blob: 45a00d2095738299cf1b2bdd8d7ac3f6e47aa14b [file] [log] [blame]
dan1da40a32009-09-19 17:00:31 +00001/*
2**
3** The author disclaims copyright to this source code. In place of
4** a legal notice, here is a blessing:
5**
6** May you do good and not evil.
7** May you find forgiveness for yourself and forgive others.
8** May you share freely, never taking more than you give.
9**
10*************************************************************************
11** This file contains code used by the compiler to add foreign key
12** support to compiled SQL statements.
13*/
14#include "sqliteInt.h"
15
16#ifndef SQLITE_OMIT_FOREIGN_KEY
dan75cbd982009-09-21 16:06:03 +000017#ifndef SQLITE_OMIT_TRIGGER
dan1da40a32009-09-19 17:00:31 +000018
19/*
20** Deferred and Immediate FKs
21** --------------------------
22**
23** Foreign keys in SQLite come in two flavours: deferred and immediate.
dan8a2fff72009-09-23 18:07:22 +000024** If an immediate foreign key constraint is violated, SQLITE_CONSTRAINT
25** is returned and the current statement transaction rolled back. If a
dan1da40a32009-09-19 17:00:31 +000026** deferred foreign key constraint is violated, no action is taken
27** immediately. However if the application attempts to commit the
28** transaction before fixing the constraint violation, the attempt fails.
29**
30** Deferred constraints are implemented using a simple counter associated
31** with the database handle. The counter is set to zero each time a
32** database transaction is opened. Each time a statement is executed
33** that causes a foreign key violation, the counter is incremented. Each
34** time a statement is executed that removes an existing violation from
35** the database, the counter is decremented. When the transaction is
36** committed, the commit fails if the current value of the counter is
37** greater than zero. This scheme has two big drawbacks:
38**
39** * When a commit fails due to a deferred foreign key constraint,
40** there is no way to tell which foreign constraint is not satisfied,
41** or which row it is not satisfied for.
42**
43** * If the database contains foreign key violations when the
44** transaction is opened, this may cause the mechanism to malfunction.
45**
46** Despite these problems, this approach is adopted as it seems simpler
47** than the alternatives.
48**
49** INSERT operations:
50**
dan8099ce62009-09-23 08:43:35 +000051** I.1) For each FK for which the table is the child table, search
dan8a2fff72009-09-23 18:07:22 +000052** the parent table for a match. If none is found increment the
53** constraint counter.
dan1da40a32009-09-19 17:00:31 +000054**
dan8a2fff72009-09-23 18:07:22 +000055** I.2) For each FK for which the table is the parent table,
dan8099ce62009-09-23 08:43:35 +000056** search the child table for rows that correspond to the new
57** row in the parent table. Decrement the counter for each row
dan1da40a32009-09-19 17:00:31 +000058** found (as the constraint is now satisfied).
59**
60** DELETE operations:
61**
dan8a2fff72009-09-23 18:07:22 +000062** D.1) For each FK for which the table is the child table,
dan8099ce62009-09-23 08:43:35 +000063** search the parent table for a row that corresponds to the
64** deleted row in the child table. If such a row is not found,
dan1da40a32009-09-19 17:00:31 +000065** decrement the counter.
66**
dan8099ce62009-09-23 08:43:35 +000067** D.2) For each FK for which the table is the parent table, search
68** the child table for rows that correspond to the deleted row
dan8a2fff72009-09-23 18:07:22 +000069** in the parent table. For each found increment the counter.
dan1da40a32009-09-19 17:00:31 +000070**
71** UPDATE operations:
72**
73** An UPDATE command requires that all 4 steps above are taken, but only
74** for FK constraints for which the affected columns are actually
75** modified (values must be compared at runtime).
76**
77** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2.
78** This simplifies the implementation a bit.
79**
80** For the purposes of immediate FK constraints, the OR REPLACE conflict
81** resolution is considered to delete rows before the new row is inserted.
82** If a delete caused by OR REPLACE violates an FK constraint, an exception
83** is thrown, even if the FK constraint would be satisfied after the new
84** row is inserted.
85**
danbd747832009-09-25 12:00:01 +000086** Immediate constraints are usually handled similarly. The only difference
87** is that the counter used is stored as part of each individual statement
88** object (struct Vdbe). If, after the statement has run, its immediate
89** constraint counter is greater than zero, it returns SQLITE_CONSTRAINT
90** and the statement transaction is rolled back. An exception is an INSERT
91** statement that inserts a single row only (no triggers). In this case,
92** instead of using a counter, an exception is thrown immediately if the
93** INSERT violates a foreign key constraint. This is necessary as such
94** an INSERT does not open a statement transaction.
95**
dan1da40a32009-09-19 17:00:31 +000096** TODO: How should dropping a table be handled? How should renaming a
97** table be handled?
dan8099ce62009-09-23 08:43:35 +000098**
99**
dan1da40a32009-09-19 17:00:31 +0000100** Query API Notes
101** ---------------
102**
103** Before coding an UPDATE or DELETE row operation, the code-generator
104** for those two operations needs to know whether or not the operation
105** requires any FK processing and, if so, which columns of the original
106** row are required by the FK processing VDBE code (i.e. if FKs were
107** implemented using triggers, which of the old.* columns would be
108** accessed). No information is required by the code-generator before
dan8099ce62009-09-23 08:43:35 +0000109** coding an INSERT operation. The functions used by the UPDATE/DELETE
110** generation code to query for this information are:
dan1da40a32009-09-19 17:00:31 +0000111**
dan8099ce62009-09-23 08:43:35 +0000112** sqlite3FkRequired() - Test to see if FK processing is required.
113** sqlite3FkOldmask() - Query for the set of required old.* columns.
114**
115**
116** Externally accessible module functions
117** --------------------------------------
118**
119** sqlite3FkCheck() - Check for foreign key violations.
120** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions.
121** sqlite3FkDelete() - Delete an FKey structure.
dan1da40a32009-09-19 17:00:31 +0000122*/
123
124/*
125** VDBE Calling Convention
126** -----------------------
127**
128** Example:
129**
130** For the following INSERT statement:
131**
132** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c);
133** INSERT INTO t1 VALUES(1, 2, 3.1);
134**
135** Register (x): 2 (type integer)
136** Register (x+1): 1 (type integer)
137** Register (x+2): NULL (type NULL)
138** Register (x+3): 3.1 (type real)
139*/
140
141/*
dan8099ce62009-09-23 08:43:35 +0000142** A foreign key constraint requires that the key columns in the parent
dan1da40a32009-09-19 17:00:31 +0000143** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
dan8099ce62009-09-23 08:43:35 +0000144** Given that pParent is the parent table for foreign key constraint pFKey,
145** search the schema a unique index on the parent key columns.
dan1da40a32009-09-19 17:00:31 +0000146**
dan8099ce62009-09-23 08:43:35 +0000147** If successful, zero is returned. If the parent key is an INTEGER PRIMARY
148** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx
149** is set to point to the unique index.
150**
151** If the parent key consists of a single column (the foreign key constraint
152** is not a composite foreign key), output variable *paiCol is set to NULL.
153** Otherwise, it is set to point to an allocated array of size N, where
154** N is the number of columns in the parent key. The first element of the
155** array is the index of the child table column that is mapped by the FK
156** constraint to the parent table column stored in the left-most column
157** of index *ppIdx. The second element of the array is the index of the
158** child table column that corresponds to the second left-most column of
159** *ppIdx, and so on.
160**
161** If the required index cannot be found, either because:
162**
163** 1) The named parent key columns do not exist, or
164**
165** 2) The named parent key columns do exist, but are not subject to a
166** UNIQUE or PRIMARY KEY constraint, or
167**
168** 3) No parent key columns were provided explicitly as part of the
169** foreign key definition, and the parent table does not have a
170** PRIMARY KEY, or
171**
172** 4) No parent key columns were provided explicitly as part of the
173** foreign key definition, and the PRIMARY KEY of the parent table
174** consists of a a different number of columns to the child key in
175** the child table.
176**
177** then non-zero is returned, and a "foreign key mismatch" error loaded
178** into pParse. If an OOM error occurs, non-zero is returned and the
179** pParse->db->mallocFailed flag is set.
dan1da40a32009-09-19 17:00:31 +0000180*/
181static int locateFkeyIndex(
182 Parse *pParse, /* Parse context to store any error in */
dan8099ce62009-09-23 08:43:35 +0000183 Table *pParent, /* Parent table of FK constraint pFKey */
dan1da40a32009-09-19 17:00:31 +0000184 FKey *pFKey, /* Foreign key to find index for */
dan8099ce62009-09-23 08:43:35 +0000185 Index **ppIdx, /* OUT: Unique index on parent table */
dan1da40a32009-09-19 17:00:31 +0000186 int **paiCol /* OUT: Map of index columns in pFKey */
187){
dan8099ce62009-09-23 08:43:35 +0000188 Index *pIdx = 0; /* Value to return via *ppIdx */
189 int *aiCol = 0; /* Value to return via *paiCol */
190 int nCol = pFKey->nCol; /* Number of columns in parent key */
191 char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */
dan1da40a32009-09-19 17:00:31 +0000192
193 /* The caller is responsible for zeroing output parameters. */
194 assert( ppIdx && *ppIdx==0 );
195 assert( !paiCol || *paiCol==0 );
danf7a94542009-09-30 08:11:07 +0000196 assert( pParse );
dan1da40a32009-09-19 17:00:31 +0000197
198 /* If this is a non-composite (single column) foreign key, check if it
dan8099ce62009-09-23 08:43:35 +0000199 ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx
dan1da40a32009-09-19 17:00:31 +0000200 ** and *paiCol set to zero and return early.
201 **
202 ** Otherwise, for a composite foreign key (more than one column), allocate
203 ** space for the aiCol array (returned via output parameter *paiCol).
204 ** Non-composite foreign keys do not require the aiCol array.
205 */
206 if( nCol==1 ){
207 /* The FK maps to the IPK if any of the following are true:
208 **
dand981d442009-09-23 13:59:17 +0000209 ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly
210 ** mapped to the primary key of table pParent, or
211 ** 2) The FK is explicitly mapped to a column declared as INTEGER
dan1da40a32009-09-19 17:00:31 +0000212 ** PRIMARY KEY.
213 */
dan8099ce62009-09-23 08:43:35 +0000214 if( pParent->iPKey>=0 ){
215 if( !zKey ) return 0;
216 if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0;
dan1da40a32009-09-19 17:00:31 +0000217 }
218 }else if( paiCol ){
219 assert( nCol>1 );
220 aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int));
221 if( !aiCol ) return 1;
222 *paiCol = aiCol;
223 }
224
dan8099ce62009-09-23 08:43:35 +0000225 for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){
dan1da40a32009-09-19 17:00:31 +0000226 if( pIdx->nColumn==nCol && pIdx->onError!=OE_None ){
227 /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
228 ** of columns. If each indexed column corresponds to a foreign key
229 ** column of pFKey, then this index is a winner. */
230
dan8099ce62009-09-23 08:43:35 +0000231 if( zKey==0 ){
232 /* If zKey is NULL, then this foreign key is implicitly mapped to
233 ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be
dan1da40a32009-09-19 17:00:31 +0000234 ** identified by the test (Index.autoIndex==2). */
235 if( pIdx->autoIndex==2 ){
dan8a2fff72009-09-23 18:07:22 +0000236 if( aiCol ){
237 int i;
238 for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom;
239 }
dan1da40a32009-09-19 17:00:31 +0000240 break;
241 }
242 }else{
dan8099ce62009-09-23 08:43:35 +0000243 /* If zKey is non-NULL, then this foreign key was declared to
244 ** map to an explicit list of columns in table pParent. Check if this
dan9707c7b2009-09-29 15:41:57 +0000245 ** index matches those columns. Also, check that the index uses
246 ** the default collation sequences for each column. */
dan1da40a32009-09-19 17:00:31 +0000247 int i, j;
248 for(i=0; i<nCol; i++){
dan9707c7b2009-09-29 15:41:57 +0000249 int iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */
250 char *zDfltColl; /* Def. collation for column */
251 char *zIdxCol; /* Name of indexed column */
252
253 /* If the index uses a collation sequence that is different from
254 ** the default collation sequence for the column, this index is
255 ** unusable. Bail out early in this case. */
256 zDfltColl = pParent->aCol[iCol].zColl;
257 if( !zDfltColl ){
258 zDfltColl = "BINARY";
259 }
260 if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break;
261
262 zIdxCol = pParent->aCol[iCol].zName;
dan1da40a32009-09-19 17:00:31 +0000263 for(j=0; j<nCol; j++){
264 if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){
265 if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom;
266 break;
267 }
268 }
269 if( j==nCol ) break;
270 }
271 if( i==nCol ) break; /* pIdx is usable */
272 }
273 }
274 }
275
danf7a94542009-09-30 08:11:07 +0000276 if( !pIdx ){
danf0662562009-09-28 18:52:11 +0000277 if( !pParse->disableTriggers ){
278 sqlite3ErrorMsg(pParse, "foreign key mismatch");
279 }
dan1da40a32009-09-19 17:00:31 +0000280 sqlite3DbFree(pParse->db, aiCol);
281 return 1;
282 }
283
284 *ppIdx = pIdx;
285 return 0;
286}
287
dan8099ce62009-09-23 08:43:35 +0000288/*
danbd747832009-09-25 12:00:01 +0000289** This function is called when a row is inserted into or deleted from the
290** child table of foreign key constraint pFKey. If an SQL UPDATE is executed
291** on the child table of pFKey, this function is invoked twice for each row
dan8099ce62009-09-23 08:43:35 +0000292** affected - once to "delete" the old row, and then again to "insert" the
293** new row.
294**
295** Each time it is called, this function generates VDBE code to locate the
296** row in the parent table that corresponds to the row being inserted into
297** or deleted from the child table. If the parent row can be found, no
298** special action is taken. Otherwise, if the parent row can *not* be
299** found in the parent table:
300**
301** Operation | FK type | Action taken
302** --------------------------------------------------------------------------
danbd747832009-09-25 12:00:01 +0000303** INSERT immediate Increment the "immediate constraint counter".
304**
305** DELETE immediate Decrement the "immediate constraint counter".
dan8099ce62009-09-23 08:43:35 +0000306**
307** INSERT deferred Increment the "deferred constraint counter".
308**
309** DELETE deferred Decrement the "deferred constraint counter".
310**
danbd747832009-09-25 12:00:01 +0000311** These operations are identified in the comment at the top of this file
312** (fkey.c) as "I.1" and "D.1".
dan8099ce62009-09-23 08:43:35 +0000313*/
314static void fkLookupParent(
dan1da40a32009-09-19 17:00:31 +0000315 Parse *pParse, /* Parse context */
316 int iDb, /* Index of database housing pTab */
dan8099ce62009-09-23 08:43:35 +0000317 Table *pTab, /* Parent table of FK pFKey */
318 Index *pIdx, /* Unique index on parent key columns in pTab */
319 FKey *pFKey, /* Foreign key constraint */
320 int *aiCol, /* Map from parent key columns to child table columns */
321 int regData, /* Address of array containing child table row */
dan02470b22009-10-03 07:04:11 +0000322 int nIncr, /* Increment constraint counter by this */
323 int isIgnore /* If true, pretend pTab contains all NULL values */
dan1da40a32009-09-19 17:00:31 +0000324){
dan8099ce62009-09-23 08:43:35 +0000325 int i; /* Iterator variable */
326 Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */
327 int iCur = pParse->nTab - 1; /* Cursor number to use */
328 int iOk = sqlite3VdbeMakeLabel(v); /* jump here if parent key found */
dan1da40a32009-09-19 17:00:31 +0000329
dan0ff297e2009-09-25 17:03:14 +0000330 /* If nIncr is less than zero, then check at runtime if there are any
331 ** outstanding constraints to resolve. If there are not, there is no need
332 ** to check if deleting this row resolves any outstanding violations.
333 **
334 ** Check if any of the key columns in the child table row are NULL. If
335 ** any are, then the constraint is considered satisfied. No need to
336 ** search for a matching row in the parent table. */
337 if( nIncr<0 ){
338 sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk);
339 }
dan1da40a32009-09-19 17:00:31 +0000340 for(i=0; i<pFKey->nCol; i++){
dan36062642009-09-21 18:56:23 +0000341 int iReg = aiCol[i] + regData + 1;
dan1da40a32009-09-19 17:00:31 +0000342 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk);
343 }
344
dan02470b22009-10-03 07:04:11 +0000345 if( isIgnore==0 ){
346 if( pIdx==0 ){
347 /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY
348 ** column of the parent table (table pTab). */
349 int iMustBeInt; /* Address of MustBeInt instruction */
350 int regTemp = sqlite3GetTempReg(pParse);
351
352 /* Invoke MustBeInt to coerce the child key value to an integer (i.e.
353 ** apply the affinity of the parent key). If this fails, then there
354 ** is no matching parent key. Before using MustBeInt, make a copy of
355 ** the value. Otherwise, the value inserted into the child key column
356 ** will have INTEGER affinity applied to it, which may not be correct. */
357 sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp);
358 iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0);
359
360 /* If the parent table is the same as the child table, and we are about
361 ** to increment the constraint-counter (i.e. this is an INSERT operation),
362 ** then check if the row being inserted matches itself. If so, do not
363 ** increment the constraint-counter. */
364 if( pTab==pFKey->pFrom && nIncr==1 ){
365 sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp);
dan9277efa2009-09-28 11:54:21 +0000366 }
dan02470b22009-10-03 07:04:11 +0000367
368 sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
369 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp);
dan9277efa2009-09-28 11:54:21 +0000370 sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
dan02470b22009-10-03 07:04:11 +0000371 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
372 sqlite3VdbeJumpHere(v, iMustBeInt);
373 sqlite3ReleaseTempReg(pParse, regTemp);
374 }else{
375 int nCol = pFKey->nCol;
376 int regTemp = sqlite3GetTempRange(pParse, nCol);
377 int regRec = sqlite3GetTempReg(pParse);
378 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
379
380 sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb);
381 sqlite3VdbeChangeP4(v, -1, (char*)pKey, P4_KEYINFO_HANDOFF);
382 for(i=0; i<nCol; i++){
383 sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[i]+1+regData, regTemp+i);
384 }
385
386 /* If the parent table is the same as the child table, and we are about
387 ** to increment the constraint-counter (i.e. this is an INSERT operation),
388 ** then check if the row being inserted matches itself. If so, do not
389 ** increment the constraint-counter. */
390 if( pTab==pFKey->pFrom && nIncr==1 ){
391 int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1;
392 for(i=0; i<nCol; i++){
393 int iChild = aiCol[i]+1+regData;
394 int iParent = pIdx->aiColumn[i]+1+regData;
395 sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent);
396 }
397 sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
398 }
399
400 sqlite3VdbeAddOp3(v, OP_MakeRecord, regTemp, nCol, regRec);
401 sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), 0);
402 sqlite3VdbeAddOp3(v, OP_Found, iCur, iOk, regRec);
403
404 sqlite3ReleaseTempReg(pParse, regRec);
405 sqlite3ReleaseTempRange(pParse, regTemp, nCol);
dan9277efa2009-09-28 11:54:21 +0000406 }
dan1da40a32009-09-19 17:00:31 +0000407 }
408
dan32b09f22009-09-23 17:29:59 +0000409 if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
410 /* Special case: If this is an INSERT statement that will insert exactly
411 ** one row into the table, raise a constraint immediately instead of
412 ** incrementing a counter. This is necessary as the VM code is being
413 ** generated for will not open a statement transaction. */
414 assert( nIncr==1 );
dan1da40a32009-09-19 17:00:31 +0000415 sqlite3HaltConstraint(
416 pParse, OE_Abort, "foreign key constraint failed", P4_STATIC
417 );
dan32b09f22009-09-23 17:29:59 +0000418 }else{
419 if( nIncr>0 && pFKey->isDeferred==0 ){
420 sqlite3ParseToplevel(pParse)->mayAbort = 1;
421 }
dan0ff297e2009-09-25 17:03:14 +0000422 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
dan1da40a32009-09-19 17:00:31 +0000423 }
424
425 sqlite3VdbeResolveLabel(v, iOk);
426}
427
dan8099ce62009-09-23 08:43:35 +0000428/*
429** This function is called to generate code executed when a row is deleted
430** from the parent table of foreign key constraint pFKey and, if pFKey is
431** deferred, when a row is inserted into the same table. When generating
432** code for an SQL UPDATE operation, this function may be called twice -
433** once to "delete" the old row and once to "insert" the new row.
434**
435** The code generated by this function scans through the rows in the child
436** table that correspond to the parent table row being deleted or inserted.
437** For each child row found, one of the following actions is taken:
438**
439** Operation | FK type | Action taken
440** --------------------------------------------------------------------------
danbd747832009-09-25 12:00:01 +0000441** DELETE immediate Increment the "immediate constraint counter".
442** Or, if the ON (UPDATE|DELETE) action is RESTRICT,
443** throw a "foreign key constraint failed" exception.
444**
445** INSERT immediate Decrement the "immediate constraint counter".
dan8099ce62009-09-23 08:43:35 +0000446**
447** DELETE deferred Increment the "deferred constraint counter".
448** Or, if the ON (UPDATE|DELETE) action is RESTRICT,
449** throw a "foreign key constraint failed" exception.
450**
451** INSERT deferred Decrement the "deferred constraint counter".
452**
danbd747832009-09-25 12:00:01 +0000453** These operations are identified in the comment at the top of this file
454** (fkey.c) as "I.2" and "D.2".
dan8099ce62009-09-23 08:43:35 +0000455*/
456static void fkScanChildren(
dan1da40a32009-09-19 17:00:31 +0000457 Parse *pParse, /* Parse context */
458 SrcList *pSrc, /* SrcList containing the table to scan */
dan9277efa2009-09-28 11:54:21 +0000459 Table *pTab,
dan1da40a32009-09-19 17:00:31 +0000460 Index *pIdx, /* Foreign key index */
461 FKey *pFKey, /* Foreign key relationship */
dan8099ce62009-09-23 08:43:35 +0000462 int *aiCol, /* Map from pIdx cols to child table cols */
dan1da40a32009-09-19 17:00:31 +0000463 int regData, /* Referenced table data starts here */
464 int nIncr /* Amount to increment deferred counter by */
465){
466 sqlite3 *db = pParse->db; /* Database handle */
467 int i; /* Iterator variable */
468 Expr *pWhere = 0; /* WHERE clause to scan with */
469 NameContext sNameContext; /* Context used to resolve WHERE clause */
470 WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */
dan0ff297e2009-09-25 17:03:14 +0000471 int iFkIfZero = 0; /* Address of OP_FkIfZero */
472 Vdbe *v = sqlite3GetVdbe(pParse);
473
dan9277efa2009-09-28 11:54:21 +0000474 assert( !pIdx || pIdx->pTable==pTab );
475
dan0ff297e2009-09-25 17:03:14 +0000476 if( nIncr<0 ){
477 iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0);
478 }
dan1da40a32009-09-19 17:00:31 +0000479
danbd747832009-09-25 12:00:01 +0000480 /* Create an Expr object representing an SQL expression like:
481 **
482 ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ...
483 **
484 ** The collation sequence used for the comparison should be that of
485 ** the parent key columns. The affinity of the parent key column should
486 ** be applied to each child key value before the comparison takes place.
487 */
dan1da40a32009-09-19 17:00:31 +0000488 for(i=0; i<pFKey->nCol; i++){
dan8099ce62009-09-23 08:43:35 +0000489 Expr *pLeft; /* Value from parent table row */
490 Expr *pRight; /* Column ref to child table */
dan1da40a32009-09-19 17:00:31 +0000491 Expr *pEq; /* Expression (pLeft = pRight) */
dan8099ce62009-09-23 08:43:35 +0000492 int iCol; /* Index of column in child table */
493 const char *zCol; /* Name of column in child table */
dan1da40a32009-09-19 17:00:31 +0000494
495 pLeft = sqlite3Expr(db, TK_REGISTER, 0);
496 if( pLeft ){
danbd747832009-09-25 12:00:01 +0000497 /* Set the collation sequence and affinity of the LHS of each TK_EQ
498 ** expression to the parent key column defaults. */
dan140026b2009-09-24 18:19:41 +0000499 if( pIdx ){
500 int iCol = pIdx->aiColumn[i];
501 Column *pCol = &pIdx->pTable->aCol[iCol];
502 pLeft->iTable = regData+iCol+1;
503 pLeft->affinity = pCol->affinity;
504 pLeft->pColl = sqlite3LocateCollSeq(pParse, pCol->zColl);
505 }else{
506 pLeft->iTable = regData;
507 pLeft->affinity = SQLITE_AFF_INTEGER;
508 }
dan1da40a32009-09-19 17:00:31 +0000509 }
510 iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
dana8f0bf62009-09-23 12:06:52 +0000511 assert( iCol>=0 );
512 zCol = pFKey->pFrom->aCol[iCol].zName;
dan1da40a32009-09-19 17:00:31 +0000513 pRight = sqlite3Expr(db, TK_ID, zCol);
514 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0);
515 pWhere = sqlite3ExprAnd(db, pWhere, pEq);
516 }
517
dan9277efa2009-09-28 11:54:21 +0000518 /* If the child table is the same as the parent table, and this scan
519 ** is taking place as part of a DELETE operation (operation D.2), omit the
520 ** row being deleted from the scan by adding ($rowid != rowid) to the WHERE
521 ** clause, where $rowid is the rowid of the row being deleted. */
522 if( pTab==pFKey->pFrom && nIncr>0 ){
523 Expr *pEq; /* Expression (pLeft = pRight) */
524 Expr *pLeft; /* Value from parent table row */
525 Expr *pRight; /* Column ref to child table */
526 pLeft = sqlite3Expr(db, TK_REGISTER, 0);
527 pRight = sqlite3Expr(db, TK_COLUMN, 0);
528 if( pLeft && pRight ){
529 pLeft->iTable = regData;
530 pLeft->affinity = SQLITE_AFF_INTEGER;
531 pRight->iTable = pSrc->a[0].iCursor;
532 pRight->iColumn = -1;
533 }
534 pEq = sqlite3PExpr(pParse, TK_NE, pLeft, pRight, 0);
535 pWhere = sqlite3ExprAnd(db, pWhere, pEq);
536 }
537
dan1da40a32009-09-19 17:00:31 +0000538 /* Resolve the references in the WHERE clause. */
539 memset(&sNameContext, 0, sizeof(NameContext));
540 sNameContext.pSrcList = pSrc;
541 sNameContext.pParse = pParse;
542 sqlite3ResolveExprNames(&sNameContext, pWhere);
543
544 /* Create VDBE to loop through the entries in pSrc that match the WHERE
545 ** clause. If the constraint is not deferred, throw an exception for
546 ** each row found. Otherwise, for deferred constraints, increment the
547 ** deferred constraint counter by nIncr for each row selected. */
548 pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0);
danf7a94542009-09-30 08:11:07 +0000549 if( nIncr>0 && pFKey->isDeferred==0 ){
550 sqlite3ParseToplevel(pParse)->mayAbort = 1;
dan1da40a32009-09-19 17:00:31 +0000551 }
danf7a94542009-09-30 08:11:07 +0000552 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
danf59c5ca2009-09-22 16:55:38 +0000553 if( pWInfo ){
554 sqlite3WhereEnd(pWInfo);
555 }
dan1da40a32009-09-19 17:00:31 +0000556
557 /* Clean up the WHERE clause constructed above. */
558 sqlite3ExprDelete(db, pWhere);
dan0ff297e2009-09-25 17:03:14 +0000559 if( iFkIfZero ){
560 sqlite3VdbeJumpHere(v, iFkIfZero);
561 }
dan1da40a32009-09-19 17:00:31 +0000562}
563
564/*
565** This function returns a pointer to the head of a linked list of FK
dan8099ce62009-09-23 08:43:35 +0000566** constraints for which table pTab is the parent table. For example,
dan1da40a32009-09-19 17:00:31 +0000567** given the following schema:
568**
569** CREATE TABLE t1(a PRIMARY KEY);
570** CREATE TABLE t2(b REFERENCES t1(a);
571**
572** Calling this function with table "t1" as an argument returns a pointer
573** to the FKey structure representing the foreign key constraint on table
574** "t2". Calling this function with "t2" as the argument would return a
dan8099ce62009-09-23 08:43:35 +0000575** NULL pointer (as there are no FK constraints for which t2 is the parent
576** table).
dan1da40a32009-09-19 17:00:31 +0000577*/
dan432cc5b2009-09-26 17:51:48 +0000578FKey *sqlite3FkReferences(Table *pTab){
dan1da40a32009-09-19 17:00:31 +0000579 int nName = sqlite3Strlen30(pTab->zName);
580 return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName, nName);
581}
582
dan8099ce62009-09-23 08:43:35 +0000583/*
584** The second argument is a Trigger structure allocated by the
585** fkActionTrigger() routine. This function deletes the Trigger structure
586** and all of its sub-components.
587**
588** The Trigger structure or any of its sub-components may be allocated from
589** the lookaside buffer belonging to database handle dbMem.
590*/
dan75cbd982009-09-21 16:06:03 +0000591static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){
592 if( p ){
593 TriggerStep *pStep = p->step_list;
594 sqlite3ExprDelete(dbMem, pStep->pWhere);
595 sqlite3ExprListDelete(dbMem, pStep->pExprList);
dan9277efa2009-09-28 11:54:21 +0000596 sqlite3SelectDelete(dbMem, pStep->pSelect);
drh788536b2009-09-23 03:01:58 +0000597 sqlite3ExprDelete(dbMem, p->pWhen);
dan75cbd982009-09-21 16:06:03 +0000598 sqlite3DbFree(dbMem, p);
599 }
600}
601
dan8099ce62009-09-23 08:43:35 +0000602/*
dand66c8302009-09-28 14:49:01 +0000603** This function is called to generate code that runs when table pTab is
604** being dropped from the database. The SrcList passed as the second argument
605** to this function contains a single entry guaranteed to resolve to
606** table pTab.
607**
608** Normally, no code is required. However, if either
609**
610** (a) The table is the parent table of a FK constraint, or
611** (b) The table is the child table of a deferred FK constraint and it is
612** determined at runtime that there are outstanding deferred FK
613** constraint violations in the database,
614**
615** then the equivalent of "DELETE FROM <tbl>" is executed before dropping
616** the table from the database. Triggers are disabled while running this
617** DELETE, but foreign key actions are not.
618*/
619void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){
620 sqlite3 *db = pParse->db;
621 if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) && !pTab->pSelect ){
622 int iSkip = 0;
623 Vdbe *v = sqlite3GetVdbe(pParse);
624
625 assert( v ); /* VDBE has already been allocated */
626 if( sqlite3FkReferences(pTab)==0 ){
627 /* Search for a deferred foreign key constraint for which this table
628 ** is the child table. If one cannot be found, return without
629 ** generating any VDBE code. If one can be found, then jump over
630 ** the entire DELETE if there are no outstanding deferred constraints
631 ** when this statement is run. */
632 FKey *p;
633 for(p=pTab->pFKey; p; p=p->pNextFrom){
634 if( p->isDeferred ) break;
635 }
636 if( !p ) return;
637 iSkip = sqlite3VdbeMakeLabel(v);
638 sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip);
639 }
640
641 pParse->disableTriggers = 1;
642 sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0);
643 pParse->disableTriggers = 0;
644
645 /* If the DELETE has generated immediate foreign key constraint
646 ** violations, halt the VDBE and return an error at this point, before
647 ** any modifications to the schema are made. This is because statement
648 ** transactions are not able to rollback schema changes. */
649 sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2);
650 sqlite3HaltConstraint(
651 pParse, OE_Abort, "foreign key constraint failed", P4_STATIC
652 );
653
654 if( iSkip ){
655 sqlite3VdbeResolveLabel(v, iSkip);
656 }
657 }
658}
659
660/*
dan8099ce62009-09-23 08:43:35 +0000661** This function is called when inserting, deleting or updating a row of
662** table pTab to generate VDBE code to perform foreign key constraint
663** processing for the operation.
664**
665** For a DELETE operation, parameter regOld is passed the index of the
666** first register in an array of (pTab->nCol+1) registers containing the
667** rowid of the row being deleted, followed by each of the column values
668** of the row being deleted, from left to right. Parameter regNew is passed
669** zero in this case.
670**
dan8099ce62009-09-23 08:43:35 +0000671** For an INSERT operation, regOld is passed zero and regNew is passed the
672** first register of an array of (pTab->nCol+1) registers containing the new
673** row data.
674**
dan9277efa2009-09-28 11:54:21 +0000675** For an UPDATE operation, this function is called twice. Once before
676** the original record is deleted from the table using the calling convention
677** described for DELETE. Then again after the original record is deleted
dane7a94d82009-10-01 16:09:04 +0000678** but before the new record is inserted using the INSERT convention.
dan8099ce62009-09-23 08:43:35 +0000679*/
dan1da40a32009-09-19 17:00:31 +0000680void sqlite3FkCheck(
681 Parse *pParse, /* Parse context */
682 Table *pTab, /* Row is being deleted from this table */
dan1da40a32009-09-19 17:00:31 +0000683 int regOld, /* Previous row data is stored here */
684 int regNew /* New row data is stored here */
685){
686 sqlite3 *db = pParse->db; /* Database handle */
687 Vdbe *v; /* VM to write code to */
688 FKey *pFKey; /* Used to iterate through FKs */
689 int iDb; /* Index of database containing pTab */
690 const char *zDb; /* Name of database containing pTab */
danf0662562009-09-28 18:52:11 +0000691 int isIgnoreErrors = pParse->disableTriggers;
dan1da40a32009-09-19 17:00:31 +0000692
dan792e9202009-09-29 11:28:51 +0000693 /* Exactly one of regOld and regNew should be non-zero. */
694 assert( (regOld==0)!=(regNew==0) );
dan1da40a32009-09-19 17:00:31 +0000695
696 /* If foreign-keys are disabled, this function is a no-op. */
697 if( (db->flags&SQLITE_ForeignKeys)==0 ) return;
698
699 v = sqlite3GetVdbe(pParse);
700 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
701 zDb = db->aDb[iDb].zName;
702
dan8099ce62009-09-23 08:43:35 +0000703 /* Loop through all the foreign key constraints for which pTab is the
704 ** child table (the table that the foreign key definition is part of). */
dan1da40a32009-09-19 17:00:31 +0000705 for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){
dan8099ce62009-09-23 08:43:35 +0000706 Table *pTo; /* Parent table of foreign key pFKey */
dan1da40a32009-09-19 17:00:31 +0000707 Index *pIdx = 0; /* Index on key columns in pTo */
dan36062642009-09-21 18:56:23 +0000708 int *aiFree = 0;
709 int *aiCol;
710 int iCol;
711 int i;
dan02470b22009-10-03 07:04:11 +0000712 int isIgnore = 0;
dan1da40a32009-09-19 17:00:31 +0000713
dan8099ce62009-09-23 08:43:35 +0000714 /* Find the parent table of this foreign key. Also find a unique index
715 ** on the parent key columns in the parent table. If either of these
716 ** schema items cannot be located, set an error in pParse and return
717 ** early. */
danf0662562009-09-28 18:52:11 +0000718 if( pParse->disableTriggers ){
719 pTo = sqlite3FindTable(db, pFKey->zTo, zDb);
720 }else{
721 pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
722 }
723 if( !pTo || locateFkeyIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){
724 if( !isIgnoreErrors || db->mallocFailed ) return;
725 continue;
726 }
dan36062642009-09-21 18:56:23 +0000727 assert( pFKey->nCol==1 || (aiFree && pIdx) );
dan1da40a32009-09-19 17:00:31 +0000728
dan36062642009-09-21 18:56:23 +0000729 if( aiFree ){
730 aiCol = aiFree;
731 }else{
732 iCol = pFKey->aCol[0].iFrom;
733 aiCol = &iCol;
734 }
735 for(i=0; i<pFKey->nCol; i++){
736 if( aiCol[i]==pTab->iPKey ){
737 aiCol[i] = -1;
738 }
dan47a06342009-10-02 14:23:41 +0000739#ifndef SQLITE_OMIT_AUTHORIZATION
dan02470b22009-10-03 07:04:11 +0000740 /* Request permission to read the parent key columns. If the
741 ** authorization callback returns SQLITE_IGNORE, behave as if any
742 ** values read from the parent table are NULL. */
dan47a06342009-10-02 14:23:41 +0000743 if( db->xAuth ){
dan02470b22009-10-03 07:04:11 +0000744 int rcauth;
dan47a06342009-10-02 14:23:41 +0000745 char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName;
dan02470b22009-10-03 07:04:11 +0000746 rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb);
747 isIgnore = (rcauth==SQLITE_IGNORE);
dan47a06342009-10-02 14:23:41 +0000748 }
749#endif
dan36062642009-09-21 18:56:23 +0000750 }
751
dan8099ce62009-09-23 08:43:35 +0000752 /* Take a shared-cache advisory read-lock on the parent table. Allocate
753 ** a cursor to use to search the unique index on the parent key columns
754 ** in the parent table. */
dan1da40a32009-09-19 17:00:31 +0000755 sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName);
756 pParse->nTab++;
757
dan32b09f22009-09-23 17:29:59 +0000758 if( regOld!=0 ){
759 /* A row is being removed from the child table. Search for the parent.
760 ** If the parent does not exist, removing the child row resolves an
761 ** outstanding foreign key constraint violation. */
dan02470b22009-10-03 07:04:11 +0000762 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1,isIgnore);
dan1da40a32009-09-19 17:00:31 +0000763 }
764 if( regNew!=0 ){
dan32b09f22009-09-23 17:29:59 +0000765 /* A row is being added to the child table. If a parent row cannot
766 ** be found, adding the child row has violated the FK constraint. */
dan02470b22009-10-03 07:04:11 +0000767 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1,isIgnore);
dan1da40a32009-09-19 17:00:31 +0000768 }
769
dan36062642009-09-21 18:56:23 +0000770 sqlite3DbFree(db, aiFree);
dan1da40a32009-09-19 17:00:31 +0000771 }
772
773 /* Loop through all the foreign key constraints that refer to this table */
dan432cc5b2009-09-26 17:51:48 +0000774 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
dan1da40a32009-09-19 17:00:31 +0000775 Index *pIdx = 0; /* Foreign key index for pFKey */
776 SrcList *pSrc;
777 int *aiCol = 0;
778
dan32b09f22009-09-23 17:29:59 +0000779 if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
780 assert( regOld==0 && regNew!=0 );
781 /* Inserting a single row into a parent table cannot cause an immediate
782 ** foreign key violation. So do nothing in this case. */
danf0662562009-09-28 18:52:11 +0000783 continue;
dan1da40a32009-09-19 17:00:31 +0000784 }
785
danf0662562009-09-28 18:52:11 +0000786 if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){
787 if( !isIgnoreErrors || db->mallocFailed ) return;
788 continue;
789 }
dan1da40a32009-09-19 17:00:31 +0000790 assert( aiCol || pFKey->nCol==1 );
791
dan1da40a32009-09-19 17:00:31 +0000792 /* Create a SrcList structure containing a single table (the table
793 ** the foreign key that refers to this table is attached to). This
794 ** is required for the sqlite3WhereXXX() interface. */
795 pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
danf59c5ca2009-09-22 16:55:38 +0000796 if( pSrc ){
797 pSrc->a->pTab = pFKey->pFrom;
798 pSrc->a->pTab->nRef++;
799 pSrc->a->iCursor = pParse->nTab++;
800
dan32b09f22009-09-23 17:29:59 +0000801 if( regNew!=0 ){
dan9277efa2009-09-28 11:54:21 +0000802 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1);
danf59c5ca2009-09-22 16:55:38 +0000803 }
804 if( regOld!=0 ){
805 /* If there is a RESTRICT action configured for the current operation
dan8099ce62009-09-23 08:43:35 +0000806 ** on the parent table of this FK, then throw an exception
danf59c5ca2009-09-22 16:55:38 +0000807 ** immediately if the FK constraint is violated, even if this is a
808 ** deferred trigger. That's what RESTRICT means. To defer checking
809 ** the constraint, the FK should specify NO ACTION (represented
810 ** using OE_None). NO ACTION is the default. */
dan9277efa2009-09-28 11:54:21 +0000811 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1);
danf59c5ca2009-09-22 16:55:38 +0000812 }
813
danf59c5ca2009-09-22 16:55:38 +0000814 sqlite3SrcListDelete(db, pSrc);
dan1da40a32009-09-19 17:00:31 +0000815 }
dan1da40a32009-09-19 17:00:31 +0000816 sqlite3DbFree(db, aiCol);
817 }
818}
819
820#define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x)))
821
822/*
823** This function is called before generating code to update or delete a
dane7a94d82009-10-01 16:09:04 +0000824** row contained in table pTab.
dan1da40a32009-09-19 17:00:31 +0000825*/
826u32 sqlite3FkOldmask(
827 Parse *pParse, /* Parse context */
dane7a94d82009-10-01 16:09:04 +0000828 Table *pTab /* Table being modified */
dan1da40a32009-09-19 17:00:31 +0000829){
830 u32 mask = 0;
831 if( pParse->db->flags&SQLITE_ForeignKeys ){
832 FKey *p;
833 int i;
834 for(p=pTab->pFKey; p; p=p->pNextFrom){
dan32b09f22009-09-23 17:29:59 +0000835 for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom);
dan1da40a32009-09-19 17:00:31 +0000836 }
dan432cc5b2009-09-26 17:51:48 +0000837 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
dan1da40a32009-09-19 17:00:31 +0000838 Index *pIdx = 0;
danf0662562009-09-28 18:52:11 +0000839 locateFkeyIndex(pParse, pTab, p, &pIdx, 0);
dan1da40a32009-09-19 17:00:31 +0000840 if( pIdx ){
841 for(i=0; i<pIdx->nColumn; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]);
842 }
843 }
844 }
845 return mask;
846}
847
848/*
849** This function is called before generating code to update or delete a
dane7a94d82009-10-01 16:09:04 +0000850** row contained in table pTab. If the operation is a DELETE, then
851** parameter aChange is passed a NULL value. For an UPDATE, aChange points
852** to an array of size N, where N is the number of columns in table pTab.
853** If the i'th column is not modified by the UPDATE, then the corresponding
854** entry in the aChange[] array is set to -1. If the column is modified,
855** the value is 0 or greater. Parameter chngRowid is set to true if the
856** UPDATE statement modifies the rowid fields of the table.
dan1da40a32009-09-19 17:00:31 +0000857**
858** If any foreign key processing will be required, this function returns
859** true. If there is no foreign key related processing, this function
860** returns false.
861*/
862int sqlite3FkRequired(
863 Parse *pParse, /* Parse context */
864 Table *pTab, /* Table being modified */
dane7a94d82009-10-01 16:09:04 +0000865 int *aChange, /* Non-NULL for UPDATE operations */
866 int chngRowid /* True for UPDATE that affects rowid */
dan1da40a32009-09-19 17:00:31 +0000867){
868 if( pParse->db->flags&SQLITE_ForeignKeys ){
dane7a94d82009-10-01 16:09:04 +0000869 if( !aChange ){
870 /* A DELETE operation. Foreign key processing is required if the
871 ** table in question is either the child or parent table for any
872 ** foreign key constraint. */
873 return (sqlite3FkReferences(pTab) || pTab->pFKey);
874 }else{
875 /* This is an UPDATE. Foreign key processing is only required if the
876 ** operation modifies one or more child or parent key columns. */
877 int i;
878 FKey *p;
879
880 /* Check if any child key columns are being modified. */
881 for(p=pTab->pFKey; p; p=p->pNextFrom){
882 for(i=0; i<p->nCol; i++){
883 int iChildKey = p->aCol[i].iFrom;
884 if( aChange[iChildKey]>=0 ) return 1;
885 if( iChildKey==pTab->iPKey && chngRowid ) return 1;
886 }
887 }
888
889 /* Check if any parent key columns are being modified. */
890 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
891 for(i=0; i<p->nCol; i++){
892 char *zKey = p->aCol[i].zCol;
893 int iKey;
894 for(iKey=0; iKey<pTab->nCol; iKey++){
895 Column *pCol = &pTab->aCol[iKey];
896 if( (zKey ? !sqlite3StrICmp(pCol->zName, zKey) : pCol->isPrimKey) ){
897 if( aChange[iKey]>=0 ) return 1;
898 if( iKey==pTab->iPKey && chngRowid ) return 1;
899 }
900 }
901 }
902 }
903 }
dan1da40a32009-09-19 17:00:31 +0000904 }
905 return 0;
906}
907
dan8099ce62009-09-23 08:43:35 +0000908/*
909** This function is called when an UPDATE or DELETE operation is being
910** compiled on table pTab, which is the parent table of foreign-key pFKey.
911** If the current operation is an UPDATE, then the pChanges parameter is
912** passed a pointer to the list of columns being modified. If it is a
913** DELETE, pChanges is passed a NULL pointer.
914**
915** It returns a pointer to a Trigger structure containing a trigger
916** equivalent to the ON UPDATE or ON DELETE action specified by pFKey.
917** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is
918** returned (these actions require no special handling by the triggers
919** sub-system, code for them is created by fkScanChildren()).
920**
921** For example, if pFKey is the foreign key and pTab is table "p" in
922** the following schema:
923**
924** CREATE TABLE p(pk PRIMARY KEY);
925** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE);
926**
927** then the returned trigger structure is equivalent to:
928**
929** CREATE TRIGGER ... DELETE ON p BEGIN
930** DELETE FROM c WHERE ck = old.pk;
931** END;
932**
933** The returned pointer is cached as part of the foreign key object. It
934** is eventually freed along with the rest of the foreign key object by
935** sqlite3FkDelete().
936*/
dan1da40a32009-09-19 17:00:31 +0000937static Trigger *fkActionTrigger(
dan8099ce62009-09-23 08:43:35 +0000938 Parse *pParse, /* Parse context */
dan1da40a32009-09-19 17:00:31 +0000939 Table *pTab, /* Table being updated or deleted from */
940 FKey *pFKey, /* Foreign key to get action for */
941 ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */
942){
943 sqlite3 *db = pParse->db; /* Database handle */
dan29c7f9c2009-09-22 15:53:47 +0000944 int action; /* One of OE_None, OE_Cascade etc. */
945 Trigger *pTrigger; /* Trigger definition to return */
dan8099ce62009-09-23 08:43:35 +0000946 int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */
dan1da40a32009-09-19 17:00:31 +0000947
dan8099ce62009-09-23 08:43:35 +0000948 action = pFKey->aAction[iAction];
949 pTrigger = pFKey->apTrigger[iAction];
dan1da40a32009-09-19 17:00:31 +0000950
dan9277efa2009-09-28 11:54:21 +0000951 if( action!=OE_None && !pTrigger ){
dan29c7f9c2009-09-22 15:53:47 +0000952 u8 enableLookaside; /* Copy of db->lookaside.bEnabled */
dan8099ce62009-09-23 08:43:35 +0000953 char const *zFrom; /* Name of child table */
dan1da40a32009-09-19 17:00:31 +0000954 int nFrom; /* Length in bytes of zFrom */
dan29c7f9c2009-09-22 15:53:47 +0000955 Index *pIdx = 0; /* Parent key index for this FK */
956 int *aiCol = 0; /* child table cols -> parent key cols */
957 TriggerStep *pStep; /* First (only) step of trigger program */
958 Expr *pWhere = 0; /* WHERE clause of trigger step */
959 ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */
dan9277efa2009-09-28 11:54:21 +0000960 Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */
dan29c7f9c2009-09-22 15:53:47 +0000961 int i; /* Iterator variable */
drh788536b2009-09-23 03:01:58 +0000962 Expr *pWhen = 0; /* WHEN clause for the trigger */
dan1da40a32009-09-19 17:00:31 +0000963
964 if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0;
965 assert( aiCol || pFKey->nCol==1 );
966
dan1da40a32009-09-19 17:00:31 +0000967 for(i=0; i<pFKey->nCol; i++){
dan1da40a32009-09-19 17:00:31 +0000968 Token tOld = { "old", 3 }; /* Literal "old" token */
969 Token tNew = { "new", 3 }; /* Literal "new" token */
dan8099ce62009-09-23 08:43:35 +0000970 Token tFromCol; /* Name of column in child table */
971 Token tToCol; /* Name of column in parent table */
972 int iFromCol; /* Idx of column in child table */
dan29c7f9c2009-09-22 15:53:47 +0000973 Expr *pEq; /* tFromCol = OLD.tToCol */
dan1da40a32009-09-19 17:00:31 +0000974
975 iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
dana8f0bf62009-09-23 12:06:52 +0000976 assert( iFromCol>=0 );
dan1da40a32009-09-19 17:00:31 +0000977 tToCol.z = pIdx ? pTab->aCol[pIdx->aiColumn[i]].zName : "oid";
dana8f0bf62009-09-23 12:06:52 +0000978 tFromCol.z = pFKey->pFrom->aCol[iFromCol].zName;
dan1da40a32009-09-19 17:00:31 +0000979
980 tToCol.n = sqlite3Strlen30(tToCol.z);
981 tFromCol.n = sqlite3Strlen30(tFromCol.z);
982
dan652ac1d2009-09-29 16:38:59 +0000983 /* Create the expression "OLD.zToCol = zFromCol". It is important
984 ** that the "OLD.zToCol" term is on the LHS of the = operator, so
985 ** that the affinity and collation sequence associated with the
986 ** parent table are used for the comparison. */
dan1da40a32009-09-19 17:00:31 +0000987 pEq = sqlite3PExpr(pParse, TK_EQ,
dan1da40a32009-09-19 17:00:31 +0000988 sqlite3PExpr(pParse, TK_DOT,
989 sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
990 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
dan652ac1d2009-09-29 16:38:59 +0000991 , 0),
992 sqlite3PExpr(pParse, TK_ID, 0, 0, &tFromCol)
dan1da40a32009-09-19 17:00:31 +0000993 , 0);
dan29c7f9c2009-09-22 15:53:47 +0000994 pWhere = sqlite3ExprAnd(db, pWhere, pEq);
dan1da40a32009-09-19 17:00:31 +0000995
drh788536b2009-09-23 03:01:58 +0000996 /* For ON UPDATE, construct the next term of the WHEN clause.
997 ** The final WHEN clause will be like this:
998 **
999 ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN)
1000 */
1001 if( pChanges ){
1002 pEq = sqlite3PExpr(pParse, TK_IS,
1003 sqlite3PExpr(pParse, TK_DOT,
1004 sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
1005 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol),
1006 0),
1007 sqlite3PExpr(pParse, TK_DOT,
1008 sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
1009 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol),
1010 0),
1011 0);
1012 pWhen = sqlite3ExprAnd(db, pWhen, pEq);
1013 }
1014
dan9277efa2009-09-28 11:54:21 +00001015 if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){
dan1da40a32009-09-19 17:00:31 +00001016 Expr *pNew;
1017 if( action==OE_Cascade ){
1018 pNew = sqlite3PExpr(pParse, TK_DOT,
1019 sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
1020 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
1021 , 0);
1022 }else if( action==OE_SetDflt ){
dan934ce302009-09-22 16:08:58 +00001023 Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt;
dan1da40a32009-09-19 17:00:31 +00001024 if( pDflt ){
1025 pNew = sqlite3ExprDup(db, pDflt, 0);
1026 }else{
1027 pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
1028 }
1029 }else{
1030 pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
1031 }
1032 pList = sqlite3ExprListAppend(pParse, pList, pNew);
1033 sqlite3ExprListSetName(pParse, pList, &tFromCol, 0);
1034 }
1035 }
dan29c7f9c2009-09-22 15:53:47 +00001036 sqlite3DbFree(db, aiCol);
dan1da40a32009-09-19 17:00:31 +00001037
dan9277efa2009-09-28 11:54:21 +00001038 zFrom = pFKey->pFrom->zName;
1039 nFrom = sqlite3Strlen30(zFrom);
1040
1041 if( action==OE_Restrict ){
1042 Token tFrom;
1043 Expr *pRaise;
1044
1045 tFrom.z = zFrom;
1046 tFrom.n = nFrom;
1047 pRaise = sqlite3Expr(db, TK_RAISE, "foreign key constraint failed");
1048 if( pRaise ){
1049 pRaise->affinity = OE_Abort;
1050 }
1051 pSelect = sqlite3SelectNew(pParse,
1052 sqlite3ExprListAppend(pParse, 0, pRaise),
1053 sqlite3SrcListAppend(db, 0, &tFrom, 0),
1054 pWhere,
1055 0, 0, 0, 0, 0, 0
1056 );
1057 pWhere = 0;
1058 }
1059
drh1f638ce2009-09-24 13:48:10 +00001060 /* In the current implementation, pTab->dbMem==0 for all tables except
1061 ** for temporary tables used to describe subqueries. And temporary
1062 ** tables do not have foreign key constraints. Hence, pTab->dbMem
1063 ** should always be 0 there.
1064 */
dan29c7f9c2009-09-22 15:53:47 +00001065 enableLookaside = db->lookaside.bEnabled;
drh46803c32009-09-24 14:27:33 +00001066 db->lookaside.bEnabled = 0;
dan29c7f9c2009-09-22 15:53:47 +00001067
dan29c7f9c2009-09-22 15:53:47 +00001068 pTrigger = (Trigger *)sqlite3DbMallocZero(db,
1069 sizeof(Trigger) + /* struct Trigger */
1070 sizeof(TriggerStep) + /* Single step in trigger program */
1071 nFrom + 1 /* Space for pStep->target.z */
1072 );
1073 if( pTrigger ){
1074 pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1];
1075 pStep->target.z = (char *)&pStep[1];
1076 pStep->target.n = nFrom;
1077 memcpy((char *)pStep->target.z, zFrom, nFrom);
1078
1079 pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
1080 pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE);
dan9277efa2009-09-28 11:54:21 +00001081 pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
drh788536b2009-09-23 03:01:58 +00001082 if( pWhen ){
1083 pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0, 0);
1084 pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
1085 }
dan29c7f9c2009-09-22 15:53:47 +00001086 }
1087
1088 /* Re-enable the lookaside buffer, if it was disabled earlier. */
1089 db->lookaside.bEnabled = enableLookaside;
1090
drh788536b2009-09-23 03:01:58 +00001091 sqlite3ExprDelete(db, pWhere);
1092 sqlite3ExprDelete(db, pWhen);
1093 sqlite3ExprListDelete(db, pList);
dan9277efa2009-09-28 11:54:21 +00001094 sqlite3SelectDelete(db, pSelect);
dan29c7f9c2009-09-22 15:53:47 +00001095 if( db->mallocFailed==1 ){
1096 fkTriggerDelete(db, pTrigger);
1097 return 0;
1098 }
dan1da40a32009-09-19 17:00:31 +00001099
dan9277efa2009-09-28 11:54:21 +00001100 switch( action ){
1101 case OE_Restrict:
1102 pStep->op = TK_SELECT;
1103 break;
1104 case OE_Cascade:
1105 if( !pChanges ){
1106 pStep->op = TK_DELETE;
1107 break;
1108 }
1109 default:
1110 pStep->op = TK_UPDATE;
1111 }
dan1da40a32009-09-19 17:00:31 +00001112 pStep->pTrig = pTrigger;
1113 pTrigger->pSchema = pTab->pSchema;
1114 pTrigger->pTabSchema = pTab->pSchema;
dan8099ce62009-09-23 08:43:35 +00001115 pFKey->apTrigger[iAction] = pTrigger;
1116 pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE);
dan1da40a32009-09-19 17:00:31 +00001117 }
1118
1119 return pTrigger;
1120}
1121
dan1da40a32009-09-19 17:00:31 +00001122/*
1123** This function is called when deleting or updating a row to implement
1124** any required CASCADE, SET NULL or SET DEFAULT actions.
1125*/
1126void sqlite3FkActions(
1127 Parse *pParse, /* Parse context */
1128 Table *pTab, /* Table being updated or deleted from */
1129 ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */
1130 int regOld /* Address of array containing old row */
1131){
1132 /* If foreign-key support is enabled, iterate through all FKs that
1133 ** refer to table pTab. If there is an action associated with the FK
1134 ** for this operation (either update or delete), invoke the associated
1135 ** trigger sub-program. */
1136 if( pParse->db->flags&SQLITE_ForeignKeys ){
1137 FKey *pFKey; /* Iterator variable */
dan432cc5b2009-09-26 17:51:48 +00001138 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
dan1da40a32009-09-19 17:00:31 +00001139 Trigger *pAction = fkActionTrigger(pParse, pTab, pFKey, pChanges);
1140 if( pAction ){
1141 sqlite3CodeRowTriggerDirect(pParse, pAction, pTab, regOld, OE_Abort, 0);
1142 }
1143 }
1144 }
1145}
1146
dan75cbd982009-09-21 16:06:03 +00001147#endif /* ifndef SQLITE_OMIT_TRIGGER */
1148
dan1da40a32009-09-19 17:00:31 +00001149/*
1150** Free all memory associated with foreign key definitions attached to
1151** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
1152** hash table.
1153*/
1154void sqlite3FkDelete(Table *pTab){
1155 FKey *pFKey; /* Iterator variable */
1156 FKey *pNext; /* Copy of pFKey->pNextFrom */
1157
1158 for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){
1159
1160 /* Remove the FK from the fkeyHash hash table. */
1161 if( pFKey->pPrevTo ){
1162 pFKey->pPrevTo->pNextTo = pFKey->pNextTo;
1163 }else{
1164 void *data = (void *)pFKey->pNextTo;
1165 const char *z = (data ? pFKey->pNextTo->zTo : pFKey->zTo);
1166 sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, sqlite3Strlen30(z), data);
1167 }
1168 if( pFKey->pNextTo ){
1169 pFKey->pNextTo->pPrevTo = pFKey->pPrevTo;
1170 }
1171
1172 /* Delete any triggers created to implement actions for this FK. */
dan75cbd982009-09-21 16:06:03 +00001173#ifndef SQLITE_OMIT_TRIGGER
dan8099ce62009-09-23 08:43:35 +00001174 fkTriggerDelete(pTab->dbMem, pFKey->apTrigger[0]);
1175 fkTriggerDelete(pTab->dbMem, pFKey->apTrigger[1]);
dan75cbd982009-09-21 16:06:03 +00001176#endif
dan1da40a32009-09-19 17:00:31 +00001177
1178 /* Delete the memory allocated for the FK structure. */
1179 pNext = pFKey->pNextFrom;
1180 sqlite3DbFree(pTab->dbMem, pFKey);
1181 }
1182}
dan75cbd982009-09-21 16:06:03 +00001183#endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */