drh | a315289 | 2007-05-05 11:48:52 +0000 | [diff] [blame] | 1 | /* |
| 2 | ** 2001 September 15 |
| 3 | ** |
| 4 | ** The author disclaims copyright to this source code. In place of |
| 5 | ** a legal notice, here is a blessing: |
| 6 | ** |
| 7 | ** May you do good and not evil. |
| 8 | ** May you find forgiveness for yourself and forgive others. |
| 9 | ** May you share freely, never taking more than you give. |
| 10 | ** |
| 11 | ************************************************************************* |
drh | fec00ea | 2008-06-14 16:56:21 +0000 | [diff] [blame] | 12 | ** |
drh | a315289 | 2007-05-05 11:48:52 +0000 | [diff] [blame] | 13 | ** Memory allocation functions used throughout sqlite. |
| 14 | ** |
drh | f089aa4 | 2008-07-08 19:34:06 +0000 | [diff] [blame^] | 15 | ** $Id: malloc.c,v 1.26 2008/07/08 19:34:07 drh Exp $ |
drh | a315289 | 2007-05-05 11:48:52 +0000 | [diff] [blame] | 16 | */ |
| 17 | #include "sqliteInt.h" |
drh | a315289 | 2007-05-05 11:48:52 +0000 | [diff] [blame] | 18 | #include <stdarg.h> |
| 19 | #include <ctype.h> |
| 20 | |
| 21 | /* |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 22 | ** This routine runs when the memory allocator sees that the |
| 23 | ** total memory allocation is about to exceed the soft heap |
| 24 | ** limit. |
| 25 | */ |
| 26 | static void softHeapLimitEnforcer( |
| 27 | void *NotUsed, |
drh | 153c62c | 2007-08-24 03:51:33 +0000 | [diff] [blame] | 28 | sqlite3_int64 inUse, |
| 29 | int allocSize |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 30 | ){ |
| 31 | sqlite3_release_memory(allocSize); |
| 32 | } |
| 33 | |
| 34 | /* |
danielk1977 | 8468024 | 2008-06-23 11:11:35 +0000 | [diff] [blame] | 35 | ** Set the soft heap-size limit for the library. Passing a zero or |
| 36 | ** negative value indicates no limit. |
drh | a315289 | 2007-05-05 11:48:52 +0000 | [diff] [blame] | 37 | */ |
| 38 | void sqlite3_soft_heap_limit(int n){ |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 39 | sqlite3_uint64 iLimit; |
| 40 | int overage; |
| 41 | if( n<0 ){ |
| 42 | iLimit = 0; |
| 43 | }else{ |
| 44 | iLimit = n; |
drh | a315289 | 2007-05-05 11:48:52 +0000 | [diff] [blame] | 45 | } |
drh | 9ac3fe9 | 2008-06-18 18:12:04 +0000 | [diff] [blame] | 46 | sqlite3_initialize(); |
drh | b21c8cd | 2007-08-21 19:33:56 +0000 | [diff] [blame] | 47 | if( iLimit>0 ){ |
| 48 | sqlite3_memory_alarm(softHeapLimitEnforcer, 0, iLimit); |
| 49 | }else{ |
| 50 | sqlite3_memory_alarm(0, 0, 0); |
| 51 | } |
| 52 | overage = sqlite3_memory_used() - n; |
| 53 | if( overage>0 ){ |
| 54 | sqlite3_release_memory(overage); |
| 55 | } |
drh | a315289 | 2007-05-05 11:48:52 +0000 | [diff] [blame] | 56 | } |
| 57 | |
| 58 | /* |
danielk1977 | 8468024 | 2008-06-23 11:11:35 +0000 | [diff] [blame] | 59 | ** Attempt to release up to n bytes of non-essential memory currently |
| 60 | ** held by SQLite. An example of non-essential memory is memory used to |
| 61 | ** cache database pages that are not currently in use. |
drh | a315289 | 2007-05-05 11:48:52 +0000 | [diff] [blame] | 62 | */ |
| 63 | int sqlite3_release_memory(int n){ |
drh | 86f8c19 | 2007-08-22 00:39:19 +0000 | [diff] [blame] | 64 | #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
danielk1977 | dfb316d | 2008-03-26 18:34:43 +0000 | [diff] [blame] | 65 | int nRet = sqlite3VdbeReleaseMemory(n); |
| 66 | nRet += sqlite3PagerReleaseMemory(n-nRet); |
| 67 | return nRet; |
danielk1977 | 1e53695 | 2007-08-16 10:09:01 +0000 | [diff] [blame] | 68 | #else |
| 69 | return SQLITE_OK; |
| 70 | #endif |
drh | a315289 | 2007-05-05 11:48:52 +0000 | [diff] [blame] | 71 | } |
drh | a315289 | 2007-05-05 11:48:52 +0000 | [diff] [blame] | 72 | |
drh | fec00ea | 2008-06-14 16:56:21 +0000 | [diff] [blame] | 73 | /* |
| 74 | ** State information local to the memory allocation subsystem. |
| 75 | */ |
| 76 | static struct { |
| 77 | sqlite3_mutex *mutex; /* Mutex to serialize access */ |
| 78 | |
| 79 | /* |
| 80 | ** The alarm callback and its arguments. The mem0.mutex lock will |
| 81 | ** be held while the callback is running. Recursive calls into |
| 82 | ** the memory subsystem are allowed, but no new callbacks will be |
| 83 | ** issued. The alarmBusy variable is set to prevent recursive |
| 84 | ** callbacks. |
| 85 | */ |
| 86 | sqlite3_int64 alarmThreshold; |
| 87 | void (*alarmCallback)(void*, sqlite3_int64,int); |
| 88 | void *alarmArg; |
| 89 | int alarmBusy; |
| 90 | |
| 91 | /* |
drh | 9ac3fe9 | 2008-06-18 18:12:04 +0000 | [diff] [blame] | 92 | ** Pointers to the end of sqlite3Config.pScratch and |
| 93 | ** sqlite3Config.pPage to a block of memory that records |
| 94 | ** which pages are available. |
| 95 | */ |
| 96 | u32 *aScratchFree; |
| 97 | u32 *aPageFree; |
| 98 | |
| 99 | /* Number of free pages for scratch and page-cache memory */ |
| 100 | u32 nScratchFree; |
| 101 | u32 nPageFree; |
drh | fec00ea | 2008-06-14 16:56:21 +0000 | [diff] [blame] | 102 | } mem0; |
| 103 | |
| 104 | /* |
| 105 | ** Initialize the memory allocation subsystem. |
| 106 | */ |
| 107 | int sqlite3MallocInit(void){ |
| 108 | if( sqlite3Config.m.xMalloc==0 ){ |
| 109 | sqlite3MemSetDefault(); |
| 110 | } |
| 111 | memset(&mem0, 0, sizeof(mem0)); |
drh | 9ac3fe9 | 2008-06-18 18:12:04 +0000 | [diff] [blame] | 112 | if( sqlite3Config.bCoreMutex ){ |
danielk1977 | 59f8c08 | 2008-06-18 17:09:10 +0000 | [diff] [blame] | 113 | mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); |
drh | fec00ea | 2008-06-14 16:56:21 +0000 | [diff] [blame] | 114 | } |
drh | 9ac3fe9 | 2008-06-18 18:12:04 +0000 | [diff] [blame] | 115 | if( sqlite3Config.pScratch && sqlite3Config.szScratch>=3000 |
| 116 | && sqlite3Config.nScratch>0 ){ |
| 117 | int i; |
| 118 | mem0.aScratchFree = (u32*)&((char*)sqlite3Config.pScratch) |
| 119 | [sqlite3Config.szScratch*sqlite3Config.nScratch]; |
| 120 | for(i=0; i<sqlite3Config.nScratch; i++){ mem0.aScratchFree[i] = i; } |
| 121 | mem0.nScratchFree = sqlite3Config.nScratch; |
| 122 | }else{ |
| 123 | sqlite3Config.pScratch = 0; |
drh | f714199 | 2008-06-19 00:16:08 +0000 | [diff] [blame] | 124 | sqlite3Config.szScratch = 0; |
drh | 9ac3fe9 | 2008-06-18 18:12:04 +0000 | [diff] [blame] | 125 | } |
| 126 | if( sqlite3Config.pPage && sqlite3Config.szPage>=512 |
| 127 | && sqlite3Config.nPage>0 ){ |
| 128 | int i; |
| 129 | mem0.aPageFree = (u32*)&((char*)sqlite3Config.pPage) |
| 130 | [sqlite3Config.szPage*sqlite3Config.nPage]; |
| 131 | for(i=0; i<sqlite3Config.nPage; i++){ mem0.aPageFree[i] = i; } |
| 132 | mem0.nPageFree = sqlite3Config.nPage; |
| 133 | }else{ |
| 134 | sqlite3Config.pPage = 0; |
drh | f714199 | 2008-06-19 00:16:08 +0000 | [diff] [blame] | 135 | sqlite3Config.szPage = 0; |
drh | 9ac3fe9 | 2008-06-18 18:12:04 +0000 | [diff] [blame] | 136 | } |
drh | fec00ea | 2008-06-14 16:56:21 +0000 | [diff] [blame] | 137 | return sqlite3Config.m.xInit(sqlite3Config.m.pAppData); |
| 138 | } |
| 139 | |
| 140 | /* |
| 141 | ** Deinitialize the memory allocation subsystem. |
| 142 | */ |
| 143 | void sqlite3MallocEnd(void){ |
drh | 9ac3fe9 | 2008-06-18 18:12:04 +0000 | [diff] [blame] | 144 | sqlite3Config.m.xShutdown(sqlite3Config.m.pAppData); |
| 145 | memset(&mem0, 0, sizeof(mem0)); |
drh | fec00ea | 2008-06-14 16:56:21 +0000 | [diff] [blame] | 146 | } |
| 147 | |
| 148 | /* |
| 149 | ** Return the amount of memory currently checked out. |
| 150 | */ |
| 151 | sqlite3_int64 sqlite3_memory_used(void){ |
drh | f714199 | 2008-06-19 00:16:08 +0000 | [diff] [blame] | 152 | int n, mx; |
| 153 | sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0); |
| 154 | return (sqlite3_int64)n; |
drh | fec00ea | 2008-06-14 16:56:21 +0000 | [diff] [blame] | 155 | } |
| 156 | |
| 157 | /* |
| 158 | ** Return the maximum amount of memory that has ever been |
| 159 | ** checked out since either the beginning of this process |
| 160 | ** or since the most recent reset. |
| 161 | */ |
| 162 | sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ |
drh | f714199 | 2008-06-19 00:16:08 +0000 | [diff] [blame] | 163 | int n, mx; |
| 164 | sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag); |
| 165 | return (sqlite3_int64)mx; |
drh | fec00ea | 2008-06-14 16:56:21 +0000 | [diff] [blame] | 166 | } |
| 167 | |
| 168 | /* |
| 169 | ** Change the alarm callback |
| 170 | */ |
| 171 | int sqlite3_memory_alarm( |
| 172 | void(*xCallback)(void *pArg, sqlite3_int64 used,int N), |
| 173 | void *pArg, |
| 174 | sqlite3_int64 iThreshold |
| 175 | ){ |
| 176 | sqlite3_mutex_enter(mem0.mutex); |
| 177 | mem0.alarmCallback = xCallback; |
| 178 | mem0.alarmArg = pArg; |
| 179 | mem0.alarmThreshold = iThreshold; |
| 180 | sqlite3_mutex_leave(mem0.mutex); |
| 181 | return SQLITE_OK; |
| 182 | } |
| 183 | |
| 184 | /* |
| 185 | ** Trigger the alarm |
| 186 | */ |
| 187 | static void sqlite3MallocAlarm(int nByte){ |
| 188 | void (*xCallback)(void*,sqlite3_int64,int); |
| 189 | sqlite3_int64 nowUsed; |
| 190 | void *pArg; |
| 191 | if( mem0.alarmCallback==0 || mem0.alarmBusy ) return; |
| 192 | mem0.alarmBusy = 1; |
| 193 | xCallback = mem0.alarmCallback; |
drh | f714199 | 2008-06-19 00:16:08 +0000 | [diff] [blame] | 194 | nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); |
drh | fec00ea | 2008-06-14 16:56:21 +0000 | [diff] [blame] | 195 | pArg = mem0.alarmArg; |
| 196 | sqlite3_mutex_leave(mem0.mutex); |
| 197 | xCallback(pArg, nowUsed, nByte); |
| 198 | sqlite3_mutex_enter(mem0.mutex); |
| 199 | mem0.alarmBusy = 0; |
| 200 | } |
| 201 | |
drh | f714199 | 2008-06-19 00:16:08 +0000 | [diff] [blame] | 202 | /* |
| 203 | ** Do a memory allocation with statistics and alarms. Assume the |
| 204 | ** lock is already held. |
| 205 | */ |
| 206 | static int mallocWithAlarm(int n, void **pp){ |
| 207 | int nFull; |
| 208 | void *p; |
| 209 | assert( sqlite3_mutex_held(mem0.mutex) ); |
| 210 | nFull = sqlite3Config.m.xRoundup(n); |
| 211 | sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n); |
| 212 | if( mem0.alarmCallback!=0 ){ |
| 213 | int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); |
| 214 | if( nUsed+nFull >= mem0.alarmThreshold ){ |
| 215 | sqlite3MallocAlarm(nFull); |
| 216 | } |
| 217 | } |
danielk1977 | d09414c | 2008-06-19 18:17:49 +0000 | [diff] [blame] | 218 | p = sqlite3Config.m.xMalloc(nFull); |
| 219 | if( p==0 && mem0.alarmCallback ){ |
| 220 | sqlite3MallocAlarm(nFull); |
drh | f714199 | 2008-06-19 00:16:08 +0000 | [diff] [blame] | 221 | p = sqlite3Config.m.xMalloc(nFull); |
drh | f714199 | 2008-06-19 00:16:08 +0000 | [diff] [blame] | 222 | } |
| 223 | if( p ) sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull); |
| 224 | *pp = p; |
| 225 | return nFull; |
| 226 | } |
drh | fec00ea | 2008-06-14 16:56:21 +0000 | [diff] [blame] | 227 | |
| 228 | /* |
| 229 | ** Allocate memory. This routine is like sqlite3_malloc() except that it |
| 230 | ** assumes the memory subsystem has already been initialized. |
| 231 | */ |
| 232 | void *sqlite3Malloc(int n){ |
| 233 | void *p; |
drh | fec00ea | 2008-06-14 16:56:21 +0000 | [diff] [blame] | 234 | if( n<=0 ){ |
drh | f714199 | 2008-06-19 00:16:08 +0000 | [diff] [blame] | 235 | p = 0; |
drh | fec00ea | 2008-06-14 16:56:21 +0000 | [diff] [blame] | 236 | }else if( sqlite3Config.bMemstat ){ |
drh | fec00ea | 2008-06-14 16:56:21 +0000 | [diff] [blame] | 237 | sqlite3_mutex_enter(mem0.mutex); |
drh | f714199 | 2008-06-19 00:16:08 +0000 | [diff] [blame] | 238 | mallocWithAlarm(n, &p); |
drh | fec00ea | 2008-06-14 16:56:21 +0000 | [diff] [blame] | 239 | sqlite3_mutex_leave(mem0.mutex); |
| 240 | }else{ |
| 241 | p = sqlite3Config.m.xMalloc(n); |
| 242 | } |
| 243 | return p; |
| 244 | } |
| 245 | |
| 246 | /* |
| 247 | ** This version of the memory allocation is for use by the application. |
| 248 | ** First make sure the memory subsystem is initialized, then do the |
| 249 | ** allocation. |
| 250 | */ |
| 251 | void *sqlite3_malloc(int n){ |
| 252 | #ifndef SQLITE_OMIT_AUTOINIT |
| 253 | if( sqlite3_initialize() ) return 0; |
| 254 | #endif |
| 255 | return sqlite3Malloc(n); |
| 256 | } |
| 257 | |
| 258 | /* |
drh | e5ae573 | 2008-06-15 02:51:47 +0000 | [diff] [blame] | 259 | ** Each thread may only have a single outstanding allocation from |
drh | facf030 | 2008-06-17 15:12:00 +0000 | [diff] [blame] | 260 | ** xScratchMalloc(). We verify this constraint in the single-threaded |
| 261 | ** case by setting scratchAllocOut to 1 when an allocation |
drh | e5ae573 | 2008-06-15 02:51:47 +0000 | [diff] [blame] | 262 | ** is outstanding clearing it when the allocation is freed. |
| 263 | */ |
| 264 | #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) |
drh | facf030 | 2008-06-17 15:12:00 +0000 | [diff] [blame] | 265 | static int scratchAllocOut = 0; |
drh | e5ae573 | 2008-06-15 02:51:47 +0000 | [diff] [blame] | 266 | #endif |
| 267 | |
| 268 | |
| 269 | /* |
| 270 | ** Allocate memory that is to be used and released right away. |
| 271 | ** This routine is similar to alloca() in that it is not intended |
| 272 | ** for situations where the memory might be held long-term. This |
| 273 | ** routine is intended to get memory to old large transient data |
| 274 | ** structures that would not normally fit on the stack of an |
| 275 | ** embedded processor. |
| 276 | */ |
drh | facf030 | 2008-06-17 15:12:00 +0000 | [diff] [blame] | 277 | void *sqlite3ScratchMalloc(int n){ |
drh | e5ae573 | 2008-06-15 02:51:47 +0000 | [diff] [blame] | 278 | void *p; |
| 279 | assert( n>0 ); |
drh | 9ac3fe9 | 2008-06-18 18:12:04 +0000 | [diff] [blame] | 280 | |
drh | e5ae573 | 2008-06-15 02:51:47 +0000 | [diff] [blame] | 281 | #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) |
drh | 9ac3fe9 | 2008-06-18 18:12:04 +0000 | [diff] [blame] | 282 | /* Verify that no more than one scratch allocation per thread |
| 283 | ** is outstanding at one time. (This is only checked in the |
| 284 | ** single-threaded case since checking in the multi-threaded case |
| 285 | ** would be much more complicated.) */ |
drh | facf030 | 2008-06-17 15:12:00 +0000 | [diff] [blame] | 286 | assert( scratchAllocOut==0 ); |
drh | e5ae573 | 2008-06-15 02:51:47 +0000 | [diff] [blame] | 287 | #endif |
drh | 9ac3fe9 | 2008-06-18 18:12:04 +0000 | [diff] [blame] | 288 | |
drh | f714199 | 2008-06-19 00:16:08 +0000 | [diff] [blame] | 289 | if( sqlite3Config.szScratch<n ){ |
| 290 | goto scratch_overflow; |
| 291 | }else{ |
| 292 | sqlite3_mutex_enter(mem0.mutex); |
| 293 | if( mem0.nScratchFree==0 ){ |
| 294 | sqlite3_mutex_leave(mem0.mutex); |
| 295 | goto scratch_overflow; |
| 296 | }else{ |
| 297 | int i; |
| 298 | i = mem0.aScratchFree[--mem0.nScratchFree]; |
| 299 | sqlite3_mutex_leave(mem0.mutex); |
| 300 | i *= sqlite3Config.szScratch; |
| 301 | sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1); |
| 302 | p = (void*)&((char*)sqlite3Config.pScratch)[i]; |
| 303 | } |
drh | e5ae573 | 2008-06-15 02:51:47 +0000 | [diff] [blame] | 304 | } |
drh | f714199 | 2008-06-19 00:16:08 +0000 | [diff] [blame] | 305 | #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) |
| 306 | scratchAllocOut = p!=0; |
| 307 | #endif |
| 308 | |
drh | e5ae573 | 2008-06-15 02:51:47 +0000 | [diff] [blame] | 309 | return p; |
drh | f714199 | 2008-06-19 00:16:08 +0000 | [diff] [blame] | 310 | |
| 311 | scratch_overflow: |
| 312 | if( sqlite3Config.bMemstat ){ |
| 313 | sqlite3_mutex_enter(mem0.mutex); |
| 314 | n = mallocWithAlarm(n, &p); |
| 315 | if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n); |
| 316 | sqlite3_mutex_leave(mem0.mutex); |
| 317 | }else{ |
| 318 | p = sqlite3Config.m.xMalloc(n); |
| 319 | } |
| 320 | #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) |
| 321 | scratchAllocOut = p!=0; |
| 322 | #endif |
| 323 | return p; |
drh | e5ae573 | 2008-06-15 02:51:47 +0000 | [diff] [blame] | 324 | } |
drh | facf030 | 2008-06-17 15:12:00 +0000 | [diff] [blame] | 325 | void sqlite3ScratchFree(void *p){ |
drh | e5ae573 | 2008-06-15 02:51:47 +0000 | [diff] [blame] | 326 | if( p ){ |
drh | 9ac3fe9 | 2008-06-18 18:12:04 +0000 | [diff] [blame] | 327 | |
drh | e5ae573 | 2008-06-15 02:51:47 +0000 | [diff] [blame] | 328 | #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) |
drh | 9ac3fe9 | 2008-06-18 18:12:04 +0000 | [diff] [blame] | 329 | /* Verify that no more than one scratch allocation per thread |
| 330 | ** is outstanding at one time. (This is only checked in the |
| 331 | ** single-threaded case since checking in the multi-threaded case |
| 332 | ** would be much more complicated.) */ |
drh | facf030 | 2008-06-17 15:12:00 +0000 | [diff] [blame] | 333 | assert( scratchAllocOut==1 ); |
| 334 | scratchAllocOut = 0; |
drh | e5ae573 | 2008-06-15 02:51:47 +0000 | [diff] [blame] | 335 | #endif |
drh | 9ac3fe9 | 2008-06-18 18:12:04 +0000 | [diff] [blame] | 336 | |
| 337 | if( sqlite3Config.pScratch==0 |
drh | f714199 | 2008-06-19 00:16:08 +0000 | [diff] [blame] | 338 | || p<sqlite3Config.pScratch |
| 339 | || p>=(void*)mem0.aScratchFree ){ |
| 340 | if( sqlite3Config.bMemstat ){ |
| 341 | int iSize = sqlite3MallocSize(p); |
| 342 | sqlite3_mutex_enter(mem0.mutex); |
| 343 | sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize); |
| 344 | sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize); |
| 345 | sqlite3Config.m.xFree(p); |
| 346 | sqlite3_mutex_leave(mem0.mutex); |
| 347 | }else{ |
| 348 | sqlite3Config.m.xFree(p); |
| 349 | } |
drh | 9ac3fe9 | 2008-06-18 18:12:04 +0000 | [diff] [blame] | 350 | }else{ |
| 351 | int i; |
danielk1977 | 867d05a | 2008-06-23 14:03:45 +0000 | [diff] [blame] | 352 | i = (u8 *)p - (u8 *)sqlite3Config.pScratch; |
drh | 9ac3fe9 | 2008-06-18 18:12:04 +0000 | [diff] [blame] | 353 | i /= sqlite3Config.szScratch; |
| 354 | assert( i>=0 && i<sqlite3Config.nScratch ); |
drh | f714199 | 2008-06-19 00:16:08 +0000 | [diff] [blame] | 355 | sqlite3_mutex_enter(mem0.mutex); |
| 356 | assert( mem0.nScratchFree<sqlite3Config.nScratch ); |
drh | 9ac3fe9 | 2008-06-18 18:12:04 +0000 | [diff] [blame] | 357 | mem0.aScratchFree[mem0.nScratchFree++] = i; |
drh | f714199 | 2008-06-19 00:16:08 +0000 | [diff] [blame] | 358 | sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1); |
drh | 9ac3fe9 | 2008-06-18 18:12:04 +0000 | [diff] [blame] | 359 | sqlite3_mutex_leave(mem0.mutex); |
| 360 | } |
drh | e5ae573 | 2008-06-15 02:51:47 +0000 | [diff] [blame] | 361 | } |
| 362 | } |
| 363 | |
| 364 | /* |
drh | f714199 | 2008-06-19 00:16:08 +0000 | [diff] [blame] | 365 | ** Allocate memory to be used by the page cache. Make use of the |
| 366 | ** memory buffer provided by SQLITE_CONFIG_PAGECACHE if there is one |
| 367 | ** and that memory is of the right size and is not completely |
| 368 | ** consumed. Otherwise, failover to sqlite3Malloc(). |
drh | facf030 | 2008-06-17 15:12:00 +0000 | [diff] [blame] | 369 | */ |
drh | f714199 | 2008-06-19 00:16:08 +0000 | [diff] [blame] | 370 | void *sqlite3PageMalloc(int n){ |
| 371 | void *p; |
| 372 | assert( n>0 ); |
| 373 | assert( (n & (n-1))==0 ); |
| 374 | assert( n>=512 && n<=32768 ); |
drh | f714199 | 2008-06-19 00:16:08 +0000 | [diff] [blame] | 375 | |
| 376 | if( sqlite3Config.szPage<n ){ |
| 377 | goto page_overflow; |
| 378 | }else{ |
| 379 | sqlite3_mutex_enter(mem0.mutex); |
| 380 | if( mem0.nPageFree==0 ){ |
| 381 | sqlite3_mutex_leave(mem0.mutex); |
| 382 | goto page_overflow; |
| 383 | }else{ |
| 384 | int i; |
| 385 | i = mem0.aPageFree[--mem0.nPageFree]; |
| 386 | sqlite3_mutex_leave(mem0.mutex); |
| 387 | i *= sqlite3Config.szPage; |
| 388 | sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1); |
| 389 | p = (void*)&((char*)sqlite3Config.pPage)[i]; |
| 390 | } |
| 391 | } |
| 392 | return p; |
| 393 | |
| 394 | page_overflow: |
| 395 | if( sqlite3Config.bMemstat ){ |
| 396 | sqlite3_mutex_enter(mem0.mutex); |
| 397 | n = mallocWithAlarm(n, &p); |
| 398 | if( p ) sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, n); |
| 399 | sqlite3_mutex_leave(mem0.mutex); |
| 400 | }else{ |
| 401 | p = sqlite3Config.m.xMalloc(n); |
| 402 | } |
| 403 | return p; |
drh | facf030 | 2008-06-17 15:12:00 +0000 | [diff] [blame] | 404 | } |
drh | f714199 | 2008-06-19 00:16:08 +0000 | [diff] [blame] | 405 | void sqlite3PageFree(void *p){ |
| 406 | if( p ){ |
| 407 | if( sqlite3Config.pPage==0 |
| 408 | || p<sqlite3Config.pPage |
| 409 | || p>=(void*)mem0.aPageFree ){ |
danielk1977 | 4b9507a | 2008-06-21 08:12:15 +0000 | [diff] [blame] | 410 | /* In this case, the page allocation was obtained from a regular |
| 411 | ** call to sqlite3_mem_methods.xMalloc() (a page-cache-memory |
| 412 | ** "overflow"). Free the block with sqlite3_mem_methods.xFree(). |
| 413 | */ |
drh | f714199 | 2008-06-19 00:16:08 +0000 | [diff] [blame] | 414 | if( sqlite3Config.bMemstat ){ |
| 415 | int iSize = sqlite3MallocSize(p); |
| 416 | sqlite3_mutex_enter(mem0.mutex); |
| 417 | sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -iSize); |
| 418 | sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize); |
| 419 | sqlite3Config.m.xFree(p); |
| 420 | sqlite3_mutex_leave(mem0.mutex); |
| 421 | }else{ |
| 422 | sqlite3Config.m.xFree(p); |
| 423 | } |
| 424 | }else{ |
danielk1977 | 4b9507a | 2008-06-21 08:12:15 +0000 | [diff] [blame] | 425 | /* The page allocation was allocated from the sqlite3Config.pPage |
| 426 | ** buffer. In this case all that is add the index of the page in |
| 427 | ** the sqlite3Config.pPage array to the set of free indexes stored |
| 428 | ** in the mem0.aPageFree[] array. |
| 429 | */ |
drh | f714199 | 2008-06-19 00:16:08 +0000 | [diff] [blame] | 430 | int i; |
danielk1977 | 867d05a | 2008-06-23 14:03:45 +0000 | [diff] [blame] | 431 | i = (u8 *)p - (u8 *)sqlite3Config.pPage; |
drh | f714199 | 2008-06-19 00:16:08 +0000 | [diff] [blame] | 432 | i /= sqlite3Config.szPage; |
| 433 | assert( i>=0 && i<sqlite3Config.nPage ); |
| 434 | sqlite3_mutex_enter(mem0.mutex); |
| 435 | assert( mem0.nPageFree<sqlite3Config.nPage ); |
| 436 | mem0.aPageFree[mem0.nPageFree++] = i; |
| 437 | sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1); |
| 438 | sqlite3_mutex_leave(mem0.mutex); |
danielk1977 | 4b9507a | 2008-06-21 08:12:15 +0000 | [diff] [blame] | 439 | #ifndef NDEBUG |
| 440 | /* Assert that a duplicate was not just inserted into aPageFree[]. */ |
| 441 | for(i=0; i<mem0.nPageFree-1; i++){ |
| 442 | assert( mem0.aPageFree[i]!=mem0.aPageFree[mem0.nPageFree-1] ); |
| 443 | } |
| 444 | #endif |
drh | f714199 | 2008-06-19 00:16:08 +0000 | [diff] [blame] | 445 | } |
| 446 | } |
drh | facf030 | 2008-06-17 15:12:00 +0000 | [diff] [blame] | 447 | } |
| 448 | |
| 449 | /* |
drh | fec00ea | 2008-06-14 16:56:21 +0000 | [diff] [blame] | 450 | ** Return the size of a memory allocation previously obtained from |
| 451 | ** sqlite3Malloc() or sqlite3_malloc(). |
| 452 | */ |
| 453 | int sqlite3MallocSize(void *p){ |
| 454 | return sqlite3Config.m.xSize(p); |
| 455 | } |
| 456 | |
| 457 | /* |
| 458 | ** Free memory previously obtained from sqlite3Malloc(). |
| 459 | */ |
| 460 | void sqlite3_free(void *p){ |
| 461 | if( p==0 ) return; |
| 462 | if( sqlite3Config.bMemstat ){ |
| 463 | sqlite3_mutex_enter(mem0.mutex); |
drh | f714199 | 2008-06-19 00:16:08 +0000 | [diff] [blame] | 464 | sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p)); |
drh | fec00ea | 2008-06-14 16:56:21 +0000 | [diff] [blame] | 465 | sqlite3Config.m.xFree(p); |
| 466 | sqlite3_mutex_leave(mem0.mutex); |
| 467 | }else{ |
| 468 | sqlite3Config.m.xFree(p); |
| 469 | } |
| 470 | } |
| 471 | |
| 472 | /* |
| 473 | ** Change the size of an existing memory allocation |
| 474 | */ |
| 475 | void *sqlite3Realloc(void *pOld, int nBytes){ |
| 476 | int nOld, nNew; |
| 477 | void *pNew; |
| 478 | if( pOld==0 ){ |
| 479 | return sqlite3Malloc(nBytes); |
| 480 | } |
| 481 | if( nBytes<=0 ){ |
| 482 | sqlite3_free(pOld); |
| 483 | return 0; |
| 484 | } |
| 485 | nOld = sqlite3MallocSize(pOld); |
| 486 | if( sqlite3Config.bMemstat ){ |
| 487 | sqlite3_mutex_enter(mem0.mutex); |
drh | f714199 | 2008-06-19 00:16:08 +0000 | [diff] [blame] | 488 | sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes); |
drh | fec00ea | 2008-06-14 16:56:21 +0000 | [diff] [blame] | 489 | nNew = sqlite3Config.m.xRoundup(nBytes); |
| 490 | if( nOld==nNew ){ |
| 491 | pNew = pOld; |
| 492 | }else{ |
drh | f714199 | 2008-06-19 00:16:08 +0000 | [diff] [blame] | 493 | if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >= |
| 494 | mem0.alarmThreshold ){ |
drh | fec00ea | 2008-06-14 16:56:21 +0000 | [diff] [blame] | 495 | sqlite3MallocAlarm(nNew-nOld); |
| 496 | } |
danielk1977 | d09414c | 2008-06-19 18:17:49 +0000 | [diff] [blame] | 497 | pNew = sqlite3Config.m.xRealloc(pOld, nNew); |
| 498 | if( pNew==0 && mem0.alarmCallback ){ |
| 499 | sqlite3MallocAlarm(nBytes); |
drh | fec00ea | 2008-06-14 16:56:21 +0000 | [diff] [blame] | 500 | pNew = sqlite3Config.m.xRealloc(pOld, nNew); |
drh | fec00ea | 2008-06-14 16:56:21 +0000 | [diff] [blame] | 501 | } |
| 502 | if( pNew ){ |
drh | f714199 | 2008-06-19 00:16:08 +0000 | [diff] [blame] | 503 | sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld); |
drh | fec00ea | 2008-06-14 16:56:21 +0000 | [diff] [blame] | 504 | } |
| 505 | } |
| 506 | sqlite3_mutex_leave(mem0.mutex); |
| 507 | }else{ |
| 508 | pNew = sqlite3Config.m.xRealloc(pOld, nBytes); |
| 509 | } |
| 510 | return pNew; |
| 511 | } |
| 512 | |
| 513 | /* |
| 514 | ** The public interface to sqlite3Realloc. Make sure that the memory |
| 515 | ** subsystem is initialized prior to invoking sqliteRealloc. |
| 516 | */ |
| 517 | void *sqlite3_realloc(void *pOld, int n){ |
| 518 | #ifndef SQLITE_OMIT_AUTOINIT |
| 519 | if( sqlite3_initialize() ) return 0; |
| 520 | #endif |
| 521 | return sqlite3Realloc(pOld, n); |
| 522 | } |
| 523 | |
drh | a315289 | 2007-05-05 11:48:52 +0000 | [diff] [blame] | 524 | |
| 525 | /* |
drh | 1743575 | 2007-08-16 04:30:38 +0000 | [diff] [blame] | 526 | ** Allocate and zero memory. |
drh | a315289 | 2007-05-05 11:48:52 +0000 | [diff] [blame] | 527 | */ |
drh | fec00ea | 2008-06-14 16:56:21 +0000 | [diff] [blame] | 528 | void *sqlite3MallocZero(int n){ |
| 529 | void *p = sqlite3Malloc(n); |
drh | a315289 | 2007-05-05 11:48:52 +0000 | [diff] [blame] | 530 | if( p ){ |
| 531 | memset(p, 0, n); |
| 532 | } |
| 533 | return p; |
| 534 | } |
drh | 1743575 | 2007-08-16 04:30:38 +0000 | [diff] [blame] | 535 | |
| 536 | /* |
| 537 | ** Allocate and zero memory. If the allocation fails, make |
| 538 | ** the mallocFailed flag in the connection pointer. |
| 539 | */ |
drh | fec00ea | 2008-06-14 16:56:21 +0000 | [diff] [blame] | 540 | void *sqlite3DbMallocZero(sqlite3 *db, int n){ |
danielk1977 | a1644fd | 2007-08-29 12:31:25 +0000 | [diff] [blame] | 541 | void *p = sqlite3DbMallocRaw(db, n); |
drh | 1743575 | 2007-08-16 04:30:38 +0000 | [diff] [blame] | 542 | if( p ){ |
| 543 | memset(p, 0, n); |
drh | 1743575 | 2007-08-16 04:30:38 +0000 | [diff] [blame] | 544 | } |
| 545 | return p; |
| 546 | } |
| 547 | |
| 548 | /* |
| 549 | ** Allocate and zero memory. If the allocation fails, make |
| 550 | ** the mallocFailed flag in the connection pointer. |
| 551 | */ |
drh | fec00ea | 2008-06-14 16:56:21 +0000 | [diff] [blame] | 552 | void *sqlite3DbMallocRaw(sqlite3 *db, int n){ |
danielk1977 | a1644fd | 2007-08-29 12:31:25 +0000 | [diff] [blame] | 553 | void *p = 0; |
| 554 | if( !db || db->mallocFailed==0 ){ |
drh | fec00ea | 2008-06-14 16:56:21 +0000 | [diff] [blame] | 555 | p = sqlite3Malloc(n); |
danielk1977 | a1644fd | 2007-08-29 12:31:25 +0000 | [diff] [blame] | 556 | if( !p && db ){ |
| 557 | db->mallocFailed = 1; |
| 558 | } |
drh | 1743575 | 2007-08-16 04:30:38 +0000 | [diff] [blame] | 559 | } |
| 560 | return p; |
| 561 | } |
| 562 | |
danielk1977 | 26783a5 | 2007-08-29 14:06:22 +0000 | [diff] [blame] | 563 | /* |
| 564 | ** Resize the block of memory pointed to by p to n bytes. If the |
| 565 | ** resize fails, set the mallocFailed flag inthe connection object. |
| 566 | */ |
danielk1977 | a1644fd | 2007-08-29 12:31:25 +0000 | [diff] [blame] | 567 | void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){ |
| 568 | void *pNew = 0; |
| 569 | if( db->mallocFailed==0 ){ |
| 570 | pNew = sqlite3_realloc(p, n); |
| 571 | if( !pNew ){ |
| 572 | db->mallocFailed = 1; |
| 573 | } |
| 574 | } |
| 575 | return pNew; |
| 576 | } |
| 577 | |
drh | 1743575 | 2007-08-16 04:30:38 +0000 | [diff] [blame] | 578 | /* |
| 579 | ** Attempt to reallocate p. If the reallocation fails, then free p |
| 580 | ** and set the mallocFailed flag in the database connection. |
| 581 | */ |
| 582 | void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){ |
drh | a315289 | 2007-05-05 11:48:52 +0000 | [diff] [blame] | 583 | void *pNew; |
danielk1977 | a1644fd | 2007-08-29 12:31:25 +0000 | [diff] [blame] | 584 | pNew = sqlite3DbRealloc(db, p, n); |
drh | a315289 | 2007-05-05 11:48:52 +0000 | [diff] [blame] | 585 | if( !pNew ){ |
danielk1977 | 1e53695 | 2007-08-16 10:09:01 +0000 | [diff] [blame] | 586 | sqlite3_free(p); |
drh | a315289 | 2007-05-05 11:48:52 +0000 | [diff] [blame] | 587 | } |
| 588 | return pNew; |
| 589 | } |
| 590 | |
drh | a315289 | 2007-05-05 11:48:52 +0000 | [diff] [blame] | 591 | /* |
| 592 | ** Make a copy of a string in memory obtained from sqliteMalloc(). These |
| 593 | ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This |
| 594 | ** is because when memory debugging is turned on, these two functions are |
| 595 | ** called via macros that record the current file and line number in the |
| 596 | ** ThreadData structure. |
| 597 | */ |
| 598 | char *sqlite3StrDup(const char *z){ |
| 599 | char *zNew; |
| 600 | int n; |
| 601 | if( z==0 ) return 0; |
| 602 | n = strlen(z)+1; |
drh | e5ae573 | 2008-06-15 02:51:47 +0000 | [diff] [blame] | 603 | zNew = sqlite3Malloc(n); |
drh | a315289 | 2007-05-05 11:48:52 +0000 | [diff] [blame] | 604 | if( zNew ) memcpy(zNew, z, n); |
| 605 | return zNew; |
| 606 | } |
| 607 | char *sqlite3StrNDup(const char *z, int n){ |
| 608 | char *zNew; |
| 609 | if( z==0 ) return 0; |
drh | e5ae573 | 2008-06-15 02:51:47 +0000 | [diff] [blame] | 610 | zNew = sqlite3Malloc(n+1); |
drh | a315289 | 2007-05-05 11:48:52 +0000 | [diff] [blame] | 611 | if( zNew ){ |
| 612 | memcpy(zNew, z, n); |
| 613 | zNew[n] = 0; |
| 614 | } |
| 615 | return zNew; |
| 616 | } |
| 617 | |
danielk1977 | 1e53695 | 2007-08-16 10:09:01 +0000 | [diff] [blame] | 618 | char *sqlite3DbStrDup(sqlite3 *db, const char *z){ |
| 619 | char *zNew = sqlite3StrDup(z); |
| 620 | if( z && !zNew ){ |
| 621 | db->mallocFailed = 1; |
| 622 | } |
| 623 | return zNew; |
| 624 | } |
| 625 | char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){ |
| 626 | char *zNew = sqlite3StrNDup(z, n); |
| 627 | if( z && !zNew ){ |
| 628 | db->mallocFailed = 1; |
| 629 | } |
| 630 | return zNew; |
| 631 | } |
| 632 | |
drh | a315289 | 2007-05-05 11:48:52 +0000 | [diff] [blame] | 633 | /* |
drh | f089aa4 | 2008-07-08 19:34:06 +0000 | [diff] [blame^] | 634 | ** Create a string from the zFromat argument and the va_list that follows. |
| 635 | ** Store the string in memory obtained from sqliteMalloc() and make *pz |
| 636 | ** point to that string. |
drh | a315289 | 2007-05-05 11:48:52 +0000 | [diff] [blame] | 637 | */ |
drh | f089aa4 | 2008-07-08 19:34:06 +0000 | [diff] [blame^] | 638 | void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){ |
drh | a315289 | 2007-05-05 11:48:52 +0000 | [diff] [blame] | 639 | va_list ap; |
drh | f089aa4 | 2008-07-08 19:34:06 +0000 | [diff] [blame^] | 640 | char *z; |
drh | a315289 | 2007-05-05 11:48:52 +0000 | [diff] [blame] | 641 | |
drh | f089aa4 | 2008-07-08 19:34:06 +0000 | [diff] [blame^] | 642 | va_start(ap, zFormat); |
| 643 | z = sqlite3VMPrintf(db, zFormat, ap); |
drh | a315289 | 2007-05-05 11:48:52 +0000 | [diff] [blame] | 644 | va_end(ap); |
danielk1977 | 1e53695 | 2007-08-16 10:09:01 +0000 | [diff] [blame] | 645 | sqlite3_free(*pz); |
drh | f089aa4 | 2008-07-08 19:34:06 +0000 | [diff] [blame^] | 646 | *pz = z; |
drh | a315289 | 2007-05-05 11:48:52 +0000 | [diff] [blame] | 647 | } |
| 648 | |
| 649 | |
| 650 | /* |
| 651 | ** This function must be called before exiting any API function (i.e. |
drh | 1743575 | 2007-08-16 04:30:38 +0000 | [diff] [blame] | 652 | ** returning control to the user) that has called sqlite3_malloc or |
| 653 | ** sqlite3_realloc. |
drh | a315289 | 2007-05-05 11:48:52 +0000 | [diff] [blame] | 654 | ** |
| 655 | ** The returned value is normally a copy of the second argument to this |
| 656 | ** function. However, if a malloc() failure has occured since the previous |
| 657 | ** invocation SQLITE_NOMEM is returned instead. |
| 658 | ** |
| 659 | ** If the first argument, db, is not NULL and a malloc() error has occured, |
| 660 | ** then the connection error-code (the value returned by sqlite3_errcode()) |
| 661 | ** is set to SQLITE_NOMEM. |
| 662 | */ |
drh | a315289 | 2007-05-05 11:48:52 +0000 | [diff] [blame] | 663 | int sqlite3ApiExit(sqlite3* db, int rc){ |
danielk1977 | a1644fd | 2007-08-29 12:31:25 +0000 | [diff] [blame] | 664 | /* If the db handle is not NULL, then we must hold the connection handle |
| 665 | ** mutex here. Otherwise the read (and possible write) of db->mallocFailed |
| 666 | ** is unsafe, as is the call to sqlite3Error(). |
| 667 | */ |
| 668 | assert( !db || sqlite3_mutex_held(db->mutex) ); |
danielk1977 | 1e53695 | 2007-08-16 10:09:01 +0000 | [diff] [blame] | 669 | if( db && db->mallocFailed ){ |
drh | a315289 | 2007-05-05 11:48:52 +0000 | [diff] [blame] | 670 | sqlite3Error(db, SQLITE_NOMEM, 0); |
drh | 1743575 | 2007-08-16 04:30:38 +0000 | [diff] [blame] | 671 | db->mallocFailed = 0; |
drh | a315289 | 2007-05-05 11:48:52 +0000 | [diff] [blame] | 672 | rc = SQLITE_NOMEM; |
| 673 | } |
| 674 | return rc & (db ? db->errMask : 0xff); |
| 675 | } |