blob: 286c733592a78a3809a5bac75f1001935183fa18 [file] [log] [blame]
drh9a324642003-09-06 20:12:01 +00001/*
2** 2003 September 6
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12** This file contains code used for creating, destroying, and populating
danielk1977fc57d7b2004-05-26 02:04:57 +000013** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior
drh9a324642003-09-06 20:12:01 +000014** to version 2.8.7, all this code was combined into the vdbe.c source file.
15** But that file was getting too big so this subroutines were split out.
16*/
17#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000018#include "vdbeInt.h"
19
20
drh46c99e02007-08-27 23:26:59 +000021
drh9a324642003-09-06 20:12:01 +000022/*
23** When debugging the code generator in a symbolic debugger, one can
mlcreech3a00f902008-03-04 17:45:01 +000024** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed
drh9a324642003-09-06 20:12:01 +000025** as they are added to the instruction stream.
26*/
drh8d904f02005-06-14 17:47:58 +000027#ifdef SQLITE_DEBUG
mlcreech3a00f902008-03-04 17:45:01 +000028int sqlite3VdbeAddopTrace = 0;
drh9a324642003-09-06 20:12:01 +000029#endif
30
31
32/*
33** Create a new virtual database engine.
34*/
drh9bb575f2004-09-06 17:24:11 +000035Vdbe *sqlite3VdbeCreate(sqlite3 *db){
drh9a324642003-09-06 20:12:01 +000036 Vdbe *p;
drh17435752007-08-16 04:30:38 +000037 p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
drh9a324642003-09-06 20:12:01 +000038 if( p==0 ) return 0;
39 p->db = db;
40 if( db->pVdbe ){
41 db->pVdbe->pPrev = p;
42 }
43 p->pNext = db->pVdbe;
44 p->pPrev = 0;
45 db->pVdbe = p;
46 p->magic = VDBE_MAGIC_INIT;
47 return p;
48}
49
50/*
drhb900aaf2006-11-09 00:24:53 +000051** Remember the SQL string for a prepared statement.
52*/
danielk19776ab3a2e2009-02-19 14:39:25 +000053void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
dan1d2ce4f2009-10-19 18:11:09 +000054 assert( isPrepareV2==1 || isPrepareV2==0 );
drhb900aaf2006-11-09 00:24:53 +000055 if( p==0 ) return;
danac455932012-11-26 19:50:41 +000056#if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG)
danielk19776ab3a2e2009-02-19 14:39:25 +000057 if( !isPrepareV2 ) return;
58#endif
drhb900aaf2006-11-09 00:24:53 +000059 assert( p->zSql==0 );
drh17435752007-08-16 04:30:38 +000060 p->zSql = sqlite3DbStrNDup(p->db, z, n);
shanef639c402009-11-03 19:42:30 +000061 p->isPrepareV2 = (u8)isPrepareV2;
drhb900aaf2006-11-09 00:24:53 +000062}
63
64/*
65** Return the SQL associated with a prepared statement
66*/
danielk1977d0e2a852007-11-14 06:48:48 +000067const char *sqlite3_sql(sqlite3_stmt *pStmt){
danielk19776ab3a2e2009-02-19 14:39:25 +000068 Vdbe *p = (Vdbe *)pStmt;
drh87f5c5f2010-01-20 01:20:56 +000069 return (p && p->isPrepareV2) ? p->zSql : 0;
drhb900aaf2006-11-09 00:24:53 +000070}
71
72/*
drhc5155252007-01-08 21:07:17 +000073** Swap all content between two VDBE structures.
drhb900aaf2006-11-09 00:24:53 +000074*/
drhc5155252007-01-08 21:07:17 +000075void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
76 Vdbe tmp, *pTmp;
77 char *zTmp;
drhc5155252007-01-08 21:07:17 +000078 tmp = *pA;
79 *pA = *pB;
80 *pB = tmp;
81 pTmp = pA->pNext;
82 pA->pNext = pB->pNext;
83 pB->pNext = pTmp;
84 pTmp = pA->pPrev;
85 pA->pPrev = pB->pPrev;
86 pB->pPrev = pTmp;
87 zTmp = pA->zSql;
88 pA->zSql = pB->zSql;
89 pB->zSql = zTmp;
danielk19776ab3a2e2009-02-19 14:39:25 +000090 pB->isPrepareV2 = pA->isPrepareV2;
drhb900aaf2006-11-09 00:24:53 +000091}
92
drhcf1023c2007-05-08 20:59:49 +000093#ifdef SQLITE_DEBUG
drhb900aaf2006-11-09 00:24:53 +000094/*
drh9a324642003-09-06 20:12:01 +000095** Turn tracing on or off
96*/
danielk19774adee202004-05-08 08:23:19 +000097void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
drh9a324642003-09-06 20:12:01 +000098 p->trace = trace;
99}
drhcf1023c2007-05-08 20:59:49 +0000100#endif
drh9a324642003-09-06 20:12:01 +0000101
102/*
danielk197700e13612008-11-17 19:18:54 +0000103** Resize the Vdbe.aOp array so that it is at least one op larger than
104** it was.
danielk1977ace3eb22006-01-26 10:35:04 +0000105**
danielk197700e13612008-11-17 19:18:54 +0000106** If an out-of-memory error occurs while resizing the array, return
107** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
108** unchanged (this is so that any opcodes already allocated can be
109** correctly deallocated along with the rest of the Vdbe).
drh76ff3a02004-09-24 22:32:30 +0000110*/
danielk197700e13612008-11-17 19:18:54 +0000111static int growOpArray(Vdbe *p){
drha4e5d582007-10-20 15:41:57 +0000112 VdbeOp *pNew;
danielk197700e13612008-11-17 19:18:54 +0000113 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
114 pNew = sqlite3DbRealloc(p->db, p->aOp, nNew*sizeof(Op));
drha4e5d582007-10-20 15:41:57 +0000115 if( pNew ){
drhb45f65d2009-03-01 19:42:11 +0000116 p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op);
drha4e5d582007-10-20 15:41:57 +0000117 p->aOp = pNew;
drh76ff3a02004-09-24 22:32:30 +0000118 }
danielk197700e13612008-11-17 19:18:54 +0000119 return (pNew ? SQLITE_OK : SQLITE_NOMEM);
drh76ff3a02004-09-24 22:32:30 +0000120}
121
122/*
drh9a324642003-09-06 20:12:01 +0000123** Add a new instruction to the list of instructions current in the
124** VDBE. Return the address of the new instruction.
125**
126** Parameters:
127**
128** p Pointer to the VDBE
129**
130** op The opcode for this instruction
131**
drh66a51672008-01-03 00:01:23 +0000132** p1, p2, p3 Operands
drh9a324642003-09-06 20:12:01 +0000133**
danielk19774adee202004-05-08 08:23:19 +0000134** Use the sqlite3VdbeResolveLabel() function to fix an address and
drh66a51672008-01-03 00:01:23 +0000135** the sqlite3VdbeChangeP4() function to change the value of the P4
drh9a324642003-09-06 20:12:01 +0000136** operand.
137*/
drh66a51672008-01-03 00:01:23 +0000138int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
drh9a324642003-09-06 20:12:01 +0000139 int i;
drh701a0ae2004-02-22 20:05:00 +0000140 VdbeOp *pOp;
drh9a324642003-09-06 20:12:01 +0000141
142 i = p->nOp;
drh9a324642003-09-06 20:12:01 +0000143 assert( p->magic==VDBE_MAGIC_INIT );
drh8df32842008-12-09 02:51:23 +0000144 assert( op>0 && op<0xff );
drhfd2d26b2006-03-15 22:44:36 +0000145 if( p->nOpAlloc<=i ){
danielk197700e13612008-11-17 19:18:54 +0000146 if( growOpArray(p) ){
drhc42ed162009-06-26 14:04:51 +0000147 return 1;
drhfd2d26b2006-03-15 22:44:36 +0000148 }
drh9a324642003-09-06 20:12:01 +0000149 }
danielk197701256832007-04-18 14:24:32 +0000150 p->nOp++;
drh701a0ae2004-02-22 20:05:00 +0000151 pOp = &p->aOp[i];
drh8df32842008-12-09 02:51:23 +0000152 pOp->opcode = (u8)op;
drh26c9b5e2008-04-11 14:56:53 +0000153 pOp->p5 = 0;
drh701a0ae2004-02-22 20:05:00 +0000154 pOp->p1 = p1;
drh701a0ae2004-02-22 20:05:00 +0000155 pOp->p2 = p2;
drh66a51672008-01-03 00:01:23 +0000156 pOp->p3 = p3;
157 pOp->p4.p = 0;
158 pOp->p4type = P4_NOTUSED;
danielk19778b60e0f2005-01-12 09:10:39 +0000159#ifdef SQLITE_DEBUG
drh26c9b5e2008-04-11 14:56:53 +0000160 pOp->zComment = 0;
mlcreech3a00f902008-03-04 17:45:01 +0000161 if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
drh9a324642003-09-06 20:12:01 +0000162#endif
drh26c9b5e2008-04-11 14:56:53 +0000163#ifdef VDBE_PROFILE
164 pOp->cycles = 0;
165 pOp->cnt = 0;
166#endif
drh9a324642003-09-06 20:12:01 +0000167 return i;
168}
drh66a51672008-01-03 00:01:23 +0000169int sqlite3VdbeAddOp0(Vdbe *p, int op){
170 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
171}
172int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
173 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
174}
175int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
176 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
drh701a0ae2004-02-22 20:05:00 +0000177}
178
drh66a51672008-01-03 00:01:23 +0000179
drh701a0ae2004-02-22 20:05:00 +0000180/*
drh66a51672008-01-03 00:01:23 +0000181** Add an opcode that includes the p4 value as a pointer.
drhd4e70eb2008-01-02 00:34:36 +0000182*/
drh66a51672008-01-03 00:01:23 +0000183int sqlite3VdbeAddOp4(
drhd4e70eb2008-01-02 00:34:36 +0000184 Vdbe *p, /* Add the opcode to this VM */
185 int op, /* The new opcode */
drh66a51672008-01-03 00:01:23 +0000186 int p1, /* The P1 operand */
187 int p2, /* The P2 operand */
188 int p3, /* The P3 operand */
189 const char *zP4, /* The P4 operand */
190 int p4type /* P4 operand type */
drhd4e70eb2008-01-02 00:34:36 +0000191){
drh66a51672008-01-03 00:01:23 +0000192 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
193 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
drhd4e70eb2008-01-02 00:34:36 +0000194 return addr;
195}
196
197/*
drh5d9c9da2011-06-03 20:11:17 +0000198** Add an OP_ParseSchema opcode. This routine is broken out from
drhe4c88c02012-01-04 12:57:45 +0000199** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
200** as having been used.
drh5d9c9da2011-06-03 20:11:17 +0000201**
202** The zWhere string must have been obtained from sqlite3_malloc().
203** This routine will take ownership of the allocated memory.
204*/
205void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
206 int j;
207 int addr = sqlite3VdbeAddOp3(p, OP_ParseSchema, iDb, 0, 0);
208 sqlite3VdbeChangeP4(p, addr, zWhere, P4_DYNAMIC);
209 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
210}
211
212/*
drh8cff69d2009-11-12 19:59:44 +0000213** Add an opcode that includes the p4 value as an integer.
214*/
215int sqlite3VdbeAddOp4Int(
216 Vdbe *p, /* Add the opcode to this VM */
217 int op, /* The new opcode */
218 int p1, /* The P1 operand */
219 int p2, /* The P2 operand */
220 int p3, /* The P3 operand */
221 int p4 /* The P4 operand as an integer */
222){
223 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
224 sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32);
225 return addr;
226}
227
228/*
drh9a324642003-09-06 20:12:01 +0000229** Create a new symbolic label for an instruction that has yet to be
230** coded. The symbolic label is really just a negative number. The
231** label can be used as the P2 value of an operation. Later, when
232** the label is resolved to a specific address, the VDBE will scan
233** through its operation list and change all values of P2 which match
234** the label into the resolved address.
235**
236** The VDBE knows that a P2 value is a label because labels are
237** always negative and P2 values are suppose to be non-negative.
238** Hence, a negative P2 value is a label that has yet to be resolved.
danielk1977b5548a82004-06-26 13:51:33 +0000239**
240** Zero is returned if a malloc() fails.
drh9a324642003-09-06 20:12:01 +0000241*/
danielk19774adee202004-05-08 08:23:19 +0000242int sqlite3VdbeMakeLabel(Vdbe *p){
drhc35f3d52012-02-01 19:03:38 +0000243 int i = p->nLabel++;
drh9a324642003-09-06 20:12:01 +0000244 assert( p->magic==VDBE_MAGIC_INIT );
drhc35f3d52012-02-01 19:03:38 +0000245 if( (i & (i-1))==0 ){
246 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
247 (i*2+1)*sizeof(p->aLabel[0]));
drh9a324642003-09-06 20:12:01 +0000248 }
drh76ff3a02004-09-24 22:32:30 +0000249 if( p->aLabel ){
250 p->aLabel[i] = -1;
drh9a324642003-09-06 20:12:01 +0000251 }
drh9a324642003-09-06 20:12:01 +0000252 return -1-i;
253}
254
255/*
256** Resolve label "x" to be the address of the next instruction to
257** be inserted. The parameter "x" must have been obtained from
danielk19774adee202004-05-08 08:23:19 +0000258** a prior call to sqlite3VdbeMakeLabel().
drh9a324642003-09-06 20:12:01 +0000259*/
danielk19774adee202004-05-08 08:23:19 +0000260void sqlite3VdbeResolveLabel(Vdbe *p, int x){
drh76ff3a02004-09-24 22:32:30 +0000261 int j = -1-x;
drh9a324642003-09-06 20:12:01 +0000262 assert( p->magic==VDBE_MAGIC_INIT );
drh76ff3a02004-09-24 22:32:30 +0000263 assert( j>=0 && j<p->nLabel );
264 if( p->aLabel ){
265 p->aLabel[j] = p->nOp;
drh9a324642003-09-06 20:12:01 +0000266 }
267}
268
drh4611d922010-02-25 14:47:01 +0000269/*
270** Mark the VDBE as one that can only be run one time.
271*/
272void sqlite3VdbeRunOnlyOnce(Vdbe *p){
273 p->runOnlyOnce = 1;
274}
275
drhff738bc2009-09-24 00:09:58 +0000276#ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
dan144926d2009-09-09 11:37:20 +0000277
278/*
279** The following type and function are used to iterate through all opcodes
280** in a Vdbe main program and each of the sub-programs (triggers) it may
281** invoke directly or indirectly. It should be used as follows:
282**
283** Op *pOp;
284** VdbeOpIter sIter;
285**
286** memset(&sIter, 0, sizeof(sIter));
287** sIter.v = v; // v is of type Vdbe*
288** while( (pOp = opIterNext(&sIter)) ){
289** // Do something with pOp
290** }
291** sqlite3DbFree(v->db, sIter.apSub);
292**
293*/
294typedef struct VdbeOpIter VdbeOpIter;
295struct VdbeOpIter {
296 Vdbe *v; /* Vdbe to iterate through the opcodes of */
297 SubProgram **apSub; /* Array of subprograms */
298 int nSub; /* Number of entries in apSub */
299 int iAddr; /* Address of next instruction to return */
300 int iSub; /* 0 = main program, 1 = first sub-program etc. */
301};
302static Op *opIterNext(VdbeOpIter *p){
303 Vdbe *v = p->v;
304 Op *pRet = 0;
305 Op *aOp;
306 int nOp;
307
308 if( p->iSub<=p->nSub ){
309
310 if( p->iSub==0 ){
311 aOp = v->aOp;
312 nOp = v->nOp;
313 }else{
314 aOp = p->apSub[p->iSub-1]->aOp;
315 nOp = p->apSub[p->iSub-1]->nOp;
316 }
317 assert( p->iAddr<nOp );
318
319 pRet = &aOp[p->iAddr];
320 p->iAddr++;
321 if( p->iAddr==nOp ){
322 p->iSub++;
323 p->iAddr = 0;
324 }
325
326 if( pRet->p4type==P4_SUBPROGRAM ){
327 int nByte = (p->nSub+1)*sizeof(SubProgram*);
328 int j;
329 for(j=0; j<p->nSub; j++){
330 if( p->apSub[j]==pRet->p4.pProgram ) break;
331 }
332 if( j==p->nSub ){
333 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
334 if( !p->apSub ){
335 pRet = 0;
336 }else{
337 p->apSub[p->nSub++] = pRet->p4.pProgram;
338 }
339 }
340 }
341 }
342
343 return pRet;
344}
345
346/*
danf3677212009-09-10 16:14:50 +0000347** Check if the program stored in the VM associated with pParse may
drhff738bc2009-09-24 00:09:58 +0000348** throw an ABORT exception (causing the statement, but not entire transaction
dan144926d2009-09-09 11:37:20 +0000349** to be rolled back). This condition is true if the main program or any
350** sub-programs contains any of the following:
351**
352** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
353** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
354** * OP_Destroy
355** * OP_VUpdate
356** * OP_VRename
dan32b09f22009-09-23 17:29:59 +0000357** * OP_FkCounter with P2==0 (immediate foreign key constraint)
dan144926d2009-09-09 11:37:20 +0000358**
danf3677212009-09-10 16:14:50 +0000359** Then check that the value of Parse.mayAbort is true if an
360** ABORT may be thrown, or false otherwise. Return true if it does
361** match, or false otherwise. This function is intended to be used as
362** part of an assert statement in the compiler. Similar to:
363**
364** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
dan144926d2009-09-09 11:37:20 +0000365*/
danf3677212009-09-10 16:14:50 +0000366int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
367 int hasAbort = 0;
dan144926d2009-09-09 11:37:20 +0000368 Op *pOp;
369 VdbeOpIter sIter;
370 memset(&sIter, 0, sizeof(sIter));
371 sIter.v = v;
372
373 while( (pOp = opIterNext(&sIter))!=0 ){
374 int opcode = pOp->opcode;
375 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
dan32b09f22009-09-23 17:29:59 +0000376#ifndef SQLITE_OMIT_FOREIGN_KEY
dan0ff297e2009-09-25 17:03:14 +0000377 || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1)
dan32b09f22009-09-23 17:29:59 +0000378#endif
dan144926d2009-09-09 11:37:20 +0000379 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
380 && (pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
381 ){
danf3677212009-09-10 16:14:50 +0000382 hasAbort = 1;
dan144926d2009-09-09 11:37:20 +0000383 break;
384 }
385 }
dan144926d2009-09-09 11:37:20 +0000386 sqlite3DbFree(v->db, sIter.apSub);
danf3677212009-09-10 16:14:50 +0000387
388 /* Return true if hasAbort==mayAbort. Or if a malloc failure occured.
389 ** If malloc failed, then the while() loop above may not have iterated
390 ** through all opcodes and hasAbort may be set incorrectly. Return
391 ** true for this case to prevent the assert() in the callers frame
392 ** from failing. */
393 return ( v->db->mallocFailed || hasAbort==mayAbort );
dan144926d2009-09-09 11:37:20 +0000394}
drhff738bc2009-09-24 00:09:58 +0000395#endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
dan144926d2009-09-09 11:37:20 +0000396
drh9a324642003-09-06 20:12:01 +0000397/*
drh9cbf3422008-01-17 16:22:13 +0000398** Loop through the program looking for P2 values that are negative
399** on jump instructions. Each such value is a label. Resolve the
400** label by setting the P2 value to its correct non-zero value.
drh76ff3a02004-09-24 22:32:30 +0000401**
402** This routine is called once after all opcodes have been inserted.
danielk1977634f2982005-03-28 08:44:07 +0000403**
drh13449892005-09-07 21:22:45 +0000404** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument
danielk1977399918f2006-06-14 13:03:23 +0000405** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by
danielk1977634f2982005-03-28 08:44:07 +0000406** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
drha6c2ed92009-11-14 23:22:23 +0000407**
408** The Op.opflags field is set on all opcodes.
drh76ff3a02004-09-24 22:32:30 +0000409*/
drh9cbf3422008-01-17 16:22:13 +0000410static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
drh76ff3a02004-09-24 22:32:30 +0000411 int i;
dan165921a2009-08-28 18:53:45 +0000412 int nMaxArgs = *pMaxFuncArgs;
drh76ff3a02004-09-24 22:32:30 +0000413 Op *pOp;
414 int *aLabel = p->aLabel;
drhad4a4b82008-11-05 16:37:34 +0000415 p->readOnly = 1;
drh76ff3a02004-09-24 22:32:30 +0000416 for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
danielk1977634f2982005-03-28 08:44:07 +0000417 u8 opcode = pOp->opcode;
418
drha6c2ed92009-11-14 23:22:23 +0000419 pOp->opflags = sqlite3OpcodeProperty[opcode];
drha2baf3a2008-06-18 15:34:09 +0000420 if( opcode==OP_Function || opcode==OP_AggStep ){
drh98757152008-01-09 23:04:12 +0000421 if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
drh10fc7272010-12-08 18:30:19 +0000422 }else if( (opcode==OP_Transaction && pOp->p2!=0) || opcode==OP_Vacuum ){
drhad4a4b82008-11-05 16:37:34 +0000423 p->readOnly = 0;
danielk1977182c4ba2007-06-27 15:53:34 +0000424#ifndef SQLITE_OMIT_VIRTUALTABLE
drha6c2ed92009-11-14 23:22:23 +0000425 }else if( opcode==OP_VUpdate ){
426 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
drh4be8b512006-06-13 23:51:34 +0000427 }else if( opcode==OP_VFilter ){
428 int n;
429 assert( p->nOp - i >= 3 );
drh4c583122008-01-04 22:01:03 +0000430 assert( pOp[-1].opcode==OP_Integer );
danielk19776dbee812008-01-03 18:39:41 +0000431 n = pOp[-1].p1;
drh4be8b512006-06-13 23:51:34 +0000432 if( n>nMaxArgs ) nMaxArgs = n;
danielk1977182c4ba2007-06-27 15:53:34 +0000433#endif
drhc6aff302011-09-01 15:32:47 +0000434 }else if( opcode==OP_Next || opcode==OP_SorterNext ){
dana205a482011-08-27 18:48:57 +0000435 pOp->p4.xAdvance = sqlite3BtreeNext;
436 pOp->p4type = P4_ADVANCE;
437 }else if( opcode==OP_Prev ){
438 pOp->p4.xAdvance = sqlite3BtreePrevious;
439 pOp->p4type = P4_ADVANCE;
danielk1977bc04f852005-03-29 08:26:13 +0000440 }
danielk1977634f2982005-03-28 08:44:07 +0000441
drha6c2ed92009-11-14 23:22:23 +0000442 if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
drhd2981512008-01-04 19:33:49 +0000443 assert( -1-pOp->p2<p->nLabel );
444 pOp->p2 = aLabel[-1-pOp->p2];
445 }
drh76ff3a02004-09-24 22:32:30 +0000446 }
drh633e6d52008-07-28 19:34:53 +0000447 sqlite3DbFree(p->db, p->aLabel);
drh76ff3a02004-09-24 22:32:30 +0000448 p->aLabel = 0;
danielk1977bc04f852005-03-29 08:26:13 +0000449
450 *pMaxFuncArgs = nMaxArgs;
drh76ff3a02004-09-24 22:32:30 +0000451}
452
453/*
drh9a324642003-09-06 20:12:01 +0000454** Return the address of the next instruction to be inserted.
455*/
danielk19774adee202004-05-08 08:23:19 +0000456int sqlite3VdbeCurrentAddr(Vdbe *p){
drh9a324642003-09-06 20:12:01 +0000457 assert( p->magic==VDBE_MAGIC_INIT );
458 return p->nOp;
459}
460
dan65a7cd12009-09-01 12:16:01 +0000461/*
462** This function returns a pointer to the array of opcodes associated with
463** the Vdbe passed as the first argument. It is the callers responsibility
464** to arrange for the returned array to be eventually freed using the
465** vdbeFreeOpArray() function.
466**
467** Before returning, *pnOp is set to the number of entries in the returned
468** array. Also, *pnMaxArg is set to the larger of its current value and
469** the number of entries in the Vdbe.apArg[] array required to execute the
470** returned program.
471*/
dan165921a2009-08-28 18:53:45 +0000472VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
473 VdbeOp *aOp = p->aOp;
dan523a0872009-08-31 05:23:32 +0000474 assert( aOp && !p->db->mallocFailed );
dan65a7cd12009-09-01 12:16:01 +0000475
476 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
drhbdaec522011-04-04 00:14:43 +0000477 assert( p->btreeMask==0 );
dan65a7cd12009-09-01 12:16:01 +0000478
dan165921a2009-08-28 18:53:45 +0000479 resolveP2Values(p, pnMaxArg);
480 *pnOp = p->nOp;
481 p->aOp = 0;
482 return aOp;
483}
484
drh9a324642003-09-06 20:12:01 +0000485/*
486** Add a whole list of operations to the operation stack. Return the
487** address of the first operation added.
488*/
danielk19774adee202004-05-08 08:23:19 +0000489int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
drh9a324642003-09-06 20:12:01 +0000490 int addr;
491 assert( p->magic==VDBE_MAGIC_INIT );
danielk197700e13612008-11-17 19:18:54 +0000492 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p) ){
drh76ff3a02004-09-24 22:32:30 +0000493 return 0;
drh9a324642003-09-06 20:12:01 +0000494 }
495 addr = p->nOp;
drh7b746032009-06-26 12:15:22 +0000496 if( ALWAYS(nOp>0) ){
drh9a324642003-09-06 20:12:01 +0000497 int i;
drh905793e2004-02-21 13:31:09 +0000498 VdbeOpList const *pIn = aOp;
499 for(i=0; i<nOp; i++, pIn++){
500 int p2 = pIn->p2;
501 VdbeOp *pOut = &p->aOp[i+addr];
502 pOut->opcode = pIn->opcode;
503 pOut->p1 = pIn->p1;
drha6c2ed92009-11-14 23:22:23 +0000504 if( p2<0 && (sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP)!=0 ){
drh8558cde2008-01-05 05:20:10 +0000505 pOut->p2 = addr + ADDR(p2);
506 }else{
507 pOut->p2 = p2;
508 }
drh24003452008-01-03 01:28:59 +0000509 pOut->p3 = pIn->p3;
510 pOut->p4type = P4_NOTUSED;
511 pOut->p4.p = 0;
512 pOut->p5 = 0;
danielk19778b60e0f2005-01-12 09:10:39 +0000513#ifdef SQLITE_DEBUG
drh26c9b5e2008-04-11 14:56:53 +0000514 pOut->zComment = 0;
mlcreech3a00f902008-03-04 17:45:01 +0000515 if( sqlite3VdbeAddopTrace ){
danielk19774adee202004-05-08 08:23:19 +0000516 sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
drh9a324642003-09-06 20:12:01 +0000517 }
518#endif
519 }
520 p->nOp += nOp;
521 }
522 return addr;
523}
524
525/*
526** Change the value of the P1 operand for a specific instruction.
527** This routine is useful when a large program is loaded from a
danielk19774adee202004-05-08 08:23:19 +0000528** static array using sqlite3VdbeAddOpList but we want to make a
drh9a324642003-09-06 20:12:01 +0000529** few minor changes to the program.
530*/
drh88caeac2011-08-24 15:12:08 +0000531void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
drh7b746032009-06-26 12:15:22 +0000532 assert( p!=0 );
drh88caeac2011-08-24 15:12:08 +0000533 if( ((u32)p->nOp)>addr ){
drh9a324642003-09-06 20:12:01 +0000534 p->aOp[addr].p1 = val;
535 }
536}
537
538/*
539** Change the value of the P2 operand for a specific instruction.
540** This routine is useful for setting a jump destination.
541*/
drh88caeac2011-08-24 15:12:08 +0000542void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
drh7b746032009-06-26 12:15:22 +0000543 assert( p!=0 );
drh88caeac2011-08-24 15:12:08 +0000544 if( ((u32)p->nOp)>addr ){
drh9a324642003-09-06 20:12:01 +0000545 p->aOp[addr].p2 = val;
546 }
547}
548
drhd654be82005-09-20 17:42:23 +0000549/*
danielk19771f4aa332008-01-03 09:51:55 +0000550** Change the value of the P3 operand for a specific instruction.
danielk1977207872a2008-01-03 07:54:23 +0000551*/
drh88caeac2011-08-24 15:12:08 +0000552void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
drh7b746032009-06-26 12:15:22 +0000553 assert( p!=0 );
drh88caeac2011-08-24 15:12:08 +0000554 if( ((u32)p->nOp)>addr ){
danielk1977207872a2008-01-03 07:54:23 +0000555 p->aOp[addr].p3 = val;
556 }
557}
558
559/*
drh35573352008-01-08 23:54:25 +0000560** Change the value of the P5 operand for the most recently
561** added operation.
danielk19771f4aa332008-01-03 09:51:55 +0000562*/
drh35573352008-01-08 23:54:25 +0000563void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
drh7b746032009-06-26 12:15:22 +0000564 assert( p!=0 );
565 if( p->aOp ){
drh35573352008-01-08 23:54:25 +0000566 assert( p->nOp>0 );
567 p->aOp[p->nOp-1].p5 = val;
danielk19771f4aa332008-01-03 09:51:55 +0000568 }
569}
570
571/*
drhf8875402006-03-17 13:56:34 +0000572** Change the P2 operand of instruction addr so that it points to
drhd654be82005-09-20 17:42:23 +0000573** the address of the next instruction to be coded.
574*/
575void sqlite3VdbeJumpHere(Vdbe *p, int addr){
drh8c2cd5d2011-08-16 02:07:04 +0000576 assert( addr>=0 || p->db->mallocFailed );
577 if( addr>=0 ) sqlite3VdbeChangeP2(p, addr, p->nOp);
drhd654be82005-09-20 17:42:23 +0000578}
drhb38ad992005-09-16 00:27:01 +0000579
drhb7f6f682006-07-08 17:06:43 +0000580
581/*
582** If the input FuncDef structure is ephemeral, then free it. If
583** the FuncDef is not ephermal, then do nothing.
584*/
drh633e6d52008-07-28 19:34:53 +0000585static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
drh7b746032009-06-26 12:15:22 +0000586 if( ALWAYS(pDef) && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
drh633e6d52008-07-28 19:34:53 +0000587 sqlite3DbFree(db, pDef);
drhb7f6f682006-07-08 17:06:43 +0000588 }
589}
590
dand46def72010-07-24 11:28:28 +0000591static void vdbeFreeOpArray(sqlite3 *, Op *, int);
592
drhb38ad992005-09-16 00:27:01 +0000593/*
drh66a51672008-01-03 00:01:23 +0000594** Delete a P4 value if necessary.
drhb38ad992005-09-16 00:27:01 +0000595*/
drh633e6d52008-07-28 19:34:53 +0000596static void freeP4(sqlite3 *db, int p4type, void *p4){
drh0acb7e42008-06-25 00:12:41 +0000597 if( p4 ){
dand46def72010-07-24 11:28:28 +0000598 assert( db );
drh66a51672008-01-03 00:01:23 +0000599 switch( p4type ){
600 case P4_REAL:
601 case P4_INT64:
drh66a51672008-01-03 00:01:23 +0000602 case P4_DYNAMIC:
603 case P4_KEYINFO:
drh0acb7e42008-06-25 00:12:41 +0000604 case P4_INTARRAY:
drh66a51672008-01-03 00:01:23 +0000605 case P4_KEYINFO_HANDOFF: {
drh633e6d52008-07-28 19:34:53 +0000606 sqlite3DbFree(db, p4);
drhac1733d2005-09-17 17:58:22 +0000607 break;
608 }
drhb9755982010-07-24 16:34:37 +0000609 case P4_MPRINTF: {
drh7043db92010-07-26 12:38:12 +0000610 if( db->pnBytesFreed==0 ) sqlite3_free(p4);
drhb9755982010-07-24 16:34:37 +0000611 break;
612 }
drh66a51672008-01-03 00:01:23 +0000613 case P4_VDBEFUNC: {
drh0acb7e42008-06-25 00:12:41 +0000614 VdbeFunc *pVdbeFunc = (VdbeFunc *)p4;
drh633e6d52008-07-28 19:34:53 +0000615 freeEphemeralFunction(db, pVdbeFunc->pFunc);
dand46def72010-07-24 11:28:28 +0000616 if( db->pnBytesFreed==0 ) sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
drh633e6d52008-07-28 19:34:53 +0000617 sqlite3DbFree(db, pVdbeFunc);
drhac1733d2005-09-17 17:58:22 +0000618 break;
619 }
drh66a51672008-01-03 00:01:23 +0000620 case P4_FUNCDEF: {
drh633e6d52008-07-28 19:34:53 +0000621 freeEphemeralFunction(db, (FuncDef*)p4);
drhb7f6f682006-07-08 17:06:43 +0000622 break;
623 }
drh66a51672008-01-03 00:01:23 +0000624 case P4_MEM: {
drhc176c272010-07-26 13:57:59 +0000625 if( db->pnBytesFreed==0 ){
626 sqlite3ValueFree((sqlite3_value*)p4);
627 }else{
drhf37c68e2010-07-26 14:20:06 +0000628 Mem *p = (Mem*)p4;
629 sqlite3DbFree(db, p->zMalloc);
630 sqlite3DbFree(db, p);
drhc176c272010-07-26 13:57:59 +0000631 }
drhac1733d2005-09-17 17:58:22 +0000632 break;
633 }
danielk1977595a5232009-07-24 17:58:53 +0000634 case P4_VTAB : {
dand46def72010-07-24 11:28:28 +0000635 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
danielk1977595a5232009-07-24 17:58:53 +0000636 break;
637 }
drhb38ad992005-09-16 00:27:01 +0000638 }
639 }
640}
641
dan65a7cd12009-09-01 12:16:01 +0000642/*
643** Free the space allocated for aOp and any p4 values allocated for the
644** opcodes contained within. If aOp is not NULL it is assumed to contain
645** nOp entries.
646*/
dan165921a2009-08-28 18:53:45 +0000647static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
648 if( aOp ){
649 Op *pOp;
650 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
651 freeP4(db, pOp->p4type, pOp->p4.p);
652#ifdef SQLITE_DEBUG
653 sqlite3DbFree(db, pOp->zComment);
654#endif
655 }
656 }
657 sqlite3DbFree(db, aOp);
658}
659
dan65a7cd12009-09-01 12:16:01 +0000660/*
dand19c9332010-07-26 12:05:17 +0000661** Link the SubProgram object passed as the second argument into the linked
662** list at Vdbe.pSubProgram. This list is used to delete all sub-program
663** objects when the VM is no longer required.
dan65a7cd12009-09-01 12:16:01 +0000664*/
dand19c9332010-07-26 12:05:17 +0000665void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
666 p->pNext = pVdbe->pProgram;
667 pVdbe->pProgram = p;
dan165921a2009-08-28 18:53:45 +0000668}
669
drh9a324642003-09-06 20:12:01 +0000670/*
drh48f2d3b2011-09-16 01:34:43 +0000671** Change the opcode at addr into OP_Noop
drhf8875402006-03-17 13:56:34 +0000672*/
drh48f2d3b2011-09-16 01:34:43 +0000673void sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
drh7b746032009-06-26 12:15:22 +0000674 if( p->aOp ){
danielk197792d4d7a2007-05-04 12:05:56 +0000675 VdbeOp *pOp = &p->aOp[addr];
drh633e6d52008-07-28 19:34:53 +0000676 sqlite3 *db = p->db;
drh48f2d3b2011-09-16 01:34:43 +0000677 freeP4(db, pOp->p4type, pOp->p4.p);
678 memset(pOp, 0, sizeof(pOp[0]));
679 pOp->opcode = OP_Noop;
drhf8875402006-03-17 13:56:34 +0000680 }
681}
682
683/*
drh66a51672008-01-03 00:01:23 +0000684** Change the value of the P4 operand for a specific instruction.
drh9a324642003-09-06 20:12:01 +0000685** This routine is useful when a large program is loaded from a
danielk19774adee202004-05-08 08:23:19 +0000686** static array using sqlite3VdbeAddOpList but we want to make a
drh9a324642003-09-06 20:12:01 +0000687** few minor changes to the program.
688**
drh66a51672008-01-03 00:01:23 +0000689** If n>=0 then the P4 operand is dynamic, meaning that a copy of
drh17435752007-08-16 04:30:38 +0000690** the string is made into memory obtained from sqlite3_malloc().
drh66a51672008-01-03 00:01:23 +0000691** A value of n==0 means copy bytes of zP4 up to and including the
692** first null byte. If n>0 then copy n+1 bytes of zP4.
drh9a324642003-09-06 20:12:01 +0000693**
drh66a51672008-01-03 00:01:23 +0000694** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure.
danielk19771f55c052005-05-19 08:42:59 +0000695** A copy is made of the KeyInfo structure into memory obtained from
drh17435752007-08-16 04:30:38 +0000696** sqlite3_malloc, to be freed when the Vdbe is finalized.
drh66a51672008-01-03 00:01:23 +0000697** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure
drh17435752007-08-16 04:30:38 +0000698** stored in memory that the caller has obtained from sqlite3_malloc. The
danielk19771f55c052005-05-19 08:42:59 +0000699** caller should not free the allocation, it will be freed when the Vdbe is
700** finalized.
701**
drh66a51672008-01-03 00:01:23 +0000702** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
danielk19771f55c052005-05-19 08:42:59 +0000703** to a string or structure that is guaranteed to exist for the lifetime of
704** the Vdbe. In these cases we can just copy the pointer.
drh9a324642003-09-06 20:12:01 +0000705**
drh66a51672008-01-03 00:01:23 +0000706** If addr<0 then change P4 on the most recently inserted instruction.
drh9a324642003-09-06 20:12:01 +0000707*/
drh66a51672008-01-03 00:01:23 +0000708void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
drh9a324642003-09-06 20:12:01 +0000709 Op *pOp;
drh633e6d52008-07-28 19:34:53 +0000710 sqlite3 *db;
drh91fd4d42008-01-19 20:11:25 +0000711 assert( p!=0 );
drh633e6d52008-07-28 19:34:53 +0000712 db = p->db;
drh91fd4d42008-01-19 20:11:25 +0000713 assert( p->magic==VDBE_MAGIC_INIT );
drh633e6d52008-07-28 19:34:53 +0000714 if( p->aOp==0 || db->mallocFailed ){
danielk1977595a5232009-07-24 17:58:53 +0000715 if ( n!=P4_KEYINFO && n!=P4_VTAB ) {
drh633e6d52008-07-28 19:34:53 +0000716 freeP4(db, n, (void*)*(char**)&zP4);
danielk1977261919c2005-12-06 12:52:59 +0000717 }
danielk1977d5d56522005-03-16 12:15:20 +0000718 return;
719 }
drh7b746032009-06-26 12:15:22 +0000720 assert( p->nOp>0 );
drh91fd4d42008-01-19 20:11:25 +0000721 assert( addr<p->nOp );
722 if( addr<0 ){
drh9a324642003-09-06 20:12:01 +0000723 addr = p->nOp - 1;
drh9a324642003-09-06 20:12:01 +0000724 }
725 pOp = &p->aOp[addr];
drh633e6d52008-07-28 19:34:53 +0000726 freeP4(db, pOp->p4type, pOp->p4.p);
drh66a51672008-01-03 00:01:23 +0000727 pOp->p4.p = 0;
drh98757152008-01-09 23:04:12 +0000728 if( n==P4_INT32 ){
mlcreech12d40822008-03-06 07:35:21 +0000729 /* Note: this cast is safe, because the origin data point was an int
730 ** that was cast to a (const char *). */
shane1fc41292008-07-08 22:28:48 +0000731 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
drh8df32842008-12-09 02:51:23 +0000732 pOp->p4type = P4_INT32;
drh98757152008-01-09 23:04:12 +0000733 }else if( zP4==0 ){
drh66a51672008-01-03 00:01:23 +0000734 pOp->p4.p = 0;
735 pOp->p4type = P4_NOTUSED;
736 }else if( n==P4_KEYINFO ){
drhd3d39e92004-05-20 22:16:29 +0000737 KeyInfo *pKeyInfo;
738 int nField, nByte;
drh4db38a72005-09-01 12:16:28 +0000739
drh66a51672008-01-03 00:01:23 +0000740 nField = ((KeyInfo*)zP4)->nField;
drhfdd6e852005-12-16 01:06:16 +0000741 nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
drhb9755982010-07-24 16:34:37 +0000742 pKeyInfo = sqlite3DbMallocRaw(0, nByte);
danielk19772dca4ac2008-01-03 11:50:29 +0000743 pOp->p4.pKeyInfo = pKeyInfo;
drhd3d39e92004-05-20 22:16:29 +0000744 if( pKeyInfo ){
drhb21e7c72008-06-22 12:37:57 +0000745 u8 *aSortOrder;
drha378c562010-04-02 12:55:38 +0000746 memcpy((char*)pKeyInfo, zP4, nByte - nField);
drhfdd6e852005-12-16 01:06:16 +0000747 aSortOrder = pKeyInfo->aSortOrder;
drhe1a022e2012-09-17 17:16:53 +0000748 assert( aSortOrder!=0 );
749 pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
750 memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
drh66a51672008-01-03 00:01:23 +0000751 pOp->p4type = P4_KEYINFO;
drhd3d39e92004-05-20 22:16:29 +0000752 }else{
drh17435752007-08-16 04:30:38 +0000753 p->db->mallocFailed = 1;
drh66a51672008-01-03 00:01:23 +0000754 pOp->p4type = P4_NOTUSED;
drhd3d39e92004-05-20 22:16:29 +0000755 }
drh66a51672008-01-03 00:01:23 +0000756 }else if( n==P4_KEYINFO_HANDOFF ){
danielk19772dca4ac2008-01-03 11:50:29 +0000757 pOp->p4.p = (void*)zP4;
drh66a51672008-01-03 00:01:23 +0000758 pOp->p4type = P4_KEYINFO;
danielk1977595a5232009-07-24 17:58:53 +0000759 }else if( n==P4_VTAB ){
760 pOp->p4.p = (void*)zP4;
761 pOp->p4type = P4_VTAB;
762 sqlite3VtabLock((VTable *)zP4);
763 assert( ((VTable *)zP4)->db==p->db );
drh9a324642003-09-06 20:12:01 +0000764 }else if( n<0 ){
danielk19772dca4ac2008-01-03 11:50:29 +0000765 pOp->p4.p = (void*)zP4;
drh8df32842008-12-09 02:51:23 +0000766 pOp->p4type = (signed char)n;
drh9a324642003-09-06 20:12:01 +0000767 }else{
drhea678832008-12-10 19:26:22 +0000768 if( n==0 ) n = sqlite3Strlen30(zP4);
danielk19772dca4ac2008-01-03 11:50:29 +0000769 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
drh66a51672008-01-03 00:01:23 +0000770 pOp->p4type = P4_DYNAMIC;
drh9a324642003-09-06 20:12:01 +0000771 }
772}
773
drhad6d9462004-09-19 02:15:24 +0000774#ifndef NDEBUG
775/*
mistachkind5578432012-08-25 10:01:29 +0000776** Change the comment on the most recently coded instruction. Or
drh16ee60f2008-06-20 18:13:25 +0000777** insert a No-op and add the comment to that new instruction. This
778** makes the code easier to read during debugging. None of this happens
779** in a production build.
drhad6d9462004-09-19 02:15:24 +0000780*/
drhb07028f2011-10-14 21:49:18 +0000781static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
danielk197701256832007-04-18 14:24:32 +0000782 assert( p->nOp>0 || p->aOp==0 );
drhd4e70eb2008-01-02 00:34:36 +0000783 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
danielk1977dba01372008-01-05 18:44:29 +0000784 if( p->nOp ){
drhb07028f2011-10-14 21:49:18 +0000785 assert( p->aOp );
786 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
787 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
788 }
789}
790void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
791 va_list ap;
792 if( p ){
danielk1977dba01372008-01-05 18:44:29 +0000793 va_start(ap, zFormat);
drhb07028f2011-10-14 21:49:18 +0000794 vdbeVComment(p, zFormat, ap);
danielk1977dba01372008-01-05 18:44:29 +0000795 va_end(ap);
796 }
drhad6d9462004-09-19 02:15:24 +0000797}
drh16ee60f2008-06-20 18:13:25 +0000798void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
799 va_list ap;
drhb07028f2011-10-14 21:49:18 +0000800 if( p ){
801 sqlite3VdbeAddOp0(p, OP_Noop);
drh16ee60f2008-06-20 18:13:25 +0000802 va_start(ap, zFormat);
drhb07028f2011-10-14 21:49:18 +0000803 vdbeVComment(p, zFormat, ap);
drh16ee60f2008-06-20 18:13:25 +0000804 va_end(ap);
805 }
806}
807#endif /* NDEBUG */
drhad6d9462004-09-19 02:15:24 +0000808
drh9a324642003-09-06 20:12:01 +0000809/*
drh20411ea2009-05-29 19:00:12 +0000810** Return the opcode for a given address. If the address is -1, then
811** return the most recently inserted opcode.
812**
813** If a memory allocation error has occurred prior to the calling of this
814** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
drhf83dc1e2010-06-03 12:09:52 +0000815** is readable but not writable, though it is cast to a writable value.
816** The return of a dummy opcode allows the call to continue functioning
817** after a OOM fault without having to check to see if the return from
818** this routine is a valid pointer. But because the dummy.opcode is 0,
819** dummy will never be written to. This is verified by code inspection and
820** by running with Valgrind.
drh37b89a02009-06-19 00:33:31 +0000821**
822** About the #ifdef SQLITE_OMIT_TRACE: Normally, this routine is never called
823** unless p->nOp>0. This is because in the absense of SQLITE_OMIT_TRACE,
824** an OP_Trace instruction is always inserted by sqlite3VdbeGet() as soon as
825** a new VDBE is created. So we are free to set addr to p->nOp-1 without
826** having to double-check to make sure that the result is non-negative. But
827** if SQLITE_OMIT_TRACE is defined, the OP_Trace is omitted and we do need to
828** check the value of p->nOp-1 before continuing.
drh9a324642003-09-06 20:12:01 +0000829*/
danielk19774adee202004-05-08 08:23:19 +0000830VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
drha0b75da2010-07-02 18:44:37 +0000831 /* C89 specifies that the constant "dummy" will be initialized to all
832 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
mistachkin0fe5f952011-09-14 18:19:08 +0000833 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
drh9a324642003-09-06 20:12:01 +0000834 assert( p->magic==VDBE_MAGIC_INIT );
drh37b89a02009-06-19 00:33:31 +0000835 if( addr<0 ){
836#ifdef SQLITE_OMIT_TRACE
drhf83dc1e2010-06-03 12:09:52 +0000837 if( p->nOp==0 ) return (VdbeOp*)&dummy;
drh37b89a02009-06-19 00:33:31 +0000838#endif
839 addr = p->nOp - 1;
840 }
drh17435752007-08-16 04:30:38 +0000841 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
drh20411ea2009-05-29 19:00:12 +0000842 if( p->db->mallocFailed ){
drhf83dc1e2010-06-03 12:09:52 +0000843 return (VdbeOp*)&dummy;
drh20411ea2009-05-29 19:00:12 +0000844 }else{
845 return &p->aOp[addr];
846 }
drh9a324642003-09-06 20:12:01 +0000847}
848
drhb7f91642004-10-31 02:22:47 +0000849#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
850 || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
drh9a324642003-09-06 20:12:01 +0000851/*
drh66a51672008-01-03 00:01:23 +0000852** Compute a string that describes the P4 parameter for an opcode.
drhd3d39e92004-05-20 22:16:29 +0000853** Use zTemp for any required temporary buffer space.
854*/
drh66a51672008-01-03 00:01:23 +0000855static char *displayP4(Op *pOp, char *zTemp, int nTemp){
856 char *zP4 = zTemp;
drhd3d39e92004-05-20 22:16:29 +0000857 assert( nTemp>=20 );
drh66a51672008-01-03 00:01:23 +0000858 switch( pOp->p4type ){
drh16ee60f2008-06-20 18:13:25 +0000859 case P4_KEYINFO_STATIC:
drh66a51672008-01-03 00:01:23 +0000860 case P4_KEYINFO: {
drhd3d39e92004-05-20 22:16:29 +0000861 int i, j;
danielk19772dca4ac2008-01-03 11:50:29 +0000862 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
drhe1a022e2012-09-17 17:16:53 +0000863 assert( pKeyInfo->aSortOrder!=0 );
drh5bb3eb92007-05-04 13:15:55 +0000864 sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
drhea678832008-12-10 19:26:22 +0000865 i = sqlite3Strlen30(zTemp);
drhd3d39e92004-05-20 22:16:29 +0000866 for(j=0; j<pKeyInfo->nField; j++){
867 CollSeq *pColl = pKeyInfo->aColl[j];
868 if( pColl ){
drhea678832008-12-10 19:26:22 +0000869 int n = sqlite3Strlen30(pColl->zName);
drhd3d39e92004-05-20 22:16:29 +0000870 if( i+n>nTemp-6 ){
drh5bb3eb92007-05-04 13:15:55 +0000871 memcpy(&zTemp[i],",...",4);
drhd3d39e92004-05-20 22:16:29 +0000872 break;
873 }
874 zTemp[i++] = ',';
drhe1a022e2012-09-17 17:16:53 +0000875 if( pKeyInfo->aSortOrder[j] ){
drhd3d39e92004-05-20 22:16:29 +0000876 zTemp[i++] = '-';
877 }
drh5bb3eb92007-05-04 13:15:55 +0000878 memcpy(&zTemp[i], pColl->zName,n+1);
drhd3d39e92004-05-20 22:16:29 +0000879 i += n;
880 }else if( i+4<nTemp-6 ){
drh5bb3eb92007-05-04 13:15:55 +0000881 memcpy(&zTemp[i],",nil",4);
drhd3d39e92004-05-20 22:16:29 +0000882 i += 4;
883 }
884 }
885 zTemp[i++] = ')';
886 zTemp[i] = 0;
887 assert( i<nTemp );
drhd3d39e92004-05-20 22:16:29 +0000888 break;
889 }
drh66a51672008-01-03 00:01:23 +0000890 case P4_COLLSEQ: {
danielk19772dca4ac2008-01-03 11:50:29 +0000891 CollSeq *pColl = pOp->p4.pColl;
drh5bb3eb92007-05-04 13:15:55 +0000892 sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
drhd3d39e92004-05-20 22:16:29 +0000893 break;
894 }
drh66a51672008-01-03 00:01:23 +0000895 case P4_FUNCDEF: {
danielk19772dca4ac2008-01-03 11:50:29 +0000896 FuncDef *pDef = pOp->p4.pFunc;
drha967e882006-06-13 01:04:52 +0000897 sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
drhf9b596e2004-05-26 16:54:42 +0000898 break;
899 }
drh66a51672008-01-03 00:01:23 +0000900 case P4_INT64: {
danielk19772dca4ac2008-01-03 11:50:29 +0000901 sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
drhd4e70eb2008-01-02 00:34:36 +0000902 break;
903 }
drh66a51672008-01-03 00:01:23 +0000904 case P4_INT32: {
905 sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
drh598f1342007-10-23 15:39:45 +0000906 break;
907 }
drh66a51672008-01-03 00:01:23 +0000908 case P4_REAL: {
danielk19772dca4ac2008-01-03 11:50:29 +0000909 sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
drhd4e70eb2008-01-02 00:34:36 +0000910 break;
911 }
drh66a51672008-01-03 00:01:23 +0000912 case P4_MEM: {
danielk19772dca4ac2008-01-03 11:50:29 +0000913 Mem *pMem = pOp->p4.pMem;
drhd4e70eb2008-01-02 00:34:36 +0000914 if( pMem->flags & MEM_Str ){
drh66a51672008-01-03 00:01:23 +0000915 zP4 = pMem->z;
drhd4e70eb2008-01-02 00:34:36 +0000916 }else if( pMem->flags & MEM_Int ){
917 sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
918 }else if( pMem->flags & MEM_Real ){
919 sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
drhb8475df2011-12-09 16:21:19 +0000920 }else if( pMem->flags & MEM_Null ){
921 sqlite3_snprintf(nTemp, zTemp, "NULL");
drh56016892009-08-25 14:24:04 +0000922 }else{
923 assert( pMem->flags & MEM_Blob );
924 zP4 = "(blob)";
drhd4e70eb2008-01-02 00:34:36 +0000925 }
drh598f1342007-10-23 15:39:45 +0000926 break;
927 }
drha967e882006-06-13 01:04:52 +0000928#ifndef SQLITE_OMIT_VIRTUALTABLE
drh66a51672008-01-03 00:01:23 +0000929 case P4_VTAB: {
danielk1977595a5232009-07-24 17:58:53 +0000930 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
drh19146192006-06-26 19:10:32 +0000931 sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
drha967e882006-06-13 01:04:52 +0000932 break;
933 }
934#endif
drh0acb7e42008-06-25 00:12:41 +0000935 case P4_INTARRAY: {
936 sqlite3_snprintf(nTemp, zTemp, "intarray");
937 break;
938 }
dan165921a2009-08-28 18:53:45 +0000939 case P4_SUBPROGRAM: {
940 sqlite3_snprintf(nTemp, zTemp, "program");
941 break;
942 }
drh4a6f3aa2011-08-28 00:19:26 +0000943 case P4_ADVANCE: {
944 zTemp[0] = 0;
945 break;
946 }
drhd3d39e92004-05-20 22:16:29 +0000947 default: {
danielk19772dca4ac2008-01-03 11:50:29 +0000948 zP4 = pOp->p4.z;
drh949f9cd2008-01-12 21:35:57 +0000949 if( zP4==0 ){
drh66a51672008-01-03 00:01:23 +0000950 zP4 = zTemp;
drhd4e70eb2008-01-02 00:34:36 +0000951 zTemp[0] = 0;
drhd3d39e92004-05-20 22:16:29 +0000952 }
953 }
954 }
drh66a51672008-01-03 00:01:23 +0000955 assert( zP4!=0 );
drh66a51672008-01-03 00:01:23 +0000956 return zP4;
drhd3d39e92004-05-20 22:16:29 +0000957}
drhb7f91642004-10-31 02:22:47 +0000958#endif
drhd3d39e92004-05-20 22:16:29 +0000959
drh900b31e2007-08-28 02:27:51 +0000960/*
drhd0679ed2007-08-28 22:24:34 +0000961** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
drh3ebaee92010-05-06 21:37:22 +0000962**
drhbdaec522011-04-04 00:14:43 +0000963** The prepared statements need to know in advance the complete set of
drhe4c88c02012-01-04 12:57:45 +0000964** attached databases that will be use. A mask of these databases
965** is maintained in p->btreeMask. The p->lockMask value is the subset of
966** p->btreeMask of databases that will require a lock.
drh900b31e2007-08-28 02:27:51 +0000967*/
drhfb982642007-08-30 01:19:59 +0000968void sqlite3VdbeUsesBtree(Vdbe *p, int i){
drhfcd71b62011-04-05 22:08:24 +0000969 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
danielk197700e13612008-11-17 19:18:54 +0000970 assert( i<(int)sizeof(p->btreeMask)*8 );
drhbdaec522011-04-04 00:14:43 +0000971 p->btreeMask |= ((yDbMask)1)<<i;
drhdc5b0472011-04-06 22:05:53 +0000972 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
973 p->lockMask |= ((yDbMask)1)<<i;
974 }
drh900b31e2007-08-28 02:27:51 +0000975}
976
drhe54e0512011-04-05 17:31:56 +0000977#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
drhbdaec522011-04-04 00:14:43 +0000978/*
979** If SQLite is compiled to support shared-cache mode and to be threadsafe,
980** this routine obtains the mutex associated with each BtShared structure
981** that may be accessed by the VM passed as an argument. In doing so it also
982** sets the BtShared.db member of each of the BtShared structures, ensuring
983** that the correct busy-handler callback is invoked if required.
984**
985** If SQLite is not threadsafe but does support shared-cache mode, then
986** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
987** of all of BtShared structures accessible via the database handle
988** associated with the VM.
989**
990** If SQLite is not threadsafe and does not support shared-cache mode, this
991** function is a no-op.
992**
993** The p->btreeMask field is a bitmask of all btrees that the prepared
994** statement p will ever use. Let N be the number of bits in p->btreeMask
995** corresponding to btrees that use shared cache. Then the runtime of
996** this routine is N*N. But as N is rarely more than 1, this should not
997** be a problem.
998*/
999void sqlite3VdbeEnter(Vdbe *p){
drhbdaec522011-04-04 00:14:43 +00001000 int i;
1001 yDbMask mask;
drhdc5b0472011-04-06 22:05:53 +00001002 sqlite3 *db;
1003 Db *aDb;
1004 int nDb;
1005 if( p->lockMask==0 ) return; /* The common case */
1006 db = p->db;
1007 aDb = db->aDb;
1008 nDb = db->nDb;
drhbdaec522011-04-04 00:14:43 +00001009 for(i=0, mask=1; i<nDb; i++, mask += mask){
drhdc5b0472011-04-06 22:05:53 +00001010 if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){
drhbdaec522011-04-04 00:14:43 +00001011 sqlite3BtreeEnter(aDb[i].pBt);
1012 }
1013 }
drhbdaec522011-04-04 00:14:43 +00001014}
drhe54e0512011-04-05 17:31:56 +00001015#endif
drhbdaec522011-04-04 00:14:43 +00001016
drhe54e0512011-04-05 17:31:56 +00001017#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
drhbdaec522011-04-04 00:14:43 +00001018/*
1019** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1020*/
1021void sqlite3VdbeLeave(Vdbe *p){
drhbdaec522011-04-04 00:14:43 +00001022 int i;
1023 yDbMask mask;
drhdc5b0472011-04-06 22:05:53 +00001024 sqlite3 *db;
1025 Db *aDb;
1026 int nDb;
1027 if( p->lockMask==0 ) return; /* The common case */
1028 db = p->db;
1029 aDb = db->aDb;
1030 nDb = db->nDb;
drhbdaec522011-04-04 00:14:43 +00001031 for(i=0, mask=1; i<nDb; i++, mask += mask){
drhdc5b0472011-04-06 22:05:53 +00001032 if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){
drhbdaec522011-04-04 00:14:43 +00001033 sqlite3BtreeLeave(aDb[i].pBt);
1034 }
1035 }
drhbdaec522011-04-04 00:14:43 +00001036}
drhbdaec522011-04-04 00:14:43 +00001037#endif
drhd3d39e92004-05-20 22:16:29 +00001038
danielk19778b60e0f2005-01-12 09:10:39 +00001039#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
drh9a324642003-09-06 20:12:01 +00001040/*
1041** Print a single opcode. This routine is used for debugging only.
1042*/
danielk19774adee202004-05-08 08:23:19 +00001043void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
drh66a51672008-01-03 00:01:23 +00001044 char *zP4;
drhd3d39e92004-05-20 22:16:29 +00001045 char zPtr[50];
drh1db639c2008-01-17 02:36:28 +00001046 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n";
drh9a324642003-09-06 20:12:01 +00001047 if( pOut==0 ) pOut = stdout;
drh66a51672008-01-03 00:01:23 +00001048 zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
danielk197711641c12008-01-03 08:18:30 +00001049 fprintf(pOut, zFormat1, pc,
drh1db639c2008-01-17 02:36:28 +00001050 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
1051#ifdef SQLITE_DEBUG
1052 pOp->zComment ? pOp->zComment : ""
1053#else
1054 ""
1055#endif
1056 );
drh9a324642003-09-06 20:12:01 +00001057 fflush(pOut);
1058}
1059#endif
1060
1061/*
drh76ff3a02004-09-24 22:32:30 +00001062** Release an array of N Mem elements
1063*/
drhc890fec2008-08-01 20:10:08 +00001064static void releaseMemArray(Mem *p, int N){
danielk1977a7a8e142008-02-13 18:25:27 +00001065 if( p && N ){
danielk1977e972e032008-09-19 18:32:26 +00001066 Mem *pEnd;
danielk1977a7a8e142008-02-13 18:25:27 +00001067 sqlite3 *db = p->db;
drh8df32842008-12-09 02:51:23 +00001068 u8 malloc_failed = db->mallocFailed;
dand46def72010-07-24 11:28:28 +00001069 if( db->pnBytesFreed ){
1070 for(pEnd=&p[N]; p<pEnd; p++){
1071 sqlite3DbFree(db, p->zMalloc);
1072 }
drhc176c272010-07-26 13:57:59 +00001073 return;
1074 }
danielk1977e972e032008-09-19 18:32:26 +00001075 for(pEnd=&p[N]; p<pEnd; p++){
1076 assert( (&p[1])==pEnd || p[0].db==p[1].db );
1077
1078 /* This block is really an inlined version of sqlite3VdbeMemRelease()
1079 ** that takes advantage of the fact that the memory cell value is
1080 ** being set to NULL after releasing any dynamic resources.
1081 **
1082 ** The justification for duplicating code is that according to
1083 ** callgrind, this causes a certain test case to hit the CPU 4.7
1084 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1085 ** sqlite3MemRelease() were called from here. With -O2, this jumps
1086 ** to 6.6 percent. The test case is inserting 1000 rows into a table
1087 ** with no indexes using a single prepared INSERT statement, bind()
1088 ** and reset(). Inserts are grouped into a transaction.
1089 */
dan165921a2009-08-28 18:53:45 +00001090 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
danielk1977e972e032008-09-19 18:32:26 +00001091 sqlite3VdbeMemRelease(p);
1092 }else if( p->zMalloc ){
1093 sqlite3DbFree(db, p->zMalloc);
1094 p->zMalloc = 0;
1095 }
1096
drhb8475df2011-12-09 16:21:19 +00001097 p->flags = MEM_Invalid;
drh76ff3a02004-09-24 22:32:30 +00001098 }
danielk1977a7a8e142008-02-13 18:25:27 +00001099 db->mallocFailed = malloc_failed;
drh76ff3a02004-09-24 22:32:30 +00001100 }
1101}
1102
dan65a7cd12009-09-01 12:16:01 +00001103/*
1104** Delete a VdbeFrame object and its contents. VdbeFrame objects are
1105** allocated by the OP_Program opcode in sqlite3VdbeExec().
1106*/
dan165921a2009-08-28 18:53:45 +00001107void sqlite3VdbeFrameDelete(VdbeFrame *p){
1108 int i;
1109 Mem *aMem = VdbeFrameMem(p);
1110 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
1111 for(i=0; i<p->nChildCsr; i++){
1112 sqlite3VdbeFreeCursor(p->v, apCsr[i]);
1113 }
1114 releaseMemArray(aMem, p->nChildMem);
1115 sqlite3DbFree(p->v->db, p);
1116}
1117
drhb7f91642004-10-31 02:22:47 +00001118#ifndef SQLITE_OMIT_EXPLAIN
drh76ff3a02004-09-24 22:32:30 +00001119/*
drh9a324642003-09-06 20:12:01 +00001120** Give a listing of the program in the virtual machine.
1121**
danielk19774adee202004-05-08 08:23:19 +00001122** The interface is the same as sqlite3VdbeExec(). But instead of
drh9a324642003-09-06 20:12:01 +00001123** running the code, it invokes the callback once for each instruction.
1124** This feature is used to implement "EXPLAIN".
drh9cbf3422008-01-17 16:22:13 +00001125**
1126** When p->explain==1, each instruction is listed. When
1127** p->explain==2, only OP_Explain instructions are listed and these
1128** are shown in a different format. p->explain==2 is used to implement
1129** EXPLAIN QUERY PLAN.
drh5cfa5842009-12-31 20:35:08 +00001130**
1131** When p->explain==1, first the main program is listed, then each of
1132** the trigger subprograms are listed one by one.
drh9a324642003-09-06 20:12:01 +00001133*/
danielk19774adee202004-05-08 08:23:19 +00001134int sqlite3VdbeList(
drh9a324642003-09-06 20:12:01 +00001135 Vdbe *p /* The VDBE */
1136){
drh5cfa5842009-12-31 20:35:08 +00001137 int nRow; /* Stop when row count reaches this */
dan165921a2009-08-28 18:53:45 +00001138 int nSub = 0; /* Number of sub-vdbes seen so far */
1139 SubProgram **apSub = 0; /* Array of sub-vdbes */
drh5cfa5842009-12-31 20:35:08 +00001140 Mem *pSub = 0; /* Memory cell hold array of subprogs */
1141 sqlite3 *db = p->db; /* The database connection */
1142 int i; /* Loop counter */
1143 int rc = SQLITE_OK; /* Return code */
drh9734e6e2011-10-07 18:24:25 +00001144 Mem *pMem = &p->aMem[1]; /* First Mem of result set */
drh9a324642003-09-06 20:12:01 +00001145
drh9a324642003-09-06 20:12:01 +00001146 assert( p->explain );
drh5f82e3c2009-07-06 00:44:08 +00001147 assert( p->magic==VDBE_MAGIC_RUN );
danielk19776c359f02008-11-21 16:58:03 +00001148 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
danielk197718f41892004-05-22 07:27:46 +00001149
drh9cbf3422008-01-17 16:22:13 +00001150 /* Even though this opcode does not use dynamic strings for
1151 ** the result, result columns may become dynamic if the user calls
drh4f26d6c2004-05-26 23:25:30 +00001152 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
danielk197718f41892004-05-22 07:27:46 +00001153 */
dan165921a2009-08-28 18:53:45 +00001154 releaseMemArray(pMem, 8);
drh9734e6e2011-10-07 18:24:25 +00001155 p->pResultSet = 0;
danielk197718f41892004-05-22 07:27:46 +00001156
danielk19776c359f02008-11-21 16:58:03 +00001157 if( p->rc==SQLITE_NOMEM ){
1158 /* This happens if a malloc() inside a call to sqlite3_column_text() or
1159 ** sqlite3_column_text16() failed. */
1160 db->mallocFailed = 1;
1161 return SQLITE_ERROR;
1162 }
1163
drh5cfa5842009-12-31 20:35:08 +00001164 /* When the number of output rows reaches nRow, that means the
1165 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1166 ** nRow is the sum of the number of rows in the main program, plus
1167 ** the sum of the number of rows in all trigger subprograms encountered
1168 ** so far. The nRow value will increase as new trigger subprograms are
1169 ** encountered, but p->pc will eventually catch up to nRow.
1170 */
dan165921a2009-08-28 18:53:45 +00001171 nRow = p->nOp;
1172 if( p->explain==1 ){
drh5cfa5842009-12-31 20:35:08 +00001173 /* The first 8 memory cells are used for the result set. So we will
1174 ** commandeer the 9th cell to use as storage for an array of pointers
1175 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
1176 ** cells. */
1177 assert( p->nMem>9 );
dan165921a2009-08-28 18:53:45 +00001178 pSub = &p->aMem[9];
1179 if( pSub->flags&MEM_Blob ){
drh5cfa5842009-12-31 20:35:08 +00001180 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is
1181 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
dan165921a2009-08-28 18:53:45 +00001182 nSub = pSub->n/sizeof(Vdbe*);
1183 apSub = (SubProgram **)pSub->z;
1184 }
1185 for(i=0; i<nSub; i++){
1186 nRow += apSub[i]->nOp;
1187 }
1188 }
1189
drhecc92422005-09-10 16:46:12 +00001190 do{
1191 i = p->pc++;
dan165921a2009-08-28 18:53:45 +00001192 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
1193 if( i>=nRow ){
drh826fb5a2004-02-14 23:59:57 +00001194 p->rc = SQLITE_OK;
1195 rc = SQLITE_DONE;
drh881feaa2006-07-26 01:39:30 +00001196 }else if( db->u1.isInterrupted ){
drhc5cdca62005-01-11 16:54:14 +00001197 p->rc = SQLITE_INTERRUPT;
drh826fb5a2004-02-14 23:59:57 +00001198 rc = SQLITE_ERROR;
drhf089aa42008-07-08 19:34:06 +00001199 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc));
drh826fb5a2004-02-14 23:59:57 +00001200 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00001201 char *z;
dan165921a2009-08-28 18:53:45 +00001202 Op *pOp;
1203 if( i<p->nOp ){
drh5cfa5842009-12-31 20:35:08 +00001204 /* The output line number is small enough that we are still in the
1205 ** main program. */
dan165921a2009-08-28 18:53:45 +00001206 pOp = &p->aOp[i];
1207 }else{
drh5cfa5842009-12-31 20:35:08 +00001208 /* We are currently listing subprograms. Figure out which one and
1209 ** pick up the appropriate opcode. */
dan165921a2009-08-28 18:53:45 +00001210 int j;
1211 i -= p->nOp;
1212 for(j=0; i>=apSub[j]->nOp; j++){
1213 i -= apSub[j]->nOp;
1214 }
1215 pOp = &apSub[j]->aOp[i];
1216 }
danielk19770d78bae2008-01-03 07:09:48 +00001217 if( p->explain==1 ){
1218 pMem->flags = MEM_Int;
1219 pMem->type = SQLITE_INTEGER;
1220 pMem->u.i = i; /* Program counter */
1221 pMem++;
1222
1223 pMem->flags = MEM_Static|MEM_Str|MEM_Term;
1224 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
1225 assert( pMem->z!=0 );
drhea678832008-12-10 19:26:22 +00001226 pMem->n = sqlite3Strlen30(pMem->z);
danielk19770d78bae2008-01-03 07:09:48 +00001227 pMem->type = SQLITE_TEXT;
1228 pMem->enc = SQLITE_UTF8;
1229 pMem++;
dan165921a2009-08-28 18:53:45 +00001230
drh5cfa5842009-12-31 20:35:08 +00001231 /* When an OP_Program opcode is encounter (the only opcode that has
1232 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
1233 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
1234 ** has not already been seen.
1235 */
dan165921a2009-08-28 18:53:45 +00001236 if( pOp->p4type==P4_SUBPROGRAM ){
1237 int nByte = (nSub+1)*sizeof(SubProgram*);
1238 int j;
1239 for(j=0; j<nSub; j++){
1240 if( apSub[j]==pOp->p4.pProgram ) break;
1241 }
dan2b9ee772012-03-31 09:59:44 +00001242 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){
dan165921a2009-08-28 18:53:45 +00001243 apSub = (SubProgram **)pSub->z;
1244 apSub[nSub++] = pOp->p4.pProgram;
1245 pSub->flags |= MEM_Blob;
1246 pSub->n = nSub*sizeof(SubProgram*);
1247 }
1248 }
danielk19770d78bae2008-01-03 07:09:48 +00001249 }
drheb2e1762004-05-27 01:53:56 +00001250
1251 pMem->flags = MEM_Int;
drh3c024d62007-03-30 11:23:45 +00001252 pMem->u.i = pOp->p1; /* P1 */
drh9c054832004-05-31 18:51:57 +00001253 pMem->type = SQLITE_INTEGER;
drheb2e1762004-05-27 01:53:56 +00001254 pMem++;
1255
1256 pMem->flags = MEM_Int;
drh3c024d62007-03-30 11:23:45 +00001257 pMem->u.i = pOp->p2; /* P2 */
drh9c054832004-05-31 18:51:57 +00001258 pMem->type = SQLITE_INTEGER;
drheb2e1762004-05-27 01:53:56 +00001259 pMem++;
1260
dan2ce22452010-11-08 19:01:16 +00001261 pMem->flags = MEM_Int;
1262 pMem->u.i = pOp->p3; /* P3 */
1263 pMem->type = SQLITE_INTEGER;
1264 pMem++;
danielk19770d78bae2008-01-03 07:09:48 +00001265
danielk1977a7a8e142008-02-13 18:25:27 +00001266 if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ /* P4 */
danielk1977357864e2009-03-25 15:43:08 +00001267 assert( p->db->mallocFailed );
1268 return SQLITE_ERROR;
danielk1977a7a8e142008-02-13 18:25:27 +00001269 }
1270 pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
1271 z = displayP4(pOp, pMem->z, 32);
1272 if( z!=pMem->z ){
1273 sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0);
1274 }else{
1275 assert( pMem->z!=0 );
drhea678832008-12-10 19:26:22 +00001276 pMem->n = sqlite3Strlen30(pMem->z);
danielk1977a7a8e142008-02-13 18:25:27 +00001277 pMem->enc = SQLITE_UTF8;
1278 }
drh9c054832004-05-31 18:51:57 +00001279 pMem->type = SQLITE_TEXT;
danielk19770d78bae2008-01-03 07:09:48 +00001280 pMem++;
drheb2e1762004-05-27 01:53:56 +00001281
danielk19770d78bae2008-01-03 07:09:48 +00001282 if( p->explain==1 ){
drh85e5f0d2008-02-19 18:28:13 +00001283 if( sqlite3VdbeMemGrow(pMem, 4, 0) ){
danielk1977357864e2009-03-25 15:43:08 +00001284 assert( p->db->mallocFailed );
1285 return SQLITE_ERROR;
danielk1977a7a8e142008-02-13 18:25:27 +00001286 }
1287 pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
drh85e5f0d2008-02-19 18:28:13 +00001288 pMem->n = 2;
1289 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
danielk19770d78bae2008-01-03 07:09:48 +00001290 pMem->type = SQLITE_TEXT;
1291 pMem->enc = SQLITE_UTF8;
1292 pMem++;
1293
drhaa9b8962008-01-08 02:57:55 +00001294#ifdef SQLITE_DEBUG
danielk19770d78bae2008-01-03 07:09:48 +00001295 if( pOp->zComment ){
1296 pMem->flags = MEM_Str|MEM_Term;
1297 pMem->z = pOp->zComment;
drhea678832008-12-10 19:26:22 +00001298 pMem->n = sqlite3Strlen30(pMem->z);
danielk19770d78bae2008-01-03 07:09:48 +00001299 pMem->enc = SQLITE_UTF8;
danielk19771e522b42008-09-16 09:09:19 +00001300 pMem->type = SQLITE_TEXT;
drh52391cb2008-02-14 23:44:13 +00001301 }else
drhaa9b8962008-01-08 02:57:55 +00001302#endif
drh52391cb2008-02-14 23:44:13 +00001303 {
1304 pMem->flags = MEM_Null; /* Comment */
1305 pMem->type = SQLITE_NULL;
1306 }
danielk19770d78bae2008-01-03 07:09:48 +00001307 }
1308
dan2ce22452010-11-08 19:01:16 +00001309 p->nResColumn = 8 - 4*(p->explain-1);
drh9734e6e2011-10-07 18:24:25 +00001310 p->pResultSet = &p->aMem[1];
drh826fb5a2004-02-14 23:59:57 +00001311 p->rc = SQLITE_OK;
1312 rc = SQLITE_ROW;
drh9a324642003-09-06 20:12:01 +00001313 }
drh826fb5a2004-02-14 23:59:57 +00001314 return rc;
drh9a324642003-09-06 20:12:01 +00001315}
drhb7f91642004-10-31 02:22:47 +00001316#endif /* SQLITE_OMIT_EXPLAIN */
drh9a324642003-09-06 20:12:01 +00001317
drh7c4ac0c2007-04-05 11:25:58 +00001318#ifdef SQLITE_DEBUG
drh9a324642003-09-06 20:12:01 +00001319/*
drh3f7d4e42004-07-24 14:35:58 +00001320** Print the SQL that was used to generate a VDBE program.
1321*/
1322void sqlite3VdbePrintSql(Vdbe *p){
drh3f7d4e42004-07-24 14:35:58 +00001323 int nOp = p->nOp;
1324 VdbeOp *pOp;
drhc16a03b2004-09-15 13:38:10 +00001325 if( nOp<1 ) return;
drh949f9cd2008-01-12 21:35:57 +00001326 pOp = &p->aOp[0];
1327 if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
danielk19772dca4ac2008-01-03 11:50:29 +00001328 const char *z = pOp->p4.z;
danielk197778ca0e72009-01-20 16:53:39 +00001329 while( sqlite3Isspace(*z) ) z++;
drh3f7d4e42004-07-24 14:35:58 +00001330 printf("SQL: [%s]\n", z);
1331 }
drh3f7d4e42004-07-24 14:35:58 +00001332}
drh7c4ac0c2007-04-05 11:25:58 +00001333#endif
drh3f7d4e42004-07-24 14:35:58 +00001334
drh602c2372007-03-01 00:29:13 +00001335#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
1336/*
1337** Print an IOTRACE message showing SQL content.
1338*/
1339void sqlite3VdbeIOTraceSql(Vdbe *p){
1340 int nOp = p->nOp;
1341 VdbeOp *pOp;
mlcreech3a00f902008-03-04 17:45:01 +00001342 if( sqlite3IoTrace==0 ) return;
drh602c2372007-03-01 00:29:13 +00001343 if( nOp<1 ) return;
drh949f9cd2008-01-12 21:35:57 +00001344 pOp = &p->aOp[0];
1345 if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
drh602c2372007-03-01 00:29:13 +00001346 int i, j;
drh00a18e42007-08-13 11:10:34 +00001347 char z[1000];
drh949f9cd2008-01-12 21:35:57 +00001348 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
danielk197778ca0e72009-01-20 16:53:39 +00001349 for(i=0; sqlite3Isspace(z[i]); i++){}
drh602c2372007-03-01 00:29:13 +00001350 for(j=0; z[i]; i++){
danielk197778ca0e72009-01-20 16:53:39 +00001351 if( sqlite3Isspace(z[i]) ){
drh602c2372007-03-01 00:29:13 +00001352 if( z[i-1]!=' ' ){
1353 z[j++] = ' ';
1354 }
1355 }else{
1356 z[j++] = z[i];
1357 }
1358 }
1359 z[j] = 0;
mlcreech3a00f902008-03-04 17:45:01 +00001360 sqlite3IoTrace("SQL %s\n", z);
drh602c2372007-03-01 00:29:13 +00001361 }
1362}
1363#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
1364
drhb2771ce2009-02-20 01:28:59 +00001365/*
drh4800b2e2009-12-08 15:35:22 +00001366** Allocate space from a fixed size buffer and return a pointer to
1367** that space. If insufficient space is available, return NULL.
1368**
1369** The pBuf parameter is the initial value of a pointer which will
1370** receive the new memory. pBuf is normally NULL. If pBuf is not
1371** NULL, it means that memory space has already been allocated and that
1372** this routine should not allocate any new memory. When pBuf is not
1373** NULL simply return pBuf. Only allocate new memory space when pBuf
1374** is NULL.
drhb2771ce2009-02-20 01:28:59 +00001375**
1376** nByte is the number of bytes of space needed.
1377**
drh19875c82009-12-08 19:58:19 +00001378** *ppFrom points to available space and pEnd points to the end of the
1379** available space. When space is allocated, *ppFrom is advanced past
1380** the end of the allocated space.
drhb2771ce2009-02-20 01:28:59 +00001381**
1382** *pnByte is a counter of the number of bytes of space that have failed
1383** to allocate. If there is insufficient space in *ppFrom to satisfy the
danielk1977d336e222009-02-20 10:58:41 +00001384** request, then increment *pnByte by the amount of the request.
drhb2771ce2009-02-20 01:28:59 +00001385*/
drh4800b2e2009-12-08 15:35:22 +00001386static void *allocSpace(
1387 void *pBuf, /* Where return pointer will be stored */
drhb2771ce2009-02-20 01:28:59 +00001388 int nByte, /* Number of bytes to allocate */
1389 u8 **ppFrom, /* IN/OUT: Allocate from *ppFrom */
danielk1977d336e222009-02-20 10:58:41 +00001390 u8 *pEnd, /* Pointer to 1 byte past the end of *ppFrom buffer */
drhb2771ce2009-02-20 01:28:59 +00001391 int *pnByte /* If allocation cannot be made, increment *pnByte */
1392){
drhea598cb2009-04-05 12:22:08 +00001393 assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) );
drh4800b2e2009-12-08 15:35:22 +00001394 if( pBuf ) return pBuf;
1395 nByte = ROUND8(nByte);
1396 if( &(*ppFrom)[nByte] <= pEnd ){
1397 pBuf = (void*)*ppFrom;
1398 *ppFrom += nByte;
1399 }else{
1400 *pnByte += nByte;
drhb2771ce2009-02-20 01:28:59 +00001401 }
drh4800b2e2009-12-08 15:35:22 +00001402 return pBuf;
drhb2771ce2009-02-20 01:28:59 +00001403}
drh602c2372007-03-01 00:29:13 +00001404
drh3f7d4e42004-07-24 14:35:58 +00001405/*
drh124c0b42011-06-01 18:15:55 +00001406** Rewind the VDBE back to the beginning in preparation for
1407** running it.
drh9a324642003-09-06 20:12:01 +00001408*/
drh124c0b42011-06-01 18:15:55 +00001409void sqlite3VdbeRewind(Vdbe *p){
1410#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1411 int i;
1412#endif
drh9a324642003-09-06 20:12:01 +00001413 assert( p!=0 );
drh9a324642003-09-06 20:12:01 +00001414 assert( p->magic==VDBE_MAGIC_INIT );
1415
drhc16a03b2004-09-15 13:38:10 +00001416 /* There should be at least one opcode.
drh9a324642003-09-06 20:12:01 +00001417 */
drhc16a03b2004-09-15 13:38:10 +00001418 assert( p->nOp>0 );
drh9a324642003-09-06 20:12:01 +00001419
danielk197700e13612008-11-17 19:18:54 +00001420 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
danielk1977634f2982005-03-28 08:44:07 +00001421 p->magic = VDBE_MAGIC_RUN;
1422
drh124c0b42011-06-01 18:15:55 +00001423#ifdef SQLITE_DEBUG
1424 for(i=1; i<p->nMem; i++){
1425 assert( p->aMem[i].db==p->db );
1426 }
1427#endif
1428 p->pc = -1;
1429 p->rc = SQLITE_OK;
1430 p->errorAction = OE_Abort;
1431 p->magic = VDBE_MAGIC_RUN;
1432 p->nChange = 0;
1433 p->cacheCtr = 1;
1434 p->minWriteFileFormat = 255;
1435 p->iStatement = 0;
1436 p->nFkConstraint = 0;
1437#ifdef VDBE_PROFILE
1438 for(i=0; i<p->nOp; i++){
1439 p->aOp[i].cnt = 0;
1440 p->aOp[i].cycles = 0;
1441 }
1442#endif
1443}
1444
1445/*
1446** Prepare a virtual machine for execution for the first time after
1447** creating the virtual machine. This involves things such
1448** as allocating stack space and initializing the program counter.
1449** After the VDBE has be prepped, it can be executed by one or more
1450** calls to sqlite3VdbeExec().
1451**
1452** This function may be called exact once on a each virtual machine.
1453** After this routine is called the VM has been "packaged" and is ready
1454** to run. After this routine is called, futher calls to
1455** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
1456** the Vdbe from the Parse object that helped generate it so that the
1457** the Vdbe becomes an independent entity and the Parse object can be
1458** destroyed.
1459**
1460** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
1461** to its initial state after it has been run.
1462*/
1463void sqlite3VdbeMakeReady(
1464 Vdbe *p, /* The VDBE */
1465 Parse *pParse /* Parsing context */
1466){
1467 sqlite3 *db; /* The database connection */
1468 int nVar; /* Number of parameters */
1469 int nMem; /* Number of VM memory registers */
1470 int nCursor; /* Number of cursors required */
1471 int nArg; /* Number of arguments in subprograms */
dan1d8cb212011-12-09 13:24:16 +00001472 int nOnce; /* Number of OP_Once instructions */
drh124c0b42011-06-01 18:15:55 +00001473 int n; /* Loop counter */
1474 u8 *zCsr; /* Memory available for allocation */
1475 u8 *zEnd; /* First byte past allocated memory */
1476 int nByte; /* How much extra memory is needed */
1477
1478 assert( p!=0 );
1479 assert( p->nOp>0 );
1480 assert( pParse!=0 );
1481 assert( p->magic==VDBE_MAGIC_INIT );
1482 db = p->db;
1483 assert( db->mallocFailed==0 );
1484 nVar = pParse->nVar;
1485 nMem = pParse->nMem;
1486 nCursor = pParse->nTab;
1487 nArg = pParse->nMaxArg;
dan1d8cb212011-12-09 13:24:16 +00001488 nOnce = pParse->nOnce;
drh20e226d2012-01-01 13:58:53 +00001489 if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */
drh124c0b42011-06-01 18:15:55 +00001490
danielk1977cd3e8f72008-03-25 09:47:35 +00001491 /* For each cursor required, also allocate a memory cell. Memory
1492 ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
1493 ** the vdbe program. Instead they are used to allocate space for
drhdfe88ec2008-11-03 20:55:06 +00001494 ** VdbeCursor/BtCursor structures. The blob of memory associated with
danielk1977cd3e8f72008-03-25 09:47:35 +00001495 ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
1496 ** stores the blob of memory associated with cursor 1, etc.
1497 **
1498 ** See also: allocateCursor().
1499 */
1500 nMem += nCursor;
1501
danielk19776ab3a2e2009-02-19 14:39:25 +00001502 /* Allocate space for memory registers, SQL variables, VDBE cursors and
drh124c0b42011-06-01 18:15:55 +00001503 ** an array to marshal SQL function arguments in.
drh9a324642003-09-06 20:12:01 +00001504 */
drh124c0b42011-06-01 18:15:55 +00001505 zCsr = (u8*)&p->aOp[p->nOp]; /* Memory avaliable for allocation */
1506 zEnd = (u8*)&p->aOp[p->nOpAlloc]; /* First byte past end of zCsr[] */
drh19875c82009-12-08 19:58:19 +00001507
drh124c0b42011-06-01 18:15:55 +00001508 resolveP2Values(p, &nArg);
1509 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
1510 if( pParse->explain && nMem<10 ){
1511 nMem = 10;
1512 }
1513 memset(zCsr, 0, zEnd-zCsr);
1514 zCsr += (zCsr - (u8*)0)&7;
1515 assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
drhaab910c2011-06-27 00:01:22 +00001516 p->expired = 0;
drh124c0b42011-06-01 18:15:55 +00001517
1518 /* Memory for registers, parameters, cursor, etc, is allocated in two
1519 ** passes. On the first pass, we try to reuse unused space at the
1520 ** end of the opcode array. If we are unable to satisfy all memory
1521 ** requirements by reusing the opcode array tail, then the second
1522 ** pass will fill in the rest using a fresh allocation.
1523 **
1524 ** This two-pass approach that reuses as much memory as possible from
1525 ** the leftover space at the end of the opcode array can significantly
1526 ** reduce the amount of memory held by a prepared statement.
1527 */
1528 do {
1529 nByte = 0;
1530 p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
1531 p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
1532 p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
1533 p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
1534 p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
1535 &zCsr, zEnd, &nByte);
drhb8475df2011-12-09 16:21:19 +00001536 p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte);
drh124c0b42011-06-01 18:15:55 +00001537 if( nByte ){
1538 p->pFree = sqlite3DbMallocZero(db, nByte);
drh0f7eb612006-08-08 13:51:43 +00001539 }
drh124c0b42011-06-01 18:15:55 +00001540 zCsr = p->pFree;
1541 zEnd = &zCsr[nByte];
1542 }while( nByte && !db->mallocFailed );
drhb2771ce2009-02-20 01:28:59 +00001543
drh124c0b42011-06-01 18:15:55 +00001544 p->nCursor = (u16)nCursor;
dan1d8cb212011-12-09 13:24:16 +00001545 p->nOnceFlag = nOnce;
drh124c0b42011-06-01 18:15:55 +00001546 if( p->aVar ){
1547 p->nVar = (ynVar)nVar;
1548 for(n=0; n<nVar; n++){
1549 p->aVar[n].flags = MEM_Null;
1550 p->aVar[n].db = db;
danielk197754db47e2004-05-19 10:36:43 +00001551 }
drh82a48512003-09-06 22:45:20 +00001552 }
drh124c0b42011-06-01 18:15:55 +00001553 if( p->azVar ){
1554 p->nzVar = pParse->nzVar;
1555 memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0]));
1556 memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0]));
danielk1977b3bce662005-01-29 08:32:43 +00001557 }
drh124c0b42011-06-01 18:15:55 +00001558 if( p->aMem ){
1559 p->aMem--; /* aMem[] goes from 1..nMem */
1560 p->nMem = nMem; /* not from 0..nMem-1 */
1561 for(n=1; n<=nMem; n++){
drhb8475df2011-12-09 16:21:19 +00001562 p->aMem[n].flags = MEM_Invalid;
drh124c0b42011-06-01 18:15:55 +00001563 p->aMem[n].db = db;
drhcf64d8b2003-12-31 17:57:10 +00001564 }
drh9a324642003-09-06 20:12:01 +00001565 }
drh124c0b42011-06-01 18:15:55 +00001566 p->explain = pParse->explain;
1567 sqlite3VdbeRewind(p);
drh9a324642003-09-06 20:12:01 +00001568}
1569
drh9a324642003-09-06 20:12:01 +00001570/*
danielk1977cd3e8f72008-03-25 09:47:35 +00001571** Close a VDBE cursor and release all the resources that cursor
1572** happens to hold.
drh9a324642003-09-06 20:12:01 +00001573*/
drhdfe88ec2008-11-03 20:55:06 +00001574void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
drh4774b132004-06-12 20:12:51 +00001575 if( pCx==0 ){
1576 return;
1577 }
dana20fde62011-07-12 14:28:05 +00001578 sqlite3VdbeSorterClose(p->db, pCx);
drh9a324642003-09-06 20:12:01 +00001579 if( pCx->pBt ){
danielk19774adee202004-05-08 08:23:19 +00001580 sqlite3BtreeClose(pCx->pBt);
drh34004ce2008-07-11 16:15:17 +00001581 /* The pCx->pCursor will be close automatically, if it exists, by
1582 ** the call above. */
1583 }else if( pCx->pCursor ){
1584 sqlite3BtreeCloseCursor(pCx->pCursor);
drh9a324642003-09-06 20:12:01 +00001585 }
drh9eff6162006-06-12 21:59:13 +00001586#ifndef SQLITE_OMIT_VIRTUALTABLE
1587 if( pCx->pVtabCursor ){
1588 sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
danielk1977be718892006-06-23 08:05:19 +00001589 const sqlite3_module *pModule = pCx->pModule;
1590 p->inVtabMethod = 1;
drh9eff6162006-06-12 21:59:13 +00001591 pModule->xClose(pVtabCursor);
danielk1977be718892006-06-23 08:05:19 +00001592 p->inVtabMethod = 0;
drh9eff6162006-06-12 21:59:13 +00001593 }
1594#endif
drh9a324642003-09-06 20:12:01 +00001595}
1596
dan65a7cd12009-09-01 12:16:01 +00001597/*
1598** Copy the values stored in the VdbeFrame structure to its Vdbe. This
1599** is used, for example, when a trigger sub-program is halted to restore
1600** control to the main program.
1601*/
dan165921a2009-08-28 18:53:45 +00001602int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
1603 Vdbe *v = pFrame->v;
dan1d8cb212011-12-09 13:24:16 +00001604 v->aOnceFlag = pFrame->aOnceFlag;
1605 v->nOnceFlag = pFrame->nOnceFlag;
dan165921a2009-08-28 18:53:45 +00001606 v->aOp = pFrame->aOp;
1607 v->nOp = pFrame->nOp;
1608 v->aMem = pFrame->aMem;
1609 v->nMem = pFrame->nMem;
1610 v->apCsr = pFrame->apCsr;
1611 v->nCursor = pFrame->nCursor;
dan76d462e2009-08-30 11:42:51 +00001612 v->db->lastRowid = pFrame->lastRowid;
1613 v->nChange = pFrame->nChange;
dan165921a2009-08-28 18:53:45 +00001614 return pFrame->pc;
1615}
1616
drh9a324642003-09-06 20:12:01 +00001617/*
drh5f82e3c2009-07-06 00:44:08 +00001618** Close all cursors.
dan165921a2009-08-28 18:53:45 +00001619**
1620** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
1621** cell array. This is necessary as the memory cell array may contain
1622** pointers to VdbeFrame objects, which may in turn contain pointers to
1623** open cursors.
drh9a324642003-09-06 20:12:01 +00001624*/
drh5f82e3c2009-07-06 00:44:08 +00001625static void closeAllCursors(Vdbe *p){
dan165921a2009-08-28 18:53:45 +00001626 if( p->pFrame ){
drh23272752011-03-06 21:54:33 +00001627 VdbeFrame *pFrame;
dan165921a2009-08-28 18:53:45 +00001628 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
1629 sqlite3VdbeFrameRestore(pFrame);
1630 }
1631 p->pFrame = 0;
1632 p->nFrame = 0;
1633
dan523a0872009-08-31 05:23:32 +00001634 if( p->apCsr ){
1635 int i;
1636 for(i=0; i<p->nCursor; i++){
1637 VdbeCursor *pC = p->apCsr[i];
1638 if( pC ){
1639 sqlite3VdbeFreeCursor(p, pC);
1640 p->apCsr[i] = 0;
1641 }
danielk1977be718892006-06-23 08:05:19 +00001642 }
drh9a324642003-09-06 20:12:01 +00001643 }
dan523a0872009-08-31 05:23:32 +00001644 if( p->aMem ){
1645 releaseMemArray(&p->aMem[1], p->nMem);
1646 }
dan27106572010-12-01 08:04:47 +00001647 while( p->pDelFrame ){
1648 VdbeFrame *pDel = p->pDelFrame;
1649 p->pDelFrame = pDel->pParent;
1650 sqlite3VdbeFrameDelete(pDel);
1651 }
drh9a324642003-09-06 20:12:01 +00001652}
1653
1654/*
drh9a324642003-09-06 20:12:01 +00001655** Clean up the VM after execution.
1656**
1657** This routine will automatically close any cursors, lists, and/or
1658** sorters that were left open. It also deletes the values of
drh5a12e682004-05-19 11:24:25 +00001659** variables in the aVar[] array.
drh9a324642003-09-06 20:12:01 +00001660*/
drhc890fec2008-08-01 20:10:08 +00001661static void Cleanup(Vdbe *p){
drh633e6d52008-07-28 19:34:53 +00001662 sqlite3 *db = p->db;
dan165921a2009-08-28 18:53:45 +00001663
1664#ifdef SQLITE_DEBUG
1665 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
1666 ** Vdbe.aMem[] arrays have already been cleaned up. */
1667 int i;
drhb8475df2011-12-09 16:21:19 +00001668 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
1669 if( p->aMem ){
1670 for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Invalid );
1671 }
dan165921a2009-08-28 18:53:45 +00001672#endif
1673
drh633e6d52008-07-28 19:34:53 +00001674 sqlite3DbFree(db, p->zErrMsg);
drh9a324642003-09-06 20:12:01 +00001675 p->zErrMsg = 0;
drhd4e70eb2008-01-02 00:34:36 +00001676 p->pResultSet = 0;
drh9a324642003-09-06 20:12:01 +00001677}
1678
1679/*
danielk197722322fd2004-05-25 23:35:17 +00001680** Set the number of result columns that will be returned by this SQL
1681** statement. This is now set at compile time, rather than during
1682** execution of the vdbe program so that sqlite3_column_count() can
1683** be called on an SQL statement before sqlite3_step().
1684*/
1685void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
drh76ff3a02004-09-24 22:32:30 +00001686 Mem *pColName;
1687 int n;
drh633e6d52008-07-28 19:34:53 +00001688 sqlite3 *db = p->db;
drh4a50aac2007-08-23 02:47:53 +00001689
drhc890fec2008-08-01 20:10:08 +00001690 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
drh633e6d52008-07-28 19:34:53 +00001691 sqlite3DbFree(db, p->aColName);
danielk1977955de522006-02-10 02:27:42 +00001692 n = nResColumn*COLNAME_N;
shane36840fd2009-06-26 16:32:13 +00001693 p->nResColumn = (u16)nResColumn;
drh633e6d52008-07-28 19:34:53 +00001694 p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
drh76ff3a02004-09-24 22:32:30 +00001695 if( p->aColName==0 ) return;
1696 while( n-- > 0 ){
drh4a50aac2007-08-23 02:47:53 +00001697 pColName->flags = MEM_Null;
drh153c62c2007-08-24 03:51:33 +00001698 pColName->db = p->db;
drh4a50aac2007-08-23 02:47:53 +00001699 pColName++;
drh76ff3a02004-09-24 22:32:30 +00001700 }
danielk197722322fd2004-05-25 23:35:17 +00001701}
1702
1703/*
danielk19773cf86062004-05-26 10:11:05 +00001704** Set the name of the idx'th column to be returned by the SQL statement.
1705** zName must be a pointer to a nul terminated string.
1706**
1707** This call must be made after a call to sqlite3VdbeSetNumCols().
1708**
danielk197710fb7492008-10-31 10:53:22 +00001709** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
1710** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
1711** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
danielk19773cf86062004-05-26 10:11:05 +00001712*/
danielk197710fb7492008-10-31 10:53:22 +00001713int sqlite3VdbeSetColName(
1714 Vdbe *p, /* Vdbe being configured */
1715 int idx, /* Index of column zName applies to */
1716 int var, /* One of the COLNAME_* constants */
1717 const char *zName, /* Pointer to buffer containing name */
1718 void (*xDel)(void*) /* Memory management strategy for zName */
1719){
danielk19773cf86062004-05-26 10:11:05 +00001720 int rc;
1721 Mem *pColName;
danielk1977955de522006-02-10 02:27:42 +00001722 assert( idx<p->nResColumn );
1723 assert( var<COLNAME_N );
danielk197710fb7492008-10-31 10:53:22 +00001724 if( p->db->mallocFailed ){
1725 assert( !zName || xDel!=SQLITE_DYNAMIC );
1726 return SQLITE_NOMEM;
1727 }
drh76ff3a02004-09-24 22:32:30 +00001728 assert( p->aColName!=0 );
danielk1977955de522006-02-10 02:27:42 +00001729 pColName = &(p->aColName[idx+var*p->nResColumn]);
danielk197710fb7492008-10-31 10:53:22 +00001730 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
drh0793f1b2008-11-05 17:41:19 +00001731 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
danielk19773cf86062004-05-26 10:11:05 +00001732 return rc;
1733}
1734
danielk197713adf8a2004-06-03 16:08:41 +00001735/*
1736** A read or write transaction may or may not be active on database handle
1737** db. If a transaction is active, commit it. If there is a
1738** write-transaction spanning more than one database file, this routine
1739** takes care of the master journal trickery.
1740*/
danielk19773e3a84d2008-08-01 17:37:40 +00001741static int vdbeCommit(sqlite3 *db, Vdbe *p){
danielk197713adf8a2004-06-03 16:08:41 +00001742 int i;
1743 int nTrans = 0; /* Number of databases with an active write-transaction */
1744 int rc = SQLITE_OK;
1745 int needXcommit = 0;
1746
shane36840fd2009-06-26 16:32:13 +00001747#ifdef SQLITE_OMIT_VIRTUALTABLE
1748 /* With this option, sqlite3VtabSync() is defined to be simply
1749 ** SQLITE_OK so p is not used.
1750 */
1751 UNUSED_PARAMETER(p);
1752#endif
1753
danielk19775bd270b2006-07-25 15:14:52 +00001754 /* Before doing anything else, call the xSync() callback for any
1755 ** virtual module tables written in this transaction. This has to
1756 ** be done before determining whether a master journal file is
1757 ** required, as an xSync() callback may add an attached database
1758 ** to the transaction.
1759 */
danielk19773e3a84d2008-08-01 17:37:40 +00001760 rc = sqlite3VtabSync(db, &p->zErrMsg);
danielk19775bd270b2006-07-25 15:14:52 +00001761
1762 /* This loop determines (a) if the commit hook should be invoked and
1763 ** (b) how many database files have open write transactions, not
1764 ** including the temp database. (b) is important because if more than
1765 ** one database file has an open write transaction, a master journal
1766 ** file is required for an atomic commit.
1767 */
drhabfb62f2010-07-30 11:20:35 +00001768 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00001769 Btree *pBt = db->aDb[i].pBt;
drhd0679ed2007-08-28 22:24:34 +00001770 if( sqlite3BtreeIsInTrans(pBt) ){
danielk197713adf8a2004-06-03 16:08:41 +00001771 needXcommit = 1;
1772 if( i!=1 ) nTrans++;
dan6b9bb592012-10-05 19:43:02 +00001773 sqlite3BtreeEnter(pBt);
drhabfb62f2010-07-30 11:20:35 +00001774 rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt));
dan6b9bb592012-10-05 19:43:02 +00001775 sqlite3BtreeLeave(pBt);
danielk197713adf8a2004-06-03 16:08:41 +00001776 }
1777 }
drhabfb62f2010-07-30 11:20:35 +00001778 if( rc!=SQLITE_OK ){
1779 return rc;
1780 }
danielk197713adf8a2004-06-03 16:08:41 +00001781
1782 /* If there are any write-transactions at all, invoke the commit hook */
1783 if( needXcommit && db->xCommitCallback ){
drh92f02c32004-09-02 14:57:08 +00001784 rc = db->xCommitCallback(db->pCommitArg);
drh92f02c32004-09-02 14:57:08 +00001785 if( rc ){
danielk197713adf8a2004-06-03 16:08:41 +00001786 return SQLITE_CONSTRAINT;
1787 }
1788 }
1789
danielk197740b38dc2004-06-26 08:38:24 +00001790 /* The simple case - no more than one database file (not counting the
1791 ** TEMP database) has a transaction active. There is no need for the
drh2ac3ee92004-06-07 16:27:46 +00001792 ** master-journal.
drhc9e06862004-06-09 20:03:08 +00001793 **
danielk197740b38dc2004-06-26 08:38:24 +00001794 ** If the return value of sqlite3BtreeGetFilename() is a zero length
danielk197717b90b52008-06-06 11:11:25 +00001795 ** string, it means the main database is :memory: or a temp file. In
1796 ** that case we do not support atomic multi-file commits, so use the
1797 ** simple case then too.
danielk197713adf8a2004-06-03 16:08:41 +00001798 */
drhea678832008-12-10 19:26:22 +00001799 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
1800 || nTrans<=1
1801 ){
danielk197704103022009-02-03 16:51:24 +00001802 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00001803 Btree *pBt = db->aDb[i].pBt;
1804 if( pBt ){
drh80e35f42007-03-30 14:06:34 +00001805 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
drh2ac3ee92004-06-07 16:27:46 +00001806 }
1807 }
1808
drh80e35f42007-03-30 14:06:34 +00001809 /* Do the commit only if all databases successfully complete phase 1.
1810 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
1811 ** IO error while deleting or truncating a journal file. It is unlikely,
1812 ** but could happen. In this case abandon processing and return the error.
danielk1977979f38e2007-03-27 16:19:51 +00001813 */
1814 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
1815 Btree *pBt = db->aDb[i].pBt;
1816 if( pBt ){
dan60939d02011-03-29 15:40:55 +00001817 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
danielk197713adf8a2004-06-03 16:08:41 +00001818 }
danielk1977979f38e2007-03-27 16:19:51 +00001819 }
1820 if( rc==SQLITE_OK ){
danielk1977f9e7dda2006-06-16 16:08:53 +00001821 sqlite3VtabCommit(db);
danielk197713adf8a2004-06-03 16:08:41 +00001822 }
1823 }
1824
1825 /* The complex case - There is a multi-file write-transaction active.
1826 ** This requires a master journal file to ensure the transaction is
1827 ** committed atomicly.
1828 */
danielk197744ee5bf2005-05-27 09:41:12 +00001829#ifndef SQLITE_OMIT_DISKIO
danielk197713adf8a2004-06-03 16:08:41 +00001830 else{
danielk1977b4b47412007-08-17 15:53:36 +00001831 sqlite3_vfs *pVfs = db->pVfs;
drh2c8997b2005-08-27 16:36:48 +00001832 int needSync = 0;
danielk197713adf8a2004-06-03 16:08:41 +00001833 char *zMaster = 0; /* File-name for the master journal */
1834 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
danielk1977b4b47412007-08-17 15:53:36 +00001835 sqlite3_file *pMaster = 0;
danielk197762079062007-08-15 17:08:46 +00001836 i64 offset = 0;
danielk1977861f7452008-06-05 11:39:11 +00001837 int res;
drhf5808602011-12-16 00:33:04 +00001838 int retryCount = 0;
drh5c531a42011-12-16 01:21:31 +00001839 int nMainFile;
danielk197713adf8a2004-06-03 16:08:41 +00001840
1841 /* Select a master journal file name */
drh5c531a42011-12-16 01:21:31 +00001842 nMainFile = sqlite3Strlen30(zMainFile);
drh52bcde02012-01-03 14:50:45 +00001843 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
drh5c531a42011-12-16 01:21:31 +00001844 if( zMaster==0 ) return SQLITE_NOMEM;
danielk197713adf8a2004-06-03 16:08:41 +00001845 do {
drhdc5ea5c2008-12-10 17:19:59 +00001846 u32 iRandom;
drh84968c02011-12-16 15:11:39 +00001847 if( retryCount ){
1848 if( retryCount>100 ){
1849 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
1850 sqlite3OsDelete(pVfs, zMaster, 0);
1851 break;
1852 }else if( retryCount==1 ){
1853 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
1854 }
danielk197713adf8a2004-06-03 16:08:41 +00001855 }
drh84968c02011-12-16 15:11:39 +00001856 retryCount++;
danielk197713adf8a2004-06-03 16:08:41 +00001857 sqlite3_randomness(sizeof(iRandom), &iRandom);
drh5c531a42011-12-16 01:21:31 +00001858 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
drhf5808602011-12-16 00:33:04 +00001859 (iRandom>>8)&0xffffff, iRandom&0xff);
drhf5808602011-12-16 00:33:04 +00001860 /* The antipenultimate character of the master journal name must
1861 ** be "9" to avoid name collisions when using 8+3 filenames. */
drh5c531a42011-12-16 01:21:31 +00001862 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
drh81cc5162011-05-17 20:36:21 +00001863 sqlite3FileSuffix3(zMainFile, zMaster);
danielk1977861f7452008-06-05 11:39:11 +00001864 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
1865 }while( rc==SQLITE_OK && res );
1866 if( rc==SQLITE_OK ){
drh19db9352008-03-27 22:42:51 +00001867 /* Open the master journal. */
1868 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
1869 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
1870 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
1871 );
1872 }
danielk197713adf8a2004-06-03 16:08:41 +00001873 if( rc!=SQLITE_OK ){
drh633e6d52008-07-28 19:34:53 +00001874 sqlite3DbFree(db, zMaster);
danielk197713adf8a2004-06-03 16:08:41 +00001875 return rc;
1876 }
1877
1878 /* Write the name of each database file in the transaction into the new
1879 ** master journal file. If an error occurs at this point close
1880 ** and delete the master journal file. All the individual journal files
1881 ** still have 'null' as the master journal pointer, so they will roll
danielk1977aca790a2005-01-13 11:07:52 +00001882 ** back independently if a failure occurs.
danielk197713adf8a2004-06-03 16:08:41 +00001883 */
danielk19771e536952007-08-16 10:09:01 +00001884 for(i=0; i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00001885 Btree *pBt = db->aDb[i].pBt;
drhd0679ed2007-08-28 22:24:34 +00001886 if( sqlite3BtreeIsInTrans(pBt) ){
danielk19775865e3d2004-06-14 06:03:57 +00001887 char const *zFile = sqlite3BtreeGetJournalname(pBt);
drh8c96a6e2010-08-31 01:09:15 +00001888 if( zFile==0 ){
drhb290e1c2009-12-08 13:36:55 +00001889 continue; /* Ignore TEMP and :memory: databases */
1890 }
drh8c96a6e2010-08-31 01:09:15 +00001891 assert( zFile[0]!=0 );
drh2c8997b2005-08-27 16:36:48 +00001892 if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
1893 needSync = 1;
1894 }
drhea678832008-12-10 19:26:22 +00001895 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
1896 offset += sqlite3Strlen30(zFile)+1;
danielk197713adf8a2004-06-03 16:08:41 +00001897 if( rc!=SQLITE_OK ){
danielk1977fee2d252007-08-18 10:59:19 +00001898 sqlite3OsCloseFree(pMaster);
1899 sqlite3OsDelete(pVfs, zMaster, 0);
drh633e6d52008-07-28 19:34:53 +00001900 sqlite3DbFree(db, zMaster);
danielk197713adf8a2004-06-03 16:08:41 +00001901 return rc;
1902 }
1903 }
1904 }
1905
danielk19779663b8f2007-08-24 11:52:28 +00001906 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
1907 ** flag is set this is not required.
1908 */
danielk1977bea2a942009-01-20 17:06:27 +00001909 if( needSync
1910 && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
1911 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
1912 ){
danielk1977fee2d252007-08-18 10:59:19 +00001913 sqlite3OsCloseFree(pMaster);
1914 sqlite3OsDelete(pVfs, zMaster, 0);
drh633e6d52008-07-28 19:34:53 +00001915 sqlite3DbFree(db, zMaster);
danielk19775865e3d2004-06-14 06:03:57 +00001916 return rc;
1917 }
drhc9e06862004-06-09 20:03:08 +00001918
danielk197713adf8a2004-06-03 16:08:41 +00001919 /* Sync all the db files involved in the transaction. The same call
1920 ** sets the master journal pointer in each individual journal. If
1921 ** an error occurs here, do not delete the master journal file.
1922 **
drh80e35f42007-03-30 14:06:34 +00001923 ** If the error occurs during the first call to
1924 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
1925 ** master journal file will be orphaned. But we cannot delete it,
1926 ** in case the master journal file name was written into the journal
shanebe217792009-03-05 04:20:31 +00001927 ** file before the failure occurred.
danielk197713adf8a2004-06-03 16:08:41 +00001928 */
danielk19775bd270b2006-07-25 15:14:52 +00001929 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
danielk197713adf8a2004-06-03 16:08:41 +00001930 Btree *pBt = db->aDb[i].pBt;
drhd0679ed2007-08-28 22:24:34 +00001931 if( pBt ){
drh80e35f42007-03-30 14:06:34 +00001932 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
danielk197713adf8a2004-06-03 16:08:41 +00001933 }
1934 }
danielk1977fee2d252007-08-18 10:59:19 +00001935 sqlite3OsCloseFree(pMaster);
drhabfb62f2010-07-30 11:20:35 +00001936 assert( rc!=SQLITE_BUSY );
danielk19775bd270b2006-07-25 15:14:52 +00001937 if( rc!=SQLITE_OK ){
drh633e6d52008-07-28 19:34:53 +00001938 sqlite3DbFree(db, zMaster);
danielk19775bd270b2006-07-25 15:14:52 +00001939 return rc;
1940 }
danielk197713adf8a2004-06-03 16:08:41 +00001941
danielk1977962398d2004-06-14 09:35:16 +00001942 /* Delete the master journal file. This commits the transaction. After
1943 ** doing this the directory is synced again before any individual
1944 ** transaction files are deleted.
1945 */
danielk1977fee2d252007-08-18 10:59:19 +00001946 rc = sqlite3OsDelete(pVfs, zMaster, 1);
drh633e6d52008-07-28 19:34:53 +00001947 sqlite3DbFree(db, zMaster);
drhc416ba92007-03-30 18:42:55 +00001948 zMaster = 0;
drh29a01382006-08-13 19:04:18 +00001949 if( rc ){
1950 return rc;
1951 }
danielk197713adf8a2004-06-03 16:08:41 +00001952
1953 /* All files and directories have already been synced, so the following
drh80e35f42007-03-30 14:06:34 +00001954 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
1955 ** deleting or truncating journals. If something goes wrong while
1956 ** this is happening we don't really care. The integrity of the
1957 ** transaction is already guaranteed, but some stray 'cold' journals
1958 ** may be lying around. Returning an error code won't help matters.
danielk197713adf8a2004-06-03 16:08:41 +00001959 */
danielk1977979f38e2007-03-27 16:19:51 +00001960 disable_simulated_io_errors();
danielk19772d1d86f2008-06-20 14:59:51 +00001961 sqlite3BeginBenignMalloc();
danielk197713adf8a2004-06-03 16:08:41 +00001962 for(i=0; i<db->nDb; i++){
1963 Btree *pBt = db->aDb[i].pBt;
1964 if( pBt ){
dan60939d02011-03-29 15:40:55 +00001965 sqlite3BtreeCommitPhaseTwo(pBt, 1);
danielk197713adf8a2004-06-03 16:08:41 +00001966 }
1967 }
danielk19772d1d86f2008-06-20 14:59:51 +00001968 sqlite3EndBenignMalloc();
danielk1977979f38e2007-03-27 16:19:51 +00001969 enable_simulated_io_errors();
1970
danielk1977f9e7dda2006-06-16 16:08:53 +00001971 sqlite3VtabCommit(db);
danielk197713adf8a2004-06-03 16:08:41 +00001972 }
danielk197744ee5bf2005-05-27 09:41:12 +00001973#endif
danielk1977026d2702004-06-14 13:14:59 +00001974
drh2ac3ee92004-06-07 16:27:46 +00001975 return rc;
danielk197713adf8a2004-06-03 16:08:41 +00001976}
1977
danielk19771d850a72004-05-31 08:26:49 +00001978/*
1979** This routine checks that the sqlite3.activeVdbeCnt count variable
1980** matches the number of vdbe's in the list sqlite3.pVdbe that are
1981** currently active. An assertion fails if the two counts do not match.
drh92f02c32004-09-02 14:57:08 +00001982** This is an internal self-check only - it is not an essential processing
1983** step.
danielk19771d850a72004-05-31 08:26:49 +00001984**
1985** This is a no-op if NDEBUG is defined.
1986*/
1987#ifndef NDEBUG
drh9bb575f2004-09-06 17:24:11 +00001988static void checkActiveVdbeCnt(sqlite3 *db){
danielk19771d850a72004-05-31 08:26:49 +00001989 Vdbe *p;
1990 int cnt = 0;
drhad4a4b82008-11-05 16:37:34 +00001991 int nWrite = 0;
danielk19771d850a72004-05-31 08:26:49 +00001992 p = db->pVdbe;
1993 while( p ){
drh92f02c32004-09-02 14:57:08 +00001994 if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
danielk19771d850a72004-05-31 08:26:49 +00001995 cnt++;
drhad4a4b82008-11-05 16:37:34 +00001996 if( p->readOnly==0 ) nWrite++;
danielk19771d850a72004-05-31 08:26:49 +00001997 }
1998 p = p->pNext;
1999 }
danielk19771d850a72004-05-31 08:26:49 +00002000 assert( cnt==db->activeVdbeCnt );
drhad4a4b82008-11-05 16:37:34 +00002001 assert( nWrite==db->writeVdbeCnt );
danielk19771d850a72004-05-31 08:26:49 +00002002}
2003#else
2004#define checkActiveVdbeCnt(x)
2005#endif
2006
danielk19773cf86062004-05-26 10:11:05 +00002007/*
danielk1977bd434552009-03-18 10:33:00 +00002008** If the Vdbe passed as the first argument opened a statement-transaction,
2009** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2010** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2011** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
2012** statement transaction is commtted.
2013**
2014** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2015** Otherwise SQLITE_OK.
2016*/
2017int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
danielk1977c926b6a2009-03-20 14:42:11 +00002018 sqlite3 *const db = p->db;
danielk1977bd434552009-03-18 10:33:00 +00002019 int rc = SQLITE_OK;
danielk1977ecaecf92009-07-08 08:05:35 +00002020
danielk1977e4948172009-07-17 17:25:43 +00002021 /* If p->iStatement is greater than zero, then this Vdbe opened a
2022 ** statement transaction that should be closed here. The only exception
2023 ** is that an IO error may have occured, causing an emergency rollback.
2024 ** In this case (db->nStatement==0), and there is nothing to do.
2025 */
2026 if( db->nStatement && p->iStatement ){
danielk1977bd434552009-03-18 10:33:00 +00002027 int i;
2028 const int iSavepoint = p->iStatement-1;
danielk1977bd434552009-03-18 10:33:00 +00002029
2030 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2031 assert( db->nStatement>0 );
2032 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2033
2034 for(i=0; i<db->nDb; i++){
2035 int rc2 = SQLITE_OK;
2036 Btree *pBt = db->aDb[i].pBt;
2037 if( pBt ){
2038 if( eOp==SAVEPOINT_ROLLBACK ){
2039 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2040 }
2041 if( rc2==SQLITE_OK ){
2042 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2043 }
2044 if( rc==SQLITE_OK ){
2045 rc = rc2;
2046 }
2047 }
2048 }
2049 db->nStatement--;
2050 p->iStatement = 0;
dan1da40a32009-09-19 17:00:31 +00002051
dana311b802011-04-26 19:21:34 +00002052 if( rc==SQLITE_OK ){
2053 if( eOp==SAVEPOINT_ROLLBACK ){
2054 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2055 }
2056 if( rc==SQLITE_OK ){
2057 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2058 }
2059 }
2060
dan1da40a32009-09-19 17:00:31 +00002061 /* If the statement transaction is being rolled back, also restore the
2062 ** database handles deferred constraint counter to the value it had when
2063 ** the statement transaction was opened. */
2064 if( eOp==SAVEPOINT_ROLLBACK ){
2065 db->nDeferredCons = p->nStmtDefCons;
2066 }
danielk1977bd434552009-03-18 10:33:00 +00002067 }
2068 return rc;
2069}
2070
2071/*
dan1da40a32009-09-19 17:00:31 +00002072** This function is called when a transaction opened by the database
2073** handle associated with the VM passed as an argument is about to be
2074** committed. If there are outstanding deferred foreign key constraint
2075** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2076**
2077** If there are outstanding FK violations and this function returns
2078** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT and write
2079** an error message to it. Then return SQLITE_ERROR.
2080*/
2081#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00002082int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
dan1da40a32009-09-19 17:00:31 +00002083 sqlite3 *db = p->db;
dan32b09f22009-09-23 17:29:59 +00002084 if( (deferred && db->nDeferredCons>0) || (!deferred && p->nFkConstraint>0) ){
dan1da40a32009-09-19 17:00:31 +00002085 p->rc = SQLITE_CONSTRAINT;
dan32b09f22009-09-23 17:29:59 +00002086 p->errorAction = OE_Abort;
dan1da40a32009-09-19 17:00:31 +00002087 sqlite3SetString(&p->zErrMsg, db, "foreign key constraint failed");
2088 return SQLITE_ERROR;
2089 }
2090 return SQLITE_OK;
2091}
2092#endif
2093
2094/*
drh92f02c32004-09-02 14:57:08 +00002095** This routine is called the when a VDBE tries to halt. If the VDBE
2096** has made changes and is in autocommit mode, then commit those
2097** changes. If a rollback is needed, then do the rollback.
drh9a324642003-09-06 20:12:01 +00002098**
drh92f02c32004-09-02 14:57:08 +00002099** This routine is the only way to move the state of a VM from
drhff0587c2007-08-29 17:43:19 +00002100** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
2101** call this on a VM that is in the SQLITE_MAGIC_HALT state.
drh92f02c32004-09-02 14:57:08 +00002102**
2103** Return an error code. If the commit could not complete because of
2104** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
2105** means the close did not happen and needs to be repeated.
drh9a324642003-09-06 20:12:01 +00002106*/
drhff0587c2007-08-29 17:43:19 +00002107int sqlite3VdbeHalt(Vdbe *p){
danielk1977bd434552009-03-18 10:33:00 +00002108 int rc; /* Used to store transient return codes */
drh9bb575f2004-09-06 17:24:11 +00002109 sqlite3 *db = p->db;
danielk197707cb5602006-01-20 10:55:05 +00002110
2111 /* This function contains the logic that determines if a statement or
2112 ** transaction will be committed or rolled back as a result of the
2113 ** execution of this virtual machine.
2114 **
drh71b890a2007-10-03 15:30:52 +00002115 ** If any of the following errors occur:
danielk197707cb5602006-01-20 10:55:05 +00002116 **
drh71b890a2007-10-03 15:30:52 +00002117 ** SQLITE_NOMEM
2118 ** SQLITE_IOERR
2119 ** SQLITE_FULL
2120 ** SQLITE_INTERRUPT
danielk197707cb5602006-01-20 10:55:05 +00002121 **
drh71b890a2007-10-03 15:30:52 +00002122 ** Then the internal cache might have been left in an inconsistent
2123 ** state. We need to rollback the statement transaction, if there is
2124 ** one, or the complete transaction if there is no statement transaction.
danielk197707cb5602006-01-20 10:55:05 +00002125 */
drh9a324642003-09-06 20:12:01 +00002126
drh17435752007-08-16 04:30:38 +00002127 if( p->db->mallocFailed ){
danielk1977261919c2005-12-06 12:52:59 +00002128 p->rc = SQLITE_NOMEM;
2129 }
drh6e856bc2011-12-09 18:06:44 +00002130 if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag);
drh5f82e3c2009-07-06 00:44:08 +00002131 closeAllCursors(p);
drh92f02c32004-09-02 14:57:08 +00002132 if( p->magic!=VDBE_MAGIC_RUN ){
drh92f02c32004-09-02 14:57:08 +00002133 return SQLITE_OK;
drh9a324642003-09-06 20:12:01 +00002134 }
danielk19771d850a72004-05-31 08:26:49 +00002135 checkActiveVdbeCnt(db);
danielk1977261919c2005-12-06 12:52:59 +00002136
danielk197707cb5602006-01-20 10:55:05 +00002137 /* No commit or rollback needed if the program never started */
2138 if( p->pc>=0 ){
drhaac2f552006-09-23 21:44:23 +00002139 int mrc; /* Primary error code from p->rc */
danielk1977bd434552009-03-18 10:33:00 +00002140 int eStatementOp = 0;
2141 int isSpecialError; /* Set to true if a 'special' error */
drhff0587c2007-08-29 17:43:19 +00002142
2143 /* Lock all btrees used by the statement */
drhbdaec522011-04-04 00:14:43 +00002144 sqlite3VdbeEnter(p);
drhff0587c2007-08-29 17:43:19 +00002145
drh71b890a2007-10-03 15:30:52 +00002146 /* Check for one of the special errors */
drhaac2f552006-09-23 21:44:23 +00002147 mrc = p->rc & 0xff;
drhfa3be902009-07-07 02:44:07 +00002148 assert( p->rc!=SQLITE_IOERR_BLOCKED ); /* This error no longer exists */
drh71b890a2007-10-03 15:30:52 +00002149 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
drh77658e22007-12-04 16:54:52 +00002150 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
danielk197707cb5602006-01-20 10:55:05 +00002151 if( isSpecialError ){
dan5653e4d2010-08-12 11:25:47 +00002152 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
2153 ** no rollback is necessary. Otherwise, at least a savepoint
2154 ** transaction must be rolled back to restore the database to a
2155 ** consistent state.
2156 **
2157 ** Even if the statement is read-only, it is important to perform
2158 ** a statement or transaction rollback operation. If the error
2159 ** occured while writing to the journal, sub-journal or database
2160 ** file as part of an effort to free up cache space (see function
2161 ** pagerStress() in pager.c), the rollback is required to restore
2162 ** the pager to a consistent state.
danielk197707cb5602006-01-20 10:55:05 +00002163 */
drhad4a4b82008-11-05 16:37:34 +00002164 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
drhfa3be902009-07-07 02:44:07 +00002165 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
danielk1977bd434552009-03-18 10:33:00 +00002166 eStatementOp = SAVEPOINT_ROLLBACK;
danielk197707cb5602006-01-20 10:55:05 +00002167 }else{
2168 /* We are forced to roll back the active transaction. Before doing
2169 ** so, abort any other statements this handle currently has active.
2170 */
drh21021a52012-02-13 17:01:51 +00002171 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977fc158bf2009-01-07 08:12:16 +00002172 sqlite3CloseSavepoints(db);
danielk197707cb5602006-01-20 10:55:05 +00002173 db->autoCommit = 1;
2174 }
danielk1977261919c2005-12-06 12:52:59 +00002175 }
2176 }
dan32b09f22009-09-23 17:29:59 +00002177
2178 /* Check for immediate foreign key violations. */
2179 if( p->rc==SQLITE_OK ){
2180 sqlite3VdbeCheckFk(p, 0);
2181 }
danielk197707cb5602006-01-20 10:55:05 +00002182
danielk1977bd434552009-03-18 10:33:00 +00002183 /* If the auto-commit flag is set and this is the only active writer
2184 ** VM, then we do either a commit or rollback of the current transaction.
danielk197707cb5602006-01-20 10:55:05 +00002185 **
2186 ** Note: This block also runs if one of the special errors handled
drhad4a4b82008-11-05 16:37:34 +00002187 ** above has occurred.
danielk197707cb5602006-01-20 10:55:05 +00002188 */
danielk1977093e0f62008-11-13 18:00:14 +00002189 if( !sqlite3VtabInSync(db)
2190 && db->autoCommit
2191 && db->writeVdbeCnt==(p->readOnly==0)
2192 ){
danielk197707cb5602006-01-20 10:55:05 +00002193 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
dan19611b12011-01-24 16:00:58 +00002194 rc = sqlite3VdbeCheckFk(p, 1);
2195 if( rc!=SQLITE_OK ){
drhe9ce5852011-02-11 22:54:28 +00002196 if( NEVER(p->readOnly) ){
drhbdaec522011-04-04 00:14:43 +00002197 sqlite3VdbeLeave(p);
dan19611b12011-01-24 16:00:58 +00002198 return SQLITE_ERROR;
2199 }
2200 rc = SQLITE_CONSTRAINT;
2201 }else{
2202 /* The auto-commit flag is true, the vdbe program was successful
2203 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
2204 ** key constraints to hold up the transaction. This means a commit
2205 ** is required. */
2206 rc = vdbeCommit(db, p);
dan1da40a32009-09-19 17:00:31 +00002207 }
dan19611b12011-01-24 16:00:58 +00002208 if( rc==SQLITE_BUSY && p->readOnly ){
drhbdaec522011-04-04 00:14:43 +00002209 sqlite3VdbeLeave(p);
danielk197707cb5602006-01-20 10:55:05 +00002210 return SQLITE_BUSY;
2211 }else if( rc!=SQLITE_OK ){
2212 p->rc = rc;
drh0f198a72012-02-13 16:43:16 +00002213 sqlite3RollbackAll(db, SQLITE_OK);
danielk197707cb5602006-01-20 10:55:05 +00002214 }else{
dan1da40a32009-09-19 17:00:31 +00002215 db->nDeferredCons = 0;
danielk197707cb5602006-01-20 10:55:05 +00002216 sqlite3CommitInternalChanges(db);
2217 }
2218 }else{
drh0f198a72012-02-13 16:43:16 +00002219 sqlite3RollbackAll(db, SQLITE_OK);
danielk197707cb5602006-01-20 10:55:05 +00002220 }
danielk1977bd434552009-03-18 10:33:00 +00002221 db->nStatement = 0;
2222 }else if( eStatementOp==0 ){
danielk197707cb5602006-01-20 10:55:05 +00002223 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
danielk1977bd434552009-03-18 10:33:00 +00002224 eStatementOp = SAVEPOINT_RELEASE;
danielk197707cb5602006-01-20 10:55:05 +00002225 }else if( p->errorAction==OE_Abort ){
danielk1977bd434552009-03-18 10:33:00 +00002226 eStatementOp = SAVEPOINT_ROLLBACK;
danielk197707cb5602006-01-20 10:55:05 +00002227 }else{
drh21021a52012-02-13 17:01:51 +00002228 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977fc158bf2009-01-07 08:12:16 +00002229 sqlite3CloseSavepoints(db);
danielk197707cb5602006-01-20 10:55:05 +00002230 db->autoCommit = 1;
2231 }
danielk19771d850a72004-05-31 08:26:49 +00002232 }
danielk197707cb5602006-01-20 10:55:05 +00002233
danielk1977bd434552009-03-18 10:33:00 +00002234 /* If eStatementOp is non-zero, then a statement transaction needs to
2235 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
2236 ** do so. If this operation returns an error, and the current statement
drh35173242010-03-08 21:40:13 +00002237 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
2238 ** current statement error code.
danielk197707cb5602006-01-20 10:55:05 +00002239 */
danielk1977bd434552009-03-18 10:33:00 +00002240 if( eStatementOp ){
2241 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
dan40ad9d22010-06-03 09:17:38 +00002242 if( rc ){
drh346506f2011-05-25 01:16:42 +00002243 if( p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT ){
dan40ad9d22010-06-03 09:17:38 +00002244 p->rc = rc;
2245 sqlite3DbFree(db, p->zErrMsg);
2246 p->zErrMsg = 0;
2247 }
drh21021a52012-02-13 17:01:51 +00002248 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
dan40ad9d22010-06-03 09:17:38 +00002249 sqlite3CloseSavepoints(db);
2250 db->autoCommit = 1;
danielk197707cb5602006-01-20 10:55:05 +00002251 }
danielk197777d83ba2004-05-31 10:08:14 +00002252 }
danielk197707cb5602006-01-20 10:55:05 +00002253
danielk1977bd434552009-03-18 10:33:00 +00002254 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
2255 ** has been rolled back, update the database connection change-counter.
danielk197707cb5602006-01-20 10:55:05 +00002256 */
drh6be240e2009-07-14 02:33:02 +00002257 if( p->changeCntOn ){
danielk1977bd434552009-03-18 10:33:00 +00002258 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
danielk197707cb5602006-01-20 10:55:05 +00002259 sqlite3VdbeSetChanges(db, p->nChange);
2260 }else{
2261 sqlite3VdbeSetChanges(db, 0);
2262 }
2263 p->nChange = 0;
danielk1977b28af712004-06-21 06:50:26 +00002264 }
drhff0587c2007-08-29 17:43:19 +00002265
2266 /* Release the locks */
drhbdaec522011-04-04 00:14:43 +00002267 sqlite3VdbeLeave(p);
drh9a324642003-09-06 20:12:01 +00002268 }
danielk19771d850a72004-05-31 08:26:49 +00002269
danielk197765fd59f2006-06-24 11:51:33 +00002270 /* We have successfully halted and closed the VM. Record this fact. */
2271 if( p->pc>=0 ){
danielk19771d850a72004-05-31 08:26:49 +00002272 db->activeVdbeCnt--;
drhad4a4b82008-11-05 16:37:34 +00002273 if( !p->readOnly ){
2274 db->writeVdbeCnt--;
2275 }
2276 assert( db->activeVdbeCnt>=db->writeVdbeCnt );
drh9a324642003-09-06 20:12:01 +00002277 }
drh92f02c32004-09-02 14:57:08 +00002278 p->magic = VDBE_MAGIC_HALT;
2279 checkActiveVdbeCnt(db);
drhff0587c2007-08-29 17:43:19 +00002280 if( p->db->mallocFailed ){
2281 p->rc = SQLITE_NOMEM;
2282 }
danielk19771d850a72004-05-31 08:26:49 +00002283
danielk1977404ca072009-03-16 13:19:36 +00002284 /* If the auto-commit flag is set to true, then any locks that were held
2285 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
2286 ** to invoke any required unlock-notify callbacks.
2287 */
2288 if( db->autoCommit ){
2289 sqlite3ConnectionUnlocked(db);
2290 }
2291
danielk1977bd434552009-03-18 10:33:00 +00002292 assert( db->activeVdbeCnt>0 || db->autoCommit==0 || db->nStatement==0 );
dan19611b12011-01-24 16:00:58 +00002293 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
drh92f02c32004-09-02 14:57:08 +00002294}
drh4cf7c7f2007-08-28 23:28:07 +00002295
drh92f02c32004-09-02 14:57:08 +00002296
2297/*
drh3c23a882007-01-09 14:01:13 +00002298** Each VDBE holds the result of the most recent sqlite3_step() call
2299** in p->rc. This routine sets that result back to SQLITE_OK.
2300*/
2301void sqlite3VdbeResetStepResult(Vdbe *p){
2302 p->rc = SQLITE_OK;
2303}
2304
2305/*
dan029ead62011-10-27 15:19:58 +00002306** Copy the error code and error message belonging to the VDBE passed
2307** as the first argument to its database handle (so that they will be
2308** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
2309**
2310** This function does not clear the VDBE error code or message, just
2311** copies them to the database handle.
2312*/
2313int sqlite3VdbeTransferError(Vdbe *p){
2314 sqlite3 *db = p->db;
2315 int rc = p->rc;
2316 if( p->zErrMsg ){
drh81bdd6d2011-10-29 01:33:24 +00002317 u8 mallocFailed = db->mallocFailed;
dan029ead62011-10-27 15:19:58 +00002318 sqlite3BeginBenignMalloc();
2319 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2320 sqlite3EndBenignMalloc();
drh81bdd6d2011-10-29 01:33:24 +00002321 db->mallocFailed = mallocFailed;
dan029ead62011-10-27 15:19:58 +00002322 db->errCode = rc;
2323 }else{
2324 sqlite3Error(db, rc, 0);
2325 }
2326 return rc;
2327}
2328
danac455932012-11-26 19:50:41 +00002329#ifdef SQLITE_ENABLE_SQLLOG
2330/*
2331** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
2332** invoke it.
2333*/
2334static void vdbeInvokeSqllog(Vdbe *v){
2335 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
2336 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
2337 assert( v->db->init.busy==0 );
2338 if( zExpanded ){
2339 sqlite3GlobalConfig.xSqllog(
2340 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
2341 );
2342 sqlite3DbFree(v->db, zExpanded);
2343 }
2344 }
2345}
2346#else
2347# define vdbeInvokeSqllog(x)
2348#endif
2349
dan029ead62011-10-27 15:19:58 +00002350/*
drh92f02c32004-09-02 14:57:08 +00002351** Clean up a VDBE after execution but do not delete the VDBE just yet.
2352** Write any error messages into *pzErrMsg. Return the result code.
2353**
2354** After this routine is run, the VDBE should be ready to be executed
2355** again.
2356**
2357** To look at it another way, this routine resets the state of the
2358** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
2359** VDBE_MAGIC_INIT.
2360*/
drhc890fec2008-08-01 20:10:08 +00002361int sqlite3VdbeReset(Vdbe *p){
drh4ac285a2006-09-15 07:28:50 +00002362 sqlite3 *db;
drh4ac285a2006-09-15 07:28:50 +00002363 db = p->db;
drh92f02c32004-09-02 14:57:08 +00002364
2365 /* If the VM did not run to completion or if it encountered an
2366 ** error, then it might not have been halted properly. So halt
2367 ** it now.
2368 */
2369 sqlite3VdbeHalt(p);
2370
drhfb7e7652005-01-24 00:28:42 +00002371 /* If the VDBE has be run even partially, then transfer the error code
2372 ** and error message from the VDBE into the main database structure. But
2373 ** if the VDBE has just been set to run but has not actually executed any
2374 ** instructions yet, leave the main database error information unchanged.
drh92f02c32004-09-02 14:57:08 +00002375 */
drhfb7e7652005-01-24 00:28:42 +00002376 if( p->pc>=0 ){
danac455932012-11-26 19:50:41 +00002377 vdbeInvokeSqllog(p);
dan029ead62011-10-27 15:19:58 +00002378 sqlite3VdbeTransferError(p);
2379 sqlite3DbFree(db, p->zErrMsg);
2380 p->zErrMsg = 0;
drh4611d922010-02-25 14:47:01 +00002381 if( p->runOnlyOnce ) p->expired = 1;
danielk1977a21c6b62005-01-24 10:25:59 +00002382 }else if( p->rc && p->expired ){
2383 /* The expired flag was set on the VDBE before the first call
2384 ** to sqlite3_step(). For consistency (since sqlite3_step() was
2385 ** called), set the database error in this case as well.
2386 */
drh4ac285a2006-09-15 07:28:50 +00002387 sqlite3Error(db, p->rc, 0);
drh633e6d52008-07-28 19:34:53 +00002388 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2389 sqlite3DbFree(db, p->zErrMsg);
danielk19778e556522007-11-13 10:30:24 +00002390 p->zErrMsg = 0;
drh92f02c32004-09-02 14:57:08 +00002391 }
2392
2393 /* Reclaim all memory used by the VDBE
2394 */
drhc890fec2008-08-01 20:10:08 +00002395 Cleanup(p);
drh92f02c32004-09-02 14:57:08 +00002396
2397 /* Save profiling information from this VDBE run.
2398 */
drh9a324642003-09-06 20:12:01 +00002399#ifdef VDBE_PROFILE
2400 {
2401 FILE *out = fopen("vdbe_profile.out", "a");
2402 if( out ){
2403 int i;
2404 fprintf(out, "---- ");
2405 for(i=0; i<p->nOp; i++){
2406 fprintf(out, "%02x", p->aOp[i].opcode);
2407 }
2408 fprintf(out, "\n");
2409 for(i=0; i<p->nOp; i++){
2410 fprintf(out, "%6d %10lld %8lld ",
2411 p->aOp[i].cnt,
2412 p->aOp[i].cycles,
2413 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
2414 );
danielk19774adee202004-05-08 08:23:19 +00002415 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
drh9a324642003-09-06 20:12:01 +00002416 }
2417 fclose(out);
2418 }
2419 }
2420#endif
2421 p->magic = VDBE_MAGIC_INIT;
drh4ac285a2006-09-15 07:28:50 +00002422 return p->rc & db->errMask;
drh9a324642003-09-06 20:12:01 +00002423}
drh92f02c32004-09-02 14:57:08 +00002424
drh9a324642003-09-06 20:12:01 +00002425/*
2426** Clean up and delete a VDBE after execution. Return an integer which is
2427** the result code. Write any error message text into *pzErrMsg.
2428*/
danielk19779e6db7d2004-06-21 08:18:51 +00002429int sqlite3VdbeFinalize(Vdbe *p){
danielk1977b5548a82004-06-26 13:51:33 +00002430 int rc = SQLITE_OK;
danielk1977b5548a82004-06-26 13:51:33 +00002431 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
drhc890fec2008-08-01 20:10:08 +00002432 rc = sqlite3VdbeReset(p);
drh4ac285a2006-09-15 07:28:50 +00002433 assert( (rc & p->db->errMask)==rc );
drh9a324642003-09-06 20:12:01 +00002434 }
danielk19774adee202004-05-08 08:23:19 +00002435 sqlite3VdbeDelete(p);
drh9a324642003-09-06 20:12:01 +00002436 return rc;
2437}
2438
2439/*
drhf92c7ff2004-06-19 15:40:23 +00002440** Call the destructor for each auxdata entry in pVdbeFunc for which
danielk1977e159fdf2004-06-21 10:45:06 +00002441** the corresponding bit in mask is clear. Auxdata entries beyond 31
drhf92c7ff2004-06-19 15:40:23 +00002442** are always destroyed. To destroy all auxdata entries, call this
danielk1977e159fdf2004-06-21 10:45:06 +00002443** routine with mask==0.
drhf92c7ff2004-06-19 15:40:23 +00002444*/
2445void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
2446 int i;
2447 for(i=0; i<pVdbeFunc->nAux; i++){
2448 struct AuxData *pAux = &pVdbeFunc->apAux[i];
drh3500ed62009-05-05 15:46:43 +00002449 if( (i>31 || !(mask&(((u32)1)<<i))) && pAux->pAux ){
drhf92c7ff2004-06-19 15:40:23 +00002450 if( pAux->xDelete ){
2451 pAux->xDelete(pAux->pAux);
2452 }
2453 pAux->pAux = 0;
2454 }
2455 }
2456}
2457
2458/*
drhcb103b92012-10-26 00:11:23 +00002459** Free all memory associated with the Vdbe passed as the second argument,
2460** except for object itself, which is preserved.
2461**
dand46def72010-07-24 11:28:28 +00002462** The difference between this function and sqlite3VdbeDelete() is that
2463** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
drhcb103b92012-10-26 00:11:23 +00002464** the database connection and frees the object itself.
dand46def72010-07-24 11:28:28 +00002465*/
drhcb103b92012-10-26 00:11:23 +00002466void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
dand19c9332010-07-26 12:05:17 +00002467 SubProgram *pSub, *pNext;
drh124c0b42011-06-01 18:15:55 +00002468 int i;
dand46def72010-07-24 11:28:28 +00002469 assert( p->db==0 || p->db==db );
2470 releaseMemArray(p->aVar, p->nVar);
2471 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
dand19c9332010-07-26 12:05:17 +00002472 for(pSub=p->pProgram; pSub; pSub=pNext){
2473 pNext = pSub->pNext;
2474 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
2475 sqlite3DbFree(db, pSub);
2476 }
drh124c0b42011-06-01 18:15:55 +00002477 for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
dand46def72010-07-24 11:28:28 +00002478 vdbeFreeOpArray(db, p->aOp, p->nOp);
2479 sqlite3DbFree(db, p->aLabel);
2480 sqlite3DbFree(db, p->aColName);
2481 sqlite3DbFree(db, p->zSql);
2482 sqlite3DbFree(db, p->pFree);
drh678a9aa2011-12-10 15:55:01 +00002483#if defined(SQLITE_ENABLE_TREE_EXPLAIN)
2484 sqlite3DbFree(db, p->zExplain);
2485 sqlite3DbFree(db, p->pExplain);
drh7e02e5e2011-12-06 19:44:51 +00002486#endif
dand46def72010-07-24 11:28:28 +00002487}
2488
2489/*
drh9a324642003-09-06 20:12:01 +00002490** Delete an entire VDBE.
2491*/
danielk19774adee202004-05-08 08:23:19 +00002492void sqlite3VdbeDelete(Vdbe *p){
drh633e6d52008-07-28 19:34:53 +00002493 sqlite3 *db;
2494
drhfa3be902009-07-07 02:44:07 +00002495 if( NEVER(p==0) ) return;
drh633e6d52008-07-28 19:34:53 +00002496 db = p->db;
drh4245c402012-06-02 14:32:21 +00002497 assert( sqlite3_mutex_held(db->mutex) );
drhcb103b92012-10-26 00:11:23 +00002498 sqlite3VdbeClearObject(db, p);
drh9a324642003-09-06 20:12:01 +00002499 if( p->pPrev ){
2500 p->pPrev->pNext = p->pNext;
2501 }else{
drh633e6d52008-07-28 19:34:53 +00002502 assert( db->pVdbe==p );
2503 db->pVdbe = p->pNext;
drh9a324642003-09-06 20:12:01 +00002504 }
2505 if( p->pNext ){
2506 p->pNext->pPrev = p->pPrev;
2507 }
drh9a324642003-09-06 20:12:01 +00002508 p->magic = VDBE_MAGIC_DEAD;
drh87f5c5f2010-01-20 01:20:56 +00002509 p->db = 0;
drhcb103b92012-10-26 00:11:23 +00002510 sqlite3DbFree(db, p);
drh9a324642003-09-06 20:12:01 +00002511}
drha11846b2004-01-07 18:52:56 +00002512
2513/*
drh9a65f2c2009-06-22 19:05:40 +00002514** Make sure the cursor p is ready to read or write the row to which it
2515** was last positioned. Return an error code if an OOM fault or I/O error
2516** prevents us from positioning the cursor to its correct position.
2517**
drha11846b2004-01-07 18:52:56 +00002518** If a MoveTo operation is pending on the given cursor, then do that
drh9a65f2c2009-06-22 19:05:40 +00002519** MoveTo now. If no move is pending, check to see if the row has been
2520** deleted out from under the cursor and if it has, mark the row as
2521** a NULL row.
2522**
2523** If the cursor is already pointing to the correct row and that row has
2524** not been deleted out from under the cursor, then this routine is a no-op.
drha11846b2004-01-07 18:52:56 +00002525*/
drhdfe88ec2008-11-03 20:55:06 +00002526int sqlite3VdbeCursorMoveto(VdbeCursor *p){
drha11846b2004-01-07 18:52:56 +00002527 if( p->deferredMoveto ){
drh536065a2005-01-26 21:55:31 +00002528 int res, rc;
adamd4fc93082006-09-14 16:57:19 +00002529#ifdef SQLITE_TEST
danielk1977132872b2004-05-10 10:37:18 +00002530 extern int sqlite3_search_count;
adamd4fc93082006-09-14 16:57:19 +00002531#endif
drhf0863fe2005-06-12 21:35:51 +00002532 assert( p->isTable );
drhe63d9992008-08-13 19:11:48 +00002533 rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
drh536065a2005-01-26 21:55:31 +00002534 if( rc ) return rc;
drhaa736092009-06-22 00:55:30 +00002535 p->lastRowid = p->movetoTarget;
drhbe0b2372010-07-30 18:40:55 +00002536 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
2537 p->rowidIsValid = 1;
drh10cfdd52006-08-08 15:42:59 +00002538#ifdef SQLITE_TEST
danielk1977132872b2004-05-10 10:37:18 +00002539 sqlite3_search_count++;
drh10cfdd52006-08-08 15:42:59 +00002540#endif
drha11846b2004-01-07 18:52:56 +00002541 p->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00002542 p->cacheStatus = CACHE_STALE;
drh6be240e2009-07-14 02:33:02 +00002543 }else if( ALWAYS(p->pCursor) ){
drha3460582008-07-11 21:02:53 +00002544 int hasMoved;
2545 int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved);
2546 if( rc ) return rc;
2547 if( hasMoved ){
2548 p->cacheStatus = CACHE_STALE;
2549 p->nullRow = 1;
2550 }
drha11846b2004-01-07 18:52:56 +00002551 }
2552 return SQLITE_OK;
2553}
danielk19774adee202004-05-08 08:23:19 +00002554
drhab9f7f12004-05-08 10:56:11 +00002555/*
danielk1977cfcdaef2004-05-12 07:33:33 +00002556** The following functions:
danielk197790e4d952004-05-10 10:05:53 +00002557**
danielk1977cfcdaef2004-05-12 07:33:33 +00002558** sqlite3VdbeSerialType()
2559** sqlite3VdbeSerialTypeLen()
danielk197790e4d952004-05-10 10:05:53 +00002560** sqlite3VdbeSerialLen()
shane92003092008-07-31 01:43:13 +00002561** sqlite3VdbeSerialPut()
2562** sqlite3VdbeSerialGet()
danielk197790e4d952004-05-10 10:05:53 +00002563**
2564** encapsulate the code that serializes values for storage in SQLite
danielk1977cfcdaef2004-05-12 07:33:33 +00002565** data and index records. Each serialized value consists of a
2566** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
2567** integer, stored as a varint.
danielk197790e4d952004-05-10 10:05:53 +00002568**
danielk1977cfcdaef2004-05-12 07:33:33 +00002569** In an SQLite index record, the serial type is stored directly before
2570** the blob of data that it corresponds to. In a table record, all serial
2571** types are stored at the start of the record, and the blobs of data at
2572** the end. Hence these functions allow the caller to handle the
2573** serial-type and data blob seperately.
2574**
2575** The following table describes the various storage classes for data:
2576**
2577** serial type bytes of data type
danielk197790e4d952004-05-10 10:05:53 +00002578** -------------- --------------- ---------------
drha19b7752004-05-30 21:14:58 +00002579** 0 0 NULL
danielk197790e4d952004-05-10 10:05:53 +00002580** 1 1 signed integer
2581** 2 2 signed integer
drha19b7752004-05-30 21:14:58 +00002582** 3 3 signed integer
2583** 4 4 signed integer
2584** 5 6 signed integer
2585** 6 8 signed integer
2586** 7 8 IEEE float
drhd946db02005-12-29 19:23:06 +00002587** 8 0 Integer constant 0
2588** 9 0 Integer constant 1
2589** 10,11 reserved for expansion
danielk197790e4d952004-05-10 10:05:53 +00002590** N>=12 and even (N-12)/2 BLOB
2591** N>=13 and odd (N-13)/2 text
2592**
drh35a59652006-01-02 18:24:40 +00002593** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
2594** of SQLite will not understand those serial types.
danielk197790e4d952004-05-10 10:05:53 +00002595*/
2596
2597/*
danielk1977cfcdaef2004-05-12 07:33:33 +00002598** Return the serial-type for the value stored in pMem.
danielk1977192ac1d2004-05-10 07:17:30 +00002599*/
drhd946db02005-12-29 19:23:06 +00002600u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
danielk1977cfcdaef2004-05-12 07:33:33 +00002601 int flags = pMem->flags;
drhfdf972a2007-05-02 13:30:27 +00002602 int n;
danielk1977cfcdaef2004-05-12 07:33:33 +00002603
2604 if( flags&MEM_Null ){
drha19b7752004-05-30 21:14:58 +00002605 return 0;
danielk197790e4d952004-05-10 10:05:53 +00002606 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002607 if( flags&MEM_Int ){
drhfe2093d2005-01-20 22:48:47 +00002608 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
drh5284a052008-05-08 15:18:10 +00002609# define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
drh3c024d62007-03-30 11:23:45 +00002610 i64 i = pMem->u.i;
drhd946db02005-12-29 19:23:06 +00002611 u64 u;
drhcfd654b2011-03-05 13:54:15 +00002612 if( i<0 ){
2613 if( i<(-MAX_6BYTE) ) return 6;
2614 /* Previous test prevents: u = -(-9223372036854775808) */
2615 u = -i;
2616 }else{
2617 u = i;
2618 }
drh56690b32012-09-17 15:36:31 +00002619 if( u<=127 ){
2620 return ((i&1)==i && file_format>=4) ? 8+(u32)u : 1;
2621 }
drh5742b632005-01-26 17:47:02 +00002622 if( u<=32767 ) return 2;
2623 if( u<=8388607 ) return 3;
2624 if( u<=2147483647 ) return 4;
2625 if( u<=MAX_6BYTE ) return 5;
drha19b7752004-05-30 21:14:58 +00002626 return 6;
danielk197790e4d952004-05-10 10:05:53 +00002627 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002628 if( flags&MEM_Real ){
drha19b7752004-05-30 21:14:58 +00002629 return 7;
danielk197790e4d952004-05-10 10:05:53 +00002630 }
danielk1977e4359752008-11-03 09:39:45 +00002631 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
drhfdf972a2007-05-02 13:30:27 +00002632 n = pMem->n;
2633 if( flags & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +00002634 n += pMem->u.nZero;
danielk197790e4d952004-05-10 10:05:53 +00002635 }
drhfdf972a2007-05-02 13:30:27 +00002636 assert( n>=0 );
2637 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
danielk1977192ac1d2004-05-10 07:17:30 +00002638}
2639
2640/*
danielk1977cfcdaef2004-05-12 07:33:33 +00002641** Return the length of the data corresponding to the supplied serial-type.
danielk1977192ac1d2004-05-10 07:17:30 +00002642*/
drh35cd6432009-06-05 14:17:21 +00002643u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
drha19b7752004-05-30 21:14:58 +00002644 if( serial_type>=12 ){
drh51846b52004-05-28 16:00:21 +00002645 return (serial_type-12)/2;
2646 }else{
drh57196282004-10-06 15:41:16 +00002647 static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
drh51846b52004-05-28 16:00:21 +00002648 return aSize[serial_type];
2649 }
danielk1977192ac1d2004-05-10 07:17:30 +00002650}
2651
2652/*
drh110daac2007-05-04 11:59:31 +00002653** If we are on an architecture with mixed-endian floating
drh7a4f5022007-05-23 07:20:08 +00002654** points (ex: ARM7) then swap the lower 4 bytes with the
drh110daac2007-05-04 11:59:31 +00002655** upper 4 bytes. Return the result.
2656**
drh7a4f5022007-05-23 07:20:08 +00002657** For most architectures, this is a no-op.
2658**
2659** (later): It is reported to me that the mixed-endian problem
2660** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
2661** that early versions of GCC stored the two words of a 64-bit
2662** float in the wrong order. And that error has been propagated
2663** ever since. The blame is not necessarily with GCC, though.
2664** GCC might have just copying the problem from a prior compiler.
2665** I am also told that newer versions of GCC that follow a different
2666** ABI get the byte order right.
2667**
2668** Developers using SQLite on an ARM7 should compile and run their
2669** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
2670** enabled, some asserts below will ensure that the byte order of
2671** floating point values is correct.
drh60d09a72007-08-30 15:05:08 +00002672**
2673** (2007-08-30) Frank van Vugt has studied this problem closely
2674** and has send his findings to the SQLite developers. Frank
2675** writes that some Linux kernels offer floating point hardware
2676** emulation that uses only 32-bit mantissas instead of a full
2677** 48-bits as required by the IEEE standard. (This is the
2678** CONFIG_FPE_FASTFPE option.) On such systems, floating point
2679** byte swapping becomes very complicated. To avoid problems,
2680** the necessary byte swapping is carried out using a 64-bit integer
2681** rather than a 64-bit float. Frank assures us that the code here
2682** works for him. We, the developers, have no way to independently
2683** verify this, but Frank seems to know what he is talking about
2684** so we trust him.
drh110daac2007-05-04 11:59:31 +00002685*/
2686#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
drh60d09a72007-08-30 15:05:08 +00002687static u64 floatSwap(u64 in){
drh110daac2007-05-04 11:59:31 +00002688 union {
drh60d09a72007-08-30 15:05:08 +00002689 u64 r;
drh110daac2007-05-04 11:59:31 +00002690 u32 i[2];
2691 } u;
2692 u32 t;
2693
2694 u.r = in;
2695 t = u.i[0];
2696 u.i[0] = u.i[1];
2697 u.i[1] = t;
2698 return u.r;
2699}
2700# define swapMixedEndianFloat(X) X = floatSwap(X)
2701#else
2702# define swapMixedEndianFloat(X)
2703#endif
2704
2705/*
danielk1977cfcdaef2004-05-12 07:33:33 +00002706** Write the serialized data blob for the value stored in pMem into
2707** buf. It is assumed that the caller has allocated sufficient space.
2708** Return the number of bytes written.
drhfdf972a2007-05-02 13:30:27 +00002709**
2710** nBuf is the amount of space left in buf[]. nBuf must always be
2711** large enough to hold the entire field. Except, if the field is
2712** a blob with a zero-filled tail, then buf[] might be just the right
2713** size to hold everything except for the zero-filled tail. If buf[]
2714** is only big enough to hold the non-zero prefix, then only write that
2715** prefix into buf[]. But if buf[] is large enough to hold both the
2716** prefix and the tail then write the prefix and set the tail to all
2717** zeros.
2718**
2719** Return the number of bytes actually written into buf[]. The number
2720** of bytes in the zero-filled tail is included in the return value only
2721** if those bytes were zeroed in buf[].
danielk1977cfcdaef2004-05-12 07:33:33 +00002722*/
drh35cd6432009-06-05 14:17:21 +00002723u32 sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
drhd946db02005-12-29 19:23:06 +00002724 u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
drh35cd6432009-06-05 14:17:21 +00002725 u32 len;
danielk1977183f9f72004-05-13 05:20:26 +00002726
drh1483e142004-05-21 21:12:42 +00002727 /* Integer and Real */
drhd946db02005-12-29 19:23:06 +00002728 if( serial_type<=7 && serial_type>0 ){
drh1483e142004-05-21 21:12:42 +00002729 u64 v;
drh35cd6432009-06-05 14:17:21 +00002730 u32 i;
drha19b7752004-05-30 21:14:58 +00002731 if( serial_type==7 ){
drh4f0c5872007-03-26 22:05:01 +00002732 assert( sizeof(v)==sizeof(pMem->r) );
2733 memcpy(&v, &pMem->r, sizeof(v));
drh60d09a72007-08-30 15:05:08 +00002734 swapMixedEndianFloat(v);
drh1483e142004-05-21 21:12:42 +00002735 }else{
drh3c024d62007-03-30 11:23:45 +00002736 v = pMem->u.i;
danielk1977cfcdaef2004-05-12 07:33:33 +00002737 }
drh1483e142004-05-21 21:12:42 +00002738 len = i = sqlite3VdbeSerialTypeLen(serial_type);
shane75ac1de2009-06-09 18:58:52 +00002739 assert( len<=(u32)nBuf );
drh1483e142004-05-21 21:12:42 +00002740 while( i-- ){
drh8df32842008-12-09 02:51:23 +00002741 buf[i] = (u8)(v&0xFF);
drh1483e142004-05-21 21:12:42 +00002742 v >>= 8;
2743 }
2744 return len;
danielk1977cfcdaef2004-05-12 07:33:33 +00002745 }
drhd946db02005-12-29 19:23:06 +00002746
danielk1977cfcdaef2004-05-12 07:33:33 +00002747 /* String or blob */
drhd946db02005-12-29 19:23:06 +00002748 if( serial_type>=12 ){
drh8df32842008-12-09 02:51:23 +00002749 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
shane75ac1de2009-06-09 18:58:52 +00002750 == (int)sqlite3VdbeSerialTypeLen(serial_type) );
drhfdf972a2007-05-02 13:30:27 +00002751 assert( pMem->n<=nBuf );
2752 len = pMem->n;
drhd946db02005-12-29 19:23:06 +00002753 memcpy(buf, pMem->z, len);
drhfdf972a2007-05-02 13:30:27 +00002754 if( pMem->flags & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +00002755 len += pMem->u.nZero;
drh35cd6432009-06-05 14:17:21 +00002756 assert( nBuf>=0 );
2757 if( len > (u32)nBuf ){
2758 len = (u32)nBuf;
drhfdf972a2007-05-02 13:30:27 +00002759 }
2760 memset(&buf[pMem->n], 0, len-pMem->n);
2761 }
drhd946db02005-12-29 19:23:06 +00002762 return len;
2763 }
2764
2765 /* NULL or constants 0 or 1 */
2766 return 0;
danielk1977cfcdaef2004-05-12 07:33:33 +00002767}
2768
2769/*
2770** Deserialize the data blob pointed to by buf as serial type serial_type
2771** and store the result in pMem. Return the number of bytes read.
2772*/
drh35cd6432009-06-05 14:17:21 +00002773u32 sqlite3VdbeSerialGet(
danielk197793d46752004-05-23 13:30:58 +00002774 const unsigned char *buf, /* Buffer to deserialize from */
drh25aa1b42004-05-28 01:39:01 +00002775 u32 serial_type, /* Serial type to deserialize */
2776 Mem *pMem /* Memory cell to write value into */
danielk1977b1bc9532004-05-22 03:05:33 +00002777){
drh3c685822005-05-21 18:32:18 +00002778 switch( serial_type ){
drh3c685822005-05-21 18:32:18 +00002779 case 10: /* Reserved for future use */
2780 case 11: /* Reserved for future use */
2781 case 0: { /* NULL */
2782 pMem->flags = MEM_Null;
2783 break;
2784 }
2785 case 1: { /* 1-byte signed integer */
drh3c024d62007-03-30 11:23:45 +00002786 pMem->u.i = (signed char)buf[0];
drh1483e142004-05-21 21:12:42 +00002787 pMem->flags = MEM_Int;
drh3c685822005-05-21 18:32:18 +00002788 return 1;
drh1483e142004-05-21 21:12:42 +00002789 }
drh3c685822005-05-21 18:32:18 +00002790 case 2: { /* 2-byte signed integer */
drh3c024d62007-03-30 11:23:45 +00002791 pMem->u.i = (((signed char)buf[0])<<8) | buf[1];
drh3c685822005-05-21 18:32:18 +00002792 pMem->flags = MEM_Int;
2793 return 2;
2794 }
2795 case 3: { /* 3-byte signed integer */
drh3c024d62007-03-30 11:23:45 +00002796 pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
drh3c685822005-05-21 18:32:18 +00002797 pMem->flags = MEM_Int;
2798 return 3;
2799 }
2800 case 4: { /* 4-byte signed integer */
drh3c024d62007-03-30 11:23:45 +00002801 pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
drh3c685822005-05-21 18:32:18 +00002802 pMem->flags = MEM_Int;
2803 return 4;
2804 }
2805 case 5: { /* 6-byte signed integer */
2806 u64 x = (((signed char)buf[0])<<8) | buf[1];
2807 u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
2808 x = (x<<32) | y;
drh3c024d62007-03-30 11:23:45 +00002809 pMem->u.i = *(i64*)&x;
drh3c685822005-05-21 18:32:18 +00002810 pMem->flags = MEM_Int;
2811 return 6;
2812 }
drh91124b32005-08-18 18:15:05 +00002813 case 6: /* 8-byte signed integer */
drh3c685822005-05-21 18:32:18 +00002814 case 7: { /* IEEE floating point */
drhd81bd4e2005-09-05 20:06:49 +00002815 u64 x;
2816 u32 y;
drh2a3e4a72006-01-23 21:44:53 +00002817#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
drhde941c62005-08-28 01:34:21 +00002818 /* Verify that integers and floating point values use the same
drh110daac2007-05-04 11:59:31 +00002819 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
2820 ** defined that 64-bit floating point values really are mixed
2821 ** endian.
drhbfd6b032005-08-28 01:38:44 +00002822 */
drhde941c62005-08-28 01:34:21 +00002823 static const u64 t1 = ((u64)0x3ff00000)<<32;
drh4f0c5872007-03-26 22:05:01 +00002824 static const double r1 = 1.0;
drh60d09a72007-08-30 15:05:08 +00002825 u64 t2 = t1;
2826 swapMixedEndianFloat(t2);
2827 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
drhde941c62005-08-28 01:34:21 +00002828#endif
drhbfd6b032005-08-28 01:38:44 +00002829
drhd81bd4e2005-09-05 20:06:49 +00002830 x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
2831 y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
drh3c685822005-05-21 18:32:18 +00002832 x = (x<<32) | y;
2833 if( serial_type==6 ){
drh3c024d62007-03-30 11:23:45 +00002834 pMem->u.i = *(i64*)&x;
drh3c685822005-05-21 18:32:18 +00002835 pMem->flags = MEM_Int;
2836 }else{
drh4f0c5872007-03-26 22:05:01 +00002837 assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
drh60d09a72007-08-30 15:05:08 +00002838 swapMixedEndianFloat(x);
drh4f0c5872007-03-26 22:05:01 +00002839 memcpy(&pMem->r, &x, sizeof(x));
drh2eaf93d2008-04-29 00:15:20 +00002840 pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real;
drh3c685822005-05-21 18:32:18 +00002841 }
2842 return 8;
2843 }
drhd946db02005-12-29 19:23:06 +00002844 case 8: /* Integer 0 */
2845 case 9: { /* Integer 1 */
drh3c024d62007-03-30 11:23:45 +00002846 pMem->u.i = serial_type-8;
drhd946db02005-12-29 19:23:06 +00002847 pMem->flags = MEM_Int;
2848 return 0;
2849 }
drh3c685822005-05-21 18:32:18 +00002850 default: {
drh35cd6432009-06-05 14:17:21 +00002851 u32 len = (serial_type-12)/2;
drh3c685822005-05-21 18:32:18 +00002852 pMem->z = (char *)buf;
2853 pMem->n = len;
2854 pMem->xDel = 0;
2855 if( serial_type&0x01 ){
2856 pMem->flags = MEM_Str | MEM_Ephem;
2857 }else{
2858 pMem->flags = MEM_Blob | MEM_Ephem;
2859 }
2860 return len;
drh696b32f2004-05-30 01:51:52 +00002861 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002862 }
drh3c685822005-05-21 18:32:18 +00002863 return 0;
danielk1977192ac1d2004-05-10 07:17:30 +00002864}
2865
drh1e968a02008-03-25 00:22:21 +00002866/*
dan03e9cfc2011-09-05 14:20:27 +00002867** This routine is used to allocate sufficient space for an UnpackedRecord
2868** structure large enough to be used with sqlite3VdbeRecordUnpack() if
2869** the first argument is a pointer to KeyInfo structure pKeyInfo.
drh1e968a02008-03-25 00:22:21 +00002870**
dan03e9cfc2011-09-05 14:20:27 +00002871** The space is either allocated using sqlite3DbMallocRaw() or from within
2872** the unaligned buffer passed via the second and third arguments (presumably
2873** stack space). If the former, then *ppFree is set to a pointer that should
2874** be eventually freed by the caller using sqlite3DbFree(). Or, if the
2875** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
2876** before returning.
drh1e968a02008-03-25 00:22:21 +00002877**
dan03e9cfc2011-09-05 14:20:27 +00002878** If an OOM error occurs, NULL is returned.
2879*/
2880UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
2881 KeyInfo *pKeyInfo, /* Description of the record */
2882 char *pSpace, /* Unaligned space available */
2883 int szSpace, /* Size of pSpace[] in bytes */
2884 char **ppFree /* OUT: Caller should free this pointer */
drh1e968a02008-03-25 00:22:21 +00002885){
dan03e9cfc2011-09-05 14:20:27 +00002886 UnpackedRecord *p; /* Unpacked record to return */
2887 int nOff; /* Increment pSpace by nOff to align it */
2888 int nByte; /* Number of bytes required for *p */
2889
2890 /* We want to shift the pointer pSpace up such that it is 8-byte aligned.
shane80167bf2009-04-10 15:42:36 +00002891 ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift
2892 ** it by. If pSpace is already 8-byte aligned, nOff should be zero.
2893 */
2894 nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
drh8c5d1522009-04-10 00:56:28 +00002895 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
dan42acb3e2011-09-05 20:16:38 +00002896 if( nByte>szSpace+nOff ){
dan03e9cfc2011-09-05 14:20:27 +00002897 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
2898 *ppFree = (char *)p;
dan42acb3e2011-09-05 20:16:38 +00002899 if( !p ) return 0;
drh1e968a02008-03-25 00:22:21 +00002900 }else{
dan42acb3e2011-09-05 20:16:38 +00002901 p = (UnpackedRecord*)&pSpace[nOff];
dan03e9cfc2011-09-05 14:20:27 +00002902 *ppFree = 0;
drh1e968a02008-03-25 00:22:21 +00002903 }
dan42acb3e2011-09-05 20:16:38 +00002904
2905 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
drhe1a022e2012-09-17 17:16:53 +00002906 assert( pKeyInfo->aSortOrder!=0 );
drh1e968a02008-03-25 00:22:21 +00002907 p->pKeyInfo = pKeyInfo;
2908 p->nField = pKeyInfo->nField + 1;
dan03e9cfc2011-09-05 14:20:27 +00002909 return p;
2910}
2911
2912/*
2913** Given the nKey-byte encoding of a record in pKey[], populate the
2914** UnpackedRecord structure indicated by the fourth argument with the
2915** contents of the decoded record.
2916*/
2917void sqlite3VdbeRecordUnpack(
2918 KeyInfo *pKeyInfo, /* Information about the record format */
2919 int nKey, /* Size of the binary record */
2920 const void *pKey, /* The binary record */
2921 UnpackedRecord *p /* Populate this structure before returning. */
2922){
2923 const unsigned char *aKey = (const unsigned char *)pKey;
2924 int d;
2925 u32 idx; /* Offset in aKey[] to read from */
2926 u16 u; /* Unsigned loop counter */
2927 u32 szHdr;
dan42acb3e2011-09-05 20:16:38 +00002928 Mem *pMem = p->aMem;
dan03e9cfc2011-09-05 14:20:27 +00002929
2930 p->flags = 0;
drh8c5d1522009-04-10 00:56:28 +00002931 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
shane3f8d5cf2008-04-24 19:15:09 +00002932 idx = getVarint32(aKey, szHdr);
drh1e968a02008-03-25 00:22:21 +00002933 d = szHdr;
shane0b8d2762008-07-22 05:18:00 +00002934 u = 0;
drh2fa34d32009-07-15 16:30:50 +00002935 while( idx<szHdr && u<p->nField && d<=nKey ){
drh1e968a02008-03-25 00:22:21 +00002936 u32 serial_type;
2937
danielk197700e13612008-11-17 19:18:54 +00002938 idx += getVarint32(&aKey[idx], serial_type);
drh1e968a02008-03-25 00:22:21 +00002939 pMem->enc = pKeyInfo->enc;
2940 pMem->db = pKeyInfo->db;
drhc3f1d5f2011-05-30 23:42:16 +00002941 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
danielk19775f096132008-03-28 15:44:09 +00002942 pMem->zMalloc = 0;
drh1e968a02008-03-25 00:22:21 +00002943 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
drhe14006d2008-03-25 17:23:32 +00002944 pMem++;
shane0b8d2762008-07-22 05:18:00 +00002945 u++;
drh1e968a02008-03-25 00:22:21 +00002946 }
drh7d10d5a2008-08-20 16:35:10 +00002947 assert( u<=pKeyInfo->nField + 1 );
shane0b8d2762008-07-22 05:18:00 +00002948 p->nField = u;
drh1e968a02008-03-25 00:22:21 +00002949}
2950
2951/*
2952** This function compares the two table rows or index records
2953** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
drhe63d9992008-08-13 19:11:48 +00002954** or positive integer if key1 is less than, equal to or
2955** greater than key2. The {nKey1, pKey1} key must be a blob
drh1e968a02008-03-25 00:22:21 +00002956** created by th OP_MakeRecord opcode of the VDBE. The pPKey2
2957** key must be a parsed key such as obtained from
2958** sqlite3VdbeParseRecord.
2959**
2960** Key1 and Key2 do not have to contain the same number of fields.
drhe63d9992008-08-13 19:11:48 +00002961** The key with fewer fields is usually compares less than the
2962** longer key. However if the UNPACKED_INCRKEY flags in pPKey2 is set
2963** and the common prefixes are equal, then key1 is less than key2.
2964** Or if the UNPACKED_MATCH_PREFIX flag is set and the prefixes are
2965** equal, then the keys are considered to be equal and
drhec1fc802008-08-13 14:07:40 +00002966** the parts beyond the common prefix are ignored.
drh1e968a02008-03-25 00:22:21 +00002967*/
drhe14006d2008-03-25 17:23:32 +00002968int sqlite3VdbeRecordCompare(
drhec1fc802008-08-13 14:07:40 +00002969 int nKey1, const void *pKey1, /* Left key */
drhec1fc802008-08-13 14:07:40 +00002970 UnpackedRecord *pPKey2 /* Right key */
drh1e968a02008-03-25 00:22:21 +00002971){
danielk197700e13612008-11-17 19:18:54 +00002972 int d1; /* Offset into aKey[] of next data element */
drh1e968a02008-03-25 00:22:21 +00002973 u32 idx1; /* Offset into aKey[] of next header element */
2974 u32 szHdr1; /* Number of bytes in header */
2975 int i = 0;
2976 int nField;
2977 int rc = 0;
2978 const unsigned char *aKey1 = (const unsigned char *)pKey1;
2979 KeyInfo *pKeyInfo;
2980 Mem mem1;
2981
2982 pKeyInfo = pPKey2->pKeyInfo;
2983 mem1.enc = pKeyInfo->enc;
drh37272632009-11-16 21:28:45 +00002984 mem1.db = pKeyInfo->db;
drhd93a8b22009-11-16 03:13:40 +00002985 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
2986 VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */
drh8b249a82009-11-16 02:14:00 +00002987
2988 /* Compilers may complain that mem1.u.i is potentially uninitialized.
2989 ** We could initialize it, as shown here, to silence those complaints.
drh5275d2e2011-04-27 01:00:17 +00002990 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
drh8b249a82009-11-16 02:14:00 +00002991 ** the unnecessary initialization has a measurable negative performance
2992 ** impact, since this routine is a very high runner. And so, we choose
2993 ** to ignore the compiler warnings and leave this variable uninitialized.
2994 */
2995 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
drh1e968a02008-03-25 00:22:21 +00002996
shane3f8d5cf2008-04-24 19:15:09 +00002997 idx1 = getVarint32(aKey1, szHdr1);
drh1e968a02008-03-25 00:22:21 +00002998 d1 = szHdr1;
2999 nField = pKeyInfo->nField;
drhe1a022e2012-09-17 17:16:53 +00003000 assert( pKeyInfo->aSortOrder!=0 );
drh1e968a02008-03-25 00:22:21 +00003001 while( idx1<szHdr1 && i<pPKey2->nField ){
3002 u32 serial_type1;
3003
3004 /* Read the serial types for the next element in each key. */
shane3f8d5cf2008-04-24 19:15:09 +00003005 idx1 += getVarint32( aKey1+idx1, serial_type1 );
drh1e968a02008-03-25 00:22:21 +00003006 if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
3007
3008 /* Extract the values to be compared.
3009 */
3010 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
3011
3012 /* Do the comparison
3013 */
drhe14006d2008-03-25 17:23:32 +00003014 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
drh1e968a02008-03-25 00:22:21 +00003015 i<nField ? pKeyInfo->aColl[i] : 0);
drh1e968a02008-03-25 00:22:21 +00003016 if( rc!=0 ){
drh8b249a82009-11-16 02:14:00 +00003017 assert( mem1.zMalloc==0 ); /* See comment below */
3018
3019 /* Invert the result if we are using DESC sort order. */
drhe1a022e2012-09-17 17:16:53 +00003020 if( i<nField && pKeyInfo->aSortOrder[i] ){
drh8b249a82009-11-16 02:14:00 +00003021 rc = -rc;
3022 }
3023
3024 /* If the PREFIX_SEARCH flag is set and all fields except the final
3025 ** rowid field were equal, then clear the PREFIX_SEARCH flag and set
3026 ** pPKey2->rowid to the value of the rowid field in (pKey1, nKey1).
3027 ** This is used by the OP_IsUnique opcode.
3028 */
3029 if( (pPKey2->flags & UNPACKED_PREFIX_SEARCH) && i==(pPKey2->nField-1) ){
3030 assert( idx1==szHdr1 && rc );
3031 assert( mem1.flags & MEM_Int );
3032 pPKey2->flags &= ~UNPACKED_PREFIX_SEARCH;
3033 pPKey2->rowid = mem1.u.i;
3034 }
3035
3036 return rc;
drh1e968a02008-03-25 00:22:21 +00003037 }
3038 i++;
3039 }
drh407414c2009-07-14 14:15:27 +00003040
drh8b249a82009-11-16 02:14:00 +00003041 /* No memory allocation is ever used on mem1. Prove this using
3042 ** the following assert(). If the assert() fails, it indicates a
3043 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
danielk1977de630352009-05-04 11:42:29 +00003044 */
drh8b249a82009-11-16 02:14:00 +00003045 assert( mem1.zMalloc==0 );
danielk1977de630352009-05-04 11:42:29 +00003046
drh8b249a82009-11-16 02:14:00 +00003047 /* rc==0 here means that one of the keys ran out of fields and
3048 ** all the fields up to that point were equal. If the UNPACKED_INCRKEY
3049 ** flag is set, then break the tie by treating key2 as larger.
3050 ** If the UPACKED_PREFIX_MATCH flag is set, then keys with common prefixes
3051 ** are considered to be equal. Otherwise, the longer key is the
3052 ** larger. As it happens, the pPKey2 will always be the longer
3053 ** if there is a difference.
3054 */
3055 assert( rc==0 );
3056 if( pPKey2->flags & UNPACKED_INCRKEY ){
3057 rc = -1;
3058 }else if( pPKey2->flags & UNPACKED_PREFIX_MATCH ){
3059 /* Leave rc==0 */
3060 }else if( idx1<szHdr1 ){
3061 rc = 1;
drh1e968a02008-03-25 00:22:21 +00003062 }
drh1e968a02008-03-25 00:22:21 +00003063 return rc;
3064}
drhec1fc802008-08-13 14:07:40 +00003065
danielk1977eb015e02004-05-18 01:31:14 +00003066
3067/*
drh7a224de2004-06-02 01:22:02 +00003068** pCur points at an index entry created using the OP_MakeRecord opcode.
3069** Read the rowid (the last field in the record) and store it in *rowid.
3070** Return SQLITE_OK if everything works, or an error code otherwise.
drh88a003e2008-12-11 16:17:03 +00003071**
3072** pCur might be pointing to text obtained from a corrupt database file.
3073** So the content cannot be trusted. Do appropriate checks on the content.
danielk1977183f9f72004-05-13 05:20:26 +00003074*/
drh35f6b932009-06-23 14:15:04 +00003075int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
drh61fc5952007-04-01 23:49:51 +00003076 i64 nCellKey = 0;
danielk1977183f9f72004-05-13 05:20:26 +00003077 int rc;
drhd5788202004-05-28 08:21:05 +00003078 u32 szHdr; /* Size of the header */
3079 u32 typeRowid; /* Serial type of the rowid */
3080 u32 lenRowid; /* Size of the rowid */
3081 Mem m, v;
danielk1977183f9f72004-05-13 05:20:26 +00003082
shanecea72b22009-09-07 04:38:36 +00003083 UNUSED_PARAMETER(db);
3084
drh88a003e2008-12-11 16:17:03 +00003085 /* Get the size of the index entry. Only indices entries of less
drh7b746032009-06-26 12:15:22 +00003086 ** than 2GiB are support - anything large must be database corruption.
3087 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
drhc27ae612009-07-14 18:35:44 +00003088 ** this code can safely assume that nCellKey is 32-bits
3089 */
drhea8ffdf2009-07-22 00:35:23 +00003090 assert( sqlite3BtreeCursorIsValid(pCur) );
drhb07028f2011-10-14 21:49:18 +00003091 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
drhc27ae612009-07-14 18:35:44 +00003092 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
drh7b746032009-06-26 12:15:22 +00003093 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
drh88a003e2008-12-11 16:17:03 +00003094
3095 /* Read in the complete content of the index entry */
drhff104c12009-08-25 13:10:27 +00003096 memset(&m, 0, sizeof(m));
drh8df32842008-12-09 02:51:23 +00003097 rc = sqlite3VdbeMemFromBtree(pCur, 0, (int)nCellKey, 1, &m);
drhd5788202004-05-28 08:21:05 +00003098 if( rc ){
danielk1977183f9f72004-05-13 05:20:26 +00003099 return rc;
3100 }
drh88a003e2008-12-11 16:17:03 +00003101
3102 /* The index entry must begin with a header size */
shane3f8d5cf2008-04-24 19:15:09 +00003103 (void)getVarint32((u8*)m.z, szHdr);
drh7b746032009-06-26 12:15:22 +00003104 testcase( szHdr==3 );
drh88a003e2008-12-11 16:17:03 +00003105 testcase( szHdr==m.n );
drh7b746032009-06-26 12:15:22 +00003106 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
drh88a003e2008-12-11 16:17:03 +00003107 goto idx_rowid_corruption;
3108 }
3109
3110 /* The last field of the index should be an integer - the ROWID.
3111 ** Verify that the last entry really is an integer. */
shane3f8d5cf2008-04-24 19:15:09 +00003112 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
drh88a003e2008-12-11 16:17:03 +00003113 testcase( typeRowid==1 );
3114 testcase( typeRowid==2 );
3115 testcase( typeRowid==3 );
3116 testcase( typeRowid==4 );
3117 testcase( typeRowid==5 );
3118 testcase( typeRowid==6 );
3119 testcase( typeRowid==8 );
3120 testcase( typeRowid==9 );
3121 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
3122 goto idx_rowid_corruption;
3123 }
drhd5788202004-05-28 08:21:05 +00003124 lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
drheeb844a2009-08-08 18:01:07 +00003125 testcase( (u32)m.n==szHdr+lenRowid );
3126 if( unlikely((u32)m.n<szHdr+lenRowid) ){
drh88a003e2008-12-11 16:17:03 +00003127 goto idx_rowid_corruption;
3128 }
3129
3130 /* Fetch the integer off the end of the index record */
drh2646da72005-12-09 20:02:05 +00003131 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
drh3c024d62007-03-30 11:23:45 +00003132 *rowid = v.u.i;
danielk1977d8123362004-06-12 09:25:12 +00003133 sqlite3VdbeMemRelease(&m);
danielk1977183f9f72004-05-13 05:20:26 +00003134 return SQLITE_OK;
drh88a003e2008-12-11 16:17:03 +00003135
3136 /* Jump here if database corruption is detected after m has been
3137 ** allocated. Free the m object and return SQLITE_CORRUPT. */
3138idx_rowid_corruption:
3139 testcase( m.zMalloc!=0 );
3140 sqlite3VdbeMemRelease(&m);
3141 return SQLITE_CORRUPT_BKPT;
danielk1977183f9f72004-05-13 05:20:26 +00003142}
3143
drh7cf6e4d2004-05-19 14:56:55 +00003144/*
drh5f82e3c2009-07-06 00:44:08 +00003145** Compare the key of the index entry that cursor pC is pointing to against
3146** the key string in pUnpacked. Write into *pRes a number
drh7cf6e4d2004-05-19 14:56:55 +00003147** that is negative, zero, or positive if pC is less than, equal to,
drh5f82e3c2009-07-06 00:44:08 +00003148** or greater than pUnpacked. Return SQLITE_OK on success.
drhd3d39e92004-05-20 22:16:29 +00003149**
drh5f82e3c2009-07-06 00:44:08 +00003150** pUnpacked is either created without a rowid or is truncated so that it
drhd5788202004-05-28 08:21:05 +00003151** omits the rowid at the end. The rowid at the end of the index entry
drhec1fc802008-08-13 14:07:40 +00003152** is ignored as well. Hence, this routine only compares the prefixes
3153** of the keys prior to the final rowid, not the entire key.
drh7cf6e4d2004-05-19 14:56:55 +00003154*/
danielk1977183f9f72004-05-13 05:20:26 +00003155int sqlite3VdbeIdxKeyCompare(
drhdfe88ec2008-11-03 20:55:06 +00003156 VdbeCursor *pC, /* The cursor to compare against */
drh5f82e3c2009-07-06 00:44:08 +00003157 UnpackedRecord *pUnpacked, /* Unpacked version of key to compare against */
drh7cf6e4d2004-05-19 14:56:55 +00003158 int *res /* Write the comparison result here */
danielk1977183f9f72004-05-13 05:20:26 +00003159){
drh61fc5952007-04-01 23:49:51 +00003160 i64 nCellKey = 0;
danielk1977183f9f72004-05-13 05:20:26 +00003161 int rc;
danielk19773d1bfea2004-05-14 11:00:53 +00003162 BtCursor *pCur = pC->pCursor;
drhd5788202004-05-28 08:21:05 +00003163 Mem m;
danielk1977183f9f72004-05-13 05:20:26 +00003164
drhea8ffdf2009-07-22 00:35:23 +00003165 assert( sqlite3BtreeCursorIsValid(pCur) );
drhb07028f2011-10-14 21:49:18 +00003166 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
drhc27ae612009-07-14 18:35:44 +00003167 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
drh407414c2009-07-14 14:15:27 +00003168 /* nCellKey will always be between 0 and 0xffffffff because of the say
3169 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
drhc27ae612009-07-14 18:35:44 +00003170 if( nCellKey<=0 || nCellKey>0x7fffffff ){
danielk1977183f9f72004-05-13 05:20:26 +00003171 *res = 0;
drh9978c972010-02-23 17:36:32 +00003172 return SQLITE_CORRUPT_BKPT;
danielk1977183f9f72004-05-13 05:20:26 +00003173 }
drhfd3ca1c2009-08-25 12:11:00 +00003174 memset(&m, 0, sizeof(m));
drh8df32842008-12-09 02:51:23 +00003175 rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (int)nCellKey, 1, &m);
drhec1fc802008-08-13 14:07:40 +00003176 if( rc ){
drhd5788202004-05-28 08:21:05 +00003177 return rc;
danielk1977183f9f72004-05-13 05:20:26 +00003178 }
dan6f133232011-11-16 15:41:29 +00003179 assert( pUnpacked->flags & UNPACKED_PREFIX_MATCH );
drhe63d9992008-08-13 19:11:48 +00003180 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
danielk1977d8123362004-06-12 09:25:12 +00003181 sqlite3VdbeMemRelease(&m);
danielk1977183f9f72004-05-13 05:20:26 +00003182 return SQLITE_OK;
3183}
danielk1977b28af712004-06-21 06:50:26 +00003184
3185/*
3186** This routine sets the value to be returned by subsequent calls to
3187** sqlite3_changes() on the database handle 'db'.
3188*/
3189void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
drhb21c8cd2007-08-21 19:33:56 +00003190 assert( sqlite3_mutex_held(db->mutex) );
danielk1977b28af712004-06-21 06:50:26 +00003191 db->nChange = nChange;
3192 db->nTotalChange += nChange;
3193}
3194
3195/*
3196** Set a flag in the vdbe to update the change counter when it is finalised
3197** or reset.
3198*/
drh4794f732004-11-05 17:17:50 +00003199void sqlite3VdbeCountChanges(Vdbe *v){
3200 v->changeCntOn = 1;
danielk1977b28af712004-06-21 06:50:26 +00003201}
drhd89bd002005-01-22 03:03:54 +00003202
3203/*
3204** Mark every prepared statement associated with a database connection
3205** as expired.
3206**
3207** An expired statement means that recompilation of the statement is
3208** recommend. Statements expire when things happen that make their
3209** programs obsolete. Removing user-defined functions or collating
3210** sequences, or changing an authorization function are the types of
3211** things that make prepared statements obsolete.
3212*/
3213void sqlite3ExpirePreparedStatements(sqlite3 *db){
3214 Vdbe *p;
3215 for(p = db->pVdbe; p; p=p->pNext){
3216 p->expired = 1;
3217 }
3218}
danielk1977aee18ef2005-03-09 12:26:50 +00003219
3220/*
3221** Return the database associated with the Vdbe.
3222*/
3223sqlite3 *sqlite3VdbeDb(Vdbe *v){
3224 return v->db;
3225}
dan937d0de2009-10-15 18:35:38 +00003226
3227/*
3228** Return a pointer to an sqlite3_value structure containing the value bound
3229** parameter iVar of VM v. Except, if the value is an SQL NULL, return
3230** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
3231** constants) to the value before returning it.
3232**
3233** The returned value must be freed by the caller using sqlite3ValueFree().
3234*/
3235sqlite3_value *sqlite3VdbeGetValue(Vdbe *v, int iVar, u8 aff){
3236 assert( iVar>0 );
3237 if( v ){
3238 Mem *pMem = &v->aVar[iVar-1];
3239 if( 0==(pMem->flags & MEM_Null) ){
3240 sqlite3_value *pRet = sqlite3ValueNew(v->db);
3241 if( pRet ){
3242 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
3243 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
3244 sqlite3VdbeMemStoreType((Mem *)pRet);
3245 }
3246 return pRet;
3247 }
3248 }
3249 return 0;
3250}
3251
3252/*
3253** Configure SQL variable iVar so that binding a new value to it signals
3254** to sqlite3_reoptimize() that re-preparing the statement may result
3255** in a better query plan.
3256*/
dan1d2ce4f2009-10-19 18:11:09 +00003257void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
dan937d0de2009-10-15 18:35:38 +00003258 assert( iVar>0 );
3259 if( iVar>32 ){
dan1d2ce4f2009-10-19 18:11:09 +00003260 v->expmask = 0xffffffff;
dan937d0de2009-10-15 18:35:38 +00003261 }else{
dan1d2ce4f2009-10-19 18:11:09 +00003262 v->expmask |= ((u32)1 << (iVar-1));
dan937d0de2009-10-15 18:35:38 +00003263 }
3264}