +0000503 i64 iRow, /* The rowid that might be changing */
504 int isClearTable /* True if all rows are being deleted */
505){
506 BtCursor *p;
drh69180952015-06-25 13:03:10 +0000507 if( pBtree->hasIncrblobCur==0 ) return;
danielk197796d48e92009-06-29 06:00:37 +0000508 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000509 pBtree->hasIncrblobCur = 0;
510 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
511 if( (p->curFlags & BTCF_Incrblob)!=0 ){
512 pBtree->hasIncrblobCur = 1;
drh9ca431a2017-03-29 18:03:50 +0000513 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
drh69180952015-06-25 13:03:10 +0000514 p->eState = CURSOR_INVALID;
515 }
danielk197796d48e92009-06-29 06:00:37 +0000516 }
517 }
518}
519
danielk197792d4d7a2007-05-04 12:05:56 +0000520#else
dan5a500af2014-03-11 20:33:04 +0000521 /* Stub function when INCRBLOB is omitted */
drh9ca431a2017-03-29 18:03:50 +0000522 #define invalidateIncrblobCursors(w,x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000523#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000524
drh980b1a72006-08-16 16:42:48 +0000525/*
danielk1977bea2a942009-01-20 17:06:27 +0000526** Set bit pgno of the BtShared.pHasContent bitvec. This is called
527** when a page that previously contained data becomes a free-list leaf
528** page.
529**
530** The BtShared.pHasContent bitvec exists to work around an obscure
531** bug caused by the interaction of two useful IO optimizations surrounding
532** free-list leaf pages:
533**
534** 1) When all data is deleted from a page and the page becomes
535** a free-list leaf page, the page is not written to the database
536** (as free-list leaf pages contain no meaningful data). Sometimes
537** such a page is not even journalled (as it will not be modified,
538** why bother journalling it?).
539**
540** 2) When a free-list leaf page is reused, its content is not read
541** from the database or written to the journal file (why should it
542** be, if it is not at all meaningful?).
543**
544** By themselves, these optimizations work fine and provide a handy
545** performance boost to bulk delete or insert operations. However, if
546** a page is moved to the free-list and then reused within the same
547** transaction, a problem comes up. If the page is not journalled when
548** it is moved to the free-list and it is also not journalled when it
549** is extracted from the free-list and reused, then the original data
550** may be lost. In the event of a rollback, it may not be possible
551** to restore the database to its original configuration.
552**
553** The solution is the BtShared.pHasContent bitvec. Whenever a page is
554** moved to become a free-list leaf page, the corresponding bit is
555** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000556** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000557** set in BtShared.pHasContent. The contents of the bitvec are cleared
558** at the end of every transaction.
559*/
560static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
561 int rc = SQLITE_OK;
562 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000563 assert( pgno<=pBt->nPage );
564 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000565 if( !pBt->pHasContent ){
mistachkinfad30392016-02-13 23:43:46 +0000566 rc = SQLITE_NOMEM_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +0000567 }
568 }
569 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
570 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
571 }
572 return rc;
573}
574
575/*
576** Query the BtShared.pHasContent vector.
577**
578** This function is called when a free-list leaf page is removed from the
579** free-list for reuse. It returns false if it is safe to retrieve the
580** page from the pager layer with the 'no-content' flag set. True otherwise.
581*/
582static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
583 Bitvec *p = pBt->pHasContent;
584 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
585}
586
587/*
588** Clear (destroy) the BtShared.pHasContent bitvec. This should be
589** invoked at the conclusion of each write-transaction.
590*/
591static void btreeClearHasContent(BtShared *pBt){
592 sqlite3BitvecDestroy(pBt->pHasContent);
593 pBt->pHasContent = 0;
594}
595
596/*
drh138eeeb2013-03-27 03:15:23 +0000597** Release all of the apPage[] pages for a cursor.
598*/
599static void btreeReleaseAllCursorPages(BtCursor *pCur){
600 int i;
601 for(i=0; i<=pCur->iPage; i++){
602 releasePage(pCur->apPage[i]);
603 pCur->apPage[i] = 0;
604 }
605 pCur->iPage = -1;
606}
607
danf0ee1d32015-09-12 19:26:11 +0000608/*
609** The cursor passed as the only argument must point to a valid entry
610** when this function is called (i.e. have eState==CURSOR_VALID). This
611** function saves the current cursor key in variables pCur->nKey and
612** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
613** code otherwise.
614**
615** If the cursor is open on an intkey table, then the integer key
616** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
617** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
618** set to point to a malloced buffer pCur->nKey bytes in size containing
619** the key.
620*/
621static int saveCursorKey(BtCursor *pCur){
drha7c90c42016-06-04 20:37:10 +0000622 int rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +0000623 assert( CURSOR_VALID==pCur->eState );
624 assert( 0==pCur->pKey );
625 assert( cursorHoldsMutex(pCur) );
626
drha7c90c42016-06-04 20:37:10 +0000627 if( pCur->curIntKey ){
628 /* Only the rowid is required for a table btree */
629 pCur->nKey = sqlite3BtreeIntegerKey(pCur);
630 }else{
631 /* For an index btree, save the complete key content */
drhd66c4f82016-06-04 20:58:35 +0000632 void *pKey;
drha7c90c42016-06-04 20:37:10 +0000633 pCur->nKey = sqlite3BtreePayloadSize(pCur);
drhd66c4f82016-06-04 20:58:35 +0000634 pKey = sqlite3Malloc( pCur->nKey );
danf0ee1d32015-09-12 19:26:11 +0000635 if( pKey ){
drhcb3cabd2016-11-25 19:18:28 +0000636 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
danf0ee1d32015-09-12 19:26:11 +0000637 if( rc==SQLITE_OK ){
638 pCur->pKey = pKey;
639 }else{
640 sqlite3_free(pKey);
641 }
642 }else{
mistachkinfad30392016-02-13 23:43:46 +0000643 rc = SQLITE_NOMEM_BKPT;
danf0ee1d32015-09-12 19:26:11 +0000644 }
645 }
646 assert( !pCur->curIntKey || !pCur->pKey );
647 return rc;
648}
drh138eeeb2013-03-27 03:15:23 +0000649
650/*
drh980b1a72006-08-16 16:42:48 +0000651** Save the current cursor position in the variables BtCursor.nKey
652** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000653**
654** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
655** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000656*/
657static int saveCursorPosition(BtCursor *pCur){
658 int rc;
659
drhd2f83132015-03-25 17:35:01 +0000660 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000661 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000662 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000663
drhd2f83132015-03-25 17:35:01 +0000664 if( pCur->eState==CURSOR_SKIPNEXT ){
665 pCur->eState = CURSOR_VALID;
666 }else{
667 pCur->skipNext = 0;
668 }
drh980b1a72006-08-16 16:42:48 +0000669
danf0ee1d32015-09-12 19:26:11 +0000670 rc = saveCursorKey(pCur);
drh980b1a72006-08-16 16:42:48 +0000671 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000672 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000673 pCur->eState = CURSOR_REQUIRESEEK;
674 }
675
dane755e102015-09-30 12:59:12 +0000676 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
drh980b1a72006-08-16 16:42:48 +0000677 return rc;
678}
679
drh637f3d82014-08-22 22:26:07 +0000680/* Forward reference */
681static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
682
drh980b1a72006-08-16 16:42:48 +0000683/*
drh0ee3dbe2009-10-16 15:05:18 +0000684** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000685** the table with root-page iRoot. "Saving the cursor position" means that
686** the location in the btree is remembered in such a way that it can be
687** moved back to the same spot after the btree has been modified. This
688** routine is called just before cursor pExcept is used to modify the
689** table, for example in BtreeDelete() or BtreeInsert().
690**
drh27fb7462015-06-30 02:47:36 +0000691** If there are two or more cursors on the same btree, then all such
692** cursors should have their BTCF_Multiple flag set. The btreeCursor()
693** routine enforces that rule. This routine only needs to be called in
694** the uncommon case when pExpect has the BTCF_Multiple flag set.
695**
696** If pExpect!=NULL and if no other cursors are found on the same root-page,
697** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
698** pointless call to this routine.
699**
drh637f3d82014-08-22 22:26:07 +0000700** Implementation note: This routine merely checks to see if any cursors
701** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
702** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000703*/
704static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
705 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000706 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000707 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000708 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000709 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
710 }
drh27fb7462015-06-30 02:47:36 +0000711 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
712 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
713 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000714}
715
716/* This helper routine to saveAllCursors does the actual work of saving
717** the cursors if and when a cursor is found that actually requires saving.
718** The common case is that no cursors need to be saved, so this routine is
719** broken out from its caller to avoid unnecessary stack pointer movement.
720*/
721static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000722 BtCursor *p, /* The first cursor that needs saving */
723 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
724 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000725){
726 do{
drh138eeeb2013-03-27 03:15:23 +0000727 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000728 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000729 int rc = saveCursorPosition(p);
730 if( SQLITE_OK!=rc ){
731 return rc;
732 }
733 }else{
734 testcase( p->iPage>0 );
735 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000736 }
737 }
drh637f3d82014-08-22 22:26:07 +0000738 p = p->pNext;
739 }while( p );
drh980b1a72006-08-16 16:42:48 +0000740 return SQLITE_OK;
741}
742
743/*
drhbf700f32007-03-31 02:36:44 +0000744** Clear the current cursor position.
745*/
danielk1977be51a652008-10-08 17:58:48 +0000746void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000747 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000748 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000749 pCur->pKey = 0;
750 pCur->eState = CURSOR_INVALID;
751}
752
753/*
danielk19773509a652009-07-06 18:56:13 +0000754** In this version of BtreeMoveto, pKey is a packed index record
755** such as is generated by the OP_MakeRecord opcode. Unpack the
756** record and then call BtreeMovetoUnpacked() to do the work.
757*/
758static int btreeMoveto(
759 BtCursor *pCur, /* Cursor open on the btree to be searched */
760 const void *pKey, /* Packed key if the btree is an index */
761 i64 nKey, /* Integer key for tables. Size of pKey for indices */
762 int bias, /* Bias search to the high end */
763 int *pRes /* Write search results here */
764){
765 int rc; /* Status code */
766 UnpackedRecord *pIdxKey; /* Unpacked index key */
danielk19773509a652009-07-06 18:56:13 +0000767
768 if( pKey ){
769 assert( nKey==(i64)(int)nKey );
drha582b012016-12-21 19:45:54 +0000770 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pCur->pKeyInfo);
mistachkinfad30392016-02-13 23:43:46 +0000771 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
mistachkin0fe5f952011-09-14 18:19:08 +0000772 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000773 if( pIdxKey->nField==0 ){
drhcc97ca42017-06-07 22:32:59 +0000774 rc = SQLITE_CORRUPT_PGNO(pCur->apPage[pCur->iPage]->pgno);
drha582b012016-12-21 19:45:54 +0000775 goto moveto_done;
drh094b7582013-11-30 12:49:28 +0000776 }
danielk19773509a652009-07-06 18:56:13 +0000777 }else{
778 pIdxKey = 0;
779 }
780 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
drha582b012016-12-21 19:45:54 +0000781moveto_done:
782 if( pIdxKey ){
783 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000784 }
785 return rc;
786}
787
788/*
drh980b1a72006-08-16 16:42:48 +0000789** Restore the cursor to the position it was in (or as close to as possible)
790** when saveCursorPosition() was called. Note that this call deletes the
791** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000792** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000793** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000794*/
danielk197730548662009-07-09 05:07:37 +0000795static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000796 int rc;
drhd2f83132015-03-25 17:35:01 +0000797 int skipNext;
dan7a2347e2016-01-07 16:43:54 +0000798 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +0000799 assert( pCur->eState>=CURSOR_REQUIRESEEK );
800 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000801 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000802 }
drh980b1a72006-08-16 16:42:48 +0000803 pCur->eState = CURSOR_INVALID;
drhd2f83132015-03-25 17:35:01 +0000804 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
drh980b1a72006-08-16 16:42:48 +0000805 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000806 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000807 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000808 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drhd2f83132015-03-25 17:35:01 +0000809 pCur->skipNext |= skipNext;
drh9b47ee32013-08-20 03:13:51 +0000810 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
811 pCur->eState = CURSOR_SKIPNEXT;
812 }
drh980b1a72006-08-16 16:42:48 +0000813 }
814 return rc;
815}
816
drha3460582008-07-11 21:02:53 +0000817#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000818 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000819 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000820 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000821
drha3460582008-07-11 21:02:53 +0000822/*
drh6848dad2014-08-22 23:33:03 +0000823** Determine whether or not a cursor has moved from the position where
824** it was last placed, or has been invalidated for any other reason.
825** Cursors can move when the row they are pointing at is deleted out
826** from under them, for example. Cursor might also move if a btree
827** is rebalanced.
drha3460582008-07-11 21:02:53 +0000828**
drh6848dad2014-08-22 23:33:03 +0000829** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000830**
drh6848dad2014-08-22 23:33:03 +0000831** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
832** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000833*/
drh6848dad2014-08-22 23:33:03 +0000834int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drhc22284f2014-10-13 16:02:20 +0000835 return pCur->eState!=CURSOR_VALID;
drh6848dad2014-08-22 23:33:03 +0000836}
837
838/*
839** This routine restores a cursor back to its original position after it
840** has been moved by some outside activity (such as a btree rebalance or
841** a row having been deleted out from under the cursor).
842**
843** On success, the *pDifferentRow parameter is false if the cursor is left
844** pointing at exactly the same row. *pDifferntRow is the row the cursor
845** was pointing to has been deleted, forcing the cursor to point to some
846** nearby row.
847**
848** This routine should only be called for a cursor that just returned
849** TRUE from sqlite3BtreeCursorHasMoved().
850*/
851int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000852 int rc;
853
drh6848dad2014-08-22 23:33:03 +0000854 assert( pCur!=0 );
855 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000856 rc = restoreCursorPosition(pCur);
857 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000858 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000859 return rc;
860 }
drh606a3572015-03-25 18:29:10 +0000861 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000862 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000863 }else{
drh606a3572015-03-25 18:29:10 +0000864 assert( pCur->skipNext==0 );
drh6848dad2014-08-22 23:33:03 +0000865 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000866 }
867 return SQLITE_OK;
868}
869
drhf7854c72015-10-27 13:24:37 +0000870#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh28935362013-12-07 20:39:19 +0000871/*
drh0df57012015-08-14 15:05:55 +0000872** Provide hints to the cursor. The particular hint given (and the type
873** and number of the varargs parameters) is determined by the eHintType
874** parameter. See the definitions of the BTREE_HINT_* macros for details.
drh28935362013-12-07 20:39:19 +0000875*/
drh0df57012015-08-14 15:05:55 +0000876void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
drhf7854c72015-10-27 13:24:37 +0000877 /* Used only by system that substitute their own storage engine */
drh28935362013-12-07 20:39:19 +0000878}
drhf7854c72015-10-27 13:24:37 +0000879#endif
880
881/*
882** Provide flag hints to the cursor.
883*/
884void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
885 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
886 pCur->hints = x;
887}
888
drh28935362013-12-07 20:39:19 +0000889
danielk1977599fcba2004-11-08 07:13:13 +0000890#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000891/*
drha3152892007-05-05 11:48:52 +0000892** Given a page number of a regular database page, return the page
893** number for the pointer-map page that contains the entry for the
894** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000895**
896** Return 0 (not a valid page) for pgno==1 since there is
897** no pointer map associated with page 1. The integrity_check logic
898** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000899*/
danielk1977266664d2006-02-10 08:24:21 +0000900static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000901 int nPagesPerMapPage;
902 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000903 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000904 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000905 nPagesPerMapPage = (pBt->usableSize/5)+1;
906 iPtrMap = (pgno-2)/nPagesPerMapPage;
907 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000908 if( ret==PENDING_BYTE_PAGE(pBt) ){
909 ret++;
910 }
911 return ret;
912}
danielk1977a19df672004-11-03 11:37:07 +0000913
danielk1977afcdd022004-10-31 16:25:42 +0000914/*
danielk1977afcdd022004-10-31 16:25:42 +0000915** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000916**
917** This routine updates the pointer map entry for page number 'key'
918** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000919**
920** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
921** a no-op. If an error occurs, the appropriate error code is written
922** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000923*/
drh98add2e2009-07-20 17:11:49 +0000924static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000925 DbPage *pDbPage; /* The pointer map page */
926 u8 *pPtrmap; /* The pointer map data */
927 Pgno iPtrmap; /* The pointer map page number */
928 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000929 int rc; /* Return code from subfunctions */
930
931 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000932
drh1fee73e2007-08-29 04:00:57 +0000933 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000934 /* The master-journal page number must never be used as a pointer map page */
935 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
936
danielk1977ac11ee62005-01-15 12:45:51 +0000937 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000938 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000939 *pRC = SQLITE_CORRUPT_BKPT;
940 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000941 }
danielk1977266664d2006-02-10 08:24:21 +0000942 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +0000943 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977687566d2004-11-02 12:56:41 +0000944 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000945 *pRC = rc;
946 return;
danielk1977afcdd022004-10-31 16:25:42 +0000947 }
danielk19778c666b12008-07-18 09:34:57 +0000948 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000949 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000950 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000951 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000952 }
drhfc243732011-05-17 15:21:56 +0000953 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000954 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000955
drh615ae552005-01-16 23:21:00 +0000956 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
957 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000958 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000959 if( rc==SQLITE_OK ){
960 pPtrmap[offset] = eType;
961 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000962 }
danielk1977afcdd022004-10-31 16:25:42 +0000963 }
964
drh4925a552009-07-07 11:39:58 +0000965ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000966 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000967}
968
969/*
970** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000971**
972** This routine retrieves the pointer map entry for page 'key', writing
973** the type and parent page number to *pEType and *pPgno respectively.
974** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000975*/
danielk1977aef0bf62005-12-30 16:28:01 +0000976static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000977 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000978 int iPtrmap; /* Pointer map page index */
979 u8 *pPtrmap; /* Pointer map page data */
980 int offset; /* Offset of entry in pointer map */
981 int rc;
982
drh1fee73e2007-08-29 04:00:57 +0000983 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000984
danielk1977266664d2006-02-10 08:24:21 +0000985 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +0000986 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +0000987 if( rc!=0 ){
988 return rc;
989 }
danielk19773b8a05f2007-03-19 17:44:26 +0000990 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000991
danielk19778c666b12008-07-18 09:34:57 +0000992 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000993 if( offset<0 ){
994 sqlite3PagerUnref(pDbPage);
995 return SQLITE_CORRUPT_BKPT;
996 }
997 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000998 assert( pEType!=0 );
999 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +00001000 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +00001001
danielk19773b8a05f2007-03-19 17:44:26 +00001002 sqlite3PagerUnref(pDbPage);
drhcc97ca42017-06-07 22:32:59 +00001003 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
danielk1977afcdd022004-10-31 16:25:42 +00001004 return SQLITE_OK;
1005}
1006
danielk197785d90ca2008-07-19 14:25:15 +00001007#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +00001008 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +00001009 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +00001010 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +00001011#endif
danielk1977afcdd022004-10-31 16:25:42 +00001012
drh0d316a42002-08-11 20:10:47 +00001013/*
drh271efa52004-05-30 19:19:05 +00001014** Given a btree page and a cell index (0 means the first cell on
1015** the page, 1 means the second cell, and so forth) return a pointer
1016** to the cell content.
1017**
drhf44890a2015-06-27 03:58:15 +00001018** findCellPastPtr() does the same except it skips past the initial
1019** 4-byte child pointer found on interior pages, if there is one.
1020**
drh271efa52004-05-30 19:19:05 +00001021** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +00001022*/
drh1688c862008-07-18 02:44:17 +00001023#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +00001024 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001025#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +00001026 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +00001027
drh43605152004-05-29 21:46:49 +00001028
1029/*
drh5fa60512015-06-19 17:19:34 +00001030** This is common tail processing for btreeParseCellPtr() and
1031** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1032** on a single B-tree page. Make necessary adjustments to the CellInfo
1033** structure.
drh43605152004-05-29 21:46:49 +00001034*/
drh5fa60512015-06-19 17:19:34 +00001035static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1036 MemPage *pPage, /* Page containing the cell */
1037 u8 *pCell, /* Pointer to the cell text. */
1038 CellInfo *pInfo /* Fill in this structure */
1039){
1040 /* If the payload will not fit completely on the local page, we have
1041 ** to decide how much to store locally and how much to spill onto
1042 ** overflow pages. The strategy is to minimize the amount of unused
1043 ** space on overflow pages while keeping the amount of local storage
1044 ** in between minLocal and maxLocal.
1045 **
1046 ** Warning: changing the way overflow payload is distributed in any
1047 ** way will result in an incompatible file format.
1048 */
1049 int minLocal; /* Minimum amount of payload held locally */
1050 int maxLocal; /* Maximum amount of payload held locally */
1051 int surplus; /* Overflow payload available for local storage */
1052
1053 minLocal = pPage->minLocal;
1054 maxLocal = pPage->maxLocal;
1055 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1056 testcase( surplus==maxLocal );
1057 testcase( surplus==maxLocal+1 );
1058 if( surplus <= maxLocal ){
1059 pInfo->nLocal = (u16)surplus;
1060 }else{
1061 pInfo->nLocal = (u16)minLocal;
drh43605152004-05-29 21:46:49 +00001062 }
drh45ac1c72015-12-18 03:59:16 +00001063 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
drh43605152004-05-29 21:46:49 +00001064}
1065
1066/*
drh5fa60512015-06-19 17:19:34 +00001067** The following routines are implementations of the MemPage.xParseCell()
1068** method.
danielk19771cc5ed82007-05-16 17:28:43 +00001069**
drh5fa60512015-06-19 17:19:34 +00001070** Parse a cell content block and fill in the CellInfo structure.
1071**
1072** btreeParseCellPtr() => table btree leaf nodes
1073** btreeParseCellNoPayload() => table btree internal nodes
1074** btreeParseCellPtrIndex() => index btree nodes
1075**
1076** There is also a wrapper function btreeParseCell() that works for
1077** all MemPage types and that references the cell by index rather than
1078** by pointer.
drh43605152004-05-29 21:46:49 +00001079*/
drh5fa60512015-06-19 17:19:34 +00001080static void btreeParseCellPtrNoPayload(
1081 MemPage *pPage, /* Page containing the cell */
1082 u8 *pCell, /* Pointer to the cell text. */
1083 CellInfo *pInfo /* Fill in this structure */
1084){
1085 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1086 assert( pPage->leaf==0 );
drh5fa60512015-06-19 17:19:34 +00001087 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001088#ifndef SQLITE_DEBUG
1089 UNUSED_PARAMETER(pPage);
1090#endif
drh5fa60512015-06-19 17:19:34 +00001091 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1092 pInfo->nPayload = 0;
1093 pInfo->nLocal = 0;
drh5fa60512015-06-19 17:19:34 +00001094 pInfo->pPayload = 0;
1095 return;
1096}
danielk197730548662009-07-09 05:07:37 +00001097static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001098 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001099 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001100 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001101){
drh3e28ff52014-09-24 00:59:08 +00001102 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001103 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001104 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001105
drh1fee73e2007-08-29 04:00:57 +00001106 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001107 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001108 assert( pPage->intKeyLeaf );
1109 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001110 pIter = pCell;
1111
1112 /* The next block of code is equivalent to:
1113 **
1114 ** pIter += getVarint32(pIter, nPayload);
1115 **
1116 ** The code is inlined to avoid a function call.
1117 */
1118 nPayload = *pIter;
1119 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001120 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001121 nPayload &= 0x7f;
1122 do{
1123 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1124 }while( (*pIter)>=0x80 && pIter<pEnd );
drh6f11bef2004-05-13 01:12:56 +00001125 }
drh56cb04e2015-06-19 18:24:37 +00001126 pIter++;
1127
1128 /* The next block of code is equivalent to:
1129 **
1130 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1131 **
1132 ** The code is inlined to avoid a function call.
1133 */
1134 iKey = *pIter;
1135 if( iKey>=0x80 ){
1136 u8 *pEnd = &pIter[7];
1137 iKey &= 0x7f;
1138 while(1){
1139 iKey = (iKey<<7) | (*++pIter & 0x7f);
1140 if( (*pIter)<0x80 ) break;
1141 if( pIter>=pEnd ){
1142 iKey = (iKey<<8) | *++pIter;
1143 break;
1144 }
1145 }
1146 }
1147 pIter++;
1148
1149 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001150 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001151 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001152 testcase( nPayload==pPage->maxLocal );
1153 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001154 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001155 /* This is the (easy) common case where the entire payload fits
1156 ** on the local page. No overflow is required.
1157 */
drhab1cc582014-09-23 21:25:19 +00001158 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1159 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001160 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001161 }else{
drh5fa60512015-06-19 17:19:34 +00001162 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001163 }
drh3aac2dd2004-04-26 14:10:20 +00001164}
drh5fa60512015-06-19 17:19:34 +00001165static void btreeParseCellPtrIndex(
1166 MemPage *pPage, /* Page containing the cell */
1167 u8 *pCell, /* Pointer to the cell text. */
1168 CellInfo *pInfo /* Fill in this structure */
1169){
1170 u8 *pIter; /* For scanning through pCell */
1171 u32 nPayload; /* Number of bytes of cell payload */
drh3aac2dd2004-04-26 14:10:20 +00001172
drh5fa60512015-06-19 17:19:34 +00001173 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1174 assert( pPage->leaf==0 || pPage->leaf==1 );
1175 assert( pPage->intKeyLeaf==0 );
drh5fa60512015-06-19 17:19:34 +00001176 pIter = pCell + pPage->childPtrSize;
1177 nPayload = *pIter;
1178 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001179 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001180 nPayload &= 0x7f;
1181 do{
1182 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1183 }while( *(pIter)>=0x80 && pIter<pEnd );
1184 }
1185 pIter++;
1186 pInfo->nKey = nPayload;
1187 pInfo->nPayload = nPayload;
1188 pInfo->pPayload = pIter;
1189 testcase( nPayload==pPage->maxLocal );
1190 testcase( nPayload==pPage->maxLocal+1 );
1191 if( nPayload<=pPage->maxLocal ){
1192 /* This is the (easy) common case where the entire payload fits
1193 ** on the local page. No overflow is required.
1194 */
1195 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1196 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1197 pInfo->nLocal = (u16)nPayload;
drh5fa60512015-06-19 17:19:34 +00001198 }else{
1199 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh3aac2dd2004-04-26 14:10:20 +00001200 }
1201}
danielk197730548662009-07-09 05:07:37 +00001202static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001203 MemPage *pPage, /* Page containing the cell */
1204 int iCell, /* The cell index. First cell is 0 */
1205 CellInfo *pInfo /* Fill in this structure */
1206){
drh5fa60512015-06-19 17:19:34 +00001207 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001208}
drh3aac2dd2004-04-26 14:10:20 +00001209
1210/*
drh5fa60512015-06-19 17:19:34 +00001211** The following routines are implementations of the MemPage.xCellSize
1212** method.
1213**
drh43605152004-05-29 21:46:49 +00001214** Compute the total number of bytes that a Cell needs in the cell
1215** data area of the btree-page. The return number includes the cell
1216** data header and the local payload, but not any overflow page or
1217** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001218**
drh5fa60512015-06-19 17:19:34 +00001219** cellSizePtrNoPayload() => table internal nodes
1220** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001221*/
danielk1977ae5558b2009-04-29 11:31:47 +00001222static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001223 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1224 u8 *pEnd; /* End mark for a varint */
1225 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001226
1227#ifdef SQLITE_DEBUG
1228 /* The value returned by this function should always be the same as
1229 ** the (CellInfo.nSize) value found by doing a full parse of the
1230 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1231 ** this function verifies that this invariant is not violated. */
1232 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001233 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001234#endif
1235
drh3e28ff52014-09-24 00:59:08 +00001236 nSize = *pIter;
1237 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001238 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001239 nSize &= 0x7f;
1240 do{
1241 nSize = (nSize<<7) | (*++pIter & 0x7f);
1242 }while( *(pIter)>=0x80 && pIter<pEnd );
1243 }
1244 pIter++;
danielk1977ae5558b2009-04-29 11:31:47 +00001245 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001246 /* pIter now points at the 64-bit integer key value, a variable length
1247 ** integer. The following block moves pIter to point at the first byte
1248 ** past the end of the key value. */
1249 pEnd = &pIter[9];
1250 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001251 }
drh0a45c272009-07-08 01:49:11 +00001252 testcase( nSize==pPage->maxLocal );
1253 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001254 if( nSize<=pPage->maxLocal ){
1255 nSize += (u32)(pIter - pCell);
1256 if( nSize<4 ) nSize = 4;
1257 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001258 int minLocal = pPage->minLocal;
1259 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001260 testcase( nSize==pPage->maxLocal );
1261 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001262 if( nSize>pPage->maxLocal ){
1263 nSize = minLocal;
1264 }
drh3e28ff52014-09-24 00:59:08 +00001265 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001266 }
drhdc41d602014-09-22 19:51:35 +00001267 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001268 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001269}
drh25ada072015-06-19 15:07:14 +00001270static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1271 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1272 u8 *pEnd; /* End mark for a varint */
1273
1274#ifdef SQLITE_DEBUG
1275 /* The value returned by this function should always be the same as
1276 ** the (CellInfo.nSize) value found by doing a full parse of the
1277 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1278 ** this function verifies that this invariant is not violated. */
1279 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001280 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001281#else
1282 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001283#endif
1284
1285 assert( pPage->childPtrSize==4 );
1286 pEnd = pIter + 9;
1287 while( (*pIter++)&0x80 && pIter<pEnd );
1288 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1289 return (u16)(pIter - pCell);
1290}
1291
drh0ee3dbe2009-10-16 15:05:18 +00001292
1293#ifdef SQLITE_DEBUG
1294/* This variation on cellSizePtr() is used inside of assert() statements
1295** only. */
drha9121e42008-02-19 14:59:35 +00001296static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001297 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001298}
danielk1977bc6ada42004-06-30 08:20:16 +00001299#endif
drh3b7511c2001-05-26 13:15:44 +00001300
danielk197779a40da2005-01-16 08:00:01 +00001301#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001302/*
danielk197726836652005-01-17 01:33:13 +00001303** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001304** to an overflow page, insert an entry into the pointer-map
1305** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001306*/
drh98add2e2009-07-20 17:11:49 +00001307static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001308 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001309 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001310 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001311 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00001312 if( info.nLocal<info.nPayload ){
1313 Pgno ovfl = get4byte(&pCell[info.nSize-4]);
drh98add2e2009-07-20 17:11:49 +00001314 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001315 }
danielk1977ac11ee62005-01-15 12:45:51 +00001316}
danielk197779a40da2005-01-16 08:00:01 +00001317#endif
1318
danielk1977ac11ee62005-01-15 12:45:51 +00001319
drhda200cc2004-05-09 11:51:38 +00001320/*
dane6d065a2017-02-24 19:58:22 +00001321** Defragment the page given. This routine reorganizes cells within the
1322** page so that there are no free-blocks on the free-block list.
1323**
1324** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1325** present in the page after this routine returns.
drhfdab0262014-11-20 15:30:50 +00001326**
1327** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1328** b-tree page so that there are no freeblocks or fragment bytes, all
1329** unused bytes are contained in the unallocated space region, and all
1330** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001331*/
dane6d065a2017-02-24 19:58:22 +00001332static int defragmentPage(MemPage *pPage, int nMaxFrag){
drh43605152004-05-29 21:46:49 +00001333 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001334 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001335 int hdr; /* Offset to the page header */
1336 int size; /* Size of a cell */
1337 int usableSize; /* Number of usable bytes on a page */
1338 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001339 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001340 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001341 unsigned char *data; /* The page data */
1342 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001343 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001344 int iCellFirst; /* First allowable cell index */
1345 int iCellLast; /* Last possible cell index */
1346
danielk19773b8a05f2007-03-19 17:44:26 +00001347 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001348 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001349 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001350 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001351 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001352 temp = 0;
1353 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001354 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001355 cellOffset = pPage->cellOffset;
1356 nCell = pPage->nCell;
1357 assert( nCell==get2byte(&data[hdr+3]) );
dane6d065a2017-02-24 19:58:22 +00001358 iCellFirst = cellOffset + 2*nCell;
dan30741eb2017-03-03 20:02:53 +00001359 usableSize = pPage->pBt->usableSize;
dane6d065a2017-02-24 19:58:22 +00001360
1361 /* This block handles pages with two or fewer free blocks and nMaxFrag
1362 ** or fewer fragmented bytes. In this case it is faster to move the
1363 ** two (or one) blocks of cells using memmove() and add the required
1364 ** offsets to each pointer in the cell-pointer array than it is to
1365 ** reconstruct the entire page. */
1366 if( (int)data[hdr+7]<=nMaxFrag ){
1367 int iFree = get2byte(&data[hdr+1]);
1368 if( iFree ){
1369 int iFree2 = get2byte(&data[iFree]);
dan30741eb2017-03-03 20:02:53 +00001370
1371 /* pageFindSlot() has already verified that free blocks are sorted
1372 ** in order of offset within the page, and that no block extends
1373 ** past the end of the page. Provided the two free slots do not
1374 ** overlap, this guarantees that the memmove() calls below will not
1375 ** overwrite the usableSize byte buffer, even if the database page
1376 ** is corrupt. */
1377 assert( iFree2==0 || iFree2>iFree );
1378 assert( iFree+get2byte(&data[iFree+2]) <= usableSize );
1379 assert( iFree2==0 || iFree2+get2byte(&data[iFree2+2]) <= usableSize );
1380
dane6d065a2017-02-24 19:58:22 +00001381 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1382 u8 *pEnd = &data[cellOffset + nCell*2];
1383 u8 *pAddr;
1384 int sz2 = 0;
1385 int sz = get2byte(&data[iFree+2]);
1386 int top = get2byte(&data[hdr+5]);
1387 if( iFree2 ){
drhcc97ca42017-06-07 22:32:59 +00001388 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PGNO(pPage->pgno);
dane6d065a2017-02-24 19:58:22 +00001389 sz2 = get2byte(&data[iFree2+2]);
dan30741eb2017-03-03 20:02:53 +00001390 assert( iFree+sz+sz2+iFree2-(iFree+sz) <= usableSize );
dane6d065a2017-02-24 19:58:22 +00001391 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1392 sz += sz2;
1393 }
1394 cbrk = top+sz;
dan30741eb2017-03-03 20:02:53 +00001395 assert( cbrk+(iFree-top) <= usableSize );
dane6d065a2017-02-24 19:58:22 +00001396 memmove(&data[cbrk], &data[top], iFree-top);
1397 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1398 pc = get2byte(pAddr);
1399 if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1400 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1401 }
1402 goto defragment_out;
1403 }
1404 }
1405 }
1406
drh281b21d2008-08-22 12:57:08 +00001407 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001408 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001409 for(i=0; i<nCell; i++){
1410 u8 *pAddr; /* The i-th cell pointer */
1411 pAddr = &data[cellOffset + i*2];
1412 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001413 testcase( pc==iCellFirst );
1414 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001415 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001416 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001417 */
1418 if( pc<iCellFirst || pc>iCellLast ){
drhcc97ca42017-06-07 22:32:59 +00001419 return SQLITE_CORRUPT_PGNO(pPage->pgno);
shane0af3f892008-11-12 04:55:34 +00001420 }
drh17146622009-07-07 17:38:38 +00001421 assert( pc>=iCellFirst && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001422 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001423 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001424 if( cbrk<iCellFirst || pc+size>usableSize ){
drhcc97ca42017-06-07 22:32:59 +00001425 return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh17146622009-07-07 17:38:38 +00001426 }
drh7157e1d2009-07-09 13:25:32 +00001427 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001428 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001429 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001430 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001431 if( temp==0 ){
1432 int x;
1433 if( cbrk==pc ) continue;
1434 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1435 x = get2byte(&data[hdr+5]);
1436 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1437 src = temp;
1438 }
1439 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001440 }
dane6d065a2017-02-24 19:58:22 +00001441 data[hdr+7] = 0;
dane6d065a2017-02-24 19:58:22 +00001442
1443 defragment_out:
dan3b2ede12017-02-25 16:24:02 +00001444 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
drhcc97ca42017-06-07 22:32:59 +00001445 return SQLITE_CORRUPT_PGNO(pPage->pgno);
dan3b2ede12017-02-25 16:24:02 +00001446 }
drh17146622009-07-07 17:38:38 +00001447 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001448 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001449 data[hdr+1] = 0;
1450 data[hdr+2] = 0;
drh17146622009-07-07 17:38:38 +00001451 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001452 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shane0af3f892008-11-12 04:55:34 +00001453 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001454}
1455
drha059ad02001-04-17 20:09:11 +00001456/*
dan8e9ba0c2014-10-14 17:27:04 +00001457** Search the free-list on page pPg for space to store a cell nByte bytes in
1458** size. If one can be found, return a pointer to the space and remove it
1459** from the free-list.
1460**
1461** If no suitable space can be found on the free-list, return NULL.
1462**
drhba0f9992014-10-30 20:48:44 +00001463** This function may detect corruption within pPg. If corruption is
1464** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001465**
drhb7580e82015-06-25 18:36:13 +00001466** Slots on the free list that are between 1 and 3 bytes larger than nByte
1467** will be ignored if adding the extra space to the fragmentation count
1468** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001469*/
drhb7580e82015-06-25 18:36:13 +00001470static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
dan8e9ba0c2014-10-14 17:27:04 +00001471 const int hdr = pPg->hdrOffset;
1472 u8 * const aData = pPg->aData;
drhb7580e82015-06-25 18:36:13 +00001473 int iAddr = hdr + 1;
1474 int pc = get2byte(&aData[iAddr]);
1475 int x;
dan8e9ba0c2014-10-14 17:27:04 +00001476 int usableSize = pPg->pBt->usableSize;
1477
drhb7580e82015-06-25 18:36:13 +00001478 assert( pc>0 );
1479 do{
dan8e9ba0c2014-10-14 17:27:04 +00001480 int size; /* Size of the free slot */
drh113762a2014-11-19 16:36:25 +00001481 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
1482 ** increasing offset. */
dan8e9ba0c2014-10-14 17:27:04 +00001483 if( pc>usableSize-4 || pc<iAddr+4 ){
drhcc97ca42017-06-07 22:32:59 +00001484 *pRc = SQLITE_CORRUPT_PGNO(pPg->pgno);
dan8e9ba0c2014-10-14 17:27:04 +00001485 return 0;
1486 }
drh113762a2014-11-19 16:36:25 +00001487 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1488 ** freeblock form a big-endian integer which is the size of the freeblock
1489 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001490 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001491 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001492 testcase( x==4 );
1493 testcase( x==3 );
drh24dee9d2015-06-02 19:36:29 +00001494 if( pc < pPg->cellOffset+2*pPg->nCell || size+pc > usableSize ){
drhcc97ca42017-06-07 22:32:59 +00001495 *pRc = SQLITE_CORRUPT_PGNO(pPg->pgno);
drh24dee9d2015-06-02 19:36:29 +00001496 return 0;
1497 }else if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001498 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1499 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001500 if( aData[hdr+7]>57 ) return 0;
1501
dan8e9ba0c2014-10-14 17:27:04 +00001502 /* Remove the slot from the free-list. Update the number of
1503 ** fragmented bytes within the page. */
1504 memcpy(&aData[iAddr], &aData[pc], 2);
1505 aData[hdr+7] += (u8)x;
dan8e9ba0c2014-10-14 17:27:04 +00001506 }else{
1507 /* The slot remains on the free-list. Reduce its size to account
1508 ** for the portion used by the new allocation. */
1509 put2byte(&aData[pc+2], x);
1510 }
1511 return &aData[pc + x];
1512 }
drhb7580e82015-06-25 18:36:13 +00001513 iAddr = pc;
1514 pc = get2byte(&aData[pc]);
1515 }while( pc );
dan8e9ba0c2014-10-14 17:27:04 +00001516
1517 return 0;
1518}
1519
1520/*
danielk19776011a752009-04-01 16:25:32 +00001521** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001522** as the first argument. Write into *pIdx the index into pPage->aData[]
1523** of the first byte of allocated space. Return either SQLITE_OK or
1524** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001525**
drh0a45c272009-07-08 01:49:11 +00001526** The caller guarantees that there is sufficient space to make the
1527** allocation. This routine might need to defragment in order to bring
1528** all the space together, however. This routine will avoid using
1529** the first two bytes past the cell pointer area since presumably this
1530** allocation is being made in order to insert a new cell, so we will
1531** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001532*/
drh0a45c272009-07-08 01:49:11 +00001533static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001534 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1535 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001536 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001537 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001538 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001539
danielk19773b8a05f2007-03-19 17:44:26 +00001540 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001541 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001542 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001543 assert( nByte>=0 ); /* Minimum cell size is 4 */
1544 assert( pPage->nFree>=nByte );
1545 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001546 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001547
drh0a45c272009-07-08 01:49:11 +00001548 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1549 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001550 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001551 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1552 ** and the reserved space is zero (the usual value for reserved space)
1553 ** then the cell content offset of an empty page wants to be 65536.
1554 ** However, that integer is too large to be stored in a 2-byte unsigned
1555 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001556 top = get2byte(&data[hdr+5]);
mistachkin68cdd0e2015-06-26 03:12:27 +00001557 assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
drhded340e2015-06-25 15:04:56 +00001558 if( gap>top ){
1559 if( top==0 && pPage->pBt->usableSize==65536 ){
1560 top = 65536;
1561 }else{
drhcc97ca42017-06-07 22:32:59 +00001562 return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh9e572e62004-04-23 23:43:10 +00001563 }
1564 }
drh43605152004-05-29 21:46:49 +00001565
drh4c04f3c2014-08-20 11:56:14 +00001566 /* If there is enough space between gap and top for one more cell pointer
1567 ** array entry offset, and if the freelist is not empty, then search the
1568 ** freelist looking for a free slot big enough to satisfy the request.
1569 */
drh5e2f8b92001-05-28 00:41:15 +00001570 testcase( gap+2==top );
drh7aa128d2002-06-21 13:09:16 +00001571 testcase( gap+1==top );
drh14acc042001-06-10 19:56:58 +00001572 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001573 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001574 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001575 if( pSpace ){
drhfefa0942014-11-05 21:21:08 +00001576 assert( pSpace>=data && (pSpace - data)<65536 );
1577 *pIdx = (int)(pSpace - data);
dan8e9ba0c2014-10-14 17:27:04 +00001578 return SQLITE_OK;
drhb7580e82015-06-25 18:36:13 +00001579 }else if( rc ){
1580 return rc;
drh9e572e62004-04-23 23:43:10 +00001581 }
1582 }
drh43605152004-05-29 21:46:49 +00001583
drh4c04f3c2014-08-20 11:56:14 +00001584 /* The request could not be fulfilled using a freelist slot. Check
1585 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001586 */
1587 testcase( gap+2+nByte==top );
1588 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001589 assert( pPage->nCell>0 || CORRUPT_DB );
dane6d065a2017-02-24 19:58:22 +00001590 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
drh0a45c272009-07-08 01:49:11 +00001591 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001592 top = get2byteNotZero(&data[hdr+5]);
dan3b2ede12017-02-25 16:24:02 +00001593 assert( gap+2+nByte<=top );
drh0a45c272009-07-08 01:49:11 +00001594 }
1595
1596
drh43605152004-05-29 21:46:49 +00001597 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001598 ** and the cell content area. The btreeInitPage() call has already
1599 ** validated the freelist. Given that the freelist is valid, there
1600 ** is no way that the allocation can extend off the end of the page.
1601 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001602 */
drh0a45c272009-07-08 01:49:11 +00001603 top -= nByte;
drh43605152004-05-29 21:46:49 +00001604 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001605 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001606 *pIdx = top;
1607 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001608}
1609
1610/*
drh9e572e62004-04-23 23:43:10 +00001611** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001612** The first byte of the new free block is pPage->aData[iStart]
1613** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001614**
drh5f5c7532014-08-20 17:56:27 +00001615** Adjacent freeblocks are coalesced.
1616**
1617** Note that even though the freeblock list was checked by btreeInitPage(),
1618** that routine will not detect overlap between cells or freeblocks. Nor
1619** does it detect cells or freeblocks that encrouch into the reserved bytes
1620** at the end of the page. So do additional corruption checks inside this
1621** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001622*/
drh5f5c7532014-08-20 17:56:27 +00001623static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001624 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001625 u16 iFreeBlk; /* Address of the next freeblock */
1626 u8 hdr; /* Page header size. 0 or 100 */
1627 u8 nFrag = 0; /* Reduction in fragmentation */
1628 u16 iOrigSize = iSize; /* Original value of iSize */
1629 u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1630 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001631 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001632
drh9e572e62004-04-23 23:43:10 +00001633 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001634 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001635 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001636 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001637 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001638 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5f5c7532014-08-20 17:56:27 +00001639 assert( iStart<=iLast );
drh9e572e62004-04-23 23:43:10 +00001640
drh5f5c7532014-08-20 17:56:27 +00001641 /* Overwrite deleted information with zeros when the secure_delete
1642 ** option is enabled */
drha5907a82017-06-19 11:44:22 +00001643 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
drh7fb91642014-08-20 14:37:09 +00001644 memset(&data[iStart], 0, iSize);
drh5b47efa2010-02-12 18:18:39 +00001645 }
drhfcce93f2006-02-22 03:08:32 +00001646
drh5f5c7532014-08-20 17:56:27 +00001647 /* The list of freeblocks must be in ascending order. Find the
1648 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001649 */
drh43605152004-05-29 21:46:49 +00001650 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001651 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001652 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1653 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1654 }else{
drh85f071b2016-09-17 19:34:32 +00001655 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1656 if( iFreeBlk<iPtr+4 ){
1657 if( iFreeBlk==0 ) break;
drhcc97ca42017-06-07 22:32:59 +00001658 return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh85f071b2016-09-17 19:34:32 +00001659 }
drh7bc4c452014-08-20 18:43:44 +00001660 iPtr = iFreeBlk;
shanedcc50b72008-11-13 18:29:50 +00001661 }
drhcc97ca42017-06-07 22:32:59 +00001662 if( iFreeBlk>iLast ) return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh7bc4c452014-08-20 18:43:44 +00001663 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1664
1665 /* At this point:
1666 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001667 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001668 **
1669 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1670 */
1671 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1672 nFrag = iFreeBlk - iEnd;
drhcc97ca42017-06-07 22:32:59 +00001673 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh7bc4c452014-08-20 18:43:44 +00001674 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drhcc97ca42017-06-07 22:32:59 +00001675 if( iEnd > pPage->pBt->usableSize ){
1676 return SQLITE_CORRUPT_PGNO(pPage->pgno);
1677 }
drh7bc4c452014-08-20 18:43:44 +00001678 iSize = iEnd - iStart;
1679 iFreeBlk = get2byte(&data[iFreeBlk]);
1680 }
1681
drh3f387402014-09-24 01:23:00 +00001682 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1683 ** pointer in the page header) then check to see if iStart should be
1684 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001685 */
1686 if( iPtr>hdr+1 ){
1687 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1688 if( iPtrEnd+3>=iStart ){
drhcc97ca42017-06-07 22:32:59 +00001689 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh7bc4c452014-08-20 18:43:44 +00001690 nFrag += iStart - iPtrEnd;
1691 iSize = iEnd - iPtr;
1692 iStart = iPtr;
shanedcc50b72008-11-13 18:29:50 +00001693 }
drh9e572e62004-04-23 23:43:10 +00001694 }
drhcc97ca42017-06-07 22:32:59 +00001695 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh7bc4c452014-08-20 18:43:44 +00001696 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001697 }
drh7bc4c452014-08-20 18:43:44 +00001698 if( iStart==get2byte(&data[hdr+5]) ){
drh5f5c7532014-08-20 17:56:27 +00001699 /* The new freeblock is at the beginning of the cell content area,
1700 ** so just extend the cell content area rather than create another
1701 ** freelist entry */
drhcc97ca42017-06-07 22:32:59 +00001702 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh5f5c7532014-08-20 17:56:27 +00001703 put2byte(&data[hdr+1], iFreeBlk);
1704 put2byte(&data[hdr+5], iEnd);
1705 }else{
1706 /* Insert the new freeblock into the freelist */
1707 put2byte(&data[iPtr], iStart);
1708 put2byte(&data[iStart], iFreeBlk);
1709 put2byte(&data[iStart+2], iSize);
drh4b70f112004-05-02 21:12:19 +00001710 }
drh5f5c7532014-08-20 17:56:27 +00001711 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001712 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001713}
1714
1715/*
drh271efa52004-05-30 19:19:05 +00001716** Decode the flags byte (the first byte of the header) for a page
1717** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001718**
1719** Only the following combinations are supported. Anything different
1720** indicates a corrupt database files:
1721**
1722** PTF_ZERODATA
1723** PTF_ZERODATA | PTF_LEAF
1724** PTF_LEAFDATA | PTF_INTKEY
1725** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001726*/
drh44845222008-07-17 18:39:57 +00001727static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001728 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001729
1730 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001731 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001732 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001733 flagByte &= ~PTF_LEAF;
1734 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001735 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001736 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001737 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drh3791c9c2016-05-09 23:11:47 +00001738 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1739 ** interior table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001740 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
drh3791c9c2016-05-09 23:11:47 +00001741 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1742 ** leaf table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001743 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001744 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001745 if( pPage->leaf ){
1746 pPage->intKeyLeaf = 1;
drh5fa60512015-06-19 17:19:34 +00001747 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001748 }else{
1749 pPage->intKeyLeaf = 0;
drh25ada072015-06-19 15:07:14 +00001750 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001751 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001752 }
drh271efa52004-05-30 19:19:05 +00001753 pPage->maxLocal = pBt->maxLeaf;
1754 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001755 }else if( flagByte==PTF_ZERODATA ){
drh3791c9c2016-05-09 23:11:47 +00001756 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1757 ** interior index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001758 assert( (PTF_ZERODATA)==2 );
drh3791c9c2016-05-09 23:11:47 +00001759 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1760 ** leaf index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001761 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001762 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001763 pPage->intKeyLeaf = 0;
drh5fa60512015-06-19 17:19:34 +00001764 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001765 pPage->maxLocal = pBt->maxLocal;
1766 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001767 }else{
drhfdab0262014-11-20 15:30:50 +00001768 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1769 ** an error. */
drhcc97ca42017-06-07 22:32:59 +00001770 return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh271efa52004-05-30 19:19:05 +00001771 }
drhc9166342012-01-05 23:32:06 +00001772 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001773 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001774}
1775
1776/*
drh7e3b0a02001-04-28 16:52:40 +00001777** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001778**
1779** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001780** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001781** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1782** guarantee that the page is well-formed. It only shows that
1783** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001784*/
danielk197730548662009-07-09 05:07:37 +00001785static int btreeInitPage(MemPage *pPage){
drh14e845a2017-05-25 21:35:56 +00001786 int pc; /* Address of a freeblock within pPage->aData[] */
1787 u8 hdr; /* Offset to beginning of page header */
1788 u8 *data; /* Equal to pPage->aData */
1789 BtShared *pBt; /* The main btree structure */
1790 int usableSize; /* Amount of usable space on each page */
1791 u16 cellOffset; /* Offset from start of page to first cell pointer */
1792 int nFree; /* Number of unused bytes on the page */
1793 int top; /* First byte of the cell content area */
1794 int iCellFirst; /* First allowable cell or freeblock offset */
1795 int iCellLast; /* Last possible cell or freeblock offset */
drh2af926b2001-05-15 00:39:25 +00001796
danielk197771d5d2c2008-09-29 11:49:47 +00001797 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001798 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001799 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001800 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001801 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1802 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
drh14e845a2017-05-25 21:35:56 +00001803 assert( pPage->isInit==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001804
drh14e845a2017-05-25 21:35:56 +00001805 pBt = pPage->pBt;
1806 hdr = pPage->hdrOffset;
1807 data = pPage->aData;
1808 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1809 ** the b-tree page type. */
drhcc97ca42017-06-07 22:32:59 +00001810 if( decodeFlags(pPage, data[hdr]) ){
1811 return SQLITE_CORRUPT_PGNO(pPage->pgno);
1812 }
drh14e845a2017-05-25 21:35:56 +00001813 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1814 pPage->maskPage = (u16)(pBt->pageSize - 1);
1815 pPage->nOverflow = 0;
1816 usableSize = pBt->usableSize;
1817 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
1818 pPage->aDataEnd = &data[usableSize];
1819 pPage->aCellIdx = &data[cellOffset];
1820 pPage->aDataOfst = &data[pPage->childPtrSize];
1821 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1822 ** the start of the cell content area. A zero value for this integer is
1823 ** interpreted as 65536. */
1824 top = get2byteNotZero(&data[hdr+5]);
1825 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1826 ** number of cells on the page. */
1827 pPage->nCell = get2byte(&data[hdr+3]);
1828 if( pPage->nCell>MX_CELL(pBt) ){
1829 /* To many cells for a single page. The page must be corrupt */
drhcc97ca42017-06-07 22:32:59 +00001830 return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh14e845a2017-05-25 21:35:56 +00001831 }
1832 testcase( pPage->nCell==MX_CELL(pBt) );
1833 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1834 ** possible for a root page of a table that contains no rows) then the
1835 ** offset to the cell content area will equal the page size minus the
1836 ** bytes of reserved space. */
1837 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
danielk197771d5d2c2008-09-29 11:49:47 +00001838
drh14e845a2017-05-25 21:35:56 +00001839 /* A malformed database page might cause us to read past the end
1840 ** of page when parsing a cell.
1841 **
1842 ** The following block of code checks early to see if a cell extends
1843 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1844 ** returned if it does.
1845 */
1846 iCellFirst = cellOffset + 2*pPage->nCell;
1847 iCellLast = usableSize - 4;
1848 if( pBt->db->flags & SQLITE_CellSizeCk ){
1849 int i; /* Index into the cell pointer array */
1850 int sz; /* Size of a cell */
danielk197771d5d2c2008-09-29 11:49:47 +00001851
drh14e845a2017-05-25 21:35:56 +00001852 if( !pPage->leaf ) iCellLast--;
1853 for(i=0; i<pPage->nCell; i++){
1854 pc = get2byteAligned(&data[cellOffset+i*2]);
1855 testcase( pc==iCellFirst );
1856 testcase( pc==iCellLast );
1857 if( pc<iCellFirst || pc>iCellLast ){
drhcc97ca42017-06-07 22:32:59 +00001858 return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh69e931e2009-06-03 21:04:35 +00001859 }
drh14e845a2017-05-25 21:35:56 +00001860 sz = pPage->xCellSize(pPage, &data[pc]);
1861 testcase( pc+sz==usableSize );
1862 if( pc+sz>usableSize ){
drhcc97ca42017-06-07 22:32:59 +00001863 return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh77dc0ed2016-12-12 01:30:01 +00001864 }
danielk1977eaa06f62008-09-18 17:34:44 +00001865 }
drh14e845a2017-05-25 21:35:56 +00001866 if( !pPage->leaf ) iCellLast++;
1867 }
danielk197793c829c2009-06-03 17:26:17 +00001868
drh14e845a2017-05-25 21:35:56 +00001869 /* Compute the total free space on the page
1870 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1871 ** start of the first freeblock on the page, or is zero if there are no
1872 ** freeblocks. */
1873 pc = get2byte(&data[hdr+1]);
1874 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
1875 if( pc>0 ){
1876 u32 next, size;
1877 if( pc<iCellFirst ){
1878 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1879 ** always be at least one cell before the first freeblock.
1880 */
drhcc97ca42017-06-07 22:32:59 +00001881 return SQLITE_CORRUPT_PGNO(pPage->pgno);
drhee696e22004-08-30 16:52:17 +00001882 }
drh14e845a2017-05-25 21:35:56 +00001883 while( 1 ){
1884 if( pc>iCellLast ){
drhcc97ca42017-06-07 22:32:59 +00001885 /* Freeblock off the end of the page */
1886 return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh14e845a2017-05-25 21:35:56 +00001887 }
1888 next = get2byte(&data[pc]);
1889 size = get2byte(&data[pc+2]);
1890 nFree = nFree + size;
1891 if( next<=pc+size+3 ) break;
1892 pc = next;
1893 }
1894 if( next>0 ){
drhcc97ca42017-06-07 22:32:59 +00001895 /* Freeblock not in ascending order */
1896 return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh14e845a2017-05-25 21:35:56 +00001897 }
1898 if( pc+size>(unsigned int)usableSize ){
drhcc97ca42017-06-07 22:32:59 +00001899 /* Last freeblock extends past page end */
1900 return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh14e845a2017-05-25 21:35:56 +00001901 }
danielk197771d5d2c2008-09-29 11:49:47 +00001902 }
drh14e845a2017-05-25 21:35:56 +00001903
1904 /* At this point, nFree contains the sum of the offset to the start
1905 ** of the cell-content area plus the number of free bytes within
1906 ** the cell-content area. If this is greater than the usable-size
1907 ** of the page, then the page must be corrupted. This check also
1908 ** serves to verify that the offset to the start of the cell-content
1909 ** area, according to the page header, lies within the page.
1910 */
1911 if( nFree>usableSize ){
drhcc97ca42017-06-07 22:32:59 +00001912 return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh14e845a2017-05-25 21:35:56 +00001913 }
1914 pPage->nFree = (u16)(nFree - iCellFirst);
1915 pPage->isInit = 1;
drh9e572e62004-04-23 23:43:10 +00001916 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001917}
1918
1919/*
drh8b2f49b2001-06-08 00:21:52 +00001920** Set up a raw page so that it looks like a database page holding
1921** no entries.
drhbd03cae2001-06-02 02:40:57 +00001922*/
drh9e572e62004-04-23 23:43:10 +00001923static void zeroPage(MemPage *pPage, int flags){
1924 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001925 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001926 u8 hdr = pPage->hdrOffset;
1927 u16 first;
drh9e572e62004-04-23 23:43:10 +00001928
danielk19773b8a05f2007-03-19 17:44:26 +00001929 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001930 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1931 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001932 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001933 assert( sqlite3_mutex_held(pBt->mutex) );
drha5907a82017-06-19 11:44:22 +00001934 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh5b47efa2010-02-12 18:18:39 +00001935 memset(&data[hdr], 0, pBt->usableSize - hdr);
1936 }
drh1bd10f82008-12-10 21:19:56 +00001937 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001938 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001939 memset(&data[hdr+1], 0, 4);
1940 data[hdr+7] = 0;
1941 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001942 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001943 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00001944 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001945 pPage->aDataEnd = &data[pBt->usableSize];
1946 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00001947 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00001948 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001949 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1950 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001951 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001952 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001953}
1954
drh897a8202008-09-18 01:08:15 +00001955
1956/*
1957** Convert a DbPage obtained from the pager into a MemPage used by
1958** the btree layer.
1959*/
1960static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1961 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh8dd1c252015-11-04 22:31:02 +00001962 if( pgno!=pPage->pgno ){
1963 pPage->aData = sqlite3PagerGetData(pDbPage);
1964 pPage->pDbPage = pDbPage;
1965 pPage->pBt = pBt;
1966 pPage->pgno = pgno;
1967 pPage->hdrOffset = pgno==1 ? 100 : 0;
1968 }
1969 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
drh897a8202008-09-18 01:08:15 +00001970 return pPage;
1971}
1972
drhbd03cae2001-06-02 02:40:57 +00001973/*
drh3aac2dd2004-04-26 14:10:20 +00001974** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00001975** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00001976**
drh7e8c6f12015-05-28 03:28:27 +00001977** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
1978** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00001979** to fetch the content. Just fill in the content with zeros for now.
1980** If in the future we call sqlite3PagerWrite() on this page, that
1981** means we have started to be concerned about content and the disk
1982** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001983*/
danielk197730548662009-07-09 05:07:37 +00001984static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001985 BtShared *pBt, /* The btree */
1986 Pgno pgno, /* Number of the page to fetch */
1987 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00001988 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00001989){
drh3aac2dd2004-04-26 14:10:20 +00001990 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001991 DbPage *pDbPage;
1992
drhb00fc3b2013-08-21 23:42:32 +00001993 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00001994 assert( sqlite3_mutex_held(pBt->mutex) );
drh9584f582015-11-04 20:22:37 +00001995 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00001996 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001997 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001998 return SQLITE_OK;
1999}
2000
2001/*
danielk1977bea2a942009-01-20 17:06:27 +00002002** Retrieve a page from the pager cache. If the requested page is not
2003** already in the pager cache return NULL. Initialize the MemPage.pBt and
2004** MemPage.aData elements if needed.
2005*/
2006static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2007 DbPage *pDbPage;
2008 assert( sqlite3_mutex_held(pBt->mutex) );
2009 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2010 if( pDbPage ){
2011 return btreePageFromDbPage(pDbPage, pgno, pBt);
2012 }
2013 return 0;
2014}
2015
2016/*
danielk197789d40042008-11-17 14:20:56 +00002017** Return the size of the database file in pages. If there is any kind of
2018** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00002019*/
drhb1299152010-03-30 22:58:33 +00002020static Pgno btreePagecount(BtShared *pBt){
2021 return pBt->nPage;
2022}
2023u32 sqlite3BtreeLastPage(Btree *p){
2024 assert( sqlite3BtreeHoldsMutex(p) );
2025 assert( ((p->pBt->nPage)&0x8000000)==0 );
drheac5bd72014-07-25 21:35:39 +00002026 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00002027}
2028
2029/*
drh28f58dd2015-06-27 19:45:03 +00002030** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00002031**
drh15a00212015-06-27 20:55:00 +00002032** If pCur!=0 then the page is being fetched as part of a moveToChild()
2033** call. Do additional sanity checking on the page in this case.
2034** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00002035**
2036** The page is fetched as read-write unless pCur is not NULL and is
2037** a read-only cursor.
2038**
2039** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00002040** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00002041*/
2042static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00002043 BtShared *pBt, /* The database file */
2044 Pgno pgno, /* Number of the page to get */
2045 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00002046 BtCursor *pCur, /* Cursor to receive the page, or NULL */
2047 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00002048){
2049 int rc;
drh28f58dd2015-06-27 19:45:03 +00002050 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00002051 assert( sqlite3_mutex_held(pBt->mutex) );
drh28f58dd2015-06-27 19:45:03 +00002052 assert( pCur==0 || ppPage==&pCur->apPage[pCur->iPage] );
2053 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00002054 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002055
danba3cbf32010-06-30 04:29:03 +00002056 if( pgno>btreePagecount(pBt) ){
2057 rc = SQLITE_CORRUPT_BKPT;
drh28f58dd2015-06-27 19:45:03 +00002058 goto getAndInitPage_error;
2059 }
drh9584f582015-11-04 20:22:37 +00002060 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
drh28f58dd2015-06-27 19:45:03 +00002061 if( rc ){
2062 goto getAndInitPage_error;
2063 }
drh8dd1c252015-11-04 22:31:02 +00002064 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh28f58dd2015-06-27 19:45:03 +00002065 if( (*ppPage)->isInit==0 ){
drh8dd1c252015-11-04 22:31:02 +00002066 btreePageFromDbPage(pDbPage, pgno, pBt);
drh28f58dd2015-06-27 19:45:03 +00002067 rc = btreeInitPage(*ppPage);
2068 if( rc!=SQLITE_OK ){
2069 releasePage(*ppPage);
2070 goto getAndInitPage_error;
danielk197789bc4bc2009-07-21 19:25:24 +00002071 }
drhee696e22004-08-30 16:52:17 +00002072 }
drh8dd1c252015-11-04 22:31:02 +00002073 assert( (*ppPage)->pgno==pgno );
2074 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
danba3cbf32010-06-30 04:29:03 +00002075
drh15a00212015-06-27 20:55:00 +00002076 /* If obtaining a child page for a cursor, we must verify that the page is
2077 ** compatible with the root page. */
drh8dd1c252015-11-04 22:31:02 +00002078 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
drhcc97ca42017-06-07 22:32:59 +00002079 rc = SQLITE_CORRUPT_PGNO(pgno);
drh28f58dd2015-06-27 19:45:03 +00002080 releasePage(*ppPage);
2081 goto getAndInitPage_error;
2082 }
drh28f58dd2015-06-27 19:45:03 +00002083 return SQLITE_OK;
2084
2085getAndInitPage_error:
2086 if( pCur ) pCur->iPage--;
danba3cbf32010-06-30 04:29:03 +00002087 testcase( pgno==0 );
2088 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00002089 return rc;
2090}
2091
2092/*
drh3aac2dd2004-04-26 14:10:20 +00002093** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002094** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00002095*/
drhbbf0f862015-06-27 14:59:26 +00002096static void releasePageNotNull(MemPage *pPage){
2097 assert( pPage->aData );
2098 assert( pPage->pBt );
2099 assert( pPage->pDbPage!=0 );
2100 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2101 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2102 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2103 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00002104}
drh3aac2dd2004-04-26 14:10:20 +00002105static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002106 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002107}
2108
2109/*
drh7e8c6f12015-05-28 03:28:27 +00002110** Get an unused page.
2111**
2112** This works just like btreeGetPage() with the addition:
2113**
2114** * If the page is already in use for some other purpose, immediately
2115** release it and return an SQLITE_CURRUPT error.
2116** * Make sure the isInit flag is clear
2117*/
2118static int btreeGetUnusedPage(
2119 BtShared *pBt, /* The btree */
2120 Pgno pgno, /* Number of the page to fetch */
2121 MemPage **ppPage, /* Return the page in this parameter */
2122 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2123){
2124 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2125 if( rc==SQLITE_OK ){
2126 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2127 releasePage(*ppPage);
2128 *ppPage = 0;
2129 return SQLITE_CORRUPT_BKPT;
2130 }
2131 (*ppPage)->isInit = 0;
2132 }else{
2133 *ppPage = 0;
2134 }
2135 return rc;
2136}
2137
drha059ad02001-04-17 20:09:11 +00002138
2139/*
drha6abd042004-06-09 17:37:22 +00002140** During a rollback, when the pager reloads information into the cache
2141** so that the cache is restored to its original state at the start of
2142** the transaction, for each page restored this routine is called.
2143**
2144** This routine needs to reset the extra data section at the end of the
2145** page to agree with the restored data.
2146*/
danielk1977eaa06f62008-09-18 17:34:44 +00002147static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002148 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002149 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002150 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002151 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002152 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002153 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002154 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002155 /* pPage might not be a btree page; it might be an overflow page
2156 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002157 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002158 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002159 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002160 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002161 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002162 }
drha6abd042004-06-09 17:37:22 +00002163 }
2164}
2165
2166/*
drhe5fe6902007-12-07 18:55:28 +00002167** Invoke the busy handler for a btree.
2168*/
danielk19771ceedd32008-11-19 10:22:33 +00002169static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002170 BtShared *pBt = (BtShared*)pArg;
2171 assert( pBt->db );
2172 assert( sqlite3_mutex_held(pBt->db->mutex) );
2173 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
2174}
2175
2176/*
drhad3e0102004-09-03 23:32:18 +00002177** Open a database file.
2178**
drh382c0242001-10-06 16:33:02 +00002179** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002180** then an ephemeral database is created. The ephemeral database might
2181** be exclusively in memory, or it might use a disk-based memory cache.
2182** Either way, the ephemeral database will be automatically deleted
2183** when sqlite3BtreeClose() is called.
2184**
drhe53831d2007-08-17 01:14:38 +00002185** If zFilename is ":memory:" then an in-memory database is created
2186** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002187**
drh33f111d2012-01-17 15:29:14 +00002188** The "flags" parameter is a bitmask that might contain bits like
2189** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002190**
drhc47fd8e2009-04-30 13:30:32 +00002191** If the database is already opened in the same database connection
2192** and we are in shared cache mode, then the open will fail with an
2193** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2194** objects in the same database connection since doing so will lead
2195** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002196*/
drh23e11ca2004-05-04 17:27:28 +00002197int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002198 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002199 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002200 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002201 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002202 int flags, /* Options */
2203 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002204){
drh7555d8e2009-03-20 13:15:30 +00002205 BtShared *pBt = 0; /* Shared part of btree structure */
2206 Btree *p; /* Handle to return */
2207 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2208 int rc = SQLITE_OK; /* Result code from this function */
2209 u8 nReserve; /* Byte of unused space on each page */
2210 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002211
drh75c014c2010-08-30 15:02:28 +00002212 /* True if opening an ephemeral, temporary database */
2213 const int isTempDb = zFilename==0 || zFilename[0]==0;
2214
danielk1977aef0bf62005-12-30 16:28:01 +00002215 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002216 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002217 */
drhb0a7c9c2010-12-06 21:09:59 +00002218#ifdef SQLITE_OMIT_MEMORYDB
2219 const int isMemdb = 0;
2220#else
2221 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002222 || (isTempDb && sqlite3TempInMemory(db))
2223 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002224#endif
2225
drhe5fe6902007-12-07 18:55:28 +00002226 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002227 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002228 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002229 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2230
2231 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2232 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2233
2234 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2235 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002236
drh75c014c2010-08-30 15:02:28 +00002237 if( isMemdb ){
2238 flags |= BTREE_MEMORY;
2239 }
2240 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2241 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2242 }
drh17435752007-08-16 04:30:38 +00002243 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002244 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00002245 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +00002246 }
2247 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002248 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002249#ifndef SQLITE_OMIT_SHARED_CACHE
2250 p->lock.pBtree = p;
2251 p->lock.iTable = 1;
2252#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002253
drh198bf392006-01-06 21:52:49 +00002254#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002255 /*
2256 ** If this Btree is a candidate for shared cache, try to find an
2257 ** existing BtShared object that we can share with
2258 */
drh4ab9d252012-05-26 20:08:49 +00002259 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002260 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002261 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002262 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002263 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002264 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002265
drhff0587c2007-08-29 17:43:19 +00002266 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002267 if( !zFullPathname ){
2268 sqlite3_free(p);
mistachkinfad30392016-02-13 23:43:46 +00002269 return SQLITE_NOMEM_BKPT;
drhff0587c2007-08-29 17:43:19 +00002270 }
drhafc8b7f2012-05-26 18:06:38 +00002271 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002272 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002273 }else{
2274 rc = sqlite3OsFullPathname(pVfs, zFilename,
2275 nFullPathname, zFullPathname);
2276 if( rc ){
2277 sqlite3_free(zFullPathname);
2278 sqlite3_free(p);
2279 return rc;
2280 }
drh070ad6b2011-11-17 11:43:19 +00002281 }
drh30ddce62011-10-15 00:16:30 +00002282#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002283 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2284 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00002285 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00002286 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002287#endif
drh78f82d12008-09-02 00:52:52 +00002288 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002289 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002290 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002291 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002292 int iDb;
2293 for(iDb=db->nDb-1; iDb>=0; iDb--){
2294 Btree *pExisting = db->aDb[iDb].pBt;
2295 if( pExisting && pExisting->pBt==pBt ){
2296 sqlite3_mutex_leave(mutexShared);
2297 sqlite3_mutex_leave(mutexOpen);
2298 sqlite3_free(zFullPathname);
2299 sqlite3_free(p);
2300 return SQLITE_CONSTRAINT;
2301 }
2302 }
drhff0587c2007-08-29 17:43:19 +00002303 p->pBt = pBt;
2304 pBt->nRef++;
2305 break;
2306 }
2307 }
2308 sqlite3_mutex_leave(mutexShared);
2309 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002310 }
drhff0587c2007-08-29 17:43:19 +00002311#ifdef SQLITE_DEBUG
2312 else{
2313 /* In debug mode, we mark all persistent databases as sharable
2314 ** even when they are not. This exercises the locking code and
2315 ** gives more opportunity for asserts(sqlite3_mutex_held())
2316 ** statements to find locking problems.
2317 */
2318 p->sharable = 1;
2319 }
2320#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002321 }
2322#endif
drha059ad02001-04-17 20:09:11 +00002323 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002324 /*
2325 ** The following asserts make sure that structures used by the btree are
2326 ** the right size. This is to guard against size changes that result
2327 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002328 */
drh062cf272015-03-23 19:03:51 +00002329 assert( sizeof(i64)==8 );
2330 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002331 assert( sizeof(u32)==4 );
2332 assert( sizeof(u16)==2 );
2333 assert( sizeof(Pgno)==4 );
2334
2335 pBt = sqlite3MallocZero( sizeof(*pBt) );
2336 if( pBt==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002337 rc = SQLITE_NOMEM_BKPT;
drhe53831d2007-08-17 01:14:38 +00002338 goto btree_open_out;
2339 }
danielk197771d5d2c2008-09-29 11:49:47 +00002340 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drha2ee5892016-12-09 16:02:00 +00002341 sizeof(MemPage), flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002342 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002343 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002344 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2345 }
2346 if( rc!=SQLITE_OK ){
2347 goto btree_open_out;
2348 }
shanehbd2aaf92010-09-01 02:38:21 +00002349 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002350 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00002351 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002352 p->pBt = pBt;
2353
drhe53831d2007-08-17 01:14:38 +00002354 pBt->pCursor = 0;
2355 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002356 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drha5907a82017-06-19 11:44:22 +00002357#if defined(SQLITE_SECURE_DELETE)
drhc9166342012-01-05 23:32:06 +00002358 pBt->btsFlags |= BTS_SECURE_DELETE;
drha5907a82017-06-19 11:44:22 +00002359#elif defined(SQLITE_FAST_SECURE_DELETE)
2360 pBt->btsFlags |= BTS_OVERWRITE;
drh5b47efa2010-02-12 18:18:39 +00002361#endif
drh113762a2014-11-19 16:36:25 +00002362 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2363 ** determined by the 2-byte integer located at an offset of 16 bytes from
2364 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002365 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002366 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2367 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002368 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002369#ifndef SQLITE_OMIT_AUTOVACUUM
2370 /* If the magic name ":memory:" will create an in-memory database, then
2371 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2372 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2373 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2374 ** regular file-name. In this case the auto-vacuum applies as per normal.
2375 */
2376 if( zFilename && !isMemdb ){
2377 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2378 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2379 }
2380#endif
2381 nReserve = 0;
2382 }else{
drh113762a2014-11-19 16:36:25 +00002383 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2384 ** determined by the one-byte unsigned integer found at an offset of 20
2385 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002386 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002387 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002388#ifndef SQLITE_OMIT_AUTOVACUUM
2389 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2390 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2391#endif
2392 }
drhfa9601a2009-06-18 17:22:39 +00002393 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002394 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002395 pBt->usableSize = pBt->pageSize - nReserve;
2396 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002397
2398#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2399 /* Add the new BtShared object to the linked list sharable BtShareds.
2400 */
dan272989b2016-07-06 10:12:02 +00002401 pBt->nRef = 1;
drhe53831d2007-08-17 01:14:38 +00002402 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002403 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh30ddce62011-10-15 00:16:30 +00002404 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002405 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002406 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002407 if( pBt->mutex==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002408 rc = SQLITE_NOMEM_BKPT;
drh3285db22007-09-03 22:00:39 +00002409 goto btree_open_out;
2410 }
drhff0587c2007-08-29 17:43:19 +00002411 }
drhe53831d2007-08-17 01:14:38 +00002412 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002413 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2414 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002415 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002416 }
drheee46cf2004-11-06 00:02:48 +00002417#endif
drh90f5ecb2004-07-22 01:19:35 +00002418 }
danielk1977aef0bf62005-12-30 16:28:01 +00002419
drhcfed7bc2006-03-13 14:28:05 +00002420#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002421 /* If the new Btree uses a sharable pBtShared, then link the new
2422 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002423 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002424 */
drhe53831d2007-08-17 01:14:38 +00002425 if( p->sharable ){
2426 int i;
2427 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002428 for(i=0; i<db->nDb; i++){
2429 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002430 while( pSib->pPrev ){ pSib = pSib->pPrev; }
drh3bfa7e82016-03-22 14:37:59 +00002431 if( (uptr)p->pBt<(uptr)pSib->pBt ){
drhe53831d2007-08-17 01:14:38 +00002432 p->pNext = pSib;
2433 p->pPrev = 0;
2434 pSib->pPrev = p;
2435 }else{
drh3bfa7e82016-03-22 14:37:59 +00002436 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002437 pSib = pSib->pNext;
2438 }
2439 p->pNext = pSib->pNext;
2440 p->pPrev = pSib;
2441 if( p->pNext ){
2442 p->pNext->pPrev = p;
2443 }
2444 pSib->pNext = p;
2445 }
2446 break;
2447 }
2448 }
danielk1977aef0bf62005-12-30 16:28:01 +00002449 }
danielk1977aef0bf62005-12-30 16:28:01 +00002450#endif
2451 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002452
2453btree_open_out:
2454 if( rc!=SQLITE_OK ){
2455 if( pBt && pBt->pPager ){
dan7fb89902016-08-12 16:21:15 +00002456 sqlite3PagerClose(pBt->pPager, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002457 }
drh17435752007-08-16 04:30:38 +00002458 sqlite3_free(pBt);
2459 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002460 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002461 }else{
dan0f5a1862016-08-13 14:30:23 +00002462 sqlite3_file *pFile;
2463
drh75c014c2010-08-30 15:02:28 +00002464 /* If the B-Tree was successfully opened, set the pager-cache size to the
2465 ** default value. Except, when opening on an existing shared pager-cache,
2466 ** do not change the pager-cache size.
2467 */
2468 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2469 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2470 }
dan0f5a1862016-08-13 14:30:23 +00002471
2472 pFile = sqlite3PagerFile(pBt->pPager);
2473 if( pFile->pMethods ){
2474 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2475 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002476 }
drh7555d8e2009-03-20 13:15:30 +00002477 if( mutexOpen ){
2478 assert( sqlite3_mutex_held(mutexOpen) );
2479 sqlite3_mutex_leave(mutexOpen);
2480 }
dan272989b2016-07-06 10:12:02 +00002481 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002482 return rc;
drha059ad02001-04-17 20:09:11 +00002483}
2484
2485/*
drhe53831d2007-08-17 01:14:38 +00002486** Decrement the BtShared.nRef counter. When it reaches zero,
2487** remove the BtShared structure from the sharing list. Return
2488** true if the BtShared.nRef counter reaches zero and return
2489** false if it is still positive.
2490*/
2491static int removeFromSharingList(BtShared *pBt){
2492#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002493 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002494 BtShared *pList;
2495 int removed = 0;
2496
drhd677b3d2007-08-20 22:48:41 +00002497 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002498 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002499 sqlite3_mutex_enter(pMaster);
2500 pBt->nRef--;
2501 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002502 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2503 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002504 }else{
drh78f82d12008-09-02 00:52:52 +00002505 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002506 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002507 pList=pList->pNext;
2508 }
drh34004ce2008-07-11 16:15:17 +00002509 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002510 pList->pNext = pBt->pNext;
2511 }
2512 }
drh3285db22007-09-03 22:00:39 +00002513 if( SQLITE_THREADSAFE ){
2514 sqlite3_mutex_free(pBt->mutex);
2515 }
drhe53831d2007-08-17 01:14:38 +00002516 removed = 1;
2517 }
2518 sqlite3_mutex_leave(pMaster);
2519 return removed;
2520#else
2521 return 1;
2522#endif
2523}
2524
2525/*
drhf7141992008-06-19 00:16:08 +00002526** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002527** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2528** pointer.
drhf7141992008-06-19 00:16:08 +00002529*/
2530static void allocateTempSpace(BtShared *pBt){
2531 if( !pBt->pTmpSpace ){
2532 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002533
2534 /* One of the uses of pBt->pTmpSpace is to format cells before
2535 ** inserting them into a leaf page (function fillInCell()). If
2536 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2537 ** by the various routines that manipulate binary cells. Which
2538 ** can mean that fillInCell() only initializes the first 2 or 3
2539 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2540 ** it into a database page. This is not actually a problem, but it
2541 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2542 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002543 ** zero the first 4 bytes of temp space here.
2544 **
2545 ** Also: Provide four bytes of initialized space before the
2546 ** beginning of pTmpSpace as an area available to prepend the
2547 ** left-child pointer to the beginning of a cell.
2548 */
2549 if( pBt->pTmpSpace ){
2550 memset(pBt->pTmpSpace, 0, 8);
2551 pBt->pTmpSpace += 4;
2552 }
drhf7141992008-06-19 00:16:08 +00002553 }
2554}
2555
2556/*
2557** Free the pBt->pTmpSpace allocation
2558*/
2559static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002560 if( pBt->pTmpSpace ){
2561 pBt->pTmpSpace -= 4;
2562 sqlite3PageFree(pBt->pTmpSpace);
2563 pBt->pTmpSpace = 0;
2564 }
drhf7141992008-06-19 00:16:08 +00002565}
2566
2567/*
drha059ad02001-04-17 20:09:11 +00002568** Close an open database and invalidate all cursors.
2569*/
danielk1977aef0bf62005-12-30 16:28:01 +00002570int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002571 BtShared *pBt = p->pBt;
2572 BtCursor *pCur;
2573
danielk1977aef0bf62005-12-30 16:28:01 +00002574 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002575 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002576 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002577 pCur = pBt->pCursor;
2578 while( pCur ){
2579 BtCursor *pTmp = pCur;
2580 pCur = pCur->pNext;
2581 if( pTmp->pBtree==p ){
2582 sqlite3BtreeCloseCursor(pTmp);
2583 }
drha059ad02001-04-17 20:09:11 +00002584 }
danielk1977aef0bf62005-12-30 16:28:01 +00002585
danielk19778d34dfd2006-01-24 16:37:57 +00002586 /* Rollback any active transaction and free the handle structure.
2587 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2588 ** this handle.
2589 */
drh47b7fc72014-11-11 01:33:57 +00002590 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002591 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002592
danielk1977aef0bf62005-12-30 16:28:01 +00002593 /* If there are still other outstanding references to the shared-btree
2594 ** structure, return now. The remainder of this procedure cleans
2595 ** up the shared-btree.
2596 */
drhe53831d2007-08-17 01:14:38 +00002597 assert( p->wantToLock==0 && p->locked==0 );
2598 if( !p->sharable || removeFromSharingList(pBt) ){
2599 /* The pBt is no longer on the sharing list, so we can access
2600 ** it without having to hold the mutex.
2601 **
2602 ** Clean out and delete the BtShared object.
2603 */
2604 assert( !pBt->pCursor );
dan7fb89902016-08-12 16:21:15 +00002605 sqlite3PagerClose(pBt->pPager, p->db);
drhe53831d2007-08-17 01:14:38 +00002606 if( pBt->xFreeSchema && pBt->pSchema ){
2607 pBt->xFreeSchema(pBt->pSchema);
2608 }
drhb9755982010-07-24 16:34:37 +00002609 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002610 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002611 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002612 }
2613
drhe53831d2007-08-17 01:14:38 +00002614#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002615 assert( p->wantToLock==0 );
2616 assert( p->locked==0 );
2617 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2618 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002619#endif
2620
drhe53831d2007-08-17 01:14:38 +00002621 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002622 return SQLITE_OK;
2623}
2624
2625/*
drh9b0cf342015-11-12 14:57:19 +00002626** Change the "soft" limit on the number of pages in the cache.
2627** Unused and unmodified pages will be recycled when the number of
2628** pages in the cache exceeds this soft limit. But the size of the
2629** cache is allowed to grow larger than this limit if it contains
2630** dirty pages or pages still in active use.
drhf57b14a2001-09-14 18:54:08 +00002631*/
danielk1977aef0bf62005-12-30 16:28:01 +00002632int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2633 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002634 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002635 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002636 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002637 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002638 return SQLITE_OK;
2639}
2640
drh9b0cf342015-11-12 14:57:19 +00002641/*
2642** Change the "spill" limit on the number of pages in the cache.
2643** If the number of pages exceeds this limit during a write transaction,
2644** the pager might attempt to "spill" pages to the journal early in
2645** order to free up memory.
2646**
2647** The value returned is the current spill size. If zero is passed
2648** as an argument, no changes are made to the spill size setting, so
2649** using mxPage of 0 is a way to query the current spill size.
2650*/
2651int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2652 BtShared *pBt = p->pBt;
2653 int res;
2654 assert( sqlite3_mutex_held(p->db->mutex) );
2655 sqlite3BtreeEnter(p);
2656 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2657 sqlite3BtreeLeave(p);
2658 return res;
2659}
2660
drh18c7e402014-03-14 11:46:10 +00002661#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002662/*
dan5d8a1372013-03-19 19:28:06 +00002663** Change the limit on the amount of the database file that may be
2664** memory mapped.
2665*/
drh9b4c59f2013-04-15 17:03:42 +00002666int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002667 BtShared *pBt = p->pBt;
2668 assert( sqlite3_mutex_held(p->db->mutex) );
2669 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002670 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002671 sqlite3BtreeLeave(p);
2672 return SQLITE_OK;
2673}
drh18c7e402014-03-14 11:46:10 +00002674#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002675
2676/*
drh973b6e32003-02-12 14:09:42 +00002677** Change the way data is synced to disk in order to increase or decrease
2678** how well the database resists damage due to OS crashes and power
2679** failures. Level 1 is the same as asynchronous (no syncs() occur and
2680** there is a high probability of damage) Level 2 is the default. There
2681** is a very low but non-zero probability of damage. Level 3 reduces the
2682** probability of damage to near zero but with a write performance reduction.
2683*/
danielk197793758c82005-01-21 08:13:14 +00002684#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002685int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002686 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002687 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002688){
danielk1977aef0bf62005-12-30 16:28:01 +00002689 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002690 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002691 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002692 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002693 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002694 return SQLITE_OK;
2695}
danielk197793758c82005-01-21 08:13:14 +00002696#endif
drh973b6e32003-02-12 14:09:42 +00002697
drh2c8997b2005-08-27 16:36:48 +00002698/*
drh90f5ecb2004-07-22 01:19:35 +00002699** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002700** Or, if the page size has already been fixed, return SQLITE_READONLY
2701** without changing anything.
drh06f50212004-11-02 14:24:33 +00002702**
2703** The page size must be a power of 2 between 512 and 65536. If the page
2704** size supplied does not meet this constraint then the page size is not
2705** changed.
2706**
2707** Page sizes are constrained to be a power of two so that the region
2708** of the database file used for locking (beginning at PENDING_BYTE,
2709** the first byte past the 1GB boundary, 0x40000000) needs to occur
2710** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002711**
2712** If parameter nReserve is less than zero, then the number of reserved
2713** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002714**
drhc9166342012-01-05 23:32:06 +00002715** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002716** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002717*/
drhce4869f2009-04-02 20:16:58 +00002718int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002719 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002720 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002721 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002722 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002723#if SQLITE_HAS_CODEC
2724 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2725#endif
drhc9166342012-01-05 23:32:06 +00002726 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002727 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002728 return SQLITE_READONLY;
2729 }
2730 if( nReserve<0 ){
2731 nReserve = pBt->pageSize - pBt->usableSize;
2732 }
drhf49661a2008-12-10 16:45:50 +00002733 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002734 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2735 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002736 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002737 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002738 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002739 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002740 }
drhfa9601a2009-06-18 17:22:39 +00002741 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002742 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002743 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002744 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002745 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002746}
2747
2748/*
2749** Return the currently defined page size
2750*/
danielk1977aef0bf62005-12-30 16:28:01 +00002751int sqlite3BtreeGetPageSize(Btree *p){
2752 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002753}
drh7f751222009-03-17 22:33:00 +00002754
dan0094f372012-09-28 20:23:42 +00002755/*
2756** This function is similar to sqlite3BtreeGetReserve(), except that it
2757** may only be called if it is guaranteed that the b-tree mutex is already
2758** held.
2759**
2760** This is useful in one special case in the backup API code where it is
2761** known that the shared b-tree mutex is held, but the mutex on the
2762** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2763** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002764** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002765*/
2766int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002767 int n;
dan0094f372012-09-28 20:23:42 +00002768 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002769 n = p->pBt->pageSize - p->pBt->usableSize;
2770 return n;
dan0094f372012-09-28 20:23:42 +00002771}
2772
drh7f751222009-03-17 22:33:00 +00002773/*
2774** Return the number of bytes of space at the end of every page that
2775** are intentually left unused. This is the "reserved" space that is
2776** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002777**
2778** If SQLITE_HAS_MUTEX is defined then the number returned is the
2779** greater of the current reserved space and the maximum requested
2780** reserve space.
drh7f751222009-03-17 22:33:00 +00002781*/
drhad0961b2015-02-21 00:19:25 +00002782int sqlite3BtreeGetOptimalReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002783 int n;
2784 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002785 n = sqlite3BtreeGetReserveNoMutex(p);
2786#ifdef SQLITE_HAS_CODEC
2787 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2788#endif
drhd677b3d2007-08-20 22:48:41 +00002789 sqlite3BtreeLeave(p);
2790 return n;
drh2011d5f2004-07-22 02:40:37 +00002791}
drhf8e632b2007-05-08 14:51:36 +00002792
drhad0961b2015-02-21 00:19:25 +00002793
drhf8e632b2007-05-08 14:51:36 +00002794/*
2795** Set the maximum page count for a database if mxPage is positive.
2796** No changes are made if mxPage is 0 or negative.
2797** Regardless of the value of mxPage, return the maximum page count.
2798*/
2799int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002800 int n;
2801 sqlite3BtreeEnter(p);
2802 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2803 sqlite3BtreeLeave(p);
2804 return n;
drhf8e632b2007-05-08 14:51:36 +00002805}
drh5b47efa2010-02-12 18:18:39 +00002806
2807/*
drha5907a82017-06-19 11:44:22 +00002808** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2809**
2810** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
2811** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
2812** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
2813** newFlag==(-1) No changes
2814**
2815** This routine acts as a query if newFlag is less than zero
2816**
2817** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
2818** freelist leaf pages are not written back to the database. Thus in-page
2819** deleted content is cleared, but freelist deleted content is not.
2820**
2821** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
2822** that freelist leaf pages are written back into the database, increasing
2823** the amount of disk I/O.
drh5b47efa2010-02-12 18:18:39 +00002824*/
2825int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2826 int b;
drhaf034ed2010-02-12 19:46:26 +00002827 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002828 sqlite3BtreeEnter(p);
drha5907a82017-06-19 11:44:22 +00002829 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
2830 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
drh5b47efa2010-02-12 18:18:39 +00002831 if( newFlag>=0 ){
drha5907a82017-06-19 11:44:22 +00002832 p->pBt->btsFlags &= ~BTS_FAST_SECURE;
2833 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
2834 }
2835 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002836 sqlite3BtreeLeave(p);
2837 return b;
2838}
drh90f5ecb2004-07-22 01:19:35 +00002839
2840/*
danielk1977951af802004-11-05 15:45:09 +00002841** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2842** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2843** is disabled. The default value for the auto-vacuum property is
2844** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2845*/
danielk1977aef0bf62005-12-30 16:28:01 +00002846int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002847#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002848 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002849#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002850 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002851 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002852 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002853
2854 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002855 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002856 rc = SQLITE_READONLY;
2857 }else{
drh076d4662009-02-18 20:31:18 +00002858 pBt->autoVacuum = av ?1:0;
2859 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002860 }
drhd677b3d2007-08-20 22:48:41 +00002861 sqlite3BtreeLeave(p);
2862 return rc;
danielk1977951af802004-11-05 15:45:09 +00002863#endif
2864}
2865
2866/*
2867** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2868** enabled 1 is returned. Otherwise 0.
2869*/
danielk1977aef0bf62005-12-30 16:28:01 +00002870int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002871#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002872 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002873#else
drhd677b3d2007-08-20 22:48:41 +00002874 int rc;
2875 sqlite3BtreeEnter(p);
2876 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002877 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2878 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2879 BTREE_AUTOVACUUM_INCR
2880 );
drhd677b3d2007-08-20 22:48:41 +00002881 sqlite3BtreeLeave(p);
2882 return rc;
danielk1977951af802004-11-05 15:45:09 +00002883#endif
2884}
2885
danf5da7db2017-03-16 18:14:39 +00002886/*
2887** If the user has not set the safety-level for this database connection
2888** using "PRAGMA synchronous", and if the safety-level is not already
2889** set to the value passed to this function as the second parameter,
2890** set it so.
2891*/
2892#if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS
2893static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
2894 sqlite3 *db;
2895 Db *pDb;
2896 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
2897 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
2898 if( pDb->bSyncSet==0
2899 && pDb->safety_level!=safety_level
2900 && pDb!=&db->aDb[1]
2901 ){
2902 pDb->safety_level = safety_level;
2903 sqlite3PagerSetFlags(pBt->pPager,
2904 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
2905 }
2906 }
2907}
2908#else
danfc8f4b62017-03-16 18:54:42 +00002909# define setDefaultSyncFlag(pBt,safety_level)
danf5da7db2017-03-16 18:14:39 +00002910#endif
danielk1977951af802004-11-05 15:45:09 +00002911
2912/*
drha34b6762004-05-07 13:30:42 +00002913** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002914** also acquire a readlock on that file.
2915**
2916** SQLITE_OK is returned on success. If the file is not a
2917** well-formed database file, then SQLITE_CORRUPT is returned.
2918** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002919** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002920*/
danielk1977aef0bf62005-12-30 16:28:01 +00002921static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002922 int rc; /* Result code from subfunctions */
2923 MemPage *pPage1; /* Page 1 of the database file */
2924 int nPage; /* Number of pages in the database */
2925 int nPageFile = 0; /* Number of pages in the database file */
2926 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002927
drh1fee73e2007-08-29 04:00:57 +00002928 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002929 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002930 rc = sqlite3PagerSharedLock(pBt->pPager);
2931 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002932 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002933 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002934
2935 /* Do some checking to help insure the file we opened really is
2936 ** a valid database file.
2937 */
drhc2a4bab2010-04-02 12:46:45 +00002938 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002939 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002940 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002941 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002942 }
2943 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002944 u32 pageSize;
2945 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002946 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002947 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00002948 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
2949 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
2950 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00002951 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002952 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002953 }
dan5cf53532010-05-01 16:40:20 +00002954
2955#ifdef SQLITE_OMIT_WAL
2956 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002957 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002958 }
2959 if( page1[19]>1 ){
2960 goto page1_init_failed;
2961 }
2962#else
dane04dc882010-04-20 18:53:15 +00002963 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002964 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002965 }
dane04dc882010-04-20 18:53:15 +00002966 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002967 goto page1_init_failed;
2968 }
drhe5ae5732008-06-15 02:51:47 +00002969
dana470aeb2010-04-21 11:43:38 +00002970 /* If the write version is set to 2, this database should be accessed
2971 ** in WAL mode. If the log is not already open, open it now. Then
2972 ** return SQLITE_OK and return without populating BtShared.pPage1.
2973 ** The caller detects this and calls this function again. This is
2974 ** required as the version of page 1 currently in the page1 buffer
2975 ** may not be the latest version - there may be a newer one in the log
2976 ** file.
2977 */
drhc9166342012-01-05 23:32:06 +00002978 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002979 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002980 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002981 if( rc!=SQLITE_OK ){
2982 goto page1_init_failed;
drhe243de52016-03-08 15:14:26 +00002983 }else{
danf5da7db2017-03-16 18:14:39 +00002984 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
drhe243de52016-03-08 15:14:26 +00002985 if( isOpen==0 ){
2986 releasePage(pPage1);
2987 return SQLITE_OK;
2988 }
dane04dc882010-04-20 18:53:15 +00002989 }
dan8b5444b2010-04-27 14:37:47 +00002990 rc = SQLITE_NOTADB;
danf5da7db2017-03-16 18:14:39 +00002991 }else{
2992 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
dane04dc882010-04-20 18:53:15 +00002993 }
dan5cf53532010-05-01 16:40:20 +00002994#endif
dane04dc882010-04-20 18:53:15 +00002995
drh113762a2014-11-19 16:36:25 +00002996 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
2997 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
2998 **
drhe5ae5732008-06-15 02:51:47 +00002999 ** The original design allowed these amounts to vary, but as of
3000 ** version 3.6.0, we require them to be fixed.
3001 */
3002 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3003 goto page1_init_failed;
3004 }
drh113762a2014-11-19 16:36:25 +00003005 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3006 ** determined by the 2-byte integer located at an offset of 16 bytes from
3007 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00003008 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00003009 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3010 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00003011 if( ((pageSize-1)&pageSize)!=0
3012 || pageSize>SQLITE_MAX_PAGE_SIZE
3013 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00003014 ){
drh07d183d2005-05-01 22:52:42 +00003015 goto page1_init_failed;
3016 }
3017 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00003018 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3019 ** integer at offset 20 is the number of bytes of space at the end of
3020 ** each page to reserve for extensions.
3021 **
3022 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3023 ** determined by the one-byte unsigned integer found at an offset of 20
3024 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00003025 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00003026 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00003027 /* After reading the first page of the database assuming a page size
3028 ** of BtShared.pageSize, we have discovered that the page-size is
3029 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3030 ** zero and return SQLITE_OK. The caller will call this function
3031 ** again with the correct page-size.
3032 */
3033 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00003034 pBt->usableSize = usableSize;
3035 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00003036 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00003037 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3038 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00003039 return rc;
danielk1977f653d782008-03-20 11:04:21 +00003040 }
drh169dd922017-06-26 13:57:49 +00003041 if( (pBt->db->flags & SQLITE_WriteSchema)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00003042 rc = SQLITE_CORRUPT_BKPT;
3043 goto page1_init_failed;
3044 }
drh113762a2014-11-19 16:36:25 +00003045 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3046 ** be less than 480. In other words, if the page size is 512, then the
3047 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00003048 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00003049 goto page1_init_failed;
3050 }
drh43b18e12010-08-17 19:40:08 +00003051 pBt->pageSize = pageSize;
3052 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00003053#ifndef SQLITE_OMIT_AUTOVACUUM
3054 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00003055 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00003056#endif
drh306dc212001-05-21 13:45:10 +00003057 }
drhb6f41482004-05-14 01:58:11 +00003058
3059 /* maxLocal is the maximum amount of payload to store locally for
3060 ** a cell. Make sure it is small enough so that at least minFanout
3061 ** cells can will fit on one page. We assume a 10-byte page header.
3062 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00003063 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00003064 ** 4-byte child pointer
3065 ** 9-byte nKey value
3066 ** 4-byte nData value
3067 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00003068 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00003069 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3070 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00003071 */
shaneh1df2db72010-08-18 02:28:48 +00003072 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3073 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3074 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3075 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00003076 if( pBt->maxLocal>127 ){
3077 pBt->max1bytePayload = 127;
3078 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00003079 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00003080 }
drh2e38c322004-09-03 18:38:44 +00003081 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00003082 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00003083 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00003084 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00003085
drh72f82862001-05-24 21:06:34 +00003086page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00003087 releasePage(pPage1);
3088 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00003089 return rc;
drh306dc212001-05-21 13:45:10 +00003090}
3091
drh85ec3b62013-05-14 23:12:06 +00003092#ifndef NDEBUG
3093/*
3094** Return the number of cursors open on pBt. This is for use
3095** in assert() expressions, so it is only compiled if NDEBUG is not
3096** defined.
3097**
3098** Only write cursors are counted if wrOnly is true. If wrOnly is
3099** false then all cursors are counted.
3100**
3101** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00003102** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00003103** have been tripped into the CURSOR_FAULT state are not counted.
3104*/
3105static int countValidCursors(BtShared *pBt, int wrOnly){
3106 BtCursor *pCur;
3107 int r = 0;
3108 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00003109 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3110 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00003111 }
3112 return r;
3113}
3114#endif
3115
drh306dc212001-05-21 13:45:10 +00003116/*
drhb8ca3072001-12-05 00:21:20 +00003117** If there are no outstanding cursors and we are not in the middle
3118** of a transaction but there is a read lock on the database, then
3119** this routine unrefs the first page of the database file which
3120** has the effect of releasing the read lock.
3121**
drhb8ca3072001-12-05 00:21:20 +00003122** If there is a transaction in progress, this routine is a no-op.
3123*/
danielk1977aef0bf62005-12-30 16:28:01 +00003124static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00003125 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00003126 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00003127 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00003128 MemPage *pPage1 = pBt->pPage1;
3129 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00003130 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00003131 pBt->pPage1 = 0;
drhbbf0f862015-06-27 14:59:26 +00003132 releasePageNotNull(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003133 }
3134}
3135
3136/*
drhe39f2f92009-07-23 01:43:59 +00003137** If pBt points to an empty file then convert that empty file
3138** into a new empty database by initializing the first page of
3139** the database.
drh8b2f49b2001-06-08 00:21:52 +00003140*/
danielk1977aef0bf62005-12-30 16:28:01 +00003141static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003142 MemPage *pP1;
3143 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003144 int rc;
drhd677b3d2007-08-20 22:48:41 +00003145
drh1fee73e2007-08-29 04:00:57 +00003146 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003147 if( pBt->nPage>0 ){
3148 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003149 }
drh3aac2dd2004-04-26 14:10:20 +00003150 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003151 assert( pP1!=0 );
3152 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003153 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003154 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003155 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3156 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003157 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3158 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003159 data[18] = 1;
3160 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003161 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3162 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003163 data[21] = 64;
3164 data[22] = 32;
3165 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003166 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003167 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003168 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003169#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003170 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003171 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003172 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003173 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003174#endif
drhdd3cd972010-03-27 17:12:36 +00003175 pBt->nPage = 1;
3176 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003177 return SQLITE_OK;
3178}
3179
3180/*
danb483eba2012-10-13 19:58:11 +00003181** Initialize the first page of the database file (creating a database
3182** consisting of a single page and no schema objects). Return SQLITE_OK
3183** if successful, or an SQLite error code otherwise.
3184*/
3185int sqlite3BtreeNewDb(Btree *p){
3186 int rc;
3187 sqlite3BtreeEnter(p);
3188 p->pBt->nPage = 0;
3189 rc = newDatabase(p->pBt);
3190 sqlite3BtreeLeave(p);
3191 return rc;
3192}
3193
3194/*
danielk1977ee5741e2004-05-31 10:01:34 +00003195** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003196** is started if the second argument is nonzero, otherwise a read-
3197** transaction. If the second argument is 2 or more and exclusive
3198** transaction is started, meaning that no other process is allowed
3199** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003200** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003201** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003202**
danielk1977ee5741e2004-05-31 10:01:34 +00003203** A write-transaction must be started before attempting any
3204** changes to the database. None of the following routines
3205** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003206**
drh23e11ca2004-05-04 17:27:28 +00003207** sqlite3BtreeCreateTable()
3208** sqlite3BtreeCreateIndex()
3209** sqlite3BtreeClearTable()
3210** sqlite3BtreeDropTable()
3211** sqlite3BtreeInsert()
3212** sqlite3BtreeDelete()
3213** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003214**
drhb8ef32c2005-03-14 02:01:49 +00003215** If an initial attempt to acquire the lock fails because of lock contention
3216** and the database was previously unlocked, then invoke the busy handler
3217** if there is one. But if there was previously a read-lock, do not
3218** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3219** returned when there is already a read-lock in order to avoid a deadlock.
3220**
3221** Suppose there are two processes A and B. A has a read lock and B has
3222** a reserved lock. B tries to promote to exclusive but is blocked because
3223** of A's read lock. A tries to promote to reserved but is blocked by B.
3224** One or the other of the two processes must give way or there can be
3225** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3226** when A already has a read lock, we encourage A to give up and let B
3227** proceed.
drha059ad02001-04-17 20:09:11 +00003228*/
danielk1977aef0bf62005-12-30 16:28:01 +00003229int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
3230 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00003231 int rc = SQLITE_OK;
3232
drhd677b3d2007-08-20 22:48:41 +00003233 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003234 btreeIntegrity(p);
3235
danielk1977ee5741e2004-05-31 10:01:34 +00003236 /* If the btree is already in a write-transaction, or it
3237 ** is already in a read-transaction and a read-transaction
3238 ** is requested, this is a no-op.
3239 */
danielk1977aef0bf62005-12-30 16:28:01 +00003240 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003241 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003242 }
dan56c517a2013-09-26 11:04:33 +00003243 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003244
3245 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003246 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003247 rc = SQLITE_READONLY;
3248 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003249 }
3250
danielk1977404ca072009-03-16 13:19:36 +00003251#ifndef SQLITE_OMIT_SHARED_CACHE
drh5a1fb182016-01-08 19:34:39 +00003252 {
3253 sqlite3 *pBlock = 0;
3254 /* If another database handle has already opened a write transaction
3255 ** on this shared-btree structure and a second write transaction is
3256 ** requested, return SQLITE_LOCKED.
3257 */
3258 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3259 || (pBt->btsFlags & BTS_PENDING)!=0
3260 ){
3261 pBlock = pBt->pWriter->db;
3262 }else if( wrflag>1 ){
3263 BtLock *pIter;
3264 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3265 if( pIter->pBtree!=p ){
3266 pBlock = pIter->pBtree->db;
3267 break;
3268 }
danielk1977641b0f42007-12-21 04:47:25 +00003269 }
3270 }
drh5a1fb182016-01-08 19:34:39 +00003271 if( pBlock ){
3272 sqlite3ConnectionBlocked(p->db, pBlock);
3273 rc = SQLITE_LOCKED_SHAREDCACHE;
3274 goto trans_begun;
3275 }
danielk1977404ca072009-03-16 13:19:36 +00003276 }
danielk1977641b0f42007-12-21 04:47:25 +00003277#endif
3278
danielk1977602b4662009-07-02 07:47:33 +00003279 /* Any read-only or read-write transaction implies a read-lock on
3280 ** page 1. So if some other shared-cache client already has a write-lock
3281 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00003282 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3283 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003284
drhc9166342012-01-05 23:32:06 +00003285 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3286 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003287 do {
danielk1977295dc102009-04-01 19:07:03 +00003288 /* Call lockBtree() until either pBt->pPage1 is populated or
3289 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3290 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3291 ** reading page 1 it discovers that the page-size of the database
3292 ** file is not pBt->pageSize. In this case lockBtree() will update
3293 ** pBt->pageSize to the page-size of the file on disk.
3294 */
3295 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003296
drhb8ef32c2005-03-14 02:01:49 +00003297 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003298 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003299 rc = SQLITE_READONLY;
3300 }else{
danielk1977d8293352009-04-30 09:10:37 +00003301 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003302 if( rc==SQLITE_OK ){
3303 rc = newDatabase(pBt);
3304 }
drhb8ef32c2005-03-14 02:01:49 +00003305 }
3306 }
3307
danielk1977bd434552009-03-18 10:33:00 +00003308 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00003309 unlockBtreeIfUnused(pBt);
3310 }
danf9b76712010-06-01 14:12:45 +00003311 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003312 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00003313
3314 if( rc==SQLITE_OK ){
3315 if( p->inTrans==TRANS_NONE ){
3316 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003317#ifndef SQLITE_OMIT_SHARED_CACHE
3318 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003319 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003320 p->lock.eLock = READ_LOCK;
3321 p->lock.pNext = pBt->pLock;
3322 pBt->pLock = &p->lock;
3323 }
3324#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003325 }
3326 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3327 if( p->inTrans>pBt->inTransaction ){
3328 pBt->inTransaction = p->inTrans;
3329 }
danielk1977404ca072009-03-16 13:19:36 +00003330 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003331 MemPage *pPage1 = pBt->pPage1;
3332#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003333 assert( !pBt->pWriter );
3334 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003335 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3336 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003337#endif
dan59257dc2010-08-04 11:34:31 +00003338
3339 /* If the db-size header field is incorrect (as it may be if an old
3340 ** client has been writing the database file), update it now. Doing
3341 ** this sooner rather than later means the database size can safely
3342 ** re-read the database size from page 1 if a savepoint or transaction
3343 ** rollback occurs within the transaction.
3344 */
3345 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3346 rc = sqlite3PagerWrite(pPage1->pDbPage);
3347 if( rc==SQLITE_OK ){
3348 put4byte(&pPage1->aData[28], pBt->nPage);
3349 }
3350 }
3351 }
danielk1977aef0bf62005-12-30 16:28:01 +00003352 }
3353
drhd677b3d2007-08-20 22:48:41 +00003354
3355trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00003356 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00003357 /* This call makes sure that the pager has the correct number of
3358 ** open savepoints. If the second parameter is greater than 0 and
3359 ** the sub-journal is not already open, then it will be opened here.
3360 */
danielk1977fd7f0452008-12-17 17:30:26 +00003361 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3362 }
danielk197712dd5492008-12-18 15:45:07 +00003363
danielk1977aef0bf62005-12-30 16:28:01 +00003364 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003365 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003366 return rc;
drha059ad02001-04-17 20:09:11 +00003367}
3368
danielk1977687566d2004-11-02 12:56:41 +00003369#ifndef SQLITE_OMIT_AUTOVACUUM
3370
3371/*
3372** Set the pointer-map entries for all children of page pPage. Also, if
3373** pPage contains cells that point to overflow pages, set the pointer
3374** map entries for the overflow pages as well.
3375*/
3376static int setChildPtrmaps(MemPage *pPage){
3377 int i; /* Counter variable */
3378 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003379 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003380 BtShared *pBt = pPage->pBt;
danielk1977687566d2004-11-02 12:56:41 +00003381 Pgno pgno = pPage->pgno;
3382
drh1fee73e2007-08-29 04:00:57 +00003383 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh14e845a2017-05-25 21:35:56 +00003384 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drh2a702542016-12-12 18:12:03 +00003385 if( rc!=SQLITE_OK ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003386 nCell = pPage->nCell;
3387
3388 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003389 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003390
drh98add2e2009-07-20 17:11:49 +00003391 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003392
danielk1977687566d2004-11-02 12:56:41 +00003393 if( !pPage->leaf ){
3394 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003395 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003396 }
3397 }
3398
3399 if( !pPage->leaf ){
3400 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003401 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003402 }
3403
danielk1977687566d2004-11-02 12:56:41 +00003404 return rc;
3405}
3406
3407/*
drhf3aed592009-07-08 18:12:49 +00003408** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3409** that it points to iTo. Parameter eType describes the type of pointer to
3410** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003411**
3412** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3413** page of pPage.
3414**
3415** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3416** page pointed to by one of the cells on pPage.
3417**
3418** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3419** overflow page in the list.
3420*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003421static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003422 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003423 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003424 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003425 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003426 if( get4byte(pPage->aData)!=iFrom ){
drhcc97ca42017-06-07 22:32:59 +00003427 return SQLITE_CORRUPT_PGNO(pPage->pgno);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003428 }
danielk1977f78fc082004-11-02 14:40:32 +00003429 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003430 }else{
danielk1977687566d2004-11-02 12:56:41 +00003431 int i;
3432 int nCell;
drha1f75d92015-05-24 10:18:12 +00003433 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003434
drh14e845a2017-05-25 21:35:56 +00003435 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drha1f75d92015-05-24 10:18:12 +00003436 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003437 nCell = pPage->nCell;
3438
danielk1977687566d2004-11-02 12:56:41 +00003439 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003440 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003441 if( eType==PTRMAP_OVERFLOW1 ){
3442 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003443 pPage->xParseCell(pPage, pCell, &info);
drhb701c9a2017-01-12 15:11:03 +00003444 if( info.nLocal<info.nPayload ){
3445 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
drhcc97ca42017-06-07 22:32:59 +00003446 return SQLITE_CORRUPT_PGNO(pPage->pgno);
drhb701c9a2017-01-12 15:11:03 +00003447 }
3448 if( iFrom==get4byte(pCell+info.nSize-4) ){
3449 put4byte(pCell+info.nSize-4, iTo);
3450 break;
3451 }
danielk1977687566d2004-11-02 12:56:41 +00003452 }
3453 }else{
3454 if( get4byte(pCell)==iFrom ){
3455 put4byte(pCell, iTo);
3456 break;
3457 }
3458 }
3459 }
3460
3461 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003462 if( eType!=PTRMAP_BTREE ||
3463 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drhcc97ca42017-06-07 22:32:59 +00003464 return SQLITE_CORRUPT_PGNO(pPage->pgno);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003465 }
danielk1977687566d2004-11-02 12:56:41 +00003466 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3467 }
danielk1977687566d2004-11-02 12:56:41 +00003468 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003469 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003470}
3471
danielk1977003ba062004-11-04 02:57:33 +00003472
danielk19777701e812005-01-10 12:59:51 +00003473/*
3474** Move the open database page pDbPage to location iFreePage in the
3475** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003476**
3477** The isCommit flag indicates that there is no need to remember that
3478** the journal needs to be sync()ed before database page pDbPage->pgno
3479** can be written to. The caller has already promised not to write to that
3480** page.
danielk19777701e812005-01-10 12:59:51 +00003481*/
danielk1977003ba062004-11-04 02:57:33 +00003482static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003483 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003484 MemPage *pDbPage, /* Open page to move */
3485 u8 eType, /* Pointer map 'type' entry for pDbPage */
3486 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003487 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003488 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003489){
3490 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3491 Pgno iDbPage = pDbPage->pgno;
3492 Pager *pPager = pBt->pPager;
3493 int rc;
3494
danielk1977a0bf2652004-11-04 14:30:04 +00003495 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3496 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003497 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003498 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00003499
drh85b623f2007-12-13 21:54:09 +00003500 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003501 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3502 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003503 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003504 if( rc!=SQLITE_OK ){
3505 return rc;
3506 }
3507 pDbPage->pgno = iFreePage;
3508
3509 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3510 ** that point to overflow pages. The pointer map entries for all these
3511 ** pages need to be changed.
3512 **
3513 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3514 ** pointer to a subsequent overflow page. If this is the case, then
3515 ** the pointer map needs to be updated for the subsequent overflow page.
3516 */
danielk1977a0bf2652004-11-04 14:30:04 +00003517 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003518 rc = setChildPtrmaps(pDbPage);
3519 if( rc!=SQLITE_OK ){
3520 return rc;
3521 }
3522 }else{
3523 Pgno nextOvfl = get4byte(pDbPage->aData);
3524 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003525 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003526 if( rc!=SQLITE_OK ){
3527 return rc;
3528 }
3529 }
3530 }
3531
3532 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3533 ** that it points at iFreePage. Also fix the pointer map entry for
3534 ** iPtrPage.
3535 */
danielk1977a0bf2652004-11-04 14:30:04 +00003536 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003537 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003538 if( rc!=SQLITE_OK ){
3539 return rc;
3540 }
danielk19773b8a05f2007-03-19 17:44:26 +00003541 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003542 if( rc!=SQLITE_OK ){
3543 releasePage(pPtrPage);
3544 return rc;
3545 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003546 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003547 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003548 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003549 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003550 }
danielk1977003ba062004-11-04 02:57:33 +00003551 }
danielk1977003ba062004-11-04 02:57:33 +00003552 return rc;
3553}
3554
danielk1977dddbcdc2007-04-26 14:42:34 +00003555/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003556static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003557
3558/*
dan51f0b6d2013-02-22 20:16:34 +00003559** Perform a single step of an incremental-vacuum. If successful, return
3560** SQLITE_OK. If there is no work to do (and therefore no point in
3561** calling this function again), return SQLITE_DONE. Or, if an error
3562** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003563**
peter.d.reid60ec9142014-09-06 16:39:46 +00003564** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003565** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003566**
dan51f0b6d2013-02-22 20:16:34 +00003567** Parameter nFin is the number of pages that this database would contain
3568** were this function called until it returns SQLITE_DONE.
3569**
3570** If the bCommit parameter is non-zero, this function assumes that the
3571** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003572** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003573** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003574*/
dan51f0b6d2013-02-22 20:16:34 +00003575static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003576 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003577 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003578
drh1fee73e2007-08-29 04:00:57 +00003579 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003580 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003581
3582 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003583 u8 eType;
3584 Pgno iPtrPage;
3585
3586 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003587 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003588 return SQLITE_DONE;
3589 }
3590
3591 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3592 if( rc!=SQLITE_OK ){
3593 return rc;
3594 }
3595 if( eType==PTRMAP_ROOTPAGE ){
3596 return SQLITE_CORRUPT_BKPT;
3597 }
3598
3599 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003600 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003601 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003602 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003603 ** truncated to zero after this function returns, so it doesn't
3604 ** matter if it still contains some garbage entries.
3605 */
3606 Pgno iFreePg;
3607 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003608 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003609 if( rc!=SQLITE_OK ){
3610 return rc;
3611 }
3612 assert( iFreePg==iLastPg );
3613 releasePage(pFreePg);
3614 }
3615 } else {
3616 Pgno iFreePg; /* Index of free page to move pLastPg to */
3617 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003618 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3619 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003620
drhb00fc3b2013-08-21 23:42:32 +00003621 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003622 if( rc!=SQLITE_OK ){
3623 return rc;
3624 }
3625
dan51f0b6d2013-02-22 20:16:34 +00003626 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003627 ** is swapped with the first free page pulled off the free list.
3628 **
dan51f0b6d2013-02-22 20:16:34 +00003629 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003630 ** looping until a free-page located within the first nFin pages
3631 ** of the file is found.
3632 */
dan51f0b6d2013-02-22 20:16:34 +00003633 if( bCommit==0 ){
3634 eMode = BTALLOC_LE;
3635 iNear = nFin;
3636 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003637 do {
3638 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003639 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003640 if( rc!=SQLITE_OK ){
3641 releasePage(pLastPg);
3642 return rc;
3643 }
3644 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003645 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003646 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003647
dane1df4e32013-03-05 11:27:04 +00003648 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003649 releasePage(pLastPg);
3650 if( rc!=SQLITE_OK ){
3651 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003652 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003653 }
3654 }
3655
dan51f0b6d2013-02-22 20:16:34 +00003656 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003657 do {
danielk19773460d192008-12-27 15:23:13 +00003658 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003659 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3660 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003661 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003662 }
3663 return SQLITE_OK;
3664}
3665
3666/*
dan51f0b6d2013-02-22 20:16:34 +00003667** The database opened by the first argument is an auto-vacuum database
3668** nOrig pages in size containing nFree free pages. Return the expected
3669** size of the database in pages following an auto-vacuum operation.
3670*/
3671static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3672 int nEntry; /* Number of entries on one ptrmap page */
3673 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3674 Pgno nFin; /* Return value */
3675
3676 nEntry = pBt->usableSize/5;
3677 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3678 nFin = nOrig - nFree - nPtrmap;
3679 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3680 nFin--;
3681 }
3682 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3683 nFin--;
3684 }
dan51f0b6d2013-02-22 20:16:34 +00003685
3686 return nFin;
3687}
3688
3689/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003690** A write-transaction must be opened before calling this function.
3691** It performs a single unit of work towards an incremental vacuum.
3692**
3693** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003694** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003695** SQLITE_OK is returned. Otherwise an SQLite error code.
3696*/
3697int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003698 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003699 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003700
3701 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003702 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3703 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003704 rc = SQLITE_DONE;
3705 }else{
dan51f0b6d2013-02-22 20:16:34 +00003706 Pgno nOrig = btreePagecount(pBt);
3707 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3708 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3709
dan91384712013-02-24 11:50:43 +00003710 if( nOrig<nFin ){
3711 rc = SQLITE_CORRUPT_BKPT;
3712 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003713 rc = saveAllCursors(pBt, 0, 0);
3714 if( rc==SQLITE_OK ){
3715 invalidateAllOverflowCache(pBt);
3716 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3717 }
dan51f0b6d2013-02-22 20:16:34 +00003718 if( rc==SQLITE_OK ){
3719 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3720 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3721 }
3722 }else{
3723 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003724 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003725 }
drhd677b3d2007-08-20 22:48:41 +00003726 sqlite3BtreeLeave(p);
3727 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003728}
3729
3730/*
danielk19773b8a05f2007-03-19 17:44:26 +00003731** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003732** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003733**
3734** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3735** the database file should be truncated to during the commit process.
3736** i.e. the database has been reorganized so that only the first *pnTrunc
3737** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003738*/
danielk19773460d192008-12-27 15:23:13 +00003739static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003740 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003741 Pager *pPager = pBt->pPager;
mistachkinc29cbb02015-07-02 16:52:01 +00003742 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00003743
drh1fee73e2007-08-29 04:00:57 +00003744 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003745 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003746 assert(pBt->autoVacuum);
3747 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003748 Pgno nFin; /* Number of pages in database after autovacuuming */
3749 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003750 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003751 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003752
drhb1299152010-03-30 22:58:33 +00003753 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003754 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3755 /* It is not possible to create a database for which the final page
3756 ** is either a pointer-map page or the pending-byte page. If one
3757 ** is encountered, this indicates corruption.
3758 */
danielk19773460d192008-12-27 15:23:13 +00003759 return SQLITE_CORRUPT_BKPT;
3760 }
danielk1977ef165ce2009-04-06 17:50:03 +00003761
danielk19773460d192008-12-27 15:23:13 +00003762 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003763 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003764 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003765 if( nFin<nOrig ){
3766 rc = saveAllCursors(pBt, 0, 0);
3767 }
danielk19773460d192008-12-27 15:23:13 +00003768 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003769 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003770 }
danielk19773460d192008-12-27 15:23:13 +00003771 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003772 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3773 put4byte(&pBt->pPage1->aData[32], 0);
3774 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003775 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003776 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003777 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003778 }
3779 if( rc!=SQLITE_OK ){
3780 sqlite3PagerRollback(pPager);
3781 }
danielk1977687566d2004-11-02 12:56:41 +00003782 }
3783
dan0aed84d2013-03-26 14:16:20 +00003784 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003785 return rc;
3786}
danielk1977dddbcdc2007-04-26 14:42:34 +00003787
danielk1977a50d9aa2009-06-08 14:49:45 +00003788#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3789# define setChildPtrmaps(x) SQLITE_OK
3790#endif
danielk1977687566d2004-11-02 12:56:41 +00003791
3792/*
drh80e35f42007-03-30 14:06:34 +00003793** This routine does the first phase of a two-phase commit. This routine
3794** causes a rollback journal to be created (if it does not already exist)
3795** and populated with enough information so that if a power loss occurs
3796** the database can be restored to its original state by playing back
3797** the journal. Then the contents of the journal are flushed out to
3798** the disk. After the journal is safely on oxide, the changes to the
3799** database are written into the database file and flushed to oxide.
3800** At the end of this call, the rollback journal still exists on the
3801** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003802** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003803** commit process.
3804**
3805** This call is a no-op if no write-transaction is currently active on pBt.
3806**
3807** Otherwise, sync the database file for the btree pBt. zMaster points to
3808** the name of a master journal file that should be written into the
3809** individual journal file, or is NULL, indicating no master journal file
3810** (single database transaction).
3811**
3812** When this is called, the master journal should already have been
3813** created, populated with this journal pointer and synced to disk.
3814**
3815** Once this is routine has returned, the only thing required to commit
3816** the write-transaction for this database file is to delete the journal.
3817*/
3818int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3819 int rc = SQLITE_OK;
3820 if( p->inTrans==TRANS_WRITE ){
3821 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003822 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003823#ifndef SQLITE_OMIT_AUTOVACUUM
3824 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003825 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003826 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003827 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003828 return rc;
3829 }
3830 }
danbc1a3c62013-02-23 16:40:46 +00003831 if( pBt->bDoTruncate ){
3832 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3833 }
drh80e35f42007-03-30 14:06:34 +00003834#endif
drh49b9d332009-01-02 18:10:42 +00003835 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003836 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003837 }
3838 return rc;
3839}
3840
3841/*
danielk197794b30732009-07-02 17:21:57 +00003842** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3843** at the conclusion of a transaction.
3844*/
3845static void btreeEndTransaction(Btree *p){
3846 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003847 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003848 assert( sqlite3BtreeHoldsMutex(p) );
3849
danbc1a3c62013-02-23 16:40:46 +00003850#ifndef SQLITE_OMIT_AUTOVACUUM
3851 pBt->bDoTruncate = 0;
3852#endif
danc0537fe2013-06-28 19:41:43 +00003853 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003854 /* If there are other active statements that belong to this database
3855 ** handle, downgrade to a read-only transaction. The other statements
3856 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003857 downgradeAllSharedCacheTableLocks(p);
3858 p->inTrans = TRANS_READ;
3859 }else{
3860 /* If the handle had any kind of transaction open, decrement the
3861 ** transaction count of the shared btree. If the transaction count
3862 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3863 ** call below will unlock the pager. */
3864 if( p->inTrans!=TRANS_NONE ){
3865 clearAllSharedCacheTableLocks(p);
3866 pBt->nTransaction--;
3867 if( 0==pBt->nTransaction ){
3868 pBt->inTransaction = TRANS_NONE;
3869 }
3870 }
3871
3872 /* Set the current transaction state to TRANS_NONE and unlock the
3873 ** pager if this call closed the only read or write transaction. */
3874 p->inTrans = TRANS_NONE;
3875 unlockBtreeIfUnused(pBt);
3876 }
3877
3878 btreeIntegrity(p);
3879}
3880
3881/*
drh2aa679f2001-06-25 02:11:07 +00003882** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003883**
drh6e345992007-03-30 11:12:08 +00003884** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003885** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3886** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3887** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003888** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003889** routine has to do is delete or truncate or zero the header in the
3890** the rollback journal (which causes the transaction to commit) and
3891** drop locks.
drh6e345992007-03-30 11:12:08 +00003892**
dan60939d02011-03-29 15:40:55 +00003893** Normally, if an error occurs while the pager layer is attempting to
3894** finalize the underlying journal file, this function returns an error and
3895** the upper layer will attempt a rollback. However, if the second argument
3896** is non-zero then this b-tree transaction is part of a multi-file
3897** transaction. In this case, the transaction has already been committed
3898** (by deleting a master journal file) and the caller will ignore this
3899** functions return code. So, even if an error occurs in the pager layer,
3900** reset the b-tree objects internal state to indicate that the write
3901** transaction has been closed. This is quite safe, as the pager will have
3902** transitioned to the error state.
3903**
drh5e00f6c2001-09-13 13:46:56 +00003904** This will release the write lock on the database file. If there
3905** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003906*/
dan60939d02011-03-29 15:40:55 +00003907int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003908
drh075ed302010-10-14 01:17:30 +00003909 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003910 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003911 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003912
3913 /* If the handle has a write-transaction open, commit the shared-btrees
3914 ** transaction and set the shared state to TRANS_READ.
3915 */
3916 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003917 int rc;
drh075ed302010-10-14 01:17:30 +00003918 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003919 assert( pBt->inTransaction==TRANS_WRITE );
3920 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003921 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003922 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003923 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003924 return rc;
3925 }
drh3da9c042014-12-22 18:41:21 +00003926 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00003927 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003928 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003929 }
danielk1977aef0bf62005-12-30 16:28:01 +00003930
danielk197794b30732009-07-02 17:21:57 +00003931 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003932 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003933 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003934}
3935
drh80e35f42007-03-30 14:06:34 +00003936/*
3937** Do both phases of a commit.
3938*/
3939int sqlite3BtreeCommit(Btree *p){
3940 int rc;
drhd677b3d2007-08-20 22:48:41 +00003941 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003942 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3943 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003944 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003945 }
drhd677b3d2007-08-20 22:48:41 +00003946 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003947 return rc;
3948}
3949
drhc39e0002004-05-07 23:50:57 +00003950/*
drhfb982642007-08-30 01:19:59 +00003951** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00003952** code to errCode for every cursor on any BtShared that pBtree
3953** references. Or if the writeOnly flag is set to 1, then only
3954** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00003955**
drh47b7fc72014-11-11 01:33:57 +00003956** Every cursor is a candidate to be tripped, including cursors
3957** that belong to other database connections that happen to be
3958** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00003959**
dan80231042014-11-12 14:56:02 +00003960** This routine gets called when a rollback occurs. If the writeOnly
3961** flag is true, then only write-cursors need be tripped - read-only
3962** cursors save their current positions so that they may continue
3963** following the rollback. Or, if writeOnly is false, all cursors are
3964** tripped. In general, writeOnly is false if the transaction being
3965** rolled back modified the database schema. In this case b-tree root
3966** pages may be moved or deleted from the database altogether, making
3967** it unsafe for read cursors to continue.
3968**
3969** If the writeOnly flag is true and an error is encountered while
3970** saving the current position of a read-only cursor, all cursors,
3971** including all read-cursors are tripped.
3972**
3973** SQLITE_OK is returned if successful, or if an error occurs while
3974** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00003975*/
dan80231042014-11-12 14:56:02 +00003976int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00003977 BtCursor *p;
dan80231042014-11-12 14:56:02 +00003978 int rc = SQLITE_OK;
3979
drh47b7fc72014-11-11 01:33:57 +00003980 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00003981 if( pBtree ){
3982 sqlite3BtreeEnter(pBtree);
3983 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
3984 int i;
3985 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00003986 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00003987 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00003988 if( rc!=SQLITE_OK ){
3989 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
3990 break;
3991 }
3992 }
3993 }else{
3994 sqlite3BtreeClearCursor(p);
3995 p->eState = CURSOR_FAULT;
3996 p->skipNext = errCode;
3997 }
3998 for(i=0; i<=p->iPage; i++){
3999 releasePage(p->apPage[i]);
4000 p->apPage[i] = 0;
4001 }
danielk1977bc2ca9e2008-11-13 14:28:28 +00004002 }
dan80231042014-11-12 14:56:02 +00004003 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00004004 }
dan80231042014-11-12 14:56:02 +00004005 return rc;
drhfb982642007-08-30 01:19:59 +00004006}
4007
4008/*
drh47b7fc72014-11-11 01:33:57 +00004009** Rollback the transaction in progress.
4010**
4011** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4012** Only write cursors are tripped if writeOnly is true but all cursors are
4013** tripped if writeOnly is false. Any attempt to use
4014** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00004015**
4016** This will release the write lock on the database file. If there
4017** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004018*/
drh47b7fc72014-11-11 01:33:57 +00004019int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00004020 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004021 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00004022 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00004023
drh47b7fc72014-11-11 01:33:57 +00004024 assert( writeOnly==1 || writeOnly==0 );
4025 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00004026 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00004027 if( tripCode==SQLITE_OK ){
4028 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00004029 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00004030 }else{
4031 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00004032 }
drh0f198a72012-02-13 16:43:16 +00004033 if( tripCode ){
dan80231042014-11-12 14:56:02 +00004034 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4035 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4036 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00004037 }
danielk1977aef0bf62005-12-30 16:28:01 +00004038 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004039
4040 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00004041 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00004042
danielk19778d34dfd2006-01-24 16:37:57 +00004043 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00004044 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00004045 if( rc2!=SQLITE_OK ){
4046 rc = rc2;
4047 }
4048
drh24cd67e2004-05-10 16:18:47 +00004049 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00004050 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00004051 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00004052 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00004053 int nPage = get4byte(28+(u8*)pPage1->aData);
4054 testcase( nPage==0 );
4055 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4056 testcase( pBt->nPage!=nPage );
4057 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00004058 releasePage(pPage1);
4059 }
drh85ec3b62013-05-14 23:12:06 +00004060 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00004061 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004062 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00004063 }
danielk1977aef0bf62005-12-30 16:28:01 +00004064
danielk197794b30732009-07-02 17:21:57 +00004065 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004066 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00004067 return rc;
4068}
4069
4070/*
peter.d.reid60ec9142014-09-06 16:39:46 +00004071** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00004072** back independently of the main transaction. You must start a transaction
4073** before starting a subtransaction. The subtransaction is ended automatically
4074** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00004075**
4076** Statement subtransactions are used around individual SQL statements
4077** that are contained within a BEGIN...COMMIT block. If a constraint
4078** error occurs within the statement, the effect of that one statement
4079** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00004080**
4081** A statement sub-transaction is implemented as an anonymous savepoint. The
4082** value passed as the second parameter is the total number of savepoints,
4083** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4084** are no active savepoints and no other statement-transactions open,
4085** iStatement is 1. This anonymous savepoint can be released or rolled back
4086** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00004087*/
danielk1977bd434552009-03-18 10:33:00 +00004088int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00004089 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004090 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004091 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00004092 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00004093 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00004094 assert( iStatement>0 );
4095 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00004096 assert( pBt->inTransaction==TRANS_WRITE );
4097 /* At the pager level, a statement transaction is a savepoint with
4098 ** an index greater than all savepoints created explicitly using
4099 ** SQL statements. It is illegal to open, release or rollback any
4100 ** such savepoints while the statement transaction savepoint is active.
4101 */
4102 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00004103 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00004104 return rc;
4105}
4106
4107/*
danielk1977fd7f0452008-12-17 17:30:26 +00004108** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4109** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00004110** savepoint identified by parameter iSavepoint, depending on the value
4111** of op.
4112**
4113** Normally, iSavepoint is greater than or equal to zero. However, if op is
4114** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4115** contents of the entire transaction are rolled back. This is different
4116** from a normal transaction rollback, as no locks are released and the
4117** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00004118*/
4119int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4120 int rc = SQLITE_OK;
4121 if( p && p->inTrans==TRANS_WRITE ){
4122 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00004123 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4124 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4125 sqlite3BtreeEnter(p);
drh2343c7e2017-02-02 00:46:55 +00004126 if( op==SAVEPOINT_ROLLBACK ){
4127 rc = saveAllCursors(pBt, 0, 0);
4128 }
4129 if( rc==SQLITE_OK ){
4130 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4131 }
drh9f0bbf92009-01-02 21:08:09 +00004132 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00004133 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4134 pBt->nPage = 0;
4135 }
drh9f0bbf92009-01-02 21:08:09 +00004136 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00004137 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00004138
4139 /* The database size was written into the offset 28 of the header
4140 ** when the transaction started, so we know that the value at offset
4141 ** 28 is nonzero. */
4142 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004143 }
danielk1977fd7f0452008-12-17 17:30:26 +00004144 sqlite3BtreeLeave(p);
4145 }
4146 return rc;
4147}
4148
4149/*
drh8b2f49b2001-06-08 00:21:52 +00004150** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004151** iTable. If a read-only cursor is requested, it is assumed that
4152** the caller already has at least a read-only transaction open
4153** on the database already. If a write-cursor is requested, then
4154** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004155**
drhe807bdb2016-01-21 17:06:33 +00004156** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4157** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4158** can be used for reading or for writing if other conditions for writing
4159** are also met. These are the conditions that must be met in order
4160** for writing to be allowed:
drh6446c4d2001-12-15 14:22:18 +00004161**
drhe807bdb2016-01-21 17:06:33 +00004162** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
drhf74b8d92002-09-01 23:20:45 +00004163**
drhfe5d71d2007-03-19 11:54:10 +00004164** 2: Other database connections that share the same pager cache
4165** but which are not in the READ_UNCOMMITTED state may not have
4166** cursors open with wrFlag==0 on the same table. Otherwise
4167** the changes made by this write cursor would be visible to
4168** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004169**
4170** 3: The database must be writable (not on read-only media)
4171**
4172** 4: There must be an active transaction.
4173**
drhe807bdb2016-01-21 17:06:33 +00004174** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4175** is set. If FORDELETE is set, that is a hint to the implementation that
4176** this cursor will only be used to seek to and delete entries of an index
4177** as part of a larger DELETE statement. The FORDELETE hint is not used by
4178** this implementation. But in a hypothetical alternative storage engine
4179** in which index entries are automatically deleted when corresponding table
4180** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4181** operations on this cursor can be no-ops and all READ operations can
4182** return a null row (2-bytes: 0x01 0x00).
4183**
drh6446c4d2001-12-15 14:22:18 +00004184** No checking is done to make sure that page iTable really is the
4185** root page of a b-tree. If it is not, then the cursor acquired
4186** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004187**
drhf25a5072009-11-18 23:01:25 +00004188** It is assumed that the sqlite3BtreeCursorZero() has been called
4189** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004190*/
drhd677b3d2007-08-20 22:48:41 +00004191static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004192 Btree *p, /* The btree */
4193 int iTable, /* Root page of table to open */
4194 int wrFlag, /* 1 to write. 0 read-only */
4195 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4196 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004197){
danielk19773e8add92009-07-04 17:16:00 +00004198 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004199 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004200
drh1fee73e2007-08-29 04:00:57 +00004201 assert( sqlite3BtreeHoldsMutex(p) );
danfd261ec2015-10-22 20:54:33 +00004202 assert( wrFlag==0
4203 || wrFlag==BTREE_WRCSR
4204 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4205 );
danielk197796d48e92009-06-29 06:00:37 +00004206
danielk1977602b4662009-07-02 07:47:33 +00004207 /* The following assert statements verify that if this is a sharable
4208 ** b-tree database, the connection is holding the required table locks,
4209 ** and that no other connection has any open cursor that conflicts with
4210 ** this lock. */
danfd261ec2015-10-22 20:54:33 +00004211 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
danielk197796d48e92009-06-29 06:00:37 +00004212 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4213
danielk19773e8add92009-07-04 17:16:00 +00004214 /* Assert that the caller has opened the required transaction. */
4215 assert( p->inTrans>TRANS_NONE );
4216 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4217 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004218 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004219
drh3fbb0222014-09-24 19:47:27 +00004220 if( wrFlag ){
4221 allocateTempSpace(pBt);
mistachkinfad30392016-02-13 23:43:46 +00004222 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
drha0c9a112004-03-10 13:42:37 +00004223 }
drhb1299152010-03-30 22:58:33 +00004224 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00004225 assert( wrFlag==0 );
4226 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00004227 }
danielk1977aef0bf62005-12-30 16:28:01 +00004228
danielk1977aef0bf62005-12-30 16:28:01 +00004229 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004230 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00004231 pCur->pgnoRoot = (Pgno)iTable;
4232 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004233 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004234 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004235 pCur->pBt = pBt;
danfd261ec2015-10-22 20:54:33 +00004236 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
drh28f58dd2015-06-27 19:45:03 +00004237 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
drh27fb7462015-06-30 02:47:36 +00004238 /* If there are two or more cursors on the same btree, then all such
4239 ** cursors *must* have the BTCF_Multiple flag set. */
4240 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4241 if( pX->pgnoRoot==(Pgno)iTable ){
4242 pX->curFlags |= BTCF_Multiple;
4243 pCur->curFlags |= BTCF_Multiple;
4244 }
drha059ad02001-04-17 20:09:11 +00004245 }
drh27fb7462015-06-30 02:47:36 +00004246 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004247 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004248 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004249 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004250}
drhd677b3d2007-08-20 22:48:41 +00004251int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004252 Btree *p, /* The btree */
4253 int iTable, /* Root page of table to open */
4254 int wrFlag, /* 1 to write. 0 read-only */
4255 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4256 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004257){
4258 int rc;
dan08f901b2015-05-25 19:24:36 +00004259 if( iTable<1 ){
4260 rc = SQLITE_CORRUPT_BKPT;
4261 }else{
4262 sqlite3BtreeEnter(p);
4263 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4264 sqlite3BtreeLeave(p);
4265 }
drhd677b3d2007-08-20 22:48:41 +00004266 return rc;
4267}
drh7f751222009-03-17 22:33:00 +00004268
4269/*
4270** Return the size of a BtCursor object in bytes.
4271**
4272** This interfaces is needed so that users of cursors can preallocate
4273** sufficient storage to hold a cursor. The BtCursor object is opaque
4274** to users so they cannot do the sizeof() themselves - they must call
4275** this routine.
4276*/
4277int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004278 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004279}
4280
drh7f751222009-03-17 22:33:00 +00004281/*
drhf25a5072009-11-18 23:01:25 +00004282** Initialize memory that will be converted into a BtCursor object.
4283**
4284** The simple approach here would be to memset() the entire object
4285** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4286** do not need to be zeroed and they are large, so we can save a lot
4287** of run-time by skipping the initialization of those elements.
4288*/
4289void sqlite3BtreeCursorZero(BtCursor *p){
4290 memset(p, 0, offsetof(BtCursor, iPage));
4291}
4292
4293/*
drh5e00f6c2001-09-13 13:46:56 +00004294** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004295** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004296*/
drh3aac2dd2004-04-26 14:10:20 +00004297int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004298 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004299 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00004300 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00004301 BtShared *pBt = pCur->pBt;
4302 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00004303 sqlite3BtreeClearCursor(pCur);
drh27fb7462015-06-30 02:47:36 +00004304 assert( pBt->pCursor!=0 );
4305 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004306 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004307 }else{
4308 BtCursor *pPrev = pBt->pCursor;
4309 do{
4310 if( pPrev->pNext==pCur ){
4311 pPrev->pNext = pCur->pNext;
4312 break;
4313 }
4314 pPrev = pPrev->pNext;
4315 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004316 }
danielk197771d5d2c2008-09-29 11:49:47 +00004317 for(i=0; i<=pCur->iPage; i++){
4318 releasePage(pCur->apPage[i]);
4319 }
danielk1977cd3e8f72008-03-25 09:47:35 +00004320 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004321 sqlite3_free(pCur->aOverflow);
danielk1977cd3e8f72008-03-25 09:47:35 +00004322 /* sqlite3_free(pCur); */
4323 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00004324 }
drh8c42ca92001-06-22 19:15:00 +00004325 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004326}
4327
drh5e2f8b92001-05-28 00:41:15 +00004328/*
drh86057612007-06-26 01:04:48 +00004329** Make sure the BtCursor* given in the argument has a valid
4330** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004331** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004332**
4333** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004334** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004335*/
drh9188b382004-05-14 21:12:22 +00004336#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00004337 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004338 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00004339 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00004340 memset(&info, 0, sizeof(info));
drh75e96b32017-04-01 00:20:06 +00004341 btreeParseCell(pCur->apPage[iPage], pCur->ix, &info);
dan7df42ab2014-01-20 18:25:44 +00004342 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00004343 }
danielk19771cc5ed82007-05-16 17:28:43 +00004344#else
4345 #define assertCellInfo(x)
4346#endif
drhc5b41ac2015-06-17 02:11:46 +00004347static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4348 if( pCur->info.nSize==0 ){
4349 int iPage = pCur->iPage;
4350 pCur->curFlags |= BTCF_ValidNKey;
drh75e96b32017-04-01 00:20:06 +00004351 btreeParseCell(pCur->apPage[iPage],pCur->ix,&pCur->info);
drhc5b41ac2015-06-17 02:11:46 +00004352 }else{
4353 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004354 }
drhc5b41ac2015-06-17 02:11:46 +00004355}
drh9188b382004-05-14 21:12:22 +00004356
drhea8ffdf2009-07-22 00:35:23 +00004357#ifndef NDEBUG /* The next routine used only within assert() statements */
4358/*
4359** Return true if the given BtCursor is valid. A valid cursor is one
4360** that is currently pointing to a row in a (non-empty) table.
4361** This is a verification routine is used only within assert() statements.
4362*/
4363int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4364 return pCur && pCur->eState==CURSOR_VALID;
4365}
4366#endif /* NDEBUG */
drhd6ef5af2016-11-15 04:00:24 +00004367int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4368 assert( pCur!=0 );
4369 return pCur->eState==CURSOR_VALID;
4370}
drhea8ffdf2009-07-22 00:35:23 +00004371
drh9188b382004-05-14 21:12:22 +00004372/*
drha7c90c42016-06-04 20:37:10 +00004373** Return the value of the integer key or "rowid" for a table btree.
4374** This routine is only valid for a cursor that is pointing into a
4375** ordinary table btree. If the cursor points to an index btree or
4376** is invalid, the result of this routine is undefined.
drh7e3b0a02001-04-28 16:52:40 +00004377*/
drha7c90c42016-06-04 20:37:10 +00004378i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004379 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004380 assert( pCur->eState==CURSOR_VALID );
drha7c90c42016-06-04 20:37:10 +00004381 assert( pCur->curIntKey );
drhc5352b92014-11-17 20:33:07 +00004382 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004383 return pCur->info.nKey;
drha059ad02001-04-17 20:09:11 +00004384}
drh2af926b2001-05-15 00:39:25 +00004385
drh72f82862001-05-24 21:06:34 +00004386/*
drha7c90c42016-06-04 20:37:10 +00004387** Return the number of bytes of payload for the entry that pCur is
4388** currently pointing to. For table btrees, this will be the amount
4389** of data. For index btrees, this will be the size of the key.
drhea8ffdf2009-07-22 00:35:23 +00004390**
4391** The caller must guarantee that the cursor is pointing to a non-NULL
4392** valid entry. In other words, the calling procedure must guarantee
4393** that the cursor has Cursor.eState==CURSOR_VALID.
drh0e1c19e2004-05-11 00:58:56 +00004394*/
drha7c90c42016-06-04 20:37:10 +00004395u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4396 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004397 assert( pCur->eState==CURSOR_VALID );
4398 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004399 return pCur->info.nPayload;
drh0e1c19e2004-05-11 00:58:56 +00004400}
4401
4402/*
danielk1977d04417962007-05-02 13:16:30 +00004403** Given the page number of an overflow page in the database (parameter
4404** ovfl), this function finds the page number of the next page in the
4405** linked list of overflow pages. If possible, it uses the auto-vacuum
4406** pointer-map data instead of reading the content of page ovfl to do so.
4407**
4408** If an error occurs an SQLite error code is returned. Otherwise:
4409**
danielk1977bea2a942009-01-20 17:06:27 +00004410** The page number of the next overflow page in the linked list is
4411** written to *pPgnoNext. If page ovfl is the last page in its linked
4412** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004413**
danielk1977bea2a942009-01-20 17:06:27 +00004414** If ppPage is not NULL, and a reference to the MemPage object corresponding
4415** to page number pOvfl was obtained, then *ppPage is set to point to that
4416** reference. It is the responsibility of the caller to call releasePage()
4417** on *ppPage to free the reference. In no reference was obtained (because
4418** the pointer-map was used to obtain the value for *pPgnoNext), then
4419** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004420*/
4421static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004422 BtShared *pBt, /* The database file */
4423 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004424 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004425 Pgno *pPgnoNext /* OUT: Next overflow page number */
4426){
4427 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004428 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004429 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004430
drh1fee73e2007-08-29 04:00:57 +00004431 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004432 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004433
4434#ifndef SQLITE_OMIT_AUTOVACUUM
4435 /* Try to find the next page in the overflow list using the
4436 ** autovacuum pointer-map pages. Guess that the next page in
4437 ** the overflow list is page number (ovfl+1). If that guess turns
4438 ** out to be wrong, fall back to loading the data of page
4439 ** number ovfl to determine the next page number.
4440 */
4441 if( pBt->autoVacuum ){
4442 Pgno pgno;
4443 Pgno iGuess = ovfl+1;
4444 u8 eType;
4445
4446 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4447 iGuess++;
4448 }
4449
drhb1299152010-03-30 22:58:33 +00004450 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004451 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004452 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004453 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004454 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004455 }
4456 }
4457 }
4458#endif
4459
danielk1977d8a3f3d2009-07-11 11:45:23 +00004460 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004461 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004462 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004463 assert( rc==SQLITE_OK || pPage==0 );
4464 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004465 next = get4byte(pPage->aData);
4466 }
danielk1977443c0592009-01-16 15:21:05 +00004467 }
danielk197745d68822009-01-16 16:23:38 +00004468
danielk1977bea2a942009-01-20 17:06:27 +00004469 *pPgnoNext = next;
4470 if( ppPage ){
4471 *ppPage = pPage;
4472 }else{
4473 releasePage(pPage);
4474 }
4475 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004476}
4477
danielk1977da107192007-05-04 08:32:13 +00004478/*
4479** Copy data from a buffer to a page, or from a page to a buffer.
4480**
4481** pPayload is a pointer to data stored on database page pDbPage.
4482** If argument eOp is false, then nByte bytes of data are copied
4483** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4484** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4485** of data are copied from the buffer pBuf to pPayload.
4486**
4487** SQLITE_OK is returned on success, otherwise an error code.
4488*/
4489static int copyPayload(
4490 void *pPayload, /* Pointer to page data */
4491 void *pBuf, /* Pointer to buffer */
4492 int nByte, /* Number of bytes to copy */
4493 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4494 DbPage *pDbPage /* Page containing pPayload */
4495){
4496 if( eOp ){
4497 /* Copy data from buffer to page (a write operation) */
4498 int rc = sqlite3PagerWrite(pDbPage);
4499 if( rc!=SQLITE_OK ){
4500 return rc;
4501 }
4502 memcpy(pPayload, pBuf, nByte);
4503 }else{
4504 /* Copy data from page to buffer (a read operation) */
4505 memcpy(pBuf, pPayload, nByte);
4506 }
4507 return SQLITE_OK;
4508}
danielk1977d04417962007-05-02 13:16:30 +00004509
4510/*
danielk19779f8d6402007-05-02 17:48:45 +00004511** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004512** for the entry that the pCur cursor is pointing to. The eOp
4513** argument is interpreted as follows:
4514**
4515** 0: The operation is a read. Populate the overflow cache.
4516** 1: The operation is a write. Populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004517**
4518** A total of "amt" bytes are read or written beginning at "offset".
4519** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004520**
drh3bcdfd22009-07-12 02:32:21 +00004521** The content being read or written might appear on the main page
4522** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004523**
drh42e28f12017-01-27 00:31:59 +00004524** If the current cursor entry uses one or more overflow pages
4525** this function may allocate space for and lazily populate
4526** the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004527** Subsequent calls use this cache to make seeking to the supplied offset
4528** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004529**
drh42e28f12017-01-27 00:31:59 +00004530** Once an overflow page-list cache has been allocated, it must be
danielk1977da107192007-05-04 08:32:13 +00004531** invalidated if some other cursor writes to the same table, or if
4532** the cursor is moved to a different row. Additionally, in auto-vacuum
4533** mode, the following events may invalidate an overflow page-list cache.
4534**
4535** * An incremental vacuum,
4536** * A commit in auto_vacuum="full" mode,
4537** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004538*/
danielk19779f8d6402007-05-02 17:48:45 +00004539static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004540 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004541 u32 offset, /* Begin reading this far into payload */
4542 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004543 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004544 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004545){
4546 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004547 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004548 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004549 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004550 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004551#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh8bb9fd32017-01-26 16:27:32 +00004552 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */
drh4c417182014-03-31 23:57:41 +00004553#endif
drh3aac2dd2004-04-26 14:10:20 +00004554
danielk1977da107192007-05-04 08:32:13 +00004555 assert( pPage );
drh42e28f12017-01-27 00:31:59 +00004556 assert( eOp==0 || eOp==1 );
danielk1977da184232006-01-05 11:34:32 +00004557 assert( pCur->eState==CURSOR_VALID );
drh75e96b32017-04-01 00:20:06 +00004558 assert( pCur->ix<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004559 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00004560
drh86057612007-06-26 01:04:48 +00004561 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004562 aPayload = pCur->info.pPayload;
drhab1cc582014-09-23 21:25:19 +00004563 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004564
drh0b982072016-03-22 14:10:45 +00004565 assert( aPayload > pPage->aData );
drhc5e7f942016-03-22 15:25:16 +00004566 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
drh0b982072016-03-22 14:10:45 +00004567 /* Trying to read or write past the end of the data is an error. The
4568 ** conditional above is really:
4569 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4570 ** but is recast into its current form to avoid integer overflow problems
4571 */
drhcc97ca42017-06-07 22:32:59 +00004572 return SQLITE_CORRUPT_PGNO(pPage->pgno);
drh3aac2dd2004-04-26 14:10:20 +00004573 }
danielk1977da107192007-05-04 08:32:13 +00004574
4575 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004576 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004577 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004578 if( a+offset>pCur->info.nLocal ){
4579 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004580 }
drh42e28f12017-01-27 00:31:59 +00004581 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004582 offset = 0;
drha34b6762004-05-07 13:30:42 +00004583 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004584 amt -= a;
drhdd793422001-06-28 01:54:48 +00004585 }else{
drhfa1a98a2004-05-14 19:08:17 +00004586 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004587 }
danielk1977da107192007-05-04 08:32:13 +00004588
dan85753662014-12-11 16:38:18 +00004589
danielk1977da107192007-05-04 08:32:13 +00004590 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004591 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004592 Pgno nextPage;
4593
drhfa1a98a2004-05-14 19:08:17 +00004594 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004595
drha38c9512014-04-01 01:24:34 +00004596 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
drha38c9512014-04-01 01:24:34 +00004597 **
4598 ** The aOverflow[] array is sized at one entry for each overflow page
4599 ** in the overflow chain. The page number of the first overflow page is
4600 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4601 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004602 */
drh42e28f12017-01-27 00:31:59 +00004603 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004604 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
dan5a500af2014-03-11 20:33:04 +00004605 if( nOvfl>pCur->nOvflAlloc ){
dan85753662014-12-11 16:38:18 +00004606 Pgno *aNew = (Pgno*)sqlite3Realloc(
4607 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004608 );
4609 if( aNew==0 ){
drhcd645532017-01-20 20:43:14 +00004610 return SQLITE_NOMEM_BKPT;
dan5a500af2014-03-11 20:33:04 +00004611 }else{
4612 pCur->nOvflAlloc = nOvfl*2;
4613 pCur->aOverflow = aNew;
4614 }
4615 }
drhcd645532017-01-20 20:43:14 +00004616 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4617 pCur->curFlags |= BTCF_ValidOvfl;
drhcdf360a2017-01-27 01:13:49 +00004618 }else{
4619 /* If the overflow page-list cache has been allocated and the
4620 ** entry for the first required overflow page is valid, skip
4621 ** directly to it.
4622 */
4623 if( pCur->aOverflow[offset/ovflSize] ){
4624 iIdx = (offset/ovflSize);
4625 nextPage = pCur->aOverflow[iIdx];
4626 offset = (offset%ovflSize);
4627 }
danielk19772dec9702007-05-02 16:48:37 +00004628 }
danielk1977da107192007-05-04 08:32:13 +00004629
drhcd645532017-01-20 20:43:14 +00004630 assert( rc==SQLITE_OK && amt>0 );
4631 while( nextPage ){
danielk1977da107192007-05-04 08:32:13 +00004632 /* If required, populate the overflow page-list cache. */
drh42e28f12017-01-27 00:31:59 +00004633 assert( pCur->aOverflow[iIdx]==0
4634 || pCur->aOverflow[iIdx]==nextPage
4635 || CORRUPT_DB );
4636 pCur->aOverflow[iIdx] = nextPage;
danielk1977da107192007-05-04 08:32:13 +00004637
danielk1977d04417962007-05-02 13:16:30 +00004638 if( offset>=ovflSize ){
4639 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004640 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004641 ** data is not required. So first try to lookup the overflow
4642 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004643 ** function.
danielk1977d04417962007-05-02 13:16:30 +00004644 */
drha38c9512014-04-01 01:24:34 +00004645 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004646 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004647 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004648 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004649 }else{
danielk1977da107192007-05-04 08:32:13 +00004650 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004651 }
danielk1977da107192007-05-04 08:32:13 +00004652 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004653 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004654 /* Need to read this page properly. It contains some of the
4655 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004656 */
danf4ba1092011-10-08 14:57:07 +00004657#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh8bb9fd32017-01-26 16:27:32 +00004658 sqlite3_file *fd; /* File from which to do direct overflow read */
danf4ba1092011-10-08 14:57:07 +00004659#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004660 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004661 if( a + offset > ovflSize ){
4662 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004663 }
danf4ba1092011-10-08 14:57:07 +00004664
4665#ifdef SQLITE_DIRECT_OVERFLOW_READ
4666 /* If all the following are true:
4667 **
4668 ** 1) this is a read operation, and
4669 ** 2) data is required from the start of this overflow page, and
drh8bb9fd32017-01-26 16:27:32 +00004670 ** 3) there is no open write-transaction, and
4671 ** 4) the database is file-backed, and
drhd930b5c2017-01-26 02:26:02 +00004672 ** 5) the page is not in the WAL file
drh8bb9fd32017-01-26 16:27:32 +00004673 ** 6) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004674 **
4675 ** then data can be read directly from the database file into the
4676 ** output buffer, bypassing the page-cache altogether. This speeds
4677 ** up loading large records that span many overflow pages.
4678 */
drh42e28f12017-01-27 00:31:59 +00004679 if( eOp==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004680 && offset==0 /* (2) */
drh8bb9fd32017-01-26 16:27:32 +00004681 && pBt->inTransaction==TRANS_READ /* (3) */
4682 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (4) */
drhd930b5c2017-01-26 02:26:02 +00004683 && 0==sqlite3PagerUseWal(pBt->pPager, nextPage) /* (5) */
drh8bb9fd32017-01-26 16:27:32 +00004684 && &pBuf[-4]>=pBufStart /* (6) */
danf4ba1092011-10-08 14:57:07 +00004685 ){
4686 u8 aSave[4];
4687 u8 *aWrite = &pBuf[-4];
drh8bb9fd32017-01-26 16:27:32 +00004688 assert( aWrite>=pBufStart ); /* due to (6) */
danf4ba1092011-10-08 14:57:07 +00004689 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004690 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004691 nextPage = get4byte(aWrite);
4692 memcpy(aWrite, aSave, 4);
4693 }else
4694#endif
4695
4696 {
4697 DbPage *pDbPage;
drh9584f582015-11-04 20:22:37 +00004698 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
drh42e28f12017-01-27 00:31:59 +00004699 (eOp==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004700 );
danf4ba1092011-10-08 14:57:07 +00004701 if( rc==SQLITE_OK ){
4702 aPayload = sqlite3PagerGetData(pDbPage);
4703 nextPage = get4byte(aPayload);
drh42e28f12017-01-27 00:31:59 +00004704 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
danf4ba1092011-10-08 14:57:07 +00004705 sqlite3PagerUnref(pDbPage);
4706 offset = 0;
4707 }
4708 }
4709 amt -= a;
drh6ee610b2017-01-27 01:25:00 +00004710 if( amt==0 ) return rc;
danf4ba1092011-10-08 14:57:07 +00004711 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004712 }
drhcd645532017-01-20 20:43:14 +00004713 if( rc ) break;
4714 iIdx++;
drh2af926b2001-05-15 00:39:25 +00004715 }
drh2af926b2001-05-15 00:39:25 +00004716 }
danielk1977cfe9a692004-06-16 12:00:29 +00004717
danielk1977da107192007-05-04 08:32:13 +00004718 if( rc==SQLITE_OK && amt>0 ){
drhcc97ca42017-06-07 22:32:59 +00004719 /* Overflow chain ends prematurely */
4720 return SQLITE_CORRUPT_PGNO(pPage->pgno);
drha7fcb052001-12-14 15:09:55 +00004721 }
danielk1977da107192007-05-04 08:32:13 +00004722 return rc;
drh2af926b2001-05-15 00:39:25 +00004723}
4724
drh72f82862001-05-24 21:06:34 +00004725/*
drhcb3cabd2016-11-25 19:18:28 +00004726** Read part of the payload for the row at which that cursor pCur is currently
4727** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004728** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004729**
drhcb3cabd2016-11-25 19:18:28 +00004730** pCur can be pointing to either a table or an index b-tree.
4731** If pointing to a table btree, then the content section is read. If
4732** pCur is pointing to an index b-tree then the key section is read.
4733**
4734** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
4735** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
4736** cursor might be invalid or might need to be restored before being read.
drh5d1a8722009-07-22 18:07:40 +00004737**
drh3aac2dd2004-04-26 14:10:20 +00004738** Return SQLITE_OK on success or an error code if anything goes
4739** wrong. An error is returned if "offset+amt" is larger than
4740** the available payload.
drh72f82862001-05-24 21:06:34 +00004741*/
drhcb3cabd2016-11-25 19:18:28 +00004742int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004743 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004744 assert( pCur->eState==CURSOR_VALID );
4745 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
drh75e96b32017-04-01 00:20:06 +00004746 assert( pCur->ix<pCur->apPage[pCur->iPage]->nCell );
drh5d1a8722009-07-22 18:07:40 +00004747 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004748}
drh83ec2762017-01-26 16:54:47 +00004749
4750/*
4751** This variant of sqlite3BtreePayload() works even if the cursor has not
4752** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
4753** interface.
4754*/
danielk19773588ceb2008-06-10 17:30:26 +00004755#ifndef SQLITE_OMIT_INCRBLOB
drh83ec2762017-01-26 16:54:47 +00004756static SQLITE_NOINLINE int accessPayloadChecked(
4757 BtCursor *pCur,
4758 u32 offset,
4759 u32 amt,
4760 void *pBuf
4761){
drhcb3cabd2016-11-25 19:18:28 +00004762 int rc;
danielk19773588ceb2008-06-10 17:30:26 +00004763 if ( pCur->eState==CURSOR_INVALID ){
4764 return SQLITE_ABORT;
4765 }
dan7a2347e2016-01-07 16:43:54 +00004766 assert( cursorOwnsBtShared(pCur) );
drh945b0942017-01-26 21:30:00 +00004767 rc = btreeRestoreCursorPosition(pCur);
drh83ec2762017-01-26 16:54:47 +00004768 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
4769}
4770int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4771 if( pCur->eState==CURSOR_VALID ){
4772 assert( cursorOwnsBtShared(pCur) );
4773 return accessPayload(pCur, offset, amt, pBuf, 0);
4774 }else{
4775 return accessPayloadChecked(pCur, offset, amt, pBuf);
danielk1977da184232006-01-05 11:34:32 +00004776 }
drh2af926b2001-05-15 00:39:25 +00004777}
drhcb3cabd2016-11-25 19:18:28 +00004778#endif /* SQLITE_OMIT_INCRBLOB */
drh2af926b2001-05-15 00:39:25 +00004779
drh72f82862001-05-24 21:06:34 +00004780/*
drh0e1c19e2004-05-11 00:58:56 +00004781** Return a pointer to payload information from the entry that the
4782** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004783** the key if index btrees (pPage->intKey==0) and is the data for
4784** table btrees (pPage->intKey==1). The number of bytes of available
4785** key/data is written into *pAmt. If *pAmt==0, then the value
4786** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004787**
4788** This routine is an optimization. It is common for the entire key
4789** and data to fit on the local page and for there to be no overflow
4790** pages. When that is so, this routine can be used to access the
4791** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004792** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004793** the key/data and copy it into a preallocated buffer.
4794**
4795** The pointer returned by this routine looks directly into the cached
4796** page of the database. The data might change or move the next time
4797** any btree routine is called.
4798*/
drh2a8d2262013-12-09 20:43:22 +00004799static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004800 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004801 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004802){
drhf3392e32015-04-15 17:26:55 +00004803 u32 amt;
danielk197771d5d2c2008-09-29 11:49:47 +00004804 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004805 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004806 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan7a2347e2016-01-07 16:43:54 +00004807 assert( cursorOwnsBtShared(pCur) );
drh75e96b32017-04-01 00:20:06 +00004808 assert( pCur->ix<pCur->apPage[pCur->iPage]->nCell );
drh86dd3712014-03-25 11:00:21 +00004809 assert( pCur->info.nSize>0 );
drhf3392e32015-04-15 17:26:55 +00004810 assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
4811 assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
4812 amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
4813 if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
4814 *pAmt = amt;
drhab1cc582014-09-23 21:25:19 +00004815 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00004816}
4817
4818
4819/*
drhe51c44f2004-05-30 20:46:09 +00004820** For the entry that cursor pCur is point to, return as
4821** many bytes of the key or data as are available on the local
4822** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004823**
4824** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004825** or be destroyed on the next call to any Btree routine,
4826** including calls from other threads against the same cache.
4827** Hence, a mutex on the BtShared should be held prior to calling
4828** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004829**
4830** These routines is used to get quick access to key and data
4831** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004832*/
drha7c90c42016-06-04 20:37:10 +00004833const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004834 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004835}
4836
4837
4838/*
drh8178a752003-01-05 21:41:40 +00004839** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004840** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004841**
4842** This function returns SQLITE_CORRUPT if the page-header flags field of
4843** the new child page does not match the flags field of the parent (i.e.
4844** if an intkey page appears to be the parent of a non-intkey page, or
4845** vice-versa).
drh72f82862001-05-24 21:06:34 +00004846*/
drh3aac2dd2004-04-26 14:10:20 +00004847static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00004848 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004849
dan7a2347e2016-01-07 16:43:54 +00004850 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004851 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004852 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004853 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004854 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4855 return SQLITE_CORRUPT_BKPT;
4856 }
drh271efa52004-05-30 19:19:05 +00004857 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004858 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh75e96b32017-04-01 00:20:06 +00004859 pCur->aiIdx[pCur->iPage++] = pCur->ix;
4860 pCur->ix = 0;
drh28f58dd2015-06-27 19:45:03 +00004861 return getAndInitPage(pBt, newPgno, &pCur->apPage[pCur->iPage],
4862 pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00004863}
4864
drhd879e3e2017-02-13 13:35:55 +00004865#ifdef SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00004866/*
4867** Page pParent is an internal (non-leaf) tree page. This function
4868** asserts that page number iChild is the left-child if the iIdx'th
4869** cell in page pParent. Or, if iIdx is equal to the total number of
4870** cells in pParent, that page number iChild is the right-child of
4871** the page.
4872*/
4873static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00004874 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
4875 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00004876 assert( iIdx<=pParent->nCell );
4877 if( iIdx==pParent->nCell ){
4878 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4879 }else{
4880 assert( get4byte(findCell(pParent, iIdx))==iChild );
4881 }
4882}
4883#else
4884# define assertParentIndex(x,y,z)
4885#endif
4886
drh72f82862001-05-24 21:06:34 +00004887/*
drh5e2f8b92001-05-28 00:41:15 +00004888** Move the cursor up to the parent page.
4889**
4890** pCur->idx is set to the cell index that contains the pointer
4891** to the page we are coming from. If we are coming from the
4892** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004893** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004894*/
danielk197730548662009-07-09 05:07:37 +00004895static void moveToParent(BtCursor *pCur){
dan7a2347e2016-01-07 16:43:54 +00004896 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004897 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004898 assert( pCur->iPage>0 );
4899 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004900 assertParentIndex(
4901 pCur->apPage[pCur->iPage-1],
4902 pCur->aiIdx[pCur->iPage-1],
4903 pCur->apPage[pCur->iPage]->pgno
4904 );
dan6c2688c2012-01-12 15:05:03 +00004905 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00004906 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004907 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh75e96b32017-04-01 00:20:06 +00004908 pCur->ix = pCur->aiIdx[pCur->iPage-1];
drhbbf0f862015-06-27 14:59:26 +00004909 releasePageNotNull(pCur->apPage[pCur->iPage--]);
drh72f82862001-05-24 21:06:34 +00004910}
4911
4912/*
danielk19778f880a82009-07-13 09:41:45 +00004913** Move the cursor to point to the root page of its b-tree structure.
4914**
4915** If the table has a virtual root page, then the cursor is moved to point
4916** to the virtual root page instead of the actual root page. A table has a
4917** virtual root page when the actual root page contains no cells and a
4918** single child page. This can only happen with the table rooted at page 1.
4919**
4920** If the b-tree structure is empty, the cursor state is set to
4921** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4922** cell located on the root (or virtual root) page and the cursor state
4923** is set to CURSOR_VALID.
4924**
4925** If this function returns successfully, it may be assumed that the
4926** page-header flags indicate that the [virtual] root-page is the expected
4927** kind of b-tree page (i.e. if when opening the cursor the caller did not
4928** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4929** indicating a table b-tree, or if the caller did specify a KeyInfo
4930** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4931** b-tree).
drh72f82862001-05-24 21:06:34 +00004932*/
drh5e2f8b92001-05-28 00:41:15 +00004933static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004934 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004935 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004936
dan7a2347e2016-01-07 16:43:54 +00004937 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +00004938 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4939 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4940 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4941 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4942 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004943 assert( pCur->skipNext!=SQLITE_OK );
4944 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004945 }
danielk1977be51a652008-10-08 17:58:48 +00004946 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004947 }
danielk197771d5d2c2008-09-29 11:49:47 +00004948
4949 if( pCur->iPage>=0 ){
drh7ad3eb62016-10-24 01:01:09 +00004950 if( pCur->iPage ){
4951 do{
4952 assert( pCur->apPage[pCur->iPage]!=0 );
4953 releasePageNotNull(pCur->apPage[pCur->iPage--]);
4954 }while( pCur->iPage);
4955 goto skip_init;
drhbbf0f862015-06-27 14:59:26 +00004956 }
dana205a482011-08-27 18:48:57 +00004957 }else if( pCur->pgnoRoot==0 ){
4958 pCur->eState = CURSOR_INVALID;
4959 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004960 }else{
drh28f58dd2015-06-27 19:45:03 +00004961 assert( pCur->iPage==(-1) );
drh4e8fe3f2013-12-06 23:25:27 +00004962 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
drh15a00212015-06-27 20:55:00 +00004963 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00004964 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004965 pCur->eState = CURSOR_INVALID;
drh7ad3eb62016-10-24 01:01:09 +00004966 return rc;
drh777e4c42006-01-13 04:31:58 +00004967 }
danielk1977172114a2009-07-07 15:47:12 +00004968 pCur->iPage = 0;
drh408efc02015-06-27 22:49:10 +00004969 pCur->curIntKey = pCur->apPage[0]->intKey;
drhc39e0002004-05-07 23:50:57 +00004970 }
danielk197771d5d2c2008-09-29 11:49:47 +00004971 pRoot = pCur->apPage[0];
4972 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00004973
4974 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4975 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4976 ** NULL, the caller expects a table b-tree. If this is not the case,
4977 ** return an SQLITE_CORRUPT error.
4978 **
4979 ** Earlier versions of SQLite assumed that this test could not fail
4980 ** if the root page was already loaded when this function was called (i.e.
4981 ** if pCur->iPage>=0). But this is not so if the database is corrupted
4982 ** in such a way that page pRoot is linked into a second b-tree table
4983 ** (or the freelist). */
4984 assert( pRoot->intKey==1 || pRoot->intKey==0 );
4985 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
drhcc97ca42017-06-07 22:32:59 +00004986 return SQLITE_CORRUPT_PGNO(pCur->apPage[pCur->iPage]->pgno);
dan7df42ab2014-01-20 18:25:44 +00004987 }
danielk19778f880a82009-07-13 09:41:45 +00004988
drh7ad3eb62016-10-24 01:01:09 +00004989skip_init:
drh75e96b32017-04-01 00:20:06 +00004990 pCur->ix = 0;
drh271efa52004-05-30 19:19:05 +00004991 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004992 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00004993
drh7ad3eb62016-10-24 01:01:09 +00004994 pRoot = pCur->apPage[0];
drh4e8fe3f2013-12-06 23:25:27 +00004995 if( pRoot->nCell>0 ){
4996 pCur->eState = CURSOR_VALID;
4997 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00004998 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004999 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00005000 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00005001 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00005002 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00005003 }else{
drh4e8fe3f2013-12-06 23:25:27 +00005004 pCur->eState = CURSOR_INVALID;
drh8856d6a2004-04-29 14:42:46 +00005005 }
5006 return rc;
drh72f82862001-05-24 21:06:34 +00005007}
drh2af926b2001-05-15 00:39:25 +00005008
drh5e2f8b92001-05-28 00:41:15 +00005009/*
5010** Move the cursor down to the left-most leaf entry beneath the
5011** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00005012**
5013** The left-most leaf is the one with the smallest key - the first
5014** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00005015*/
5016static int moveToLeftmost(BtCursor *pCur){
5017 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005018 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00005019 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00005020
dan7a2347e2016-01-07 16:43:54 +00005021 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005022 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005023 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh75e96b32017-04-01 00:20:06 +00005024 assert( pCur->ix<pPage->nCell );
5025 pgno = get4byte(findCell(pPage, pCur->ix));
drh8178a752003-01-05 21:41:40 +00005026 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00005027 }
drhd677b3d2007-08-20 22:48:41 +00005028 return rc;
drh5e2f8b92001-05-28 00:41:15 +00005029}
5030
drh2dcc9aa2002-12-04 13:40:25 +00005031/*
5032** Move the cursor down to the right-most leaf entry beneath the
5033** page to which it is currently pointing. Notice the difference
5034** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5035** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5036** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00005037**
5038** The right-most entry is the one with the largest key - the last
5039** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00005040*/
5041static int moveToRightmost(BtCursor *pCur){
5042 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005043 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00005044 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00005045
dan7a2347e2016-01-07 16:43:54 +00005046 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005047 assert( pCur->eState==CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005048 while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00005049 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh75e96b32017-04-01 00:20:06 +00005050 pCur->ix = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00005051 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00005052 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005053 }
drh75e96b32017-04-01 00:20:06 +00005054 pCur->ix = pPage->nCell-1;
drhee6438d2014-09-01 13:29:32 +00005055 assert( pCur->info.nSize==0 );
5056 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5057 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00005058}
5059
drh5e00f6c2001-09-13 13:46:56 +00005060/* Move the cursor to the first entry in the table. Return SQLITE_OK
5061** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005062** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00005063*/
drh3aac2dd2004-04-26 14:10:20 +00005064int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00005065 int rc;
drhd677b3d2007-08-20 22:48:41 +00005066
dan7a2347e2016-01-07 16:43:54 +00005067 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005068 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00005069 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005070 if( rc==SQLITE_OK ){
5071 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00005072 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00005073 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00005074 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00005075 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00005076 *pRes = 0;
5077 rc = moveToLeftmost(pCur);
5078 }
drh5e00f6c2001-09-13 13:46:56 +00005079 }
drh5e00f6c2001-09-13 13:46:56 +00005080 return rc;
5081}
drh5e2f8b92001-05-28 00:41:15 +00005082
drh9562b552002-02-19 15:00:07 +00005083/* Move the cursor to the last entry in the table. Return SQLITE_OK
5084** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005085** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00005086*/
drh3aac2dd2004-04-26 14:10:20 +00005087int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00005088 int rc;
drhd677b3d2007-08-20 22:48:41 +00005089
dan7a2347e2016-01-07 16:43:54 +00005090 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005091 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00005092
5093 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00005094 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00005095#ifdef SQLITE_DEBUG
5096 /* This block serves to assert() that the cursor really does point
5097 ** to the last entry in the b-tree. */
5098 int ii;
5099 for(ii=0; ii<pCur->iPage; ii++){
5100 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5101 }
drh75e96b32017-04-01 00:20:06 +00005102 assert( pCur->ix==pCur->apPage[pCur->iPage]->nCell-1 );
danielk19773f632d52009-05-02 10:03:09 +00005103 assert( pCur->apPage[pCur->iPage]->leaf );
5104#endif
5105 return SQLITE_OK;
5106 }
5107
drh9562b552002-02-19 15:00:07 +00005108 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005109 if( rc==SQLITE_OK ){
5110 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00005111 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00005112 *pRes = 1;
5113 }else{
5114 assert( pCur->eState==CURSOR_VALID );
5115 *pRes = 0;
5116 rc = moveToRightmost(pCur);
drh036dbec2014-03-11 23:40:44 +00005117 if( rc==SQLITE_OK ){
5118 pCur->curFlags |= BTCF_AtLast;
5119 }else{
5120 pCur->curFlags &= ~BTCF_AtLast;
5121 }
5122
drhd677b3d2007-08-20 22:48:41 +00005123 }
drh9562b552002-02-19 15:00:07 +00005124 }
drh9562b552002-02-19 15:00:07 +00005125 return rc;
5126}
5127
drhe14006d2008-03-25 17:23:32 +00005128/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00005129** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00005130**
drhe63d9992008-08-13 19:11:48 +00005131** For INTKEY tables, the intKey parameter is used. pIdxKey
5132** must be NULL. For index tables, pIdxKey is used and intKey
5133** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00005134**
drh5e2f8b92001-05-28 00:41:15 +00005135** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00005136** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00005137** were present. The cursor might point to an entry that comes
5138** before or after the key.
5139**
drh64022502009-01-09 14:11:04 +00005140** An integer is written into *pRes which is the result of
5141** comparing the key with the entry to which the cursor is
5142** pointing. The meaning of the integer written into
5143** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005144**
5145** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005146** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005147** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005148**
5149** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005150** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00005151**
5152** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005153** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00005154**
drhb1d607d2015-11-05 22:30:54 +00005155** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5156** exists an entry in the table that exactly matches pIdxKey.
drha059ad02001-04-17 20:09:11 +00005157*/
drhe63d9992008-08-13 19:11:48 +00005158int sqlite3BtreeMovetoUnpacked(
5159 BtCursor *pCur, /* The cursor to be moved */
5160 UnpackedRecord *pIdxKey, /* Unpacked index key */
5161 i64 intKey, /* The table key */
5162 int biasRight, /* If true, bias the search to the high end */
5163 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005164){
drh72f82862001-05-24 21:06:34 +00005165 int rc;
dan3b9330f2014-02-27 20:44:18 +00005166 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00005167
dan7a2347e2016-01-07 16:43:54 +00005168 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005169 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005170 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00005171 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drhdebaa862016-06-13 12:51:20 +00005172 assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
drha2c20e42008-03-29 16:01:04 +00005173
5174 /* If the cursor is already positioned at the point we are trying
5175 ** to move to, then just return without doing any work */
drh05a36092016-06-06 01:54:20 +00005176 if( pIdxKey==0
5177 && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
danielk197771d5d2c2008-09-29 11:49:47 +00005178 ){
drhe63d9992008-08-13 19:11:48 +00005179 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005180 *pRes = 0;
5181 return SQLITE_OK;
5182 }
drh451e76d2017-01-21 16:54:19 +00005183 if( pCur->info.nKey<intKey ){
5184 if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5185 *pRes = -1;
5186 return SQLITE_OK;
5187 }
drh7f11afa2017-01-21 21:47:54 +00005188 /* If the requested key is one more than the previous key, then
5189 ** try to get there using sqlite3BtreeNext() rather than a full
5190 ** binary search. This is an optimization only. The correct answer
drh2ab792e2017-05-30 18:34:07 +00005191 ** is still obtained without this case, only a little more slowely */
drh7f11afa2017-01-21 21:47:54 +00005192 if( pCur->info.nKey+1==intKey && !pCur->skipNext ){
5193 *pRes = 0;
drh2ab792e2017-05-30 18:34:07 +00005194 rc = sqlite3BtreeNext(pCur, 0);
5195 if( rc==SQLITE_OK ){
drh7f11afa2017-01-21 21:47:54 +00005196 getCellInfo(pCur);
5197 if( pCur->info.nKey==intKey ){
5198 return SQLITE_OK;
5199 }
drh2ab792e2017-05-30 18:34:07 +00005200 }else if( rc==SQLITE_DONE ){
5201 rc = SQLITE_OK;
5202 }else{
5203 return rc;
drh451e76d2017-01-21 16:54:19 +00005204 }
5205 }
drha2c20e42008-03-29 16:01:04 +00005206 }
5207 }
5208
dan1fed5da2014-02-25 21:01:25 +00005209 if( pIdxKey ){
5210 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00005211 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00005212 assert( pIdxKey->default_rc==1
5213 || pIdxKey->default_rc==0
5214 || pIdxKey->default_rc==-1
5215 );
drh13a747e2014-03-03 21:46:55 +00005216 }else{
drhb6e8fd12014-03-06 01:56:33 +00005217 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00005218 }
5219
drh5e2f8b92001-05-28 00:41:15 +00005220 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005221 if( rc ){
5222 return rc;
5223 }
dana205a482011-08-27 18:48:57 +00005224 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
5225 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
5226 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00005227 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00005228 *pRes = -1;
dana205a482011-08-27 18:48:57 +00005229 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00005230 return SQLITE_OK;
5231 }
drhc75d8862015-06-27 23:55:20 +00005232 assert( pCur->apPage[0]->intKey==pCur->curIntKey );
5233 assert( pCur->curIntKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00005234 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005235 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005236 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00005237 MemPage *pPage = pCur->apPage[pCur->iPage];
drhec3e6b12013-11-25 02:38:55 +00005238 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005239
5240 /* pPage->nCell must be greater than zero. If this is the root-page
5241 ** the cursor would have been INVALID above and this for(;;) loop
5242 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005243 ** would have already detected db corruption. Similarly, pPage must
5244 ** be the right kind (index or table) of b-tree page. Otherwise
5245 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005246 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005247 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005248 lwr = 0;
5249 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00005250 assert( biasRight==0 || biasRight==1 );
5251 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drh75e96b32017-04-01 00:20:06 +00005252 pCur->ix = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00005253 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00005254 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00005255 i64 nCellKey;
drhf44890a2015-06-27 03:58:15 +00005256 pCell = findCellPastPtr(pPage, idx);
drh3e28ff52014-09-24 00:59:08 +00005257 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00005258 while( 0x80 <= *(pCell++) ){
drhcc97ca42017-06-07 22:32:59 +00005259 if( pCell>=pPage->aDataEnd ){
5260 return SQLITE_CORRUPT_PGNO(pPage->pgno);
5261 }
drh9b2fc612013-11-25 20:14:13 +00005262 }
drhd172f862006-01-12 15:01:15 +00005263 }
drha2c20e42008-03-29 16:01:04 +00005264 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00005265 if( nCellKey<intKey ){
5266 lwr = idx+1;
5267 if( lwr>upr ){ c = -1; break; }
5268 }else if( nCellKey>intKey ){
5269 upr = idx-1;
5270 if( lwr>upr ){ c = +1; break; }
5271 }else{
5272 assert( nCellKey==intKey );
drh75e96b32017-04-01 00:20:06 +00005273 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005274 if( !pPage->leaf ){
5275 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00005276 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00005277 }else{
drhd95ef5c2016-11-11 18:19:05 +00005278 pCur->curFlags |= BTCF_ValidNKey;
5279 pCur->info.nKey = nCellKey;
5280 pCur->info.nSize = 0;
drhec3e6b12013-11-25 02:38:55 +00005281 *pRes = 0;
drhd95ef5c2016-11-11 18:19:05 +00005282 return SQLITE_OK;
drhec3e6b12013-11-25 02:38:55 +00005283 }
drhd793f442013-11-25 14:10:15 +00005284 }
drhebf10b12013-11-25 17:38:26 +00005285 assert( lwr+upr>=0 );
5286 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00005287 }
5288 }else{
5289 for(;;){
drhc6827502015-05-28 15:14:32 +00005290 int nCell; /* Size of the pCell cell in bytes */
drhf44890a2015-06-27 03:58:15 +00005291 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005292
drhb2eced52010-08-12 02:41:12 +00005293 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00005294 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00005295 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00005296 ** varint. This information is used to attempt to avoid parsing
5297 ** the entire cell by checking for the cases where the record is
5298 ** stored entirely within the b-tree page by inspecting the first
5299 ** 2 bytes of the cell.
5300 */
drhec3e6b12013-11-25 02:38:55 +00005301 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00005302 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00005303 /* This branch runs if the record-size field of the cell is a
5304 ** single byte varint and the record fits entirely on the main
5305 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00005306 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005307 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00005308 }else if( !(pCell[1] & 0x80)
5309 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5310 ){
5311 /* The record-size field is a 2 byte varint and the record
5312 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00005313 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005314 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00005315 }else{
danielk197711c327a2009-05-04 19:01:26 +00005316 /* The record flows over onto one or more overflow pages. In
5317 ** this case the whole cell needs to be parsed, a buffer allocated
5318 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00005319 ** buffer before VdbeRecordCompare() can be called.
5320 **
5321 ** If the record is corrupt, the xRecordCompare routine may read
5322 ** up to two varints past the end of the buffer. An extra 18
5323 ** bytes of padding is allocated at the end of the buffer in
5324 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00005325 void *pCellKey;
5326 u8 * const pCellBody = pCell - pPage->childPtrSize;
drh5fa60512015-06-19 17:19:34 +00005327 pPage->xParseCell(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00005328 nCell = (int)pCur->info.nKey;
drhc6827502015-05-28 15:14:32 +00005329 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5330 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5331 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5332 testcase( nCell==2 ); /* Minimum legal index key size */
dan3548db72015-05-27 14:21:05 +00005333 if( nCell<2 ){
drhcc97ca42017-06-07 22:32:59 +00005334 rc = SQLITE_CORRUPT_PGNO(pPage->pgno);
dan3548db72015-05-27 14:21:05 +00005335 goto moveto_finish;
5336 }
5337 pCellKey = sqlite3Malloc( nCell+18 );
danielk19776507ecb2008-03-25 09:56:44 +00005338 if( pCellKey==0 ){
mistachkinfad30392016-02-13 23:43:46 +00005339 rc = SQLITE_NOMEM_BKPT;
danielk19776507ecb2008-03-25 09:56:44 +00005340 goto moveto_finish;
5341 }
drh75e96b32017-04-01 00:20:06 +00005342 pCur->ix = (u16)idx;
drh42e28f12017-01-27 00:31:59 +00005343 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5344 pCur->curFlags &= ~BTCF_ValidOvfl;
drhec9b31f2009-08-25 13:53:49 +00005345 if( rc ){
5346 sqlite3_free(pCellKey);
5347 goto moveto_finish;
5348 }
drh75179de2014-09-16 14:37:35 +00005349 c = xRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00005350 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00005351 }
dan38fdead2014-04-01 10:19:02 +00005352 assert(
5353 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00005354 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00005355 );
drhbb933ef2013-11-25 15:01:38 +00005356 if( c<0 ){
5357 lwr = idx+1;
5358 }else if( c>0 ){
5359 upr = idx-1;
5360 }else{
5361 assert( c==0 );
drh64022502009-01-09 14:11:04 +00005362 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00005363 rc = SQLITE_OK;
drh75e96b32017-04-01 00:20:06 +00005364 pCur->ix = (u16)idx;
dan38fdead2014-04-01 10:19:02 +00005365 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00005366 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00005367 }
drhebf10b12013-11-25 17:38:26 +00005368 if( lwr>upr ) break;
5369 assert( lwr+upr>=0 );
5370 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005371 }
drh72f82862001-05-24 21:06:34 +00005372 }
drhb07028f2011-10-14 21:49:18 +00005373 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005374 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005375 if( pPage->leaf ){
drh75e96b32017-04-01 00:20:06 +00005376 assert( pCur->ix<pCur->apPage[pCur->iPage]->nCell );
5377 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005378 *pRes = c;
5379 rc = SQLITE_OK;
5380 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00005381 }
5382moveto_next_layer:
5383 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005384 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005385 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005386 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005387 }
drh75e96b32017-04-01 00:20:06 +00005388 pCur->ix = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005389 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005390 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005391 }
drh1e968a02008-03-25 00:22:21 +00005392moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005393 pCur->info.nSize = 0;
drhd95ef5c2016-11-11 18:19:05 +00005394 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhe63d9992008-08-13 19:11:48 +00005395 return rc;
5396}
5397
drhd677b3d2007-08-20 22:48:41 +00005398
drh72f82862001-05-24 21:06:34 +00005399/*
drhc39e0002004-05-07 23:50:57 +00005400** Return TRUE if the cursor is not pointing at an entry of the table.
5401**
5402** TRUE will be returned after a call to sqlite3BtreeNext() moves
5403** past the last entry in the table or sqlite3BtreePrev() moves past
5404** the first entry. TRUE is also returned if the table is empty.
5405*/
5406int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005407 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5408 ** have been deleted? This API will need to change to return an error code
5409 ** as well as the boolean result value.
5410 */
5411 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005412}
5413
5414/*
drh5e98e832017-02-17 19:24:06 +00005415** Return an estimate for the number of rows in the table that pCur is
5416** pointing to. Return a negative number if no estimate is currently
5417** available.
5418*/
5419i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5420 i64 n;
5421 u8 i;
5422
5423 assert( cursorOwnsBtShared(pCur) );
5424 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh555227b2017-02-23 02:15:33 +00005425
5426 /* Currently this interface is only called by the OP_IfSmaller
5427 ** opcode, and it that case the cursor will always be valid and
5428 ** will always point to a leaf node. */
5429 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
5430 if( NEVER(pCur->apPage[pCur->iPage]->leaf==0) ) return -1;
5431
drhdfe11ba2017-02-18 02:42:54 +00005432 for(n=1, i=0; i<=pCur->iPage; i++){
drh5e98e832017-02-17 19:24:06 +00005433 n *= pCur->apPage[i]->nCell;
5434 }
5435 return n;
5436}
5437
5438/*
drh2ab792e2017-05-30 18:34:07 +00005439** Advance the cursor to the next entry in the database.
5440** Return value:
5441**
5442** SQLITE_OK success
5443** SQLITE_DONE cursor is already pointing at the last element
5444** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005445**
drhee6438d2014-09-01 13:29:32 +00005446** The main entry point is sqlite3BtreeNext(). That routine is optimized
5447** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5448** to the next cell on the current page. The (slower) btreeNext() helper
5449** routine is called when it is necessary to move to a different page or
5450** to restore the cursor.
5451**
drh89997982017-07-11 18:11:33 +00005452** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5453** cursor corresponds to an SQL index and this routine could have been
5454** skipped if the SQL index had been a unique index. The F argument
5455** is a hint to the implement. SQLite btree implementation does not use
5456** this hint, but COMDB2 does.
drh72f82862001-05-24 21:06:34 +00005457*/
drh89997982017-07-11 18:11:33 +00005458static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
drh72f82862001-05-24 21:06:34 +00005459 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005460 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005461 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005462
dan7a2347e2016-01-07 16:43:54 +00005463 assert( cursorOwnsBtShared(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005464 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhf66f26a2013-08-19 20:04:10 +00005465 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005466 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005467 rc = restoreCursorPosition(pCur);
5468 if( rc!=SQLITE_OK ){
5469 return rc;
5470 }
5471 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00005472 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00005473 }
drh9b47ee32013-08-20 03:13:51 +00005474 if( pCur->skipNext ){
5475 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5476 pCur->eState = CURSOR_VALID;
5477 if( pCur->skipNext>0 ){
5478 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005479 return SQLITE_OK;
5480 }
drhf66f26a2013-08-19 20:04:10 +00005481 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005482 }
danielk1977da184232006-01-05 11:34:32 +00005483 }
danielk1977da184232006-01-05 11:34:32 +00005484
danielk197771d5d2c2008-09-29 11:49:47 +00005485 pPage = pCur->apPage[pCur->iPage];
drh75e96b32017-04-01 00:20:06 +00005486 idx = ++pCur->ix;
danielk197771d5d2c2008-09-29 11:49:47 +00005487 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00005488
5489 /* If the database file is corrupt, it is possible for the value of idx
5490 ** to be invalid here. This can only occur if a second cursor modifies
5491 ** the page while cursor pCur is holding a reference to it. Which can
5492 ** only happen if the database is corrupt in such a way as to link the
5493 ** page into more than one b-tree structure. */
5494 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005495
danielk197771d5d2c2008-09-29 11:49:47 +00005496 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005497 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005498 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005499 if( rc ) return rc;
5500 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005501 }
drh5e2f8b92001-05-28 00:41:15 +00005502 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005503 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005504 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00005505 return SQLITE_DONE;
drh5e2f8b92001-05-28 00:41:15 +00005506 }
danielk197730548662009-07-09 05:07:37 +00005507 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00005508 pPage = pCur->apPage[pCur->iPage];
drh75e96b32017-04-01 00:20:06 +00005509 }while( pCur->ix>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005510 if( pPage->intKey ){
drh89997982017-07-11 18:11:33 +00005511 return sqlite3BtreeNext(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00005512 }else{
drhee6438d2014-09-01 13:29:32 +00005513 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005514 }
drh8178a752003-01-05 21:41:40 +00005515 }
drh3aac2dd2004-04-26 14:10:20 +00005516 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005517 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005518 }else{
5519 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005520 }
drh72f82862001-05-24 21:06:34 +00005521}
drh2ab792e2017-05-30 18:34:07 +00005522int sqlite3BtreeNext(BtCursor *pCur, int flags){
drhee6438d2014-09-01 13:29:32 +00005523 MemPage *pPage;
drh89997982017-07-11 18:11:33 +00005524 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
dan7a2347e2016-01-07 16:43:54 +00005525 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00005526 assert( flags==0 || flags==1 );
drhee6438d2014-09-01 13:29:32 +00005527 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5528 pCur->info.nSize = 0;
5529 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh89997982017-07-11 18:11:33 +00005530 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
drhee6438d2014-09-01 13:29:32 +00005531 pPage = pCur->apPage[pCur->iPage];
drh75e96b32017-04-01 00:20:06 +00005532 if( (++pCur->ix)>=pPage->nCell ){
5533 pCur->ix--;
drh89997982017-07-11 18:11:33 +00005534 return btreeNext(pCur);
drhee6438d2014-09-01 13:29:32 +00005535 }
5536 if( pPage->leaf ){
5537 return SQLITE_OK;
5538 }else{
5539 return moveToLeftmost(pCur);
5540 }
5541}
drh72f82862001-05-24 21:06:34 +00005542
drh3b7511c2001-05-26 13:15:44 +00005543/*
drh2ab792e2017-05-30 18:34:07 +00005544** Step the cursor to the back to the previous entry in the database.
5545** Return values:
5546**
5547** SQLITE_OK success
5548** SQLITE_DONE the cursor is already on the first element of the table
5549** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005550**
drhee6438d2014-09-01 13:29:32 +00005551** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5552** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005553** to the previous cell on the current page. The (slower) btreePrevious()
5554** helper routine is called when it is necessary to move to a different page
5555** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005556**
drh89997982017-07-11 18:11:33 +00005557** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5558** the cursor corresponds to an SQL index and this routine could have been
5559** skipped if the SQL index had been a unique index. The F argument is a
5560** hint to the implement. The native SQLite btree implementation does not
5561** use this hint, but COMDB2 does.
drh2dcc9aa2002-12-04 13:40:25 +00005562*/
drh89997982017-07-11 18:11:33 +00005563static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
drh2dcc9aa2002-12-04 13:40:25 +00005564 int rc;
drh8178a752003-01-05 21:41:40 +00005565 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005566
dan7a2347e2016-01-07 16:43:54 +00005567 assert( cursorOwnsBtShared(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005568 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005569 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5570 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005571 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005572 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005573 if( rc!=SQLITE_OK ){
5574 return rc;
drhf66f26a2013-08-19 20:04:10 +00005575 }
5576 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00005577 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00005578 }
drh9b47ee32013-08-20 03:13:51 +00005579 if( pCur->skipNext ){
5580 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5581 pCur->eState = CURSOR_VALID;
5582 if( pCur->skipNext<0 ){
5583 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005584 return SQLITE_OK;
5585 }
drhf66f26a2013-08-19 20:04:10 +00005586 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005587 }
danielk1977da184232006-01-05 11:34:32 +00005588 }
danielk1977da184232006-01-05 11:34:32 +00005589
danielk197771d5d2c2008-09-29 11:49:47 +00005590 pPage = pCur->apPage[pCur->iPage];
5591 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005592 if( !pPage->leaf ){
drh75e96b32017-04-01 00:20:06 +00005593 int idx = pCur->ix;
danielk197771d5d2c2008-09-29 11:49:47 +00005594 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005595 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005596 rc = moveToRightmost(pCur);
5597 }else{
drh75e96b32017-04-01 00:20:06 +00005598 while( pCur->ix==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00005599 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005600 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00005601 return SQLITE_DONE;
drh2dcc9aa2002-12-04 13:40:25 +00005602 }
danielk197730548662009-07-09 05:07:37 +00005603 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005604 }
drhee6438d2014-09-01 13:29:32 +00005605 assert( pCur->info.nSize==0 );
drhd95ef5c2016-11-11 18:19:05 +00005606 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005607
drh75e96b32017-04-01 00:20:06 +00005608 pCur->ix--;
danielk197771d5d2c2008-09-29 11:49:47 +00005609 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00005610 if( pPage->intKey && !pPage->leaf ){
drh89997982017-07-11 18:11:33 +00005611 rc = sqlite3BtreePrevious(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00005612 }else{
5613 rc = SQLITE_OK;
5614 }
drh2dcc9aa2002-12-04 13:40:25 +00005615 }
drh2dcc9aa2002-12-04 13:40:25 +00005616 return rc;
5617}
drh2ab792e2017-05-30 18:34:07 +00005618int sqlite3BtreePrevious(BtCursor *pCur, int flags){
dan7a2347e2016-01-07 16:43:54 +00005619 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00005620 assert( flags==0 || flags==1 );
drhee6438d2014-09-01 13:29:32 +00005621 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drh89997982017-07-11 18:11:33 +00005622 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
drhee6438d2014-09-01 13:29:32 +00005623 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5624 pCur->info.nSize = 0;
5625 if( pCur->eState!=CURSOR_VALID
drh75e96b32017-04-01 00:20:06 +00005626 || pCur->ix==0
drhee6438d2014-09-01 13:29:32 +00005627 || pCur->apPage[pCur->iPage]->leaf==0
5628 ){
drh89997982017-07-11 18:11:33 +00005629 return btreePrevious(pCur);
drhee6438d2014-09-01 13:29:32 +00005630 }
drh75e96b32017-04-01 00:20:06 +00005631 pCur->ix--;
drhee6438d2014-09-01 13:29:32 +00005632 return SQLITE_OK;
5633}
drh2dcc9aa2002-12-04 13:40:25 +00005634
5635/*
drh3b7511c2001-05-26 13:15:44 +00005636** Allocate a new page from the database file.
5637**
danielk19773b8a05f2007-03-19 17:44:26 +00005638** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005639** has already been called on the new page.) The new page has also
5640** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005641** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005642**
5643** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00005644** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00005645**
drh82e647d2013-03-02 03:25:55 +00005646** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005647** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005648** attempt to keep related pages close to each other in the database file,
5649** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005650**
drh82e647d2013-03-02 03:25:55 +00005651** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5652** anywhere on the free-list, then it is guaranteed to be returned. If
5653** eMode is BTALLOC_LT then the page returned will be less than or equal
5654** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5655** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005656*/
drh4f0c5872007-03-26 22:05:01 +00005657static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005658 BtShared *pBt, /* The btree */
5659 MemPage **ppPage, /* Store pointer to the allocated page here */
5660 Pgno *pPgno, /* Store the page number here */
5661 Pgno nearby, /* Search for a page near this one */
5662 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005663){
drh3aac2dd2004-04-26 14:10:20 +00005664 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005665 int rc;
drh35cd6432009-06-05 14:17:21 +00005666 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005667 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005668 MemPage *pTrunk = 0;
5669 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005670 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005671
drh1fee73e2007-08-29 04:00:57 +00005672 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005673 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005674 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005675 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005676 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5677 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005678 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005679 testcase( n==mxPage-1 );
5680 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005681 return SQLITE_CORRUPT_BKPT;
5682 }
drh3aac2dd2004-04-26 14:10:20 +00005683 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005684 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005685 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005686 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00005687 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005688
drh82e647d2013-03-02 03:25:55 +00005689 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005690 ** shows that the page 'nearby' is somewhere on the free-list, then
5691 ** the entire-list will be searched for that page.
5692 */
5693#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005694 if( eMode==BTALLOC_EXACT ){
5695 if( nearby<=mxPage ){
5696 u8 eType;
5697 assert( nearby>0 );
5698 assert( pBt->autoVacuum );
5699 rc = ptrmapGet(pBt, nearby, &eType, 0);
5700 if( rc ) return rc;
5701 if( eType==PTRMAP_FREEPAGE ){
5702 searchList = 1;
5703 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005704 }
dan51f0b6d2013-02-22 20:16:34 +00005705 }else if( eMode==BTALLOC_LE ){
5706 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005707 }
5708#endif
5709
5710 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5711 ** first free-list trunk page. iPrevTrunk is initially 1.
5712 */
danielk19773b8a05f2007-03-19 17:44:26 +00005713 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005714 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005715 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005716
5717 /* The code within this loop is run only once if the 'searchList' variable
5718 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005719 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5720 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005721 */
5722 do {
5723 pPrevTrunk = pTrunk;
5724 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005725 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5726 ** is the page number of the next freelist trunk page in the list or
5727 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005728 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005729 }else{
drh113762a2014-11-19 16:36:25 +00005730 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5731 ** stores the page number of the first page of the freelist, or zero if
5732 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005733 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005734 }
drhdf35a082009-07-09 02:24:35 +00005735 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00005736 if( iTrunk>mxPage || nSearch++ > n ){
drhc62aab52017-06-11 18:26:15 +00005737 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
drh1662b5a2009-06-04 19:06:09 +00005738 }else{
drh7e8c6f12015-05-28 03:28:27 +00005739 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005740 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005741 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005742 pTrunk = 0;
5743 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005744 }
drhb07028f2011-10-14 21:49:18 +00005745 assert( pTrunk!=0 );
5746 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005747 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5748 ** is the number of leaf page pointers to follow. */
5749 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005750 if( k==0 && !searchList ){
5751 /* The trunk has no leaves and the list is not being searched.
5752 ** So extract the trunk page itself and use it as the newly
5753 ** allocated page */
5754 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005755 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005756 if( rc ){
5757 goto end_allocate_page;
5758 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005759 *pPgno = iTrunk;
5760 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5761 *ppPage = pTrunk;
5762 pTrunk = 0;
5763 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005764 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005765 /* Value of k is out of range. Database corruption */
drhcc97ca42017-06-07 22:32:59 +00005766 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drhd3627af2006-12-18 18:34:51 +00005767 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005768#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005769 }else if( searchList
5770 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5771 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005772 /* The list is being searched and this trunk page is the page
5773 ** to allocate, regardless of whether it has leaves.
5774 */
dan51f0b6d2013-02-22 20:16:34 +00005775 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005776 *ppPage = pTrunk;
5777 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005778 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005779 if( rc ){
5780 goto end_allocate_page;
5781 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005782 if( k==0 ){
5783 if( !pPrevTrunk ){
5784 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5785 }else{
danf48c3552010-08-23 15:41:24 +00005786 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5787 if( rc!=SQLITE_OK ){
5788 goto end_allocate_page;
5789 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005790 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5791 }
5792 }else{
5793 /* The trunk page is required by the caller but it contains
5794 ** pointers to free-list leaves. The first leaf becomes a trunk
5795 ** page in this case.
5796 */
5797 MemPage *pNewTrunk;
5798 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005799 if( iNewTrunk>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00005800 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00005801 goto end_allocate_page;
5802 }
drhdf35a082009-07-09 02:24:35 +00005803 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00005804 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005805 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005806 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005807 }
danielk19773b8a05f2007-03-19 17:44:26 +00005808 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005809 if( rc!=SQLITE_OK ){
5810 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005811 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005812 }
5813 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5814 put4byte(&pNewTrunk->aData[4], k-1);
5815 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005816 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005817 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005818 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005819 put4byte(&pPage1->aData[32], iNewTrunk);
5820 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005821 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005822 if( rc ){
5823 goto end_allocate_page;
5824 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005825 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5826 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005827 }
5828 pTrunk = 0;
5829 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5830#endif
danielk1977e5765212009-06-17 11:13:28 +00005831 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005832 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005833 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005834 Pgno iPage;
5835 unsigned char *aData = pTrunk->aData;
5836 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005837 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005838 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005839 if( eMode==BTALLOC_LE ){
5840 for(i=0; i<k; i++){
5841 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005842 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005843 closest = i;
5844 break;
5845 }
5846 }
5847 }else{
5848 int dist;
5849 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5850 for(i=1; i<k; i++){
5851 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5852 if( d2<dist ){
5853 closest = i;
5854 dist = d2;
5855 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005856 }
5857 }
5858 }else{
5859 closest = 0;
5860 }
5861
5862 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005863 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005864 if( iPage>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00005865 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00005866 goto end_allocate_page;
5867 }
drhdf35a082009-07-09 02:24:35 +00005868 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005869 if( !searchList
5870 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5871 ){
danielk1977bea2a942009-01-20 17:06:27 +00005872 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005873 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005874 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5875 ": %d more free pages\n",
5876 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005877 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5878 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005879 if( closest<k-1 ){
5880 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5881 }
5882 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00005883 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00005884 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005885 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005886 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005887 if( rc!=SQLITE_OK ){
5888 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00005889 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005890 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005891 }
5892 searchList = 0;
5893 }
drhee696e22004-08-30 16:52:17 +00005894 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005895 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005896 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005897 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005898 }else{
danbc1a3c62013-02-23 16:40:46 +00005899 /* There are no pages on the freelist, so append a new page to the
5900 ** database image.
5901 **
5902 ** Normally, new pages allocated by this block can be requested from the
5903 ** pager layer with the 'no-content' flag set. This prevents the pager
5904 ** from trying to read the pages content from disk. However, if the
5905 ** current transaction has already run one or more incremental-vacuum
5906 ** steps, then the page we are about to allocate may contain content
5907 ** that is required in the event of a rollback. In this case, do
5908 ** not set the no-content flag. This causes the pager to load and journal
5909 ** the current page content before overwriting it.
5910 **
5911 ** Note that the pager will not actually attempt to load or journal
5912 ** content for any page that really does lie past the end of the database
5913 ** file on disk. So the effects of disabling the no-content optimization
5914 ** here are confined to those pages that lie between the end of the
5915 ** database image and the end of the database file.
5916 */
drh3f387402014-09-24 01:23:00 +00005917 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00005918
drhdd3cd972010-03-27 17:12:36 +00005919 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5920 if( rc ) return rc;
5921 pBt->nPage++;
5922 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005923
danielk1977afcdd022004-10-31 16:25:42 +00005924#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005925 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005926 /* If *pPgno refers to a pointer-map page, allocate two new pages
5927 ** at the end of the file instead of one. The first allocated page
5928 ** becomes a new pointer-map page, the second is used by the caller.
5929 */
danielk1977ac861692009-03-28 10:54:22 +00005930 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005931 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5932 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005933 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005934 if( rc==SQLITE_OK ){
5935 rc = sqlite3PagerWrite(pPg->pDbPage);
5936 releasePage(pPg);
5937 }
5938 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005939 pBt->nPage++;
5940 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005941 }
5942#endif
drhdd3cd972010-03-27 17:12:36 +00005943 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5944 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005945
danielk1977599fcba2004-11-08 07:13:13 +00005946 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00005947 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00005948 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005949 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005950 if( rc!=SQLITE_OK ){
5951 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00005952 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00005953 }
drh3a4c1412004-05-09 20:40:11 +00005954 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005955 }
danielk1977599fcba2004-11-08 07:13:13 +00005956
5957 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005958
5959end_allocate_page:
5960 releasePage(pTrunk);
5961 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00005962 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
5963 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00005964 return rc;
5965}
5966
5967/*
danielk1977bea2a942009-01-20 17:06:27 +00005968** This function is used to add page iPage to the database file free-list.
5969** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005970**
danielk1977bea2a942009-01-20 17:06:27 +00005971** The value passed as the second argument to this function is optional.
5972** If the caller happens to have a pointer to the MemPage object
5973** corresponding to page iPage handy, it may pass it as the second value.
5974** Otherwise, it may pass NULL.
5975**
5976** If a pointer to a MemPage object is passed as the second argument,
5977** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005978*/
danielk1977bea2a942009-01-20 17:06:27 +00005979static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5980 MemPage *pTrunk = 0; /* Free-list trunk page */
5981 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5982 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5983 MemPage *pPage; /* Page being freed. May be NULL. */
5984 int rc; /* Return Code */
5985 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005986
danielk1977bea2a942009-01-20 17:06:27 +00005987 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00005988 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00005989 assert( !pMemPage || pMemPage->pgno==iPage );
5990
danfb0246b2015-05-26 12:18:17 +00005991 if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +00005992 if( pMemPage ){
5993 pPage = pMemPage;
5994 sqlite3PagerRef(pPage->pDbPage);
5995 }else{
5996 pPage = btreePageLookup(pBt, iPage);
5997 }
drh3aac2dd2004-04-26 14:10:20 +00005998
drha34b6762004-05-07 13:30:42 +00005999 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00006000 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00006001 if( rc ) goto freepage_out;
6002 nFree = get4byte(&pPage1->aData[36]);
6003 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00006004
drhc9166342012-01-05 23:32:06 +00006005 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00006006 /* If the secure_delete option is enabled, then
6007 ** always fully overwrite deleted information with zeros.
6008 */
drhb00fc3b2013-08-21 23:42:32 +00006009 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00006010 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00006011 ){
6012 goto freepage_out;
6013 }
6014 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00006015 }
drhfcce93f2006-02-22 03:08:32 +00006016
danielk1977687566d2004-11-02 12:56:41 +00006017 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00006018 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00006019 */
danielk197785d90ca2008-07-19 14:25:15 +00006020 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006021 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00006022 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00006023 }
danielk1977687566d2004-11-02 12:56:41 +00006024
danielk1977bea2a942009-01-20 17:06:27 +00006025 /* Now manipulate the actual database free-list structure. There are two
6026 ** possibilities. If the free-list is currently empty, or if the first
6027 ** trunk page in the free-list is full, then this page will become a
6028 ** new free-list trunk page. Otherwise, it will become a leaf of the
6029 ** first trunk page in the current free-list. This block tests if it
6030 ** is possible to add the page as a new free-list leaf.
6031 */
6032 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00006033 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00006034
6035 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00006036 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00006037 if( rc!=SQLITE_OK ){
6038 goto freepage_out;
6039 }
6040
6041 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00006042 assert( pBt->usableSize>32 );
6043 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00006044 rc = SQLITE_CORRUPT_BKPT;
6045 goto freepage_out;
6046 }
drheeb844a2009-08-08 18:01:07 +00006047 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00006048 /* In this case there is room on the trunk page to insert the page
6049 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00006050 **
6051 ** Note that the trunk page is not really full until it contains
6052 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6053 ** coded. But due to a coding error in versions of SQLite prior to
6054 ** 3.6.0, databases with freelist trunk pages holding more than
6055 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6056 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00006057 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00006058 ** for now. At some point in the future (once everyone has upgraded
6059 ** to 3.6.0 or later) we should consider fixing the conditional above
6060 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00006061 **
6062 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6063 ** avoid using the last six entries in the freelist trunk page array in
6064 ** order that database files created by newer versions of SQLite can be
6065 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00006066 */
danielk19773b8a05f2007-03-19 17:44:26 +00006067 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00006068 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006069 put4byte(&pTrunk->aData[4], nLeaf+1);
6070 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00006071 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00006072 sqlite3PagerDontWrite(pPage->pDbPage);
6073 }
danielk1977bea2a942009-01-20 17:06:27 +00006074 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00006075 }
drh3a4c1412004-05-09 20:40:11 +00006076 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00006077 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00006078 }
drh3b7511c2001-05-26 13:15:44 +00006079 }
danielk1977bea2a942009-01-20 17:06:27 +00006080
6081 /* If control flows to this point, then it was not possible to add the
6082 ** the page being freed as a leaf page of the first trunk in the free-list.
6083 ** Possibly because the free-list is empty, or possibly because the
6084 ** first trunk in the free-list is full. Either way, the page being freed
6085 ** will become the new first trunk page in the free-list.
6086 */
drhb00fc3b2013-08-21 23:42:32 +00006087 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00006088 goto freepage_out;
6089 }
6090 rc = sqlite3PagerWrite(pPage->pDbPage);
6091 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006092 goto freepage_out;
6093 }
6094 put4byte(pPage->aData, iTrunk);
6095 put4byte(&pPage->aData[4], 0);
6096 put4byte(&pPage1->aData[32], iPage);
6097 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6098
6099freepage_out:
6100 if( pPage ){
6101 pPage->isInit = 0;
6102 }
6103 releasePage(pPage);
6104 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00006105 return rc;
6106}
drhc314dc72009-07-21 11:52:34 +00006107static void freePage(MemPage *pPage, int *pRC){
6108 if( (*pRC)==SQLITE_OK ){
6109 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6110 }
danielk1977bea2a942009-01-20 17:06:27 +00006111}
drh3b7511c2001-05-26 13:15:44 +00006112
6113/*
drh9bfdc252014-09-24 02:05:41 +00006114** Free any overflow pages associated with the given Cell. Write the
6115** local Cell size (the number of bytes on the original page, omitting
6116** overflow) into *pnSize.
drh3b7511c2001-05-26 13:15:44 +00006117*/
drh9bfdc252014-09-24 02:05:41 +00006118static int clearCell(
6119 MemPage *pPage, /* The page that contains the Cell */
6120 unsigned char *pCell, /* First byte of the Cell */
drh80159da2016-12-09 17:32:51 +00006121 CellInfo *pInfo /* Size information about the cell */
drh9bfdc252014-09-24 02:05:41 +00006122){
danielk1977aef0bf62005-12-30 16:28:01 +00006123 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00006124 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00006125 int rc;
drh94440812007-03-06 11:42:19 +00006126 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00006127 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00006128
drh1fee73e2007-08-29 04:00:57 +00006129 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh80159da2016-12-09 17:32:51 +00006130 pPage->xParseCell(pPage, pCell, pInfo);
6131 if( pInfo->nLocal==pInfo->nPayload ){
drha34b6762004-05-07 13:30:42 +00006132 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00006133 }
drh80159da2016-12-09 17:32:51 +00006134 if( pCell+pInfo->nSize-1 > pPage->aData+pPage->maskPage ){
drhcc97ca42017-06-07 22:32:59 +00006135 /* Cell extends past end of page */
6136 return SQLITE_CORRUPT_PGNO(pPage->pgno);
drhe42a9b42011-08-31 13:27:19 +00006137 }
drh80159da2016-12-09 17:32:51 +00006138 ovflPgno = get4byte(pCell + pInfo->nSize - 4);
shane63207ab2009-02-04 01:49:30 +00006139 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00006140 ovflPageSize = pBt->usableSize - 4;
drh80159da2016-12-09 17:32:51 +00006141 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00006142 assert( nOvfl>0 ||
drh80159da2016-12-09 17:32:51 +00006143 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
dan0f8076d2015-05-25 18:47:26 +00006144 );
drh72365832007-03-06 15:53:44 +00006145 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00006146 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00006147 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00006148 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00006149 /* 0 is not a legal page number and page 1 cannot be an
6150 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6151 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00006152 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006153 }
danielk1977bea2a942009-01-20 17:06:27 +00006154 if( nOvfl ){
6155 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6156 if( rc ) return rc;
6157 }
dan887d4b22010-02-25 12:09:16 +00006158
shaneh1da207e2010-03-09 14:41:12 +00006159 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00006160 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6161 ){
6162 /* There is no reason any cursor should have an outstanding reference
6163 ** to an overflow page belonging to a cell that is being deleted/updated.
6164 ** So if there exists more than one reference to this page, then it
6165 ** must not really be an overflow page and the database must be corrupt.
6166 ** It is helpful to detect this before calling freePage2(), as
6167 ** freePage2() may zero the page contents if secure-delete mode is
6168 ** enabled. If this 'overflow' page happens to be a page that the
6169 ** caller is iterating through or using in some other way, this
6170 ** can be problematic.
6171 */
6172 rc = SQLITE_CORRUPT_BKPT;
6173 }else{
6174 rc = freePage2(pBt, pOvfl, ovflPgno);
6175 }
6176
danielk1977bea2a942009-01-20 17:06:27 +00006177 if( pOvfl ){
6178 sqlite3PagerUnref(pOvfl->pDbPage);
6179 }
drh3b7511c2001-05-26 13:15:44 +00006180 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00006181 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00006182 }
drh5e2f8b92001-05-28 00:41:15 +00006183 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00006184}
6185
6186/*
drh91025292004-05-03 19:49:32 +00006187** Create the byte sequence used to represent a cell on page pPage
6188** and write that byte sequence into pCell[]. Overflow pages are
6189** allocated and filled in as necessary. The calling procedure
6190** is responsible for making sure sufficient space has been allocated
6191** for pCell[].
6192**
6193** Note that pCell does not necessary need to point to the pPage->aData
6194** area. pCell might point to some temporary storage. The cell will
6195** be constructed in this temporary area then copied into pPage->aData
6196** later.
drh3b7511c2001-05-26 13:15:44 +00006197*/
6198static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006199 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006200 unsigned char *pCell, /* Complete text of the cell */
drh8eeb4462016-05-21 20:03:42 +00006201 const BtreePayload *pX, /* Payload with which to construct the cell */
drh4b70f112004-05-02 21:12:19 +00006202 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006203){
drh3b7511c2001-05-26 13:15:44 +00006204 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006205 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00006206 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00006207 int spaceLeft;
6208 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00006209 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00006210 unsigned char *pPrior;
6211 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00006212 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00006213 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00006214 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006215
drh1fee73e2007-08-29 04:00:57 +00006216 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006217
drhc5053fb2008-11-27 02:22:10 +00006218 /* pPage is not necessarily writeable since pCell might be auxiliary
6219 ** buffer space that is separate from the pPage buffer area */
6220 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
6221 || sqlite3PagerIswriteable(pPage->pDbPage) );
6222
drh91025292004-05-03 19:49:32 +00006223 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006224 nHeader = pPage->childPtrSize;
drhdfc2daa2016-05-21 23:25:29 +00006225 if( pPage->intKey ){
6226 nPayload = pX->nData + pX->nZero;
6227 pSrc = pX->pData;
6228 nSrc = pX->nData;
6229 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
drh6200c882014-09-23 22:36:25 +00006230 nHeader += putVarint32(&pCell[nHeader], nPayload);
drhdfc2daa2016-05-21 23:25:29 +00006231 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
drh6f11bef2004-05-13 01:12:56 +00006232 }else{
drh8eeb4462016-05-21 20:03:42 +00006233 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6234 nSrc = nPayload = (int)pX->nKey;
6235 pSrc = pX->pKey;
drhdfc2daa2016-05-21 23:25:29 +00006236 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh3aac2dd2004-04-26 14:10:20 +00006237 }
drhdfc2daa2016-05-21 23:25:29 +00006238
6239 /* Fill in the payload */
drh6200c882014-09-23 22:36:25 +00006240 if( nPayload<=pPage->maxLocal ){
6241 n = nHeader + nPayload;
6242 testcase( n==3 );
6243 testcase( n==4 );
6244 if( n<4 ) n = 4;
6245 *pnSize = n;
6246 spaceLeft = nPayload;
6247 pPrior = pCell;
6248 }else{
6249 int mn = pPage->minLocal;
6250 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6251 testcase( n==pPage->maxLocal );
6252 testcase( n==pPage->maxLocal+1 );
6253 if( n > pPage->maxLocal ) n = mn;
6254 spaceLeft = n;
6255 *pnSize = n + nHeader + 4;
6256 pPrior = &pCell[nHeader+n];
6257 }
drh3aac2dd2004-04-26 14:10:20 +00006258 pPayload = &pCell[nHeader];
drh3b7511c2001-05-26 13:15:44 +00006259
drh6200c882014-09-23 22:36:25 +00006260 /* At this point variables should be set as follows:
6261 **
6262 ** nPayload Total payload size in bytes
6263 ** pPayload Begin writing payload here
6264 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6265 ** that means content must spill into overflow pages.
6266 ** *pnSize Size of the local cell (not counting overflow pages)
6267 ** pPrior Where to write the pgno of the first overflow page
6268 **
6269 ** Use a call to btreeParseCellPtr() to verify that the values above
6270 ** were computed correctly.
6271 */
drhd879e3e2017-02-13 13:35:55 +00006272#ifdef SQLITE_DEBUG
drh6200c882014-09-23 22:36:25 +00006273 {
6274 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006275 pPage->xParseCell(pPage, pCell, &info);
drhcc5f8a42016-02-06 22:32:06 +00006276 assert( nHeader==(int)(info.pPayload - pCell) );
drh8eeb4462016-05-21 20:03:42 +00006277 assert( info.nKey==pX->nKey );
drh6200c882014-09-23 22:36:25 +00006278 assert( *pnSize == info.nSize );
6279 assert( spaceLeft == info.nLocal );
drh6200c882014-09-23 22:36:25 +00006280 }
6281#endif
6282
6283 /* Write the payload into the local Cell and any extra into overflow pages */
drh3b7511c2001-05-26 13:15:44 +00006284 while( nPayload>0 ){
6285 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00006286#ifndef SQLITE_OMIT_AUTOVACUUM
6287 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006288 if( pBt->autoVacuum ){
6289 do{
6290 pgnoOvfl++;
6291 } while(
6292 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6293 );
danielk1977b39f70b2007-05-17 18:28:11 +00006294 }
danielk1977afcdd022004-10-31 16:25:42 +00006295#endif
drhf49661a2008-12-10 16:45:50 +00006296 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006297#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006298 /* If the database supports auto-vacuum, and the second or subsequent
6299 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006300 ** for that page now.
6301 **
6302 ** If this is the first overflow page, then write a partial entry
6303 ** to the pointer-map. If we write nothing to this pointer-map slot,
6304 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006305 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006306 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006307 */
danielk19774ef24492007-05-23 09:52:41 +00006308 if( pBt->autoVacuum && rc==SQLITE_OK ){
6309 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006310 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006311 if( rc ){
6312 releasePage(pOvfl);
6313 }
danielk1977afcdd022004-10-31 16:25:42 +00006314 }
6315#endif
drh3b7511c2001-05-26 13:15:44 +00006316 if( rc ){
drh9b171272004-05-08 02:03:22 +00006317 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006318 return rc;
6319 }
drhc5053fb2008-11-27 02:22:10 +00006320
6321 /* If pToRelease is not zero than pPrior points into the data area
6322 ** of pToRelease. Make sure pToRelease is still writeable. */
6323 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6324
6325 /* If pPrior is part of the data area of pPage, then make sure pPage
6326 ** is still writeable */
6327 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6328 || sqlite3PagerIswriteable(pPage->pDbPage) );
6329
drh3aac2dd2004-04-26 14:10:20 +00006330 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006331 releasePage(pToRelease);
6332 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006333 pPrior = pOvfl->aData;
6334 put4byte(pPrior, 0);
6335 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006336 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006337 }
6338 n = nPayload;
6339 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00006340
6341 /* If pToRelease is not zero than pPayload points into the data area
6342 ** of pToRelease. Make sure pToRelease is still writeable. */
6343 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6344
6345 /* If pPayload is part of the data area of pPage, then make sure pPage
6346 ** is still writeable */
6347 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6348 || sqlite3PagerIswriteable(pPage->pDbPage) );
6349
drhb026e052007-05-02 01:34:31 +00006350 if( nSrc>0 ){
6351 if( n>nSrc ) n = nSrc;
6352 assert( pSrc );
6353 memcpy(pPayload, pSrc, n);
6354 }else{
6355 memset(pPayload, 0, n);
6356 }
drh3b7511c2001-05-26 13:15:44 +00006357 nPayload -= n;
drhde647132004-05-07 17:57:49 +00006358 pPayload += n;
drh9b171272004-05-08 02:03:22 +00006359 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00006360 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00006361 spaceLeft -= n;
drhdd793422001-06-28 01:54:48 +00006362 }
drh9b171272004-05-08 02:03:22 +00006363 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006364 return SQLITE_OK;
6365}
6366
drh14acc042001-06-10 19:56:58 +00006367/*
6368** Remove the i-th cell from pPage. This routine effects pPage only.
6369** The cell content is not freed or deallocated. It is assumed that
6370** the cell content has been copied someplace else. This routine just
6371** removes the reference to the cell from pPage.
6372**
6373** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006374*/
drh98add2e2009-07-20 17:11:49 +00006375static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006376 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006377 u8 *data; /* pPage->aData */
6378 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006379 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006380 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006381
drh98add2e2009-07-20 17:11:49 +00006382 if( *pRC ) return;
drh8c42ca92001-06-22 19:15:00 +00006383 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006384 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006385 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006386 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00006387 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006388 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006389 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006390 hdr = pPage->hdrOffset;
6391 testcase( pc==get2byte(&data[hdr+5]) );
6392 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00006393 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006394 *pRC = SQLITE_CORRUPT_BKPT;
6395 return;
shane0af3f892008-11-12 04:55:34 +00006396 }
shanedcc50b72008-11-13 18:29:50 +00006397 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006398 if( rc ){
6399 *pRC = rc;
6400 return;
shanedcc50b72008-11-13 18:29:50 +00006401 }
drh14acc042001-06-10 19:56:58 +00006402 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006403 if( pPage->nCell==0 ){
6404 memset(&data[hdr+1], 0, 4);
6405 data[hdr+7] = 0;
6406 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6407 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6408 - pPage->childPtrSize - 8;
6409 }else{
6410 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6411 put2byte(&data[hdr+3], pPage->nCell);
6412 pPage->nFree += 2;
6413 }
drh14acc042001-06-10 19:56:58 +00006414}
6415
6416/*
6417** Insert a new cell on pPage at cell index "i". pCell points to the
6418** content of the cell.
6419**
6420** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006421** will not fit, then make a copy of the cell content into pTemp if
6422** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006423** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006424** in pTemp or the original pCell) and also record its index.
6425** Allocating a new entry in pPage->aCell[] implies that
6426** pPage->nOverflow is incremented.
drhcb89f4a2016-05-21 11:23:26 +00006427**
6428** *pRC must be SQLITE_OK when this routine is called.
drh14acc042001-06-10 19:56:58 +00006429*/
drh98add2e2009-07-20 17:11:49 +00006430static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006431 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006432 int i, /* New cell becomes the i-th cell of the page */
6433 u8 *pCell, /* Content of the new cell */
6434 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006435 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006436 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6437 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006438){
drh383d30f2010-02-26 13:07:37 +00006439 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006440 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006441 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006442 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006443
drhcb89f4a2016-05-21 11:23:26 +00006444 assert( *pRC==SQLITE_OK );
drh43605152004-05-29 21:46:49 +00006445 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006446 assert( MX_CELL(pPage->pBt)<=10921 );
6447 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006448 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6449 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006450 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00006451 /* The cell should normally be sized correctly. However, when moving a
6452 ** malformed cell from a leaf page to an interior page, if the cell size
6453 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6454 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6455 ** the term after the || in the following assert(). */
drh25ada072015-06-19 15:07:14 +00006456 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00006457 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006458 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006459 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006460 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006461 }
danielk19774dbaa892009-06-16 16:50:22 +00006462 if( iChild ){
6463 put4byte(pCell, iChild);
6464 }
drh43605152004-05-29 21:46:49 +00006465 j = pPage->nOverflow++;
drha2ee5892016-12-09 16:02:00 +00006466 /* Comparison against ArraySize-1 since we hold back one extra slot
6467 ** as a contingency. In other words, never need more than 3 overflow
6468 ** slots but 4 are allocated, just to be safe. */
6469 assert( j < ArraySize(pPage->apOvfl)-1 );
drh2cbd78b2012-02-02 19:37:18 +00006470 pPage->apOvfl[j] = pCell;
6471 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006472
6473 /* When multiple overflows occur, they are always sequential and in
6474 ** sorted order. This invariants arise because multiple overflows can
6475 ** only occur when inserting divider cells into the parent page during
6476 ** balancing, and the dividers are adjacent and sorted.
6477 */
6478 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6479 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006480 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006481 int rc = sqlite3PagerWrite(pPage->pDbPage);
6482 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006483 *pRC = rc;
6484 return;
danielk19776e465eb2007-08-21 13:11:00 +00006485 }
6486 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006487 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00006488 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00006489 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006490 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006491 /* The allocateSpace() routine guarantees the following properties
6492 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00006493 assert( idx >= 0 );
6494 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00006495 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00006496 pPage->nFree -= (u16)(2 + sz);
drhd6176c42014-10-11 17:22:55 +00006497 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006498 if( iChild ){
6499 put4byte(&data[idx], iChild);
6500 }
drh2c8fb922015-06-25 19:53:48 +00006501 pIns = pPage->aCellIdx + i*2;
6502 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6503 put2byte(pIns, idx);
6504 pPage->nCell++;
6505 /* increment the cell count */
6506 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6507 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
danielk1977a19df672004-11-03 11:37:07 +00006508#ifndef SQLITE_OMIT_AUTOVACUUM
6509 if( pPage->pBt->autoVacuum ){
6510 /* The cell may contain a pointer to an overflow page. If so, write
6511 ** the entry for the overflow page into the pointer map.
6512 */
drh98add2e2009-07-20 17:11:49 +00006513 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006514 }
6515#endif
drh14acc042001-06-10 19:56:58 +00006516 }
6517}
6518
6519/*
drh1ffd2472015-06-23 02:37:30 +00006520** A CellArray object contains a cache of pointers and sizes for a
drhc0d269e2016-08-03 14:51:16 +00006521** consecutive sequence of cells that might be held on multiple pages.
drhfa1a98a2004-05-14 19:08:17 +00006522*/
drh1ffd2472015-06-23 02:37:30 +00006523typedef struct CellArray CellArray;
6524struct CellArray {
6525 int nCell; /* Number of cells in apCell[] */
6526 MemPage *pRef; /* Reference page */
6527 u8 **apCell; /* All cells begin balanced */
6528 u16 *szCell; /* Local size of all cells in apCell[] */
6529};
drhfa1a98a2004-05-14 19:08:17 +00006530
drh1ffd2472015-06-23 02:37:30 +00006531/*
6532** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6533** computed.
6534*/
6535static void populateCellCache(CellArray *p, int idx, int N){
6536 assert( idx>=0 && idx+N<=p->nCell );
6537 while( N>0 ){
6538 assert( p->apCell[idx]!=0 );
6539 if( p->szCell[idx]==0 ){
6540 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6541 }else{
6542 assert( CORRUPT_DB ||
6543 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6544 }
6545 idx++;
6546 N--;
drhfa1a98a2004-05-14 19:08:17 +00006547 }
drh1ffd2472015-06-23 02:37:30 +00006548}
6549
6550/*
6551** Return the size of the Nth element of the cell array
6552*/
6553static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6554 assert( N>=0 && N<p->nCell );
6555 assert( p->szCell[N]==0 );
6556 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6557 return p->szCell[N];
6558}
6559static u16 cachedCellSize(CellArray *p, int N){
6560 assert( N>=0 && N<p->nCell );
6561 if( p->szCell[N] ) return p->szCell[N];
6562 return computeCellSize(p, N);
6563}
6564
6565/*
dan8e9ba0c2014-10-14 17:27:04 +00006566** Array apCell[] contains pointers to nCell b-tree page cells. The
6567** szCell[] array contains the size in bytes of each cell. This function
6568** replaces the current contents of page pPg with the contents of the cell
6569** array.
6570**
6571** Some of the cells in apCell[] may currently be stored in pPg. This
6572** function works around problems caused by this by making a copy of any
6573** such cells before overwriting the page data.
6574**
6575** The MemPage.nFree field is invalidated by this function. It is the
6576** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006577*/
drh658873b2015-06-22 20:02:04 +00006578static int rebuildPage(
dan33ea4862014-10-09 19:35:37 +00006579 MemPage *pPg, /* Edit this page */
dan33ea4862014-10-09 19:35:37 +00006580 int nCell, /* Final number of cells on page */
dan09c68402014-10-11 20:00:24 +00006581 u8 **apCell, /* Array of cells */
6582 u16 *szCell /* Array of cell sizes */
dan33ea4862014-10-09 19:35:37 +00006583){
6584 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6585 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6586 const int usableSize = pPg->pBt->usableSize;
6587 u8 * const pEnd = &aData[usableSize];
6588 int i;
6589 u8 *pCellptr = pPg->aCellIdx;
6590 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6591 u8 *pData;
6592
6593 i = get2byte(&aData[hdr+5]);
6594 memcpy(&pTmp[i], &aData[i], usableSize - i);
dan33ea4862014-10-09 19:35:37 +00006595
dan8e9ba0c2014-10-14 17:27:04 +00006596 pData = pEnd;
dan33ea4862014-10-09 19:35:37 +00006597 for(i=0; i<nCell; i++){
6598 u8 *pCell = apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00006599 if( SQLITE_WITHIN(pCell,aData,pEnd) ){
dan33ea4862014-10-09 19:35:37 +00006600 pCell = &pTmp[pCell - aData];
6601 }
6602 pData -= szCell[i];
dan33ea4862014-10-09 19:35:37 +00006603 put2byte(pCellptr, (pData - aData));
6604 pCellptr += 2;
drh658873b2015-06-22 20:02:04 +00006605 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6606 memcpy(pData, pCell, szCell[i]);
drh25ada072015-06-19 15:07:14 +00006607 assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
drhea82b372015-06-23 21:35:28 +00006608 testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
dan33ea4862014-10-09 19:35:37 +00006609 }
6610
dand7b545b2014-10-13 18:03:27 +00006611 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006612 pPg->nCell = nCell;
6613 pPg->nOverflow = 0;
6614
6615 put2byte(&aData[hdr+1], 0);
6616 put2byte(&aData[hdr+3], pPg->nCell);
6617 put2byte(&aData[hdr+5], pData - aData);
6618 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00006619 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00006620}
6621
dan8e9ba0c2014-10-14 17:27:04 +00006622/*
6623** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6624** contains the size in bytes of each such cell. This function attempts to
6625** add the cells stored in the array to page pPg. If it cannot (because
6626** the page needs to be defragmented before the cells will fit), non-zero
6627** is returned. Otherwise, if the cells are added successfully, zero is
6628** returned.
6629**
6630** Argument pCellptr points to the first entry in the cell-pointer array
6631** (part of page pPg) to populate. After cell apCell[0] is written to the
6632** page body, a 16-bit offset is written to pCellptr. And so on, for each
6633** cell in the array. It is the responsibility of the caller to ensure
6634** that it is safe to overwrite this part of the cell-pointer array.
6635**
6636** When this function is called, *ppData points to the start of the
6637** content area on page pPg. If the size of the content area is extended,
6638** *ppData is updated to point to the new start of the content area
6639** before returning.
6640**
6641** Finally, argument pBegin points to the byte immediately following the
6642** end of the space required by this page for the cell-pointer area (for
6643** all cells - not just those inserted by the current call). If the content
6644** area must be extended to before this point in order to accomodate all
6645** cells in apCell[], then the cells do not fit and non-zero is returned.
6646*/
dand7b545b2014-10-13 18:03:27 +00006647static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00006648 MemPage *pPg, /* Page to add cells to */
6649 u8 *pBegin, /* End of cell-pointer array */
6650 u8 **ppData, /* IN/OUT: Page content -area pointer */
6651 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00006652 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00006653 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00006654 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006655){
6656 int i;
6657 u8 *aData = pPg->aData;
6658 u8 *pData = *ppData;
drhf7838932015-06-23 15:36:34 +00006659 int iEnd = iFirst + nCell;
dan23eba452014-10-24 18:43:57 +00006660 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhf7838932015-06-23 15:36:34 +00006661 for(i=iFirst; i<iEnd; i++){
6662 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00006663 u8 *pSlot;
drhf7838932015-06-23 15:36:34 +00006664 sz = cachedCellSize(pCArray, i);
drhb7580e82015-06-25 18:36:13 +00006665 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
drhcca66982016-04-05 13:19:19 +00006666 if( (pData - pBegin)<sz ) return 1;
dand7b545b2014-10-13 18:03:27 +00006667 pData -= sz;
dand7b545b2014-10-13 18:03:27 +00006668 pSlot = pData;
6669 }
drh48310f82015-10-10 16:41:28 +00006670 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
6671 ** database. But they might for a corrupt database. Hence use memmove()
6672 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
6673 assert( (pSlot+sz)<=pCArray->apCell[i]
6674 || pSlot>=(pCArray->apCell[i]+sz)
6675 || CORRUPT_DB );
6676 memmove(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00006677 put2byte(pCellptr, (pSlot - aData));
6678 pCellptr += 2;
6679 }
6680 *ppData = pData;
6681 return 0;
6682}
6683
dan8e9ba0c2014-10-14 17:27:04 +00006684/*
6685** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6686** contains the size in bytes of each such cell. This function adds the
6687** space associated with each cell in the array that is currently stored
6688** within the body of pPg to the pPg free-list. The cell-pointers and other
6689** fields of the page are not updated.
6690**
6691** This function returns the total number of cells added to the free-list.
6692*/
dand7b545b2014-10-13 18:03:27 +00006693static int pageFreeArray(
6694 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00006695 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00006696 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00006697 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006698){
6699 u8 * const aData = pPg->aData;
6700 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00006701 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00006702 int nRet = 0;
6703 int i;
drhf7838932015-06-23 15:36:34 +00006704 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00006705 u8 *pFree = 0;
6706 int szFree = 0;
6707
drhf7838932015-06-23 15:36:34 +00006708 for(i=iFirst; i<iEnd; i++){
6709 u8 *pCell = pCArray->apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00006710 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
drhf7838932015-06-23 15:36:34 +00006711 int sz;
6712 /* No need to use cachedCellSize() here. The sizes of all cells that
6713 ** are to be freed have already been computing while deciding which
6714 ** cells need freeing */
6715 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00006716 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00006717 if( pFree ){
6718 assert( pFree>aData && (pFree - aData)<65536 );
6719 freeSpace(pPg, (u16)(pFree - aData), szFree);
6720 }
dand7b545b2014-10-13 18:03:27 +00006721 pFree = pCell;
6722 szFree = sz;
dan89ca0b32014-10-25 20:36:28 +00006723 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00006724 }else{
6725 pFree = pCell;
6726 szFree += sz;
6727 }
6728 nRet++;
6729 }
6730 }
drhfefa0942014-11-05 21:21:08 +00006731 if( pFree ){
6732 assert( pFree>aData && (pFree - aData)<65536 );
6733 freeSpace(pPg, (u16)(pFree - aData), szFree);
6734 }
dand7b545b2014-10-13 18:03:27 +00006735 return nRet;
6736}
6737
dand7b545b2014-10-13 18:03:27 +00006738/*
drh5ab63772014-11-27 03:46:04 +00006739** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6740** pages being balanced. The current page, pPg, has pPg->nCell cells starting
6741** with apCell[iOld]. After balancing, this page should hold nNew cells
6742** starting at apCell[iNew].
6743**
6744** This routine makes the necessary adjustments to pPg so that it contains
6745** the correct cells after being balanced.
6746**
dand7b545b2014-10-13 18:03:27 +00006747** The pPg->nFree field is invalid when this function returns. It is the
6748** responsibility of the caller to set it correctly.
6749*/
drh658873b2015-06-22 20:02:04 +00006750static int editPage(
dan09c68402014-10-11 20:00:24 +00006751 MemPage *pPg, /* Edit this page */
6752 int iOld, /* Index of first cell currently on page */
6753 int iNew, /* Index of new first cell on page */
6754 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00006755 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00006756){
dand7b545b2014-10-13 18:03:27 +00006757 u8 * const aData = pPg->aData;
6758 const int hdr = pPg->hdrOffset;
6759 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6760 int nCell = pPg->nCell; /* Cells stored on pPg */
6761 u8 *pData;
6762 u8 *pCellptr;
6763 int i;
6764 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6765 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00006766
6767#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00006768 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6769 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00006770#endif
6771
dand7b545b2014-10-13 18:03:27 +00006772 /* Remove cells from the start and end of the page */
6773 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00006774 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
dand7b545b2014-10-13 18:03:27 +00006775 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6776 nCell -= nShift;
6777 }
6778 if( iNewEnd < iOldEnd ){
drhf7838932015-06-23 15:36:34 +00006779 nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
dand7b545b2014-10-13 18:03:27 +00006780 }
dan09c68402014-10-11 20:00:24 +00006781
drh5ab63772014-11-27 03:46:04 +00006782 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00006783 if( pData<pBegin ) goto editpage_fail;
6784
6785 /* Add cells to the start of the page */
6786 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00006787 int nAdd = MIN(nNew,iOld-iNew);
6788 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
dand7b545b2014-10-13 18:03:27 +00006789 pCellptr = pPg->aCellIdx;
6790 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6791 if( pageInsertArray(
6792 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006793 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00006794 ) ) goto editpage_fail;
6795 nCell += nAdd;
6796 }
6797
6798 /* Add any overflow cells */
6799 for(i=0; i<pPg->nOverflow; i++){
6800 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6801 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00006802 pCellptr = &pPg->aCellIdx[iCell * 2];
dand7b545b2014-10-13 18:03:27 +00006803 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6804 nCell++;
6805 if( pageInsertArray(
6806 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006807 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00006808 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006809 }
dand7b545b2014-10-13 18:03:27 +00006810 }
dan09c68402014-10-11 20:00:24 +00006811
dand7b545b2014-10-13 18:03:27 +00006812 /* Append cells to the end of the page */
6813 pCellptr = &pPg->aCellIdx[nCell*2];
6814 if( pageInsertArray(
6815 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006816 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00006817 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006818
dand7b545b2014-10-13 18:03:27 +00006819 pPg->nCell = nNew;
6820 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00006821
dand7b545b2014-10-13 18:03:27 +00006822 put2byte(&aData[hdr+3], pPg->nCell);
6823 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00006824
6825#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00006826 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00006827 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00006828 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
drh1c715f62016-04-05 13:35:43 +00006829 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
dand7b545b2014-10-13 18:03:27 +00006830 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00006831 }
drh1ffd2472015-06-23 02:37:30 +00006832 assert( 0==memcmp(pCell, &aData[iOff],
6833 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00006834 }
dan09c68402014-10-11 20:00:24 +00006835#endif
6836
drh658873b2015-06-22 20:02:04 +00006837 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00006838 editpage_fail:
dan09c68402014-10-11 20:00:24 +00006839 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00006840 populateCellCache(pCArray, iNew, nNew);
6841 return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
drhfa1a98a2004-05-14 19:08:17 +00006842}
6843
drh14acc042001-06-10 19:56:58 +00006844/*
drhc3b70572003-01-04 19:44:07 +00006845** The following parameters determine how many adjacent pages get involved
6846** in a balancing operation. NN is the number of neighbors on either side
6847** of the page that participate in the balancing operation. NB is the
6848** total number of pages that participate, including the target page and
6849** NN neighbors on either side.
6850**
6851** The minimum value of NN is 1 (of course). Increasing NN above 1
6852** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6853** in exchange for a larger degradation in INSERT and UPDATE performance.
6854** The value of NN appears to give the best results overall.
6855*/
6856#define NN 1 /* Number of neighbors on either side of pPage */
6857#define NB (NN*2+1) /* Total pages involved in the balance */
6858
danielk1977ac245ec2005-01-14 13:50:11 +00006859
drh615ae552005-01-16 23:21:00 +00006860#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00006861/*
6862** This version of balance() handles the common special case where
6863** a new entry is being inserted on the extreme right-end of the
6864** tree, in other words, when the new entry will become the largest
6865** entry in the tree.
6866**
drhc314dc72009-07-21 11:52:34 +00006867** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00006868** a new page to the right-hand side and put the one new entry in
6869** that page. This leaves the right side of the tree somewhat
6870** unbalanced. But odds are that we will be inserting new entries
6871** at the end soon afterwards so the nearly empty page will quickly
6872** fill up. On average.
6873**
6874** pPage is the leaf page which is the right-most page in the tree.
6875** pParent is its parent. pPage must have a single overflow entry
6876** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00006877**
6878** The pSpace buffer is used to store a temporary copy of the divider
6879** cell that will be inserted into pParent. Such a cell consists of a 4
6880** byte page number followed by a variable length integer. In other
6881** words, at most 13 bytes. Hence the pSpace buffer must be at
6882** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00006883*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006884static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6885 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00006886 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00006887 int rc; /* Return Code */
6888 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00006889
drh1fee73e2007-08-29 04:00:57 +00006890 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00006891 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006892 assert( pPage->nOverflow==1 );
6893
drh5d433ce2010-08-14 16:02:52 +00006894 /* This error condition is now caught prior to reaching this function */
drh1fd2d7d2014-12-02 16:16:47 +00006895 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00006896
danielk1977a50d9aa2009-06-08 14:49:45 +00006897 /* Allocate a new page. This page will become the right-sibling of
6898 ** pPage. Make the parent page writable, so that the new divider cell
6899 ** may be inserted. If both these operations are successful, proceed.
6900 */
drh4f0c5872007-03-26 22:05:01 +00006901 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006902
danielk1977eaa06f62008-09-18 17:34:44 +00006903 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006904
6905 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00006906 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00006907 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00006908 u8 *pStop;
6909
drhc5053fb2008-11-27 02:22:10 +00006910 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006911 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6912 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drh658873b2015-06-22 20:02:04 +00006913 rc = rebuildPage(pNew, 1, &pCell, &szCell);
drhea82b372015-06-23 21:35:28 +00006914 if( NEVER(rc) ) return rc;
dan8e9ba0c2014-10-14 17:27:04 +00006915 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00006916
6917 /* If this is an auto-vacuum database, update the pointer map
6918 ** with entries for the new page, and any pointer from the
6919 ** cell on the page to an overflow page. If either of these
6920 ** operations fails, the return code is set, but the contents
6921 ** of the parent page are still manipulated by thh code below.
6922 ** That is Ok, at this point the parent page is guaranteed to
6923 ** be marked as dirty. Returning an error code will cause a
6924 ** rollback, undoing any changes made to the parent page.
6925 */
6926 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006927 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
6928 if( szCell>pNew->minLocal ){
6929 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006930 }
6931 }
danielk1977eaa06f62008-09-18 17:34:44 +00006932
danielk19776f235cc2009-06-04 14:46:08 +00006933 /* Create a divider cell to insert into pParent. The divider cell
6934 ** consists of a 4-byte page number (the page number of pPage) and
6935 ** a variable length key value (which must be the same value as the
6936 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00006937 **
danielk19776f235cc2009-06-04 14:46:08 +00006938 ** To find the largest key value on pPage, first find the right-most
6939 ** cell on pPage. The first two fields of this cell are the
6940 ** record-length (a variable length integer at most 32-bits in size)
6941 ** and the key value (a variable length integer, may have any value).
6942 ** The first of the while(...) loops below skips over the record-length
6943 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00006944 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00006945 */
danielk1977eaa06f62008-09-18 17:34:44 +00006946 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00006947 pStop = &pCell[9];
6948 while( (*(pCell++)&0x80) && pCell<pStop );
6949 pStop = &pCell[9];
6950 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
6951
danielk19774dbaa892009-06-16 16:50:22 +00006952 /* Insert the new divider cell into pParent. */
drhcb89f4a2016-05-21 11:23:26 +00006953 if( rc==SQLITE_OK ){
6954 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
6955 0, pPage->pgno, &rc);
6956 }
danielk19776f235cc2009-06-04 14:46:08 +00006957
6958 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00006959 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
6960
danielk1977e08a3c42008-09-18 18:17:03 +00006961 /* Release the reference to the new page. */
6962 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00006963 }
6964
danielk1977eaa06f62008-09-18 17:34:44 +00006965 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00006966}
drh615ae552005-01-16 23:21:00 +00006967#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00006968
danielk19774dbaa892009-06-16 16:50:22 +00006969#if 0
drhc3b70572003-01-04 19:44:07 +00006970/*
danielk19774dbaa892009-06-16 16:50:22 +00006971** This function does not contribute anything to the operation of SQLite.
6972** it is sometimes activated temporarily while debugging code responsible
6973** for setting pointer-map entries.
6974*/
6975static int ptrmapCheckPages(MemPage **apPage, int nPage){
6976 int i, j;
6977 for(i=0; i<nPage; i++){
6978 Pgno n;
6979 u8 e;
6980 MemPage *pPage = apPage[i];
6981 BtShared *pBt = pPage->pBt;
6982 assert( pPage->isInit );
6983
6984 for(j=0; j<pPage->nCell; j++){
6985 CellInfo info;
6986 u8 *z;
6987
6988 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00006989 pPage->xParseCell(pPage, z, &info);
drh45ac1c72015-12-18 03:59:16 +00006990 if( info.nLocal<info.nPayload ){
6991 Pgno ovfl = get4byte(&z[info.nSize-4]);
danielk19774dbaa892009-06-16 16:50:22 +00006992 ptrmapGet(pBt, ovfl, &e, &n);
6993 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6994 }
6995 if( !pPage->leaf ){
6996 Pgno child = get4byte(z);
6997 ptrmapGet(pBt, child, &e, &n);
6998 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6999 }
7000 }
7001 if( !pPage->leaf ){
7002 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7003 ptrmapGet(pBt, child, &e, &n);
7004 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7005 }
7006 }
7007 return 1;
7008}
7009#endif
7010
danielk1977cd581a72009-06-23 15:43:39 +00007011/*
7012** This function is used to copy the contents of the b-tree node stored
7013** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7014** the pointer-map entries for each child page are updated so that the
7015** parent page stored in the pointer map is page pTo. If pFrom contained
7016** any cells with overflow page pointers, then the corresponding pointer
7017** map entries are also updated so that the parent page is page pTo.
7018**
7019** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00007020** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00007021**
danielk197730548662009-07-09 05:07:37 +00007022** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00007023**
7024** The performance of this function is not critical. It is only used by
7025** the balance_shallower() and balance_deeper() procedures, neither of
7026** which are called often under normal circumstances.
7027*/
drhc314dc72009-07-21 11:52:34 +00007028static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7029 if( (*pRC)==SQLITE_OK ){
7030 BtShared * const pBt = pFrom->pBt;
7031 u8 * const aFrom = pFrom->aData;
7032 u8 * const aTo = pTo->aData;
7033 int const iFromHdr = pFrom->hdrOffset;
7034 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00007035 int rc;
drhc314dc72009-07-21 11:52:34 +00007036 int iData;
7037
7038
7039 assert( pFrom->isInit );
7040 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00007041 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00007042
7043 /* Copy the b-tree node content from page pFrom to page pTo. */
7044 iData = get2byte(&aFrom[iFromHdr+5]);
7045 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7046 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7047
7048 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00007049 ** match the new data. The initialization of pTo can actually fail under
7050 ** fairly obscure circumstances, even though it is a copy of initialized
7051 ** page pFrom.
7052 */
drhc314dc72009-07-21 11:52:34 +00007053 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00007054 rc = btreeInitPage(pTo);
7055 if( rc!=SQLITE_OK ){
7056 *pRC = rc;
7057 return;
7058 }
drhc314dc72009-07-21 11:52:34 +00007059
7060 /* If this is an auto-vacuum database, update the pointer-map entries
7061 ** for any b-tree or overflow pages that pTo now contains the pointers to.
7062 */
7063 if( ISAUTOVACUUM ){
7064 *pRC = setChildPtrmaps(pTo);
7065 }
danielk1977cd581a72009-06-23 15:43:39 +00007066 }
danielk1977cd581a72009-06-23 15:43:39 +00007067}
7068
7069/*
danielk19774dbaa892009-06-16 16:50:22 +00007070** This routine redistributes cells on the iParentIdx'th child of pParent
7071** (hereafter "the page") and up to 2 siblings so that all pages have about the
7072** same amount of free space. Usually a single sibling on either side of the
7073** page are used in the balancing, though both siblings might come from one
7074** side if the page is the first or last child of its parent. If the page
7075** has fewer than 2 siblings (something which can only happen if the page
7076** is a root page or a child of a root page) then all available siblings
7077** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00007078**
danielk19774dbaa892009-06-16 16:50:22 +00007079** The number of siblings of the page might be increased or decreased by
7080** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00007081**
danielk19774dbaa892009-06-16 16:50:22 +00007082** Note that when this routine is called, some of the cells on the page
7083** might not actually be stored in MemPage.aData[]. This can happen
7084** if the page is overfull. This routine ensures that all cells allocated
7085** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00007086**
danielk19774dbaa892009-06-16 16:50:22 +00007087** In the course of balancing the page and its siblings, cells may be
7088** inserted into or removed from the parent page (pParent). Doing so
7089** may cause the parent page to become overfull or underfull. If this
7090** happens, it is the responsibility of the caller to invoke the correct
7091** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00007092**
drh5e00f6c2001-09-13 13:46:56 +00007093** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00007094** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00007095** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00007096**
7097** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00007098** buffer big enough to hold one page. If while inserting cells into the parent
7099** page (pParent) the parent page becomes overfull, this buffer is
7100** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00007101** a maximum of four divider cells into the parent page, and the maximum
7102** size of a cell stored within an internal node is always less than 1/4
7103** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7104** enough for all overflow cells.
7105**
7106** If aOvflSpace is set to a null pointer, this function returns
7107** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00007108*/
danielk19774dbaa892009-06-16 16:50:22 +00007109static int balance_nonroot(
7110 MemPage *pParent, /* Parent page of siblings being balanced */
7111 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00007112 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00007113 int isRoot, /* True if pParent is a root-page */
7114 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00007115){
drh16a9b832007-05-05 18:39:25 +00007116 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00007117 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00007118 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00007119 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00007120 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00007121 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00007122 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00007123 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00007124 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00007125 int usableSpace; /* Bytes in pPage beyond the header */
7126 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00007127 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00007128 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00007129 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00007130 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00007131 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00007132 u8 *pRight; /* Location in parent of right-sibling pointer */
7133 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00007134 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7135 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00007136 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00007137 u8 *aSpace1; /* Space for copies of dividers cells */
7138 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00007139 u8 abDone[NB+2]; /* True after i'th new page is populated */
7140 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00007141 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00007142 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00007143 CellArray b; /* Parsed information on cells being balanced */
drh8b2f49b2001-06-08 00:21:52 +00007144
dan33ea4862014-10-09 19:35:37 +00007145 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00007146 b.nCell = 0;
7147 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007148 pBt = pParent->pBt;
7149 assert( sqlite3_mutex_held(pBt->mutex) );
7150 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00007151
danielk1977e5765212009-06-17 11:13:28 +00007152#if 0
drh43605152004-05-29 21:46:49 +00007153 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00007154#endif
drh2e38c322004-09-03 18:38:44 +00007155
danielk19774dbaa892009-06-16 16:50:22 +00007156 /* At this point pParent may have at most one overflow cell. And if
7157 ** this overflow cell is present, it must be the cell with
7158 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00007159 ** is called (indirectly) from sqlite3BtreeDelete().
7160 */
danielk19774dbaa892009-06-16 16:50:22 +00007161 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00007162 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00007163
danielk197711a8a862009-06-17 11:49:52 +00007164 if( !aOvflSpace ){
mistachkinfad30392016-02-13 23:43:46 +00007165 return SQLITE_NOMEM_BKPT;
danielk197711a8a862009-06-17 11:49:52 +00007166 }
7167
danielk1977a50d9aa2009-06-08 14:49:45 +00007168 /* Find the sibling pages to balance. Also locate the cells in pParent
7169 ** that divide the siblings. An attempt is made to find NN siblings on
7170 ** either side of pPage. More siblings are taken from one side, however,
7171 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00007172 ** has NB or fewer children then all children of pParent are taken.
7173 **
7174 ** This loop also drops the divider cells from the parent page. This
7175 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00007176 ** overflow cells in the parent page, since if any existed they will
7177 ** have already been removed.
7178 */
danielk19774dbaa892009-06-16 16:50:22 +00007179 i = pParent->nOverflow + pParent->nCell;
7180 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00007181 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00007182 }else{
dan7d6885a2012-08-08 14:04:56 +00007183 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00007184 if( iParentIdx==0 ){
7185 nxDiv = 0;
7186 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00007187 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00007188 }else{
danielk19774dbaa892009-06-16 16:50:22 +00007189 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00007190 }
dan7d6885a2012-08-08 14:04:56 +00007191 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00007192 }
dan7d6885a2012-08-08 14:04:56 +00007193 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007194 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7195 pRight = &pParent->aData[pParent->hdrOffset+8];
7196 }else{
7197 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7198 }
7199 pgno = get4byte(pRight);
7200 while( 1 ){
drh28f58dd2015-06-27 19:45:03 +00007201 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007202 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007203 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007204 goto balance_cleanup;
7205 }
danielk1977634f2982005-03-28 08:44:07 +00007206 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00007207 if( (i--)==0 ) break;
7208
drh9cc5b4e2016-12-26 01:41:33 +00007209 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
drh2cbd78b2012-02-02 19:37:18 +00007210 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007211 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007212 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007213 pParent->nOverflow = 0;
7214 }else{
7215 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7216 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007217 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007218
7219 /* Drop the cell from the parent page. apDiv[i] still points to
7220 ** the cell within the parent, even though it has been dropped.
7221 ** This is safe because dropping a cell only overwrites the first
7222 ** four bytes of it, and this function does not need the first
7223 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007224 ** later on.
7225 **
drh8a575d92011-10-12 17:00:28 +00007226 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007227 ** the dropCell() routine will overwrite the entire cell with zeroes.
7228 ** In this case, temporarily copy the cell into the aOvflSpace[]
7229 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7230 ** is allocated. */
drha5907a82017-06-19 11:44:22 +00007231 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh8a575d92011-10-12 17:00:28 +00007232 int iOff;
7233
7234 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00007235 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00007236 rc = SQLITE_CORRUPT_BKPT;
7237 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7238 goto balance_cleanup;
7239 }else{
7240 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7241 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7242 }
drh5b47efa2010-02-12 18:18:39 +00007243 }
drh98add2e2009-07-20 17:11:49 +00007244 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007245 }
drh8b2f49b2001-06-08 00:21:52 +00007246 }
7247
drha9121e42008-02-19 14:59:35 +00007248 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007249 ** alignment */
drha9121e42008-02-19 14:59:35 +00007250 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007251
drh8b2f49b2001-06-08 00:21:52 +00007252 /*
danielk1977634f2982005-03-28 08:44:07 +00007253 ** Allocate space for memory structures
7254 */
drhfacf0302008-06-17 15:12:00 +00007255 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007256 nMaxCells*sizeof(u8*) /* b.apCell */
7257 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007258 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007259
drhcbd55b02014-11-04 14:22:27 +00007260 /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer
7261 ** that is more than 6 times the database page size. */
mistachkin0fbd7352014-12-09 04:26:56 +00007262 assert( szScratch<=6*(int)pBt->pageSize );
drh1ffd2472015-06-23 02:37:30 +00007263 b.apCell = sqlite3ScratchMalloc( szScratch );
7264 if( b.apCell==0 ){
mistachkinfad30392016-02-13 23:43:46 +00007265 rc = SQLITE_NOMEM_BKPT;
danielk1977634f2982005-03-28 08:44:07 +00007266 goto balance_cleanup;
7267 }
drh1ffd2472015-06-23 02:37:30 +00007268 b.szCell = (u16*)&b.apCell[nMaxCells];
7269 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007270 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007271
7272 /*
7273 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007274 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007275 ** into space obtained from aSpace1[]. The divider cells have already
7276 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007277 **
7278 ** If the siblings are on leaf pages, then the child pointers of the
7279 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007280 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007281 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007282 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007283 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007284 **
7285 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7286 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007287 */
drh1ffd2472015-06-23 02:37:30 +00007288 b.pRef = apOld[0];
7289 leafCorrection = b.pRef->leaf*4;
7290 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007291 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007292 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007293 int limit = pOld->nCell;
7294 u8 *aData = pOld->aData;
7295 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007296 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007297 u8 *piEnd;
danielk19774dbaa892009-06-16 16:50:22 +00007298
drh73d340a2015-05-28 11:23:11 +00007299 /* Verify that all sibling pages are of the same "type" (table-leaf,
7300 ** table-interior, index-leaf, or index-interior).
7301 */
7302 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7303 rc = SQLITE_CORRUPT_BKPT;
7304 goto balance_cleanup;
7305 }
7306
drhfe647dc2015-06-23 18:24:25 +00007307 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
7308 ** constains overflow cells, include them in the b.apCell[] array
7309 ** in the correct spot.
7310 **
7311 ** Note that when there are multiple overflow cells, it is always the
7312 ** case that they are sequential and adjacent. This invariant arises
7313 ** because multiple overflows can only occurs when inserting divider
7314 ** cells into a parent on a prior balance, and divider cells are always
7315 ** adjacent and are inserted in order. There is an assert() tagged
7316 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7317 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007318 **
7319 ** This must be done in advance. Once the balance starts, the cell
7320 ** offset section of the btree page will be overwritten and we will no
7321 ** long be able to find the cells if a pointer to each cell is not saved
7322 ** first.
7323 */
drh36b78ee2016-01-20 01:32:00 +00007324 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
drh68f2a572011-06-03 17:50:49 +00007325 if( pOld->nOverflow>0 ){
drhfe647dc2015-06-23 18:24:25 +00007326 limit = pOld->aiOvfl[0];
drh68f2a572011-06-03 17:50:49 +00007327 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00007328 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00007329 piCell += 2;
7330 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007331 }
drhfe647dc2015-06-23 18:24:25 +00007332 for(k=0; k<pOld->nOverflow; k++){
7333 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007334 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007335 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007336 }
drh1ffd2472015-06-23 02:37:30 +00007337 }
drhfe647dc2015-06-23 18:24:25 +00007338 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7339 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007340 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00007341 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00007342 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007343 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007344 }
7345
drh1ffd2472015-06-23 02:37:30 +00007346 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007347 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007348 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007349 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007350 assert( b.nCell<nMaxCells );
7351 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007352 pTemp = &aSpace1[iSpace1];
7353 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007354 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007355 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007356 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007357 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007358 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007359 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007360 if( !pOld->leaf ){
7361 assert( leafCorrection==0 );
7362 assert( pOld->hdrOffset==0 );
7363 /* The right pointer of the child page pOld becomes the left
7364 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007365 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007366 }else{
7367 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007368 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007369 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7370 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007371 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7372 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007373 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007374 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007375 }
7376 }
drh1ffd2472015-06-23 02:37:30 +00007377 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007378 }
drh8b2f49b2001-06-08 00:21:52 +00007379 }
7380
7381 /*
drh1ffd2472015-06-23 02:37:30 +00007382 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007383 ** Store this number in "k". Also compute szNew[] which is the total
7384 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007385 ** in b.apCell[] of the cell that divides page i from page i+1.
7386 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007387 **
drh96f5b762004-05-16 16:24:36 +00007388 ** Values computed by this block:
7389 **
7390 ** k: The total number of sibling pages
7391 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007392 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007393 ** the right of the i-th sibling page.
7394 ** usableSpace: Number of bytes of space available on each sibling.
7395 **
drh8b2f49b2001-06-08 00:21:52 +00007396 */
drh43605152004-05-29 21:46:49 +00007397 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh658873b2015-06-22 20:02:04 +00007398 for(i=0; i<nOld; i++){
7399 MemPage *p = apOld[i];
7400 szNew[i] = usableSpace - p->nFree;
drh658873b2015-06-22 20:02:04 +00007401 for(j=0; j<p->nOverflow; j++){
7402 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7403 }
7404 cntNew[i] = cntOld[i];
7405 }
7406 k = nOld;
7407 for(i=0; i<k; i++){
7408 int sz;
7409 while( szNew[i]>usableSpace ){
7410 if( i+1>=k ){
7411 k = i+2;
7412 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7413 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007414 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007415 }
drh1ffd2472015-06-23 02:37:30 +00007416 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007417 szNew[i] -= sz;
7418 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007419 if( cntNew[i]<b.nCell ){
7420 sz = 2 + cachedCellSize(&b, cntNew[i]);
7421 }else{
7422 sz = 0;
7423 }
drh658873b2015-06-22 20:02:04 +00007424 }
7425 szNew[i+1] += sz;
7426 cntNew[i]--;
7427 }
drh1ffd2472015-06-23 02:37:30 +00007428 while( cntNew[i]<b.nCell ){
7429 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007430 if( szNew[i]+sz>usableSpace ) break;
7431 szNew[i] += sz;
7432 cntNew[i]++;
7433 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007434 if( cntNew[i]<b.nCell ){
7435 sz = 2 + cachedCellSize(&b, cntNew[i]);
7436 }else{
7437 sz = 0;
7438 }
drh658873b2015-06-22 20:02:04 +00007439 }
7440 szNew[i+1] -= sz;
7441 }
drh1ffd2472015-06-23 02:37:30 +00007442 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007443 k = i+1;
drh672073a2015-06-24 12:07:40 +00007444 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00007445 rc = SQLITE_CORRUPT_BKPT;
7446 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00007447 }
7448 }
drh96f5b762004-05-16 16:24:36 +00007449
7450 /*
7451 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00007452 ** on the left side (siblings with smaller keys). The left siblings are
7453 ** always nearly full, while the right-most sibling might be nearly empty.
7454 ** The next block of code attempts to adjust the packing of siblings to
7455 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00007456 **
7457 ** This adjustment is more than an optimization. The packing above might
7458 ** be so out of balance as to be illegal. For example, the right-most
7459 ** sibling might be completely empty. This adjustment is not optional.
7460 */
drh6019e162001-07-02 17:51:45 +00007461 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00007462 int szRight = szNew[i]; /* Size of sibling on the right */
7463 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7464 int r; /* Index of right-most cell in left sibling */
7465 int d; /* Index of first cell to the left of right sibling */
7466
7467 r = cntNew[i-1] - 1;
7468 d = r + 1 - leafData;
drh008d64c2015-06-23 16:00:24 +00007469 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00007470 do{
drh1ffd2472015-06-23 02:37:30 +00007471 assert( d<nMaxCells );
7472 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007473 (void)cachedCellSize(&b, r);
7474 if( szRight!=0
drh0b4c0422016-07-14 19:48:08 +00007475 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
drh1ffd2472015-06-23 02:37:30 +00007476 break;
7477 }
7478 szRight += b.szCell[d] + 2;
7479 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00007480 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00007481 r--;
7482 d--;
drh672073a2015-06-24 12:07:40 +00007483 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00007484 szNew[i] = szRight;
7485 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00007486 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7487 rc = SQLITE_CORRUPT_BKPT;
7488 goto balance_cleanup;
7489 }
drh6019e162001-07-02 17:51:45 +00007490 }
drh09d0deb2005-08-02 17:13:09 +00007491
drh2a0df922014-10-30 23:14:56 +00007492 /* Sanity check: For a non-corrupt database file one of the follwing
7493 ** must be true:
7494 ** (1) We found one or more cells (cntNew[0])>0), or
7495 ** (2) pPage is a virtual root page. A virtual root page is when
7496 ** the real root page is page 1 and we are the only child of
7497 ** that page.
drh09d0deb2005-08-02 17:13:09 +00007498 */
drh2a0df922014-10-30 23:14:56 +00007499 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00007500 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7501 apOld[0]->pgno, apOld[0]->nCell,
7502 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7503 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007504 ));
7505
drh8b2f49b2001-06-08 00:21:52 +00007506 /*
drh6b308672002-07-08 02:16:37 +00007507 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007508 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007509 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007510 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007511 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007512 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007513 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007514 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007515 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007516 nNew++;
danielk197728129562005-01-11 10:25:06 +00007517 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007518 }else{
drh7aa8f852006-03-28 00:24:44 +00007519 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007520 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007521 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007522 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007523 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007524 nNew++;
drh1ffd2472015-06-23 02:37:30 +00007525 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007526
7527 /* Set the pointer-map entry for the new sibling page. */
7528 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007529 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007530 if( rc!=SQLITE_OK ){
7531 goto balance_cleanup;
7532 }
7533 }
drh6b308672002-07-08 02:16:37 +00007534 }
drh8b2f49b2001-06-08 00:21:52 +00007535 }
7536
7537 /*
dan33ea4862014-10-09 19:35:37 +00007538 ** Reassign page numbers so that the new pages are in ascending order.
7539 ** This helps to keep entries in the disk file in order so that a scan
7540 ** of the table is closer to a linear scan through the file. That in turn
7541 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007542 **
dan33ea4862014-10-09 19:35:37 +00007543 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7544 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007545 **
dan33ea4862014-10-09 19:35:37 +00007546 ** When NB==3, this one optimization makes the database about 25% faster
7547 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007548 */
dan33ea4862014-10-09 19:35:37 +00007549 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007550 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007551 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007552 for(j=0; j<i; j++){
7553 if( aPgno[j]==aPgno[i] ){
7554 /* This branch is taken if the set of sibling pages somehow contains
7555 ** duplicate entries. This can happen if the database is corrupt.
7556 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007557 ** we do the detection here in order to avoid populating the pager
7558 ** cache with two separate objects associated with the same
7559 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007560 assert( CORRUPT_DB );
7561 rc = SQLITE_CORRUPT_BKPT;
7562 goto balance_cleanup;
drhf9ffac92002-03-02 19:00:31 +00007563 }
7564 }
dan33ea4862014-10-09 19:35:37 +00007565 }
7566 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007567 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007568 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007569 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007570 }
drh00fe08a2014-10-31 00:05:23 +00007571 pgno = aPgOrder[iBest];
7572 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007573 if( iBest!=i ){
7574 if( iBest>i ){
7575 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7576 }
7577 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7578 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007579 }
7580 }
dan33ea4862014-10-09 19:35:37 +00007581
7582 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7583 "%d(%d nc=%d) %d(%d nc=%d)\n",
7584 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007585 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007586 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007587 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007588 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007589 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007590 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7591 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7592 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7593 ));
danielk19774dbaa892009-06-16 16:50:22 +00007594
7595 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7596 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00007597
dan33ea4862014-10-09 19:35:37 +00007598 /* If the sibling pages are not leaves, ensure that the right-child pointer
7599 ** of the right-most new sibling page is set to the value that was
7600 ** originally in the same field of the right-most old sibling page. */
7601 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7602 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7603 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7604 }
danielk1977ac11ee62005-01-15 12:45:51 +00007605
dan33ea4862014-10-09 19:35:37 +00007606 /* Make any required updates to pointer map entries associated with
7607 ** cells stored on sibling pages following the balance operation. Pointer
7608 ** map entries associated with divider cells are set by the insertCell()
7609 ** routine. The associated pointer map entries are:
7610 **
7611 ** a) if the cell contains a reference to an overflow chain, the
7612 ** entry associated with the first page in the overflow chain, and
7613 **
7614 ** b) if the sibling pages are not leaves, the child page associated
7615 ** with the cell.
7616 **
7617 ** If the sibling pages are not leaves, then the pointer map entry
7618 ** associated with the right-child of each sibling may also need to be
7619 ** updated. This happens below, after the sibling pages have been
7620 ** populated, not here.
danielk1977ac11ee62005-01-15 12:45:51 +00007621 */
dan33ea4862014-10-09 19:35:37 +00007622 if( ISAUTOVACUUM ){
7623 MemPage *pNew = apNew[0];
7624 u8 *aOld = pNew->aData;
7625 int cntOldNext = pNew->nCell + pNew->nOverflow;
7626 int usableSize = pBt->usableSize;
7627 int iNew = 0;
7628 int iOld = 0;
danielk1977ac11ee62005-01-15 12:45:51 +00007629
drh1ffd2472015-06-23 02:37:30 +00007630 for(i=0; i<b.nCell; i++){
7631 u8 *pCell = b.apCell[i];
dan33ea4862014-10-09 19:35:37 +00007632 if( i==cntOldNext ){
7633 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7634 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7635 aOld = pOld->aData;
drh4b70f112004-05-02 21:12:19 +00007636 }
dan33ea4862014-10-09 19:35:37 +00007637 if( i==cntNew[iNew] ){
7638 pNew = apNew[++iNew];
7639 if( !leafData ) continue;
7640 }
danielk197785d90ca2008-07-19 14:25:15 +00007641
dan33ea4862014-10-09 19:35:37 +00007642 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00007643 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00007644 ** or else the divider cell to the left of sibling page iOld. So,
7645 ** if sibling page iOld had the same page number as pNew, and if
7646 ** pCell really was a part of sibling page iOld (not a divider or
7647 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00007648 if( iOld>=nNew
7649 || pNew->pgno!=aPgno[iOld]
drhac536e62015-12-10 15:09:17 +00007650 || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize])
drhd52d52b2014-12-06 02:05:44 +00007651 ){
dan33ea4862014-10-09 19:35:37 +00007652 if( !leafCorrection ){
7653 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7654 }
drh1ffd2472015-06-23 02:37:30 +00007655 if( cachedCellSize(&b,i)>pNew->minLocal ){
dan33ea4862014-10-09 19:35:37 +00007656 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk1977ac11ee62005-01-15 12:45:51 +00007657 }
drhea82b372015-06-23 21:35:28 +00007658 if( rc ) goto balance_cleanup;
drh43605152004-05-29 21:46:49 +00007659 }
drh14acc042001-06-10 19:56:58 +00007660 }
7661 }
dan33ea4862014-10-09 19:35:37 +00007662
7663 /* Insert new divider cells into pParent. */
7664 for(i=0; i<nNew-1; i++){
7665 u8 *pCell;
7666 u8 *pTemp;
7667 int sz;
7668 MemPage *pNew = apNew[i];
7669 j = cntNew[i];
7670
7671 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007672 assert( b.apCell[j]!=0 );
7673 pCell = b.apCell[j];
7674 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00007675 pTemp = &aOvflSpace[iOvflSpace];
7676 if( !pNew->leaf ){
7677 memcpy(&pNew->aData[8], pCell, 4);
7678 }else if( leafData ){
7679 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00007680 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00007681 ** cell consists of the integer key for the right-most cell of
7682 ** the sibling-page assembled above only.
7683 */
7684 CellInfo info;
7685 j--;
drh1ffd2472015-06-23 02:37:30 +00007686 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00007687 pCell = pTemp;
7688 sz = 4 + putVarint(&pCell[4], info.nKey);
7689 pTemp = 0;
7690 }else{
7691 pCell -= 4;
7692 /* Obscure case for non-leaf-data trees: If the cell at pCell was
7693 ** previously stored on a leaf node, and its reported size was 4
7694 ** bytes, then it may actually be smaller than this
7695 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7696 ** any cell). But it is important to pass the correct size to
7697 ** insertCell(), so reparse the cell now.
7698 **
drhc1fb2b82016-03-09 03:29:27 +00007699 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
7700 ** and WITHOUT ROWID tables with exactly one column which is the
7701 ** primary key.
dan33ea4862014-10-09 19:35:37 +00007702 */
drh1ffd2472015-06-23 02:37:30 +00007703 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00007704 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00007705 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00007706 }
7707 }
7708 iOvflSpace += sz;
7709 assert( sz<=pBt->maxLocal+23 );
7710 assert( iOvflSpace <= (int)pBt->pageSize );
7711 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7712 if( rc!=SQLITE_OK ) goto balance_cleanup;
7713 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7714 }
7715
7716 /* Now update the actual sibling pages. The order in which they are updated
7717 ** is important, as this code needs to avoid disrupting any page from which
7718 ** cells may still to be read. In practice, this means:
7719 **
drhd836d422014-10-31 14:26:36 +00007720 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7721 ** then it is not safe to update page apNew[iPg] until after
7722 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007723 **
drhd836d422014-10-31 14:26:36 +00007724 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7725 ** then it is not safe to update page apNew[iPg] until after
7726 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007727 **
7728 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00007729 **
7730 ** The iPg value in the following loop starts at nNew-1 goes down
7731 ** to 0, then back up to nNew-1 again, thus making two passes over
7732 ** the pages. On the initial downward pass, only condition (1) above
7733 ** needs to be tested because (2) will always be true from the previous
7734 ** step. On the upward pass, both conditions are always true, so the
7735 ** upwards pass simply processes pages that were missed on the downward
7736 ** pass.
dan33ea4862014-10-09 19:35:37 +00007737 */
drhbec021b2014-10-31 12:22:00 +00007738 for(i=1-nNew; i<nNew; i++){
7739 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00007740 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00007741 if( abDone[iPg] ) continue; /* Skip pages already processed */
7742 if( i>=0 /* On the upwards pass, or... */
7743 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00007744 ){
dan09c68402014-10-11 20:00:24 +00007745 int iNew;
7746 int iOld;
7747 int nNewCell;
7748
drhd836d422014-10-31 14:26:36 +00007749 /* Verify condition (1): If cells are moving left, update iPg
7750 ** only after iPg-1 has already been updated. */
7751 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7752
7753 /* Verify condition (2): If cells are moving right, update iPg
7754 ** only after iPg+1 has already been updated. */
7755 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7756
dan09c68402014-10-11 20:00:24 +00007757 if( iPg==0 ){
7758 iNew = iOld = 0;
7759 nNewCell = cntNew[0];
7760 }else{
drh1ffd2472015-06-23 02:37:30 +00007761 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00007762 iNew = cntNew[iPg-1] + !leafData;
7763 nNewCell = cntNew[iPg] - iNew;
7764 }
7765
drh1ffd2472015-06-23 02:37:30 +00007766 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00007767 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00007768 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00007769 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00007770 assert( apNew[iPg]->nOverflow==0 );
7771 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00007772 }
7773 }
drhd836d422014-10-31 14:26:36 +00007774
7775 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00007776 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7777
drh7aa8f852006-03-28 00:24:44 +00007778 assert( nOld>0 );
7779 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00007780
danielk197713bd99f2009-06-24 05:40:34 +00007781 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7782 /* The root page of the b-tree now contains no cells. The only sibling
7783 ** page is the right-child of the parent. Copy the contents of the
7784 ** child page into the parent, decreasing the overall height of the
7785 ** b-tree structure by one. This is described as the "balance-shallower"
7786 ** sub-algorithm in some documentation.
7787 **
7788 ** If this is an auto-vacuum database, the call to copyNodeContent()
7789 ** sets all pointer-map entries corresponding to database image pages
7790 ** for which the pointer is stored within the content being copied.
7791 **
drh768f2902014-10-31 02:51:41 +00007792 ** It is critical that the child page be defragmented before being
7793 ** copied into the parent, because if the parent is page 1 then it will
7794 ** by smaller than the child due to the database header, and so all the
7795 ** free space needs to be up front.
7796 */
drh9b5351d2015-09-30 14:19:08 +00007797 assert( nNew==1 || CORRUPT_DB );
dan3b2ede12017-02-25 16:24:02 +00007798 rc = defragmentPage(apNew[0], -1);
drh768f2902014-10-31 02:51:41 +00007799 testcase( rc!=SQLITE_OK );
danielk197713bd99f2009-06-24 05:40:34 +00007800 assert( apNew[0]->nFree ==
drh768f2902014-10-31 02:51:41 +00007801 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7802 || rc!=SQLITE_OK
danielk197713bd99f2009-06-24 05:40:34 +00007803 );
drhc314dc72009-07-21 11:52:34 +00007804 copyNodeContent(apNew[0], pParent, &rc);
7805 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00007806 }else if( ISAUTOVACUUM && !leafCorrection ){
7807 /* Fix the pointer map entries associated with the right-child of each
7808 ** sibling page. All other pointer map entries have already been taken
7809 ** care of. */
7810 for(i=0; i<nNew; i++){
7811 u32 key = get4byte(&apNew[i]->aData[8]);
7812 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007813 }
dan33ea4862014-10-09 19:35:37 +00007814 }
danielk19774dbaa892009-06-16 16:50:22 +00007815
dan33ea4862014-10-09 19:35:37 +00007816 assert( pParent->isInit );
7817 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00007818 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00007819
dan33ea4862014-10-09 19:35:37 +00007820 /* Free any old pages that were not reused as new pages.
7821 */
7822 for(i=nNew; i<nOld; i++){
7823 freePage(apOld[i], &rc);
7824 }
danielk19774dbaa892009-06-16 16:50:22 +00007825
7826#if 0
dan33ea4862014-10-09 19:35:37 +00007827 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00007828 /* The ptrmapCheckPages() contains assert() statements that verify that
7829 ** all pointer map pages are set correctly. This is helpful while
7830 ** debugging. This is usually disabled because a corrupt database may
7831 ** cause an assert() statement to fail. */
7832 ptrmapCheckPages(apNew, nNew);
7833 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00007834 }
dan33ea4862014-10-09 19:35:37 +00007835#endif
danielk1977cd581a72009-06-23 15:43:39 +00007836
drh8b2f49b2001-06-08 00:21:52 +00007837 /*
drh14acc042001-06-10 19:56:58 +00007838 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00007839 */
drh14acc042001-06-10 19:56:58 +00007840balance_cleanup:
drh1ffd2472015-06-23 02:37:30 +00007841 sqlite3ScratchFree(b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00007842 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00007843 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00007844 }
drh14acc042001-06-10 19:56:58 +00007845 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00007846 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00007847 }
danielk1977eaa06f62008-09-18 17:34:44 +00007848
drh8b2f49b2001-06-08 00:21:52 +00007849 return rc;
7850}
7851
drh43605152004-05-29 21:46:49 +00007852
7853/*
danielk1977a50d9aa2009-06-08 14:49:45 +00007854** This function is called when the root page of a b-tree structure is
7855** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00007856**
danielk1977a50d9aa2009-06-08 14:49:45 +00007857** A new child page is allocated and the contents of the current root
7858** page, including overflow cells, are copied into the child. The root
7859** page is then overwritten to make it an empty page with the right-child
7860** pointer pointing to the new page.
7861**
7862** Before returning, all pointer-map entries corresponding to pages
7863** that the new child-page now contains pointers to are updated. The
7864** entry corresponding to the new right-child pointer of the root
7865** page is also updated.
7866**
7867** If successful, *ppChild is set to contain a reference to the child
7868** page and SQLITE_OK is returned. In this case the caller is required
7869** to call releasePage() on *ppChild exactly once. If an error occurs,
7870** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00007871*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007872static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7873 int rc; /* Return value from subprocedures */
7874 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00007875 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00007876 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00007877
danielk1977a50d9aa2009-06-08 14:49:45 +00007878 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00007879 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00007880
danielk1977a50d9aa2009-06-08 14:49:45 +00007881 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7882 ** page that will become the new right-child of pPage. Copy the contents
7883 ** of the node stored on pRoot into the new child page.
7884 */
drh98add2e2009-07-20 17:11:49 +00007885 rc = sqlite3PagerWrite(pRoot->pDbPage);
7886 if( rc==SQLITE_OK ){
7887 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00007888 copyNodeContent(pRoot, pChild, &rc);
7889 if( ISAUTOVACUUM ){
7890 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00007891 }
7892 }
7893 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007894 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007895 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00007896 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00007897 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007898 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
7899 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7900 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007901
danielk1977a50d9aa2009-06-08 14:49:45 +00007902 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
7903
7904 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00007905 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
7906 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
7907 memcpy(pChild->apOvfl, pRoot->apOvfl,
7908 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00007909 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00007910
7911 /* Zero the contents of pRoot. Then install pChild as the right-child. */
7912 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
7913 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
7914
7915 *ppChild = pChild;
7916 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00007917}
7918
7919/*
danielk197771d5d2c2008-09-29 11:49:47 +00007920** The page that pCur currently points to has just been modified in
7921** some way. This function figures out if this modification means the
7922** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00007923** routine. Balancing routines are:
7924**
7925** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00007926** balance_deeper()
7927** balance_nonroot()
drh43605152004-05-29 21:46:49 +00007928*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007929static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00007930 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00007931 const int nMin = pCur->pBt->usableSize * 2 / 3;
7932 u8 aBalanceQuickSpace[13];
7933 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007934
drhcc5f8a42016-02-06 22:32:06 +00007935 VVA_ONLY( int balance_quick_called = 0 );
7936 VVA_ONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00007937
7938 do {
7939 int iPage = pCur->iPage;
7940 MemPage *pPage = pCur->apPage[iPage];
7941
7942 if( iPage==0 ){
7943 if( pPage->nOverflow ){
7944 /* The root page of the b-tree is overfull. In this case call the
7945 ** balance_deeper() function to create a new child for the root-page
7946 ** and copy the current contents of the root-page to it. The
7947 ** next iteration of the do-loop will balance the child page.
7948 */
drhcc5f8a42016-02-06 22:32:06 +00007949 assert( balance_deeper_called==0 );
7950 VVA_ONLY( balance_deeper_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00007951 rc = balance_deeper(pPage, &pCur->apPage[1]);
7952 if( rc==SQLITE_OK ){
7953 pCur->iPage = 1;
drh75e96b32017-04-01 00:20:06 +00007954 pCur->ix = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007955 pCur->aiIdx[0] = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007956 assert( pCur->apPage[1]->nOverflow );
7957 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007958 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00007959 break;
7960 }
7961 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
7962 break;
7963 }else{
7964 MemPage * const pParent = pCur->apPage[iPage-1];
7965 int const iIdx = pCur->aiIdx[iPage-1];
7966
7967 rc = sqlite3PagerWrite(pParent->pDbPage);
7968 if( rc==SQLITE_OK ){
7969#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00007970 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00007971 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00007972 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00007973 && pParent->pgno!=1
7974 && pParent->nCell==iIdx
7975 ){
7976 /* Call balance_quick() to create a new sibling of pPage on which
7977 ** to store the overflow cell. balance_quick() inserts a new cell
7978 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00007979 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00007980 ** use either balance_nonroot() or balance_deeper(). Until this
7981 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
7982 ** buffer.
7983 **
7984 ** The purpose of the following assert() is to check that only a
7985 ** single call to balance_quick() is made for each call to this
7986 ** function. If this were not verified, a subtle bug involving reuse
7987 ** of the aBalanceQuickSpace[] might sneak in.
7988 */
drhcc5f8a42016-02-06 22:32:06 +00007989 assert( balance_quick_called==0 );
7990 VVA_ONLY( balance_quick_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00007991 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
7992 }else
7993#endif
7994 {
7995 /* In this case, call balance_nonroot() to redistribute cells
7996 ** between pPage and up to 2 of its sibling pages. This involves
7997 ** modifying the contents of pParent, which may cause pParent to
7998 ** become overfull or underfull. The next iteration of the do-loop
7999 ** will balance the parent page to correct this.
8000 **
8001 ** If the parent page becomes overfull, the overflow cell or cells
8002 ** are stored in the pSpace buffer allocated immediately below.
8003 ** A subsequent iteration of the do-loop will deal with this by
8004 ** calling balance_nonroot() (balance_deeper() may be called first,
8005 ** but it doesn't deal with overflow cells - just moves them to a
8006 ** different page). Once this subsequent call to balance_nonroot()
8007 ** has completed, it is safe to release the pSpace buffer used by
8008 ** the previous call, as the overflow cell data will have been
8009 ** copied either into the body of a database page or into the new
8010 ** pSpace buffer passed to the latter call to balance_nonroot().
8011 */
8012 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00008013 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8014 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00008015 if( pFree ){
8016 /* If pFree is not NULL, it points to the pSpace buffer used
8017 ** by a previous call to balance_nonroot(). Its contents are
8018 ** now stored either on real database pages or within the
8019 ** new pSpace buffer, so it may be safely freed here. */
8020 sqlite3PageFree(pFree);
8021 }
8022
danielk19774dbaa892009-06-16 16:50:22 +00008023 /* The pSpace buffer will be freed after the next call to
8024 ** balance_nonroot(), or just before this function returns, whichever
8025 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008026 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00008027 }
8028 }
8029
8030 pPage->nOverflow = 0;
8031
8032 /* The next iteration of the do-loop balances the parent page. */
8033 releasePage(pPage);
8034 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00008035 assert( pCur->iPage>=0 );
drh43605152004-05-29 21:46:49 +00008036 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008037 }while( rc==SQLITE_OK );
8038
8039 if( pFree ){
8040 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00008041 }
8042 return rc;
8043}
8044
drhf74b8d92002-09-01 23:20:45 +00008045
8046/*
drh8eeb4462016-05-21 20:03:42 +00008047** Insert a new record into the BTree. The content of the new record
8048** is described by the pX object. The pCur cursor is used only to
8049** define what table the record should be inserted into, and is left
8050** pointing at a random location.
drh4b70f112004-05-02 21:12:19 +00008051**
drh8eeb4462016-05-21 20:03:42 +00008052** For a table btree (used for rowid tables), only the pX.nKey value of
8053** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
8054** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
8055** hold the content of the row.
8056**
8057** For an index btree (used for indexes and WITHOUT ROWID tables), the
8058** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
8059** pX.pData,nData,nZero fields must be zero.
danielk1977de630352009-05-04 11:42:29 +00008060**
8061** If the seekResult parameter is non-zero, then a successful call to
drheaf6ae22016-11-09 20:14:34 +00008062** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8063** been performed. In other words, if seekResult!=0 then the cursor
8064** is currently pointing to a cell that will be adjacent to the cell
8065** to be inserted. If seekResult<0 then pCur points to a cell that is
8066** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
8067** that is larger than (pKey,nKey).
danielk1977de630352009-05-04 11:42:29 +00008068**
drheaf6ae22016-11-09 20:14:34 +00008069** If seekResult==0, that means pCur is pointing at some unknown location.
8070** In that case, this routine must seek the cursor to the correct insertion
8071** point for (pKey,nKey) before doing the insertion. For index btrees,
8072** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8073** key values and pX->aMem can be used instead of pX->pKey to avoid having
8074** to decode the key.
drh3b7511c2001-05-26 13:15:44 +00008075*/
drh3aac2dd2004-04-26 14:10:20 +00008076int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00008077 BtCursor *pCur, /* Insert data into the table of this cursor */
drh8eeb4462016-05-21 20:03:42 +00008078 const BtreePayload *pX, /* Content of the row to be inserted */
danf91c1312017-01-10 20:04:38 +00008079 int flags, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00008080 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00008081){
drh3b7511c2001-05-26 13:15:44 +00008082 int rc;
drh3e9ca092009-09-08 01:14:48 +00008083 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00008084 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008085 int idx;
drh3b7511c2001-05-26 13:15:44 +00008086 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00008087 Btree *p = pCur->pBtree;
8088 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00008089 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00008090 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00008091
danf91c1312017-01-10 20:04:38 +00008092 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags );
8093
drh98add2e2009-07-20 17:11:49 +00008094 if( pCur->eState==CURSOR_FAULT ){
8095 assert( pCur->skipNext!=SQLITE_OK );
8096 return pCur->skipNext;
8097 }
8098
dan7a2347e2016-01-07 16:43:54 +00008099 assert( cursorOwnsBtShared(pCur) );
drh3f387402014-09-24 01:23:00 +00008100 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8101 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00008102 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00008103 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8104
danielk197731d31b82009-07-13 13:18:07 +00008105 /* Assert that the caller has been consistent. If this cursor was opened
8106 ** expecting an index b-tree, then the caller should be inserting blob
8107 ** keys with no associated data. If the cursor was opened expecting an
8108 ** intkey table, the caller should be inserting integer keys with a
8109 ** blob of associated data. */
drh8eeb4462016-05-21 20:03:42 +00008110 assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );
danielk197731d31b82009-07-13 13:18:07 +00008111
danielk19779c3acf32009-05-02 07:36:49 +00008112 /* Save the positions of any other cursors open on this table.
8113 **
danielk19773509a652009-07-06 18:56:13 +00008114 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00008115 ** example, when inserting data into a table with auto-generated integer
8116 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8117 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00008118 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00008119 ** that the cursor is already where it needs to be and returns without
8120 ** doing any work. To avoid thwarting these optimizations, it is important
8121 ** not to clear the cursor here.
8122 */
drh27fb7462015-06-30 02:47:36 +00008123 if( pCur->curFlags & BTCF_Multiple ){
8124 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8125 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00008126 }
8127
danielk197771d5d2c2008-09-29 11:49:47 +00008128 if( pCur->pKeyInfo==0 ){
drh8eeb4462016-05-21 20:03:42 +00008129 assert( pX->pKey==0 );
drhe0670b62014-02-12 21:31:12 +00008130 /* If this is an insert into a table b-tree, invalidate any incrblob
8131 ** cursors open on the row being replaced */
drh9ca431a2017-03-29 18:03:50 +00008132 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
drhe0670b62014-02-12 21:31:12 +00008133
danf91c1312017-01-10 20:04:38 +00008134 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8135 ** to a row with the same key as the new entry being inserted. */
8136 assert( (flags & BTREE_SAVEPOSITION)==0 ||
8137 ((pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey) );
8138
drhe0670b62014-02-12 21:31:12 +00008139 /* If the cursor is currently on the last row and we are appending a
drh207c8172015-06-29 23:01:32 +00008140 ** new row onto the end, set the "loc" to avoid an unnecessary
8141 ** btreeMoveto() call */
drh7a1c28d2016-11-10 20:42:08 +00008142 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
8143 loc = 0;
drh207c8172015-06-29 23:01:32 +00008144 }else if( loc==0 ){
danf91c1312017-01-10 20:04:38 +00008145 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
drh207c8172015-06-29 23:01:32 +00008146 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00008147 }
danf91c1312017-01-10 20:04:38 +00008148 }else if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
drh9b4eaeb2016-11-09 00:10:33 +00008149 if( pX->nMem ){
8150 UnpackedRecord r;
drh9b4eaeb2016-11-09 00:10:33 +00008151 r.pKeyInfo = pCur->pKeyInfo;
8152 r.aMem = pX->aMem;
8153 r.nField = pX->nMem;
drh8c730bc2016-12-10 13:12:55 +00008154 r.default_rc = 0;
8155 r.errCode = 0;
8156 r.r1 = 0;
8157 r.r2 = 0;
8158 r.eqSeen = 0;
danf91c1312017-01-10 20:04:38 +00008159 rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
drh9b4eaeb2016-11-09 00:10:33 +00008160 }else{
danf91c1312017-01-10 20:04:38 +00008161 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
drh9b4eaeb2016-11-09 00:10:33 +00008162 }
drh4c301aa2009-07-15 17:25:45 +00008163 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00008164 }
danielk1977b980d2212009-06-22 18:03:51 +00008165 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00008166
drh14acc042001-06-10 19:56:58 +00008167 pPage = pCur->apPage[pCur->iPage];
drh8eeb4462016-05-21 20:03:42 +00008168 assert( pPage->intKey || pX->nKey>=0 );
drh44845222008-07-17 18:39:57 +00008169 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00008170
drh3a4c1412004-05-09 20:40:11 +00008171 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
drh8eeb4462016-05-21 20:03:42 +00008172 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
drh3a4c1412004-05-09 20:40:11 +00008173 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00008174 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00008175 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008176 assert( newCell!=0 );
drh8eeb4462016-05-21 20:03:42 +00008177 rc = fillInCell(pPage, newCell, pX, &szNew);
drh2e38c322004-09-03 18:38:44 +00008178 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00008179 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00008180 assert( szNew <= MX_CELL_SIZE(pBt) );
drh75e96b32017-04-01 00:20:06 +00008181 idx = pCur->ix;
danielk1977b980d2212009-06-22 18:03:51 +00008182 if( loc==0 ){
drh80159da2016-12-09 17:32:51 +00008183 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00008184 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00008185 rc = sqlite3PagerWrite(pPage->pDbPage);
8186 if( rc ){
8187 goto end_insert;
8188 }
danielk197771d5d2c2008-09-29 11:49:47 +00008189 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00008190 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008191 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00008192 }
drh80159da2016-12-09 17:32:51 +00008193 rc = clearCell(pPage, oldCell, &info);
danca66f6c2017-06-08 11:14:08 +00008194 if( info.nSize==szNew && info.nLocal==info.nPayload
8195 && (!ISAUTOVACUUM || szNew<pPage->minLocal)
8196 ){
drhf9238252016-12-09 18:09:42 +00008197 /* Overwrite the old cell with the new if they are the same size.
8198 ** We could also try to do this if the old cell is smaller, then add
8199 ** the leftover space to the free list. But experiments show that
8200 ** doing that is no faster then skipping this optimization and just
danca66f6c2017-06-08 11:14:08 +00008201 ** calling dropCell() and insertCell().
8202 **
8203 ** This optimization cannot be used on an autovacuum database if the
8204 ** new entry uses overflow pages, as the insertCell() call below is
8205 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
drhf9238252016-12-09 18:09:42 +00008206 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
drh2d083432016-12-09 19:42:18 +00008207 if( oldCell+szNew > pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
drh80159da2016-12-09 17:32:51 +00008208 memcpy(oldCell, newCell, szNew);
8209 return SQLITE_OK;
8210 }
8211 dropCell(pPage, idx, info.nSize, &rc);
drh2e38c322004-09-03 18:38:44 +00008212 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00008213 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00008214 assert( pPage->leaf );
drh75e96b32017-04-01 00:20:06 +00008215 idx = ++pCur->ix;
dan874080b2017-05-01 18:12:56 +00008216 pCur->curFlags &= ~BTCF_ValidNKey;
drh14acc042001-06-10 19:56:58 +00008217 }else{
drh4b70f112004-05-02 21:12:19 +00008218 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00008219 }
drh98add2e2009-07-20 17:11:49 +00008220 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
drh09a4e922016-05-21 12:29:04 +00008221 assert( pPage->nOverflow==0 || rc==SQLITE_OK );
danielk19773f632d52009-05-02 10:03:09 +00008222 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00008223
mistachkin48864df2013-03-21 21:20:32 +00008224 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00008225 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00008226 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00008227 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00008228 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008229 ** Previous versions of SQLite called moveToRoot() to move the cursor
8230 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00008231 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8232 ** set the cursor state to "invalid". This makes common insert operations
8233 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00008234 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008235 ** There is a subtle but important optimization here too. When inserting
8236 ** multiple records into an intkey b-tree using a single cursor (as can
8237 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8238 ** is advantageous to leave the cursor pointing to the last entry in
8239 ** the b-tree if possible. If the cursor is left pointing to the last
8240 ** entry in the table, and the next row inserted has an integer key
8241 ** larger than the largest existing key, it is possible to insert the
8242 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00008243 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008244 pCur->info.nSize = 0;
drh09a4e922016-05-21 12:29:04 +00008245 if( pPage->nOverflow ){
8246 assert( rc==SQLITE_OK );
drh036dbec2014-03-11 23:40:44 +00008247 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00008248 rc = balance(pCur);
8249
8250 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00008251 ** fails. Internal data structure corruption will result otherwise.
8252 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8253 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008254 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00008255 pCur->eState = CURSOR_INVALID;
danf91c1312017-01-10 20:04:38 +00008256 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
8257 rc = moveToRoot(pCur);
drh7b20a152017-01-12 19:10:55 +00008258 if( pCur->pKeyInfo ){
danf91c1312017-01-10 20:04:38 +00008259 assert( pCur->pKey==0 );
8260 pCur->pKey = sqlite3Malloc( pX->nKey );
8261 if( pCur->pKey==0 ){
8262 rc = SQLITE_NOMEM;
8263 }else{
8264 memcpy(pCur->pKey, pX->pKey, pX->nKey);
8265 }
8266 }
8267 pCur->eState = CURSOR_REQUIRESEEK;
8268 pCur->nKey = pX->nKey;
8269 }
danielk19773f632d52009-05-02 10:03:09 +00008270 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008271 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00008272
drh2e38c322004-09-03 18:38:44 +00008273end_insert:
drh5e2f8b92001-05-28 00:41:15 +00008274 return rc;
8275}
8276
8277/*
danf0ee1d32015-09-12 19:26:11 +00008278** Delete the entry that the cursor is pointing to.
8279**
drhe807bdb2016-01-21 17:06:33 +00008280** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8281** the cursor is left pointing at an arbitrary location after the delete.
8282** But if that bit is set, then the cursor is left in a state such that
8283** the next call to BtreeNext() or BtreePrev() moves it to the same row
8284** as it would have been on if the call to BtreeDelete() had been omitted.
8285**
drhdef19e32016-01-27 16:26:25 +00008286** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8287** associated with a single table entry and its indexes. Only one of those
8288** deletes is considered the "primary" delete. The primary delete occurs
8289** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
8290** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8291** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
drhe807bdb2016-01-21 17:06:33 +00008292** but which might be used by alternative storage engines.
drh3b7511c2001-05-26 13:15:44 +00008293*/
drhe807bdb2016-01-21 17:06:33 +00008294int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
drhd677b3d2007-08-20 22:48:41 +00008295 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00008296 BtShared *pBt = p->pBt;
8297 int rc; /* Return code */
8298 MemPage *pPage; /* Page to delete cell from */
8299 unsigned char *pCell; /* Pointer to cell to delete */
8300 int iCellIdx; /* Index of cell to delete */
8301 int iCellDepth; /* Depth of node containing pCell */
drh80159da2016-12-09 17:32:51 +00008302 CellInfo info; /* Size of the cell being deleted */
danf0ee1d32015-09-12 19:26:11 +00008303 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */
drhe807bdb2016-01-21 17:06:33 +00008304 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */
drh8b2f49b2001-06-08 00:21:52 +00008305
dan7a2347e2016-01-07 16:43:54 +00008306 assert( cursorOwnsBtShared(pCur) );
drh64022502009-01-09 14:11:04 +00008307 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008308 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00008309 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00008310 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8311 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drh75e96b32017-04-01 00:20:06 +00008312 assert( pCur->ix<pCur->apPage[pCur->iPage]->nCell );
drh98ef0f62015-06-30 01:25:52 +00008313 assert( pCur->eState==CURSOR_VALID );
drhdef19e32016-01-27 16:26:25 +00008314 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
danielk1977da184232006-01-05 11:34:32 +00008315
danielk19774dbaa892009-06-16 16:50:22 +00008316 iCellDepth = pCur->iPage;
drh75e96b32017-04-01 00:20:06 +00008317 iCellIdx = pCur->ix;
danielk19774dbaa892009-06-16 16:50:22 +00008318 pPage = pCur->apPage[iCellDepth];
8319 pCell = findCell(pPage, iCellIdx);
8320
drhbfc7a8b2016-04-09 17:04:05 +00008321 /* If the bPreserve flag is set to true, then the cursor position must
8322 ** be preserved following this delete operation. If the current delete
8323 ** will cause a b-tree rebalance, then this is done by saving the cursor
8324 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8325 ** returning.
8326 **
8327 ** Or, if the current delete will not cause a rebalance, then the cursor
8328 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8329 ** before or after the deleted entry. In this case set bSkipnext to true. */
8330 if( bPreserve ){
8331 if( !pPage->leaf
8332 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
8333 ){
8334 /* A b-tree rebalance will be required after deleting this entry.
8335 ** Save the cursor key. */
8336 rc = saveCursorKey(pCur);
8337 if( rc ) return rc;
8338 }else{
8339 bSkipnext = 1;
8340 }
8341 }
8342
danielk19774dbaa892009-06-16 16:50:22 +00008343 /* If the page containing the entry to delete is not a leaf page, move
8344 ** the cursor to the largest entry in the tree that is smaller than
8345 ** the entry being deleted. This cell will replace the cell being deleted
8346 ** from the internal node. The 'previous' entry is used for this instead
8347 ** of the 'next' entry, as the previous entry is always a part of the
8348 ** sub-tree headed by the child page of the cell being deleted. This makes
8349 ** balancing the tree following the delete operation easier. */
8350 if( !pPage->leaf ){
drh2ab792e2017-05-30 18:34:07 +00008351 rc = sqlite3BtreePrevious(pCur, 0);
8352 assert( rc!=SQLITE_DONE );
drh4c301aa2009-07-15 17:25:45 +00008353 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00008354 }
8355
8356 /* Save the positions of any other cursors open on this table before
danf0ee1d32015-09-12 19:26:11 +00008357 ** making any modifications. */
drh27fb7462015-06-30 02:47:36 +00008358 if( pCur->curFlags & BTCF_Multiple ){
8359 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8360 if( rc ) return rc;
8361 }
drhd60f4f42012-03-23 14:23:52 +00008362
8363 /* If this is a delete operation to remove a row from a table b-tree,
8364 ** invalidate any incrblob cursors open on the row being deleted. */
8365 if( pCur->pKeyInfo==0 ){
drh9ca431a2017-03-29 18:03:50 +00008366 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
drhd60f4f42012-03-23 14:23:52 +00008367 }
8368
danf0ee1d32015-09-12 19:26:11 +00008369 /* Make the page containing the entry to be deleted writable. Then free any
8370 ** overflow pages associated with the entry and finally remove the cell
8371 ** itself from within the page. */
drha4ec1d42009-07-11 13:13:11 +00008372 rc = sqlite3PagerWrite(pPage->pDbPage);
8373 if( rc ) return rc;
drh80159da2016-12-09 17:32:51 +00008374 rc = clearCell(pPage, pCell, &info);
8375 dropCell(pPage, iCellIdx, info.nSize, &rc);
drha4ec1d42009-07-11 13:13:11 +00008376 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00008377
danielk19774dbaa892009-06-16 16:50:22 +00008378 /* If the cell deleted was not located on a leaf page, then the cursor
8379 ** is currently pointing to the largest entry in the sub-tree headed
8380 ** by the child-page of the cell that was just deleted from an internal
8381 ** node. The cell from the leaf node needs to be moved to the internal
8382 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00008383 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00008384 MemPage *pLeaf = pCur->apPage[pCur->iPage];
8385 int nCell;
8386 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
8387 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00008388
danielk19774dbaa892009-06-16 16:50:22 +00008389 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00008390 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00008391 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00008392 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00008393 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008394 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00008395 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drhcb89f4a2016-05-21 11:23:26 +00008396 if( rc==SQLITE_OK ){
8397 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8398 }
drh98add2e2009-07-20 17:11:49 +00008399 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008400 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00008401 }
danielk19774dbaa892009-06-16 16:50:22 +00008402
8403 /* Balance the tree. If the entry deleted was located on a leaf page,
8404 ** then the cursor still points to that page. In this case the first
8405 ** call to balance() repairs the tree, and the if(...) condition is
8406 ** never true.
8407 **
8408 ** Otherwise, if the entry deleted was on an internal node page, then
8409 ** pCur is pointing to the leaf page from which a cell was removed to
8410 ** replace the cell deleted from the internal node. This is slightly
8411 ** tricky as the leaf node may be underfull, and the internal node may
8412 ** be either under or overfull. In this case run the balancing algorithm
8413 ** on the leaf node first. If the balance proceeds far enough up the
8414 ** tree that we can be sure that any problem in the internal node has
8415 ** been corrected, so be it. Otherwise, after balancing the leaf node,
8416 ** walk the cursor up the tree to the internal node and balance it as
8417 ** well. */
8418 rc = balance(pCur);
8419 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
8420 while( pCur->iPage>iCellDepth ){
8421 releasePage(pCur->apPage[pCur->iPage--]);
8422 }
8423 rc = balance(pCur);
8424 }
8425
danielk19776b456a22005-03-21 04:04:02 +00008426 if( rc==SQLITE_OK ){
danf0ee1d32015-09-12 19:26:11 +00008427 if( bSkipnext ){
drha660caf2016-01-01 03:37:44 +00008428 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
drh38bace82016-02-01 00:21:08 +00008429 assert( pPage==pCur->apPage[pCur->iPage] || CORRUPT_DB );
drh78ac1092015-09-20 22:57:47 +00008430 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
danf0ee1d32015-09-12 19:26:11 +00008431 pCur->eState = CURSOR_SKIPNEXT;
8432 if( iCellIdx>=pPage->nCell ){
8433 pCur->skipNext = -1;
drh75e96b32017-04-01 00:20:06 +00008434 pCur->ix = pPage->nCell-1;
danf0ee1d32015-09-12 19:26:11 +00008435 }else{
8436 pCur->skipNext = 1;
8437 }
8438 }else{
8439 rc = moveToRoot(pCur);
8440 if( bPreserve ){
8441 pCur->eState = CURSOR_REQUIRESEEK;
8442 }
8443 }
danielk19776b456a22005-03-21 04:04:02 +00008444 }
drh5e2f8b92001-05-28 00:41:15 +00008445 return rc;
drh3b7511c2001-05-26 13:15:44 +00008446}
drh8b2f49b2001-06-08 00:21:52 +00008447
8448/*
drhc6b52df2002-01-04 03:09:29 +00008449** Create a new BTree table. Write into *piTable the page
8450** number for the root page of the new table.
8451**
drhab01f612004-05-22 02:55:23 +00008452** The type of type is determined by the flags parameter. Only the
8453** following values of flags are currently in use. Other values for
8454** flags might not work:
8455**
8456** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
8457** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00008458*/
drhd4187c72010-08-30 22:15:45 +00008459static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00008460 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008461 MemPage *pRoot;
8462 Pgno pgnoRoot;
8463 int rc;
drhd4187c72010-08-30 22:15:45 +00008464 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00008465
drh1fee73e2007-08-29 04:00:57 +00008466 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008467 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008468 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00008469
danielk1977003ba062004-11-04 02:57:33 +00008470#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00008471 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00008472 if( rc ){
8473 return rc;
8474 }
danielk1977003ba062004-11-04 02:57:33 +00008475#else
danielk1977687566d2004-11-02 12:56:41 +00008476 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00008477 Pgno pgnoMove; /* Move a page here to make room for the root-page */
8478 MemPage *pPageMove; /* The page to move to. */
8479
danielk197720713f32007-05-03 11:43:33 +00008480 /* Creating a new table may probably require moving an existing database
8481 ** to make room for the new tables root page. In case this page turns
8482 ** out to be an overflow page, delete all overflow page-map caches
8483 ** held by open cursors.
8484 */
danielk197792d4d7a2007-05-04 12:05:56 +00008485 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00008486
danielk1977003ba062004-11-04 02:57:33 +00008487 /* Read the value of meta[3] from the database to determine where the
8488 ** root page of the new table should go. meta[3] is the largest root-page
8489 ** created so far, so the new root-page is (meta[3]+1).
8490 */
danielk1977602b4662009-07-02 07:47:33 +00008491 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00008492 pgnoRoot++;
8493
danielk1977599fcba2004-11-08 07:13:13 +00008494 /* The new root-page may not be allocated on a pointer-map page, or the
8495 ** PENDING_BYTE page.
8496 */
drh72190432008-01-31 14:54:43 +00008497 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00008498 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00008499 pgnoRoot++;
8500 }
drh499e15b2015-05-22 12:37:37 +00008501 assert( pgnoRoot>=3 || CORRUPT_DB );
8502 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00008503
8504 /* Allocate a page. The page that currently resides at pgnoRoot will
8505 ** be moved to the allocated page (unless the allocated page happens
8506 ** to reside at pgnoRoot).
8507 */
dan51f0b6d2013-02-22 20:16:34 +00008508 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00008509 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00008510 return rc;
8511 }
danielk1977003ba062004-11-04 02:57:33 +00008512
8513 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00008514 /* pgnoRoot is the page that will be used for the root-page of
8515 ** the new table (assuming an error did not occur). But we were
8516 ** allocated pgnoMove. If required (i.e. if it was not allocated
8517 ** by extending the file), the current page at position pgnoMove
8518 ** is already journaled.
8519 */
drheeb844a2009-08-08 18:01:07 +00008520 u8 eType = 0;
8521 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00008522
danf7679ad2013-04-03 11:38:36 +00008523 /* Save the positions of any open cursors. This is required in
8524 ** case they are holding a reference to an xFetch reference
8525 ** corresponding to page pgnoRoot. */
8526 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00008527 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00008528 if( rc!=SQLITE_OK ){
8529 return rc;
8530 }
danielk1977f35843b2007-04-07 15:03:17 +00008531
8532 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00008533 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008534 if( rc!=SQLITE_OK ){
8535 return rc;
8536 }
8537 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00008538 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8539 rc = SQLITE_CORRUPT_BKPT;
8540 }
8541 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00008542 releasePage(pRoot);
8543 return rc;
8544 }
drhccae6022005-02-26 17:31:26 +00008545 assert( eType!=PTRMAP_ROOTPAGE );
8546 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00008547 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00008548 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00008549
8550 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00008551 if( rc!=SQLITE_OK ){
8552 return rc;
8553 }
drhb00fc3b2013-08-21 23:42:32 +00008554 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008555 if( rc!=SQLITE_OK ){
8556 return rc;
8557 }
danielk19773b8a05f2007-03-19 17:44:26 +00008558 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00008559 if( rc!=SQLITE_OK ){
8560 releasePage(pRoot);
8561 return rc;
8562 }
8563 }else{
8564 pRoot = pPageMove;
8565 }
8566
danielk197742741be2005-01-08 12:42:39 +00008567 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00008568 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00008569 if( rc ){
8570 releasePage(pRoot);
8571 return rc;
8572 }
drhbf592832010-03-30 15:51:12 +00008573
8574 /* When the new root page was allocated, page 1 was made writable in
8575 ** order either to increase the database filesize, or to decrement the
8576 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8577 */
8578 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00008579 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00008580 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00008581 releasePage(pRoot);
8582 return rc;
8583 }
danielk197742741be2005-01-08 12:42:39 +00008584
danielk1977003ba062004-11-04 02:57:33 +00008585 }else{
drh4f0c5872007-03-26 22:05:01 +00008586 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00008587 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00008588 }
8589#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008590 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00008591 if( createTabFlags & BTREE_INTKEY ){
8592 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8593 }else{
8594 ptfFlags = PTF_ZERODATA | PTF_LEAF;
8595 }
8596 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00008597 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00008598 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00008599 *piTable = (int)pgnoRoot;
8600 return SQLITE_OK;
8601}
drhd677b3d2007-08-20 22:48:41 +00008602int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8603 int rc;
8604 sqlite3BtreeEnter(p);
8605 rc = btreeCreateTable(p, piTable, flags);
8606 sqlite3BtreeLeave(p);
8607 return rc;
8608}
drh8b2f49b2001-06-08 00:21:52 +00008609
8610/*
8611** Erase the given database page and all its children. Return
8612** the page to the freelist.
8613*/
drh4b70f112004-05-02 21:12:19 +00008614static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00008615 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00008616 Pgno pgno, /* Page number to clear */
8617 int freePageFlag, /* Deallocate page if true */
8618 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00008619){
danielk1977146ba992009-07-22 14:08:13 +00008620 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00008621 int rc;
drh4b70f112004-05-02 21:12:19 +00008622 unsigned char *pCell;
8623 int i;
dan8ce71842014-01-14 20:14:09 +00008624 int hdr;
drh80159da2016-12-09 17:32:51 +00008625 CellInfo info;
drh8b2f49b2001-06-08 00:21:52 +00008626
drh1fee73e2007-08-29 04:00:57 +00008627 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00008628 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00008629 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00008630 }
drh28f58dd2015-06-27 19:45:03 +00008631 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00008632 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00008633 if( pPage->bBusy ){
8634 rc = SQLITE_CORRUPT_BKPT;
8635 goto cleardatabasepage_out;
8636 }
8637 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00008638 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00008639 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00008640 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00008641 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00008642 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008643 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008644 }
drh80159da2016-12-09 17:32:51 +00008645 rc = clearCell(pPage, pCell, &info);
danielk19776b456a22005-03-21 04:04:02 +00008646 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008647 }
drha34b6762004-05-07 13:30:42 +00008648 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00008649 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008650 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00008651 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00008652 assert( pPage->intKey || CORRUPT_DB );
8653 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00008654 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00008655 }
8656 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00008657 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00008658 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00008659 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00008660 }
danielk19776b456a22005-03-21 04:04:02 +00008661
8662cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00008663 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00008664 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00008665 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008666}
8667
8668/*
drhab01f612004-05-22 02:55:23 +00008669** Delete all information from a single table in the database. iTable is
8670** the page number of the root of the table. After this routine returns,
8671** the root page is empty, but still exists.
8672**
8673** This routine will fail with SQLITE_LOCKED if there are any open
8674** read cursors on the table. Open write cursors are moved to the
8675** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00008676**
8677** If pnChange is not NULL, then table iTable must be an intkey table. The
8678** integer value pointed to by pnChange is incremented by the number of
8679** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00008680*/
danielk1977c7af4842008-10-27 13:59:33 +00008681int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00008682 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00008683 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00008684 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008685 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008686
drhc046e3e2009-07-15 11:26:44 +00008687 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00008688
drhc046e3e2009-07-15 11:26:44 +00008689 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00008690 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8691 ** is the root of a table b-tree - if it is not, the following call is
8692 ** a no-op). */
drh9ca431a2017-03-29 18:03:50 +00008693 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00008694 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00008695 }
drhd677b3d2007-08-20 22:48:41 +00008696 sqlite3BtreeLeave(p);
8697 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008698}
8699
8700/*
drh079a3072014-03-19 14:10:55 +00008701** Delete all information from the single table that pCur is open on.
8702**
8703** This routine only work for pCur on an ephemeral table.
8704*/
8705int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8706 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8707}
8708
8709/*
drh8b2f49b2001-06-08 00:21:52 +00008710** Erase all information in a table and add the root of the table to
8711** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00008712** page 1) is never added to the freelist.
8713**
8714** This routine will fail with SQLITE_LOCKED if there are any open
8715** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00008716**
8717** If AUTOVACUUM is enabled and the page at iTable is not the last
8718** root page in the database file, then the last root page
8719** in the database file is moved into the slot formerly occupied by
8720** iTable and that last slot formerly occupied by the last root page
8721** is added to the freelist instead of iTable. In this say, all
8722** root pages are kept at the beginning of the database file, which
8723** is necessary for AUTOVACUUM to work right. *piMoved is set to the
8724** page number that used to be the last root page in the file before
8725** the move. If no page gets moved, *piMoved is set to 0.
8726** The last root page is recorded in meta[3] and the value of
8727** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00008728*/
danielk197789d40042008-11-17 14:20:56 +00008729static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00008730 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00008731 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00008732 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00008733
drh1fee73e2007-08-29 04:00:57 +00008734 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008735 assert( p->inTrans==TRANS_WRITE );
drh65f38d92016-11-22 01:26:42 +00008736 assert( iTable>=2 );
drh055f2982016-01-15 15:06:41 +00008737
drhb00fc3b2013-08-21 23:42:32 +00008738 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00008739 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00008740 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00008741 if( rc ){
8742 releasePage(pPage);
8743 return rc;
8744 }
danielk1977a0bf2652004-11-04 14:30:04 +00008745
drh205f48e2004-11-05 00:43:11 +00008746 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00008747
danielk1977a0bf2652004-11-04 14:30:04 +00008748#ifdef SQLITE_OMIT_AUTOVACUUM
drh055f2982016-01-15 15:06:41 +00008749 freePage(pPage, &rc);
8750 releasePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00008751#else
drh055f2982016-01-15 15:06:41 +00008752 if( pBt->autoVacuum ){
8753 Pgno maxRootPgno;
8754 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008755
drh055f2982016-01-15 15:06:41 +00008756 if( iTable==maxRootPgno ){
8757 /* If the table being dropped is the table with the largest root-page
8758 ** number in the database, put the root page on the free list.
danielk1977599fcba2004-11-08 07:13:13 +00008759 */
drhc314dc72009-07-21 11:52:34 +00008760 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008761 releasePage(pPage);
drh055f2982016-01-15 15:06:41 +00008762 if( rc!=SQLITE_OK ){
8763 return rc;
8764 }
8765 }else{
8766 /* The table being dropped does not have the largest root-page
8767 ** number in the database. So move the page that does into the
8768 ** gap left by the deleted root-page.
8769 */
8770 MemPage *pMove;
8771 releasePage(pPage);
8772 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8773 if( rc!=SQLITE_OK ){
8774 return rc;
8775 }
8776 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
8777 releasePage(pMove);
8778 if( rc!=SQLITE_OK ){
8779 return rc;
8780 }
8781 pMove = 0;
8782 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
8783 freePage(pMove, &rc);
8784 releasePage(pMove);
8785 if( rc!=SQLITE_OK ){
8786 return rc;
8787 }
8788 *piMoved = maxRootPgno;
danielk1977a0bf2652004-11-04 14:30:04 +00008789 }
drh055f2982016-01-15 15:06:41 +00008790
8791 /* Set the new 'max-root-page' value in the database header. This
8792 ** is the old value less one, less one more if that happens to
8793 ** be a root-page number, less one again if that is the
8794 ** PENDING_BYTE_PAGE.
drhc046e3e2009-07-15 11:26:44 +00008795 */
drh055f2982016-01-15 15:06:41 +00008796 maxRootPgno--;
8797 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8798 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
8799 maxRootPgno--;
8800 }
8801 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8802
8803 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
8804 }else{
8805 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008806 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00008807 }
drh055f2982016-01-15 15:06:41 +00008808#endif
drh8b2f49b2001-06-08 00:21:52 +00008809 return rc;
8810}
drhd677b3d2007-08-20 22:48:41 +00008811int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8812 int rc;
8813 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00008814 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00008815 sqlite3BtreeLeave(p);
8816 return rc;
8817}
drh8b2f49b2001-06-08 00:21:52 +00008818
drh001bbcb2003-03-19 03:14:00 +00008819
drh8b2f49b2001-06-08 00:21:52 +00008820/*
danielk1977602b4662009-07-02 07:47:33 +00008821** This function may only be called if the b-tree connection already
8822** has a read or write transaction open on the database.
8823**
drh23e11ca2004-05-04 17:27:28 +00008824** Read the meta-information out of a database file. Meta[0]
8825** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00008826** through meta[15] are available for use by higher layers. Meta[0]
8827** is read-only, the others are read/write.
8828**
8829** The schema layer numbers meta values differently. At the schema
8830** layer (and the SetCookie and ReadCookie opcodes) the number of
8831** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00008832**
8833** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
8834** of reading the value out of the header, it instead loads the "DataVersion"
8835** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
8836** database file. It is a number computed by the pager. But its access
8837** pattern is the same as header meta values, and so it is convenient to
8838** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00008839*/
danielk1977602b4662009-07-02 07:47:33 +00008840void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00008841 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008842
drhd677b3d2007-08-20 22:48:41 +00008843 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00008844 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00008845 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00008846 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00008847 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00008848
drh91618562014-12-19 19:28:02 +00008849 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00008850 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00008851 }else{
8852 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
8853 }
drhae157872004-08-14 19:20:09 +00008854
danielk1977602b4662009-07-02 07:47:33 +00008855 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8856 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00008857#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00008858 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8859 pBt->btsFlags |= BTS_READ_ONLY;
8860 }
danielk1977003ba062004-11-04 02:57:33 +00008861#endif
drhae157872004-08-14 19:20:09 +00008862
drhd677b3d2007-08-20 22:48:41 +00008863 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00008864}
8865
8866/*
drh23e11ca2004-05-04 17:27:28 +00008867** Write meta-information back into the database. Meta[0] is
8868** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00008869*/
danielk1977aef0bf62005-12-30 16:28:01 +00008870int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8871 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00008872 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00008873 int rc;
drh23e11ca2004-05-04 17:27:28 +00008874 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00008875 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008876 assert( p->inTrans==TRANS_WRITE );
8877 assert( pBt->pPage1!=0 );
8878 pP1 = pBt->pPage1->aData;
8879 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8880 if( rc==SQLITE_OK ){
8881 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00008882#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00008883 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00008884 assert( pBt->autoVacuum || iMeta==0 );
8885 assert( iMeta==0 || iMeta==1 );
8886 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00008887 }
drh64022502009-01-09 14:11:04 +00008888#endif
drh5df72a52002-06-06 23:16:05 +00008889 }
drhd677b3d2007-08-20 22:48:41 +00008890 sqlite3BtreeLeave(p);
8891 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008892}
drh8c42ca92001-06-22 19:15:00 +00008893
danielk1977a5533162009-02-24 10:01:51 +00008894#ifndef SQLITE_OMIT_BTREECOUNT
8895/*
8896** The first argument, pCur, is a cursor opened on some b-tree. Count the
8897** number of entries in the b-tree and write the result to *pnEntry.
8898**
8899** SQLITE_OK is returned if the operation is successfully executed.
8900** Otherwise, if an error is encountered (i.e. an IO error or database
8901** corruption) an SQLite error code is returned.
8902*/
8903int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
8904 i64 nEntry = 0; /* Value to return in *pnEntry */
8905 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00008906
8907 if( pCur->pgnoRoot==0 ){
8908 *pnEntry = 0;
8909 return SQLITE_OK;
8910 }
danielk1977a5533162009-02-24 10:01:51 +00008911 rc = moveToRoot(pCur);
8912
8913 /* Unless an error occurs, the following loop runs one iteration for each
8914 ** page in the B-Tree structure (not including overflow pages).
8915 */
8916 while( rc==SQLITE_OK ){
8917 int iIdx; /* Index of child node in parent */
8918 MemPage *pPage; /* Current page of the b-tree */
8919
8920 /* If this is a leaf page or the tree is not an int-key tree, then
8921 ** this page contains countable entries. Increment the entry counter
8922 ** accordingly.
8923 */
8924 pPage = pCur->apPage[pCur->iPage];
8925 if( pPage->leaf || !pPage->intKey ){
8926 nEntry += pPage->nCell;
8927 }
8928
8929 /* pPage is a leaf node. This loop navigates the cursor so that it
8930 ** points to the first interior cell that it points to the parent of
8931 ** the next page in the tree that has not yet been visited. The
8932 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
8933 ** of the page, or to the number of cells in the page if the next page
8934 ** to visit is the right-child of its parent.
8935 **
8936 ** If all pages in the tree have been visited, return SQLITE_OK to the
8937 ** caller.
8938 */
8939 if( pPage->leaf ){
8940 do {
8941 if( pCur->iPage==0 ){
8942 /* All pages of the b-tree have been visited. Return successfully. */
8943 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00008944 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008945 }
danielk197730548662009-07-09 05:07:37 +00008946 moveToParent(pCur);
drh75e96b32017-04-01 00:20:06 +00008947 }while ( pCur->ix>=pCur->apPage[pCur->iPage]->nCell );
danielk1977a5533162009-02-24 10:01:51 +00008948
drh75e96b32017-04-01 00:20:06 +00008949 pCur->ix++;
danielk1977a5533162009-02-24 10:01:51 +00008950 pPage = pCur->apPage[pCur->iPage];
8951 }
8952
8953 /* Descend to the child node of the cell that the cursor currently
8954 ** points at. This is the right-child if (iIdx==pPage->nCell).
8955 */
drh75e96b32017-04-01 00:20:06 +00008956 iIdx = pCur->ix;
danielk1977a5533162009-02-24 10:01:51 +00008957 if( iIdx==pPage->nCell ){
8958 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
8959 }else{
8960 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
8961 }
8962 }
8963
shanebe217792009-03-05 04:20:31 +00008964 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00008965 return rc;
8966}
8967#endif
drhdd793422001-06-28 01:54:48 +00008968
drhdd793422001-06-28 01:54:48 +00008969/*
drh5eddca62001-06-30 21:53:53 +00008970** Return the pager associated with a BTree. This routine is used for
8971** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00008972*/
danielk1977aef0bf62005-12-30 16:28:01 +00008973Pager *sqlite3BtreePager(Btree *p){
8974 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00008975}
drh5eddca62001-06-30 21:53:53 +00008976
drhb7f91642004-10-31 02:22:47 +00008977#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008978/*
8979** Append a message to the error message string.
8980*/
drh2e38c322004-09-03 18:38:44 +00008981static void checkAppendMsg(
8982 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00008983 const char *zFormat,
8984 ...
8985){
8986 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00008987 if( !pCheck->mxErr ) return;
8988 pCheck->mxErr--;
8989 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00008990 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00008991 if( pCheck->errMsg.nChar ){
8992 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00008993 }
drh867db832014-09-26 02:41:05 +00008994 if( pCheck->zPfx ){
drh5f4a6862016-01-30 12:50:25 +00008995 sqlite3XPrintf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +00008996 }
drh5f4a6862016-01-30 12:50:25 +00008997 sqlite3VXPrintf(&pCheck->errMsg, zFormat, ap);
drhf089aa42008-07-08 19:34:06 +00008998 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00008999 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00009000 pCheck->mallocFailed = 1;
9001 }
drh5eddca62001-06-30 21:53:53 +00009002}
drhb7f91642004-10-31 02:22:47 +00009003#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009004
drhb7f91642004-10-31 02:22:47 +00009005#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00009006
9007/*
9008** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9009** corresponds to page iPg is already set.
9010*/
9011static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9012 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9013 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
9014}
9015
9016/*
9017** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
9018*/
9019static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9020 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9021 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
9022}
9023
9024
drh5eddca62001-06-30 21:53:53 +00009025/*
9026** Add 1 to the reference count for page iPage. If this is the second
9027** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00009028** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00009029** if this is the first reference to the page.
9030**
9031** Also check that the page number is in bounds.
9032*/
drh867db832014-09-26 02:41:05 +00009033static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh5eddca62001-06-30 21:53:53 +00009034 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00009035 if( iPage>pCheck->nPage ){
drh867db832014-09-26 02:41:05 +00009036 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009037 return 1;
9038 }
dan1235bb12012-04-03 17:43:28 +00009039 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00009040 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009041 return 1;
9042 }
dan1235bb12012-04-03 17:43:28 +00009043 setPageReferenced(pCheck, iPage);
9044 return 0;
drh5eddca62001-06-30 21:53:53 +00009045}
9046
danielk1977afcdd022004-10-31 16:25:42 +00009047#ifndef SQLITE_OMIT_AUTOVACUUM
9048/*
9049** Check that the entry in the pointer-map for page iChild maps to
9050** page iParent, pointer type ptrType. If not, append an error message
9051** to pCheck.
9052*/
9053static void checkPtrmap(
9054 IntegrityCk *pCheck, /* Integrity check context */
9055 Pgno iChild, /* Child page number */
9056 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00009057 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00009058){
9059 int rc;
9060 u8 ePtrmapType;
9061 Pgno iPtrmapParent;
9062
9063 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
9064 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00009065 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00009066 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00009067 return;
9068 }
9069
9070 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00009071 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00009072 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
9073 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
9074 }
9075}
9076#endif
9077
drh5eddca62001-06-30 21:53:53 +00009078/*
9079** Check the integrity of the freelist or of an overflow page list.
9080** Verify that the number of pages on the list is N.
9081*/
drh30e58752002-03-02 20:41:57 +00009082static void checkList(
9083 IntegrityCk *pCheck, /* Integrity checking context */
9084 int isFreeList, /* True for a freelist. False for overflow page list */
9085 int iPage, /* Page number for first page in the list */
drh867db832014-09-26 02:41:05 +00009086 int N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00009087){
9088 int i;
drh3a4c1412004-05-09 20:40:11 +00009089 int expected = N;
9090 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00009091 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00009092 DbPage *pOvflPage;
9093 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00009094 if( iPage<1 ){
drh867db832014-09-26 02:41:05 +00009095 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009096 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00009097 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00009098 break;
9099 }
drh867db832014-09-26 02:41:05 +00009100 if( checkRef(pCheck, iPage) ) break;
drh9584f582015-11-04 20:22:37 +00009101 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
drh867db832014-09-26 02:41:05 +00009102 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009103 break;
9104 }
danielk19773b8a05f2007-03-19 17:44:26 +00009105 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00009106 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00009107 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00009108#ifndef SQLITE_OMIT_AUTOVACUUM
9109 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009110 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009111 }
9112#endif
drh43b18e12010-08-17 19:40:08 +00009113 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00009114 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009115 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00009116 N--;
9117 }else{
9118 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00009119 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00009120#ifndef SQLITE_OMIT_AUTOVACUUM
9121 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009122 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009123 }
9124#endif
drh867db832014-09-26 02:41:05 +00009125 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00009126 }
9127 N -= n;
drh30e58752002-03-02 20:41:57 +00009128 }
drh30e58752002-03-02 20:41:57 +00009129 }
danielk1977afcdd022004-10-31 16:25:42 +00009130#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009131 else{
9132 /* If this database supports auto-vacuum and iPage is not the last
9133 ** page in this overflow list, check that the pointer-map entry for
9134 ** the following page matches iPage.
9135 */
9136 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00009137 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00009138 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00009139 }
danielk1977afcdd022004-10-31 16:25:42 +00009140 }
9141#endif
danielk19773b8a05f2007-03-19 17:44:26 +00009142 iPage = get4byte(pOvflData);
9143 sqlite3PagerUnref(pOvflPage);
danad41f5e2015-09-18 14:45:01 +00009144
9145 if( isFreeList && N<(iPage!=0) ){
9146 checkAppendMsg(pCheck, "free-page count in header is too small");
9147 }
drh5eddca62001-06-30 21:53:53 +00009148 }
9149}
drhb7f91642004-10-31 02:22:47 +00009150#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009151
drh67731a92015-04-16 11:56:03 +00009152/*
9153** An implementation of a min-heap.
9154**
9155** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00009156** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00009157** and aHeap[N*2+1].
9158**
9159** The heap property is this: Every node is less than or equal to both
9160** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00009161** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00009162**
9163** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9164** the heap, preserving the heap property. The btreeHeapPull() routine
9165** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00009166** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00009167** property.
9168**
9169** This heap is used for cell overlap and coverage testing. Each u32
9170** entry represents the span of a cell or freeblock on a btree page.
9171** The upper 16 bits are the index of the first byte of a range and the
9172** lower 16 bits are the index of the last byte of that range.
9173*/
9174static void btreeHeapInsert(u32 *aHeap, u32 x){
9175 u32 j, i = ++aHeap[0];
9176 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00009177 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00009178 x = aHeap[j];
9179 aHeap[j] = aHeap[i];
9180 aHeap[i] = x;
9181 i = j;
9182 }
9183}
9184static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9185 u32 j, i, x;
9186 if( (x = aHeap[0])==0 ) return 0;
9187 *pOut = aHeap[1];
9188 aHeap[1] = aHeap[x];
9189 aHeap[x] = 0xffffffff;
9190 aHeap[0]--;
9191 i = 1;
9192 while( (j = i*2)<=aHeap[0] ){
9193 if( aHeap[j]>aHeap[j+1] ) j++;
9194 if( aHeap[i]<aHeap[j] ) break;
9195 x = aHeap[i];
9196 aHeap[i] = aHeap[j];
9197 aHeap[j] = x;
9198 i = j;
9199 }
9200 return 1;
9201}
9202
drhb7f91642004-10-31 02:22:47 +00009203#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009204/*
9205** Do various sanity checks on a single page of a tree. Return
9206** the tree depth. Root pages return 0. Parents of root pages
9207** return 1, and so forth.
9208**
9209** These checks are done:
9210**
9211** 1. Make sure that cells and freeblocks do not overlap
9212** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +00009213** 2. Make sure integer cell keys are in order.
9214** 3. Check the integrity of overflow pages.
9215** 4. Recursively call checkTreePage on all children.
9216** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +00009217*/
9218static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00009219 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00009220 int iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +00009221 i64 *piMinKey, /* Write minimum integer primary key here */
9222 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +00009223){
drhcbc6b712015-07-02 16:17:30 +00009224 MemPage *pPage = 0; /* The page being analyzed */
9225 int i; /* Loop counter */
9226 int rc; /* Result code from subroutine call */
9227 int depth = -1, d2; /* Depth of a subtree */
9228 int pgno; /* Page number */
9229 int nFrag; /* Number of fragmented bytes on the page */
9230 int hdr; /* Offset to the page header */
9231 int cellStart; /* Offset to the start of the cell pointer array */
9232 int nCell; /* Number of cells */
9233 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9234 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
9235 ** False if IPK must be strictly less than maxKey */
9236 u8 *data; /* Page content */
9237 u8 *pCell; /* Cell content */
9238 u8 *pCellIdx; /* Next element of the cell pointer array */
9239 BtShared *pBt; /* The BtShared object that owns pPage */
9240 u32 pc; /* Address of a cell */
9241 u32 usableSize; /* Usable size of the page */
9242 u32 contentOffset; /* Offset to the start of the cell content area */
9243 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +00009244 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +00009245 const char *saved_zPfx = pCheck->zPfx;
9246 int saved_v1 = pCheck->v1;
9247 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +00009248 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +00009249
drh5eddca62001-06-30 21:53:53 +00009250 /* Check that the page exists
9251 */
drhd9cb6ac2005-10-20 07:28:17 +00009252 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00009253 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00009254 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00009255 if( checkRef(pCheck, iPage) ) return 0;
9256 pCheck->zPfx = "Page %d: ";
9257 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00009258 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00009259 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009260 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00009261 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009262 }
danielk197793caf5a2009-07-11 06:55:33 +00009263
9264 /* Clear MemPage.isInit to make sure the corruption detection code in
9265 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +00009266 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +00009267 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00009268 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00009269 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00009270 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00009271 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +00009272 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009273 }
drhcbc6b712015-07-02 16:17:30 +00009274 data = pPage->aData;
9275 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +00009276
drhcbc6b712015-07-02 16:17:30 +00009277 /* Set up for cell analysis */
drhe05b3f82015-07-01 17:53:49 +00009278 pCheck->zPfx = "On tree page %d cell %d: ";
drhcbc6b712015-07-02 16:17:30 +00009279 contentOffset = get2byteNotZero(&data[hdr+5]);
9280 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
9281
9282 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9283 ** number of cells on the page. */
9284 nCell = get2byte(&data[hdr+3]);
9285 assert( pPage->nCell==nCell );
9286
9287 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9288 ** immediately follows the b-tree page header. */
9289 cellStart = hdr + 12 - 4*pPage->leaf;
9290 assert( pPage->aCellIdx==&data[cellStart] );
9291 pCellIdx = &data[cellStart + 2*(nCell-1)];
9292
9293 if( !pPage->leaf ){
9294 /* Analyze the right-child page of internal pages */
9295 pgno = get4byte(&data[hdr+8]);
9296#ifndef SQLITE_OMIT_AUTOVACUUM
9297 if( pBt->autoVacuum ){
9298 pCheck->zPfx = "On page %d at right child: ";
9299 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9300 }
9301#endif
9302 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9303 keyCanBeEqual = 0;
9304 }else{
9305 /* For leaf pages, the coverage check will occur in the same loop
9306 ** as the other cell checks, so initialize the heap. */
9307 heap = pCheck->heap;
9308 heap[0] = 0;
drh5eddca62001-06-30 21:53:53 +00009309 }
9310
drhcbc6b712015-07-02 16:17:30 +00009311 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9312 ** integer offsets to the cell contents. */
9313 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +00009314 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00009315
drhcbc6b712015-07-02 16:17:30 +00009316 /* Check cell size */
drh867db832014-09-26 02:41:05 +00009317 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +00009318 assert( pCellIdx==&data[cellStart + i*2] );
9319 pc = get2byteAligned(pCellIdx);
9320 pCellIdx -= 2;
9321 if( pc<contentOffset || pc>usableSize-4 ){
9322 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9323 pc, contentOffset, usableSize-4);
9324 doCoverageCheck = 0;
9325 continue;
shaneh195475d2010-02-19 04:28:08 +00009326 }
drhcbc6b712015-07-02 16:17:30 +00009327 pCell = &data[pc];
9328 pPage->xParseCell(pPage, pCell, &info);
9329 if( pc+info.nSize>usableSize ){
9330 checkAppendMsg(pCheck, "Extends off end of page");
9331 doCoverageCheck = 0;
9332 continue;
drh5eddca62001-06-30 21:53:53 +00009333 }
9334
drhcbc6b712015-07-02 16:17:30 +00009335 /* Check for integer primary key out of range */
9336 if( pPage->intKey ){
9337 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9338 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9339 }
9340 maxKey = info.nKey;
dan4b2667c2017-05-01 18:24:01 +00009341 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */
drhcbc6b712015-07-02 16:17:30 +00009342 }
9343
9344 /* Check the content overflow list */
9345 if( info.nPayload>info.nLocal ){
9346 int nPage; /* Number of pages on the overflow chain */
9347 Pgno pgnoOvfl; /* First page of the overflow chain */
drh45ac1c72015-12-18 03:59:16 +00009348 assert( pc + info.nSize - 4 <= usableSize );
drhcbc6b712015-07-02 16:17:30 +00009349 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
drh45ac1c72015-12-18 03:59:16 +00009350 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
drhda200cc2004-05-09 11:51:38 +00009351#ifndef SQLITE_OMIT_AUTOVACUUM
9352 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009353 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
drhda200cc2004-05-09 11:51:38 +00009354 }
9355#endif
drh867db832014-09-26 02:41:05 +00009356 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00009357 }
9358
drh5eddca62001-06-30 21:53:53 +00009359 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +00009360 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +00009361 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00009362#ifndef SQLITE_OMIT_AUTOVACUUM
9363 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009364 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009365 }
9366#endif
drhcbc6b712015-07-02 16:17:30 +00009367 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9368 keyCanBeEqual = 0;
9369 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +00009370 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +00009371 depth = d2;
drh5eddca62001-06-30 21:53:53 +00009372 }
drhcbc6b712015-07-02 16:17:30 +00009373 }else{
9374 /* Populate the coverage-checking heap for leaf pages */
9375 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +00009376 }
9377 }
drhcbc6b712015-07-02 16:17:30 +00009378 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +00009379
drh5eddca62001-06-30 21:53:53 +00009380 /* Check for complete coverage of the page
9381 */
drh867db832014-09-26 02:41:05 +00009382 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +00009383 if( doCoverageCheck && pCheck->mxErr>0 ){
9384 /* For leaf pages, the min-heap has already been initialized and the
9385 ** cells have already been inserted. But for internal pages, that has
9386 ** not yet been done, so do it now */
9387 if( !pPage->leaf ){
9388 heap = pCheck->heap;
9389 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +00009390 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +00009391 u32 size;
9392 pc = get2byteAligned(&data[cellStart+i*2]);
9393 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +00009394 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +00009395 }
drh2e38c322004-09-03 18:38:44 +00009396 }
drhcbc6b712015-07-02 16:17:30 +00009397 /* Add the freeblocks to the min-heap
9398 **
9399 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +00009400 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +00009401 ** freeblocks on the page.
9402 */
drh8c2bbb62009-07-10 02:52:20 +00009403 i = get2byte(&data[hdr+1]);
9404 while( i>0 ){
9405 int size, j;
mistachkinc29cbb02015-07-02 16:52:01 +00009406 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009407 size = get2byte(&data[i+2]);
mistachkinc29cbb02015-07-02 16:52:01 +00009408 assert( (u32)(i+size)<=usableSize ); /* Enforced by btreeInitPage() */
drhe56d4302015-07-08 01:22:52 +00009409 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +00009410 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9411 ** big-endian integer which is the offset in the b-tree page of the next
9412 ** freeblock in the chain, or zero if the freeblock is the last on the
9413 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +00009414 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +00009415 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9416 ** increasing offset. */
drh8c2bbb62009-07-10 02:52:20 +00009417 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
mistachkinc29cbb02015-07-02 16:52:01 +00009418 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009419 i = j;
drh2e38c322004-09-03 18:38:44 +00009420 }
drhcbc6b712015-07-02 16:17:30 +00009421 /* Analyze the min-heap looking for overlap between cells and/or
9422 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +00009423 **
9424 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
9425 ** There is an implied first entry the covers the page header, the cell
9426 ** pointer index, and the gap between the cell pointer index and the start
9427 ** of cell content.
9428 **
9429 ** The loop below pulls entries from the min-heap in order and compares
9430 ** the start_address against the previous end_address. If there is an
9431 ** overlap, that means bytes are used multiple times. If there is a gap,
9432 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +00009433 */
9434 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +00009435 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +00009436 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +00009437 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +00009438 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +00009439 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +00009440 break;
drh67731a92015-04-16 11:56:03 +00009441 }else{
drhcbc6b712015-07-02 16:17:30 +00009442 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +00009443 prev = x;
drh2e38c322004-09-03 18:38:44 +00009444 }
9445 }
drhcbc6b712015-07-02 16:17:30 +00009446 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +00009447 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9448 ** is stored in the fifth field of the b-tree page header.
9449 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9450 ** number of fragmented free bytes within the cell content area.
9451 */
drhcbc6b712015-07-02 16:17:30 +00009452 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +00009453 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +00009454 "Fragmentation of %d bytes reported as %d on page %d",
drhcbc6b712015-07-02 16:17:30 +00009455 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00009456 }
9457 }
drh867db832014-09-26 02:41:05 +00009458
9459end_of_check:
drh72e191e2015-07-04 11:14:20 +00009460 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drh4b70f112004-05-02 21:12:19 +00009461 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00009462 pCheck->zPfx = saved_zPfx;
9463 pCheck->v1 = saved_v1;
9464 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +00009465 return depth+1;
drh5eddca62001-06-30 21:53:53 +00009466}
drhb7f91642004-10-31 02:22:47 +00009467#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009468
drhb7f91642004-10-31 02:22:47 +00009469#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009470/*
9471** This routine does a complete check of the given BTree file. aRoot[] is
9472** an array of pages numbers were each page number is the root page of
9473** a table. nRoot is the number of entries in aRoot.
9474**
danielk19773509a652009-07-06 18:56:13 +00009475** A read-only or read-write transaction must be opened before calling
9476** this function.
9477**
drhc890fec2008-08-01 20:10:08 +00009478** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00009479** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00009480** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00009481** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00009482*/
drh1dcdbc02007-01-27 02:24:54 +00009483char *sqlite3BtreeIntegrityCheck(
9484 Btree *p, /* The btree to be checked */
9485 int *aRoot, /* An array of root pages numbers for individual trees */
9486 int nRoot, /* Number of entries in aRoot[] */
9487 int mxErr, /* Stop reporting errors after this many */
9488 int *pnErr /* Write number of errors seen to this variable */
9489){
danielk197789d40042008-11-17 14:20:56 +00009490 Pgno i;
drhaaab5722002-02-19 13:39:21 +00009491 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00009492 BtShared *pBt = p->pBt;
drhcbc6b712015-07-02 16:17:30 +00009493 int savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +00009494 char zErr[100];
drhcbc6b712015-07-02 16:17:30 +00009495 VVA_ONLY( int nRef );
drh5eddca62001-06-30 21:53:53 +00009496
drhd677b3d2007-08-20 22:48:41 +00009497 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00009498 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhcc5f8a42016-02-06 22:32:06 +00009499 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
9500 assert( nRef>=0 );
drh5eddca62001-06-30 21:53:53 +00009501 sCheck.pBt = pBt;
9502 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00009503 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00009504 sCheck.mxErr = mxErr;
9505 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00009506 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +00009507 sCheck.zPfx = 0;
9508 sCheck.v1 = 0;
9509 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +00009510 sCheck.aPgRef = 0;
9511 sCheck.heap = 0;
9512 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh5f4a6862016-01-30 12:50:25 +00009513 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
drh0de8c112002-07-06 16:32:14 +00009514 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +00009515 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +00009516 }
dan1235bb12012-04-03 17:43:28 +00009517
9518 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9519 if( !sCheck.aPgRef ){
drhe05b3f82015-07-01 17:53:49 +00009520 sCheck.mallocFailed = 1;
9521 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +00009522 }
drhe05b3f82015-07-01 17:53:49 +00009523 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
9524 if( sCheck.heap==0 ){
9525 sCheck.mallocFailed = 1;
9526 goto integrity_ck_cleanup;
9527 }
9528
drh42cac6d2004-11-20 20:31:11 +00009529 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00009530 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +00009531
9532 /* Check the integrity of the freelist
9533 */
drh867db832014-09-26 02:41:05 +00009534 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +00009535 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +00009536 get4byte(&pBt->pPage1->aData[36]));
9537 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00009538
9539 /* Check all the tables.
9540 */
drhcbc6b712015-07-02 16:17:30 +00009541 testcase( pBt->db->flags & SQLITE_CellSizeCk );
9542 pBt->db->flags &= ~SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +00009543 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +00009544 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +00009545 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00009546#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009547 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +00009548 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009549 }
9550#endif
drhcbc6b712015-07-02 16:17:30 +00009551 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +00009552 }
drhcbc6b712015-07-02 16:17:30 +00009553 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +00009554
9555 /* Make sure every page in the file is referenced
9556 */
drh1dcdbc02007-01-27 02:24:54 +00009557 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00009558#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00009559 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +00009560 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00009561 }
danielk1977afcdd022004-10-31 16:25:42 +00009562#else
9563 /* If the database supports auto-vacuum, make sure no tables contain
9564 ** references to pointer-map pages.
9565 */
dan1235bb12012-04-03 17:43:28 +00009566 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00009567 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009568 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +00009569 }
dan1235bb12012-04-03 17:43:28 +00009570 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00009571 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009572 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +00009573 }
9574#endif
drh5eddca62001-06-30 21:53:53 +00009575 }
9576
drh5eddca62001-06-30 21:53:53 +00009577 /* Clean up and report errors.
9578 */
drhe05b3f82015-07-01 17:53:49 +00009579integrity_ck_cleanup:
9580 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +00009581 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00009582 if( sCheck.mallocFailed ){
9583 sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009584 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +00009585 }
drh1dcdbc02007-01-27 02:24:54 +00009586 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00009587 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009588 /* Make sure this analysis did not leave any unref() pages. */
9589 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
9590 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +00009591 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00009592}
drhb7f91642004-10-31 02:22:47 +00009593#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00009594
drh73509ee2003-04-06 20:44:45 +00009595/*
drhd4e0bb02012-05-27 01:19:04 +00009596** Return the full pathname of the underlying database file. Return
9597** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00009598**
9599** The pager filename is invariant as long as the pager is
9600** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00009601*/
danielk1977aef0bf62005-12-30 16:28:01 +00009602const char *sqlite3BtreeGetFilename(Btree *p){
9603 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00009604 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00009605}
9606
9607/*
danielk19775865e3d2004-06-14 06:03:57 +00009608** Return the pathname of the journal file for this database. The return
9609** value of this routine is the same regardless of whether the journal file
9610** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00009611**
9612** The pager journal filename is invariant as long as the pager is
9613** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00009614*/
danielk1977aef0bf62005-12-30 16:28:01 +00009615const char *sqlite3BtreeGetJournalname(Btree *p){
9616 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00009617 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00009618}
9619
danielk19771d850a72004-05-31 08:26:49 +00009620/*
9621** Return non-zero if a transaction is active.
9622*/
danielk1977aef0bf62005-12-30 16:28:01 +00009623int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00009624 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00009625 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00009626}
9627
dana550f2d2010-08-02 10:47:05 +00009628#ifndef SQLITE_OMIT_WAL
9629/*
9630** Run a checkpoint on the Btree passed as the first argument.
9631**
9632** Return SQLITE_LOCKED if this or any other connection has an open
9633** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00009634**
dancdc1f042010-11-18 12:11:05 +00009635** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00009636*/
dancdc1f042010-11-18 12:11:05 +00009637int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00009638 int rc = SQLITE_OK;
9639 if( p ){
9640 BtShared *pBt = p->pBt;
9641 sqlite3BtreeEnter(p);
9642 if( pBt->inTransaction!=TRANS_NONE ){
9643 rc = SQLITE_LOCKED;
9644 }else{
dan7fb89902016-08-12 16:21:15 +00009645 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00009646 }
9647 sqlite3BtreeLeave(p);
9648 }
9649 return rc;
9650}
9651#endif
9652
danielk19771d850a72004-05-31 08:26:49 +00009653/*
danielk19772372c2b2006-06-27 16:34:56 +00009654** Return non-zero if a read (or write) transaction is active.
9655*/
9656int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00009657 assert( p );
drhe5fe6902007-12-07 18:55:28 +00009658 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00009659 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00009660}
9661
danielk197704103022009-02-03 16:51:24 +00009662int sqlite3BtreeIsInBackup(Btree *p){
9663 assert( p );
9664 assert( sqlite3_mutex_held(p->db->mutex) );
9665 return p->nBackup!=0;
9666}
9667
danielk19772372c2b2006-06-27 16:34:56 +00009668/*
danielk1977da184232006-01-05 11:34:32 +00009669** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00009670** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00009671** purposes (for example, to store a high-level schema associated with
9672** the shared-btree). The btree layer manages reference counting issues.
9673**
9674** The first time this is called on a shared-btree, nBytes bytes of memory
9675** are allocated, zeroed, and returned to the caller. For each subsequent
9676** call the nBytes parameter is ignored and a pointer to the same blob
9677** of memory returned.
9678**
danielk1977171bfed2008-06-23 09:50:50 +00009679** If the nBytes parameter is 0 and the blob of memory has not yet been
9680** allocated, a null pointer is returned. If the blob has already been
9681** allocated, it is returned as normal.
9682**
danielk1977da184232006-01-05 11:34:32 +00009683** Just before the shared-btree is closed, the function passed as the
9684** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00009685** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00009686** on the memory, the btree layer does that.
9687*/
9688void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9689 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00009690 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00009691 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00009692 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00009693 pBt->xFreeSchema = xFree;
9694 }
drh27641702007-08-22 02:56:42 +00009695 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00009696 return pBt->pSchema;
9697}
9698
danielk1977c87d34d2006-01-06 13:00:28 +00009699/*
danielk1977404ca072009-03-16 13:19:36 +00009700** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9701** btree as the argument handle holds an exclusive lock on the
9702** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00009703*/
9704int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00009705 int rc;
drhe5fe6902007-12-07 18:55:28 +00009706 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00009707 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00009708 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9709 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00009710 sqlite3BtreeLeave(p);
9711 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00009712}
9713
drha154dcd2006-03-22 22:10:07 +00009714
9715#ifndef SQLITE_OMIT_SHARED_CACHE
9716/*
9717** Obtain a lock on the table whose root page is iTab. The
9718** lock is a write lock if isWritelock is true or a read lock
9719** if it is false.
9720*/
danielk1977c00da102006-01-07 13:21:04 +00009721int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00009722 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00009723 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00009724 if( p->sharable ){
9725 u8 lockType = READ_LOCK + isWriteLock;
9726 assert( READ_LOCK+1==WRITE_LOCK );
9727 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00009728
drh6a9ad3d2008-04-02 16:29:30 +00009729 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00009730 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009731 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00009732 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009733 }
9734 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00009735 }
9736 return rc;
9737}
drha154dcd2006-03-22 22:10:07 +00009738#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00009739
danielk1977b4e9af92007-05-01 17:49:49 +00009740#ifndef SQLITE_OMIT_INCRBLOB
9741/*
9742** Argument pCsr must be a cursor opened for writing on an
9743** INTKEY table currently pointing at a valid table entry.
9744** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00009745**
9746** Only the data content may only be modified, it is not possible to
9747** change the length of the data stored. If this function is called with
9748** parameters that attempt to write past the end of the existing data,
9749** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00009750*/
danielk1977dcbb5d32007-05-04 18:36:44 +00009751int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00009752 int rc;
dan7a2347e2016-01-07 16:43:54 +00009753 assert( cursorOwnsBtShared(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00009754 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +00009755 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +00009756
danielk1977c9000e62009-07-08 13:55:28 +00009757 rc = restoreCursorPosition(pCsr);
9758 if( rc!=SQLITE_OK ){
9759 return rc;
9760 }
danielk19773588ceb2008-06-10 17:30:26 +00009761 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9762 if( pCsr->eState!=CURSOR_VALID ){
9763 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00009764 }
9765
dan227a1c42013-04-03 11:17:39 +00009766 /* Save the positions of all other cursors open on this table. This is
9767 ** required in case any of them are holding references to an xFetch
9768 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00009769 **
drh3f387402014-09-24 01:23:00 +00009770 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +00009771 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9772 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00009773 */
drh370c9f42013-04-03 20:04:04 +00009774 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9775 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00009776
danielk1977c9000e62009-07-08 13:55:28 +00009777 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00009778 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00009779 ** (b) there is a read/write transaction open,
9780 ** (c) the connection holds a write-lock on the table (if required),
9781 ** (d) there are no conflicting read-locks, and
9782 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00009783 */
drh036dbec2014-03-11 23:40:44 +00009784 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +00009785 return SQLITE_READONLY;
9786 }
drhc9166342012-01-05 23:32:06 +00009787 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9788 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009789 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9790 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00009791 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00009792
drhfb192682009-07-11 18:26:28 +00009793 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00009794}
danielk19772dec9702007-05-02 16:48:37 +00009795
9796/*
dan5a500af2014-03-11 20:33:04 +00009797** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +00009798*/
dan5a500af2014-03-11 20:33:04 +00009799void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +00009800 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +00009801 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +00009802}
danielk1977b4e9af92007-05-01 17:49:49 +00009803#endif
dane04dc882010-04-20 18:53:15 +00009804
9805/*
9806** Set both the "read version" (single byte at byte offset 18) and
9807** "write version" (single byte at byte offset 19) fields in the database
9808** header to iVersion.
9809*/
9810int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9811 BtShared *pBt = pBtree->pBt;
9812 int rc; /* Return code */
9813
dane04dc882010-04-20 18:53:15 +00009814 assert( iVersion==1 || iVersion==2 );
9815
danb9780022010-04-21 18:37:57 +00009816 /* If setting the version fields to 1, do not automatically open the
9817 ** WAL connection, even if the version fields are currently set to 2.
9818 */
drhc9166342012-01-05 23:32:06 +00009819 pBt->btsFlags &= ~BTS_NO_WAL;
9820 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00009821
9822 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00009823 if( rc==SQLITE_OK ){
9824 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00009825 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00009826 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00009827 if( rc==SQLITE_OK ){
9828 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9829 if( rc==SQLITE_OK ){
9830 aData[18] = (u8)iVersion;
9831 aData[19] = (u8)iVersion;
9832 }
9833 }
9834 }
dane04dc882010-04-20 18:53:15 +00009835 }
9836
drhc9166342012-01-05 23:32:06 +00009837 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00009838 return rc;
9839}
dan428c2182012-08-06 18:50:11 +00009840
drhe0997b32015-03-20 14:57:50 +00009841/*
9842** Return true if the cursor has a hint specified. This routine is
9843** only used from within assert() statements
9844*/
9845int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
9846 return (pCsr->hints & mask)!=0;
9847}
drhe0997b32015-03-20 14:57:50 +00009848
drh781597f2014-05-21 08:21:07 +00009849/*
9850** Return true if the given Btree is read-only.
9851*/
9852int sqlite3BtreeIsReadonly(Btree *p){
9853 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9854}
drhdef68892014-11-04 12:11:23 +00009855
9856/*
9857** Return the size of the header added to each page by this module.
9858*/
drh37c057b2014-12-30 00:57:29 +00009859int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
dan20d876f2016-01-07 16:06:22 +00009860
drh5a1fb182016-01-08 19:34:39 +00009861#if !defined(SQLITE_OMIT_SHARED_CACHE)
dan20d876f2016-01-07 16:06:22 +00009862/*
9863** Return true if the Btree passed as the only argument is sharable.
9864*/
9865int sqlite3BtreeSharable(Btree *p){
9866 return p->sharable;
9867}
dan272989b2016-07-06 10:12:02 +00009868
9869/*
9870** Return the number of connections to the BtShared object accessed by
9871** the Btree handle passed as the only argument. For private caches
9872** this is always 1. For shared caches it may be 1 or greater.
9873*/
9874int sqlite3BtreeConnectionCount(Btree *p){
9875 testcase( p->sharable );
9876 return p->pBt->nRef;
9877}
drh5a1fb182016-01-08 19:34:39 +00009878#endif