blob: 9ab55a961c4bc1ca2d5c429cdc06cae5e48d3f60 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
drhe53831d2007-08-17 01:14:38 +0000115#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000116
117#ifdef SQLITE_DEBUG
118/*
drh0ee3dbe2009-10-16 15:05:18 +0000119**** This function is only used as part of an assert() statement. ***
120**
121** Check to see if pBtree holds the required locks to read or write to the
122** table with root page iRoot. Return 1 if it does and 0 if not.
123**
124** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000125** Btree connection pBtree:
126**
127** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
128**
drh0ee3dbe2009-10-16 15:05:18 +0000129** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000130** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000131** the corresponding table. This makes things a bit more complicated,
132** as this module treats each table as a separate structure. To determine
133** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000134** function has to search through the database schema.
135**
drh0ee3dbe2009-10-16 15:05:18 +0000136** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000137** hold a write-lock on the schema table (root page 1). This is also
138** acceptable.
139*/
140static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
145){
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
149
drh0ee3dbe2009-10-16 15:05:18 +0000150 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000151 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000152 ** Return true immediately.
153 */
danielk197796d48e92009-06-29 06:00:37 +0000154 if( (pBtree->sharable==0)
155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000156 ){
157 return 1;
158 }
159
drh0ee3dbe2009-10-16 15:05:18 +0000160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
164 */
drh2c5e35f2014-08-05 11:04:21 +0000165 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000166 return 1;
167 }
168
danielk197796d48e92009-06-29 06:00:37 +0000169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000177 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000178 if( iTab ){
179 /* Two or more indexes share the same root page. There must
180 ** be imposter tables. So just return true. The assert is not
181 ** useful in that case. */
182 return 1;
183 }
shane5eff7cf2009-08-10 03:57:58 +0000184 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000185 }
186 }
187 }else{
188 iTab = iRoot;
189 }
190
191 /* Search for the required lock. Either a write-lock on root-page iTab, a
192 ** write-lock on the schema table, or (if the client is reading) a
193 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
194 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
195 if( pLock->pBtree==pBtree
196 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
197 && pLock->eLock>=eLockType
198 ){
199 return 1;
200 }
201 }
202
203 /* Failed to find the required lock. */
204 return 0;
205}
drh0ee3dbe2009-10-16 15:05:18 +0000206#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000207
drh0ee3dbe2009-10-16 15:05:18 +0000208#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000209/*
drh0ee3dbe2009-10-16 15:05:18 +0000210**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000211**
drh0ee3dbe2009-10-16 15:05:18 +0000212** Return true if it would be illegal for pBtree to write into the
213** table or index rooted at iRoot because other shared connections are
214** simultaneously reading that same table or index.
215**
216** It is illegal for pBtree to write if some other Btree object that
217** shares the same BtShared object is currently reading or writing
218** the iRoot table. Except, if the other Btree object has the
219** read-uncommitted flag set, then it is OK for the other object to
220** have a read cursor.
221**
222** For example, before writing to any part of the table or index
223** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000224**
225** assert( !hasReadConflicts(pBtree, iRoot) );
226*/
227static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
228 BtCursor *p;
229 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
230 if( p->pgnoRoot==iRoot
231 && p->pBtree!=pBtree
232 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
233 ){
234 return 1;
235 }
236 }
237 return 0;
238}
239#endif /* #ifdef SQLITE_DEBUG */
240
danielk1977da184232006-01-05 11:34:32 +0000241/*
drh0ee3dbe2009-10-16 15:05:18 +0000242** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000243** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000244** SQLITE_OK if the lock may be obtained (by calling
245** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000246*/
drhc25eabe2009-02-24 18:57:31 +0000247static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000248 BtShared *pBt = p->pBt;
249 BtLock *pIter;
250
drh1fee73e2007-08-29 04:00:57 +0000251 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000252 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
253 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000254 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000255
danielk19775b413d72009-04-01 09:41:54 +0000256 /* If requesting a write-lock, then the Btree must have an open write
257 ** transaction on this file. And, obviously, for this to be so there
258 ** must be an open write transaction on the file itself.
259 */
260 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
261 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
262
drh0ee3dbe2009-10-16 15:05:18 +0000263 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000264 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000265 return SQLITE_OK;
266 }
267
danielk1977641b0f42007-12-21 04:47:25 +0000268 /* If some other connection is holding an exclusive lock, the
269 ** requested lock may not be obtained.
270 */
drhc9166342012-01-05 23:32:06 +0000271 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000272 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
273 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000274 }
275
danielk1977e0d9e6f2009-07-03 16:25:06 +0000276 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
277 /* The condition (pIter->eLock!=eLock) in the following if(...)
278 ** statement is a simplification of:
279 **
280 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
281 **
282 ** since we know that if eLock==WRITE_LOCK, then no other connection
283 ** may hold a WRITE_LOCK on any table in this file (since there can
284 ** only be a single writer).
285 */
286 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
287 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
288 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
289 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
290 if( eLock==WRITE_LOCK ){
291 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000292 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000293 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000294 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000295 }
296 }
297 return SQLITE_OK;
298}
drhe53831d2007-08-17 01:14:38 +0000299#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000300
drhe53831d2007-08-17 01:14:38 +0000301#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000302/*
303** Add a lock on the table with root-page iTable to the shared-btree used
304** by Btree handle p. Parameter eLock must be either READ_LOCK or
305** WRITE_LOCK.
306**
danielk19779d104862009-07-09 08:27:14 +0000307** This function assumes the following:
308**
drh0ee3dbe2009-10-16 15:05:18 +0000309** (a) The specified Btree object p is connected to a sharable
310** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000311**
drh0ee3dbe2009-10-16 15:05:18 +0000312** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000313** with the requested lock (i.e. querySharedCacheTableLock() has
314** already been called and returned SQLITE_OK).
315**
316** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
317** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000318*/
drhc25eabe2009-02-24 18:57:31 +0000319static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000320 BtShared *pBt = p->pBt;
321 BtLock *pLock = 0;
322 BtLock *pIter;
323
drh1fee73e2007-08-29 04:00:57 +0000324 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000325 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
326 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000327
danielk1977e0d9e6f2009-07-03 16:25:06 +0000328 /* A connection with the read-uncommitted flag set will never try to
329 ** obtain a read-lock using this function. The only read-lock obtained
330 ** by a connection in read-uncommitted mode is on the sqlite_master
331 ** table, and that lock is obtained in BtreeBeginTrans(). */
332 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
333
danielk19779d104862009-07-09 08:27:14 +0000334 /* This function should only be called on a sharable b-tree after it
335 ** has been determined that no other b-tree holds a conflicting lock. */
336 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000337 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000338
339 /* First search the list for an existing lock on this table. */
340 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
341 if( pIter->iTable==iTable && pIter->pBtree==p ){
342 pLock = pIter;
343 break;
344 }
345 }
346
347 /* If the above search did not find a BtLock struct associating Btree p
348 ** with table iTable, allocate one and link it into the list.
349 */
350 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000351 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000352 if( !pLock ){
353 return SQLITE_NOMEM;
354 }
355 pLock->iTable = iTable;
356 pLock->pBtree = p;
357 pLock->pNext = pBt->pLock;
358 pBt->pLock = pLock;
359 }
360
361 /* Set the BtLock.eLock variable to the maximum of the current lock
362 ** and the requested lock. This means if a write-lock was already held
363 ** and a read-lock requested, we don't incorrectly downgrade the lock.
364 */
365 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000366 if( eLock>pLock->eLock ){
367 pLock->eLock = eLock;
368 }
danielk1977aef0bf62005-12-30 16:28:01 +0000369
370 return SQLITE_OK;
371}
drhe53831d2007-08-17 01:14:38 +0000372#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000373
drhe53831d2007-08-17 01:14:38 +0000374#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000375/*
drhc25eabe2009-02-24 18:57:31 +0000376** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000377** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000378**
drh0ee3dbe2009-10-16 15:05:18 +0000379** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000380** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000381** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000382*/
drhc25eabe2009-02-24 18:57:31 +0000383static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000384 BtShared *pBt = p->pBt;
385 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000386
drh1fee73e2007-08-29 04:00:57 +0000387 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000388 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000389 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000390
danielk1977aef0bf62005-12-30 16:28:01 +0000391 while( *ppIter ){
392 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000393 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000394 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000395 if( pLock->pBtree==p ){
396 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000397 assert( pLock->iTable!=1 || pLock==&p->lock );
398 if( pLock->iTable!=1 ){
399 sqlite3_free(pLock);
400 }
danielk1977aef0bf62005-12-30 16:28:01 +0000401 }else{
402 ppIter = &pLock->pNext;
403 }
404 }
danielk1977641b0f42007-12-21 04:47:25 +0000405
drhc9166342012-01-05 23:32:06 +0000406 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000407 if( pBt->pWriter==p ){
408 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000409 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000410 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000411 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000412 ** transaction. If there currently exists a writer, and p is not
413 ** that writer, then the number of locks held by connections other
414 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000415 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000416 **
drhc9166342012-01-05 23:32:06 +0000417 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000418 ** be zero already. So this next line is harmless in that case.
419 */
drhc9166342012-01-05 23:32:06 +0000420 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000421 }
danielk1977aef0bf62005-12-30 16:28:01 +0000422}
danielk197794b30732009-07-02 17:21:57 +0000423
danielk1977e0d9e6f2009-07-03 16:25:06 +0000424/*
drh0ee3dbe2009-10-16 15:05:18 +0000425** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000426*/
danielk197794b30732009-07-02 17:21:57 +0000427static void downgradeAllSharedCacheTableLocks(Btree *p){
428 BtShared *pBt = p->pBt;
429 if( pBt->pWriter==p ){
430 BtLock *pLock;
431 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000432 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000433 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
434 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
435 pLock->eLock = READ_LOCK;
436 }
437 }
438}
439
danielk1977aef0bf62005-12-30 16:28:01 +0000440#endif /* SQLITE_OMIT_SHARED_CACHE */
441
drh980b1a72006-08-16 16:42:48 +0000442static void releasePage(MemPage *pPage); /* Forward reference */
443
drh1fee73e2007-08-29 04:00:57 +0000444/*
drh0ee3dbe2009-10-16 15:05:18 +0000445***** This routine is used inside of assert() only ****
446**
447** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000448*/
drh0ee3dbe2009-10-16 15:05:18 +0000449#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000450static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000451 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000452}
453#endif
454
danielk197792d4d7a2007-05-04 12:05:56 +0000455/*
dan5a500af2014-03-11 20:33:04 +0000456** Invalidate the overflow cache of the cursor passed as the first argument.
457** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000458*/
drh036dbec2014-03-11 23:40:44 +0000459#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000460
461/*
462** Invalidate the overflow page-list cache for all cursors opened
463** on the shared btree structure pBt.
464*/
465static void invalidateAllOverflowCache(BtShared *pBt){
466 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000467 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000468 for(p=pBt->pCursor; p; p=p->pNext){
469 invalidateOverflowCache(p);
470 }
471}
danielk197796d48e92009-06-29 06:00:37 +0000472
dan5a500af2014-03-11 20:33:04 +0000473#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000474/*
475** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000476** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000477** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000478**
479** If argument isClearTable is true, then the entire contents of the
480** table is about to be deleted. In this case invalidate all incrblob
481** cursors open on any row within the table with root-page pgnoRoot.
482**
483** Otherwise, if argument isClearTable is false, then the row with
484** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000485** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000486*/
487static void invalidateIncrblobCursors(
488 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000489 i64 iRow, /* The rowid that might be changing */
490 int isClearTable /* True if all rows are being deleted */
491){
492 BtCursor *p;
493 BtShared *pBt = pBtree->pBt;
494 assert( sqlite3BtreeHoldsMutex(pBtree) );
495 for(p=pBt->pCursor; p; p=p->pNext){
drh3f387402014-09-24 01:23:00 +0000496 if( (p->curFlags & BTCF_Incrblob)!=0
497 && (isClearTable || p->info.nKey==iRow)
498 ){
danielk197796d48e92009-06-29 06:00:37 +0000499 p->eState = CURSOR_INVALID;
500 }
501 }
502}
503
danielk197792d4d7a2007-05-04 12:05:56 +0000504#else
dan5a500af2014-03-11 20:33:04 +0000505 /* Stub function when INCRBLOB is omitted */
drheeb844a2009-08-08 18:01:07 +0000506 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000507#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000508
drh980b1a72006-08-16 16:42:48 +0000509/*
danielk1977bea2a942009-01-20 17:06:27 +0000510** Set bit pgno of the BtShared.pHasContent bitvec. This is called
511** when a page that previously contained data becomes a free-list leaf
512** page.
513**
514** The BtShared.pHasContent bitvec exists to work around an obscure
515** bug caused by the interaction of two useful IO optimizations surrounding
516** free-list leaf pages:
517**
518** 1) When all data is deleted from a page and the page becomes
519** a free-list leaf page, the page is not written to the database
520** (as free-list leaf pages contain no meaningful data). Sometimes
521** such a page is not even journalled (as it will not be modified,
522** why bother journalling it?).
523**
524** 2) When a free-list leaf page is reused, its content is not read
525** from the database or written to the journal file (why should it
526** be, if it is not at all meaningful?).
527**
528** By themselves, these optimizations work fine and provide a handy
529** performance boost to bulk delete or insert operations. However, if
530** a page is moved to the free-list and then reused within the same
531** transaction, a problem comes up. If the page is not journalled when
532** it is moved to the free-list and it is also not journalled when it
533** is extracted from the free-list and reused, then the original data
534** may be lost. In the event of a rollback, it may not be possible
535** to restore the database to its original configuration.
536**
537** The solution is the BtShared.pHasContent bitvec. Whenever a page is
538** moved to become a free-list leaf page, the corresponding bit is
539** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000540** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000541** set in BtShared.pHasContent. The contents of the bitvec are cleared
542** at the end of every transaction.
543*/
544static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
545 int rc = SQLITE_OK;
546 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000547 assert( pgno<=pBt->nPage );
548 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000549 if( !pBt->pHasContent ){
550 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000551 }
552 }
553 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
554 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
555 }
556 return rc;
557}
558
559/*
560** Query the BtShared.pHasContent vector.
561**
562** This function is called when a free-list leaf page is removed from the
563** free-list for reuse. It returns false if it is safe to retrieve the
564** page from the pager layer with the 'no-content' flag set. True otherwise.
565*/
566static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
567 Bitvec *p = pBt->pHasContent;
568 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
569}
570
571/*
572** Clear (destroy) the BtShared.pHasContent bitvec. This should be
573** invoked at the conclusion of each write-transaction.
574*/
575static void btreeClearHasContent(BtShared *pBt){
576 sqlite3BitvecDestroy(pBt->pHasContent);
577 pBt->pHasContent = 0;
578}
579
580/*
drh138eeeb2013-03-27 03:15:23 +0000581** Release all of the apPage[] pages for a cursor.
582*/
583static void btreeReleaseAllCursorPages(BtCursor *pCur){
584 int i;
585 for(i=0; i<=pCur->iPage; i++){
586 releasePage(pCur->apPage[i]);
587 pCur->apPage[i] = 0;
588 }
589 pCur->iPage = -1;
590}
591
592
593/*
drh980b1a72006-08-16 16:42:48 +0000594** Save the current cursor position in the variables BtCursor.nKey
595** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000596**
597** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
598** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000599*/
600static int saveCursorPosition(BtCursor *pCur){
601 int rc;
602
drhd2f83132015-03-25 17:35:01 +0000603 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000604 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000605 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000606
drhd2f83132015-03-25 17:35:01 +0000607 if( pCur->eState==CURSOR_SKIPNEXT ){
608 pCur->eState = CURSOR_VALID;
609 }else{
610 pCur->skipNext = 0;
611 }
drh980b1a72006-08-16 16:42:48 +0000612 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000613 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000614
615 /* If this is an intKey table, then the above call to BtreeKeySize()
616 ** stores the integer key in pCur->nKey. In this case this value is
617 ** all that is required. Otherwise, if pCur is not open on an intKey
618 ** table, then malloc space for and store the pCur->nKey bytes of key
619 ** data.
620 */
drh4c301aa2009-07-15 17:25:45 +0000621 if( 0==pCur->apPage[0]->intKey ){
drhda4ca9d2014-09-09 17:27:35 +0000622 void *pKey = sqlite3Malloc( pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000623 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000624 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000625 if( rc==SQLITE_OK ){
626 pCur->pKey = pKey;
627 }else{
drh17435752007-08-16 04:30:38 +0000628 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000629 }
630 }else{
631 rc = SQLITE_NOMEM;
632 }
633 }
danielk197771d5d2c2008-09-29 11:49:47 +0000634 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000635
636 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000637 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000638 pCur->eState = CURSOR_REQUIRESEEK;
639 }
640
danielk197792d4d7a2007-05-04 12:05:56 +0000641 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000642 return rc;
643}
644
drh637f3d82014-08-22 22:26:07 +0000645/* Forward reference */
646static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
647
drh980b1a72006-08-16 16:42:48 +0000648/*
drh0ee3dbe2009-10-16 15:05:18 +0000649** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000650** the table with root-page iRoot. "Saving the cursor position" means that
651** the location in the btree is remembered in such a way that it can be
652** moved back to the same spot after the btree has been modified. This
653** routine is called just before cursor pExcept is used to modify the
654** table, for example in BtreeDelete() or BtreeInsert().
655**
656** Implementation note: This routine merely checks to see if any cursors
657** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
658** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000659*/
660static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
drh3bdffdd2014-08-23 19:08:09 +0000661 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000662 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000663 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000664 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000665 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
666 }
667 return p ? saveCursorsOnList(p, iRoot, pExcept) : SQLITE_OK;
668}
669
670/* This helper routine to saveAllCursors does the actual work of saving
671** the cursors if and when a cursor is found that actually requires saving.
672** The common case is that no cursors need to be saved, so this routine is
673** broken out from its caller to avoid unnecessary stack pointer movement.
674*/
675static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000676 BtCursor *p, /* The first cursor that needs saving */
677 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
678 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000679){
680 do{
drh138eeeb2013-03-27 03:15:23 +0000681 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000682 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000683 int rc = saveCursorPosition(p);
684 if( SQLITE_OK!=rc ){
685 return rc;
686 }
687 }else{
688 testcase( p->iPage>0 );
689 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000690 }
691 }
drh637f3d82014-08-22 22:26:07 +0000692 p = p->pNext;
693 }while( p );
drh980b1a72006-08-16 16:42:48 +0000694 return SQLITE_OK;
695}
696
697/*
drhbf700f32007-03-31 02:36:44 +0000698** Clear the current cursor position.
699*/
danielk1977be51a652008-10-08 17:58:48 +0000700void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000701 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000702 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000703 pCur->pKey = 0;
704 pCur->eState = CURSOR_INVALID;
705}
706
707/*
danielk19773509a652009-07-06 18:56:13 +0000708** In this version of BtreeMoveto, pKey is a packed index record
709** such as is generated by the OP_MakeRecord opcode. Unpack the
710** record and then call BtreeMovetoUnpacked() to do the work.
711*/
712static int btreeMoveto(
713 BtCursor *pCur, /* Cursor open on the btree to be searched */
714 const void *pKey, /* Packed key if the btree is an index */
715 i64 nKey, /* Integer key for tables. Size of pKey for indices */
716 int bias, /* Bias search to the high end */
717 int *pRes /* Write search results here */
718){
719 int rc; /* Status code */
720 UnpackedRecord *pIdxKey; /* Unpacked index key */
drhb4139222013-11-06 14:36:08 +0000721 char aSpace[200]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000722 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000723
724 if( pKey ){
725 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000726 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
727 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
728 );
danielk19773509a652009-07-06 18:56:13 +0000729 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000730 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000731 if( pIdxKey->nField==0 ){
732 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
733 return SQLITE_CORRUPT_BKPT;
734 }
danielk19773509a652009-07-06 18:56:13 +0000735 }else{
736 pIdxKey = 0;
737 }
738 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000739 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000740 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000741 }
742 return rc;
743}
744
745/*
drh980b1a72006-08-16 16:42:48 +0000746** Restore the cursor to the position it was in (or as close to as possible)
747** when saveCursorPosition() was called. Note that this call deletes the
748** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000749** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000750** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000751*/
danielk197730548662009-07-09 05:07:37 +0000752static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000753 int rc;
drhd2f83132015-03-25 17:35:01 +0000754 int skipNext;
drh1fee73e2007-08-29 04:00:57 +0000755 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000756 assert( pCur->eState>=CURSOR_REQUIRESEEK );
757 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000758 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000759 }
drh980b1a72006-08-16 16:42:48 +0000760 pCur->eState = CURSOR_INVALID;
drhd2f83132015-03-25 17:35:01 +0000761 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
drh980b1a72006-08-16 16:42:48 +0000762 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000763 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000764 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000765 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drhd2f83132015-03-25 17:35:01 +0000766 pCur->skipNext |= skipNext;
drh9b47ee32013-08-20 03:13:51 +0000767 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
768 pCur->eState = CURSOR_SKIPNEXT;
769 }
drh980b1a72006-08-16 16:42:48 +0000770 }
771 return rc;
772}
773
drha3460582008-07-11 21:02:53 +0000774#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000775 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000776 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000777 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000778
drha3460582008-07-11 21:02:53 +0000779/*
drh6848dad2014-08-22 23:33:03 +0000780** Determine whether or not a cursor has moved from the position where
781** it was last placed, or has been invalidated for any other reason.
782** Cursors can move when the row they are pointing at is deleted out
783** from under them, for example. Cursor might also move if a btree
784** is rebalanced.
drha3460582008-07-11 21:02:53 +0000785**
drh6848dad2014-08-22 23:33:03 +0000786** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000787**
drh6848dad2014-08-22 23:33:03 +0000788** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
789** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000790*/
drh6848dad2014-08-22 23:33:03 +0000791int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drhc22284f2014-10-13 16:02:20 +0000792 return pCur->eState!=CURSOR_VALID;
drh6848dad2014-08-22 23:33:03 +0000793}
794
795/*
796** This routine restores a cursor back to its original position after it
797** has been moved by some outside activity (such as a btree rebalance or
798** a row having been deleted out from under the cursor).
799**
800** On success, the *pDifferentRow parameter is false if the cursor is left
801** pointing at exactly the same row. *pDifferntRow is the row the cursor
802** was pointing to has been deleted, forcing the cursor to point to some
803** nearby row.
804**
805** This routine should only be called for a cursor that just returned
806** TRUE from sqlite3BtreeCursorHasMoved().
807*/
808int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000809 int rc;
810
drh6848dad2014-08-22 23:33:03 +0000811 assert( pCur!=0 );
812 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000813 rc = restoreCursorPosition(pCur);
814 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000815 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000816 return rc;
817 }
drh606a3572015-03-25 18:29:10 +0000818 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000819 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000820 }else{
drh606a3572015-03-25 18:29:10 +0000821 assert( pCur->skipNext==0 );
drh6848dad2014-08-22 23:33:03 +0000822 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000823 }
824 return SQLITE_OK;
825}
826
danielk1977599fcba2004-11-08 07:13:13 +0000827#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000828/*
drha3152892007-05-05 11:48:52 +0000829** Given a page number of a regular database page, return the page
830** number for the pointer-map page that contains the entry for the
831** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000832**
833** Return 0 (not a valid page) for pgno==1 since there is
834** no pointer map associated with page 1. The integrity_check logic
835** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000836*/
danielk1977266664d2006-02-10 08:24:21 +0000837static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000838 int nPagesPerMapPage;
839 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000840 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000841 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000842 nPagesPerMapPage = (pBt->usableSize/5)+1;
843 iPtrMap = (pgno-2)/nPagesPerMapPage;
844 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000845 if( ret==PENDING_BYTE_PAGE(pBt) ){
846 ret++;
847 }
848 return ret;
849}
danielk1977a19df672004-11-03 11:37:07 +0000850
danielk1977afcdd022004-10-31 16:25:42 +0000851/*
danielk1977afcdd022004-10-31 16:25:42 +0000852** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000853**
854** This routine updates the pointer map entry for page number 'key'
855** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000856**
857** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
858** a no-op. If an error occurs, the appropriate error code is written
859** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000860*/
drh98add2e2009-07-20 17:11:49 +0000861static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000862 DbPage *pDbPage; /* The pointer map page */
863 u8 *pPtrmap; /* The pointer map data */
864 Pgno iPtrmap; /* The pointer map page number */
865 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000866 int rc; /* Return code from subfunctions */
867
868 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000869
drh1fee73e2007-08-29 04:00:57 +0000870 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000871 /* The master-journal page number must never be used as a pointer map page */
872 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
873
danielk1977ac11ee62005-01-15 12:45:51 +0000874 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000875 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000876 *pRC = SQLITE_CORRUPT_BKPT;
877 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000878 }
danielk1977266664d2006-02-10 08:24:21 +0000879 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000880 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000881 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000882 *pRC = rc;
883 return;
danielk1977afcdd022004-10-31 16:25:42 +0000884 }
danielk19778c666b12008-07-18 09:34:57 +0000885 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000886 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000887 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000888 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000889 }
drhfc243732011-05-17 15:21:56 +0000890 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000891 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000892
drh615ae552005-01-16 23:21:00 +0000893 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
894 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000895 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000896 if( rc==SQLITE_OK ){
897 pPtrmap[offset] = eType;
898 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000899 }
danielk1977afcdd022004-10-31 16:25:42 +0000900 }
901
drh4925a552009-07-07 11:39:58 +0000902ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000903 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000904}
905
906/*
907** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000908**
909** This routine retrieves the pointer map entry for page 'key', writing
910** the type and parent page number to *pEType and *pPgno respectively.
911** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000912*/
danielk1977aef0bf62005-12-30 16:28:01 +0000913static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000914 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000915 int iPtrmap; /* Pointer map page index */
916 u8 *pPtrmap; /* Pointer map page data */
917 int offset; /* Offset of entry in pointer map */
918 int rc;
919
drh1fee73e2007-08-29 04:00:57 +0000920 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000921
danielk1977266664d2006-02-10 08:24:21 +0000922 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000923 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000924 if( rc!=0 ){
925 return rc;
926 }
danielk19773b8a05f2007-03-19 17:44:26 +0000927 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000928
danielk19778c666b12008-07-18 09:34:57 +0000929 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000930 if( offset<0 ){
931 sqlite3PagerUnref(pDbPage);
932 return SQLITE_CORRUPT_BKPT;
933 }
934 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000935 assert( pEType!=0 );
936 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000937 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000938
danielk19773b8a05f2007-03-19 17:44:26 +0000939 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000940 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000941 return SQLITE_OK;
942}
943
danielk197785d90ca2008-07-19 14:25:15 +0000944#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000945 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000946 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000947 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000948#endif
danielk1977afcdd022004-10-31 16:25:42 +0000949
drh0d316a42002-08-11 20:10:47 +0000950/*
drh271efa52004-05-30 19:19:05 +0000951** Given a btree page and a cell index (0 means the first cell on
952** the page, 1 means the second cell, and so forth) return a pointer
953** to the cell content.
954**
955** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000956*/
drh1688c862008-07-18 02:44:17 +0000957#define findCell(P,I) \
drh3def2352011-11-11 00:27:15 +0000958 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +0000959#define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I)))))
960
drh43605152004-05-29 21:46:49 +0000961
962/*
drh93a960a2008-07-10 00:32:42 +0000963** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000964** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000965*/
966static u8 *findOverflowCell(MemPage *pPage, int iCell){
967 int i;
drh1fee73e2007-08-29 04:00:57 +0000968 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000969 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000970 int k;
drh2cbd78b2012-02-02 19:37:18 +0000971 k = pPage->aiOvfl[i];
drh6d08b4d2004-07-20 12:45:22 +0000972 if( k<=iCell ){
973 if( k==iCell ){
drh2cbd78b2012-02-02 19:37:18 +0000974 return pPage->apOvfl[i];
drh43605152004-05-29 21:46:49 +0000975 }
976 iCell--;
977 }
978 }
danielk19771cc5ed82007-05-16 17:28:43 +0000979 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000980}
981
982/*
983** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000984** are two versions of this function. btreeParseCell() takes a
985** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000986** takes a pointer to the body of the cell as its second argument.
drh43605152004-05-29 21:46:49 +0000987*/
danielk197730548662009-07-09 05:07:37 +0000988static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000989 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000990 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000991 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000992){
drh3e28ff52014-09-24 00:59:08 +0000993 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +0000994 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000995
drh1fee73e2007-08-29 04:00:57 +0000996 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +0000997 assert( pPage->leaf==0 || pPage->leaf==1 );
drh3e28ff52014-09-24 00:59:08 +0000998 if( pPage->intKeyLeaf ){
999 assert( pPage->childPtrSize==0 );
1000 pIter = pCell + getVarint32(pCell, nPayload);
drhab1cc582014-09-23 21:25:19 +00001001 pIter += getVarint(pIter, (u64*)&pInfo->nKey);
drh3e28ff52014-09-24 00:59:08 +00001002 }else if( pPage->noPayload ){
1003 assert( pPage->childPtrSize==4 );
1004 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1005 pInfo->nPayload = 0;
1006 pInfo->nLocal = 0;
1007 pInfo->iOverflow = 0;
1008 pInfo->pPayload = 0;
1009 return;
drh504b6982006-01-22 21:52:56 +00001010 }else{
drh3e28ff52014-09-24 00:59:08 +00001011 pIter = pCell + pPage->childPtrSize;
drhab1cc582014-09-23 21:25:19 +00001012 pIter += getVarint32(pIter, nPayload);
drh79df1f42008-07-18 00:57:33 +00001013 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +00001014 }
drh72365832007-03-06 15:53:44 +00001015 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001016 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001017 testcase( nPayload==pPage->maxLocal );
1018 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001019 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001020 /* This is the (easy) common case where the entire payload fits
1021 ** on the local page. No overflow is required.
1022 */
drhab1cc582014-09-23 21:25:19 +00001023 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1024 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001025 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001026 pInfo->iOverflow = 0;
drh6f11bef2004-05-13 01:12:56 +00001027 }else{
drh271efa52004-05-30 19:19:05 +00001028 /* If the payload will not fit completely on the local page, we have
1029 ** to decide how much to store locally and how much to spill onto
1030 ** overflow pages. The strategy is to minimize the amount of unused
1031 ** space on overflow pages while keeping the amount of local storage
1032 ** in between minLocal and maxLocal.
1033 **
1034 ** Warning: changing the way overflow payload is distributed in any
1035 ** way will result in an incompatible file format.
1036 */
1037 int minLocal; /* Minimum amount of payload held locally */
1038 int maxLocal; /* Maximum amount of payload held locally */
1039 int surplus; /* Overflow payload available for local storage */
1040
1041 minLocal = pPage->minLocal;
1042 maxLocal = pPage->maxLocal;
1043 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001044 testcase( surplus==maxLocal );
1045 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +00001046 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +00001047 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +00001048 }else{
drhf49661a2008-12-10 16:45:50 +00001049 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +00001050 }
drhab1cc582014-09-23 21:25:19 +00001051 pInfo->iOverflow = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell);
drh6f11bef2004-05-13 01:12:56 +00001052 pInfo->nSize = pInfo->iOverflow + 4;
1053 }
drh3aac2dd2004-04-26 14:10:20 +00001054}
danielk197730548662009-07-09 05:07:37 +00001055static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001056 MemPage *pPage, /* Page containing the cell */
1057 int iCell, /* The cell index. First cell is 0 */
1058 CellInfo *pInfo /* Fill in this structure */
1059){
drhc4683832014-09-23 23:12:53 +00001060 btreeParseCellPtr(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001061}
drh3aac2dd2004-04-26 14:10:20 +00001062
1063/*
drh43605152004-05-29 21:46:49 +00001064** Compute the total number of bytes that a Cell needs in the cell
1065** data area of the btree-page. The return number includes the cell
1066** data header and the local payload, but not any overflow page or
1067** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +00001068*/
danielk1977ae5558b2009-04-29 11:31:47 +00001069static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001070 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1071 u8 *pEnd; /* End mark for a varint */
1072 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001073
1074#ifdef SQLITE_DEBUG
1075 /* The value returned by this function should always be the same as
1076 ** the (CellInfo.nSize) value found by doing a full parse of the
1077 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1078 ** this function verifies that this invariant is not violated. */
1079 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +00001080 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001081#endif
1082
drh3e28ff52014-09-24 00:59:08 +00001083 if( pPage->noPayload ){
1084 pEnd = &pIter[9];
1085 while( (*pIter++)&0x80 && pIter<pEnd );
1086 assert( pPage->childPtrSize==4 );
1087 return (u16)(pIter - pCell);
drhdc41d602014-09-22 19:51:35 +00001088 }
drh3e28ff52014-09-24 00:59:08 +00001089 nSize = *pIter;
1090 if( nSize>=0x80 ){
1091 pEnd = &pIter[9];
1092 nSize &= 0x7f;
1093 do{
1094 nSize = (nSize<<7) | (*++pIter & 0x7f);
1095 }while( *(pIter)>=0x80 && pIter<pEnd );
1096 }
1097 pIter++;
drhdc41d602014-09-22 19:51:35 +00001098 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001099 /* pIter now points at the 64-bit integer key value, a variable length
1100 ** integer. The following block moves pIter to point at the first byte
1101 ** past the end of the key value. */
1102 pEnd = &pIter[9];
1103 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001104 }
drh0a45c272009-07-08 01:49:11 +00001105 testcase( nSize==pPage->maxLocal );
1106 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001107 if( nSize<=pPage->maxLocal ){
1108 nSize += (u32)(pIter - pCell);
1109 if( nSize<4 ) nSize = 4;
1110 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001111 int minLocal = pPage->minLocal;
1112 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001113 testcase( nSize==pPage->maxLocal );
1114 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001115 if( nSize>pPage->maxLocal ){
1116 nSize = minLocal;
1117 }
drh3e28ff52014-09-24 00:59:08 +00001118 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001119 }
drhdc41d602014-09-22 19:51:35 +00001120 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001121 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001122}
drh0ee3dbe2009-10-16 15:05:18 +00001123
1124#ifdef SQLITE_DEBUG
1125/* This variation on cellSizePtr() is used inside of assert() statements
1126** only. */
drha9121e42008-02-19 14:59:35 +00001127static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +00001128 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001129}
danielk1977bc6ada42004-06-30 08:20:16 +00001130#endif
drh3b7511c2001-05-26 13:15:44 +00001131
danielk197779a40da2005-01-16 08:00:01 +00001132#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001133/*
danielk197726836652005-01-17 01:33:13 +00001134** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001135** to an overflow page, insert an entry into the pointer-map
1136** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001137*/
drh98add2e2009-07-20 17:11:49 +00001138static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001139 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001140 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001141 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001142 btreeParseCellPtr(pPage, pCell, &info);
danielk19774dbaa892009-06-16 16:50:22 +00001143 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001144 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001145 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001146 }
danielk1977ac11ee62005-01-15 12:45:51 +00001147}
danielk197779a40da2005-01-16 08:00:01 +00001148#endif
1149
danielk1977ac11ee62005-01-15 12:45:51 +00001150
drhda200cc2004-05-09 11:51:38 +00001151/*
drh72f82862001-05-24 21:06:34 +00001152** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001153** end of the page and all free space is collected into one
1154** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001155** pointer array and the cell content area.
drhfdab0262014-11-20 15:30:50 +00001156**
1157** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1158** b-tree page so that there are no freeblocks or fragment bytes, all
1159** unused bytes are contained in the unallocated space region, and all
1160** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001161*/
shane0af3f892008-11-12 04:55:34 +00001162static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001163 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001164 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001165 int hdr; /* Offset to the page header */
1166 int size; /* Size of a cell */
1167 int usableSize; /* Number of usable bytes on a page */
1168 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001169 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001170 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001171 unsigned char *data; /* The page data */
1172 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001173 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001174 int iCellFirst; /* First allowable cell index */
1175 int iCellLast; /* Last possible cell index */
1176
drh2af926b2001-05-15 00:39:25 +00001177
danielk19773b8a05f2007-03-19 17:44:26 +00001178 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001179 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001180 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001181 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001182 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001183 temp = 0;
1184 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001185 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001186 cellOffset = pPage->cellOffset;
1187 nCell = pPage->nCell;
1188 assert( nCell==get2byte(&data[hdr+3]) );
1189 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001190 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001191 iCellFirst = cellOffset + 2*nCell;
1192 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001193 for(i=0; i<nCell; i++){
1194 u8 *pAddr; /* The i-th cell pointer */
1195 pAddr = &data[cellOffset + i*2];
1196 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001197 testcase( pc==iCellFirst );
1198 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001199#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001200 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001201 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1202 */
1203 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001204 return SQLITE_CORRUPT_BKPT;
1205 }
drh17146622009-07-07 17:38:38 +00001206#endif
1207 assert( pc>=iCellFirst && pc<=iCellLast );
drh588400b2014-09-27 05:00:25 +00001208 size = cellSizePtr(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001209 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001210#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1211 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001212 return SQLITE_CORRUPT_BKPT;
1213 }
drh17146622009-07-07 17:38:38 +00001214#else
1215 if( cbrk<iCellFirst || pc+size>usableSize ){
1216 return SQLITE_CORRUPT_BKPT;
1217 }
1218#endif
drh7157e1d2009-07-09 13:25:32 +00001219 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001220 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001221 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001222 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001223 if( temp==0 ){
1224 int x;
1225 if( cbrk==pc ) continue;
1226 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1227 x = get2byte(&data[hdr+5]);
1228 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1229 src = temp;
1230 }
1231 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001232 }
drh17146622009-07-07 17:38:38 +00001233 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001234 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001235 data[hdr+1] = 0;
1236 data[hdr+2] = 0;
1237 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001238 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001239 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001240 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001241 return SQLITE_CORRUPT_BKPT;
1242 }
shane0af3f892008-11-12 04:55:34 +00001243 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001244}
1245
drha059ad02001-04-17 20:09:11 +00001246/*
dan8e9ba0c2014-10-14 17:27:04 +00001247** Search the free-list on page pPg for space to store a cell nByte bytes in
1248** size. If one can be found, return a pointer to the space and remove it
1249** from the free-list.
1250**
1251** If no suitable space can be found on the free-list, return NULL.
1252**
drhba0f9992014-10-30 20:48:44 +00001253** This function may detect corruption within pPg. If corruption is
1254** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001255**
1256** If a slot of at least nByte bytes is found but cannot be used because
1257** there are already at least 60 fragmented bytes on the page, return NULL.
1258** In this case, if pbDefrag parameter is not NULL, set *pbDefrag to true.
dan8e9ba0c2014-10-14 17:27:04 +00001259*/
dan61e94c92014-10-27 08:02:16 +00001260static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc, int *pbDefrag){
dan8e9ba0c2014-10-14 17:27:04 +00001261 const int hdr = pPg->hdrOffset;
1262 u8 * const aData = pPg->aData;
1263 int iAddr;
1264 int pc;
1265 int usableSize = pPg->pBt->usableSize;
1266
1267 for(iAddr=hdr+1; (pc = get2byte(&aData[iAddr]))>0; iAddr=pc){
1268 int size; /* Size of the free slot */
drh113762a2014-11-19 16:36:25 +00001269 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
1270 ** increasing offset. */
dan8e9ba0c2014-10-14 17:27:04 +00001271 if( pc>usableSize-4 || pc<iAddr+4 ){
drhba0f9992014-10-30 20:48:44 +00001272 *pRc = SQLITE_CORRUPT_BKPT;
dan8e9ba0c2014-10-14 17:27:04 +00001273 return 0;
1274 }
drh113762a2014-11-19 16:36:25 +00001275 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1276 ** freeblock form a big-endian integer which is the size of the freeblock
1277 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001278 size = get2byte(&aData[pc+2]);
1279 if( size>=nByte ){
1280 int x = size - nByte;
1281 testcase( x==4 );
1282 testcase( x==3 );
1283 if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001284 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1285 ** number of bytes in fragments may not exceed 60. */
dan61e94c92014-10-27 08:02:16 +00001286 if( aData[hdr+7]>=60 ){
1287 if( pbDefrag ) *pbDefrag = 1;
1288 return 0;
1289 }
dan8e9ba0c2014-10-14 17:27:04 +00001290 /* Remove the slot from the free-list. Update the number of
1291 ** fragmented bytes within the page. */
1292 memcpy(&aData[iAddr], &aData[pc], 2);
1293 aData[hdr+7] += (u8)x;
drh0b538f22015-05-24 21:09:52 +00001294 }else if( pc < pPg->cellOffset+2*pPg->nCell || size+pc > usableSize ){
drhba0f9992014-10-30 20:48:44 +00001295 *pRc = SQLITE_CORRUPT_BKPT;
dan8e9ba0c2014-10-14 17:27:04 +00001296 return 0;
1297 }else{
1298 /* The slot remains on the free-list. Reduce its size to account
1299 ** for the portion used by the new allocation. */
1300 put2byte(&aData[pc+2], x);
1301 }
1302 return &aData[pc + x];
1303 }
1304 }
1305
1306 return 0;
1307}
1308
1309/*
danielk19776011a752009-04-01 16:25:32 +00001310** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001311** as the first argument. Write into *pIdx the index into pPage->aData[]
1312** of the first byte of allocated space. Return either SQLITE_OK or
1313** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001314**
drh0a45c272009-07-08 01:49:11 +00001315** The caller guarantees that there is sufficient space to make the
1316** allocation. This routine might need to defragment in order to bring
1317** all the space together, however. This routine will avoid using
1318** the first two bytes past the cell pointer area since presumably this
1319** allocation is being made in order to insert a new cell, so we will
1320** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001321*/
drh0a45c272009-07-08 01:49:11 +00001322static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001323 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1324 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001325 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001326 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001327 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001328
danielk19773b8a05f2007-03-19 17:44:26 +00001329 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001330 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001331 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001332 assert( nByte>=0 ); /* Minimum cell size is 4 */
1333 assert( pPage->nFree>=nByte );
1334 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001335 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001336
drh0a45c272009-07-08 01:49:11 +00001337 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1338 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001339 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001340 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1341 ** and the reserved space is zero (the usual value for reserved space)
1342 ** then the cell content offset of an empty page wants to be 65536.
1343 ** However, that integer is too large to be stored in a 2-byte unsigned
1344 ** integer, so a value of 0 is used in its place. */
1345 top = get2byteNotZero(&data[hdr+5]);
dan633d0752015-05-26 17:33:30 +00001346 if( gap>top || (u32)top>pPage->pBt->usableSize ) return SQLITE_CORRUPT_BKPT;
drh4c04f3c2014-08-20 11:56:14 +00001347
1348 /* If there is enough space between gap and top for one more cell pointer
1349 ** array entry offset, and if the freelist is not empty, then search the
1350 ** freelist looking for a free slot big enough to satisfy the request.
1351 */
drh0a45c272009-07-08 01:49:11 +00001352 testcase( gap+2==top );
1353 testcase( gap+1==top );
1354 testcase( gap==top );
drh4c04f3c2014-08-20 11:56:14 +00001355 if( gap+2<=top && (data[hdr+1] || data[hdr+2]) ){
dan61e94c92014-10-27 08:02:16 +00001356 int bDefrag = 0;
1357 u8 *pSpace = pageFindSlot(pPage, nByte, &rc, &bDefrag);
dan8e9ba0c2014-10-14 17:27:04 +00001358 if( rc ) return rc;
dan61e94c92014-10-27 08:02:16 +00001359 if( bDefrag ) goto defragment_page;
dan8e9ba0c2014-10-14 17:27:04 +00001360 if( pSpace ){
drhfefa0942014-11-05 21:21:08 +00001361 assert( pSpace>=data && (pSpace - data)<65536 );
1362 *pIdx = (int)(pSpace - data);
dan8e9ba0c2014-10-14 17:27:04 +00001363 return SQLITE_OK;
drh9e572e62004-04-23 23:43:10 +00001364 }
1365 }
drh43605152004-05-29 21:46:49 +00001366
drh4c04f3c2014-08-20 11:56:14 +00001367 /* The request could not be fulfilled using a freelist slot. Check
1368 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001369 */
1370 testcase( gap+2+nByte==top );
1371 if( gap+2+nByte>top ){
dan61e94c92014-10-27 08:02:16 +00001372 defragment_page:
drh1fd2d7d2014-12-02 16:16:47 +00001373 assert( pPage->nCell>0 || CORRUPT_DB );
drh0a45c272009-07-08 01:49:11 +00001374 rc = defragmentPage(pPage);
1375 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001376 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001377 assert( gap+nByte<=top );
1378 }
1379
1380
drh43605152004-05-29 21:46:49 +00001381 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001382 ** and the cell content area. The btreeInitPage() call has already
1383 ** validated the freelist. Given that the freelist is valid, there
1384 ** is no way that the allocation can extend off the end of the page.
1385 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001386 */
drh0a45c272009-07-08 01:49:11 +00001387 top -= nByte;
drh43605152004-05-29 21:46:49 +00001388 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001389 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001390 *pIdx = top;
1391 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001392}
1393
1394/*
drh9e572e62004-04-23 23:43:10 +00001395** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001396** The first byte of the new free block is pPage->aData[iStart]
1397** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001398**
drh5f5c7532014-08-20 17:56:27 +00001399** Adjacent freeblocks are coalesced.
1400**
1401** Note that even though the freeblock list was checked by btreeInitPage(),
1402** that routine will not detect overlap between cells or freeblocks. Nor
1403** does it detect cells or freeblocks that encrouch into the reserved bytes
1404** at the end of the page. So do additional corruption checks inside this
1405** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001406*/
drh5f5c7532014-08-20 17:56:27 +00001407static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001408 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001409 u16 iFreeBlk; /* Address of the next freeblock */
1410 u8 hdr; /* Page header size. 0 or 100 */
1411 u8 nFrag = 0; /* Reduction in fragmentation */
1412 u16 iOrigSize = iSize; /* Original value of iSize */
1413 u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1414 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001415 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001416
drh9e572e62004-04-23 23:43:10 +00001417 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001418 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001419 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001420 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001421 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001422 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5f5c7532014-08-20 17:56:27 +00001423 assert( iStart<=iLast );
drh9e572e62004-04-23 23:43:10 +00001424
drh5f5c7532014-08-20 17:56:27 +00001425 /* Overwrite deleted information with zeros when the secure_delete
1426 ** option is enabled */
drhc9166342012-01-05 23:32:06 +00001427 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh7fb91642014-08-20 14:37:09 +00001428 memset(&data[iStart], 0, iSize);
drh5b47efa2010-02-12 18:18:39 +00001429 }
drhfcce93f2006-02-22 03:08:32 +00001430
drh5f5c7532014-08-20 17:56:27 +00001431 /* The list of freeblocks must be in ascending order. Find the
1432 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001433 */
drh43605152004-05-29 21:46:49 +00001434 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001435 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001436 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1437 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1438 }else{
1439 while( (iFreeBlk = get2byte(&data[iPtr]))>0 && iFreeBlk<iStart ){
1440 if( iFreeBlk<iPtr+4 ) return SQLITE_CORRUPT_BKPT;
1441 iPtr = iFreeBlk;
drh9e572e62004-04-23 23:43:10 +00001442 }
drh7bc4c452014-08-20 18:43:44 +00001443 if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT;
1444 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1445
1446 /* At this point:
1447 ** iFreeBlk: First freeblock after iStart, or zero if none
1448 ** iPtr: The address of a pointer iFreeBlk
1449 **
1450 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1451 */
1452 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1453 nFrag = iFreeBlk - iEnd;
1454 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
1455 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
1456 iSize = iEnd - iStart;
1457 iFreeBlk = get2byte(&data[iFreeBlk]);
1458 }
1459
drh3f387402014-09-24 01:23:00 +00001460 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1461 ** pointer in the page header) then check to see if iStart should be
1462 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001463 */
1464 if( iPtr>hdr+1 ){
1465 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1466 if( iPtrEnd+3>=iStart ){
1467 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
1468 nFrag += iStart - iPtrEnd;
1469 iSize = iEnd - iPtr;
1470 iStart = iPtr;
1471 }
1472 }
1473 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT;
1474 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001475 }
drh7bc4c452014-08-20 18:43:44 +00001476 if( iStart==get2byte(&data[hdr+5]) ){
drh5f5c7532014-08-20 17:56:27 +00001477 /* The new freeblock is at the beginning of the cell content area,
1478 ** so just extend the cell content area rather than create another
1479 ** freelist entry */
drh7bc4c452014-08-20 18:43:44 +00001480 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT;
drh5f5c7532014-08-20 17:56:27 +00001481 put2byte(&data[hdr+1], iFreeBlk);
1482 put2byte(&data[hdr+5], iEnd);
1483 }else{
1484 /* Insert the new freeblock into the freelist */
1485 put2byte(&data[iPtr], iStart);
1486 put2byte(&data[iStart], iFreeBlk);
1487 put2byte(&data[iStart+2], iSize);
drh4b70f112004-05-02 21:12:19 +00001488 }
drh5f5c7532014-08-20 17:56:27 +00001489 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001490 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001491}
1492
1493/*
drh271efa52004-05-30 19:19:05 +00001494** Decode the flags byte (the first byte of the header) for a page
1495** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001496**
1497** Only the following combinations are supported. Anything different
1498** indicates a corrupt database files:
1499**
1500** PTF_ZERODATA
1501** PTF_ZERODATA | PTF_LEAF
1502** PTF_LEAFDATA | PTF_INTKEY
1503** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001504*/
drh44845222008-07-17 18:39:57 +00001505static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001506 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001507
1508 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001509 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001510 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001511 flagByte &= ~PTF_LEAF;
1512 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001513 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001514 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drhfdab0262014-11-20 15:30:50 +00001515 /* EVIDENCE-OF: R-03640-13415 A value of 5 means the page is an interior
1516 ** table b-tree page. */
1517 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
1518 /* EVIDENCE-OF: R-20501-61796 A value of 13 means the page is a leaf
1519 ** table b-tree page. */
1520 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001521 pPage->intKey = 1;
drh3e28ff52014-09-24 00:59:08 +00001522 pPage->intKeyLeaf = pPage->leaf;
1523 pPage->noPayload = !pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001524 pPage->maxLocal = pBt->maxLeaf;
1525 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001526 }else if( flagByte==PTF_ZERODATA ){
drhfdab0262014-11-20 15:30:50 +00001527 /* EVIDENCE-OF: R-27225-53936 A value of 2 means the page is an interior
1528 ** index b-tree page. */
1529 assert( (PTF_ZERODATA)==2 );
1530 /* EVIDENCE-OF: R-16571-11615 A value of 10 means the page is a leaf
1531 ** index b-tree page. */
1532 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001533 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001534 pPage->intKeyLeaf = 0;
1535 pPage->noPayload = 0;
drh271efa52004-05-30 19:19:05 +00001536 pPage->maxLocal = pBt->maxLocal;
1537 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001538 }else{
drhfdab0262014-11-20 15:30:50 +00001539 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1540 ** an error. */
drh44845222008-07-17 18:39:57 +00001541 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001542 }
drhc9166342012-01-05 23:32:06 +00001543 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001544 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001545}
1546
1547/*
drh7e3b0a02001-04-28 16:52:40 +00001548** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001549**
1550** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001551** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001552** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1553** guarantee that the page is well-formed. It only shows that
1554** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001555*/
danielk197730548662009-07-09 05:07:37 +00001556static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001557
danielk197771d5d2c2008-09-29 11:49:47 +00001558 assert( pPage->pBt!=0 );
1559 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001560 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001561 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1562 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001563
1564 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001565 u16 pc; /* Address of a freeblock within pPage->aData[] */
1566 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001567 u8 *data; /* Equal to pPage->aData */
1568 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001569 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001570 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001571 int nFree; /* Number of unused bytes on the page */
1572 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001573 int iCellFirst; /* First allowable cell or freeblock offset */
1574 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001575
1576 pBt = pPage->pBt;
1577
danielk1977eaa06f62008-09-18 17:34:44 +00001578 hdr = pPage->hdrOffset;
1579 data = pPage->aData;
drhfdab0262014-11-20 15:30:50 +00001580 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1581 ** the b-tree page type. */
danielk1977eaa06f62008-09-18 17:34:44 +00001582 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001583 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1584 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001585 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001586 usableSize = pBt->usableSize;
drhfdab0262014-11-20 15:30:50 +00001587 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
drh3def2352011-11-11 00:27:15 +00001588 pPage->aDataEnd = &data[usableSize];
1589 pPage->aCellIdx = &data[cellOffset];
drhfdab0262014-11-20 15:30:50 +00001590 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1591 ** the start of the cell content area. A zero value for this integer is
1592 ** interpreted as 65536. */
drh5d433ce2010-08-14 16:02:52 +00001593 top = get2byteNotZero(&data[hdr+5]);
drhfdab0262014-11-20 15:30:50 +00001594 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1595 ** number of cells on the page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001596 pPage->nCell = get2byte(&data[hdr+3]);
1597 if( pPage->nCell>MX_CELL(pBt) ){
1598 /* To many cells for a single page. The page must be corrupt */
1599 return SQLITE_CORRUPT_BKPT;
1600 }
drhb908d762009-07-08 16:54:40 +00001601 testcase( pPage->nCell==MX_CELL(pBt) );
drhfdab0262014-11-20 15:30:50 +00001602 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1603 ** possible for a root page of a table that contains no rows) then the
1604 ** offset to the cell content area will equal the page size minus the
1605 ** bytes of reserved space. */
1606 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
drh69e931e2009-06-03 21:04:35 +00001607
shane5eff7cf2009-08-10 03:57:58 +00001608 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001609 ** of page when parsing a cell.
1610 **
1611 ** The following block of code checks early to see if a cell extends
1612 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1613 ** returned if it does.
1614 */
drh0a45c272009-07-08 01:49:11 +00001615 iCellFirst = cellOffset + 2*pPage->nCell;
1616 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001617#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001618 {
drh69e931e2009-06-03 21:04:35 +00001619 int i; /* Index into the cell pointer array */
1620 int sz; /* Size of a cell */
1621
drh69e931e2009-06-03 21:04:35 +00001622 if( !pPage->leaf ) iCellLast--;
1623 for(i=0; i<pPage->nCell; i++){
1624 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001625 testcase( pc==iCellFirst );
1626 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001627 if( pc<iCellFirst || pc>iCellLast ){
1628 return SQLITE_CORRUPT_BKPT;
1629 }
1630 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001631 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001632 if( pc+sz>usableSize ){
1633 return SQLITE_CORRUPT_BKPT;
1634 }
1635 }
drh0a45c272009-07-08 01:49:11 +00001636 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001637 }
1638#endif
1639
drhfdab0262014-11-20 15:30:50 +00001640 /* Compute the total free space on the page
1641 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1642 ** start of the first freeblock on the page, or is zero if there are no
1643 ** freeblocks. */
danielk1977eaa06f62008-09-18 17:34:44 +00001644 pc = get2byte(&data[hdr+1]);
drhfdab0262014-11-20 15:30:50 +00001645 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
danielk1977eaa06f62008-09-18 17:34:44 +00001646 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001647 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001648 if( pc<iCellFirst || pc>iCellLast ){
drhfdab0262014-11-20 15:30:50 +00001649 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1650 ** always be at least one cell before the first freeblock.
1651 **
1652 ** Or, the freeblock is off the end of the page
1653 */
danielk1977eaa06f62008-09-18 17:34:44 +00001654 return SQLITE_CORRUPT_BKPT;
1655 }
1656 next = get2byte(&data[pc]);
1657 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001658 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1659 /* Free blocks must be in ascending order. And the last byte of
drhf2f105d2012-08-20 15:53:54 +00001660 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001661 return SQLITE_CORRUPT_BKPT;
1662 }
shane85095702009-06-15 16:27:08 +00001663 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001664 pc = next;
1665 }
danielk197793c829c2009-06-03 17:26:17 +00001666
1667 /* At this point, nFree contains the sum of the offset to the start
1668 ** of the cell-content area plus the number of free bytes within
1669 ** the cell-content area. If this is greater than the usable-size
1670 ** of the page, then the page must be corrupted. This check also
1671 ** serves to verify that the offset to the start of the cell-content
1672 ** area, according to the page header, lies within the page.
1673 */
1674 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001675 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001676 }
shane5eff7cf2009-08-10 03:57:58 +00001677 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001678 pPage->isInit = 1;
1679 }
drh9e572e62004-04-23 23:43:10 +00001680 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001681}
1682
1683/*
drh8b2f49b2001-06-08 00:21:52 +00001684** Set up a raw page so that it looks like a database page holding
1685** no entries.
drhbd03cae2001-06-02 02:40:57 +00001686*/
drh9e572e62004-04-23 23:43:10 +00001687static void zeroPage(MemPage *pPage, int flags){
1688 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001689 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001690 u8 hdr = pPage->hdrOffset;
1691 u16 first;
drh9e572e62004-04-23 23:43:10 +00001692
danielk19773b8a05f2007-03-19 17:44:26 +00001693 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001694 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1695 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001696 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001697 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001698 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001699 memset(&data[hdr], 0, pBt->usableSize - hdr);
1700 }
drh1bd10f82008-12-10 21:19:56 +00001701 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00001702 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00001703 memset(&data[hdr+1], 0, 4);
1704 data[hdr+7] = 0;
1705 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001706 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001707 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00001708 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001709 pPage->aDataEnd = &data[pBt->usableSize];
1710 pPage->aCellIdx = &data[first];
drh43605152004-05-29 21:46:49 +00001711 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001712 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1713 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001714 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001715 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001716}
1717
drh897a8202008-09-18 01:08:15 +00001718
1719/*
1720** Convert a DbPage obtained from the pager into a MemPage used by
1721** the btree layer.
1722*/
1723static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1724 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1725 pPage->aData = sqlite3PagerGetData(pDbPage);
1726 pPage->pDbPage = pDbPage;
1727 pPage->pBt = pBt;
1728 pPage->pgno = pgno;
1729 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1730 return pPage;
1731}
1732
drhbd03cae2001-06-02 02:40:57 +00001733/*
drh3aac2dd2004-04-26 14:10:20 +00001734** Get a page from the pager. Initialize the MemPage.pBt and
1735** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001736**
1737** If the noContent flag is set, it means that we do not care about
1738** the content of the page at this time. So do not go to the disk
1739** to fetch the content. Just fill in the content with zeros for now.
1740** If in the future we call sqlite3PagerWrite() on this page, that
1741** means we have started to be concerned about content and the disk
1742** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001743*/
danielk197730548662009-07-09 05:07:37 +00001744static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001745 BtShared *pBt, /* The btree */
1746 Pgno pgno, /* Number of the page to fetch */
1747 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00001748 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00001749){
drh3aac2dd2004-04-26 14:10:20 +00001750 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001751 DbPage *pDbPage;
1752
drhb00fc3b2013-08-21 23:42:32 +00001753 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00001754 assert( sqlite3_mutex_held(pBt->mutex) );
dan11dcd112013-03-15 18:29:18 +00001755 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00001756 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001757 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001758 return SQLITE_OK;
1759}
1760
1761/*
danielk1977bea2a942009-01-20 17:06:27 +00001762** Retrieve a page from the pager cache. If the requested page is not
1763** already in the pager cache return NULL. Initialize the MemPage.pBt and
1764** MemPage.aData elements if needed.
1765*/
1766static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1767 DbPage *pDbPage;
1768 assert( sqlite3_mutex_held(pBt->mutex) );
1769 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1770 if( pDbPage ){
1771 return btreePageFromDbPage(pDbPage, pgno, pBt);
1772 }
1773 return 0;
1774}
1775
1776/*
danielk197789d40042008-11-17 14:20:56 +00001777** Return the size of the database file in pages. If there is any kind of
1778** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001779*/
drhb1299152010-03-30 22:58:33 +00001780static Pgno btreePagecount(BtShared *pBt){
1781 return pBt->nPage;
1782}
1783u32 sqlite3BtreeLastPage(Btree *p){
1784 assert( sqlite3BtreeHoldsMutex(p) );
1785 assert( ((p->pBt->nPage)&0x8000000)==0 );
drheac5bd72014-07-25 21:35:39 +00001786 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001787}
1788
1789/*
danielk197789bc4bc2009-07-21 19:25:24 +00001790** Get a page from the pager and initialize it. This routine is just a
1791** convenience wrapper around separate calls to btreeGetPage() and
1792** btreeInitPage().
1793**
1794** If an error occurs, then the value *ppPage is set to is undefined. It
1795** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001796*/
1797static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00001798 BtShared *pBt, /* The database file */
1799 Pgno pgno, /* Number of the page to get */
1800 MemPage **ppPage, /* Write the page pointer here */
drhb00fc3b2013-08-21 23:42:32 +00001801 int bReadonly /* PAGER_GET_READONLY or 0 */
drhde647132004-05-07 17:57:49 +00001802){
1803 int rc;
drh1fee73e2007-08-29 04:00:57 +00001804 assert( sqlite3_mutex_held(pBt->mutex) );
drhb00fc3b2013-08-21 23:42:32 +00001805 assert( bReadonly==PAGER_GET_READONLY || bReadonly==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00001806
danba3cbf32010-06-30 04:29:03 +00001807 if( pgno>btreePagecount(pBt) ){
1808 rc = SQLITE_CORRUPT_BKPT;
1809 }else{
drhb00fc3b2013-08-21 23:42:32 +00001810 rc = btreeGetPage(pBt, pgno, ppPage, bReadonly);
drh29f2bad2013-12-09 01:04:54 +00001811 if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
danba3cbf32010-06-30 04:29:03 +00001812 rc = btreeInitPage(*ppPage);
1813 if( rc!=SQLITE_OK ){
1814 releasePage(*ppPage);
1815 }
danielk197789bc4bc2009-07-21 19:25:24 +00001816 }
drhee696e22004-08-30 16:52:17 +00001817 }
danba3cbf32010-06-30 04:29:03 +00001818
1819 testcase( pgno==0 );
1820 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00001821 return rc;
1822}
1823
1824/*
drh3aac2dd2004-04-26 14:10:20 +00001825** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001826** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001827*/
drh4b70f112004-05-02 21:12:19 +00001828static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001829 if( pPage ){
1830 assert( pPage->aData );
1831 assert( pPage->pBt );
drhda8a3302013-12-13 19:35:21 +00001832 assert( pPage->pDbPage!=0 );
drhbf4bca52007-09-06 22:19:14 +00001833 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1834 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001835 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda8a3302013-12-13 19:35:21 +00001836 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001837 }
1838}
1839
1840/*
drha6abd042004-06-09 17:37:22 +00001841** During a rollback, when the pager reloads information into the cache
1842** so that the cache is restored to its original state at the start of
1843** the transaction, for each page restored this routine is called.
1844**
1845** This routine needs to reset the extra data section at the end of the
1846** page to agree with the restored data.
1847*/
danielk1977eaa06f62008-09-18 17:34:44 +00001848static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001849 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001850 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001851 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001852 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001853 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001854 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001855 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001856 /* pPage might not be a btree page; it might be an overflow page
1857 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001858 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001859 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001860 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001861 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001862 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001863 }
drha6abd042004-06-09 17:37:22 +00001864 }
1865}
1866
1867/*
drhe5fe6902007-12-07 18:55:28 +00001868** Invoke the busy handler for a btree.
1869*/
danielk19771ceedd32008-11-19 10:22:33 +00001870static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001871 BtShared *pBt = (BtShared*)pArg;
1872 assert( pBt->db );
1873 assert( sqlite3_mutex_held(pBt->db->mutex) );
1874 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1875}
1876
1877/*
drhad3e0102004-09-03 23:32:18 +00001878** Open a database file.
1879**
drh382c0242001-10-06 16:33:02 +00001880** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00001881** then an ephemeral database is created. The ephemeral database might
1882** be exclusively in memory, or it might use a disk-based memory cache.
1883** Either way, the ephemeral database will be automatically deleted
1884** when sqlite3BtreeClose() is called.
1885**
drhe53831d2007-08-17 01:14:38 +00001886** If zFilename is ":memory:" then an in-memory database is created
1887** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001888**
drh33f111d2012-01-17 15:29:14 +00001889** The "flags" parameter is a bitmask that might contain bits like
1890** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00001891**
drhc47fd8e2009-04-30 13:30:32 +00001892** If the database is already opened in the same database connection
1893** and we are in shared cache mode, then the open will fail with an
1894** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1895** objects in the same database connection since doing so will lead
1896** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001897*/
drh23e11ca2004-05-04 17:27:28 +00001898int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00001899 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00001900 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001901 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001902 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001903 int flags, /* Options */
1904 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001905){
drh7555d8e2009-03-20 13:15:30 +00001906 BtShared *pBt = 0; /* Shared part of btree structure */
1907 Btree *p; /* Handle to return */
1908 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1909 int rc = SQLITE_OK; /* Result code from this function */
1910 u8 nReserve; /* Byte of unused space on each page */
1911 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001912
drh75c014c2010-08-30 15:02:28 +00001913 /* True if opening an ephemeral, temporary database */
1914 const int isTempDb = zFilename==0 || zFilename[0]==0;
1915
danielk1977aef0bf62005-12-30 16:28:01 +00001916 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00001917 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00001918 */
drhb0a7c9c2010-12-06 21:09:59 +00001919#ifdef SQLITE_OMIT_MEMORYDB
1920 const int isMemdb = 0;
1921#else
1922 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00001923 || (isTempDb && sqlite3TempInMemory(db))
1924 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00001925#endif
1926
drhe5fe6902007-12-07 18:55:28 +00001927 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00001928 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00001929 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00001930 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
1931
1932 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
1933 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
1934
1935 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
1936 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00001937
drh75c014c2010-08-30 15:02:28 +00001938 if( isMemdb ){
1939 flags |= BTREE_MEMORY;
1940 }
1941 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
1942 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
1943 }
drh17435752007-08-16 04:30:38 +00001944 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001945 if( !p ){
1946 return SQLITE_NOMEM;
1947 }
1948 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001949 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001950#ifndef SQLITE_OMIT_SHARED_CACHE
1951 p->lock.pBtree = p;
1952 p->lock.iTable = 1;
1953#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001954
drh198bf392006-01-06 21:52:49 +00001955#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001956 /*
1957 ** If this Btree is a candidate for shared cache, try to find an
1958 ** existing BtShared object that we can share with
1959 */
drh4ab9d252012-05-26 20:08:49 +00001960 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00001961 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00001962 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00001963 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00001964 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00001965 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00001966
drhff0587c2007-08-29 17:43:19 +00001967 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00001968 if( !zFullPathname ){
1969 sqlite3_free(p);
1970 return SQLITE_NOMEM;
1971 }
drhafc8b7f2012-05-26 18:06:38 +00001972 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00001973 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00001974 }else{
1975 rc = sqlite3OsFullPathname(pVfs, zFilename,
1976 nFullPathname, zFullPathname);
1977 if( rc ){
1978 sqlite3_free(zFullPathname);
1979 sqlite3_free(p);
1980 return rc;
1981 }
drh070ad6b2011-11-17 11:43:19 +00001982 }
drh30ddce62011-10-15 00:16:30 +00001983#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00001984 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1985 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001986 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001987 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00001988#endif
drh78f82d12008-09-02 00:52:52 +00001989 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001990 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00001991 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00001992 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001993 int iDb;
1994 for(iDb=db->nDb-1; iDb>=0; iDb--){
1995 Btree *pExisting = db->aDb[iDb].pBt;
1996 if( pExisting && pExisting->pBt==pBt ){
1997 sqlite3_mutex_leave(mutexShared);
1998 sqlite3_mutex_leave(mutexOpen);
1999 sqlite3_free(zFullPathname);
2000 sqlite3_free(p);
2001 return SQLITE_CONSTRAINT;
2002 }
2003 }
drhff0587c2007-08-29 17:43:19 +00002004 p->pBt = pBt;
2005 pBt->nRef++;
2006 break;
2007 }
2008 }
2009 sqlite3_mutex_leave(mutexShared);
2010 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002011 }
drhff0587c2007-08-29 17:43:19 +00002012#ifdef SQLITE_DEBUG
2013 else{
2014 /* In debug mode, we mark all persistent databases as sharable
2015 ** even when they are not. This exercises the locking code and
2016 ** gives more opportunity for asserts(sqlite3_mutex_held())
2017 ** statements to find locking problems.
2018 */
2019 p->sharable = 1;
2020 }
2021#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002022 }
2023#endif
drha059ad02001-04-17 20:09:11 +00002024 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002025 /*
2026 ** The following asserts make sure that structures used by the btree are
2027 ** the right size. This is to guard against size changes that result
2028 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002029 */
drh062cf272015-03-23 19:03:51 +00002030 assert( sizeof(i64)==8 );
2031 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002032 assert( sizeof(u32)==4 );
2033 assert( sizeof(u16)==2 );
2034 assert( sizeof(Pgno)==4 );
2035
2036 pBt = sqlite3MallocZero( sizeof(*pBt) );
2037 if( pBt==0 ){
2038 rc = SQLITE_NOMEM;
2039 goto btree_open_out;
2040 }
danielk197771d5d2c2008-09-29 11:49:47 +00002041 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00002042 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002043 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002044 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002045 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2046 }
2047 if( rc!=SQLITE_OK ){
2048 goto btree_open_out;
2049 }
shanehbd2aaf92010-09-01 02:38:21 +00002050 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002051 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00002052 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002053 p->pBt = pBt;
2054
drhe53831d2007-08-17 01:14:38 +00002055 pBt->pCursor = 0;
2056 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002057 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00002058#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00002059 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002060#endif
drh113762a2014-11-19 16:36:25 +00002061 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2062 ** determined by the 2-byte integer located at an offset of 16 bytes from
2063 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002064 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002065 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2066 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002067 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002068#ifndef SQLITE_OMIT_AUTOVACUUM
2069 /* If the magic name ":memory:" will create an in-memory database, then
2070 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2071 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2072 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2073 ** regular file-name. In this case the auto-vacuum applies as per normal.
2074 */
2075 if( zFilename && !isMemdb ){
2076 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2077 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2078 }
2079#endif
2080 nReserve = 0;
2081 }else{
drh113762a2014-11-19 16:36:25 +00002082 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2083 ** determined by the one-byte unsigned integer found at an offset of 20
2084 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002085 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002086 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002087#ifndef SQLITE_OMIT_AUTOVACUUM
2088 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2089 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2090#endif
2091 }
drhfa9601a2009-06-18 17:22:39 +00002092 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002093 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002094 pBt->usableSize = pBt->pageSize - nReserve;
2095 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002096
2097#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2098 /* Add the new BtShared object to the linked list sharable BtShareds.
2099 */
2100 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002101 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00002102 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00002103 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002104 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002105 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002106 if( pBt->mutex==0 ){
2107 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00002108 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00002109 goto btree_open_out;
2110 }
drhff0587c2007-08-29 17:43:19 +00002111 }
drhe53831d2007-08-17 01:14:38 +00002112 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002113 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2114 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002115 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002116 }
drheee46cf2004-11-06 00:02:48 +00002117#endif
drh90f5ecb2004-07-22 01:19:35 +00002118 }
danielk1977aef0bf62005-12-30 16:28:01 +00002119
drhcfed7bc2006-03-13 14:28:05 +00002120#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002121 /* If the new Btree uses a sharable pBtShared, then link the new
2122 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002123 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002124 */
drhe53831d2007-08-17 01:14:38 +00002125 if( p->sharable ){
2126 int i;
2127 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002128 for(i=0; i<db->nDb; i++){
2129 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002130 while( pSib->pPrev ){ pSib = pSib->pPrev; }
2131 if( p->pBt<pSib->pBt ){
2132 p->pNext = pSib;
2133 p->pPrev = 0;
2134 pSib->pPrev = p;
2135 }else{
drhabddb0c2007-08-20 13:14:28 +00002136 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002137 pSib = pSib->pNext;
2138 }
2139 p->pNext = pSib->pNext;
2140 p->pPrev = pSib;
2141 if( p->pNext ){
2142 p->pNext->pPrev = p;
2143 }
2144 pSib->pNext = p;
2145 }
2146 break;
2147 }
2148 }
danielk1977aef0bf62005-12-30 16:28:01 +00002149 }
danielk1977aef0bf62005-12-30 16:28:01 +00002150#endif
2151 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002152
2153btree_open_out:
2154 if( rc!=SQLITE_OK ){
2155 if( pBt && pBt->pPager ){
2156 sqlite3PagerClose(pBt->pPager);
2157 }
drh17435752007-08-16 04:30:38 +00002158 sqlite3_free(pBt);
2159 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002160 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002161 }else{
2162 /* If the B-Tree was successfully opened, set the pager-cache size to the
2163 ** default value. Except, when opening on an existing shared pager-cache,
2164 ** do not change the pager-cache size.
2165 */
2166 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2167 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2168 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002169 }
drh7555d8e2009-03-20 13:15:30 +00002170 if( mutexOpen ){
2171 assert( sqlite3_mutex_held(mutexOpen) );
2172 sqlite3_mutex_leave(mutexOpen);
2173 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002174 return rc;
drha059ad02001-04-17 20:09:11 +00002175}
2176
2177/*
drhe53831d2007-08-17 01:14:38 +00002178** Decrement the BtShared.nRef counter. When it reaches zero,
2179** remove the BtShared structure from the sharing list. Return
2180** true if the BtShared.nRef counter reaches zero and return
2181** false if it is still positive.
2182*/
2183static int removeFromSharingList(BtShared *pBt){
2184#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002185 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002186 BtShared *pList;
2187 int removed = 0;
2188
drhd677b3d2007-08-20 22:48:41 +00002189 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002190 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002191 sqlite3_mutex_enter(pMaster);
2192 pBt->nRef--;
2193 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002194 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2195 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002196 }else{
drh78f82d12008-09-02 00:52:52 +00002197 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002198 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002199 pList=pList->pNext;
2200 }
drh34004ce2008-07-11 16:15:17 +00002201 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002202 pList->pNext = pBt->pNext;
2203 }
2204 }
drh3285db22007-09-03 22:00:39 +00002205 if( SQLITE_THREADSAFE ){
2206 sqlite3_mutex_free(pBt->mutex);
2207 }
drhe53831d2007-08-17 01:14:38 +00002208 removed = 1;
2209 }
2210 sqlite3_mutex_leave(pMaster);
2211 return removed;
2212#else
2213 return 1;
2214#endif
2215}
2216
2217/*
drhf7141992008-06-19 00:16:08 +00002218** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002219** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2220** pointer.
drhf7141992008-06-19 00:16:08 +00002221*/
2222static void allocateTempSpace(BtShared *pBt){
2223 if( !pBt->pTmpSpace ){
2224 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002225
2226 /* One of the uses of pBt->pTmpSpace is to format cells before
2227 ** inserting them into a leaf page (function fillInCell()). If
2228 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2229 ** by the various routines that manipulate binary cells. Which
2230 ** can mean that fillInCell() only initializes the first 2 or 3
2231 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2232 ** it into a database page. This is not actually a problem, but it
2233 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2234 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002235 ** zero the first 4 bytes of temp space here.
2236 **
2237 ** Also: Provide four bytes of initialized space before the
2238 ** beginning of pTmpSpace as an area available to prepend the
2239 ** left-child pointer to the beginning of a cell.
2240 */
2241 if( pBt->pTmpSpace ){
2242 memset(pBt->pTmpSpace, 0, 8);
2243 pBt->pTmpSpace += 4;
2244 }
drhf7141992008-06-19 00:16:08 +00002245 }
2246}
2247
2248/*
2249** Free the pBt->pTmpSpace allocation
2250*/
2251static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002252 if( pBt->pTmpSpace ){
2253 pBt->pTmpSpace -= 4;
2254 sqlite3PageFree(pBt->pTmpSpace);
2255 pBt->pTmpSpace = 0;
2256 }
drhf7141992008-06-19 00:16:08 +00002257}
2258
2259/*
drha059ad02001-04-17 20:09:11 +00002260** Close an open database and invalidate all cursors.
2261*/
danielk1977aef0bf62005-12-30 16:28:01 +00002262int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002263 BtShared *pBt = p->pBt;
2264 BtCursor *pCur;
2265
danielk1977aef0bf62005-12-30 16:28:01 +00002266 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002267 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002268 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002269 pCur = pBt->pCursor;
2270 while( pCur ){
2271 BtCursor *pTmp = pCur;
2272 pCur = pCur->pNext;
2273 if( pTmp->pBtree==p ){
2274 sqlite3BtreeCloseCursor(pTmp);
2275 }
drha059ad02001-04-17 20:09:11 +00002276 }
danielk1977aef0bf62005-12-30 16:28:01 +00002277
danielk19778d34dfd2006-01-24 16:37:57 +00002278 /* Rollback any active transaction and free the handle structure.
2279 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2280 ** this handle.
2281 */
drh47b7fc72014-11-11 01:33:57 +00002282 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002283 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002284
danielk1977aef0bf62005-12-30 16:28:01 +00002285 /* If there are still other outstanding references to the shared-btree
2286 ** structure, return now. The remainder of this procedure cleans
2287 ** up the shared-btree.
2288 */
drhe53831d2007-08-17 01:14:38 +00002289 assert( p->wantToLock==0 && p->locked==0 );
2290 if( !p->sharable || removeFromSharingList(pBt) ){
2291 /* The pBt is no longer on the sharing list, so we can access
2292 ** it without having to hold the mutex.
2293 **
2294 ** Clean out and delete the BtShared object.
2295 */
2296 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002297 sqlite3PagerClose(pBt->pPager);
2298 if( pBt->xFreeSchema && pBt->pSchema ){
2299 pBt->xFreeSchema(pBt->pSchema);
2300 }
drhb9755982010-07-24 16:34:37 +00002301 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002302 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002303 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002304 }
2305
drhe53831d2007-08-17 01:14:38 +00002306#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002307 assert( p->wantToLock==0 );
2308 assert( p->locked==0 );
2309 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2310 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002311#endif
2312
drhe53831d2007-08-17 01:14:38 +00002313 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002314 return SQLITE_OK;
2315}
2316
2317/*
drhda47d772002-12-02 04:25:19 +00002318** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002319**
2320** The maximum number of cache pages is set to the absolute
2321** value of mxPage. If mxPage is negative, the pager will
2322** operate asynchronously - it will not stop to do fsync()s
2323** to insure data is written to the disk surface before
2324** continuing. Transactions still work if synchronous is off,
2325** and the database cannot be corrupted if this program
2326** crashes. But if the operating system crashes or there is
2327** an abrupt power failure when synchronous is off, the database
2328** could be left in an inconsistent and unrecoverable state.
2329** Synchronous is on by default so database corruption is not
2330** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002331*/
danielk1977aef0bf62005-12-30 16:28:01 +00002332int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2333 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002334 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002335 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002336 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002337 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002338 return SQLITE_OK;
2339}
2340
drh18c7e402014-03-14 11:46:10 +00002341#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002342/*
dan5d8a1372013-03-19 19:28:06 +00002343** Change the limit on the amount of the database file that may be
2344** memory mapped.
2345*/
drh9b4c59f2013-04-15 17:03:42 +00002346int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002347 BtShared *pBt = p->pBt;
2348 assert( sqlite3_mutex_held(p->db->mutex) );
2349 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002350 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002351 sqlite3BtreeLeave(p);
2352 return SQLITE_OK;
2353}
drh18c7e402014-03-14 11:46:10 +00002354#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002355
2356/*
drh973b6e32003-02-12 14:09:42 +00002357** Change the way data is synced to disk in order to increase or decrease
2358** how well the database resists damage due to OS crashes and power
2359** failures. Level 1 is the same as asynchronous (no syncs() occur and
2360** there is a high probability of damage) Level 2 is the default. There
2361** is a very low but non-zero probability of damage. Level 3 reduces the
2362** probability of damage to near zero but with a write performance reduction.
2363*/
danielk197793758c82005-01-21 08:13:14 +00002364#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002365int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002366 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002367 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002368){
danielk1977aef0bf62005-12-30 16:28:01 +00002369 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002370 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002371 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002372 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002373 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002374 return SQLITE_OK;
2375}
danielk197793758c82005-01-21 08:13:14 +00002376#endif
drh973b6e32003-02-12 14:09:42 +00002377
drh2c8997b2005-08-27 16:36:48 +00002378/*
2379** Return TRUE if the given btree is set to safety level 1. In other
2380** words, return TRUE if no sync() occurs on the disk files.
2381*/
danielk1977aef0bf62005-12-30 16:28:01 +00002382int sqlite3BtreeSyncDisabled(Btree *p){
2383 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002384 int rc;
drhe5fe6902007-12-07 18:55:28 +00002385 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002386 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002387 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002388 rc = sqlite3PagerNosync(pBt->pPager);
2389 sqlite3BtreeLeave(p);
2390 return rc;
drh2c8997b2005-08-27 16:36:48 +00002391}
2392
drh973b6e32003-02-12 14:09:42 +00002393/*
drh90f5ecb2004-07-22 01:19:35 +00002394** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002395** Or, if the page size has already been fixed, return SQLITE_READONLY
2396** without changing anything.
drh06f50212004-11-02 14:24:33 +00002397**
2398** The page size must be a power of 2 between 512 and 65536. If the page
2399** size supplied does not meet this constraint then the page size is not
2400** changed.
2401**
2402** Page sizes are constrained to be a power of two so that the region
2403** of the database file used for locking (beginning at PENDING_BYTE,
2404** the first byte past the 1GB boundary, 0x40000000) needs to occur
2405** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002406**
2407** If parameter nReserve is less than zero, then the number of reserved
2408** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002409**
drhc9166342012-01-05 23:32:06 +00002410** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002411** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002412*/
drhce4869f2009-04-02 20:16:58 +00002413int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002414 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002415 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002416 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002417 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002418#if SQLITE_HAS_CODEC
2419 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2420#endif
drhc9166342012-01-05 23:32:06 +00002421 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002422 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002423 return SQLITE_READONLY;
2424 }
2425 if( nReserve<0 ){
2426 nReserve = pBt->pageSize - pBt->usableSize;
2427 }
drhf49661a2008-12-10 16:45:50 +00002428 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002429 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2430 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002431 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002432 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002433 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002434 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002435 }
drhfa9601a2009-06-18 17:22:39 +00002436 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002437 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002438 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002439 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002440 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002441}
2442
2443/*
2444** Return the currently defined page size
2445*/
danielk1977aef0bf62005-12-30 16:28:01 +00002446int sqlite3BtreeGetPageSize(Btree *p){
2447 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002448}
drh7f751222009-03-17 22:33:00 +00002449
dan0094f372012-09-28 20:23:42 +00002450/*
2451** This function is similar to sqlite3BtreeGetReserve(), except that it
2452** may only be called if it is guaranteed that the b-tree mutex is already
2453** held.
2454**
2455** This is useful in one special case in the backup API code where it is
2456** known that the shared b-tree mutex is held, but the mutex on the
2457** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2458** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002459** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002460*/
2461int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002462 int n;
dan0094f372012-09-28 20:23:42 +00002463 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002464 n = p->pBt->pageSize - p->pBt->usableSize;
2465 return n;
dan0094f372012-09-28 20:23:42 +00002466}
2467
drh7f751222009-03-17 22:33:00 +00002468/*
2469** Return the number of bytes of space at the end of every page that
2470** are intentually left unused. This is the "reserved" space that is
2471** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002472**
2473** If SQLITE_HAS_MUTEX is defined then the number returned is the
2474** greater of the current reserved space and the maximum requested
2475** reserve space.
drh7f751222009-03-17 22:33:00 +00002476*/
drhad0961b2015-02-21 00:19:25 +00002477int sqlite3BtreeGetOptimalReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002478 int n;
2479 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002480 n = sqlite3BtreeGetReserveNoMutex(p);
2481#ifdef SQLITE_HAS_CODEC
2482 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2483#endif
drhd677b3d2007-08-20 22:48:41 +00002484 sqlite3BtreeLeave(p);
2485 return n;
drh2011d5f2004-07-22 02:40:37 +00002486}
drhf8e632b2007-05-08 14:51:36 +00002487
drhad0961b2015-02-21 00:19:25 +00002488
drhf8e632b2007-05-08 14:51:36 +00002489/*
2490** Set the maximum page count for a database if mxPage is positive.
2491** No changes are made if mxPage is 0 or negative.
2492** Regardless of the value of mxPage, return the maximum page count.
2493*/
2494int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002495 int n;
2496 sqlite3BtreeEnter(p);
2497 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2498 sqlite3BtreeLeave(p);
2499 return n;
drhf8e632b2007-05-08 14:51:36 +00002500}
drh5b47efa2010-02-12 18:18:39 +00002501
2502/*
drhc9166342012-01-05 23:32:06 +00002503** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2504** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002505** setting after the change.
2506*/
2507int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2508 int b;
drhaf034ed2010-02-12 19:46:26 +00002509 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002510 sqlite3BtreeEnter(p);
2511 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002512 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2513 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002514 }
drhc9166342012-01-05 23:32:06 +00002515 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002516 sqlite3BtreeLeave(p);
2517 return b;
2518}
drh90f5ecb2004-07-22 01:19:35 +00002519
2520/*
danielk1977951af802004-11-05 15:45:09 +00002521** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2522** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2523** is disabled. The default value for the auto-vacuum property is
2524** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2525*/
danielk1977aef0bf62005-12-30 16:28:01 +00002526int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002527#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002528 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002529#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002530 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002531 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002532 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002533
2534 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002535 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002536 rc = SQLITE_READONLY;
2537 }else{
drh076d4662009-02-18 20:31:18 +00002538 pBt->autoVacuum = av ?1:0;
2539 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002540 }
drhd677b3d2007-08-20 22:48:41 +00002541 sqlite3BtreeLeave(p);
2542 return rc;
danielk1977951af802004-11-05 15:45:09 +00002543#endif
2544}
2545
2546/*
2547** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2548** enabled 1 is returned. Otherwise 0.
2549*/
danielk1977aef0bf62005-12-30 16:28:01 +00002550int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002551#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002552 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002553#else
drhd677b3d2007-08-20 22:48:41 +00002554 int rc;
2555 sqlite3BtreeEnter(p);
2556 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002557 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2558 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2559 BTREE_AUTOVACUUM_INCR
2560 );
drhd677b3d2007-08-20 22:48:41 +00002561 sqlite3BtreeLeave(p);
2562 return rc;
danielk1977951af802004-11-05 15:45:09 +00002563#endif
2564}
2565
2566
2567/*
drha34b6762004-05-07 13:30:42 +00002568** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002569** also acquire a readlock on that file.
2570**
2571** SQLITE_OK is returned on success. If the file is not a
2572** well-formed database file, then SQLITE_CORRUPT is returned.
2573** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002574** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002575*/
danielk1977aef0bf62005-12-30 16:28:01 +00002576static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002577 int rc; /* Result code from subfunctions */
2578 MemPage *pPage1; /* Page 1 of the database file */
2579 int nPage; /* Number of pages in the database */
2580 int nPageFile = 0; /* Number of pages in the database file */
2581 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002582
drh1fee73e2007-08-29 04:00:57 +00002583 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002584 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002585 rc = sqlite3PagerSharedLock(pBt->pPager);
2586 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00002587 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002588 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002589
2590 /* Do some checking to help insure the file we opened really is
2591 ** a valid database file.
2592 */
drhc2a4bab2010-04-02 12:46:45 +00002593 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002594 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002595 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002596 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002597 }
2598 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002599 u32 pageSize;
2600 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002601 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002602 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00002603 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
2604 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
2605 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00002606 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002607 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002608 }
dan5cf53532010-05-01 16:40:20 +00002609
2610#ifdef SQLITE_OMIT_WAL
2611 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002612 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002613 }
2614 if( page1[19]>1 ){
2615 goto page1_init_failed;
2616 }
2617#else
dane04dc882010-04-20 18:53:15 +00002618 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002619 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002620 }
dane04dc882010-04-20 18:53:15 +00002621 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002622 goto page1_init_failed;
2623 }
drhe5ae5732008-06-15 02:51:47 +00002624
dana470aeb2010-04-21 11:43:38 +00002625 /* If the write version is set to 2, this database should be accessed
2626 ** in WAL mode. If the log is not already open, open it now. Then
2627 ** return SQLITE_OK and return without populating BtShared.pPage1.
2628 ** The caller detects this and calls this function again. This is
2629 ** required as the version of page 1 currently in the page1 buffer
2630 ** may not be the latest version - there may be a newer one in the log
2631 ** file.
2632 */
drhc9166342012-01-05 23:32:06 +00002633 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002634 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002635 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002636 if( rc!=SQLITE_OK ){
2637 goto page1_init_failed;
2638 }else if( isOpen==0 ){
2639 releasePage(pPage1);
2640 return SQLITE_OK;
2641 }
dan8b5444b2010-04-27 14:37:47 +00002642 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002643 }
dan5cf53532010-05-01 16:40:20 +00002644#endif
dane04dc882010-04-20 18:53:15 +00002645
drh113762a2014-11-19 16:36:25 +00002646 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
2647 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
2648 **
drhe5ae5732008-06-15 02:51:47 +00002649 ** The original design allowed these amounts to vary, but as of
2650 ** version 3.6.0, we require them to be fixed.
2651 */
2652 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2653 goto page1_init_failed;
2654 }
drh113762a2014-11-19 16:36:25 +00002655 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2656 ** determined by the 2-byte integer located at an offset of 16 bytes from
2657 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002658 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00002659 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
2660 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00002661 if( ((pageSize-1)&pageSize)!=0
2662 || pageSize>SQLITE_MAX_PAGE_SIZE
2663 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002664 ){
drh07d183d2005-05-01 22:52:42 +00002665 goto page1_init_failed;
2666 }
2667 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00002668 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
2669 ** integer at offset 20 is the number of bytes of space at the end of
2670 ** each page to reserve for extensions.
2671 **
2672 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2673 ** determined by the one-byte unsigned integer found at an offset of 20
2674 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00002675 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002676 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002677 /* After reading the first page of the database assuming a page size
2678 ** of BtShared.pageSize, we have discovered that the page-size is
2679 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2680 ** zero and return SQLITE_OK. The caller will call this function
2681 ** again with the correct page-size.
2682 */
2683 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002684 pBt->usableSize = usableSize;
2685 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002686 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002687 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2688 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002689 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002690 }
danecac6702011-02-09 18:19:20 +00002691 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002692 rc = SQLITE_CORRUPT_BKPT;
2693 goto page1_init_failed;
2694 }
drh113762a2014-11-19 16:36:25 +00002695 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
2696 ** be less than 480. In other words, if the page size is 512, then the
2697 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00002698 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002699 goto page1_init_failed;
2700 }
drh43b18e12010-08-17 19:40:08 +00002701 pBt->pageSize = pageSize;
2702 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002703#ifndef SQLITE_OMIT_AUTOVACUUM
2704 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002705 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002706#endif
drh306dc212001-05-21 13:45:10 +00002707 }
drhb6f41482004-05-14 01:58:11 +00002708
2709 /* maxLocal is the maximum amount of payload to store locally for
2710 ** a cell. Make sure it is small enough so that at least minFanout
2711 ** cells can will fit on one page. We assume a 10-byte page header.
2712 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002713 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002714 ** 4-byte child pointer
2715 ** 9-byte nKey value
2716 ** 4-byte nData value
2717 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002718 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002719 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2720 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002721 */
shaneh1df2db72010-08-18 02:28:48 +00002722 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2723 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2724 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2725 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002726 if( pBt->maxLocal>127 ){
2727 pBt->max1bytePayload = 127;
2728 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002729 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002730 }
drh2e38c322004-09-03 18:38:44 +00002731 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002732 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002733 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002734 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002735
drh72f82862001-05-24 21:06:34 +00002736page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002737 releasePage(pPage1);
2738 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002739 return rc;
drh306dc212001-05-21 13:45:10 +00002740}
2741
drh85ec3b62013-05-14 23:12:06 +00002742#ifndef NDEBUG
2743/*
2744** Return the number of cursors open on pBt. This is for use
2745** in assert() expressions, so it is only compiled if NDEBUG is not
2746** defined.
2747**
2748** Only write cursors are counted if wrOnly is true. If wrOnly is
2749** false then all cursors are counted.
2750**
2751** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00002752** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00002753** have been tripped into the CURSOR_FAULT state are not counted.
2754*/
2755static int countValidCursors(BtShared *pBt, int wrOnly){
2756 BtCursor *pCur;
2757 int r = 0;
2758 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00002759 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
2760 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00002761 }
2762 return r;
2763}
2764#endif
2765
drh306dc212001-05-21 13:45:10 +00002766/*
drhb8ca3072001-12-05 00:21:20 +00002767** If there are no outstanding cursors and we are not in the middle
2768** of a transaction but there is a read lock on the database, then
2769** this routine unrefs the first page of the database file which
2770** has the effect of releasing the read lock.
2771**
drhb8ca3072001-12-05 00:21:20 +00002772** If there is a transaction in progress, this routine is a no-op.
2773*/
danielk1977aef0bf62005-12-30 16:28:01 +00002774static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002775 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00002776 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00002777 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00002778 MemPage *pPage1 = pBt->pPage1;
2779 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00002780 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00002781 pBt->pPage1 = 0;
drhb2325b72014-09-24 18:31:07 +00002782 releasePage(pPage1);
drhb8ca3072001-12-05 00:21:20 +00002783 }
2784}
2785
2786/*
drhe39f2f92009-07-23 01:43:59 +00002787** If pBt points to an empty file then convert that empty file
2788** into a new empty database by initializing the first page of
2789** the database.
drh8b2f49b2001-06-08 00:21:52 +00002790*/
danielk1977aef0bf62005-12-30 16:28:01 +00002791static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002792 MemPage *pP1;
2793 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002794 int rc;
drhd677b3d2007-08-20 22:48:41 +00002795
drh1fee73e2007-08-29 04:00:57 +00002796 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002797 if( pBt->nPage>0 ){
2798 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002799 }
drh3aac2dd2004-04-26 14:10:20 +00002800 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002801 assert( pP1!=0 );
2802 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002803 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002804 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002805 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2806 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00002807 data[16] = (u8)((pBt->pageSize>>8)&0xff);
2808 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00002809 data[18] = 1;
2810 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002811 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2812 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002813 data[21] = 64;
2814 data[22] = 32;
2815 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002816 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002817 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00002818 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00002819#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002820 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002821 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002822 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002823 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002824#endif
drhdd3cd972010-03-27 17:12:36 +00002825 pBt->nPage = 1;
2826 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002827 return SQLITE_OK;
2828}
2829
2830/*
danb483eba2012-10-13 19:58:11 +00002831** Initialize the first page of the database file (creating a database
2832** consisting of a single page and no schema objects). Return SQLITE_OK
2833** if successful, or an SQLite error code otherwise.
2834*/
2835int sqlite3BtreeNewDb(Btree *p){
2836 int rc;
2837 sqlite3BtreeEnter(p);
2838 p->pBt->nPage = 0;
2839 rc = newDatabase(p->pBt);
2840 sqlite3BtreeLeave(p);
2841 return rc;
2842}
2843
2844/*
danielk1977ee5741e2004-05-31 10:01:34 +00002845** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002846** is started if the second argument is nonzero, otherwise a read-
2847** transaction. If the second argument is 2 or more and exclusive
2848** transaction is started, meaning that no other process is allowed
2849** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002850** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002851** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002852**
danielk1977ee5741e2004-05-31 10:01:34 +00002853** A write-transaction must be started before attempting any
2854** changes to the database. None of the following routines
2855** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002856**
drh23e11ca2004-05-04 17:27:28 +00002857** sqlite3BtreeCreateTable()
2858** sqlite3BtreeCreateIndex()
2859** sqlite3BtreeClearTable()
2860** sqlite3BtreeDropTable()
2861** sqlite3BtreeInsert()
2862** sqlite3BtreeDelete()
2863** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002864**
drhb8ef32c2005-03-14 02:01:49 +00002865** If an initial attempt to acquire the lock fails because of lock contention
2866** and the database was previously unlocked, then invoke the busy handler
2867** if there is one. But if there was previously a read-lock, do not
2868** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2869** returned when there is already a read-lock in order to avoid a deadlock.
2870**
2871** Suppose there are two processes A and B. A has a read lock and B has
2872** a reserved lock. B tries to promote to exclusive but is blocked because
2873** of A's read lock. A tries to promote to reserved but is blocked by B.
2874** One or the other of the two processes must give way or there can be
2875** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2876** when A already has a read lock, we encourage A to give up and let B
2877** proceed.
drha059ad02001-04-17 20:09:11 +00002878*/
danielk1977aef0bf62005-12-30 16:28:01 +00002879int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002880 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002881 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002882 int rc = SQLITE_OK;
2883
drhd677b3d2007-08-20 22:48:41 +00002884 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002885 btreeIntegrity(p);
2886
danielk1977ee5741e2004-05-31 10:01:34 +00002887 /* If the btree is already in a write-transaction, or it
2888 ** is already in a read-transaction and a read-transaction
2889 ** is requested, this is a no-op.
2890 */
danielk1977aef0bf62005-12-30 16:28:01 +00002891 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002892 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002893 }
dan56c517a2013-09-26 11:04:33 +00002894 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00002895
2896 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00002897 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002898 rc = SQLITE_READONLY;
2899 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002900 }
2901
danielk1977404ca072009-03-16 13:19:36 +00002902#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002903 /* If another database handle has already opened a write transaction
2904 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002905 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002906 */
drhc9166342012-01-05 23:32:06 +00002907 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
2908 || (pBt->btsFlags & BTS_PENDING)!=0
2909 ){
danielk1977404ca072009-03-16 13:19:36 +00002910 pBlock = pBt->pWriter->db;
2911 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002912 BtLock *pIter;
2913 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2914 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002915 pBlock = pIter->pBtree->db;
2916 break;
danielk1977641b0f42007-12-21 04:47:25 +00002917 }
2918 }
2919 }
danielk1977404ca072009-03-16 13:19:36 +00002920 if( pBlock ){
2921 sqlite3ConnectionBlocked(p->db, pBlock);
2922 rc = SQLITE_LOCKED_SHAREDCACHE;
2923 goto trans_begun;
2924 }
danielk1977641b0f42007-12-21 04:47:25 +00002925#endif
2926
danielk1977602b4662009-07-02 07:47:33 +00002927 /* Any read-only or read-write transaction implies a read-lock on
2928 ** page 1. So if some other shared-cache client already has a write-lock
2929 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002930 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2931 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002932
drhc9166342012-01-05 23:32:06 +00002933 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
2934 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00002935 do {
danielk1977295dc102009-04-01 19:07:03 +00002936 /* Call lockBtree() until either pBt->pPage1 is populated or
2937 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2938 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2939 ** reading page 1 it discovers that the page-size of the database
2940 ** file is not pBt->pageSize. In this case lockBtree() will update
2941 ** pBt->pageSize to the page-size of the file on disk.
2942 */
2943 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002944
drhb8ef32c2005-03-14 02:01:49 +00002945 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00002946 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00002947 rc = SQLITE_READONLY;
2948 }else{
danielk1977d8293352009-04-30 09:10:37 +00002949 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002950 if( rc==SQLITE_OK ){
2951 rc = newDatabase(pBt);
2952 }
drhb8ef32c2005-03-14 02:01:49 +00002953 }
2954 }
2955
danielk1977bd434552009-03-18 10:33:00 +00002956 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002957 unlockBtreeIfUnused(pBt);
2958 }
danf9b76712010-06-01 14:12:45 +00002959 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002960 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002961
2962 if( rc==SQLITE_OK ){
2963 if( p->inTrans==TRANS_NONE ){
2964 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002965#ifndef SQLITE_OMIT_SHARED_CACHE
2966 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00002967 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00002968 p->lock.eLock = READ_LOCK;
2969 p->lock.pNext = pBt->pLock;
2970 pBt->pLock = &p->lock;
2971 }
2972#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002973 }
2974 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2975 if( p->inTrans>pBt->inTransaction ){
2976 pBt->inTransaction = p->inTrans;
2977 }
danielk1977404ca072009-03-16 13:19:36 +00002978 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00002979 MemPage *pPage1 = pBt->pPage1;
2980#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002981 assert( !pBt->pWriter );
2982 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00002983 pBt->btsFlags &= ~BTS_EXCLUSIVE;
2984 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00002985#endif
dan59257dc2010-08-04 11:34:31 +00002986
2987 /* If the db-size header field is incorrect (as it may be if an old
2988 ** client has been writing the database file), update it now. Doing
2989 ** this sooner rather than later means the database size can safely
2990 ** re-read the database size from page 1 if a savepoint or transaction
2991 ** rollback occurs within the transaction.
2992 */
2993 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
2994 rc = sqlite3PagerWrite(pPage1->pDbPage);
2995 if( rc==SQLITE_OK ){
2996 put4byte(&pPage1->aData[28], pBt->nPage);
2997 }
2998 }
2999 }
danielk1977aef0bf62005-12-30 16:28:01 +00003000 }
3001
drhd677b3d2007-08-20 22:48:41 +00003002
3003trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00003004 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00003005 /* This call makes sure that the pager has the correct number of
3006 ** open savepoints. If the second parameter is greater than 0 and
3007 ** the sub-journal is not already open, then it will be opened here.
3008 */
danielk1977fd7f0452008-12-17 17:30:26 +00003009 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3010 }
danielk197712dd5492008-12-18 15:45:07 +00003011
danielk1977aef0bf62005-12-30 16:28:01 +00003012 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003013 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003014 return rc;
drha059ad02001-04-17 20:09:11 +00003015}
3016
danielk1977687566d2004-11-02 12:56:41 +00003017#ifndef SQLITE_OMIT_AUTOVACUUM
3018
3019/*
3020** Set the pointer-map entries for all children of page pPage. Also, if
3021** pPage contains cells that point to overflow pages, set the pointer
3022** map entries for the overflow pages as well.
3023*/
3024static int setChildPtrmaps(MemPage *pPage){
3025 int i; /* Counter variable */
3026 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003027 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003028 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00003029 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003030 Pgno pgno = pPage->pgno;
3031
drh1fee73e2007-08-29 04:00:57 +00003032 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00003033 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00003034 if( rc!=SQLITE_OK ){
3035 goto set_child_ptrmaps_out;
3036 }
danielk1977687566d2004-11-02 12:56:41 +00003037 nCell = pPage->nCell;
3038
3039 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003040 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003041
drh98add2e2009-07-20 17:11:49 +00003042 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003043
danielk1977687566d2004-11-02 12:56:41 +00003044 if( !pPage->leaf ){
3045 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003046 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003047 }
3048 }
3049
3050 if( !pPage->leaf ){
3051 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003052 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003053 }
3054
3055set_child_ptrmaps_out:
3056 pPage->isInit = isInitOrig;
3057 return rc;
3058}
3059
3060/*
drhf3aed592009-07-08 18:12:49 +00003061** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3062** that it points to iTo. Parameter eType describes the type of pointer to
3063** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003064**
3065** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3066** page of pPage.
3067**
3068** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3069** page pointed to by one of the cells on pPage.
3070**
3071** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3072** overflow page in the list.
3073*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003074static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003075 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003076 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003077 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003078 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003079 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00003080 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003081 }
danielk1977f78fc082004-11-02 14:40:32 +00003082 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003083 }else{
drhf49661a2008-12-10 16:45:50 +00003084 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00003085 int i;
3086 int nCell;
drha1f75d92015-05-24 10:18:12 +00003087 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003088
drha1f75d92015-05-24 10:18:12 +00003089 rc = btreeInitPage(pPage);
3090 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003091 nCell = pPage->nCell;
3092
danielk1977687566d2004-11-02 12:56:41 +00003093 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003094 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003095 if( eType==PTRMAP_OVERFLOW1 ){
3096 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00003097 btreeParseCellPtr(pPage, pCell, &info);
drhe42a9b42011-08-31 13:27:19 +00003098 if( info.iOverflow
3099 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
3100 && iFrom==get4byte(&pCell[info.iOverflow])
3101 ){
3102 put4byte(&pCell[info.iOverflow], iTo);
3103 break;
danielk1977687566d2004-11-02 12:56:41 +00003104 }
3105 }else{
3106 if( get4byte(pCell)==iFrom ){
3107 put4byte(pCell, iTo);
3108 break;
3109 }
3110 }
3111 }
3112
3113 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003114 if( eType!=PTRMAP_BTREE ||
3115 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00003116 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00003117 }
danielk1977687566d2004-11-02 12:56:41 +00003118 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3119 }
3120
3121 pPage->isInit = isInitOrig;
3122 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003123 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003124}
3125
danielk1977003ba062004-11-04 02:57:33 +00003126
danielk19777701e812005-01-10 12:59:51 +00003127/*
3128** Move the open database page pDbPage to location iFreePage in the
3129** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003130**
3131** The isCommit flag indicates that there is no need to remember that
3132** the journal needs to be sync()ed before database page pDbPage->pgno
3133** can be written to. The caller has already promised not to write to that
3134** page.
danielk19777701e812005-01-10 12:59:51 +00003135*/
danielk1977003ba062004-11-04 02:57:33 +00003136static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003137 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003138 MemPage *pDbPage, /* Open page to move */
3139 u8 eType, /* Pointer map 'type' entry for pDbPage */
3140 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003141 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003142 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003143){
3144 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3145 Pgno iDbPage = pDbPage->pgno;
3146 Pager *pPager = pBt->pPager;
3147 int rc;
3148
danielk1977a0bf2652004-11-04 14:30:04 +00003149 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3150 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003151 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003152 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00003153
drh85b623f2007-12-13 21:54:09 +00003154 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003155 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3156 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003157 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003158 if( rc!=SQLITE_OK ){
3159 return rc;
3160 }
3161 pDbPage->pgno = iFreePage;
3162
3163 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3164 ** that point to overflow pages. The pointer map entries for all these
3165 ** pages need to be changed.
3166 **
3167 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3168 ** pointer to a subsequent overflow page. If this is the case, then
3169 ** the pointer map needs to be updated for the subsequent overflow page.
3170 */
danielk1977a0bf2652004-11-04 14:30:04 +00003171 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003172 rc = setChildPtrmaps(pDbPage);
3173 if( rc!=SQLITE_OK ){
3174 return rc;
3175 }
3176 }else{
3177 Pgno nextOvfl = get4byte(pDbPage->aData);
3178 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003179 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003180 if( rc!=SQLITE_OK ){
3181 return rc;
3182 }
3183 }
3184 }
3185
3186 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3187 ** that it points at iFreePage. Also fix the pointer map entry for
3188 ** iPtrPage.
3189 */
danielk1977a0bf2652004-11-04 14:30:04 +00003190 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003191 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003192 if( rc!=SQLITE_OK ){
3193 return rc;
3194 }
danielk19773b8a05f2007-03-19 17:44:26 +00003195 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003196 if( rc!=SQLITE_OK ){
3197 releasePage(pPtrPage);
3198 return rc;
3199 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003200 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003201 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003202 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003203 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003204 }
danielk1977003ba062004-11-04 02:57:33 +00003205 }
danielk1977003ba062004-11-04 02:57:33 +00003206 return rc;
3207}
3208
danielk1977dddbcdc2007-04-26 14:42:34 +00003209/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003210static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003211
3212/*
dan51f0b6d2013-02-22 20:16:34 +00003213** Perform a single step of an incremental-vacuum. If successful, return
3214** SQLITE_OK. If there is no work to do (and therefore no point in
3215** calling this function again), return SQLITE_DONE. Or, if an error
3216** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003217**
peter.d.reid60ec9142014-09-06 16:39:46 +00003218** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003219** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003220**
dan51f0b6d2013-02-22 20:16:34 +00003221** Parameter nFin is the number of pages that this database would contain
3222** were this function called until it returns SQLITE_DONE.
3223**
3224** If the bCommit parameter is non-zero, this function assumes that the
3225** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003226** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003227** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003228*/
dan51f0b6d2013-02-22 20:16:34 +00003229static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003230 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003231 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003232
drh1fee73e2007-08-29 04:00:57 +00003233 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003234 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003235
3236 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003237 u8 eType;
3238 Pgno iPtrPage;
3239
3240 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003241 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003242 return SQLITE_DONE;
3243 }
3244
3245 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3246 if( rc!=SQLITE_OK ){
3247 return rc;
3248 }
3249 if( eType==PTRMAP_ROOTPAGE ){
3250 return SQLITE_CORRUPT_BKPT;
3251 }
3252
3253 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003254 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003255 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003256 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003257 ** truncated to zero after this function returns, so it doesn't
3258 ** matter if it still contains some garbage entries.
3259 */
3260 Pgno iFreePg;
3261 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003262 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003263 if( rc!=SQLITE_OK ){
3264 return rc;
3265 }
3266 assert( iFreePg==iLastPg );
3267 releasePage(pFreePg);
3268 }
3269 } else {
3270 Pgno iFreePg; /* Index of free page to move pLastPg to */
3271 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003272 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3273 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003274
drhb00fc3b2013-08-21 23:42:32 +00003275 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003276 if( rc!=SQLITE_OK ){
3277 return rc;
3278 }
3279
dan51f0b6d2013-02-22 20:16:34 +00003280 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003281 ** is swapped with the first free page pulled off the free list.
3282 **
dan51f0b6d2013-02-22 20:16:34 +00003283 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003284 ** looping until a free-page located within the first nFin pages
3285 ** of the file is found.
3286 */
dan51f0b6d2013-02-22 20:16:34 +00003287 if( bCommit==0 ){
3288 eMode = BTALLOC_LE;
3289 iNear = nFin;
3290 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003291 do {
3292 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003293 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003294 if( rc!=SQLITE_OK ){
3295 releasePage(pLastPg);
3296 return rc;
3297 }
3298 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003299 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003300 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003301
dane1df4e32013-03-05 11:27:04 +00003302 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003303 releasePage(pLastPg);
3304 if( rc!=SQLITE_OK ){
3305 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003306 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003307 }
3308 }
3309
dan51f0b6d2013-02-22 20:16:34 +00003310 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003311 do {
danielk19773460d192008-12-27 15:23:13 +00003312 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003313 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3314 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003315 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003316 }
3317 return SQLITE_OK;
3318}
3319
3320/*
dan51f0b6d2013-02-22 20:16:34 +00003321** The database opened by the first argument is an auto-vacuum database
3322** nOrig pages in size containing nFree free pages. Return the expected
3323** size of the database in pages following an auto-vacuum operation.
3324*/
3325static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3326 int nEntry; /* Number of entries on one ptrmap page */
3327 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3328 Pgno nFin; /* Return value */
3329
3330 nEntry = pBt->usableSize/5;
3331 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3332 nFin = nOrig - nFree - nPtrmap;
3333 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3334 nFin--;
3335 }
3336 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3337 nFin--;
3338 }
dan51f0b6d2013-02-22 20:16:34 +00003339
3340 return nFin;
3341}
3342
3343/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003344** A write-transaction must be opened before calling this function.
3345** It performs a single unit of work towards an incremental vacuum.
3346**
3347** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003348** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003349** SQLITE_OK is returned. Otherwise an SQLite error code.
3350*/
3351int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003352 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003353 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003354
3355 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003356 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3357 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003358 rc = SQLITE_DONE;
3359 }else{
dan51f0b6d2013-02-22 20:16:34 +00003360 Pgno nOrig = btreePagecount(pBt);
3361 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3362 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3363
dan91384712013-02-24 11:50:43 +00003364 if( nOrig<nFin ){
3365 rc = SQLITE_CORRUPT_BKPT;
3366 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003367 rc = saveAllCursors(pBt, 0, 0);
3368 if( rc==SQLITE_OK ){
3369 invalidateAllOverflowCache(pBt);
3370 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3371 }
dan51f0b6d2013-02-22 20:16:34 +00003372 if( rc==SQLITE_OK ){
3373 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3374 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3375 }
3376 }else{
3377 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003378 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003379 }
drhd677b3d2007-08-20 22:48:41 +00003380 sqlite3BtreeLeave(p);
3381 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003382}
3383
3384/*
danielk19773b8a05f2007-03-19 17:44:26 +00003385** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003386** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003387**
3388** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3389** the database file should be truncated to during the commit process.
3390** i.e. the database has been reorganized so that only the first *pnTrunc
3391** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003392*/
danielk19773460d192008-12-27 15:23:13 +00003393static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003394 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003395 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00003396 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003397
drh1fee73e2007-08-29 04:00:57 +00003398 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003399 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003400 assert(pBt->autoVacuum);
3401 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003402 Pgno nFin; /* Number of pages in database after autovacuuming */
3403 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003404 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003405 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003406
drhb1299152010-03-30 22:58:33 +00003407 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003408 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3409 /* It is not possible to create a database for which the final page
3410 ** is either a pointer-map page or the pending-byte page. If one
3411 ** is encountered, this indicates corruption.
3412 */
danielk19773460d192008-12-27 15:23:13 +00003413 return SQLITE_CORRUPT_BKPT;
3414 }
danielk1977ef165ce2009-04-06 17:50:03 +00003415
danielk19773460d192008-12-27 15:23:13 +00003416 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003417 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003418 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003419 if( nFin<nOrig ){
3420 rc = saveAllCursors(pBt, 0, 0);
3421 }
danielk19773460d192008-12-27 15:23:13 +00003422 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003423 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003424 }
danielk19773460d192008-12-27 15:23:13 +00003425 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003426 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3427 put4byte(&pBt->pPage1->aData[32], 0);
3428 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003429 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003430 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003431 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003432 }
3433 if( rc!=SQLITE_OK ){
3434 sqlite3PagerRollback(pPager);
3435 }
danielk1977687566d2004-11-02 12:56:41 +00003436 }
3437
dan0aed84d2013-03-26 14:16:20 +00003438 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003439 return rc;
3440}
danielk1977dddbcdc2007-04-26 14:42:34 +00003441
danielk1977a50d9aa2009-06-08 14:49:45 +00003442#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3443# define setChildPtrmaps(x) SQLITE_OK
3444#endif
danielk1977687566d2004-11-02 12:56:41 +00003445
3446/*
drh80e35f42007-03-30 14:06:34 +00003447** This routine does the first phase of a two-phase commit. This routine
3448** causes a rollback journal to be created (if it does not already exist)
3449** and populated with enough information so that if a power loss occurs
3450** the database can be restored to its original state by playing back
3451** the journal. Then the contents of the journal are flushed out to
3452** the disk. After the journal is safely on oxide, the changes to the
3453** database are written into the database file and flushed to oxide.
3454** At the end of this call, the rollback journal still exists on the
3455** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003456** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003457** commit process.
3458**
3459** This call is a no-op if no write-transaction is currently active on pBt.
3460**
3461** Otherwise, sync the database file for the btree pBt. zMaster points to
3462** the name of a master journal file that should be written into the
3463** individual journal file, or is NULL, indicating no master journal file
3464** (single database transaction).
3465**
3466** When this is called, the master journal should already have been
3467** created, populated with this journal pointer and synced to disk.
3468**
3469** Once this is routine has returned, the only thing required to commit
3470** the write-transaction for this database file is to delete the journal.
3471*/
3472int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3473 int rc = SQLITE_OK;
3474 if( p->inTrans==TRANS_WRITE ){
3475 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003476 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003477#ifndef SQLITE_OMIT_AUTOVACUUM
3478 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003479 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003480 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003481 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003482 return rc;
3483 }
3484 }
danbc1a3c62013-02-23 16:40:46 +00003485 if( pBt->bDoTruncate ){
3486 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3487 }
drh80e35f42007-03-30 14:06:34 +00003488#endif
drh49b9d332009-01-02 18:10:42 +00003489 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003490 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003491 }
3492 return rc;
3493}
3494
3495/*
danielk197794b30732009-07-02 17:21:57 +00003496** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3497** at the conclusion of a transaction.
3498*/
3499static void btreeEndTransaction(Btree *p){
3500 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003501 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003502 assert( sqlite3BtreeHoldsMutex(p) );
3503
danbc1a3c62013-02-23 16:40:46 +00003504#ifndef SQLITE_OMIT_AUTOVACUUM
3505 pBt->bDoTruncate = 0;
3506#endif
danc0537fe2013-06-28 19:41:43 +00003507 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003508 /* If there are other active statements that belong to this database
3509 ** handle, downgrade to a read-only transaction. The other statements
3510 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003511 downgradeAllSharedCacheTableLocks(p);
3512 p->inTrans = TRANS_READ;
3513 }else{
3514 /* If the handle had any kind of transaction open, decrement the
3515 ** transaction count of the shared btree. If the transaction count
3516 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3517 ** call below will unlock the pager. */
3518 if( p->inTrans!=TRANS_NONE ){
3519 clearAllSharedCacheTableLocks(p);
3520 pBt->nTransaction--;
3521 if( 0==pBt->nTransaction ){
3522 pBt->inTransaction = TRANS_NONE;
3523 }
3524 }
3525
3526 /* Set the current transaction state to TRANS_NONE and unlock the
3527 ** pager if this call closed the only read or write transaction. */
3528 p->inTrans = TRANS_NONE;
3529 unlockBtreeIfUnused(pBt);
3530 }
3531
3532 btreeIntegrity(p);
3533}
3534
3535/*
drh2aa679f2001-06-25 02:11:07 +00003536** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003537**
drh6e345992007-03-30 11:12:08 +00003538** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003539** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3540** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3541** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003542** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003543** routine has to do is delete or truncate or zero the header in the
3544** the rollback journal (which causes the transaction to commit) and
3545** drop locks.
drh6e345992007-03-30 11:12:08 +00003546**
dan60939d02011-03-29 15:40:55 +00003547** Normally, if an error occurs while the pager layer is attempting to
3548** finalize the underlying journal file, this function returns an error and
3549** the upper layer will attempt a rollback. However, if the second argument
3550** is non-zero then this b-tree transaction is part of a multi-file
3551** transaction. In this case, the transaction has already been committed
3552** (by deleting a master journal file) and the caller will ignore this
3553** functions return code. So, even if an error occurs in the pager layer,
3554** reset the b-tree objects internal state to indicate that the write
3555** transaction has been closed. This is quite safe, as the pager will have
3556** transitioned to the error state.
3557**
drh5e00f6c2001-09-13 13:46:56 +00003558** This will release the write lock on the database file. If there
3559** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003560*/
dan60939d02011-03-29 15:40:55 +00003561int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003562
drh075ed302010-10-14 01:17:30 +00003563 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003564 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003565 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003566
3567 /* If the handle has a write-transaction open, commit the shared-btrees
3568 ** transaction and set the shared state to TRANS_READ.
3569 */
3570 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003571 int rc;
drh075ed302010-10-14 01:17:30 +00003572 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003573 assert( pBt->inTransaction==TRANS_WRITE );
3574 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003575 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003576 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003577 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003578 return rc;
3579 }
drh3da9c042014-12-22 18:41:21 +00003580 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00003581 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003582 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00003583 }
danielk1977aef0bf62005-12-30 16:28:01 +00003584
danielk197794b30732009-07-02 17:21:57 +00003585 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003586 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003587 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003588}
3589
drh80e35f42007-03-30 14:06:34 +00003590/*
3591** Do both phases of a commit.
3592*/
3593int sqlite3BtreeCommit(Btree *p){
3594 int rc;
drhd677b3d2007-08-20 22:48:41 +00003595 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003596 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3597 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003598 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003599 }
drhd677b3d2007-08-20 22:48:41 +00003600 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003601 return rc;
3602}
3603
drhc39e0002004-05-07 23:50:57 +00003604/*
drhfb982642007-08-30 01:19:59 +00003605** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00003606** code to errCode for every cursor on any BtShared that pBtree
3607** references. Or if the writeOnly flag is set to 1, then only
3608** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00003609**
drh47b7fc72014-11-11 01:33:57 +00003610** Every cursor is a candidate to be tripped, including cursors
3611** that belong to other database connections that happen to be
3612** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00003613**
dan80231042014-11-12 14:56:02 +00003614** This routine gets called when a rollback occurs. If the writeOnly
3615** flag is true, then only write-cursors need be tripped - read-only
3616** cursors save their current positions so that they may continue
3617** following the rollback. Or, if writeOnly is false, all cursors are
3618** tripped. In general, writeOnly is false if the transaction being
3619** rolled back modified the database schema. In this case b-tree root
3620** pages may be moved or deleted from the database altogether, making
3621** it unsafe for read cursors to continue.
3622**
3623** If the writeOnly flag is true and an error is encountered while
3624** saving the current position of a read-only cursor, all cursors,
3625** including all read-cursors are tripped.
3626**
3627** SQLITE_OK is returned if successful, or if an error occurs while
3628** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00003629*/
dan80231042014-11-12 14:56:02 +00003630int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00003631 BtCursor *p;
dan80231042014-11-12 14:56:02 +00003632 int rc = SQLITE_OK;
3633
drh47b7fc72014-11-11 01:33:57 +00003634 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00003635 if( pBtree ){
3636 sqlite3BtreeEnter(pBtree);
3637 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
3638 int i;
3639 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00003640 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00003641 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00003642 if( rc!=SQLITE_OK ){
3643 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
3644 break;
3645 }
3646 }
3647 }else{
3648 sqlite3BtreeClearCursor(p);
3649 p->eState = CURSOR_FAULT;
3650 p->skipNext = errCode;
3651 }
3652 for(i=0; i<=p->iPage; i++){
3653 releasePage(p->apPage[i]);
3654 p->apPage[i] = 0;
3655 }
danielk1977bc2ca9e2008-11-13 14:28:28 +00003656 }
dan80231042014-11-12 14:56:02 +00003657 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00003658 }
dan80231042014-11-12 14:56:02 +00003659 return rc;
drhfb982642007-08-30 01:19:59 +00003660}
3661
3662/*
drh47b7fc72014-11-11 01:33:57 +00003663** Rollback the transaction in progress.
3664**
3665** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
3666** Only write cursors are tripped if writeOnly is true but all cursors are
3667** tripped if writeOnly is false. Any attempt to use
3668** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00003669**
3670** This will release the write lock on the database file. If there
3671** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003672*/
drh47b7fc72014-11-11 01:33:57 +00003673int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00003674 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003675 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003676 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003677
drh47b7fc72014-11-11 01:33:57 +00003678 assert( writeOnly==1 || writeOnly==0 );
3679 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00003680 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00003681 if( tripCode==SQLITE_OK ){
3682 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00003683 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00003684 }else{
3685 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00003686 }
drh0f198a72012-02-13 16:43:16 +00003687 if( tripCode ){
dan80231042014-11-12 14:56:02 +00003688 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
3689 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
3690 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00003691 }
danielk1977aef0bf62005-12-30 16:28:01 +00003692 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003693
3694 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003695 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003696
danielk19778d34dfd2006-01-24 16:37:57 +00003697 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003698 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003699 if( rc2!=SQLITE_OK ){
3700 rc = rc2;
3701 }
3702
drh24cd67e2004-05-10 16:18:47 +00003703 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003704 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003705 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00003706 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003707 int nPage = get4byte(28+(u8*)pPage1->aData);
3708 testcase( nPage==0 );
3709 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3710 testcase( pBt->nPage!=nPage );
3711 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003712 releasePage(pPage1);
3713 }
drh85ec3b62013-05-14 23:12:06 +00003714 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003715 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00003716 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00003717 }
danielk1977aef0bf62005-12-30 16:28:01 +00003718
danielk197794b30732009-07-02 17:21:57 +00003719 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003720 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003721 return rc;
3722}
3723
3724/*
peter.d.reid60ec9142014-09-06 16:39:46 +00003725** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00003726** back independently of the main transaction. You must start a transaction
3727** before starting a subtransaction. The subtransaction is ended automatically
3728** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003729**
3730** Statement subtransactions are used around individual SQL statements
3731** that are contained within a BEGIN...COMMIT block. If a constraint
3732** error occurs within the statement, the effect of that one statement
3733** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003734**
3735** A statement sub-transaction is implemented as an anonymous savepoint. The
3736** value passed as the second parameter is the total number of savepoints,
3737** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3738** are no active savepoints and no other statement-transactions open,
3739** iStatement is 1. This anonymous savepoint can be released or rolled back
3740** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003741*/
danielk1977bd434552009-03-18 10:33:00 +00003742int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003743 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003744 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003745 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003746 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00003747 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00003748 assert( iStatement>0 );
3749 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003750 assert( pBt->inTransaction==TRANS_WRITE );
3751 /* At the pager level, a statement transaction is a savepoint with
3752 ** an index greater than all savepoints created explicitly using
3753 ** SQL statements. It is illegal to open, release or rollback any
3754 ** such savepoints while the statement transaction savepoint is active.
3755 */
3756 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003757 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003758 return rc;
3759}
3760
3761/*
danielk1977fd7f0452008-12-17 17:30:26 +00003762** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3763** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003764** savepoint identified by parameter iSavepoint, depending on the value
3765** of op.
3766**
3767** Normally, iSavepoint is greater than or equal to zero. However, if op is
3768** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3769** contents of the entire transaction are rolled back. This is different
3770** from a normal transaction rollback, as no locks are released and the
3771** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003772*/
3773int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3774 int rc = SQLITE_OK;
3775 if( p && p->inTrans==TRANS_WRITE ){
3776 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003777 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3778 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3779 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003780 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003781 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00003782 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
3783 pBt->nPage = 0;
3784 }
drh9f0bbf92009-01-02 21:08:09 +00003785 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003786 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00003787
3788 /* The database size was written into the offset 28 of the header
3789 ** when the transaction started, so we know that the value at offset
3790 ** 28 is nonzero. */
3791 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00003792 }
danielk1977fd7f0452008-12-17 17:30:26 +00003793 sqlite3BtreeLeave(p);
3794 }
3795 return rc;
3796}
3797
3798/*
drh8b2f49b2001-06-08 00:21:52 +00003799** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003800** iTable. If a read-only cursor is requested, it is assumed that
3801** the caller already has at least a read-only transaction open
3802** on the database already. If a write-cursor is requested, then
3803** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003804**
3805** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003806** If wrFlag==1, then the cursor can be used for reading or for
3807** writing if other conditions for writing are also met. These
3808** are the conditions that must be met in order for writing to
3809** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003810**
drhf74b8d92002-09-01 23:20:45 +00003811** 1: The cursor must have been opened with wrFlag==1
3812**
drhfe5d71d2007-03-19 11:54:10 +00003813** 2: Other database connections that share the same pager cache
3814** but which are not in the READ_UNCOMMITTED state may not have
3815** cursors open with wrFlag==0 on the same table. Otherwise
3816** the changes made by this write cursor would be visible to
3817** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003818**
3819** 3: The database must be writable (not on read-only media)
3820**
3821** 4: There must be an active transaction.
3822**
drh6446c4d2001-12-15 14:22:18 +00003823** No checking is done to make sure that page iTable really is the
3824** root page of a b-tree. If it is not, then the cursor acquired
3825** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003826**
drhf25a5072009-11-18 23:01:25 +00003827** It is assumed that the sqlite3BtreeCursorZero() has been called
3828** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003829*/
drhd677b3d2007-08-20 22:48:41 +00003830static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003831 Btree *p, /* The btree */
3832 int iTable, /* Root page of table to open */
3833 int wrFlag, /* 1 to write. 0 read-only */
3834 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3835 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003836){
danielk19773e8add92009-07-04 17:16:00 +00003837 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003838
drh1fee73e2007-08-29 04:00:57 +00003839 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003840 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003841
danielk1977602b4662009-07-02 07:47:33 +00003842 /* The following assert statements verify that if this is a sharable
3843 ** b-tree database, the connection is holding the required table locks,
3844 ** and that no other connection has any open cursor that conflicts with
3845 ** this lock. */
3846 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003847 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3848
danielk19773e8add92009-07-04 17:16:00 +00003849 /* Assert that the caller has opened the required transaction. */
3850 assert( p->inTrans>TRANS_NONE );
3851 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3852 assert( pBt->pPage1 && pBt->pPage1->aData );
3853
drhc9166342012-01-05 23:32:06 +00003854 if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){
danielk197796d48e92009-06-29 06:00:37 +00003855 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003856 }
drh3fbb0222014-09-24 19:47:27 +00003857 if( wrFlag ){
3858 allocateTempSpace(pBt);
3859 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM;
3860 }
drhb1299152010-03-30 22:58:33 +00003861 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00003862 assert( wrFlag==0 );
3863 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00003864 }
danielk1977aef0bf62005-12-30 16:28:01 +00003865
danielk1977aef0bf62005-12-30 16:28:01 +00003866 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003867 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003868 pCur->pgnoRoot = (Pgno)iTable;
3869 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003870 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003871 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003872 pCur->pBt = pBt;
drh4c417182014-03-31 23:57:41 +00003873 assert( wrFlag==0 || wrFlag==BTCF_WriteFlag );
3874 pCur->curFlags = wrFlag;
drha059ad02001-04-17 20:09:11 +00003875 pCur->pNext = pBt->pCursor;
3876 if( pCur->pNext ){
3877 pCur->pNext->pPrev = pCur;
3878 }
3879 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003880 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00003881 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003882}
drhd677b3d2007-08-20 22:48:41 +00003883int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003884 Btree *p, /* The btree */
3885 int iTable, /* Root page of table to open */
3886 int wrFlag, /* 1 to write. 0 read-only */
3887 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3888 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003889){
3890 int rc;
dan08f901b2015-05-25 19:24:36 +00003891 if( iTable<1 ){
3892 rc = SQLITE_CORRUPT_BKPT;
3893 }else{
3894 sqlite3BtreeEnter(p);
3895 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
3896 sqlite3BtreeLeave(p);
3897 }
drhd677b3d2007-08-20 22:48:41 +00003898 return rc;
3899}
drh7f751222009-03-17 22:33:00 +00003900
3901/*
3902** Return the size of a BtCursor object in bytes.
3903**
3904** This interfaces is needed so that users of cursors can preallocate
3905** sufficient storage to hold a cursor. The BtCursor object is opaque
3906** to users so they cannot do the sizeof() themselves - they must call
3907** this routine.
3908*/
3909int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00003910 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00003911}
3912
drh7f751222009-03-17 22:33:00 +00003913/*
drhf25a5072009-11-18 23:01:25 +00003914** Initialize memory that will be converted into a BtCursor object.
3915**
3916** The simple approach here would be to memset() the entire object
3917** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3918** do not need to be zeroed and they are large, so we can save a lot
3919** of run-time by skipping the initialization of those elements.
3920*/
3921void sqlite3BtreeCursorZero(BtCursor *p){
3922 memset(p, 0, offsetof(BtCursor, iPage));
3923}
3924
3925/*
drh5e00f6c2001-09-13 13:46:56 +00003926** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003927** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003928*/
drh3aac2dd2004-04-26 14:10:20 +00003929int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003930 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003931 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003932 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003933 BtShared *pBt = pCur->pBt;
3934 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003935 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003936 if( pCur->pPrev ){
3937 pCur->pPrev->pNext = pCur->pNext;
3938 }else{
3939 pBt->pCursor = pCur->pNext;
3940 }
3941 if( pCur->pNext ){
3942 pCur->pNext->pPrev = pCur->pPrev;
3943 }
danielk197771d5d2c2008-09-29 11:49:47 +00003944 for(i=0; i<=pCur->iPage; i++){
3945 releasePage(pCur->apPage[i]);
3946 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003947 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00003948 sqlite3_free(pCur->aOverflow);
danielk1977cd3e8f72008-03-25 09:47:35 +00003949 /* sqlite3_free(pCur); */
3950 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003951 }
drh8c42ca92001-06-22 19:15:00 +00003952 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003953}
3954
drh5e2f8b92001-05-28 00:41:15 +00003955/*
drh86057612007-06-26 01:04:48 +00003956** Make sure the BtCursor* given in the argument has a valid
3957** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003958** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003959**
3960** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003961** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003962**
3963** 2007-06-25: There is a bug in some versions of MSVC that cause the
3964** compiler to crash when getCellInfo() is implemented as a macro.
3965** But there is a measureable speed advantage to using the macro on gcc
3966** (when less compiler optimizations like -Os or -O0 are used and the
peter.d.reid60ec9142014-09-06 16:39:46 +00003967** compiler is not doing aggressive inlining.) So we use a real function
drh86057612007-06-26 01:04:48 +00003968** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003969*/
drh9188b382004-05-14 21:12:22 +00003970#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003971 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003972 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003973 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003974 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003975 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
dan7df42ab2014-01-20 18:25:44 +00003976 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003977 }
danielk19771cc5ed82007-05-16 17:28:43 +00003978#else
3979 #define assertCellInfo(x)
3980#endif
drh86057612007-06-26 01:04:48 +00003981#ifdef _MSC_VER
3982 /* Use a real function in MSVC to work around bugs in that compiler. */
3983 static void getCellInfo(BtCursor *pCur){
3984 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003985 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003986 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drh036dbec2014-03-11 23:40:44 +00003987 pCur->curFlags |= BTCF_ValidNKey;
drh86057612007-06-26 01:04:48 +00003988 }else{
3989 assertCellInfo(pCur);
3990 }
3991 }
3992#else /* if not _MSC_VER */
3993 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003994#define getCellInfo(pCur) \
3995 if( pCur->info.nSize==0 ){ \
3996 int iPage = pCur->iPage; \
drh036dbec2014-03-11 23:40:44 +00003997 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
3998 pCur->curFlags |= BTCF_ValidNKey; \
danielk197771d5d2c2008-09-29 11:49:47 +00003999 }else{ \
4000 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00004001 }
4002#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00004003
drhea8ffdf2009-07-22 00:35:23 +00004004#ifndef NDEBUG /* The next routine used only within assert() statements */
4005/*
4006** Return true if the given BtCursor is valid. A valid cursor is one
4007** that is currently pointing to a row in a (non-empty) table.
4008** This is a verification routine is used only within assert() statements.
4009*/
4010int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4011 return pCur && pCur->eState==CURSOR_VALID;
4012}
4013#endif /* NDEBUG */
4014
drh9188b382004-05-14 21:12:22 +00004015/*
drh3aac2dd2004-04-26 14:10:20 +00004016** Set *pSize to the size of the buffer needed to hold the value of
4017** the key for the current entry. If the cursor is not pointing
4018** to a valid entry, *pSize is set to 0.
4019**
drh4b70f112004-05-02 21:12:19 +00004020** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00004021** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00004022**
4023** The caller must position the cursor prior to invoking this routine.
4024**
4025** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00004026*/
drh4a1c3802004-05-12 15:15:47 +00004027int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00004028 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004029 assert( pCur->eState==CURSOR_VALID );
4030 getCellInfo(pCur);
4031 *pSize = pCur->info.nKey;
drhea8ffdf2009-07-22 00:35:23 +00004032 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004033}
drh2af926b2001-05-15 00:39:25 +00004034
drh72f82862001-05-24 21:06:34 +00004035/*
drh0e1c19e2004-05-11 00:58:56 +00004036** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00004037** cursor currently points to.
4038**
4039** The caller must guarantee that the cursor is pointing to a non-NULL
4040** valid entry. In other words, the calling procedure must guarantee
4041** that the cursor has Cursor.eState==CURSOR_VALID.
4042**
4043** Failure is not possible. This function always returns SQLITE_OK.
4044** It might just as well be a procedure (returning void) but we continue
4045** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00004046*/
4047int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00004048 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004049 assert( pCur->eState==CURSOR_VALID );
drhf94c9482015-03-25 12:05:49 +00004050 assert( pCur->iPage>=0 );
4051 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
drh3e28ff52014-09-24 00:59:08 +00004052 assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 );
drhea8ffdf2009-07-22 00:35:23 +00004053 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004054 *pSize = pCur->info.nPayload;
drhea8ffdf2009-07-22 00:35:23 +00004055 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00004056}
4057
4058/*
danielk1977d04417962007-05-02 13:16:30 +00004059** Given the page number of an overflow page in the database (parameter
4060** ovfl), this function finds the page number of the next page in the
4061** linked list of overflow pages. If possible, it uses the auto-vacuum
4062** pointer-map data instead of reading the content of page ovfl to do so.
4063**
4064** If an error occurs an SQLite error code is returned. Otherwise:
4065**
danielk1977bea2a942009-01-20 17:06:27 +00004066** The page number of the next overflow page in the linked list is
4067** written to *pPgnoNext. If page ovfl is the last page in its linked
4068** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004069**
danielk1977bea2a942009-01-20 17:06:27 +00004070** If ppPage is not NULL, and a reference to the MemPage object corresponding
4071** to page number pOvfl was obtained, then *ppPage is set to point to that
4072** reference. It is the responsibility of the caller to call releasePage()
4073** on *ppPage to free the reference. In no reference was obtained (because
4074** the pointer-map was used to obtain the value for *pPgnoNext), then
4075** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004076*/
4077static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004078 BtShared *pBt, /* The database file */
4079 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004080 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004081 Pgno *pPgnoNext /* OUT: Next overflow page number */
4082){
4083 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004084 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004085 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004086
drh1fee73e2007-08-29 04:00:57 +00004087 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004088 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004089
4090#ifndef SQLITE_OMIT_AUTOVACUUM
4091 /* Try to find the next page in the overflow list using the
4092 ** autovacuum pointer-map pages. Guess that the next page in
4093 ** the overflow list is page number (ovfl+1). If that guess turns
4094 ** out to be wrong, fall back to loading the data of page
4095 ** number ovfl to determine the next page number.
4096 */
4097 if( pBt->autoVacuum ){
4098 Pgno pgno;
4099 Pgno iGuess = ovfl+1;
4100 u8 eType;
4101
4102 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4103 iGuess++;
4104 }
4105
drhb1299152010-03-30 22:58:33 +00004106 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004107 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004108 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004109 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004110 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004111 }
4112 }
4113 }
4114#endif
4115
danielk1977d8a3f3d2009-07-11 11:45:23 +00004116 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004117 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004118 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004119 assert( rc==SQLITE_OK || pPage==0 );
4120 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004121 next = get4byte(pPage->aData);
4122 }
danielk1977443c0592009-01-16 15:21:05 +00004123 }
danielk197745d68822009-01-16 16:23:38 +00004124
danielk1977bea2a942009-01-20 17:06:27 +00004125 *pPgnoNext = next;
4126 if( ppPage ){
4127 *ppPage = pPage;
4128 }else{
4129 releasePage(pPage);
4130 }
4131 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004132}
4133
danielk1977da107192007-05-04 08:32:13 +00004134/*
4135** Copy data from a buffer to a page, or from a page to a buffer.
4136**
4137** pPayload is a pointer to data stored on database page pDbPage.
4138** If argument eOp is false, then nByte bytes of data are copied
4139** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4140** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4141** of data are copied from the buffer pBuf to pPayload.
4142**
4143** SQLITE_OK is returned on success, otherwise an error code.
4144*/
4145static int copyPayload(
4146 void *pPayload, /* Pointer to page data */
4147 void *pBuf, /* Pointer to buffer */
4148 int nByte, /* Number of bytes to copy */
4149 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4150 DbPage *pDbPage /* Page containing pPayload */
4151){
4152 if( eOp ){
4153 /* Copy data from buffer to page (a write operation) */
4154 int rc = sqlite3PagerWrite(pDbPage);
4155 if( rc!=SQLITE_OK ){
4156 return rc;
4157 }
4158 memcpy(pPayload, pBuf, nByte);
4159 }else{
4160 /* Copy data from page to buffer (a read operation) */
4161 memcpy(pBuf, pPayload, nByte);
4162 }
4163 return SQLITE_OK;
4164}
danielk1977d04417962007-05-02 13:16:30 +00004165
4166/*
danielk19779f8d6402007-05-02 17:48:45 +00004167** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004168** for the entry that the pCur cursor is pointing to. The eOp
4169** argument is interpreted as follows:
4170**
4171** 0: The operation is a read. Populate the overflow cache.
4172** 1: The operation is a write. Populate the overflow cache.
4173** 2: The operation is a read. Do not populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004174**
4175** A total of "amt" bytes are read or written beginning at "offset".
4176** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004177**
drh3bcdfd22009-07-12 02:32:21 +00004178** The content being read or written might appear on the main page
4179** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004180**
dan5a500af2014-03-11 20:33:04 +00004181** If the current cursor entry uses one or more overflow pages and the
4182** eOp argument is not 2, this function may allocate space for and lazily
peter.d.reid60ec9142014-09-06 16:39:46 +00004183** populates the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004184** Subsequent calls use this cache to make seeking to the supplied offset
4185** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004186**
4187** Once an overflow page-list cache has been allocated, it may be
4188** invalidated if some other cursor writes to the same table, or if
4189** the cursor is moved to a different row. Additionally, in auto-vacuum
4190** mode, the following events may invalidate an overflow page-list cache.
4191**
4192** * An incremental vacuum,
4193** * A commit in auto_vacuum="full" mode,
4194** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004195*/
danielk19779f8d6402007-05-02 17:48:45 +00004196static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004197 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004198 u32 offset, /* Begin reading this far into payload */
4199 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004200 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004201 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004202){
4203 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004204 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004205 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004206 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004207 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004208#ifdef SQLITE_DIRECT_OVERFLOW_READ
dan9501a642014-10-01 12:01:10 +00004209 unsigned char * const pBufStart = pBuf;
drh3f387402014-09-24 01:23:00 +00004210 int bEnd; /* True if reading to end of data */
drh4c417182014-03-31 23:57:41 +00004211#endif
drh3aac2dd2004-04-26 14:10:20 +00004212
danielk1977da107192007-05-04 08:32:13 +00004213 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00004214 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004215 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004216 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00004217 assert( eOp!=2 || offset==0 ); /* Always start from beginning for eOp==2 */
danielk1977da107192007-05-04 08:32:13 +00004218
drh86057612007-06-26 01:04:48 +00004219 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004220 aPayload = pCur->info.pPayload;
drh4c417182014-03-31 23:57:41 +00004221#ifdef SQLITE_DIRECT_OVERFLOW_READ
drhab1cc582014-09-23 21:25:19 +00004222 bEnd = offset+amt==pCur->info.nPayload;
drh4c417182014-03-31 23:57:41 +00004223#endif
drhab1cc582014-09-23 21:25:19 +00004224 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004225
drhab1cc582014-09-23 21:25:19 +00004226 if( &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ){
danielk1977da107192007-05-04 08:32:13 +00004227 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00004228 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00004229 }
danielk1977da107192007-05-04 08:32:13 +00004230
4231 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004232 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004233 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004234 if( a+offset>pCur->info.nLocal ){
4235 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004236 }
dan5a500af2014-03-11 20:33:04 +00004237 rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004238 offset = 0;
drha34b6762004-05-07 13:30:42 +00004239 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004240 amt -= a;
drhdd793422001-06-28 01:54:48 +00004241 }else{
drhfa1a98a2004-05-14 19:08:17 +00004242 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004243 }
danielk1977da107192007-05-04 08:32:13 +00004244
dan85753662014-12-11 16:38:18 +00004245
danielk1977da107192007-05-04 08:32:13 +00004246 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004247 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004248 Pgno nextPage;
4249
drhfa1a98a2004-05-14 19:08:17 +00004250 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004251
drha38c9512014-04-01 01:24:34 +00004252 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4253 ** Except, do not allocate aOverflow[] for eOp==2.
4254 **
4255 ** The aOverflow[] array is sized at one entry for each overflow page
4256 ** in the overflow chain. The page number of the first overflow page is
4257 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4258 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004259 */
drh036dbec2014-03-11 23:40:44 +00004260 if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004261 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
dan5a500af2014-03-11 20:33:04 +00004262 if( nOvfl>pCur->nOvflAlloc ){
dan85753662014-12-11 16:38:18 +00004263 Pgno *aNew = (Pgno*)sqlite3Realloc(
4264 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004265 );
4266 if( aNew==0 ){
4267 rc = SQLITE_NOMEM;
4268 }else{
4269 pCur->nOvflAlloc = nOvfl*2;
4270 pCur->aOverflow = aNew;
4271 }
4272 }
4273 if( rc==SQLITE_OK ){
4274 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
drh036dbec2014-03-11 23:40:44 +00004275 pCur->curFlags |= BTCF_ValidOvfl;
danielk19772dec9702007-05-02 16:48:37 +00004276 }
4277 }
danielk1977da107192007-05-04 08:32:13 +00004278
4279 /* If the overflow page-list cache has been allocated and the
4280 ** entry for the first required overflow page is valid, skip
4281 ** directly to it.
4282 */
drh3f387402014-09-24 01:23:00 +00004283 if( (pCur->curFlags & BTCF_ValidOvfl)!=0
4284 && pCur->aOverflow[offset/ovflSize]
4285 ){
danielk19772dec9702007-05-02 16:48:37 +00004286 iIdx = (offset/ovflSize);
4287 nextPage = pCur->aOverflow[iIdx];
4288 offset = (offset%ovflSize);
4289 }
danielk1977da107192007-05-04 08:32:13 +00004290
4291 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4292
danielk1977da107192007-05-04 08:32:13 +00004293 /* If required, populate the overflow page-list cache. */
drh036dbec2014-03-11 23:40:44 +00004294 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
danielk1977da107192007-05-04 08:32:13 +00004295 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
4296 pCur->aOverflow[iIdx] = nextPage;
4297 }
danielk1977da107192007-05-04 08:32:13 +00004298
danielk1977d04417962007-05-02 13:16:30 +00004299 if( offset>=ovflSize ){
4300 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004301 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004302 ** data is not required. So first try to lookup the overflow
4303 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004304 ** function.
drha38c9512014-04-01 01:24:34 +00004305 **
4306 ** Note that the aOverflow[] array must be allocated because eOp!=2
4307 ** here. If eOp==2, then offset==0 and this branch is never taken.
danielk1977d04417962007-05-02 13:16:30 +00004308 */
drha38c9512014-04-01 01:24:34 +00004309 assert( eOp!=2 );
4310 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004311 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004312 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004313 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004314 }else{
danielk1977da107192007-05-04 08:32:13 +00004315 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004316 }
danielk1977da107192007-05-04 08:32:13 +00004317 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004318 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004319 /* Need to read this page properly. It contains some of the
4320 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004321 */
danf4ba1092011-10-08 14:57:07 +00004322#ifdef SQLITE_DIRECT_OVERFLOW_READ
4323 sqlite3_file *fd;
4324#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004325 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004326 if( a + offset > ovflSize ){
4327 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004328 }
danf4ba1092011-10-08 14:57:07 +00004329
4330#ifdef SQLITE_DIRECT_OVERFLOW_READ
4331 /* If all the following are true:
4332 **
4333 ** 1) this is a read operation, and
4334 ** 2) data is required from the start of this overflow page, and
4335 ** 3) the database is file-backed, and
4336 ** 4) there is no open write-transaction, and
4337 ** 5) the database is not a WAL database,
dan9bc21b52014-03-20 18:56:35 +00004338 ** 6) all data from the page is being read.
dan9501a642014-10-01 12:01:10 +00004339 ** 7) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004340 **
4341 ** then data can be read directly from the database file into the
4342 ** output buffer, bypassing the page-cache altogether. This speeds
4343 ** up loading large records that span many overflow pages.
4344 */
dan5a500af2014-03-11 20:33:04 +00004345 if( (eOp&0x01)==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004346 && offset==0 /* (2) */
dan9bc21b52014-03-20 18:56:35 +00004347 && (bEnd || a==ovflSize) /* (6) */
danf4ba1092011-10-08 14:57:07 +00004348 && pBt->inTransaction==TRANS_READ /* (4) */
4349 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
4350 && pBt->pPage1->aData[19]==0x01 /* (5) */
dan9501a642014-10-01 12:01:10 +00004351 && &pBuf[-4]>=pBufStart /* (7) */
danf4ba1092011-10-08 14:57:07 +00004352 ){
4353 u8 aSave[4];
4354 u8 *aWrite = &pBuf[-4];
dan9501a642014-10-01 12:01:10 +00004355 assert( aWrite>=pBufStart ); /* hence (7) */
danf4ba1092011-10-08 14:57:07 +00004356 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004357 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004358 nextPage = get4byte(aWrite);
4359 memcpy(aWrite, aSave, 4);
4360 }else
4361#endif
4362
4363 {
4364 DbPage *pDbPage;
dan11dcd112013-03-15 18:29:18 +00004365 rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage,
dan5a500af2014-03-11 20:33:04 +00004366 ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004367 );
danf4ba1092011-10-08 14:57:07 +00004368 if( rc==SQLITE_OK ){
4369 aPayload = sqlite3PagerGetData(pDbPage);
4370 nextPage = get4byte(aPayload);
dan5a500af2014-03-11 20:33:04 +00004371 rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
danf4ba1092011-10-08 14:57:07 +00004372 sqlite3PagerUnref(pDbPage);
4373 offset = 0;
4374 }
4375 }
4376 amt -= a;
4377 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004378 }
drh2af926b2001-05-15 00:39:25 +00004379 }
drh2af926b2001-05-15 00:39:25 +00004380 }
danielk1977cfe9a692004-06-16 12:00:29 +00004381
danielk1977da107192007-05-04 08:32:13 +00004382 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004383 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004384 }
danielk1977da107192007-05-04 08:32:13 +00004385 return rc;
drh2af926b2001-05-15 00:39:25 +00004386}
4387
drh72f82862001-05-24 21:06:34 +00004388/*
drh3aac2dd2004-04-26 14:10:20 +00004389** Read part of the key associated with cursor pCur. Exactly
peter.d.reid60ec9142014-09-06 16:39:46 +00004390** "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004391** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004392**
drh5d1a8722009-07-22 18:07:40 +00004393** The caller must ensure that pCur is pointing to a valid row
4394** in the table.
4395**
drh3aac2dd2004-04-26 14:10:20 +00004396** Return SQLITE_OK on success or an error code if anything goes
4397** wrong. An error is returned if "offset+amt" is larger than
4398** the available payload.
drh72f82862001-05-24 21:06:34 +00004399*/
drha34b6762004-05-07 13:30:42 +00004400int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004401 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004402 assert( pCur->eState==CURSOR_VALID );
4403 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4404 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4405 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004406}
4407
4408/*
drh3aac2dd2004-04-26 14:10:20 +00004409** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004410** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004411** begins at "offset".
4412**
4413** Return SQLITE_OK on success or an error code if anything goes
4414** wrong. An error is returned if "offset+amt" is larger than
4415** the available payload.
drh72f82862001-05-24 21:06:34 +00004416*/
drh3aac2dd2004-04-26 14:10:20 +00004417int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004418 int rc;
4419
danielk19773588ceb2008-06-10 17:30:26 +00004420#ifndef SQLITE_OMIT_INCRBLOB
4421 if ( pCur->eState==CURSOR_INVALID ){
4422 return SQLITE_ABORT;
4423 }
4424#endif
4425
drh1fee73e2007-08-29 04:00:57 +00004426 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004427 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004428 if( rc==SQLITE_OK ){
4429 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004430 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4431 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004432 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004433 }
4434 return rc;
drh2af926b2001-05-15 00:39:25 +00004435}
4436
drh72f82862001-05-24 21:06:34 +00004437/*
drh0e1c19e2004-05-11 00:58:56 +00004438** Return a pointer to payload information from the entry that the
4439** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004440** the key if index btrees (pPage->intKey==0) and is the data for
4441** table btrees (pPage->intKey==1). The number of bytes of available
4442** key/data is written into *pAmt. If *pAmt==0, then the value
4443** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004444**
4445** This routine is an optimization. It is common for the entire key
4446** and data to fit on the local page and for there to be no overflow
4447** pages. When that is so, this routine can be used to access the
4448** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004449** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004450** the key/data and copy it into a preallocated buffer.
4451**
4452** The pointer returned by this routine looks directly into the cached
4453** page of the database. The data might change or move the next time
4454** any btree routine is called.
4455*/
drh2a8d2262013-12-09 20:43:22 +00004456static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004457 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004458 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004459){
drhf3392e32015-04-15 17:26:55 +00004460 u32 amt;
danielk197771d5d2c2008-09-29 11:49:47 +00004461 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004462 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004463 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004464 assert( cursorHoldsMutex(pCur) );
drh2a8d2262013-12-09 20:43:22 +00004465 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drh86dd3712014-03-25 11:00:21 +00004466 assert( pCur->info.nSize>0 );
drhf3392e32015-04-15 17:26:55 +00004467 assert( pCur->info.pPayload>pCur->apPage[pCur->iPage]->aData || CORRUPT_DB );
4468 assert( pCur->info.pPayload<pCur->apPage[pCur->iPage]->aDataEnd ||CORRUPT_DB);
4469 amt = (int)(pCur->apPage[pCur->iPage]->aDataEnd - pCur->info.pPayload);
4470 if( pCur->info.nLocal<amt ) amt = pCur->info.nLocal;
4471 *pAmt = amt;
drhab1cc582014-09-23 21:25:19 +00004472 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00004473}
4474
4475
4476/*
drhe51c44f2004-05-30 20:46:09 +00004477** For the entry that cursor pCur is point to, return as
4478** many bytes of the key or data as are available on the local
4479** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004480**
4481** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004482** or be destroyed on the next call to any Btree routine,
4483** including calls from other threads against the same cache.
4484** Hence, a mutex on the BtShared should be held prior to calling
4485** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004486**
4487** These routines is used to get quick access to key and data
4488** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004489*/
drh501932c2013-11-21 21:59:53 +00004490const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004491 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004492}
drh501932c2013-11-21 21:59:53 +00004493const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004494 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004495}
4496
4497
4498/*
drh8178a752003-01-05 21:41:40 +00004499** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004500** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004501**
4502** This function returns SQLITE_CORRUPT if the page-header flags field of
4503** the new child page does not match the flags field of the parent (i.e.
4504** if an intkey page appears to be the parent of a non-intkey page, or
4505** vice-versa).
drh72f82862001-05-24 21:06:34 +00004506*/
drh3aac2dd2004-04-26 14:10:20 +00004507static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00004508 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004509 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00004510 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00004511 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004512
drh1fee73e2007-08-29 04:00:57 +00004513 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004514 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004515 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004516 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004517 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4518 return SQLITE_CORRUPT_BKPT;
4519 }
drhb00fc3b2013-08-21 23:42:32 +00004520 rc = getAndInitPage(pBt, newPgno, &pNewPage,
drh036dbec2014-03-11 23:40:44 +00004521 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0);
drh6019e162001-07-02 17:51:45 +00004522 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004523 pCur->apPage[i+1] = pNewPage;
4524 pCur->aiIdx[i+1] = 0;
4525 pCur->iPage++;
4526
drh271efa52004-05-30 19:19:05 +00004527 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004528 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
danielk1977bd5969a2009-07-11 17:39:42 +00004529 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004530 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004531 }
drh72f82862001-05-24 21:06:34 +00004532 return SQLITE_OK;
4533}
4534
drhcbd33492015-03-25 13:06:54 +00004535#if SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00004536/*
4537** Page pParent is an internal (non-leaf) tree page. This function
4538** asserts that page number iChild is the left-child if the iIdx'th
4539** cell in page pParent. Or, if iIdx is equal to the total number of
4540** cells in pParent, that page number iChild is the right-child of
4541** the page.
4542*/
4543static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00004544 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
4545 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00004546 assert( iIdx<=pParent->nCell );
4547 if( iIdx==pParent->nCell ){
4548 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4549 }else{
4550 assert( get4byte(findCell(pParent, iIdx))==iChild );
4551 }
4552}
4553#else
4554# define assertParentIndex(x,y,z)
4555#endif
4556
drh72f82862001-05-24 21:06:34 +00004557/*
drh5e2f8b92001-05-28 00:41:15 +00004558** Move the cursor up to the parent page.
4559**
4560** pCur->idx is set to the cell index that contains the pointer
4561** to the page we are coming from. If we are coming from the
4562** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004563** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004564*/
danielk197730548662009-07-09 05:07:37 +00004565static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004566 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004567 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004568 assert( pCur->iPage>0 );
4569 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004570 assertParentIndex(
4571 pCur->apPage[pCur->iPage-1],
4572 pCur->aiIdx[pCur->iPage-1],
4573 pCur->apPage[pCur->iPage]->pgno
4574 );
dan6c2688c2012-01-12 15:05:03 +00004575 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
danbb246c42012-01-12 14:25:55 +00004576
danielk197771d5d2c2008-09-29 11:49:47 +00004577 releasePage(pCur->apPage[pCur->iPage]);
4578 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004579 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004580 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh72f82862001-05-24 21:06:34 +00004581}
4582
4583/*
danielk19778f880a82009-07-13 09:41:45 +00004584** Move the cursor to point to the root page of its b-tree structure.
4585**
4586** If the table has a virtual root page, then the cursor is moved to point
4587** to the virtual root page instead of the actual root page. A table has a
4588** virtual root page when the actual root page contains no cells and a
4589** single child page. This can only happen with the table rooted at page 1.
4590**
4591** If the b-tree structure is empty, the cursor state is set to
4592** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4593** cell located on the root (or virtual root) page and the cursor state
4594** is set to CURSOR_VALID.
4595**
4596** If this function returns successfully, it may be assumed that the
4597** page-header flags indicate that the [virtual] root-page is the expected
4598** kind of b-tree page (i.e. if when opening the cursor the caller did not
4599** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4600** indicating a table b-tree, or if the caller did specify a KeyInfo
4601** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4602** b-tree).
drh72f82862001-05-24 21:06:34 +00004603*/
drh5e2f8b92001-05-28 00:41:15 +00004604static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004605 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004606 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00004607
drh1fee73e2007-08-29 04:00:57 +00004608 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004609 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4610 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4611 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4612 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4613 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004614 assert( pCur->skipNext!=SQLITE_OK );
4615 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004616 }
danielk1977be51a652008-10-08 17:58:48 +00004617 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004618 }
danielk197771d5d2c2008-09-29 11:49:47 +00004619
4620 if( pCur->iPage>=0 ){
drh4e8fe3f2013-12-06 23:25:27 +00004621 while( pCur->iPage ) releasePage(pCur->apPage[pCur->iPage--]);
dana205a482011-08-27 18:48:57 +00004622 }else if( pCur->pgnoRoot==0 ){
4623 pCur->eState = CURSOR_INVALID;
4624 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004625 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004626 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
drh036dbec2014-03-11 23:40:44 +00004627 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0);
drh4c301aa2009-07-15 17:25:45 +00004628 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004629 pCur->eState = CURSOR_INVALID;
4630 return rc;
4631 }
danielk1977172114a2009-07-07 15:47:12 +00004632 pCur->iPage = 0;
drhc39e0002004-05-07 23:50:57 +00004633 }
danielk197771d5d2c2008-09-29 11:49:47 +00004634 pRoot = pCur->apPage[0];
4635 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00004636
4637 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4638 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4639 ** NULL, the caller expects a table b-tree. If this is not the case,
4640 ** return an SQLITE_CORRUPT error.
4641 **
4642 ** Earlier versions of SQLite assumed that this test could not fail
4643 ** if the root page was already loaded when this function was called (i.e.
4644 ** if pCur->iPage>=0). But this is not so if the database is corrupted
4645 ** in such a way that page pRoot is linked into a second b-tree table
4646 ** (or the freelist). */
4647 assert( pRoot->intKey==1 || pRoot->intKey==0 );
4648 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4649 return SQLITE_CORRUPT_BKPT;
4650 }
danielk19778f880a82009-07-13 09:41:45 +00004651
danielk197771d5d2c2008-09-29 11:49:47 +00004652 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004653 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004654 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00004655
drh4e8fe3f2013-12-06 23:25:27 +00004656 if( pRoot->nCell>0 ){
4657 pCur->eState = CURSOR_VALID;
4658 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00004659 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004660 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004661 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004662 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004663 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004664 }else{
drh4e8fe3f2013-12-06 23:25:27 +00004665 pCur->eState = CURSOR_INVALID;
drh8856d6a2004-04-29 14:42:46 +00004666 }
4667 return rc;
drh72f82862001-05-24 21:06:34 +00004668}
drh2af926b2001-05-15 00:39:25 +00004669
drh5e2f8b92001-05-28 00:41:15 +00004670/*
4671** Move the cursor down to the left-most leaf entry beneath the
4672** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004673**
4674** The left-most leaf is the one with the smallest key - the first
4675** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004676*/
4677static int moveToLeftmost(BtCursor *pCur){
4678 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004679 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004680 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004681
drh1fee73e2007-08-29 04:00:57 +00004682 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004683 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004684 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4685 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4686 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004687 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004688 }
drhd677b3d2007-08-20 22:48:41 +00004689 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004690}
4691
drh2dcc9aa2002-12-04 13:40:25 +00004692/*
4693** Move the cursor down to the right-most leaf entry beneath the
4694** page to which it is currently pointing. Notice the difference
4695** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4696** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4697** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004698**
4699** The right-most entry is the one with the largest key - the last
4700** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004701*/
4702static int moveToRightmost(BtCursor *pCur){
4703 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004704 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004705 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004706
drh1fee73e2007-08-29 04:00:57 +00004707 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004708 assert( pCur->eState==CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00004709 while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004710 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004711 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004712 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00004713 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004714 }
drhee6438d2014-09-01 13:29:32 +00004715 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
4716 assert( pCur->info.nSize==0 );
4717 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
4718 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00004719}
4720
drh5e00f6c2001-09-13 13:46:56 +00004721/* Move the cursor to the first entry in the table. Return SQLITE_OK
4722** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004723** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004724*/
drh3aac2dd2004-04-26 14:10:20 +00004725int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004726 int rc;
drhd677b3d2007-08-20 22:48:41 +00004727
drh1fee73e2007-08-29 04:00:57 +00004728 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004729 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004730 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004731 if( rc==SQLITE_OK ){
4732 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004733 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004734 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004735 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004736 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004737 *pRes = 0;
4738 rc = moveToLeftmost(pCur);
4739 }
drh5e00f6c2001-09-13 13:46:56 +00004740 }
drh5e00f6c2001-09-13 13:46:56 +00004741 return rc;
4742}
drh5e2f8b92001-05-28 00:41:15 +00004743
drh9562b552002-02-19 15:00:07 +00004744/* Move the cursor to the last entry in the table. Return SQLITE_OK
4745** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004746** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004747*/
drh3aac2dd2004-04-26 14:10:20 +00004748int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004749 int rc;
drhd677b3d2007-08-20 22:48:41 +00004750
drh1fee73e2007-08-29 04:00:57 +00004751 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004752 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004753
4754 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00004755 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00004756#ifdef SQLITE_DEBUG
4757 /* This block serves to assert() that the cursor really does point
4758 ** to the last entry in the b-tree. */
4759 int ii;
4760 for(ii=0; ii<pCur->iPage; ii++){
4761 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4762 }
4763 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4764 assert( pCur->apPage[pCur->iPage]->leaf );
4765#endif
4766 return SQLITE_OK;
4767 }
4768
drh9562b552002-02-19 15:00:07 +00004769 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004770 if( rc==SQLITE_OK ){
4771 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00004772 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004773 *pRes = 1;
4774 }else{
4775 assert( pCur->eState==CURSOR_VALID );
4776 *pRes = 0;
4777 rc = moveToRightmost(pCur);
drh036dbec2014-03-11 23:40:44 +00004778 if( rc==SQLITE_OK ){
4779 pCur->curFlags |= BTCF_AtLast;
4780 }else{
4781 pCur->curFlags &= ~BTCF_AtLast;
4782 }
4783
drhd677b3d2007-08-20 22:48:41 +00004784 }
drh9562b552002-02-19 15:00:07 +00004785 }
drh9562b552002-02-19 15:00:07 +00004786 return rc;
4787}
4788
drhe14006d2008-03-25 17:23:32 +00004789/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004790** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004791**
drhe63d9992008-08-13 19:11:48 +00004792** For INTKEY tables, the intKey parameter is used. pIdxKey
4793** must be NULL. For index tables, pIdxKey is used and intKey
4794** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004795**
drh5e2f8b92001-05-28 00:41:15 +00004796** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004797** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004798** were present. The cursor might point to an entry that comes
4799** before or after the key.
4800**
drh64022502009-01-09 14:11:04 +00004801** An integer is written into *pRes which is the result of
4802** comparing the key with the entry to which the cursor is
4803** pointing. The meaning of the integer written into
4804** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004805**
4806** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004807** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004808** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004809**
4810** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004811** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004812**
4813** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004814** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004815**
drha059ad02001-04-17 20:09:11 +00004816*/
drhe63d9992008-08-13 19:11:48 +00004817int sqlite3BtreeMovetoUnpacked(
4818 BtCursor *pCur, /* The cursor to be moved */
4819 UnpackedRecord *pIdxKey, /* Unpacked index key */
4820 i64 intKey, /* The table key */
4821 int biasRight, /* If true, bias the search to the high end */
4822 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004823){
drh72f82862001-05-24 21:06:34 +00004824 int rc;
dan3b9330f2014-02-27 20:44:18 +00004825 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00004826
drh1fee73e2007-08-29 04:00:57 +00004827 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004828 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004829 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004830 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004831
4832 /* If the cursor is already positioned at the point we are trying
4833 ** to move to, then just return without doing any work */
drh036dbec2014-03-11 23:40:44 +00004834 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
danielk197771d5d2c2008-09-29 11:49:47 +00004835 && pCur->apPage[0]->intKey
4836 ){
drhe63d9992008-08-13 19:11:48 +00004837 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004838 *pRes = 0;
4839 return SQLITE_OK;
4840 }
drh036dbec2014-03-11 23:40:44 +00004841 if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004842 *pRes = -1;
4843 return SQLITE_OK;
4844 }
4845 }
4846
dan1fed5da2014-02-25 21:01:25 +00004847 if( pIdxKey ){
4848 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00004849 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00004850 assert( pIdxKey->default_rc==1
4851 || pIdxKey->default_rc==0
4852 || pIdxKey->default_rc==-1
4853 );
drh13a747e2014-03-03 21:46:55 +00004854 }else{
drhb6e8fd12014-03-06 01:56:33 +00004855 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00004856 }
4857
drh5e2f8b92001-05-28 00:41:15 +00004858 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004859 if( rc ){
4860 return rc;
4861 }
dana205a482011-08-27 18:48:57 +00004862 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
4863 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
4864 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00004865 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004866 *pRes = -1;
dana205a482011-08-27 18:48:57 +00004867 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004868 return SQLITE_OK;
4869 }
danielk197771d5d2c2008-09-29 11:49:47 +00004870 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004871 for(;;){
drhec3e6b12013-11-25 02:38:55 +00004872 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00004873 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004874 MemPage *pPage = pCur->apPage[pCur->iPage];
drhec3e6b12013-11-25 02:38:55 +00004875 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00004876
4877 /* pPage->nCell must be greater than zero. If this is the root-page
4878 ** the cursor would have been INVALID above and this for(;;) loop
4879 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004880 ** would have already detected db corruption. Similarly, pPage must
4881 ** be the right kind (index or table) of b-tree page. Otherwise
4882 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004883 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004884 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004885 lwr = 0;
4886 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00004887 assert( biasRight==0 || biasRight==1 );
4888 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drhd793f442013-11-25 14:10:15 +00004889 pCur->aiIdx[pCur->iPage] = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00004890 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00004891 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004892 i64 nCellKey;
drhec3e6b12013-11-25 02:38:55 +00004893 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3e28ff52014-09-24 00:59:08 +00004894 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00004895 while( 0x80 <= *(pCell++) ){
4896 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
4897 }
drhd172f862006-01-12 15:01:15 +00004898 }
drha2c20e42008-03-29 16:01:04 +00004899 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00004900 if( nCellKey<intKey ){
4901 lwr = idx+1;
4902 if( lwr>upr ){ c = -1; break; }
4903 }else if( nCellKey>intKey ){
4904 upr = idx-1;
4905 if( lwr>upr ){ c = +1; break; }
4906 }else{
4907 assert( nCellKey==intKey );
drh036dbec2014-03-11 23:40:44 +00004908 pCur->curFlags |= BTCF_ValidNKey;
drhec3e6b12013-11-25 02:38:55 +00004909 pCur->info.nKey = nCellKey;
drhd793f442013-11-25 14:10:15 +00004910 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00004911 if( !pPage->leaf ){
4912 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00004913 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00004914 }else{
4915 *pRes = 0;
4916 rc = SQLITE_OK;
4917 goto moveto_finish;
4918 }
drhd793f442013-11-25 14:10:15 +00004919 }
drhebf10b12013-11-25 17:38:26 +00004920 assert( lwr+upr>=0 );
4921 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00004922 }
4923 }else{
4924 for(;;){
4925 int nCell;
drhec3e6b12013-11-25 02:38:55 +00004926 pCell = findCell(pPage, idx) + pPage->childPtrSize;
4927
drhb2eced52010-08-12 02:41:12 +00004928 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00004929 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00004930 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00004931 ** varint. This information is used to attempt to avoid parsing
4932 ** the entire cell by checking for the cases where the record is
4933 ** stored entirely within the b-tree page by inspecting the first
4934 ** 2 bytes of the cell.
4935 */
drhec3e6b12013-11-25 02:38:55 +00004936 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00004937 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00004938 /* This branch runs if the record-size field of the cell is a
4939 ** single byte varint and the record fits entirely on the main
4940 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00004941 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00004942 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00004943 }else if( !(pCell[1] & 0x80)
4944 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4945 ){
4946 /* The record-size field is a 2 byte varint and the record
4947 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00004948 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00004949 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004950 }else{
danielk197711c327a2009-05-04 19:01:26 +00004951 /* The record flows over onto one or more overflow pages. In
4952 ** this case the whole cell needs to be parsed, a buffer allocated
4953 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00004954 ** buffer before VdbeRecordCompare() can be called.
4955 **
4956 ** If the record is corrupt, the xRecordCompare routine may read
4957 ** up to two varints past the end of the buffer. An extra 18
4958 ** bytes of padding is allocated at the end of the buffer in
4959 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00004960 void *pCellKey;
4961 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004962 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004963 nCell = (int)pCur->info.nKey;
dan3548db72015-05-27 14:21:05 +00004964 testcase( nCell<0 );
4965 if( nCell<2 ){
4966 rc = SQLITE_CORRUPT_BKPT;
4967 goto moveto_finish;
4968 }
4969 pCellKey = sqlite3Malloc( nCell+18 );
danielk19776507ecb2008-03-25 09:56:44 +00004970 if( pCellKey==0 ){
4971 rc = SQLITE_NOMEM;
4972 goto moveto_finish;
4973 }
drhd793f442013-11-25 14:10:15 +00004974 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan5a500af2014-03-11 20:33:04 +00004975 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
drhec9b31f2009-08-25 13:53:49 +00004976 if( rc ){
4977 sqlite3_free(pCellKey);
4978 goto moveto_finish;
4979 }
drh75179de2014-09-16 14:37:35 +00004980 c = xRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004981 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00004982 }
dan38fdead2014-04-01 10:19:02 +00004983 assert(
4984 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00004985 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00004986 );
drhbb933ef2013-11-25 15:01:38 +00004987 if( c<0 ){
4988 lwr = idx+1;
4989 }else if( c>0 ){
4990 upr = idx-1;
4991 }else{
4992 assert( c==0 );
drh64022502009-01-09 14:11:04 +00004993 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004994 rc = SQLITE_OK;
drhd793f442013-11-25 14:10:15 +00004995 pCur->aiIdx[pCur->iPage] = (u16)idx;
dan38fdead2014-04-01 10:19:02 +00004996 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
drh1e968a02008-03-25 00:22:21 +00004997 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004998 }
drhebf10b12013-11-25 17:38:26 +00004999 if( lwr>upr ) break;
5000 assert( lwr+upr>=0 );
5001 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005002 }
drh72f82862001-05-24 21:06:34 +00005003 }
drhb07028f2011-10-14 21:49:18 +00005004 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005005 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005006 if( pPage->leaf ){
drhec3e6b12013-11-25 02:38:55 +00005007 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhbb933ef2013-11-25 15:01:38 +00005008 pCur->aiIdx[pCur->iPage] = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005009 *pRes = c;
5010 rc = SQLITE_OK;
5011 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00005012 }
5013moveto_next_layer:
5014 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005015 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005016 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005017 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005018 }
drhf49661a2008-12-10 16:45:50 +00005019 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005020 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005021 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005022 }
drh1e968a02008-03-25 00:22:21 +00005023moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005024 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005025 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drhe63d9992008-08-13 19:11:48 +00005026 return rc;
5027}
5028
drhd677b3d2007-08-20 22:48:41 +00005029
drh72f82862001-05-24 21:06:34 +00005030/*
drhc39e0002004-05-07 23:50:57 +00005031** Return TRUE if the cursor is not pointing at an entry of the table.
5032**
5033** TRUE will be returned after a call to sqlite3BtreeNext() moves
5034** past the last entry in the table or sqlite3BtreePrev() moves past
5035** the first entry. TRUE is also returned if the table is empty.
5036*/
5037int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005038 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5039 ** have been deleted? This API will need to change to return an error code
5040 ** as well as the boolean result value.
5041 */
5042 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005043}
5044
5045/*
drhbd03cae2001-06-02 02:40:57 +00005046** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00005047** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00005048** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00005049** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005050**
drhee6438d2014-09-01 13:29:32 +00005051** The main entry point is sqlite3BtreeNext(). That routine is optimized
5052** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5053** to the next cell on the current page. The (slower) btreeNext() helper
5054** routine is called when it is necessary to move to a different page or
5055** to restore the cursor.
5056**
drhe39a7322014-02-03 14:04:11 +00005057** The calling function will set *pRes to 0 or 1. The initial *pRes value
5058** will be 1 if the cursor being stepped corresponds to an SQL index and
5059** if this routine could have been skipped if that SQL index had been
5060** a unique index. Otherwise the caller will have set *pRes to zero.
5061** Zero is the common case. The btree implementation is free to use the
5062** initial *pRes value as a hint to improve performance, but the current
5063** SQLite btree implementation does not. (Note that the comdb2 btree
5064** implementation does use this hint, however.)
drh72f82862001-05-24 21:06:34 +00005065*/
drhee6438d2014-09-01 13:29:32 +00005066static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00005067 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005068 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005069 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005070
drh1fee73e2007-08-29 04:00:57 +00005071 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005072 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005073 assert( *pRes==0 );
drhf66f26a2013-08-19 20:04:10 +00005074 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005075 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005076 rc = restoreCursorPosition(pCur);
5077 if( rc!=SQLITE_OK ){
5078 return rc;
5079 }
5080 if( CURSOR_INVALID==pCur->eState ){
5081 *pRes = 1;
5082 return SQLITE_OK;
5083 }
drh9b47ee32013-08-20 03:13:51 +00005084 if( pCur->skipNext ){
5085 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5086 pCur->eState = CURSOR_VALID;
5087 if( pCur->skipNext>0 ){
5088 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005089 return SQLITE_OK;
5090 }
drhf66f26a2013-08-19 20:04:10 +00005091 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005092 }
danielk1977da184232006-01-05 11:34:32 +00005093 }
danielk1977da184232006-01-05 11:34:32 +00005094
danielk197771d5d2c2008-09-29 11:49:47 +00005095 pPage = pCur->apPage[pCur->iPage];
5096 idx = ++pCur->aiIdx[pCur->iPage];
5097 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00005098
5099 /* If the database file is corrupt, it is possible for the value of idx
5100 ** to be invalid here. This can only occur if a second cursor modifies
5101 ** the page while cursor pCur is holding a reference to it. Which can
5102 ** only happen if the database is corrupt in such a way as to link the
5103 ** page into more than one b-tree structure. */
5104 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005105
danielk197771d5d2c2008-09-29 11:49:47 +00005106 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005107 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005108 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005109 if( rc ) return rc;
5110 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005111 }
drh5e2f8b92001-05-28 00:41:15 +00005112 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005113 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00005114 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00005115 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00005116 return SQLITE_OK;
5117 }
danielk197730548662009-07-09 05:07:37 +00005118 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00005119 pPage = pCur->apPage[pCur->iPage];
5120 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005121 if( pPage->intKey ){
drhee6438d2014-09-01 13:29:32 +00005122 return sqlite3BtreeNext(pCur, pRes);
drh8b18dd42004-05-12 19:18:15 +00005123 }else{
drhee6438d2014-09-01 13:29:32 +00005124 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005125 }
drh8178a752003-01-05 21:41:40 +00005126 }
drh3aac2dd2004-04-26 14:10:20 +00005127 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005128 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005129 }else{
5130 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005131 }
drh72f82862001-05-24 21:06:34 +00005132}
drhee6438d2014-09-01 13:29:32 +00005133int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
5134 MemPage *pPage;
5135 assert( cursorHoldsMutex(pCur) );
5136 assert( pRes!=0 );
5137 assert( *pRes==0 || *pRes==1 );
5138 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5139 pCur->info.nSize = 0;
5140 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
5141 *pRes = 0;
5142 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
5143 pPage = pCur->apPage[pCur->iPage];
5144 if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){
5145 pCur->aiIdx[pCur->iPage]--;
5146 return btreeNext(pCur, pRes);
5147 }
5148 if( pPage->leaf ){
5149 return SQLITE_OK;
5150 }else{
5151 return moveToLeftmost(pCur);
5152 }
5153}
drh72f82862001-05-24 21:06:34 +00005154
drh3b7511c2001-05-26 13:15:44 +00005155/*
drh2dcc9aa2002-12-04 13:40:25 +00005156** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00005157** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00005158** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00005159** this routine was called, then set *pRes=1.
drhe39a7322014-02-03 14:04:11 +00005160**
drhee6438d2014-09-01 13:29:32 +00005161** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5162** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005163** to the previous cell on the current page. The (slower) btreePrevious()
5164** helper routine is called when it is necessary to move to a different page
5165** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005166**
drhe39a7322014-02-03 14:04:11 +00005167** The calling function will set *pRes to 0 or 1. The initial *pRes value
5168** will be 1 if the cursor being stepped corresponds to an SQL index and
5169** if this routine could have been skipped if that SQL index had been
5170** a unique index. Otherwise the caller will have set *pRes to zero.
5171** Zero is the common case. The btree implementation is free to use the
5172** initial *pRes value as a hint to improve performance, but the current
5173** SQLite btree implementation does not. (Note that the comdb2 btree
5174** implementation does use this hint, however.)
drh2dcc9aa2002-12-04 13:40:25 +00005175*/
drhee6438d2014-09-01 13:29:32 +00005176static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00005177 int rc;
drh8178a752003-01-05 21:41:40 +00005178 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005179
drh1fee73e2007-08-29 04:00:57 +00005180 assert( cursorHoldsMutex(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005181 assert( pRes!=0 );
drhee6438d2014-09-01 13:29:32 +00005182 assert( *pRes==0 );
drh9b47ee32013-08-20 03:13:51 +00005183 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005184 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5185 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005186 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005187 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005188 if( rc!=SQLITE_OK ){
5189 return rc;
drhf66f26a2013-08-19 20:04:10 +00005190 }
5191 if( CURSOR_INVALID==pCur->eState ){
5192 *pRes = 1;
5193 return SQLITE_OK;
5194 }
drh9b47ee32013-08-20 03:13:51 +00005195 if( pCur->skipNext ){
5196 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5197 pCur->eState = CURSOR_VALID;
5198 if( pCur->skipNext<0 ){
5199 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005200 return SQLITE_OK;
5201 }
drhf66f26a2013-08-19 20:04:10 +00005202 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005203 }
danielk1977da184232006-01-05 11:34:32 +00005204 }
danielk1977da184232006-01-05 11:34:32 +00005205
danielk197771d5d2c2008-09-29 11:49:47 +00005206 pPage = pCur->apPage[pCur->iPage];
5207 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005208 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00005209 int idx = pCur->aiIdx[pCur->iPage];
5210 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005211 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005212 rc = moveToRightmost(pCur);
5213 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00005214 while( pCur->aiIdx[pCur->iPage]==0 ){
5215 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005216 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00005217 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00005218 return SQLITE_OK;
5219 }
danielk197730548662009-07-09 05:07:37 +00005220 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005221 }
drhee6438d2014-09-01 13:29:32 +00005222 assert( pCur->info.nSize==0 );
5223 assert( (pCur->curFlags & (BTCF_ValidNKey|BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005224
5225 pCur->aiIdx[pCur->iPage]--;
5226 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00005227 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00005228 rc = sqlite3BtreePrevious(pCur, pRes);
5229 }else{
5230 rc = SQLITE_OK;
5231 }
drh2dcc9aa2002-12-04 13:40:25 +00005232 }
drh2dcc9aa2002-12-04 13:40:25 +00005233 return rc;
5234}
drhee6438d2014-09-01 13:29:32 +00005235int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
5236 assert( cursorHoldsMutex(pCur) );
5237 assert( pRes!=0 );
5238 assert( *pRes==0 || *pRes==1 );
5239 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5240 *pRes = 0;
5241 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5242 pCur->info.nSize = 0;
5243 if( pCur->eState!=CURSOR_VALID
5244 || pCur->aiIdx[pCur->iPage]==0
5245 || pCur->apPage[pCur->iPage]->leaf==0
5246 ){
5247 return btreePrevious(pCur, pRes);
5248 }
5249 pCur->aiIdx[pCur->iPage]--;
5250 return SQLITE_OK;
5251}
drh2dcc9aa2002-12-04 13:40:25 +00005252
5253/*
drh3b7511c2001-05-26 13:15:44 +00005254** Allocate a new page from the database file.
5255**
danielk19773b8a05f2007-03-19 17:44:26 +00005256** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005257** has already been called on the new page.) The new page has also
5258** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005259** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005260**
5261** SQLITE_OK is returned on success. Any other return value indicates
5262** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00005263** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00005264**
drh82e647d2013-03-02 03:25:55 +00005265** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005266** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005267** attempt to keep related pages close to each other in the database file,
5268** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005269**
drh82e647d2013-03-02 03:25:55 +00005270** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5271** anywhere on the free-list, then it is guaranteed to be returned. If
5272** eMode is BTALLOC_LT then the page returned will be less than or equal
5273** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5274** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005275*/
drh4f0c5872007-03-26 22:05:01 +00005276static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005277 BtShared *pBt, /* The btree */
5278 MemPage **ppPage, /* Store pointer to the allocated page here */
5279 Pgno *pPgno, /* Store the page number here */
5280 Pgno nearby, /* Search for a page near this one */
5281 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005282){
drh3aac2dd2004-04-26 14:10:20 +00005283 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005284 int rc;
drh35cd6432009-06-05 14:17:21 +00005285 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005286 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005287 MemPage *pTrunk = 0;
5288 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005289 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005290
drh1fee73e2007-08-29 04:00:57 +00005291 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005292 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005293 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005294 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005295 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5296 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005297 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005298 testcase( n==mxPage-1 );
5299 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005300 return SQLITE_CORRUPT_BKPT;
5301 }
drh3aac2dd2004-04-26 14:10:20 +00005302 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005303 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005304 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005305 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
5306
drh82e647d2013-03-02 03:25:55 +00005307 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005308 ** shows that the page 'nearby' is somewhere on the free-list, then
5309 ** the entire-list will be searched for that page.
5310 */
5311#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005312 if( eMode==BTALLOC_EXACT ){
5313 if( nearby<=mxPage ){
5314 u8 eType;
5315 assert( nearby>0 );
5316 assert( pBt->autoVacuum );
5317 rc = ptrmapGet(pBt, nearby, &eType, 0);
5318 if( rc ) return rc;
5319 if( eType==PTRMAP_FREEPAGE ){
5320 searchList = 1;
5321 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005322 }
dan51f0b6d2013-02-22 20:16:34 +00005323 }else if( eMode==BTALLOC_LE ){
5324 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005325 }
5326#endif
5327
5328 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5329 ** first free-list trunk page. iPrevTrunk is initially 1.
5330 */
danielk19773b8a05f2007-03-19 17:44:26 +00005331 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005332 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005333 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005334
5335 /* The code within this loop is run only once if the 'searchList' variable
5336 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005337 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5338 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005339 */
5340 do {
5341 pPrevTrunk = pTrunk;
5342 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005343 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5344 ** is the page number of the next freelist trunk page in the list or
5345 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005346 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005347 }else{
drh113762a2014-11-19 16:36:25 +00005348 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5349 ** stores the page number of the first page of the freelist, or zero if
5350 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005351 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005352 }
drhdf35a082009-07-09 02:24:35 +00005353 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005354 if( iTrunk>mxPage ){
5355 rc = SQLITE_CORRUPT_BKPT;
5356 }else{
drhb00fc3b2013-08-21 23:42:32 +00005357 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005358 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005359 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005360 pTrunk = 0;
5361 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005362 }
drhb07028f2011-10-14 21:49:18 +00005363 assert( pTrunk!=0 );
5364 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005365 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5366 ** is the number of leaf page pointers to follow. */
5367 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005368 if( k==0 && !searchList ){
5369 /* The trunk has no leaves and the list is not being searched.
5370 ** So extract the trunk page itself and use it as the newly
5371 ** allocated page */
5372 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005373 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005374 if( rc ){
5375 goto end_allocate_page;
5376 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005377 *pPgno = iTrunk;
5378 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5379 *ppPage = pTrunk;
5380 pTrunk = 0;
5381 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005382 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005383 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00005384 rc = SQLITE_CORRUPT_BKPT;
5385 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005386#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005387 }else if( searchList
5388 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5389 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005390 /* The list is being searched and this trunk page is the page
5391 ** to allocate, regardless of whether it has leaves.
5392 */
dan51f0b6d2013-02-22 20:16:34 +00005393 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005394 *ppPage = pTrunk;
5395 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005396 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005397 if( rc ){
5398 goto end_allocate_page;
5399 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005400 if( k==0 ){
5401 if( !pPrevTrunk ){
5402 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5403 }else{
danf48c3552010-08-23 15:41:24 +00005404 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5405 if( rc!=SQLITE_OK ){
5406 goto end_allocate_page;
5407 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005408 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5409 }
5410 }else{
5411 /* The trunk page is required by the caller but it contains
5412 ** pointers to free-list leaves. The first leaf becomes a trunk
5413 ** page in this case.
5414 */
5415 MemPage *pNewTrunk;
5416 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005417 if( iNewTrunk>mxPage ){
5418 rc = SQLITE_CORRUPT_BKPT;
5419 goto end_allocate_page;
5420 }
drhdf35a082009-07-09 02:24:35 +00005421 testcase( iNewTrunk==mxPage );
drhb00fc3b2013-08-21 23:42:32 +00005422 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005423 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005424 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005425 }
danielk19773b8a05f2007-03-19 17:44:26 +00005426 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005427 if( rc!=SQLITE_OK ){
5428 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005429 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005430 }
5431 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5432 put4byte(&pNewTrunk->aData[4], k-1);
5433 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005434 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005435 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005436 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005437 put4byte(&pPage1->aData[32], iNewTrunk);
5438 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005439 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005440 if( rc ){
5441 goto end_allocate_page;
5442 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005443 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5444 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005445 }
5446 pTrunk = 0;
5447 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5448#endif
danielk1977e5765212009-06-17 11:13:28 +00005449 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005450 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005451 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005452 Pgno iPage;
5453 unsigned char *aData = pTrunk->aData;
5454 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005455 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005456 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005457 if( eMode==BTALLOC_LE ){
5458 for(i=0; i<k; i++){
5459 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005460 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005461 closest = i;
5462 break;
5463 }
5464 }
5465 }else{
5466 int dist;
5467 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5468 for(i=1; i<k; i++){
5469 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5470 if( d2<dist ){
5471 closest = i;
5472 dist = d2;
5473 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005474 }
5475 }
5476 }else{
5477 closest = 0;
5478 }
5479
5480 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005481 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005482 if( iPage>mxPage ){
5483 rc = SQLITE_CORRUPT_BKPT;
5484 goto end_allocate_page;
5485 }
drhdf35a082009-07-09 02:24:35 +00005486 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005487 if( !searchList
5488 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5489 ){
danielk1977bea2a942009-01-20 17:06:27 +00005490 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005491 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005492 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5493 ": %d more free pages\n",
5494 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005495 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5496 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005497 if( closest<k-1 ){
5498 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5499 }
5500 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00005501 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drhb00fc3b2013-08-21 23:42:32 +00005502 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005503 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005504 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005505 if( rc!=SQLITE_OK ){
5506 releasePage(*ppPage);
5507 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005508 }
5509 searchList = 0;
5510 }
drhee696e22004-08-30 16:52:17 +00005511 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005512 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005513 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005514 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005515 }else{
danbc1a3c62013-02-23 16:40:46 +00005516 /* There are no pages on the freelist, so append a new page to the
5517 ** database image.
5518 **
5519 ** Normally, new pages allocated by this block can be requested from the
5520 ** pager layer with the 'no-content' flag set. This prevents the pager
5521 ** from trying to read the pages content from disk. However, if the
5522 ** current transaction has already run one or more incremental-vacuum
5523 ** steps, then the page we are about to allocate may contain content
5524 ** that is required in the event of a rollback. In this case, do
5525 ** not set the no-content flag. This causes the pager to load and journal
5526 ** the current page content before overwriting it.
5527 **
5528 ** Note that the pager will not actually attempt to load or journal
5529 ** content for any page that really does lie past the end of the database
5530 ** file on disk. So the effects of disabling the no-content optimization
5531 ** here are confined to those pages that lie between the end of the
5532 ** database image and the end of the database file.
5533 */
drh3f387402014-09-24 01:23:00 +00005534 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00005535
drhdd3cd972010-03-27 17:12:36 +00005536 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5537 if( rc ) return rc;
5538 pBt->nPage++;
5539 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005540
danielk1977afcdd022004-10-31 16:25:42 +00005541#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005542 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005543 /* If *pPgno refers to a pointer-map page, allocate two new pages
5544 ** at the end of the file instead of one. The first allocated page
5545 ** becomes a new pointer-map page, the second is used by the caller.
5546 */
danielk1977ac861692009-03-28 10:54:22 +00005547 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005548 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5549 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drhb00fc3b2013-08-21 23:42:32 +00005550 rc = btreeGetPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00005551 if( rc==SQLITE_OK ){
5552 rc = sqlite3PagerWrite(pPg->pDbPage);
5553 releasePage(pPg);
5554 }
5555 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005556 pBt->nPage++;
5557 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005558 }
5559#endif
drhdd3cd972010-03-27 17:12:36 +00005560 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5561 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005562
danielk1977599fcba2004-11-08 07:13:13 +00005563 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhb00fc3b2013-08-21 23:42:32 +00005564 rc = btreeGetPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00005565 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005566 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005567 if( rc!=SQLITE_OK ){
5568 releasePage(*ppPage);
5569 }
drh3a4c1412004-05-09 20:40:11 +00005570 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005571 }
danielk1977599fcba2004-11-08 07:13:13 +00005572
5573 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005574
5575end_allocate_page:
5576 releasePage(pTrunk);
5577 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00005578 if( rc==SQLITE_OK ){
5579 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
5580 releasePage(*ppPage);
dan7df42ab2014-01-20 18:25:44 +00005581 *ppPage = 0;
danielk1977b247c212008-11-21 09:09:01 +00005582 return SQLITE_CORRUPT_BKPT;
5583 }
5584 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00005585 }else{
5586 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00005587 }
drh93b4fc72011-04-07 14:47:01 +00005588 assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) );
drh3b7511c2001-05-26 13:15:44 +00005589 return rc;
5590}
5591
5592/*
danielk1977bea2a942009-01-20 17:06:27 +00005593** This function is used to add page iPage to the database file free-list.
5594** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005595**
danielk1977bea2a942009-01-20 17:06:27 +00005596** The value passed as the second argument to this function is optional.
5597** If the caller happens to have a pointer to the MemPage object
5598** corresponding to page iPage handy, it may pass it as the second value.
5599** Otherwise, it may pass NULL.
5600**
5601** If a pointer to a MemPage object is passed as the second argument,
5602** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005603*/
danielk1977bea2a942009-01-20 17:06:27 +00005604static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5605 MemPage *pTrunk = 0; /* Free-list trunk page */
5606 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5607 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5608 MemPage *pPage; /* Page being freed. May be NULL. */
5609 int rc; /* Return Code */
5610 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005611
danielk1977bea2a942009-01-20 17:06:27 +00005612 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00005613 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00005614 assert( !pMemPage || pMemPage->pgno==iPage );
5615
danfb0246b2015-05-26 12:18:17 +00005616 if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +00005617 if( pMemPage ){
5618 pPage = pMemPage;
5619 sqlite3PagerRef(pPage->pDbPage);
5620 }else{
5621 pPage = btreePageLookup(pBt, iPage);
5622 }
drh3aac2dd2004-04-26 14:10:20 +00005623
drha34b6762004-05-07 13:30:42 +00005624 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005625 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005626 if( rc ) goto freepage_out;
5627 nFree = get4byte(&pPage1->aData[36]);
5628 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005629
drhc9166342012-01-05 23:32:06 +00005630 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005631 /* If the secure_delete option is enabled, then
5632 ** always fully overwrite deleted information with zeros.
5633 */
drhb00fc3b2013-08-21 23:42:32 +00005634 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00005635 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005636 ){
5637 goto freepage_out;
5638 }
5639 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005640 }
drhfcce93f2006-02-22 03:08:32 +00005641
danielk1977687566d2004-11-02 12:56:41 +00005642 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005643 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005644 */
danielk197785d90ca2008-07-19 14:25:15 +00005645 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005646 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005647 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005648 }
danielk1977687566d2004-11-02 12:56:41 +00005649
danielk1977bea2a942009-01-20 17:06:27 +00005650 /* Now manipulate the actual database free-list structure. There are two
5651 ** possibilities. If the free-list is currently empty, or if the first
5652 ** trunk page in the free-list is full, then this page will become a
5653 ** new free-list trunk page. Otherwise, it will become a leaf of the
5654 ** first trunk page in the current free-list. This block tests if it
5655 ** is possible to add the page as a new free-list leaf.
5656 */
5657 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005658 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005659
5660 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00005661 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005662 if( rc!=SQLITE_OK ){
5663 goto freepage_out;
5664 }
5665
5666 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005667 assert( pBt->usableSize>32 );
5668 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005669 rc = SQLITE_CORRUPT_BKPT;
5670 goto freepage_out;
5671 }
drheeb844a2009-08-08 18:01:07 +00005672 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005673 /* In this case there is room on the trunk page to insert the page
5674 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005675 **
5676 ** Note that the trunk page is not really full until it contains
5677 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5678 ** coded. But due to a coding error in versions of SQLite prior to
5679 ** 3.6.0, databases with freelist trunk pages holding more than
5680 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5681 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005682 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005683 ** for now. At some point in the future (once everyone has upgraded
5684 ** to 3.6.0 or later) we should consider fixing the conditional above
5685 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00005686 **
5687 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
5688 ** avoid using the last six entries in the freelist trunk page array in
5689 ** order that database files created by newer versions of SQLite can be
5690 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00005691 */
danielk19773b8a05f2007-03-19 17:44:26 +00005692 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005693 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005694 put4byte(&pTrunk->aData[4], nLeaf+1);
5695 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005696 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005697 sqlite3PagerDontWrite(pPage->pDbPage);
5698 }
danielk1977bea2a942009-01-20 17:06:27 +00005699 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005700 }
drh3a4c1412004-05-09 20:40:11 +00005701 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005702 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005703 }
drh3b7511c2001-05-26 13:15:44 +00005704 }
danielk1977bea2a942009-01-20 17:06:27 +00005705
5706 /* If control flows to this point, then it was not possible to add the
5707 ** the page being freed as a leaf page of the first trunk in the free-list.
5708 ** Possibly because the free-list is empty, or possibly because the
5709 ** first trunk in the free-list is full. Either way, the page being freed
5710 ** will become the new first trunk page in the free-list.
5711 */
drhb00fc3b2013-08-21 23:42:32 +00005712 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00005713 goto freepage_out;
5714 }
5715 rc = sqlite3PagerWrite(pPage->pDbPage);
5716 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005717 goto freepage_out;
5718 }
5719 put4byte(pPage->aData, iTrunk);
5720 put4byte(&pPage->aData[4], 0);
5721 put4byte(&pPage1->aData[32], iPage);
5722 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5723
5724freepage_out:
5725 if( pPage ){
5726 pPage->isInit = 0;
5727 }
5728 releasePage(pPage);
5729 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005730 return rc;
5731}
drhc314dc72009-07-21 11:52:34 +00005732static void freePage(MemPage *pPage, int *pRC){
5733 if( (*pRC)==SQLITE_OK ){
5734 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5735 }
danielk1977bea2a942009-01-20 17:06:27 +00005736}
drh3b7511c2001-05-26 13:15:44 +00005737
5738/*
drh9bfdc252014-09-24 02:05:41 +00005739** Free any overflow pages associated with the given Cell. Write the
5740** local Cell size (the number of bytes on the original page, omitting
5741** overflow) into *pnSize.
drh3b7511c2001-05-26 13:15:44 +00005742*/
drh9bfdc252014-09-24 02:05:41 +00005743static int clearCell(
5744 MemPage *pPage, /* The page that contains the Cell */
5745 unsigned char *pCell, /* First byte of the Cell */
5746 u16 *pnSize /* Write the size of the Cell here */
5747){
danielk1977aef0bf62005-12-30 16:28:01 +00005748 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005749 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005750 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005751 int rc;
drh94440812007-03-06 11:42:19 +00005752 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005753 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005754
drh1fee73e2007-08-29 04:00:57 +00005755 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00005756 btreeParseCellPtr(pPage, pCell, &info);
drh9bfdc252014-09-24 02:05:41 +00005757 *pnSize = info.nSize;
drh6f11bef2004-05-13 01:12:56 +00005758 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005759 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005760 }
drhe42a9b42011-08-31 13:27:19 +00005761 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00005762 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00005763 }
drh6f11bef2004-05-13 01:12:56 +00005764 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005765 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005766 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005767 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00005768 assert( nOvfl>0 ||
5769 (CORRUPT_DB && (info.nPayload + ovflPageSize)<ovflPageSize)
5770 );
drh72365832007-03-06 15:53:44 +00005771 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005772 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005773 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005774 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005775 /* 0 is not a legal page number and page 1 cannot be an
5776 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5777 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005778 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005779 }
danielk1977bea2a942009-01-20 17:06:27 +00005780 if( nOvfl ){
5781 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5782 if( rc ) return rc;
5783 }
dan887d4b22010-02-25 12:09:16 +00005784
shaneh1da207e2010-03-09 14:41:12 +00005785 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005786 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5787 ){
5788 /* There is no reason any cursor should have an outstanding reference
5789 ** to an overflow page belonging to a cell that is being deleted/updated.
5790 ** So if there exists more than one reference to this page, then it
5791 ** must not really be an overflow page and the database must be corrupt.
5792 ** It is helpful to detect this before calling freePage2(), as
5793 ** freePage2() may zero the page contents if secure-delete mode is
5794 ** enabled. If this 'overflow' page happens to be a page that the
5795 ** caller is iterating through or using in some other way, this
5796 ** can be problematic.
5797 */
5798 rc = SQLITE_CORRUPT_BKPT;
5799 }else{
5800 rc = freePage2(pBt, pOvfl, ovflPgno);
5801 }
5802
danielk1977bea2a942009-01-20 17:06:27 +00005803 if( pOvfl ){
5804 sqlite3PagerUnref(pOvfl->pDbPage);
5805 }
drh3b7511c2001-05-26 13:15:44 +00005806 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005807 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005808 }
drh5e2f8b92001-05-28 00:41:15 +00005809 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005810}
5811
5812/*
drh91025292004-05-03 19:49:32 +00005813** Create the byte sequence used to represent a cell on page pPage
5814** and write that byte sequence into pCell[]. Overflow pages are
5815** allocated and filled in as necessary. The calling procedure
5816** is responsible for making sure sufficient space has been allocated
5817** for pCell[].
5818**
5819** Note that pCell does not necessary need to point to the pPage->aData
5820** area. pCell might point to some temporary storage. The cell will
5821** be constructed in this temporary area then copied into pPage->aData
5822** later.
drh3b7511c2001-05-26 13:15:44 +00005823*/
5824static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005825 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005826 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005827 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005828 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005829 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005830 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005831){
drh3b7511c2001-05-26 13:15:44 +00005832 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005833 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005834 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005835 int spaceLeft;
5836 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005837 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005838 unsigned char *pPrior;
5839 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005840 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005841 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005842 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00005843
drh1fee73e2007-08-29 04:00:57 +00005844 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005845
drhc5053fb2008-11-27 02:22:10 +00005846 /* pPage is not necessarily writeable since pCell might be auxiliary
5847 ** buffer space that is separate from the pPage buffer area */
5848 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5849 || sqlite3PagerIswriteable(pPage->pDbPage) );
5850
drh91025292004-05-03 19:49:32 +00005851 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00005852 nHeader = pPage->childPtrSize;
5853 nPayload = nData + nZero;
drh3e28ff52014-09-24 00:59:08 +00005854 if( pPage->intKeyLeaf ){
drh6200c882014-09-23 22:36:25 +00005855 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh6f11bef2004-05-13 01:12:56 +00005856 }else{
drh6200c882014-09-23 22:36:25 +00005857 assert( nData==0 );
5858 assert( nZero==0 );
drh91025292004-05-03 19:49:32 +00005859 }
drh6f11bef2004-05-13 01:12:56 +00005860 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
drh6f11bef2004-05-13 01:12:56 +00005861
drh6200c882014-09-23 22:36:25 +00005862 /* Fill in the payload size */
drh3aac2dd2004-04-26 14:10:20 +00005863 if( pPage->intKey ){
5864 pSrc = pData;
5865 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005866 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005867 }else{
danielk197731d31b82009-07-13 13:18:07 +00005868 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5869 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005870 }
drh6200c882014-09-23 22:36:25 +00005871 nPayload = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005872 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005873 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005874 }
drh6200c882014-09-23 22:36:25 +00005875 if( nPayload<=pPage->maxLocal ){
5876 n = nHeader + nPayload;
5877 testcase( n==3 );
5878 testcase( n==4 );
5879 if( n<4 ) n = 4;
5880 *pnSize = n;
5881 spaceLeft = nPayload;
5882 pPrior = pCell;
5883 }else{
5884 int mn = pPage->minLocal;
5885 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
5886 testcase( n==pPage->maxLocal );
5887 testcase( n==pPage->maxLocal+1 );
5888 if( n > pPage->maxLocal ) n = mn;
5889 spaceLeft = n;
5890 *pnSize = n + nHeader + 4;
5891 pPrior = &pCell[nHeader+n];
5892 }
drh3aac2dd2004-04-26 14:10:20 +00005893 pPayload = &pCell[nHeader];
drh3b7511c2001-05-26 13:15:44 +00005894
drh6200c882014-09-23 22:36:25 +00005895 /* At this point variables should be set as follows:
5896 **
5897 ** nPayload Total payload size in bytes
5898 ** pPayload Begin writing payload here
5899 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
5900 ** that means content must spill into overflow pages.
5901 ** *pnSize Size of the local cell (not counting overflow pages)
5902 ** pPrior Where to write the pgno of the first overflow page
5903 **
5904 ** Use a call to btreeParseCellPtr() to verify that the values above
5905 ** were computed correctly.
5906 */
5907#if SQLITE_DEBUG
5908 {
5909 CellInfo info;
5910 btreeParseCellPtr(pPage, pCell, &info);
5911 assert( nHeader=(int)(info.pPayload - pCell) );
5912 assert( info.nKey==nKey );
5913 assert( *pnSize == info.nSize );
5914 assert( spaceLeft == info.nLocal );
5915 assert( pPrior == &pCell[info.iOverflow] );
5916 }
5917#endif
5918
5919 /* Write the payload into the local Cell and any extra into overflow pages */
drh3b7511c2001-05-26 13:15:44 +00005920 while( nPayload>0 ){
5921 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005922#ifndef SQLITE_OMIT_AUTOVACUUM
5923 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005924 if( pBt->autoVacuum ){
5925 do{
5926 pgnoOvfl++;
5927 } while(
5928 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5929 );
danielk1977b39f70b2007-05-17 18:28:11 +00005930 }
danielk1977afcdd022004-10-31 16:25:42 +00005931#endif
drhf49661a2008-12-10 16:45:50 +00005932 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005933#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005934 /* If the database supports auto-vacuum, and the second or subsequent
5935 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005936 ** for that page now.
5937 **
5938 ** If this is the first overflow page, then write a partial entry
5939 ** to the pointer-map. If we write nothing to this pointer-map slot,
5940 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00005941 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00005942 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005943 */
danielk19774ef24492007-05-23 09:52:41 +00005944 if( pBt->autoVacuum && rc==SQLITE_OK ){
5945 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00005946 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00005947 if( rc ){
5948 releasePage(pOvfl);
5949 }
danielk1977afcdd022004-10-31 16:25:42 +00005950 }
5951#endif
drh3b7511c2001-05-26 13:15:44 +00005952 if( rc ){
drh9b171272004-05-08 02:03:22 +00005953 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005954 return rc;
5955 }
drhc5053fb2008-11-27 02:22:10 +00005956
5957 /* If pToRelease is not zero than pPrior points into the data area
5958 ** of pToRelease. Make sure pToRelease is still writeable. */
5959 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5960
5961 /* If pPrior is part of the data area of pPage, then make sure pPage
5962 ** is still writeable */
5963 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5964 || sqlite3PagerIswriteable(pPage->pDbPage) );
5965
drh3aac2dd2004-04-26 14:10:20 +00005966 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005967 releasePage(pToRelease);
5968 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005969 pPrior = pOvfl->aData;
5970 put4byte(pPrior, 0);
5971 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005972 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005973 }
5974 n = nPayload;
5975 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005976
5977 /* If pToRelease is not zero than pPayload points into the data area
5978 ** of pToRelease. Make sure pToRelease is still writeable. */
5979 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5980
5981 /* If pPayload is part of the data area of pPage, then make sure pPage
5982 ** is still writeable */
5983 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5984 || sqlite3PagerIswriteable(pPage->pDbPage) );
5985
drhb026e052007-05-02 01:34:31 +00005986 if( nSrc>0 ){
5987 if( n>nSrc ) n = nSrc;
5988 assert( pSrc );
5989 memcpy(pPayload, pSrc, n);
5990 }else{
5991 memset(pPayload, 0, n);
5992 }
drh3b7511c2001-05-26 13:15:44 +00005993 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005994 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005995 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005996 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005997 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005998 if( nSrc==0 ){
5999 nSrc = nData;
6000 pSrc = pData;
6001 }
drhdd793422001-06-28 01:54:48 +00006002 }
drh9b171272004-05-08 02:03:22 +00006003 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006004 return SQLITE_OK;
6005}
6006
drh14acc042001-06-10 19:56:58 +00006007/*
6008** Remove the i-th cell from pPage. This routine effects pPage only.
6009** The cell content is not freed or deallocated. It is assumed that
6010** the cell content has been copied someplace else. This routine just
6011** removes the reference to the cell from pPage.
6012**
6013** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006014*/
drh98add2e2009-07-20 17:11:49 +00006015static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006016 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006017 u8 *data; /* pPage->aData */
6018 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006019 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006020 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006021
drh98add2e2009-07-20 17:11:49 +00006022 if( *pRC ) return;
6023
drh8c42ca92001-06-22 19:15:00 +00006024 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006025 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006026 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006027 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00006028 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006029 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006030 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006031 hdr = pPage->hdrOffset;
6032 testcase( pc==get2byte(&data[hdr+5]) );
6033 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00006034 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006035 *pRC = SQLITE_CORRUPT_BKPT;
6036 return;
shane0af3f892008-11-12 04:55:34 +00006037 }
shanedcc50b72008-11-13 18:29:50 +00006038 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006039 if( rc ){
6040 *pRC = rc;
6041 return;
shanedcc50b72008-11-13 18:29:50 +00006042 }
drh14acc042001-06-10 19:56:58 +00006043 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006044 if( pPage->nCell==0 ){
6045 memset(&data[hdr+1], 0, 4);
6046 data[hdr+7] = 0;
6047 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6048 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6049 - pPage->childPtrSize - 8;
6050 }else{
6051 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6052 put2byte(&data[hdr+3], pPage->nCell);
6053 pPage->nFree += 2;
6054 }
drh14acc042001-06-10 19:56:58 +00006055}
6056
6057/*
6058** Insert a new cell on pPage at cell index "i". pCell points to the
6059** content of the cell.
6060**
6061** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006062** will not fit, then make a copy of the cell content into pTemp if
6063** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006064** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006065** in pTemp or the original pCell) and also record its index.
6066** Allocating a new entry in pPage->aCell[] implies that
6067** pPage->nOverflow is incremented.
drh14acc042001-06-10 19:56:58 +00006068*/
drh98add2e2009-07-20 17:11:49 +00006069static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006070 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006071 int i, /* New cell becomes the i-th cell of the page */
6072 u8 *pCell, /* Content of the new cell */
6073 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006074 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006075 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6076 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006077){
drh383d30f2010-02-26 13:07:37 +00006078 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006079 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006080 int end; /* First byte past the last cell pointer in data[] */
6081 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00006082 int cellOffset; /* Address of first cell pointer in data[] */
6083 u8 *data; /* The content of the whole page */
danielk19774dbaa892009-06-16 16:50:22 +00006084
drh98add2e2009-07-20 17:11:49 +00006085 if( *pRC ) return;
6086
drh43605152004-05-29 21:46:49 +00006087 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006088 assert( MX_CELL(pPage->pBt)<=10921 );
6089 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006090 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6091 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006092 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00006093 /* The cell should normally be sized correctly. However, when moving a
6094 ** malformed cell from a leaf page to an interior page, if the cell size
6095 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6096 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6097 ** the term after the || in the following assert(). */
6098 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00006099 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006100 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006101 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006102 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006103 }
danielk19774dbaa892009-06-16 16:50:22 +00006104 if( iChild ){
6105 put4byte(pCell, iChild);
6106 }
drh43605152004-05-29 21:46:49 +00006107 j = pPage->nOverflow++;
drh2cbd78b2012-02-02 19:37:18 +00006108 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
6109 pPage->apOvfl[j] = pCell;
6110 pPage->aiOvfl[j] = (u16)i;
drh14acc042001-06-10 19:56:58 +00006111 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006112 int rc = sqlite3PagerWrite(pPage->pDbPage);
6113 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006114 *pRC = rc;
6115 return;
danielk19776e465eb2007-08-21 13:11:00 +00006116 }
6117 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006118 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00006119 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00006120 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00006121 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00006122 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006123 if( rc ){ *pRC = rc; return; }
drhc314dc72009-07-21 11:52:34 +00006124 /* The allocateSpace() routine guarantees the following two properties
6125 ** if it returns success */
6126 assert( idx >= end+2 );
drhfcd71b62011-04-05 22:08:24 +00006127 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00006128 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00006129 pPage->nFree -= (u16)(2 + sz);
drhd6176c42014-10-11 17:22:55 +00006130 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006131 if( iChild ){
6132 put4byte(&data[idx], iChild);
6133 }
drh8f518832013-12-09 02:32:19 +00006134 memmove(&data[ins+2], &data[ins], end-ins);
drh43605152004-05-29 21:46:49 +00006135 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00006136 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00006137#ifndef SQLITE_OMIT_AUTOVACUUM
6138 if( pPage->pBt->autoVacuum ){
6139 /* The cell may contain a pointer to an overflow page. If so, write
6140 ** the entry for the overflow page into the pointer map.
6141 */
drh98add2e2009-07-20 17:11:49 +00006142 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006143 }
6144#endif
drh14acc042001-06-10 19:56:58 +00006145 }
6146}
6147
6148/*
dan8e9ba0c2014-10-14 17:27:04 +00006149** Array apCell[] contains pointers to nCell b-tree page cells. The
6150** szCell[] array contains the size in bytes of each cell. This function
6151** replaces the current contents of page pPg with the contents of the cell
6152** array.
6153**
6154** Some of the cells in apCell[] may currently be stored in pPg. This
6155** function works around problems caused by this by making a copy of any
6156** such cells before overwriting the page data.
6157**
6158** The MemPage.nFree field is invalidated by this function. It is the
6159** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006160*/
dan33ea4862014-10-09 19:35:37 +00006161static void rebuildPage(
6162 MemPage *pPg, /* Edit this page */
dan33ea4862014-10-09 19:35:37 +00006163 int nCell, /* Final number of cells on page */
dan09c68402014-10-11 20:00:24 +00006164 u8 **apCell, /* Array of cells */
6165 u16 *szCell /* Array of cell sizes */
dan33ea4862014-10-09 19:35:37 +00006166){
6167 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6168 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6169 const int usableSize = pPg->pBt->usableSize;
6170 u8 * const pEnd = &aData[usableSize];
6171 int i;
6172 u8 *pCellptr = pPg->aCellIdx;
6173 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6174 u8 *pData;
6175
6176 i = get2byte(&aData[hdr+5]);
6177 memcpy(&pTmp[i], &aData[i], usableSize - i);
dan33ea4862014-10-09 19:35:37 +00006178
dan8e9ba0c2014-10-14 17:27:04 +00006179 pData = pEnd;
dan33ea4862014-10-09 19:35:37 +00006180 for(i=0; i<nCell; i++){
6181 u8 *pCell = apCell[i];
6182 if( pCell>aData && pCell<pEnd ){
6183 pCell = &pTmp[pCell - aData];
6184 }
6185 pData -= szCell[i];
6186 memcpy(pData, pCell, szCell[i]);
6187 put2byte(pCellptr, (pData - aData));
6188 pCellptr += 2;
drh7ca09542015-05-24 21:46:03 +00006189 assert( szCell[i]==cellSizePtr(pPg, pCell) || CORRUPT_DB );
6190 testcase( szCell[i]==cellSizePtr(pPg,pCell) );
dan33ea4862014-10-09 19:35:37 +00006191 }
6192
dand7b545b2014-10-13 18:03:27 +00006193 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006194 pPg->nCell = nCell;
6195 pPg->nOverflow = 0;
6196
6197 put2byte(&aData[hdr+1], 0);
6198 put2byte(&aData[hdr+3], pPg->nCell);
6199 put2byte(&aData[hdr+5], pData - aData);
6200 aData[hdr+7] = 0x00;
6201}
6202
dan8e9ba0c2014-10-14 17:27:04 +00006203/*
6204** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6205** contains the size in bytes of each such cell. This function attempts to
6206** add the cells stored in the array to page pPg. If it cannot (because
6207** the page needs to be defragmented before the cells will fit), non-zero
6208** is returned. Otherwise, if the cells are added successfully, zero is
6209** returned.
6210**
6211** Argument pCellptr points to the first entry in the cell-pointer array
6212** (part of page pPg) to populate. After cell apCell[0] is written to the
6213** page body, a 16-bit offset is written to pCellptr. And so on, for each
6214** cell in the array. It is the responsibility of the caller to ensure
6215** that it is safe to overwrite this part of the cell-pointer array.
6216**
6217** When this function is called, *ppData points to the start of the
6218** content area on page pPg. If the size of the content area is extended,
6219** *ppData is updated to point to the new start of the content area
6220** before returning.
6221**
6222** Finally, argument pBegin points to the byte immediately following the
6223** end of the space required by this page for the cell-pointer area (for
6224** all cells - not just those inserted by the current call). If the content
6225** area must be extended to before this point in order to accomodate all
6226** cells in apCell[], then the cells do not fit and non-zero is returned.
6227*/
dand7b545b2014-10-13 18:03:27 +00006228static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00006229 MemPage *pPg, /* Page to add cells to */
6230 u8 *pBegin, /* End of cell-pointer array */
6231 u8 **ppData, /* IN/OUT: Page content -area pointer */
6232 u8 *pCellptr, /* Pointer to cell-pointer area */
6233 int nCell, /* Number of cells to add to pPg */
dand7b545b2014-10-13 18:03:27 +00006234 u8 **apCell, /* Array of cells */
6235 u16 *szCell /* Array of cell sizes */
6236){
6237 int i;
6238 u8 *aData = pPg->aData;
6239 u8 *pData = *ppData;
dan8e9ba0c2014-10-14 17:27:04 +00006240 const int bFreelist = aData[1] || aData[2];
dan23eba452014-10-24 18:43:57 +00006241 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
dand7b545b2014-10-13 18:03:27 +00006242 for(i=0; i<nCell; i++){
6243 int sz = szCell[i];
drhba0f9992014-10-30 20:48:44 +00006244 int rc;
dand7b545b2014-10-13 18:03:27 +00006245 u8 *pSlot;
drhba0f9992014-10-30 20:48:44 +00006246 if( bFreelist==0 || (pSlot = pageFindSlot(pPg, sz, &rc, 0))==0 ){
dand7b545b2014-10-13 18:03:27 +00006247 pData -= sz;
6248 if( pData<pBegin ) return 1;
6249 pSlot = pData;
6250 }
6251 memcpy(pSlot, apCell[i], sz);
6252 put2byte(pCellptr, (pSlot - aData));
6253 pCellptr += 2;
6254 }
6255 *ppData = pData;
6256 return 0;
6257}
6258
dan8e9ba0c2014-10-14 17:27:04 +00006259/*
6260** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6261** contains the size in bytes of each such cell. This function adds the
6262** space associated with each cell in the array that is currently stored
6263** within the body of pPg to the pPg free-list. The cell-pointers and other
6264** fields of the page are not updated.
6265**
6266** This function returns the total number of cells added to the free-list.
6267*/
dand7b545b2014-10-13 18:03:27 +00006268static int pageFreeArray(
6269 MemPage *pPg, /* Page to edit */
6270 int nCell, /* Cells to delete */
6271 u8 **apCell, /* Array of cells */
6272 u16 *szCell /* Array of cell sizes */
6273){
6274 u8 * const aData = pPg->aData;
6275 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00006276 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00006277 int nRet = 0;
6278 int i;
6279 u8 *pFree = 0;
6280 int szFree = 0;
6281
6282 for(i=0; i<nCell; i++){
6283 u8 *pCell = apCell[i];
dan89ca0b32014-10-25 20:36:28 +00006284 if( pCell>=pStart && pCell<pEnd ){
dand7b545b2014-10-13 18:03:27 +00006285 int sz = szCell[i];
6286 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00006287 if( pFree ){
6288 assert( pFree>aData && (pFree - aData)<65536 );
6289 freeSpace(pPg, (u16)(pFree - aData), szFree);
6290 }
dand7b545b2014-10-13 18:03:27 +00006291 pFree = pCell;
6292 szFree = sz;
dan89ca0b32014-10-25 20:36:28 +00006293 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00006294 }else{
6295 pFree = pCell;
6296 szFree += sz;
6297 }
6298 nRet++;
6299 }
6300 }
drhfefa0942014-11-05 21:21:08 +00006301 if( pFree ){
6302 assert( pFree>aData && (pFree - aData)<65536 );
6303 freeSpace(pPg, (u16)(pFree - aData), szFree);
6304 }
dand7b545b2014-10-13 18:03:27 +00006305 return nRet;
6306}
6307
dand7b545b2014-10-13 18:03:27 +00006308/*
drh5ab63772014-11-27 03:46:04 +00006309** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6310** pages being balanced. The current page, pPg, has pPg->nCell cells starting
6311** with apCell[iOld]. After balancing, this page should hold nNew cells
6312** starting at apCell[iNew].
6313**
6314** This routine makes the necessary adjustments to pPg so that it contains
6315** the correct cells after being balanced.
6316**
dand7b545b2014-10-13 18:03:27 +00006317** The pPg->nFree field is invalid when this function returns. It is the
6318** responsibility of the caller to set it correctly.
6319*/
dan09c68402014-10-11 20:00:24 +00006320static void editPage(
6321 MemPage *pPg, /* Edit this page */
6322 int iOld, /* Index of first cell currently on page */
6323 int iNew, /* Index of new first cell on page */
6324 int nNew, /* Final number of cells on page */
6325 u8 **apCell, /* Array of cells */
6326 u16 *szCell /* Array of cell sizes */
6327){
dand7b545b2014-10-13 18:03:27 +00006328 u8 * const aData = pPg->aData;
6329 const int hdr = pPg->hdrOffset;
6330 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6331 int nCell = pPg->nCell; /* Cells stored on pPg */
6332 u8 *pData;
6333 u8 *pCellptr;
6334 int i;
6335 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6336 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00006337
6338#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00006339 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6340 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00006341#endif
6342
dand7b545b2014-10-13 18:03:27 +00006343 /* Remove cells from the start and end of the page */
6344 if( iOld<iNew ){
6345 int nShift = pageFreeArray(
6346 pPg, iNew-iOld, &apCell[iOld], &szCell[iOld]
6347 );
6348 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6349 nCell -= nShift;
6350 }
6351 if( iNewEnd < iOldEnd ){
6352 nCell -= pageFreeArray(
6353 pPg, iOldEnd-iNewEnd, &apCell[iNewEnd], &szCell[iNewEnd]
6354 );
6355 }
dan09c68402014-10-11 20:00:24 +00006356
drh5ab63772014-11-27 03:46:04 +00006357 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00006358 if( pData<pBegin ) goto editpage_fail;
6359
6360 /* Add cells to the start of the page */
6361 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00006362 int nAdd = MIN(nNew,iOld-iNew);
6363 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
dand7b545b2014-10-13 18:03:27 +00006364 pCellptr = pPg->aCellIdx;
6365 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6366 if( pageInsertArray(
6367 pPg, pBegin, &pData, pCellptr,
6368 nAdd, &apCell[iNew], &szCell[iNew]
6369 ) ) goto editpage_fail;
6370 nCell += nAdd;
6371 }
6372
6373 /* Add any overflow cells */
6374 for(i=0; i<pPg->nOverflow; i++){
6375 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6376 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00006377 pCellptr = &pPg->aCellIdx[iCell * 2];
dand7b545b2014-10-13 18:03:27 +00006378 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6379 nCell++;
6380 if( pageInsertArray(
6381 pPg, pBegin, &pData, pCellptr,
6382 1, &apCell[iCell + iNew], &szCell[iCell + iNew]
6383 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006384 }
dand7b545b2014-10-13 18:03:27 +00006385 }
dan09c68402014-10-11 20:00:24 +00006386
dand7b545b2014-10-13 18:03:27 +00006387 /* Append cells to the end of the page */
6388 pCellptr = &pPg->aCellIdx[nCell*2];
6389 if( pageInsertArray(
6390 pPg, pBegin, &pData, pCellptr,
6391 nNew-nCell, &apCell[iNew+nCell], &szCell[iNew+nCell]
6392 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006393
dand7b545b2014-10-13 18:03:27 +00006394 pPg->nCell = nNew;
6395 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00006396
dand7b545b2014-10-13 18:03:27 +00006397 put2byte(&aData[hdr+3], pPg->nCell);
6398 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00006399
6400#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00006401 for(i=0; i<nNew && !CORRUPT_DB; i++){
dand7b545b2014-10-13 18:03:27 +00006402 u8 *pCell = apCell[i+iNew];
6403 int iOff = get2byte(&pPg->aCellIdx[i*2]);
6404 if( pCell>=aData && pCell<&aData[pPg->pBt->usableSize] ){
6405 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00006406 }
dand7b545b2014-10-13 18:03:27 +00006407 assert( 0==memcmp(pCell, &aData[iOff], szCell[i+iNew]) );
6408 }
dan09c68402014-10-11 20:00:24 +00006409#endif
6410
dand7b545b2014-10-13 18:03:27 +00006411 return;
dan09c68402014-10-11 20:00:24 +00006412 editpage_fail:
dan09c68402014-10-11 20:00:24 +00006413 /* Unable to edit this page. Rebuild it from scratch instead. */
6414 rebuildPage(pPg, nNew, &apCell[iNew], &szCell[iNew]);
6415}
6416
drh14acc042001-06-10 19:56:58 +00006417/*
drhc3b70572003-01-04 19:44:07 +00006418** The following parameters determine how many adjacent pages get involved
6419** in a balancing operation. NN is the number of neighbors on either side
6420** of the page that participate in the balancing operation. NB is the
6421** total number of pages that participate, including the target page and
6422** NN neighbors on either side.
6423**
6424** The minimum value of NN is 1 (of course). Increasing NN above 1
6425** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6426** in exchange for a larger degradation in INSERT and UPDATE performance.
6427** The value of NN appears to give the best results overall.
6428*/
6429#define NN 1 /* Number of neighbors on either side of pPage */
6430#define NB (NN*2+1) /* Total pages involved in the balance */
6431
danielk1977ac245ec2005-01-14 13:50:11 +00006432
drh615ae552005-01-16 23:21:00 +00006433#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00006434/*
6435** This version of balance() handles the common special case where
6436** a new entry is being inserted on the extreme right-end of the
6437** tree, in other words, when the new entry will become the largest
6438** entry in the tree.
6439**
drhc314dc72009-07-21 11:52:34 +00006440** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00006441** a new page to the right-hand side and put the one new entry in
6442** that page. This leaves the right side of the tree somewhat
6443** unbalanced. But odds are that we will be inserting new entries
6444** at the end soon afterwards so the nearly empty page will quickly
6445** fill up. On average.
6446**
6447** pPage is the leaf page which is the right-most page in the tree.
6448** pParent is its parent. pPage must have a single overflow entry
6449** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00006450**
6451** The pSpace buffer is used to store a temporary copy of the divider
6452** cell that will be inserted into pParent. Such a cell consists of a 4
6453** byte page number followed by a variable length integer. In other
6454** words, at most 13 bytes. Hence the pSpace buffer must be at
6455** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00006456*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006457static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6458 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00006459 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00006460 int rc; /* Return Code */
6461 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00006462
drh1fee73e2007-08-29 04:00:57 +00006463 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00006464 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006465 assert( pPage->nOverflow==1 );
6466
drh5d433ce2010-08-14 16:02:52 +00006467 /* This error condition is now caught prior to reaching this function */
drh1fd2d7d2014-12-02 16:16:47 +00006468 if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00006469
danielk1977a50d9aa2009-06-08 14:49:45 +00006470 /* Allocate a new page. This page will become the right-sibling of
6471 ** pPage. Make the parent page writable, so that the new divider cell
6472 ** may be inserted. If both these operations are successful, proceed.
6473 */
drh4f0c5872007-03-26 22:05:01 +00006474 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006475
danielk1977eaa06f62008-09-18 17:34:44 +00006476 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006477
6478 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00006479 u8 *pCell = pPage->apOvfl[0];
danielk19776f235cc2009-06-04 14:46:08 +00006480 u16 szCell = cellSizePtr(pPage, pCell);
6481 u8 *pStop;
6482
drhc5053fb2008-11-27 02:22:10 +00006483 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00006484 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6485 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
dan8e9ba0c2014-10-14 17:27:04 +00006486 rebuildPage(pNew, 1, &pCell, &szCell);
6487 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00006488
6489 /* If this is an auto-vacuum database, update the pointer map
6490 ** with entries for the new page, and any pointer from the
6491 ** cell on the page to an overflow page. If either of these
6492 ** operations fails, the return code is set, but the contents
6493 ** of the parent page are still manipulated by thh code below.
6494 ** That is Ok, at this point the parent page is guaranteed to
6495 ** be marked as dirty. Returning an error code will cause a
6496 ** rollback, undoing any changes made to the parent page.
6497 */
6498 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006499 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
6500 if( szCell>pNew->minLocal ){
6501 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006502 }
6503 }
danielk1977eaa06f62008-09-18 17:34:44 +00006504
danielk19776f235cc2009-06-04 14:46:08 +00006505 /* Create a divider cell to insert into pParent. The divider cell
6506 ** consists of a 4-byte page number (the page number of pPage) and
6507 ** a variable length key value (which must be the same value as the
6508 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00006509 **
danielk19776f235cc2009-06-04 14:46:08 +00006510 ** To find the largest key value on pPage, first find the right-most
6511 ** cell on pPage. The first two fields of this cell are the
6512 ** record-length (a variable length integer at most 32-bits in size)
6513 ** and the key value (a variable length integer, may have any value).
6514 ** The first of the while(...) loops below skips over the record-length
6515 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00006516 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00006517 */
danielk1977eaa06f62008-09-18 17:34:44 +00006518 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00006519 pStop = &pCell[9];
6520 while( (*(pCell++)&0x80) && pCell<pStop );
6521 pStop = &pCell[9];
6522 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
6523
danielk19774dbaa892009-06-16 16:50:22 +00006524 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00006525 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
6526 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00006527
6528 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00006529 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
6530
danielk1977e08a3c42008-09-18 18:17:03 +00006531 /* Release the reference to the new page. */
6532 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00006533 }
6534
danielk1977eaa06f62008-09-18 17:34:44 +00006535 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00006536}
drh615ae552005-01-16 23:21:00 +00006537#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00006538
dane6593d82014-10-24 16:40:49 +00006539#if 0
drhc3b70572003-01-04 19:44:07 +00006540/*
danielk19774dbaa892009-06-16 16:50:22 +00006541** This function does not contribute anything to the operation of SQLite.
6542** it is sometimes activated temporarily while debugging code responsible
6543** for setting pointer-map entries.
6544*/
6545static int ptrmapCheckPages(MemPage **apPage, int nPage){
6546 int i, j;
6547 for(i=0; i<nPage; i++){
6548 Pgno n;
6549 u8 e;
6550 MemPage *pPage = apPage[i];
6551 BtShared *pBt = pPage->pBt;
6552 assert( pPage->isInit );
6553
6554 for(j=0; j<pPage->nCell; j++){
6555 CellInfo info;
6556 u8 *z;
6557
6558 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00006559 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00006560 if( info.iOverflow ){
6561 Pgno ovfl = get4byte(&z[info.iOverflow]);
6562 ptrmapGet(pBt, ovfl, &e, &n);
6563 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6564 }
6565 if( !pPage->leaf ){
6566 Pgno child = get4byte(z);
6567 ptrmapGet(pBt, child, &e, &n);
6568 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6569 }
6570 }
6571 if( !pPage->leaf ){
6572 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6573 ptrmapGet(pBt, child, &e, &n);
6574 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6575 }
6576 }
6577 return 1;
6578}
6579#endif
6580
danielk1977cd581a72009-06-23 15:43:39 +00006581/*
6582** This function is used to copy the contents of the b-tree node stored
6583** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6584** the pointer-map entries for each child page are updated so that the
6585** parent page stored in the pointer map is page pTo. If pFrom contained
6586** any cells with overflow page pointers, then the corresponding pointer
6587** map entries are also updated so that the parent page is page pTo.
6588**
6589** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00006590** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00006591**
danielk197730548662009-07-09 05:07:37 +00006592** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00006593**
6594** The performance of this function is not critical. It is only used by
6595** the balance_shallower() and balance_deeper() procedures, neither of
6596** which are called often under normal circumstances.
6597*/
drhc314dc72009-07-21 11:52:34 +00006598static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
6599 if( (*pRC)==SQLITE_OK ){
6600 BtShared * const pBt = pFrom->pBt;
6601 u8 * const aFrom = pFrom->aData;
6602 u8 * const aTo = pTo->aData;
6603 int const iFromHdr = pFrom->hdrOffset;
6604 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00006605 int rc;
drhc314dc72009-07-21 11:52:34 +00006606 int iData;
6607
6608
6609 assert( pFrom->isInit );
6610 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00006611 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00006612
6613 /* Copy the b-tree node content from page pFrom to page pTo. */
6614 iData = get2byte(&aFrom[iFromHdr+5]);
6615 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6616 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6617
6618 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00006619 ** match the new data. The initialization of pTo can actually fail under
6620 ** fairly obscure circumstances, even though it is a copy of initialized
6621 ** page pFrom.
6622 */
drhc314dc72009-07-21 11:52:34 +00006623 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00006624 rc = btreeInitPage(pTo);
6625 if( rc!=SQLITE_OK ){
6626 *pRC = rc;
6627 return;
6628 }
drhc314dc72009-07-21 11:52:34 +00006629
6630 /* If this is an auto-vacuum database, update the pointer-map entries
6631 ** for any b-tree or overflow pages that pTo now contains the pointers to.
6632 */
6633 if( ISAUTOVACUUM ){
6634 *pRC = setChildPtrmaps(pTo);
6635 }
danielk1977cd581a72009-06-23 15:43:39 +00006636 }
danielk1977cd581a72009-06-23 15:43:39 +00006637}
6638
6639/*
danielk19774dbaa892009-06-16 16:50:22 +00006640** This routine redistributes cells on the iParentIdx'th child of pParent
6641** (hereafter "the page") and up to 2 siblings so that all pages have about the
6642** same amount of free space. Usually a single sibling on either side of the
6643** page are used in the balancing, though both siblings might come from one
6644** side if the page is the first or last child of its parent. If the page
6645** has fewer than 2 siblings (something which can only happen if the page
6646** is a root page or a child of a root page) then all available siblings
6647** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00006648**
danielk19774dbaa892009-06-16 16:50:22 +00006649** The number of siblings of the page might be increased or decreased by
6650** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00006651**
danielk19774dbaa892009-06-16 16:50:22 +00006652** Note that when this routine is called, some of the cells on the page
6653** might not actually be stored in MemPage.aData[]. This can happen
6654** if the page is overfull. This routine ensures that all cells allocated
6655** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00006656**
danielk19774dbaa892009-06-16 16:50:22 +00006657** In the course of balancing the page and its siblings, cells may be
6658** inserted into or removed from the parent page (pParent). Doing so
6659** may cause the parent page to become overfull or underfull. If this
6660** happens, it is the responsibility of the caller to invoke the correct
6661** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00006662**
drh5e00f6c2001-09-13 13:46:56 +00006663** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00006664** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00006665** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00006666**
6667** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00006668** buffer big enough to hold one page. If while inserting cells into the parent
6669** page (pParent) the parent page becomes overfull, this buffer is
6670** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00006671** a maximum of four divider cells into the parent page, and the maximum
6672** size of a cell stored within an internal node is always less than 1/4
6673** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6674** enough for all overflow cells.
6675**
6676** If aOvflSpace is set to a null pointer, this function returns
6677** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00006678*/
mistachkine7c54162012-10-02 22:54:27 +00006679#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6680#pragma optimize("", off)
6681#endif
danielk19774dbaa892009-06-16 16:50:22 +00006682static int balance_nonroot(
6683 MemPage *pParent, /* Parent page of siblings being balanced */
6684 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00006685 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00006686 int isRoot, /* True if pParent is a root-page */
6687 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00006688){
drh16a9b832007-05-05 18:39:25 +00006689 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00006690 int nCell = 0; /* Number of cells in apCell[] */
6691 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00006692 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00006693 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00006694 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00006695 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00006696 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00006697 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00006698 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00006699 int usableSpace; /* Bytes in pPage beyond the header */
6700 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00006701 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00006702 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00006703 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00006704 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00006705 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00006706 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00006707 u8 *pRight; /* Location in parent of right-sibling pointer */
6708 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00006709 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
dan09c68402014-10-11 20:00:24 +00006710 int cntOld[NB+2]; /* Old index in aCell[] after i-th page */
drh2a0df922014-10-30 23:14:56 +00006711 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00006712 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00006713 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00006714 u8 *aSpace1; /* Space for copies of dividers cells */
6715 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00006716 u8 abDone[NB+2]; /* True after i'th new page is populated */
6717 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00006718 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00006719 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
dan33ea4862014-10-09 19:35:37 +00006720
6721 memset(abDone, 0, sizeof(abDone));
danielk1977a50d9aa2009-06-08 14:49:45 +00006722 pBt = pParent->pBt;
6723 assert( sqlite3_mutex_held(pBt->mutex) );
6724 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00006725
danielk1977e5765212009-06-17 11:13:28 +00006726#if 0
drh43605152004-05-29 21:46:49 +00006727 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00006728#endif
drh2e38c322004-09-03 18:38:44 +00006729
danielk19774dbaa892009-06-16 16:50:22 +00006730 /* At this point pParent may have at most one overflow cell. And if
6731 ** this overflow cell is present, it must be the cell with
6732 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00006733 ** is called (indirectly) from sqlite3BtreeDelete().
6734 */
danielk19774dbaa892009-06-16 16:50:22 +00006735 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00006736 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00006737
danielk197711a8a862009-06-17 11:49:52 +00006738 if( !aOvflSpace ){
6739 return SQLITE_NOMEM;
6740 }
6741
danielk1977a50d9aa2009-06-08 14:49:45 +00006742 /* Find the sibling pages to balance. Also locate the cells in pParent
6743 ** that divide the siblings. An attempt is made to find NN siblings on
6744 ** either side of pPage. More siblings are taken from one side, however,
6745 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00006746 ** has NB or fewer children then all children of pParent are taken.
6747 **
6748 ** This loop also drops the divider cells from the parent page. This
6749 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00006750 ** overflow cells in the parent page, since if any existed they will
6751 ** have already been removed.
6752 */
danielk19774dbaa892009-06-16 16:50:22 +00006753 i = pParent->nOverflow + pParent->nCell;
6754 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00006755 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00006756 }else{
dan7d6885a2012-08-08 14:04:56 +00006757 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00006758 if( iParentIdx==0 ){
6759 nxDiv = 0;
6760 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00006761 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00006762 }else{
danielk19774dbaa892009-06-16 16:50:22 +00006763 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00006764 }
dan7d6885a2012-08-08 14:04:56 +00006765 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00006766 }
dan7d6885a2012-08-08 14:04:56 +00006767 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00006768 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
6769 pRight = &pParent->aData[pParent->hdrOffset+8];
6770 }else{
6771 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
6772 }
6773 pgno = get4byte(pRight);
6774 while( 1 ){
dan11dcd112013-03-15 18:29:18 +00006775 rc = getAndInitPage(pBt, pgno, &apOld[i], 0);
danielk19774dbaa892009-06-16 16:50:22 +00006776 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00006777 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00006778 goto balance_cleanup;
6779 }
danielk1977634f2982005-03-28 08:44:07 +00006780 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00006781 if( (i--)==0 ) break;
6782
drh2cbd78b2012-02-02 19:37:18 +00006783 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
6784 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006785 pgno = get4byte(apDiv[i]);
6786 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6787 pParent->nOverflow = 0;
6788 }else{
6789 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
6790 pgno = get4byte(apDiv[i]);
6791 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6792
6793 /* Drop the cell from the parent page. apDiv[i] still points to
6794 ** the cell within the parent, even though it has been dropped.
6795 ** This is safe because dropping a cell only overwrites the first
6796 ** four bytes of it, and this function does not need the first
6797 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00006798 ** later on.
6799 **
drh8a575d92011-10-12 17:00:28 +00006800 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00006801 ** the dropCell() routine will overwrite the entire cell with zeroes.
6802 ** In this case, temporarily copy the cell into the aOvflSpace[]
6803 ** buffer. It will be copied out again as soon as the aSpace[] buffer
6804 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00006805 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00006806 int iOff;
6807
6808 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00006809 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00006810 rc = SQLITE_CORRUPT_BKPT;
6811 memset(apOld, 0, (i+1)*sizeof(MemPage*));
6812 goto balance_cleanup;
6813 }else{
6814 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
6815 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
6816 }
drh5b47efa2010-02-12 18:18:39 +00006817 }
drh98add2e2009-07-20 17:11:49 +00006818 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006819 }
drh8b2f49b2001-06-08 00:21:52 +00006820 }
6821
drha9121e42008-02-19 14:59:35 +00006822 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00006823 ** alignment */
drha9121e42008-02-19 14:59:35 +00006824 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00006825
drh8b2f49b2001-06-08 00:21:52 +00006826 /*
danielk1977634f2982005-03-28 08:44:07 +00006827 ** Allocate space for memory structures
6828 */
drhfacf0302008-06-17 15:12:00 +00006829 szScratch =
drha9121e42008-02-19 14:59:35 +00006830 nMaxCells*sizeof(u8*) /* apCell */
6831 + nMaxCells*sizeof(u16) /* szCell */
dan33ea4862014-10-09 19:35:37 +00006832 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00006833
drhcbd55b02014-11-04 14:22:27 +00006834 /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer
6835 ** that is more than 6 times the database page size. */
mistachkin0fbd7352014-12-09 04:26:56 +00006836 assert( szScratch<=6*(int)pBt->pageSize );
drhfacf0302008-06-17 15:12:00 +00006837 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00006838 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00006839 rc = SQLITE_NOMEM;
6840 goto balance_cleanup;
6841 }
drha9121e42008-02-19 14:59:35 +00006842 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00006843 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00006844 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00006845
6846 /*
6847 ** Load pointers to all cells on sibling pages and the divider cells
6848 ** into the local apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00006849 ** into space obtained from aSpace1[]. The divider cells have already
6850 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00006851 **
6852 ** If the siblings are on leaf pages, then the child pointers of the
6853 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00006854 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00006855 ** child pointers. If siblings are not leaves, then all cell in
6856 ** apCell[] include child pointers. Either way, all cells in apCell[]
6857 ** are alike.
drh96f5b762004-05-16 16:24:36 +00006858 **
6859 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
6860 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00006861 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006862 leafCorrection = apOld[0]->leaf*4;
drh3e28ff52014-09-24 00:59:08 +00006863 leafData = apOld[0]->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00006864 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006865 int limit;
dan33ea4862014-10-09 19:35:37 +00006866 MemPage *pOld = apOld[i];
danielk19774dbaa892009-06-16 16:50:22 +00006867
6868 limit = pOld->nCell+pOld->nOverflow;
drh68f2a572011-06-03 17:50:49 +00006869 if( pOld->nOverflow>0 ){
6870 for(j=0; j<limit; j++){
6871 assert( nCell<nMaxCells );
6872 apCell[nCell] = findOverflowCell(pOld, j);
6873 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6874 nCell++;
6875 }
6876 }else{
6877 u8 *aData = pOld->aData;
6878 u16 maskPage = pOld->maskPage;
6879 u16 cellOffset = pOld->cellOffset;
6880 for(j=0; j<limit; j++){
6881 assert( nCell<nMaxCells );
6882 apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j);
6883 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6884 nCell++;
6885 }
6886 }
dan09c68402014-10-11 20:00:24 +00006887 cntOld[i] = nCell;
danielk19774dbaa892009-06-16 16:50:22 +00006888 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00006889 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00006890 u8 *pTemp;
6891 assert( nCell<nMaxCells );
6892 szCell[nCell] = sz;
6893 pTemp = &aSpace1[iSpace1];
6894 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00006895 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006896 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00006897 memcpy(pTemp, apDiv[i], sz);
6898 apCell[nCell] = pTemp+leafCorrection;
6899 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00006900 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00006901 if( !pOld->leaf ){
6902 assert( leafCorrection==0 );
6903 assert( pOld->hdrOffset==0 );
6904 /* The right pointer of the child page pOld becomes the left
6905 ** pointer of the divider cell */
6906 memcpy(apCell[nCell], &pOld->aData[8], 4);
6907 }else{
6908 assert( leafCorrection==4 );
6909 if( szCell[nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00006910 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
6911 ** does exist, pad it with 0x00 bytes. */
drh82110da2015-05-23 19:53:48 +00006912 assert( szCell[nCell]==3 || CORRUPT_DB );
6913 assert( apCell[nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00006914 aSpace1[iSpace1++] = 0x00;
danielk19774dbaa892009-06-16 16:50:22 +00006915 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00006916 }
6917 }
drh14acc042001-06-10 19:56:58 +00006918 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00006919 }
drh8b2f49b2001-06-08 00:21:52 +00006920 }
6921
6922 /*
drh6019e162001-07-02 17:51:45 +00006923 ** Figure out the number of pages needed to hold all nCell cells.
6924 ** Store this number in "k". Also compute szNew[] which is the total
6925 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00006926 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00006927 ** cntNew[k] should equal nCell.
6928 **
drh96f5b762004-05-16 16:24:36 +00006929 ** Values computed by this block:
6930 **
6931 ** k: The total number of sibling pages
6932 ** szNew[i]: Spaced used on the i-th sibling page.
6933 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
6934 ** the right of the i-th sibling page.
6935 ** usableSpace: Number of bytes of space available on each sibling.
6936 **
drh8b2f49b2001-06-08 00:21:52 +00006937 */
drh43605152004-05-29 21:46:49 +00006938 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00006939 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00006940 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00006941 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00006942 if( subtotal > usableSpace ){
dand7b545b2014-10-13 18:03:27 +00006943 szNew[k] = subtotal - szCell[i] - 2;
drh6019e162001-07-02 17:51:45 +00006944 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00006945 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00006946 subtotal = 0;
6947 k++;
drh9978c972010-02-23 17:36:32 +00006948 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00006949 }
6950 }
6951 szNew[k] = subtotal;
6952 cntNew[k] = nCell;
6953 k++;
drh96f5b762004-05-16 16:24:36 +00006954
6955 /*
6956 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00006957 ** on the left side (siblings with smaller keys). The left siblings are
6958 ** always nearly full, while the right-most sibling might be nearly empty.
6959 ** The next block of code attempts to adjust the packing of siblings to
6960 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00006961 **
6962 ** This adjustment is more than an optimization. The packing above might
6963 ** be so out of balance as to be illegal. For example, the right-most
6964 ** sibling might be completely empty. This adjustment is not optional.
6965 */
drh6019e162001-07-02 17:51:45 +00006966 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00006967 int szRight = szNew[i]; /* Size of sibling on the right */
6968 int szLeft = szNew[i-1]; /* Size of sibling on the left */
6969 int r; /* Index of right-most cell in left sibling */
6970 int d; /* Index of first cell to the left of right sibling */
6971
6972 r = cntNew[i-1] - 1;
6973 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00006974 assert( d<nMaxCells );
6975 assert( r<nMaxCells );
danf64cc492012-08-08 11:55:15 +00006976 while( szRight==0
6977 || (!bBulk && szRight+szCell[d]+2<=szLeft-(szCell[r]+2))
6978 ){
drh43605152004-05-29 21:46:49 +00006979 szRight += szCell[d] + 2;
6980 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00006981 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00006982 r = cntNew[i-1] - 1;
6983 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00006984 }
drh96f5b762004-05-16 16:24:36 +00006985 szNew[i] = szRight;
6986 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00006987 }
drh09d0deb2005-08-02 17:13:09 +00006988
drh2a0df922014-10-30 23:14:56 +00006989 /* Sanity check: For a non-corrupt database file one of the follwing
6990 ** must be true:
6991 ** (1) We found one or more cells (cntNew[0])>0), or
6992 ** (2) pPage is a virtual root page. A virtual root page is when
6993 ** the real root page is page 1 and we are the only child of
6994 ** that page.
drh09d0deb2005-08-02 17:13:09 +00006995 */
drh2a0df922014-10-30 23:14:56 +00006996 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00006997 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
6998 apOld[0]->pgno, apOld[0]->nCell,
6999 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7000 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007001 ));
7002
drh8b2f49b2001-06-08 00:21:52 +00007003 /*
drh6b308672002-07-08 02:16:37 +00007004 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007005 */
drheac74422009-06-14 12:47:11 +00007006 if( apOld[0]->pgno<=1 ){
drh9978c972010-02-23 17:36:32 +00007007 rc = SQLITE_CORRUPT_BKPT;
drheac74422009-06-14 12:47:11 +00007008 goto balance_cleanup;
7009 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007010 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007011 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007012 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007013 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007014 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007015 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007016 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007017 nNew++;
danielk197728129562005-01-11 10:25:06 +00007018 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007019 }else{
drh7aa8f852006-03-28 00:24:44 +00007020 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007021 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007022 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007023 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007024 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007025 nNew++;
dan09c68402014-10-11 20:00:24 +00007026 cntOld[i] = nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007027
7028 /* Set the pointer-map entry for the new sibling page. */
7029 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007030 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007031 if( rc!=SQLITE_OK ){
7032 goto balance_cleanup;
7033 }
7034 }
drh6b308672002-07-08 02:16:37 +00007035 }
drh8b2f49b2001-06-08 00:21:52 +00007036 }
7037
7038 /*
dan33ea4862014-10-09 19:35:37 +00007039 ** Reassign page numbers so that the new pages are in ascending order.
7040 ** This helps to keep entries in the disk file in order so that a scan
7041 ** of the table is closer to a linear scan through the file. That in turn
7042 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007043 **
dan33ea4862014-10-09 19:35:37 +00007044 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7045 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007046 **
dan33ea4862014-10-09 19:35:37 +00007047 ** When NB==3, this one optimization makes the database about 25% faster
7048 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007049 */
dan33ea4862014-10-09 19:35:37 +00007050 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007051 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007052 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007053 for(j=0; j<i; j++){
7054 if( aPgno[j]==aPgno[i] ){
7055 /* This branch is taken if the set of sibling pages somehow contains
7056 ** duplicate entries. This can happen if the database is corrupt.
7057 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007058 ** we do the detection here in order to avoid populating the pager
7059 ** cache with two separate objects associated with the same
7060 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007061 assert( CORRUPT_DB );
7062 rc = SQLITE_CORRUPT_BKPT;
7063 goto balance_cleanup;
7064 }
7065 }
dan33ea4862014-10-09 19:35:37 +00007066 }
7067 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007068 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007069 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007070 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007071 }
drh00fe08a2014-10-31 00:05:23 +00007072 pgno = aPgOrder[iBest];
7073 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007074 if( iBest!=i ){
7075 if( iBest>i ){
7076 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7077 }
7078 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7079 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007080 }
7081 }
dan33ea4862014-10-09 19:35:37 +00007082
7083 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7084 "%d(%d nc=%d) %d(%d nc=%d)\n",
7085 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007086 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007087 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007088 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007089 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007090 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007091 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7092 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7093 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7094 ));
danielk19774dbaa892009-06-16 16:50:22 +00007095
7096 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7097 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00007098
dan33ea4862014-10-09 19:35:37 +00007099 /* If the sibling pages are not leaves, ensure that the right-child pointer
7100 ** of the right-most new sibling page is set to the value that was
7101 ** originally in the same field of the right-most old sibling page. */
7102 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7103 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7104 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7105 }
danielk1977ac11ee62005-01-15 12:45:51 +00007106
dan33ea4862014-10-09 19:35:37 +00007107 /* Make any required updates to pointer map entries associated with
7108 ** cells stored on sibling pages following the balance operation. Pointer
7109 ** map entries associated with divider cells are set by the insertCell()
7110 ** routine. The associated pointer map entries are:
7111 **
7112 ** a) if the cell contains a reference to an overflow chain, the
7113 ** entry associated with the first page in the overflow chain, and
7114 **
7115 ** b) if the sibling pages are not leaves, the child page associated
7116 ** with the cell.
7117 **
7118 ** If the sibling pages are not leaves, then the pointer map entry
7119 ** associated with the right-child of each sibling may also need to be
7120 ** updated. This happens below, after the sibling pages have been
7121 ** populated, not here.
7122 */
7123 if( ISAUTOVACUUM ){
7124 MemPage *pNew = apNew[0];
7125 u8 *aOld = pNew->aData;
7126 int cntOldNext = pNew->nCell + pNew->nOverflow;
7127 int usableSize = pBt->usableSize;
7128 int iNew = 0;
7129 int iOld = 0;
danielk1977634f2982005-03-28 08:44:07 +00007130
dan33ea4862014-10-09 19:35:37 +00007131 for(i=0; i<nCell; i++){
7132 u8 *pCell = apCell[i];
7133 if( i==cntOldNext ){
7134 MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
7135 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7136 aOld = pOld->aData;
7137 }
7138 if( i==cntNew[iNew] ){
7139 pNew = apNew[++iNew];
7140 if( !leafData ) continue;
7141 }
7142
7143 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00007144 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00007145 ** or else the divider cell to the left of sibling page iOld. So,
7146 ** if sibling page iOld had the same page number as pNew, and if
7147 ** pCell really was a part of sibling page iOld (not a divider or
7148 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00007149 if( iOld>=nNew
7150 || pNew->pgno!=aPgno[iOld]
7151 || pCell<aOld
7152 || pCell>=&aOld[usableSize]
7153 ){
dan33ea4862014-10-09 19:35:37 +00007154 if( !leafCorrection ){
7155 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7156 }
7157 if( szCell[i]>pNew->minLocal ){
7158 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774aeff622007-05-12 09:30:47 +00007159 }
drh4b70f112004-05-02 21:12:19 +00007160 }
drh14acc042001-06-10 19:56:58 +00007161 }
7162 }
dan33ea4862014-10-09 19:35:37 +00007163
7164 /* Insert new divider cells into pParent. */
7165 for(i=0; i<nNew-1; i++){
7166 u8 *pCell;
7167 u8 *pTemp;
7168 int sz;
7169 MemPage *pNew = apNew[i];
7170 j = cntNew[i];
7171
7172 assert( j<nMaxCells );
7173 pCell = apCell[j];
7174 sz = szCell[j] + leafCorrection;
7175 pTemp = &aOvflSpace[iOvflSpace];
7176 if( !pNew->leaf ){
7177 memcpy(&pNew->aData[8], pCell, 4);
7178 }else if( leafData ){
7179 /* If the tree is a leaf-data tree, and the siblings are leaves,
7180 ** then there is no divider cell in apCell[]. Instead, the divider
7181 ** cell consists of the integer key for the right-most cell of
7182 ** the sibling-page assembled above only.
7183 */
7184 CellInfo info;
7185 j--;
7186 btreeParseCellPtr(pNew, apCell[j], &info);
7187 pCell = pTemp;
7188 sz = 4 + putVarint(&pCell[4], info.nKey);
7189 pTemp = 0;
7190 }else{
7191 pCell -= 4;
7192 /* Obscure case for non-leaf-data trees: If the cell at pCell was
7193 ** previously stored on a leaf node, and its reported size was 4
7194 ** bytes, then it may actually be smaller than this
7195 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7196 ** any cell). But it is important to pass the correct size to
7197 ** insertCell(), so reparse the cell now.
7198 **
7199 ** Note that this can never happen in an SQLite data file, as all
7200 ** cells are at least 4 bytes. It only happens in b-trees used
7201 ** to evaluate "IN (SELECT ...)" and similar clauses.
7202 */
7203 if( szCell[j]==4 ){
7204 assert(leafCorrection==4);
7205 sz = cellSizePtr(pParent, pCell);
7206 }
7207 }
7208 iOvflSpace += sz;
7209 assert( sz<=pBt->maxLocal+23 );
7210 assert( iOvflSpace <= (int)pBt->pageSize );
7211 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7212 if( rc!=SQLITE_OK ) goto balance_cleanup;
7213 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7214 }
7215
7216 /* Now update the actual sibling pages. The order in which they are updated
7217 ** is important, as this code needs to avoid disrupting any page from which
7218 ** cells may still to be read. In practice, this means:
7219 **
drhd836d422014-10-31 14:26:36 +00007220 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7221 ** then it is not safe to update page apNew[iPg] until after
7222 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007223 **
drhd836d422014-10-31 14:26:36 +00007224 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7225 ** then it is not safe to update page apNew[iPg] until after
7226 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007227 **
7228 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00007229 **
7230 ** The iPg value in the following loop starts at nNew-1 goes down
7231 ** to 0, then back up to nNew-1 again, thus making two passes over
7232 ** the pages. On the initial downward pass, only condition (1) above
7233 ** needs to be tested because (2) will always be true from the previous
7234 ** step. On the upward pass, both conditions are always true, so the
7235 ** upwards pass simply processes pages that were missed on the downward
7236 ** pass.
dan33ea4862014-10-09 19:35:37 +00007237 */
drhbec021b2014-10-31 12:22:00 +00007238 for(i=1-nNew; i<nNew; i++){
7239 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00007240 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00007241 if( abDone[iPg] ) continue; /* Skip pages already processed */
7242 if( i>=0 /* On the upwards pass, or... */
7243 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00007244 ){
dan09c68402014-10-11 20:00:24 +00007245 int iNew;
7246 int iOld;
7247 int nNewCell;
7248
drhd836d422014-10-31 14:26:36 +00007249 /* Verify condition (1): If cells are moving left, update iPg
7250 ** only after iPg-1 has already been updated. */
7251 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7252
7253 /* Verify condition (2): If cells are moving right, update iPg
7254 ** only after iPg+1 has already been updated. */
7255 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7256
dan09c68402014-10-11 20:00:24 +00007257 if( iPg==0 ){
7258 iNew = iOld = 0;
7259 nNewCell = cntNew[0];
7260 }else{
7261 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : nCell;
7262 iNew = cntNew[iPg-1] + !leafData;
7263 nNewCell = cntNew[iPg] - iNew;
7264 }
7265
7266 editPage(apNew[iPg], iOld, iNew, nNewCell, apCell, szCell);
drhd836d422014-10-31 14:26:36 +00007267 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00007268 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00007269 assert( apNew[iPg]->nOverflow==0 );
7270 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00007271 }
7272 }
drhd836d422014-10-31 14:26:36 +00007273
7274 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00007275 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7276
drh7aa8f852006-03-28 00:24:44 +00007277 assert( nOld>0 );
7278 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00007279
danielk197713bd99f2009-06-24 05:40:34 +00007280 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7281 /* The root page of the b-tree now contains no cells. The only sibling
7282 ** page is the right-child of the parent. Copy the contents of the
7283 ** child page into the parent, decreasing the overall height of the
7284 ** b-tree structure by one. This is described as the "balance-shallower"
7285 ** sub-algorithm in some documentation.
7286 **
7287 ** If this is an auto-vacuum database, the call to copyNodeContent()
7288 ** sets all pointer-map entries corresponding to database image pages
7289 ** for which the pointer is stored within the content being copied.
7290 **
drh768f2902014-10-31 02:51:41 +00007291 ** It is critical that the child page be defragmented before being
7292 ** copied into the parent, because if the parent is page 1 then it will
7293 ** by smaller than the child due to the database header, and so all the
7294 ** free space needs to be up front.
7295 */
danielk197713bd99f2009-06-24 05:40:34 +00007296 assert( nNew==1 );
dan89ca0b32014-10-25 20:36:28 +00007297 rc = defragmentPage(apNew[0]);
drh768f2902014-10-31 02:51:41 +00007298 testcase( rc!=SQLITE_OK );
7299 assert( apNew[0]->nFree ==
7300 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7301 || rc!=SQLITE_OK
7302 );
7303 copyNodeContent(apNew[0], pParent, &rc);
7304 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00007305 }else if( ISAUTOVACUUM && !leafCorrection ){
7306 /* Fix the pointer map entries associated with the right-child of each
7307 ** sibling page. All other pointer map entries have already been taken
7308 ** care of. */
7309 for(i=0; i<nNew; i++){
7310 u32 key = get4byte(&apNew[i]->aData[8]);
7311 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007312 }
dan33ea4862014-10-09 19:35:37 +00007313 }
danielk19774dbaa892009-06-16 16:50:22 +00007314
dan33ea4862014-10-09 19:35:37 +00007315 assert( pParent->isInit );
7316 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
7317 nOld, nNew, nCell));
danielk19774dbaa892009-06-16 16:50:22 +00007318
dan33ea4862014-10-09 19:35:37 +00007319 /* Free any old pages that were not reused as new pages.
7320 */
7321 for(i=nNew; i<nOld; i++){
7322 freePage(apOld[i], &rc);
7323 }
7324
dane6593d82014-10-24 16:40:49 +00007325#if 0
dan33ea4862014-10-09 19:35:37 +00007326 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00007327 /* The ptrmapCheckPages() contains assert() statements that verify that
7328 ** all pointer map pages are set correctly. This is helpful while
7329 ** debugging. This is usually disabled because a corrupt database may
7330 ** cause an assert() statement to fail. */
7331 ptrmapCheckPages(apNew, nNew);
7332 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00007333 }
dan33ea4862014-10-09 19:35:37 +00007334#endif
danielk1977cd581a72009-06-23 15:43:39 +00007335
drh8b2f49b2001-06-08 00:21:52 +00007336 /*
drh14acc042001-06-10 19:56:58 +00007337 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00007338 */
drh14acc042001-06-10 19:56:58 +00007339balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00007340 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00007341 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00007342 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00007343 }
drh14acc042001-06-10 19:56:58 +00007344 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00007345 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00007346 }
danielk1977eaa06f62008-09-18 17:34:44 +00007347
drh8b2f49b2001-06-08 00:21:52 +00007348 return rc;
7349}
mistachkine7c54162012-10-02 22:54:27 +00007350#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
7351#pragma optimize("", on)
7352#endif
drh8b2f49b2001-06-08 00:21:52 +00007353
drh43605152004-05-29 21:46:49 +00007354
7355/*
danielk1977a50d9aa2009-06-08 14:49:45 +00007356** This function is called when the root page of a b-tree structure is
7357** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00007358**
danielk1977a50d9aa2009-06-08 14:49:45 +00007359** A new child page is allocated and the contents of the current root
7360** page, including overflow cells, are copied into the child. The root
7361** page is then overwritten to make it an empty page with the right-child
7362** pointer pointing to the new page.
7363**
7364** Before returning, all pointer-map entries corresponding to pages
7365** that the new child-page now contains pointers to are updated. The
7366** entry corresponding to the new right-child pointer of the root
7367** page is also updated.
7368**
7369** If successful, *ppChild is set to contain a reference to the child
7370** page and SQLITE_OK is returned. In this case the caller is required
7371** to call releasePage() on *ppChild exactly once. If an error occurs,
7372** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00007373*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007374static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
7375 int rc; /* Return value from subprocedures */
7376 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00007377 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00007378 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00007379
danielk1977a50d9aa2009-06-08 14:49:45 +00007380 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00007381 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00007382
danielk1977a50d9aa2009-06-08 14:49:45 +00007383 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
7384 ** page that will become the new right-child of pPage. Copy the contents
7385 ** of the node stored on pRoot into the new child page.
7386 */
drh98add2e2009-07-20 17:11:49 +00007387 rc = sqlite3PagerWrite(pRoot->pDbPage);
7388 if( rc==SQLITE_OK ){
7389 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00007390 copyNodeContent(pRoot, pChild, &rc);
7391 if( ISAUTOVACUUM ){
7392 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00007393 }
7394 }
7395 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007396 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007397 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00007398 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00007399 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007400 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
7401 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7402 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007403
danielk1977a50d9aa2009-06-08 14:49:45 +00007404 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
7405
7406 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00007407 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
7408 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
7409 memcpy(pChild->apOvfl, pRoot->apOvfl,
7410 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00007411 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00007412
7413 /* Zero the contents of pRoot. Then install pChild as the right-child. */
7414 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
7415 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
7416
7417 *ppChild = pChild;
7418 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00007419}
7420
7421/*
danielk197771d5d2c2008-09-29 11:49:47 +00007422** The page that pCur currently points to has just been modified in
7423** some way. This function figures out if this modification means the
7424** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00007425** routine. Balancing routines are:
7426**
7427** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00007428** balance_deeper()
7429** balance_nonroot()
drh43605152004-05-29 21:46:49 +00007430*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007431static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00007432 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00007433 const int nMin = pCur->pBt->usableSize * 2 / 3;
7434 u8 aBalanceQuickSpace[13];
7435 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007436
shane75ac1de2009-06-09 18:58:52 +00007437 TESTONLY( int balance_quick_called = 0 );
7438 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00007439
7440 do {
7441 int iPage = pCur->iPage;
7442 MemPage *pPage = pCur->apPage[iPage];
7443
7444 if( iPage==0 ){
7445 if( pPage->nOverflow ){
7446 /* The root page of the b-tree is overfull. In this case call the
7447 ** balance_deeper() function to create a new child for the root-page
7448 ** and copy the current contents of the root-page to it. The
7449 ** next iteration of the do-loop will balance the child page.
7450 */
7451 assert( (balance_deeper_called++)==0 );
7452 rc = balance_deeper(pPage, &pCur->apPage[1]);
7453 if( rc==SQLITE_OK ){
7454 pCur->iPage = 1;
7455 pCur->aiIdx[0] = 0;
7456 pCur->aiIdx[1] = 0;
7457 assert( pCur->apPage[1]->nOverflow );
7458 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007459 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00007460 break;
7461 }
7462 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
7463 break;
7464 }else{
7465 MemPage * const pParent = pCur->apPage[iPage-1];
7466 int const iIdx = pCur->aiIdx[iPage-1];
7467
7468 rc = sqlite3PagerWrite(pParent->pDbPage);
7469 if( rc==SQLITE_OK ){
7470#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00007471 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00007472 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00007473 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00007474 && pParent->pgno!=1
7475 && pParent->nCell==iIdx
7476 ){
7477 /* Call balance_quick() to create a new sibling of pPage on which
7478 ** to store the overflow cell. balance_quick() inserts a new cell
7479 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00007480 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00007481 ** use either balance_nonroot() or balance_deeper(). Until this
7482 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
7483 ** buffer.
7484 **
7485 ** The purpose of the following assert() is to check that only a
7486 ** single call to balance_quick() is made for each call to this
7487 ** function. If this were not verified, a subtle bug involving reuse
7488 ** of the aBalanceQuickSpace[] might sneak in.
7489 */
7490 assert( (balance_quick_called++)==0 );
7491 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
7492 }else
7493#endif
7494 {
7495 /* In this case, call balance_nonroot() to redistribute cells
7496 ** between pPage and up to 2 of its sibling pages. This involves
7497 ** modifying the contents of pParent, which may cause pParent to
7498 ** become overfull or underfull. The next iteration of the do-loop
7499 ** will balance the parent page to correct this.
7500 **
7501 ** If the parent page becomes overfull, the overflow cell or cells
7502 ** are stored in the pSpace buffer allocated immediately below.
7503 ** A subsequent iteration of the do-loop will deal with this by
7504 ** calling balance_nonroot() (balance_deeper() may be called first,
7505 ** but it doesn't deal with overflow cells - just moves them to a
7506 ** different page). Once this subsequent call to balance_nonroot()
7507 ** has completed, it is safe to release the pSpace buffer used by
7508 ** the previous call, as the overflow cell data will have been
7509 ** copied either into the body of a database page or into the new
7510 ** pSpace buffer passed to the latter call to balance_nonroot().
7511 */
7512 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00007513 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
7514 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00007515 if( pFree ){
7516 /* If pFree is not NULL, it points to the pSpace buffer used
7517 ** by a previous call to balance_nonroot(). Its contents are
7518 ** now stored either on real database pages or within the
7519 ** new pSpace buffer, so it may be safely freed here. */
7520 sqlite3PageFree(pFree);
7521 }
7522
danielk19774dbaa892009-06-16 16:50:22 +00007523 /* The pSpace buffer will be freed after the next call to
7524 ** balance_nonroot(), or just before this function returns, whichever
7525 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007526 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00007527 }
7528 }
7529
7530 pPage->nOverflow = 0;
7531
7532 /* The next iteration of the do-loop balances the parent page. */
7533 releasePage(pPage);
7534 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00007535 assert( pCur->iPage>=0 );
drh43605152004-05-29 21:46:49 +00007536 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007537 }while( rc==SQLITE_OK );
7538
7539 if( pFree ){
7540 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00007541 }
7542 return rc;
7543}
7544
drhf74b8d92002-09-01 23:20:45 +00007545
7546/*
drh3b7511c2001-05-26 13:15:44 +00007547** Insert a new record into the BTree. The key is given by (pKey,nKey)
7548** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00007549** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00007550** is left pointing at a random location.
7551**
7552** For an INTKEY table, only the nKey value of the key is used. pKey is
7553** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00007554**
7555** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00007556** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00007557** been performed. seekResult is the search result returned (a negative
7558** number if pCur points at an entry that is smaller than (pKey, nKey), or
peter.d.reid60ec9142014-09-06 16:39:46 +00007559** a positive value if pCur points at an entry that is larger than
danielk1977de630352009-05-04 11:42:29 +00007560** (pKey, nKey)).
7561**
drh3e9ca092009-09-08 01:14:48 +00007562** If the seekResult parameter is non-zero, then the caller guarantees that
7563** cursor pCur is pointing at the existing copy of a row that is to be
7564** overwritten. If the seekResult parameter is 0, then cursor pCur may
7565** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00007566** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00007567*/
drh3aac2dd2004-04-26 14:10:20 +00007568int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00007569 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00007570 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00007571 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00007572 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00007573 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00007574 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00007575){
drh3b7511c2001-05-26 13:15:44 +00007576 int rc;
drh3e9ca092009-09-08 01:14:48 +00007577 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00007578 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00007579 int idx;
drh3b7511c2001-05-26 13:15:44 +00007580 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00007581 Btree *p = pCur->pBtree;
7582 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00007583 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00007584 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00007585
drh98add2e2009-07-20 17:11:49 +00007586 if( pCur->eState==CURSOR_FAULT ){
7587 assert( pCur->skipNext!=SQLITE_OK );
7588 return pCur->skipNext;
7589 }
7590
drh1fee73e2007-08-29 04:00:57 +00007591 assert( cursorHoldsMutex(pCur) );
drh3f387402014-09-24 01:23:00 +00007592 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
7593 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00007594 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00007595 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7596
danielk197731d31b82009-07-13 13:18:07 +00007597 /* Assert that the caller has been consistent. If this cursor was opened
7598 ** expecting an index b-tree, then the caller should be inserting blob
7599 ** keys with no associated data. If the cursor was opened expecting an
7600 ** intkey table, the caller should be inserting integer keys with a
7601 ** blob of associated data. */
7602 assert( (pKey==0)==(pCur->pKeyInfo==0) );
7603
danielk19779c3acf32009-05-02 07:36:49 +00007604 /* Save the positions of any other cursors open on this table.
7605 **
danielk19773509a652009-07-06 18:56:13 +00007606 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00007607 ** example, when inserting data into a table with auto-generated integer
7608 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
7609 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00007610 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00007611 ** that the cursor is already where it needs to be and returns without
7612 ** doing any work. To avoid thwarting these optimizations, it is important
7613 ** not to clear the cursor here.
7614 */
drh4c301aa2009-07-15 17:25:45 +00007615 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7616 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007617
drhd60f4f42012-03-23 14:23:52 +00007618 if( pCur->pKeyInfo==0 ){
drhe0670b62014-02-12 21:31:12 +00007619 /* If this is an insert into a table b-tree, invalidate any incrblob
7620 ** cursors open on the row being replaced */
drhd60f4f42012-03-23 14:23:52 +00007621 invalidateIncrblobCursors(p, nKey, 0);
drhe0670b62014-02-12 21:31:12 +00007622
7623 /* If the cursor is currently on the last row and we are appending a
7624 ** new row onto the end, set the "loc" to avoid an unnecessary btreeMoveto()
7625 ** call */
drh3f387402014-09-24 01:23:00 +00007626 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0
7627 && pCur->info.nKey==nKey-1 ){
drhe0670b62014-02-12 21:31:12 +00007628 loc = -1;
7629 }
drhd60f4f42012-03-23 14:23:52 +00007630 }
7631
drh4c301aa2009-07-15 17:25:45 +00007632 if( !loc ){
7633 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
7634 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00007635 }
danielk1977b980d2212009-06-22 18:03:51 +00007636 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00007637
danielk197771d5d2c2008-09-29 11:49:47 +00007638 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00007639 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00007640 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00007641
drh3a4c1412004-05-09 20:40:11 +00007642 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
7643 pCur->pgnoRoot, nKey, nData, pPage->pgno,
7644 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00007645 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00007646 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00007647 assert( newCell!=0 );
drhb026e052007-05-02 01:34:31 +00007648 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00007649 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00007650 assert( szNew==cellSizePtr(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00007651 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00007652 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00007653 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00007654 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00007655 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00007656 rc = sqlite3PagerWrite(pPage->pDbPage);
7657 if( rc ){
7658 goto end_insert;
7659 }
danielk197771d5d2c2008-09-29 11:49:47 +00007660 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00007661 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007662 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00007663 }
drh9bfdc252014-09-24 02:05:41 +00007664 rc = clearCell(pPage, oldCell, &szOld);
drh98add2e2009-07-20 17:11:49 +00007665 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00007666 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00007667 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00007668 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00007669 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00007670 }else{
drh4b70f112004-05-02 21:12:19 +00007671 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00007672 }
drh98add2e2009-07-20 17:11:49 +00007673 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00007674 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00007675
mistachkin48864df2013-03-21 21:20:32 +00007676 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00007677 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00007678 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00007679 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00007680 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007681 ** Previous versions of SQLite called moveToRoot() to move the cursor
7682 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00007683 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
7684 ** set the cursor state to "invalid". This makes common insert operations
7685 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00007686 **
danielk1977a50d9aa2009-06-08 14:49:45 +00007687 ** There is a subtle but important optimization here too. When inserting
7688 ** multiple records into an intkey b-tree using a single cursor (as can
7689 ** happen while processing an "INSERT INTO ... SELECT" statement), it
7690 ** is advantageous to leave the cursor pointing to the last entry in
7691 ** the b-tree if possible. If the cursor is left pointing to the last
7692 ** entry in the table, and the next row inserted has an integer key
7693 ** larger than the largest existing key, it is possible to insert the
7694 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00007695 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007696 pCur->info.nSize = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007697 if( rc==SQLITE_OK && pPage->nOverflow ){
drh036dbec2014-03-11 23:40:44 +00007698 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00007699 rc = balance(pCur);
7700
7701 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00007702 ** fails. Internal data structure corruption will result otherwise.
7703 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
7704 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00007705 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00007706 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00007707 }
danielk1977a50d9aa2009-06-08 14:49:45 +00007708 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00007709
drh2e38c322004-09-03 18:38:44 +00007710end_insert:
drh5e2f8b92001-05-28 00:41:15 +00007711 return rc;
7712}
7713
7714/*
drh4b70f112004-05-02 21:12:19 +00007715** Delete the entry that the cursor is pointing to. The cursor
peter.d.reid60ec9142014-09-06 16:39:46 +00007716** is left pointing at an arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00007717*/
drh3aac2dd2004-04-26 14:10:20 +00007718int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00007719 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00007720 BtShared *pBt = p->pBt;
7721 int rc; /* Return code */
7722 MemPage *pPage; /* Page to delete cell from */
7723 unsigned char *pCell; /* Pointer to cell to delete */
7724 int iCellIdx; /* Index of cell to delete */
7725 int iCellDepth; /* Depth of node containing pCell */
drh9bfdc252014-09-24 02:05:41 +00007726 u16 szCell; /* Size of the cell being deleted */
drh8b2f49b2001-06-08 00:21:52 +00007727
drh1fee73e2007-08-29 04:00:57 +00007728 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00007729 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007730 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00007731 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00007732 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7733 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
7734
danielk19774dbaa892009-06-16 16:50:22 +00007735 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
7736 || NEVER(pCur->eState!=CURSOR_VALID)
7737 ){
7738 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00007739 }
danielk1977da184232006-01-05 11:34:32 +00007740
danielk19774dbaa892009-06-16 16:50:22 +00007741 iCellDepth = pCur->iPage;
7742 iCellIdx = pCur->aiIdx[iCellDepth];
7743 pPage = pCur->apPage[iCellDepth];
7744 pCell = findCell(pPage, iCellIdx);
7745
7746 /* If the page containing the entry to delete is not a leaf page, move
7747 ** the cursor to the largest entry in the tree that is smaller than
7748 ** the entry being deleted. This cell will replace the cell being deleted
7749 ** from the internal node. The 'previous' entry is used for this instead
7750 ** of the 'next' entry, as the previous entry is always a part of the
7751 ** sub-tree headed by the child page of the cell being deleted. This makes
7752 ** balancing the tree following the delete operation easier. */
7753 if( !pPage->leaf ){
drhe39a7322014-02-03 14:04:11 +00007754 int notUsed = 0;
drh4c301aa2009-07-15 17:25:45 +00007755 rc = sqlite3BtreePrevious(pCur, &notUsed);
7756 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00007757 }
7758
7759 /* Save the positions of any other cursors open on this table before
7760 ** making any modifications. Make the page containing the entry to be
7761 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00007762 ** entry and finally remove the cell itself from within the page.
7763 */
7764 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7765 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007766
7767 /* If this is a delete operation to remove a row from a table b-tree,
7768 ** invalidate any incrblob cursors open on the row being deleted. */
7769 if( pCur->pKeyInfo==0 ){
7770 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
7771 }
7772
drha4ec1d42009-07-11 13:13:11 +00007773 rc = sqlite3PagerWrite(pPage->pDbPage);
7774 if( rc ) return rc;
drh9bfdc252014-09-24 02:05:41 +00007775 rc = clearCell(pPage, pCell, &szCell);
7776 dropCell(pPage, iCellIdx, szCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00007777 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00007778
danielk19774dbaa892009-06-16 16:50:22 +00007779 /* If the cell deleted was not located on a leaf page, then the cursor
7780 ** is currently pointing to the largest entry in the sub-tree headed
7781 ** by the child-page of the cell that was just deleted from an internal
7782 ** node. The cell from the leaf node needs to be moved to the internal
7783 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00007784 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00007785 MemPage *pLeaf = pCur->apPage[pCur->iPage];
7786 int nCell;
7787 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
7788 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00007789
danielk19774dbaa892009-06-16 16:50:22 +00007790 pCell = findCell(pLeaf, pLeaf->nCell-1);
danc3e8ef12015-05-25 20:04:15 +00007791 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
danielk19774dbaa892009-06-16 16:50:22 +00007792 nCell = cellSizePtr(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00007793 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00007794 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00007795 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00007796 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00007797 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
7798 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00007799 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00007800 }
danielk19774dbaa892009-06-16 16:50:22 +00007801
7802 /* Balance the tree. If the entry deleted was located on a leaf page,
7803 ** then the cursor still points to that page. In this case the first
7804 ** call to balance() repairs the tree, and the if(...) condition is
7805 ** never true.
7806 **
7807 ** Otherwise, if the entry deleted was on an internal node page, then
7808 ** pCur is pointing to the leaf page from which a cell was removed to
7809 ** replace the cell deleted from the internal node. This is slightly
7810 ** tricky as the leaf node may be underfull, and the internal node may
7811 ** be either under or overfull. In this case run the balancing algorithm
7812 ** on the leaf node first. If the balance proceeds far enough up the
7813 ** tree that we can be sure that any problem in the internal node has
7814 ** been corrected, so be it. Otherwise, after balancing the leaf node,
7815 ** walk the cursor up the tree to the internal node and balance it as
7816 ** well. */
7817 rc = balance(pCur);
7818 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
7819 while( pCur->iPage>iCellDepth ){
7820 releasePage(pCur->apPage[pCur->iPage--]);
7821 }
7822 rc = balance(pCur);
7823 }
7824
danielk19776b456a22005-03-21 04:04:02 +00007825 if( rc==SQLITE_OK ){
7826 moveToRoot(pCur);
7827 }
drh5e2f8b92001-05-28 00:41:15 +00007828 return rc;
drh3b7511c2001-05-26 13:15:44 +00007829}
drh8b2f49b2001-06-08 00:21:52 +00007830
7831/*
drhc6b52df2002-01-04 03:09:29 +00007832** Create a new BTree table. Write into *piTable the page
7833** number for the root page of the new table.
7834**
drhab01f612004-05-22 02:55:23 +00007835** The type of type is determined by the flags parameter. Only the
7836** following values of flags are currently in use. Other values for
7837** flags might not work:
7838**
7839** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
7840** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00007841*/
drhd4187c72010-08-30 22:15:45 +00007842static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00007843 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007844 MemPage *pRoot;
7845 Pgno pgnoRoot;
7846 int rc;
drhd4187c72010-08-30 22:15:45 +00007847 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00007848
drh1fee73e2007-08-29 04:00:57 +00007849 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007850 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007851 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00007852
danielk1977003ba062004-11-04 02:57:33 +00007853#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00007854 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00007855 if( rc ){
7856 return rc;
7857 }
danielk1977003ba062004-11-04 02:57:33 +00007858#else
danielk1977687566d2004-11-02 12:56:41 +00007859 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00007860 Pgno pgnoMove; /* Move a page here to make room for the root-page */
7861 MemPage *pPageMove; /* The page to move to. */
7862
danielk197720713f32007-05-03 11:43:33 +00007863 /* Creating a new table may probably require moving an existing database
7864 ** to make room for the new tables root page. In case this page turns
7865 ** out to be an overflow page, delete all overflow page-map caches
7866 ** held by open cursors.
7867 */
danielk197792d4d7a2007-05-04 12:05:56 +00007868 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00007869
danielk1977003ba062004-11-04 02:57:33 +00007870 /* Read the value of meta[3] from the database to determine where the
7871 ** root page of the new table should go. meta[3] is the largest root-page
7872 ** created so far, so the new root-page is (meta[3]+1).
7873 */
danielk1977602b4662009-07-02 07:47:33 +00007874 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00007875 pgnoRoot++;
7876
danielk1977599fcba2004-11-08 07:13:13 +00007877 /* The new root-page may not be allocated on a pointer-map page, or the
7878 ** PENDING_BYTE page.
7879 */
drh72190432008-01-31 14:54:43 +00007880 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00007881 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00007882 pgnoRoot++;
7883 }
drh499e15b2015-05-22 12:37:37 +00007884 assert( pgnoRoot>=3 || CORRUPT_DB );
7885 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00007886
7887 /* Allocate a page. The page that currently resides at pgnoRoot will
7888 ** be moved to the allocated page (unless the allocated page happens
7889 ** to reside at pgnoRoot).
7890 */
dan51f0b6d2013-02-22 20:16:34 +00007891 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00007892 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00007893 return rc;
7894 }
danielk1977003ba062004-11-04 02:57:33 +00007895
7896 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00007897 /* pgnoRoot is the page that will be used for the root-page of
7898 ** the new table (assuming an error did not occur). But we were
7899 ** allocated pgnoMove. If required (i.e. if it was not allocated
7900 ** by extending the file), the current page at position pgnoMove
7901 ** is already journaled.
7902 */
drheeb844a2009-08-08 18:01:07 +00007903 u8 eType = 0;
7904 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00007905
danf7679ad2013-04-03 11:38:36 +00007906 /* Save the positions of any open cursors. This is required in
7907 ** case they are holding a reference to an xFetch reference
7908 ** corresponding to page pgnoRoot. */
7909 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00007910 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00007911 if( rc!=SQLITE_OK ){
7912 return rc;
7913 }
danielk1977f35843b2007-04-07 15:03:17 +00007914
7915 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00007916 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007917 if( rc!=SQLITE_OK ){
7918 return rc;
7919 }
7920 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00007921 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
7922 rc = SQLITE_CORRUPT_BKPT;
7923 }
7924 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00007925 releasePage(pRoot);
7926 return rc;
7927 }
drhccae6022005-02-26 17:31:26 +00007928 assert( eType!=PTRMAP_ROOTPAGE );
7929 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00007930 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00007931 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00007932
7933 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00007934 if( rc!=SQLITE_OK ){
7935 return rc;
7936 }
drhb00fc3b2013-08-21 23:42:32 +00007937 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007938 if( rc!=SQLITE_OK ){
7939 return rc;
7940 }
danielk19773b8a05f2007-03-19 17:44:26 +00007941 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00007942 if( rc!=SQLITE_OK ){
7943 releasePage(pRoot);
7944 return rc;
7945 }
7946 }else{
7947 pRoot = pPageMove;
7948 }
7949
danielk197742741be2005-01-08 12:42:39 +00007950 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00007951 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00007952 if( rc ){
7953 releasePage(pRoot);
7954 return rc;
7955 }
drhbf592832010-03-30 15:51:12 +00007956
7957 /* When the new root page was allocated, page 1 was made writable in
7958 ** order either to increase the database filesize, or to decrement the
7959 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
7960 */
7961 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00007962 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00007963 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00007964 releasePage(pRoot);
7965 return rc;
7966 }
danielk197742741be2005-01-08 12:42:39 +00007967
danielk1977003ba062004-11-04 02:57:33 +00007968 }else{
drh4f0c5872007-03-26 22:05:01 +00007969 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00007970 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00007971 }
7972#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007973 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00007974 if( createTabFlags & BTREE_INTKEY ){
7975 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
7976 }else{
7977 ptfFlags = PTF_ZERODATA | PTF_LEAF;
7978 }
7979 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00007980 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00007981 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00007982 *piTable = (int)pgnoRoot;
7983 return SQLITE_OK;
7984}
drhd677b3d2007-08-20 22:48:41 +00007985int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
7986 int rc;
7987 sqlite3BtreeEnter(p);
7988 rc = btreeCreateTable(p, piTable, flags);
7989 sqlite3BtreeLeave(p);
7990 return rc;
7991}
drh8b2f49b2001-06-08 00:21:52 +00007992
7993/*
7994** Erase the given database page and all its children. Return
7995** the page to the freelist.
7996*/
drh4b70f112004-05-02 21:12:19 +00007997static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00007998 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00007999 Pgno pgno, /* Page number to clear */
8000 int freePageFlag, /* Deallocate page if true */
8001 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00008002){
danielk1977146ba992009-07-22 14:08:13 +00008003 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00008004 int rc;
drh4b70f112004-05-02 21:12:19 +00008005 unsigned char *pCell;
8006 int i;
dan8ce71842014-01-14 20:14:09 +00008007 int hdr;
drh9bfdc252014-09-24 02:05:41 +00008008 u16 szCell;
drh8b2f49b2001-06-08 00:21:52 +00008009
drh1fee73e2007-08-29 04:00:57 +00008010 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00008011 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00008012 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00008013 }
dan11dcd112013-03-15 18:29:18 +00008014 rc = getAndInitPage(pBt, pgno, &pPage, 0);
danielk1977146ba992009-07-22 14:08:13 +00008015 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00008016 if( pPage->bBusy ){
8017 rc = SQLITE_CORRUPT_BKPT;
8018 goto cleardatabasepage_out;
8019 }
8020 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00008021 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00008022 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00008023 pCell = findCell(pPage, i);
drhccf46d02015-04-01 13:21:33 +00008024 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00008025 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008026 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008027 }
drh9bfdc252014-09-24 02:05:41 +00008028 rc = clearCell(pPage, pCell, &szCell);
danielk19776b456a22005-03-21 04:04:02 +00008029 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008030 }
drhccf46d02015-04-01 13:21:33 +00008031 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00008032 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008033 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00008034 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00008035 assert( pPage->intKey || CORRUPT_DB );
8036 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00008037 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00008038 }
8039 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00008040 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00008041 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00008042 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00008043 }
danielk19776b456a22005-03-21 04:04:02 +00008044
8045cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00008046 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00008047 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00008048 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008049}
8050
8051/*
drhab01f612004-05-22 02:55:23 +00008052** Delete all information from a single table in the database. iTable is
8053** the page number of the root of the table. After this routine returns,
8054** the root page is empty, but still exists.
8055**
8056** This routine will fail with SQLITE_LOCKED if there are any open
8057** read cursors on the table. Open write cursors are moved to the
8058** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00008059**
8060** If pnChange is not NULL, then table iTable must be an intkey table. The
8061** integer value pointed to by pnChange is incremented by the number of
8062** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00008063*/
danielk1977c7af4842008-10-27 13:59:33 +00008064int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00008065 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00008066 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00008067 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008068 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008069
drhc046e3e2009-07-15 11:26:44 +00008070 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00008071
drhc046e3e2009-07-15 11:26:44 +00008072 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00008073 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
8074 ** is the root of a table b-tree - if it is not, the following call is
8075 ** a no-op). */
8076 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00008077 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00008078 }
drhd677b3d2007-08-20 22:48:41 +00008079 sqlite3BtreeLeave(p);
8080 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008081}
8082
8083/*
drh079a3072014-03-19 14:10:55 +00008084** Delete all information from the single table that pCur is open on.
8085**
8086** This routine only work for pCur on an ephemeral table.
8087*/
8088int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
8089 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
8090}
8091
8092/*
drh8b2f49b2001-06-08 00:21:52 +00008093** Erase all information in a table and add the root of the table to
8094** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00008095** page 1) is never added to the freelist.
8096**
8097** This routine will fail with SQLITE_LOCKED if there are any open
8098** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00008099**
8100** If AUTOVACUUM is enabled and the page at iTable is not the last
8101** root page in the database file, then the last root page
8102** in the database file is moved into the slot formerly occupied by
8103** iTable and that last slot formerly occupied by the last root page
8104** is added to the freelist instead of iTable. In this say, all
8105** root pages are kept at the beginning of the database file, which
8106** is necessary for AUTOVACUUM to work right. *piMoved is set to the
8107** page number that used to be the last root page in the file before
8108** the move. If no page gets moved, *piMoved is set to 0.
8109** The last root page is recorded in meta[3] and the value of
8110** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00008111*/
danielk197789d40042008-11-17 14:20:56 +00008112static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00008113 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00008114 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00008115 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00008116
drh1fee73e2007-08-29 04:00:57 +00008117 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008118 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00008119
danielk1977e6efa742004-11-10 11:55:10 +00008120 /* It is illegal to drop a table if any cursors are open on the
8121 ** database. This is because in auto-vacuum mode the backend may
8122 ** need to move another root-page to fill a gap left by the deleted
8123 ** root page. If an open cursor was using this page a problem would
8124 ** occur.
drhc046e3e2009-07-15 11:26:44 +00008125 **
8126 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00008127 */
drhc046e3e2009-07-15 11:26:44 +00008128 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00008129 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
8130 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00008131 }
danielk1977a0bf2652004-11-04 14:30:04 +00008132
drhb00fc3b2013-08-21 23:42:32 +00008133 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00008134 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00008135 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00008136 if( rc ){
8137 releasePage(pPage);
8138 return rc;
8139 }
danielk1977a0bf2652004-11-04 14:30:04 +00008140
drh205f48e2004-11-05 00:43:11 +00008141 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00008142
drh4b70f112004-05-02 21:12:19 +00008143 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00008144#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00008145 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008146 releasePage(pPage);
8147#else
8148 if( pBt->autoVacuum ){
8149 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00008150 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008151
8152 if( iTable==maxRootPgno ){
8153 /* If the table being dropped is the table with the largest root-page
8154 ** number in the database, put the root page on the free list.
8155 */
drhc314dc72009-07-21 11:52:34 +00008156 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008157 releasePage(pPage);
8158 if( rc!=SQLITE_OK ){
8159 return rc;
8160 }
8161 }else{
8162 /* The table being dropped does not have the largest root-page
8163 ** number in the database. So move the page that does into the
8164 ** gap left by the deleted root-page.
8165 */
8166 MemPage *pMove;
8167 releasePage(pPage);
drhb00fc3b2013-08-21 23:42:32 +00008168 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00008169 if( rc!=SQLITE_OK ){
8170 return rc;
8171 }
danielk19774c999992008-07-16 18:17:55 +00008172 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00008173 releasePage(pMove);
8174 if( rc!=SQLITE_OK ){
8175 return rc;
8176 }
drhfe3313f2009-07-21 19:02:20 +00008177 pMove = 0;
drhb00fc3b2013-08-21 23:42:32 +00008178 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00008179 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008180 releasePage(pMove);
8181 if( rc!=SQLITE_OK ){
8182 return rc;
8183 }
8184 *piMoved = maxRootPgno;
8185 }
8186
danielk1977599fcba2004-11-08 07:13:13 +00008187 /* Set the new 'max-root-page' value in the database header. This
8188 ** is the old value less one, less one more if that happens to
8189 ** be a root-page number, less one again if that is the
8190 ** PENDING_BYTE_PAGE.
8191 */
danielk197787a6e732004-11-05 12:58:25 +00008192 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00008193 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
8194 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00008195 maxRootPgno--;
8196 }
danielk1977599fcba2004-11-08 07:13:13 +00008197 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
8198
danielk1977aef0bf62005-12-30 16:28:01 +00008199 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00008200 }else{
drhc314dc72009-07-21 11:52:34 +00008201 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00008202 releasePage(pPage);
8203 }
8204#endif
drh2aa679f2001-06-25 02:11:07 +00008205 }else{
drhc046e3e2009-07-15 11:26:44 +00008206 /* If sqlite3BtreeDropTable was called on page 1.
8207 ** This really never should happen except in a corrupt
8208 ** database.
8209 */
drha34b6762004-05-07 13:30:42 +00008210 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00008211 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00008212 }
drh8b2f49b2001-06-08 00:21:52 +00008213 return rc;
8214}
drhd677b3d2007-08-20 22:48:41 +00008215int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
8216 int rc;
8217 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00008218 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00008219 sqlite3BtreeLeave(p);
8220 return rc;
8221}
drh8b2f49b2001-06-08 00:21:52 +00008222
drh001bbcb2003-03-19 03:14:00 +00008223
drh8b2f49b2001-06-08 00:21:52 +00008224/*
danielk1977602b4662009-07-02 07:47:33 +00008225** This function may only be called if the b-tree connection already
8226** has a read or write transaction open on the database.
8227**
drh23e11ca2004-05-04 17:27:28 +00008228** Read the meta-information out of a database file. Meta[0]
8229** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00008230** through meta[15] are available for use by higher layers. Meta[0]
8231** is read-only, the others are read/write.
8232**
8233** The schema layer numbers meta values differently. At the schema
8234** layer (and the SetCookie and ReadCookie opcodes) the number of
8235** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00008236**
8237** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
8238** of reading the value out of the header, it instead loads the "DataVersion"
8239** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
8240** database file. It is a number computed by the pager. But its access
8241** pattern is the same as header meta values, and so it is convenient to
8242** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00008243*/
danielk1977602b4662009-07-02 07:47:33 +00008244void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00008245 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008246
drhd677b3d2007-08-20 22:48:41 +00008247 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00008248 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00008249 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00008250 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00008251 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00008252
drh91618562014-12-19 19:28:02 +00008253 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00008254 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00008255 }else{
8256 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
8257 }
drhae157872004-08-14 19:20:09 +00008258
danielk1977602b4662009-07-02 07:47:33 +00008259 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
8260 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00008261#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00008262 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
8263 pBt->btsFlags |= BTS_READ_ONLY;
8264 }
danielk1977003ba062004-11-04 02:57:33 +00008265#endif
drhae157872004-08-14 19:20:09 +00008266
drhd677b3d2007-08-20 22:48:41 +00008267 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00008268}
8269
8270/*
drh23e11ca2004-05-04 17:27:28 +00008271** Write meta-information back into the database. Meta[0] is
8272** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00008273*/
danielk1977aef0bf62005-12-30 16:28:01 +00008274int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
8275 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00008276 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00008277 int rc;
drh23e11ca2004-05-04 17:27:28 +00008278 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00008279 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00008280 assert( p->inTrans==TRANS_WRITE );
8281 assert( pBt->pPage1!=0 );
8282 pP1 = pBt->pPage1->aData;
8283 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8284 if( rc==SQLITE_OK ){
8285 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00008286#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00008287 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00008288 assert( pBt->autoVacuum || iMeta==0 );
8289 assert( iMeta==0 || iMeta==1 );
8290 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00008291 }
drh64022502009-01-09 14:11:04 +00008292#endif
drh5df72a52002-06-06 23:16:05 +00008293 }
drhd677b3d2007-08-20 22:48:41 +00008294 sqlite3BtreeLeave(p);
8295 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008296}
drh8c42ca92001-06-22 19:15:00 +00008297
danielk1977a5533162009-02-24 10:01:51 +00008298#ifndef SQLITE_OMIT_BTREECOUNT
8299/*
8300** The first argument, pCur, is a cursor opened on some b-tree. Count the
8301** number of entries in the b-tree and write the result to *pnEntry.
8302**
8303** SQLITE_OK is returned if the operation is successfully executed.
8304** Otherwise, if an error is encountered (i.e. an IO error or database
8305** corruption) an SQLite error code is returned.
8306*/
8307int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
8308 i64 nEntry = 0; /* Value to return in *pnEntry */
8309 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00008310
8311 if( pCur->pgnoRoot==0 ){
8312 *pnEntry = 0;
8313 return SQLITE_OK;
8314 }
danielk1977a5533162009-02-24 10:01:51 +00008315 rc = moveToRoot(pCur);
8316
8317 /* Unless an error occurs, the following loop runs one iteration for each
8318 ** page in the B-Tree structure (not including overflow pages).
8319 */
8320 while( rc==SQLITE_OK ){
8321 int iIdx; /* Index of child node in parent */
8322 MemPage *pPage; /* Current page of the b-tree */
8323
8324 /* If this is a leaf page or the tree is not an int-key tree, then
8325 ** this page contains countable entries. Increment the entry counter
8326 ** accordingly.
8327 */
8328 pPage = pCur->apPage[pCur->iPage];
8329 if( pPage->leaf || !pPage->intKey ){
8330 nEntry += pPage->nCell;
8331 }
8332
8333 /* pPage is a leaf node. This loop navigates the cursor so that it
8334 ** points to the first interior cell that it points to the parent of
8335 ** the next page in the tree that has not yet been visited. The
8336 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
8337 ** of the page, or to the number of cells in the page if the next page
8338 ** to visit is the right-child of its parent.
8339 **
8340 ** If all pages in the tree have been visited, return SQLITE_OK to the
8341 ** caller.
8342 */
8343 if( pPage->leaf ){
8344 do {
8345 if( pCur->iPage==0 ){
8346 /* All pages of the b-tree have been visited. Return successfully. */
8347 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00008348 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008349 }
danielk197730548662009-07-09 05:07:37 +00008350 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00008351 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
8352
8353 pCur->aiIdx[pCur->iPage]++;
8354 pPage = pCur->apPage[pCur->iPage];
8355 }
8356
8357 /* Descend to the child node of the cell that the cursor currently
8358 ** points at. This is the right-child if (iIdx==pPage->nCell).
8359 */
8360 iIdx = pCur->aiIdx[pCur->iPage];
8361 if( iIdx==pPage->nCell ){
8362 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
8363 }else{
8364 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
8365 }
8366 }
8367
shanebe217792009-03-05 04:20:31 +00008368 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00008369 return rc;
8370}
8371#endif
drhdd793422001-06-28 01:54:48 +00008372
drhdd793422001-06-28 01:54:48 +00008373/*
drh5eddca62001-06-30 21:53:53 +00008374** Return the pager associated with a BTree. This routine is used for
8375** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00008376*/
danielk1977aef0bf62005-12-30 16:28:01 +00008377Pager *sqlite3BtreePager(Btree *p){
8378 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00008379}
drh5eddca62001-06-30 21:53:53 +00008380
drhb7f91642004-10-31 02:22:47 +00008381#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008382/*
8383** Append a message to the error message string.
8384*/
drh2e38c322004-09-03 18:38:44 +00008385static void checkAppendMsg(
8386 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00008387 const char *zFormat,
8388 ...
8389){
8390 va_list ap;
drh867db832014-09-26 02:41:05 +00008391 char zBuf[200];
drh1dcdbc02007-01-27 02:24:54 +00008392 if( !pCheck->mxErr ) return;
8393 pCheck->mxErr--;
8394 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00008395 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00008396 if( pCheck->errMsg.nChar ){
8397 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00008398 }
drh867db832014-09-26 02:41:05 +00008399 if( pCheck->zPfx ){
8400 sqlite3_snprintf(sizeof(zBuf), zBuf, pCheck->zPfx, pCheck->v1, pCheck->v2);
8401 sqlite3StrAccumAppendAll(&pCheck->errMsg, zBuf);
drhf089aa42008-07-08 19:34:06 +00008402 }
8403 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
8404 va_end(ap);
drhb49bc862013-08-21 21:12:10 +00008405 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00008406 pCheck->mallocFailed = 1;
8407 }
drh5eddca62001-06-30 21:53:53 +00008408}
drhb7f91642004-10-31 02:22:47 +00008409#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008410
drhb7f91642004-10-31 02:22:47 +00008411#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00008412
8413/*
8414** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
8415** corresponds to page iPg is already set.
8416*/
8417static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8418 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8419 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
8420}
8421
8422/*
8423** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
8424*/
8425static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
8426 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
8427 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
8428}
8429
8430
drh5eddca62001-06-30 21:53:53 +00008431/*
8432** Add 1 to the reference count for page iPage. If this is the second
8433** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00008434** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00008435** if this is the first reference to the page.
8436**
8437** Also check that the page number is in bounds.
8438*/
drh867db832014-09-26 02:41:05 +00008439static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh5eddca62001-06-30 21:53:53 +00008440 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00008441 if( iPage>pCheck->nPage ){
drh867db832014-09-26 02:41:05 +00008442 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008443 return 1;
8444 }
dan1235bb12012-04-03 17:43:28 +00008445 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00008446 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008447 return 1;
8448 }
dan1235bb12012-04-03 17:43:28 +00008449 setPageReferenced(pCheck, iPage);
8450 return 0;
drh5eddca62001-06-30 21:53:53 +00008451}
8452
danielk1977afcdd022004-10-31 16:25:42 +00008453#ifndef SQLITE_OMIT_AUTOVACUUM
8454/*
8455** Check that the entry in the pointer-map for page iChild maps to
8456** page iParent, pointer type ptrType. If not, append an error message
8457** to pCheck.
8458*/
8459static void checkPtrmap(
8460 IntegrityCk *pCheck, /* Integrity check context */
8461 Pgno iChild, /* Child page number */
8462 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00008463 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00008464){
8465 int rc;
8466 u8 ePtrmapType;
8467 Pgno iPtrmapParent;
8468
8469 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
8470 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00008471 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00008472 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00008473 return;
8474 }
8475
8476 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00008477 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00008478 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
8479 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
8480 }
8481}
8482#endif
8483
drh5eddca62001-06-30 21:53:53 +00008484/*
8485** Check the integrity of the freelist or of an overflow page list.
8486** Verify that the number of pages on the list is N.
8487*/
drh30e58752002-03-02 20:41:57 +00008488static void checkList(
8489 IntegrityCk *pCheck, /* Integrity checking context */
8490 int isFreeList, /* True for a freelist. False for overflow page list */
8491 int iPage, /* Page number for first page in the list */
drh867db832014-09-26 02:41:05 +00008492 int N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00008493){
8494 int i;
drh3a4c1412004-05-09 20:40:11 +00008495 int expected = N;
8496 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00008497 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00008498 DbPage *pOvflPage;
8499 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00008500 if( iPage<1 ){
drh867db832014-09-26 02:41:05 +00008501 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008502 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00008503 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00008504 break;
8505 }
drh867db832014-09-26 02:41:05 +00008506 if( checkRef(pCheck, iPage) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00008507 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh867db832014-09-26 02:41:05 +00008508 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00008509 break;
8510 }
danielk19773b8a05f2007-03-19 17:44:26 +00008511 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00008512 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00008513 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00008514#ifndef SQLITE_OMIT_AUTOVACUUM
8515 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008516 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008517 }
8518#endif
drh43b18e12010-08-17 19:40:08 +00008519 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00008520 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008521 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00008522 N--;
8523 }else{
8524 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00008525 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00008526#ifndef SQLITE_OMIT_AUTOVACUUM
8527 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008528 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008529 }
8530#endif
drh867db832014-09-26 02:41:05 +00008531 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00008532 }
8533 N -= n;
drh30e58752002-03-02 20:41:57 +00008534 }
drh30e58752002-03-02 20:41:57 +00008535 }
danielk1977afcdd022004-10-31 16:25:42 +00008536#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008537 else{
8538 /* If this database supports auto-vacuum and iPage is not the last
8539 ** page in this overflow list, check that the pointer-map entry for
8540 ** the following page matches iPage.
8541 */
8542 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00008543 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00008544 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00008545 }
danielk1977afcdd022004-10-31 16:25:42 +00008546 }
8547#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008548 iPage = get4byte(pOvflData);
8549 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00008550 }
8551}
drhb7f91642004-10-31 02:22:47 +00008552#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008553
drh67731a92015-04-16 11:56:03 +00008554/*
8555** An implementation of a min-heap.
8556**
8557** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00008558** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00008559** and aHeap[N*2+1].
8560**
8561** The heap property is this: Every node is less than or equal to both
8562** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00008563** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00008564**
8565** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
8566** the heap, preserving the heap property. The btreeHeapPull() routine
8567** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00008568** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00008569** property.
8570**
8571** This heap is used for cell overlap and coverage testing. Each u32
8572** entry represents the span of a cell or freeblock on a btree page.
8573** The upper 16 bits are the index of the first byte of a range and the
8574** lower 16 bits are the index of the last byte of that range.
8575*/
8576static void btreeHeapInsert(u32 *aHeap, u32 x){
8577 u32 j, i = ++aHeap[0];
8578 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00008579 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00008580 x = aHeap[j];
8581 aHeap[j] = aHeap[i];
8582 aHeap[i] = x;
8583 i = j;
8584 }
8585}
8586static int btreeHeapPull(u32 *aHeap, u32 *pOut){
8587 u32 j, i, x;
8588 if( (x = aHeap[0])==0 ) return 0;
8589 *pOut = aHeap[1];
8590 aHeap[1] = aHeap[x];
8591 aHeap[x] = 0xffffffff;
8592 aHeap[0]--;
8593 i = 1;
8594 while( (j = i*2)<=aHeap[0] ){
8595 if( aHeap[j]>aHeap[j+1] ) j++;
8596 if( aHeap[i]<aHeap[j] ) break;
8597 x = aHeap[i];
8598 aHeap[i] = aHeap[j];
8599 aHeap[j] = x;
8600 i = j;
8601 }
8602 return 1;
8603}
8604
drhb7f91642004-10-31 02:22:47 +00008605#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008606/*
8607** Do various sanity checks on a single page of a tree. Return
8608** the tree depth. Root pages return 0. Parents of root pages
8609** return 1, and so forth.
8610**
8611** These checks are done:
8612**
8613** 1. Make sure that cells and freeblocks do not overlap
8614** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00008615** NO 2. Make sure cell keys are in order.
8616** NO 3. Make sure no key is less than or equal to zLowerBound.
8617** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00008618** 5. Check the integrity of overflow pages.
8619** 6. Recursively call checkTreePage on all children.
8620** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00008621** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00008622** the root of the tree.
8623*/
8624static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00008625 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00008626 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00008627 i64 *pnParentMinKey,
8628 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00008629){
8630 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00008631 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00008632 int hdr, cellStart;
8633 int nCell;
drhda200cc2004-05-09 11:51:38 +00008634 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00008635 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00008636 int usableSize;
drh67731a92015-04-16 11:56:03 +00008637 u32 *heap = 0;
drha33b6832015-04-16 21:57:37 +00008638 u32 x, prev = 0;
shaneh195475d2010-02-19 04:28:08 +00008639 i64 nMinKey = 0;
8640 i64 nMaxKey = 0;
drh867db832014-09-26 02:41:05 +00008641 const char *saved_zPfx = pCheck->zPfx;
8642 int saved_v1 = pCheck->v1;
8643 int saved_v2 = pCheck->v2;
danielk1977ef73ee92004-11-06 12:26:07 +00008644
drh5eddca62001-06-30 21:53:53 +00008645 /* Check that the page exists
8646 */
drhd9cb6ac2005-10-20 07:28:17 +00008647 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00008648 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00008649 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00008650 if( checkRef(pCheck, iPage) ) return 0;
8651 pCheck->zPfx = "Page %d: ";
8652 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00008653 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00008654 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00008655 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00008656 depth = -1;
8657 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00008658 }
danielk197793caf5a2009-07-11 06:55:33 +00008659
8660 /* Clear MemPage.isInit to make sure the corruption detection code in
8661 ** btreeInitPage() is executed. */
8662 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00008663 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00008664 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00008665 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00008666 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00008667 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00008668 depth = -1;
8669 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00008670 }
8671
8672 /* Check out all the cells.
8673 */
8674 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00008675 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00008676 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00008677 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00008678 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00008679
8680 /* Check payload overflow pages
8681 */
drh867db832014-09-26 02:41:05 +00008682 pCheck->zPfx = "On tree page %d cell %d: ";
8683 pCheck->v1 = iPage;
8684 pCheck->v2 = i;
danielk19771cc5ed82007-05-16 17:28:43 +00008685 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00008686 btreeParseCellPtr(pPage, pCell, &info);
drhab1cc582014-09-23 21:25:19 +00008687 sz = info.nPayload;
shaneh195475d2010-02-19 04:28:08 +00008688 /* For intKey pages, check that the keys are in order.
8689 */
drhab1cc582014-09-23 21:25:19 +00008690 if( pPage->intKey ){
8691 if( i==0 ){
8692 nMinKey = nMaxKey = info.nKey;
8693 }else if( info.nKey <= nMaxKey ){
drh867db832014-09-26 02:41:05 +00008694 checkAppendMsg(pCheck,
drhab1cc582014-09-23 21:25:19 +00008695 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
shaneh195475d2010-02-19 04:28:08 +00008696 }
8697 nMaxKey = info.nKey;
8698 }
danielk19775be31f52009-03-30 13:53:43 +00008699 if( (sz>info.nLocal)
8700 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
8701 ){
drhb6f41482004-05-14 01:58:11 +00008702 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00008703 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
8704#ifndef SQLITE_OMIT_AUTOVACUUM
8705 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008706 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008707 }
8708#endif
drh867db832014-09-26 02:41:05 +00008709 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00008710 }
8711
8712 /* Check sanity of left child page.
8713 */
drhda200cc2004-05-09 11:51:38 +00008714 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008715 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00008716#ifndef SQLITE_OMIT_AUTOVACUUM
8717 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008718 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008719 }
8720#endif
drh867db832014-09-26 02:41:05 +00008721 d2 = checkTreePage(pCheck, pgno, &nMinKey, i==0?NULL:&nMaxKey);
drhda200cc2004-05-09 11:51:38 +00008722 if( i>0 && d2!=depth ){
drh867db832014-09-26 02:41:05 +00008723 checkAppendMsg(pCheck, "Child page depth differs");
drhda200cc2004-05-09 11:51:38 +00008724 }
8725 depth = d2;
drh5eddca62001-06-30 21:53:53 +00008726 }
drh5eddca62001-06-30 21:53:53 +00008727 }
shaneh195475d2010-02-19 04:28:08 +00008728
drhda200cc2004-05-09 11:51:38 +00008729 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008730 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh867db832014-09-26 02:41:05 +00008731 pCheck->zPfx = "On page %d at right child: ";
8732 pCheck->v1 = iPage;
danielk1977afcdd022004-10-31 16:25:42 +00008733#ifndef SQLITE_OMIT_AUTOVACUUM
8734 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00008735 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00008736 }
8737#endif
drh867db832014-09-26 02:41:05 +00008738 checkTreePage(pCheck, pgno, NULL, !pPage->nCell?NULL:&nMaxKey);
drhda200cc2004-05-09 11:51:38 +00008739 }
drh5eddca62001-06-30 21:53:53 +00008740
shaneh195475d2010-02-19 04:28:08 +00008741 /* For intKey leaf pages, check that the min/max keys are in order
8742 ** with any left/parent/right pages.
8743 */
drh867db832014-09-26 02:41:05 +00008744 pCheck->zPfx = "Page %d: ";
8745 pCheck->v1 = iPage;
shaneh195475d2010-02-19 04:28:08 +00008746 if( pPage->leaf && pPage->intKey ){
8747 /* if we are a left child page */
8748 if( pnParentMinKey ){
8749 /* if we are the left most child page */
8750 if( !pnParentMaxKey ){
8751 if( nMaxKey > *pnParentMinKey ){
drh867db832014-09-26 02:41:05 +00008752 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00008753 "Rowid %lld out of order (max larger than parent min of %lld)",
8754 nMaxKey, *pnParentMinKey);
8755 }
8756 }else{
8757 if( nMinKey <= *pnParentMinKey ){
drh867db832014-09-26 02:41:05 +00008758 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00008759 "Rowid %lld out of order (min less than parent min of %lld)",
8760 nMinKey, *pnParentMinKey);
8761 }
8762 if( nMaxKey > *pnParentMaxKey ){
drh867db832014-09-26 02:41:05 +00008763 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00008764 "Rowid %lld out of order (max larger than parent max of %lld)",
8765 nMaxKey, *pnParentMaxKey);
8766 }
8767 *pnParentMinKey = nMaxKey;
8768 }
8769 /* else if we're a right child page */
8770 } else if( pnParentMaxKey ){
8771 if( nMinKey <= *pnParentMaxKey ){
drh867db832014-09-26 02:41:05 +00008772 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00008773 "Rowid %lld out of order (min less than parent max of %lld)",
8774 nMinKey, *pnParentMaxKey);
8775 }
8776 }
8777 }
8778
drh5eddca62001-06-30 21:53:53 +00008779 /* Check for complete coverage of the page
8780 */
drhda200cc2004-05-09 11:51:38 +00008781 data = pPage->aData;
8782 hdr = pPage->hdrOffset;
drh67731a92015-04-16 11:56:03 +00008783 heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
drh867db832014-09-26 02:41:05 +00008784 pCheck->zPfx = 0;
drh67731a92015-04-16 11:56:03 +00008785 if( heap==0 ){
drhc890fec2008-08-01 20:10:08 +00008786 pCheck->mallocFailed = 1;
8787 }else{
drh5d433ce2010-08-14 16:02:52 +00008788 int contentOffset = get2byteNotZero(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00008789 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
drh67731a92015-04-16 11:56:03 +00008790 heap[0] = 0;
8791 btreeHeapInsert(heap, contentOffset-1);
drhfdab0262014-11-20 15:30:50 +00008792 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
8793 ** number of cells on the page. */
drh2e38c322004-09-03 18:38:44 +00008794 nCell = get2byte(&data[hdr+3]);
drhfdab0262014-11-20 15:30:50 +00008795 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
8796 ** immediately follows the b-tree page header. */
drh2e38c322004-09-03 18:38:44 +00008797 cellStart = hdr + 12 - 4*pPage->leaf;
drhfdab0262014-11-20 15:30:50 +00008798 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
8799 ** integer offsets to the cell contents. */
drh2e38c322004-09-03 18:38:44 +00008800 for(i=0; i<nCell; i++){
8801 int pc = get2byte(&data[cellStart+i*2]);
drh9b78f792010-08-14 21:21:24 +00008802 u32 size = 65536;
drh8c2bbb62009-07-10 02:52:20 +00008803 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00008804 size = cellSizePtr(pPage, &data[pc]);
8805 }
drh43b18e12010-08-17 19:40:08 +00008806 if( (int)(pc+size-1)>=usableSize ){
drh867db832014-09-26 02:41:05 +00008807 pCheck->zPfx = 0;
8808 checkAppendMsg(pCheck,
shaneh195475d2010-02-19 04:28:08 +00008809 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00008810 }else{
drh67731a92015-04-16 11:56:03 +00008811 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +00008812 }
drh2e38c322004-09-03 18:38:44 +00008813 }
drhfdab0262014-11-20 15:30:50 +00008814 /* EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
8815 ** is the offset of the first freeblock, or zero if there are no
8816 ** freeblocks on the page. */
drh8c2bbb62009-07-10 02:52:20 +00008817 i = get2byte(&data[hdr+1]);
8818 while( i>0 ){
8819 int size, j;
8820 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
8821 size = get2byte(&data[i+2]);
8822 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
drh67731a92015-04-16 11:56:03 +00008823 btreeHeapInsert(heap, (i<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +00008824 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
8825 ** big-endian integer which is the offset in the b-tree page of the next
8826 ** freeblock in the chain, or zero if the freeblock is the last on the
8827 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +00008828 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +00008829 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
8830 ** increasing offset. */
drh8c2bbb62009-07-10 02:52:20 +00008831 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
8832 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
8833 i = j;
drh2e38c322004-09-03 18:38:44 +00008834 }
drh67731a92015-04-16 11:56:03 +00008835 cnt = 0;
8836 assert( heap[0]>0 );
8837 assert( (heap[1]>>16)==0 );
8838 btreeHeapPull(heap,&prev);
8839 while( btreeHeapPull(heap,&x) ){
8840 if( (prev&0xffff)+1>(x>>16) ){
drh867db832014-09-26 02:41:05 +00008841 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +00008842 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +00008843 break;
drh67731a92015-04-16 11:56:03 +00008844 }else{
8845 cnt += (x>>16) - (prev&0xffff) - 1;
8846 prev = x;
drh2e38c322004-09-03 18:38:44 +00008847 }
8848 }
drh67731a92015-04-16 11:56:03 +00008849 cnt += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +00008850 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
8851 ** is stored in the fifth field of the b-tree page header.
8852 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
8853 ** number of fragmented free bytes within the cell content area.
8854 */
drha33b6832015-04-16 21:57:37 +00008855 if( heap[0]==0 && cnt!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +00008856 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +00008857 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00008858 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00008859 }
8860 }
drh67731a92015-04-16 11:56:03 +00008861 sqlite3PageFree(heap);
drh4b70f112004-05-02 21:12:19 +00008862 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00008863
8864end_of_check:
8865 pCheck->zPfx = saved_zPfx;
8866 pCheck->v1 = saved_v1;
8867 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +00008868 return depth+1;
drh5eddca62001-06-30 21:53:53 +00008869}
drhb7f91642004-10-31 02:22:47 +00008870#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008871
drhb7f91642004-10-31 02:22:47 +00008872#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008873/*
8874** This routine does a complete check of the given BTree file. aRoot[] is
8875** an array of pages numbers were each page number is the root page of
8876** a table. nRoot is the number of entries in aRoot.
8877**
danielk19773509a652009-07-06 18:56:13 +00008878** A read-only or read-write transaction must be opened before calling
8879** this function.
8880**
drhc890fec2008-08-01 20:10:08 +00008881** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00008882** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00008883** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00008884** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00008885*/
drh1dcdbc02007-01-27 02:24:54 +00008886char *sqlite3BtreeIntegrityCheck(
8887 Btree *p, /* The btree to be checked */
8888 int *aRoot, /* An array of root pages numbers for individual trees */
8889 int nRoot, /* Number of entries in aRoot[] */
8890 int mxErr, /* Stop reporting errors after this many */
8891 int *pnErr /* Write number of errors seen to this variable */
8892){
danielk197789d40042008-11-17 14:20:56 +00008893 Pgno i;
drh5eddca62001-06-30 21:53:53 +00008894 int nRef;
drhaaab5722002-02-19 13:39:21 +00008895 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00008896 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00008897 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00008898
drhd677b3d2007-08-20 22:48:41 +00008899 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00008900 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00008901 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00008902 sCheck.pBt = pBt;
8903 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00008904 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00008905 sCheck.mxErr = mxErr;
8906 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00008907 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +00008908 sCheck.zPfx = 0;
8909 sCheck.v1 = 0;
8910 sCheck.v2 = 0;
drh1dcdbc02007-01-27 02:24:54 +00008911 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00008912 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00008913 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00008914 return 0;
8915 }
dan1235bb12012-04-03 17:43:28 +00008916
8917 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
8918 if( !sCheck.aPgRef ){
drh1dcdbc02007-01-27 02:24:54 +00008919 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00008920 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00008921 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00008922 }
drh42cac6d2004-11-20 20:31:11 +00008923 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00008924 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drhc0490572015-05-02 11:45:53 +00008925 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh5eddca62001-06-30 21:53:53 +00008926
8927 /* Check the integrity of the freelist
8928 */
drh867db832014-09-26 02:41:05 +00008929 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +00008930 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +00008931 get4byte(&pBt->pPage1->aData[36]));
8932 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00008933
8934 /* Check all the tables.
8935 */
danielk197789d40042008-11-17 14:20:56 +00008936 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00008937 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00008938#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008939 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +00008940 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00008941 }
8942#endif
drh867db832014-09-26 02:41:05 +00008943 sCheck.zPfx = "List of tree roots: ";
8944 checkTreePage(&sCheck, aRoot[i], NULL, NULL);
8945 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00008946 }
8947
8948 /* Make sure every page in the file is referenced
8949 */
drh1dcdbc02007-01-27 02:24:54 +00008950 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00008951#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00008952 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +00008953 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00008954 }
danielk1977afcdd022004-10-31 16:25:42 +00008955#else
8956 /* If the database supports auto-vacuum, make sure no tables contain
8957 ** references to pointer-map pages.
8958 */
dan1235bb12012-04-03 17:43:28 +00008959 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00008960 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00008961 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +00008962 }
dan1235bb12012-04-03 17:43:28 +00008963 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00008964 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00008965 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +00008966 }
8967#endif
drh5eddca62001-06-30 21:53:53 +00008968 }
8969
drh64022502009-01-09 14:11:04 +00008970 /* Make sure this analysis did not leave any unref() pages.
8971 ** This is an internal consistency check; an integrity check
8972 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00008973 */
drh64022502009-01-09 14:11:04 +00008974 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh867db832014-09-26 02:41:05 +00008975 checkAppendMsg(&sCheck,
drh5eddca62001-06-30 21:53:53 +00008976 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00008977 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00008978 );
drh5eddca62001-06-30 21:53:53 +00008979 }
8980
8981 /* Clean up and report errors.
8982 */
drhd677b3d2007-08-20 22:48:41 +00008983 sqlite3BtreeLeave(p);
dan1235bb12012-04-03 17:43:28 +00008984 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00008985 if( sCheck.mallocFailed ){
8986 sqlite3StrAccumReset(&sCheck.errMsg);
8987 *pnErr = sCheck.nErr+1;
8988 return 0;
8989 }
drh1dcdbc02007-01-27 02:24:54 +00008990 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00008991 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
8992 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00008993}
drhb7f91642004-10-31 02:22:47 +00008994#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00008995
drh73509ee2003-04-06 20:44:45 +00008996/*
drhd4e0bb02012-05-27 01:19:04 +00008997** Return the full pathname of the underlying database file. Return
8998** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00008999**
9000** The pager filename is invariant as long as the pager is
9001** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00009002*/
danielk1977aef0bf62005-12-30 16:28:01 +00009003const char *sqlite3BtreeGetFilename(Btree *p){
9004 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00009005 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00009006}
9007
9008/*
danielk19775865e3d2004-06-14 06:03:57 +00009009** Return the pathname of the journal file for this database. The return
9010** value of this routine is the same regardless of whether the journal file
9011** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00009012**
9013** The pager journal filename is invariant as long as the pager is
9014** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00009015*/
danielk1977aef0bf62005-12-30 16:28:01 +00009016const char *sqlite3BtreeGetJournalname(Btree *p){
9017 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00009018 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00009019}
9020
danielk19771d850a72004-05-31 08:26:49 +00009021/*
9022** Return non-zero if a transaction is active.
9023*/
danielk1977aef0bf62005-12-30 16:28:01 +00009024int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00009025 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00009026 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00009027}
9028
dana550f2d2010-08-02 10:47:05 +00009029#ifndef SQLITE_OMIT_WAL
9030/*
9031** Run a checkpoint on the Btree passed as the first argument.
9032**
9033** Return SQLITE_LOCKED if this or any other connection has an open
9034** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00009035**
dancdc1f042010-11-18 12:11:05 +00009036** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00009037*/
dancdc1f042010-11-18 12:11:05 +00009038int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00009039 int rc = SQLITE_OK;
9040 if( p ){
9041 BtShared *pBt = p->pBt;
9042 sqlite3BtreeEnter(p);
9043 if( pBt->inTransaction!=TRANS_NONE ){
9044 rc = SQLITE_LOCKED;
9045 }else{
dancdc1f042010-11-18 12:11:05 +00009046 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00009047 }
9048 sqlite3BtreeLeave(p);
9049 }
9050 return rc;
9051}
9052#endif
9053
danielk19771d850a72004-05-31 08:26:49 +00009054/*
danielk19772372c2b2006-06-27 16:34:56 +00009055** Return non-zero if a read (or write) transaction is active.
9056*/
9057int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00009058 assert( p );
drhe5fe6902007-12-07 18:55:28 +00009059 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00009060 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00009061}
9062
danielk197704103022009-02-03 16:51:24 +00009063int sqlite3BtreeIsInBackup(Btree *p){
9064 assert( p );
9065 assert( sqlite3_mutex_held(p->db->mutex) );
9066 return p->nBackup!=0;
9067}
9068
danielk19772372c2b2006-06-27 16:34:56 +00009069/*
danielk1977da184232006-01-05 11:34:32 +00009070** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00009071** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00009072** purposes (for example, to store a high-level schema associated with
9073** the shared-btree). The btree layer manages reference counting issues.
9074**
9075** The first time this is called on a shared-btree, nBytes bytes of memory
9076** are allocated, zeroed, and returned to the caller. For each subsequent
9077** call the nBytes parameter is ignored and a pointer to the same blob
9078** of memory returned.
9079**
danielk1977171bfed2008-06-23 09:50:50 +00009080** If the nBytes parameter is 0 and the blob of memory has not yet been
9081** allocated, a null pointer is returned. If the blob has already been
9082** allocated, it is returned as normal.
9083**
danielk1977da184232006-01-05 11:34:32 +00009084** Just before the shared-btree is closed, the function passed as the
9085** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00009086** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00009087** on the memory, the btree layer does that.
9088*/
9089void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
9090 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00009091 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00009092 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00009093 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00009094 pBt->xFreeSchema = xFree;
9095 }
drh27641702007-08-22 02:56:42 +00009096 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00009097 return pBt->pSchema;
9098}
9099
danielk1977c87d34d2006-01-06 13:00:28 +00009100/*
danielk1977404ca072009-03-16 13:19:36 +00009101** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
9102** btree as the argument handle holds an exclusive lock on the
9103** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00009104*/
9105int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00009106 int rc;
drhe5fe6902007-12-07 18:55:28 +00009107 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00009108 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00009109 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
9110 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00009111 sqlite3BtreeLeave(p);
9112 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00009113}
9114
drha154dcd2006-03-22 22:10:07 +00009115
9116#ifndef SQLITE_OMIT_SHARED_CACHE
9117/*
9118** Obtain a lock on the table whose root page is iTab. The
9119** lock is a write lock if isWritelock is true or a read lock
9120** if it is false.
9121*/
danielk1977c00da102006-01-07 13:21:04 +00009122int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00009123 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00009124 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00009125 if( p->sharable ){
9126 u8 lockType = READ_LOCK + isWriteLock;
9127 assert( READ_LOCK+1==WRITE_LOCK );
9128 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00009129
drh6a9ad3d2008-04-02 16:29:30 +00009130 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00009131 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009132 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00009133 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00009134 }
9135 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00009136 }
9137 return rc;
9138}
drha154dcd2006-03-22 22:10:07 +00009139#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00009140
danielk1977b4e9af92007-05-01 17:49:49 +00009141#ifndef SQLITE_OMIT_INCRBLOB
9142/*
9143** Argument pCsr must be a cursor opened for writing on an
9144** INTKEY table currently pointing at a valid table entry.
9145** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00009146**
9147** Only the data content may only be modified, it is not possible to
9148** change the length of the data stored. If this function is called with
9149** parameters that attempt to write past the end of the existing data,
9150** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00009151*/
danielk1977dcbb5d32007-05-04 18:36:44 +00009152int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00009153 int rc;
drh1fee73e2007-08-29 04:00:57 +00009154 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00009155 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +00009156 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +00009157
danielk1977c9000e62009-07-08 13:55:28 +00009158 rc = restoreCursorPosition(pCsr);
9159 if( rc!=SQLITE_OK ){
9160 return rc;
9161 }
danielk19773588ceb2008-06-10 17:30:26 +00009162 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
9163 if( pCsr->eState!=CURSOR_VALID ){
9164 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00009165 }
9166
dan227a1c42013-04-03 11:17:39 +00009167 /* Save the positions of all other cursors open on this table. This is
9168 ** required in case any of them are holding references to an xFetch
9169 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +00009170 **
drh3f387402014-09-24 01:23:00 +00009171 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +00009172 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
9173 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +00009174 */
drh370c9f42013-04-03 20:04:04 +00009175 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
9176 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +00009177
danielk1977c9000e62009-07-08 13:55:28 +00009178 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00009179 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00009180 ** (b) there is a read/write transaction open,
9181 ** (c) the connection holds a write-lock on the table (if required),
9182 ** (d) there are no conflicting read-locks, and
9183 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00009184 */
drh036dbec2014-03-11 23:40:44 +00009185 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +00009186 return SQLITE_READONLY;
9187 }
drhc9166342012-01-05 23:32:06 +00009188 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
9189 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009190 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
9191 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00009192 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00009193
drhfb192682009-07-11 18:26:28 +00009194 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00009195}
danielk19772dec9702007-05-02 16:48:37 +00009196
9197/*
dan5a500af2014-03-11 20:33:04 +00009198** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +00009199*/
dan5a500af2014-03-11 20:33:04 +00009200void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +00009201 pCur->curFlags |= BTCF_Incrblob;
danielk19772dec9702007-05-02 16:48:37 +00009202}
danielk1977b4e9af92007-05-01 17:49:49 +00009203#endif
dane04dc882010-04-20 18:53:15 +00009204
9205/*
9206** Set both the "read version" (single byte at byte offset 18) and
9207** "write version" (single byte at byte offset 19) fields in the database
9208** header to iVersion.
9209*/
9210int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
9211 BtShared *pBt = pBtree->pBt;
9212 int rc; /* Return code */
9213
dane04dc882010-04-20 18:53:15 +00009214 assert( iVersion==1 || iVersion==2 );
9215
danb9780022010-04-21 18:37:57 +00009216 /* If setting the version fields to 1, do not automatically open the
9217 ** WAL connection, even if the version fields are currently set to 2.
9218 */
drhc9166342012-01-05 23:32:06 +00009219 pBt->btsFlags &= ~BTS_NO_WAL;
9220 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00009221
9222 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00009223 if( rc==SQLITE_OK ){
9224 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00009225 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00009226 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00009227 if( rc==SQLITE_OK ){
9228 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9229 if( rc==SQLITE_OK ){
9230 aData[18] = (u8)iVersion;
9231 aData[19] = (u8)iVersion;
9232 }
9233 }
9234 }
dane04dc882010-04-20 18:53:15 +00009235 }
9236
drhc9166342012-01-05 23:32:06 +00009237 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00009238 return rc;
9239}
dan428c2182012-08-06 18:50:11 +00009240
9241/*
drhe0997b32015-03-20 14:57:50 +00009242** set the mask of hint flags for cursor pCsr.
dan428c2182012-08-06 18:50:11 +00009243*/
9244void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){
drhe0997b32015-03-20 14:57:50 +00009245 assert( mask==BTREE_BULKLOAD || mask==BTREE_SEEK_EQ || mask==0 );
dan428c2182012-08-06 18:50:11 +00009246 pCsr->hints = mask;
9247}
drh781597f2014-05-21 08:21:07 +00009248
drhe0997b32015-03-20 14:57:50 +00009249#ifdef SQLITE_DEBUG
9250/*
9251** Return true if the cursor has a hint specified. This routine is
9252** only used from within assert() statements
9253*/
9254int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
9255 return (pCsr->hints & mask)!=0;
9256}
9257#endif
9258
drh781597f2014-05-21 08:21:07 +00009259/*
9260** Return true if the given Btree is read-only.
9261*/
9262int sqlite3BtreeIsReadonly(Btree *p){
9263 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
9264}
drhdef68892014-11-04 12:11:23 +00009265
9266/*
9267** Return the size of the header added to each page by this module.
9268*/
drh37c057b2014-12-30 00:57:29 +00009269int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }