blob: ce98149e3cc24885d05af05986b3ab76554d06d8 [file] [log] [blame]
dan7c246102010-04-12 19:00:29 +00001/*
drh7ed91f22010-04-29 22:34:07 +00002** 2010 February 1
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
drh027a1282010-05-19 01:53:53 +000013** This file contains the implementation of a write-ahead log (WAL) used in
14** "journal_mode=WAL" mode.
drh29d4dbe2010-05-18 23:29:52 +000015**
drh7ed91f22010-04-29 22:34:07 +000016** WRITE-AHEAD LOG (WAL) FILE FORMAT
dan97a31352010-04-16 13:59:31 +000017**
drh7e263722010-05-20 21:21:09 +000018** A WAL file consists of a header followed by zero or more "frames".
drh027a1282010-05-19 01:53:53 +000019** Each frame records the revised content of a single page from the
drh29d4dbe2010-05-18 23:29:52 +000020** database file. All changes to the database are recorded by writing
21** frames into the WAL. Transactions commit when a frame is written that
22** contains a commit marker. A single WAL can and usually does record
23** multiple transactions. Periodically, the content of the WAL is
24** transferred back into the database file in an operation called a
25** "checkpoint".
26**
27** A single WAL file can be used multiple times. In other words, the
drh027a1282010-05-19 01:53:53 +000028** WAL can fill up with frames and then be checkpointed and then new
drh29d4dbe2010-05-18 23:29:52 +000029** frames can overwrite the old ones. A WAL always grows from beginning
30** toward the end. Checksums and counters attached to each frame are
31** used to determine which frames within the WAL are valid and which
32** are leftovers from prior checkpoints.
33**
drhcd285082010-06-23 22:00:35 +000034** The WAL header is 32 bytes in size and consists of the following eight
dan97a31352010-04-16 13:59:31 +000035** big-endian 32-bit unsigned integer values:
36**
drh1b78eaf2010-05-25 13:40:03 +000037** 0: Magic number. 0x377f0682 or 0x377f0683
drh23ea97b2010-05-20 16:45:58 +000038** 4: File format version. Currently 3007000
39** 8: Database page size. Example: 1024
40** 12: Checkpoint sequence number
drh7e263722010-05-20 21:21:09 +000041** 16: Salt-1, random integer incremented with each checkpoint
42** 20: Salt-2, a different random integer changing with each ckpt
dan10f5a502010-06-23 15:55:43 +000043** 24: Checksum-1 (first part of checksum for first 24 bytes of header).
44** 28: Checksum-2 (second part of checksum for first 24 bytes of header).
dan97a31352010-04-16 13:59:31 +000045**
drh23ea97b2010-05-20 16:45:58 +000046** Immediately following the wal-header are zero or more frames. Each
47** frame consists of a 24-byte frame-header followed by a <page-size> bytes
drhcd285082010-06-23 22:00:35 +000048** of page data. The frame-header is six big-endian 32-bit unsigned
dan97a31352010-04-16 13:59:31 +000049** integer values, as follows:
50**
dan3de777f2010-04-17 12:31:37 +000051** 0: Page number.
52** 4: For commit records, the size of the database image in pages
dan97a31352010-04-16 13:59:31 +000053** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +000054** 8: Salt-1 (copied from the header)
55** 12: Salt-2 (copied from the header)
drh23ea97b2010-05-20 16:45:58 +000056** 16: Checksum-1.
57** 20: Checksum-2.
drh29d4dbe2010-05-18 23:29:52 +000058**
drh7e263722010-05-20 21:21:09 +000059** A frame is considered valid if and only if the following conditions are
60** true:
61**
62** (1) The salt-1 and salt-2 values in the frame-header match
63** salt values in the wal-header
64**
65** (2) The checksum values in the final 8 bytes of the frame-header
drh1b78eaf2010-05-25 13:40:03 +000066** exactly match the checksum computed consecutively on the
67** WAL header and the first 8 bytes and the content of all frames
68** up to and including the current frame.
69**
70** The checksum is computed using 32-bit big-endian integers if the
71** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72** is computed using little-endian if the magic number is 0x377f0682.
drh51b21b12010-05-25 15:53:31 +000073** The checksum values are always stored in the frame header in a
74** big-endian format regardless of which byte order is used to compute
75** the checksum. The checksum is computed by interpreting the input as
76** an even number of unsigned 32-bit integers: x[0] through x[N]. The
drhffca4302010-06-15 11:21:54 +000077** algorithm used for the checksum is as follows:
drh51b21b12010-05-25 15:53:31 +000078**
79** for i from 0 to n-1 step 2:
80** s0 += x[i] + s1;
81** s1 += x[i+1] + s0;
82** endfor
drh7e263722010-05-20 21:21:09 +000083**
drhcd285082010-06-23 22:00:35 +000084** Note that s0 and s1 are both weighted checksums using fibonacci weights
85** in reverse order (the largest fibonacci weight occurs on the first element
86** of the sequence being summed.) The s1 value spans all 32-bit
87** terms of the sequence whereas s0 omits the final term.
88**
drh7e263722010-05-20 21:21:09 +000089** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90** WAL is transferred into the database, then the database is VFS.xSync-ed.
drhffca4302010-06-15 11:21:54 +000091** The VFS.xSync operations serve as write barriers - all writes launched
drh7e263722010-05-20 21:21:09 +000092** before the xSync must complete before any write that launches after the
93** xSync begins.
94**
95** After each checkpoint, the salt-1 value is incremented and the salt-2
96** value is randomized. This prevents old and new frames in the WAL from
97** being considered valid at the same time and being checkpointing together
98** following a crash.
99**
drh29d4dbe2010-05-18 23:29:52 +0000100** READER ALGORITHM
101**
102** To read a page from the database (call it page number P), a reader
103** first checks the WAL to see if it contains page P. If so, then the
drh73b64e42010-05-30 19:55:15 +0000104** last valid instance of page P that is a followed by a commit frame
105** or is a commit frame itself becomes the value read. If the WAL
106** contains no copies of page P that are valid and which are a commit
107** frame or are followed by a commit frame, then page P is read from
108** the database file.
drh29d4dbe2010-05-18 23:29:52 +0000109**
drh73b64e42010-05-30 19:55:15 +0000110** To start a read transaction, the reader records the index of the last
111** valid frame in the WAL. The reader uses this recorded "mxFrame" value
112** for all subsequent read operations. New transactions can be appended
113** to the WAL, but as long as the reader uses its original mxFrame value
114** and ignores the newly appended content, it will see a consistent snapshot
115** of the database from a single point in time. This technique allows
116** multiple concurrent readers to view different versions of the database
117** content simultaneously.
118**
119** The reader algorithm in the previous paragraphs works correctly, but
drh29d4dbe2010-05-18 23:29:52 +0000120** because frames for page P can appear anywhere within the WAL, the
drh027a1282010-05-19 01:53:53 +0000121** reader has to scan the entire WAL looking for page P frames. If the
drh29d4dbe2010-05-18 23:29:52 +0000122** WAL is large (multiple megabytes is typical) that scan can be slow,
drh027a1282010-05-19 01:53:53 +0000123** and read performance suffers. To overcome this problem, a separate
124** data structure called the wal-index is maintained to expedite the
drh29d4dbe2010-05-18 23:29:52 +0000125** search for frames of a particular page.
126**
127** WAL-INDEX FORMAT
128**
129** Conceptually, the wal-index is shared memory, though VFS implementations
130** might choose to implement the wal-index using a mmapped file. Because
131** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132** on a network filesystem. All users of the database must be able to
133** share memory.
134**
135** The wal-index is transient. After a crash, the wal-index can (and should
136** be) reconstructed from the original WAL file. In fact, the VFS is required
137** to either truncate or zero the header of the wal-index when the last
138** connection to it closes. Because the wal-index is transient, it can
139** use an architecture-specific format; it does not have to be cross-platform.
140** Hence, unlike the database and WAL file formats which store all values
141** as big endian, the wal-index can store multi-byte values in the native
142** byte order of the host computer.
143**
144** The purpose of the wal-index is to answer this question quickly: Given
drh610b8d82012-07-17 02:56:05 +0000145** a page number P and a maximum frame index M, return the index of the
146** last frame in the wal before frame M for page P in the WAL, or return
147** NULL if there are no frames for page P in the WAL prior to M.
drh29d4dbe2010-05-18 23:29:52 +0000148**
149** The wal-index consists of a header region, followed by an one or
150** more index blocks.
151**
drh027a1282010-05-19 01:53:53 +0000152** The wal-index header contains the total number of frames within the WAL
mistachkind5578432012-08-25 10:01:29 +0000153** in the mxFrame field.
danad3cadd2010-06-14 11:49:26 +0000154**
155** Each index block except for the first contains information on
156** HASHTABLE_NPAGE frames. The first index block contains information on
157** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
158** HASHTABLE_NPAGE are selected so that together the wal-index header and
159** first index block are the same size as all other index blocks in the
160** wal-index.
161**
162** Each index block contains two sections, a page-mapping that contains the
163** database page number associated with each wal frame, and a hash-table
drhffca4302010-06-15 11:21:54 +0000164** that allows readers to query an index block for a specific page number.
danad3cadd2010-06-14 11:49:26 +0000165** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
166** for the first index block) 32-bit page numbers. The first entry in the
167** first index-block contains the database page number corresponding to the
168** first frame in the WAL file. The first entry in the second index block
169** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
170** the log, and so on.
171**
172** The last index block in a wal-index usually contains less than the full
173** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
174** depending on the contents of the WAL file. This does not change the
175** allocated size of the page-mapping array - the page-mapping array merely
176** contains unused entries.
drh027a1282010-05-19 01:53:53 +0000177**
178** Even without using the hash table, the last frame for page P
danad3cadd2010-06-14 11:49:26 +0000179** can be found by scanning the page-mapping sections of each index block
drh027a1282010-05-19 01:53:53 +0000180** starting with the last index block and moving toward the first, and
181** within each index block, starting at the end and moving toward the
182** beginning. The first entry that equals P corresponds to the frame
183** holding the content for that page.
184**
185** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
186** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
187** hash table for each page number in the mapping section, so the hash
188** table is never more than half full. The expected number of collisions
189** prior to finding a match is 1. Each entry of the hash table is an
190** 1-based index of an entry in the mapping section of the same
191** index block. Let K be the 1-based index of the largest entry in
192** the mapping section. (For index blocks other than the last, K will
193** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
194** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
drh73b64e42010-05-30 19:55:15 +0000195** contain a value of 0.
drh027a1282010-05-19 01:53:53 +0000196**
197** To look for page P in the hash table, first compute a hash iKey on
198** P as follows:
199**
200** iKey = (P * 383) % HASHTABLE_NSLOT
201**
202** Then start scanning entries of the hash table, starting with iKey
203** (wrapping around to the beginning when the end of the hash table is
204** reached) until an unused hash slot is found. Let the first unused slot
205** be at index iUnused. (iUnused might be less than iKey if there was
206** wrap-around.) Because the hash table is never more than half full,
207** the search is guaranteed to eventually hit an unused entry. Let
208** iMax be the value between iKey and iUnused, closest to iUnused,
209** where aHash[iMax]==P. If there is no iMax entry (if there exists
210** no hash slot such that aHash[i]==p) then page P is not in the
211** current index block. Otherwise the iMax-th mapping entry of the
212** current index block corresponds to the last entry that references
213** page P.
214**
215** A hash search begins with the last index block and moves toward the
216** first index block, looking for entries corresponding to page P. On
217** average, only two or three slots in each index block need to be
218** examined in order to either find the last entry for page P, or to
219** establish that no such entry exists in the block. Each index block
220** holds over 4000 entries. So two or three index blocks are sufficient
221** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
222** comparisons (on average) suffice to either locate a frame in the
223** WAL or to establish that the frame does not exist in the WAL. This
224** is much faster than scanning the entire 10MB WAL.
225**
226** Note that entries are added in order of increasing K. Hence, one
227** reader might be using some value K0 and a second reader that started
228** at a later time (after additional transactions were added to the WAL
229** and to the wal-index) might be using a different value K1, where K1>K0.
230** Both readers can use the same hash table and mapping section to get
231** the correct result. There may be entries in the hash table with
232** K>K0 but to the first reader, those entries will appear to be unused
233** slots in the hash table and so the first reader will get an answer as
234** if no values greater than K0 had ever been inserted into the hash table
235** in the first place - which is what reader one wants. Meanwhile, the
236** second reader using K1 will see additional values that were inserted
237** later, which is exactly what reader two wants.
238**
dan6f150142010-05-21 15:31:56 +0000239** When a rollback occurs, the value of K is decreased. Hash table entries
240** that correspond to frames greater than the new K value are removed
241** from the hash table at this point.
dan97a31352010-04-16 13:59:31 +0000242*/
drh29d4dbe2010-05-18 23:29:52 +0000243#ifndef SQLITE_OMIT_WAL
dan97a31352010-04-16 13:59:31 +0000244
drh29d4dbe2010-05-18 23:29:52 +0000245#include "wal.h"
246
drh73b64e42010-05-30 19:55:15 +0000247/*
drhc74c3332010-05-31 12:15:19 +0000248** Trace output macros
249*/
drhc74c3332010-05-31 12:15:19 +0000250#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
drh15d68092010-05-31 16:56:14 +0000251int sqlite3WalTrace = 0;
drhc74c3332010-05-31 12:15:19 +0000252# define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
253#else
254# define WALTRACE(X)
255#endif
256
dan10f5a502010-06-23 15:55:43 +0000257/*
258** The maximum (and only) versions of the wal and wal-index formats
259** that may be interpreted by this version of SQLite.
260**
261** If a client begins recovering a WAL file and finds that (a) the checksum
262** values in the wal-header are correct and (b) the version field is not
263** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
264**
265** Similarly, if a client successfully reads a wal-index header (i.e. the
266** checksum test is successful) and finds that the version field is not
267** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
268** returns SQLITE_CANTOPEN.
269*/
270#define WAL_MAX_VERSION 3007000
271#define WALINDEX_MAX_VERSION 3007000
drhc74c3332010-05-31 12:15:19 +0000272
273/*
drh73b64e42010-05-30 19:55:15 +0000274** Indices of various locking bytes. WAL_NREADER is the number
275** of available reader locks and should be at least 3.
276*/
277#define WAL_WRITE_LOCK 0
278#define WAL_ALL_BUT_WRITE 1
279#define WAL_CKPT_LOCK 1
280#define WAL_RECOVER_LOCK 2
281#define WAL_READ_LOCK(I) (3+(I))
282#define WAL_NREADER (SQLITE_SHM_NLOCK-3)
283
dan97a31352010-04-16 13:59:31 +0000284
drh7ed91f22010-04-29 22:34:07 +0000285/* Object declarations */
286typedef struct WalIndexHdr WalIndexHdr;
287typedef struct WalIterator WalIterator;
drh73b64e42010-05-30 19:55:15 +0000288typedef struct WalCkptInfo WalCkptInfo;
dan7c246102010-04-12 19:00:29 +0000289
290
291/*
drh286a2882010-05-20 23:51:06 +0000292** The following object holds a copy of the wal-index header content.
293**
294** The actual header in the wal-index consists of two copies of this
295** object.
drh9b78f792010-08-14 21:21:24 +0000296**
297** The szPage value can be any power of 2 between 512 and 32768, inclusive.
298** Or it can be 1 to represent a 65536-byte page. The latter case was
299** added in 3.7.1 when support for 64K pages was added.
dan7c246102010-04-12 19:00:29 +0000300*/
drh7ed91f22010-04-29 22:34:07 +0000301struct WalIndexHdr {
dan10f5a502010-06-23 15:55:43 +0000302 u32 iVersion; /* Wal-index version */
303 u32 unused; /* Unused (padding) field */
dan71d89912010-05-24 13:57:42 +0000304 u32 iChange; /* Counter incremented each transaction */
drh4b82c382010-05-31 18:24:19 +0000305 u8 isInit; /* 1 when initialized */
306 u8 bigEndCksum; /* True if checksums in WAL are big-endian */
drh9b78f792010-08-14 21:21:24 +0000307 u16 szPage; /* Database page size in bytes. 1==64K */
dand0aa3422010-05-31 16:41:53 +0000308 u32 mxFrame; /* Index of last valid frame in the WAL */
dan71d89912010-05-24 13:57:42 +0000309 u32 nPage; /* Size of database in pages */
310 u32 aFrameCksum[2]; /* Checksum of last frame in log */
311 u32 aSalt[2]; /* Two salt values copied from WAL header */
312 u32 aCksum[2]; /* Checksum over all prior fields */
dan7c246102010-04-12 19:00:29 +0000313};
314
drh73b64e42010-05-30 19:55:15 +0000315/*
316** A copy of the following object occurs in the wal-index immediately
317** following the second copy of the WalIndexHdr. This object stores
318** information used by checkpoint.
319**
320** nBackfill is the number of frames in the WAL that have been written
321** back into the database. (We call the act of moving content from WAL to
322** database "backfilling".) The nBackfill number is never greater than
323** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
324** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
325** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
326** mxFrame back to zero when the WAL is reset.
327**
328** There is one entry in aReadMark[] for each reader lock. If a reader
329** holds read-lock K, then the value in aReadMark[K] is no greater than
drhdb7f6472010-06-09 14:45:12 +0000330** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
331** for any aReadMark[] means that entry is unused. aReadMark[0] is
332** a special case; its value is never used and it exists as a place-holder
333** to avoid having to offset aReadMark[] indexs by one. Readers holding
334** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
335** directly from the database.
drh73b64e42010-05-30 19:55:15 +0000336**
337** The value of aReadMark[K] may only be changed by a thread that
338** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
339** aReadMark[K] cannot changed while there is a reader is using that mark
340** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
341**
342** The checkpointer may only transfer frames from WAL to database where
343** the frame numbers are less than or equal to every aReadMark[] that is
344** in use (that is, every aReadMark[j] for which there is a corresponding
345** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
346** largest value and will increase an unused aReadMark[] to mxFrame if there
347** is not already an aReadMark[] equal to mxFrame. The exception to the
348** previous sentence is when nBackfill equals mxFrame (meaning that everything
349** in the WAL has been backfilled into the database) then new readers
350** will choose aReadMark[0] which has value 0 and hence such reader will
351** get all their all content directly from the database file and ignore
352** the WAL.
353**
354** Writers normally append new frames to the end of the WAL. However,
355** if nBackfill equals mxFrame (meaning that all WAL content has been
356** written back into the database) and if no readers are using the WAL
357** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
358** the writer will first "reset" the WAL back to the beginning and start
359** writing new content beginning at frame 1.
360**
361** We assume that 32-bit loads are atomic and so no locks are needed in
362** order to read from any aReadMark[] entries.
363*/
364struct WalCkptInfo {
365 u32 nBackfill; /* Number of WAL frames backfilled into DB */
366 u32 aReadMark[WAL_NREADER]; /* Reader marks */
367};
drhdb7f6472010-06-09 14:45:12 +0000368#define READMARK_NOT_USED 0xffffffff
drh73b64e42010-05-30 19:55:15 +0000369
370
drh7e263722010-05-20 21:21:09 +0000371/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
372** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
373** only support mandatory file-locks, we do not read or write data
374** from the region of the file on which locks are applied.
danff207012010-04-24 04:49:15 +0000375*/
drh73b64e42010-05-30 19:55:15 +0000376#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo))
377#define WALINDEX_LOCK_RESERVED 16
drh026ac282010-05-26 15:06:38 +0000378#define WALINDEX_HDR_SIZE (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)
dan7c246102010-04-12 19:00:29 +0000379
drh7ed91f22010-04-29 22:34:07 +0000380/* Size of header before each frame in wal */
drh23ea97b2010-05-20 16:45:58 +0000381#define WAL_FRAME_HDRSIZE 24
danff207012010-04-24 04:49:15 +0000382
dan10f5a502010-06-23 15:55:43 +0000383/* Size of write ahead log header, including checksum. */
384/* #define WAL_HDRSIZE 24 */
385#define WAL_HDRSIZE 32
dan97a31352010-04-16 13:59:31 +0000386
danb8fd6c22010-05-24 10:39:36 +0000387/* WAL magic value. Either this value, or the same value with the least
388** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
389** big-endian format in the first 4 bytes of a WAL file.
390**
391** If the LSB is set, then the checksums for each frame within the WAL
392** file are calculated by treating all data as an array of 32-bit
393** big-endian words. Otherwise, they are calculated by interpreting
394** all data as 32-bit little-endian words.
395*/
396#define WAL_MAGIC 0x377f0682
397
dan97a31352010-04-16 13:59:31 +0000398/*
drh7ed91f22010-04-29 22:34:07 +0000399** Return the offset of frame iFrame in the write-ahead log file,
drh6e810962010-05-19 17:49:50 +0000400** assuming a database page size of szPage bytes. The offset returned
drh7ed91f22010-04-29 22:34:07 +0000401** is to the start of the write-ahead log frame-header.
dan97a31352010-04-16 13:59:31 +0000402*/
drh6e810962010-05-19 17:49:50 +0000403#define walFrameOffset(iFrame, szPage) ( \
danbd0e9072010-07-07 09:48:44 +0000404 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \
dan97a31352010-04-16 13:59:31 +0000405)
dan7c246102010-04-12 19:00:29 +0000406
407/*
drh7ed91f22010-04-29 22:34:07 +0000408** An open write-ahead log file is represented by an instance of the
409** following object.
dance4f05f2010-04-22 19:14:13 +0000410*/
drh7ed91f22010-04-29 22:34:07 +0000411struct Wal {
drh73b64e42010-05-30 19:55:15 +0000412 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
drhd9e5c4f2010-05-12 18:01:39 +0000413 sqlite3_file *pDbFd; /* File handle for the database file */
414 sqlite3_file *pWalFd; /* File handle for WAL file */
drh7ed91f22010-04-29 22:34:07 +0000415 u32 iCallback; /* Value to pass to log callback (or 0) */
drh85a83752011-05-16 21:00:27 +0000416 i64 mxWalSize; /* Truncate WAL to this size upon reset */
dan13a3cb82010-06-11 19:04:21 +0000417 int nWiData; /* Size of array apWiData */
drh88f975a2011-12-16 19:34:36 +0000418 int szFirstBlock; /* Size of first block written to WAL file */
dan13a3cb82010-06-11 19:04:21 +0000419 volatile u32 **apWiData; /* Pointer to wal-index content in memory */
drhb2eced52010-08-12 02:41:12 +0000420 u32 szPage; /* Database page size */
drh73b64e42010-05-30 19:55:15 +0000421 i16 readLock; /* Which read lock is being held. -1 for none */
drh4eb02a42011-12-16 21:26:26 +0000422 u8 syncFlags; /* Flags to use to sync header writes */
dan55437592010-05-11 12:19:26 +0000423 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
drh73b64e42010-05-30 19:55:15 +0000424 u8 writeLock; /* True if in a write transaction */
425 u8 ckptLock; /* True if holding a checkpoint lock */
drh66dfec8b2011-06-01 20:01:49 +0000426 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
danf60b7f32011-12-16 13:24:27 +0000427 u8 truncateOnCommit; /* True to truncate WAL file on commit */
drhd992b152011-12-20 20:13:25 +0000428 u8 syncHeader; /* Fsync the WAL header if true */
drh374f4a02011-12-17 20:02:11 +0000429 u8 padToSectorBoundary; /* Pad transactions out to the next sector */
drh73b64e42010-05-30 19:55:15 +0000430 WalIndexHdr hdr; /* Wal-index header for current transaction */
dan3e875ef2010-07-05 19:03:35 +0000431 const char *zWalName; /* Name of WAL file */
drh7e263722010-05-20 21:21:09 +0000432 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
drhaab4c022010-06-02 14:45:51 +0000433#ifdef SQLITE_DEBUG
434 u8 lockError; /* True if a locking error has occurred */
435#endif
dan7c246102010-04-12 19:00:29 +0000436};
437
drh73b64e42010-05-30 19:55:15 +0000438/*
dan8c408002010-11-01 17:38:24 +0000439** Candidate values for Wal.exclusiveMode.
440*/
441#define WAL_NORMAL_MODE 0
442#define WAL_EXCLUSIVE_MODE 1
443#define WAL_HEAPMEMORY_MODE 2
444
445/*
drh66dfec8b2011-06-01 20:01:49 +0000446** Possible values for WAL.readOnly
447*/
448#define WAL_RDWR 0 /* Normal read/write connection */
449#define WAL_RDONLY 1 /* The WAL file is readonly */
450#define WAL_SHM_RDONLY 2 /* The SHM file is readonly */
451
452/*
dan067f3162010-06-14 10:30:12 +0000453** Each page of the wal-index mapping contains a hash-table made up of
454** an array of HASHTABLE_NSLOT elements of the following type.
455*/
456typedef u16 ht_slot;
457
458/*
danad3cadd2010-06-14 11:49:26 +0000459** This structure is used to implement an iterator that loops through
460** all frames in the WAL in database page order. Where two or more frames
461** correspond to the same database page, the iterator visits only the
462** frame most recently written to the WAL (in other words, the frame with
463** the largest index).
464**
465** The internals of this structure are only accessed by:
466**
467** walIteratorInit() - Create a new iterator,
468** walIteratorNext() - Step an iterator,
469** walIteratorFree() - Free an iterator.
470**
471** This functionality is used by the checkpoint code (see walCheckpoint()).
472*/
473struct WalIterator {
474 int iPrior; /* Last result returned from the iterator */
drhd9c9b782010-12-15 21:02:06 +0000475 int nSegment; /* Number of entries in aSegment[] */
danad3cadd2010-06-14 11:49:26 +0000476 struct WalSegment {
477 int iNext; /* Next slot in aIndex[] not yet returned */
478 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
479 u32 *aPgno; /* Array of page numbers. */
drhd9c9b782010-12-15 21:02:06 +0000480 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */
danad3cadd2010-06-14 11:49:26 +0000481 int iZero; /* Frame number associated with aPgno[0] */
drhd9c9b782010-12-15 21:02:06 +0000482 } aSegment[1]; /* One for every 32KB page in the wal-index */
danad3cadd2010-06-14 11:49:26 +0000483};
484
485/*
dan13a3cb82010-06-11 19:04:21 +0000486** Define the parameters of the hash tables in the wal-index file. There
487** is a hash-table following every HASHTABLE_NPAGE page numbers in the
488** wal-index.
489**
490** Changing any of these constants will alter the wal-index format and
491** create incompatibilities.
492*/
dan067f3162010-06-14 10:30:12 +0000493#define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000494#define HASHTABLE_HASH_1 383 /* Should be prime */
495#define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000496
danad3cadd2010-06-14 11:49:26 +0000497/*
498** The block of page numbers associated with the first hash-table in a
dan13a3cb82010-06-11 19:04:21 +0000499** wal-index is smaller than usual. This is so that there is a complete
500** hash-table on each aligned 32KB page of the wal-index.
501*/
dan067f3162010-06-14 10:30:12 +0000502#define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
dan13a3cb82010-06-11 19:04:21 +0000503
dan067f3162010-06-14 10:30:12 +0000504/* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
505#define WALINDEX_PGSZ ( \
506 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
507)
dan13a3cb82010-06-11 19:04:21 +0000508
509/*
510** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
dan067f3162010-06-14 10:30:12 +0000511** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
dan13a3cb82010-06-11 19:04:21 +0000512** numbered from zero.
513**
514** If this call is successful, *ppPage is set to point to the wal-index
515** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
516** then an SQLite error code is returned and *ppPage is set to 0.
517*/
518static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
519 int rc = SQLITE_OK;
520
521 /* Enlarge the pWal->apWiData[] array if required */
522 if( pWal->nWiData<=iPage ){
drh519426a2010-07-09 03:19:07 +0000523 int nByte = sizeof(u32*)*(iPage+1);
dan13a3cb82010-06-11 19:04:21 +0000524 volatile u32 **apNew;
drhf3cdcdc2015-04-29 16:50:28 +0000525 apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte);
dan13a3cb82010-06-11 19:04:21 +0000526 if( !apNew ){
527 *ppPage = 0;
528 return SQLITE_NOMEM;
529 }
drh519426a2010-07-09 03:19:07 +0000530 memset((void*)&apNew[pWal->nWiData], 0,
531 sizeof(u32*)*(iPage+1-pWal->nWiData));
dan13a3cb82010-06-11 19:04:21 +0000532 pWal->apWiData = apNew;
533 pWal->nWiData = iPage+1;
534 }
535
536 /* Request a pointer to the required page from the VFS */
537 if( pWal->apWiData[iPage]==0 ){
dan8c408002010-11-01 17:38:24 +0000538 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
539 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
540 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM;
541 }else{
542 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
543 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
544 );
drh66dfec8b2011-06-01 20:01:49 +0000545 if( rc==SQLITE_READONLY ){
546 pWal->readOnly |= WAL_SHM_RDONLY;
547 rc = SQLITE_OK;
dan4edc6bf2011-05-10 17:31:29 +0000548 }
dan8c408002010-11-01 17:38:24 +0000549 }
dan13a3cb82010-06-11 19:04:21 +0000550 }
danb6d2f9c2011-05-11 14:57:33 +0000551
drh66dfec8b2011-06-01 20:01:49 +0000552 *ppPage = pWal->apWiData[iPage];
dan13a3cb82010-06-11 19:04:21 +0000553 assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
554 return rc;
555}
556
557/*
drh73b64e42010-05-30 19:55:15 +0000558** Return a pointer to the WalCkptInfo structure in the wal-index.
559*/
560static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000561 assert( pWal->nWiData>0 && pWal->apWiData[0] );
562 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
563}
564
565/*
566** Return a pointer to the WalIndexHdr structure in the wal-index.
567*/
568static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
569 assert( pWal->nWiData>0 && pWal->apWiData[0] );
570 return (volatile WalIndexHdr*)pWal->apWiData[0];
drh73b64e42010-05-30 19:55:15 +0000571}
572
dan7c246102010-04-12 19:00:29 +0000573/*
danb8fd6c22010-05-24 10:39:36 +0000574** The argument to this macro must be of type u32. On a little-endian
575** architecture, it returns the u32 value that results from interpreting
576** the 4 bytes as a big-endian value. On a big-endian architecture, it
peter.d.reid60ec9142014-09-06 16:39:46 +0000577** returns the value that would be produced by interpreting the 4 bytes
danb8fd6c22010-05-24 10:39:36 +0000578** of the input value as a little-endian integer.
579*/
580#define BYTESWAP32(x) ( \
581 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
582 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
583)
dan64d039e2010-04-13 19:27:31 +0000584
dan7c246102010-04-12 19:00:29 +0000585/*
drh7e263722010-05-20 21:21:09 +0000586** Generate or extend an 8 byte checksum based on the data in
587** array aByte[] and the initial values of aIn[0] and aIn[1] (or
588** initial values of 0 and 0 if aIn==NULL).
589**
590** The checksum is written back into aOut[] before returning.
591**
592** nByte must be a positive multiple of 8.
dan7c246102010-04-12 19:00:29 +0000593*/
drh7e263722010-05-20 21:21:09 +0000594static void walChecksumBytes(
danb8fd6c22010-05-24 10:39:36 +0000595 int nativeCksum, /* True for native byte-order, false for non-native */
drh7e263722010-05-20 21:21:09 +0000596 u8 *a, /* Content to be checksummed */
597 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
598 const u32 *aIn, /* Initial checksum value input */
599 u32 *aOut /* OUT: Final checksum value output */
600){
601 u32 s1, s2;
danb8fd6c22010-05-24 10:39:36 +0000602 u32 *aData = (u32 *)a;
603 u32 *aEnd = (u32 *)&a[nByte];
604
drh7e263722010-05-20 21:21:09 +0000605 if( aIn ){
606 s1 = aIn[0];
607 s2 = aIn[1];
608 }else{
609 s1 = s2 = 0;
610 }
dan7c246102010-04-12 19:00:29 +0000611
drh584c7542010-05-19 18:08:10 +0000612 assert( nByte>=8 );
danb8fd6c22010-05-24 10:39:36 +0000613 assert( (nByte&0x00000007)==0 );
dan7c246102010-04-12 19:00:29 +0000614
danb8fd6c22010-05-24 10:39:36 +0000615 if( nativeCksum ){
616 do {
617 s1 += *aData++ + s2;
618 s2 += *aData++ + s1;
619 }while( aData<aEnd );
620 }else{
621 do {
622 s1 += BYTESWAP32(aData[0]) + s2;
623 s2 += BYTESWAP32(aData[1]) + s1;
624 aData += 2;
625 }while( aData<aEnd );
626 }
627
drh7e263722010-05-20 21:21:09 +0000628 aOut[0] = s1;
629 aOut[1] = s2;
dan7c246102010-04-12 19:00:29 +0000630}
631
dan8c408002010-11-01 17:38:24 +0000632static void walShmBarrier(Wal *pWal){
633 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
634 sqlite3OsShmBarrier(pWal->pDbFd);
635 }
636}
637
dan7c246102010-04-12 19:00:29 +0000638/*
drh7e263722010-05-20 21:21:09 +0000639** Write the header information in pWal->hdr into the wal-index.
640**
641** The checksum on pWal->hdr is updated before it is written.
drh7ed91f22010-04-29 22:34:07 +0000642*/
drh7e263722010-05-20 21:21:09 +0000643static void walIndexWriteHdr(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000644 volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
645 const int nCksum = offsetof(WalIndexHdr, aCksum);
drh73b64e42010-05-30 19:55:15 +0000646
647 assert( pWal->writeLock );
drh4b82c382010-05-31 18:24:19 +0000648 pWal->hdr.isInit = 1;
dan10f5a502010-06-23 15:55:43 +0000649 pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
dan4280eb32010-06-12 12:02:35 +0000650 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
651 memcpy((void *)&aHdr[1], (void *)&pWal->hdr, sizeof(WalIndexHdr));
dan8c408002010-11-01 17:38:24 +0000652 walShmBarrier(pWal);
dan4280eb32010-06-12 12:02:35 +0000653 memcpy((void *)&aHdr[0], (void *)&pWal->hdr, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +0000654}
655
656/*
657** This function encodes a single frame header and writes it to a buffer
drh7ed91f22010-04-29 22:34:07 +0000658** supplied by the caller. A frame-header is made up of a series of
dan7c246102010-04-12 19:00:29 +0000659** 4-byte big-endian integers, as follows:
660**
drh23ea97b2010-05-20 16:45:58 +0000661** 0: Page number.
662** 4: For commit records, the size of the database image in pages
663** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +0000664** 8: Salt-1 (copied from the wal-header)
665** 12: Salt-2 (copied from the wal-header)
drh23ea97b2010-05-20 16:45:58 +0000666** 16: Checksum-1.
667** 20: Checksum-2.
dan7c246102010-04-12 19:00:29 +0000668*/
drh7ed91f22010-04-29 22:34:07 +0000669static void walEncodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000670 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000671 u32 iPage, /* Database page number for frame */
672 u32 nTruncate, /* New db size (or 0 for non-commit frames) */
drh7e263722010-05-20 21:21:09 +0000673 u8 *aData, /* Pointer to page data */
dan7c246102010-04-12 19:00:29 +0000674 u8 *aFrame /* OUT: Write encoded frame here */
675){
danb8fd6c22010-05-24 10:39:36 +0000676 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000677 u32 *aCksum = pWal->hdr.aFrameCksum;
drh23ea97b2010-05-20 16:45:58 +0000678 assert( WAL_FRAME_HDRSIZE==24 );
dan97a31352010-04-16 13:59:31 +0000679 sqlite3Put4byte(&aFrame[0], iPage);
680 sqlite3Put4byte(&aFrame[4], nTruncate);
drh7e263722010-05-20 21:21:09 +0000681 memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
dan7c246102010-04-12 19:00:29 +0000682
danb8fd6c22010-05-24 10:39:36 +0000683 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000684 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000685 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
dan7c246102010-04-12 19:00:29 +0000686
drh23ea97b2010-05-20 16:45:58 +0000687 sqlite3Put4byte(&aFrame[16], aCksum[0]);
688 sqlite3Put4byte(&aFrame[20], aCksum[1]);
dan7c246102010-04-12 19:00:29 +0000689}
690
691/*
drh7e263722010-05-20 21:21:09 +0000692** Check to see if the frame with header in aFrame[] and content
693** in aData[] is valid. If it is a valid frame, fill *piPage and
694** *pnTruncate and return true. Return if the frame is not valid.
dan7c246102010-04-12 19:00:29 +0000695*/
drh7ed91f22010-04-29 22:34:07 +0000696static int walDecodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000697 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000698 u32 *piPage, /* OUT: Database page number for frame */
699 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
dan7c246102010-04-12 19:00:29 +0000700 u8 *aData, /* Pointer to page data (for checksum) */
701 u8 *aFrame /* Frame data */
702){
danb8fd6c22010-05-24 10:39:36 +0000703 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000704 u32 *aCksum = pWal->hdr.aFrameCksum;
drhc8179152010-05-24 13:28:36 +0000705 u32 pgno; /* Page number of the frame */
drh23ea97b2010-05-20 16:45:58 +0000706 assert( WAL_FRAME_HDRSIZE==24 );
707
drh7e263722010-05-20 21:21:09 +0000708 /* A frame is only valid if the salt values in the frame-header
709 ** match the salt values in the wal-header.
710 */
711 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
drh23ea97b2010-05-20 16:45:58 +0000712 return 0;
713 }
dan4a4b01d2010-04-16 11:30:18 +0000714
drhc8179152010-05-24 13:28:36 +0000715 /* A frame is only valid if the page number is creater than zero.
716 */
717 pgno = sqlite3Get4byte(&aFrame[0]);
718 if( pgno==0 ){
719 return 0;
720 }
721
drh519426a2010-07-09 03:19:07 +0000722 /* A frame is only valid if a checksum of the WAL header,
723 ** all prior frams, the first 16 bytes of this frame-header,
724 ** and the frame-data matches the checksum in the last 8
725 ** bytes of this frame-header.
drh7e263722010-05-20 21:21:09 +0000726 */
danb8fd6c22010-05-24 10:39:36 +0000727 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000728 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000729 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
drh23ea97b2010-05-20 16:45:58 +0000730 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
731 || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
dan7c246102010-04-12 19:00:29 +0000732 ){
733 /* Checksum failed. */
734 return 0;
735 }
736
drh7e263722010-05-20 21:21:09 +0000737 /* If we reach this point, the frame is valid. Return the page number
738 ** and the new database size.
739 */
drhc8179152010-05-24 13:28:36 +0000740 *piPage = pgno;
dan97a31352010-04-16 13:59:31 +0000741 *pnTruncate = sqlite3Get4byte(&aFrame[4]);
dan7c246102010-04-12 19:00:29 +0000742 return 1;
743}
744
dan7c246102010-04-12 19:00:29 +0000745
drhc74c3332010-05-31 12:15:19 +0000746#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
747/*
drh181e0912010-06-01 01:08:08 +0000748** Names of locks. This routine is used to provide debugging output and is not
749** a part of an ordinary build.
drhc74c3332010-05-31 12:15:19 +0000750*/
751static const char *walLockName(int lockIdx){
752 if( lockIdx==WAL_WRITE_LOCK ){
753 return "WRITE-LOCK";
754 }else if( lockIdx==WAL_CKPT_LOCK ){
755 return "CKPT-LOCK";
756 }else if( lockIdx==WAL_RECOVER_LOCK ){
757 return "RECOVER-LOCK";
758 }else{
759 static char zName[15];
760 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
761 lockIdx-WAL_READ_LOCK(0));
762 return zName;
763 }
764}
765#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
766
767
dan7c246102010-04-12 19:00:29 +0000768/*
drh181e0912010-06-01 01:08:08 +0000769** Set or release locks on the WAL. Locks are either shared or exclusive.
770** A lock cannot be moved directly between shared and exclusive - it must go
771** through the unlocked state first.
drh73b64e42010-05-30 19:55:15 +0000772**
773** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
774*/
775static int walLockShared(Wal *pWal, int lockIdx){
drhc74c3332010-05-31 12:15:19 +0000776 int rc;
drh73b64e42010-05-30 19:55:15 +0000777 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000778 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
779 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
780 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
781 walLockName(lockIdx), rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000782 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000783 return rc;
drh73b64e42010-05-30 19:55:15 +0000784}
785static void walUnlockShared(Wal *pWal, int lockIdx){
786 if( pWal->exclusiveMode ) return;
787 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
788 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
drhc74c3332010-05-31 12:15:19 +0000789 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
drh73b64e42010-05-30 19:55:15 +0000790}
drhbbf76ee2015-03-10 20:22:35 +0000791static int walLockExclusive(Wal *pWal, int lockIdx, int n, int fBlock){
drhc74c3332010-05-31 12:15:19 +0000792 int rc;
drh73b64e42010-05-30 19:55:15 +0000793 if( pWal->exclusiveMode ) return SQLITE_OK;
drhbbf76ee2015-03-10 20:22:35 +0000794 if( fBlock ) sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_WAL_BLOCK, 0);
drhc74c3332010-05-31 12:15:19 +0000795 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
796 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
797 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
798 walLockName(lockIdx), n, rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000799 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000800 return rc;
drh73b64e42010-05-30 19:55:15 +0000801}
802static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
803 if( pWal->exclusiveMode ) return;
804 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
805 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
drhc74c3332010-05-31 12:15:19 +0000806 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
807 walLockName(lockIdx), n));
drh73b64e42010-05-30 19:55:15 +0000808}
809
810/*
drh29d4dbe2010-05-18 23:29:52 +0000811** Compute a hash on a page number. The resulting hash value must land
drh181e0912010-06-01 01:08:08 +0000812** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
813** the hash to the next value in the event of a collision.
drh29d4dbe2010-05-18 23:29:52 +0000814*/
815static int walHash(u32 iPage){
816 assert( iPage>0 );
817 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
818 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
819}
820static int walNextHash(int iPriorHash){
821 return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
danbb23aff2010-05-10 14:46:09 +0000822}
823
dan4280eb32010-06-12 12:02:35 +0000824/*
825** Return pointers to the hash table and page number array stored on
826** page iHash of the wal-index. The wal-index is broken into 32KB pages
827** numbered starting from 0.
828**
829** Set output variable *paHash to point to the start of the hash table
830** in the wal-index file. Set *piZero to one less than the frame
831** number of the first frame indexed by this hash table. If a
832** slot in the hash table is set to N, it refers to frame number
833** (*piZero+N) in the log.
834**
dand60bf112010-06-14 11:18:50 +0000835** Finally, set *paPgno so that *paPgno[1] is the page number of the
836** first frame indexed by the hash table, frame (*piZero+1).
dan4280eb32010-06-12 12:02:35 +0000837*/
838static int walHashGet(
dan13a3cb82010-06-11 19:04:21 +0000839 Wal *pWal, /* WAL handle */
840 int iHash, /* Find the iHash'th table */
dan067f3162010-06-14 10:30:12 +0000841 volatile ht_slot **paHash, /* OUT: Pointer to hash index */
dan13a3cb82010-06-11 19:04:21 +0000842 volatile u32 **paPgno, /* OUT: Pointer to page number array */
843 u32 *piZero /* OUT: Frame associated with *paPgno[0] */
844){
dan4280eb32010-06-12 12:02:35 +0000845 int rc; /* Return code */
dan13a3cb82010-06-11 19:04:21 +0000846 volatile u32 *aPgno;
dan13a3cb82010-06-11 19:04:21 +0000847
dan4280eb32010-06-12 12:02:35 +0000848 rc = walIndexPage(pWal, iHash, &aPgno);
849 assert( rc==SQLITE_OK || iHash>0 );
dan13a3cb82010-06-11 19:04:21 +0000850
dan4280eb32010-06-12 12:02:35 +0000851 if( rc==SQLITE_OK ){
852 u32 iZero;
dan067f3162010-06-14 10:30:12 +0000853 volatile ht_slot *aHash;
dan4280eb32010-06-12 12:02:35 +0000854
dan067f3162010-06-14 10:30:12 +0000855 aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
dan4280eb32010-06-12 12:02:35 +0000856 if( iHash==0 ){
dand60bf112010-06-14 11:18:50 +0000857 aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
dan4280eb32010-06-12 12:02:35 +0000858 iZero = 0;
859 }else{
860 iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
dan4280eb32010-06-12 12:02:35 +0000861 }
862
dand60bf112010-06-14 11:18:50 +0000863 *paPgno = &aPgno[-1];
dan4280eb32010-06-12 12:02:35 +0000864 *paHash = aHash;
865 *piZero = iZero;
dan13a3cb82010-06-11 19:04:21 +0000866 }
dan4280eb32010-06-12 12:02:35 +0000867 return rc;
dan13a3cb82010-06-11 19:04:21 +0000868}
869
dan4280eb32010-06-12 12:02:35 +0000870/*
871** Return the number of the wal-index page that contains the hash-table
872** and page-number array that contain entries corresponding to WAL frame
873** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
874** are numbered starting from 0.
875*/
dan13a3cb82010-06-11 19:04:21 +0000876static int walFramePage(u32 iFrame){
877 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
878 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
879 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
880 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
881 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
882 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
883 );
884 return iHash;
885}
886
887/*
888** Return the page number associated with frame iFrame in this WAL.
889*/
890static u32 walFramePgno(Wal *pWal, u32 iFrame){
891 int iHash = walFramePage(iFrame);
892 if( iHash==0 ){
893 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
894 }
895 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
896}
danbb23aff2010-05-10 14:46:09 +0000897
danca6b5ba2010-05-25 10:50:56 +0000898/*
899** Remove entries from the hash table that point to WAL slots greater
900** than pWal->hdr.mxFrame.
901**
902** This function is called whenever pWal->hdr.mxFrame is decreased due
903** to a rollback or savepoint.
904**
drh181e0912010-06-01 01:08:08 +0000905** At most only the hash table containing pWal->hdr.mxFrame needs to be
906** updated. Any later hash tables will be automatically cleared when
907** pWal->hdr.mxFrame advances to the point where those hash tables are
908** actually needed.
danca6b5ba2010-05-25 10:50:56 +0000909*/
910static void walCleanupHash(Wal *pWal){
drhff828942010-06-26 21:34:06 +0000911 volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */
912 volatile u32 *aPgno = 0; /* Page number array for hash table */
913 u32 iZero = 0; /* frame == (aHash[x]+iZero) */
dan067f3162010-06-14 10:30:12 +0000914 int iLimit = 0; /* Zero values greater than this */
915 int nByte; /* Number of bytes to zero in aPgno[] */
916 int i; /* Used to iterate through aHash[] */
danca6b5ba2010-05-25 10:50:56 +0000917
drh73b64e42010-05-30 19:55:15 +0000918 assert( pWal->writeLock );
drhffca4302010-06-15 11:21:54 +0000919 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
920 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
921 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
drh9c156472010-06-01 12:58:41 +0000922
dan4280eb32010-06-12 12:02:35 +0000923 if( pWal->hdr.mxFrame==0 ) return;
924
925 /* Obtain pointers to the hash-table and page-number array containing
926 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
927 ** that the page said hash-table and array reside on is already mapped.
928 */
929 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
930 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
931 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
932
933 /* Zero all hash-table entries that correspond to frame numbers greater
934 ** than pWal->hdr.mxFrame.
935 */
936 iLimit = pWal->hdr.mxFrame - iZero;
937 assert( iLimit>0 );
938 for(i=0; i<HASHTABLE_NSLOT; i++){
939 if( aHash[i]>iLimit ){
940 aHash[i] = 0;
danca6b5ba2010-05-25 10:50:56 +0000941 }
danca6b5ba2010-05-25 10:50:56 +0000942 }
dan4280eb32010-06-12 12:02:35 +0000943
944 /* Zero the entries in the aPgno array that correspond to frames with
945 ** frame numbers greater than pWal->hdr.mxFrame.
946 */
shaneh5eba1f62010-07-02 17:05:03 +0000947 nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
dand60bf112010-06-14 11:18:50 +0000948 memset((void *)&aPgno[iLimit+1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +0000949
950#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
951 /* Verify that the every entry in the mapping region is still reachable
952 ** via the hash table even after the cleanup.
953 */
drhf77bbd92010-06-01 13:17:44 +0000954 if( iLimit ){
danca6b5ba2010-05-25 10:50:56 +0000955 int i; /* Loop counter */
956 int iKey; /* Hash key */
957 for(i=1; i<=iLimit; i++){
dand60bf112010-06-14 11:18:50 +0000958 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
danca6b5ba2010-05-25 10:50:56 +0000959 if( aHash[iKey]==i ) break;
960 }
961 assert( aHash[iKey]==i );
962 }
963 }
964#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
965}
966
danbb23aff2010-05-10 14:46:09 +0000967
drh7ed91f22010-04-29 22:34:07 +0000968/*
drh29d4dbe2010-05-18 23:29:52 +0000969** Set an entry in the wal-index that will map database page number
970** pPage into WAL frame iFrame.
dan7c246102010-04-12 19:00:29 +0000971*/
drh7ed91f22010-04-29 22:34:07 +0000972static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
dan4280eb32010-06-12 12:02:35 +0000973 int rc; /* Return code */
drhff828942010-06-26 21:34:06 +0000974 u32 iZero = 0; /* One less than frame number of aPgno[1] */
975 volatile u32 *aPgno = 0; /* Page number array */
976 volatile ht_slot *aHash = 0; /* Hash table */
dance4f05f2010-04-22 19:14:13 +0000977
dan4280eb32010-06-12 12:02:35 +0000978 rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
979
980 /* Assuming the wal-index file was successfully mapped, populate the
981 ** page number array and hash table entry.
dan7c246102010-04-12 19:00:29 +0000982 */
danbb23aff2010-05-10 14:46:09 +0000983 if( rc==SQLITE_OK ){
984 int iKey; /* Hash table key */
dan4280eb32010-06-12 12:02:35 +0000985 int idx; /* Value to write to hash-table slot */
drh519426a2010-07-09 03:19:07 +0000986 int nCollide; /* Number of hash collisions */
dan7c246102010-04-12 19:00:29 +0000987
danbb23aff2010-05-10 14:46:09 +0000988 idx = iFrame - iZero;
dan4280eb32010-06-12 12:02:35 +0000989 assert( idx <= HASHTABLE_NSLOT/2 + 1 );
990
991 /* If this is the first entry to be added to this hash-table, zero the
peter.d.reid60ec9142014-09-06 16:39:46 +0000992 ** entire hash table and aPgno[] array before proceeding.
dan4280eb32010-06-12 12:02:35 +0000993 */
danca6b5ba2010-05-25 10:50:56 +0000994 if( idx==1 ){
shaneh5eba1f62010-07-02 17:05:03 +0000995 int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
dand60bf112010-06-14 11:18:50 +0000996 memset((void*)&aPgno[1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +0000997 }
danca6b5ba2010-05-25 10:50:56 +0000998
dan4280eb32010-06-12 12:02:35 +0000999 /* If the entry in aPgno[] is already set, then the previous writer
1000 ** must have exited unexpectedly in the middle of a transaction (after
1001 ** writing one or more dirty pages to the WAL to free up memory).
1002 ** Remove the remnants of that writers uncommitted transaction from
1003 ** the hash-table before writing any new entries.
1004 */
dand60bf112010-06-14 11:18:50 +00001005 if( aPgno[idx] ){
danca6b5ba2010-05-25 10:50:56 +00001006 walCleanupHash(pWal);
dand60bf112010-06-14 11:18:50 +00001007 assert( !aPgno[idx] );
danca6b5ba2010-05-25 10:50:56 +00001008 }
dan4280eb32010-06-12 12:02:35 +00001009
1010 /* Write the aPgno[] array entry and the hash-table slot. */
drh519426a2010-07-09 03:19:07 +00001011 nCollide = idx;
dan6f150142010-05-21 15:31:56 +00001012 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
drh519426a2010-07-09 03:19:07 +00001013 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
drh29d4dbe2010-05-18 23:29:52 +00001014 }
dand60bf112010-06-14 11:18:50 +00001015 aPgno[idx] = iPage;
shaneh5eba1f62010-07-02 17:05:03 +00001016 aHash[iKey] = (ht_slot)idx;
drh4fa95bf2010-05-22 00:55:39 +00001017
1018#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1019 /* Verify that the number of entries in the hash table exactly equals
1020 ** the number of entries in the mapping region.
1021 */
1022 {
1023 int i; /* Loop counter */
1024 int nEntry = 0; /* Number of entries in the hash table */
1025 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
1026 assert( nEntry==idx );
1027 }
1028
1029 /* Verify that the every entry in the mapping region is reachable
1030 ** via the hash table. This turns out to be a really, really expensive
1031 ** thing to check, so only do this occasionally - not on every
1032 ** iteration.
1033 */
1034 if( (idx&0x3ff)==0 ){
1035 int i; /* Loop counter */
1036 for(i=1; i<=idx; i++){
dand60bf112010-06-14 11:18:50 +00001037 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
drh4fa95bf2010-05-22 00:55:39 +00001038 if( aHash[iKey]==i ) break;
1039 }
1040 assert( aHash[iKey]==i );
1041 }
1042 }
1043#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
dan7c246102010-04-12 19:00:29 +00001044 }
dan31f98fc2010-04-27 05:42:32 +00001045
drh4fa95bf2010-05-22 00:55:39 +00001046
danbb23aff2010-05-10 14:46:09 +00001047 return rc;
dan7c246102010-04-12 19:00:29 +00001048}
1049
1050
1051/*
drh7ed91f22010-04-29 22:34:07 +00001052** Recover the wal-index by reading the write-ahead log file.
drh73b64e42010-05-30 19:55:15 +00001053**
1054** This routine first tries to establish an exclusive lock on the
1055** wal-index to prevent other threads/processes from doing anything
1056** with the WAL or wal-index while recovery is running. The
1057** WAL_RECOVER_LOCK is also held so that other threads will know
1058** that this thread is running recovery. If unable to establish
1059** the necessary locks, this routine returns SQLITE_BUSY.
dan7c246102010-04-12 19:00:29 +00001060*/
drh7ed91f22010-04-29 22:34:07 +00001061static int walIndexRecover(Wal *pWal){
dan7c246102010-04-12 19:00:29 +00001062 int rc; /* Return Code */
1063 i64 nSize; /* Size of log file */
dan71d89912010-05-24 13:57:42 +00001064 u32 aFrameCksum[2] = {0, 0};
dand0aa3422010-05-31 16:41:53 +00001065 int iLock; /* Lock offset to lock for checkpoint */
1066 int nLock; /* Number of locks to hold */
dan7c246102010-04-12 19:00:29 +00001067
dand0aa3422010-05-31 16:41:53 +00001068 /* Obtain an exclusive lock on all byte in the locking range not already
1069 ** locked by the caller. The caller is guaranteed to have locked the
1070 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1071 ** If successful, the same bytes that are locked here are unlocked before
1072 ** this function returns.
1073 */
1074 assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1075 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1076 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1077 assert( pWal->writeLock );
1078 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1079 nLock = SQLITE_SHM_NLOCK - iLock;
drhbbf76ee2015-03-10 20:22:35 +00001080 rc = walLockExclusive(pWal, iLock, nLock, 0);
drh73b64e42010-05-30 19:55:15 +00001081 if( rc ){
1082 return rc;
1083 }
drhc74c3332010-05-31 12:15:19 +00001084 WALTRACE(("WAL%p: recovery begin...\n", pWal));
drh73b64e42010-05-30 19:55:15 +00001085
dan71d89912010-05-24 13:57:42 +00001086 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +00001087
drhd9e5c4f2010-05-12 18:01:39 +00001088 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
dan7c246102010-04-12 19:00:29 +00001089 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001090 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001091 }
1092
danb8fd6c22010-05-24 10:39:36 +00001093 if( nSize>WAL_HDRSIZE ){
1094 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
dan7c246102010-04-12 19:00:29 +00001095 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
drh584c7542010-05-19 18:08:10 +00001096 int szFrame; /* Number of bytes in buffer aFrame[] */
dan7c246102010-04-12 19:00:29 +00001097 u8 *aData; /* Pointer to data part of aFrame buffer */
1098 int iFrame; /* Index of last frame read */
1099 i64 iOffset; /* Next offset to read from log file */
drh6e810962010-05-19 17:49:50 +00001100 int szPage; /* Page size according to the log */
danb8fd6c22010-05-24 10:39:36 +00001101 u32 magic; /* Magic value read from WAL header */
dan10f5a502010-06-23 15:55:43 +00001102 u32 version; /* Magic value read from WAL header */
drhfe6163d2011-12-17 13:45:28 +00001103 int isValid; /* True if this frame is valid */
dan7c246102010-04-12 19:00:29 +00001104
danb8fd6c22010-05-24 10:39:36 +00001105 /* Read in the WAL header. */
drhd9e5c4f2010-05-12 18:01:39 +00001106 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
dan7c246102010-04-12 19:00:29 +00001107 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001108 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001109 }
1110
1111 /* If the database page size is not a power of two, or is greater than
danb8fd6c22010-05-24 10:39:36 +00001112 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1113 ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1114 ** WAL file.
dan7c246102010-04-12 19:00:29 +00001115 */
danb8fd6c22010-05-24 10:39:36 +00001116 magic = sqlite3Get4byte(&aBuf[0]);
drh23ea97b2010-05-20 16:45:58 +00001117 szPage = sqlite3Get4byte(&aBuf[8]);
danb8fd6c22010-05-24 10:39:36 +00001118 if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1119 || szPage&(szPage-1)
1120 || szPage>SQLITE_MAX_PAGE_SIZE
1121 || szPage<512
1122 ){
dan7c246102010-04-12 19:00:29 +00001123 goto finished;
1124 }
shaneh5eba1f62010-07-02 17:05:03 +00001125 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
drhb2eced52010-08-12 02:41:12 +00001126 pWal->szPage = szPage;
drh23ea97b2010-05-20 16:45:58 +00001127 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
drh7e263722010-05-20 21:21:09 +00001128 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
drhcd285082010-06-23 22:00:35 +00001129
1130 /* Verify that the WAL header checksum is correct */
dan71d89912010-05-24 13:57:42 +00001131 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
dan10f5a502010-06-23 15:55:43 +00001132 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
dan71d89912010-05-24 13:57:42 +00001133 );
dan10f5a502010-06-23 15:55:43 +00001134 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1135 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1136 ){
1137 goto finished;
1138 }
1139
drhcd285082010-06-23 22:00:35 +00001140 /* Verify that the version number on the WAL format is one that
1141 ** are able to understand */
dan10f5a502010-06-23 15:55:43 +00001142 version = sqlite3Get4byte(&aBuf[4]);
1143 if( version!=WAL_MAX_VERSION ){
1144 rc = SQLITE_CANTOPEN_BKPT;
1145 goto finished;
1146 }
1147
dan7c246102010-04-12 19:00:29 +00001148 /* Malloc a buffer to read frames into. */
drh584c7542010-05-19 18:08:10 +00001149 szFrame = szPage + WAL_FRAME_HDRSIZE;
drhf3cdcdc2015-04-29 16:50:28 +00001150 aFrame = (u8 *)sqlite3_malloc64(szFrame);
dan7c246102010-04-12 19:00:29 +00001151 if( !aFrame ){
drh73b64e42010-05-30 19:55:15 +00001152 rc = SQLITE_NOMEM;
1153 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001154 }
drh7ed91f22010-04-29 22:34:07 +00001155 aData = &aFrame[WAL_FRAME_HDRSIZE];
dan7c246102010-04-12 19:00:29 +00001156
1157 /* Read all frames from the log file. */
1158 iFrame = 0;
drh584c7542010-05-19 18:08:10 +00001159 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
dan7c246102010-04-12 19:00:29 +00001160 u32 pgno; /* Database page number for frame */
1161 u32 nTruncate; /* dbsize field from frame header */
dan7c246102010-04-12 19:00:29 +00001162
1163 /* Read and decode the next log frame. */
drhfe6163d2011-12-17 13:45:28 +00001164 iFrame++;
drh584c7542010-05-19 18:08:10 +00001165 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
dan7c246102010-04-12 19:00:29 +00001166 if( rc!=SQLITE_OK ) break;
drh7e263722010-05-20 21:21:09 +00001167 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
drhf694aa62011-12-20 22:18:51 +00001168 if( !isValid ) break;
drhfe6163d2011-12-17 13:45:28 +00001169 rc = walIndexAppend(pWal, iFrame, pgno);
danc7991bd2010-05-05 19:04:59 +00001170 if( rc!=SQLITE_OK ) break;
dan7c246102010-04-12 19:00:29 +00001171
1172 /* If nTruncate is non-zero, this is a commit record. */
1173 if( nTruncate ){
dan71d89912010-05-24 13:57:42 +00001174 pWal->hdr.mxFrame = iFrame;
1175 pWal->hdr.nPage = nTruncate;
shaneh1df2db72010-08-18 02:28:48 +00001176 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00001177 testcase( szPage<=32768 );
1178 testcase( szPage>=65536 );
dan71d89912010-05-24 13:57:42 +00001179 aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1180 aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
dan7c246102010-04-12 19:00:29 +00001181 }
1182 }
1183
1184 sqlite3_free(aFrame);
dan7c246102010-04-12 19:00:29 +00001185 }
1186
1187finished:
dan576bc322010-05-06 18:04:50 +00001188 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001189 volatile WalCkptInfo *pInfo;
1190 int i;
dan71d89912010-05-24 13:57:42 +00001191 pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1192 pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
drh7e263722010-05-20 21:21:09 +00001193 walIndexWriteHdr(pWal);
dan3dee6da2010-05-31 16:17:54 +00001194
drhdb7f6472010-06-09 14:45:12 +00001195 /* Reset the checkpoint-header. This is safe because this thread is
dan3dee6da2010-05-31 16:17:54 +00001196 ** currently holding locks that exclude all other readers, writers and
1197 ** checkpointers.
1198 */
drhdb7f6472010-06-09 14:45:12 +00001199 pInfo = walCkptInfo(pWal);
1200 pInfo->nBackfill = 0;
1201 pInfo->aReadMark[0] = 0;
1202 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
dan5373b762012-07-17 14:37:12 +00001203 if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame;
daneb8763d2010-08-17 14:52:22 +00001204
1205 /* If more than one frame was recovered from the log file, report an
1206 ** event via sqlite3_log(). This is to help with identifying performance
1207 ** problems caused by applications routinely shutting down without
1208 ** checkpointing the log file.
1209 */
1210 if( pWal->hdr.nPage ){
drhd040e762013-04-10 23:48:37 +00001211 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1212 "recovered %d frames from WAL file %s",
dan0943f0b2013-04-01 14:35:01 +00001213 pWal->hdr.mxFrame, pWal->zWalName
daneb8763d2010-08-17 14:52:22 +00001214 );
1215 }
dan576bc322010-05-06 18:04:50 +00001216 }
drh73b64e42010-05-30 19:55:15 +00001217
1218recovery_error:
drhc74c3332010-05-31 12:15:19 +00001219 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
dand0aa3422010-05-31 16:41:53 +00001220 walUnlockExclusive(pWal, iLock, nLock);
dan7c246102010-04-12 19:00:29 +00001221 return rc;
1222}
1223
drha8e654e2010-05-04 17:38:42 +00001224/*
dan1018e902010-05-05 15:33:05 +00001225** Close an open wal-index.
drha8e654e2010-05-04 17:38:42 +00001226*/
dan1018e902010-05-05 15:33:05 +00001227static void walIndexClose(Wal *pWal, int isDelete){
dan8c408002010-11-01 17:38:24 +00001228 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
1229 int i;
1230 for(i=0; i<pWal->nWiData; i++){
1231 sqlite3_free((void *)pWal->apWiData[i]);
1232 pWal->apWiData[i] = 0;
1233 }
1234 }else{
1235 sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1236 }
drha8e654e2010-05-04 17:38:42 +00001237}
1238
dan7c246102010-04-12 19:00:29 +00001239/*
dan3e875ef2010-07-05 19:03:35 +00001240** Open a connection to the WAL file zWalName. The database file must
1241** already be opened on connection pDbFd. The buffer that zWalName points
1242** to must remain valid for the lifetime of the returned Wal* handle.
dan3de777f2010-04-17 12:31:37 +00001243**
1244** A SHARED lock should be held on the database file when this function
1245** is called. The purpose of this SHARED lock is to prevent any other
drh181e0912010-06-01 01:08:08 +00001246** client from unlinking the WAL or wal-index file. If another process
dan3de777f2010-04-17 12:31:37 +00001247** were to do this just after this client opened one of these files, the
1248** system would be badly broken.
danef378022010-05-04 11:06:03 +00001249**
1250** If the log file is successfully opened, SQLITE_OK is returned and
1251** *ppWal is set to point to a new WAL handle. If an error occurs,
1252** an SQLite error code is returned and *ppWal is left unmodified.
dan7c246102010-04-12 19:00:29 +00001253*/
drhc438efd2010-04-26 00:19:45 +00001254int sqlite3WalOpen(
drh7ed91f22010-04-29 22:34:07 +00001255 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
drhd9e5c4f2010-05-12 18:01:39 +00001256 sqlite3_file *pDbFd, /* The open database file */
dan3e875ef2010-07-05 19:03:35 +00001257 const char *zWalName, /* Name of the WAL file */
dan8c408002010-11-01 17:38:24 +00001258 int bNoShm, /* True to run in heap-memory mode */
drh85a83752011-05-16 21:00:27 +00001259 i64 mxWalSize, /* Truncate WAL to this size on reset */
drh7ed91f22010-04-29 22:34:07 +00001260 Wal **ppWal /* OUT: Allocated Wal handle */
dan7c246102010-04-12 19:00:29 +00001261){
danef378022010-05-04 11:06:03 +00001262 int rc; /* Return Code */
drh7ed91f22010-04-29 22:34:07 +00001263 Wal *pRet; /* Object to allocate and return */
dan7c246102010-04-12 19:00:29 +00001264 int flags; /* Flags passed to OsOpen() */
dan7c246102010-04-12 19:00:29 +00001265
dan3e875ef2010-07-05 19:03:35 +00001266 assert( zWalName && zWalName[0] );
drhd9e5c4f2010-05-12 18:01:39 +00001267 assert( pDbFd );
dan7c246102010-04-12 19:00:29 +00001268
drh1b78eaf2010-05-25 13:40:03 +00001269 /* In the amalgamation, the os_unix.c and os_win.c source files come before
1270 ** this source file. Verify that the #defines of the locking byte offsets
1271 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1272 */
1273#ifdef WIN_SHM_BASE
1274 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1275#endif
1276#ifdef UNIX_SHM_BASE
1277 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1278#endif
1279
1280
drh7ed91f22010-04-29 22:34:07 +00001281 /* Allocate an instance of struct Wal to return. */
1282 *ppWal = 0;
dan3e875ef2010-07-05 19:03:35 +00001283 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
dan76ed3bc2010-05-03 17:18:24 +00001284 if( !pRet ){
1285 return SQLITE_NOMEM;
1286 }
1287
dan7c246102010-04-12 19:00:29 +00001288 pRet->pVfs = pVfs;
drhd9e5c4f2010-05-12 18:01:39 +00001289 pRet->pWalFd = (sqlite3_file *)&pRet[1];
1290 pRet->pDbFd = pDbFd;
drh73b64e42010-05-30 19:55:15 +00001291 pRet->readLock = -1;
drh85a83752011-05-16 21:00:27 +00001292 pRet->mxWalSize = mxWalSize;
dan3e875ef2010-07-05 19:03:35 +00001293 pRet->zWalName = zWalName;
drhd992b152011-12-20 20:13:25 +00001294 pRet->syncHeader = 1;
drh374f4a02011-12-17 20:02:11 +00001295 pRet->padToSectorBoundary = 1;
dan8c408002010-11-01 17:38:24 +00001296 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
dan7c246102010-04-12 19:00:29 +00001297
drh7ed91f22010-04-29 22:34:07 +00001298 /* Open file handle on the write-ahead log file. */
danddb0ac42010-07-14 14:48:58 +00001299 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
danda9fe0c2010-07-13 18:44:03 +00001300 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
dan50833e32010-07-14 16:37:17 +00001301 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
drh66dfec8b2011-06-01 20:01:49 +00001302 pRet->readOnly = WAL_RDONLY;
dan50833e32010-07-14 16:37:17 +00001303 }
dan7c246102010-04-12 19:00:29 +00001304
dan7c246102010-04-12 19:00:29 +00001305 if( rc!=SQLITE_OK ){
dan1018e902010-05-05 15:33:05 +00001306 walIndexClose(pRet, 0);
drhd9e5c4f2010-05-12 18:01:39 +00001307 sqlite3OsClose(pRet->pWalFd);
danef378022010-05-04 11:06:03 +00001308 sqlite3_free(pRet);
1309 }else{
dandd973542014-02-13 19:27:08 +00001310 int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
drhd992b152011-12-20 20:13:25 +00001311 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
drhcb15f352011-12-23 01:04:17 +00001312 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1313 pRet->padToSectorBoundary = 0;
1314 }
danef378022010-05-04 11:06:03 +00001315 *ppWal = pRet;
drhc74c3332010-05-31 12:15:19 +00001316 WALTRACE(("WAL%d: opened\n", pRet));
dan7c246102010-04-12 19:00:29 +00001317 }
dan7c246102010-04-12 19:00:29 +00001318 return rc;
1319}
1320
drha2a42012010-05-18 18:01:08 +00001321/*
drh85a83752011-05-16 21:00:27 +00001322** Change the size to which the WAL file is trucated on each reset.
1323*/
1324void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1325 if( pWal ) pWal->mxWalSize = iLimit;
1326}
1327
1328/*
drha2a42012010-05-18 18:01:08 +00001329** Find the smallest page number out of all pages held in the WAL that
1330** has not been returned by any prior invocation of this method on the
1331** same WalIterator object. Write into *piFrame the frame index where
1332** that page was last written into the WAL. Write into *piPage the page
1333** number.
1334**
1335** Return 0 on success. If there are no pages in the WAL with a page
1336** number larger than *piPage, then return 1.
1337*/
drh7ed91f22010-04-29 22:34:07 +00001338static int walIteratorNext(
1339 WalIterator *p, /* Iterator */
drha2a42012010-05-18 18:01:08 +00001340 u32 *piPage, /* OUT: The page number of the next page */
1341 u32 *piFrame /* OUT: Wal frame index of next page */
dan7c246102010-04-12 19:00:29 +00001342){
drha2a42012010-05-18 18:01:08 +00001343 u32 iMin; /* Result pgno must be greater than iMin */
1344 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
1345 int i; /* For looping through segments */
dan7c246102010-04-12 19:00:29 +00001346
drha2a42012010-05-18 18:01:08 +00001347 iMin = p->iPrior;
1348 assert( iMin<0xffffffff );
dan7c246102010-04-12 19:00:29 +00001349 for(i=p->nSegment-1; i>=0; i--){
drh7ed91f22010-04-29 22:34:07 +00001350 struct WalSegment *pSegment = &p->aSegment[i];
dan13a3cb82010-06-11 19:04:21 +00001351 while( pSegment->iNext<pSegment->nEntry ){
drha2a42012010-05-18 18:01:08 +00001352 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
dan7c246102010-04-12 19:00:29 +00001353 if( iPg>iMin ){
1354 if( iPg<iRet ){
1355 iRet = iPg;
dan13a3cb82010-06-11 19:04:21 +00001356 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
dan7c246102010-04-12 19:00:29 +00001357 }
1358 break;
1359 }
1360 pSegment->iNext++;
1361 }
dan7c246102010-04-12 19:00:29 +00001362 }
1363
drha2a42012010-05-18 18:01:08 +00001364 *piPage = p->iPrior = iRet;
dan7c246102010-04-12 19:00:29 +00001365 return (iRet==0xFFFFFFFF);
1366}
1367
danf544b4c2010-06-25 11:35:52 +00001368/*
1369** This function merges two sorted lists into a single sorted list.
drhd9c9b782010-12-15 21:02:06 +00001370**
1371** aLeft[] and aRight[] are arrays of indices. The sort key is
1372** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following
1373** is guaranteed for all J<K:
1374**
1375** aContent[aLeft[J]] < aContent[aLeft[K]]
1376** aContent[aRight[J]] < aContent[aRight[K]]
1377**
1378** This routine overwrites aRight[] with a new (probably longer) sequence
1379** of indices such that the aRight[] contains every index that appears in
1380** either aLeft[] or the old aRight[] and such that the second condition
1381** above is still met.
1382**
1383** The aContent[aLeft[X]] values will be unique for all X. And the
1384** aContent[aRight[X]] values will be unique too. But there might be
1385** one or more combinations of X and Y such that
1386**
1387** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]]
1388**
1389** When that happens, omit the aLeft[X] and use the aRight[Y] index.
danf544b4c2010-06-25 11:35:52 +00001390*/
1391static void walMerge(
drhd9c9b782010-12-15 21:02:06 +00001392 const u32 *aContent, /* Pages in wal - keys for the sort */
danf544b4c2010-06-25 11:35:52 +00001393 ht_slot *aLeft, /* IN: Left hand input list */
1394 int nLeft, /* IN: Elements in array *paLeft */
1395 ht_slot **paRight, /* IN/OUT: Right hand input list */
1396 int *pnRight, /* IN/OUT: Elements in *paRight */
1397 ht_slot *aTmp /* Temporary buffer */
1398){
1399 int iLeft = 0; /* Current index in aLeft */
1400 int iRight = 0; /* Current index in aRight */
1401 int iOut = 0; /* Current index in output buffer */
1402 int nRight = *pnRight;
1403 ht_slot *aRight = *paRight;
dan7c246102010-04-12 19:00:29 +00001404
danf544b4c2010-06-25 11:35:52 +00001405 assert( nLeft>0 && nRight>0 );
1406 while( iRight<nRight || iLeft<nLeft ){
1407 ht_slot logpage;
1408 Pgno dbpage;
1409
1410 if( (iLeft<nLeft)
1411 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1412 ){
1413 logpage = aLeft[iLeft++];
1414 }else{
1415 logpage = aRight[iRight++];
1416 }
1417 dbpage = aContent[logpage];
1418
1419 aTmp[iOut++] = logpage;
1420 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1421
1422 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1423 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1424 }
1425
1426 *paRight = aLeft;
1427 *pnRight = iOut;
1428 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1429}
1430
1431/*
drhd9c9b782010-12-15 21:02:06 +00001432** Sort the elements in list aList using aContent[] as the sort key.
1433** Remove elements with duplicate keys, preferring to keep the
1434** larger aList[] values.
1435**
1436** The aList[] entries are indices into aContent[]. The values in
1437** aList[] are to be sorted so that for all J<K:
1438**
1439** aContent[aList[J]] < aContent[aList[K]]
1440**
1441** For any X and Y such that
1442**
1443** aContent[aList[X]] == aContent[aList[Y]]
1444**
1445** Keep the larger of the two values aList[X] and aList[Y] and discard
1446** the smaller.
danf544b4c2010-06-25 11:35:52 +00001447*/
dan13a3cb82010-06-11 19:04:21 +00001448static void walMergesort(
drhd9c9b782010-12-15 21:02:06 +00001449 const u32 *aContent, /* Pages in wal */
dan067f3162010-06-14 10:30:12 +00001450 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
1451 ht_slot *aList, /* IN/OUT: List to sort */
drha2a42012010-05-18 18:01:08 +00001452 int *pnList /* IN/OUT: Number of elements in aList[] */
1453){
danf544b4c2010-06-25 11:35:52 +00001454 struct Sublist {
1455 int nList; /* Number of elements in aList */
1456 ht_slot *aList; /* Pointer to sub-list content */
1457 };
drha2a42012010-05-18 18:01:08 +00001458
danf544b4c2010-06-25 11:35:52 +00001459 const int nList = *pnList; /* Size of input list */
drhff828942010-06-26 21:34:06 +00001460 int nMerge = 0; /* Number of elements in list aMerge */
1461 ht_slot *aMerge = 0; /* List to be merged */
danf544b4c2010-06-25 11:35:52 +00001462 int iList; /* Index into input list */
drh7d113eb2010-06-26 20:00:54 +00001463 int iSub = 0; /* Index into aSub array */
danf544b4c2010-06-25 11:35:52 +00001464 struct Sublist aSub[13]; /* Array of sub-lists */
drha2a42012010-05-18 18:01:08 +00001465
danf544b4c2010-06-25 11:35:52 +00001466 memset(aSub, 0, sizeof(aSub));
1467 assert( nList<=HASHTABLE_NPAGE && nList>0 );
1468 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
drha2a42012010-05-18 18:01:08 +00001469
danf544b4c2010-06-25 11:35:52 +00001470 for(iList=0; iList<nList; iList++){
1471 nMerge = 1;
1472 aMerge = &aList[iList];
1473 for(iSub=0; iList & (1<<iSub); iSub++){
1474 struct Sublist *p = &aSub[iSub];
1475 assert( p->aList && p->nList<=(1<<iSub) );
danbdf1e242010-06-25 15:16:25 +00001476 assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001477 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
drha2a42012010-05-18 18:01:08 +00001478 }
danf544b4c2010-06-25 11:35:52 +00001479 aSub[iSub].aList = aMerge;
1480 aSub[iSub].nList = nMerge;
drha2a42012010-05-18 18:01:08 +00001481 }
1482
danf544b4c2010-06-25 11:35:52 +00001483 for(iSub++; iSub<ArraySize(aSub); iSub++){
1484 if( nList & (1<<iSub) ){
1485 struct Sublist *p = &aSub[iSub];
danbdf1e242010-06-25 15:16:25 +00001486 assert( p->nList<=(1<<iSub) );
1487 assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001488 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1489 }
1490 }
1491 assert( aMerge==aList );
1492 *pnList = nMerge;
1493
drha2a42012010-05-18 18:01:08 +00001494#ifdef SQLITE_DEBUG
1495 {
1496 int i;
1497 for(i=1; i<*pnList; i++){
1498 assert( aContent[aList[i]] > aContent[aList[i-1]] );
1499 }
1500 }
1501#endif
1502}
1503
dan5d656852010-06-14 07:53:26 +00001504/*
1505** Free an iterator allocated by walIteratorInit().
1506*/
1507static void walIteratorFree(WalIterator *p){
drhcbd55b02014-11-04 14:22:27 +00001508 sqlite3_free(p);
dan5d656852010-06-14 07:53:26 +00001509}
1510
drha2a42012010-05-18 18:01:08 +00001511/*
danbdf1e242010-06-25 15:16:25 +00001512** Construct a WalInterator object that can be used to loop over all
1513** pages in the WAL in ascending order. The caller must hold the checkpoint
drhd9c9b782010-12-15 21:02:06 +00001514** lock.
drha2a42012010-05-18 18:01:08 +00001515**
1516** On success, make *pp point to the newly allocated WalInterator object
danbdf1e242010-06-25 15:16:25 +00001517** return SQLITE_OK. Otherwise, return an error code. If this routine
1518** returns an error, the value of *pp is undefined.
drha2a42012010-05-18 18:01:08 +00001519**
1520** The calling routine should invoke walIteratorFree() to destroy the
danbdf1e242010-06-25 15:16:25 +00001521** WalIterator object when it has finished with it.
drha2a42012010-05-18 18:01:08 +00001522*/
1523static int walIteratorInit(Wal *pWal, WalIterator **pp){
dan067f3162010-06-14 10:30:12 +00001524 WalIterator *p; /* Return value */
1525 int nSegment; /* Number of segments to merge */
1526 u32 iLast; /* Last frame in log */
1527 int nByte; /* Number of bytes to allocate */
1528 int i; /* Iterator variable */
1529 ht_slot *aTmp; /* Temp space used by merge-sort */
danbdf1e242010-06-25 15:16:25 +00001530 int rc = SQLITE_OK; /* Return Code */
drha2a42012010-05-18 18:01:08 +00001531
danbdf1e242010-06-25 15:16:25 +00001532 /* This routine only runs while holding the checkpoint lock. And
1533 ** it only runs if there is actually content in the log (mxFrame>0).
drha2a42012010-05-18 18:01:08 +00001534 */
danbdf1e242010-06-25 15:16:25 +00001535 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
dan13a3cb82010-06-11 19:04:21 +00001536 iLast = pWal->hdr.mxFrame;
drha2a42012010-05-18 18:01:08 +00001537
danbdf1e242010-06-25 15:16:25 +00001538 /* Allocate space for the WalIterator object. */
dan13a3cb82010-06-11 19:04:21 +00001539 nSegment = walFramePage(iLast) + 1;
1540 nByte = sizeof(WalIterator)
dan52d6fc02010-06-25 16:34:32 +00001541 + (nSegment-1)*sizeof(struct WalSegment)
1542 + iLast*sizeof(ht_slot);
drhf3cdcdc2015-04-29 16:50:28 +00001543 p = (WalIterator *)sqlite3_malloc64(nByte);
dan8f6097c2010-05-06 07:43:58 +00001544 if( !p ){
drha2a42012010-05-18 18:01:08 +00001545 return SQLITE_NOMEM;
1546 }
1547 memset(p, 0, nByte);
drha2a42012010-05-18 18:01:08 +00001548 p->nSegment = nSegment;
danbdf1e242010-06-25 15:16:25 +00001549
1550 /* Allocate temporary space used by the merge-sort routine. This block
1551 ** of memory will be freed before this function returns.
1552 */
drhf3cdcdc2015-04-29 16:50:28 +00001553 aTmp = (ht_slot *)sqlite3_malloc64(
dan52d6fc02010-06-25 16:34:32 +00001554 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1555 );
danbdf1e242010-06-25 15:16:25 +00001556 if( !aTmp ){
1557 rc = SQLITE_NOMEM;
1558 }
1559
1560 for(i=0; rc==SQLITE_OK && i<nSegment; i++){
dan067f3162010-06-14 10:30:12 +00001561 volatile ht_slot *aHash;
dan13a3cb82010-06-11 19:04:21 +00001562 u32 iZero;
dan13a3cb82010-06-11 19:04:21 +00001563 volatile u32 *aPgno;
1564
dan4280eb32010-06-12 12:02:35 +00001565 rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
danbdf1e242010-06-25 15:16:25 +00001566 if( rc==SQLITE_OK ){
dan52d6fc02010-06-25 16:34:32 +00001567 int j; /* Counter variable */
1568 int nEntry; /* Number of entries in this segment */
1569 ht_slot *aIndex; /* Sorted index for this segment */
1570
danbdf1e242010-06-25 15:16:25 +00001571 aPgno++;
drh519426a2010-07-09 03:19:07 +00001572 if( (i+1)==nSegment ){
1573 nEntry = (int)(iLast - iZero);
1574 }else{
shaneh55897962010-07-09 12:57:53 +00001575 nEntry = (int)((u32*)aHash - (u32*)aPgno);
drh519426a2010-07-09 03:19:07 +00001576 }
dan52d6fc02010-06-25 16:34:32 +00001577 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
danbdf1e242010-06-25 15:16:25 +00001578 iZero++;
1579
danbdf1e242010-06-25 15:16:25 +00001580 for(j=0; j<nEntry; j++){
shaneh5eba1f62010-07-02 17:05:03 +00001581 aIndex[j] = (ht_slot)j;
danbdf1e242010-06-25 15:16:25 +00001582 }
1583 walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
1584 p->aSegment[i].iZero = iZero;
1585 p->aSegment[i].nEntry = nEntry;
1586 p->aSegment[i].aIndex = aIndex;
1587 p->aSegment[i].aPgno = (u32 *)aPgno;
dan13a3cb82010-06-11 19:04:21 +00001588 }
dan7c246102010-04-12 19:00:29 +00001589 }
drhcbd55b02014-11-04 14:22:27 +00001590 sqlite3_free(aTmp);
dan7c246102010-04-12 19:00:29 +00001591
danbdf1e242010-06-25 15:16:25 +00001592 if( rc!=SQLITE_OK ){
1593 walIteratorFree(p);
1594 }
dan8f6097c2010-05-06 07:43:58 +00001595 *pp = p;
danbdf1e242010-06-25 15:16:25 +00001596 return rc;
dan7c246102010-04-12 19:00:29 +00001597}
1598
dan7c246102010-04-12 19:00:29 +00001599/*
dana58f26f2010-11-16 18:56:51 +00001600** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1601** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1602** busy-handler function. Invoke it and retry the lock until either the
1603** lock is successfully obtained or the busy-handler returns 0.
1604*/
1605static int walBusyLock(
1606 Wal *pWal, /* WAL connection */
1607 int (*xBusy)(void*), /* Function to call when busy */
1608 void *pBusyArg, /* Context argument for xBusyHandler */
1609 int lockIdx, /* Offset of first byte to lock */
1610 int n /* Number of bytes to lock */
1611){
1612 int rc;
1613 do {
drhbbf76ee2015-03-10 20:22:35 +00001614 rc = walLockExclusive(pWal, lockIdx, n, 0);
dana58f26f2010-11-16 18:56:51 +00001615 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1616 return rc;
1617}
1618
1619/*
danf2b8dd52010-11-18 19:28:01 +00001620** The cache of the wal-index header must be valid to call this function.
1621** Return the page-size in bytes used by the database.
1622*/
1623static int walPagesize(Wal *pWal){
1624 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1625}
1626
1627/*
danf26a1542014-12-02 19:04:54 +00001628** The following is guaranteed when this function is called:
1629**
1630** a) the WRITER lock is held,
1631** b) the entire log file has been checkpointed, and
1632** c) any existing readers are reading exclusively from the database
1633** file - there are no readers that may attempt to read a frame from
1634** the log file.
1635**
1636** This function updates the shared-memory structures so that the next
1637** client to write to the database (which may be this one) does so by
1638** writing frames into the start of the log file.
dan0fe8c1b2014-12-02 19:35:09 +00001639**
1640** The value of parameter salt1 is used as the aSalt[1] value in the
1641** new wal-index header. It should be passed a pseudo-random value (i.e.
1642** one obtained from sqlite3_randomness()).
danf26a1542014-12-02 19:04:54 +00001643*/
dan0fe8c1b2014-12-02 19:35:09 +00001644static void walRestartHdr(Wal *pWal, u32 salt1){
danf26a1542014-12-02 19:04:54 +00001645 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
1646 int i; /* Loop counter */
1647 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
1648 pWal->nCkpt++;
1649 pWal->hdr.mxFrame = 0;
1650 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
dan0fe8c1b2014-12-02 19:35:09 +00001651 memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
danf26a1542014-12-02 19:04:54 +00001652 walIndexWriteHdr(pWal);
1653 pInfo->nBackfill = 0;
1654 pInfo->aReadMark[1] = 0;
1655 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
1656 assert( pInfo->aReadMark[0]==0 );
1657}
1658
1659/*
drh73b64e42010-05-30 19:55:15 +00001660** Copy as much content as we can from the WAL back into the database file
1661** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1662**
1663** The amount of information copies from WAL to database might be limited
1664** by active readers. This routine will never overwrite a database page
1665** that a concurrent reader might be using.
1666**
1667** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1668** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
1669** checkpoints are always run by a background thread or background
1670** process, foreground threads will never block on a lengthy fsync call.
1671**
1672** Fsync is called on the WAL before writing content out of the WAL and
1673** into the database. This ensures that if the new content is persistent
1674** in the WAL and can be recovered following a power-loss or hard reset.
1675**
1676** Fsync is also called on the database file if (and only if) the entire
1677** WAL content is copied into the database file. This second fsync makes
1678** it safe to delete the WAL since the new content will persist in the
1679** database file.
1680**
1681** This routine uses and updates the nBackfill field of the wal-index header.
peter.d.reid60ec9142014-09-06 16:39:46 +00001682** This is the only routine that will increase the value of nBackfill.
drh73b64e42010-05-30 19:55:15 +00001683** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1684** its value.)
1685**
1686** The caller must be holding sufficient locks to ensure that no other
1687** checkpoint is running (in any other thread or process) at the same
1688** time.
dan7c246102010-04-12 19:00:29 +00001689*/
drh7ed91f22010-04-29 22:34:07 +00001690static int walCheckpoint(
1691 Wal *pWal, /* Wal connection */
dancdc1f042010-11-18 12:11:05 +00001692 int eMode, /* One of PASSIVE, FULL or RESTART */
drhdd90d7e2014-12-03 19:25:41 +00001693 int (*xBusy)(void*), /* Function to call when busy */
dana58f26f2010-11-16 18:56:51 +00001694 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00001695 int sync_flags, /* Flags for OsSync() (or 0) */
dan9c5e3682011-02-07 15:12:12 +00001696 u8 *zBuf /* Temporary buffer to use */
dan7c246102010-04-12 19:00:29 +00001697){
dan976b0032015-01-29 19:12:12 +00001698 int rc = SQLITE_OK; /* Return code */
drhb2eced52010-08-12 02:41:12 +00001699 int szPage; /* Database page-size */
drh7ed91f22010-04-29 22:34:07 +00001700 WalIterator *pIter = 0; /* Wal iterator context */
dan7c246102010-04-12 19:00:29 +00001701 u32 iDbpage = 0; /* Next database page to write */
drh7ed91f22010-04-29 22:34:07 +00001702 u32 iFrame = 0; /* Wal frame containing data for iDbpage */
drh73b64e42010-05-30 19:55:15 +00001703 u32 mxSafeFrame; /* Max frame that can be backfilled */
dan502019c2010-07-28 14:26:17 +00001704 u32 mxPage; /* Max database page to write */
drh73b64e42010-05-30 19:55:15 +00001705 int i; /* Loop counter */
drh73b64e42010-05-30 19:55:15 +00001706 volatile WalCkptInfo *pInfo; /* The checkpoint status information */
dan7c246102010-04-12 19:00:29 +00001707
danf2b8dd52010-11-18 19:28:01 +00001708 szPage = walPagesize(pWal);
drh9b78f792010-08-14 21:21:24 +00001709 testcase( szPage<=32768 );
1710 testcase( szPage>=65536 );
drh7d208442010-12-16 02:06:29 +00001711 pInfo = walCkptInfo(pWal);
dan976b0032015-01-29 19:12:12 +00001712 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
danf544b4c2010-06-25 11:35:52 +00001713
dan976b0032015-01-29 19:12:12 +00001714 /* Allocate the iterator */
1715 rc = walIteratorInit(pWal, &pIter);
1716 if( rc!=SQLITE_OK ){
1717 return rc;
drh73b64e42010-05-30 19:55:15 +00001718 }
dan976b0032015-01-29 19:12:12 +00001719 assert( pIter );
dan7c246102010-04-12 19:00:29 +00001720
dan976b0032015-01-29 19:12:12 +00001721 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
1722 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
1723 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
drh73b64e42010-05-30 19:55:15 +00001724
dan976b0032015-01-29 19:12:12 +00001725 /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1726 ** safe to write into the database. Frames beyond mxSafeFrame might
1727 ** overwrite database pages that are in use by active readers and thus
1728 ** cannot be backfilled from the WAL.
danf23da962013-03-23 21:00:41 +00001729 */
dan976b0032015-01-29 19:12:12 +00001730 mxSafeFrame = pWal->hdr.mxFrame;
1731 mxPage = pWal->hdr.nPage;
1732 for(i=1; i<WAL_NREADER; i++){
dan1fe0af22015-04-13 17:43:43 +00001733 /* Thread-sanitizer reports that the following is an unsafe read,
1734 ** as some other thread may be in the process of updating the value
1735 ** of the aReadMark[] slot. The assumption here is that if that is
1736 ** happening, the other client may only be increasing the value,
1737 ** not decreasing it. So assuming either that either the "old" or
1738 ** "new" version of the value is read, and not some arbitrary value
1739 ** that would never be written by a real client, things are still
1740 ** safe. */
dan976b0032015-01-29 19:12:12 +00001741 u32 y = pInfo->aReadMark[i];
1742 if( mxSafeFrame>y ){
1743 assert( y<=pWal->hdr.mxFrame );
1744 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
1745 if( rc==SQLITE_OK ){
1746 pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
1747 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1748 }else if( rc==SQLITE_BUSY ){
1749 mxSafeFrame = y;
1750 xBusy = 0;
1751 }else{
1752 goto walcheckpoint_out;
drh73b64e42010-05-30 19:55:15 +00001753 }
1754 }
1755 }
1756
dan976b0032015-01-29 19:12:12 +00001757 if( pInfo->nBackfill<mxSafeFrame
1758 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK
1759 ){
1760 i64 nSize; /* Current size of database file */
1761 u32 nBackfill = pInfo->nBackfill;
dana58f26f2010-11-16 18:56:51 +00001762
dan976b0032015-01-29 19:12:12 +00001763 /* Sync the WAL to disk */
1764 if( sync_flags ){
1765 rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
1766 }
1767
1768 /* If the database may grow as a result of this checkpoint, hint
1769 ** about the eventual size of the db file to the VFS layer.
1770 */
1771 if( rc==SQLITE_OK ){
1772 i64 nReq = ((i64)mxPage * szPage);
1773 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
1774 if( rc==SQLITE_OK && nSize<nReq ){
1775 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
1776 }
1777 }
1778
1779
1780 /* Iterate through the contents of the WAL, copying data to the db file */
1781 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
1782 i64 iOffset;
1783 assert( walFramePgno(pWal, iFrame)==iDbpage );
1784 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
1785 continue;
1786 }
1787 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
1788 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
1789 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1790 if( rc!=SQLITE_OK ) break;
1791 iOffset = (iDbpage-1)*(i64)szPage;
1792 testcase( IS_BIG_INT(iOffset) );
1793 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1794 if( rc!=SQLITE_OK ) break;
1795 }
1796
1797 /* If work was actually accomplished... */
1798 if( rc==SQLITE_OK ){
1799 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
1800 i64 szDb = pWal->hdr.nPage*(i64)szPage;
1801 testcase( IS_BIG_INT(szDb) );
1802 rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
1803 if( rc==SQLITE_OK && sync_flags ){
1804 rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
1805 }
1806 }
1807 if( rc==SQLITE_OK ){
1808 pInfo->nBackfill = mxSafeFrame;
1809 }
1810 }
1811
1812 /* Release the reader lock held while backfilling */
1813 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
1814 }
1815
1816 if( rc==SQLITE_BUSY ){
1817 /* Reset the return code so as not to report a checkpoint failure
1818 ** just because there are active readers. */
1819 rc = SQLITE_OK;
1820 }
dan7c246102010-04-12 19:00:29 +00001821 }
1822
danf26a1542014-12-02 19:04:54 +00001823 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
1824 ** entire wal file has been copied into the database file, then block
1825 ** until all readers have finished using the wal file. This ensures that
1826 ** the next process to write to the database restarts the wal file.
danf2b8dd52010-11-18 19:28:01 +00001827 */
1828 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
dancdc1f042010-11-18 12:11:05 +00001829 assert( pWal->writeLock );
danf2b8dd52010-11-18 19:28:01 +00001830 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
1831 rc = SQLITE_BUSY;
danf26a1542014-12-02 19:04:54 +00001832 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
dan0fe8c1b2014-12-02 19:35:09 +00001833 u32 salt1;
1834 sqlite3_randomness(4, &salt1);
dan976b0032015-01-29 19:12:12 +00001835 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
danf2b8dd52010-11-18 19:28:01 +00001836 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
1837 if( rc==SQLITE_OK ){
danf26a1542014-12-02 19:04:54 +00001838 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
drha25165f2014-12-04 04:50:59 +00001839 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
1840 ** SQLITE_CHECKPOINT_RESTART with the addition that it also
1841 ** truncates the log file to zero bytes just prior to a
1842 ** successful return.
danf26a1542014-12-02 19:04:54 +00001843 **
1844 ** In theory, it might be safe to do this without updating the
1845 ** wal-index header in shared memory, as all subsequent reader or
1846 ** writer clients should see that the entire log file has been
1847 ** checkpointed and behave accordingly. This seems unsafe though,
1848 ** as it would leave the system in a state where the contents of
1849 ** the wal-index header do not match the contents of the
1850 ** file-system. To avoid this, update the wal-index header to
1851 ** indicate that the log file contains zero valid frames. */
dan0fe8c1b2014-12-02 19:35:09 +00001852 walRestartHdr(pWal, salt1);
danf26a1542014-12-02 19:04:54 +00001853 rc = sqlite3OsTruncate(pWal->pWalFd, 0);
1854 }
danf2b8dd52010-11-18 19:28:01 +00001855 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
1856 }
dancdc1f042010-11-18 12:11:05 +00001857 }
1858 }
1859
dan83f42d12010-06-04 10:37:05 +00001860 walcheckpoint_out:
drh7ed91f22010-04-29 22:34:07 +00001861 walIteratorFree(pIter);
dan7c246102010-04-12 19:00:29 +00001862 return rc;
1863}
1864
1865/*
danf60b7f32011-12-16 13:24:27 +00001866** If the WAL file is currently larger than nMax bytes in size, truncate
1867** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
drh8dd4afa2011-12-08 19:50:32 +00001868*/
danf60b7f32011-12-16 13:24:27 +00001869static void walLimitSize(Wal *pWal, i64 nMax){
1870 i64 sz;
1871 int rx;
1872 sqlite3BeginBenignMalloc();
1873 rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
1874 if( rx==SQLITE_OK && (sz > nMax ) ){
1875 rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
1876 }
1877 sqlite3EndBenignMalloc();
1878 if( rx ){
1879 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
drh8dd4afa2011-12-08 19:50:32 +00001880 }
1881}
1882
1883/*
dan7c246102010-04-12 19:00:29 +00001884** Close a connection to a log file.
1885*/
drhc438efd2010-04-26 00:19:45 +00001886int sqlite3WalClose(
drh7ed91f22010-04-29 22:34:07 +00001887 Wal *pWal, /* Wal to close */
danc5118782010-04-17 17:34:41 +00001888 int sync_flags, /* Flags to pass to OsSync() (or 0) */
danb6e099a2010-05-04 14:47:39 +00001889 int nBuf,
1890 u8 *zBuf /* Buffer of at least nBuf bytes */
dan7c246102010-04-12 19:00:29 +00001891){
1892 int rc = SQLITE_OK;
drh7ed91f22010-04-29 22:34:07 +00001893 if( pWal ){
dan30c86292010-04-30 16:24:46 +00001894 int isDelete = 0; /* True to unlink wal and wal-index files */
1895
1896 /* If an EXCLUSIVE lock can be obtained on the database file (using the
1897 ** ordinary, rollback-mode locking methods, this guarantees that the
1898 ** connection associated with this log file is the only connection to
1899 ** the database. In this case checkpoint the database and unlink both
1900 ** the wal and wal-index files.
1901 **
1902 ** The EXCLUSIVE lock is not released before returning.
1903 */
drhd9e5c4f2010-05-12 18:01:39 +00001904 rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
dan30c86292010-04-30 16:24:46 +00001905 if( rc==SQLITE_OK ){
dan8c408002010-11-01 17:38:24 +00001906 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
1907 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
1908 }
dancdc1f042010-11-18 12:11:05 +00001909 rc = sqlite3WalCheckpoint(
1910 pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
1911 );
drheed42502011-12-16 15:38:52 +00001912 if( rc==SQLITE_OK ){
1913 int bPersist = -1;
drhc02372c2012-01-10 17:59:59 +00001914 sqlite3OsFileControlHint(
dan6f2f19a2012-01-10 16:56:39 +00001915 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
1916 );
drheed42502011-12-16 15:38:52 +00001917 if( bPersist!=1 ){
1918 /* Try to delete the WAL file if the checkpoint completed and
1919 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
1920 ** mode (!bPersist) */
1921 isDelete = 1;
1922 }else if( pWal->mxWalSize>=0 ){
1923 /* Try to truncate the WAL file to zero bytes if the checkpoint
1924 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
1925 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
1926 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate
1927 ** to zero bytes as truncating to the journal_size_limit might
1928 ** leave a corrupt WAL file on disk. */
1929 walLimitSize(pWal, 0);
1930 }
dan30c86292010-04-30 16:24:46 +00001931 }
dan30c86292010-04-30 16:24:46 +00001932 }
1933
dan1018e902010-05-05 15:33:05 +00001934 walIndexClose(pWal, isDelete);
drhd9e5c4f2010-05-12 18:01:39 +00001935 sqlite3OsClose(pWal->pWalFd);
dan30c86292010-04-30 16:24:46 +00001936 if( isDelete ){
drh92c45cf2012-01-10 00:24:59 +00001937 sqlite3BeginBenignMalloc();
drhd9e5c4f2010-05-12 18:01:39 +00001938 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
drh92c45cf2012-01-10 00:24:59 +00001939 sqlite3EndBenignMalloc();
dan30c86292010-04-30 16:24:46 +00001940 }
drhc74c3332010-05-31 12:15:19 +00001941 WALTRACE(("WAL%p: closed\n", pWal));
shaneh8a300f82010-07-02 18:15:31 +00001942 sqlite3_free((void *)pWal->apWiData);
drh7ed91f22010-04-29 22:34:07 +00001943 sqlite3_free(pWal);
dan7c246102010-04-12 19:00:29 +00001944 }
1945 return rc;
1946}
1947
1948/*
drha2a42012010-05-18 18:01:08 +00001949** Try to read the wal-index header. Return 0 on success and 1 if
1950** there is a problem.
1951**
1952** The wal-index is in shared memory. Another thread or process might
1953** be writing the header at the same time this procedure is trying to
1954** read it, which might result in inconsistency. A dirty read is detected
drh73b64e42010-05-30 19:55:15 +00001955** by verifying that both copies of the header are the same and also by
1956** a checksum on the header.
drha2a42012010-05-18 18:01:08 +00001957**
1958** If and only if the read is consistent and the header is different from
1959** pWal->hdr, then pWal->hdr is updated to the content of the new header
1960** and *pChanged is set to 1.
danb9bf16b2010-04-14 11:23:30 +00001961**
dan84670502010-05-07 05:46:23 +00001962** If the checksum cannot be verified return non-zero. If the header
1963** is read successfully and the checksum verified, return zero.
danb9bf16b2010-04-14 11:23:30 +00001964*/
drh7750ab42010-06-26 22:16:02 +00001965static int walIndexTryHdr(Wal *pWal, int *pChanged){
dan4280eb32010-06-12 12:02:35 +00001966 u32 aCksum[2]; /* Checksum on the header content */
1967 WalIndexHdr h1, h2; /* Two copies of the header content */
1968 WalIndexHdr volatile *aHdr; /* Header in shared memory */
danb9bf16b2010-04-14 11:23:30 +00001969
dan4280eb32010-06-12 12:02:35 +00001970 /* The first page of the wal-index must be mapped at this point. */
1971 assert( pWal->nWiData>0 && pWal->apWiData[0] );
drh79e6c782010-04-30 02:13:26 +00001972
drh6cef0cf2010-08-16 16:31:43 +00001973 /* Read the header. This might happen concurrently with a write to the
drh73b64e42010-05-30 19:55:15 +00001974 ** same area of shared memory on a different CPU in a SMP,
1975 ** meaning it is possible that an inconsistent snapshot is read
dan84670502010-05-07 05:46:23 +00001976 ** from the file. If this happens, return non-zero.
drhf0b20f82010-05-21 13:16:18 +00001977 **
1978 ** There are two copies of the header at the beginning of the wal-index.
1979 ** When reading, read [0] first then [1]. Writes are in the reverse order.
1980 ** Memory barriers are used to prevent the compiler or the hardware from
1981 ** reordering the reads and writes.
danb9bf16b2010-04-14 11:23:30 +00001982 */
dan4280eb32010-06-12 12:02:35 +00001983 aHdr = walIndexHdr(pWal);
1984 memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
dan8c408002010-11-01 17:38:24 +00001985 walShmBarrier(pWal);
dan4280eb32010-06-12 12:02:35 +00001986 memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
drh286a2882010-05-20 23:51:06 +00001987
drhf0b20f82010-05-21 13:16:18 +00001988 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
1989 return 1; /* Dirty read */
drh286a2882010-05-20 23:51:06 +00001990 }
drh4b82c382010-05-31 18:24:19 +00001991 if( h1.isInit==0 ){
drhf0b20f82010-05-21 13:16:18 +00001992 return 1; /* Malformed header - probably all zeros */
1993 }
danb8fd6c22010-05-24 10:39:36 +00001994 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
drhf0b20f82010-05-21 13:16:18 +00001995 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
1996 return 1; /* Checksum does not match */
danb9bf16b2010-04-14 11:23:30 +00001997 }
1998
drhf0b20f82010-05-21 13:16:18 +00001999 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
dana8614692010-05-06 14:42:34 +00002000 *pChanged = 1;
drhf0b20f82010-05-21 13:16:18 +00002001 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
drh9b78f792010-08-14 21:21:24 +00002002 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2003 testcase( pWal->szPage<=32768 );
2004 testcase( pWal->szPage>=65536 );
danb9bf16b2010-04-14 11:23:30 +00002005 }
dan84670502010-05-07 05:46:23 +00002006
2007 /* The header was successfully read. Return zero. */
2008 return 0;
danb9bf16b2010-04-14 11:23:30 +00002009}
2010
2011/*
drha2a42012010-05-18 18:01:08 +00002012** Read the wal-index header from the wal-index and into pWal->hdr.
drha927e942010-06-24 02:46:48 +00002013** If the wal-header appears to be corrupt, try to reconstruct the
2014** wal-index from the WAL before returning.
drha2a42012010-05-18 18:01:08 +00002015**
2016** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
peter.d.reid60ec9142014-09-06 16:39:46 +00002017** changed by this operation. If pWal->hdr is unchanged, set *pChanged
drha2a42012010-05-18 18:01:08 +00002018** to 0.
2019**
drh7ed91f22010-04-29 22:34:07 +00002020** If the wal-index header is successfully read, return SQLITE_OK.
danb9bf16b2010-04-14 11:23:30 +00002021** Otherwise an SQLite error code.
2022*/
drh7ed91f22010-04-29 22:34:07 +00002023static int walIndexReadHdr(Wal *pWal, int *pChanged){
dan84670502010-05-07 05:46:23 +00002024 int rc; /* Return code */
drh73b64e42010-05-30 19:55:15 +00002025 int badHdr; /* True if a header read failed */
drha927e942010-06-24 02:46:48 +00002026 volatile u32 *page0; /* Chunk of wal-index containing header */
danb9bf16b2010-04-14 11:23:30 +00002027
dan4280eb32010-06-12 12:02:35 +00002028 /* Ensure that page 0 of the wal-index (the page that contains the
2029 ** wal-index header) is mapped. Return early if an error occurs here.
2030 */
dana8614692010-05-06 14:42:34 +00002031 assert( pChanged );
dan4280eb32010-06-12 12:02:35 +00002032 rc = walIndexPage(pWal, 0, &page0);
danc7991bd2010-05-05 19:04:59 +00002033 if( rc!=SQLITE_OK ){
2034 return rc;
dan4280eb32010-06-12 12:02:35 +00002035 };
2036 assert( page0 || pWal->writeLock==0 );
drh7ed91f22010-04-29 22:34:07 +00002037
dan4280eb32010-06-12 12:02:35 +00002038 /* If the first page of the wal-index has been mapped, try to read the
2039 ** wal-index header immediately, without holding any lock. This usually
2040 ** works, but may fail if the wal-index header is corrupt or currently
drha927e942010-06-24 02:46:48 +00002041 ** being modified by another thread or process.
danb9bf16b2010-04-14 11:23:30 +00002042 */
dan4280eb32010-06-12 12:02:35 +00002043 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
drhbab7b912010-05-26 17:31:58 +00002044
drh73b64e42010-05-30 19:55:15 +00002045 /* If the first attempt failed, it might have been due to a race
drh66dfec8b2011-06-01 20:01:49 +00002046 ** with a writer. So get a WRITE lock and try again.
drh73b64e42010-05-30 19:55:15 +00002047 */
dand54ff602010-05-31 11:16:30 +00002048 assert( badHdr==0 || pWal->writeLock==0 );
dan4edc6bf2011-05-10 17:31:29 +00002049 if( badHdr ){
drh66dfec8b2011-06-01 20:01:49 +00002050 if( pWal->readOnly & WAL_SHM_RDONLY ){
dan4edc6bf2011-05-10 17:31:29 +00002051 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2052 walUnlockShared(pWal, WAL_WRITE_LOCK);
2053 rc = SQLITE_READONLY_RECOVERY;
drhbab7b912010-05-26 17:31:58 +00002054 }
drhbbf76ee2015-03-10 20:22:35 +00002055 }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1, 1)) ){
dan4edc6bf2011-05-10 17:31:29 +00002056 pWal->writeLock = 1;
2057 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2058 badHdr = walIndexTryHdr(pWal, pChanged);
2059 if( badHdr ){
2060 /* If the wal-index header is still malformed even while holding
2061 ** a WRITE lock, it can only mean that the header is corrupted and
2062 ** needs to be reconstructed. So run recovery to do exactly that.
2063 */
2064 rc = walIndexRecover(pWal);
2065 *pChanged = 1;
2066 }
2067 }
2068 pWal->writeLock = 0;
2069 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhbab7b912010-05-26 17:31:58 +00002070 }
danb9bf16b2010-04-14 11:23:30 +00002071 }
2072
drha927e942010-06-24 02:46:48 +00002073 /* If the header is read successfully, check the version number to make
2074 ** sure the wal-index was not constructed with some future format that
2075 ** this version of SQLite cannot understand.
2076 */
2077 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2078 rc = SQLITE_CANTOPEN_BKPT;
2079 }
2080
danb9bf16b2010-04-14 11:23:30 +00002081 return rc;
2082}
2083
2084/*
drh73b64e42010-05-30 19:55:15 +00002085** This is the value that walTryBeginRead returns when it needs to
2086** be retried.
dan7c246102010-04-12 19:00:29 +00002087*/
drh73b64e42010-05-30 19:55:15 +00002088#define WAL_RETRY (-1)
dan64d039e2010-04-13 19:27:31 +00002089
drh73b64e42010-05-30 19:55:15 +00002090/*
2091** Attempt to start a read transaction. This might fail due to a race or
2092** other transient condition. When that happens, it returns WAL_RETRY to
2093** indicate to the caller that it is safe to retry immediately.
2094**
drha927e942010-06-24 02:46:48 +00002095** On success return SQLITE_OK. On a permanent failure (such an
drh73b64e42010-05-30 19:55:15 +00002096** I/O error or an SQLITE_BUSY because another process is running
2097** recovery) return a positive error code.
2098**
drha927e942010-06-24 02:46:48 +00002099** The useWal parameter is true to force the use of the WAL and disable
2100** the case where the WAL is bypassed because it has been completely
2101** checkpointed. If useWal==0 then this routine calls walIndexReadHdr()
2102** to make a copy of the wal-index header into pWal->hdr. If the
2103** wal-index header has changed, *pChanged is set to 1 (as an indication
2104** to the caller that the local paget cache is obsolete and needs to be
2105** flushed.) When useWal==1, the wal-index header is assumed to already
2106** be loaded and the pChanged parameter is unused.
2107**
2108** The caller must set the cnt parameter to the number of prior calls to
2109** this routine during the current read attempt that returned WAL_RETRY.
2110** This routine will start taking more aggressive measures to clear the
2111** race conditions after multiple WAL_RETRY returns, and after an excessive
2112** number of errors will ultimately return SQLITE_PROTOCOL. The
2113** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2114** and is not honoring the locking protocol. There is a vanishingly small
2115** chance that SQLITE_PROTOCOL could be returned because of a run of really
2116** bad luck when there is lots of contention for the wal-index, but that
2117** possibility is so small that it can be safely neglected, we believe.
2118**
drh73b64e42010-05-30 19:55:15 +00002119** On success, this routine obtains a read lock on
2120** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
2121** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
2122** that means the Wal does not hold any read lock. The reader must not
2123** access any database page that is modified by a WAL frame up to and
2124** including frame number aReadMark[pWal->readLock]. The reader will
2125** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2126** Or if pWal->readLock==0, then the reader will ignore the WAL
2127** completely and get all content directly from the database file.
drha927e942010-06-24 02:46:48 +00002128** If the useWal parameter is 1 then the WAL will never be ignored and
2129** this routine will always set pWal->readLock>0 on success.
drh73b64e42010-05-30 19:55:15 +00002130** When the read transaction is completed, the caller must release the
2131** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2132**
2133** This routine uses the nBackfill and aReadMark[] fields of the header
2134** to select a particular WAL_READ_LOCK() that strives to let the
2135** checkpoint process do as much work as possible. This routine might
2136** update values of the aReadMark[] array in the header, but if it does
2137** so it takes care to hold an exclusive lock on the corresponding
2138** WAL_READ_LOCK() while changing values.
2139*/
drhaab4c022010-06-02 14:45:51 +00002140static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
drh73b64e42010-05-30 19:55:15 +00002141 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
2142 u32 mxReadMark; /* Largest aReadMark[] value */
2143 int mxI; /* Index of largest aReadMark[] value */
2144 int i; /* Loop counter */
dan13a3cb82010-06-11 19:04:21 +00002145 int rc = SQLITE_OK; /* Return code */
dan64d039e2010-04-13 19:27:31 +00002146
drh61e4ace2010-05-31 20:28:37 +00002147 assert( pWal->readLock<0 ); /* Not currently locked */
drh73b64e42010-05-30 19:55:15 +00002148
drh658d76c2011-02-19 15:22:14 +00002149 /* Take steps to avoid spinning forever if there is a protocol error.
2150 **
2151 ** Circumstances that cause a RETRY should only last for the briefest
2152 ** instances of time. No I/O or other system calls are done while the
2153 ** locks are held, so the locks should not be held for very long. But
2154 ** if we are unlucky, another process that is holding a lock might get
2155 ** paged out or take a page-fault that is time-consuming to resolve,
2156 ** during the few nanoseconds that it is holding the lock. In that case,
2157 ** it might take longer than normal for the lock to free.
2158 **
2159 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few
2160 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this
2161 ** is more of a scheduler yield than an actual delay. But on the 10th
2162 ** an subsequent retries, the delays start becoming longer and longer,
drh5b6e3b92014-06-12 17:10:18 +00002163 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2164 ** The total delay time before giving up is less than 10 seconds.
drh658d76c2011-02-19 15:22:14 +00002165 */
drhaab4c022010-06-02 14:45:51 +00002166 if( cnt>5 ){
drh658d76c2011-02-19 15:22:14 +00002167 int nDelay = 1; /* Pause time in microseconds */
drh03c69672011-02-19 23:18:12 +00002168 if( cnt>100 ){
2169 VVA_ONLY( pWal->lockError = 1; )
2170 return SQLITE_PROTOCOL;
2171 }
drh5b6e3b92014-06-12 17:10:18 +00002172 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
drh658d76c2011-02-19 15:22:14 +00002173 sqlite3OsSleep(pWal->pVfs, nDelay);
drhaab4c022010-06-02 14:45:51 +00002174 }
2175
drh73b64e42010-05-30 19:55:15 +00002176 if( !useWal ){
drh7ed91f22010-04-29 22:34:07 +00002177 rc = walIndexReadHdr(pWal, pChanged);
drh73b64e42010-05-30 19:55:15 +00002178 if( rc==SQLITE_BUSY ){
2179 /* If there is not a recovery running in another thread or process
2180 ** then convert BUSY errors to WAL_RETRY. If recovery is known to
2181 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
2182 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2183 ** would be technically correct. But the race is benign since with
2184 ** WAL_RETRY this routine will be called again and will probably be
2185 ** right on the second iteration.
2186 */
dan7d4514a2010-07-15 17:54:14 +00002187 if( pWal->apWiData[0]==0 ){
2188 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2189 ** We assume this is a transient condition, so return WAL_RETRY. The
2190 ** xShmMap() implementation used by the default unix and win32 VFS
2191 ** modules may return SQLITE_BUSY due to a race condition in the
2192 ** code that determines whether or not the shared-memory region
2193 ** must be zeroed before the requested page is returned.
2194 */
2195 rc = WAL_RETRY;
2196 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
drh73b64e42010-05-30 19:55:15 +00002197 walUnlockShared(pWal, WAL_RECOVER_LOCK);
2198 rc = WAL_RETRY;
2199 }else if( rc==SQLITE_BUSY ){
2200 rc = SQLITE_BUSY_RECOVERY;
2201 }
2202 }
drha927e942010-06-24 02:46:48 +00002203 if( rc!=SQLITE_OK ){
2204 return rc;
2205 }
drh73b64e42010-05-30 19:55:15 +00002206 }
2207
dan13a3cb82010-06-11 19:04:21 +00002208 pInfo = walCkptInfo(pWal);
drh73b64e42010-05-30 19:55:15 +00002209 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){
2210 /* The WAL has been completely backfilled (or it is empty).
2211 ** and can be safely ignored.
2212 */
2213 rc = walLockShared(pWal, WAL_READ_LOCK(0));
dan8c408002010-11-01 17:38:24 +00002214 walShmBarrier(pWal);
drh73b64e42010-05-30 19:55:15 +00002215 if( rc==SQLITE_OK ){
dan4280eb32010-06-12 12:02:35 +00002216 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
dan493cc592010-06-05 18:12:23 +00002217 /* It is not safe to allow the reader to continue here if frames
2218 ** may have been appended to the log before READ_LOCK(0) was obtained.
2219 ** When holding READ_LOCK(0), the reader ignores the entire log file,
2220 ** which implies that the database file contains a trustworthy
peter.d.reid60ec9142014-09-06 16:39:46 +00002221 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
dan493cc592010-06-05 18:12:23 +00002222 ** happening, this is usually correct.
2223 **
2224 ** However, if frames have been appended to the log (or if the log
2225 ** is wrapped and written for that matter) before the READ_LOCK(0)
2226 ** is obtained, that is not necessarily true. A checkpointer may
2227 ** have started to backfill the appended frames but crashed before
2228 ** it finished. Leaving a corrupt image in the database file.
2229 */
drh73b64e42010-05-30 19:55:15 +00002230 walUnlockShared(pWal, WAL_READ_LOCK(0));
2231 return WAL_RETRY;
2232 }
2233 pWal->readLock = 0;
2234 return SQLITE_OK;
2235 }else if( rc!=SQLITE_BUSY ){
2236 return rc;
dan64d039e2010-04-13 19:27:31 +00002237 }
dan7c246102010-04-12 19:00:29 +00002238 }
danba515902010-04-30 09:32:06 +00002239
drh73b64e42010-05-30 19:55:15 +00002240 /* If we get this far, it means that the reader will want to use
2241 ** the WAL to get at content from recent commits. The job now is
2242 ** to select one of the aReadMark[] entries that is closest to
2243 ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2244 */
2245 mxReadMark = 0;
2246 mxI = 0;
2247 for(i=1; i<WAL_NREADER; i++){
2248 u32 thisMark = pInfo->aReadMark[i];
drhdb7f6472010-06-09 14:45:12 +00002249 if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){
2250 assert( thisMark!=READMARK_NOT_USED );
drh73b64e42010-05-30 19:55:15 +00002251 mxReadMark = thisMark;
2252 mxI = i;
2253 }
2254 }
drh658d76c2011-02-19 15:22:14 +00002255 /* There was once an "if" here. The extra "{" is to preserve indentation. */
2256 {
drh66dfec8b2011-06-01 20:01:49 +00002257 if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2258 && (mxReadMark<pWal->hdr.mxFrame || mxI==0)
2259 ){
dand54ff602010-05-31 11:16:30 +00002260 for(i=1; i<WAL_NREADER; i++){
drhbbf76ee2015-03-10 20:22:35 +00002261 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1, 0);
drh73b64e42010-05-30 19:55:15 +00002262 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00002263 mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame;
drh73b64e42010-05-30 19:55:15 +00002264 mxI = i;
2265 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2266 break;
drh38933f22010-06-02 15:43:18 +00002267 }else if( rc!=SQLITE_BUSY ){
2268 return rc;
drh73b64e42010-05-30 19:55:15 +00002269 }
2270 }
2271 }
drh658d76c2011-02-19 15:22:14 +00002272 if( mxI==0 ){
drh5bf39342011-06-02 17:24:49 +00002273 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
dan4edc6bf2011-05-10 17:31:29 +00002274 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK;
drh658d76c2011-02-19 15:22:14 +00002275 }
drh73b64e42010-05-30 19:55:15 +00002276
2277 rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2278 if( rc ){
2279 return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2280 }
daneb8cb3a2010-06-05 18:34:26 +00002281 /* Now that the read-lock has been obtained, check that neither the
2282 ** value in the aReadMark[] array or the contents of the wal-index
2283 ** header have changed.
2284 **
2285 ** It is necessary to check that the wal-index header did not change
2286 ** between the time it was read and when the shared-lock was obtained
2287 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2288 ** that the log file may have been wrapped by a writer, or that frames
2289 ** that occur later in the log than pWal->hdr.mxFrame may have been
2290 ** copied into the database by a checkpointer. If either of these things
2291 ** happened, then reading the database with the current value of
2292 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2293 ** instead.
2294 **
dan640aac42010-06-05 19:18:59 +00002295 ** This does not guarantee that the copy of the wal-index header is up to
2296 ** date before proceeding. That would not be possible without somehow
2297 ** blocking writers. It only guarantees that a dangerous checkpoint or
daneb8cb3a2010-06-05 18:34:26 +00002298 ** log-wrap (either of which would require an exclusive lock on
2299 ** WAL_READ_LOCK(mxI)) has not occurred since the snapshot was valid.
2300 */
dan8c408002010-11-01 17:38:24 +00002301 walShmBarrier(pWal);
drh73b64e42010-05-30 19:55:15 +00002302 if( pInfo->aReadMark[mxI]!=mxReadMark
dan4280eb32010-06-12 12:02:35 +00002303 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
drh73b64e42010-05-30 19:55:15 +00002304 ){
2305 walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2306 return WAL_RETRY;
2307 }else{
drhdb7f6472010-06-09 14:45:12 +00002308 assert( mxReadMark<=pWal->hdr.mxFrame );
shaneh5eba1f62010-07-02 17:05:03 +00002309 pWal->readLock = (i16)mxI;
drh73b64e42010-05-30 19:55:15 +00002310 }
2311 }
2312 return rc;
2313}
2314
2315/*
2316** Begin a read transaction on the database.
2317**
2318** This routine used to be called sqlite3OpenSnapshot() and with good reason:
2319** it takes a snapshot of the state of the WAL and wal-index for the current
2320** instant in time. The current thread will continue to use this snapshot.
2321** Other threads might append new content to the WAL and wal-index but
2322** that extra content is ignored by the current thread.
2323**
2324** If the database contents have changes since the previous read
2325** transaction, then *pChanged is set to 1 before returning. The
2326** Pager layer will use this to know that is cache is stale and
2327** needs to be flushed.
2328*/
drh66dfec8b2011-06-01 20:01:49 +00002329int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
drh73b64e42010-05-30 19:55:15 +00002330 int rc; /* Return code */
drhaab4c022010-06-02 14:45:51 +00002331 int cnt = 0; /* Number of TryBeginRead attempts */
drh73b64e42010-05-30 19:55:15 +00002332
2333 do{
drhaab4c022010-06-02 14:45:51 +00002334 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
drh73b64e42010-05-30 19:55:15 +00002335 }while( rc==WAL_RETRY );
drhab1cc742011-02-19 16:51:45 +00002336 testcase( (rc&0xff)==SQLITE_BUSY );
2337 testcase( (rc&0xff)==SQLITE_IOERR );
2338 testcase( rc==SQLITE_PROTOCOL );
2339 testcase( rc==SQLITE_OK );
dan7c246102010-04-12 19:00:29 +00002340 return rc;
2341}
2342
2343/*
drh73b64e42010-05-30 19:55:15 +00002344** Finish with a read transaction. All this does is release the
2345** read-lock.
dan7c246102010-04-12 19:00:29 +00002346*/
drh73b64e42010-05-30 19:55:15 +00002347void sqlite3WalEndReadTransaction(Wal *pWal){
dan73d66fd2010-08-07 16:17:48 +00002348 sqlite3WalEndWriteTransaction(pWal);
drh73b64e42010-05-30 19:55:15 +00002349 if( pWal->readLock>=0 ){
2350 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2351 pWal->readLock = -1;
2352 }
dan7c246102010-04-12 19:00:29 +00002353}
2354
dan5e0ce872010-04-28 17:48:44 +00002355/*
dan99bd1092013-03-22 18:20:14 +00002356** Search the wal file for page pgno. If found, set *piRead to the frame that
2357** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
2358** to zero.
drh73b64e42010-05-30 19:55:15 +00002359**
dan99bd1092013-03-22 18:20:14 +00002360** Return SQLITE_OK if successful, or an error code if an error occurs. If an
2361** error does occur, the final value of *piRead is undefined.
dan7c246102010-04-12 19:00:29 +00002362*/
dan99bd1092013-03-22 18:20:14 +00002363int sqlite3WalFindFrame(
danbb23aff2010-05-10 14:46:09 +00002364 Wal *pWal, /* WAL handle */
2365 Pgno pgno, /* Database page number to read data for */
dan99bd1092013-03-22 18:20:14 +00002366 u32 *piRead /* OUT: Frame number (or zero) */
danb6e099a2010-05-04 14:47:39 +00002367){
danbb23aff2010-05-10 14:46:09 +00002368 u32 iRead = 0; /* If !=0, WAL frame to return data from */
drh027a1282010-05-19 01:53:53 +00002369 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
danbb23aff2010-05-10 14:46:09 +00002370 int iHash; /* Used to loop through N hash tables */
dan7c246102010-04-12 19:00:29 +00002371
drhaab4c022010-06-02 14:45:51 +00002372 /* This routine is only be called from within a read transaction. */
2373 assert( pWal->readLock>=0 || pWal->lockError );
drh73b64e42010-05-30 19:55:15 +00002374
danbb23aff2010-05-10 14:46:09 +00002375 /* If the "last page" field of the wal-index header snapshot is 0, then
2376 ** no data will be read from the wal under any circumstances. Return early
drha927e942010-06-24 02:46:48 +00002377 ** in this case as an optimization. Likewise, if pWal->readLock==0,
2378 ** then the WAL is ignored by the reader so return early, as if the
2379 ** WAL were empty.
danbb23aff2010-05-10 14:46:09 +00002380 */
drh73b64e42010-05-30 19:55:15 +00002381 if( iLast==0 || pWal->readLock==0 ){
dan99bd1092013-03-22 18:20:14 +00002382 *piRead = 0;
danbb23aff2010-05-10 14:46:09 +00002383 return SQLITE_OK;
2384 }
2385
danbb23aff2010-05-10 14:46:09 +00002386 /* Search the hash table or tables for an entry matching page number
2387 ** pgno. Each iteration of the following for() loop searches one
2388 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2389 **
drha927e942010-06-24 02:46:48 +00002390 ** This code might run concurrently to the code in walIndexAppend()
danbb23aff2010-05-10 14:46:09 +00002391 ** that adds entries to the wal-index (and possibly to this hash
drh6e810962010-05-19 17:49:50 +00002392 ** table). This means the value just read from the hash
danbb23aff2010-05-10 14:46:09 +00002393 ** slot (aHash[iKey]) may have been added before or after the
2394 ** current read transaction was opened. Values added after the
2395 ** read transaction was opened may have been written incorrectly -
2396 ** i.e. these slots may contain garbage data. However, we assume
2397 ** that any slots written before the current read transaction was
2398 ** opened remain unmodified.
2399 **
2400 ** For the reasons above, the if(...) condition featured in the inner
2401 ** loop of the following block is more stringent that would be required
2402 ** if we had exclusive access to the hash-table:
2403 **
2404 ** (aPgno[iFrame]==pgno):
2405 ** This condition filters out normal hash-table collisions.
2406 **
2407 ** (iFrame<=iLast):
2408 ** This condition filters out entries that were added to the hash
2409 ** table after the current read-transaction had started.
dan7c246102010-04-12 19:00:29 +00002410 */
dan13a3cb82010-06-11 19:04:21 +00002411 for(iHash=walFramePage(iLast); iHash>=0 && iRead==0; iHash--){
dan067f3162010-06-14 10:30:12 +00002412 volatile ht_slot *aHash; /* Pointer to hash table */
2413 volatile u32 *aPgno; /* Pointer to array of page numbers */
danbb23aff2010-05-10 14:46:09 +00002414 u32 iZero; /* Frame number corresponding to aPgno[0] */
2415 int iKey; /* Hash slot index */
drh519426a2010-07-09 03:19:07 +00002416 int nCollide; /* Number of hash collisions remaining */
2417 int rc; /* Error code */
danbb23aff2010-05-10 14:46:09 +00002418
dan4280eb32010-06-12 12:02:35 +00002419 rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
2420 if( rc!=SQLITE_OK ){
2421 return rc;
2422 }
drh519426a2010-07-09 03:19:07 +00002423 nCollide = HASHTABLE_NSLOT;
dan6f150142010-05-21 15:31:56 +00002424 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
danbb23aff2010-05-10 14:46:09 +00002425 u32 iFrame = aHash[iKey] + iZero;
dand60bf112010-06-14 11:18:50 +00002426 if( iFrame<=iLast && aPgno[aHash[iKey]]==pgno ){
drh622a53d2014-12-29 11:50:39 +00002427 assert( iFrame>iRead || CORRUPT_DB );
danbb23aff2010-05-10 14:46:09 +00002428 iRead = iFrame;
2429 }
drh519426a2010-07-09 03:19:07 +00002430 if( (nCollide--)==0 ){
2431 return SQLITE_CORRUPT_BKPT;
2432 }
dan7c246102010-04-12 19:00:29 +00002433 }
2434 }
dan7c246102010-04-12 19:00:29 +00002435
danbb23aff2010-05-10 14:46:09 +00002436#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2437 /* If expensive assert() statements are available, do a linear search
2438 ** of the wal-index file content. Make sure the results agree with the
2439 ** result obtained using the hash indexes above. */
2440 {
2441 u32 iRead2 = 0;
2442 u32 iTest;
2443 for(iTest=iLast; iTest>0; iTest--){
dan13a3cb82010-06-11 19:04:21 +00002444 if( walFramePgno(pWal, iTest)==pgno ){
danbb23aff2010-05-10 14:46:09 +00002445 iRead2 = iTest;
dan7c246102010-04-12 19:00:29 +00002446 break;
2447 }
dan7c246102010-04-12 19:00:29 +00002448 }
danbb23aff2010-05-10 14:46:09 +00002449 assert( iRead==iRead2 );
dan7c246102010-04-12 19:00:29 +00002450 }
danbb23aff2010-05-10 14:46:09 +00002451#endif
dancd11fb22010-04-26 10:40:52 +00002452
dan99bd1092013-03-22 18:20:14 +00002453 *piRead = iRead;
dan7c246102010-04-12 19:00:29 +00002454 return SQLITE_OK;
2455}
2456
dan99bd1092013-03-22 18:20:14 +00002457/*
2458** Read the contents of frame iRead from the wal file into buffer pOut
2459** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
2460** error code otherwise.
2461*/
2462int sqlite3WalReadFrame(
2463 Wal *pWal, /* WAL handle */
2464 u32 iRead, /* Frame to read */
2465 int nOut, /* Size of buffer pOut in bytes */
2466 u8 *pOut /* Buffer to write page data to */
2467){
2468 int sz;
2469 i64 iOffset;
2470 sz = pWal->hdr.szPage;
2471 sz = (sz&0xfe00) + ((sz&0x0001)<<16);
2472 testcase( sz<=32768 );
2473 testcase( sz>=65536 );
2474 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
2475 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
2476 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
2477}
dan7c246102010-04-12 19:00:29 +00002478
2479/*
dan763afe62010-08-03 06:42:39 +00002480** Return the size of the database in pages (or zero, if unknown).
dan7c246102010-04-12 19:00:29 +00002481*/
dan763afe62010-08-03 06:42:39 +00002482Pgno sqlite3WalDbsize(Wal *pWal){
drh7e9e70b2010-08-16 14:17:59 +00002483 if( pWal && ALWAYS(pWal->readLock>=0) ){
dan763afe62010-08-03 06:42:39 +00002484 return pWal->hdr.nPage;
2485 }
2486 return 0;
dan7c246102010-04-12 19:00:29 +00002487}
2488
dan30c86292010-04-30 16:24:46 +00002489
drh73b64e42010-05-30 19:55:15 +00002490/*
2491** This function starts a write transaction on the WAL.
2492**
2493** A read transaction must have already been started by a prior call
2494** to sqlite3WalBeginReadTransaction().
2495**
2496** If another thread or process has written into the database since
2497** the read transaction was started, then it is not possible for this
2498** thread to write as doing so would cause a fork. So this routine
2499** returns SQLITE_BUSY in that case and no write transaction is started.
2500**
2501** There can only be a single writer active at a time.
2502*/
2503int sqlite3WalBeginWriteTransaction(Wal *pWal){
2504 int rc;
drh73b64e42010-05-30 19:55:15 +00002505
2506 /* Cannot start a write transaction without first holding a read
2507 ** transaction. */
2508 assert( pWal->readLock>=0 );
2509
dan1e5de5a2010-07-15 18:20:53 +00002510 if( pWal->readOnly ){
2511 return SQLITE_READONLY;
2512 }
2513
drh73b64e42010-05-30 19:55:15 +00002514 /* Only one writer allowed at a time. Get the write lock. Return
2515 ** SQLITE_BUSY if unable.
2516 */
drhbbf76ee2015-03-10 20:22:35 +00002517 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1, 0);
drh73b64e42010-05-30 19:55:15 +00002518 if( rc ){
2519 return rc;
2520 }
drhc99597c2010-05-31 01:41:15 +00002521 pWal->writeLock = 1;
drh73b64e42010-05-30 19:55:15 +00002522
2523 /* If another connection has written to the database file since the
2524 ** time the read transaction on this connection was started, then
2525 ** the write is disallowed.
2526 */
dan4280eb32010-06-12 12:02:35 +00002527 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
drh73b64e42010-05-30 19:55:15 +00002528 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhc99597c2010-05-31 01:41:15 +00002529 pWal->writeLock = 0;
danf73819a2013-06-27 11:46:27 +00002530 rc = SQLITE_BUSY_SNAPSHOT;
drh73b64e42010-05-30 19:55:15 +00002531 }
2532
drh7ed91f22010-04-29 22:34:07 +00002533 return rc;
dan7c246102010-04-12 19:00:29 +00002534}
2535
dan74d6cd82010-04-24 18:44:05 +00002536/*
drh73b64e42010-05-30 19:55:15 +00002537** End a write transaction. The commit has already been done. This
2538** routine merely releases the lock.
2539*/
2540int sqlite3WalEndWriteTransaction(Wal *pWal){
danda9fe0c2010-07-13 18:44:03 +00002541 if( pWal->writeLock ){
2542 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2543 pWal->writeLock = 0;
danf60b7f32011-12-16 13:24:27 +00002544 pWal->truncateOnCommit = 0;
danda9fe0c2010-07-13 18:44:03 +00002545 }
drh73b64e42010-05-30 19:55:15 +00002546 return SQLITE_OK;
2547}
2548
2549/*
dan74d6cd82010-04-24 18:44:05 +00002550** If any data has been written (but not committed) to the log file, this
2551** function moves the write-pointer back to the start of the transaction.
2552**
2553** Additionally, the callback function is invoked for each frame written
drh73b64e42010-05-30 19:55:15 +00002554** to the WAL since the start of the transaction. If the callback returns
dan74d6cd82010-04-24 18:44:05 +00002555** other than SQLITE_OK, it is not invoked again and the error code is
2556** returned to the caller.
2557**
2558** Otherwise, if the callback function does not return an error, this
2559** function returns SQLITE_OK.
2560*/
drh7ed91f22010-04-29 22:34:07 +00002561int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
dan55437592010-05-11 12:19:26 +00002562 int rc = SQLITE_OK;
drh7e9e70b2010-08-16 14:17:59 +00002563 if( ALWAYS(pWal->writeLock) ){
drh027a1282010-05-19 01:53:53 +00002564 Pgno iMax = pWal->hdr.mxFrame;
dan55437592010-05-11 12:19:26 +00002565 Pgno iFrame;
2566
dan5d656852010-06-14 07:53:26 +00002567 /* Restore the clients cache of the wal-index header to the state it
2568 ** was in before the client began writing to the database.
2569 */
dan067f3162010-06-14 10:30:12 +00002570 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
dan5d656852010-06-14 07:53:26 +00002571
2572 for(iFrame=pWal->hdr.mxFrame+1;
drh664f85d2014-11-19 14:05:41 +00002573 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
dan5d656852010-06-14 07:53:26 +00002574 iFrame++
2575 ){
2576 /* This call cannot fail. Unless the page for which the page number
2577 ** is passed as the second argument is (a) in the cache and
2578 ** (b) has an outstanding reference, then xUndo is either a no-op
2579 ** (if (a) is false) or simply expels the page from the cache (if (b)
2580 ** is false).
2581 **
2582 ** If the upper layer is doing a rollback, it is guaranteed that there
2583 ** are no outstanding references to any page other than page 1. And
2584 ** page 1 is never written to the log until the transaction is
2585 ** committed. As a result, the call to xUndo may not fail.
2586 */
dan5d656852010-06-14 07:53:26 +00002587 assert( walFramePgno(pWal, iFrame)!=1 );
2588 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
dan6f150142010-05-21 15:31:56 +00002589 }
dan7eb05752012-10-15 11:28:24 +00002590 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
dan74d6cd82010-04-24 18:44:05 +00002591 }
2592 return rc;
2593}
2594
dan71d89912010-05-24 13:57:42 +00002595/*
2596** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
2597** values. This function populates the array with values required to
2598** "rollback" the write position of the WAL handle back to the current
2599** point in the event of a savepoint rollback (via WalSavepointUndo()).
drh7ed91f22010-04-29 22:34:07 +00002600*/
dan71d89912010-05-24 13:57:42 +00002601void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
drh73b64e42010-05-30 19:55:15 +00002602 assert( pWal->writeLock );
dan71d89912010-05-24 13:57:42 +00002603 aWalData[0] = pWal->hdr.mxFrame;
2604 aWalData[1] = pWal->hdr.aFrameCksum[0];
2605 aWalData[2] = pWal->hdr.aFrameCksum[1];
dan6e6bd562010-06-02 18:59:03 +00002606 aWalData[3] = pWal->nCkpt;
dan4cd78b42010-04-26 16:57:10 +00002607}
2608
dan71d89912010-05-24 13:57:42 +00002609/*
2610** Move the write position of the WAL back to the point identified by
2611** the values in the aWalData[] array. aWalData must point to an array
2612** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
2613** by a call to WalSavepoint().
drh7ed91f22010-04-29 22:34:07 +00002614*/
dan71d89912010-05-24 13:57:42 +00002615int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
dan4cd78b42010-04-26 16:57:10 +00002616 int rc = SQLITE_OK;
dan4cd78b42010-04-26 16:57:10 +00002617
dan6e6bd562010-06-02 18:59:03 +00002618 assert( pWal->writeLock );
2619 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
2620
2621 if( aWalData[3]!=pWal->nCkpt ){
2622 /* This savepoint was opened immediately after the write-transaction
2623 ** was started. Right after that, the writer decided to wrap around
2624 ** to the start of the log. Update the savepoint values to match.
2625 */
2626 aWalData[0] = 0;
2627 aWalData[3] = pWal->nCkpt;
2628 }
2629
dan71d89912010-05-24 13:57:42 +00002630 if( aWalData[0]<pWal->hdr.mxFrame ){
dan71d89912010-05-24 13:57:42 +00002631 pWal->hdr.mxFrame = aWalData[0];
2632 pWal->hdr.aFrameCksum[0] = aWalData[1];
2633 pWal->hdr.aFrameCksum[1] = aWalData[2];
dan5d656852010-06-14 07:53:26 +00002634 walCleanupHash(pWal);
dan6f150142010-05-21 15:31:56 +00002635 }
dan6e6bd562010-06-02 18:59:03 +00002636
dan4cd78b42010-04-26 16:57:10 +00002637 return rc;
2638}
2639
dan9971e712010-06-01 15:44:57 +00002640/*
2641** This function is called just before writing a set of frames to the log
2642** file (see sqlite3WalFrames()). It checks to see if, instead of appending
2643** to the current log file, it is possible to overwrite the start of the
2644** existing log file with the new frames (i.e. "reset" the log). If so,
2645** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
2646** unchanged.
2647**
2648** SQLITE_OK is returned if no error is encountered (regardless of whether
2649** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
drh4533cd02010-10-05 15:41:05 +00002650** if an error occurs.
dan9971e712010-06-01 15:44:57 +00002651*/
2652static int walRestartLog(Wal *pWal){
2653 int rc = SQLITE_OK;
drhaab4c022010-06-02 14:45:51 +00002654 int cnt;
2655
dan13a3cb82010-06-11 19:04:21 +00002656 if( pWal->readLock==0 ){
dan9971e712010-06-01 15:44:57 +00002657 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2658 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2659 if( pInfo->nBackfill>0 ){
drh658d76c2011-02-19 15:22:14 +00002660 u32 salt1;
2661 sqlite3_randomness(4, &salt1);
drhbbf76ee2015-03-10 20:22:35 +00002662 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1, 0);
dan9971e712010-06-01 15:44:57 +00002663 if( rc==SQLITE_OK ){
2664 /* If all readers are using WAL_READ_LOCK(0) (in other words if no
2665 ** readers are currently using the WAL), then the transactions
2666 ** frames will overwrite the start of the existing log. Update the
2667 ** wal-index header to reflect this.
2668 **
2669 ** In theory it would be Ok to update the cache of the header only
2670 ** at this point. But updating the actual wal-index header is also
2671 ** safe and means there is no special case for sqlite3WalUndo()
danf26a1542014-12-02 19:04:54 +00002672 ** to handle if this transaction is rolled back. */
dan0fe8c1b2014-12-02 19:35:09 +00002673 walRestartHdr(pWal, salt1);
dan9971e712010-06-01 15:44:57 +00002674 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
drh4533cd02010-10-05 15:41:05 +00002675 }else if( rc!=SQLITE_BUSY ){
2676 return rc;
dan9971e712010-06-01 15:44:57 +00002677 }
2678 }
2679 walUnlockShared(pWal, WAL_READ_LOCK(0));
2680 pWal->readLock = -1;
drhaab4c022010-06-02 14:45:51 +00002681 cnt = 0;
dan9971e712010-06-01 15:44:57 +00002682 do{
2683 int notUsed;
drhaab4c022010-06-02 14:45:51 +00002684 rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
dan9971e712010-06-01 15:44:57 +00002685 }while( rc==WAL_RETRY );
drhc90e0812011-02-19 17:02:44 +00002686 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
drhab1cc742011-02-19 16:51:45 +00002687 testcase( (rc&0xff)==SQLITE_IOERR );
2688 testcase( rc==SQLITE_PROTOCOL );
2689 testcase( rc==SQLITE_OK );
dan9971e712010-06-01 15:44:57 +00002690 }
2691 return rc;
2692}
2693
drh88f975a2011-12-16 19:34:36 +00002694/*
drhd992b152011-12-20 20:13:25 +00002695** Information about the current state of the WAL file and where
2696** the next fsync should occur - passed from sqlite3WalFrames() into
2697** walWriteToLog().
2698*/
2699typedef struct WalWriter {
2700 Wal *pWal; /* The complete WAL information */
2701 sqlite3_file *pFd; /* The WAL file to which we write */
2702 sqlite3_int64 iSyncPoint; /* Fsync at this offset */
2703 int syncFlags; /* Flags for the fsync */
2704 int szPage; /* Size of one page */
2705} WalWriter;
2706
2707/*
drh88f975a2011-12-16 19:34:36 +00002708** Write iAmt bytes of content into the WAL file beginning at iOffset.
drhd992b152011-12-20 20:13:25 +00002709** Do a sync when crossing the p->iSyncPoint boundary.
drh88f975a2011-12-16 19:34:36 +00002710**
drhd992b152011-12-20 20:13:25 +00002711** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
2712** first write the part before iSyncPoint, then sync, then write the
2713** rest.
drh88f975a2011-12-16 19:34:36 +00002714*/
2715static int walWriteToLog(
drhd992b152011-12-20 20:13:25 +00002716 WalWriter *p, /* WAL to write to */
drh88f975a2011-12-16 19:34:36 +00002717 void *pContent, /* Content to be written */
2718 int iAmt, /* Number of bytes to write */
2719 sqlite3_int64 iOffset /* Start writing at this offset */
2720){
2721 int rc;
drhd992b152011-12-20 20:13:25 +00002722 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
2723 int iFirstAmt = (int)(p->iSyncPoint - iOffset);
2724 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
drh88f975a2011-12-16 19:34:36 +00002725 if( rc ) return rc;
drhd992b152011-12-20 20:13:25 +00002726 iOffset += iFirstAmt;
2727 iAmt -= iFirstAmt;
drh88f975a2011-12-16 19:34:36 +00002728 pContent = (void*)(iFirstAmt + (char*)pContent);
drhd992b152011-12-20 20:13:25 +00002729 assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) );
dane5b6ea72014-02-13 18:46:59 +00002730 rc = sqlite3OsSync(p->pFd, p->syncFlags & SQLITE_SYNC_MASK);
drhcc8d10a2011-12-23 02:07:10 +00002731 if( iAmt==0 || rc ) return rc;
drh88f975a2011-12-16 19:34:36 +00002732 }
drhd992b152011-12-20 20:13:25 +00002733 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
2734 return rc;
2735}
2736
2737/*
2738** Write out a single frame of the WAL
2739*/
2740static int walWriteOneFrame(
2741 WalWriter *p, /* Where to write the frame */
2742 PgHdr *pPage, /* The page of the frame to be written */
2743 int nTruncate, /* The commit flag. Usually 0. >0 for commit */
2744 sqlite3_int64 iOffset /* Byte offset at which to write */
2745){
2746 int rc; /* Result code from subfunctions */
2747 void *pData; /* Data actually written */
2748 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
2749#if defined(SQLITE_HAS_CODEC)
2750 if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM;
2751#else
2752 pData = pPage->pData;
2753#endif
2754 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
2755 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
2756 if( rc ) return rc;
2757 /* Write the page data */
2758 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
drh88f975a2011-12-16 19:34:36 +00002759 return rc;
2760}
2761
dan7c246102010-04-12 19:00:29 +00002762/*
dan4cd78b42010-04-26 16:57:10 +00002763** Write a set of frames to the log. The caller must hold the write-lock
dan9971e712010-06-01 15:44:57 +00002764** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
dan7c246102010-04-12 19:00:29 +00002765*/
drhc438efd2010-04-26 00:19:45 +00002766int sqlite3WalFrames(
drh7ed91f22010-04-29 22:34:07 +00002767 Wal *pWal, /* Wal handle to write to */
drh6e810962010-05-19 17:49:50 +00002768 int szPage, /* Database page-size in bytes */
dan7c246102010-04-12 19:00:29 +00002769 PgHdr *pList, /* List of dirty pages to write */
2770 Pgno nTruncate, /* Database size after this commit */
2771 int isCommit, /* True if this is a commit */
danc5118782010-04-17 17:34:41 +00002772 int sync_flags /* Flags to pass to OsSync() (or 0) */
dan7c246102010-04-12 19:00:29 +00002773){
dan7c246102010-04-12 19:00:29 +00002774 int rc; /* Used to catch return codes */
2775 u32 iFrame; /* Next frame address */
dan7c246102010-04-12 19:00:29 +00002776 PgHdr *p; /* Iterator to run through pList with. */
drhe874d9e2010-05-07 20:02:23 +00002777 PgHdr *pLast = 0; /* Last frame in list */
drhd992b152011-12-20 20:13:25 +00002778 int nExtra = 0; /* Number of extra copies of last page */
2779 int szFrame; /* The size of a single frame */
2780 i64 iOffset; /* Next byte to write in WAL file */
2781 WalWriter w; /* The writer */
dan7c246102010-04-12 19:00:29 +00002782
dan7c246102010-04-12 19:00:29 +00002783 assert( pList );
drh73b64e42010-05-30 19:55:15 +00002784 assert( pWal->writeLock );
dan7c246102010-04-12 19:00:29 +00002785
drh41209942011-12-20 13:13:09 +00002786 /* If this frame set completes a transaction, then nTruncate>0. If
2787 ** nTruncate==0 then this frame set does not complete the transaction. */
2788 assert( (isCommit!=0)==(nTruncate!=0) );
2789
drhc74c3332010-05-31 12:15:19 +00002790#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
2791 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
2792 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
2793 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
2794 }
2795#endif
2796
dan9971e712010-06-01 15:44:57 +00002797 /* See if it is possible to write these frames into the start of the
2798 ** log file, instead of appending to it at pWal->hdr.mxFrame.
2799 */
2800 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
dan9971e712010-06-01 15:44:57 +00002801 return rc;
2802 }
dan9971e712010-06-01 15:44:57 +00002803
drha2a42012010-05-18 18:01:08 +00002804 /* If this is the first frame written into the log, write the WAL
2805 ** header to the start of the WAL file. See comments at the top of
2806 ** this source file for a description of the WAL header format.
dan97a31352010-04-16 13:59:31 +00002807 */
drh027a1282010-05-19 01:53:53 +00002808 iFrame = pWal->hdr.mxFrame;
dan97a31352010-04-16 13:59:31 +00002809 if( iFrame==0 ){
dan10f5a502010-06-23 15:55:43 +00002810 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */
2811 u32 aCksum[2]; /* Checksum for wal-header */
2812
danb8fd6c22010-05-24 10:39:36 +00002813 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
dan10f5a502010-06-23 15:55:43 +00002814 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
drh23ea97b2010-05-20 16:45:58 +00002815 sqlite3Put4byte(&aWalHdr[8], szPage);
2816 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
drhd2980312011-12-17 01:31:44 +00002817 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
drh7e263722010-05-20 21:21:09 +00002818 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
dan10f5a502010-06-23 15:55:43 +00002819 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
2820 sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
2821 sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
2822
drhb2eced52010-08-12 02:41:12 +00002823 pWal->szPage = szPage;
dan10f5a502010-06-23 15:55:43 +00002824 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
2825 pWal->hdr.aFrameCksum[0] = aCksum[0];
2826 pWal->hdr.aFrameCksum[1] = aCksum[1];
danf60b7f32011-12-16 13:24:27 +00002827 pWal->truncateOnCommit = 1;
dan10f5a502010-06-23 15:55:43 +00002828
drh23ea97b2010-05-20 16:45:58 +00002829 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
drhc74c3332010-05-31 12:15:19 +00002830 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
dan97a31352010-04-16 13:59:31 +00002831 if( rc!=SQLITE_OK ){
2832 return rc;
2833 }
drhd992b152011-12-20 20:13:25 +00002834
2835 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
2836 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise
2837 ** an out-of-order write following a WAL restart could result in
2838 ** database corruption. See the ticket:
2839 **
2840 ** http://localhost:591/sqlite/info/ff5be73dee
2841 */
2842 if( pWal->syncHeader && sync_flags ){
2843 rc = sqlite3OsSync(pWal->pWalFd, sync_flags & SQLITE_SYNC_MASK);
2844 if( rc ) return rc;
2845 }
dan97a31352010-04-16 13:59:31 +00002846 }
shanehbd2aaf92010-09-01 02:38:21 +00002847 assert( (int)pWal->szPage==szPage );
dan97a31352010-04-16 13:59:31 +00002848
drhd992b152011-12-20 20:13:25 +00002849 /* Setup information needed to write frames into the WAL */
2850 w.pWal = pWal;
2851 w.pFd = pWal->pWalFd;
2852 w.iSyncPoint = 0;
2853 w.syncFlags = sync_flags;
2854 w.szPage = szPage;
2855 iOffset = walFrameOffset(iFrame+1, szPage);
2856 szFrame = szPage + WAL_FRAME_HDRSIZE;
drh88f975a2011-12-16 19:34:36 +00002857
drhd992b152011-12-20 20:13:25 +00002858 /* Write all frames into the log file exactly once */
dan7c246102010-04-12 19:00:29 +00002859 for(p=pList; p; p=p->pDirty){
drhd992b152011-12-20 20:13:25 +00002860 int nDbSize; /* 0 normally. Positive == commit flag */
2861 iFrame++;
2862 assert( iOffset==walFrameOffset(iFrame, szPage) );
2863 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
2864 rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
2865 if( rc ) return rc;
dan7c246102010-04-12 19:00:29 +00002866 pLast = p;
drhd992b152011-12-20 20:13:25 +00002867 iOffset += szFrame;
dan7c246102010-04-12 19:00:29 +00002868 }
2869
drhd992b152011-12-20 20:13:25 +00002870 /* If this is the end of a transaction, then we might need to pad
2871 ** the transaction and/or sync the WAL file.
2872 **
2873 ** Padding and syncing only occur if this set of frames complete a
2874 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL
peter.d.reid60ec9142014-09-06 16:39:46 +00002875 ** or synchronous==OFF, then no padding or syncing are needed.
drhd992b152011-12-20 20:13:25 +00002876 **
drhcb15f352011-12-23 01:04:17 +00002877 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
2878 ** needed and only the sync is done. If padding is needed, then the
2879 ** final frame is repeated (with its commit mark) until the next sector
drhd992b152011-12-20 20:13:25 +00002880 ** boundary is crossed. Only the part of the WAL prior to the last
2881 ** sector boundary is synced; the part of the last frame that extends
2882 ** past the sector boundary is written after the sync.
2883 */
drh4eb02a42011-12-16 21:26:26 +00002884 if( isCommit && (sync_flags & WAL_SYNC_TRANSACTIONS)!=0 ){
drh374f4a02011-12-17 20:02:11 +00002885 if( pWal->padToSectorBoundary ){
danc9a53262012-10-01 06:50:55 +00002886 int sectorSize = sqlite3SectorSize(pWal->pWalFd);
drhd992b152011-12-20 20:13:25 +00002887 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
2888 while( iOffset<w.iSyncPoint ){
2889 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
2890 if( rc ) return rc;
2891 iOffset += szFrame;
2892 nExtra++;
dan7c246102010-04-12 19:00:29 +00002893 }
drh4e5e1082011-12-23 13:32:07 +00002894 }else{
2895 rc = sqlite3OsSync(w.pFd, sync_flags & SQLITE_SYNC_MASK);
dan7c246102010-04-12 19:00:29 +00002896 }
dan7c246102010-04-12 19:00:29 +00002897 }
2898
drhd992b152011-12-20 20:13:25 +00002899 /* If this frame set completes the first transaction in the WAL and
2900 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
2901 ** journal size limit, if possible.
2902 */
danf60b7f32011-12-16 13:24:27 +00002903 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
2904 i64 sz = pWal->mxWalSize;
drhd992b152011-12-20 20:13:25 +00002905 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
2906 sz = walFrameOffset(iFrame+nExtra+1, szPage);
danf60b7f32011-12-16 13:24:27 +00002907 }
2908 walLimitSize(pWal, sz);
2909 pWal->truncateOnCommit = 0;
2910 }
2911
drhe730fec2010-05-18 12:56:50 +00002912 /* Append data to the wal-index. It is not necessary to lock the
drha2a42012010-05-18 18:01:08 +00002913 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
dan7c246102010-04-12 19:00:29 +00002914 ** guarantees that there are no other writers, and no data that may
2915 ** be in use by existing readers is being overwritten.
2916 */
drh027a1282010-05-19 01:53:53 +00002917 iFrame = pWal->hdr.mxFrame;
danc7991bd2010-05-05 19:04:59 +00002918 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
dan7c246102010-04-12 19:00:29 +00002919 iFrame++;
danc7991bd2010-05-05 19:04:59 +00002920 rc = walIndexAppend(pWal, iFrame, p->pgno);
dan7c246102010-04-12 19:00:29 +00002921 }
drh20e226d2012-01-01 13:58:53 +00002922 while( rc==SQLITE_OK && nExtra>0 ){
dan7c246102010-04-12 19:00:29 +00002923 iFrame++;
drhd992b152011-12-20 20:13:25 +00002924 nExtra--;
danc7991bd2010-05-05 19:04:59 +00002925 rc = walIndexAppend(pWal, iFrame, pLast->pgno);
dan7c246102010-04-12 19:00:29 +00002926 }
2927
danc7991bd2010-05-05 19:04:59 +00002928 if( rc==SQLITE_OK ){
2929 /* Update the private copy of the header. */
shaneh1df2db72010-08-18 02:28:48 +00002930 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
drh9b78f792010-08-14 21:21:24 +00002931 testcase( szPage<=32768 );
2932 testcase( szPage>=65536 );
drh027a1282010-05-19 01:53:53 +00002933 pWal->hdr.mxFrame = iFrame;
danc7991bd2010-05-05 19:04:59 +00002934 if( isCommit ){
2935 pWal->hdr.iChange++;
2936 pWal->hdr.nPage = nTruncate;
2937 }
danc7991bd2010-05-05 19:04:59 +00002938 /* If this is a commit, update the wal-index header too. */
2939 if( isCommit ){
drh7e263722010-05-20 21:21:09 +00002940 walIndexWriteHdr(pWal);
danc7991bd2010-05-05 19:04:59 +00002941 pWal->iCallback = iFrame;
2942 }
dan7c246102010-04-12 19:00:29 +00002943 }
danc7991bd2010-05-05 19:04:59 +00002944
drhc74c3332010-05-31 12:15:19 +00002945 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
dan8d22a172010-04-19 18:03:51 +00002946 return rc;
dan7c246102010-04-12 19:00:29 +00002947}
2948
2949/*
drh73b64e42010-05-30 19:55:15 +00002950** This routine is called to implement sqlite3_wal_checkpoint() and
2951** related interfaces.
danb9bf16b2010-04-14 11:23:30 +00002952**
drh73b64e42010-05-30 19:55:15 +00002953** Obtain a CHECKPOINT lock and then backfill as much information as
2954** we can from WAL into the database.
dana58f26f2010-11-16 18:56:51 +00002955**
2956** If parameter xBusy is not NULL, it is a pointer to a busy-handler
2957** callback. In this case this function runs a blocking checkpoint.
dan7c246102010-04-12 19:00:29 +00002958*/
drhc438efd2010-04-26 00:19:45 +00002959int sqlite3WalCheckpoint(
drh7ed91f22010-04-29 22:34:07 +00002960 Wal *pWal, /* Wal connection */
drhdd90d7e2014-12-03 19:25:41 +00002961 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */
dana58f26f2010-11-16 18:56:51 +00002962 int (*xBusy)(void*), /* Function to call when busy */
2963 void *pBusyArg, /* Context argument for xBusyHandler */
danc5118782010-04-17 17:34:41 +00002964 int sync_flags, /* Flags to sync db file with (or 0) */
danb6e099a2010-05-04 14:47:39 +00002965 int nBuf, /* Size of temporary buffer */
dancdc1f042010-11-18 12:11:05 +00002966 u8 *zBuf, /* Temporary buffer to use */
2967 int *pnLog, /* OUT: Number of frames in WAL */
2968 int *pnCkpt /* OUT: Number of backfilled frames in WAL */
dan7c246102010-04-12 19:00:29 +00002969){
danb9bf16b2010-04-14 11:23:30 +00002970 int rc; /* Return code */
dan31c03902010-04-29 14:51:33 +00002971 int isChanged = 0; /* True if a new wal-index header is loaded */
danf2b8dd52010-11-18 19:28:01 +00002972 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */
drhdd90d7e2014-12-03 19:25:41 +00002973 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */
dan7c246102010-04-12 19:00:29 +00002974
dand54ff602010-05-31 11:16:30 +00002975 assert( pWal->ckptLock==0 );
dana58f26f2010-11-16 18:56:51 +00002976 assert( pWal->writeLock==0 );
dan39c79f52010-04-15 10:58:51 +00002977
drhdd90d7e2014-12-03 19:25:41 +00002978 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
2979 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
2980 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
2981
drh66dfec8b2011-06-01 20:01:49 +00002982 if( pWal->readOnly ) return SQLITE_READONLY;
drhc74c3332010-05-31 12:15:19 +00002983 WALTRACE(("WAL%p: checkpoint begins\n", pWal));
drhdd90d7e2014-12-03 19:25:41 +00002984
2985 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
2986 ** "checkpoint" lock on the database file. */
drhbbf76ee2015-03-10 20:22:35 +00002987 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1, 0);
drh73b64e42010-05-30 19:55:15 +00002988 if( rc ){
drhdd90d7e2014-12-03 19:25:41 +00002989 /* EVIDENCE-OF: R-10421-19736 If any other process is running a
2990 ** checkpoint operation at the same time, the lock cannot be obtained and
2991 ** SQLITE_BUSY is returned.
2992 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
2993 ** it will not be invoked in this case.
2994 */
2995 testcase( rc==SQLITE_BUSY );
2996 testcase( xBusy!=0 );
danb9bf16b2010-04-14 11:23:30 +00002997 return rc;
2998 }
dand54ff602010-05-31 11:16:30 +00002999 pWal->ckptLock = 1;
dan64d039e2010-04-13 19:27:31 +00003000
drhdd90d7e2014-12-03 19:25:41 +00003001 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
3002 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
3003 ** file.
danf2b8dd52010-11-18 19:28:01 +00003004 **
drhdd90d7e2014-12-03 19:25:41 +00003005 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
3006 ** immediately, and a busy-handler is configured, it is invoked and the
3007 ** writer lock retried until either the busy-handler returns 0 or the
3008 ** lock is successfully obtained.
dana58f26f2010-11-16 18:56:51 +00003009 */
dancdc1f042010-11-18 12:11:05 +00003010 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
dana58f26f2010-11-16 18:56:51 +00003011 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
danf2b8dd52010-11-18 19:28:01 +00003012 if( rc==SQLITE_OK ){
3013 pWal->writeLock = 1;
3014 }else if( rc==SQLITE_BUSY ){
3015 eMode2 = SQLITE_CHECKPOINT_PASSIVE;
drhdd90d7e2014-12-03 19:25:41 +00003016 xBusy2 = 0;
danf2b8dd52010-11-18 19:28:01 +00003017 rc = SQLITE_OK;
3018 }
danb9bf16b2010-04-14 11:23:30 +00003019 }
dana58f26f2010-11-16 18:56:51 +00003020
danf2b8dd52010-11-18 19:28:01 +00003021 /* Read the wal-index header. */
drh7ed91f22010-04-29 22:34:07 +00003022 if( rc==SQLITE_OK ){
dana58f26f2010-11-16 18:56:51 +00003023 rc = walIndexReadHdr(pWal, &isChanged);
danf55a4cf2013-04-01 16:56:41 +00003024 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3025 sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3026 }
dana58f26f2010-11-16 18:56:51 +00003027 }
danf2b8dd52010-11-18 19:28:01 +00003028
3029 /* Copy data from the log to the database file. */
dan9c5e3682011-02-07 15:12:12 +00003030 if( rc==SQLITE_OK ){
3031 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
danf2b8dd52010-11-18 19:28:01 +00003032 rc = SQLITE_CORRUPT_BKPT;
3033 }else{
drhdd90d7e2014-12-03 19:25:41 +00003034 rc = walCheckpoint(pWal, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
dan9c5e3682011-02-07 15:12:12 +00003035 }
3036
3037 /* If no error occurred, set the output variables. */
3038 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
danf2b8dd52010-11-18 19:28:01 +00003039 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
dan9c5e3682011-02-07 15:12:12 +00003040 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
danf2b8dd52010-11-18 19:28:01 +00003041 }
danb9bf16b2010-04-14 11:23:30 +00003042 }
danf2b8dd52010-11-18 19:28:01 +00003043
dan31c03902010-04-29 14:51:33 +00003044 if( isChanged ){
3045 /* If a new wal-index header was loaded before the checkpoint was
drha2a42012010-05-18 18:01:08 +00003046 ** performed, then the pager-cache associated with pWal is now
dan31c03902010-04-29 14:51:33 +00003047 ** out of date. So zero the cached wal-index header to ensure that
3048 ** next time the pager opens a snapshot on this database it knows that
3049 ** the cache needs to be reset.
3050 */
3051 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3052 }
danb9bf16b2010-04-14 11:23:30 +00003053
3054 /* Release the locks. */
dana58f26f2010-11-16 18:56:51 +00003055 sqlite3WalEndWriteTransaction(pWal);
drh73b64e42010-05-30 19:55:15 +00003056 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
dand54ff602010-05-31 11:16:30 +00003057 pWal->ckptLock = 0;
drhc74c3332010-05-31 12:15:19 +00003058 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
danf2b8dd52010-11-18 19:28:01 +00003059 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
dan7c246102010-04-12 19:00:29 +00003060}
3061
drh7ed91f22010-04-29 22:34:07 +00003062/* Return the value to pass to a sqlite3_wal_hook callback, the
3063** number of frames in the WAL at the point of the last commit since
3064** sqlite3WalCallback() was called. If no commits have occurred since
3065** the last call, then return 0.
3066*/
3067int sqlite3WalCallback(Wal *pWal){
dan8d22a172010-04-19 18:03:51 +00003068 u32 ret = 0;
drh7ed91f22010-04-29 22:34:07 +00003069 if( pWal ){
3070 ret = pWal->iCallback;
3071 pWal->iCallback = 0;
dan8d22a172010-04-19 18:03:51 +00003072 }
3073 return (int)ret;
3074}
dan55437592010-05-11 12:19:26 +00003075
3076/*
drh61e4ace2010-05-31 20:28:37 +00003077** This function is called to change the WAL subsystem into or out
3078** of locking_mode=EXCLUSIVE.
dan55437592010-05-11 12:19:26 +00003079**
drh61e4ace2010-05-31 20:28:37 +00003080** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
3081** into locking_mode=NORMAL. This means that we must acquire a lock
3082** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
3083** or if the acquisition of the lock fails, then return 0. If the
3084** transition out of exclusive-mode is successful, return 1. This
3085** operation must occur while the pager is still holding the exclusive
3086** lock on the main database file.
dan55437592010-05-11 12:19:26 +00003087**
drh61e4ace2010-05-31 20:28:37 +00003088** If op is one, then change from locking_mode=NORMAL into
3089** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
3090** be released. Return 1 if the transition is made and 0 if the
3091** WAL is already in exclusive-locking mode - meaning that this
3092** routine is a no-op. The pager must already hold the exclusive lock
3093** on the main database file before invoking this operation.
3094**
3095** If op is negative, then do a dry-run of the op==1 case but do
dan8c408002010-11-01 17:38:24 +00003096** not actually change anything. The pager uses this to see if it
drh61e4ace2010-05-31 20:28:37 +00003097** should acquire the database exclusive lock prior to invoking
3098** the op==1 case.
dan55437592010-05-11 12:19:26 +00003099*/
3100int sqlite3WalExclusiveMode(Wal *pWal, int op){
drh61e4ace2010-05-31 20:28:37 +00003101 int rc;
drhaab4c022010-06-02 14:45:51 +00003102 assert( pWal->writeLock==0 );
dan8c408002010-11-01 17:38:24 +00003103 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
dan3cac5dc2010-06-04 18:37:59 +00003104
3105 /* pWal->readLock is usually set, but might be -1 if there was a
3106 ** prior error while attempting to acquire are read-lock. This cannot
3107 ** happen if the connection is actually in exclusive mode (as no xShmLock
3108 ** locks are taken in this case). Nor should the pager attempt to
3109 ** upgrade to exclusive-mode following such an error.
3110 */
drhaab4c022010-06-02 14:45:51 +00003111 assert( pWal->readLock>=0 || pWal->lockError );
dan3cac5dc2010-06-04 18:37:59 +00003112 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
3113
drh61e4ace2010-05-31 20:28:37 +00003114 if( op==0 ){
3115 if( pWal->exclusiveMode ){
3116 pWal->exclusiveMode = 0;
dan3cac5dc2010-06-04 18:37:59 +00003117 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
drh61e4ace2010-05-31 20:28:37 +00003118 pWal->exclusiveMode = 1;
3119 }
3120 rc = pWal->exclusiveMode==0;
3121 }else{
drhaab4c022010-06-02 14:45:51 +00003122 /* Already in locking_mode=NORMAL */
drh61e4ace2010-05-31 20:28:37 +00003123 rc = 0;
3124 }
3125 }else if( op>0 ){
3126 assert( pWal->exclusiveMode==0 );
drhaab4c022010-06-02 14:45:51 +00003127 assert( pWal->readLock>=0 );
drh61e4ace2010-05-31 20:28:37 +00003128 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3129 pWal->exclusiveMode = 1;
3130 rc = 1;
3131 }else{
3132 rc = pWal->exclusiveMode==0;
dan55437592010-05-11 12:19:26 +00003133 }
drh61e4ace2010-05-31 20:28:37 +00003134 return rc;
dan55437592010-05-11 12:19:26 +00003135}
3136
dan8c408002010-11-01 17:38:24 +00003137/*
3138** Return true if the argument is non-NULL and the WAL module is using
3139** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
3140** WAL module is using shared-memory, return false.
3141*/
3142int sqlite3WalHeapMemory(Wal *pWal){
3143 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
3144}
3145
drh70708602012-02-24 14:33:28 +00003146#ifdef SQLITE_ENABLE_ZIPVFS
danb3bdc722012-02-23 15:35:49 +00003147/*
3148** If the argument is not NULL, it points to a Wal object that holds a
3149** read-lock. This function returns the database page-size if it is known,
3150** or zero if it is not (or if pWal is NULL).
3151*/
3152int sqlite3WalFramesize(Wal *pWal){
danb3bdc722012-02-23 15:35:49 +00003153 assert( pWal==0 || pWal->readLock>=0 );
3154 return (pWal ? pWal->szPage : 0);
3155}
drh70708602012-02-24 14:33:28 +00003156#endif
danb3bdc722012-02-23 15:35:49 +00003157
dan5cf53532010-05-01 16:40:20 +00003158#endif /* #ifndef SQLITE_OMIT_WAL */