blob: de225599688bc5f8f1129f9a493904cad6b17cf4 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drh8b2f49b2001-06-08 00:21:52 +000012** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
drhe53831d2007-08-17 01:14:38 +000046#ifndef SQLITE_OMIT_SHARED_CACHE
47/*
danielk1977502b4e02008-09-02 14:07:24 +000048** A list of BtShared objects that are eligible for participation
49** in shared cache. This variable has file scope during normal builds,
50** but the test harness needs to access it so we make it global for
51** test builds.
drh7555d8e2009-03-20 13:15:30 +000052**
53** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000054*/
55#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000056BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000057#else
drh78f82d12008-09-02 00:52:52 +000058static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000059#endif
drhe53831d2007-08-17 01:14:38 +000060#endif /* SQLITE_OMIT_SHARED_CACHE */
61
62#ifndef SQLITE_OMIT_SHARED_CACHE
63/*
64** Enable or disable the shared pager and schema features.
65**
66** This routine has no effect on existing database connections.
67** The shared cache setting effects only future calls to
68** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
69*/
70int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000071 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000072 return SQLITE_OK;
73}
74#endif
75
drhd677b3d2007-08-20 22:48:41 +000076
danielk1977aef0bf62005-12-30 16:28:01 +000077
78#ifdef SQLITE_OMIT_SHARED_CACHE
79 /*
drhc25eabe2009-02-24 18:57:31 +000080 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
81 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +000082 ** manipulate entries in the BtShared.pLock linked list used to store
83 ** shared-cache table level locks. If the library is compiled with the
84 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +000085 ** of each BtShared structure and so this locking is not necessary.
86 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +000087 */
drhc25eabe2009-02-24 18:57:31 +000088 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
89 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
90 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +000091 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +000092 #define hasSharedCacheTableLock(a,b,c,d) 1
93 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +000094#endif
danielk1977aef0bf62005-12-30 16:28:01 +000095
drhe53831d2007-08-17 01:14:38 +000096#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +000097
98#ifdef SQLITE_DEBUG
99/*
drh0ee3dbe2009-10-16 15:05:18 +0000100**** This function is only used as part of an assert() statement. ***
101**
102** Check to see if pBtree holds the required locks to read or write to the
103** table with root page iRoot. Return 1 if it does and 0 if not.
104**
105** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000106** Btree connection pBtree:
107**
108** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
109**
drh0ee3dbe2009-10-16 15:05:18 +0000110** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000111** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000112** the corresponding table. This makes things a bit more complicated,
113** as this module treats each table as a separate structure. To determine
114** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000115** function has to search through the database schema.
116**
drh0ee3dbe2009-10-16 15:05:18 +0000117** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000118** hold a write-lock on the schema table (root page 1). This is also
119** acceptable.
120*/
121static int hasSharedCacheTableLock(
122 Btree *pBtree, /* Handle that must hold lock */
123 Pgno iRoot, /* Root page of b-tree */
124 int isIndex, /* True if iRoot is the root of an index b-tree */
125 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
126){
127 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
128 Pgno iTab = 0;
129 BtLock *pLock;
130
drh0ee3dbe2009-10-16 15:05:18 +0000131 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000132 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000133 ** Return true immediately.
134 */
danielk197796d48e92009-06-29 06:00:37 +0000135 if( (pBtree->sharable==0)
136 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000137 ){
138 return 1;
139 }
140
drh0ee3dbe2009-10-16 15:05:18 +0000141 /* If the client is reading or writing an index and the schema is
142 ** not loaded, then it is too difficult to actually check to see if
143 ** the correct locks are held. So do not bother - just return true.
144 ** This case does not come up very often anyhow.
145 */
146 if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){
147 return 1;
148 }
149
danielk197796d48e92009-06-29 06:00:37 +0000150 /* Figure out the root-page that the lock should be held on. For table
151 ** b-trees, this is just the root page of the b-tree being read or
152 ** written. For index b-trees, it is the root page of the associated
153 ** table. */
154 if( isIndex ){
155 HashElem *p;
156 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
157 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000158 if( pIdx->tnum==(int)iRoot ){
159 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000160 }
161 }
162 }else{
163 iTab = iRoot;
164 }
165
166 /* Search for the required lock. Either a write-lock on root-page iTab, a
167 ** write-lock on the schema table, or (if the client is reading) a
168 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
169 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
170 if( pLock->pBtree==pBtree
171 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
172 && pLock->eLock>=eLockType
173 ){
174 return 1;
175 }
176 }
177
178 /* Failed to find the required lock. */
179 return 0;
180}
drh0ee3dbe2009-10-16 15:05:18 +0000181#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000182
drh0ee3dbe2009-10-16 15:05:18 +0000183#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000184/*
drh0ee3dbe2009-10-16 15:05:18 +0000185**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000186**
drh0ee3dbe2009-10-16 15:05:18 +0000187** Return true if it would be illegal for pBtree to write into the
188** table or index rooted at iRoot because other shared connections are
189** simultaneously reading that same table or index.
190**
191** It is illegal for pBtree to write if some other Btree object that
192** shares the same BtShared object is currently reading or writing
193** the iRoot table. Except, if the other Btree object has the
194** read-uncommitted flag set, then it is OK for the other object to
195** have a read cursor.
196**
197** For example, before writing to any part of the table or index
198** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000199**
200** assert( !hasReadConflicts(pBtree, iRoot) );
201*/
202static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
203 BtCursor *p;
204 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
205 if( p->pgnoRoot==iRoot
206 && p->pBtree!=pBtree
207 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
208 ){
209 return 1;
210 }
211 }
212 return 0;
213}
214#endif /* #ifdef SQLITE_DEBUG */
215
danielk1977da184232006-01-05 11:34:32 +0000216/*
drh0ee3dbe2009-10-16 15:05:18 +0000217** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000218** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000219** SQLITE_OK if the lock may be obtained (by calling
220** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000221*/
drhc25eabe2009-02-24 18:57:31 +0000222static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000223 BtShared *pBt = p->pBt;
224 BtLock *pIter;
225
drh1fee73e2007-08-29 04:00:57 +0000226 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000227 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
228 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000229 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000230
danielk19775b413d72009-04-01 09:41:54 +0000231 /* If requesting a write-lock, then the Btree must have an open write
232 ** transaction on this file. And, obviously, for this to be so there
233 ** must be an open write transaction on the file itself.
234 */
235 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
236 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
237
drh0ee3dbe2009-10-16 15:05:18 +0000238 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000239 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000240 return SQLITE_OK;
241 }
242
danielk1977641b0f42007-12-21 04:47:25 +0000243 /* If some other connection is holding an exclusive lock, the
244 ** requested lock may not be obtained.
245 */
drhc9166342012-01-05 23:32:06 +0000246 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000247 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
248 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000249 }
250
danielk1977e0d9e6f2009-07-03 16:25:06 +0000251 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
252 /* The condition (pIter->eLock!=eLock) in the following if(...)
253 ** statement is a simplification of:
254 **
255 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
256 **
257 ** since we know that if eLock==WRITE_LOCK, then no other connection
258 ** may hold a WRITE_LOCK on any table in this file (since there can
259 ** only be a single writer).
260 */
261 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
262 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
263 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
264 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
265 if( eLock==WRITE_LOCK ){
266 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000267 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000268 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000269 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000270 }
271 }
272 return SQLITE_OK;
273}
drhe53831d2007-08-17 01:14:38 +0000274#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000275
drhe53831d2007-08-17 01:14:38 +0000276#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000277/*
278** Add a lock on the table with root-page iTable to the shared-btree used
279** by Btree handle p. Parameter eLock must be either READ_LOCK or
280** WRITE_LOCK.
281**
danielk19779d104862009-07-09 08:27:14 +0000282** This function assumes the following:
283**
drh0ee3dbe2009-10-16 15:05:18 +0000284** (a) The specified Btree object p is connected to a sharable
285** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000286**
drh0ee3dbe2009-10-16 15:05:18 +0000287** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000288** with the requested lock (i.e. querySharedCacheTableLock() has
289** already been called and returned SQLITE_OK).
290**
291** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
292** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000293*/
drhc25eabe2009-02-24 18:57:31 +0000294static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000295 BtShared *pBt = p->pBt;
296 BtLock *pLock = 0;
297 BtLock *pIter;
298
drh1fee73e2007-08-29 04:00:57 +0000299 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000300 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
301 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000302
danielk1977e0d9e6f2009-07-03 16:25:06 +0000303 /* A connection with the read-uncommitted flag set will never try to
304 ** obtain a read-lock using this function. The only read-lock obtained
305 ** by a connection in read-uncommitted mode is on the sqlite_master
306 ** table, and that lock is obtained in BtreeBeginTrans(). */
307 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
308
danielk19779d104862009-07-09 08:27:14 +0000309 /* This function should only be called on a sharable b-tree after it
310 ** has been determined that no other b-tree holds a conflicting lock. */
311 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000312 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000313
314 /* First search the list for an existing lock on this table. */
315 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
316 if( pIter->iTable==iTable && pIter->pBtree==p ){
317 pLock = pIter;
318 break;
319 }
320 }
321
322 /* If the above search did not find a BtLock struct associating Btree p
323 ** with table iTable, allocate one and link it into the list.
324 */
325 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000326 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000327 if( !pLock ){
328 return SQLITE_NOMEM;
329 }
330 pLock->iTable = iTable;
331 pLock->pBtree = p;
332 pLock->pNext = pBt->pLock;
333 pBt->pLock = pLock;
334 }
335
336 /* Set the BtLock.eLock variable to the maximum of the current lock
337 ** and the requested lock. This means if a write-lock was already held
338 ** and a read-lock requested, we don't incorrectly downgrade the lock.
339 */
340 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000341 if( eLock>pLock->eLock ){
342 pLock->eLock = eLock;
343 }
danielk1977aef0bf62005-12-30 16:28:01 +0000344
345 return SQLITE_OK;
346}
drhe53831d2007-08-17 01:14:38 +0000347#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000348
drhe53831d2007-08-17 01:14:38 +0000349#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000350/*
drhc25eabe2009-02-24 18:57:31 +0000351** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000352** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000353**
drh0ee3dbe2009-10-16 15:05:18 +0000354** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000355** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000356** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000357*/
drhc25eabe2009-02-24 18:57:31 +0000358static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000359 BtShared *pBt = p->pBt;
360 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000361
drh1fee73e2007-08-29 04:00:57 +0000362 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000363 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000364 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000365
danielk1977aef0bf62005-12-30 16:28:01 +0000366 while( *ppIter ){
367 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000368 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000369 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000370 if( pLock->pBtree==p ){
371 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000372 assert( pLock->iTable!=1 || pLock==&p->lock );
373 if( pLock->iTable!=1 ){
374 sqlite3_free(pLock);
375 }
danielk1977aef0bf62005-12-30 16:28:01 +0000376 }else{
377 ppIter = &pLock->pNext;
378 }
379 }
danielk1977641b0f42007-12-21 04:47:25 +0000380
drhc9166342012-01-05 23:32:06 +0000381 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000382 if( pBt->pWriter==p ){
383 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000384 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000385 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000386 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000387 ** transaction. If there currently exists a writer, and p is not
388 ** that writer, then the number of locks held by connections other
389 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000390 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000391 **
drhc9166342012-01-05 23:32:06 +0000392 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000393 ** be zero already. So this next line is harmless in that case.
394 */
drhc9166342012-01-05 23:32:06 +0000395 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000396 }
danielk1977aef0bf62005-12-30 16:28:01 +0000397}
danielk197794b30732009-07-02 17:21:57 +0000398
danielk1977e0d9e6f2009-07-03 16:25:06 +0000399/*
drh0ee3dbe2009-10-16 15:05:18 +0000400** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000401*/
danielk197794b30732009-07-02 17:21:57 +0000402static void downgradeAllSharedCacheTableLocks(Btree *p){
403 BtShared *pBt = p->pBt;
404 if( pBt->pWriter==p ){
405 BtLock *pLock;
406 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000407 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000408 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
409 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
410 pLock->eLock = READ_LOCK;
411 }
412 }
413}
414
danielk1977aef0bf62005-12-30 16:28:01 +0000415#endif /* SQLITE_OMIT_SHARED_CACHE */
416
drh980b1a72006-08-16 16:42:48 +0000417static void releasePage(MemPage *pPage); /* Forward reference */
418
drh1fee73e2007-08-29 04:00:57 +0000419/*
drh0ee3dbe2009-10-16 15:05:18 +0000420***** This routine is used inside of assert() only ****
421**
422** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000423*/
drh0ee3dbe2009-10-16 15:05:18 +0000424#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000425static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000426 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000427}
428#endif
429
430
danielk197792d4d7a2007-05-04 12:05:56 +0000431#ifndef SQLITE_OMIT_INCRBLOB
432/*
433** Invalidate the overflow page-list cache for cursor pCur, if any.
434*/
435static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000436 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000437 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000438 pCur->aOverflow = 0;
439}
440
441/*
442** Invalidate the overflow page-list cache for all cursors opened
443** on the shared btree structure pBt.
444*/
445static void invalidateAllOverflowCache(BtShared *pBt){
446 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000447 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000448 for(p=pBt->pCursor; p; p=p->pNext){
449 invalidateOverflowCache(p);
450 }
451}
danielk197796d48e92009-06-29 06:00:37 +0000452
453/*
454** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000455** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000456** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000457**
458** If argument isClearTable is true, then the entire contents of the
459** table is about to be deleted. In this case invalidate all incrblob
460** cursors open on any row within the table with root-page pgnoRoot.
461**
462** Otherwise, if argument isClearTable is false, then the row with
463** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000464** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000465*/
466static void invalidateIncrblobCursors(
467 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000468 i64 iRow, /* The rowid that might be changing */
469 int isClearTable /* True if all rows are being deleted */
470){
471 BtCursor *p;
472 BtShared *pBt = pBtree->pBt;
473 assert( sqlite3BtreeHoldsMutex(pBtree) );
474 for(p=pBt->pCursor; p; p=p->pNext){
475 if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
476 p->eState = CURSOR_INVALID;
477 }
478 }
479}
480
danielk197792d4d7a2007-05-04 12:05:56 +0000481#else
drh0ee3dbe2009-10-16 15:05:18 +0000482 /* Stub functions when INCRBLOB is omitted */
danielk197792d4d7a2007-05-04 12:05:56 +0000483 #define invalidateOverflowCache(x)
484 #define invalidateAllOverflowCache(x)
drheeb844a2009-08-08 18:01:07 +0000485 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000486#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000487
drh980b1a72006-08-16 16:42:48 +0000488/*
danielk1977bea2a942009-01-20 17:06:27 +0000489** Set bit pgno of the BtShared.pHasContent bitvec. This is called
490** when a page that previously contained data becomes a free-list leaf
491** page.
492**
493** The BtShared.pHasContent bitvec exists to work around an obscure
494** bug caused by the interaction of two useful IO optimizations surrounding
495** free-list leaf pages:
496**
497** 1) When all data is deleted from a page and the page becomes
498** a free-list leaf page, the page is not written to the database
499** (as free-list leaf pages contain no meaningful data). Sometimes
500** such a page is not even journalled (as it will not be modified,
501** why bother journalling it?).
502**
503** 2) When a free-list leaf page is reused, its content is not read
504** from the database or written to the journal file (why should it
505** be, if it is not at all meaningful?).
506**
507** By themselves, these optimizations work fine and provide a handy
508** performance boost to bulk delete or insert operations. However, if
509** a page is moved to the free-list and then reused within the same
510** transaction, a problem comes up. If the page is not journalled when
511** it is moved to the free-list and it is also not journalled when it
512** is extracted from the free-list and reused, then the original data
513** may be lost. In the event of a rollback, it may not be possible
514** to restore the database to its original configuration.
515**
516** The solution is the BtShared.pHasContent bitvec. Whenever a page is
517** moved to become a free-list leaf page, the corresponding bit is
518** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000519** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000520** set in BtShared.pHasContent. The contents of the bitvec are cleared
521** at the end of every transaction.
522*/
523static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
524 int rc = SQLITE_OK;
525 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000526 assert( pgno<=pBt->nPage );
527 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000528 if( !pBt->pHasContent ){
529 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000530 }
531 }
532 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
533 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
534 }
535 return rc;
536}
537
538/*
539** Query the BtShared.pHasContent vector.
540**
541** This function is called when a free-list leaf page is removed from the
542** free-list for reuse. It returns false if it is safe to retrieve the
543** page from the pager layer with the 'no-content' flag set. True otherwise.
544*/
545static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
546 Bitvec *p = pBt->pHasContent;
547 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
548}
549
550/*
551** Clear (destroy) the BtShared.pHasContent bitvec. This should be
552** invoked at the conclusion of each write-transaction.
553*/
554static void btreeClearHasContent(BtShared *pBt){
555 sqlite3BitvecDestroy(pBt->pHasContent);
556 pBt->pHasContent = 0;
557}
558
559/*
drh980b1a72006-08-16 16:42:48 +0000560** Save the current cursor position in the variables BtCursor.nKey
561** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000562**
563** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
564** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000565*/
566static int saveCursorPosition(BtCursor *pCur){
567 int rc;
568
569 assert( CURSOR_VALID==pCur->eState );
570 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000571 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000572
573 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000574 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000575
576 /* If this is an intKey table, then the above call to BtreeKeySize()
577 ** stores the integer key in pCur->nKey. In this case this value is
578 ** all that is required. Otherwise, if pCur is not open on an intKey
579 ** table, then malloc space for and store the pCur->nKey bytes of key
580 ** data.
581 */
drh4c301aa2009-07-15 17:25:45 +0000582 if( 0==pCur->apPage[0]->intKey ){
drhf49661a2008-12-10 16:45:50 +0000583 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000584 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000585 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000586 if( rc==SQLITE_OK ){
587 pCur->pKey = pKey;
588 }else{
drh17435752007-08-16 04:30:38 +0000589 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000590 }
591 }else{
592 rc = SQLITE_NOMEM;
593 }
594 }
danielk197771d5d2c2008-09-29 11:49:47 +0000595 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000596
597 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +0000598 int i;
599 for(i=0; i<=pCur->iPage; i++){
600 releasePage(pCur->apPage[i]);
601 pCur->apPage[i] = 0;
602 }
603 pCur->iPage = -1;
drh980b1a72006-08-16 16:42:48 +0000604 pCur->eState = CURSOR_REQUIRESEEK;
605 }
606
danielk197792d4d7a2007-05-04 12:05:56 +0000607 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000608 return rc;
609}
610
611/*
drh0ee3dbe2009-10-16 15:05:18 +0000612** Save the positions of all cursors (except pExcept) that are open on
613** the table with root-page iRoot. Usually, this is called just before cursor
drh980b1a72006-08-16 16:42:48 +0000614** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
615*/
616static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
617 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000618 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000619 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000620 for(p=pBt->pCursor; p; p=p->pNext){
621 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
622 p->eState==CURSOR_VALID ){
623 int rc = saveCursorPosition(p);
624 if( SQLITE_OK!=rc ){
625 return rc;
626 }
627 }
628 }
629 return SQLITE_OK;
630}
631
632/*
drhbf700f32007-03-31 02:36:44 +0000633** Clear the current cursor position.
634*/
danielk1977be51a652008-10-08 17:58:48 +0000635void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000636 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000637 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000638 pCur->pKey = 0;
639 pCur->eState = CURSOR_INVALID;
640}
641
642/*
danielk19773509a652009-07-06 18:56:13 +0000643** In this version of BtreeMoveto, pKey is a packed index record
644** such as is generated by the OP_MakeRecord opcode. Unpack the
645** record and then call BtreeMovetoUnpacked() to do the work.
646*/
647static int btreeMoveto(
648 BtCursor *pCur, /* Cursor open on the btree to be searched */
649 const void *pKey, /* Packed key if the btree is an index */
650 i64 nKey, /* Integer key for tables. Size of pKey for indices */
651 int bias, /* Bias search to the high end */
652 int *pRes /* Write search results here */
653){
654 int rc; /* Status code */
655 UnpackedRecord *pIdxKey; /* Unpacked index key */
656 char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */
dan03e9cfc2011-09-05 14:20:27 +0000657 char *pFree = 0;
danielk19773509a652009-07-06 18:56:13 +0000658
659 if( pKey ){
660 assert( nKey==(i64)(int)nKey );
dan03e9cfc2011-09-05 14:20:27 +0000661 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
662 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
663 );
danielk19773509a652009-07-06 18:56:13 +0000664 if( pIdxKey==0 ) return SQLITE_NOMEM;
mistachkin0fe5f952011-09-14 18:19:08 +0000665 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000666 }else{
667 pIdxKey = 0;
668 }
669 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
dan42acb3e2011-09-05 20:16:38 +0000670 if( pFree ){
dan03e9cfc2011-09-05 14:20:27 +0000671 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
danielk19773509a652009-07-06 18:56:13 +0000672 }
673 return rc;
674}
675
676/*
drh980b1a72006-08-16 16:42:48 +0000677** Restore the cursor to the position it was in (or as close to as possible)
678** when saveCursorPosition() was called. Note that this call deletes the
679** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000680** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000681** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000682*/
danielk197730548662009-07-09 05:07:37 +0000683static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000684 int rc;
drh1fee73e2007-08-29 04:00:57 +0000685 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000686 assert( pCur->eState>=CURSOR_REQUIRESEEK );
687 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000688 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000689 }
drh980b1a72006-08-16 16:42:48 +0000690 pCur->eState = CURSOR_INVALID;
drh4c301aa2009-07-15 17:25:45 +0000691 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
drh980b1a72006-08-16 16:42:48 +0000692 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000693 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000694 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000695 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh980b1a72006-08-16 16:42:48 +0000696 }
697 return rc;
698}
699
drha3460582008-07-11 21:02:53 +0000700#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000701 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000702 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000703 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000704
drha3460582008-07-11 21:02:53 +0000705/*
706** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000707** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000708** at is deleted out from under them.
709**
710** This routine returns an error code if something goes wrong. The
711** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
712*/
713int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
714 int rc;
715
716 rc = restoreCursorPosition(pCur);
717 if( rc ){
718 *pHasMoved = 1;
719 return rc;
720 }
drh4c301aa2009-07-15 17:25:45 +0000721 if( pCur->eState!=CURSOR_VALID || pCur->skipNext!=0 ){
drha3460582008-07-11 21:02:53 +0000722 *pHasMoved = 1;
723 }else{
724 *pHasMoved = 0;
725 }
726 return SQLITE_OK;
727}
728
danielk1977599fcba2004-11-08 07:13:13 +0000729#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000730/*
drha3152892007-05-05 11:48:52 +0000731** Given a page number of a regular database page, return the page
732** number for the pointer-map page that contains the entry for the
733** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000734**
735** Return 0 (not a valid page) for pgno==1 since there is
736** no pointer map associated with page 1. The integrity_check logic
737** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000738*/
danielk1977266664d2006-02-10 08:24:21 +0000739static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000740 int nPagesPerMapPage;
741 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000742 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000743 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000744 nPagesPerMapPage = (pBt->usableSize/5)+1;
745 iPtrMap = (pgno-2)/nPagesPerMapPage;
746 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000747 if( ret==PENDING_BYTE_PAGE(pBt) ){
748 ret++;
749 }
750 return ret;
751}
danielk1977a19df672004-11-03 11:37:07 +0000752
danielk1977afcdd022004-10-31 16:25:42 +0000753/*
danielk1977afcdd022004-10-31 16:25:42 +0000754** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000755**
756** This routine updates the pointer map entry for page number 'key'
757** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000758**
759** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
760** a no-op. If an error occurs, the appropriate error code is written
761** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000762*/
drh98add2e2009-07-20 17:11:49 +0000763static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000764 DbPage *pDbPage; /* The pointer map page */
765 u8 *pPtrmap; /* The pointer map data */
766 Pgno iPtrmap; /* The pointer map page number */
767 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000768 int rc; /* Return code from subfunctions */
769
770 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000771
drh1fee73e2007-08-29 04:00:57 +0000772 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000773 /* The master-journal page number must never be used as a pointer map page */
774 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
775
danielk1977ac11ee62005-01-15 12:45:51 +0000776 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000777 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000778 *pRC = SQLITE_CORRUPT_BKPT;
779 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000780 }
danielk1977266664d2006-02-10 08:24:21 +0000781 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000782 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000783 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000784 *pRC = rc;
785 return;
danielk1977afcdd022004-10-31 16:25:42 +0000786 }
danielk19778c666b12008-07-18 09:34:57 +0000787 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000788 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000789 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000790 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000791 }
drhfc243732011-05-17 15:21:56 +0000792 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +0000793 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000794
drh615ae552005-01-16 23:21:00 +0000795 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
796 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000797 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000798 if( rc==SQLITE_OK ){
799 pPtrmap[offset] = eType;
800 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000801 }
danielk1977afcdd022004-10-31 16:25:42 +0000802 }
803
drh4925a552009-07-07 11:39:58 +0000804ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000805 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000806}
807
808/*
809** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000810**
811** This routine retrieves the pointer map entry for page 'key', writing
812** the type and parent page number to *pEType and *pPgno respectively.
813** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000814*/
danielk1977aef0bf62005-12-30 16:28:01 +0000815static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000816 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000817 int iPtrmap; /* Pointer map page index */
818 u8 *pPtrmap; /* Pointer map page data */
819 int offset; /* Offset of entry in pointer map */
820 int rc;
821
drh1fee73e2007-08-29 04:00:57 +0000822 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000823
danielk1977266664d2006-02-10 08:24:21 +0000824 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000825 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000826 if( rc!=0 ){
827 return rc;
828 }
danielk19773b8a05f2007-03-19 17:44:26 +0000829 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000830
danielk19778c666b12008-07-18 09:34:57 +0000831 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +0000832 if( offset<0 ){
833 sqlite3PagerUnref(pDbPage);
834 return SQLITE_CORRUPT_BKPT;
835 }
836 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +0000837 assert( pEType!=0 );
838 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000839 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000840
danielk19773b8a05f2007-03-19 17:44:26 +0000841 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000842 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000843 return SQLITE_OK;
844}
845
danielk197785d90ca2008-07-19 14:25:15 +0000846#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000847 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000848 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000849 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000850#endif
danielk1977afcdd022004-10-31 16:25:42 +0000851
drh0d316a42002-08-11 20:10:47 +0000852/*
drh271efa52004-05-30 19:19:05 +0000853** Given a btree page and a cell index (0 means the first cell on
854** the page, 1 means the second cell, and so forth) return a pointer
855** to the cell content.
856**
857** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000858*/
drh1688c862008-07-18 02:44:17 +0000859#define findCell(P,I) \
drh3def2352011-11-11 00:27:15 +0000860 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +0000861#define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I)))))
862
drh43605152004-05-29 21:46:49 +0000863
864/*
drh93a960a2008-07-10 00:32:42 +0000865** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000866** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000867*/
868static u8 *findOverflowCell(MemPage *pPage, int iCell){
869 int i;
drh1fee73e2007-08-29 04:00:57 +0000870 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000871 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000872 int k;
drh2cbd78b2012-02-02 19:37:18 +0000873 k = pPage->aiOvfl[i];
drh6d08b4d2004-07-20 12:45:22 +0000874 if( k<=iCell ){
875 if( k==iCell ){
drh2cbd78b2012-02-02 19:37:18 +0000876 return pPage->apOvfl[i];
drh43605152004-05-29 21:46:49 +0000877 }
878 iCell--;
879 }
880 }
danielk19771cc5ed82007-05-16 17:28:43 +0000881 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000882}
883
884/*
885** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000886** are two versions of this function. btreeParseCell() takes a
887** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000888** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000889**
890** Within this file, the parseCell() macro can be called instead of
danielk197730548662009-07-09 05:07:37 +0000891** btreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000892*/
danielk197730548662009-07-09 05:07:37 +0000893static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000894 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000895 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000896 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000897){
drhf49661a2008-12-10 16:45:50 +0000898 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000899 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000900
drh1fee73e2007-08-29 04:00:57 +0000901 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000902
drh43605152004-05-29 21:46:49 +0000903 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000904 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000905 n = pPage->childPtrSize;
906 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000907 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000908 if( pPage->hasData ){
909 n += getVarint32(&pCell[n], nPayload);
910 }else{
911 nPayload = 0;
912 }
drh1bd10f82008-12-10 21:19:56 +0000913 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000914 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000915 }else{
drh79df1f42008-07-18 00:57:33 +0000916 pInfo->nData = 0;
917 n += getVarint32(&pCell[n], nPayload);
918 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000919 }
drh72365832007-03-06 15:53:44 +0000920 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000921 pInfo->nHeader = n;
drh0a45c272009-07-08 01:49:11 +0000922 testcase( nPayload==pPage->maxLocal );
923 testcase( nPayload==pPage->maxLocal+1 );
drh79df1f42008-07-18 00:57:33 +0000924 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000925 /* This is the (easy) common case where the entire payload fits
926 ** on the local page. No overflow is required.
927 */
drh41692e92011-01-25 04:34:51 +0000928 if( (pInfo->nSize = (u16)(n+nPayload))<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +0000929 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000930 pInfo->iOverflow = 0;
drh6f11bef2004-05-13 01:12:56 +0000931 }else{
drh271efa52004-05-30 19:19:05 +0000932 /* If the payload will not fit completely on the local page, we have
933 ** to decide how much to store locally and how much to spill onto
934 ** overflow pages. The strategy is to minimize the amount of unused
935 ** space on overflow pages while keeping the amount of local storage
936 ** in between minLocal and maxLocal.
937 **
938 ** Warning: changing the way overflow payload is distributed in any
939 ** way will result in an incompatible file format.
940 */
941 int minLocal; /* Minimum amount of payload held locally */
942 int maxLocal; /* Maximum amount of payload held locally */
943 int surplus; /* Overflow payload available for local storage */
944
945 minLocal = pPage->minLocal;
946 maxLocal = pPage->maxLocal;
947 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000948 testcase( surplus==maxLocal );
949 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +0000950 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000951 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000952 }else{
drhf49661a2008-12-10 16:45:50 +0000953 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000954 }
drhf49661a2008-12-10 16:45:50 +0000955 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000956 pInfo->nSize = pInfo->iOverflow + 4;
957 }
drh3aac2dd2004-04-26 14:10:20 +0000958}
danielk19771cc5ed82007-05-16 17:28:43 +0000959#define parseCell(pPage, iCell, pInfo) \
danielk197730548662009-07-09 05:07:37 +0000960 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
961static void btreeParseCell(
drh43605152004-05-29 21:46:49 +0000962 MemPage *pPage, /* Page containing the cell */
963 int iCell, /* The cell index. First cell is 0 */
964 CellInfo *pInfo /* Fill in this structure */
965){
danielk19771cc5ed82007-05-16 17:28:43 +0000966 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +0000967}
drh3aac2dd2004-04-26 14:10:20 +0000968
969/*
drh43605152004-05-29 21:46:49 +0000970** Compute the total number of bytes that a Cell needs in the cell
971** data area of the btree-page. The return number includes the cell
972** data header and the local payload, but not any overflow page or
973** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000974*/
danielk1977ae5558b2009-04-29 11:31:47 +0000975static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
976 u8 *pIter = &pCell[pPage->childPtrSize];
977 u32 nSize;
978
979#ifdef SQLITE_DEBUG
980 /* The value returned by this function should always be the same as
981 ** the (CellInfo.nSize) value found by doing a full parse of the
982 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
983 ** this function verifies that this invariant is not violated. */
984 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +0000985 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +0000986#endif
987
988 if( pPage->intKey ){
989 u8 *pEnd;
990 if( pPage->hasData ){
991 pIter += getVarint32(pIter, nSize);
992 }else{
993 nSize = 0;
994 }
995
996 /* pIter now points at the 64-bit integer key value, a variable length
997 ** integer. The following block moves pIter to point at the first byte
998 ** past the end of the key value. */
999 pEnd = &pIter[9];
1000 while( (*pIter++)&0x80 && pIter<pEnd );
1001 }else{
1002 pIter += getVarint32(pIter, nSize);
1003 }
1004
drh0a45c272009-07-08 01:49:11 +00001005 testcase( nSize==pPage->maxLocal );
1006 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001007 if( nSize>pPage->maxLocal ){
1008 int minLocal = pPage->minLocal;
1009 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001010 testcase( nSize==pPage->maxLocal );
1011 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001012 if( nSize>pPage->maxLocal ){
1013 nSize = minLocal;
1014 }
1015 nSize += 4;
1016 }
shane75ac1de2009-06-09 18:58:52 +00001017 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001018
1019 /* The minimum size of any cell is 4 bytes. */
1020 if( nSize<4 ){
1021 nSize = 4;
1022 }
1023
1024 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +00001025 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001026}
drh0ee3dbe2009-10-16 15:05:18 +00001027
1028#ifdef SQLITE_DEBUG
1029/* This variation on cellSizePtr() is used inside of assert() statements
1030** only. */
drha9121e42008-02-19 14:59:35 +00001031static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +00001032 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001033}
danielk1977bc6ada42004-06-30 08:20:16 +00001034#endif
drh3b7511c2001-05-26 13:15:44 +00001035
danielk197779a40da2005-01-16 08:00:01 +00001036#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001037/*
danielk197726836652005-01-17 01:33:13 +00001038** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001039** to an overflow page, insert an entry into the pointer-map
1040** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001041*/
drh98add2e2009-07-20 17:11:49 +00001042static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001043 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001044 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001045 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001046 btreeParseCellPtr(pPage, pCell, &info);
drhfa67c3c2008-07-11 02:21:40 +00001047 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +00001048 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001049 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001050 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001051 }
danielk1977ac11ee62005-01-15 12:45:51 +00001052}
danielk197779a40da2005-01-16 08:00:01 +00001053#endif
1054
danielk1977ac11ee62005-01-15 12:45:51 +00001055
drhda200cc2004-05-09 11:51:38 +00001056/*
drh72f82862001-05-24 21:06:34 +00001057** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001058** end of the page and all free space is collected into one
1059** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001060** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001061*/
shane0af3f892008-11-12 04:55:34 +00001062static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001063 int i; /* Loop counter */
1064 int pc; /* Address of a i-th cell */
drh43605152004-05-29 21:46:49 +00001065 int hdr; /* Offset to the page header */
1066 int size; /* Size of a cell */
1067 int usableSize; /* Number of usable bytes on a page */
1068 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001069 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001070 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001071 unsigned char *data; /* The page data */
1072 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001073 int iCellFirst; /* First allowable cell index */
1074 int iCellLast; /* Last possible cell index */
1075
drh2af926b2001-05-15 00:39:25 +00001076
danielk19773b8a05f2007-03-19 17:44:26 +00001077 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001078 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001079 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001080 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001081 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001082 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001083 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001084 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001085 cellOffset = pPage->cellOffset;
1086 nCell = pPage->nCell;
1087 assert( nCell==get2byte(&data[hdr+3]) );
1088 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001089 cbrk = get2byte(&data[hdr+5]);
1090 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1091 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001092 iCellFirst = cellOffset + 2*nCell;
1093 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001094 for(i=0; i<nCell; i++){
1095 u8 *pAddr; /* The i-th cell pointer */
1096 pAddr = &data[cellOffset + i*2];
1097 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001098 testcase( pc==iCellFirst );
1099 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001100#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001101 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001102 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1103 */
1104 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001105 return SQLITE_CORRUPT_BKPT;
1106 }
drh17146622009-07-07 17:38:38 +00001107#endif
1108 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001109 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001110 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001111#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1112 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001113 return SQLITE_CORRUPT_BKPT;
1114 }
drh17146622009-07-07 17:38:38 +00001115#else
1116 if( cbrk<iCellFirst || pc+size>usableSize ){
1117 return SQLITE_CORRUPT_BKPT;
1118 }
1119#endif
drh7157e1d2009-07-09 13:25:32 +00001120 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001121 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001122 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001123 memcpy(&data[cbrk], &temp[pc], size);
1124 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001125 }
drh17146622009-07-07 17:38:38 +00001126 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001127 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001128 data[hdr+1] = 0;
1129 data[hdr+2] = 0;
1130 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001131 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001132 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001133 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001134 return SQLITE_CORRUPT_BKPT;
1135 }
shane0af3f892008-11-12 04:55:34 +00001136 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001137}
1138
drha059ad02001-04-17 20:09:11 +00001139/*
danielk19776011a752009-04-01 16:25:32 +00001140** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001141** as the first argument. Write into *pIdx the index into pPage->aData[]
1142** of the first byte of allocated space. Return either SQLITE_OK or
1143** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001144**
drh0a45c272009-07-08 01:49:11 +00001145** The caller guarantees that there is sufficient space to make the
1146** allocation. This routine might need to defragment in order to bring
1147** all the space together, however. This routine will avoid using
1148** the first two bytes past the cell pointer area since presumably this
1149** allocation is being made in order to insert a new cell, so we will
1150** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001151*/
drh0a45c272009-07-08 01:49:11 +00001152static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001153 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1154 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1155 int nFrag; /* Number of fragmented bytes on pPage */
drh0a45c272009-07-08 01:49:11 +00001156 int top; /* First byte of cell content area */
1157 int gap; /* First byte of gap between cell pointers and cell content */
1158 int rc; /* Integer return code */
drh00ce3942009-12-06 03:35:51 +00001159 int usableSize; /* Usable size of the page */
drh43605152004-05-29 21:46:49 +00001160
danielk19773b8a05f2007-03-19 17:44:26 +00001161 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001162 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001163 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001164 assert( nByte>=0 ); /* Minimum cell size is 4 */
1165 assert( pPage->nFree>=nByte );
1166 assert( pPage->nOverflow==0 );
drh00ce3942009-12-06 03:35:51 +00001167 usableSize = pPage->pBt->usableSize;
1168 assert( nByte < usableSize-8 );
drh43605152004-05-29 21:46:49 +00001169
1170 nFrag = data[hdr+7];
drh0a45c272009-07-08 01:49:11 +00001171 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1172 gap = pPage->cellOffset + 2*pPage->nCell;
drh5d433ce2010-08-14 16:02:52 +00001173 top = get2byteNotZero(&data[hdr+5]);
drh7157e1d2009-07-09 13:25:32 +00001174 if( gap>top ) return SQLITE_CORRUPT_BKPT;
drh0a45c272009-07-08 01:49:11 +00001175 testcase( gap+2==top );
1176 testcase( gap+1==top );
1177 testcase( gap==top );
1178
danielk19776011a752009-04-01 16:25:32 +00001179 if( nFrag>=60 ){
drh0a45c272009-07-08 01:49:11 +00001180 /* Always defragment highly fragmented pages */
1181 rc = defragmentPage(pPage);
1182 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001183 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001184 }else if( gap+2<=top ){
danielk19776011a752009-04-01 16:25:32 +00001185 /* Search the freelist looking for a free slot big enough to satisfy
1186 ** the request. The allocation is made from the first free slot in
1187 ** the list that is large enough to accomadate it.
1188 */
1189 int pc, addr;
1190 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
drh00ce3942009-12-06 03:35:51 +00001191 int size; /* Size of the free slot */
1192 if( pc>usableSize-4 || pc<addr+4 ){
1193 return SQLITE_CORRUPT_BKPT;
1194 }
1195 size = get2byte(&data[pc+2]);
drh43605152004-05-29 21:46:49 +00001196 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001197 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001198 testcase( x==4 );
1199 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001200 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +00001201 /* Remove the slot from the free-list. Update the number of
1202 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001203 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +00001204 data[hdr+7] = (u8)(nFrag + x);
drh00ce3942009-12-06 03:35:51 +00001205 }else if( size+pc > usableSize ){
1206 return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00001207 }else{
danielk1977fad91942009-04-29 17:49:59 +00001208 /* The slot remains on the free-list. Reduce its size to account
1209 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001210 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001211 }
drh0a45c272009-07-08 01:49:11 +00001212 *pIdx = pc + x;
1213 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001214 }
drh9e572e62004-04-23 23:43:10 +00001215 }
1216 }
drh43605152004-05-29 21:46:49 +00001217
drh0a45c272009-07-08 01:49:11 +00001218 /* Check to make sure there is enough space in the gap to satisfy
1219 ** the allocation. If not, defragment.
1220 */
1221 testcase( gap+2+nByte==top );
1222 if( gap+2+nByte>top ){
1223 rc = defragmentPage(pPage);
1224 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001225 top = get2byteNotZero(&data[hdr+5]);
drh0a45c272009-07-08 01:49:11 +00001226 assert( gap+nByte<=top );
1227 }
1228
1229
drh43605152004-05-29 21:46:49 +00001230 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001231 ** and the cell content area. The btreeInitPage() call has already
1232 ** validated the freelist. Given that the freelist is valid, there
1233 ** is no way that the allocation can extend off the end of the page.
1234 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001235 */
drh0a45c272009-07-08 01:49:11 +00001236 top -= nByte;
drh43605152004-05-29 21:46:49 +00001237 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001238 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001239 *pIdx = top;
1240 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001241}
1242
1243/*
drh9e572e62004-04-23 23:43:10 +00001244** Return a section of the pPage->aData to the freelist.
1245** The first byte of the new free block is pPage->aDisk[start]
1246** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001247**
1248** Most of the effort here is involved in coalesing adjacent
1249** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001250*/
shanedcc50b72008-11-13 18:29:50 +00001251static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001252 int addr, pbegin, hdr;
drh0a45c272009-07-08 01:49:11 +00001253 int iLast; /* Largest possible freeblock offset */
drh9e572e62004-04-23 23:43:10 +00001254 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001255
drh9e572e62004-04-23 23:43:10 +00001256 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001257 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drhc046e3e2009-07-15 11:26:44 +00001258 assert( start>=pPage->hdrOffset+6+pPage->childPtrSize );
drhfcd71b62011-04-05 22:08:24 +00001259 assert( (start + size) <= (int)pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001260 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001261 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001262
drhc9166342012-01-05 23:32:06 +00001263 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001264 /* Overwrite deleted information with zeros when the secure_delete
1265 ** option is enabled */
1266 memset(&data[start], 0, size);
1267 }
drhfcce93f2006-02-22 03:08:32 +00001268
drh0a45c272009-07-08 01:49:11 +00001269 /* Add the space back into the linked list of freeblocks. Note that
danielk197730548662009-07-09 05:07:37 +00001270 ** even though the freeblock list was checked by btreeInitPage(),
1271 ** btreeInitPage() did not detect overlapping cells or
drhb908d762009-07-08 16:54:40 +00001272 ** freeblocks that overlapped cells. Nor does it detect when the
1273 ** cell content area exceeds the value in the page header. If these
1274 ** situations arise, then subsequent insert operations might corrupt
1275 ** the freelist. So we do need to check for corruption while scanning
1276 ** the freelist.
drh0a45c272009-07-08 01:49:11 +00001277 */
drh43605152004-05-29 21:46:49 +00001278 hdr = pPage->hdrOffset;
1279 addr = hdr + 1;
drh0a45c272009-07-08 01:49:11 +00001280 iLast = pPage->pBt->usableSize - 4;
drh35a25da2009-07-08 15:14:50 +00001281 assert( start<=iLast );
drh3aac2dd2004-04-26 14:10:20 +00001282 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drh35a25da2009-07-08 15:14:50 +00001283 if( pbegin<addr+4 ){
shanedcc50b72008-11-13 18:29:50 +00001284 return SQLITE_CORRUPT_BKPT;
1285 }
drh3aac2dd2004-04-26 14:10:20 +00001286 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001287 }
drh0a45c272009-07-08 01:49:11 +00001288 if( pbegin>iLast ){
shanedcc50b72008-11-13 18:29:50 +00001289 return SQLITE_CORRUPT_BKPT;
1290 }
drh3aac2dd2004-04-26 14:10:20 +00001291 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001292 put2byte(&data[addr], start);
1293 put2byte(&data[start], pbegin);
1294 put2byte(&data[start+2], size);
shane36840fd2009-06-26 16:32:13 +00001295 pPage->nFree = pPage->nFree + (u16)size;
drh9e572e62004-04-23 23:43:10 +00001296
1297 /* Coalesce adjacent free blocks */
drh0a45c272009-07-08 01:49:11 +00001298 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001299 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001300 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001301 assert( pbegin>addr );
drhfcd71b62011-04-05 22:08:24 +00001302 assert( pbegin <= (int)pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001303 pnext = get2byte(&data[pbegin]);
1304 psize = get2byte(&data[pbegin+2]);
1305 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1306 int frag = pnext - (pbegin+psize);
drh0a45c272009-07-08 01:49:11 +00001307 if( (frag<0) || (frag>(int)data[hdr+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001308 return SQLITE_CORRUPT_BKPT;
1309 }
drh0a45c272009-07-08 01:49:11 +00001310 data[hdr+7] -= (u8)frag;
drhf49661a2008-12-10 16:45:50 +00001311 x = get2byte(&data[pnext]);
1312 put2byte(&data[pbegin], x);
1313 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1314 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001315 }else{
drh3aac2dd2004-04-26 14:10:20 +00001316 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001317 }
1318 }
drh7e3b0a02001-04-28 16:52:40 +00001319
drh43605152004-05-29 21:46:49 +00001320 /* If the cell content area begins with a freeblock, remove it. */
1321 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1322 int top;
1323 pbegin = get2byte(&data[hdr+1]);
1324 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001325 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1326 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001327 }
drhc5053fb2008-11-27 02:22:10 +00001328 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001329 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001330}
1331
1332/*
drh271efa52004-05-30 19:19:05 +00001333** Decode the flags byte (the first byte of the header) for a page
1334** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001335**
1336** Only the following combinations are supported. Anything different
1337** indicates a corrupt database files:
1338**
1339** PTF_ZERODATA
1340** PTF_ZERODATA | PTF_LEAF
1341** PTF_LEAFDATA | PTF_INTKEY
1342** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001343*/
drh44845222008-07-17 18:39:57 +00001344static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001345 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001346
1347 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001348 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001349 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001350 flagByte &= ~PTF_LEAF;
1351 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001352 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001353 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1354 pPage->intKey = 1;
1355 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001356 pPage->maxLocal = pBt->maxLeaf;
1357 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001358 }else if( flagByte==PTF_ZERODATA ){
1359 pPage->intKey = 0;
1360 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001361 pPage->maxLocal = pBt->maxLocal;
1362 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001363 }else{
1364 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001365 }
drhc9166342012-01-05 23:32:06 +00001366 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001367 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001368}
1369
1370/*
drh7e3b0a02001-04-28 16:52:40 +00001371** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001372**
1373** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001374** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001375** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1376** guarantee that the page is well-formed. It only shows that
1377** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001378*/
danielk197730548662009-07-09 05:07:37 +00001379static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001380
danielk197771d5d2c2008-09-29 11:49:47 +00001381 assert( pPage->pBt!=0 );
1382 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001383 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001384 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1385 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001386
1387 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001388 u16 pc; /* Address of a freeblock within pPage->aData[] */
1389 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001390 u8 *data; /* Equal to pPage->aData */
1391 BtShared *pBt; /* The main btree structure */
drhb2eced52010-08-12 02:41:12 +00001392 int usableSize; /* Amount of usable space on each page */
shaneh1df2db72010-08-18 02:28:48 +00001393 u16 cellOffset; /* Offset from start of page to first cell pointer */
drhb2eced52010-08-12 02:41:12 +00001394 int nFree; /* Number of unused bytes on the page */
1395 int top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001396 int iCellFirst; /* First allowable cell or freeblock offset */
1397 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001398
1399 pBt = pPage->pBt;
1400
danielk1977eaa06f62008-09-18 17:34:44 +00001401 hdr = pPage->hdrOffset;
1402 data = pPage->aData;
1403 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
drhb2eced52010-08-12 02:41:12 +00001404 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1405 pPage->maskPage = (u16)(pBt->pageSize - 1);
danielk1977eaa06f62008-09-18 17:34:44 +00001406 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001407 usableSize = pBt->usableSize;
1408 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
drh3def2352011-11-11 00:27:15 +00001409 pPage->aDataEnd = &data[usableSize];
1410 pPage->aCellIdx = &data[cellOffset];
drh5d433ce2010-08-14 16:02:52 +00001411 top = get2byteNotZero(&data[hdr+5]);
danielk1977eaa06f62008-09-18 17:34:44 +00001412 pPage->nCell = get2byte(&data[hdr+3]);
1413 if( pPage->nCell>MX_CELL(pBt) ){
1414 /* To many cells for a single page. The page must be corrupt */
1415 return SQLITE_CORRUPT_BKPT;
1416 }
drhb908d762009-07-08 16:54:40 +00001417 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001418
shane5eff7cf2009-08-10 03:57:58 +00001419 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001420 ** of page when parsing a cell.
1421 **
1422 ** The following block of code checks early to see if a cell extends
1423 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1424 ** returned if it does.
1425 */
drh0a45c272009-07-08 01:49:11 +00001426 iCellFirst = cellOffset + 2*pPage->nCell;
1427 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001428#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001429 {
drh69e931e2009-06-03 21:04:35 +00001430 int i; /* Index into the cell pointer array */
1431 int sz; /* Size of a cell */
1432
drh69e931e2009-06-03 21:04:35 +00001433 if( !pPage->leaf ) iCellLast--;
1434 for(i=0; i<pPage->nCell; i++){
1435 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001436 testcase( pc==iCellFirst );
1437 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001438 if( pc<iCellFirst || pc>iCellLast ){
1439 return SQLITE_CORRUPT_BKPT;
1440 }
1441 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001442 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001443 if( pc+sz>usableSize ){
1444 return SQLITE_CORRUPT_BKPT;
1445 }
1446 }
drh0a45c272009-07-08 01:49:11 +00001447 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001448 }
1449#endif
1450
danielk1977eaa06f62008-09-18 17:34:44 +00001451 /* Compute the total free space on the page */
1452 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001453 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001454 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001455 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001456 if( pc<iCellFirst || pc>iCellLast ){
dan4361e792009-08-14 17:01:22 +00001457 /* Start of free block is off the page */
danielk1977eaa06f62008-09-18 17:34:44 +00001458 return SQLITE_CORRUPT_BKPT;
1459 }
1460 next = get2byte(&data[pc]);
1461 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001462 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1463 /* Free blocks must be in ascending order. And the last byte of
drhf2f105d2012-08-20 15:53:54 +00001464 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001465 return SQLITE_CORRUPT_BKPT;
1466 }
shane85095702009-06-15 16:27:08 +00001467 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001468 pc = next;
1469 }
danielk197793c829c2009-06-03 17:26:17 +00001470
1471 /* At this point, nFree contains the sum of the offset to the start
1472 ** of the cell-content area plus the number of free bytes within
1473 ** the cell-content area. If this is greater than the usable-size
1474 ** of the page, then the page must be corrupted. This check also
1475 ** serves to verify that the offset to the start of the cell-content
1476 ** area, according to the page header, lies within the page.
1477 */
1478 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001479 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001480 }
shane5eff7cf2009-08-10 03:57:58 +00001481 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001482 pPage->isInit = 1;
1483 }
drh9e572e62004-04-23 23:43:10 +00001484 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001485}
1486
1487/*
drh8b2f49b2001-06-08 00:21:52 +00001488** Set up a raw page so that it looks like a database page holding
1489** no entries.
drhbd03cae2001-06-02 02:40:57 +00001490*/
drh9e572e62004-04-23 23:43:10 +00001491static void zeroPage(MemPage *pPage, int flags){
1492 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001493 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001494 u8 hdr = pPage->hdrOffset;
1495 u16 first;
drh9e572e62004-04-23 23:43:10 +00001496
danielk19773b8a05f2007-03-19 17:44:26 +00001497 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001498 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1499 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001500 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001501 assert( sqlite3_mutex_held(pBt->mutex) );
drhc9166342012-01-05 23:32:06 +00001502 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00001503 memset(&data[hdr], 0, pBt->usableSize - hdr);
1504 }
drh1bd10f82008-12-10 21:19:56 +00001505 data[hdr] = (char)flags;
1506 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001507 memset(&data[hdr+1], 0, 4);
1508 data[hdr+7] = 0;
1509 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00001510 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00001511 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001512 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001513 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00001514 pPage->aDataEnd = &data[pBt->usableSize];
1515 pPage->aCellIdx = &data[first];
drh43605152004-05-29 21:46:49 +00001516 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00001517 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1518 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00001519 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001520 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001521}
1522
drh897a8202008-09-18 01:08:15 +00001523
1524/*
1525** Convert a DbPage obtained from the pager into a MemPage used by
1526** the btree layer.
1527*/
1528static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1529 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1530 pPage->aData = sqlite3PagerGetData(pDbPage);
1531 pPage->pDbPage = pDbPage;
1532 pPage->pBt = pBt;
1533 pPage->pgno = pgno;
1534 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1535 return pPage;
1536}
1537
drhbd03cae2001-06-02 02:40:57 +00001538/*
drh3aac2dd2004-04-26 14:10:20 +00001539** Get a page from the pager. Initialize the MemPage.pBt and
1540** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001541**
1542** If the noContent flag is set, it means that we do not care about
1543** the content of the page at this time. So do not go to the disk
1544** to fetch the content. Just fill in the content with zeros for now.
1545** If in the future we call sqlite3PagerWrite() on this page, that
1546** means we have started to be concerned about content and the disk
1547** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001548*/
danielk197730548662009-07-09 05:07:37 +00001549static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001550 BtShared *pBt, /* The btree */
1551 Pgno pgno, /* Number of the page to fetch */
1552 MemPage **ppPage, /* Return the page in this parameter */
1553 int noContent /* Do not load page content if true */
1554){
drh3aac2dd2004-04-26 14:10:20 +00001555 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001556 DbPage *pDbPage;
1557
drh1fee73e2007-08-29 04:00:57 +00001558 assert( sqlite3_mutex_held(pBt->mutex) );
drh538f5702007-04-13 02:14:30 +00001559 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
drh3aac2dd2004-04-26 14:10:20 +00001560 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001561 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001562 return SQLITE_OK;
1563}
1564
1565/*
danielk1977bea2a942009-01-20 17:06:27 +00001566** Retrieve a page from the pager cache. If the requested page is not
1567** already in the pager cache return NULL. Initialize the MemPage.pBt and
1568** MemPage.aData elements if needed.
1569*/
1570static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1571 DbPage *pDbPage;
1572 assert( sqlite3_mutex_held(pBt->mutex) );
1573 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1574 if( pDbPage ){
1575 return btreePageFromDbPage(pDbPage, pgno, pBt);
1576 }
1577 return 0;
1578}
1579
1580/*
danielk197789d40042008-11-17 14:20:56 +00001581** Return the size of the database file in pages. If there is any kind of
1582** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001583*/
drhb1299152010-03-30 22:58:33 +00001584static Pgno btreePagecount(BtShared *pBt){
1585 return pBt->nPage;
1586}
1587u32 sqlite3BtreeLastPage(Btree *p){
1588 assert( sqlite3BtreeHoldsMutex(p) );
1589 assert( ((p->pBt->nPage)&0x8000000)==0 );
1590 return (int)btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001591}
1592
1593/*
danielk197789bc4bc2009-07-21 19:25:24 +00001594** Get a page from the pager and initialize it. This routine is just a
1595** convenience wrapper around separate calls to btreeGetPage() and
1596** btreeInitPage().
1597**
1598** If an error occurs, then the value *ppPage is set to is undefined. It
1599** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001600*/
1601static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001602 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001603 Pgno pgno, /* Number of the page to get */
danielk197771d5d2c2008-09-29 11:49:47 +00001604 MemPage **ppPage /* Write the page pointer here */
drhde647132004-05-07 17:57:49 +00001605){
1606 int rc;
drh1fee73e2007-08-29 04:00:57 +00001607 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789bc4bc2009-07-21 19:25:24 +00001608
danba3cbf32010-06-30 04:29:03 +00001609 if( pgno>btreePagecount(pBt) ){
1610 rc = SQLITE_CORRUPT_BKPT;
1611 }else{
1612 rc = btreeGetPage(pBt, pgno, ppPage, 0);
1613 if( rc==SQLITE_OK ){
1614 rc = btreeInitPage(*ppPage);
1615 if( rc!=SQLITE_OK ){
1616 releasePage(*ppPage);
1617 }
danielk197789bc4bc2009-07-21 19:25:24 +00001618 }
drhee696e22004-08-30 16:52:17 +00001619 }
danba3cbf32010-06-30 04:29:03 +00001620
1621 testcase( pgno==0 );
1622 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00001623 return rc;
1624}
1625
1626/*
drh3aac2dd2004-04-26 14:10:20 +00001627** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001628** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001629*/
drh4b70f112004-05-02 21:12:19 +00001630static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001631 if( pPage ){
1632 assert( pPage->aData );
1633 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001634 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1635 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001636 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001637 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001638 }
1639}
1640
1641/*
drha6abd042004-06-09 17:37:22 +00001642** During a rollback, when the pager reloads information into the cache
1643** so that the cache is restored to its original state at the start of
1644** the transaction, for each page restored this routine is called.
1645**
1646** This routine needs to reset the extra data section at the end of the
1647** page to agree with the restored data.
1648*/
danielk1977eaa06f62008-09-18 17:34:44 +00001649static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001650 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001651 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001652 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001653 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001654 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001655 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001656 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001657 /* pPage might not be a btree page; it might be an overflow page
1658 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001659 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001660 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001661 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001662 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001663 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001664 }
drha6abd042004-06-09 17:37:22 +00001665 }
1666}
1667
1668/*
drhe5fe6902007-12-07 18:55:28 +00001669** Invoke the busy handler for a btree.
1670*/
danielk19771ceedd32008-11-19 10:22:33 +00001671static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001672 BtShared *pBt = (BtShared*)pArg;
1673 assert( pBt->db );
1674 assert( sqlite3_mutex_held(pBt->db->mutex) );
1675 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1676}
1677
1678/*
drhad3e0102004-09-03 23:32:18 +00001679** Open a database file.
1680**
drh382c0242001-10-06 16:33:02 +00001681** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00001682** then an ephemeral database is created. The ephemeral database might
1683** be exclusively in memory, or it might use a disk-based memory cache.
1684** Either way, the ephemeral database will be automatically deleted
1685** when sqlite3BtreeClose() is called.
1686**
drhe53831d2007-08-17 01:14:38 +00001687** If zFilename is ":memory:" then an in-memory database is created
1688** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001689**
drh33f111d2012-01-17 15:29:14 +00001690** The "flags" parameter is a bitmask that might contain bits like
1691** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00001692**
drhc47fd8e2009-04-30 13:30:32 +00001693** If the database is already opened in the same database connection
1694** and we are in shared cache mode, then the open will fail with an
1695** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1696** objects in the same database connection since doing so will lead
1697** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001698*/
drh23e11ca2004-05-04 17:27:28 +00001699int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00001700 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00001701 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001702 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001703 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001704 int flags, /* Options */
1705 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001706){
drh7555d8e2009-03-20 13:15:30 +00001707 BtShared *pBt = 0; /* Shared part of btree structure */
1708 Btree *p; /* Handle to return */
1709 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1710 int rc = SQLITE_OK; /* Result code from this function */
1711 u8 nReserve; /* Byte of unused space on each page */
1712 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001713
drh75c014c2010-08-30 15:02:28 +00001714 /* True if opening an ephemeral, temporary database */
1715 const int isTempDb = zFilename==0 || zFilename[0]==0;
1716
danielk1977aef0bf62005-12-30 16:28:01 +00001717 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00001718 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00001719 */
drhb0a7c9c2010-12-06 21:09:59 +00001720#ifdef SQLITE_OMIT_MEMORYDB
1721 const int isMemdb = 0;
1722#else
1723 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00001724 || (isTempDb && sqlite3TempInMemory(db))
1725 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00001726#endif
1727
drhe5fe6902007-12-07 18:55:28 +00001728 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00001729 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00001730 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00001731 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
1732
1733 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
1734 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
1735
1736 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
1737 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00001738
drh75c014c2010-08-30 15:02:28 +00001739 if( isMemdb ){
1740 flags |= BTREE_MEMORY;
1741 }
1742 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
1743 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
1744 }
drh17435752007-08-16 04:30:38 +00001745 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001746 if( !p ){
1747 return SQLITE_NOMEM;
1748 }
1749 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001750 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001751#ifndef SQLITE_OMIT_SHARED_CACHE
1752 p->lock.pBtree = p;
1753 p->lock.iTable = 1;
1754#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001755
drh198bf392006-01-06 21:52:49 +00001756#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001757 /*
1758 ** If this Btree is a candidate for shared cache, try to find an
1759 ** existing BtShared object that we can share with
1760 */
drh4ab9d252012-05-26 20:08:49 +00001761 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00001762 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
danielk1977adfb9b02007-09-17 07:02:56 +00001763 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001764 char *zFullPathname = sqlite3Malloc(nFullPathname);
drh30ddce62011-10-15 00:16:30 +00001765 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhff0587c2007-08-29 17:43:19 +00001766 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00001767 if( !zFullPathname ){
1768 sqlite3_free(p);
1769 return SQLITE_NOMEM;
1770 }
drhafc8b7f2012-05-26 18:06:38 +00001771 if( isMemdb ){
1772 memcpy(zFullPathname, zFilename, sqlite3Strlen30(zFilename)+1);
1773 }else{
1774 rc = sqlite3OsFullPathname(pVfs, zFilename,
1775 nFullPathname, zFullPathname);
1776 if( rc ){
1777 sqlite3_free(zFullPathname);
1778 sqlite3_free(p);
1779 return rc;
1780 }
drh070ad6b2011-11-17 11:43:19 +00001781 }
drh30ddce62011-10-15 00:16:30 +00001782#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00001783 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1784 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001785 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001786 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00001787#endif
drh78f82d12008-09-02 00:52:52 +00001788 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001789 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00001790 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00001791 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001792 int iDb;
1793 for(iDb=db->nDb-1; iDb>=0; iDb--){
1794 Btree *pExisting = db->aDb[iDb].pBt;
1795 if( pExisting && pExisting->pBt==pBt ){
1796 sqlite3_mutex_leave(mutexShared);
1797 sqlite3_mutex_leave(mutexOpen);
1798 sqlite3_free(zFullPathname);
1799 sqlite3_free(p);
1800 return SQLITE_CONSTRAINT;
1801 }
1802 }
drhff0587c2007-08-29 17:43:19 +00001803 p->pBt = pBt;
1804 pBt->nRef++;
1805 break;
1806 }
1807 }
1808 sqlite3_mutex_leave(mutexShared);
1809 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001810 }
drhff0587c2007-08-29 17:43:19 +00001811#ifdef SQLITE_DEBUG
1812 else{
1813 /* In debug mode, we mark all persistent databases as sharable
1814 ** even when they are not. This exercises the locking code and
1815 ** gives more opportunity for asserts(sqlite3_mutex_held())
1816 ** statements to find locking problems.
1817 */
1818 p->sharable = 1;
1819 }
1820#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001821 }
1822#endif
drha059ad02001-04-17 20:09:11 +00001823 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001824 /*
1825 ** The following asserts make sure that structures used by the btree are
1826 ** the right size. This is to guard against size changes that result
1827 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001828 */
drhe53831d2007-08-17 01:14:38 +00001829 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1830 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1831 assert( sizeof(u32)==4 );
1832 assert( sizeof(u16)==2 );
1833 assert( sizeof(Pgno)==4 );
1834
1835 pBt = sqlite3MallocZero( sizeof(*pBt) );
1836 if( pBt==0 ){
1837 rc = SQLITE_NOMEM;
1838 goto btree_open_out;
1839 }
danielk197771d5d2c2008-09-29 11:49:47 +00001840 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00001841 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00001842 if( rc==SQLITE_OK ){
1843 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1844 }
1845 if( rc!=SQLITE_OK ){
1846 goto btree_open_out;
1847 }
shanehbd2aaf92010-09-01 02:38:21 +00001848 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00001849 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001850 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001851 p->pBt = pBt;
1852
drhe53831d2007-08-17 01:14:38 +00001853 pBt->pCursor = 0;
1854 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00001855 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drh5b47efa2010-02-12 18:18:39 +00001856#ifdef SQLITE_SECURE_DELETE
drhc9166342012-01-05 23:32:06 +00001857 pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00001858#endif
drhb2eced52010-08-12 02:41:12 +00001859 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00001860 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1861 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001862 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001863#ifndef SQLITE_OMIT_AUTOVACUUM
1864 /* If the magic name ":memory:" will create an in-memory database, then
1865 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1866 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1867 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1868 ** regular file-name. In this case the auto-vacuum applies as per normal.
1869 */
1870 if( zFilename && !isMemdb ){
1871 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1872 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1873 }
1874#endif
1875 nReserve = 0;
1876 }else{
1877 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00001878 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00001879#ifndef SQLITE_OMIT_AUTOVACUUM
1880 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1881 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1882#endif
1883 }
drhfa9601a2009-06-18 17:22:39 +00001884 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001885 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001886 pBt->usableSize = pBt->pageSize - nReserve;
1887 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001888
1889#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1890 /* Add the new BtShared object to the linked list sharable BtShareds.
1891 */
1892 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00001893 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drhe53831d2007-08-17 01:14:38 +00001894 pBt->nRef = 1;
drh30ddce62011-10-15 00:16:30 +00001895 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00001896 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001897 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001898 if( pBt->mutex==0 ){
1899 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001900 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001901 goto btree_open_out;
1902 }
drhff0587c2007-08-29 17:43:19 +00001903 }
drhe53831d2007-08-17 01:14:38 +00001904 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001905 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1906 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001907 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001908 }
drheee46cf2004-11-06 00:02:48 +00001909#endif
drh90f5ecb2004-07-22 01:19:35 +00001910 }
danielk1977aef0bf62005-12-30 16:28:01 +00001911
drhcfed7bc2006-03-13 14:28:05 +00001912#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001913 /* If the new Btree uses a sharable pBtShared, then link the new
1914 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001915 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001916 */
drhe53831d2007-08-17 01:14:38 +00001917 if( p->sharable ){
1918 int i;
1919 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001920 for(i=0; i<db->nDb; i++){
1921 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001922 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1923 if( p->pBt<pSib->pBt ){
1924 p->pNext = pSib;
1925 p->pPrev = 0;
1926 pSib->pPrev = p;
1927 }else{
drhabddb0c2007-08-20 13:14:28 +00001928 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001929 pSib = pSib->pNext;
1930 }
1931 p->pNext = pSib->pNext;
1932 p->pPrev = pSib;
1933 if( p->pNext ){
1934 p->pNext->pPrev = p;
1935 }
1936 pSib->pNext = p;
1937 }
1938 break;
1939 }
1940 }
danielk1977aef0bf62005-12-30 16:28:01 +00001941 }
danielk1977aef0bf62005-12-30 16:28:01 +00001942#endif
1943 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001944
1945btree_open_out:
1946 if( rc!=SQLITE_OK ){
1947 if( pBt && pBt->pPager ){
1948 sqlite3PagerClose(pBt->pPager);
1949 }
drh17435752007-08-16 04:30:38 +00001950 sqlite3_free(pBt);
1951 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001952 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00001953 }else{
1954 /* If the B-Tree was successfully opened, set the pager-cache size to the
1955 ** default value. Except, when opening on an existing shared pager-cache,
1956 ** do not change the pager-cache size.
1957 */
1958 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
1959 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
1960 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001961 }
drh7555d8e2009-03-20 13:15:30 +00001962 if( mutexOpen ){
1963 assert( sqlite3_mutex_held(mutexOpen) );
1964 sqlite3_mutex_leave(mutexOpen);
1965 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001966 return rc;
drha059ad02001-04-17 20:09:11 +00001967}
1968
1969/*
drhe53831d2007-08-17 01:14:38 +00001970** Decrement the BtShared.nRef counter. When it reaches zero,
1971** remove the BtShared structure from the sharing list. Return
1972** true if the BtShared.nRef counter reaches zero and return
1973** false if it is still positive.
1974*/
1975static int removeFromSharingList(BtShared *pBt){
1976#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00001977 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00001978 BtShared *pList;
1979 int removed = 0;
1980
drhd677b3d2007-08-20 22:48:41 +00001981 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00001982 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00001983 sqlite3_mutex_enter(pMaster);
1984 pBt->nRef--;
1985 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00001986 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
1987 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00001988 }else{
drh78f82d12008-09-02 00:52:52 +00001989 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00001990 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00001991 pList=pList->pNext;
1992 }
drh34004ce2008-07-11 16:15:17 +00001993 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00001994 pList->pNext = pBt->pNext;
1995 }
1996 }
drh3285db22007-09-03 22:00:39 +00001997 if( SQLITE_THREADSAFE ){
1998 sqlite3_mutex_free(pBt->mutex);
1999 }
drhe53831d2007-08-17 01:14:38 +00002000 removed = 1;
2001 }
2002 sqlite3_mutex_leave(pMaster);
2003 return removed;
2004#else
2005 return 1;
2006#endif
2007}
2008
2009/*
drhf7141992008-06-19 00:16:08 +00002010** Make sure pBt->pTmpSpace points to an allocation of
2011** MX_CELL_SIZE(pBt) bytes.
2012*/
2013static void allocateTempSpace(BtShared *pBt){
2014 if( !pBt->pTmpSpace ){
2015 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2016 }
2017}
2018
2019/*
2020** Free the pBt->pTmpSpace allocation
2021*/
2022static void freeTempSpace(BtShared *pBt){
2023 sqlite3PageFree( pBt->pTmpSpace);
2024 pBt->pTmpSpace = 0;
2025}
2026
2027/*
drha059ad02001-04-17 20:09:11 +00002028** Close an open database and invalidate all cursors.
2029*/
danielk1977aef0bf62005-12-30 16:28:01 +00002030int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002031 BtShared *pBt = p->pBt;
2032 BtCursor *pCur;
2033
danielk1977aef0bf62005-12-30 16:28:01 +00002034 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002035 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002036 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002037 pCur = pBt->pCursor;
2038 while( pCur ){
2039 BtCursor *pTmp = pCur;
2040 pCur = pCur->pNext;
2041 if( pTmp->pBtree==p ){
2042 sqlite3BtreeCloseCursor(pTmp);
2043 }
drha059ad02001-04-17 20:09:11 +00002044 }
danielk1977aef0bf62005-12-30 16:28:01 +00002045
danielk19778d34dfd2006-01-24 16:37:57 +00002046 /* Rollback any active transaction and free the handle structure.
2047 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2048 ** this handle.
2049 */
drh0f198a72012-02-13 16:43:16 +00002050 sqlite3BtreeRollback(p, SQLITE_OK);
drhe53831d2007-08-17 01:14:38 +00002051 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002052
danielk1977aef0bf62005-12-30 16:28:01 +00002053 /* If there are still other outstanding references to the shared-btree
2054 ** structure, return now. The remainder of this procedure cleans
2055 ** up the shared-btree.
2056 */
drhe53831d2007-08-17 01:14:38 +00002057 assert( p->wantToLock==0 && p->locked==0 );
2058 if( !p->sharable || removeFromSharingList(pBt) ){
2059 /* The pBt is no longer on the sharing list, so we can access
2060 ** it without having to hold the mutex.
2061 **
2062 ** Clean out and delete the BtShared object.
2063 */
2064 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00002065 sqlite3PagerClose(pBt->pPager);
2066 if( pBt->xFreeSchema && pBt->pSchema ){
2067 pBt->xFreeSchema(pBt->pSchema);
2068 }
drhb9755982010-07-24 16:34:37 +00002069 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002070 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002071 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002072 }
2073
drhe53831d2007-08-17 01:14:38 +00002074#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002075 assert( p->wantToLock==0 );
2076 assert( p->locked==0 );
2077 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2078 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002079#endif
2080
drhe53831d2007-08-17 01:14:38 +00002081 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002082 return SQLITE_OK;
2083}
2084
2085/*
drhda47d772002-12-02 04:25:19 +00002086** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002087**
2088** The maximum number of cache pages is set to the absolute
2089** value of mxPage. If mxPage is negative, the pager will
2090** operate asynchronously - it will not stop to do fsync()s
2091** to insure data is written to the disk surface before
2092** continuing. Transactions still work if synchronous is off,
2093** and the database cannot be corrupted if this program
2094** crashes. But if the operating system crashes or there is
2095** an abrupt power failure when synchronous is off, the database
2096** could be left in an inconsistent and unrecoverable state.
2097** Synchronous is on by default so database corruption is not
2098** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002099*/
danielk1977aef0bf62005-12-30 16:28:01 +00002100int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2101 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002102 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002103 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002104 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002105 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002106 return SQLITE_OK;
2107}
2108
2109/*
drh973b6e32003-02-12 14:09:42 +00002110** Change the way data is synced to disk in order to increase or decrease
2111** how well the database resists damage due to OS crashes and power
2112** failures. Level 1 is the same as asynchronous (no syncs() occur and
2113** there is a high probability of damage) Level 2 is the default. There
2114** is a very low but non-zero probability of damage. Level 3 reduces the
2115** probability of damage to near zero but with a write performance reduction.
2116*/
danielk197793758c82005-01-21 08:13:14 +00002117#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhc97d8462010-11-19 18:23:35 +00002118int sqlite3BtreeSetSafetyLevel(
2119 Btree *p, /* The btree to set the safety level on */
2120 int level, /* PRAGMA synchronous. 1=OFF, 2=NORMAL, 3=FULL */
2121 int fullSync, /* PRAGMA fullfsync. */
2122 int ckptFullSync /* PRAGMA checkpoint_fullfync */
2123){
danielk1977aef0bf62005-12-30 16:28:01 +00002124 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002125 assert( sqlite3_mutex_held(p->db->mutex) );
drhc97d8462010-11-19 18:23:35 +00002126 assert( level>=1 && level<=3 );
drhd677b3d2007-08-20 22:48:41 +00002127 sqlite3BtreeEnter(p);
drhc97d8462010-11-19 18:23:35 +00002128 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync, ckptFullSync);
drhd677b3d2007-08-20 22:48:41 +00002129 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002130 return SQLITE_OK;
2131}
danielk197793758c82005-01-21 08:13:14 +00002132#endif
drh973b6e32003-02-12 14:09:42 +00002133
drh2c8997b2005-08-27 16:36:48 +00002134/*
2135** Return TRUE if the given btree is set to safety level 1. In other
2136** words, return TRUE if no sync() occurs on the disk files.
2137*/
danielk1977aef0bf62005-12-30 16:28:01 +00002138int sqlite3BtreeSyncDisabled(Btree *p){
2139 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002140 int rc;
drhe5fe6902007-12-07 18:55:28 +00002141 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002142 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002143 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002144 rc = sqlite3PagerNosync(pBt->pPager);
2145 sqlite3BtreeLeave(p);
2146 return rc;
drh2c8997b2005-08-27 16:36:48 +00002147}
2148
drh973b6e32003-02-12 14:09:42 +00002149/*
drh90f5ecb2004-07-22 01:19:35 +00002150** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002151** Or, if the page size has already been fixed, return SQLITE_READONLY
2152** without changing anything.
drh06f50212004-11-02 14:24:33 +00002153**
2154** The page size must be a power of 2 between 512 and 65536. If the page
2155** size supplied does not meet this constraint then the page size is not
2156** changed.
2157**
2158** Page sizes are constrained to be a power of two so that the region
2159** of the database file used for locking (beginning at PENDING_BYTE,
2160** the first byte past the 1GB boundary, 0x40000000) needs to occur
2161** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002162**
2163** If parameter nReserve is less than zero, then the number of reserved
2164** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002165**
drhc9166342012-01-05 23:32:06 +00002166** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002167** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002168*/
drhce4869f2009-04-02 20:16:58 +00002169int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002170 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002171 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002172 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002173 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002174 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002175 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002176 return SQLITE_READONLY;
2177 }
2178 if( nReserve<0 ){
2179 nReserve = pBt->pageSize - pBt->usableSize;
2180 }
drhf49661a2008-12-10 16:45:50 +00002181 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002182 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2183 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002184 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002185 assert( !pBt->pPage1 && !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002186 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002187 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002188 }
drhfa9601a2009-06-18 17:22:39 +00002189 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002190 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002191 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002192 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002193 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002194}
2195
2196/*
2197** Return the currently defined page size
2198*/
danielk1977aef0bf62005-12-30 16:28:01 +00002199int sqlite3BtreeGetPageSize(Btree *p){
2200 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002201}
drh7f751222009-03-17 22:33:00 +00002202
drha1f38532012-10-01 12:44:26 +00002203#if defined(SQLITE_HAS_CODEC) || defined(SQLITE_DEBUG)
dan0094f372012-09-28 20:23:42 +00002204/*
2205** This function is similar to sqlite3BtreeGetReserve(), except that it
2206** may only be called if it is guaranteed that the b-tree mutex is already
2207** held.
2208**
2209** This is useful in one special case in the backup API code where it is
2210** known that the shared b-tree mutex is held, but the mutex on the
2211** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2212** were to be called, it might collide with some other operation on the
2213** database handle that owns *p, causing undefined behaviour.
2214*/
2215int sqlite3BtreeGetReserveNoMutex(Btree *p){
2216 assert( sqlite3_mutex_held(p->pBt->mutex) );
2217 return p->pBt->pageSize - p->pBt->usableSize;
2218}
drha1f38532012-10-01 12:44:26 +00002219#endif /* SQLITE_HAS_CODEC || SQLITE_DEBUG */
dan0094f372012-09-28 20:23:42 +00002220
danbb2b4412011-04-06 17:54:31 +00002221#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh7f751222009-03-17 22:33:00 +00002222/*
2223** Return the number of bytes of space at the end of every page that
2224** are intentually left unused. This is the "reserved" space that is
2225** sometimes used by extensions.
2226*/
danielk1977aef0bf62005-12-30 16:28:01 +00002227int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002228 int n;
2229 sqlite3BtreeEnter(p);
2230 n = p->pBt->pageSize - p->pBt->usableSize;
2231 sqlite3BtreeLeave(p);
2232 return n;
drh2011d5f2004-07-22 02:40:37 +00002233}
drhf8e632b2007-05-08 14:51:36 +00002234
2235/*
2236** Set the maximum page count for a database if mxPage is positive.
2237** No changes are made if mxPage is 0 or negative.
2238** Regardless of the value of mxPage, return the maximum page count.
2239*/
2240int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002241 int n;
2242 sqlite3BtreeEnter(p);
2243 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2244 sqlite3BtreeLeave(p);
2245 return n;
drhf8e632b2007-05-08 14:51:36 +00002246}
drh5b47efa2010-02-12 18:18:39 +00002247
2248/*
drhc9166342012-01-05 23:32:06 +00002249** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2250** then make no changes. Always return the value of the BTS_SECURE_DELETE
drh5b47efa2010-02-12 18:18:39 +00002251** setting after the change.
2252*/
2253int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2254 int b;
drhaf034ed2010-02-12 19:46:26 +00002255 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002256 sqlite3BtreeEnter(p);
2257 if( newFlag>=0 ){
drhc9166342012-01-05 23:32:06 +00002258 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2259 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002260 }
drhc9166342012-01-05 23:32:06 +00002261 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
drh5b47efa2010-02-12 18:18:39 +00002262 sqlite3BtreeLeave(p);
2263 return b;
2264}
danielk1977576ec6b2005-01-21 11:55:25 +00002265#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002266
2267/*
danielk1977951af802004-11-05 15:45:09 +00002268** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2269** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2270** is disabled. The default value for the auto-vacuum property is
2271** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2272*/
danielk1977aef0bf62005-12-30 16:28:01 +00002273int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002274#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002275 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002276#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002277 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002278 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002279 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002280
2281 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002282 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002283 rc = SQLITE_READONLY;
2284 }else{
drh076d4662009-02-18 20:31:18 +00002285 pBt->autoVacuum = av ?1:0;
2286 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002287 }
drhd677b3d2007-08-20 22:48:41 +00002288 sqlite3BtreeLeave(p);
2289 return rc;
danielk1977951af802004-11-05 15:45:09 +00002290#endif
2291}
2292
2293/*
2294** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2295** enabled 1 is returned. Otherwise 0.
2296*/
danielk1977aef0bf62005-12-30 16:28:01 +00002297int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002298#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002299 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002300#else
drhd677b3d2007-08-20 22:48:41 +00002301 int rc;
2302 sqlite3BtreeEnter(p);
2303 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002304 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2305 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2306 BTREE_AUTOVACUUM_INCR
2307 );
drhd677b3d2007-08-20 22:48:41 +00002308 sqlite3BtreeLeave(p);
2309 return rc;
danielk1977951af802004-11-05 15:45:09 +00002310#endif
2311}
2312
2313
2314/*
drha34b6762004-05-07 13:30:42 +00002315** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002316** also acquire a readlock on that file.
2317**
2318** SQLITE_OK is returned on success. If the file is not a
2319** well-formed database file, then SQLITE_CORRUPT is returned.
2320** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002321** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002322*/
danielk1977aef0bf62005-12-30 16:28:01 +00002323static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002324 int rc; /* Result code from subfunctions */
2325 MemPage *pPage1; /* Page 1 of the database file */
2326 int nPage; /* Number of pages in the database */
2327 int nPageFile = 0; /* Number of pages in the database file */
2328 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002329
drh1fee73e2007-08-29 04:00:57 +00002330 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002331 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002332 rc = sqlite3PagerSharedLock(pBt->pPager);
2333 if( rc!=SQLITE_OK ) return rc;
danielk197730548662009-07-09 05:07:37 +00002334 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002335 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002336
2337 /* Do some checking to help insure the file we opened really is
2338 ** a valid database file.
2339 */
drhc2a4bab2010-04-02 12:46:45 +00002340 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
drh8fb8b532010-08-14 17:12:04 +00002341 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
drhb28e59b2010-06-17 02:13:39 +00002342 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00002343 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002344 }
2345 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00002346 u32 pageSize;
2347 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00002348 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002349 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002350 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002351 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002352 }
dan5cf53532010-05-01 16:40:20 +00002353
2354#ifdef SQLITE_OMIT_WAL
2355 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00002356 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00002357 }
2358 if( page1[19]>1 ){
2359 goto page1_init_failed;
2360 }
2361#else
dane04dc882010-04-20 18:53:15 +00002362 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00002363 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00002364 }
dane04dc882010-04-20 18:53:15 +00002365 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002366 goto page1_init_failed;
2367 }
drhe5ae5732008-06-15 02:51:47 +00002368
dana470aeb2010-04-21 11:43:38 +00002369 /* If the write version is set to 2, this database should be accessed
2370 ** in WAL mode. If the log is not already open, open it now. Then
2371 ** return SQLITE_OK and return without populating BtShared.pPage1.
2372 ** The caller detects this and calls this function again. This is
2373 ** required as the version of page 1 currently in the page1 buffer
2374 ** may not be the latest version - there may be a newer one in the log
2375 ** file.
2376 */
drhc9166342012-01-05 23:32:06 +00002377 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00002378 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00002379 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00002380 if( rc!=SQLITE_OK ){
2381 goto page1_init_failed;
2382 }else if( isOpen==0 ){
2383 releasePage(pPage1);
2384 return SQLITE_OK;
2385 }
dan8b5444b2010-04-27 14:37:47 +00002386 rc = SQLITE_NOTADB;
dane04dc882010-04-20 18:53:15 +00002387 }
dan5cf53532010-05-01 16:40:20 +00002388#endif
dane04dc882010-04-20 18:53:15 +00002389
drhe5ae5732008-06-15 02:51:47 +00002390 /* The maximum embedded fraction must be exactly 25%. And the minimum
2391 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2392 ** The original design allowed these amounts to vary, but as of
2393 ** version 3.6.0, we require them to be fixed.
2394 */
2395 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2396 goto page1_init_failed;
2397 }
drhb2eced52010-08-12 02:41:12 +00002398 pageSize = (page1[16]<<8) | (page1[17]<<16);
2399 if( ((pageSize-1)&pageSize)!=0
2400 || pageSize>SQLITE_MAX_PAGE_SIZE
2401 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00002402 ){
drh07d183d2005-05-01 22:52:42 +00002403 goto page1_init_failed;
2404 }
2405 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002406 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00002407 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00002408 /* After reading the first page of the database assuming a page size
2409 ** of BtShared.pageSize, we have discovered that the page-size is
2410 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2411 ** zero and return SQLITE_OK. The caller will call this function
2412 ** again with the correct page-size.
2413 */
2414 releasePage(pPage1);
drh43b18e12010-08-17 19:40:08 +00002415 pBt->usableSize = usableSize;
2416 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00002417 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002418 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2419 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002420 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002421 }
danecac6702011-02-09 18:19:20 +00002422 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00002423 rc = SQLITE_CORRUPT_BKPT;
2424 goto page1_init_failed;
2425 }
drhb33e1b92009-06-18 11:29:20 +00002426 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002427 goto page1_init_failed;
2428 }
drh43b18e12010-08-17 19:40:08 +00002429 pBt->pageSize = pageSize;
2430 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00002431#ifndef SQLITE_OMIT_AUTOVACUUM
2432 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002433 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002434#endif
drh306dc212001-05-21 13:45:10 +00002435 }
drhb6f41482004-05-14 01:58:11 +00002436
2437 /* maxLocal is the maximum amount of payload to store locally for
2438 ** a cell. Make sure it is small enough so that at least minFanout
2439 ** cells can will fit on one page. We assume a 10-byte page header.
2440 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002441 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002442 ** 4-byte child pointer
2443 ** 9-byte nKey value
2444 ** 4-byte nData value
2445 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00002446 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00002447 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2448 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002449 */
shaneh1df2db72010-08-18 02:28:48 +00002450 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2451 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2452 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2453 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00002454 if( pBt->maxLocal>127 ){
2455 pBt->max1bytePayload = 127;
2456 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00002457 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00002458 }
drh2e38c322004-09-03 18:38:44 +00002459 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002460 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002461 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002462 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002463
drh72f82862001-05-24 21:06:34 +00002464page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002465 releasePage(pPage1);
2466 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002467 return rc;
drh306dc212001-05-21 13:45:10 +00002468}
2469
2470/*
drhb8ca3072001-12-05 00:21:20 +00002471** If there are no outstanding cursors and we are not in the middle
2472** of a transaction but there is a read lock on the database, then
2473** this routine unrefs the first page of the database file which
2474** has the effect of releasing the read lock.
2475**
drhb8ca3072001-12-05 00:21:20 +00002476** If there is a transaction in progress, this routine is a no-op.
2477*/
danielk1977aef0bf62005-12-30 16:28:01 +00002478static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002479 assert( sqlite3_mutex_held(pBt->mutex) );
danielk19771bc9ee92009-07-04 15:41:02 +00002480 assert( pBt->pCursor==0 || pBt->inTransaction>TRANS_NONE );
2481 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002482 assert( pBt->pPage1->aData );
2483 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2484 assert( pBt->pPage1->aData );
2485 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002486 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002487 }
2488}
2489
2490/*
drhe39f2f92009-07-23 01:43:59 +00002491** If pBt points to an empty file then convert that empty file
2492** into a new empty database by initializing the first page of
2493** the database.
drh8b2f49b2001-06-08 00:21:52 +00002494*/
danielk1977aef0bf62005-12-30 16:28:01 +00002495static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002496 MemPage *pP1;
2497 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002498 int rc;
drhd677b3d2007-08-20 22:48:41 +00002499
drh1fee73e2007-08-29 04:00:57 +00002500 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002501 if( pBt->nPage>0 ){
2502 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002503 }
drh3aac2dd2004-04-26 14:10:20 +00002504 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002505 assert( pP1!=0 );
2506 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002507 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002508 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002509 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2510 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00002511 data[16] = (u8)((pBt->pageSize>>8)&0xff);
2512 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00002513 data[18] = 1;
2514 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002515 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2516 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002517 data[21] = 64;
2518 data[22] = 32;
2519 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002520 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002521 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00002522 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00002523#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002524 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002525 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002526 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002527 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002528#endif
drhdd3cd972010-03-27 17:12:36 +00002529 pBt->nPage = 1;
2530 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002531 return SQLITE_OK;
2532}
2533
2534/*
danb483eba2012-10-13 19:58:11 +00002535** Initialize the first page of the database file (creating a database
2536** consisting of a single page and no schema objects). Return SQLITE_OK
2537** if successful, or an SQLite error code otherwise.
2538*/
2539int sqlite3BtreeNewDb(Btree *p){
2540 int rc;
2541 sqlite3BtreeEnter(p);
2542 p->pBt->nPage = 0;
2543 rc = newDatabase(p->pBt);
2544 sqlite3BtreeLeave(p);
2545 return rc;
2546}
2547
2548/*
danielk1977ee5741e2004-05-31 10:01:34 +00002549** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002550** is started if the second argument is nonzero, otherwise a read-
2551** transaction. If the second argument is 2 or more and exclusive
2552** transaction is started, meaning that no other process is allowed
2553** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002554** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002555** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002556**
danielk1977ee5741e2004-05-31 10:01:34 +00002557** A write-transaction must be started before attempting any
2558** changes to the database. None of the following routines
2559** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002560**
drh23e11ca2004-05-04 17:27:28 +00002561** sqlite3BtreeCreateTable()
2562** sqlite3BtreeCreateIndex()
2563** sqlite3BtreeClearTable()
2564** sqlite3BtreeDropTable()
2565** sqlite3BtreeInsert()
2566** sqlite3BtreeDelete()
2567** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002568**
drhb8ef32c2005-03-14 02:01:49 +00002569** If an initial attempt to acquire the lock fails because of lock contention
2570** and the database was previously unlocked, then invoke the busy handler
2571** if there is one. But if there was previously a read-lock, do not
2572** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2573** returned when there is already a read-lock in order to avoid a deadlock.
2574**
2575** Suppose there are two processes A and B. A has a read lock and B has
2576** a reserved lock. B tries to promote to exclusive but is blocked because
2577** of A's read lock. A tries to promote to reserved but is blocked by B.
2578** One or the other of the two processes must give way or there can be
2579** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2580** when A already has a read lock, we encourage A to give up and let B
2581** proceed.
drha059ad02001-04-17 20:09:11 +00002582*/
danielk1977aef0bf62005-12-30 16:28:01 +00002583int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002584 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002585 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002586 int rc = SQLITE_OK;
2587
drhd677b3d2007-08-20 22:48:41 +00002588 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002589 btreeIntegrity(p);
2590
danielk1977ee5741e2004-05-31 10:01:34 +00002591 /* If the btree is already in a write-transaction, or it
2592 ** is already in a read-transaction and a read-transaction
2593 ** is requested, this is a no-op.
2594 */
danielk1977aef0bf62005-12-30 16:28:01 +00002595 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002596 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002597 }
drhb8ef32c2005-03-14 02:01:49 +00002598
2599 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00002600 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002601 rc = SQLITE_READONLY;
2602 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002603 }
2604
danielk1977404ca072009-03-16 13:19:36 +00002605#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002606 /* If another database handle has already opened a write transaction
2607 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002608 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002609 */
drhc9166342012-01-05 23:32:06 +00002610 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
2611 || (pBt->btsFlags & BTS_PENDING)!=0
2612 ){
danielk1977404ca072009-03-16 13:19:36 +00002613 pBlock = pBt->pWriter->db;
2614 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002615 BtLock *pIter;
2616 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2617 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002618 pBlock = pIter->pBtree->db;
2619 break;
danielk1977641b0f42007-12-21 04:47:25 +00002620 }
2621 }
2622 }
danielk1977404ca072009-03-16 13:19:36 +00002623 if( pBlock ){
2624 sqlite3ConnectionBlocked(p->db, pBlock);
2625 rc = SQLITE_LOCKED_SHAREDCACHE;
2626 goto trans_begun;
2627 }
danielk1977641b0f42007-12-21 04:47:25 +00002628#endif
2629
danielk1977602b4662009-07-02 07:47:33 +00002630 /* Any read-only or read-write transaction implies a read-lock on
2631 ** page 1. So if some other shared-cache client already has a write-lock
2632 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002633 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2634 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002635
drhc9166342012-01-05 23:32:06 +00002636 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
2637 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00002638 do {
danielk1977295dc102009-04-01 19:07:03 +00002639 /* Call lockBtree() until either pBt->pPage1 is populated or
2640 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2641 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2642 ** reading page 1 it discovers that the page-size of the database
2643 ** file is not pBt->pageSize. In this case lockBtree() will update
2644 ** pBt->pageSize to the page-size of the file on disk.
2645 */
2646 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002647
drhb8ef32c2005-03-14 02:01:49 +00002648 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00002649 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00002650 rc = SQLITE_READONLY;
2651 }else{
danielk1977d8293352009-04-30 09:10:37 +00002652 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002653 if( rc==SQLITE_OK ){
2654 rc = newDatabase(pBt);
2655 }
drhb8ef32c2005-03-14 02:01:49 +00002656 }
2657 }
2658
danielk1977bd434552009-03-18 10:33:00 +00002659 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002660 unlockBtreeIfUnused(pBt);
2661 }
danf9b76712010-06-01 14:12:45 +00002662 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002663 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002664
2665 if( rc==SQLITE_OK ){
2666 if( p->inTrans==TRANS_NONE ){
2667 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002668#ifndef SQLITE_OMIT_SHARED_CACHE
2669 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00002670 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00002671 p->lock.eLock = READ_LOCK;
2672 p->lock.pNext = pBt->pLock;
2673 pBt->pLock = &p->lock;
2674 }
2675#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002676 }
2677 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2678 if( p->inTrans>pBt->inTransaction ){
2679 pBt->inTransaction = p->inTrans;
2680 }
danielk1977404ca072009-03-16 13:19:36 +00002681 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00002682 MemPage *pPage1 = pBt->pPage1;
2683#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002684 assert( !pBt->pWriter );
2685 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00002686 pBt->btsFlags &= ~BTS_EXCLUSIVE;
2687 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00002688#endif
dan59257dc2010-08-04 11:34:31 +00002689
2690 /* If the db-size header field is incorrect (as it may be if an old
2691 ** client has been writing the database file), update it now. Doing
2692 ** this sooner rather than later means the database size can safely
2693 ** re-read the database size from page 1 if a savepoint or transaction
2694 ** rollback occurs within the transaction.
2695 */
2696 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
2697 rc = sqlite3PagerWrite(pPage1->pDbPage);
2698 if( rc==SQLITE_OK ){
2699 put4byte(&pPage1->aData[28], pBt->nPage);
2700 }
2701 }
2702 }
danielk1977aef0bf62005-12-30 16:28:01 +00002703 }
2704
drhd677b3d2007-08-20 22:48:41 +00002705
2706trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002707 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002708 /* This call makes sure that the pager has the correct number of
2709 ** open savepoints. If the second parameter is greater than 0 and
2710 ** the sub-journal is not already open, then it will be opened here.
2711 */
danielk1977fd7f0452008-12-17 17:30:26 +00002712 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2713 }
danielk197712dd5492008-12-18 15:45:07 +00002714
danielk1977aef0bf62005-12-30 16:28:01 +00002715 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002716 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002717 return rc;
drha059ad02001-04-17 20:09:11 +00002718}
2719
danielk1977687566d2004-11-02 12:56:41 +00002720#ifndef SQLITE_OMIT_AUTOVACUUM
2721
2722/*
2723** Set the pointer-map entries for all children of page pPage. Also, if
2724** pPage contains cells that point to overflow pages, set the pointer
2725** map entries for the overflow pages as well.
2726*/
2727static int setChildPtrmaps(MemPage *pPage){
2728 int i; /* Counter variable */
2729 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002730 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002731 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002732 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002733 Pgno pgno = pPage->pgno;
2734
drh1fee73e2007-08-29 04:00:57 +00002735 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00002736 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002737 if( rc!=SQLITE_OK ){
2738 goto set_child_ptrmaps_out;
2739 }
danielk1977687566d2004-11-02 12:56:41 +00002740 nCell = pPage->nCell;
2741
2742 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002743 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002744
drh98add2e2009-07-20 17:11:49 +00002745 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00002746
danielk1977687566d2004-11-02 12:56:41 +00002747 if( !pPage->leaf ){
2748 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00002749 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002750 }
2751 }
2752
2753 if( !pPage->leaf ){
2754 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00002755 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002756 }
2757
2758set_child_ptrmaps_out:
2759 pPage->isInit = isInitOrig;
2760 return rc;
2761}
2762
2763/*
drhf3aed592009-07-08 18:12:49 +00002764** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2765** that it points to iTo. Parameter eType describes the type of pointer to
2766** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00002767**
2768** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2769** page of pPage.
2770**
2771** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2772** page pointed to by one of the cells on pPage.
2773**
2774** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2775** overflow page in the list.
2776*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002777static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002778 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002779 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002780 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002781 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002782 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002783 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002784 }
danielk1977f78fc082004-11-02 14:40:32 +00002785 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002786 }else{
drhf49661a2008-12-10 16:45:50 +00002787 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002788 int i;
2789 int nCell;
2790
danielk197730548662009-07-09 05:07:37 +00002791 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002792 nCell = pPage->nCell;
2793
danielk1977687566d2004-11-02 12:56:41 +00002794 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002795 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002796 if( eType==PTRMAP_OVERFLOW1 ){
2797 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00002798 btreeParseCellPtr(pPage, pCell, &info);
drhe42a9b42011-08-31 13:27:19 +00002799 if( info.iOverflow
2800 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
2801 && iFrom==get4byte(&pCell[info.iOverflow])
2802 ){
2803 put4byte(&pCell[info.iOverflow], iTo);
2804 break;
danielk1977687566d2004-11-02 12:56:41 +00002805 }
2806 }else{
2807 if( get4byte(pCell)==iFrom ){
2808 put4byte(pCell, iTo);
2809 break;
2810 }
2811 }
2812 }
2813
2814 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002815 if( eType!=PTRMAP_BTREE ||
2816 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002817 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002818 }
danielk1977687566d2004-11-02 12:56:41 +00002819 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2820 }
2821
2822 pPage->isInit = isInitOrig;
2823 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002824 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002825}
2826
danielk1977003ba062004-11-04 02:57:33 +00002827
danielk19777701e812005-01-10 12:59:51 +00002828/*
2829** Move the open database page pDbPage to location iFreePage in the
2830** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00002831**
2832** The isCommit flag indicates that there is no need to remember that
2833** the journal needs to be sync()ed before database page pDbPage->pgno
2834** can be written to. The caller has already promised not to write to that
2835** page.
danielk19777701e812005-01-10 12:59:51 +00002836*/
danielk1977003ba062004-11-04 02:57:33 +00002837static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002838 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002839 MemPage *pDbPage, /* Open page to move */
2840 u8 eType, /* Pointer map 'type' entry for pDbPage */
2841 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002842 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00002843 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00002844){
2845 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2846 Pgno iDbPage = pDbPage->pgno;
2847 Pager *pPager = pBt->pPager;
2848 int rc;
2849
danielk1977a0bf2652004-11-04 14:30:04 +00002850 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2851 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002852 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002853 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002854
drh85b623f2007-12-13 21:54:09 +00002855 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002856 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2857 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002858 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002859 if( rc!=SQLITE_OK ){
2860 return rc;
2861 }
2862 pDbPage->pgno = iFreePage;
2863
2864 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2865 ** that point to overflow pages. The pointer map entries for all these
2866 ** pages need to be changed.
2867 **
2868 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2869 ** pointer to a subsequent overflow page. If this is the case, then
2870 ** the pointer map needs to be updated for the subsequent overflow page.
2871 */
danielk1977a0bf2652004-11-04 14:30:04 +00002872 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002873 rc = setChildPtrmaps(pDbPage);
2874 if( rc!=SQLITE_OK ){
2875 return rc;
2876 }
2877 }else{
2878 Pgno nextOvfl = get4byte(pDbPage->aData);
2879 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00002880 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00002881 if( rc!=SQLITE_OK ){
2882 return rc;
2883 }
2884 }
2885 }
2886
2887 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2888 ** that it points at iFreePage. Also fix the pointer map entry for
2889 ** iPtrPage.
2890 */
danielk1977a0bf2652004-11-04 14:30:04 +00002891 if( eType!=PTRMAP_ROOTPAGE ){
danielk197730548662009-07-09 05:07:37 +00002892 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002893 if( rc!=SQLITE_OK ){
2894 return rc;
2895 }
danielk19773b8a05f2007-03-19 17:44:26 +00002896 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002897 if( rc!=SQLITE_OK ){
2898 releasePage(pPtrPage);
2899 return rc;
2900 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002901 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002902 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002903 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00002904 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002905 }
danielk1977003ba062004-11-04 02:57:33 +00002906 }
danielk1977003ba062004-11-04 02:57:33 +00002907 return rc;
2908}
2909
danielk1977dddbcdc2007-04-26 14:42:34 +00002910/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002911static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
dan51f0b6d2013-02-22 20:16:34 +00002912#define BTALLOC_ANY 0 /* Allocate any page */
2913#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
2914#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
danielk1977687566d2004-11-02 12:56:41 +00002915
2916/*
dan51f0b6d2013-02-22 20:16:34 +00002917** Perform a single step of an incremental-vacuum. If successful, return
2918** SQLITE_OK. If there is no work to do (and therefore no point in
2919** calling this function again), return SQLITE_DONE. Or, if an error
2920** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00002921**
dan51f0b6d2013-02-22 20:16:34 +00002922** More specificly, this function attempts to re-organize the database so
2923** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00002924**
dan51f0b6d2013-02-22 20:16:34 +00002925** Parameter nFin is the number of pages that this database would contain
2926** were this function called until it returns SQLITE_DONE.
2927**
2928** If the bCommit parameter is non-zero, this function assumes that the
2929** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
2930** or an error. bCommit is passed true for an auto-vacuum-on-commmit
2931** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00002932*/
dan51f0b6d2013-02-22 20:16:34 +00002933static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00002934 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00002935 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002936
drh1fee73e2007-08-29 04:00:57 +00002937 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00002938 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00002939
2940 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002941 u8 eType;
2942 Pgno iPtrPage;
2943
2944 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00002945 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002946 return SQLITE_DONE;
2947 }
2948
2949 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
2950 if( rc!=SQLITE_OK ){
2951 return rc;
2952 }
2953 if( eType==PTRMAP_ROOTPAGE ){
2954 return SQLITE_CORRUPT_BKPT;
2955 }
2956
2957 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00002958 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002959 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00002960 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00002961 ** truncated to zero after this function returns, so it doesn't
2962 ** matter if it still contains some garbage entries.
2963 */
2964 Pgno iFreePg;
2965 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00002966 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00002967 if( rc!=SQLITE_OK ){
2968 return rc;
2969 }
2970 assert( iFreePg==iLastPg );
2971 releasePage(pFreePg);
2972 }
2973 } else {
2974 Pgno iFreePg; /* Index of free page to move pLastPg to */
2975 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00002976 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
2977 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00002978
danielk197730548662009-07-09 05:07:37 +00002979 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002980 if( rc!=SQLITE_OK ){
2981 return rc;
2982 }
2983
dan51f0b6d2013-02-22 20:16:34 +00002984 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00002985 ** is swapped with the first free page pulled off the free list.
2986 **
dan51f0b6d2013-02-22 20:16:34 +00002987 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00002988 ** looping until a free-page located within the first nFin pages
2989 ** of the file is found.
2990 */
dan51f0b6d2013-02-22 20:16:34 +00002991 if( bCommit==0 ){
2992 eMode = BTALLOC_LE;
2993 iNear = nFin;
2994 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002995 do {
2996 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00002997 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00002998 if( rc!=SQLITE_OK ){
2999 releasePage(pLastPg);
3000 return rc;
3001 }
3002 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003003 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003004 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003005
3006 rc = sqlite3PagerWrite(pLastPg->pDbPage);
danielk1977662278e2007-11-05 15:30:12 +00003007 if( rc==SQLITE_OK ){
danielk19774c999992008-07-16 18:17:55 +00003008 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
danielk1977662278e2007-11-05 15:30:12 +00003009 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003010 releasePage(pLastPg);
3011 if( rc!=SQLITE_OK ){
3012 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003013 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003014 }
3015 }
3016
dan51f0b6d2013-02-22 20:16:34 +00003017 if( bCommit==0 ){
danielk19773460d192008-12-27 15:23:13 +00003018 iLastPg--;
3019 while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
danielk1977f4027782009-03-30 18:50:04 +00003020 if( PTRMAP_ISPAGE(pBt, iLastPg) ){
3021 MemPage *pPg;
drhdd3cd972010-03-27 17:12:36 +00003022 rc = btreeGetPage(pBt, iLastPg, &pPg, 0);
danielk1977f4027782009-03-30 18:50:04 +00003023 if( rc!=SQLITE_OK ){
3024 return rc;
3025 }
3026 rc = sqlite3PagerWrite(pPg->pDbPage);
3027 releasePage(pPg);
3028 if( rc!=SQLITE_OK ){
3029 return rc;
3030 }
3031 }
danielk19773460d192008-12-27 15:23:13 +00003032 iLastPg--;
3033 }
3034 sqlite3PagerTruncateImage(pBt->pPager, iLastPg);
drhdd3cd972010-03-27 17:12:36 +00003035 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003036 }
3037 return SQLITE_OK;
3038}
3039
3040/*
dan51f0b6d2013-02-22 20:16:34 +00003041** The database opened by the first argument is an auto-vacuum database
3042** nOrig pages in size containing nFree free pages. Return the expected
3043** size of the database in pages following an auto-vacuum operation.
3044*/
3045static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3046 int nEntry; /* Number of entries on one ptrmap page */
3047 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3048 Pgno nFin; /* Return value */
3049
3050 nEntry = pBt->usableSize/5;
3051 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3052 nFin = nOrig - nFree - nPtrmap;
3053 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3054 nFin--;
3055 }
3056 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3057 nFin--;
3058 }
3059 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
3060
3061 return nFin;
3062}
3063
3064/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003065** A write-transaction must be opened before calling this function.
3066** It performs a single unit of work towards an incremental vacuum.
3067**
3068** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003069** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003070** SQLITE_OK is returned. Otherwise an SQLite error code.
3071*/
3072int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003073 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003074 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003075
3076 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003077 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3078 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003079 rc = SQLITE_DONE;
3080 }else{
dan51f0b6d2013-02-22 20:16:34 +00003081 Pgno nOrig = btreePagecount(pBt);
3082 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3083 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3084
3085 if( nFin<nOrig ){
3086 invalidateAllOverflowCache(pBt);
3087 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3088 if( rc==SQLITE_OK ){
3089 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3090 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3091 }
3092 }else{
3093 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003094 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003095 }
drhd677b3d2007-08-20 22:48:41 +00003096 sqlite3BtreeLeave(p);
3097 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003098}
3099
3100/*
danielk19773b8a05f2007-03-19 17:44:26 +00003101** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00003102** is commited for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003103**
3104** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3105** the database file should be truncated to during the commit process.
3106** i.e. the database has been reorganized so that only the first *pnTrunc
3107** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003108*/
danielk19773460d192008-12-27 15:23:13 +00003109static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003110 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003111 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00003112 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003113
drh1fee73e2007-08-29 04:00:57 +00003114 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003115 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003116 assert(pBt->autoVacuum);
3117 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003118 Pgno nFin; /* Number of pages in database after autovacuuming */
3119 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003120 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003121 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003122
drhb1299152010-03-30 22:58:33 +00003123 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003124 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3125 /* It is not possible to create a database for which the final page
3126 ** is either a pointer-map page or the pending-byte page. If one
3127 ** is encountered, this indicates corruption.
3128 */
danielk19773460d192008-12-27 15:23:13 +00003129 return SQLITE_CORRUPT_BKPT;
3130 }
danielk1977ef165ce2009-04-06 17:50:03 +00003131
danielk19773460d192008-12-27 15:23:13 +00003132 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003133 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003134 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
danielk1977687566d2004-11-02 12:56:41 +00003135
danielk19773460d192008-12-27 15:23:13 +00003136 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003137 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003138 }
danielk19773460d192008-12-27 15:23:13 +00003139 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003140 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3141 put4byte(&pBt->pPage1->aData[32], 0);
3142 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003143 put4byte(&pBt->pPage1->aData[28], nFin);
danielk19773460d192008-12-27 15:23:13 +00003144 sqlite3PagerTruncateImage(pBt->pPager, nFin);
drhdd3cd972010-03-27 17:12:36 +00003145 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003146 }
3147 if( rc!=SQLITE_OK ){
3148 sqlite3PagerRollback(pPager);
3149 }
danielk1977687566d2004-11-02 12:56:41 +00003150 }
3151
danielk19773b8a05f2007-03-19 17:44:26 +00003152 assert( nRef==sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003153 return rc;
3154}
danielk1977dddbcdc2007-04-26 14:42:34 +00003155
danielk1977a50d9aa2009-06-08 14:49:45 +00003156#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3157# define setChildPtrmaps(x) SQLITE_OK
3158#endif
danielk1977687566d2004-11-02 12:56:41 +00003159
3160/*
drh80e35f42007-03-30 14:06:34 +00003161** This routine does the first phase of a two-phase commit. This routine
3162** causes a rollback journal to be created (if it does not already exist)
3163** and populated with enough information so that if a power loss occurs
3164** the database can be restored to its original state by playing back
3165** the journal. Then the contents of the journal are flushed out to
3166** the disk. After the journal is safely on oxide, the changes to the
3167** database are written into the database file and flushed to oxide.
3168** At the end of this call, the rollback journal still exists on the
3169** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003170** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003171** commit process.
3172**
3173** This call is a no-op if no write-transaction is currently active on pBt.
3174**
3175** Otherwise, sync the database file for the btree pBt. zMaster points to
3176** the name of a master journal file that should be written into the
3177** individual journal file, or is NULL, indicating no master journal file
3178** (single database transaction).
3179**
3180** When this is called, the master journal should already have been
3181** created, populated with this journal pointer and synced to disk.
3182**
3183** Once this is routine has returned, the only thing required to commit
3184** the write-transaction for this database file is to delete the journal.
3185*/
3186int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3187 int rc = SQLITE_OK;
3188 if( p->inTrans==TRANS_WRITE ){
3189 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003190 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003191#ifndef SQLITE_OMIT_AUTOVACUUM
3192 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003193 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003194 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003195 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003196 return rc;
3197 }
3198 }
3199#endif
drh49b9d332009-01-02 18:10:42 +00003200 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003201 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003202 }
3203 return rc;
3204}
3205
3206/*
danielk197794b30732009-07-02 17:21:57 +00003207** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3208** at the conclusion of a transaction.
3209*/
3210static void btreeEndTransaction(Btree *p){
3211 BtShared *pBt = p->pBt;
danielk197794b30732009-07-02 17:21:57 +00003212 assert( sqlite3BtreeHoldsMutex(p) );
3213
danielk197794b30732009-07-02 17:21:57 +00003214 btreeClearHasContent(pBt);
danfa401de2009-10-16 14:55:03 +00003215 if( p->inTrans>TRANS_NONE && p->db->activeVdbeCnt>1 ){
3216 /* If there are other active statements that belong to this database
3217 ** handle, downgrade to a read-only transaction. The other statements
3218 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003219 downgradeAllSharedCacheTableLocks(p);
3220 p->inTrans = TRANS_READ;
3221 }else{
3222 /* If the handle had any kind of transaction open, decrement the
3223 ** transaction count of the shared btree. If the transaction count
3224 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3225 ** call below will unlock the pager. */
3226 if( p->inTrans!=TRANS_NONE ){
3227 clearAllSharedCacheTableLocks(p);
3228 pBt->nTransaction--;
3229 if( 0==pBt->nTransaction ){
3230 pBt->inTransaction = TRANS_NONE;
3231 }
3232 }
3233
3234 /* Set the current transaction state to TRANS_NONE and unlock the
3235 ** pager if this call closed the only read or write transaction. */
3236 p->inTrans = TRANS_NONE;
3237 unlockBtreeIfUnused(pBt);
3238 }
3239
3240 btreeIntegrity(p);
3241}
3242
3243/*
drh2aa679f2001-06-25 02:11:07 +00003244** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003245**
drh6e345992007-03-30 11:12:08 +00003246** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003247** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3248** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3249** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003250** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003251** routine has to do is delete or truncate or zero the header in the
3252** the rollback journal (which causes the transaction to commit) and
3253** drop locks.
drh6e345992007-03-30 11:12:08 +00003254**
dan60939d02011-03-29 15:40:55 +00003255** Normally, if an error occurs while the pager layer is attempting to
3256** finalize the underlying journal file, this function returns an error and
3257** the upper layer will attempt a rollback. However, if the second argument
3258** is non-zero then this b-tree transaction is part of a multi-file
3259** transaction. In this case, the transaction has already been committed
3260** (by deleting a master journal file) and the caller will ignore this
3261** functions return code. So, even if an error occurs in the pager layer,
3262** reset the b-tree objects internal state to indicate that the write
3263** transaction has been closed. This is quite safe, as the pager will have
3264** transitioned to the error state.
3265**
drh5e00f6c2001-09-13 13:46:56 +00003266** This will release the write lock on the database file. If there
3267** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003268*/
dan60939d02011-03-29 15:40:55 +00003269int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00003270
drh075ed302010-10-14 01:17:30 +00003271 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00003272 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003273 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003274
3275 /* If the handle has a write-transaction open, commit the shared-btrees
3276 ** transaction and set the shared state to TRANS_READ.
3277 */
3278 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003279 int rc;
drh075ed302010-10-14 01:17:30 +00003280 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00003281 assert( pBt->inTransaction==TRANS_WRITE );
3282 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003283 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00003284 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00003285 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003286 return rc;
3287 }
danielk1977aef0bf62005-12-30 16:28:01 +00003288 pBt->inTransaction = TRANS_READ;
danielk1977ee5741e2004-05-31 10:01:34 +00003289 }
danielk1977aef0bf62005-12-30 16:28:01 +00003290
danielk197794b30732009-07-02 17:21:57 +00003291 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003292 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003293 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003294}
3295
drh80e35f42007-03-30 14:06:34 +00003296/*
3297** Do both phases of a commit.
3298*/
3299int sqlite3BtreeCommit(Btree *p){
3300 int rc;
drhd677b3d2007-08-20 22:48:41 +00003301 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003302 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3303 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00003304 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00003305 }
drhd677b3d2007-08-20 22:48:41 +00003306 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003307 return rc;
3308}
3309
danielk1977fbcd5852004-06-15 02:44:18 +00003310#ifndef NDEBUG
3311/*
3312** Return the number of write-cursors open on this handle. This is for use
3313** in assert() expressions, so it is only compiled if NDEBUG is not
3314** defined.
drhfb982642007-08-30 01:19:59 +00003315**
3316** For the purposes of this routine, a write-cursor is any cursor that
3317** is capable of writing to the databse. That means the cursor was
3318** originally opened for writing and the cursor has not be disabled
3319** by having its state changed to CURSOR_FAULT.
danielk1977fbcd5852004-06-15 02:44:18 +00003320*/
danielk1977aef0bf62005-12-30 16:28:01 +00003321static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00003322 BtCursor *pCur;
3323 int r = 0;
3324 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drhfb982642007-08-30 01:19:59 +00003325 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00003326 }
3327 return r;
3328}
3329#endif
3330
drhc39e0002004-05-07 23:50:57 +00003331/*
drhfb982642007-08-30 01:19:59 +00003332** This routine sets the state to CURSOR_FAULT and the error
3333** code to errCode for every cursor on BtShared that pBtree
3334** references.
3335**
3336** Every cursor is tripped, including cursors that belong
3337** to other database connections that happen to be sharing
3338** the cache with pBtree.
3339**
3340** This routine gets called when a rollback occurs.
3341** All cursors using the same cache must be tripped
3342** to prevent them from trying to use the btree after
3343** the rollback. The rollback may have deleted tables
3344** or moved root pages, so it is not sufficient to
3345** save the state of the cursor. The cursor must be
3346** invalidated.
3347*/
3348void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3349 BtCursor *p;
drh0f198a72012-02-13 16:43:16 +00003350 if( pBtree==0 ) return;
drhfb982642007-08-30 01:19:59 +00003351 sqlite3BtreeEnter(pBtree);
3352 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003353 int i;
danielk1977be51a652008-10-08 17:58:48 +00003354 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003355 p->eState = CURSOR_FAULT;
drh4c301aa2009-07-15 17:25:45 +00003356 p->skipNext = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003357 for(i=0; i<=p->iPage; i++){
3358 releasePage(p->apPage[i]);
3359 p->apPage[i] = 0;
3360 }
drhfb982642007-08-30 01:19:59 +00003361 }
3362 sqlite3BtreeLeave(pBtree);
3363}
3364
3365/*
drhecdc7532001-09-23 02:35:53 +00003366** Rollback the transaction in progress. All cursors will be
3367** invalided by this operation. Any attempt to use a cursor
3368** that was open at the beginning of this operation will result
3369** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003370**
3371** This will release the write lock on the database file. If there
3372** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003373*/
drh0f198a72012-02-13 16:43:16 +00003374int sqlite3BtreeRollback(Btree *p, int tripCode){
danielk19778d34dfd2006-01-24 16:37:57 +00003375 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003376 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003377 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003378
drhd677b3d2007-08-20 22:48:41 +00003379 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00003380 if( tripCode==SQLITE_OK ){
3381 rc = tripCode = saveAllCursors(pBt, 0, 0);
3382 }else{
3383 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00003384 }
drh0f198a72012-02-13 16:43:16 +00003385 if( tripCode ){
3386 sqlite3BtreeTripAllCursors(p, tripCode);
3387 }
danielk1977aef0bf62005-12-30 16:28:01 +00003388 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003389
3390 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003391 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003392
danielk19778d34dfd2006-01-24 16:37:57 +00003393 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003394 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003395 if( rc2!=SQLITE_OK ){
3396 rc = rc2;
3397 }
3398
drh24cd67e2004-05-10 16:18:47 +00003399 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003400 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003401 ** sure pPage1->aData is set correctly. */
danielk197730548662009-07-09 05:07:37 +00003402 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003403 int nPage = get4byte(28+(u8*)pPage1->aData);
3404 testcase( nPage==0 );
3405 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3406 testcase( pBt->nPage!=nPage );
3407 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003408 releasePage(pPage1);
3409 }
danielk1977fbcd5852004-06-15 02:44:18 +00003410 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003411 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00003412 }
danielk1977aef0bf62005-12-30 16:28:01 +00003413
danielk197794b30732009-07-02 17:21:57 +00003414 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003415 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003416 return rc;
3417}
3418
3419/*
danielk1977bd434552009-03-18 10:33:00 +00003420** Start a statement subtransaction. The subtransaction can can be rolled
3421** back independently of the main transaction. You must start a transaction
3422** before starting a subtransaction. The subtransaction is ended automatically
3423** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003424**
3425** Statement subtransactions are used around individual SQL statements
3426** that are contained within a BEGIN...COMMIT block. If a constraint
3427** error occurs within the statement, the effect of that one statement
3428** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003429**
3430** A statement sub-transaction is implemented as an anonymous savepoint. The
3431** value passed as the second parameter is the total number of savepoints,
3432** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3433** are no active savepoints and no other statement-transactions open,
3434** iStatement is 1. This anonymous savepoint can be released or rolled back
3435** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003436*/
danielk1977bd434552009-03-18 10:33:00 +00003437int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003438 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003439 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003440 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003441 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00003442 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00003443 assert( iStatement>0 );
3444 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003445 assert( pBt->inTransaction==TRANS_WRITE );
3446 /* At the pager level, a statement transaction is a savepoint with
3447 ** an index greater than all savepoints created explicitly using
3448 ** SQL statements. It is illegal to open, release or rollback any
3449 ** such savepoints while the statement transaction savepoint is active.
3450 */
3451 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003452 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003453 return rc;
3454}
3455
3456/*
danielk1977fd7f0452008-12-17 17:30:26 +00003457** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3458** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003459** savepoint identified by parameter iSavepoint, depending on the value
3460** of op.
3461**
3462** Normally, iSavepoint is greater than or equal to zero. However, if op is
3463** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3464** contents of the entire transaction are rolled back. This is different
3465** from a normal transaction rollback, as no locks are released and the
3466** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003467*/
3468int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3469 int rc = SQLITE_OK;
3470 if( p && p->inTrans==TRANS_WRITE ){
3471 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003472 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3473 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3474 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003475 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003476 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00003477 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
3478 pBt->nPage = 0;
3479 }
drh9f0bbf92009-01-02 21:08:09 +00003480 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003481 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00003482
3483 /* The database size was written into the offset 28 of the header
3484 ** when the transaction started, so we know that the value at offset
3485 ** 28 is nonzero. */
3486 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00003487 }
danielk1977fd7f0452008-12-17 17:30:26 +00003488 sqlite3BtreeLeave(p);
3489 }
3490 return rc;
3491}
3492
3493/*
drh8b2f49b2001-06-08 00:21:52 +00003494** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003495** iTable. If a read-only cursor is requested, it is assumed that
3496** the caller already has at least a read-only transaction open
3497** on the database already. If a write-cursor is requested, then
3498** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003499**
3500** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003501** If wrFlag==1, then the cursor can be used for reading or for
3502** writing if other conditions for writing are also met. These
3503** are the conditions that must be met in order for writing to
3504** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003505**
drhf74b8d92002-09-01 23:20:45 +00003506** 1: The cursor must have been opened with wrFlag==1
3507**
drhfe5d71d2007-03-19 11:54:10 +00003508** 2: Other database connections that share the same pager cache
3509** but which are not in the READ_UNCOMMITTED state may not have
3510** cursors open with wrFlag==0 on the same table. Otherwise
3511** the changes made by this write cursor would be visible to
3512** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003513**
3514** 3: The database must be writable (not on read-only media)
3515**
3516** 4: There must be an active transaction.
3517**
drh6446c4d2001-12-15 14:22:18 +00003518** No checking is done to make sure that page iTable really is the
3519** root page of a b-tree. If it is not, then the cursor acquired
3520** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003521**
drhf25a5072009-11-18 23:01:25 +00003522** It is assumed that the sqlite3BtreeCursorZero() has been called
3523** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003524*/
drhd677b3d2007-08-20 22:48:41 +00003525static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003526 Btree *p, /* The btree */
3527 int iTable, /* Root page of table to open */
3528 int wrFlag, /* 1 to write. 0 read-only */
3529 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3530 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003531){
danielk19773e8add92009-07-04 17:16:00 +00003532 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003533
drh1fee73e2007-08-29 04:00:57 +00003534 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003535 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003536
danielk1977602b4662009-07-02 07:47:33 +00003537 /* The following assert statements verify that if this is a sharable
3538 ** b-tree database, the connection is holding the required table locks,
3539 ** and that no other connection has any open cursor that conflicts with
3540 ** this lock. */
3541 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003542 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3543
danielk19773e8add92009-07-04 17:16:00 +00003544 /* Assert that the caller has opened the required transaction. */
3545 assert( p->inTrans>TRANS_NONE );
3546 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3547 assert( pBt->pPage1 && pBt->pPage1->aData );
3548
drhc9166342012-01-05 23:32:06 +00003549 if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){
danielk197796d48e92009-06-29 06:00:37 +00003550 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003551 }
drhb1299152010-03-30 22:58:33 +00003552 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00003553 assert( wrFlag==0 );
3554 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00003555 }
danielk1977aef0bf62005-12-30 16:28:01 +00003556
danielk1977aef0bf62005-12-30 16:28:01 +00003557 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003558 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003559 pCur->pgnoRoot = (Pgno)iTable;
3560 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003561 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003562 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003563 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003564 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003565 pCur->pNext = pBt->pCursor;
3566 if( pCur->pNext ){
3567 pCur->pNext->pPrev = pCur;
3568 }
3569 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003570 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003571 pCur->cachedRowid = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003572 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003573}
drhd677b3d2007-08-20 22:48:41 +00003574int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003575 Btree *p, /* The btree */
3576 int iTable, /* Root page of table to open */
3577 int wrFlag, /* 1 to write. 0 read-only */
3578 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3579 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003580){
3581 int rc;
3582 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003583 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003584 sqlite3BtreeLeave(p);
3585 return rc;
3586}
drh7f751222009-03-17 22:33:00 +00003587
3588/*
3589** Return the size of a BtCursor object in bytes.
3590**
3591** This interfaces is needed so that users of cursors can preallocate
3592** sufficient storage to hold a cursor. The BtCursor object is opaque
3593** to users so they cannot do the sizeof() themselves - they must call
3594** this routine.
3595*/
3596int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00003597 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00003598}
3599
drh7f751222009-03-17 22:33:00 +00003600/*
drhf25a5072009-11-18 23:01:25 +00003601** Initialize memory that will be converted into a BtCursor object.
3602**
3603** The simple approach here would be to memset() the entire object
3604** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3605** do not need to be zeroed and they are large, so we can save a lot
3606** of run-time by skipping the initialization of those elements.
3607*/
3608void sqlite3BtreeCursorZero(BtCursor *p){
3609 memset(p, 0, offsetof(BtCursor, iPage));
3610}
3611
3612/*
drh7f751222009-03-17 22:33:00 +00003613** Set the cached rowid value of every cursor in the same database file
3614** as pCur and having the same root page number as pCur. The value is
3615** set to iRowid.
3616**
3617** Only positive rowid values are considered valid for this cache.
3618** The cache is initialized to zero, indicating an invalid cache.
3619** A btree will work fine with zero or negative rowids. We just cannot
3620** cache zero or negative rowids, which means tables that use zero or
3621** negative rowids might run a little slower. But in practice, zero
3622** or negative rowids are very uncommon so this should not be a problem.
3623*/
3624void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3625 BtCursor *p;
3626 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3627 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3628 }
3629 assert( pCur->cachedRowid==iRowid );
3630}
drhd677b3d2007-08-20 22:48:41 +00003631
drh7f751222009-03-17 22:33:00 +00003632/*
3633** Return the cached rowid for the given cursor. A negative or zero
3634** return value indicates that the rowid cache is invalid and should be
3635** ignored. If the rowid cache has never before been set, then a
3636** zero is returned.
3637*/
3638sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3639 return pCur->cachedRowid;
3640}
drha059ad02001-04-17 20:09:11 +00003641
3642/*
drh5e00f6c2001-09-13 13:46:56 +00003643** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003644** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003645*/
drh3aac2dd2004-04-26 14:10:20 +00003646int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003647 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003648 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003649 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003650 BtShared *pBt = pCur->pBt;
3651 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003652 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003653 if( pCur->pPrev ){
3654 pCur->pPrev->pNext = pCur->pNext;
3655 }else{
3656 pBt->pCursor = pCur->pNext;
3657 }
3658 if( pCur->pNext ){
3659 pCur->pNext->pPrev = pCur->pPrev;
3660 }
danielk197771d5d2c2008-09-29 11:49:47 +00003661 for(i=0; i<=pCur->iPage; i++){
3662 releasePage(pCur->apPage[i]);
3663 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003664 unlockBtreeIfUnused(pBt);
3665 invalidateOverflowCache(pCur);
3666 /* sqlite3_free(pCur); */
3667 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003668 }
drh8c42ca92001-06-22 19:15:00 +00003669 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003670}
3671
drh5e2f8b92001-05-28 00:41:15 +00003672/*
drh86057612007-06-26 01:04:48 +00003673** Make sure the BtCursor* given in the argument has a valid
3674** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003675** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003676**
3677** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003678** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003679**
3680** 2007-06-25: There is a bug in some versions of MSVC that cause the
3681** compiler to crash when getCellInfo() is implemented as a macro.
3682** But there is a measureable speed advantage to using the macro on gcc
3683** (when less compiler optimizations like -Os or -O0 are used and the
3684** compiler is not doing agressive inlining.) So we use a real function
3685** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003686*/
drh9188b382004-05-14 21:12:22 +00003687#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003688 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003689 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003690 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003691 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003692 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003693 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003694 }
danielk19771cc5ed82007-05-16 17:28:43 +00003695#else
3696 #define assertCellInfo(x)
3697#endif
drh86057612007-06-26 01:04:48 +00003698#ifdef _MSC_VER
3699 /* Use a real function in MSVC to work around bugs in that compiler. */
3700 static void getCellInfo(BtCursor *pCur){
3701 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003702 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003703 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003704 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003705 }else{
3706 assertCellInfo(pCur);
3707 }
3708 }
3709#else /* if not _MSC_VER */
3710 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003711#define getCellInfo(pCur) \
3712 if( pCur->info.nSize==0 ){ \
3713 int iPage = pCur->iPage; \
danielk197730548662009-07-09 05:07:37 +00003714 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
danielk197771d5d2c2008-09-29 11:49:47 +00003715 pCur->validNKey = 1; \
3716 }else{ \
3717 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003718 }
3719#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003720
drhea8ffdf2009-07-22 00:35:23 +00003721#ifndef NDEBUG /* The next routine used only within assert() statements */
3722/*
3723** Return true if the given BtCursor is valid. A valid cursor is one
3724** that is currently pointing to a row in a (non-empty) table.
3725** This is a verification routine is used only within assert() statements.
3726*/
3727int sqlite3BtreeCursorIsValid(BtCursor *pCur){
3728 return pCur && pCur->eState==CURSOR_VALID;
3729}
3730#endif /* NDEBUG */
3731
drh9188b382004-05-14 21:12:22 +00003732/*
drh3aac2dd2004-04-26 14:10:20 +00003733** Set *pSize to the size of the buffer needed to hold the value of
3734** the key for the current entry. If the cursor is not pointing
3735** to a valid entry, *pSize is set to 0.
3736**
drh4b70f112004-05-02 21:12:19 +00003737** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003738** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00003739**
3740** The caller must position the cursor prior to invoking this routine.
3741**
3742** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00003743*/
drh4a1c3802004-05-12 15:15:47 +00003744int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003745 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003746 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3747 if( pCur->eState!=CURSOR_VALID ){
3748 *pSize = 0;
3749 }else{
3750 getCellInfo(pCur);
3751 *pSize = pCur->info.nKey;
drh72f82862001-05-24 21:06:34 +00003752 }
drhea8ffdf2009-07-22 00:35:23 +00003753 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003754}
drh2af926b2001-05-15 00:39:25 +00003755
drh72f82862001-05-24 21:06:34 +00003756/*
drh0e1c19e2004-05-11 00:58:56 +00003757** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00003758** cursor currently points to.
3759**
3760** The caller must guarantee that the cursor is pointing to a non-NULL
3761** valid entry. In other words, the calling procedure must guarantee
3762** that the cursor has Cursor.eState==CURSOR_VALID.
3763**
3764** Failure is not possible. This function always returns SQLITE_OK.
3765** It might just as well be a procedure (returning void) but we continue
3766** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00003767*/
3768int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003769 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003770 assert( pCur->eState==CURSOR_VALID );
3771 getCellInfo(pCur);
3772 *pSize = pCur->info.nData;
3773 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00003774}
3775
3776/*
danielk1977d04417962007-05-02 13:16:30 +00003777** Given the page number of an overflow page in the database (parameter
3778** ovfl), this function finds the page number of the next page in the
3779** linked list of overflow pages. If possible, it uses the auto-vacuum
3780** pointer-map data instead of reading the content of page ovfl to do so.
3781**
3782** If an error occurs an SQLite error code is returned. Otherwise:
3783**
danielk1977bea2a942009-01-20 17:06:27 +00003784** The page number of the next overflow page in the linked list is
3785** written to *pPgnoNext. If page ovfl is the last page in its linked
3786** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003787**
danielk1977bea2a942009-01-20 17:06:27 +00003788** If ppPage is not NULL, and a reference to the MemPage object corresponding
3789** to page number pOvfl was obtained, then *ppPage is set to point to that
3790** reference. It is the responsibility of the caller to call releasePage()
3791** on *ppPage to free the reference. In no reference was obtained (because
3792** the pointer-map was used to obtain the value for *pPgnoNext), then
3793** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003794*/
3795static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003796 BtShared *pBt, /* The database file */
3797 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003798 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003799 Pgno *pPgnoNext /* OUT: Next overflow page number */
3800){
3801 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003802 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003803 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003804
drh1fee73e2007-08-29 04:00:57 +00003805 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003806 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003807
3808#ifndef SQLITE_OMIT_AUTOVACUUM
3809 /* Try to find the next page in the overflow list using the
3810 ** autovacuum pointer-map pages. Guess that the next page in
3811 ** the overflow list is page number (ovfl+1). If that guess turns
3812 ** out to be wrong, fall back to loading the data of page
3813 ** number ovfl to determine the next page number.
3814 */
3815 if( pBt->autoVacuum ){
3816 Pgno pgno;
3817 Pgno iGuess = ovfl+1;
3818 u8 eType;
3819
3820 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3821 iGuess++;
3822 }
3823
drhb1299152010-03-30 22:58:33 +00003824 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003825 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003826 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003827 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003828 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003829 }
3830 }
3831 }
3832#endif
3833
danielk1977d8a3f3d2009-07-11 11:45:23 +00003834 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00003835 if( rc==SQLITE_OK ){
danielk197730548662009-07-09 05:07:37 +00003836 rc = btreeGetPage(pBt, ovfl, &pPage, 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00003837 assert( rc==SQLITE_OK || pPage==0 );
3838 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00003839 next = get4byte(pPage->aData);
3840 }
danielk1977443c0592009-01-16 15:21:05 +00003841 }
danielk197745d68822009-01-16 16:23:38 +00003842
danielk1977bea2a942009-01-20 17:06:27 +00003843 *pPgnoNext = next;
3844 if( ppPage ){
3845 *ppPage = pPage;
3846 }else{
3847 releasePage(pPage);
3848 }
3849 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003850}
3851
danielk1977da107192007-05-04 08:32:13 +00003852/*
3853** Copy data from a buffer to a page, or from a page to a buffer.
3854**
3855** pPayload is a pointer to data stored on database page pDbPage.
3856** If argument eOp is false, then nByte bytes of data are copied
3857** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3858** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3859** of data are copied from the buffer pBuf to pPayload.
3860**
3861** SQLITE_OK is returned on success, otherwise an error code.
3862*/
3863static int copyPayload(
3864 void *pPayload, /* Pointer to page data */
3865 void *pBuf, /* Pointer to buffer */
3866 int nByte, /* Number of bytes to copy */
3867 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3868 DbPage *pDbPage /* Page containing pPayload */
3869){
3870 if( eOp ){
3871 /* Copy data from buffer to page (a write operation) */
3872 int rc = sqlite3PagerWrite(pDbPage);
3873 if( rc!=SQLITE_OK ){
3874 return rc;
3875 }
3876 memcpy(pPayload, pBuf, nByte);
3877 }else{
3878 /* Copy data from page to buffer (a read operation) */
3879 memcpy(pBuf, pPayload, nByte);
3880 }
3881 return SQLITE_OK;
3882}
danielk1977d04417962007-05-02 13:16:30 +00003883
3884/*
danielk19779f8d6402007-05-02 17:48:45 +00003885** This function is used to read or overwrite payload information
3886** for the entry that the pCur cursor is pointing to. If the eOp
3887** parameter is 0, this is a read operation (data copied into
3888** buffer pBuf). If it is non-zero, a write (data copied from
3889** buffer pBuf).
3890**
3891** A total of "amt" bytes are read or written beginning at "offset".
3892** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003893**
drh3bcdfd22009-07-12 02:32:21 +00003894** The content being read or written might appear on the main page
3895** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00003896**
danielk1977dcbb5d32007-05-04 18:36:44 +00003897** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003898** cursor entry uses one or more overflow pages, this function
3899** allocates space for and lazily popluates the overflow page-list
3900** cache array (BtCursor.aOverflow). Subsequent calls use this
3901** cache to make seeking to the supplied offset more efficient.
3902**
3903** Once an overflow page-list cache has been allocated, it may be
3904** invalidated if some other cursor writes to the same table, or if
3905** the cursor is moved to a different row. Additionally, in auto-vacuum
3906** mode, the following events may invalidate an overflow page-list cache.
3907**
3908** * An incremental vacuum,
3909** * A commit in auto_vacuum="full" mode,
3910** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003911*/
danielk19779f8d6402007-05-02 17:48:45 +00003912static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003913 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003914 u32 offset, /* Begin reading this far into payload */
3915 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003916 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003917 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003918){
3919 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003920 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003921 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003922 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003923 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003924 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003925
danielk1977da107192007-05-04 08:32:13 +00003926 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003927 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003928 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003929 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003930
drh86057612007-06-26 01:04:48 +00003931 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003932 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003933 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003934
drh3bcdfd22009-07-12 02:32:21 +00003935 if( NEVER(offset+amt > nKey+pCur->info.nData)
danielk19770d065412008-11-12 18:21:36 +00003936 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3937 ){
danielk1977da107192007-05-04 08:32:13 +00003938 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003939 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003940 }
danielk1977da107192007-05-04 08:32:13 +00003941
3942 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003943 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003944 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003945 if( a+offset>pCur->info.nLocal ){
3946 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003947 }
danielk1977da107192007-05-04 08:32:13 +00003948 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003949 offset = 0;
drha34b6762004-05-07 13:30:42 +00003950 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003951 amt -= a;
drhdd793422001-06-28 01:54:48 +00003952 }else{
drhfa1a98a2004-05-14 19:08:17 +00003953 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00003954 }
danielk1977da107192007-05-04 08:32:13 +00003955
3956 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00003957 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00003958 Pgno nextPage;
3959
drhfa1a98a2004-05-14 19:08:17 +00003960 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00003961
danielk19772dec9702007-05-02 16:48:37 +00003962#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00003963 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00003964 ** has not been allocated, allocate it now. The array is sized at
3965 ** one entry for each overflow page in the overflow chain. The
3966 ** page number of the first overflow page is stored in aOverflow[0],
3967 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
3968 ** (the cache is lazily populated).
3969 */
danielk1977dcbb5d32007-05-04 18:36:44 +00003970 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00003971 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00003972 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
drh3bcdfd22009-07-12 02:32:21 +00003973 /* nOvfl is always positive. If it were zero, fetchPayload would have
3974 ** been used instead of this routine. */
3975 if( ALWAYS(nOvfl) && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00003976 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00003977 }
3978 }
danielk1977da107192007-05-04 08:32:13 +00003979
3980 /* If the overflow page-list cache has been allocated and the
3981 ** entry for the first required overflow page is valid, skip
3982 ** directly to it.
3983 */
danielk19772dec9702007-05-02 16:48:37 +00003984 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
3985 iIdx = (offset/ovflSize);
3986 nextPage = pCur->aOverflow[iIdx];
3987 offset = (offset%ovflSize);
3988 }
3989#endif
danielk1977da107192007-05-04 08:32:13 +00003990
3991 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
3992
3993#ifndef SQLITE_OMIT_INCRBLOB
3994 /* If required, populate the overflow page-list cache. */
3995 if( pCur->aOverflow ){
3996 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
3997 pCur->aOverflow[iIdx] = nextPage;
3998 }
3999#endif
4000
danielk1977d04417962007-05-02 13:16:30 +00004001 if( offset>=ovflSize ){
4002 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004003 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004004 ** data is not required. So first try to lookup the overflow
4005 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004006 ** function.
danielk1977d04417962007-05-02 13:16:30 +00004007 */
danielk19772dec9702007-05-02 16:48:37 +00004008#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00004009 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
4010 nextPage = pCur->aOverflow[iIdx+1];
4011 } else
danielk19772dec9702007-05-02 16:48:37 +00004012#endif
danielk1977da107192007-05-04 08:32:13 +00004013 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00004014 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004015 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004016 /* Need to read this page properly. It contains some of the
4017 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004018 */
danf4ba1092011-10-08 14:57:07 +00004019#ifdef SQLITE_DIRECT_OVERFLOW_READ
4020 sqlite3_file *fd;
4021#endif
danielk1977cfe9a692004-06-16 12:00:29 +00004022 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004023 if( a + offset > ovflSize ){
4024 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004025 }
danf4ba1092011-10-08 14:57:07 +00004026
4027#ifdef SQLITE_DIRECT_OVERFLOW_READ
4028 /* If all the following are true:
4029 **
4030 ** 1) this is a read operation, and
4031 ** 2) data is required from the start of this overflow page, and
4032 ** 3) the database is file-backed, and
4033 ** 4) there is no open write-transaction, and
4034 ** 5) the database is not a WAL database,
4035 **
4036 ** then data can be read directly from the database file into the
4037 ** output buffer, bypassing the page-cache altogether. This speeds
4038 ** up loading large records that span many overflow pages.
4039 */
4040 if( eOp==0 /* (1) */
4041 && offset==0 /* (2) */
4042 && pBt->inTransaction==TRANS_READ /* (4) */
4043 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
4044 && pBt->pPage1->aData[19]==0x01 /* (5) */
4045 ){
4046 u8 aSave[4];
4047 u8 *aWrite = &pBuf[-4];
4048 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004049 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004050 nextPage = get4byte(aWrite);
4051 memcpy(aWrite, aSave, 4);
4052 }else
4053#endif
4054
4055 {
4056 DbPage *pDbPage;
4057 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
4058 if( rc==SQLITE_OK ){
4059 aPayload = sqlite3PagerGetData(pDbPage);
4060 nextPage = get4byte(aPayload);
4061 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
4062 sqlite3PagerUnref(pDbPage);
4063 offset = 0;
4064 }
4065 }
4066 amt -= a;
4067 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004068 }
drh2af926b2001-05-15 00:39:25 +00004069 }
drh2af926b2001-05-15 00:39:25 +00004070 }
danielk1977cfe9a692004-06-16 12:00:29 +00004071
danielk1977da107192007-05-04 08:32:13 +00004072 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00004073 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00004074 }
danielk1977da107192007-05-04 08:32:13 +00004075 return rc;
drh2af926b2001-05-15 00:39:25 +00004076}
4077
drh72f82862001-05-24 21:06:34 +00004078/*
drh3aac2dd2004-04-26 14:10:20 +00004079** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004080** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004081** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004082**
drh5d1a8722009-07-22 18:07:40 +00004083** The caller must ensure that pCur is pointing to a valid row
4084** in the table.
4085**
drh3aac2dd2004-04-26 14:10:20 +00004086** Return SQLITE_OK on success or an error code if anything goes
4087** wrong. An error is returned if "offset+amt" is larger than
4088** the available payload.
drh72f82862001-05-24 21:06:34 +00004089*/
drha34b6762004-05-07 13:30:42 +00004090int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004091 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004092 assert( pCur->eState==CURSOR_VALID );
4093 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4094 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4095 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004096}
4097
4098/*
drh3aac2dd2004-04-26 14:10:20 +00004099** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00004100** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004101** begins at "offset".
4102**
4103** Return SQLITE_OK on success or an error code if anything goes
4104** wrong. An error is returned if "offset+amt" is larger than
4105** the available payload.
drh72f82862001-05-24 21:06:34 +00004106*/
drh3aac2dd2004-04-26 14:10:20 +00004107int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00004108 int rc;
4109
danielk19773588ceb2008-06-10 17:30:26 +00004110#ifndef SQLITE_OMIT_INCRBLOB
4111 if ( pCur->eState==CURSOR_INVALID ){
4112 return SQLITE_ABORT;
4113 }
4114#endif
4115
drh1fee73e2007-08-29 04:00:57 +00004116 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004117 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004118 if( rc==SQLITE_OK ){
4119 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004120 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4121 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00004122 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00004123 }
4124 return rc;
drh2af926b2001-05-15 00:39:25 +00004125}
4126
drh72f82862001-05-24 21:06:34 +00004127/*
drh0e1c19e2004-05-11 00:58:56 +00004128** Return a pointer to payload information from the entry that the
4129** pCur cursor is pointing to. The pointer is to the beginning of
4130** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00004131** skipKey==1. The number of bytes of available key/data is written
4132** into *pAmt. If *pAmt==0, then the value returned will not be
4133** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004134**
4135** This routine is an optimization. It is common for the entire key
4136** and data to fit on the local page and for there to be no overflow
4137** pages. When that is so, this routine can be used to access the
4138** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004139** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004140** the key/data and copy it into a preallocated buffer.
4141**
4142** The pointer returned by this routine looks directly into the cached
4143** page of the database. The data might change or move the next time
4144** any btree routine is called.
4145*/
4146static const unsigned char *fetchPayload(
4147 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00004148 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004149 int skipKey /* read beginning at data if this is true */
4150){
4151 unsigned char *aPayload;
4152 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00004153 u32 nKey;
danielk197789d40042008-11-17 14:20:56 +00004154 u32 nLocal;
drh0e1c19e2004-05-11 00:58:56 +00004155
danielk197771d5d2c2008-09-29 11:49:47 +00004156 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00004157 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00004158 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00004159 pPage = pCur->apPage[pCur->iPage];
4160 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drhfe3313f2009-07-21 19:02:20 +00004161 if( NEVER(pCur->info.nSize==0) ){
4162 btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
4163 &pCur->info);
4164 }
drh43605152004-05-29 21:46:49 +00004165 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00004166 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00004167 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00004168 nKey = 0;
4169 }else{
drhf49661a2008-12-10 16:45:50 +00004170 nKey = (int)pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00004171 }
drh0e1c19e2004-05-11 00:58:56 +00004172 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00004173 aPayload += nKey;
4174 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00004175 }else{
drhfa1a98a2004-05-14 19:08:17 +00004176 nLocal = pCur->info.nLocal;
drhfe3313f2009-07-21 19:02:20 +00004177 assert( nLocal<=nKey );
drh0e1c19e2004-05-11 00:58:56 +00004178 }
drhe51c44f2004-05-30 20:46:09 +00004179 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00004180 return aPayload;
4181}
4182
4183
4184/*
drhe51c44f2004-05-30 20:46:09 +00004185** For the entry that cursor pCur is point to, return as
4186** many bytes of the key or data as are available on the local
4187** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004188**
4189** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004190** or be destroyed on the next call to any Btree routine,
4191** including calls from other threads against the same cache.
4192** Hence, a mutex on the BtShared should be held prior to calling
4193** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004194**
4195** These routines is used to get quick access to key and data
4196** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004197*/
drhe51c44f2004-05-30 20:46:09 +00004198const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004199 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004200 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004201 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004202 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4203 p = (const void*)fetchPayload(pCur, pAmt, 0);
danielk1977da184232006-01-05 11:34:32 +00004204 }
drhfe3313f2009-07-21 19:02:20 +00004205 return p;
drh0e1c19e2004-05-11 00:58:56 +00004206}
drhe51c44f2004-05-30 20:46:09 +00004207const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00004208 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00004209 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00004210 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00004211 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
4212 p = (const void*)fetchPayload(pCur, pAmt, 1);
danielk1977da184232006-01-05 11:34:32 +00004213 }
drhfe3313f2009-07-21 19:02:20 +00004214 return p;
drh0e1c19e2004-05-11 00:58:56 +00004215}
4216
4217
4218/*
drh8178a752003-01-05 21:41:40 +00004219** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004220** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004221**
4222** This function returns SQLITE_CORRUPT if the page-header flags field of
4223** the new child page does not match the flags field of the parent (i.e.
4224** if an intkey page appears to be the parent of a non-intkey page, or
4225** vice-versa).
drh72f82862001-05-24 21:06:34 +00004226*/
drh3aac2dd2004-04-26 14:10:20 +00004227static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00004228 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004229 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00004230 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00004231 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004232
drh1fee73e2007-08-29 04:00:57 +00004233 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004234 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004235 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
4236 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4237 return SQLITE_CORRUPT_BKPT;
4238 }
4239 rc = getAndInitPage(pBt, newPgno, &pNewPage);
drh6019e162001-07-02 17:51:45 +00004240 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004241 pCur->apPage[i+1] = pNewPage;
4242 pCur->aiIdx[i+1] = 0;
4243 pCur->iPage++;
4244
drh271efa52004-05-30 19:19:05 +00004245 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004246 pCur->validNKey = 0;
danielk1977bd5969a2009-07-11 17:39:42 +00004247 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004248 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004249 }
drh72f82862001-05-24 21:06:34 +00004250 return SQLITE_OK;
4251}
4252
danbb246c42012-01-12 14:25:55 +00004253#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004254/*
4255** Page pParent is an internal (non-leaf) tree page. This function
4256** asserts that page number iChild is the left-child if the iIdx'th
4257** cell in page pParent. Or, if iIdx is equal to the total number of
4258** cells in pParent, that page number iChild is the right-child of
4259** the page.
4260*/
4261static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4262 assert( iIdx<=pParent->nCell );
4263 if( iIdx==pParent->nCell ){
4264 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4265 }else{
4266 assert( get4byte(findCell(pParent, iIdx))==iChild );
4267 }
4268}
4269#else
4270# define assertParentIndex(x,y,z)
4271#endif
4272
drh72f82862001-05-24 21:06:34 +00004273/*
drh5e2f8b92001-05-28 00:41:15 +00004274** Move the cursor up to the parent page.
4275**
4276** pCur->idx is set to the cell index that contains the pointer
4277** to the page we are coming from. If we are coming from the
4278** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004279** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004280*/
danielk197730548662009-07-09 05:07:37 +00004281static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004282 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004283 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004284 assert( pCur->iPage>0 );
4285 assert( pCur->apPage[pCur->iPage] );
danbb246c42012-01-12 14:25:55 +00004286
4287 /* UPDATE: It is actually possible for the condition tested by the assert
4288 ** below to be untrue if the database file is corrupt. This can occur if
4289 ** one cursor has modified page pParent while a reference to it is held
4290 ** by a second cursor. Which can only happen if a single page is linked
4291 ** into more than one b-tree structure in a corrupt database. */
4292#if 0
danielk1977bf93c562008-09-29 15:53:25 +00004293 assertParentIndex(
4294 pCur->apPage[pCur->iPage-1],
4295 pCur->aiIdx[pCur->iPage-1],
4296 pCur->apPage[pCur->iPage]->pgno
4297 );
danbb246c42012-01-12 14:25:55 +00004298#endif
dan6c2688c2012-01-12 15:05:03 +00004299 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
danbb246c42012-01-12 14:25:55 +00004300
danielk197771d5d2c2008-09-29 11:49:47 +00004301 releasePage(pCur->apPage[pCur->iPage]);
4302 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004303 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004304 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00004305}
4306
4307/*
danielk19778f880a82009-07-13 09:41:45 +00004308** Move the cursor to point to the root page of its b-tree structure.
4309**
4310** If the table has a virtual root page, then the cursor is moved to point
4311** to the virtual root page instead of the actual root page. A table has a
4312** virtual root page when the actual root page contains no cells and a
4313** single child page. This can only happen with the table rooted at page 1.
4314**
4315** If the b-tree structure is empty, the cursor state is set to
4316** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4317** cell located on the root (or virtual root) page and the cursor state
4318** is set to CURSOR_VALID.
4319**
4320** If this function returns successfully, it may be assumed that the
4321** page-header flags indicate that the [virtual] root-page is the expected
4322** kind of b-tree page (i.e. if when opening the cursor the caller did not
4323** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4324** indicating a table b-tree, or if the caller did specify a KeyInfo
4325** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4326** b-tree).
drh72f82862001-05-24 21:06:34 +00004327*/
drh5e2f8b92001-05-28 00:41:15 +00004328static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004329 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004330 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004331 Btree *p = pCur->pBtree;
4332 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00004333
drh1fee73e2007-08-29 04:00:57 +00004334 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004335 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4336 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4337 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4338 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4339 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004340 assert( pCur->skipNext!=SQLITE_OK );
4341 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004342 }
danielk1977be51a652008-10-08 17:58:48 +00004343 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004344 }
danielk197771d5d2c2008-09-29 11:49:47 +00004345
4346 if( pCur->iPage>=0 ){
4347 int i;
4348 for(i=1; i<=pCur->iPage; i++){
4349 releasePage(pCur->apPage[i]);
danielk1977d9f6c532008-09-19 16:39:38 +00004350 }
danielk1977172114a2009-07-07 15:47:12 +00004351 pCur->iPage = 0;
dana205a482011-08-27 18:48:57 +00004352 }else if( pCur->pgnoRoot==0 ){
4353 pCur->eState = CURSOR_INVALID;
4354 return SQLITE_OK;
drh777e4c42006-01-13 04:31:58 +00004355 }else{
drh4c301aa2009-07-15 17:25:45 +00004356 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
4357 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004358 pCur->eState = CURSOR_INVALID;
4359 return rc;
4360 }
danielk1977172114a2009-07-07 15:47:12 +00004361 pCur->iPage = 0;
4362
4363 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4364 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4365 ** NULL, the caller expects a table b-tree. If this is not the case,
4366 ** return an SQLITE_CORRUPT error. */
4367 assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 );
4368 if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){
4369 return SQLITE_CORRUPT_BKPT;
4370 }
drhc39e0002004-05-07 23:50:57 +00004371 }
danielk197771d5d2c2008-09-29 11:49:47 +00004372
danielk19778f880a82009-07-13 09:41:45 +00004373 /* Assert that the root page is of the correct type. This must be the
4374 ** case as the call to this function that loaded the root-page (either
4375 ** this call or a previous invocation) would have detected corruption
4376 ** if the assumption were not true, and it is not possible for the flags
4377 ** byte to have been modified while this cursor is holding a reference
4378 ** to the page. */
danielk197771d5d2c2008-09-29 11:49:47 +00004379 pRoot = pCur->apPage[0];
4380 assert( pRoot->pgno==pCur->pgnoRoot );
danielk19778f880a82009-07-13 09:41:45 +00004381 assert( pRoot->isInit && (pCur->pKeyInfo==0)==pRoot->intKey );
4382
danielk197771d5d2c2008-09-29 11:49:47 +00004383 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004384 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004385 pCur->atLast = 0;
4386 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004387
drh8856d6a2004-04-29 14:42:46 +00004388 if( pRoot->nCell==0 && !pRoot->leaf ){
4389 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004390 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004391 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004392 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004393 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004394 }else{
4395 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00004396 }
4397 return rc;
drh72f82862001-05-24 21:06:34 +00004398}
drh2af926b2001-05-15 00:39:25 +00004399
drh5e2f8b92001-05-28 00:41:15 +00004400/*
4401** Move the cursor down to the left-most leaf entry beneath the
4402** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004403**
4404** The left-most leaf is the one with the smallest key - the first
4405** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004406*/
4407static int moveToLeftmost(BtCursor *pCur){
4408 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004409 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004410 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004411
drh1fee73e2007-08-29 04:00:57 +00004412 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004413 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004414 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4415 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4416 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004417 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004418 }
drhd677b3d2007-08-20 22:48:41 +00004419 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004420}
4421
drh2dcc9aa2002-12-04 13:40:25 +00004422/*
4423** Move the cursor down to the right-most leaf entry beneath the
4424** page to which it is currently pointing. Notice the difference
4425** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4426** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4427** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004428**
4429** The right-most entry is the one with the largest key - the last
4430** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004431*/
4432static int moveToRightmost(BtCursor *pCur){
4433 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004434 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004435 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004436
drh1fee73e2007-08-29 04:00:57 +00004437 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004438 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004439 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004440 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004441 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004442 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00004443 }
drhd677b3d2007-08-20 22:48:41 +00004444 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00004445 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00004446 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004447 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00004448 }
danielk1977518002e2008-09-05 05:02:46 +00004449 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004450}
4451
drh5e00f6c2001-09-13 13:46:56 +00004452/* Move the cursor to the first entry in the table. Return SQLITE_OK
4453** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004454** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004455*/
drh3aac2dd2004-04-26 14:10:20 +00004456int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004457 int rc;
drhd677b3d2007-08-20 22:48:41 +00004458
drh1fee73e2007-08-29 04:00:57 +00004459 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004460 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004461 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004462 if( rc==SQLITE_OK ){
4463 if( pCur->eState==CURSOR_INVALID ){
dana205a482011-08-27 18:48:57 +00004464 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004465 *pRes = 1;
drhd677b3d2007-08-20 22:48:41 +00004466 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004467 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004468 *pRes = 0;
4469 rc = moveToLeftmost(pCur);
4470 }
drh5e00f6c2001-09-13 13:46:56 +00004471 }
drh5e00f6c2001-09-13 13:46:56 +00004472 return rc;
4473}
drh5e2f8b92001-05-28 00:41:15 +00004474
drh9562b552002-02-19 15:00:07 +00004475/* Move the cursor to the last entry in the table. Return SQLITE_OK
4476** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004477** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004478*/
drh3aac2dd2004-04-26 14:10:20 +00004479int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004480 int rc;
drhd677b3d2007-08-20 22:48:41 +00004481
drh1fee73e2007-08-29 04:00:57 +00004482 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004483 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004484
4485 /* If the cursor already points to the last entry, this is a no-op. */
4486 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
4487#ifdef SQLITE_DEBUG
4488 /* This block serves to assert() that the cursor really does point
4489 ** to the last entry in the b-tree. */
4490 int ii;
4491 for(ii=0; ii<pCur->iPage; ii++){
4492 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4493 }
4494 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4495 assert( pCur->apPage[pCur->iPage]->leaf );
4496#endif
4497 return SQLITE_OK;
4498 }
4499
drh9562b552002-02-19 15:00:07 +00004500 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004501 if( rc==SQLITE_OK ){
4502 if( CURSOR_INVALID==pCur->eState ){
dana205a482011-08-27 18:48:57 +00004503 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004504 *pRes = 1;
4505 }else{
4506 assert( pCur->eState==CURSOR_VALID );
4507 *pRes = 0;
4508 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00004509 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00004510 }
drh9562b552002-02-19 15:00:07 +00004511 }
drh9562b552002-02-19 15:00:07 +00004512 return rc;
4513}
4514
drhe14006d2008-03-25 17:23:32 +00004515/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004516** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004517**
drhe63d9992008-08-13 19:11:48 +00004518** For INTKEY tables, the intKey parameter is used. pIdxKey
4519** must be NULL. For index tables, pIdxKey is used and intKey
4520** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004521**
drh5e2f8b92001-05-28 00:41:15 +00004522** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004523** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004524** were present. The cursor might point to an entry that comes
4525** before or after the key.
4526**
drh64022502009-01-09 14:11:04 +00004527** An integer is written into *pRes which is the result of
4528** comparing the key with the entry to which the cursor is
4529** pointing. The meaning of the integer written into
4530** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004531**
4532** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004533** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004534** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004535**
4536** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004537** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004538**
4539** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004540** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004541**
drha059ad02001-04-17 20:09:11 +00004542*/
drhe63d9992008-08-13 19:11:48 +00004543int sqlite3BtreeMovetoUnpacked(
4544 BtCursor *pCur, /* The cursor to be moved */
4545 UnpackedRecord *pIdxKey, /* Unpacked index key */
4546 i64 intKey, /* The table key */
4547 int biasRight, /* If true, bias the search to the high end */
4548 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004549){
drh72f82862001-05-24 21:06:34 +00004550 int rc;
drhd677b3d2007-08-20 22:48:41 +00004551
drh1fee73e2007-08-29 04:00:57 +00004552 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004553 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004554 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004555 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004556
4557 /* If the cursor is already positioned at the point we are trying
4558 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00004559 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4560 && pCur->apPage[0]->intKey
4561 ){
drhe63d9992008-08-13 19:11:48 +00004562 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004563 *pRes = 0;
4564 return SQLITE_OK;
4565 }
drhe63d9992008-08-13 19:11:48 +00004566 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004567 *pRes = -1;
4568 return SQLITE_OK;
4569 }
4570 }
4571
drh5e2f8b92001-05-28 00:41:15 +00004572 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004573 if( rc ){
4574 return rc;
4575 }
dana205a482011-08-27 18:48:57 +00004576 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
4577 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
4578 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
danielk1977da184232006-01-05 11:34:32 +00004579 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004580 *pRes = -1;
dana205a482011-08-27 18:48:57 +00004581 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004582 return SQLITE_OK;
4583 }
danielk197771d5d2c2008-09-29 11:49:47 +00004584 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004585 for(;;){
drhafb98172011-06-04 01:43:53 +00004586 int lwr, upr, idx;
drh72f82862001-05-24 21:06:34 +00004587 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004588 MemPage *pPage = pCur->apPage[pCur->iPage];
danielk1977171fff32009-07-11 05:06:51 +00004589 int c;
4590
4591 /* pPage->nCell must be greater than zero. If this is the root-page
4592 ** the cursor would have been INVALID above and this for(;;) loop
4593 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004594 ** would have already detected db corruption. Similarly, pPage must
4595 ** be the right kind (index or table) of b-tree page. Otherwise
4596 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004597 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004598 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004599 lwr = 0;
4600 upr = pPage->nCell-1;
drhe4d90812007-03-29 05:51:49 +00004601 if( biasRight ){
drhafb98172011-06-04 01:43:53 +00004602 pCur->aiIdx[pCur->iPage] = (u16)(idx = upr);
drhe4d90812007-03-29 05:51:49 +00004603 }else{
drhafb98172011-06-04 01:43:53 +00004604 pCur->aiIdx[pCur->iPage] = (u16)(idx = (upr+lwr)/2);
drhe4d90812007-03-29 05:51:49 +00004605 }
drh64022502009-01-09 14:11:04 +00004606 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004607 u8 *pCell; /* Pointer to current cell in pPage */
4608
drhafb98172011-06-04 01:43:53 +00004609 assert( idx==pCur->aiIdx[pCur->iPage] );
drh366fda62006-01-13 02:35:09 +00004610 pCur->info.nSize = 0;
danielk197711c327a2009-05-04 19:01:26 +00004611 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00004612 if( pPage->intKey ){
danielk197711c327a2009-05-04 19:01:26 +00004613 i64 nCellKey;
drhd172f862006-01-12 15:01:15 +00004614 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00004615 u32 dummy;
shane3f8d5cf2008-04-24 19:15:09 +00004616 pCell += getVarint32(pCell, dummy);
drhd172f862006-01-12 15:01:15 +00004617 }
drha2c20e42008-03-29 16:01:04 +00004618 getVarint(pCell, (u64*)&nCellKey);
drhe63d9992008-08-13 19:11:48 +00004619 if( nCellKey==intKey ){
drh3aac2dd2004-04-26 14:10:20 +00004620 c = 0;
drhe63d9992008-08-13 19:11:48 +00004621 }else if( nCellKey<intKey ){
drh41eb9e92008-04-02 18:33:07 +00004622 c = -1;
4623 }else{
drhe63d9992008-08-13 19:11:48 +00004624 assert( nCellKey>intKey );
drh41eb9e92008-04-02 18:33:07 +00004625 c = +1;
drh3aac2dd2004-04-26 14:10:20 +00004626 }
danielk197711c327a2009-05-04 19:01:26 +00004627 pCur->validNKey = 1;
4628 pCur->info.nKey = nCellKey;
drh3aac2dd2004-04-26 14:10:20 +00004629 }else{
drhb2eced52010-08-12 02:41:12 +00004630 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00004631 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00004632 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00004633 ** varint. This information is used to attempt to avoid parsing
4634 ** the entire cell by checking for the cases where the record is
4635 ** stored entirely within the b-tree page by inspecting the first
4636 ** 2 bytes of the cell.
4637 */
4638 int nCell = pCell[0];
drhc9166342012-01-05 23:32:06 +00004639 if( nCell<=pPage->max1bytePayload
4640 /* && (pCell+nCell)<pPage->aDataEnd */
drh3def2352011-11-11 00:27:15 +00004641 ){
danielk197711c327a2009-05-04 19:01:26 +00004642 /* This branch runs if the record-size field of the cell is a
4643 ** single byte varint and the record fits entirely on the main
4644 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00004645 testcase( pCell+nCell+1==pPage->aDataEnd );
danielk197711c327a2009-05-04 19:01:26 +00004646 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4647 }else if( !(pCell[1] & 0x80)
4648 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
drhc9166342012-01-05 23:32:06 +00004649 /* && (pCell+nCell+2)<=pPage->aDataEnd */
danielk197711c327a2009-05-04 19:01:26 +00004650 ){
4651 /* The record-size field is a 2 byte varint and the record
4652 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00004653 testcase( pCell+nCell+2==pPage->aDataEnd );
danielk197711c327a2009-05-04 19:01:26 +00004654 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004655 }else{
danielk197711c327a2009-05-04 19:01:26 +00004656 /* The record flows over onto one or more overflow pages. In
4657 ** this case the whole cell needs to be parsed, a buffer allocated
4658 ** and accessPayload() used to retrieve the record into the
4659 ** buffer before VdbeRecordCompare() can be called. */
4660 void *pCellKey;
4661 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004662 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004663 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004664 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004665 if( pCellKey==0 ){
4666 rc = SQLITE_NOMEM;
4667 goto moveto_finish;
4668 }
drhfb192682009-07-11 18:26:28 +00004669 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
drhec9b31f2009-08-25 13:53:49 +00004670 if( rc ){
4671 sqlite3_free(pCellKey);
4672 goto moveto_finish;
4673 }
danielk197711c327a2009-05-04 19:01:26 +00004674 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004675 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00004676 }
drh3aac2dd2004-04-26 14:10:20 +00004677 }
drh72f82862001-05-24 21:06:34 +00004678 if( c==0 ){
drh44845222008-07-17 18:39:57 +00004679 if( pPage->intKey && !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004680 lwr = idx;
drh8b18dd42004-05-12 19:18:15 +00004681 break;
4682 }else{
drh64022502009-01-09 14:11:04 +00004683 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004684 rc = SQLITE_OK;
4685 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004686 }
drh72f82862001-05-24 21:06:34 +00004687 }
4688 if( c<0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004689 lwr = idx+1;
drh72f82862001-05-24 21:06:34 +00004690 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004691 upr = idx-1;
drh72f82862001-05-24 21:06:34 +00004692 }
drhf1d68b32007-03-29 04:43:26 +00004693 if( lwr>upr ){
4694 break;
4695 }
drhafb98172011-06-04 01:43:53 +00004696 pCur->aiIdx[pCur->iPage] = (u16)(idx = (lwr+upr)/2);
drh72f82862001-05-24 21:06:34 +00004697 }
drhb07028f2011-10-14 21:49:18 +00004698 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00004699 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004700 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00004701 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00004702 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004703 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004704 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004705 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004706 }
4707 if( chldPg==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004708 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
danielk19775cb09632009-07-09 11:36:01 +00004709 *pRes = c;
drh1e968a02008-03-25 00:22:21 +00004710 rc = SQLITE_OK;
4711 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004712 }
drhf49661a2008-12-10 16:45:50 +00004713 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh271efa52004-05-30 19:19:05 +00004714 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004715 pCur->validNKey = 0;
drh8178a752003-01-05 21:41:40 +00004716 rc = moveToChild(pCur, chldPg);
drh1e968a02008-03-25 00:22:21 +00004717 if( rc ) goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004718 }
drh1e968a02008-03-25 00:22:21 +00004719moveto_finish:
drhe63d9992008-08-13 19:11:48 +00004720 return rc;
4721}
4722
drhd677b3d2007-08-20 22:48:41 +00004723
drh72f82862001-05-24 21:06:34 +00004724/*
drhc39e0002004-05-07 23:50:57 +00004725** Return TRUE if the cursor is not pointing at an entry of the table.
4726**
4727** TRUE will be returned after a call to sqlite3BtreeNext() moves
4728** past the last entry in the table or sqlite3BtreePrev() moves past
4729** the first entry. TRUE is also returned if the table is empty.
4730*/
4731int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004732 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4733 ** have been deleted? This API will need to change to return an error code
4734 ** as well as the boolean result value.
4735 */
4736 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004737}
4738
4739/*
drhbd03cae2001-06-02 02:40:57 +00004740** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004741** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004742** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004743** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004744*/
drhd094db12008-04-03 21:46:57 +00004745int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004746 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004747 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004748 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004749
drh1fee73e2007-08-29 04:00:57 +00004750 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004751 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004752 if( rc!=SQLITE_OK ){
4753 return rc;
4754 }
drh8c4d3a62007-04-06 01:03:32 +00004755 assert( pRes!=0 );
drh8c4d3a62007-04-06 01:03:32 +00004756 if( CURSOR_INVALID==pCur->eState ){
4757 *pRes = 1;
4758 return SQLITE_OK;
4759 }
drh4c301aa2009-07-15 17:25:45 +00004760 if( pCur->skipNext>0 ){
4761 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004762 *pRes = 0;
4763 return SQLITE_OK;
4764 }
drh4c301aa2009-07-15 17:25:45 +00004765 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004766
danielk197771d5d2c2008-09-29 11:49:47 +00004767 pPage = pCur->apPage[pCur->iPage];
4768 idx = ++pCur->aiIdx[pCur->iPage];
4769 assert( pPage->isInit );
danbb246c42012-01-12 14:25:55 +00004770
4771 /* If the database file is corrupt, it is possible for the value of idx
4772 ** to be invalid here. This can only occur if a second cursor modifies
4773 ** the page while cursor pCur is holding a reference to it. Which can
4774 ** only happen if the database is corrupt in such a way as to link the
4775 ** page into more than one b-tree structure. */
4776 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004777
drh271efa52004-05-30 19:19:05 +00004778 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004779 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004780 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004781 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004782 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00004783 if( rc ) return rc;
4784 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004785 *pRes = 0;
4786 return rc;
drh72f82862001-05-24 21:06:34 +00004787 }
drh5e2f8b92001-05-28 00:41:15 +00004788 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004789 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004790 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004791 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004792 return SQLITE_OK;
4793 }
danielk197730548662009-07-09 05:07:37 +00004794 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004795 pPage = pCur->apPage[pCur->iPage];
4796 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004797 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004798 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004799 rc = sqlite3BtreeNext(pCur, pRes);
4800 }else{
4801 rc = SQLITE_OK;
4802 }
4803 return rc;
drh8178a752003-01-05 21:41:40 +00004804 }
4805 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004806 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004807 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004808 }
drh5e2f8b92001-05-28 00:41:15 +00004809 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004810 return rc;
drh72f82862001-05-24 21:06:34 +00004811}
drhd677b3d2007-08-20 22:48:41 +00004812
drh72f82862001-05-24 21:06:34 +00004813
drh3b7511c2001-05-26 13:15:44 +00004814/*
drh2dcc9aa2002-12-04 13:40:25 +00004815** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004816** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004817** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004818** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004819*/
drhd094db12008-04-03 21:46:57 +00004820int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004821 int rc;
drh8178a752003-01-05 21:41:40 +00004822 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004823
drh1fee73e2007-08-29 04:00:57 +00004824 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004825 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004826 if( rc!=SQLITE_OK ){
4827 return rc;
4828 }
drha2c20e42008-03-29 16:01:04 +00004829 pCur->atLast = 0;
drh8c4d3a62007-04-06 01:03:32 +00004830 if( CURSOR_INVALID==pCur->eState ){
4831 *pRes = 1;
4832 return SQLITE_OK;
4833 }
drh4c301aa2009-07-15 17:25:45 +00004834 if( pCur->skipNext<0 ){
4835 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004836 *pRes = 0;
4837 return SQLITE_OK;
4838 }
drh4c301aa2009-07-15 17:25:45 +00004839 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004840
danielk197771d5d2c2008-09-29 11:49:47 +00004841 pPage = pCur->apPage[pCur->iPage];
4842 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004843 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004844 int idx = pCur->aiIdx[pCur->iPage];
4845 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004846 if( rc ){
4847 return rc;
4848 }
drh2dcc9aa2002-12-04 13:40:25 +00004849 rc = moveToRightmost(pCur);
4850 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004851 while( pCur->aiIdx[pCur->iPage]==0 ){
4852 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004853 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004854 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004855 return SQLITE_OK;
4856 }
danielk197730548662009-07-09 05:07:37 +00004857 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004858 }
drh271efa52004-05-30 19:19:05 +00004859 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004860 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004861
4862 pCur->aiIdx[pCur->iPage]--;
4863 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004864 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004865 rc = sqlite3BtreePrevious(pCur, pRes);
4866 }else{
4867 rc = SQLITE_OK;
4868 }
drh2dcc9aa2002-12-04 13:40:25 +00004869 }
drh8178a752003-01-05 21:41:40 +00004870 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004871 return rc;
4872}
4873
4874/*
drh3b7511c2001-05-26 13:15:44 +00004875** Allocate a new page from the database file.
4876**
danielk19773b8a05f2007-03-19 17:44:26 +00004877** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004878** has already been called on the new page.) The new page has also
4879** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004880** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004881**
4882** SQLITE_OK is returned on success. Any other return value indicates
4883** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004884** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004885**
drh199e3cf2002-07-18 11:01:47 +00004886** If the "nearby" parameter is not 0, then a (feeble) effort is made to
4887** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004888** attempt to keep related pages close to each other in the database file,
4889** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004890**
4891** If the "exact" parameter is not 0, and the page-number nearby exists
4892** anywhere on the free-list, then it is guarenteed to be returned. This
4893** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00004894*/
drh4f0c5872007-03-26 22:05:01 +00004895static int allocateBtreePage(
danielk1977aef0bf62005-12-30 16:28:01 +00004896 BtShared *pBt,
danielk1977cb1a7eb2004-11-05 12:27:02 +00004897 MemPage **ppPage,
4898 Pgno *pPgno,
4899 Pgno nearby,
dan51f0b6d2013-02-22 20:16:34 +00004900 u8 eMode
danielk1977cb1a7eb2004-11-05 12:27:02 +00004901){
drh3aac2dd2004-04-26 14:10:20 +00004902 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004903 int rc;
drh35cd6432009-06-05 14:17:21 +00004904 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00004905 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004906 MemPage *pTrunk = 0;
4907 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00004908 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00004909
drh1fee73e2007-08-29 04:00:57 +00004910 assert( sqlite3_mutex_held(pBt->mutex) );
drh3aac2dd2004-04-26 14:10:20 +00004911 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00004912 mxPage = btreePagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00004913 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00004914 testcase( n==mxPage-1 );
4915 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00004916 return SQLITE_CORRUPT_BKPT;
4917 }
drh3aac2dd2004-04-26 14:10:20 +00004918 if( n>0 ){
drh91025292004-05-03 19:49:32 +00004919 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004920 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004921 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4922
4923 /* If the 'exact' parameter was true and a query of the pointer-map
4924 ** shows that the page 'nearby' is somewhere on the free-list, then
4925 ** the entire-list will be searched for that page.
4926 */
4927#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00004928 if( eMode==BTALLOC_EXACT ){
4929 if( nearby<=mxPage ){
4930 u8 eType;
4931 assert( nearby>0 );
4932 assert( pBt->autoVacuum );
4933 rc = ptrmapGet(pBt, nearby, &eType, 0);
4934 if( rc ) return rc;
4935 if( eType==PTRMAP_FREEPAGE ){
4936 searchList = 1;
4937 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004938 }
dan51f0b6d2013-02-22 20:16:34 +00004939 }else if( eMode==BTALLOC_LE ){
4940 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004941 }
4942#endif
4943
4944 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4945 ** first free-list trunk page. iPrevTrunk is initially 1.
4946 */
danielk19773b8a05f2007-03-19 17:44:26 +00004947 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00004948 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004949 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004950
4951 /* The code within this loop is run only once if the 'searchList' variable
4952 ** is not true. Otherwise, it runs once for each trunk-page on the
4953 ** free-list until the page 'nearby' is located.
4954 */
4955 do {
4956 pPrevTrunk = pTrunk;
4957 if( pPrevTrunk ){
4958 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00004959 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00004960 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00004961 }
drhdf35a082009-07-09 02:24:35 +00004962 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004963 if( iTrunk>mxPage ){
4964 rc = SQLITE_CORRUPT_BKPT;
4965 }else{
danielk197730548662009-07-09 05:07:37 +00004966 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00004967 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004968 if( rc ){
drhd3627af2006-12-18 18:34:51 +00004969 pTrunk = 0;
4970 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004971 }
drhb07028f2011-10-14 21:49:18 +00004972 assert( pTrunk!=0 );
4973 assert( pTrunk->aData!=0 );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004974
drh93b4fc72011-04-07 14:47:01 +00004975 k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004976 if( k==0 && !searchList ){
4977 /* The trunk has no leaves and the list is not being searched.
4978 ** So extract the trunk page itself and use it as the newly
4979 ** allocated page */
4980 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004981 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004982 if( rc ){
4983 goto end_allocate_page;
4984 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004985 *pPgno = iTrunk;
4986 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4987 *ppPage = pTrunk;
4988 pTrunk = 0;
4989 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00004990 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004991 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00004992 rc = SQLITE_CORRUPT_BKPT;
4993 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004994#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00004995 }else if( searchList
4996 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
4997 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004998 /* The list is being searched and this trunk page is the page
4999 ** to allocate, regardless of whether it has leaves.
5000 */
dan51f0b6d2013-02-22 20:16:34 +00005001 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005002 *ppPage = pTrunk;
5003 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005004 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005005 if( rc ){
5006 goto end_allocate_page;
5007 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005008 if( k==0 ){
5009 if( !pPrevTrunk ){
5010 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5011 }else{
danf48c3552010-08-23 15:41:24 +00005012 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5013 if( rc!=SQLITE_OK ){
5014 goto end_allocate_page;
5015 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005016 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5017 }
5018 }else{
5019 /* The trunk page is required by the caller but it contains
5020 ** pointers to free-list leaves. The first leaf becomes a trunk
5021 ** page in this case.
5022 */
5023 MemPage *pNewTrunk;
5024 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005025 if( iNewTrunk>mxPage ){
5026 rc = SQLITE_CORRUPT_BKPT;
5027 goto end_allocate_page;
5028 }
drhdf35a082009-07-09 02:24:35 +00005029 testcase( iNewTrunk==mxPage );
danielk197730548662009-07-09 05:07:37 +00005030 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005031 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005032 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005033 }
danielk19773b8a05f2007-03-19 17:44:26 +00005034 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005035 if( rc!=SQLITE_OK ){
5036 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005037 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005038 }
5039 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5040 put4byte(&pNewTrunk->aData[4], k-1);
5041 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005042 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005043 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005044 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005045 put4byte(&pPage1->aData[32], iNewTrunk);
5046 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005047 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005048 if( rc ){
5049 goto end_allocate_page;
5050 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005051 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5052 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005053 }
5054 pTrunk = 0;
5055 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5056#endif
danielk1977e5765212009-06-17 11:13:28 +00005057 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005058 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005059 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005060 Pgno iPage;
5061 unsigned char *aData = pTrunk->aData;
5062 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005063 u32 i;
5064 int dist;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005065 closest = 0;
drhd50ffc42011-03-08 02:38:28 +00005066 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005067 for(i=1; i<k; i++){
drhd50ffc42011-03-08 02:38:28 +00005068 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005069 if( d2<dist ){
5070 closest = i;
5071 dist = d2;
5072 }
5073 }
5074 }else{
5075 closest = 0;
5076 }
5077
5078 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00005079 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00005080 if( iPage>mxPage ){
5081 rc = SQLITE_CORRUPT_BKPT;
5082 goto end_allocate_page;
5083 }
drhdf35a082009-07-09 02:24:35 +00005084 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00005085 if( !searchList
5086 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5087 ){
danielk1977bea2a942009-01-20 17:06:27 +00005088 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00005089 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005090 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5091 ": %d more free pages\n",
5092 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00005093 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5094 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005095 if( closest<k-1 ){
5096 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5097 }
5098 put4byte(&aData[4], k-1);
danielk1977bea2a942009-01-20 17:06:27 +00005099 noContent = !btreeGetHasContent(pBt, *pPgno);
danielk197730548662009-07-09 05:07:37 +00005100 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005101 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00005102 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005103 if( rc!=SQLITE_OK ){
5104 releasePage(*ppPage);
5105 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005106 }
5107 searchList = 0;
5108 }
drhee696e22004-08-30 16:52:17 +00005109 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005110 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00005111 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005112 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00005113 }else{
drh3aac2dd2004-04-26 14:10:20 +00005114 /* There are no pages on the freelist, so create a new page at the
5115 ** end of the file */
drhdd3cd972010-03-27 17:12:36 +00005116 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5117 if( rc ) return rc;
5118 pBt->nPage++;
5119 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00005120
danielk1977afcdd022004-10-31 16:25:42 +00005121#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00005122 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00005123 /* If *pPgno refers to a pointer-map page, allocate two new pages
5124 ** at the end of the file instead of one. The first allocated page
5125 ** becomes a new pointer-map page, the second is used by the caller.
5126 */
danielk1977ac861692009-03-28 10:54:22 +00005127 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00005128 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5129 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh5e0ccc22010-03-29 19:36:52 +00005130 rc = btreeGetPage(pBt, pBt->nPage, &pPg, 1);
danielk1977ac861692009-03-28 10:54:22 +00005131 if( rc==SQLITE_OK ){
5132 rc = sqlite3PagerWrite(pPg->pDbPage);
5133 releasePage(pPg);
5134 }
5135 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00005136 pBt->nPage++;
5137 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00005138 }
5139#endif
drhdd3cd972010-03-27 17:12:36 +00005140 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5141 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00005142
danielk1977599fcba2004-11-08 07:13:13 +00005143 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh5e0ccc22010-03-29 19:36:52 +00005144 rc = btreeGetPage(pBt, *pPgno, ppPage, 1);
drh3b7511c2001-05-26 13:15:44 +00005145 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00005146 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00005147 if( rc!=SQLITE_OK ){
5148 releasePage(*ppPage);
5149 }
drh3a4c1412004-05-09 20:40:11 +00005150 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00005151 }
danielk1977599fcba2004-11-08 07:13:13 +00005152
5153 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00005154
5155end_allocate_page:
5156 releasePage(pTrunk);
5157 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00005158 if( rc==SQLITE_OK ){
5159 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
5160 releasePage(*ppPage);
5161 return SQLITE_CORRUPT_BKPT;
5162 }
5163 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00005164 }else{
5165 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00005166 }
drh93b4fc72011-04-07 14:47:01 +00005167 assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) );
drh3b7511c2001-05-26 13:15:44 +00005168 return rc;
5169}
5170
5171/*
danielk1977bea2a942009-01-20 17:06:27 +00005172** This function is used to add page iPage to the database file free-list.
5173** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00005174**
danielk1977bea2a942009-01-20 17:06:27 +00005175** The value passed as the second argument to this function is optional.
5176** If the caller happens to have a pointer to the MemPage object
5177** corresponding to page iPage handy, it may pass it as the second value.
5178** Otherwise, it may pass NULL.
5179**
5180** If a pointer to a MemPage object is passed as the second argument,
5181** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00005182*/
danielk1977bea2a942009-01-20 17:06:27 +00005183static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5184 MemPage *pTrunk = 0; /* Free-list trunk page */
5185 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5186 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5187 MemPage *pPage; /* Page being freed. May be NULL. */
5188 int rc; /* Return Code */
5189 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00005190
danielk1977bea2a942009-01-20 17:06:27 +00005191 assert( sqlite3_mutex_held(pBt->mutex) );
5192 assert( iPage>1 );
5193 assert( !pMemPage || pMemPage->pgno==iPage );
5194
5195 if( pMemPage ){
5196 pPage = pMemPage;
5197 sqlite3PagerRef(pPage->pDbPage);
5198 }else{
5199 pPage = btreePageLookup(pBt, iPage);
5200 }
drh3aac2dd2004-04-26 14:10:20 +00005201
drha34b6762004-05-07 13:30:42 +00005202 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00005203 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00005204 if( rc ) goto freepage_out;
5205 nFree = get4byte(&pPage1->aData[36]);
5206 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00005207
drhc9166342012-01-05 23:32:06 +00005208 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00005209 /* If the secure_delete option is enabled, then
5210 ** always fully overwrite deleted information with zeros.
5211 */
shaneh84f4b2f2010-02-26 01:46:54 +00005212 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
5213 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00005214 ){
5215 goto freepage_out;
5216 }
5217 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00005218 }
drhfcce93f2006-02-22 03:08:32 +00005219
danielk1977687566d2004-11-02 12:56:41 +00005220 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005221 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00005222 */
danielk197785d90ca2008-07-19 14:25:15 +00005223 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005224 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00005225 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00005226 }
danielk1977687566d2004-11-02 12:56:41 +00005227
danielk1977bea2a942009-01-20 17:06:27 +00005228 /* Now manipulate the actual database free-list structure. There are two
5229 ** possibilities. If the free-list is currently empty, or if the first
5230 ** trunk page in the free-list is full, then this page will become a
5231 ** new free-list trunk page. Otherwise, it will become a leaf of the
5232 ** first trunk page in the current free-list. This block tests if it
5233 ** is possible to add the page as a new free-list leaf.
5234 */
5235 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00005236 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00005237
5238 iTrunk = get4byte(&pPage1->aData[32]);
danielk197730548662009-07-09 05:07:37 +00005239 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00005240 if( rc!=SQLITE_OK ){
5241 goto freepage_out;
5242 }
5243
5244 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00005245 assert( pBt->usableSize>32 );
5246 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00005247 rc = SQLITE_CORRUPT_BKPT;
5248 goto freepage_out;
5249 }
drheeb844a2009-08-08 18:01:07 +00005250 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005251 /* In this case there is room on the trunk page to insert the page
5252 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005253 **
5254 ** Note that the trunk page is not really full until it contains
5255 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5256 ** coded. But due to a coding error in versions of SQLite prior to
5257 ** 3.6.0, databases with freelist trunk pages holding more than
5258 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5259 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005260 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005261 ** for now. At some point in the future (once everyone has upgraded
5262 ** to 3.6.0 or later) we should consider fixing the conditional above
5263 ** to read "usableSize/4-2" instead of "usableSize/4-8".
5264 */
danielk19773b8a05f2007-03-19 17:44:26 +00005265 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005266 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005267 put4byte(&pTrunk->aData[4], nLeaf+1);
5268 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00005269 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00005270 sqlite3PagerDontWrite(pPage->pDbPage);
5271 }
danielk1977bea2a942009-01-20 17:06:27 +00005272 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005273 }
drh3a4c1412004-05-09 20:40:11 +00005274 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005275 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005276 }
drh3b7511c2001-05-26 13:15:44 +00005277 }
danielk1977bea2a942009-01-20 17:06:27 +00005278
5279 /* If control flows to this point, then it was not possible to add the
5280 ** the page being freed as a leaf page of the first trunk in the free-list.
5281 ** Possibly because the free-list is empty, or possibly because the
5282 ** first trunk in the free-list is full. Either way, the page being freed
5283 ** will become the new first trunk page in the free-list.
5284 */
drhc046e3e2009-07-15 11:26:44 +00005285 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
5286 goto freepage_out;
5287 }
5288 rc = sqlite3PagerWrite(pPage->pDbPage);
5289 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005290 goto freepage_out;
5291 }
5292 put4byte(pPage->aData, iTrunk);
5293 put4byte(&pPage->aData[4], 0);
5294 put4byte(&pPage1->aData[32], iPage);
5295 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5296
5297freepage_out:
5298 if( pPage ){
5299 pPage->isInit = 0;
5300 }
5301 releasePage(pPage);
5302 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005303 return rc;
5304}
drhc314dc72009-07-21 11:52:34 +00005305static void freePage(MemPage *pPage, int *pRC){
5306 if( (*pRC)==SQLITE_OK ){
5307 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5308 }
danielk1977bea2a942009-01-20 17:06:27 +00005309}
drh3b7511c2001-05-26 13:15:44 +00005310
5311/*
drh3aac2dd2004-04-26 14:10:20 +00005312** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00005313*/
drh3aac2dd2004-04-26 14:10:20 +00005314static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00005315 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005316 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005317 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005318 int rc;
drh94440812007-03-06 11:42:19 +00005319 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00005320 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005321
drh1fee73e2007-08-29 04:00:57 +00005322 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00005323 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005324 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005325 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005326 }
drhe42a9b42011-08-31 13:27:19 +00005327 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
mistachkin70a1b712012-09-28 18:13:35 +00005328 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
drhe42a9b42011-08-31 13:27:19 +00005329 }
drh6f11bef2004-05-13 01:12:56 +00005330 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005331 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005332 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005333 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5334 assert( ovflPgno==0 || nOvfl>0 );
5335 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005336 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005337 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005338 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005339 /* 0 is not a legal page number and page 1 cannot be an
5340 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5341 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005342 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005343 }
danielk1977bea2a942009-01-20 17:06:27 +00005344 if( nOvfl ){
5345 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5346 if( rc ) return rc;
5347 }
dan887d4b22010-02-25 12:09:16 +00005348
shaneh1da207e2010-03-09 14:41:12 +00005349 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005350 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5351 ){
5352 /* There is no reason any cursor should have an outstanding reference
5353 ** to an overflow page belonging to a cell that is being deleted/updated.
5354 ** So if there exists more than one reference to this page, then it
5355 ** must not really be an overflow page and the database must be corrupt.
5356 ** It is helpful to detect this before calling freePage2(), as
5357 ** freePage2() may zero the page contents if secure-delete mode is
5358 ** enabled. If this 'overflow' page happens to be a page that the
5359 ** caller is iterating through or using in some other way, this
5360 ** can be problematic.
5361 */
5362 rc = SQLITE_CORRUPT_BKPT;
5363 }else{
5364 rc = freePage2(pBt, pOvfl, ovflPgno);
5365 }
5366
danielk1977bea2a942009-01-20 17:06:27 +00005367 if( pOvfl ){
5368 sqlite3PagerUnref(pOvfl->pDbPage);
5369 }
drh3b7511c2001-05-26 13:15:44 +00005370 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005371 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005372 }
drh5e2f8b92001-05-28 00:41:15 +00005373 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005374}
5375
5376/*
drh91025292004-05-03 19:49:32 +00005377** Create the byte sequence used to represent a cell on page pPage
5378** and write that byte sequence into pCell[]. Overflow pages are
5379** allocated and filled in as necessary. The calling procedure
5380** is responsible for making sure sufficient space has been allocated
5381** for pCell[].
5382**
5383** Note that pCell does not necessary need to point to the pPage->aData
5384** area. pCell might point to some temporary storage. The cell will
5385** be constructed in this temporary area then copied into pPage->aData
5386** later.
drh3b7511c2001-05-26 13:15:44 +00005387*/
5388static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005389 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005390 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005391 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005392 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005393 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005394 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005395){
drh3b7511c2001-05-26 13:15:44 +00005396 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005397 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005398 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005399 int spaceLeft;
5400 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005401 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005402 unsigned char *pPrior;
5403 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005404 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005405 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005406 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005407 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005408
drh1fee73e2007-08-29 04:00:57 +00005409 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005410
drhc5053fb2008-11-27 02:22:10 +00005411 /* pPage is not necessarily writeable since pCell might be auxiliary
5412 ** buffer space that is separate from the pPage buffer area */
5413 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5414 || sqlite3PagerIswriteable(pPage->pDbPage) );
5415
drh91025292004-05-03 19:49:32 +00005416 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005417 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005418 if( !pPage->leaf ){
5419 nHeader += 4;
5420 }
drh8b18dd42004-05-12 19:18:15 +00005421 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00005422 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005423 }else{
drhb026e052007-05-02 01:34:31 +00005424 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005425 }
drh6f11bef2004-05-13 01:12:56 +00005426 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
danielk197730548662009-07-09 05:07:37 +00005427 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005428 assert( info.nHeader==nHeader );
5429 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005430 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005431
5432 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005433 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005434 if( pPage->intKey ){
5435 pSrc = pData;
5436 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005437 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005438 }else{
danielk197731d31b82009-07-13 13:18:07 +00005439 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5440 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005441 }
drhf49661a2008-12-10 16:45:50 +00005442 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005443 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005444 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005445 }
drh6f11bef2004-05-13 01:12:56 +00005446 *pnSize = info.nSize;
5447 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005448 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005449 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005450
drh3b7511c2001-05-26 13:15:44 +00005451 while( nPayload>0 ){
5452 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005453#ifndef SQLITE_OMIT_AUTOVACUUM
5454 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005455 if( pBt->autoVacuum ){
5456 do{
5457 pgnoOvfl++;
5458 } while(
5459 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5460 );
danielk1977b39f70b2007-05-17 18:28:11 +00005461 }
danielk1977afcdd022004-10-31 16:25:42 +00005462#endif
drhf49661a2008-12-10 16:45:50 +00005463 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005464#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005465 /* If the database supports auto-vacuum, and the second or subsequent
5466 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005467 ** for that page now.
5468 **
5469 ** If this is the first overflow page, then write a partial entry
5470 ** to the pointer-map. If we write nothing to this pointer-map slot,
5471 ** then the optimistic overflow chain processing in clearCell()
5472 ** may misinterpret the uninitialised values and delete the
5473 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005474 */
danielk19774ef24492007-05-23 09:52:41 +00005475 if( pBt->autoVacuum && rc==SQLITE_OK ){
5476 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00005477 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00005478 if( rc ){
5479 releasePage(pOvfl);
5480 }
danielk1977afcdd022004-10-31 16:25:42 +00005481 }
5482#endif
drh3b7511c2001-05-26 13:15:44 +00005483 if( rc ){
drh9b171272004-05-08 02:03:22 +00005484 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005485 return rc;
5486 }
drhc5053fb2008-11-27 02:22:10 +00005487
5488 /* If pToRelease is not zero than pPrior points into the data area
5489 ** of pToRelease. Make sure pToRelease is still writeable. */
5490 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5491
5492 /* If pPrior is part of the data area of pPage, then make sure pPage
5493 ** is still writeable */
5494 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5495 || sqlite3PagerIswriteable(pPage->pDbPage) );
5496
drh3aac2dd2004-04-26 14:10:20 +00005497 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005498 releasePage(pToRelease);
5499 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005500 pPrior = pOvfl->aData;
5501 put4byte(pPrior, 0);
5502 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005503 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005504 }
5505 n = nPayload;
5506 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005507
5508 /* If pToRelease is not zero than pPayload points into the data area
5509 ** of pToRelease. Make sure pToRelease is still writeable. */
5510 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5511
5512 /* If pPayload is part of the data area of pPage, then make sure pPage
5513 ** is still writeable */
5514 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5515 || sqlite3PagerIswriteable(pPage->pDbPage) );
5516
drhb026e052007-05-02 01:34:31 +00005517 if( nSrc>0 ){
5518 if( n>nSrc ) n = nSrc;
5519 assert( pSrc );
5520 memcpy(pPayload, pSrc, n);
5521 }else{
5522 memset(pPayload, 0, n);
5523 }
drh3b7511c2001-05-26 13:15:44 +00005524 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005525 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005526 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005527 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005528 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005529 if( nSrc==0 ){
5530 nSrc = nData;
5531 pSrc = pData;
5532 }
drhdd793422001-06-28 01:54:48 +00005533 }
drh9b171272004-05-08 02:03:22 +00005534 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005535 return SQLITE_OK;
5536}
5537
drh14acc042001-06-10 19:56:58 +00005538/*
5539** Remove the i-th cell from pPage. This routine effects pPage only.
5540** The cell content is not freed or deallocated. It is assumed that
5541** the cell content has been copied someplace else. This routine just
5542** removes the reference to the cell from pPage.
5543**
5544** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005545*/
drh98add2e2009-07-20 17:11:49 +00005546static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00005547 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00005548 u8 *data; /* pPage->aData */
5549 u8 *ptr; /* Used to move bytes around within data[] */
drhc3f1d5f2011-05-30 23:42:16 +00005550 u8 *endPtr; /* End of loop */
shanedcc50b72008-11-13 18:29:50 +00005551 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00005552 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00005553
drh98add2e2009-07-20 17:11:49 +00005554 if( *pRC ) return;
5555
drh8c42ca92001-06-22 19:15:00 +00005556 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005557 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005558 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005559 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005560 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00005561 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00005562 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00005563 hdr = pPage->hdrOffset;
5564 testcase( pc==get2byte(&data[hdr+5]) );
5565 testcase( pc+sz==pPage->pBt->usableSize );
drh43b18e12010-08-17 19:40:08 +00005566 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00005567 *pRC = SQLITE_CORRUPT_BKPT;
5568 return;
shane0af3f892008-11-12 04:55:34 +00005569 }
shanedcc50b72008-11-13 18:29:50 +00005570 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00005571 if( rc ){
5572 *pRC = rc;
5573 return;
shanedcc50b72008-11-13 18:29:50 +00005574 }
drh3def2352011-11-11 00:27:15 +00005575 endPtr = &pPage->aCellIdx[2*pPage->nCell - 2];
drh2ce71b42011-06-06 13:38:11 +00005576 assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 ); /* ptr is always 2-byte aligned */
drhc3f1d5f2011-05-30 23:42:16 +00005577 while( ptr<endPtr ){
drh61d2fe92011-06-03 23:28:33 +00005578 *(u16*)ptr = *(u16*)&ptr[2];
drhc3f1d5f2011-05-30 23:42:16 +00005579 ptr += 2;
drh14acc042001-06-10 19:56:58 +00005580 }
5581 pPage->nCell--;
drhc314dc72009-07-21 11:52:34 +00005582 put2byte(&data[hdr+3], pPage->nCell);
drh43605152004-05-29 21:46:49 +00005583 pPage->nFree += 2;
drh14acc042001-06-10 19:56:58 +00005584}
5585
5586/*
5587** Insert a new cell on pPage at cell index "i". pCell points to the
5588** content of the cell.
5589**
5590** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005591** will not fit, then make a copy of the cell content into pTemp if
5592** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00005593** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00005594** in pTemp or the original pCell) and also record its index.
5595** Allocating a new entry in pPage->aCell[] implies that
5596** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005597**
5598** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5599** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005600** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005601** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005602*/
drh98add2e2009-07-20 17:11:49 +00005603static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00005604 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005605 int i, /* New cell becomes the i-th cell of the page */
5606 u8 *pCell, /* Content of the new cell */
5607 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005608 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00005609 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
5610 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00005611){
drh383d30f2010-02-26 13:07:37 +00005612 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00005613 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005614 int end; /* First byte past the last cell pointer in data[] */
5615 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005616 int cellOffset; /* Address of first cell pointer in data[] */
5617 u8 *data; /* The content of the whole page */
5618 u8 *ptr; /* Used for moving information around in data[] */
drh61d2fe92011-06-03 23:28:33 +00005619 u8 *endPtr; /* End of the loop */
drh43605152004-05-29 21:46:49 +00005620
danielk19774dbaa892009-06-16 16:50:22 +00005621 int nSkip = (iChild ? 4 : 0);
5622
drh98add2e2009-07-20 17:11:49 +00005623 if( *pRC ) return;
5624
drh43605152004-05-29 21:46:49 +00005625 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhb2eced52010-08-12 02:41:12 +00005626 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=10921 );
drh2cbd78b2012-02-02 19:37:18 +00005627 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
5628 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00005629 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00005630 /* The cell should normally be sized correctly. However, when moving a
5631 ** malformed cell from a leaf page to an interior page, if the cell size
5632 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5633 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5634 ** the term after the || in the following assert(). */
5635 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00005636 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005637 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005638 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005639 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005640 }
danielk19774dbaa892009-06-16 16:50:22 +00005641 if( iChild ){
5642 put4byte(pCell, iChild);
5643 }
drh43605152004-05-29 21:46:49 +00005644 j = pPage->nOverflow++;
drh2cbd78b2012-02-02 19:37:18 +00005645 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
5646 pPage->apOvfl[j] = pCell;
5647 pPage->aiOvfl[j] = (u16)i;
drh14acc042001-06-10 19:56:58 +00005648 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005649 int rc = sqlite3PagerWrite(pPage->pDbPage);
5650 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00005651 *pRC = rc;
5652 return;
danielk19776e465eb2007-08-21 13:11:00 +00005653 }
5654 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005655 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005656 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005657 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005658 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005659 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00005660 if( rc ){ *pRC = rc; return; }
drhc314dc72009-07-21 11:52:34 +00005661 /* The allocateSpace() routine guarantees the following two properties
5662 ** if it returns success */
5663 assert( idx >= end+2 );
drhfcd71b62011-04-05 22:08:24 +00005664 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00005665 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005666 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005667 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005668 if( iChild ){
5669 put4byte(&data[idx], iChild);
5670 }
drh61d2fe92011-06-03 23:28:33 +00005671 ptr = &data[end];
5672 endPtr = &data[ins];
drh2ce71b42011-06-06 13:38:11 +00005673 assert( (SQLITE_PTR_TO_INT(ptr)&1)==0 ); /* ptr is always 2-byte aligned */
drh61d2fe92011-06-03 23:28:33 +00005674 while( ptr>endPtr ){
5675 *(u16*)ptr = *(u16*)&ptr[-2];
5676 ptr -= 2;
drhda200cc2004-05-09 11:51:38 +00005677 }
drh43605152004-05-29 21:46:49 +00005678 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005679 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005680#ifndef SQLITE_OMIT_AUTOVACUUM
5681 if( pPage->pBt->autoVacuum ){
5682 /* The cell may contain a pointer to an overflow page. If so, write
5683 ** the entry for the overflow page into the pointer map.
5684 */
drh98add2e2009-07-20 17:11:49 +00005685 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00005686 }
5687#endif
drh14acc042001-06-10 19:56:58 +00005688 }
5689}
5690
5691/*
drhfa1a98a2004-05-14 19:08:17 +00005692** Add a list of cells to a page. The page should be initially empty.
5693** The cells are guaranteed to fit on the page.
5694*/
5695static void assemblePage(
5696 MemPage *pPage, /* The page to be assemblied */
5697 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005698 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005699 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005700){
5701 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005702 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005703 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005704 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5705 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5706 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005707
drh43605152004-05-29 21:46:49 +00005708 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005709 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfcd71b62011-04-05 22:08:24 +00005710 assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt)
5711 && (int)MX_CELL(pPage->pBt)<=10921);
drhc5053fb2008-11-27 02:22:10 +00005712 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005713
5714 /* Check that the page has just been zeroed by zeroPage() */
5715 assert( pPage->nCell==0 );
drh5d433ce2010-08-14 16:02:52 +00005716 assert( get2byteNotZero(&data[hdr+5])==nUsable );
danielk1977fad91942009-04-29 17:49:59 +00005717
drh3def2352011-11-11 00:27:15 +00005718 pCellptr = &pPage->aCellIdx[nCell*2];
danielk1977fad91942009-04-29 17:49:59 +00005719 cellbody = nUsable;
5720 for(i=nCell-1; i>=0; i--){
drh61d2fe92011-06-03 23:28:33 +00005721 u16 sz = aSize[i];
danielk1977fad91942009-04-29 17:49:59 +00005722 pCellptr -= 2;
drh61d2fe92011-06-03 23:28:33 +00005723 cellbody -= sz;
danielk1977fad91942009-04-29 17:49:59 +00005724 put2byte(pCellptr, cellbody);
drh61d2fe92011-06-03 23:28:33 +00005725 memcpy(&data[cellbody], apCell[i], sz);
drhfa1a98a2004-05-14 19:08:17 +00005726 }
danielk1977fad91942009-04-29 17:49:59 +00005727 put2byte(&data[hdr+3], nCell);
5728 put2byte(&data[hdr+5], cellbody);
5729 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005730 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005731}
5732
drh14acc042001-06-10 19:56:58 +00005733/*
drhc3b70572003-01-04 19:44:07 +00005734** The following parameters determine how many adjacent pages get involved
5735** in a balancing operation. NN is the number of neighbors on either side
5736** of the page that participate in the balancing operation. NB is the
5737** total number of pages that participate, including the target page and
5738** NN neighbors on either side.
5739**
5740** The minimum value of NN is 1 (of course). Increasing NN above 1
5741** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5742** in exchange for a larger degradation in INSERT and UPDATE performance.
5743** The value of NN appears to give the best results overall.
5744*/
5745#define NN 1 /* Number of neighbors on either side of pPage */
5746#define NB (NN*2+1) /* Total pages involved in the balance */
5747
danielk1977ac245ec2005-01-14 13:50:11 +00005748
drh615ae552005-01-16 23:21:00 +00005749#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005750/*
5751** This version of balance() handles the common special case where
5752** a new entry is being inserted on the extreme right-end of the
5753** tree, in other words, when the new entry will become the largest
5754** entry in the tree.
5755**
drhc314dc72009-07-21 11:52:34 +00005756** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00005757** a new page to the right-hand side and put the one new entry in
5758** that page. This leaves the right side of the tree somewhat
5759** unbalanced. But odds are that we will be inserting new entries
5760** at the end soon afterwards so the nearly empty page will quickly
5761** fill up. On average.
5762**
5763** pPage is the leaf page which is the right-most page in the tree.
5764** pParent is its parent. pPage must have a single overflow entry
5765** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005766**
5767** The pSpace buffer is used to store a temporary copy of the divider
5768** cell that will be inserted into pParent. Such a cell consists of a 4
5769** byte page number followed by a variable length integer. In other
5770** words, at most 13 bytes. Hence the pSpace buffer must be at
5771** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005772*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005773static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5774 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005775 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005776 int rc; /* Return Code */
5777 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005778
drh1fee73e2007-08-29 04:00:57 +00005779 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005780 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005781 assert( pPage->nOverflow==1 );
5782
drh5d433ce2010-08-14 16:02:52 +00005783 /* This error condition is now caught prior to reaching this function */
mistachkin5f070c72012-10-18 10:35:19 +00005784 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005785
danielk1977a50d9aa2009-06-08 14:49:45 +00005786 /* Allocate a new page. This page will become the right-sibling of
5787 ** pPage. Make the parent page writable, so that the new divider cell
5788 ** may be inserted. If both these operations are successful, proceed.
5789 */
drh4f0c5872007-03-26 22:05:01 +00005790 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005791
danielk1977eaa06f62008-09-18 17:34:44 +00005792 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005793
5794 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00005795 u8 *pCell = pPage->apOvfl[0];
danielk19776f235cc2009-06-04 14:46:08 +00005796 u16 szCell = cellSizePtr(pPage, pCell);
5797 u8 *pStop;
5798
drhc5053fb2008-11-27 02:22:10 +00005799 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005800 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5801 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00005802 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00005803
5804 /* If this is an auto-vacuum database, update the pointer map
5805 ** with entries for the new page, and any pointer from the
5806 ** cell on the page to an overflow page. If either of these
5807 ** operations fails, the return code is set, but the contents
5808 ** of the parent page are still manipulated by thh code below.
5809 ** That is Ok, at this point the parent page is guaranteed to
5810 ** be marked as dirty. Returning an error code will cause a
5811 ** rollback, undoing any changes made to the parent page.
5812 */
5813 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005814 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
5815 if( szCell>pNew->minLocal ){
5816 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005817 }
5818 }
danielk1977eaa06f62008-09-18 17:34:44 +00005819
danielk19776f235cc2009-06-04 14:46:08 +00005820 /* Create a divider cell to insert into pParent. The divider cell
5821 ** consists of a 4-byte page number (the page number of pPage) and
5822 ** a variable length key value (which must be the same value as the
5823 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005824 **
danielk19776f235cc2009-06-04 14:46:08 +00005825 ** To find the largest key value on pPage, first find the right-most
5826 ** cell on pPage. The first two fields of this cell are the
5827 ** record-length (a variable length integer at most 32-bits in size)
5828 ** and the key value (a variable length integer, may have any value).
5829 ** The first of the while(...) loops below skips over the record-length
5830 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005831 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005832 */
danielk1977eaa06f62008-09-18 17:34:44 +00005833 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005834 pStop = &pCell[9];
5835 while( (*(pCell++)&0x80) && pCell<pStop );
5836 pStop = &pCell[9];
5837 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5838
danielk19774dbaa892009-06-16 16:50:22 +00005839 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00005840 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
5841 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00005842
5843 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005844 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5845
danielk1977e08a3c42008-09-18 18:17:03 +00005846 /* Release the reference to the new page. */
5847 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005848 }
5849
danielk1977eaa06f62008-09-18 17:34:44 +00005850 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005851}
drh615ae552005-01-16 23:21:00 +00005852#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005853
danielk19774dbaa892009-06-16 16:50:22 +00005854#if 0
drhc3b70572003-01-04 19:44:07 +00005855/*
danielk19774dbaa892009-06-16 16:50:22 +00005856** This function does not contribute anything to the operation of SQLite.
5857** it is sometimes activated temporarily while debugging code responsible
5858** for setting pointer-map entries.
5859*/
5860static int ptrmapCheckPages(MemPage **apPage, int nPage){
5861 int i, j;
5862 for(i=0; i<nPage; i++){
5863 Pgno n;
5864 u8 e;
5865 MemPage *pPage = apPage[i];
5866 BtShared *pBt = pPage->pBt;
5867 assert( pPage->isInit );
5868
5869 for(j=0; j<pPage->nCell; j++){
5870 CellInfo info;
5871 u8 *z;
5872
5873 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00005874 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00005875 if( info.iOverflow ){
5876 Pgno ovfl = get4byte(&z[info.iOverflow]);
5877 ptrmapGet(pBt, ovfl, &e, &n);
5878 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
5879 }
5880 if( !pPage->leaf ){
5881 Pgno child = get4byte(z);
5882 ptrmapGet(pBt, child, &e, &n);
5883 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5884 }
5885 }
5886 if( !pPage->leaf ){
5887 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5888 ptrmapGet(pBt, child, &e, &n);
5889 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5890 }
5891 }
5892 return 1;
5893}
5894#endif
5895
danielk1977cd581a72009-06-23 15:43:39 +00005896/*
5897** This function is used to copy the contents of the b-tree node stored
5898** on page pFrom to page pTo. If page pFrom was not a leaf page, then
5899** the pointer-map entries for each child page are updated so that the
5900** parent page stored in the pointer map is page pTo. If pFrom contained
5901** any cells with overflow page pointers, then the corresponding pointer
5902** map entries are also updated so that the parent page is page pTo.
5903**
5904** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00005905** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00005906**
danielk197730548662009-07-09 05:07:37 +00005907** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00005908**
5909** The performance of this function is not critical. It is only used by
5910** the balance_shallower() and balance_deeper() procedures, neither of
5911** which are called often under normal circumstances.
5912*/
drhc314dc72009-07-21 11:52:34 +00005913static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
5914 if( (*pRC)==SQLITE_OK ){
5915 BtShared * const pBt = pFrom->pBt;
5916 u8 * const aFrom = pFrom->aData;
5917 u8 * const aTo = pTo->aData;
5918 int const iFromHdr = pFrom->hdrOffset;
5919 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00005920 int rc;
drhc314dc72009-07-21 11:52:34 +00005921 int iData;
5922
5923
5924 assert( pFrom->isInit );
5925 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00005926 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00005927
5928 /* Copy the b-tree node content from page pFrom to page pTo. */
5929 iData = get2byte(&aFrom[iFromHdr+5]);
5930 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
5931 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
5932
5933 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00005934 ** match the new data. The initialization of pTo can actually fail under
5935 ** fairly obscure circumstances, even though it is a copy of initialized
5936 ** page pFrom.
5937 */
drhc314dc72009-07-21 11:52:34 +00005938 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00005939 rc = btreeInitPage(pTo);
5940 if( rc!=SQLITE_OK ){
5941 *pRC = rc;
5942 return;
5943 }
drhc314dc72009-07-21 11:52:34 +00005944
5945 /* If this is an auto-vacuum database, update the pointer-map entries
5946 ** for any b-tree or overflow pages that pTo now contains the pointers to.
5947 */
5948 if( ISAUTOVACUUM ){
5949 *pRC = setChildPtrmaps(pTo);
5950 }
danielk1977cd581a72009-06-23 15:43:39 +00005951 }
danielk1977cd581a72009-06-23 15:43:39 +00005952}
5953
5954/*
danielk19774dbaa892009-06-16 16:50:22 +00005955** This routine redistributes cells on the iParentIdx'th child of pParent
5956** (hereafter "the page") and up to 2 siblings so that all pages have about the
5957** same amount of free space. Usually a single sibling on either side of the
5958** page are used in the balancing, though both siblings might come from one
5959** side if the page is the first or last child of its parent. If the page
5960** has fewer than 2 siblings (something which can only happen if the page
5961** is a root page or a child of a root page) then all available siblings
5962** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00005963**
danielk19774dbaa892009-06-16 16:50:22 +00005964** The number of siblings of the page might be increased or decreased by
5965** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00005966**
danielk19774dbaa892009-06-16 16:50:22 +00005967** Note that when this routine is called, some of the cells on the page
5968** might not actually be stored in MemPage.aData[]. This can happen
5969** if the page is overfull. This routine ensures that all cells allocated
5970** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00005971**
danielk19774dbaa892009-06-16 16:50:22 +00005972** In the course of balancing the page and its siblings, cells may be
5973** inserted into or removed from the parent page (pParent). Doing so
5974** may cause the parent page to become overfull or underfull. If this
5975** happens, it is the responsibility of the caller to invoke the correct
5976** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00005977**
drh5e00f6c2001-09-13 13:46:56 +00005978** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00005979** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00005980** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00005981**
5982** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00005983** buffer big enough to hold one page. If while inserting cells into the parent
5984** page (pParent) the parent page becomes overfull, this buffer is
5985** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00005986** a maximum of four divider cells into the parent page, and the maximum
5987** size of a cell stored within an internal node is always less than 1/4
5988** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
5989** enough for all overflow cells.
5990**
5991** If aOvflSpace is set to a null pointer, this function returns
5992** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00005993*/
mistachkine7c54162012-10-02 22:54:27 +00005994#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
5995#pragma optimize("", off)
5996#endif
danielk19774dbaa892009-06-16 16:50:22 +00005997static int balance_nonroot(
5998 MemPage *pParent, /* Parent page of siblings being balanced */
5999 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00006000 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00006001 int isRoot, /* True if pParent is a root-page */
6002 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00006003){
drh16a9b832007-05-05 18:39:25 +00006004 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00006005 int nCell = 0; /* Number of cells in apCell[] */
6006 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00006007 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00006008 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00006009 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00006010 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00006011 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00006012 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00006013 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00006014 int usableSpace; /* Bytes in pPage beyond the header */
6015 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00006016 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00006017 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00006018 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00006019 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00006020 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00006021 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00006022 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00006023 u8 *pRight; /* Location in parent of right-sibling pointer */
6024 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00006025 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
6026 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00006027 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00006028 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00006029 u8 *aSpace1; /* Space for copies of dividers cells */
6030 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00006031
danielk1977a50d9aa2009-06-08 14:49:45 +00006032 pBt = pParent->pBt;
6033 assert( sqlite3_mutex_held(pBt->mutex) );
6034 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00006035
danielk1977e5765212009-06-17 11:13:28 +00006036#if 0
drh43605152004-05-29 21:46:49 +00006037 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00006038#endif
drh2e38c322004-09-03 18:38:44 +00006039
danielk19774dbaa892009-06-16 16:50:22 +00006040 /* At this point pParent may have at most one overflow cell. And if
6041 ** this overflow cell is present, it must be the cell with
6042 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00006043 ** is called (indirectly) from sqlite3BtreeDelete().
6044 */
danielk19774dbaa892009-06-16 16:50:22 +00006045 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00006046 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00006047
danielk197711a8a862009-06-17 11:49:52 +00006048 if( !aOvflSpace ){
6049 return SQLITE_NOMEM;
6050 }
6051
danielk1977a50d9aa2009-06-08 14:49:45 +00006052 /* Find the sibling pages to balance. Also locate the cells in pParent
6053 ** that divide the siblings. An attempt is made to find NN siblings on
6054 ** either side of pPage. More siblings are taken from one side, however,
6055 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00006056 ** has NB or fewer children then all children of pParent are taken.
6057 **
6058 ** This loop also drops the divider cells from the parent page. This
6059 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00006060 ** overflow cells in the parent page, since if any existed they will
6061 ** have already been removed.
6062 */
danielk19774dbaa892009-06-16 16:50:22 +00006063 i = pParent->nOverflow + pParent->nCell;
6064 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00006065 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00006066 }else{
dan7d6885a2012-08-08 14:04:56 +00006067 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00006068 if( iParentIdx==0 ){
6069 nxDiv = 0;
6070 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00006071 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00006072 }else{
dan7d6885a2012-08-08 14:04:56 +00006073 assert( bBulk==0 );
danielk19774dbaa892009-06-16 16:50:22 +00006074 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00006075 }
dan7d6885a2012-08-08 14:04:56 +00006076 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00006077 }
dan7d6885a2012-08-08 14:04:56 +00006078 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00006079 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
6080 pRight = &pParent->aData[pParent->hdrOffset+8];
6081 }else{
6082 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
6083 }
6084 pgno = get4byte(pRight);
6085 while( 1 ){
6086 rc = getAndInitPage(pBt, pgno, &apOld[i]);
6087 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00006088 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00006089 goto balance_cleanup;
6090 }
danielk1977634f2982005-03-28 08:44:07 +00006091 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00006092 if( (i--)==0 ) break;
6093
drh2cbd78b2012-02-02 19:37:18 +00006094 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
6095 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006096 pgno = get4byte(apDiv[i]);
6097 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6098 pParent->nOverflow = 0;
6099 }else{
6100 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
6101 pgno = get4byte(apDiv[i]);
6102 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6103
6104 /* Drop the cell from the parent page. apDiv[i] still points to
6105 ** the cell within the parent, even though it has been dropped.
6106 ** This is safe because dropping a cell only overwrites the first
6107 ** four bytes of it, and this function does not need the first
6108 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00006109 ** later on.
6110 **
drh8a575d92011-10-12 17:00:28 +00006111 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00006112 ** the dropCell() routine will overwrite the entire cell with zeroes.
6113 ** In this case, temporarily copy the cell into the aOvflSpace[]
6114 ** buffer. It will be copied out again as soon as the aSpace[] buffer
6115 ** is allocated. */
drhc9166342012-01-05 23:32:06 +00006116 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh8a575d92011-10-12 17:00:28 +00006117 int iOff;
6118
6119 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00006120 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00006121 rc = SQLITE_CORRUPT_BKPT;
6122 memset(apOld, 0, (i+1)*sizeof(MemPage*));
6123 goto balance_cleanup;
6124 }else{
6125 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
6126 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
6127 }
drh5b47efa2010-02-12 18:18:39 +00006128 }
drh98add2e2009-07-20 17:11:49 +00006129 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006130 }
drh8b2f49b2001-06-08 00:21:52 +00006131 }
6132
drha9121e42008-02-19 14:59:35 +00006133 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00006134 ** alignment */
drha9121e42008-02-19 14:59:35 +00006135 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00006136
drh8b2f49b2001-06-08 00:21:52 +00006137 /*
danielk1977634f2982005-03-28 08:44:07 +00006138 ** Allocate space for memory structures
6139 */
danielk19774dbaa892009-06-16 16:50:22 +00006140 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00006141 szScratch =
drha9121e42008-02-19 14:59:35 +00006142 nMaxCells*sizeof(u8*) /* apCell */
6143 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00006144 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00006145 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00006146 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00006147 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00006148 rc = SQLITE_NOMEM;
6149 goto balance_cleanup;
6150 }
drha9121e42008-02-19 14:59:35 +00006151 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00006152 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00006153 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00006154
6155 /*
6156 ** Load pointers to all cells on sibling pages and the divider cells
6157 ** into the local apCell[] array. Make copies of the divider cells
mistachkind5578432012-08-25 10:01:29 +00006158 ** into space obtained from aSpace1[] and remove the divider cells
drhb6f41482004-05-14 01:58:11 +00006159 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00006160 **
6161 ** If the siblings are on leaf pages, then the child pointers of the
6162 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00006163 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00006164 ** child pointers. If siblings are not leaves, then all cell in
6165 ** apCell[] include child pointers. Either way, all cells in apCell[]
6166 ** are alike.
drh96f5b762004-05-16 16:24:36 +00006167 **
6168 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
6169 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00006170 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006171 leafCorrection = apOld[0]->leaf*4;
6172 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00006173 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006174 int limit;
6175
6176 /* Before doing anything else, take a copy of the i'th original sibling
6177 ** The rest of this function will use data from the copies rather
6178 ** that the original pages since the original pages will be in the
6179 ** process of being overwritten. */
6180 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
6181 memcpy(pOld, apOld[i], sizeof(MemPage));
6182 pOld->aData = (void*)&pOld[1];
6183 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
6184
6185 limit = pOld->nCell+pOld->nOverflow;
drh68f2a572011-06-03 17:50:49 +00006186 if( pOld->nOverflow>0 ){
6187 for(j=0; j<limit; j++){
6188 assert( nCell<nMaxCells );
6189 apCell[nCell] = findOverflowCell(pOld, j);
6190 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6191 nCell++;
6192 }
6193 }else{
6194 u8 *aData = pOld->aData;
6195 u16 maskPage = pOld->maskPage;
6196 u16 cellOffset = pOld->cellOffset;
6197 for(j=0; j<limit; j++){
6198 assert( nCell<nMaxCells );
6199 apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j);
6200 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6201 nCell++;
6202 }
6203 }
danielk19774dbaa892009-06-16 16:50:22 +00006204 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00006205 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00006206 u8 *pTemp;
6207 assert( nCell<nMaxCells );
6208 szCell[nCell] = sz;
6209 pTemp = &aSpace1[iSpace1];
6210 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00006211 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006212 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00006213 memcpy(pTemp, apDiv[i], sz);
6214 apCell[nCell] = pTemp+leafCorrection;
6215 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00006216 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00006217 if( !pOld->leaf ){
6218 assert( leafCorrection==0 );
6219 assert( pOld->hdrOffset==0 );
6220 /* The right pointer of the child page pOld becomes the left
6221 ** pointer of the divider cell */
6222 memcpy(apCell[nCell], &pOld->aData[8], 4);
6223 }else{
6224 assert( leafCorrection==4 );
6225 if( szCell[nCell]<4 ){
6226 /* Do not allow any cells smaller than 4 bytes. */
6227 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00006228 }
6229 }
drh14acc042001-06-10 19:56:58 +00006230 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00006231 }
drh8b2f49b2001-06-08 00:21:52 +00006232 }
6233
6234 /*
drh6019e162001-07-02 17:51:45 +00006235 ** Figure out the number of pages needed to hold all nCell cells.
6236 ** Store this number in "k". Also compute szNew[] which is the total
6237 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00006238 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00006239 ** cntNew[k] should equal nCell.
6240 **
drh96f5b762004-05-16 16:24:36 +00006241 ** Values computed by this block:
6242 **
6243 ** k: The total number of sibling pages
6244 ** szNew[i]: Spaced used on the i-th sibling page.
6245 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
6246 ** the right of the i-th sibling page.
6247 ** usableSpace: Number of bytes of space available on each sibling.
6248 **
drh8b2f49b2001-06-08 00:21:52 +00006249 */
drh43605152004-05-29 21:46:49 +00006250 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00006251 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00006252 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00006253 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00006254 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00006255 szNew[k] = subtotal - szCell[i];
6256 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00006257 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00006258 subtotal = 0;
6259 k++;
drh9978c972010-02-23 17:36:32 +00006260 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00006261 }
6262 }
6263 szNew[k] = subtotal;
6264 cntNew[k] = nCell;
6265 k++;
drh96f5b762004-05-16 16:24:36 +00006266
6267 /*
6268 ** The packing computed by the previous block is biased toward the siblings
6269 ** on the left side. The left siblings are always nearly full, while the
6270 ** right-most sibling might be nearly empty. This block of code attempts
6271 ** to adjust the packing of siblings to get a better balance.
6272 **
6273 ** This adjustment is more than an optimization. The packing above might
6274 ** be so out of balance as to be illegal. For example, the right-most
6275 ** sibling might be completely empty. This adjustment is not optional.
6276 */
drh6019e162001-07-02 17:51:45 +00006277 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00006278 int szRight = szNew[i]; /* Size of sibling on the right */
6279 int szLeft = szNew[i-1]; /* Size of sibling on the left */
6280 int r; /* Index of right-most cell in left sibling */
6281 int d; /* Index of first cell to the left of right sibling */
6282
6283 r = cntNew[i-1] - 1;
6284 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00006285 assert( d<nMaxCells );
6286 assert( r<nMaxCells );
danf64cc492012-08-08 11:55:15 +00006287 while( szRight==0
6288 || (!bBulk && szRight+szCell[d]+2<=szLeft-(szCell[r]+2))
6289 ){
drh43605152004-05-29 21:46:49 +00006290 szRight += szCell[d] + 2;
6291 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00006292 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00006293 r = cntNew[i-1] - 1;
6294 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00006295 }
drh96f5b762004-05-16 16:24:36 +00006296 szNew[i] = szRight;
6297 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00006298 }
drh09d0deb2005-08-02 17:13:09 +00006299
danielk19776f235cc2009-06-04 14:46:08 +00006300 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00006301 ** a virtual root page. A virtual root page is when the real root
6302 ** page is page 1 and we are the only child of that page.
drh2f32fba2012-01-02 16:38:57 +00006303 **
6304 ** UPDATE: The assert() below is not necessarily true if the database
6305 ** file is corrupt. The corruption will be detected and reported later
6306 ** in this procedure so there is no need to act upon it now.
drh09d0deb2005-08-02 17:13:09 +00006307 */
drh2f32fba2012-01-02 16:38:57 +00006308#if 0
drh09d0deb2005-08-02 17:13:09 +00006309 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh2f32fba2012-01-02 16:38:57 +00006310#endif
drh8b2f49b2001-06-08 00:21:52 +00006311
danielk1977e5765212009-06-17 11:13:28 +00006312 TRACE(("BALANCE: old: %d %d %d ",
6313 apOld[0]->pgno,
6314 nOld>=2 ? apOld[1]->pgno : 0,
6315 nOld>=3 ? apOld[2]->pgno : 0
6316 ));
6317
drh8b2f49b2001-06-08 00:21:52 +00006318 /*
drh6b308672002-07-08 02:16:37 +00006319 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00006320 */
drheac74422009-06-14 12:47:11 +00006321 if( apOld[0]->pgno<=1 ){
drh9978c972010-02-23 17:36:32 +00006322 rc = SQLITE_CORRUPT_BKPT;
drheac74422009-06-14 12:47:11 +00006323 goto balance_cleanup;
6324 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006325 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00006326 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00006327 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00006328 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00006329 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00006330 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006331 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00006332 nNew++;
danielk197728129562005-01-11 10:25:06 +00006333 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00006334 }else{
drh7aa8f852006-03-28 00:24:44 +00006335 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00006336 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00006337 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00006338 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00006339 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00006340
6341 /* Set the pointer-map entry for the new sibling page. */
6342 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006343 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006344 if( rc!=SQLITE_OK ){
6345 goto balance_cleanup;
6346 }
6347 }
drh6b308672002-07-08 02:16:37 +00006348 }
drh8b2f49b2001-06-08 00:21:52 +00006349 }
6350
danielk1977299b1872004-11-22 10:02:10 +00006351 /* Free any old pages that were not reused as new pages.
6352 */
6353 while( i<nOld ){
drhc314dc72009-07-21 11:52:34 +00006354 freePage(apOld[i], &rc);
danielk1977299b1872004-11-22 10:02:10 +00006355 if( rc ) goto balance_cleanup;
6356 releasePage(apOld[i]);
6357 apOld[i] = 0;
6358 i++;
6359 }
6360
drh8b2f49b2001-06-08 00:21:52 +00006361 /*
drhf9ffac92002-03-02 19:00:31 +00006362 ** Put the new pages in accending order. This helps to
6363 ** keep entries in the disk file in order so that a scan
6364 ** of the table is a linear scan through the file. That
6365 ** in turn helps the operating system to deliver pages
6366 ** from the disk more rapidly.
6367 **
6368 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00006369 ** n is never more than NB (a small constant), that should
6370 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00006371 **
drhc3b70572003-01-04 19:44:07 +00006372 ** When NB==3, this one optimization makes the database
6373 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00006374 */
6375 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006376 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006377 int minI = i;
6378 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00006379 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00006380 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00006381 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006382 }
6383 }
6384 if( minI>i ){
drhf9ffac92002-03-02 19:00:31 +00006385 MemPage *pT;
drhf9ffac92002-03-02 19:00:31 +00006386 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00006387 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00006388 apNew[minI] = pT;
6389 }
6390 }
danielk1977e5765212009-06-17 11:13:28 +00006391 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00006392 apNew[0]->pgno, szNew[0],
6393 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
6394 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
6395 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
6396 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
6397
6398 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6399 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00006400
drhf9ffac92002-03-02 19:00:31 +00006401 /*
drh14acc042001-06-10 19:56:58 +00006402 ** Evenly distribute the data in apCell[] across the new pages.
6403 ** Insert divider cells into pParent as necessary.
6404 */
6405 j = 0;
6406 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00006407 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00006408 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00006409 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00006410 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00006411 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00006412 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00006413 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00006414
danielk1977ac11ee62005-01-15 12:45:51 +00006415 j = cntNew[i];
6416
6417 /* If the sibling page assembled above was not the right-most sibling,
6418 ** insert a divider cell into the parent page.
6419 */
danielk19771c3d2bf2009-06-23 16:40:17 +00006420 assert( i<nNew-1 || j==nCell );
6421 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00006422 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00006423 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00006424 int sz;
danielk1977634f2982005-03-28 08:44:07 +00006425
6426 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00006427 pCell = apCell[j];
6428 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00006429 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00006430 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00006431 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00006432 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00006433 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00006434 ** then there is no divider cell in apCell[]. Instead, the divider
6435 ** cell consists of the integer key for the right-most cell of
6436 ** the sibling-page assembled above only.
6437 */
drh6f11bef2004-05-13 01:12:56 +00006438 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00006439 j--;
danielk197730548662009-07-09 05:07:37 +00006440 btreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00006441 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00006442 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00006443 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00006444 }else{
6445 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00006446 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00006447 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00006448 ** bytes, then it may actually be smaller than this
danielk197730548662009-07-09 05:07:37 +00006449 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006450 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006451 ** insertCell(), so reparse the cell now.
6452 **
6453 ** Note that this can never happen in an SQLite data file, as all
6454 ** cells are at least 4 bytes. It only happens in b-trees used
6455 ** to evaluate "IN (SELECT ...)" and similar clauses.
6456 */
6457 if( szCell[j]==4 ){
6458 assert(leafCorrection==4);
6459 sz = cellSizePtr(pParent, pCell);
6460 }
drh4b70f112004-05-02 21:12:19 +00006461 }
danielk19776067a9b2009-06-09 09:41:00 +00006462 iOvflSpace += sz;
drhe22e03e2010-08-18 21:19:03 +00006463 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00006464 assert( iOvflSpace <= (int)pBt->pageSize );
drh98add2e2009-07-20 17:11:49 +00006465 insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
danielk1977e80463b2004-11-03 03:01:16 +00006466 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006467 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006468
drh14acc042001-06-10 19:56:58 +00006469 j++;
6470 nxDiv++;
6471 }
6472 }
drh6019e162001-07-02 17:51:45 +00006473 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006474 assert( nOld>0 );
6475 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006476 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006477 u8 *zChild = &apCopy[nOld-1]->aData[8];
6478 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006479 }
6480
danielk197713bd99f2009-06-24 05:40:34 +00006481 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6482 /* The root page of the b-tree now contains no cells. The only sibling
6483 ** page is the right-child of the parent. Copy the contents of the
6484 ** child page into the parent, decreasing the overall height of the
6485 ** b-tree structure by one. This is described as the "balance-shallower"
6486 ** sub-algorithm in some documentation.
6487 **
6488 ** If this is an auto-vacuum database, the call to copyNodeContent()
6489 ** sets all pointer-map entries corresponding to database image pages
6490 ** for which the pointer is stored within the content being copied.
6491 **
6492 ** The second assert below verifies that the child page is defragmented
6493 ** (it must be, as it was just reconstructed using assemblePage()). This
6494 ** is important if the parent page happens to be page 1 of the database
6495 ** image. */
6496 assert( nNew==1 );
6497 assert( apNew[0]->nFree ==
6498 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6499 );
drhc314dc72009-07-21 11:52:34 +00006500 copyNodeContent(apNew[0], pParent, &rc);
6501 freePage(apNew[0], &rc);
danielk197713bd99f2009-06-24 05:40:34 +00006502 }else if( ISAUTOVACUUM ){
6503 /* Fix the pointer-map entries for all the cells that were shifted around.
6504 ** There are several different types of pointer-map entries that need to
6505 ** be dealt with by this routine. Some of these have been set already, but
6506 ** many have not. The following is a summary:
6507 **
6508 ** 1) The entries associated with new sibling pages that were not
6509 ** siblings when this function was called. These have already
6510 ** been set. We don't need to worry about old siblings that were
6511 ** moved to the free-list - the freePage() code has taken care
6512 ** of those.
6513 **
6514 ** 2) The pointer-map entries associated with the first overflow
6515 ** page in any overflow chains used by new divider cells. These
6516 ** have also already been taken care of by the insertCell() code.
6517 **
6518 ** 3) If the sibling pages are not leaves, then the child pages of
6519 ** cells stored on the sibling pages may need to be updated.
6520 **
6521 ** 4) If the sibling pages are not internal intkey nodes, then any
6522 ** overflow pages used by these cells may need to be updated
6523 ** (internal intkey nodes never contain pointers to overflow pages).
6524 **
6525 ** 5) If the sibling pages are not leaves, then the pointer-map
6526 ** entries for the right-child pages of each sibling may need
6527 ** to be updated.
6528 **
6529 ** Cases 1 and 2 are dealt with above by other code. The next
6530 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6531 ** setting a pointer map entry is a relatively expensive operation, this
6532 ** code only sets pointer map entries for child or overflow pages that have
6533 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006534 MemPage *pNew = apNew[0];
6535 MemPage *pOld = apCopy[0];
6536 int nOverflow = pOld->nOverflow;
6537 int iNextOld = pOld->nCell + nOverflow;
drh2cbd78b2012-02-02 19:37:18 +00006538 int iOverflow = (nOverflow ? pOld->aiOvfl[0] : -1);
danielk19774dbaa892009-06-16 16:50:22 +00006539 j = 0; /* Current 'old' sibling page */
6540 k = 0; /* Current 'new' sibling page */
drhc314dc72009-07-21 11:52:34 +00006541 for(i=0; i<nCell; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006542 int isDivider = 0;
6543 while( i==iNextOld ){
6544 /* Cell i is the cell immediately following the last cell on old
6545 ** sibling page j. If the siblings are not leaf pages of an
6546 ** intkey b-tree, then cell i was a divider cell. */
drhb07028f2011-10-14 21:49:18 +00006547 assert( j+1 < ArraySize(apCopy) );
drhec739302012-08-14 18:43:39 +00006548 assert( j+1 < nOld );
danielk19774dbaa892009-06-16 16:50:22 +00006549 pOld = apCopy[++j];
6550 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6551 if( pOld->nOverflow ){
6552 nOverflow = pOld->nOverflow;
drh2cbd78b2012-02-02 19:37:18 +00006553 iOverflow = i + !leafData + pOld->aiOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00006554 }
6555 isDivider = !leafData;
6556 }
6557
6558 assert(nOverflow>0 || iOverflow<i );
drh2cbd78b2012-02-02 19:37:18 +00006559 assert(nOverflow<2 || pOld->aiOvfl[0]==pOld->aiOvfl[1]-1);
6560 assert(nOverflow<3 || pOld->aiOvfl[1]==pOld->aiOvfl[2]-1);
danielk19774dbaa892009-06-16 16:50:22 +00006561 if( i==iOverflow ){
6562 isDivider = 1;
6563 if( (--nOverflow)>0 ){
6564 iOverflow++;
6565 }
6566 }
6567
6568 if( i==cntNew[k] ){
6569 /* Cell i is the cell immediately following the last cell on new
6570 ** sibling page k. If the siblings are not leaf pages of an
6571 ** intkey b-tree, then cell i is a divider cell. */
6572 pNew = apNew[++k];
6573 if( !leafData ) continue;
6574 }
danielk19774dbaa892009-06-16 16:50:22 +00006575 assert( j<nOld );
6576 assert( k<nNew );
6577
6578 /* If the cell was originally divider cell (and is not now) or
6579 ** an overflow cell, or if the cell was located on a different sibling
6580 ** page before the balancing, then the pointer map entries associated
6581 ** with any child or overflow pages need to be updated. */
6582 if( isDivider || pOld->pgno!=pNew->pgno ){
6583 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006584 ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006585 }
drh98add2e2009-07-20 17:11:49 +00006586 if( szCell[i]>pNew->minLocal ){
6587 ptrmapPutOvflPtr(pNew, apCell[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006588 }
6589 }
6590 }
6591
6592 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006593 for(i=0; i<nNew; i++){
6594 u32 key = get4byte(&apNew[i]->aData[8]);
6595 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006596 }
6597 }
6598
6599#if 0
6600 /* The ptrmapCheckPages() contains assert() statements that verify that
6601 ** all pointer map pages are set correctly. This is helpful while
6602 ** debugging. This is usually disabled because a corrupt database may
6603 ** cause an assert() statement to fail. */
6604 ptrmapCheckPages(apNew, nNew);
6605 ptrmapCheckPages(&pParent, 1);
6606#endif
6607 }
6608
danielk197771d5d2c2008-09-29 11:49:47 +00006609 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006610 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6611 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006612
drh8b2f49b2001-06-08 00:21:52 +00006613 /*
drh14acc042001-06-10 19:56:58 +00006614 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006615 */
drh14acc042001-06-10 19:56:58 +00006616balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006617 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006618 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006619 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006620 }
drh14acc042001-06-10 19:56:58 +00006621 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006622 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006623 }
danielk1977eaa06f62008-09-18 17:34:44 +00006624
drh8b2f49b2001-06-08 00:21:52 +00006625 return rc;
6626}
mistachkine7c54162012-10-02 22:54:27 +00006627#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6628#pragma optimize("", on)
6629#endif
drh8b2f49b2001-06-08 00:21:52 +00006630
drh43605152004-05-29 21:46:49 +00006631
6632/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006633** This function is called when the root page of a b-tree structure is
6634** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006635**
danielk1977a50d9aa2009-06-08 14:49:45 +00006636** A new child page is allocated and the contents of the current root
6637** page, including overflow cells, are copied into the child. The root
6638** page is then overwritten to make it an empty page with the right-child
6639** pointer pointing to the new page.
6640**
6641** Before returning, all pointer-map entries corresponding to pages
6642** that the new child-page now contains pointers to are updated. The
6643** entry corresponding to the new right-child pointer of the root
6644** page is also updated.
6645**
6646** If successful, *ppChild is set to contain a reference to the child
6647** page and SQLITE_OK is returned. In this case the caller is required
6648** to call releasePage() on *ppChild exactly once. If an error occurs,
6649** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006650*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006651static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6652 int rc; /* Return value from subprocedures */
6653 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00006654 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00006655 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006656
danielk1977a50d9aa2009-06-08 14:49:45 +00006657 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006658 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006659
danielk1977a50d9aa2009-06-08 14:49:45 +00006660 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6661 ** page that will become the new right-child of pPage. Copy the contents
6662 ** of the node stored on pRoot into the new child page.
6663 */
drh98add2e2009-07-20 17:11:49 +00006664 rc = sqlite3PagerWrite(pRoot->pDbPage);
6665 if( rc==SQLITE_OK ){
6666 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00006667 copyNodeContent(pRoot, pChild, &rc);
6668 if( ISAUTOVACUUM ){
6669 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00006670 }
6671 }
6672 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006673 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006674 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006675 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006676 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006677 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6678 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6679 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006680
danielk1977a50d9aa2009-06-08 14:49:45 +00006681 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6682
6683 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00006684 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
6685 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
6686 memcpy(pChild->apOvfl, pRoot->apOvfl,
6687 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00006688 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006689
6690 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6691 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6692 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6693
6694 *ppChild = pChild;
6695 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006696}
6697
6698/*
danielk197771d5d2c2008-09-29 11:49:47 +00006699** The page that pCur currently points to has just been modified in
6700** some way. This function figures out if this modification means the
6701** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006702** routine. Balancing routines are:
6703**
6704** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006705** balance_deeper()
6706** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006707*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006708static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006709 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006710 const int nMin = pCur->pBt->usableSize * 2 / 3;
6711 u8 aBalanceQuickSpace[13];
6712 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006713
shane75ac1de2009-06-09 18:58:52 +00006714 TESTONLY( int balance_quick_called = 0 );
6715 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006716
6717 do {
6718 int iPage = pCur->iPage;
6719 MemPage *pPage = pCur->apPage[iPage];
6720
6721 if( iPage==0 ){
6722 if( pPage->nOverflow ){
6723 /* The root page of the b-tree is overfull. In this case call the
6724 ** balance_deeper() function to create a new child for the root-page
6725 ** and copy the current contents of the root-page to it. The
6726 ** next iteration of the do-loop will balance the child page.
6727 */
6728 assert( (balance_deeper_called++)==0 );
6729 rc = balance_deeper(pPage, &pCur->apPage[1]);
6730 if( rc==SQLITE_OK ){
6731 pCur->iPage = 1;
6732 pCur->aiIdx[0] = 0;
6733 pCur->aiIdx[1] = 0;
6734 assert( pCur->apPage[1]->nOverflow );
6735 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006736 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006737 break;
6738 }
6739 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6740 break;
6741 }else{
6742 MemPage * const pParent = pCur->apPage[iPage-1];
6743 int const iIdx = pCur->aiIdx[iPage-1];
6744
6745 rc = sqlite3PagerWrite(pParent->pDbPage);
6746 if( rc==SQLITE_OK ){
6747#ifndef SQLITE_OMIT_QUICKBALANCE
6748 if( pPage->hasData
6749 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00006750 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00006751 && pParent->pgno!=1
6752 && pParent->nCell==iIdx
6753 ){
6754 /* Call balance_quick() to create a new sibling of pPage on which
6755 ** to store the overflow cell. balance_quick() inserts a new cell
6756 ** into pParent, which may cause pParent overflow. If this
6757 ** happens, the next interation of the do-loop will balance pParent
6758 ** use either balance_nonroot() or balance_deeper(). Until this
6759 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6760 ** buffer.
6761 **
6762 ** The purpose of the following assert() is to check that only a
6763 ** single call to balance_quick() is made for each call to this
6764 ** function. If this were not verified, a subtle bug involving reuse
6765 ** of the aBalanceQuickSpace[] might sneak in.
6766 */
6767 assert( (balance_quick_called++)==0 );
6768 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6769 }else
6770#endif
6771 {
6772 /* In this case, call balance_nonroot() to redistribute cells
6773 ** between pPage and up to 2 of its sibling pages. This involves
6774 ** modifying the contents of pParent, which may cause pParent to
6775 ** become overfull or underfull. The next iteration of the do-loop
6776 ** will balance the parent page to correct this.
6777 **
6778 ** If the parent page becomes overfull, the overflow cell or cells
6779 ** are stored in the pSpace buffer allocated immediately below.
6780 ** A subsequent iteration of the do-loop will deal with this by
6781 ** calling balance_nonroot() (balance_deeper() may be called first,
6782 ** but it doesn't deal with overflow cells - just moves them to a
6783 ** different page). Once this subsequent call to balance_nonroot()
6784 ** has completed, it is safe to release the pSpace buffer used by
6785 ** the previous call, as the overflow cell data will have been
6786 ** copied either into the body of a database page or into the new
6787 ** pSpace buffer passed to the latter call to balance_nonroot().
6788 */
6789 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
dan428c2182012-08-06 18:50:11 +00006790 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, pCur->hints);
danielk1977a50d9aa2009-06-08 14:49:45 +00006791 if( pFree ){
6792 /* If pFree is not NULL, it points to the pSpace buffer used
6793 ** by a previous call to balance_nonroot(). Its contents are
6794 ** now stored either on real database pages or within the
6795 ** new pSpace buffer, so it may be safely freed here. */
6796 sqlite3PageFree(pFree);
6797 }
6798
danielk19774dbaa892009-06-16 16:50:22 +00006799 /* The pSpace buffer will be freed after the next call to
6800 ** balance_nonroot(), or just before this function returns, whichever
6801 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006802 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00006803 }
6804 }
6805
6806 pPage->nOverflow = 0;
6807
6808 /* The next iteration of the do-loop balances the parent page. */
6809 releasePage(pPage);
6810 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006811 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006812 }while( rc==SQLITE_OK );
6813
6814 if( pFree ){
6815 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006816 }
6817 return rc;
6818}
6819
drhf74b8d92002-09-01 23:20:45 +00006820
6821/*
drh3b7511c2001-05-26 13:15:44 +00006822** Insert a new record into the BTree. The key is given by (pKey,nKey)
6823** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006824** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006825** is left pointing at a random location.
6826**
6827** For an INTKEY table, only the nKey value of the key is used. pKey is
6828** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006829**
6830** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00006831** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00006832** been performed. seekResult is the search result returned (a negative
6833** number if pCur points at an entry that is smaller than (pKey, nKey), or
6834** a positive value if pCur points at an etry that is larger than
6835** (pKey, nKey)).
6836**
drh3e9ca092009-09-08 01:14:48 +00006837** If the seekResult parameter is non-zero, then the caller guarantees that
6838** cursor pCur is pointing at the existing copy of a row that is to be
6839** overwritten. If the seekResult parameter is 0, then cursor pCur may
6840** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00006841** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006842*/
drh3aac2dd2004-04-26 14:10:20 +00006843int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006844 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006845 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006846 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006847 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006848 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00006849 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00006850){
drh3b7511c2001-05-26 13:15:44 +00006851 int rc;
drh3e9ca092009-09-08 01:14:48 +00006852 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00006853 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006854 int idx;
drh3b7511c2001-05-26 13:15:44 +00006855 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006856 Btree *p = pCur->pBtree;
6857 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006858 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006859 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006860
drh98add2e2009-07-20 17:11:49 +00006861 if( pCur->eState==CURSOR_FAULT ){
6862 assert( pCur->skipNext!=SQLITE_OK );
6863 return pCur->skipNext;
6864 }
6865
drh1fee73e2007-08-29 04:00:57 +00006866 assert( cursorHoldsMutex(pCur) );
drhc9166342012-01-05 23:32:06 +00006867 assert( pCur->wrFlag && pBt->inTransaction==TRANS_WRITE
6868 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00006869 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6870
danielk197731d31b82009-07-13 13:18:07 +00006871 /* Assert that the caller has been consistent. If this cursor was opened
6872 ** expecting an index b-tree, then the caller should be inserting blob
6873 ** keys with no associated data. If the cursor was opened expecting an
6874 ** intkey table, the caller should be inserting integer keys with a
6875 ** blob of associated data. */
6876 assert( (pKey==0)==(pCur->pKeyInfo==0) );
6877
danielk19779c3acf32009-05-02 07:36:49 +00006878 /* Save the positions of any other cursors open on this table.
6879 **
danielk19773509a652009-07-06 18:56:13 +00006880 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00006881 ** example, when inserting data into a table with auto-generated integer
6882 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6883 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00006884 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00006885 ** that the cursor is already where it needs to be and returns without
6886 ** doing any work. To avoid thwarting these optimizations, it is important
6887 ** not to clear the cursor here.
6888 */
drh4c301aa2009-07-15 17:25:45 +00006889 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6890 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00006891
6892 /* If this is an insert into a table b-tree, invalidate any incrblob
6893 ** cursors open on the row being replaced (assuming this is a replace
6894 ** operation - if it is not, the following is a no-op). */
6895 if( pCur->pKeyInfo==0 ){
6896 invalidateIncrblobCursors(p, nKey, 0);
6897 }
6898
drh4c301aa2009-07-15 17:25:45 +00006899 if( !loc ){
6900 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
6901 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00006902 }
danielk1977b980d2212009-06-22 18:03:51 +00006903 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00006904
danielk197771d5d2c2008-09-29 11:49:47 +00006905 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00006906 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00006907 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00006908
drh3a4c1412004-05-09 20:40:11 +00006909 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6910 pCur->pgnoRoot, nKey, nData, pPage->pgno,
6911 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00006912 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00006913 allocateTempSpace(pBt);
6914 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00006915 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00006916 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00006917 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00006918 assert( szNew==cellSizePtr(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00006919 assert( szNew <= MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00006920 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00006921 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00006922 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00006923 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00006924 rc = sqlite3PagerWrite(pPage->pDbPage);
6925 if( rc ){
6926 goto end_insert;
6927 }
danielk197771d5d2c2008-09-29 11:49:47 +00006928 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006929 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006930 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00006931 }
drh43605152004-05-29 21:46:49 +00006932 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00006933 rc = clearCell(pPage, oldCell);
drh98add2e2009-07-20 17:11:49 +00006934 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00006935 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00006936 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00006937 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00006938 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00006939 }else{
drh4b70f112004-05-02 21:12:19 +00006940 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00006941 }
drh98add2e2009-07-20 17:11:49 +00006942 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00006943 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00006944
danielk1977a50d9aa2009-06-08 14:49:45 +00006945 /* If no error has occured and pPage has an overflow cell, call balance()
6946 ** to redistribute the cells within the tree. Since balance() may move
6947 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
6948 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00006949 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006950 ** Previous versions of SQLite called moveToRoot() to move the cursor
6951 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00006952 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
6953 ** set the cursor state to "invalid". This makes common insert operations
6954 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00006955 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006956 ** There is a subtle but important optimization here too. When inserting
6957 ** multiple records into an intkey b-tree using a single cursor (as can
6958 ** happen while processing an "INSERT INTO ... SELECT" statement), it
6959 ** is advantageous to leave the cursor pointing to the last entry in
6960 ** the b-tree if possible. If the cursor is left pointing to the last
6961 ** entry in the table, and the next row inserted has an integer key
6962 ** larger than the largest existing key, it is possible to insert the
6963 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00006964 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006965 pCur->info.nSize = 0;
6966 pCur->validNKey = 0;
6967 if( rc==SQLITE_OK && pPage->nOverflow ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006968 rc = balance(pCur);
6969
6970 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00006971 ** fails. Internal data structure corruption will result otherwise.
6972 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
6973 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006974 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00006975 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00006976 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006977 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00006978
drh2e38c322004-09-03 18:38:44 +00006979end_insert:
drh5e2f8b92001-05-28 00:41:15 +00006980 return rc;
6981}
6982
6983/*
drh4b70f112004-05-02 21:12:19 +00006984** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00006985** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00006986*/
drh3aac2dd2004-04-26 14:10:20 +00006987int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00006988 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00006989 BtShared *pBt = p->pBt;
6990 int rc; /* Return code */
6991 MemPage *pPage; /* Page to delete cell from */
6992 unsigned char *pCell; /* Pointer to cell to delete */
6993 int iCellIdx; /* Index of cell to delete */
6994 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00006995
drh1fee73e2007-08-29 04:00:57 +00006996 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006997 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00006998 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh64022502009-01-09 14:11:04 +00006999 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00007000 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7001 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
7002
danielk19774dbaa892009-06-16 16:50:22 +00007003 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
7004 || NEVER(pCur->eState!=CURSOR_VALID)
7005 ){
7006 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00007007 }
danielk1977da184232006-01-05 11:34:32 +00007008
danielk19774dbaa892009-06-16 16:50:22 +00007009 iCellDepth = pCur->iPage;
7010 iCellIdx = pCur->aiIdx[iCellDepth];
7011 pPage = pCur->apPage[iCellDepth];
7012 pCell = findCell(pPage, iCellIdx);
7013
7014 /* If the page containing the entry to delete is not a leaf page, move
7015 ** the cursor to the largest entry in the tree that is smaller than
7016 ** the entry being deleted. This cell will replace the cell being deleted
7017 ** from the internal node. The 'previous' entry is used for this instead
7018 ** of the 'next' entry, as the previous entry is always a part of the
7019 ** sub-tree headed by the child page of the cell being deleted. This makes
7020 ** balancing the tree following the delete operation easier. */
7021 if( !pPage->leaf ){
7022 int notUsed;
drh4c301aa2009-07-15 17:25:45 +00007023 rc = sqlite3BtreePrevious(pCur, &notUsed);
7024 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00007025 }
7026
7027 /* Save the positions of any other cursors open on this table before
7028 ** making any modifications. Make the page containing the entry to be
7029 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00007030 ** entry and finally remove the cell itself from within the page.
7031 */
7032 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7033 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00007034
7035 /* If this is a delete operation to remove a row from a table b-tree,
7036 ** invalidate any incrblob cursors open on the row being deleted. */
7037 if( pCur->pKeyInfo==0 ){
7038 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
7039 }
7040
drha4ec1d42009-07-11 13:13:11 +00007041 rc = sqlite3PagerWrite(pPage->pDbPage);
7042 if( rc ) return rc;
7043 rc = clearCell(pPage, pCell);
drh98add2e2009-07-20 17:11:49 +00007044 dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
drha4ec1d42009-07-11 13:13:11 +00007045 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00007046
danielk19774dbaa892009-06-16 16:50:22 +00007047 /* If the cell deleted was not located on a leaf page, then the cursor
7048 ** is currently pointing to the largest entry in the sub-tree headed
7049 ** by the child-page of the cell that was just deleted from an internal
7050 ** node. The cell from the leaf node needs to be moved to the internal
7051 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00007052 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00007053 MemPage *pLeaf = pCur->apPage[pCur->iPage];
7054 int nCell;
7055 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
7056 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00007057
danielk19774dbaa892009-06-16 16:50:22 +00007058 pCell = findCell(pLeaf, pLeaf->nCell-1);
7059 nCell = cellSizePtr(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00007060 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00007061
danielk19774dbaa892009-06-16 16:50:22 +00007062 allocateTempSpace(pBt);
7063 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00007064
drha4ec1d42009-07-11 13:13:11 +00007065 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00007066 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
7067 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00007068 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00007069 }
danielk19774dbaa892009-06-16 16:50:22 +00007070
7071 /* Balance the tree. If the entry deleted was located on a leaf page,
7072 ** then the cursor still points to that page. In this case the first
7073 ** call to balance() repairs the tree, and the if(...) condition is
7074 ** never true.
7075 **
7076 ** Otherwise, if the entry deleted was on an internal node page, then
7077 ** pCur is pointing to the leaf page from which a cell was removed to
7078 ** replace the cell deleted from the internal node. This is slightly
7079 ** tricky as the leaf node may be underfull, and the internal node may
7080 ** be either under or overfull. In this case run the balancing algorithm
7081 ** on the leaf node first. If the balance proceeds far enough up the
7082 ** tree that we can be sure that any problem in the internal node has
7083 ** been corrected, so be it. Otherwise, after balancing the leaf node,
7084 ** walk the cursor up the tree to the internal node and balance it as
7085 ** well. */
7086 rc = balance(pCur);
7087 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
7088 while( pCur->iPage>iCellDepth ){
7089 releasePage(pCur->apPage[pCur->iPage--]);
7090 }
7091 rc = balance(pCur);
7092 }
7093
danielk19776b456a22005-03-21 04:04:02 +00007094 if( rc==SQLITE_OK ){
7095 moveToRoot(pCur);
7096 }
drh5e2f8b92001-05-28 00:41:15 +00007097 return rc;
drh3b7511c2001-05-26 13:15:44 +00007098}
drh8b2f49b2001-06-08 00:21:52 +00007099
7100/*
drhc6b52df2002-01-04 03:09:29 +00007101** Create a new BTree table. Write into *piTable the page
7102** number for the root page of the new table.
7103**
drhab01f612004-05-22 02:55:23 +00007104** The type of type is determined by the flags parameter. Only the
7105** following values of flags are currently in use. Other values for
7106** flags might not work:
7107**
7108** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
7109** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00007110*/
drhd4187c72010-08-30 22:15:45 +00007111static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00007112 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007113 MemPage *pRoot;
7114 Pgno pgnoRoot;
7115 int rc;
drhd4187c72010-08-30 22:15:45 +00007116 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00007117
drh1fee73e2007-08-29 04:00:57 +00007118 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007119 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00007120 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00007121
danielk1977003ba062004-11-04 02:57:33 +00007122#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00007123 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00007124 if( rc ){
7125 return rc;
7126 }
danielk1977003ba062004-11-04 02:57:33 +00007127#else
danielk1977687566d2004-11-02 12:56:41 +00007128 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00007129 Pgno pgnoMove; /* Move a page here to make room for the root-page */
7130 MemPage *pPageMove; /* The page to move to. */
7131
danielk197720713f32007-05-03 11:43:33 +00007132 /* Creating a new table may probably require moving an existing database
7133 ** to make room for the new tables root page. In case this page turns
7134 ** out to be an overflow page, delete all overflow page-map caches
7135 ** held by open cursors.
7136 */
danielk197792d4d7a2007-05-04 12:05:56 +00007137 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00007138
danielk1977003ba062004-11-04 02:57:33 +00007139 /* Read the value of meta[3] from the database to determine where the
7140 ** root page of the new table should go. meta[3] is the largest root-page
7141 ** created so far, so the new root-page is (meta[3]+1).
7142 */
danielk1977602b4662009-07-02 07:47:33 +00007143 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00007144 pgnoRoot++;
7145
danielk1977599fcba2004-11-08 07:13:13 +00007146 /* The new root-page may not be allocated on a pointer-map page, or the
7147 ** PENDING_BYTE page.
7148 */
drh72190432008-01-31 14:54:43 +00007149 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00007150 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00007151 pgnoRoot++;
7152 }
7153 assert( pgnoRoot>=3 );
7154
7155 /* Allocate a page. The page that currently resides at pgnoRoot will
7156 ** be moved to the allocated page (unless the allocated page happens
7157 ** to reside at pgnoRoot).
7158 */
dan51f0b6d2013-02-22 20:16:34 +00007159 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00007160 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00007161 return rc;
7162 }
danielk1977003ba062004-11-04 02:57:33 +00007163
7164 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00007165 /* pgnoRoot is the page that will be used for the root-page of
7166 ** the new table (assuming an error did not occur). But we were
7167 ** allocated pgnoMove. If required (i.e. if it was not allocated
7168 ** by extending the file), the current page at position pgnoMove
7169 ** is already journaled.
7170 */
drheeb844a2009-08-08 18:01:07 +00007171 u8 eType = 0;
7172 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00007173
7174 releasePage(pPageMove);
danielk1977f35843b2007-04-07 15:03:17 +00007175
7176 /* Move the page currently at pgnoRoot to pgnoMove. */
danielk197730548662009-07-09 05:07:37 +00007177 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007178 if( rc!=SQLITE_OK ){
7179 return rc;
7180 }
7181 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00007182 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
7183 rc = SQLITE_CORRUPT_BKPT;
7184 }
7185 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00007186 releasePage(pRoot);
7187 return rc;
7188 }
drhccae6022005-02-26 17:31:26 +00007189 assert( eType!=PTRMAP_ROOTPAGE );
7190 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00007191 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00007192 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00007193
7194 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00007195 if( rc!=SQLITE_OK ){
7196 return rc;
7197 }
danielk197730548662009-07-09 05:07:37 +00007198 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00007199 if( rc!=SQLITE_OK ){
7200 return rc;
7201 }
danielk19773b8a05f2007-03-19 17:44:26 +00007202 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00007203 if( rc!=SQLITE_OK ){
7204 releasePage(pRoot);
7205 return rc;
7206 }
7207 }else{
7208 pRoot = pPageMove;
7209 }
7210
danielk197742741be2005-01-08 12:42:39 +00007211 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00007212 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00007213 if( rc ){
7214 releasePage(pRoot);
7215 return rc;
7216 }
drhbf592832010-03-30 15:51:12 +00007217
7218 /* When the new root page was allocated, page 1 was made writable in
7219 ** order either to increase the database filesize, or to decrement the
7220 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
7221 */
7222 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00007223 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00007224 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00007225 releasePage(pRoot);
7226 return rc;
7227 }
danielk197742741be2005-01-08 12:42:39 +00007228
danielk1977003ba062004-11-04 02:57:33 +00007229 }else{
drh4f0c5872007-03-26 22:05:01 +00007230 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00007231 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00007232 }
7233#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007234 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00007235 if( createTabFlags & BTREE_INTKEY ){
7236 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
7237 }else{
7238 ptfFlags = PTF_ZERODATA | PTF_LEAF;
7239 }
7240 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00007241 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00007242 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00007243 *piTable = (int)pgnoRoot;
7244 return SQLITE_OK;
7245}
drhd677b3d2007-08-20 22:48:41 +00007246int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
7247 int rc;
7248 sqlite3BtreeEnter(p);
7249 rc = btreeCreateTable(p, piTable, flags);
7250 sqlite3BtreeLeave(p);
7251 return rc;
7252}
drh8b2f49b2001-06-08 00:21:52 +00007253
7254/*
7255** Erase the given database page and all its children. Return
7256** the page to the freelist.
7257*/
drh4b70f112004-05-02 21:12:19 +00007258static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00007259 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00007260 Pgno pgno, /* Page number to clear */
7261 int freePageFlag, /* Deallocate page if true */
7262 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00007263){
danielk1977146ba992009-07-22 14:08:13 +00007264 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00007265 int rc;
drh4b70f112004-05-02 21:12:19 +00007266 unsigned char *pCell;
7267 int i;
drh8b2f49b2001-06-08 00:21:52 +00007268
drh1fee73e2007-08-29 04:00:57 +00007269 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00007270 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00007271 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00007272 }
7273
danielk197771d5d2c2008-09-29 11:49:47 +00007274 rc = getAndInitPage(pBt, pgno, &pPage);
danielk1977146ba992009-07-22 14:08:13 +00007275 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00007276 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00007277 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00007278 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007279 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007280 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007281 }
drh4b70f112004-05-02 21:12:19 +00007282 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00007283 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00007284 }
drha34b6762004-05-07 13:30:42 +00007285 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00007286 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00007287 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00007288 }else if( pnChange ){
7289 assert( pPage->intKey );
7290 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00007291 }
7292 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00007293 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00007294 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00007295 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00007296 }
danielk19776b456a22005-03-21 04:04:02 +00007297
7298cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00007299 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00007300 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007301}
7302
7303/*
drhab01f612004-05-22 02:55:23 +00007304** Delete all information from a single table in the database. iTable is
7305** the page number of the root of the table. After this routine returns,
7306** the root page is empty, but still exists.
7307**
7308** This routine will fail with SQLITE_LOCKED if there are any open
7309** read cursors on the table. Open write cursors are moved to the
7310** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00007311**
7312** If pnChange is not NULL, then table iTable must be an intkey table. The
7313** integer value pointed to by pnChange is incremented by the number of
7314** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00007315*/
danielk1977c7af4842008-10-27 13:59:33 +00007316int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00007317 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00007318 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00007319 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007320 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00007321
drhc046e3e2009-07-15 11:26:44 +00007322 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00007323
drhc046e3e2009-07-15 11:26:44 +00007324 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00007325 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
7326 ** is the root of a table b-tree - if it is not, the following call is
7327 ** a no-op). */
7328 invalidateIncrblobCursors(p, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00007329 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00007330 }
drhd677b3d2007-08-20 22:48:41 +00007331 sqlite3BtreeLeave(p);
7332 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007333}
7334
7335/*
7336** Erase all information in a table and add the root of the table to
7337** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00007338** page 1) is never added to the freelist.
7339**
7340** This routine will fail with SQLITE_LOCKED if there are any open
7341** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00007342**
7343** If AUTOVACUUM is enabled and the page at iTable is not the last
7344** root page in the database file, then the last root page
7345** in the database file is moved into the slot formerly occupied by
7346** iTable and that last slot formerly occupied by the last root page
7347** is added to the freelist instead of iTable. In this say, all
7348** root pages are kept at the beginning of the database file, which
7349** is necessary for AUTOVACUUM to work right. *piMoved is set to the
7350** page number that used to be the last root page in the file before
7351** the move. If no page gets moved, *piMoved is set to 0.
7352** The last root page is recorded in meta[3] and the value of
7353** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00007354*/
danielk197789d40042008-11-17 14:20:56 +00007355static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00007356 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00007357 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00007358 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00007359
drh1fee73e2007-08-29 04:00:57 +00007360 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007361 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00007362
danielk1977e6efa742004-11-10 11:55:10 +00007363 /* It is illegal to drop a table if any cursors are open on the
7364 ** database. This is because in auto-vacuum mode the backend may
7365 ** need to move another root-page to fill a gap left by the deleted
7366 ** root page. If an open cursor was using this page a problem would
7367 ** occur.
drhc046e3e2009-07-15 11:26:44 +00007368 **
7369 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00007370 */
drhc046e3e2009-07-15 11:26:44 +00007371 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00007372 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
7373 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00007374 }
danielk1977a0bf2652004-11-04 14:30:04 +00007375
danielk197730548662009-07-09 05:07:37 +00007376 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00007377 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00007378 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00007379 if( rc ){
7380 releasePage(pPage);
7381 return rc;
7382 }
danielk1977a0bf2652004-11-04 14:30:04 +00007383
drh205f48e2004-11-05 00:43:11 +00007384 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00007385
drh4b70f112004-05-02 21:12:19 +00007386 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00007387#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00007388 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007389 releasePage(pPage);
7390#else
7391 if( pBt->autoVacuum ){
7392 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00007393 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007394
7395 if( iTable==maxRootPgno ){
7396 /* If the table being dropped is the table with the largest root-page
7397 ** number in the database, put the root page on the free list.
7398 */
drhc314dc72009-07-21 11:52:34 +00007399 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007400 releasePage(pPage);
7401 if( rc!=SQLITE_OK ){
7402 return rc;
7403 }
7404 }else{
7405 /* The table being dropped does not have the largest root-page
7406 ** number in the database. So move the page that does into the
7407 ** gap left by the deleted root-page.
7408 */
7409 MemPage *pMove;
7410 releasePage(pPage);
danielk197730548662009-07-09 05:07:37 +00007411 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007412 if( rc!=SQLITE_OK ){
7413 return rc;
7414 }
danielk19774c999992008-07-16 18:17:55 +00007415 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007416 releasePage(pMove);
7417 if( rc!=SQLITE_OK ){
7418 return rc;
7419 }
drhfe3313f2009-07-21 19:02:20 +00007420 pMove = 0;
danielk197730548662009-07-09 05:07:37 +00007421 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00007422 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007423 releasePage(pMove);
7424 if( rc!=SQLITE_OK ){
7425 return rc;
7426 }
7427 *piMoved = maxRootPgno;
7428 }
7429
danielk1977599fcba2004-11-08 07:13:13 +00007430 /* Set the new 'max-root-page' value in the database header. This
7431 ** is the old value less one, less one more if that happens to
7432 ** be a root-page number, less one again if that is the
7433 ** PENDING_BYTE_PAGE.
7434 */
danielk197787a6e732004-11-05 12:58:25 +00007435 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00007436 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
7437 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00007438 maxRootPgno--;
7439 }
danielk1977599fcba2004-11-08 07:13:13 +00007440 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
7441
danielk1977aef0bf62005-12-30 16:28:01 +00007442 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007443 }else{
drhc314dc72009-07-21 11:52:34 +00007444 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007445 releasePage(pPage);
7446 }
7447#endif
drh2aa679f2001-06-25 02:11:07 +00007448 }else{
drhc046e3e2009-07-15 11:26:44 +00007449 /* If sqlite3BtreeDropTable was called on page 1.
7450 ** This really never should happen except in a corrupt
7451 ** database.
7452 */
drha34b6762004-05-07 13:30:42 +00007453 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00007454 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00007455 }
drh8b2f49b2001-06-08 00:21:52 +00007456 return rc;
7457}
drhd677b3d2007-08-20 22:48:41 +00007458int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
7459 int rc;
7460 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00007461 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00007462 sqlite3BtreeLeave(p);
7463 return rc;
7464}
drh8b2f49b2001-06-08 00:21:52 +00007465
drh001bbcb2003-03-19 03:14:00 +00007466
drh8b2f49b2001-06-08 00:21:52 +00007467/*
danielk1977602b4662009-07-02 07:47:33 +00007468** This function may only be called if the b-tree connection already
7469** has a read or write transaction open on the database.
7470**
drh23e11ca2004-05-04 17:27:28 +00007471** Read the meta-information out of a database file. Meta[0]
7472** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00007473** through meta[15] are available for use by higher layers. Meta[0]
7474** is read-only, the others are read/write.
7475**
7476** The schema layer numbers meta values differently. At the schema
7477** layer (and the SetCookie and ReadCookie opcodes) the number of
7478** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00007479*/
danielk1977602b4662009-07-02 07:47:33 +00007480void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007481 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007482
drhd677b3d2007-08-20 22:48:41 +00007483 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007484 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007485 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007486 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007487 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007488
danielk1977602b4662009-07-02 07:47:33 +00007489 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007490
danielk1977602b4662009-07-02 07:47:33 +00007491 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7492 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007493#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00007494 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
7495 pBt->btsFlags |= BTS_READ_ONLY;
7496 }
danielk1977003ba062004-11-04 02:57:33 +00007497#endif
drhae157872004-08-14 19:20:09 +00007498
drhd677b3d2007-08-20 22:48:41 +00007499 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007500}
7501
7502/*
drh23e11ca2004-05-04 17:27:28 +00007503** Write meta-information back into the database. Meta[0] is
7504** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007505*/
danielk1977aef0bf62005-12-30 16:28:01 +00007506int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7507 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007508 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007509 int rc;
drh23e11ca2004-05-04 17:27:28 +00007510 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007511 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007512 assert( p->inTrans==TRANS_WRITE );
7513 assert( pBt->pPage1!=0 );
7514 pP1 = pBt->pPage1->aData;
7515 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7516 if( rc==SQLITE_OK ){
7517 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007518#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007519 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007520 assert( pBt->autoVacuum || iMeta==0 );
7521 assert( iMeta==0 || iMeta==1 );
7522 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007523 }
drh64022502009-01-09 14:11:04 +00007524#endif
drh5df72a52002-06-06 23:16:05 +00007525 }
drhd677b3d2007-08-20 22:48:41 +00007526 sqlite3BtreeLeave(p);
7527 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007528}
drh8c42ca92001-06-22 19:15:00 +00007529
danielk1977a5533162009-02-24 10:01:51 +00007530#ifndef SQLITE_OMIT_BTREECOUNT
7531/*
7532** The first argument, pCur, is a cursor opened on some b-tree. Count the
7533** number of entries in the b-tree and write the result to *pnEntry.
7534**
7535** SQLITE_OK is returned if the operation is successfully executed.
7536** Otherwise, if an error is encountered (i.e. an IO error or database
7537** corruption) an SQLite error code is returned.
7538*/
7539int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7540 i64 nEntry = 0; /* Value to return in *pnEntry */
7541 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00007542
7543 if( pCur->pgnoRoot==0 ){
7544 *pnEntry = 0;
7545 return SQLITE_OK;
7546 }
danielk1977a5533162009-02-24 10:01:51 +00007547 rc = moveToRoot(pCur);
7548
7549 /* Unless an error occurs, the following loop runs one iteration for each
7550 ** page in the B-Tree structure (not including overflow pages).
7551 */
7552 while( rc==SQLITE_OK ){
7553 int iIdx; /* Index of child node in parent */
7554 MemPage *pPage; /* Current page of the b-tree */
7555
7556 /* If this is a leaf page or the tree is not an int-key tree, then
7557 ** this page contains countable entries. Increment the entry counter
7558 ** accordingly.
7559 */
7560 pPage = pCur->apPage[pCur->iPage];
7561 if( pPage->leaf || !pPage->intKey ){
7562 nEntry += pPage->nCell;
7563 }
7564
7565 /* pPage is a leaf node. This loop navigates the cursor so that it
7566 ** points to the first interior cell that it points to the parent of
7567 ** the next page in the tree that has not yet been visited. The
7568 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7569 ** of the page, or to the number of cells in the page if the next page
7570 ** to visit is the right-child of its parent.
7571 **
7572 ** If all pages in the tree have been visited, return SQLITE_OK to the
7573 ** caller.
7574 */
7575 if( pPage->leaf ){
7576 do {
7577 if( pCur->iPage==0 ){
7578 /* All pages of the b-tree have been visited. Return successfully. */
7579 *pnEntry = nEntry;
7580 return SQLITE_OK;
7581 }
danielk197730548662009-07-09 05:07:37 +00007582 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00007583 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7584
7585 pCur->aiIdx[pCur->iPage]++;
7586 pPage = pCur->apPage[pCur->iPage];
7587 }
7588
7589 /* Descend to the child node of the cell that the cursor currently
7590 ** points at. This is the right-child if (iIdx==pPage->nCell).
7591 */
7592 iIdx = pCur->aiIdx[pCur->iPage];
7593 if( iIdx==pPage->nCell ){
7594 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7595 }else{
7596 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7597 }
7598 }
7599
shanebe217792009-03-05 04:20:31 +00007600 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007601 return rc;
7602}
7603#endif
drhdd793422001-06-28 01:54:48 +00007604
drhdd793422001-06-28 01:54:48 +00007605/*
drh5eddca62001-06-30 21:53:53 +00007606** Return the pager associated with a BTree. This routine is used for
7607** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007608*/
danielk1977aef0bf62005-12-30 16:28:01 +00007609Pager *sqlite3BtreePager(Btree *p){
7610 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007611}
drh5eddca62001-06-30 21:53:53 +00007612
drhb7f91642004-10-31 02:22:47 +00007613#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007614/*
7615** Append a message to the error message string.
7616*/
drh2e38c322004-09-03 18:38:44 +00007617static void checkAppendMsg(
7618 IntegrityCk *pCheck,
7619 char *zMsg1,
7620 const char *zFormat,
7621 ...
7622){
7623 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007624 if( !pCheck->mxErr ) return;
7625 pCheck->mxErr--;
7626 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007627 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007628 if( pCheck->errMsg.nChar ){
7629 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007630 }
drhf089aa42008-07-08 19:34:06 +00007631 if( zMsg1 ){
7632 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
7633 }
7634 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7635 va_end(ap);
drhc890fec2008-08-01 20:10:08 +00007636 if( pCheck->errMsg.mallocFailed ){
7637 pCheck->mallocFailed = 1;
7638 }
drh5eddca62001-06-30 21:53:53 +00007639}
drhb7f91642004-10-31 02:22:47 +00007640#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007641
drhb7f91642004-10-31 02:22:47 +00007642#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00007643
7644/*
7645** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
7646** corresponds to page iPg is already set.
7647*/
7648static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7649 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7650 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
7651}
7652
7653/*
7654** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
7655*/
7656static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7657 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7658 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
7659}
7660
7661
drh5eddca62001-06-30 21:53:53 +00007662/*
7663** Add 1 to the reference count for page iPage. If this is the second
7664** reference to the page, add an error message to pCheck->zErrMsg.
7665** Return 1 if there are 2 ore more references to the page and 0 if
7666** if this is the first reference to the page.
7667**
7668** Also check that the page number is in bounds.
7669*/
danielk197789d40042008-11-17 14:20:56 +00007670static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007671 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007672 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007673 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007674 return 1;
7675 }
dan1235bb12012-04-03 17:43:28 +00007676 if( getPageReferenced(pCheck, iPage) ){
drh2e38c322004-09-03 18:38:44 +00007677 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007678 return 1;
7679 }
dan1235bb12012-04-03 17:43:28 +00007680 setPageReferenced(pCheck, iPage);
7681 return 0;
drh5eddca62001-06-30 21:53:53 +00007682}
7683
danielk1977afcdd022004-10-31 16:25:42 +00007684#ifndef SQLITE_OMIT_AUTOVACUUM
7685/*
7686** Check that the entry in the pointer-map for page iChild maps to
7687** page iParent, pointer type ptrType. If not, append an error message
7688** to pCheck.
7689*/
7690static void checkPtrmap(
7691 IntegrityCk *pCheck, /* Integrity check context */
7692 Pgno iChild, /* Child page number */
7693 u8 eType, /* Expected pointer map type */
7694 Pgno iParent, /* Expected pointer map parent page number */
7695 char *zContext /* Context description (used for error msg) */
7696){
7697 int rc;
7698 u8 ePtrmapType;
7699 Pgno iPtrmapParent;
7700
7701 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7702 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007703 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007704 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7705 return;
7706 }
7707
7708 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7709 checkAppendMsg(pCheck, zContext,
7710 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7711 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7712 }
7713}
7714#endif
7715
drh5eddca62001-06-30 21:53:53 +00007716/*
7717** Check the integrity of the freelist or of an overflow page list.
7718** Verify that the number of pages on the list is N.
7719*/
drh30e58752002-03-02 20:41:57 +00007720static void checkList(
7721 IntegrityCk *pCheck, /* Integrity checking context */
7722 int isFreeList, /* True for a freelist. False for overflow page list */
7723 int iPage, /* Page number for first page in the list */
7724 int N, /* Expected number of pages in the list */
7725 char *zContext /* Context for error messages */
7726){
7727 int i;
drh3a4c1412004-05-09 20:40:11 +00007728 int expected = N;
7729 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007730 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007731 DbPage *pOvflPage;
7732 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007733 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007734 checkAppendMsg(pCheck, zContext,
7735 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007736 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007737 break;
7738 }
7739 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007740 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007741 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007742 break;
7743 }
danielk19773b8a05f2007-03-19 17:44:26 +00007744 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007745 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007746 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007747#ifndef SQLITE_OMIT_AUTOVACUUM
7748 if( pCheck->pBt->autoVacuum ){
7749 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7750 }
7751#endif
drh43b18e12010-08-17 19:40:08 +00007752 if( n>(int)pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007753 checkAppendMsg(pCheck, zContext,
7754 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007755 N--;
7756 }else{
7757 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007758 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007759#ifndef SQLITE_OMIT_AUTOVACUUM
7760 if( pCheck->pBt->autoVacuum ){
7761 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7762 }
7763#endif
7764 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007765 }
7766 N -= n;
drh30e58752002-03-02 20:41:57 +00007767 }
drh30e58752002-03-02 20:41:57 +00007768 }
danielk1977afcdd022004-10-31 16:25:42 +00007769#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007770 else{
7771 /* If this database supports auto-vacuum and iPage is not the last
7772 ** page in this overflow list, check that the pointer-map entry for
7773 ** the following page matches iPage.
7774 */
7775 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007776 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007777 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7778 }
danielk1977afcdd022004-10-31 16:25:42 +00007779 }
7780#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007781 iPage = get4byte(pOvflData);
7782 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007783 }
7784}
drhb7f91642004-10-31 02:22:47 +00007785#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007786
drhb7f91642004-10-31 02:22:47 +00007787#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007788/*
7789** Do various sanity checks on a single page of a tree. Return
7790** the tree depth. Root pages return 0. Parents of root pages
7791** return 1, and so forth.
7792**
7793** These checks are done:
7794**
7795** 1. Make sure that cells and freeblocks do not overlap
7796** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007797** NO 2. Make sure cell keys are in order.
7798** NO 3. Make sure no key is less than or equal to zLowerBound.
7799** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007800** 5. Check the integrity of overflow pages.
7801** 6. Recursively call checkTreePage on all children.
7802** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007803** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007804** the root of the tree.
7805*/
7806static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007807 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007808 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00007809 char *zParentContext, /* Parent context */
7810 i64 *pnParentMinKey,
7811 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00007812){
7813 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007814 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007815 int hdr, cellStart;
7816 int nCell;
drhda200cc2004-05-09 11:51:38 +00007817 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007818 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007819 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007820 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007821 char *hit = 0;
shaneh195475d2010-02-19 04:28:08 +00007822 i64 nMinKey = 0;
7823 i64 nMaxKey = 0;
drh5eddca62001-06-30 21:53:53 +00007824
drh5bb3eb92007-05-04 13:15:55 +00007825 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007826
drh5eddca62001-06-30 21:53:53 +00007827 /* Check that the page exists
7828 */
drhd9cb6ac2005-10-20 07:28:17 +00007829 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007830 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007831 if( iPage==0 ) return 0;
7832 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
danielk197730548662009-07-09 05:07:37 +00007833 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh2e38c322004-09-03 18:38:44 +00007834 checkAppendMsg(pCheck, zContext,
7835 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007836 return 0;
7837 }
danielk197793caf5a2009-07-11 06:55:33 +00007838
7839 /* Clear MemPage.isInit to make sure the corruption detection code in
7840 ** btreeInitPage() is executed. */
7841 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00007842 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007843 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007844 checkAppendMsg(pCheck, zContext,
danielk197730548662009-07-09 05:07:37 +00007845 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007846 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007847 return 0;
7848 }
7849
7850 /* Check out all the cells.
7851 */
7852 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007853 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007854 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007855 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007856 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007857
7858 /* Check payload overflow pages
7859 */
drh5bb3eb92007-05-04 13:15:55 +00007860 sqlite3_snprintf(sizeof(zContext), zContext,
7861 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007862 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00007863 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007864 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007865 if( !pPage->intKey ) sz += (int)info.nKey;
shaneh195475d2010-02-19 04:28:08 +00007866 /* For intKey pages, check that the keys are in order.
7867 */
7868 else if( i==0 ) nMinKey = nMaxKey = info.nKey;
7869 else{
7870 if( info.nKey <= nMaxKey ){
7871 checkAppendMsg(pCheck, zContext,
7872 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
7873 }
7874 nMaxKey = info.nKey;
7875 }
drh72365832007-03-06 15:53:44 +00007876 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00007877 if( (sz>info.nLocal)
7878 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7879 ){
drhb6f41482004-05-14 01:58:11 +00007880 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00007881 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7882#ifndef SQLITE_OMIT_AUTOVACUUM
7883 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007884 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007885 }
7886#endif
7887 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00007888 }
7889
7890 /* Check sanity of left child page.
7891 */
drhda200cc2004-05-09 11:51:38 +00007892 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007893 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00007894#ifndef SQLITE_OMIT_AUTOVACUUM
7895 if( pBt->autoVacuum ){
7896 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
7897 }
7898#endif
shaneh195475d2010-02-19 04:28:08 +00007899 d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007900 if( i>0 && d2!=depth ){
7901 checkAppendMsg(pCheck, zContext, "Child page depth differs");
7902 }
7903 depth = d2;
drh5eddca62001-06-30 21:53:53 +00007904 }
drh5eddca62001-06-30 21:53:53 +00007905 }
shaneh195475d2010-02-19 04:28:08 +00007906
drhda200cc2004-05-09 11:51:38 +00007907 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007908 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00007909 sqlite3_snprintf(sizeof(zContext), zContext,
7910 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00007911#ifndef SQLITE_OMIT_AUTOVACUUM
7912 if( pBt->autoVacuum ){
shaneh195475d2010-02-19 04:28:08 +00007913 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007914 }
7915#endif
shaneh195475d2010-02-19 04:28:08 +00007916 checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007917 }
drh5eddca62001-06-30 21:53:53 +00007918
shaneh195475d2010-02-19 04:28:08 +00007919 /* For intKey leaf pages, check that the min/max keys are in order
7920 ** with any left/parent/right pages.
7921 */
7922 if( pPage->leaf && pPage->intKey ){
7923 /* if we are a left child page */
7924 if( pnParentMinKey ){
7925 /* if we are the left most child page */
7926 if( !pnParentMaxKey ){
7927 if( nMaxKey > *pnParentMinKey ){
7928 checkAppendMsg(pCheck, zContext,
7929 "Rowid %lld out of order (max larger than parent min of %lld)",
7930 nMaxKey, *pnParentMinKey);
7931 }
7932 }else{
7933 if( nMinKey <= *pnParentMinKey ){
7934 checkAppendMsg(pCheck, zContext,
7935 "Rowid %lld out of order (min less than parent min of %lld)",
7936 nMinKey, *pnParentMinKey);
7937 }
7938 if( nMaxKey > *pnParentMaxKey ){
7939 checkAppendMsg(pCheck, zContext,
7940 "Rowid %lld out of order (max larger than parent max of %lld)",
7941 nMaxKey, *pnParentMaxKey);
7942 }
7943 *pnParentMinKey = nMaxKey;
7944 }
7945 /* else if we're a right child page */
7946 } else if( pnParentMaxKey ){
7947 if( nMinKey <= *pnParentMaxKey ){
7948 checkAppendMsg(pCheck, zContext,
7949 "Rowid %lld out of order (min less than parent max of %lld)",
7950 nMinKey, *pnParentMaxKey);
7951 }
7952 }
7953 }
7954
drh5eddca62001-06-30 21:53:53 +00007955 /* Check for complete coverage of the page
7956 */
drhda200cc2004-05-09 11:51:38 +00007957 data = pPage->aData;
7958 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00007959 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00007960 if( hit==0 ){
7961 pCheck->mallocFailed = 1;
7962 }else{
drh5d433ce2010-08-14 16:02:52 +00007963 int contentOffset = get2byteNotZero(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00007964 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
shane5780ebd2008-11-11 17:36:30 +00007965 memset(hit+contentOffset, 0, usableSize-contentOffset);
7966 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00007967 nCell = get2byte(&data[hdr+3]);
7968 cellStart = hdr + 12 - 4*pPage->leaf;
7969 for(i=0; i<nCell; i++){
7970 int pc = get2byte(&data[cellStart+i*2]);
drh9b78f792010-08-14 21:21:24 +00007971 u32 size = 65536;
drh2e38c322004-09-03 18:38:44 +00007972 int j;
drh8c2bbb62009-07-10 02:52:20 +00007973 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00007974 size = cellSizePtr(pPage, &data[pc]);
7975 }
drh43b18e12010-08-17 19:40:08 +00007976 if( (int)(pc+size-1)>=usableSize ){
danielk19777701e812005-01-10 12:59:51 +00007977 checkAppendMsg(pCheck, 0,
shaneh195475d2010-02-19 04:28:08 +00007978 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00007979 }else{
7980 for(j=pc+size-1; j>=pc; j--) hit[j]++;
7981 }
drh2e38c322004-09-03 18:38:44 +00007982 }
drh8c2bbb62009-07-10 02:52:20 +00007983 i = get2byte(&data[hdr+1]);
7984 while( i>0 ){
7985 int size, j;
7986 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
7987 size = get2byte(&data[i+2]);
7988 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
7989 for(j=i+size-1; j>=i; j--) hit[j]++;
7990 j = get2byte(&data[i]);
7991 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
7992 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
7993 i = j;
drh2e38c322004-09-03 18:38:44 +00007994 }
7995 for(i=cnt=0; i<usableSize; i++){
7996 if( hit[i]==0 ){
7997 cnt++;
7998 }else if( hit[i]>1 ){
7999 checkAppendMsg(pCheck, 0,
8000 "Multiple uses for byte %d of page %d", i, iPage);
8001 break;
8002 }
8003 }
8004 if( cnt!=data[hdr+7] ){
8005 checkAppendMsg(pCheck, 0,
drh8c2bbb62009-07-10 02:52:20 +00008006 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00008007 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00008008 }
8009 }
drh8c2bbb62009-07-10 02:52:20 +00008010 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00008011 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00008012 return depth+1;
drh5eddca62001-06-30 21:53:53 +00008013}
drhb7f91642004-10-31 02:22:47 +00008014#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00008015
drhb7f91642004-10-31 02:22:47 +00008016#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00008017/*
8018** This routine does a complete check of the given BTree file. aRoot[] is
8019** an array of pages numbers were each page number is the root page of
8020** a table. nRoot is the number of entries in aRoot.
8021**
danielk19773509a652009-07-06 18:56:13 +00008022** A read-only or read-write transaction must be opened before calling
8023** this function.
8024**
drhc890fec2008-08-01 20:10:08 +00008025** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00008026** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00008027** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00008028** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00008029*/
drh1dcdbc02007-01-27 02:24:54 +00008030char *sqlite3BtreeIntegrityCheck(
8031 Btree *p, /* The btree to be checked */
8032 int *aRoot, /* An array of root pages numbers for individual trees */
8033 int nRoot, /* Number of entries in aRoot[] */
8034 int mxErr, /* Stop reporting errors after this many */
8035 int *pnErr /* Write number of errors seen to this variable */
8036){
danielk197789d40042008-11-17 14:20:56 +00008037 Pgno i;
drh5eddca62001-06-30 21:53:53 +00008038 int nRef;
drhaaab5722002-02-19 13:39:21 +00008039 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00008040 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00008041 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00008042
drhd677b3d2007-08-20 22:48:41 +00008043 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00008044 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00008045 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00008046 sCheck.pBt = pBt;
8047 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00008048 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00008049 sCheck.mxErr = mxErr;
8050 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00008051 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00008052 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00008053 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00008054 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00008055 return 0;
8056 }
dan1235bb12012-04-03 17:43:28 +00008057
8058 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
8059 if( !sCheck.aPgRef ){
drh1dcdbc02007-01-27 02:24:54 +00008060 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00008061 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00008062 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00008063 }
drh42cac6d2004-11-20 20:31:11 +00008064 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00008065 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh32055c22012-12-12 14:30:03 +00008066 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drhb9755982010-07-24 16:34:37 +00008067 sCheck.errMsg.useMalloc = 2;
drh5eddca62001-06-30 21:53:53 +00008068
8069 /* Check the integrity of the freelist
8070 */
drha34b6762004-05-07 13:30:42 +00008071 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
8072 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00008073
8074 /* Check all the tables.
8075 */
danielk197789d40042008-11-17 14:20:56 +00008076 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00008077 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00008078#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00008079 if( pBt->autoVacuum && aRoot[i]>1 ){
8080 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
8081 }
8082#endif
shaneh195475d2010-02-19 04:28:08 +00008083 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
drh5eddca62001-06-30 21:53:53 +00008084 }
8085
8086 /* Make sure every page in the file is referenced
8087 */
drh1dcdbc02007-01-27 02:24:54 +00008088 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00008089#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00008090 if( getPageReferenced(&sCheck, i)==0 ){
drh2e38c322004-09-03 18:38:44 +00008091 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00008092 }
danielk1977afcdd022004-10-31 16:25:42 +00008093#else
8094 /* If the database supports auto-vacuum, make sure no tables contain
8095 ** references to pointer-map pages.
8096 */
dan1235bb12012-04-03 17:43:28 +00008097 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00008098 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00008099 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
8100 }
dan1235bb12012-04-03 17:43:28 +00008101 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00008102 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00008103 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
8104 }
8105#endif
drh5eddca62001-06-30 21:53:53 +00008106 }
8107
drh64022502009-01-09 14:11:04 +00008108 /* Make sure this analysis did not leave any unref() pages.
8109 ** This is an internal consistency check; an integrity check
8110 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00008111 */
drh64022502009-01-09 14:11:04 +00008112 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00008113 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00008114 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00008115 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00008116 );
drh5eddca62001-06-30 21:53:53 +00008117 }
8118
8119 /* Clean up and report errors.
8120 */
drhd677b3d2007-08-20 22:48:41 +00008121 sqlite3BtreeLeave(p);
dan1235bb12012-04-03 17:43:28 +00008122 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00008123 if( sCheck.mallocFailed ){
8124 sqlite3StrAccumReset(&sCheck.errMsg);
8125 *pnErr = sCheck.nErr+1;
8126 return 0;
8127 }
drh1dcdbc02007-01-27 02:24:54 +00008128 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00008129 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
8130 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00008131}
drhb7f91642004-10-31 02:22:47 +00008132#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00008133
drh73509ee2003-04-06 20:44:45 +00008134/*
drhd4e0bb02012-05-27 01:19:04 +00008135** Return the full pathname of the underlying database file. Return
8136** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00008137**
8138** The pager filename is invariant as long as the pager is
8139** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00008140*/
danielk1977aef0bf62005-12-30 16:28:01 +00008141const char *sqlite3BtreeGetFilename(Btree *p){
8142 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00008143 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00008144}
8145
8146/*
danielk19775865e3d2004-06-14 06:03:57 +00008147** Return the pathname of the journal file for this database. The return
8148** value of this routine is the same regardless of whether the journal file
8149** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00008150**
8151** The pager journal filename is invariant as long as the pager is
8152** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00008153*/
danielk1977aef0bf62005-12-30 16:28:01 +00008154const char *sqlite3BtreeGetJournalname(Btree *p){
8155 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00008156 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00008157}
8158
danielk19771d850a72004-05-31 08:26:49 +00008159/*
8160** Return non-zero if a transaction is active.
8161*/
danielk1977aef0bf62005-12-30 16:28:01 +00008162int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00008163 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00008164 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00008165}
8166
dana550f2d2010-08-02 10:47:05 +00008167#ifndef SQLITE_OMIT_WAL
8168/*
8169** Run a checkpoint on the Btree passed as the first argument.
8170**
8171** Return SQLITE_LOCKED if this or any other connection has an open
8172** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00008173**
dancdc1f042010-11-18 12:11:05 +00008174** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00008175*/
dancdc1f042010-11-18 12:11:05 +00008176int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00008177 int rc = SQLITE_OK;
8178 if( p ){
8179 BtShared *pBt = p->pBt;
8180 sqlite3BtreeEnter(p);
8181 if( pBt->inTransaction!=TRANS_NONE ){
8182 rc = SQLITE_LOCKED;
8183 }else{
dancdc1f042010-11-18 12:11:05 +00008184 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00008185 }
8186 sqlite3BtreeLeave(p);
8187 }
8188 return rc;
8189}
8190#endif
8191
danielk19771d850a72004-05-31 08:26:49 +00008192/*
danielk19772372c2b2006-06-27 16:34:56 +00008193** Return non-zero if a read (or write) transaction is active.
8194*/
8195int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00008196 assert( p );
drhe5fe6902007-12-07 18:55:28 +00008197 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00008198 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00008199}
8200
danielk197704103022009-02-03 16:51:24 +00008201int sqlite3BtreeIsInBackup(Btree *p){
8202 assert( p );
8203 assert( sqlite3_mutex_held(p->db->mutex) );
8204 return p->nBackup!=0;
8205}
8206
danielk19772372c2b2006-06-27 16:34:56 +00008207/*
danielk1977da184232006-01-05 11:34:32 +00008208** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00008209** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00008210** purposes (for example, to store a high-level schema associated with
8211** the shared-btree). The btree layer manages reference counting issues.
8212**
8213** The first time this is called on a shared-btree, nBytes bytes of memory
8214** are allocated, zeroed, and returned to the caller. For each subsequent
8215** call the nBytes parameter is ignored and a pointer to the same blob
8216** of memory returned.
8217**
danielk1977171bfed2008-06-23 09:50:50 +00008218** If the nBytes parameter is 0 and the blob of memory has not yet been
8219** allocated, a null pointer is returned. If the blob has already been
8220** allocated, it is returned as normal.
8221**
danielk1977da184232006-01-05 11:34:32 +00008222** Just before the shared-btree is closed, the function passed as the
8223** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +00008224** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00008225** on the memory, the btree layer does that.
8226*/
8227void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
8228 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00008229 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00008230 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +00008231 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +00008232 pBt->xFreeSchema = xFree;
8233 }
drh27641702007-08-22 02:56:42 +00008234 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00008235 return pBt->pSchema;
8236}
8237
danielk1977c87d34d2006-01-06 13:00:28 +00008238/*
danielk1977404ca072009-03-16 13:19:36 +00008239** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
8240** btree as the argument handle holds an exclusive lock on the
8241** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00008242*/
8243int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00008244 int rc;
drhe5fe6902007-12-07 18:55:28 +00008245 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00008246 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00008247 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
8248 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00008249 sqlite3BtreeLeave(p);
8250 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00008251}
8252
drha154dcd2006-03-22 22:10:07 +00008253
8254#ifndef SQLITE_OMIT_SHARED_CACHE
8255/*
8256** Obtain a lock on the table whose root page is iTab. The
8257** lock is a write lock if isWritelock is true or a read lock
8258** if it is false.
8259*/
danielk1977c00da102006-01-07 13:21:04 +00008260int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00008261 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00008262 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00008263 if( p->sharable ){
8264 u8 lockType = READ_LOCK + isWriteLock;
8265 assert( READ_LOCK+1==WRITE_LOCK );
8266 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00008267
drh6a9ad3d2008-04-02 16:29:30 +00008268 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00008269 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008270 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00008271 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00008272 }
8273 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00008274 }
8275 return rc;
8276}
drha154dcd2006-03-22 22:10:07 +00008277#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00008278
danielk1977b4e9af92007-05-01 17:49:49 +00008279#ifndef SQLITE_OMIT_INCRBLOB
8280/*
8281** Argument pCsr must be a cursor opened for writing on an
8282** INTKEY table currently pointing at a valid table entry.
8283** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00008284**
8285** Only the data content may only be modified, it is not possible to
8286** change the length of the data stored. If this function is called with
8287** parameters that attempt to write past the end of the existing data,
8288** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00008289*/
danielk1977dcbb5d32007-05-04 18:36:44 +00008290int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00008291 int rc;
drh1fee73e2007-08-29 04:00:57 +00008292 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00008293 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk197796d48e92009-06-29 06:00:37 +00008294 assert( pCsr->isIncrblobHandle );
danielk19773588ceb2008-06-10 17:30:26 +00008295
danielk1977c9000e62009-07-08 13:55:28 +00008296 rc = restoreCursorPosition(pCsr);
8297 if( rc!=SQLITE_OK ){
8298 return rc;
8299 }
danielk19773588ceb2008-06-10 17:30:26 +00008300 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
8301 if( pCsr->eState!=CURSOR_VALID ){
8302 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00008303 }
8304
danielk1977c9000e62009-07-08 13:55:28 +00008305 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00008306 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00008307 ** (b) there is a read/write transaction open,
8308 ** (c) the connection holds a write-lock on the table (if required),
8309 ** (d) there are no conflicting read-locks, and
8310 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00008311 */
danielk19774f029602009-07-08 18:45:37 +00008312 if( !pCsr->wrFlag ){
8313 return SQLITE_READONLY;
8314 }
drhc9166342012-01-05 23:32:06 +00008315 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
8316 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00008317 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
8318 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00008319 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00008320
drhfb192682009-07-11 18:26:28 +00008321 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00008322}
danielk19772dec9702007-05-02 16:48:37 +00008323
8324/*
8325** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00008326** overflow list for the current row. This is used by cursors opened
8327** for incremental blob IO only.
8328**
8329** This function sets a flag only. The actual page location cache
8330** (stored in BtCursor.aOverflow[]) is allocated and used by function
8331** accessPayload() (the worker function for sqlite3BtreeData() and
8332** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00008333*/
8334void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00008335 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00008336 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan4e76cc32010-10-20 18:56:04 +00008337 invalidateOverflowCache(pCur);
danielk1977dcbb5d32007-05-04 18:36:44 +00008338 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00008339}
danielk1977b4e9af92007-05-01 17:49:49 +00008340#endif
dane04dc882010-04-20 18:53:15 +00008341
8342/*
8343** Set both the "read version" (single byte at byte offset 18) and
8344** "write version" (single byte at byte offset 19) fields in the database
8345** header to iVersion.
8346*/
8347int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
8348 BtShared *pBt = pBtree->pBt;
8349 int rc; /* Return code */
8350
dane04dc882010-04-20 18:53:15 +00008351 assert( iVersion==1 || iVersion==2 );
8352
danb9780022010-04-21 18:37:57 +00008353 /* If setting the version fields to 1, do not automatically open the
8354 ** WAL connection, even if the version fields are currently set to 2.
8355 */
drhc9166342012-01-05 23:32:06 +00008356 pBt->btsFlags &= ~BTS_NO_WAL;
8357 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +00008358
8359 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00008360 if( rc==SQLITE_OK ){
8361 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00008362 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00008363 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00008364 if( rc==SQLITE_OK ){
8365 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8366 if( rc==SQLITE_OK ){
8367 aData[18] = (u8)iVersion;
8368 aData[19] = (u8)iVersion;
8369 }
8370 }
8371 }
dane04dc882010-04-20 18:53:15 +00008372 }
8373
drhc9166342012-01-05 23:32:06 +00008374 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +00008375 return rc;
8376}
dan428c2182012-08-06 18:50:11 +00008377
8378/*
8379** set the mask of hint flags for cursor pCsr. Currently the only valid
8380** values are 0 and BTREE_BULKLOAD.
8381*/
8382void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){
8383 assert( mask==BTREE_BULKLOAD || mask==0 );
8384 pCsr->hints = mask;
8385}