blob: 09742e62c3b630efe7c4590d448a5f1d969155ab [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drhb19a2bc2001-09-16 00:13:26 +00002** 2001 September 15
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drhb19a2bc2001-09-16 00:13:26 +000012** $Id: btree.c,v 1.29 2001/09/16 00:13:26 drh Exp $
drh8b2f49b2001-06-08 00:21:52 +000013**
14** This file implements a external (disk-based) database using BTrees.
15** For a detailed discussion of BTrees, refer to
16**
17** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
18** "Sorting And Searching", pages 473-480. Addison-Wesley
19** Publishing Company, Reading, Massachusetts.
20**
21** The basic idea is that each page of the file contains N database
22** entries and N+1 pointers to subpages.
23**
24** ----------------------------------------------------------------
25** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N) | Ptr(N+1) |
26** ----------------------------------------------------------------
27**
28** All of the keys on the page that Ptr(0) points to have values less
29** than Key(0). All of the keys on page Ptr(1) and its subpages have
30** values greater than Key(0) and less than Key(1). All of the keys
31** on Ptr(N+1) and its subpages have values greater than Key(N). And
32** so forth.
33**
drh5e00f6c2001-09-13 13:46:56 +000034** Finding a particular key requires reading O(log(M)) pages from the
35** disk where M is the number of entries in the tree.
drh8b2f49b2001-06-08 00:21:52 +000036**
37** In this implementation, a single file can hold one or more separate
38** BTrees. Each BTree is identified by the index of its root page. The
39** key and data for any entry are combined to form the "payload". Up to
40** MX_LOCAL_PAYLOAD bytes of payload can be carried directly on the
41** database page. If the payload is larger than MX_LOCAL_PAYLOAD bytes
42** then surplus bytes are stored on overflow pages. The payload for an
43** entry and the preceding pointer are combined to form a "Cell". Each
drhb19a2bc2001-09-16 00:13:26 +000044** page has a small header which contains the Ptr(N+1) pointer.
drh8b2f49b2001-06-08 00:21:52 +000045**
46** The first page of the file contains a magic string used to verify that
47** the file really is a valid BTree database, a pointer to a list of unused
48** pages in the file, and some meta information. The root of the first
49** BTree begins on page 2 of the file. (Pages are numbered beginning with
50** 1, not 0.) Thus a minimum database contains 2 pages.
drha059ad02001-04-17 20:09:11 +000051*/
52#include "sqliteInt.h"
53#include "pager.h"
54#include "btree.h"
55#include <assert.h>
56
drh2af926b2001-05-15 00:39:25 +000057
drh2af926b2001-05-15 00:39:25 +000058/*
59** Primitive data types. u32 must be 4 bytes and u16 must be 2 bytes.
drh14acc042001-06-10 19:56:58 +000060** The uptr type must be big enough to hold a pointer.
drh306dc212001-05-21 13:45:10 +000061** Change these typedefs when porting to new architectures.
drh2af926b2001-05-15 00:39:25 +000062*/
drh14acc042001-06-10 19:56:58 +000063typedef unsigned int uptr;
drh092d0352001-09-15 13:15:12 +000064
drhb19a2bc2001-09-16 00:13:26 +000065/* There are already defined in sqliteInt.h...
drh092d0352001-09-15 13:15:12 +000066** typedef unsigned int u32;
67** typedef unsigned short int u16;
68** typedef unsigned char u8;
69*/
drh365d68f2001-05-11 11:02:46 +000070
71/*
drh8c42ca92001-06-22 19:15:00 +000072** This macro casts a pointer to an integer. Useful for doing
73** pointer arithmetic.
74*/
drh7c717f72001-06-24 20:39:41 +000075#define Addr(X) ((uptr)X)
drh8c42ca92001-06-22 19:15:00 +000076
77/*
drh365d68f2001-05-11 11:02:46 +000078** Forward declarations of structures used only in this file.
79*/
drhbd03cae2001-06-02 02:40:57 +000080typedef struct PageOne PageOne;
drh2af926b2001-05-15 00:39:25 +000081typedef struct MemPage MemPage;
drh365d68f2001-05-11 11:02:46 +000082typedef struct PageHdr PageHdr;
83typedef struct Cell Cell;
drh3b7511c2001-05-26 13:15:44 +000084typedef struct CellHdr CellHdr;
drh365d68f2001-05-11 11:02:46 +000085typedef struct FreeBlk FreeBlk;
drh2af926b2001-05-15 00:39:25 +000086typedef struct OverflowPage OverflowPage;
87
88/*
89** All structures on a database page are aligned to 4-byte boundries.
90** This routine rounds up a number of bytes to the next multiple of 4.
drh306dc212001-05-21 13:45:10 +000091**
92** This might need to change for computer architectures that require
93** and 8-byte alignment boundry for structures.
drh2af926b2001-05-15 00:39:25 +000094*/
95#define ROUNDUP(X) ((X+3) & ~3)
drha059ad02001-04-17 20:09:11 +000096
drh08ed44e2001-04-29 23:32:55 +000097/*
drhbd03cae2001-06-02 02:40:57 +000098** This is a magic string that appears at the beginning of every
drh8c42ca92001-06-22 19:15:00 +000099** SQLite database in order to identify the file as a real database.
drh08ed44e2001-04-29 23:32:55 +0000100*/
drhbd03cae2001-06-02 02:40:57 +0000101static const char zMagicHeader[] =
drh8c42ca92001-06-22 19:15:00 +0000102 "** This file contains an SQLite 2.0 database **";
drhbd03cae2001-06-02 02:40:57 +0000103#define MAGIC_SIZE (sizeof(zMagicHeader))
drh08ed44e2001-04-29 23:32:55 +0000104
105/*
drh5e00f6c2001-09-13 13:46:56 +0000106** This is a magic integer also used to test the integrity of the database
drh8c42ca92001-06-22 19:15:00 +0000107** file. This integer is used in addition to the string above so that
108** if the file is written on a little-endian architecture and read
109** on a big-endian architectures (or vice versa) we can detect the
110** problem.
111**
112** The number used was obtained at random and has no special
drhb19a2bc2001-09-16 00:13:26 +0000113** significance other than the fact that it represents a different
114** integer on little-endian and big-endian machines.
drh8c42ca92001-06-22 19:15:00 +0000115*/
116#define MAGIC 0xdae37528
117
118/*
drhbd03cae2001-06-02 02:40:57 +0000119** The first page of the database file contains a magic header string
120** to identify the file as an SQLite database file. It also contains
121** a pointer to the first free page of the file. Page 2 contains the
drh8b2f49b2001-06-08 00:21:52 +0000122** root of the principle BTree. The file might contain other BTrees
123** rooted on pages above 2.
124**
125** The first page also contains SQLITE_N_BTREE_META integers that
126** can be used by higher-level routines.
drh08ed44e2001-04-29 23:32:55 +0000127**
drhbd03cae2001-06-02 02:40:57 +0000128** Remember that pages are numbered beginning with 1. (See pager.c
129** for additional information.) Page 0 does not exist and a page
130** number of 0 is used to mean "no such page".
131*/
132struct PageOne {
133 char zMagic[MAGIC_SIZE]; /* String that identifies the file as a database */
drh8c42ca92001-06-22 19:15:00 +0000134 int iMagic; /* Integer to verify correct byte order */
135 Pgno freeList; /* First free page in a list of all free pages */
drh2aa679f2001-06-25 02:11:07 +0000136 int nFree; /* Number of pages on the free list */
137 int aMeta[SQLITE_N_BTREE_META-1]; /* User defined integers */
drhbd03cae2001-06-02 02:40:57 +0000138};
139
140/*
141** Each database page has a header that is an instance of this
142** structure.
drh08ed44e2001-04-29 23:32:55 +0000143**
drh8b2f49b2001-06-08 00:21:52 +0000144** PageHdr.firstFree is 0 if there is no free space on this page.
drh14acc042001-06-10 19:56:58 +0000145** Otherwise, PageHdr.firstFree is the index in MemPage.u.aDisk[] of a
drh8b2f49b2001-06-08 00:21:52 +0000146** FreeBlk structure that describes the first block of free space.
147** All free space is defined by a linked list of FreeBlk structures.
drh08ed44e2001-04-29 23:32:55 +0000148**
drh8b2f49b2001-06-08 00:21:52 +0000149** Data is stored in a linked list of Cell structures. PageHdr.firstCell
drh14acc042001-06-10 19:56:58 +0000150** is the index into MemPage.u.aDisk[] of the first cell on the page. The
drh306dc212001-05-21 13:45:10 +0000151** Cells are kept in sorted order.
drh8b2f49b2001-06-08 00:21:52 +0000152**
153** A Cell contains all information about a database entry and a pointer
154** to a child page that contains other entries less than itself. In
155** other words, the i-th Cell contains both Ptr(i) and Key(i). The
156** right-most pointer of the page is contained in PageHdr.rightChild.
drh08ed44e2001-04-29 23:32:55 +0000157*/
drh365d68f2001-05-11 11:02:46 +0000158struct PageHdr {
drh5e2f8b92001-05-28 00:41:15 +0000159 Pgno rightChild; /* Child page that comes after all cells on this page */
drh14acc042001-06-10 19:56:58 +0000160 u16 firstCell; /* Index in MemPage.u.aDisk[] of the first cell */
161 u16 firstFree; /* Index in MemPage.u.aDisk[] of the first free block */
drh365d68f2001-05-11 11:02:46 +0000162};
drh306dc212001-05-21 13:45:10 +0000163
drh3b7511c2001-05-26 13:15:44 +0000164/*
165** Entries on a page of the database are called "Cells". Each Cell
166** has a header and data. This structure defines the header. The
drhbd03cae2001-06-02 02:40:57 +0000167** key and data (collectively the "payload") follow this header on
168** the database page.
169**
170** A definition of the complete Cell structure is given below. The
drh8c42ca92001-06-22 19:15:00 +0000171** header for the cell must be defined first in order to do some
drhbd03cae2001-06-02 02:40:57 +0000172** of the sizing #defines that follow.
drh3b7511c2001-05-26 13:15:44 +0000173*/
174struct CellHdr {
drh5e2f8b92001-05-28 00:41:15 +0000175 Pgno leftChild; /* Child page that comes before this cell */
drh3b7511c2001-05-26 13:15:44 +0000176 u16 nKey; /* Number of bytes in the key */
drh14acc042001-06-10 19:56:58 +0000177 u16 iNext; /* Index in MemPage.u.aDisk[] of next cell in sorted order */
drh3b7511c2001-05-26 13:15:44 +0000178 u32 nData; /* Number of bytes of data */
drh8c42ca92001-06-22 19:15:00 +0000179};
drh3b7511c2001-05-26 13:15:44 +0000180
181/*
182** The minimum size of a complete Cell. The Cell must contain a header
drhbd03cae2001-06-02 02:40:57 +0000183** and at least 4 bytes of payload.
drh3b7511c2001-05-26 13:15:44 +0000184*/
185#define MIN_CELL_SIZE (sizeof(CellHdr)+4)
186
187/*
188** The maximum number of database entries that can be held in a single
189** page of the database.
190*/
191#define MX_CELL ((SQLITE_PAGE_SIZE-sizeof(PageHdr))/MIN_CELL_SIZE)
192
193/*
drh6019e162001-07-02 17:51:45 +0000194** The amount of usable space on a single page of the BTree. This is the
195** page size minus the overhead of the page header.
196*/
197#define USABLE_SPACE (SQLITE_PAGE_SIZE - sizeof(PageHdr))
198
199/*
drh8c42ca92001-06-22 19:15:00 +0000200** The maximum amount of payload (in bytes) that can be stored locally for
201** a database entry. If the entry contains more data than this, the
drh3b7511c2001-05-26 13:15:44 +0000202** extra goes onto overflow pages.
drhbd03cae2001-06-02 02:40:57 +0000203**
204** This number is chosen so that at least 4 cells will fit on every page.
drh3b7511c2001-05-26 13:15:44 +0000205*/
drh6019e162001-07-02 17:51:45 +0000206#define MX_LOCAL_PAYLOAD ((USABLE_SPACE/4-(sizeof(CellHdr)+sizeof(Pgno)))&~3)
drh3b7511c2001-05-26 13:15:44 +0000207
drh306dc212001-05-21 13:45:10 +0000208/*
209** Data on a database page is stored as a linked list of Cell structures.
drh5e2f8b92001-05-28 00:41:15 +0000210** Both the key and the data are stored in aPayload[]. The key always comes
211** first. The aPayload[] field grows as necessary to hold the key and data,
drh306dc212001-05-21 13:45:10 +0000212** up to a maximum of MX_LOCAL_PAYLOAD bytes. If the size of the key and
drh3b7511c2001-05-26 13:15:44 +0000213** data combined exceeds MX_LOCAL_PAYLOAD bytes, then Cell.ovfl is the
214** page number of the first overflow page.
215**
216** Though this structure is fixed in size, the Cell on the database
drhbd03cae2001-06-02 02:40:57 +0000217** page varies in size. Every cell has a CellHdr and at least 4 bytes
drh3b7511c2001-05-26 13:15:44 +0000218** of payload space. Additional payload bytes (up to the maximum of
219** MX_LOCAL_PAYLOAD) and the Cell.ovfl value are allocated only as
220** needed.
drh306dc212001-05-21 13:45:10 +0000221*/
drh365d68f2001-05-11 11:02:46 +0000222struct Cell {
drh5e2f8b92001-05-28 00:41:15 +0000223 CellHdr h; /* The cell header */
224 char aPayload[MX_LOCAL_PAYLOAD]; /* Key and data */
225 Pgno ovfl; /* The first overflow page */
drh365d68f2001-05-11 11:02:46 +0000226};
drh306dc212001-05-21 13:45:10 +0000227
228/*
229** Free space on a page is remembered using a linked list of the FreeBlk
230** structures. Space on a database page is allocated in increments of
drh72f82862001-05-24 21:06:34 +0000231** at least 4 bytes and is always aligned to a 4-byte boundry. The
drh8b2f49b2001-06-08 00:21:52 +0000232** linked list of FreeBlks is always kept in order by address.
drh306dc212001-05-21 13:45:10 +0000233*/
drh365d68f2001-05-11 11:02:46 +0000234struct FreeBlk {
drh72f82862001-05-24 21:06:34 +0000235 u16 iSize; /* Number of bytes in this block of free space */
drh14acc042001-06-10 19:56:58 +0000236 u16 iNext; /* Index in MemPage.u.aDisk[] of the next free block */
drh365d68f2001-05-11 11:02:46 +0000237};
drh306dc212001-05-21 13:45:10 +0000238
239/*
drh14acc042001-06-10 19:56:58 +0000240** The number of bytes of payload that will fit on a single overflow page.
drh3b7511c2001-05-26 13:15:44 +0000241*/
242#define OVERFLOW_SIZE (SQLITE_PAGE_SIZE-sizeof(Pgno))
243
244/*
drh306dc212001-05-21 13:45:10 +0000245** When the key and data for a single entry in the BTree will not fit in
drh8c42ca92001-06-22 19:15:00 +0000246** the MX_LOCAL_PAYLOAD bytes of space available on the database page,
drh8b2f49b2001-06-08 00:21:52 +0000247** then all extra bytes are written to a linked list of overflow pages.
drh306dc212001-05-21 13:45:10 +0000248** Each overflow page is an instance of the following structure.
249**
250** Unused pages in the database are also represented by instances of
drhbd03cae2001-06-02 02:40:57 +0000251** the OverflowPage structure. The PageOne.freeList field is the
drh306dc212001-05-21 13:45:10 +0000252** page number of the first page in a linked list of unused database
253** pages.
254*/
drh2af926b2001-05-15 00:39:25 +0000255struct OverflowPage {
drh14acc042001-06-10 19:56:58 +0000256 Pgno iNext;
drh5e2f8b92001-05-28 00:41:15 +0000257 char aPayload[OVERFLOW_SIZE];
drh7e3b0a02001-04-28 16:52:40 +0000258};
drh7e3b0a02001-04-28 16:52:40 +0000259
260/*
261** For every page in the database file, an instance of the following structure
drh14acc042001-06-10 19:56:58 +0000262** is stored in memory. The u.aDisk[] array contains the raw bits read from
drhbd03cae2001-06-02 02:40:57 +0000263** the disk. The rest is auxiliary information that held in memory only. The
264** auxiliary info is only valid for regular database pages - it is not
265** used for overflow pages and pages on the freelist.
drh306dc212001-05-21 13:45:10 +0000266**
drhbd03cae2001-06-02 02:40:57 +0000267** Of particular interest in the auxiliary info is the apCell[] entry. Each
drh14acc042001-06-10 19:56:58 +0000268** apCell[] entry is a pointer to a Cell structure in u.aDisk[]. The cells are
drh306dc212001-05-21 13:45:10 +0000269** put in this array so that they can be accessed in constant time, rather
drhbd03cae2001-06-02 02:40:57 +0000270** than in linear time which would be needed if we had to walk the linked
271** list on every access.
drh72f82862001-05-24 21:06:34 +0000272**
drh14acc042001-06-10 19:56:58 +0000273** Note that apCell[] contains enough space to hold up to two more Cells
274** than can possibly fit on one page. In the steady state, every apCell[]
275** points to memory inside u.aDisk[]. But in the middle of an insert
276** operation, some apCell[] entries may temporarily point to data space
277** outside of u.aDisk[]. This is a transient situation that is quickly
278** resolved. But while it is happening, it is possible for a database
279** page to hold as many as two more cells than it might otherwise hold.
280** The extra too entries in apCell[] are an allowance for this situation.
281**
drh72f82862001-05-24 21:06:34 +0000282** The pParent field points back to the parent page. This allows us to
283** walk up the BTree from any leaf to the root. Care must be taken to
284** unref() the parent page pointer when this page is no longer referenced.
drhbd03cae2001-06-02 02:40:57 +0000285** The pageDestructor() routine handles that chore.
drh7e3b0a02001-04-28 16:52:40 +0000286*/
287struct MemPage {
drh14acc042001-06-10 19:56:58 +0000288 union {
289 char aDisk[SQLITE_PAGE_SIZE]; /* Page data stored on disk */
290 PageHdr hdr; /* Overlay page header */
291 } u;
drh5e2f8b92001-05-28 00:41:15 +0000292 int isInit; /* True if auxiliary data is initialized */
drh72f82862001-05-24 21:06:34 +0000293 MemPage *pParent; /* The parent of this page. NULL for root */
drh14acc042001-06-10 19:56:58 +0000294 int nFree; /* Number of free bytes in u.aDisk[] */
drh306dc212001-05-21 13:45:10 +0000295 int nCell; /* Number of entries on this page */
drh14acc042001-06-10 19:56:58 +0000296 int isOverfull; /* Some apCell[] points outside u.aDisk[] */
297 Cell *apCell[MX_CELL+2]; /* All data entires in sorted order */
drh8c42ca92001-06-22 19:15:00 +0000298};
drh7e3b0a02001-04-28 16:52:40 +0000299
300/*
drh3b7511c2001-05-26 13:15:44 +0000301** The in-memory image of a disk page has the auxiliary information appended
302** to the end. EXTRA_SIZE is the number of bytes of space needed to hold
303** that extra information.
304*/
305#define EXTRA_SIZE (sizeof(MemPage)-SQLITE_PAGE_SIZE)
306
307/*
drha059ad02001-04-17 20:09:11 +0000308** Everything we need to know about an open database
309*/
310struct Btree {
311 Pager *pPager; /* The page cache */
drh306dc212001-05-21 13:45:10 +0000312 BtCursor *pCursor; /* A list of all open cursors */
drhbd03cae2001-06-02 02:40:57 +0000313 PageOne *page1; /* First page of the database */
drh306dc212001-05-21 13:45:10 +0000314 int inTrans; /* True if a transaction is in progress */
drha059ad02001-04-17 20:09:11 +0000315};
316typedef Btree Bt;
317
drh365d68f2001-05-11 11:02:46 +0000318/*
319** A cursor is a pointer to a particular entry in the BTree.
320** The entry is identified by its MemPage and the index in
drh5e2f8b92001-05-28 00:41:15 +0000321** MemPage.apCell[] of the entry.
drh365d68f2001-05-11 11:02:46 +0000322*/
drh72f82862001-05-24 21:06:34 +0000323struct BtCursor {
drh5e2f8b92001-05-28 00:41:15 +0000324 Btree *pBt; /* The Btree to which this cursor belongs */
drh14acc042001-06-10 19:56:58 +0000325 BtCursor *pNext, *pPrev; /* Forms a linked list of all cursors */
drh8b2f49b2001-06-08 00:21:52 +0000326 Pgno pgnoRoot; /* The root page of this tree */
drh5e2f8b92001-05-28 00:41:15 +0000327 MemPage *pPage; /* Page that contains the entry */
drh8c42ca92001-06-22 19:15:00 +0000328 int idx; /* Index of the entry in pPage->apCell[] */
drh5e2f8b92001-05-28 00:41:15 +0000329 u8 bSkipNext; /* sqliteBtreeNext() is no-op if true */
330 u8 iMatch; /* compare result from last sqliteBtreeMoveto() */
drh365d68f2001-05-11 11:02:46 +0000331};
drh7e3b0a02001-04-28 16:52:40 +0000332
drha059ad02001-04-17 20:09:11 +0000333/*
drh3b7511c2001-05-26 13:15:44 +0000334** Compute the total number of bytes that a Cell needs on the main
drh5e2f8b92001-05-28 00:41:15 +0000335** database page. The number returned includes the Cell header,
336** local payload storage, and the pointer to overflow pages (if
drh8c42ca92001-06-22 19:15:00 +0000337** applicable). Additional space allocated on overflow pages
drhbd03cae2001-06-02 02:40:57 +0000338** is NOT included in the value returned from this routine.
drh3b7511c2001-05-26 13:15:44 +0000339*/
340static int cellSize(Cell *pCell){
341 int n = pCell->h.nKey + pCell->h.nData;
342 if( n>MX_LOCAL_PAYLOAD ){
343 n = MX_LOCAL_PAYLOAD + sizeof(Pgno);
344 }else{
345 n = ROUNDUP(n);
346 }
347 n += sizeof(CellHdr);
348 return n;
349}
350
351/*
drh72f82862001-05-24 21:06:34 +0000352** Defragment the page given. All Cells are moved to the
353** beginning of the page and all free space is collected
354** into one big FreeBlk at the end of the page.
drh365d68f2001-05-11 11:02:46 +0000355*/
356static void defragmentPage(MemPage *pPage){
drh14acc042001-06-10 19:56:58 +0000357 int pc, i, n;
drh2af926b2001-05-15 00:39:25 +0000358 FreeBlk *pFBlk;
359 char newPage[SQLITE_PAGE_SIZE];
360
drh6019e162001-07-02 17:51:45 +0000361 assert( sqlitepager_iswriteable(pPage) );
drhbd03cae2001-06-02 02:40:57 +0000362 pc = sizeof(PageHdr);
drh14acc042001-06-10 19:56:58 +0000363 pPage->u.hdr.firstCell = pc;
364 memcpy(newPage, pPage->u.aDisk, pc);
drh2af926b2001-05-15 00:39:25 +0000365 for(i=0; i<pPage->nCell; i++){
drh2aa679f2001-06-25 02:11:07 +0000366 Cell *pCell = pPage->apCell[i];
drh8c42ca92001-06-22 19:15:00 +0000367
368 /* This routine should never be called on an overfull page. The
369 ** following asserts verify that constraint. */
drh7c717f72001-06-24 20:39:41 +0000370 assert( Addr(pCell) > Addr(pPage) );
371 assert( Addr(pCell) < Addr(pPage) + SQLITE_PAGE_SIZE );
drh8c42ca92001-06-22 19:15:00 +0000372
drh3b7511c2001-05-26 13:15:44 +0000373 n = cellSize(pCell);
drh2aa679f2001-06-25 02:11:07 +0000374 pCell->h.iNext = pc + n;
drh2af926b2001-05-15 00:39:25 +0000375 memcpy(&newPage[pc], pCell, n);
drh14acc042001-06-10 19:56:58 +0000376 pPage->apCell[i] = (Cell*)&pPage->u.aDisk[pc];
drh2af926b2001-05-15 00:39:25 +0000377 pc += n;
378 }
drh72f82862001-05-24 21:06:34 +0000379 assert( pPage->nFree==SQLITE_PAGE_SIZE-pc );
drh14acc042001-06-10 19:56:58 +0000380 memcpy(pPage->u.aDisk, newPage, pc);
drh2aa679f2001-06-25 02:11:07 +0000381 if( pPage->nCell>0 ){
382 pPage->apCell[pPage->nCell-1]->h.iNext = 0;
383 }
drh8c42ca92001-06-22 19:15:00 +0000384 pFBlk = (FreeBlk*)&pPage->u.aDisk[pc];
drh2af926b2001-05-15 00:39:25 +0000385 pFBlk->iSize = SQLITE_PAGE_SIZE - pc;
386 pFBlk->iNext = 0;
drh14acc042001-06-10 19:56:58 +0000387 pPage->u.hdr.firstFree = pc;
drh2af926b2001-05-15 00:39:25 +0000388 memset(&pFBlk[1], 0, SQLITE_PAGE_SIZE - pc - sizeof(FreeBlk));
drh365d68f2001-05-11 11:02:46 +0000389}
390
drha059ad02001-04-17 20:09:11 +0000391/*
drh8b2f49b2001-06-08 00:21:52 +0000392** Allocate nByte bytes of space on a page. nByte must be a
393** multiple of 4.
drhbd03cae2001-06-02 02:40:57 +0000394**
drh14acc042001-06-10 19:56:58 +0000395** Return the index into pPage->u.aDisk[] of the first byte of
drhbd03cae2001-06-02 02:40:57 +0000396** the new allocation. Or return 0 if there is not enough free
397** space on the page to satisfy the allocation request.
drh2af926b2001-05-15 00:39:25 +0000398**
drh72f82862001-05-24 21:06:34 +0000399** If the page contains nBytes of free space but does not contain
drh8b2f49b2001-06-08 00:21:52 +0000400** nBytes of contiguous free space, then this routine automatically
401** calls defragementPage() to consolidate all free space before
402** allocating the new chunk.
drh7e3b0a02001-04-28 16:52:40 +0000403*/
drhbd03cae2001-06-02 02:40:57 +0000404static int allocateSpace(MemPage *pPage, int nByte){
drh2af926b2001-05-15 00:39:25 +0000405 FreeBlk *p;
406 u16 *pIdx;
407 int start;
drh8c42ca92001-06-22 19:15:00 +0000408 int cnt = 0;
drh72f82862001-05-24 21:06:34 +0000409
drh6019e162001-07-02 17:51:45 +0000410 assert( sqlitepager_iswriteable(pPage) );
drh5e2f8b92001-05-28 00:41:15 +0000411 assert( nByte==ROUNDUP(nByte) );
drh14acc042001-06-10 19:56:58 +0000412 if( pPage->nFree<nByte || pPage->isOverfull ) return 0;
413 pIdx = &pPage->u.hdr.firstFree;
414 p = (FreeBlk*)&pPage->u.aDisk[*pIdx];
drh2af926b2001-05-15 00:39:25 +0000415 while( p->iSize<nByte ){
drh8c42ca92001-06-22 19:15:00 +0000416 assert( cnt++ < SQLITE_PAGE_SIZE/4 );
drh2af926b2001-05-15 00:39:25 +0000417 if( p->iNext==0 ){
418 defragmentPage(pPage);
drh14acc042001-06-10 19:56:58 +0000419 pIdx = &pPage->u.hdr.firstFree;
drh2af926b2001-05-15 00:39:25 +0000420 }else{
421 pIdx = &p->iNext;
422 }
drh14acc042001-06-10 19:56:58 +0000423 p = (FreeBlk*)&pPage->u.aDisk[*pIdx];
drh2af926b2001-05-15 00:39:25 +0000424 }
425 if( p->iSize==nByte ){
426 start = *pIdx;
427 *pIdx = p->iNext;
428 }else{
drh8c42ca92001-06-22 19:15:00 +0000429 FreeBlk *pNew;
drh72f82862001-05-24 21:06:34 +0000430 start = *pIdx;
drh8c42ca92001-06-22 19:15:00 +0000431 pNew = (FreeBlk*)&pPage->u.aDisk[start + nByte];
drh72f82862001-05-24 21:06:34 +0000432 pNew->iNext = p->iNext;
433 pNew->iSize = p->iSize - nByte;
434 *pIdx = start + nByte;
drh2af926b2001-05-15 00:39:25 +0000435 }
436 pPage->nFree -= nByte;
437 return start;
drh7e3b0a02001-04-28 16:52:40 +0000438}
439
440/*
drh14acc042001-06-10 19:56:58 +0000441** Return a section of the MemPage.u.aDisk[] to the freelist.
442** The first byte of the new free block is pPage->u.aDisk[start]
443** and the size of the block is "size" bytes. Size must be
444** a multiple of 4.
drh306dc212001-05-21 13:45:10 +0000445**
446** Most of the effort here is involved in coalesing adjacent
447** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +0000448*/
449static void freeSpace(MemPage *pPage, int start, int size){
drh2af926b2001-05-15 00:39:25 +0000450 int end = start + size;
451 u16 *pIdx, idx;
452 FreeBlk *pFBlk;
453 FreeBlk *pNew;
454 FreeBlk *pNext;
455
drh6019e162001-07-02 17:51:45 +0000456 assert( sqlitepager_iswriteable(pPage) );
drh2af926b2001-05-15 00:39:25 +0000457 assert( size == ROUNDUP(size) );
458 assert( start == ROUNDUP(start) );
drh14acc042001-06-10 19:56:58 +0000459 pIdx = &pPage->u.hdr.firstFree;
drh2af926b2001-05-15 00:39:25 +0000460 idx = *pIdx;
461 while( idx!=0 && idx<start ){
drh14acc042001-06-10 19:56:58 +0000462 pFBlk = (FreeBlk*)&pPage->u.aDisk[idx];
drh2af926b2001-05-15 00:39:25 +0000463 if( idx + pFBlk->iSize == start ){
464 pFBlk->iSize += size;
465 if( idx + pFBlk->iSize == pFBlk->iNext ){
drh8c42ca92001-06-22 19:15:00 +0000466 pNext = (FreeBlk*)&pPage->u.aDisk[pFBlk->iNext];
drh2af926b2001-05-15 00:39:25 +0000467 pFBlk->iSize += pNext->iSize;
468 pFBlk->iNext = pNext->iNext;
469 }
470 pPage->nFree += size;
471 return;
472 }
473 pIdx = &pFBlk->iNext;
474 idx = *pIdx;
475 }
drh14acc042001-06-10 19:56:58 +0000476 pNew = (FreeBlk*)&pPage->u.aDisk[start];
drh2af926b2001-05-15 00:39:25 +0000477 if( idx != end ){
478 pNew->iSize = size;
479 pNew->iNext = idx;
480 }else{
drh14acc042001-06-10 19:56:58 +0000481 pNext = (FreeBlk*)&pPage->u.aDisk[idx];
drh2af926b2001-05-15 00:39:25 +0000482 pNew->iSize = size + pNext->iSize;
483 pNew->iNext = pNext->iNext;
484 }
485 *pIdx = start;
486 pPage->nFree += size;
drh7e3b0a02001-04-28 16:52:40 +0000487}
488
489/*
490** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +0000491**
drhbd03cae2001-06-02 02:40:57 +0000492** The pParent parameter must be a pointer to the MemPage which
493** is the parent of the page being initialized. The root of the
drh8b2f49b2001-06-08 00:21:52 +0000494** BTree (usually page 2) has no parent and so for that page,
495** pParent==NULL.
drh5e2f8b92001-05-28 00:41:15 +0000496**
drh72f82862001-05-24 21:06:34 +0000497** Return SQLITE_OK on success. If we see that the page does
498** not contained a well-formed database page, then return
499** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
500** guarantee that the page is well-formed. It only shows that
501** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +0000502*/
drh72f82862001-05-24 21:06:34 +0000503static int initPage(MemPage *pPage, Pgno pgnoThis, MemPage *pParent){
drh14acc042001-06-10 19:56:58 +0000504 int idx; /* An index into pPage->u.aDisk[] */
505 Cell *pCell; /* A pointer to a Cell in pPage->u.aDisk[] */
506 FreeBlk *pFBlk; /* A pointer to a free block in pPage->u.aDisk[] */
drh5e2f8b92001-05-28 00:41:15 +0000507 int sz; /* The size of a Cell in bytes */
508 int freeSpace; /* Amount of free space on the page */
drh2af926b2001-05-15 00:39:25 +0000509
drh5e2f8b92001-05-28 00:41:15 +0000510 if( pPage->pParent ){
511 assert( pPage->pParent==pParent );
512 return SQLITE_OK;
513 }
514 if( pParent ){
515 pPage->pParent = pParent;
516 sqlitepager_ref(pParent);
517 }
518 if( pPage->isInit ) return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +0000519 pPage->isInit = 1;
drh7e3b0a02001-04-28 16:52:40 +0000520 pPage->nCell = 0;
drh6019e162001-07-02 17:51:45 +0000521 freeSpace = USABLE_SPACE;
drh14acc042001-06-10 19:56:58 +0000522 idx = pPage->u.hdr.firstCell;
drh7e3b0a02001-04-28 16:52:40 +0000523 while( idx!=0 ){
drh8c42ca92001-06-22 19:15:00 +0000524 if( idx>SQLITE_PAGE_SIZE-MIN_CELL_SIZE ) goto page_format_error;
drhbd03cae2001-06-02 02:40:57 +0000525 if( idx<sizeof(PageHdr) ) goto page_format_error;
drh8c42ca92001-06-22 19:15:00 +0000526 if( idx!=ROUNDUP(idx) ) goto page_format_error;
drh14acc042001-06-10 19:56:58 +0000527 pCell = (Cell*)&pPage->u.aDisk[idx];
drh5e2f8b92001-05-28 00:41:15 +0000528 sz = cellSize(pCell);
529 if( idx+sz > SQLITE_PAGE_SIZE ) goto page_format_error;
530 freeSpace -= sz;
531 pPage->apCell[pPage->nCell++] = pCell;
drh3b7511c2001-05-26 13:15:44 +0000532 idx = pCell->h.iNext;
drh2af926b2001-05-15 00:39:25 +0000533 }
534 pPage->nFree = 0;
drh14acc042001-06-10 19:56:58 +0000535 idx = pPage->u.hdr.firstFree;
drh2af926b2001-05-15 00:39:25 +0000536 while( idx!=0 ){
537 if( idx>SQLITE_PAGE_SIZE-sizeof(FreeBlk) ) goto page_format_error;
drhbd03cae2001-06-02 02:40:57 +0000538 if( idx<sizeof(PageHdr) ) goto page_format_error;
drh14acc042001-06-10 19:56:58 +0000539 pFBlk = (FreeBlk*)&pPage->u.aDisk[idx];
drh2af926b2001-05-15 00:39:25 +0000540 pPage->nFree += pFBlk->iSize;
drh7c717f72001-06-24 20:39:41 +0000541 if( pFBlk->iNext>0 && pFBlk->iNext <= idx ) goto page_format_error;
drh2af926b2001-05-15 00:39:25 +0000542 idx = pFBlk->iNext;
drh7e3b0a02001-04-28 16:52:40 +0000543 }
drh8b2f49b2001-06-08 00:21:52 +0000544 if( pPage->nCell==0 && pPage->nFree==0 ){
545 /* As a special case, an uninitialized root page appears to be
546 ** an empty database */
547 return SQLITE_OK;
548 }
drh5e2f8b92001-05-28 00:41:15 +0000549 if( pPage->nFree!=freeSpace ) goto page_format_error;
drh7e3b0a02001-04-28 16:52:40 +0000550 return SQLITE_OK;
drh2af926b2001-05-15 00:39:25 +0000551
552page_format_error:
553 return SQLITE_CORRUPT;
drh7e3b0a02001-04-28 16:52:40 +0000554}
555
556/*
drh8b2f49b2001-06-08 00:21:52 +0000557** Set up a raw page so that it looks like a database page holding
558** no entries.
drhbd03cae2001-06-02 02:40:57 +0000559*/
560static void zeroPage(MemPage *pPage){
561 PageHdr *pHdr;
562 FreeBlk *pFBlk;
drh6019e162001-07-02 17:51:45 +0000563 assert( sqlitepager_iswriteable(pPage) );
drhbd03cae2001-06-02 02:40:57 +0000564 memset(pPage, 0, SQLITE_PAGE_SIZE);
drh14acc042001-06-10 19:56:58 +0000565 pHdr = &pPage->u.hdr;
drhbd03cae2001-06-02 02:40:57 +0000566 pHdr->firstCell = 0;
567 pHdr->firstFree = sizeof(*pHdr);
568 pFBlk = (FreeBlk*)&pHdr[1];
569 pFBlk->iNext = 0;
570 pFBlk->iSize = SQLITE_PAGE_SIZE - sizeof(*pHdr);
drh8c42ca92001-06-22 19:15:00 +0000571 pPage->nFree = pFBlk->iSize;
572 pPage->nCell = 0;
573 pPage->isOverfull = 0;
drhbd03cae2001-06-02 02:40:57 +0000574}
575
576/*
drh72f82862001-05-24 21:06:34 +0000577** This routine is called when the reference count for a page
578** reaches zero. We need to unref the pParent pointer when that
579** happens.
580*/
581static void pageDestructor(void *pData){
582 MemPage *pPage = (MemPage*)pData;
583 if( pPage->pParent ){
584 MemPage *pParent = pPage->pParent;
585 pPage->pParent = 0;
586 sqlitepager_unref(pParent);
587 }
588}
589
590/*
drh306dc212001-05-21 13:45:10 +0000591** Open a new database.
592**
593** Actually, this routine just sets up the internal data structures
drh72f82862001-05-24 21:06:34 +0000594** for accessing the database. We do not open the database file
595** until the first page is loaded.
drha059ad02001-04-17 20:09:11 +0000596*/
drh6019e162001-07-02 17:51:45 +0000597int sqliteBtreeOpen(
598 const char *zFilename, /* Name of the file containing the BTree database */
599 int mode, /* Not currently used */
600 int nCache, /* How many pages in the page cache */
601 Btree **ppBtree /* Pointer to new Btree object written here */
602){
drha059ad02001-04-17 20:09:11 +0000603 Btree *pBt;
drh8c42ca92001-06-22 19:15:00 +0000604 int rc;
drha059ad02001-04-17 20:09:11 +0000605
606 pBt = sqliteMalloc( sizeof(*pBt) );
607 if( pBt==0 ){
drh8c42ca92001-06-22 19:15:00 +0000608 *ppBtree = 0;
drha059ad02001-04-17 20:09:11 +0000609 return SQLITE_NOMEM;
610 }
drh6019e162001-07-02 17:51:45 +0000611 if( nCache<10 ) nCache = 10;
612 rc = sqlitepager_open(&pBt->pPager, zFilename, nCache, EXTRA_SIZE);
drha059ad02001-04-17 20:09:11 +0000613 if( rc!=SQLITE_OK ){
614 if( pBt->pPager ) sqlitepager_close(pBt->pPager);
615 sqliteFree(pBt);
616 *ppBtree = 0;
617 return rc;
618 }
drh72f82862001-05-24 21:06:34 +0000619 sqlitepager_set_destructor(pBt->pPager, pageDestructor);
drha059ad02001-04-17 20:09:11 +0000620 pBt->pCursor = 0;
621 pBt->page1 = 0;
622 *ppBtree = pBt;
623 return SQLITE_OK;
624}
625
626/*
627** Close an open database and invalidate all cursors.
628*/
629int sqliteBtreeClose(Btree *pBt){
630 while( pBt->pCursor ){
631 sqliteBtreeCloseCursor(pBt->pCursor);
632 }
633 sqlitepager_close(pBt->pPager);
634 sqliteFree(pBt);
635 return SQLITE_OK;
636}
637
638/*
drhf57b14a2001-09-14 18:54:08 +0000639** Change the number of pages in the cache.
640*/
641int sqliteBtreeSetCacheSize(Btree *pBt, int mxPage){
642 sqlitepager_set_cachesize(pBt->pPager, mxPage);
643 return SQLITE_OK;
644}
645
646/*
drh306dc212001-05-21 13:45:10 +0000647** Get a reference to page1 of the database file. This will
648** also acquire a readlock on that file.
649**
650** SQLITE_OK is returned on success. If the file is not a
651** well-formed database file, then SQLITE_CORRUPT is returned.
652** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
653** is returned if we run out of memory. SQLITE_PROTOCOL is returned
654** if there is a locking protocol violation.
655*/
656static int lockBtree(Btree *pBt){
657 int rc;
658 if( pBt->page1 ) return SQLITE_OK;
drh8c42ca92001-06-22 19:15:00 +0000659 rc = sqlitepager_get(pBt->pPager, 1, (void**)&pBt->page1);
drh306dc212001-05-21 13:45:10 +0000660 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +0000661
662 /* Do some checking to help insure the file we opened really is
663 ** a valid database file.
664 */
665 if( sqlitepager_pagecount(pBt->pPager)>0 ){
drhbd03cae2001-06-02 02:40:57 +0000666 PageOne *pP1 = pBt->page1;
drh8c42ca92001-06-22 19:15:00 +0000667 if( strcmp(pP1->zMagic,zMagicHeader)!=0 || pP1->iMagic!=MAGIC ){
drh306dc212001-05-21 13:45:10 +0000668 rc = SQLITE_CORRUPT;
drh72f82862001-05-24 21:06:34 +0000669 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +0000670 }
671 }
672 return rc;
673
drh72f82862001-05-24 21:06:34 +0000674page1_init_failed:
drh306dc212001-05-21 13:45:10 +0000675 sqlitepager_unref(pBt->page1);
676 pBt->page1 = 0;
drh72f82862001-05-24 21:06:34 +0000677 return rc;
drh306dc212001-05-21 13:45:10 +0000678}
679
680/*
drh8c42ca92001-06-22 19:15:00 +0000681** Create a new database by initializing the first two pages of the
682** file.
drh8b2f49b2001-06-08 00:21:52 +0000683*/
684static int newDatabase(Btree *pBt){
685 MemPage *pRoot;
686 PageOne *pP1;
drh8c42ca92001-06-22 19:15:00 +0000687 int rc;
drh7c717f72001-06-24 20:39:41 +0000688 if( sqlitepager_pagecount(pBt->pPager)>1 ) return SQLITE_OK;
drh8b2f49b2001-06-08 00:21:52 +0000689 pP1 = pBt->page1;
690 rc = sqlitepager_write(pBt->page1);
691 if( rc ) return rc;
drh8c42ca92001-06-22 19:15:00 +0000692 rc = sqlitepager_get(pBt->pPager, 2, (void**)&pRoot);
drh8b2f49b2001-06-08 00:21:52 +0000693 if( rc ) return rc;
694 rc = sqlitepager_write(pRoot);
695 if( rc ){
696 sqlitepager_unref(pRoot);
697 return rc;
698 }
699 strcpy(pP1->zMagic, zMagicHeader);
drh8c42ca92001-06-22 19:15:00 +0000700 pP1->iMagic = MAGIC;
drh8b2f49b2001-06-08 00:21:52 +0000701 zeroPage(pRoot);
702 sqlitepager_unref(pRoot);
703 return SQLITE_OK;
704}
705
706/*
drh72f82862001-05-24 21:06:34 +0000707** Attempt to start a new transaction.
drh8b2f49b2001-06-08 00:21:52 +0000708**
709** A transaction must be started before attempting any changes
710** to the database. None of the following routines will work
711** unless a transaction is started first:
712**
713** sqliteBtreeCreateTable()
714** sqliteBtreeClearTable()
715** sqliteBtreeDropTable()
716** sqliteBtreeInsert()
717** sqliteBtreeDelete()
718** sqliteBtreeUpdateMeta()
drha059ad02001-04-17 20:09:11 +0000719*/
720int sqliteBtreeBeginTrans(Btree *pBt){
721 int rc;
722 if( pBt->inTrans ) return SQLITE_ERROR;
723 if( pBt->page1==0 ){
drh7e3b0a02001-04-28 16:52:40 +0000724 rc = lockBtree(pBt);
drh8c42ca92001-06-22 19:15:00 +0000725 if( rc!=SQLITE_OK ){
726 return rc;
727 }
drha059ad02001-04-17 20:09:11 +0000728 }
drhbe0072d2001-09-13 14:46:09 +0000729 if( !sqlitepager_isreadonly(pBt->pPager) ){
drh5e00f6c2001-09-13 13:46:56 +0000730 rc = sqlitepager_write(pBt->page1);
731 if( rc!=SQLITE_OK ){
732 return rc;
733 }
734 rc = newDatabase(pBt);
drha059ad02001-04-17 20:09:11 +0000735 }
drh8c42ca92001-06-22 19:15:00 +0000736 pBt->inTrans = 1;
drh8c42ca92001-06-22 19:15:00 +0000737 return rc;
drha059ad02001-04-17 20:09:11 +0000738}
739
740/*
drh5e00f6c2001-09-13 13:46:56 +0000741** If there are no outstanding cursors and we are not in the middle
742** of a transaction but there is a read lock on the database, then
743** this routine unrefs the first page of the database file which
744** has the effect of releasing the read lock.
745**
746** If there are any outstanding cursors, this routine is a no-op.
747**
748** If there is a transaction in progress, this routine is a no-op.
drha059ad02001-04-17 20:09:11 +0000749*/
drh5e00f6c2001-09-13 13:46:56 +0000750static void unlockBtreeIfUnused(Btree *pBt){
drh7c717f72001-06-24 20:39:41 +0000751 if( pBt->inTrans==0 && pBt->pCursor==0 && pBt->page1!=0 ){
drha059ad02001-04-17 20:09:11 +0000752 sqlitepager_unref(pBt->page1);
753 pBt->page1 = 0;
754 pBt->inTrans = 0;
755 }
756}
757
758/*
drh2aa679f2001-06-25 02:11:07 +0000759** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +0000760**
761** This will release the write lock on the database file. If there
762** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +0000763*/
764int sqliteBtreeCommit(Btree *pBt){
765 int rc;
drh2aa679f2001-06-25 02:11:07 +0000766 if( pBt->inTrans==0 ) return SQLITE_ERROR;
drha059ad02001-04-17 20:09:11 +0000767 rc = sqlitepager_commit(pBt->pPager);
drh7c717f72001-06-24 20:39:41 +0000768 pBt->inTrans = 0;
drh5e00f6c2001-09-13 13:46:56 +0000769 unlockBtreeIfUnused(pBt);
drha059ad02001-04-17 20:09:11 +0000770 return rc;
771}
772
773/*
774** Rollback the transaction in progress. All cursors must be
775** closed before this routine is called.
drh5e00f6c2001-09-13 13:46:56 +0000776**
777** This will release the write lock on the database file. If there
778** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +0000779*/
780int sqliteBtreeRollback(Btree *pBt){
781 int rc;
drh72f82862001-05-24 21:06:34 +0000782 if( pBt->pCursor!=0 ) return SQLITE_ERROR;
drh7c717f72001-06-24 20:39:41 +0000783 if( pBt->inTrans==0 ) return SQLITE_OK;
784 pBt->inTrans = 0;
drha059ad02001-04-17 20:09:11 +0000785 rc = sqlitepager_rollback(pBt->pPager);
drh5e00f6c2001-09-13 13:46:56 +0000786 unlockBtreeIfUnused(pBt);
drha059ad02001-04-17 20:09:11 +0000787 return rc;
788}
789
790/*
drh8b2f49b2001-06-08 00:21:52 +0000791** Create a new cursor for the BTree whose root is on the page
792** iTable. The act of acquiring a cursor gets a read lock on
793** the database file.
drha059ad02001-04-17 20:09:11 +0000794*/
drh8b2f49b2001-06-08 00:21:52 +0000795int sqliteBtreeCursor(Btree *pBt, int iTable, BtCursor **ppCur){
drha059ad02001-04-17 20:09:11 +0000796 int rc;
797 BtCursor *pCur;
798 if( pBt->page1==0 ){
799 rc = lockBtree(pBt);
800 if( rc!=SQLITE_OK ){
801 *ppCur = 0;
802 return rc;
803 }
804 }
805 pCur = sqliteMalloc( sizeof(*pCur) );
806 if( pCur==0 ){
drhbd03cae2001-06-02 02:40:57 +0000807 rc = SQLITE_NOMEM;
808 goto create_cursor_exception;
809 }
drh8b2f49b2001-06-08 00:21:52 +0000810 pCur->pgnoRoot = (Pgno)iTable;
drh8c42ca92001-06-22 19:15:00 +0000811 rc = sqlitepager_get(pBt->pPager, pCur->pgnoRoot, (void**)&pCur->pPage);
drhbd03cae2001-06-02 02:40:57 +0000812 if( rc!=SQLITE_OK ){
813 goto create_cursor_exception;
814 }
drh8b2f49b2001-06-08 00:21:52 +0000815 rc = initPage(pCur->pPage, pCur->pgnoRoot, 0);
drhbd03cae2001-06-02 02:40:57 +0000816 if( rc!=SQLITE_OK ){
817 goto create_cursor_exception;
drha059ad02001-04-17 20:09:11 +0000818 }
drh14acc042001-06-10 19:56:58 +0000819 pCur->pBt = pBt;
820 pCur->idx = 0;
drha059ad02001-04-17 20:09:11 +0000821 pCur->pNext = pBt->pCursor;
822 if( pCur->pNext ){
823 pCur->pNext->pPrev = pCur;
824 }
drh14acc042001-06-10 19:56:58 +0000825 pCur->pPrev = 0;
drha059ad02001-04-17 20:09:11 +0000826 pBt->pCursor = pCur;
drh2af926b2001-05-15 00:39:25 +0000827 *ppCur = pCur;
828 return SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +0000829
830create_cursor_exception:
831 *ppCur = 0;
832 if( pCur ){
833 if( pCur->pPage ) sqlitepager_unref(pCur->pPage);
834 sqliteFree(pCur);
835 }
drh5e00f6c2001-09-13 13:46:56 +0000836 unlockBtreeIfUnused(pBt);
drhbd03cae2001-06-02 02:40:57 +0000837 return rc;
drha059ad02001-04-17 20:09:11 +0000838}
839
840/*
drh5e00f6c2001-09-13 13:46:56 +0000841** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +0000842** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +0000843*/
844int sqliteBtreeCloseCursor(BtCursor *pCur){
845 Btree *pBt = pCur->pBt;
drha059ad02001-04-17 20:09:11 +0000846 if( pCur->pPrev ){
847 pCur->pPrev->pNext = pCur->pNext;
848 }else{
849 pBt->pCursor = pCur->pNext;
850 }
851 if( pCur->pNext ){
852 pCur->pNext->pPrev = pCur->pPrev;
853 }
drh2af926b2001-05-15 00:39:25 +0000854 sqlitepager_unref(pCur->pPage);
drh5e00f6c2001-09-13 13:46:56 +0000855 unlockBtreeIfUnused(pBt);
drha059ad02001-04-17 20:09:11 +0000856 sqliteFree(pCur);
drh8c42ca92001-06-22 19:15:00 +0000857 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +0000858}
859
drh7e3b0a02001-04-28 16:52:40 +0000860/*
drh5e2f8b92001-05-28 00:41:15 +0000861** Make a temporary cursor by filling in the fields of pTempCur.
862** The temporary cursor is not on the cursor list for the Btree.
863*/
drh14acc042001-06-10 19:56:58 +0000864static void getTempCursor(BtCursor *pCur, BtCursor *pTempCur){
drh5e2f8b92001-05-28 00:41:15 +0000865 memcpy(pTempCur, pCur, sizeof(*pCur));
866 pTempCur->pNext = 0;
867 pTempCur->pPrev = 0;
868 sqlitepager_ref(pTempCur->pPage);
869}
870
871/*
drhbd03cae2001-06-02 02:40:57 +0000872** Delete a temporary cursor such as was made by the CreateTemporaryCursor()
drh5e2f8b92001-05-28 00:41:15 +0000873** function above.
874*/
drh14acc042001-06-10 19:56:58 +0000875static void releaseTempCursor(BtCursor *pCur){
drh5e2f8b92001-05-28 00:41:15 +0000876 sqlitepager_unref(pCur->pPage);
877}
878
879/*
drhbd03cae2001-06-02 02:40:57 +0000880** Set *pSize to the number of bytes of key in the entry the
881** cursor currently points to. Always return SQLITE_OK.
882** Failure is not possible. If the cursor is not currently
883** pointing to an entry (which can happen, for example, if
884** the database is empty) then *pSize is set to 0.
drh7e3b0a02001-04-28 16:52:40 +0000885*/
drh72f82862001-05-24 21:06:34 +0000886int sqliteBtreeKeySize(BtCursor *pCur, int *pSize){
drh2af926b2001-05-15 00:39:25 +0000887 Cell *pCell;
888 MemPage *pPage;
889
890 pPage = pCur->pPage;
drh72f82862001-05-24 21:06:34 +0000891 assert( pPage!=0 );
892 if( pCur->idx >= pPage->nCell ){
893 *pSize = 0;
894 }else{
drh5e2f8b92001-05-28 00:41:15 +0000895 pCell = pPage->apCell[pCur->idx];
drh8c42ca92001-06-22 19:15:00 +0000896 *pSize = pCell->h.nKey;
drh72f82862001-05-24 21:06:34 +0000897 }
898 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +0000899}
drh2af926b2001-05-15 00:39:25 +0000900
drh72f82862001-05-24 21:06:34 +0000901/*
902** Read payload information from the entry that the pCur cursor is
903** pointing to. Begin reading the payload at "offset" and read
904** a total of "amt" bytes. Put the result in zBuf.
905**
906** This routine does not make a distinction between key and data.
907** It just reads bytes from the payload area.
908*/
drh2af926b2001-05-15 00:39:25 +0000909static int getPayload(BtCursor *pCur, int offset, int amt, char *zBuf){
drh5e2f8b92001-05-28 00:41:15 +0000910 char *aPayload;
drh2af926b2001-05-15 00:39:25 +0000911 Pgno nextPage;
drh8c42ca92001-06-22 19:15:00 +0000912 int rc;
drh72f82862001-05-24 21:06:34 +0000913 assert( pCur!=0 && pCur->pPage!=0 );
drh8c42ca92001-06-22 19:15:00 +0000914 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
915 aPayload = pCur->pPage->apCell[pCur->idx]->aPayload;
drh2af926b2001-05-15 00:39:25 +0000916 if( offset<MX_LOCAL_PAYLOAD ){
917 int a = amt;
918 if( a+offset>MX_LOCAL_PAYLOAD ){
919 a = MX_LOCAL_PAYLOAD - offset;
920 }
drh5e2f8b92001-05-28 00:41:15 +0000921 memcpy(zBuf, &aPayload[offset], a);
drh2af926b2001-05-15 00:39:25 +0000922 if( a==amt ){
923 return SQLITE_OK;
924 }
drh2aa679f2001-06-25 02:11:07 +0000925 offset = 0;
drh2af926b2001-05-15 00:39:25 +0000926 zBuf += a;
927 amt -= a;
drhdd793422001-06-28 01:54:48 +0000928 }else{
929 offset -= MX_LOCAL_PAYLOAD;
drhbd03cae2001-06-02 02:40:57 +0000930 }
931 if( amt>0 ){
drh8c42ca92001-06-22 19:15:00 +0000932 nextPage = pCur->pPage->apCell[pCur->idx]->ovfl;
drh2af926b2001-05-15 00:39:25 +0000933 }
934 while( amt>0 && nextPage ){
935 OverflowPage *pOvfl;
drh8c42ca92001-06-22 19:15:00 +0000936 rc = sqlitepager_get(pCur->pBt->pPager, nextPage, (void**)&pOvfl);
drh2af926b2001-05-15 00:39:25 +0000937 if( rc!=0 ){
938 return rc;
939 }
drh14acc042001-06-10 19:56:58 +0000940 nextPage = pOvfl->iNext;
drh2af926b2001-05-15 00:39:25 +0000941 if( offset<OVERFLOW_SIZE ){
942 int a = amt;
943 if( a + offset > OVERFLOW_SIZE ){
944 a = OVERFLOW_SIZE - offset;
945 }
drh5e2f8b92001-05-28 00:41:15 +0000946 memcpy(zBuf, &pOvfl->aPayload[offset], a);
drh2aa679f2001-06-25 02:11:07 +0000947 offset = 0;
drh2af926b2001-05-15 00:39:25 +0000948 amt -= a;
949 zBuf += a;
drh2aa679f2001-06-25 02:11:07 +0000950 }else{
951 offset -= OVERFLOW_SIZE;
drh2af926b2001-05-15 00:39:25 +0000952 }
953 sqlitepager_unref(pOvfl);
954 }
955 return amt==0 ? SQLITE_OK : SQLITE_CORRUPT;
956}
957
drh72f82862001-05-24 21:06:34 +0000958/*
drh5e00f6c2001-09-13 13:46:56 +0000959** Read part of the key associated with cursor pCur. A maximum
drh72f82862001-05-24 21:06:34 +0000960** of "amt" bytes will be transfered into zBuf[]. The transfer
drh5e00f6c2001-09-13 13:46:56 +0000961** begins at "offset". The number of bytes actually read is
962** returned. The amount returned will be smaller than the
963** amount requested if there are not enough bytes in the key
964** to satisfy the request.
drh72f82862001-05-24 21:06:34 +0000965*/
966int sqliteBtreeKey(BtCursor *pCur, int offset, int amt, char *zBuf){
967 Cell *pCell;
968 MemPage *pPage;
drha059ad02001-04-17 20:09:11 +0000969
drh5e00f6c2001-09-13 13:46:56 +0000970 if( amt<0 ) return 0;
971 if( offset<0 ) return 0;
972 if( amt==0 ) return 0;
drh72f82862001-05-24 21:06:34 +0000973 pPage = pCur->pPage;
974 assert( pPage!=0 );
975 if( pCur->idx >= pPage->nCell ){
drh5e00f6c2001-09-13 13:46:56 +0000976 return 0;
drh72f82862001-05-24 21:06:34 +0000977 }
drh5e2f8b92001-05-28 00:41:15 +0000978 pCell = pPage->apCell[pCur->idx];
drh3b7511c2001-05-26 13:15:44 +0000979 if( amt+offset > pCell->h.nKey ){
drh5e00f6c2001-09-13 13:46:56 +0000980 amt = pCell->h.nKey - offset;
981 if( amt<=0 ){
982 return 0;
983 }
drhbd03cae2001-06-02 02:40:57 +0000984 }
drh5e00f6c2001-09-13 13:46:56 +0000985 getPayload(pCur, offset, amt, zBuf);
986 return amt;
drh72f82862001-05-24 21:06:34 +0000987}
988
989/*
drhbd03cae2001-06-02 02:40:57 +0000990** Set *pSize to the number of bytes of data in the entry the
991** cursor currently points to. Always return SQLITE_OK.
992** Failure is not possible. If the cursor is not currently
993** pointing to an entry (which can happen, for example, if
994** the database is empty) then *pSize is set to 0.
drh72f82862001-05-24 21:06:34 +0000995*/
996int sqliteBtreeDataSize(BtCursor *pCur, int *pSize){
997 Cell *pCell;
998 MemPage *pPage;
999
1000 pPage = pCur->pPage;
1001 assert( pPage!=0 );
1002 if( pCur->idx >= pPage->nCell ){
1003 *pSize = 0;
1004 }else{
drh5e2f8b92001-05-28 00:41:15 +00001005 pCell = pPage->apCell[pCur->idx];
drh3b7511c2001-05-26 13:15:44 +00001006 *pSize = pCell->h.nData;
drh72f82862001-05-24 21:06:34 +00001007 }
1008 return SQLITE_OK;
1009}
1010
1011/*
drh5e00f6c2001-09-13 13:46:56 +00001012** Read part of the data associated with cursor pCur. A maximum
drh72f82862001-05-24 21:06:34 +00001013** of "amt" bytes will be transfered into zBuf[]. The transfer
drh5e00f6c2001-09-13 13:46:56 +00001014** begins at "offset". The number of bytes actually read is
1015** returned. The amount returned will be smaller than the
1016** amount requested if there are not enough bytes in the data
1017** to satisfy the request.
drh72f82862001-05-24 21:06:34 +00001018*/
1019int sqliteBtreeData(BtCursor *pCur, int offset, int amt, char *zBuf){
1020 Cell *pCell;
1021 MemPage *pPage;
1022
drh5e00f6c2001-09-13 13:46:56 +00001023 if( amt<0 ) return 0;
1024 if( offset<0 ) return 0;
1025 if( amt==0 ) return 0;
drh72f82862001-05-24 21:06:34 +00001026 pPage = pCur->pPage;
1027 assert( pPage!=0 );
1028 if( pCur->idx >= pPage->nCell ){
drh5e00f6c2001-09-13 13:46:56 +00001029 return 0;
drh72f82862001-05-24 21:06:34 +00001030 }
drh5e2f8b92001-05-28 00:41:15 +00001031 pCell = pPage->apCell[pCur->idx];
drhbd03cae2001-06-02 02:40:57 +00001032 if( amt+offset > pCell->h.nData ){
drh5e00f6c2001-09-13 13:46:56 +00001033 amt = pCell->h.nData - offset;
1034 if( amt<=0 ){
1035 return 0;
1036 }
drhbd03cae2001-06-02 02:40:57 +00001037 }
drh5e00f6c2001-09-13 13:46:56 +00001038 getPayload(pCur, offset + pCell->h.nKey, amt, zBuf);
1039 return amt;
drh72f82862001-05-24 21:06:34 +00001040}
drha059ad02001-04-17 20:09:11 +00001041
drh2af926b2001-05-15 00:39:25 +00001042/*
1043** Compare the key for the entry that pCur points to against the
1044** given key (pKey,nKeyOrig). Put the comparison result in *pResult.
1045** The result is negative if pCur<pKey, zero if they are equal and
1046** positive if pCur>pKey.
1047**
1048** SQLITE_OK is returned on success. If part of the cursor key
1049** is on overflow pages and we are unable to access those overflow
1050** pages, then some other value might be returned to indicate the
1051** reason for the error.
1052*/
drh5c4d9702001-08-20 00:33:58 +00001053static int compareKey(
1054 BtCursor *pCur, /* Points to the entry against which we are comparing */
1055 const char *pKey, /* The comparison key */
1056 int nKeyOrig, /* Number of bytes in the comparison key */
1057 int *pResult /* Write the comparison results here */
1058){
drh2af926b2001-05-15 00:39:25 +00001059 Pgno nextPage;
1060 int nKey = nKeyOrig;
drh8c42ca92001-06-22 19:15:00 +00001061 int n, c, rc;
drh2af926b2001-05-15 00:39:25 +00001062 Cell *pCell;
1063
1064 assert( pCur->pPage );
1065 assert( pCur->idx>=0 && pCur->idx<pCur->pPage->nCell );
drhbd03cae2001-06-02 02:40:57 +00001066 pCell = pCur->pPage->apCell[pCur->idx];
drh3b7511c2001-05-26 13:15:44 +00001067 if( nKey > pCell->h.nKey ){
1068 nKey = pCell->h.nKey;
drh2af926b2001-05-15 00:39:25 +00001069 }
1070 n = nKey;
1071 if( n>MX_LOCAL_PAYLOAD ){
1072 n = MX_LOCAL_PAYLOAD;
1073 }
drh5e2f8b92001-05-28 00:41:15 +00001074 c = memcmp(pCell->aPayload, pKey, n);
drh2af926b2001-05-15 00:39:25 +00001075 if( c!=0 ){
1076 *pResult = c;
1077 return SQLITE_OK;
1078 }
1079 pKey += n;
1080 nKey -= n;
drh3b7511c2001-05-26 13:15:44 +00001081 nextPage = pCell->ovfl;
drh2af926b2001-05-15 00:39:25 +00001082 while( nKey>0 ){
1083 OverflowPage *pOvfl;
1084 if( nextPage==0 ){
1085 return SQLITE_CORRUPT;
1086 }
drh8c42ca92001-06-22 19:15:00 +00001087 rc = sqlitepager_get(pCur->pBt->pPager, nextPage, (void**)&pOvfl);
drh72f82862001-05-24 21:06:34 +00001088 if( rc ){
drh2af926b2001-05-15 00:39:25 +00001089 return rc;
1090 }
drh14acc042001-06-10 19:56:58 +00001091 nextPage = pOvfl->iNext;
drh2af926b2001-05-15 00:39:25 +00001092 n = nKey;
1093 if( n>OVERFLOW_SIZE ){
1094 n = OVERFLOW_SIZE;
1095 }
drh5e2f8b92001-05-28 00:41:15 +00001096 c = memcmp(pOvfl->aPayload, pKey, n);
drh2af926b2001-05-15 00:39:25 +00001097 sqlitepager_unref(pOvfl);
1098 if( c!=0 ){
1099 *pResult = c;
1100 return SQLITE_OK;
1101 }
1102 nKey -= n;
1103 pKey += n;
1104 }
drh3b7511c2001-05-26 13:15:44 +00001105 c = pCell->h.nKey - nKeyOrig;
drh2af926b2001-05-15 00:39:25 +00001106 *pResult = c;
1107 return SQLITE_OK;
1108}
1109
drh72f82862001-05-24 21:06:34 +00001110/*
1111** Move the cursor down to a new child page.
1112*/
drh5e2f8b92001-05-28 00:41:15 +00001113static int moveToChild(BtCursor *pCur, int newPgno){
drh72f82862001-05-24 21:06:34 +00001114 int rc;
1115 MemPage *pNewPage;
1116
drh8c42ca92001-06-22 19:15:00 +00001117 rc = sqlitepager_get(pCur->pBt->pPager, newPgno, (void**)&pNewPage);
drh6019e162001-07-02 17:51:45 +00001118 if( rc ) return rc;
1119 rc = initPage(pNewPage, newPgno, pCur->pPage);
1120 if( rc ) return rc;
drh72f82862001-05-24 21:06:34 +00001121 sqlitepager_unref(pCur->pPage);
1122 pCur->pPage = pNewPage;
1123 pCur->idx = 0;
1124 return SQLITE_OK;
1125}
1126
1127/*
drh5e2f8b92001-05-28 00:41:15 +00001128** Move the cursor up to the parent page.
1129**
1130** pCur->idx is set to the cell index that contains the pointer
1131** to the page we are coming from. If we are coming from the
1132** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00001133** the largest cell index.
drh72f82862001-05-24 21:06:34 +00001134*/
drh5e2f8b92001-05-28 00:41:15 +00001135static int moveToParent(BtCursor *pCur){
drh72f82862001-05-24 21:06:34 +00001136 Pgno oldPgno;
1137 MemPage *pParent;
drh8c42ca92001-06-22 19:15:00 +00001138 int i;
drh72f82862001-05-24 21:06:34 +00001139 pParent = pCur->pPage->pParent;
drhbd03cae2001-06-02 02:40:57 +00001140 if( pParent==0 ) return SQLITE_INTERNAL;
drh72f82862001-05-24 21:06:34 +00001141 oldPgno = sqlitepager_pagenumber(pCur->pPage);
drh72f82862001-05-24 21:06:34 +00001142 sqlitepager_ref(pParent);
1143 sqlitepager_unref(pCur->pPage);
1144 pCur->pPage = pParent;
drh8c42ca92001-06-22 19:15:00 +00001145 pCur->idx = pParent->nCell;
1146 for(i=0; i<pParent->nCell; i++){
1147 if( pParent->apCell[i]->h.leftChild==oldPgno ){
drh72f82862001-05-24 21:06:34 +00001148 pCur->idx = i;
1149 break;
1150 }
1151 }
drh5e2f8b92001-05-28 00:41:15 +00001152 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00001153}
1154
1155/*
1156** Move the cursor to the root page
1157*/
drh5e2f8b92001-05-28 00:41:15 +00001158static int moveToRoot(BtCursor *pCur){
drh72f82862001-05-24 21:06:34 +00001159 MemPage *pNew;
drhbd03cae2001-06-02 02:40:57 +00001160 int rc;
1161
drh8c42ca92001-06-22 19:15:00 +00001162 rc = sqlitepager_get(pCur->pBt->pPager, pCur->pgnoRoot, (void**)&pNew);
drhbd03cae2001-06-02 02:40:57 +00001163 if( rc ) return rc;
drh6019e162001-07-02 17:51:45 +00001164 rc = initPage(pNew, pCur->pgnoRoot, 0);
1165 if( rc ) return rc;
drh72f82862001-05-24 21:06:34 +00001166 sqlitepager_unref(pCur->pPage);
1167 pCur->pPage = pNew;
1168 pCur->idx = 0;
1169 return SQLITE_OK;
1170}
drh2af926b2001-05-15 00:39:25 +00001171
drh5e2f8b92001-05-28 00:41:15 +00001172/*
1173** Move the cursor down to the left-most leaf entry beneath the
1174** entry to which it is currently pointing.
1175*/
1176static int moveToLeftmost(BtCursor *pCur){
1177 Pgno pgno;
1178 int rc;
1179
1180 while( (pgno = pCur->pPage->apCell[pCur->idx]->h.leftChild)!=0 ){
1181 rc = moveToChild(pCur, pgno);
1182 if( rc ) return rc;
1183 }
1184 return SQLITE_OK;
1185}
1186
drh5e00f6c2001-09-13 13:46:56 +00001187/* Move the cursor to the first entry in the table. Return SQLITE_OK
1188** on success. Set *pRes to 0 if the cursor actually points to something
1189** or set *pRes to 1 if the table is empty and there is no first element.
1190*/
1191int sqliteBtreeFirst(BtCursor *pCur, int *pRes){
1192 int rc;
1193 rc = moveToRoot(pCur);
1194 if( rc ) return rc;
1195 if( pCur->pPage->nCell==0 ){
1196 *pRes = 1;
1197 return SQLITE_OK;
1198 }
1199 *pRes = 0;
1200 rc = moveToLeftmost(pCur);
1201 return rc;
1202}
drh5e2f8b92001-05-28 00:41:15 +00001203
drha059ad02001-04-17 20:09:11 +00001204/* Move the cursor so that it points to an entry near pKey.
drh72f82862001-05-24 21:06:34 +00001205** Return a success code.
1206**
drh5e2f8b92001-05-28 00:41:15 +00001207** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00001208** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00001209** were present. The cursor might point to an entry that comes
1210** before or after the key.
1211**
drhbd03cae2001-06-02 02:40:57 +00001212** The result of comparing the key with the entry to which the
1213** cursor is left pointing is stored in pCur->iMatch. The same
1214** value is also written to *pRes if pRes!=NULL. The meaning of
1215** this value is as follows:
1216**
1217** *pRes<0 The cursor is left pointing at an entry that
drh7c717f72001-06-24 20:39:41 +00001218** is smaller than pKey.
drhbd03cae2001-06-02 02:40:57 +00001219**
1220** *pRes==0 The cursor is left pointing at an entry that
1221** exactly matches pKey.
1222**
1223** *pRes>0 The cursor is left pointing at an entry that
drh7c717f72001-06-24 20:39:41 +00001224** is larger than pKey.
drha059ad02001-04-17 20:09:11 +00001225*/
drh5c4d9702001-08-20 00:33:58 +00001226int sqliteBtreeMoveto(BtCursor *pCur, const void *pKey, int nKey, int *pRes){
drh72f82862001-05-24 21:06:34 +00001227 int rc;
drh7c717f72001-06-24 20:39:41 +00001228 pCur->bSkipNext = 0;
drh5e2f8b92001-05-28 00:41:15 +00001229 rc = moveToRoot(pCur);
drh72f82862001-05-24 21:06:34 +00001230 if( rc ) return rc;
1231 for(;;){
1232 int lwr, upr;
1233 Pgno chldPg;
1234 MemPage *pPage = pCur->pPage;
drh8b2f49b2001-06-08 00:21:52 +00001235 int c = -1;
drh72f82862001-05-24 21:06:34 +00001236 lwr = 0;
1237 upr = pPage->nCell-1;
1238 while( lwr<=upr ){
drh72f82862001-05-24 21:06:34 +00001239 pCur->idx = (lwr+upr)/2;
1240 rc = compareKey(pCur, pKey, nKey, &c);
1241 if( rc ) return rc;
1242 if( c==0 ){
drh5e2f8b92001-05-28 00:41:15 +00001243 pCur->iMatch = c;
drh72f82862001-05-24 21:06:34 +00001244 if( pRes ) *pRes = 0;
1245 return SQLITE_OK;
1246 }
1247 if( c<0 ){
1248 lwr = pCur->idx+1;
1249 }else{
1250 upr = pCur->idx-1;
1251 }
1252 }
1253 assert( lwr==upr+1 );
1254 if( lwr>=pPage->nCell ){
drh14acc042001-06-10 19:56:58 +00001255 chldPg = pPage->u.hdr.rightChild;
drh72f82862001-05-24 21:06:34 +00001256 }else{
drh5e2f8b92001-05-28 00:41:15 +00001257 chldPg = pPage->apCell[lwr]->h.leftChild;
drh72f82862001-05-24 21:06:34 +00001258 }
1259 if( chldPg==0 ){
drh5e2f8b92001-05-28 00:41:15 +00001260 pCur->iMatch = c;
drh72f82862001-05-24 21:06:34 +00001261 if( pRes ) *pRes = c;
1262 return SQLITE_OK;
1263 }
drh5e2f8b92001-05-28 00:41:15 +00001264 rc = moveToChild(pCur, chldPg);
drh72f82862001-05-24 21:06:34 +00001265 if( rc ) return rc;
1266 }
drhbd03cae2001-06-02 02:40:57 +00001267 /* NOT REACHED */
drh72f82862001-05-24 21:06:34 +00001268}
1269
1270/*
drhbd03cae2001-06-02 02:40:57 +00001271** Advance the cursor to the next entry in the database. If
1272** successful and pRes!=NULL then set *pRes=0. If the cursor
1273** was already pointing to the last entry in the database before
1274** this routine was called, then set *pRes=1 if pRes!=NULL.
drh72f82862001-05-24 21:06:34 +00001275*/
1276int sqliteBtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00001277 int rc;
drh5e2f8b92001-05-28 00:41:15 +00001278 if( pCur->bSkipNext ){
1279 pCur->bSkipNext = 0;
drh72f82862001-05-24 21:06:34 +00001280 if( pRes ) *pRes = 0;
1281 return SQLITE_OK;
1282 }
drh72f82862001-05-24 21:06:34 +00001283 pCur->idx++;
drh5e2f8b92001-05-28 00:41:15 +00001284 if( pCur->idx>=pCur->pPage->nCell ){
drh8c42ca92001-06-22 19:15:00 +00001285 if( pCur->pPage->u.hdr.rightChild ){
1286 rc = moveToChild(pCur, pCur->pPage->u.hdr.rightChild);
drh5e2f8b92001-05-28 00:41:15 +00001287 if( rc ) return rc;
1288 rc = moveToLeftmost(pCur);
1289 if( rc ) return rc;
1290 if( pRes ) *pRes = 0;
drh72f82862001-05-24 21:06:34 +00001291 return SQLITE_OK;
1292 }
drh5e2f8b92001-05-28 00:41:15 +00001293 do{
drh8c42ca92001-06-22 19:15:00 +00001294 if( pCur->pPage->pParent==0 ){
drh5e2f8b92001-05-28 00:41:15 +00001295 if( pRes ) *pRes = 1;
1296 return SQLITE_OK;
1297 }
1298 rc = moveToParent(pCur);
1299 if( rc ) return rc;
1300 }while( pCur->idx>=pCur->pPage->nCell );
drh72f82862001-05-24 21:06:34 +00001301 if( pRes ) *pRes = 0;
1302 return SQLITE_OK;
1303 }
drh5e2f8b92001-05-28 00:41:15 +00001304 rc = moveToLeftmost(pCur);
1305 if( rc ) return rc;
drh72f82862001-05-24 21:06:34 +00001306 if( pRes ) *pRes = 0;
1307 return SQLITE_OK;
1308}
1309
drh3b7511c2001-05-26 13:15:44 +00001310/*
1311** Allocate a new page from the database file.
1312**
1313** The new page is marked as dirty. (In other words, sqlitepager_write()
1314** has already been called on the new page.) The new page has also
1315** been referenced and the calling routine is responsible for calling
1316** sqlitepager_unref() on the new page when it is done.
1317**
1318** SQLITE_OK is returned on success. Any other return value indicates
1319** an error. *ppPage and *pPgno are undefined in the event of an error.
1320** Do not invoke sqlitepager_unref() on *ppPage if an error is returned.
1321*/
1322static int allocatePage(Btree *pBt, MemPage **ppPage, Pgno *pPgno){
drhbd03cae2001-06-02 02:40:57 +00001323 PageOne *pPage1 = pBt->page1;
drh8c42ca92001-06-22 19:15:00 +00001324 int rc;
drh3b7511c2001-05-26 13:15:44 +00001325 if( pPage1->freeList ){
1326 OverflowPage *pOvfl;
1327 rc = sqlitepager_write(pPage1);
1328 if( rc ) return rc;
1329 *pPgno = pPage1->freeList;
drh8c42ca92001-06-22 19:15:00 +00001330 rc = sqlitepager_get(pBt->pPager, pPage1->freeList, (void**)&pOvfl);
drh3b7511c2001-05-26 13:15:44 +00001331 if( rc ) return rc;
1332 rc = sqlitepager_write(pOvfl);
1333 if( rc ){
1334 sqlitepager_unref(pOvfl);
1335 return rc;
1336 }
drh14acc042001-06-10 19:56:58 +00001337 pPage1->freeList = pOvfl->iNext;
drh2aa679f2001-06-25 02:11:07 +00001338 pPage1->nFree--;
drh3b7511c2001-05-26 13:15:44 +00001339 *ppPage = (MemPage*)pOvfl;
1340 }else{
drh2aa679f2001-06-25 02:11:07 +00001341 *pPgno = sqlitepager_pagecount(pBt->pPager) + 1;
drh8c42ca92001-06-22 19:15:00 +00001342 rc = sqlitepager_get(pBt->pPager, *pPgno, (void**)ppPage);
drh3b7511c2001-05-26 13:15:44 +00001343 if( rc ) return rc;
1344 rc = sqlitepager_write(*ppPage);
1345 }
1346 return rc;
1347}
1348
1349/*
1350** Add a page of the database file to the freelist. Either pgno or
1351** pPage but not both may be 0.
drh5e2f8b92001-05-28 00:41:15 +00001352**
drhdd793422001-06-28 01:54:48 +00001353** sqlitepager_unref() is NOT called for pPage.
drh3b7511c2001-05-26 13:15:44 +00001354*/
1355static int freePage(Btree *pBt, void *pPage, Pgno pgno){
drhbd03cae2001-06-02 02:40:57 +00001356 PageOne *pPage1 = pBt->page1;
drh3b7511c2001-05-26 13:15:44 +00001357 OverflowPage *pOvfl = (OverflowPage*)pPage;
1358 int rc;
drhdd793422001-06-28 01:54:48 +00001359 int needUnref = 0;
1360 MemPage *pMemPage;
drh8b2f49b2001-06-08 00:21:52 +00001361
drh3b7511c2001-05-26 13:15:44 +00001362 if( pgno==0 ){
1363 assert( pOvfl!=0 );
1364 pgno = sqlitepager_pagenumber(pOvfl);
1365 }
drh2aa679f2001-06-25 02:11:07 +00001366 assert( pgno>2 );
drh3b7511c2001-05-26 13:15:44 +00001367 rc = sqlitepager_write(pPage1);
1368 if( rc ){
1369 return rc;
1370 }
1371 if( pOvfl==0 ){
1372 assert( pgno>0 );
drh8c42ca92001-06-22 19:15:00 +00001373 rc = sqlitepager_get(pBt->pPager, pgno, (void**)&pOvfl);
drh3b7511c2001-05-26 13:15:44 +00001374 if( rc ) return rc;
drhdd793422001-06-28 01:54:48 +00001375 needUnref = 1;
drh3b7511c2001-05-26 13:15:44 +00001376 }
1377 rc = sqlitepager_write(pOvfl);
1378 if( rc ){
drhdd793422001-06-28 01:54:48 +00001379 if( needUnref ) sqlitepager_unref(pOvfl);
drh3b7511c2001-05-26 13:15:44 +00001380 return rc;
1381 }
drh14acc042001-06-10 19:56:58 +00001382 pOvfl->iNext = pPage1->freeList;
drh3b7511c2001-05-26 13:15:44 +00001383 pPage1->freeList = pgno;
drh2aa679f2001-06-25 02:11:07 +00001384 pPage1->nFree++;
drh5e2f8b92001-05-28 00:41:15 +00001385 memset(pOvfl->aPayload, 0, OVERFLOW_SIZE);
drhdd793422001-06-28 01:54:48 +00001386 pMemPage = (MemPage*)pPage;
1387 pMemPage->isInit = 0;
1388 if( pMemPage->pParent ){
1389 sqlitepager_unref(pMemPage->pParent);
1390 pMemPage->pParent = 0;
1391 }
1392 if( needUnref ) rc = sqlitepager_unref(pOvfl);
drh3b7511c2001-05-26 13:15:44 +00001393 return rc;
1394}
1395
1396/*
1397** Erase all the data out of a cell. This involves returning overflow
1398** pages back the freelist.
1399*/
1400static int clearCell(Btree *pBt, Cell *pCell){
1401 Pager *pPager = pBt->pPager;
1402 OverflowPage *pOvfl;
drh3b7511c2001-05-26 13:15:44 +00001403 Pgno ovfl, nextOvfl;
1404 int rc;
1405
drh5e2f8b92001-05-28 00:41:15 +00001406 if( pCell->h.nKey + pCell->h.nData <= MX_LOCAL_PAYLOAD ){
1407 return SQLITE_OK;
1408 }
drh3b7511c2001-05-26 13:15:44 +00001409 ovfl = pCell->ovfl;
1410 pCell->ovfl = 0;
1411 while( ovfl ){
drh8c42ca92001-06-22 19:15:00 +00001412 rc = sqlitepager_get(pPager, ovfl, (void**)&pOvfl);
drh3b7511c2001-05-26 13:15:44 +00001413 if( rc ) return rc;
drh14acc042001-06-10 19:56:58 +00001414 nextOvfl = pOvfl->iNext;
drhbd03cae2001-06-02 02:40:57 +00001415 rc = freePage(pBt, pOvfl, ovfl);
1416 if( rc ) return rc;
drhdd793422001-06-28 01:54:48 +00001417 sqlitepager_unref(pOvfl);
drh3b7511c2001-05-26 13:15:44 +00001418 ovfl = nextOvfl;
drh3b7511c2001-05-26 13:15:44 +00001419 }
drh5e2f8b92001-05-28 00:41:15 +00001420 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00001421}
1422
1423/*
1424** Create a new cell from key and data. Overflow pages are allocated as
1425** necessary and linked to this cell.
1426*/
1427static int fillInCell(
1428 Btree *pBt, /* The whole Btree. Needed to allocate pages */
1429 Cell *pCell, /* Populate this Cell structure */
drh5c4d9702001-08-20 00:33:58 +00001430 const void *pKey, int nKey, /* The key */
1431 const void *pData,int nData /* The data */
drh3b7511c2001-05-26 13:15:44 +00001432){
drhdd793422001-06-28 01:54:48 +00001433 OverflowPage *pOvfl, *pPrior;
drh3b7511c2001-05-26 13:15:44 +00001434 Pgno *pNext;
1435 int spaceLeft;
drh8c42ca92001-06-22 19:15:00 +00001436 int n, rc;
drh3b7511c2001-05-26 13:15:44 +00001437 int nPayload;
drh5c4d9702001-08-20 00:33:58 +00001438 const char *pPayload;
drh3b7511c2001-05-26 13:15:44 +00001439 char *pSpace;
1440
drh5e2f8b92001-05-28 00:41:15 +00001441 pCell->h.leftChild = 0;
drh3b7511c2001-05-26 13:15:44 +00001442 pCell->h.nKey = nKey;
1443 pCell->h.nData = nData;
1444 pCell->h.iNext = 0;
1445
1446 pNext = &pCell->ovfl;
drh5e2f8b92001-05-28 00:41:15 +00001447 pSpace = pCell->aPayload;
drh3b7511c2001-05-26 13:15:44 +00001448 spaceLeft = MX_LOCAL_PAYLOAD;
1449 pPayload = pKey;
1450 pKey = 0;
1451 nPayload = nKey;
drhdd793422001-06-28 01:54:48 +00001452 pPrior = 0;
drh3b7511c2001-05-26 13:15:44 +00001453 while( nPayload>0 ){
1454 if( spaceLeft==0 ){
drh8c42ca92001-06-22 19:15:00 +00001455 rc = allocatePage(pBt, (MemPage**)&pOvfl, pNext);
drh3b7511c2001-05-26 13:15:44 +00001456 if( rc ){
1457 *pNext = 0;
drhdd793422001-06-28 01:54:48 +00001458 }
1459 if( pPrior ) sqlitepager_unref(pPrior);
1460 if( rc ){
drh5e2f8b92001-05-28 00:41:15 +00001461 clearCell(pBt, pCell);
drh3b7511c2001-05-26 13:15:44 +00001462 return rc;
1463 }
drhdd793422001-06-28 01:54:48 +00001464 pPrior = pOvfl;
drh3b7511c2001-05-26 13:15:44 +00001465 spaceLeft = OVERFLOW_SIZE;
drh5e2f8b92001-05-28 00:41:15 +00001466 pSpace = pOvfl->aPayload;
drh8c42ca92001-06-22 19:15:00 +00001467 pNext = &pOvfl->iNext;
drh3b7511c2001-05-26 13:15:44 +00001468 }
1469 n = nPayload;
1470 if( n>spaceLeft ) n = spaceLeft;
1471 memcpy(pSpace, pPayload, n);
1472 nPayload -= n;
1473 if( nPayload==0 && pData ){
1474 pPayload = pData;
1475 nPayload = nData;
1476 pData = 0;
1477 }else{
1478 pPayload += n;
1479 }
1480 spaceLeft -= n;
1481 pSpace += n;
1482 }
drhdd793422001-06-28 01:54:48 +00001483 *pNext = 0;
1484 if( pPrior ){
1485 sqlitepager_unref(pPrior);
1486 }
drh3b7511c2001-05-26 13:15:44 +00001487 return SQLITE_OK;
1488}
1489
1490/*
drhbd03cae2001-06-02 02:40:57 +00001491** Change the MemPage.pParent pointer on the page whose number is
drh8b2f49b2001-06-08 00:21:52 +00001492** given in the second argument so that MemPage.pParent holds the
drhbd03cae2001-06-02 02:40:57 +00001493** pointer in the third argument.
1494*/
1495static void reparentPage(Pager *pPager, Pgno pgno, MemPage *pNewParent){
1496 MemPage *pThis;
1497
drhdd793422001-06-28 01:54:48 +00001498 if( pgno==0 ) return;
1499 assert( pPager!=0 );
drhbd03cae2001-06-02 02:40:57 +00001500 pThis = sqlitepager_lookup(pPager, pgno);
drh6019e162001-07-02 17:51:45 +00001501 if( pThis && pThis->isInit ){
drhdd793422001-06-28 01:54:48 +00001502 if( pThis->pParent!=pNewParent ){
1503 if( pThis->pParent ) sqlitepager_unref(pThis->pParent);
1504 pThis->pParent = pNewParent;
1505 if( pNewParent ) sqlitepager_ref(pNewParent);
1506 }
1507 sqlitepager_unref(pThis);
drhbd03cae2001-06-02 02:40:57 +00001508 }
1509}
1510
1511/*
1512** Reparent all children of the given page to be the given page.
1513** In other words, for every child of pPage, invoke reparentPage()
drh5e00f6c2001-09-13 13:46:56 +00001514** to make sure that each child knows that pPage is its parent.
drhbd03cae2001-06-02 02:40:57 +00001515**
1516** This routine gets called after you memcpy() one page into
1517** another.
1518*/
drh8c42ca92001-06-22 19:15:00 +00001519static void reparentChildPages(Pager *pPager, MemPage *pPage){
drhbd03cae2001-06-02 02:40:57 +00001520 int i;
1521 for(i=0; i<pPage->nCell; i++){
drh8c42ca92001-06-22 19:15:00 +00001522 reparentPage(pPager, pPage->apCell[i]->h.leftChild, pPage);
drhbd03cae2001-06-02 02:40:57 +00001523 }
drh14acc042001-06-10 19:56:58 +00001524 reparentPage(pPager, pPage->u.hdr.rightChild, pPage);
1525}
1526
1527/*
1528** Remove the i-th cell from pPage. This routine effects pPage only.
1529** The cell content is not freed or deallocated. It is assumed that
1530** the cell content has been copied someplace else. This routine just
1531** removes the reference to the cell from pPage.
1532**
1533** "sz" must be the number of bytes in the cell.
1534**
1535** Do not bother maintaining the integrity of the linked list of Cells.
drh8c42ca92001-06-22 19:15:00 +00001536** Only the pPage->apCell[] array is important. The relinkCellList()
1537** routine will be called soon after this routine in order to rebuild
1538** the linked list.
drh14acc042001-06-10 19:56:58 +00001539*/
drh8c42ca92001-06-22 19:15:00 +00001540static void dropCell(MemPage *pPage, int idx, int sz){
drh14acc042001-06-10 19:56:58 +00001541 int j;
drh8c42ca92001-06-22 19:15:00 +00001542 assert( idx>=0 && idx<pPage->nCell );
1543 assert( sz==cellSize(pPage->apCell[idx]) );
drh6019e162001-07-02 17:51:45 +00001544 assert( sqlitepager_iswriteable(pPage) );
drh7c717f72001-06-24 20:39:41 +00001545 freeSpace(pPage, Addr(pPage->apCell[idx]) - Addr(pPage), sz);
1546 for(j=idx; j<pPage->nCell-1; j++){
drh14acc042001-06-10 19:56:58 +00001547 pPage->apCell[j] = pPage->apCell[j+1];
1548 }
1549 pPage->nCell--;
1550}
1551
1552/*
1553** Insert a new cell on pPage at cell index "i". pCell points to the
1554** content of the cell.
1555**
1556** If the cell content will fit on the page, then put it there. If it
1557** will not fit, then just make pPage->apCell[i] point to the content
1558** and set pPage->isOverfull.
1559**
1560** Do not bother maintaining the integrity of the linked list of Cells.
drh8c42ca92001-06-22 19:15:00 +00001561** Only the pPage->apCell[] array is important. The relinkCellList()
1562** routine will be called soon after this routine in order to rebuild
1563** the linked list.
drh14acc042001-06-10 19:56:58 +00001564*/
1565static void insertCell(MemPage *pPage, int i, Cell *pCell, int sz){
1566 int idx, j;
1567 assert( i>=0 && i<=pPage->nCell );
1568 assert( sz==cellSize(pCell) );
drh6019e162001-07-02 17:51:45 +00001569 assert( sqlitepager_iswriteable(pPage) );
drh2aa679f2001-06-25 02:11:07 +00001570 idx = allocateSpace(pPage, sz);
drh14acc042001-06-10 19:56:58 +00001571 for(j=pPage->nCell; j>i; j--){
1572 pPage->apCell[j] = pPage->apCell[j-1];
1573 }
1574 pPage->nCell++;
drh14acc042001-06-10 19:56:58 +00001575 if( idx<=0 ){
1576 pPage->isOverfull = 1;
1577 pPage->apCell[i] = pCell;
1578 }else{
1579 memcpy(&pPage->u.aDisk[idx], pCell, sz);
drh8c42ca92001-06-22 19:15:00 +00001580 pPage->apCell[i] = (Cell*)&pPage->u.aDisk[idx];
drh14acc042001-06-10 19:56:58 +00001581 }
1582}
1583
1584/*
1585** Rebuild the linked list of cells on a page so that the cells
drh8c42ca92001-06-22 19:15:00 +00001586** occur in the order specified by the pPage->apCell[] array.
1587** Invoke this routine once to repair damage after one or more
1588** invocations of either insertCell() or dropCell().
drh14acc042001-06-10 19:56:58 +00001589*/
1590static void relinkCellList(MemPage *pPage){
1591 int i;
1592 u16 *pIdx;
drh6019e162001-07-02 17:51:45 +00001593 assert( sqlitepager_iswriteable(pPage) );
drh14acc042001-06-10 19:56:58 +00001594 pIdx = &pPage->u.hdr.firstCell;
1595 for(i=0; i<pPage->nCell; i++){
drh7c717f72001-06-24 20:39:41 +00001596 int idx = Addr(pPage->apCell[i]) - Addr(pPage);
drh8c42ca92001-06-22 19:15:00 +00001597 assert( idx>0 && idx<SQLITE_PAGE_SIZE );
drh14acc042001-06-10 19:56:58 +00001598 *pIdx = idx;
1599 pIdx = &pPage->apCell[i]->h.iNext;
1600 }
1601 *pIdx = 0;
1602}
1603
1604/*
1605** Make a copy of the contents of pFrom into pTo. The pFrom->apCell[]
drh5e00f6c2001-09-13 13:46:56 +00001606** pointers that point into pFrom->u.aDisk[] must be adjusted to point
drhdd793422001-06-28 01:54:48 +00001607** into pTo->u.aDisk[] instead. But some pFrom->apCell[] entries might
drh14acc042001-06-10 19:56:58 +00001608** not point to pFrom->u.aDisk[]. Those are unchanged.
1609*/
1610static void copyPage(MemPage *pTo, MemPage *pFrom){
1611 uptr from, to;
1612 int i;
1613 memcpy(pTo->u.aDisk, pFrom->u.aDisk, SQLITE_PAGE_SIZE);
drhdd793422001-06-28 01:54:48 +00001614 pTo->pParent = 0;
drh14acc042001-06-10 19:56:58 +00001615 pTo->isInit = 1;
1616 pTo->nCell = pFrom->nCell;
1617 pTo->nFree = pFrom->nFree;
1618 pTo->isOverfull = pFrom->isOverfull;
drh7c717f72001-06-24 20:39:41 +00001619 to = Addr(pTo);
1620 from = Addr(pFrom);
drh14acc042001-06-10 19:56:58 +00001621 for(i=0; i<pTo->nCell; i++){
drh7c717f72001-06-24 20:39:41 +00001622 uptr x = Addr(pFrom->apCell[i]);
drh8c42ca92001-06-22 19:15:00 +00001623 if( x>from && x<from+SQLITE_PAGE_SIZE ){
1624 *((uptr*)&pTo->apCell[i]) = x + to - from;
drhdd793422001-06-28 01:54:48 +00001625 }else{
1626 pTo->apCell[i] = pFrom->apCell[i];
drh14acc042001-06-10 19:56:58 +00001627 }
1628 }
drhbd03cae2001-06-02 02:40:57 +00001629}
1630
1631/*
drh8b2f49b2001-06-08 00:21:52 +00001632** This routine redistributes Cells on pPage and up to two siblings
1633** of pPage so that all pages have about the same amount of free space.
drh14acc042001-06-10 19:56:58 +00001634** Usually one sibling on either side of pPage is used in the balancing,
drh8b2f49b2001-06-08 00:21:52 +00001635** though both siblings might come from one side if pPage is the first
1636** or last child of its parent. If pPage has fewer than two siblings
1637** (something which can only happen if pPage is the root page or a
drh14acc042001-06-10 19:56:58 +00001638** child of root) then all available siblings participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00001639**
1640** The number of siblings of pPage might be increased or decreased by
drh8c42ca92001-06-22 19:15:00 +00001641** one in an effort to keep pages between 66% and 100% full. The root page
1642** is special and is allowed to be less than 66% full. If pPage is
1643** the root page, then the depth of the tree might be increased
drh8b2f49b2001-06-08 00:21:52 +00001644** or decreased by one, as necessary, to keep the root page from being
1645** overfull or empty.
1646**
drh14acc042001-06-10 19:56:58 +00001647** This routine calls relinkCellList() on its input page regardless of
1648** whether or not it does any real balancing. Client routines will typically
1649** invoke insertCell() or dropCell() before calling this routine, so we
1650** need to call relinkCellList() to clean up the mess that those other
1651** routines left behind.
1652**
1653** pCur is left pointing to the same cell as when this routine was called
drh8c42ca92001-06-22 19:15:00 +00001654** even if that cell gets moved to a different page. pCur may be NULL.
1655** Set the pCur parameter to NULL if you do not care about keeping track
1656** of a cell as that will save this routine the work of keeping track of it.
drh14acc042001-06-10 19:56:58 +00001657**
drh8b2f49b2001-06-08 00:21:52 +00001658** Note that when this routine is called, some of the Cells on pPage
drh14acc042001-06-10 19:56:58 +00001659** might not actually be stored in pPage->u.aDisk[]. This can happen
drh8b2f49b2001-06-08 00:21:52 +00001660** if the page is overfull. Part of the job of this routine is to
drh14acc042001-06-10 19:56:58 +00001661** make sure all Cells for pPage once again fit in pPage->u.aDisk[].
1662**
drh8c42ca92001-06-22 19:15:00 +00001663** In the course of balancing the siblings of pPage, the parent of pPage
1664** might become overfull or underfull. If that happens, then this routine
1665** is called recursively on the parent.
1666**
drh5e00f6c2001-09-13 13:46:56 +00001667** If this routine fails for any reason, it might leave the database
1668** in a corrupted state. So if this routine fails, the database should
1669** be rolled back.
drh8b2f49b2001-06-08 00:21:52 +00001670*/
drh14acc042001-06-10 19:56:58 +00001671static int balance(Btree *pBt, MemPage *pPage, BtCursor *pCur){
drh8b2f49b2001-06-08 00:21:52 +00001672 MemPage *pParent; /* The parent of pPage */
drh14acc042001-06-10 19:56:58 +00001673 MemPage *apOld[3]; /* pPage and up to two siblings */
drh8b2f49b2001-06-08 00:21:52 +00001674 Pgno pgnoOld[3]; /* Page numbers for each page in apOld[] */
drh14acc042001-06-10 19:56:58 +00001675 MemPage *apNew[4]; /* pPage and up to 3 siblings after balancing */
1676 Pgno pgnoNew[4]; /* Page numbers for each page in apNew[] */
drh8b2f49b2001-06-08 00:21:52 +00001677 int idxDiv[3]; /* Indices of divider cells in pParent */
1678 Cell *apDiv[3]; /* Divider cells in pParent */
1679 int nCell; /* Number of cells in apCell[] */
1680 int nOld; /* Number of pages in apOld[] */
1681 int nNew; /* Number of pages in apNew[] */
drh8b2f49b2001-06-08 00:21:52 +00001682 int nDiv; /* Number of cells in apDiv[] */
drh14acc042001-06-10 19:56:58 +00001683 int i, j, k; /* Loop counters */
1684 int idx; /* Index of pPage in pParent->apCell[] */
1685 int nxDiv; /* Next divider slot in pParent->apCell[] */
1686 int rc; /* The return code */
1687 int iCur; /* apCell[iCur] is the cell of the cursor */
drh5edc3122001-09-13 21:53:09 +00001688 MemPage *pOldCurPage; /* The cursor originally points to this page */
drh8c42ca92001-06-22 19:15:00 +00001689 int totalSize; /* Total bytes for all cells */
drh6019e162001-07-02 17:51:45 +00001690 int subtotal; /* Subtotal of bytes in cells on one page */
1691 int cntNew[4]; /* Index in apCell[] of cell after i-th page */
1692 int szNew[4]; /* Combined size of cells place on i-th page */
drh9ca7d3b2001-06-28 11:50:21 +00001693 MemPage *extraUnref = 0; /* A page that needs to be unref-ed */
drh8c42ca92001-06-22 19:15:00 +00001694 Pgno pgno; /* Page number */
drh14acc042001-06-10 19:56:58 +00001695 Cell *apCell[MX_CELL*3+5]; /* All cells from pages being balanceed */
1696 int szCell[MX_CELL*3+5]; /* Local size of all cells */
1697 Cell aTemp[2]; /* Temporary holding area for apDiv[] */
1698 MemPage aOld[3]; /* Temporary copies of pPage and its siblings */
drh8b2f49b2001-06-08 00:21:52 +00001699
drh14acc042001-06-10 19:56:58 +00001700 /*
1701 ** Return without doing any work if pPage is neither overfull nor
1702 ** underfull.
drh8b2f49b2001-06-08 00:21:52 +00001703 */
drh6019e162001-07-02 17:51:45 +00001704 assert( sqlitepager_iswriteable(pPage) );
drha1b351a2001-09-14 16:42:12 +00001705 if( !pPage->isOverfull && pPage->nFree<SQLITE_PAGE_SIZE/2
1706 && pPage->nCell>=2){
drh14acc042001-06-10 19:56:58 +00001707 relinkCellList(pPage);
drh8b2f49b2001-06-08 00:21:52 +00001708 return SQLITE_OK;
1709 }
1710
1711 /*
drh14acc042001-06-10 19:56:58 +00001712 ** Find the parent of the page to be balanceed.
1713 ** If there is no parent, it means this page is the root page and
drh8b2f49b2001-06-08 00:21:52 +00001714 ** special rules apply.
1715 */
drh14acc042001-06-10 19:56:58 +00001716 pParent = pPage->pParent;
drh8b2f49b2001-06-08 00:21:52 +00001717 if( pParent==0 ){
1718 Pgno pgnoChild;
drh8c42ca92001-06-22 19:15:00 +00001719 MemPage *pChild;
drh8b2f49b2001-06-08 00:21:52 +00001720 if( pPage->nCell==0 ){
drh14acc042001-06-10 19:56:58 +00001721 if( pPage->u.hdr.rightChild ){
1722 /*
1723 ** The root page is empty. Copy the one child page
drh8b2f49b2001-06-08 00:21:52 +00001724 ** into the root page and return. This reduces the depth
1725 ** of the BTree by one.
1726 */
drh14acc042001-06-10 19:56:58 +00001727 pgnoChild = pPage->u.hdr.rightChild;
drh8c42ca92001-06-22 19:15:00 +00001728 rc = sqlitepager_get(pBt->pPager, pgnoChild, (void**)&pChild);
drh8b2f49b2001-06-08 00:21:52 +00001729 if( rc ) return rc;
1730 memcpy(pPage, pChild, SQLITE_PAGE_SIZE);
1731 pPage->isInit = 0;
drh6019e162001-07-02 17:51:45 +00001732 rc = initPage(pPage, sqlitepager_pagenumber(pPage), 0);
1733 assert( rc==SQLITE_OK );
drh8b2f49b2001-06-08 00:21:52 +00001734 reparentChildPages(pBt->pPager, pPage);
drh5edc3122001-09-13 21:53:09 +00001735 if( pCur && pCur->pPage==pChild ){
1736 sqlitepager_unref(pChild);
1737 pCur->pPage = pPage;
1738 sqlitepager_ref(pPage);
1739 }
drh8b2f49b2001-06-08 00:21:52 +00001740 freePage(pBt, pChild, pgnoChild);
1741 sqlitepager_unref(pChild);
drhefc251d2001-07-01 22:12:01 +00001742 }else{
1743 relinkCellList(pPage);
drh8b2f49b2001-06-08 00:21:52 +00001744 }
1745 return SQLITE_OK;
1746 }
drh14acc042001-06-10 19:56:58 +00001747 if( !pPage->isOverfull ){
drh8b2f49b2001-06-08 00:21:52 +00001748 /* It is OK for the root page to be less than half full.
1749 */
drh14acc042001-06-10 19:56:58 +00001750 relinkCellList(pPage);
drh8b2f49b2001-06-08 00:21:52 +00001751 return SQLITE_OK;
1752 }
drh14acc042001-06-10 19:56:58 +00001753 /*
1754 ** If we get to here, it means the root page is overfull.
drh8b2f49b2001-06-08 00:21:52 +00001755 ** When this happens, Create a new child page and copy the
1756 ** contents of the root into the child. Then make the root
drh14acc042001-06-10 19:56:58 +00001757 ** page an empty page with rightChild pointing to the new
drh8b2f49b2001-06-08 00:21:52 +00001758 ** child. Then fall thru to the code below which will cause
1759 ** the overfull child page to be split.
1760 */
drh14acc042001-06-10 19:56:58 +00001761 rc = sqlitepager_write(pPage);
1762 if( rc ) return rc;
drh8b2f49b2001-06-08 00:21:52 +00001763 rc = allocatePage(pBt, &pChild, &pgnoChild);
1764 if( rc ) return rc;
drh6019e162001-07-02 17:51:45 +00001765 assert( sqlitepager_iswriteable(pChild) );
drh14acc042001-06-10 19:56:58 +00001766 copyPage(pChild, pPage);
1767 pChild->pParent = pPage;
drhdd793422001-06-28 01:54:48 +00001768 sqlitepager_ref(pPage);
drh14acc042001-06-10 19:56:58 +00001769 pChild->isOverfull = 1;
drh5edc3122001-09-13 21:53:09 +00001770 if( pCur && pCur->pPage==pPage ){
1771 sqlitepager_unref(pPage);
drh14acc042001-06-10 19:56:58 +00001772 pCur->pPage = pChild;
drh9ca7d3b2001-06-28 11:50:21 +00001773 }else{
1774 extraUnref = pChild;
drh8b2f49b2001-06-08 00:21:52 +00001775 }
drh8b2f49b2001-06-08 00:21:52 +00001776 zeroPage(pPage);
drh14acc042001-06-10 19:56:58 +00001777 pPage->u.hdr.rightChild = pgnoChild;
drh8b2f49b2001-06-08 00:21:52 +00001778 pParent = pPage;
1779 pPage = pChild;
drh8b2f49b2001-06-08 00:21:52 +00001780 }
drh6019e162001-07-02 17:51:45 +00001781 rc = sqlitepager_write(pParent);
1782 if( rc ) return rc;
drh14acc042001-06-10 19:56:58 +00001783
drh8b2f49b2001-06-08 00:21:52 +00001784 /*
drh14acc042001-06-10 19:56:58 +00001785 ** Find the Cell in the parent page whose h.leftChild points back
1786 ** to pPage. The "idx" variable is the index of that cell. If pPage
1787 ** is the rightmost child of pParent then set idx to pParent->nCell
drh8b2f49b2001-06-08 00:21:52 +00001788 */
1789 idx = -1;
1790 pgno = sqlitepager_pagenumber(pPage);
1791 for(i=0; i<pParent->nCell; i++){
1792 if( pParent->apCell[i]->h.leftChild==pgno ){
1793 idx = i;
1794 break;
1795 }
1796 }
drhdd793422001-06-28 01:54:48 +00001797 if( idx<0 && pParent->u.hdr.rightChild==pgno ){
1798 idx = pParent->nCell;
drh8b2f49b2001-06-08 00:21:52 +00001799 }
1800 if( idx<0 ){
drh14acc042001-06-10 19:56:58 +00001801 return SQLITE_CORRUPT;
drh8b2f49b2001-06-08 00:21:52 +00001802 }
1803
1804 /*
drh14acc042001-06-10 19:56:58 +00001805 ** Initialize variables so that it will be safe to jump
drh5edc3122001-09-13 21:53:09 +00001806 ** directly to balance_cleanup at any moment.
drh8b2f49b2001-06-08 00:21:52 +00001807 */
drh14acc042001-06-10 19:56:58 +00001808 nOld = nNew = 0;
1809 sqlitepager_ref(pParent);
1810
1811 /*
1812 ** Find sibling pages to pPage and the Cells in pParent that divide
1813 ** the siblings. An attempt is made to find one sibling on either
1814 ** side of pPage. Both siblings are taken from one side, however, if
1815 ** pPage is either the first or last child of its parent. If pParent
1816 ** has 3 or fewer children then all children of pParent are taken.
1817 */
1818 if( idx==pParent->nCell ){
1819 nxDiv = idx - 2;
drh8b2f49b2001-06-08 00:21:52 +00001820 }else{
drh14acc042001-06-10 19:56:58 +00001821 nxDiv = idx - 1;
drh8b2f49b2001-06-08 00:21:52 +00001822 }
drh14acc042001-06-10 19:56:58 +00001823 if( nxDiv<0 ) nxDiv = 0;
drh8b2f49b2001-06-08 00:21:52 +00001824 nDiv = 0;
drh14acc042001-06-10 19:56:58 +00001825 for(i=0, k=nxDiv; i<3; i++, k++){
1826 if( k<pParent->nCell ){
1827 idxDiv[i] = k;
1828 apDiv[i] = pParent->apCell[k];
drh8b2f49b2001-06-08 00:21:52 +00001829 nDiv++;
1830 pgnoOld[i] = apDiv[i]->h.leftChild;
drh14acc042001-06-10 19:56:58 +00001831 }else if( k==pParent->nCell ){
drh8c42ca92001-06-22 19:15:00 +00001832 pgnoOld[i] = pParent->u.hdr.rightChild;
drh14acc042001-06-10 19:56:58 +00001833 }else{
1834 break;
drh8b2f49b2001-06-08 00:21:52 +00001835 }
drh8c42ca92001-06-22 19:15:00 +00001836 rc = sqlitepager_get(pBt->pPager, pgnoOld[i], (void**)&apOld[i]);
drh14acc042001-06-10 19:56:58 +00001837 if( rc ) goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00001838 rc = initPage(apOld[i], pgnoOld[i], pParent);
1839 if( rc ) goto balance_cleanup;
drh14acc042001-06-10 19:56:58 +00001840 nOld++;
drh8b2f49b2001-06-08 00:21:52 +00001841 }
1842
1843 /*
drh14acc042001-06-10 19:56:58 +00001844 ** Set iCur to be the index in apCell[] of the cell that the cursor
1845 ** is pointing to. We will need this later on in order to keep the
drh5edc3122001-09-13 21:53:09 +00001846 ** cursor pointing at the same cell. If pCur points to a page that
1847 ** has no involvement with this rebalancing, then set iCur to a large
1848 ** number so that the iCur==j tests always fail in the main cell
1849 ** distribution loop below.
drh14acc042001-06-10 19:56:58 +00001850 */
1851 if( pCur ){
drh5edc3122001-09-13 21:53:09 +00001852 iCur = 0;
1853 for(i=0; i<nOld; i++){
1854 if( pCur->pPage==apOld[i] ){
1855 iCur += pCur->idx;
1856 break;
1857 }
1858 iCur += apOld[i]->nCell;
1859 if( i<nOld-1 && pCur->pPage==pParent && pCur->idx==idxDiv[i] ){
1860 break;
1861 }
1862 iCur++;
drh14acc042001-06-10 19:56:58 +00001863 }
drh5edc3122001-09-13 21:53:09 +00001864 pOldCurPage = pCur->pPage;
drh14acc042001-06-10 19:56:58 +00001865 }
1866
1867 /*
1868 ** Make copies of the content of pPage and its siblings into aOld[].
1869 ** The rest of this function will use data from the copies rather
1870 ** that the original pages since the original pages will be in the
1871 ** process of being overwritten.
1872 */
1873 for(i=0; i<nOld; i++){
1874 copyPage(&aOld[i], apOld[i]);
1875 rc = freePage(pBt, apOld[i], pgnoOld[i]);
1876 if( rc ) goto balance_cleanup;
drhdd793422001-06-28 01:54:48 +00001877 sqlitepager_unref(apOld[i]);
drh14acc042001-06-10 19:56:58 +00001878 apOld[i] = &aOld[i];
1879 }
1880
1881 /*
1882 ** Load pointers to all cells on sibling pages and the divider cells
1883 ** into the local apCell[] array. Make copies of the divider cells
1884 ** into aTemp[] and remove the the divider Cells from pParent.
drh8b2f49b2001-06-08 00:21:52 +00001885 */
1886 nCell = 0;
1887 for(i=0; i<nOld; i++){
1888 MemPage *pOld = apOld[i];
1889 for(j=0; j<pOld->nCell; j++){
drh14acc042001-06-10 19:56:58 +00001890 apCell[nCell] = pOld->apCell[j];
1891 szCell[nCell] = cellSize(apCell[nCell]);
1892 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00001893 }
1894 if( i<nOld-1 ){
drh14acc042001-06-10 19:56:58 +00001895 szCell[nCell] = cellSize(apDiv[i]);
drh8c42ca92001-06-22 19:15:00 +00001896 memcpy(&aTemp[i], apDiv[i], szCell[nCell]);
drh14acc042001-06-10 19:56:58 +00001897 apCell[nCell] = &aTemp[i];
1898 dropCell(pParent, nxDiv, szCell[nCell]);
1899 assert( apCell[nCell]->h.leftChild==pgnoOld[i] );
1900 apCell[nCell]->h.leftChild = pOld->u.hdr.rightChild;
1901 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00001902 }
1903 }
1904
1905 /*
drh6019e162001-07-02 17:51:45 +00001906 ** Figure out the number of pages needed to hold all nCell cells.
1907 ** Store this number in "k". Also compute szNew[] which is the total
1908 ** size of all cells on the i-th page and cntNew[] which is the index
1909 ** in apCell[] of the cell that divides path i from path i+1.
1910 ** cntNew[k] should equal nCell.
1911 **
1912 ** This little patch of code is critical for keeping the tree
1913 ** balanced.
drh8b2f49b2001-06-08 00:21:52 +00001914 */
1915 totalSize = 0;
1916 for(i=0; i<nCell; i++){
drh14acc042001-06-10 19:56:58 +00001917 totalSize += szCell[i];
drh8b2f49b2001-06-08 00:21:52 +00001918 }
drh6019e162001-07-02 17:51:45 +00001919 for(subtotal=k=i=0; i<nCell; i++){
1920 subtotal += szCell[i];
1921 if( subtotal > USABLE_SPACE ){
1922 szNew[k] = subtotal - szCell[i];
1923 cntNew[k] = i;
1924 subtotal = 0;
1925 k++;
1926 }
1927 }
1928 szNew[k] = subtotal;
1929 cntNew[k] = nCell;
1930 k++;
1931 for(i=k-1; i>0; i--){
1932 while( szNew[i]<USABLE_SPACE/2 ){
1933 cntNew[i-1]--;
1934 assert( cntNew[i-1]>0 );
1935 szNew[i] += szCell[cntNew[i-1]];
1936 szNew[i-1] -= szCell[cntNew[i-1]-1];
1937 }
1938 }
1939 assert( cntNew[0]>0 );
drh8b2f49b2001-06-08 00:21:52 +00001940
1941 /*
drh6019e162001-07-02 17:51:45 +00001942 ** Allocate k new pages
drh8b2f49b2001-06-08 00:21:52 +00001943 */
drh14acc042001-06-10 19:56:58 +00001944 for(i=0; i<k; i++){
drh8b2f49b2001-06-08 00:21:52 +00001945 rc = allocatePage(pBt, &apNew[i], &pgnoNew[i]);
drh14acc042001-06-10 19:56:58 +00001946 if( rc ) goto balance_cleanup;
1947 nNew++;
drh8b2f49b2001-06-08 00:21:52 +00001948 zeroPage(apNew[i]);
drh6019e162001-07-02 17:51:45 +00001949 apNew[i]->isInit = 1;
drh8b2f49b2001-06-08 00:21:52 +00001950 }
1951
1952 /*
drh14acc042001-06-10 19:56:58 +00001953 ** Evenly distribute the data in apCell[] across the new pages.
1954 ** Insert divider cells into pParent as necessary.
1955 */
1956 j = 0;
1957 for(i=0; i<nNew; i++){
1958 MemPage *pNew = apNew[i];
drh6019e162001-07-02 17:51:45 +00001959 while( j<cntNew[i] ){
1960 assert( pNew->nFree>=szCell[j] );
drh14acc042001-06-10 19:56:58 +00001961 if( pCur && iCur==j ){ pCur->pPage = pNew; pCur->idx = pNew->nCell; }
1962 insertCell(pNew, pNew->nCell, apCell[j], szCell[j]);
1963 j++;
1964 }
drh6019e162001-07-02 17:51:45 +00001965 assert( pNew->nCell>0 );
drh14acc042001-06-10 19:56:58 +00001966 assert( !pNew->isOverfull );
1967 relinkCellList(pNew);
1968 if( i<nNew-1 && j<nCell ){
1969 pNew->u.hdr.rightChild = apCell[j]->h.leftChild;
1970 apCell[j]->h.leftChild = pgnoNew[i];
1971 if( pCur && iCur==j ){ pCur->pPage = pParent; pCur->idx = nxDiv; }
1972 insertCell(pParent, nxDiv, apCell[j], szCell[j]);
1973 j++;
1974 nxDiv++;
1975 }
1976 }
drh6019e162001-07-02 17:51:45 +00001977 assert( j==nCell );
drh14acc042001-06-10 19:56:58 +00001978 apNew[nNew-1]->u.hdr.rightChild = apOld[nOld-1]->u.hdr.rightChild;
1979 if( nxDiv==pParent->nCell ){
1980 pParent->u.hdr.rightChild = pgnoNew[nNew-1];
1981 }else{
1982 pParent->apCell[nxDiv]->h.leftChild = pgnoNew[nNew-1];
1983 }
1984 if( pCur ){
drh3fc190c2001-09-14 03:24:23 +00001985 if( j<=iCur && pCur->pPage==pParent && pCur->idx>idxDiv[nOld-1] ){
1986 assert( pCur->pPage==pOldCurPage );
1987 pCur->idx += nNew - nOld;
1988 }else{
1989 assert( pOldCurPage!=0 );
1990 sqlitepager_ref(pCur->pPage);
1991 sqlitepager_unref(pOldCurPage);
1992 }
drh14acc042001-06-10 19:56:58 +00001993 }
1994
1995 /*
1996 ** Reparent children of all cells.
drh8b2f49b2001-06-08 00:21:52 +00001997 */
1998 for(i=0; i<nNew; i++){
drh14acc042001-06-10 19:56:58 +00001999 reparentChildPages(pBt->pPager, apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00002000 }
drh14acc042001-06-10 19:56:58 +00002001 reparentChildPages(pBt->pPager, pParent);
drh8b2f49b2001-06-08 00:21:52 +00002002
2003 /*
drh14acc042001-06-10 19:56:58 +00002004 ** balance the parent page.
drh8b2f49b2001-06-08 00:21:52 +00002005 */
drh5edc3122001-09-13 21:53:09 +00002006 rc = balance(pBt, pParent, pCur);
drh8b2f49b2001-06-08 00:21:52 +00002007
2008 /*
drh14acc042001-06-10 19:56:58 +00002009 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00002010 */
drh14acc042001-06-10 19:56:58 +00002011balance_cleanup:
drh9ca7d3b2001-06-28 11:50:21 +00002012 if( extraUnref ){
2013 sqlitepager_unref(extraUnref);
2014 }
drh8b2f49b2001-06-08 00:21:52 +00002015 for(i=0; i<nOld; i++){
drhdd793422001-06-28 01:54:48 +00002016 if( apOld[i]!=&aOld[i] ) sqlitepager_unref(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00002017 }
drh14acc042001-06-10 19:56:58 +00002018 for(i=0; i<nNew; i++){
2019 sqlitepager_unref(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00002020 }
drh14acc042001-06-10 19:56:58 +00002021 if( pCur && pCur->pPage==0 ){
2022 pCur->pPage = pParent;
2023 pCur->idx = 0;
2024 }else{
2025 sqlitepager_unref(pParent);
drh8b2f49b2001-06-08 00:21:52 +00002026 }
2027 return rc;
2028}
2029
2030/*
drh3b7511c2001-05-26 13:15:44 +00002031** Insert a new record into the BTree. The key is given by (pKey,nKey)
2032** and the data is given by (pData,nData). The cursor is used only to
2033** define what database the record should be inserted into. The cursor
drh14acc042001-06-10 19:56:58 +00002034** is left pointing at the new record.
drh3b7511c2001-05-26 13:15:44 +00002035*/
2036int sqliteBtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00002037 BtCursor *pCur, /* Insert data into the table of this cursor */
drhbe0072d2001-09-13 14:46:09 +00002038 const void *pKey, int nKey, /* The key of the new record */
drh5c4d9702001-08-20 00:33:58 +00002039 const void *pData, int nData /* The data of the new record */
drh3b7511c2001-05-26 13:15:44 +00002040){
2041 Cell newCell;
2042 int rc;
2043 int loc;
drh14acc042001-06-10 19:56:58 +00002044 int szNew;
drh3b7511c2001-05-26 13:15:44 +00002045 MemPage *pPage;
2046 Btree *pBt = pCur->pBt;
2047
drh5edc3122001-09-13 21:53:09 +00002048 if( !pCur->pBt->inTrans || nKey+nData==0 ){
drh8b2f49b2001-06-08 00:21:52 +00002049 return SQLITE_ERROR; /* Must start a transaction first */
2050 }
drh14acc042001-06-10 19:56:58 +00002051 rc = sqliteBtreeMoveto(pCur, pKey, nKey, &loc);
drh3b7511c2001-05-26 13:15:44 +00002052 if( rc ) return rc;
drh14acc042001-06-10 19:56:58 +00002053 pPage = pCur->pPage;
2054 rc = sqlitepager_write(pPage);
drhbd03cae2001-06-02 02:40:57 +00002055 if( rc ) return rc;
drh3b7511c2001-05-26 13:15:44 +00002056 rc = fillInCell(pBt, &newCell, pKey, nKey, pData, nData);
2057 if( rc ) return rc;
drh14acc042001-06-10 19:56:58 +00002058 szNew = cellSize(&newCell);
drh3b7511c2001-05-26 13:15:44 +00002059 if( loc==0 ){
drh14acc042001-06-10 19:56:58 +00002060 newCell.h.leftChild = pPage->apCell[pCur->idx]->h.leftChild;
2061 rc = clearCell(pBt, pPage->apCell[pCur->idx]);
drh5e2f8b92001-05-28 00:41:15 +00002062 if( rc ) return rc;
drh14acc042001-06-10 19:56:58 +00002063 dropCell(pPage, pCur->idx, cellSize(pPage->apCell[pCur->idx]));
drh7c717f72001-06-24 20:39:41 +00002064 }else if( loc<0 && pPage->nCell>0 ){
drh14acc042001-06-10 19:56:58 +00002065 assert( pPage->u.hdr.rightChild==0 ); /* Must be a leaf page */
2066 pCur->idx++;
2067 }else{
2068 assert( pPage->u.hdr.rightChild==0 ); /* Must be a leaf page */
drh3b7511c2001-05-26 13:15:44 +00002069 }
drh7c717f72001-06-24 20:39:41 +00002070 insertCell(pPage, pCur->idx, &newCell, szNew);
drh14acc042001-06-10 19:56:58 +00002071 rc = balance(pCur->pBt, pPage, pCur);
drh3fc190c2001-09-14 03:24:23 +00002072 /* sqliteBtreePageDump(pCur->pBt, pCur->pgnoRoot, 1); */
2073 /* fflush(stdout); */
drh5e2f8b92001-05-28 00:41:15 +00002074 return rc;
2075}
2076
2077/*
drhbd03cae2001-06-02 02:40:57 +00002078** Delete the entry that the cursor is pointing to.
drh5e2f8b92001-05-28 00:41:15 +00002079**
drhbd03cae2001-06-02 02:40:57 +00002080** The cursor is left pointing at either the next or the previous
2081** entry. If the cursor is left pointing to the next entry, then
2082** the pCur->bSkipNext flag is set which forces the next call to
2083** sqliteBtreeNext() to be a no-op. That way, you can always call
2084** sqliteBtreeNext() after a delete and the cursor will be left
2085** pointing to the first entry after the deleted entry.
drh3b7511c2001-05-26 13:15:44 +00002086*/
2087int sqliteBtreeDelete(BtCursor *pCur){
drh5e2f8b92001-05-28 00:41:15 +00002088 MemPage *pPage = pCur->pPage;
2089 Cell *pCell;
2090 int rc;
drh8c42ca92001-06-22 19:15:00 +00002091 Pgno pgnoChild;
drh8b2f49b2001-06-08 00:21:52 +00002092
2093 if( !pCur->pBt->inTrans ){
2094 return SQLITE_ERROR; /* Must start a transaction first */
2095 }
drhbd03cae2001-06-02 02:40:57 +00002096 if( pCur->idx >= pPage->nCell ){
2097 return SQLITE_ERROR; /* The cursor is not pointing to anything */
2098 }
2099 rc = sqlitepager_write(pPage);
2100 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00002101 pCell = pPage->apCell[pCur->idx];
drh14acc042001-06-10 19:56:58 +00002102 pgnoChild = pCell->h.leftChild;
drh8c42ca92001-06-22 19:15:00 +00002103 clearCell(pCur->pBt, pCell);
drh14acc042001-06-10 19:56:58 +00002104 if( pgnoChild ){
2105 /*
drh5e00f6c2001-09-13 13:46:56 +00002106 ** The entry we are about to delete is not a leaf so if we do not
drh9ca7d3b2001-06-28 11:50:21 +00002107 ** do something we will leave a hole on an internal page.
2108 ** We have to fill the hole by moving in a cell from a leaf. The
2109 ** next Cell after the one to be deleted is guaranteed to exist and
2110 ** to be a leaf so we can use it.
drh5e2f8b92001-05-28 00:41:15 +00002111 */
drh14acc042001-06-10 19:56:58 +00002112 BtCursor leafCur;
2113 Cell *pNext;
2114 int szNext;
2115 getTempCursor(pCur, &leafCur);
2116 rc = sqliteBtreeNext(&leafCur, 0);
2117 if( rc!=SQLITE_OK ){
2118 return SQLITE_CORRUPT;
drh5e2f8b92001-05-28 00:41:15 +00002119 }
drh6019e162001-07-02 17:51:45 +00002120 rc = sqlitepager_write(leafCur.pPage);
2121 if( rc ) return rc;
drh9ca7d3b2001-06-28 11:50:21 +00002122 dropCell(pPage, pCur->idx, cellSize(pCell));
drh8c42ca92001-06-22 19:15:00 +00002123 pNext = leafCur.pPage->apCell[leafCur.idx];
drh14acc042001-06-10 19:56:58 +00002124 szNext = cellSize(pNext);
drh8c42ca92001-06-22 19:15:00 +00002125 pNext->h.leftChild = pgnoChild;
drh14acc042001-06-10 19:56:58 +00002126 insertCell(pPage, pCur->idx, pNext, szNext);
2127 rc = balance(pCur->pBt, pPage, pCur);
drh5e2f8b92001-05-28 00:41:15 +00002128 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00002129 pCur->bSkipNext = 1;
drh14acc042001-06-10 19:56:58 +00002130 dropCell(leafCur.pPage, leafCur.idx, szNext);
2131 rc = balance(pCur->pBt, leafCur.pPage, 0);
drh8c42ca92001-06-22 19:15:00 +00002132 releaseTempCursor(&leafCur);
drh5e2f8b92001-05-28 00:41:15 +00002133 }else{
drh9ca7d3b2001-06-28 11:50:21 +00002134 dropCell(pPage, pCur->idx, cellSize(pCell));
drh5edc3122001-09-13 21:53:09 +00002135 if( pCur->idx>=pPage->nCell ){
2136 pCur->idx = pPage->nCell-1;
2137 if( pCur->idx<0 ){ pCur->idx = 0; }
2138 pCur->bSkipNext = 0;
drh6019e162001-07-02 17:51:45 +00002139 }else{
2140 pCur->bSkipNext = 1;
2141 }
drh14acc042001-06-10 19:56:58 +00002142 rc = balance(pCur->pBt, pPage, pCur);
drh5e2f8b92001-05-28 00:41:15 +00002143 }
drh5e2f8b92001-05-28 00:41:15 +00002144 return rc;
drh3b7511c2001-05-26 13:15:44 +00002145}
drh8b2f49b2001-06-08 00:21:52 +00002146
2147/*
2148** Create a new BTree in the same file. Write into *piTable the index
2149** of the root page of the new table.
2150*/
2151int sqliteBtreeCreateTable(Btree *pBt, int *piTable){
2152 MemPage *pRoot;
2153 Pgno pgnoRoot;
2154 int rc;
2155 if( !pBt->inTrans ){
2156 return SQLITE_ERROR; /* Must start a transaction first */
2157 }
2158 rc = allocatePage(pBt, &pRoot, &pgnoRoot);
2159 if( rc ) return rc;
drh6019e162001-07-02 17:51:45 +00002160 assert( sqlitepager_iswriteable(pRoot) );
drh8b2f49b2001-06-08 00:21:52 +00002161 zeroPage(pRoot);
2162 sqlitepager_unref(pRoot);
2163 *piTable = (int)pgnoRoot;
2164 return SQLITE_OK;
2165}
2166
2167/*
2168** Erase the given database page and all its children. Return
2169** the page to the freelist.
2170*/
drh2aa679f2001-06-25 02:11:07 +00002171static int clearDatabasePage(Btree *pBt, Pgno pgno, int freePageFlag){
drh8b2f49b2001-06-08 00:21:52 +00002172 MemPage *pPage;
2173 int rc;
drh8b2f49b2001-06-08 00:21:52 +00002174 Cell *pCell;
2175 int idx;
2176
drh8c42ca92001-06-22 19:15:00 +00002177 rc = sqlitepager_get(pBt->pPager, pgno, (void**)&pPage);
drh8b2f49b2001-06-08 00:21:52 +00002178 if( rc ) return rc;
drh6019e162001-07-02 17:51:45 +00002179 rc = sqlitepager_write(pPage);
2180 if( rc ) return rc;
drh14acc042001-06-10 19:56:58 +00002181 idx = pPage->u.hdr.firstCell;
drh8b2f49b2001-06-08 00:21:52 +00002182 while( idx>0 ){
drh14acc042001-06-10 19:56:58 +00002183 pCell = (Cell*)&pPage->u.aDisk[idx];
drh8b2f49b2001-06-08 00:21:52 +00002184 idx = pCell->h.iNext;
2185 if( pCell->h.leftChild ){
drh2aa679f2001-06-25 02:11:07 +00002186 rc = clearDatabasePage(pBt, pCell->h.leftChild, 1);
drh8b2f49b2001-06-08 00:21:52 +00002187 if( rc ) return rc;
2188 }
drh8c42ca92001-06-22 19:15:00 +00002189 rc = clearCell(pBt, pCell);
drh8b2f49b2001-06-08 00:21:52 +00002190 if( rc ) return rc;
2191 }
drh2aa679f2001-06-25 02:11:07 +00002192 if( pPage->u.hdr.rightChild ){
2193 rc = clearDatabasePage(pBt, pPage->u.hdr.rightChild, 1);
2194 if( rc ) return rc;
2195 }
2196 if( freePageFlag ){
2197 rc = freePage(pBt, pPage, pgno);
2198 }else{
2199 zeroPage(pPage);
2200 }
drhdd793422001-06-28 01:54:48 +00002201 sqlitepager_unref(pPage);
drh2aa679f2001-06-25 02:11:07 +00002202 return rc;
drh8b2f49b2001-06-08 00:21:52 +00002203}
2204
2205/*
2206** Delete all information from a single table in the database.
2207*/
2208int sqliteBtreeClearTable(Btree *pBt, int iTable){
2209 int rc;
2210 if( !pBt->inTrans ){
2211 return SQLITE_ERROR; /* Must start a transaction first */
2212 }
drh2aa679f2001-06-25 02:11:07 +00002213 rc = clearDatabasePage(pBt, (Pgno)iTable, 0);
drh8b2f49b2001-06-08 00:21:52 +00002214 if( rc ){
2215 sqliteBtreeRollback(pBt);
drh8b2f49b2001-06-08 00:21:52 +00002216 }
drh8c42ca92001-06-22 19:15:00 +00002217 return rc;
drh8b2f49b2001-06-08 00:21:52 +00002218}
2219
2220/*
2221** Erase all information in a table and add the root of the table to
2222** the freelist. Except, the root of the principle table (the one on
2223** page 2) is never added to the freelist.
2224*/
2225int sqliteBtreeDropTable(Btree *pBt, int iTable){
2226 int rc;
2227 MemPage *pPage;
2228 if( !pBt->inTrans ){
2229 return SQLITE_ERROR; /* Must start a transaction first */
2230 }
drh8c42ca92001-06-22 19:15:00 +00002231 rc = sqlitepager_get(pBt->pPager, (Pgno)iTable, (void**)&pPage);
drh2aa679f2001-06-25 02:11:07 +00002232 if( rc ) return rc;
2233 rc = sqliteBtreeClearTable(pBt, iTable);
2234 if( rc ) return rc;
2235 if( iTable>2 ){
2236 rc = freePage(pBt, pPage, iTable);
2237 }else{
2238 zeroPage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00002239 }
drhdd793422001-06-28 01:54:48 +00002240 sqlitepager_unref(pPage);
drh8b2f49b2001-06-08 00:21:52 +00002241 return rc;
2242}
2243
2244/*
2245** Read the meta-information out of a database file.
2246*/
2247int sqliteBtreeGetMeta(Btree *pBt, int *aMeta){
2248 PageOne *pP1;
2249 int rc;
2250
drh8c42ca92001-06-22 19:15:00 +00002251 rc = sqlitepager_get(pBt->pPager, 1, (void**)&pP1);
drh8b2f49b2001-06-08 00:21:52 +00002252 if( rc ) return rc;
drh2aa679f2001-06-25 02:11:07 +00002253 aMeta[0] = pP1->nFree;
2254 memcpy(&aMeta[1], pP1->aMeta, sizeof(pP1->aMeta));
drh8b2f49b2001-06-08 00:21:52 +00002255 sqlitepager_unref(pP1);
2256 return SQLITE_OK;
2257}
2258
2259/*
2260** Write meta-information back into the database.
2261*/
2262int sqliteBtreeUpdateMeta(Btree *pBt, int *aMeta){
2263 PageOne *pP1;
2264 int rc;
2265 if( !pBt->inTrans ){
2266 return SQLITE_ERROR; /* Must start a transaction first */
2267 }
2268 pP1 = pBt->page1;
2269 rc = sqlitepager_write(pP1);
drh2aa679f2001-06-25 02:11:07 +00002270 if( rc ) return rc;
2271 memcpy(pP1->aMeta, &aMeta[1], sizeof(pP1->aMeta));
drh8b2f49b2001-06-08 00:21:52 +00002272 return SQLITE_OK;
2273}
drh8c42ca92001-06-22 19:15:00 +00002274
drh5eddca62001-06-30 21:53:53 +00002275/******************************************************************************
2276** The complete implementation of the BTree subsystem is above this line.
2277** All the code the follows is for testing and troubleshooting the BTree
2278** subsystem. None of the code that follows is used during normal operation.
2279** All of the following code is omitted unless the library is compiled with
2280** the -DSQLITE_TEST=1 compiler option.
2281******************************************************************************/
drh5edc3122001-09-13 21:53:09 +00002282#if 1
drh5eddca62001-06-30 21:53:53 +00002283
drh8c42ca92001-06-22 19:15:00 +00002284/*
2285** Print a disassembly of the given page on standard output. This routine
2286** is used for debugging and testing only.
2287*/
drh6019e162001-07-02 17:51:45 +00002288int sqliteBtreePageDump(Btree *pBt, int pgno, int recursive){
drh8c42ca92001-06-22 19:15:00 +00002289 int rc;
2290 MemPage *pPage;
2291 int i, j;
2292 int nFree;
2293 u16 idx;
2294 char range[20];
2295 unsigned char payload[20];
2296 rc = sqlitepager_get(pBt->pPager, (Pgno)pgno, (void**)&pPage);
2297 if( rc ){
2298 return rc;
2299 }
drh6019e162001-07-02 17:51:45 +00002300 if( recursive ) printf("PAGE %d:\n", pgno);
drh8c42ca92001-06-22 19:15:00 +00002301 i = 0;
2302 idx = pPage->u.hdr.firstCell;
2303 while( idx>0 && idx<=SQLITE_PAGE_SIZE-MIN_CELL_SIZE ){
2304 Cell *pCell = (Cell*)&pPage->u.aDisk[idx];
2305 int sz = cellSize(pCell);
2306 sprintf(range,"%d..%d", idx, idx+sz-1);
drh2aa679f2001-06-25 02:11:07 +00002307 sz = pCell->h.nKey + pCell->h.nData;
drh8c42ca92001-06-22 19:15:00 +00002308 if( sz>sizeof(payload)-1 ) sz = sizeof(payload)-1;
2309 memcpy(payload, pCell->aPayload, sz);
2310 for(j=0; j<sz; j++){
2311 if( payload[j]<0x20 || payload[j]>0x7f ) payload[j] = '.';
2312 }
2313 payload[sz] = 0;
2314 printf(
drh6019e162001-07-02 17:51:45 +00002315 "cell %2d: i=%-10s chld=%-4d nk=%-4d nd=%-4d payload=%s\n",
drh8c42ca92001-06-22 19:15:00 +00002316 i, range, (int)pCell->h.leftChild, pCell->h.nKey, pCell->h.nData,
drh2aa679f2001-06-25 02:11:07 +00002317 payload
drh8c42ca92001-06-22 19:15:00 +00002318 );
drh6019e162001-07-02 17:51:45 +00002319 if( pPage->isInit && pPage->apCell[i]!=pCell ){
drh2aa679f2001-06-25 02:11:07 +00002320 printf("**** apCell[%d] does not match on prior entry ****\n", i);
2321 }
drh7c717f72001-06-24 20:39:41 +00002322 i++;
drh8c42ca92001-06-22 19:15:00 +00002323 idx = pCell->h.iNext;
2324 }
2325 if( idx!=0 ){
2326 printf("ERROR: next cell index out of range: %d\n", idx);
2327 }
2328 printf("right_child: %d\n", pPage->u.hdr.rightChild);
2329 nFree = 0;
2330 i = 0;
2331 idx = pPage->u.hdr.firstFree;
2332 while( idx>0 && idx<SQLITE_PAGE_SIZE ){
2333 FreeBlk *p = (FreeBlk*)&pPage->u.aDisk[idx];
2334 sprintf(range,"%d..%d", idx, idx+p->iSize-1);
2335 nFree += p->iSize;
2336 printf("freeblock %2d: i=%-10s size=%-4d total=%d\n",
2337 i, range, p->iSize, nFree);
2338 idx = p->iNext;
drh2aa679f2001-06-25 02:11:07 +00002339 i++;
drh8c42ca92001-06-22 19:15:00 +00002340 }
2341 if( idx!=0 ){
2342 printf("ERROR: next freeblock index out of range: %d\n", idx);
2343 }
drh6019e162001-07-02 17:51:45 +00002344 if( recursive && pPage->u.hdr.rightChild!=0 ){
2345 idx = pPage->u.hdr.firstCell;
2346 while( idx>0 && idx<SQLITE_PAGE_SIZE-MIN_CELL_SIZE ){
2347 Cell *pCell = (Cell*)&pPage->u.aDisk[idx];
2348 sqliteBtreePageDump(pBt, pCell->h.leftChild, 1);
2349 idx = pCell->h.iNext;
2350 }
2351 sqliteBtreePageDump(pBt, pPage->u.hdr.rightChild, 1);
2352 }
drh8c42ca92001-06-22 19:15:00 +00002353 sqlitepager_unref(pPage);
2354 return SQLITE_OK;
2355}
drh8c42ca92001-06-22 19:15:00 +00002356
drh8c42ca92001-06-22 19:15:00 +00002357/*
drh2aa679f2001-06-25 02:11:07 +00002358** Fill aResult[] with information about the entry and page that the
2359** cursor is pointing to.
2360**
2361** aResult[0] = The page number
2362** aResult[1] = The entry number
2363** aResult[2] = Total number of entries on this page
2364** aResult[3] = Size of this entry
2365** aResult[4] = Number of free bytes on this page
2366** aResult[5] = Number of free blocks on the page
2367** aResult[6] = Page number of the left child of this entry
2368** aResult[7] = Page number of the right child for the whole page
drh5eddca62001-06-30 21:53:53 +00002369**
2370** This routine is used for testing and debugging only.
drh8c42ca92001-06-22 19:15:00 +00002371*/
2372int sqliteBtreeCursorDump(BtCursor *pCur, int *aResult){
drh2aa679f2001-06-25 02:11:07 +00002373 int cnt, idx;
2374 MemPage *pPage = pCur->pPage;
2375 aResult[0] = sqlitepager_pagenumber(pPage);
drh8c42ca92001-06-22 19:15:00 +00002376 aResult[1] = pCur->idx;
drh2aa679f2001-06-25 02:11:07 +00002377 aResult[2] = pPage->nCell;
2378 if( pCur->idx>=0 && pCur->idx<pPage->nCell ){
2379 aResult[3] = cellSize(pPage->apCell[pCur->idx]);
2380 aResult[6] = pPage->apCell[pCur->idx]->h.leftChild;
2381 }else{
2382 aResult[3] = 0;
2383 aResult[6] = 0;
2384 }
2385 aResult[4] = pPage->nFree;
2386 cnt = 0;
2387 idx = pPage->u.hdr.firstFree;
2388 while( idx>0 && idx<SQLITE_PAGE_SIZE ){
2389 cnt++;
2390 idx = ((FreeBlk*)&pPage->u.aDisk[idx])->iNext;
2391 }
2392 aResult[5] = cnt;
2393 aResult[7] = pPage->u.hdr.rightChild;
drh8c42ca92001-06-22 19:15:00 +00002394 return SQLITE_OK;
2395}
drhdd793422001-06-28 01:54:48 +00002396
drhdd793422001-06-28 01:54:48 +00002397/*
drh5eddca62001-06-30 21:53:53 +00002398** Return the pager associated with a BTree. This routine is used for
2399** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00002400*/
2401Pager *sqliteBtreePager(Btree *pBt){
2402 return pBt->pPager;
2403}
drh5eddca62001-06-30 21:53:53 +00002404
2405/*
2406** This structure is passed around through all the sanity checking routines
2407** in order to keep track of some global state information.
2408*/
2409typedef struct SanityCheck SanityCheck;
2410struct SanityCheck {
2411 Btree *pBt; // The tree being checked out
2412 Pager *pPager; // The associated pager. Also accessible by pBt->pPager
2413 int nPage; // Number of pages in the database
2414 int *anRef; // Number of times each page is referenced
drh6019e162001-07-02 17:51:45 +00002415 int nTreePage; // Number of BTree pages
2416 int nByte; // Number of bytes of data stored on BTree pages
drh5eddca62001-06-30 21:53:53 +00002417 char *zErrMsg; // An error message. NULL of no errors seen.
2418};
2419
2420/*
2421** Append a message to the error message string.
2422*/
2423static void checkAppendMsg(SanityCheck *pCheck, char *zMsg1, char *zMsg2){
2424 if( pCheck->zErrMsg ){
2425 char *zOld = pCheck->zErrMsg;
2426 pCheck->zErrMsg = 0;
2427 sqliteSetString(&pCheck->zErrMsg, zOld, "\n", zMsg1, zMsg2, 0);
2428 sqliteFree(zOld);
2429 }else{
2430 sqliteSetString(&pCheck->zErrMsg, zMsg1, zMsg2, 0);
2431 }
2432}
2433
2434/*
2435** Add 1 to the reference count for page iPage. If this is the second
2436** reference to the page, add an error message to pCheck->zErrMsg.
2437** Return 1 if there are 2 ore more references to the page and 0 if
2438** if this is the first reference to the page.
2439**
2440** Also check that the page number is in bounds.
2441*/
2442static int checkRef(SanityCheck *pCheck, int iPage, char *zContext){
2443 if( iPage==0 ) return 1;
2444 if( iPage>pCheck->nPage ){
2445 char zBuf[100];
2446 sprintf(zBuf, "invalid page number %d", iPage);
2447 checkAppendMsg(pCheck, zContext, zBuf);
2448 return 1;
2449 }
2450 if( pCheck->anRef[iPage]==1 ){
2451 char zBuf[100];
2452 sprintf(zBuf, "2nd reference to page %d", iPage);
2453 checkAppendMsg(pCheck, zContext, zBuf);
2454 return 1;
2455 }
2456 return (pCheck->anRef[iPage]++)>1;
2457}
2458
2459/*
2460** Check the integrity of the freelist or of an overflow page list.
2461** Verify that the number of pages on the list is N.
2462*/
2463static void checkList(SanityCheck *pCheck, int iPage, int N, char *zContext){
2464 char zMsg[100];
2465 while( N-- ){
2466 OverflowPage *pOvfl;
2467 if( iPage<1 ){
2468 sprintf(zMsg, "%d pages missing from overflow list", N+1);
2469 checkAppendMsg(pCheck, zContext, zMsg);
2470 break;
2471 }
2472 if( checkRef(pCheck, iPage, zContext) ) break;
2473 if( sqlitepager_get(pCheck->pPager, (Pgno)iPage, (void**)&pOvfl) ){
2474 sprintf(zMsg, "failed to get page %d", iPage);
2475 checkAppendMsg(pCheck, zContext, zMsg);
2476 break;
2477 }
2478 iPage = (int)pOvfl->iNext;
2479 sqlitepager_unref(pOvfl);
2480 }
2481}
2482
2483/*
2484** Do various sanity checks on a single page of a tree. Return
2485** the tree depth. Root pages return 0. Parents of root pages
2486** return 1, and so forth.
2487**
2488** These checks are done:
2489**
2490** 1. Make sure that cells and freeblocks do not overlap
2491** but combine to completely cover the page.
2492** 2. Make sure cell keys are in order.
2493** 3. Make sure no key is less than or equal to zLowerBound.
2494** 4. Make sure no key is greater than or equal to zUpperBound.
2495** 5. Check the integrity of overflow pages.
2496** 6. Recursively call checkTreePage on all children.
2497** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00002498** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00002499** the root of the tree.
2500*/
2501static int checkTreePage(
2502 SanityCheck *pCheck, /* Context for the sanity check */
2503 int iPage, /* Page number of the page to check */
2504 MemPage *pParent, /* Parent page */
2505 char *zParentContext, /* Parent context */
2506 char *zLowerBound, /* All keys should be greater than this, if not NULL */
2507 char *zUpperBound /* All keys should be less than this, if not NULL */
2508){
2509 MemPage *pPage;
2510 int i, rc, depth, d2, pgno;
2511 char *zKey1, *zKey2;
2512 BtCursor cur;
2513 char zMsg[100];
2514 char zContext[100];
2515 char hit[SQLITE_PAGE_SIZE];
2516
2517 /* Check that the page exists
2518 */
2519 if( iPage==0 ) return 0;
2520 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
2521 sprintf(zContext, "On tree page %d: ", iPage);
2522 if( (rc = sqlitepager_get(pCheck->pPager, (Pgno)iPage, (void**)&pPage))!=0 ){
2523 sprintf(zMsg, "unable to get the page. error code=%d", rc);
2524 checkAppendMsg(pCheck, zContext, zMsg);
2525 return 0;
2526 }
2527 if( (rc = initPage(pPage, (Pgno)iPage, pParent))!=0 ){
2528 sprintf(zMsg, "initPage() returns error code %d", rc);
2529 checkAppendMsg(pCheck, zContext, zMsg);
2530 sqlitepager_unref(pPage);
2531 return 0;
2532 }
2533
2534 /* Check out all the cells.
2535 */
2536 depth = 0;
2537 zKey1 = zLowerBound ? sqliteStrDup(zLowerBound) : 0;
2538 cur.pPage = pPage;
2539 cur.pBt = pCheck->pBt;
2540 for(i=0; i<pPage->nCell; i++){
2541 Cell *pCell = pPage->apCell[i];
2542 int sz;
2543
2544 /* Check payload overflow pages
2545 */
2546 sz = pCell->h.nKey + pCell->h.nData;
2547 sprintf(zContext, "On page %d cell %d: ", iPage, i);
2548 if( sz>MX_LOCAL_PAYLOAD ){
2549 int nPage = (sz - MX_LOCAL_PAYLOAD + OVERFLOW_SIZE - 1)/OVERFLOW_SIZE;
2550 checkList(pCheck, pCell->ovfl, nPage, zContext);
2551 }
2552
2553 /* Check that keys are in the right order
2554 */
2555 cur.idx = i;
2556 zKey2 = sqliteMalloc( pCell->h.nKey+1 );
2557 getPayload(&cur, 0, pCell->h.nKey, zKey2);
2558 if( zKey1 && strcmp(zKey1,zKey2)>=0 ){
2559 checkAppendMsg(pCheck, zContext, "Key is out of order");
2560 }
2561
2562 /* Check sanity of left child page.
2563 */
2564 pgno = (int)pCell->h.leftChild;
2565 d2 = checkTreePage(pCheck, pgno, pPage, zContext, zKey1, zKey2);
2566 if( i>0 && d2!=depth ){
2567 checkAppendMsg(pCheck, zContext, "Child page depth differs");
2568 }
2569 depth = d2;
2570 sqliteFree(zKey1);
2571 zKey1 = zKey2;
2572 }
2573 pgno = pPage->u.hdr.rightChild;
2574 sprintf(zContext, "On page %d at right child: ", iPage);
2575 checkTreePage(pCheck, pgno, pPage, zContext, zKey1, zUpperBound);
2576 sqliteFree(zKey1);
2577
2578 /* Check for complete coverage of the page
2579 */
2580 memset(hit, 0, sizeof(hit));
2581 memset(hit, 1, sizeof(PageHdr));
2582 for(i=pPage->u.hdr.firstCell; i>0 && i<SQLITE_PAGE_SIZE; ){
2583 Cell *pCell = (Cell*)&pPage->u.aDisk[i];
2584 int j;
2585 for(j=i+cellSize(pCell)-1; j>=i; j--) hit[j]++;
2586 i = pCell->h.iNext;
2587 }
2588 for(i=pPage->u.hdr.firstFree; i>0 && i<SQLITE_PAGE_SIZE; ){
2589 FreeBlk *pFBlk = (FreeBlk*)&pPage->u.aDisk[i];
2590 int j;
2591 for(j=i+pFBlk->iSize-1; j>=i; j--) hit[j]++;
2592 i = pFBlk->iNext;
2593 }
2594 for(i=0; i<SQLITE_PAGE_SIZE; i++){
2595 if( hit[i]==0 ){
2596 sprintf(zMsg, "Unused space at byte %d of page %d", i, iPage);
2597 checkAppendMsg(pCheck, zMsg, 0);
2598 break;
2599 }else if( hit[i]>1 ){
2600 sprintf(zMsg, "Multiple uses for byte %d of page %d", i, iPage);
2601 checkAppendMsg(pCheck, zMsg, 0);
2602 break;
2603 }
2604 }
2605
2606 /* Check that free space is kept to a minimum
2607 */
drh6019e162001-07-02 17:51:45 +00002608#if 0
2609 if( pParent && pParent->nCell>2 && pPage->nFree>3*SQLITE_PAGE_SIZE/4 ){
drh5eddca62001-06-30 21:53:53 +00002610 sprintf(zMsg, "free space (%d) greater than max (%d)", pPage->nFree,
2611 SQLITE_PAGE_SIZE/3);
2612 checkAppendMsg(pCheck, zContext, zMsg);
2613 }
drh6019e162001-07-02 17:51:45 +00002614#endif
2615
2616 /* Update freespace totals.
2617 */
2618 pCheck->nTreePage++;
2619 pCheck->nByte += USABLE_SPACE - pPage->nFree;
drh5eddca62001-06-30 21:53:53 +00002620
2621 sqlitepager_unref(pPage);
2622 return depth;
2623}
2624
2625/*
2626** This routine does a complete check of the given BTree file. aRoot[] is
2627** an array of pages numbers were each page number is the root page of
2628** a table. nRoot is the number of entries in aRoot.
2629**
2630** If everything checks out, this routine returns NULL. If something is
2631** amiss, an error message is written into memory obtained from malloc()
2632** and a pointer to that error message is returned. The calling function
2633** is responsible for freeing the error message when it is done.
2634*/
2635char *sqliteBtreeSanityCheck(Btree *pBt, int *aRoot, int nRoot){
2636 int i;
2637 int nRef;
2638 SanityCheck sCheck;
2639
2640 nRef = *sqlitepager_stats(pBt->pPager);
drhefc251d2001-07-01 22:12:01 +00002641 if( lockBtree(pBt)!=SQLITE_OK ){
2642 return sqliteStrDup("Unable to acquire a read lock on the database");
2643 }
drh5eddca62001-06-30 21:53:53 +00002644 sCheck.pBt = pBt;
2645 sCheck.pPager = pBt->pPager;
2646 sCheck.nPage = sqlitepager_pagecount(sCheck.pPager);
2647 sCheck.anRef = sqliteMalloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
2648 sCheck.anRef[1] = 1;
2649 for(i=2; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
2650 sCheck.zErrMsg = 0;
2651
2652 /* Check the integrity of the freelist
2653 */
2654 checkList(&sCheck, pBt->page1->freeList, pBt->page1->nFree,"Main freelist: ");
2655
2656 /* Check all the tables.
2657 */
2658 for(i=0; i<nRoot; i++){
2659 checkTreePage(&sCheck, aRoot[i], 0, "List of tree roots: ", 0, 0);
2660 }
2661
2662 /* Make sure every page in the file is referenced
2663 */
2664 for(i=1; i<=sCheck.nPage; i++){
2665 if( sCheck.anRef[i]==0 ){
2666 char zBuf[100];
2667 sprintf(zBuf, "Page %d is never used", i);
2668 checkAppendMsg(&sCheck, zBuf, 0);
2669 }
2670 }
2671
2672 /* Make sure this analysis did not leave any unref() pages
2673 */
drh5e00f6c2001-09-13 13:46:56 +00002674 unlockBtreeIfUnused(pBt);
drh5eddca62001-06-30 21:53:53 +00002675 if( nRef != *sqlitepager_stats(pBt->pPager) ){
2676 char zBuf[100];
2677 sprintf(zBuf,
2678 "Outstanding page count goes from %d to %d during this analysis",
2679 nRef, *sqlitepager_stats(pBt->pPager)
2680 );
2681 checkAppendMsg(&sCheck, zBuf, 0);
2682 }
2683
2684 /* Clean up and report errors.
2685 */
2686 sqliteFree(sCheck.anRef);
2687 return sCheck.zErrMsg;
2688}
2689
2690#endif /* SQLITE_TEST */