blob: 547df6842517e84862d234ffd232d916a9fd64bf [file] [log] [blame]
drh75897232000-05-29 14:26:00 +00001/*
drhb19a2bc2001-09-16 00:13:26 +00002** 2001 September 15
drh75897232000-05-29 14:26:00 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drh75897232000-05-29 14:26:00 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drh75897232000-05-29 14:26:00 +000010**
11*************************************************************************
12** This module contains C code that generates VDBE code used to process
drh909626d2008-05-30 14:58:37 +000013** the WHERE clause of SQL statements. This module is responsible for
drh51669862004-12-18 18:40:26 +000014** generating the code that loops through a table looking for applicable
15** rows. Indices are selected and used to speed the search when doing
16** so is applicable. Because this module is responsible for selecting
17** indices, you might also think of this module as the "query optimizer".
drh75897232000-05-29 14:26:00 +000018*/
19#include "sqliteInt.h"
20
21/*
drh51147ba2005-07-23 22:59:55 +000022** Trace output macros
23*/
24#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
mlcreech3a00f902008-03-04 17:45:01 +000025int sqlite3WhereTrace = 0;
drhe8f52c52008-07-12 14:52:20 +000026#endif
drh85799a42009-04-07 13:48:11 +000027#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
mlcreech3a00f902008-03-04 17:45:01 +000028# define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X
drh51147ba2005-07-23 22:59:55 +000029#else
drh4f0c5872007-03-26 22:05:01 +000030# define WHERETRACE(X)
drh51147ba2005-07-23 22:59:55 +000031#endif
32
drh0fcef5e2005-07-19 17:38:22 +000033/* Forward reference
34*/
35typedef struct WhereClause WhereClause;
drh111a6a72008-12-21 03:51:16 +000036typedef struct WhereMaskSet WhereMaskSet;
drh700a2262008-12-17 19:22:15 +000037typedef struct WhereOrInfo WhereOrInfo;
38typedef struct WhereAndInfo WhereAndInfo;
drh111a6a72008-12-21 03:51:16 +000039typedef struct WhereCost WhereCost;
drh0aa74ed2005-07-16 13:33:20 +000040
41/*
drh75897232000-05-29 14:26:00 +000042** The query generator uses an array of instances of this structure to
43** help it analyze the subexpressions of the WHERE clause. Each WHERE
drh61495262009-04-22 15:32:59 +000044** clause subexpression is separated from the others by AND operators,
45** usually, or sometimes subexpressions separated by OR.
drh51669862004-12-18 18:40:26 +000046**
drh0fcef5e2005-07-19 17:38:22 +000047** All WhereTerms are collected into a single WhereClause structure.
48** The following identity holds:
drh51669862004-12-18 18:40:26 +000049**
drh0fcef5e2005-07-19 17:38:22 +000050** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
drh51669862004-12-18 18:40:26 +000051**
drh0fcef5e2005-07-19 17:38:22 +000052** When a term is of the form:
53**
54** X <op> <expr>
55**
56** where X is a column name and <op> is one of certain operators,
drh700a2262008-12-17 19:22:15 +000057** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the
58** cursor number and column number for X. WhereTerm.eOperator records
drh51147ba2005-07-23 22:59:55 +000059** the <op> using a bitmask encoding defined by WO_xxx below. The
60** use of a bitmask encoding for the operator allows us to search
61** quickly for terms that match any of several different operators.
drh0fcef5e2005-07-19 17:38:22 +000062**
drh700a2262008-12-17 19:22:15 +000063** A WhereTerm might also be two or more subterms connected by OR:
64**
65** (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR ....
66**
67** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR
68** and the WhereTerm.u.pOrInfo field points to auxiliary information that
69** is collected about the
70**
71** If a term in the WHERE clause does not match either of the two previous
72** categories, then eOperator==0. The WhereTerm.pExpr field is still set
73** to the original subexpression content and wtFlags is set up appropriately
74** but no other fields in the WhereTerm object are meaningful.
75**
76** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers,
drh111a6a72008-12-21 03:51:16 +000077** but they do so indirectly. A single WhereMaskSet structure translates
drh51669862004-12-18 18:40:26 +000078** cursor number into bits and the translated bit is stored in the prereq
79** fields. The translation is used in order to maximize the number of
80** bits that will fit in a Bitmask. The VDBE cursor numbers might be
81** spread out over the non-negative integers. For example, the cursor
drh111a6a72008-12-21 03:51:16 +000082** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The WhereMaskSet
drh51669862004-12-18 18:40:26 +000083** translates these sparse cursor numbers into consecutive integers
84** beginning with 0 in order to make the best possible use of the available
85** bits in the Bitmask. So, in the example above, the cursor numbers
86** would be mapped into integers 0 through 7.
drh6a1e0712008-12-05 15:24:15 +000087**
88** The number of terms in a join is limited by the number of bits
89** in prereqRight and prereqAll. The default is 64 bits, hence SQLite
90** is only able to process joins with 64 or fewer tables.
drh75897232000-05-29 14:26:00 +000091*/
drh0aa74ed2005-07-16 13:33:20 +000092typedef struct WhereTerm WhereTerm;
93struct WhereTerm {
drh165be382008-12-05 02:36:33 +000094 Expr *pExpr; /* Pointer to the subexpression that is this term */
drhec1724e2008-12-09 01:32:03 +000095 int iParent; /* Disable pWC->a[iParent] when this term disabled */
96 int leftCursor; /* Cursor number of X in "X <op> <expr>" */
drh700a2262008-12-17 19:22:15 +000097 union {
98 int leftColumn; /* Column number of X in "X <op> <expr>" */
99 WhereOrInfo *pOrInfo; /* Extra information if eOperator==WO_OR */
100 WhereAndInfo *pAndInfo; /* Extra information if eOperator==WO_AND */
101 } u;
drhb52076c2006-01-23 13:22:09 +0000102 u16 eOperator; /* A WO_xx value describing <op> */
drh165be382008-12-05 02:36:33 +0000103 u8 wtFlags; /* TERM_xxx bit flags. See below */
drh45b1ee42005-08-02 17:48:22 +0000104 u8 nChild; /* Number of children that must disable us */
drh0fcef5e2005-07-19 17:38:22 +0000105 WhereClause *pWC; /* The clause this term is part of */
drh165be382008-12-05 02:36:33 +0000106 Bitmask prereqRight; /* Bitmask of tables used by pExpr->pRight */
107 Bitmask prereqAll; /* Bitmask of tables referenced by pExpr */
drh75897232000-05-29 14:26:00 +0000108};
109
110/*
drh165be382008-12-05 02:36:33 +0000111** Allowed values of WhereTerm.wtFlags
drh0aa74ed2005-07-16 13:33:20 +0000112*/
drh633e6d52008-07-28 19:34:53 +0000113#define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(db, pExpr) */
drh6c30be82005-07-29 15:10:17 +0000114#define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */
115#define TERM_CODED 0x04 /* This term is already coded */
drh45b1ee42005-08-02 17:48:22 +0000116#define TERM_COPIED 0x08 /* Has a child */
drh700a2262008-12-17 19:22:15 +0000117#define TERM_ORINFO 0x10 /* Need to free the WhereTerm.u.pOrInfo object */
118#define TERM_ANDINFO 0x20 /* Need to free the WhereTerm.u.pAndInfo obj */
119#define TERM_OR_OK 0x40 /* Used during OR-clause processing */
drh0aa74ed2005-07-16 13:33:20 +0000120
121/*
122** An instance of the following structure holds all information about a
123** WHERE clause. Mostly this is a container for one or more WhereTerms.
124*/
drh0aa74ed2005-07-16 13:33:20 +0000125struct WhereClause {
drhfe05af82005-07-21 03:14:59 +0000126 Parse *pParse; /* The parser context */
drh111a6a72008-12-21 03:51:16 +0000127 WhereMaskSet *pMaskSet; /* Mapping of table cursor numbers to bitmasks */
danielk1977e672c8e2009-05-22 15:43:26 +0000128 Bitmask vmask; /* Bitmask identifying virtual table cursors */
drh29435252008-12-28 18:35:08 +0000129 u8 op; /* Split operator. TK_AND or TK_OR */
drh0aa74ed2005-07-16 13:33:20 +0000130 int nTerm; /* Number of terms */
131 int nSlot; /* Number of entries in a[] */
drh51147ba2005-07-23 22:59:55 +0000132 WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */
drh50d654d2009-06-03 01:24:54 +0000133#if defined(SQLITE_SMALL_STACK)
134 WhereTerm aStatic[1]; /* Initial static space for a[] */
135#else
136 WhereTerm aStatic[8]; /* Initial static space for a[] */
137#endif
drhe23399f2005-07-22 00:31:39 +0000138};
139
140/*
drh700a2262008-12-17 19:22:15 +0000141** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to
142** a dynamically allocated instance of the following structure.
143*/
144struct WhereOrInfo {
drh111a6a72008-12-21 03:51:16 +0000145 WhereClause wc; /* Decomposition into subterms */
drh1a58fe02008-12-20 02:06:13 +0000146 Bitmask indexable; /* Bitmask of all indexable tables in the clause */
drh700a2262008-12-17 19:22:15 +0000147};
148
149/*
150** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to
151** a dynamically allocated instance of the following structure.
152*/
153struct WhereAndInfo {
drh29435252008-12-28 18:35:08 +0000154 WhereClause wc; /* The subexpression broken out */
drh700a2262008-12-17 19:22:15 +0000155};
156
157/*
drh6a3ea0e2003-05-02 14:32:12 +0000158** An instance of the following structure keeps track of a mapping
drh0aa74ed2005-07-16 13:33:20 +0000159** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
drh51669862004-12-18 18:40:26 +0000160**
161** The VDBE cursor numbers are small integers contained in
162** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE
163** clause, the cursor numbers might not begin with 0 and they might
164** contain gaps in the numbering sequence. But we want to make maximum
165** use of the bits in our bitmasks. This structure provides a mapping
166** from the sparse cursor numbers into consecutive integers beginning
167** with 0.
168**
drh111a6a72008-12-21 03:51:16 +0000169** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
drh51669862004-12-18 18:40:26 +0000170** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A.
171**
172** For example, if the WHERE clause expression used these VDBE
drh111a6a72008-12-21 03:51:16 +0000173** cursors: 4, 5, 8, 29, 57, 73. Then the WhereMaskSet structure
drh51669862004-12-18 18:40:26 +0000174** would map those cursor numbers into bits 0 through 5.
175**
176** Note that the mapping is not necessarily ordered. In the example
177** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0,
178** 57->5, 73->4. Or one of 719 other combinations might be used. It
179** does not really matter. What is important is that sparse cursor
180** numbers all get mapped into bit numbers that begin with 0 and contain
181** no gaps.
drh6a3ea0e2003-05-02 14:32:12 +0000182*/
drh111a6a72008-12-21 03:51:16 +0000183struct WhereMaskSet {
drh1398ad32005-01-19 23:24:50 +0000184 int n; /* Number of assigned cursor values */
danielk197723432972008-11-17 16:42:00 +0000185 int ix[BMS]; /* Cursor assigned to each bit */
drh6a3ea0e2003-05-02 14:32:12 +0000186};
187
drh111a6a72008-12-21 03:51:16 +0000188/*
189** A WhereCost object records a lookup strategy and the estimated
190** cost of pursuing that strategy.
191*/
192struct WhereCost {
193 WherePlan plan; /* The lookup strategy */
194 double rCost; /* Overall cost of pursuing this search strategy */
195 double nRow; /* Estimated number of output rows */
dan5236ac12009-08-13 07:09:33 +0000196 Bitmask used; /* Bitmask of cursors used by this plan */
drh111a6a72008-12-21 03:51:16 +0000197};
drh0aa74ed2005-07-16 13:33:20 +0000198
drh6a3ea0e2003-05-02 14:32:12 +0000199/*
drh51147ba2005-07-23 22:59:55 +0000200** Bitmasks for the operators that indices are able to exploit. An
201** OR-ed combination of these values can be used when searching for
202** terms in the where clause.
203*/
drh165be382008-12-05 02:36:33 +0000204#define WO_IN 0x001
205#define WO_EQ 0x002
drh51147ba2005-07-23 22:59:55 +0000206#define WO_LT (WO_EQ<<(TK_LT-TK_EQ))
207#define WO_LE (WO_EQ<<(TK_LE-TK_EQ))
208#define WO_GT (WO_EQ<<(TK_GT-TK_EQ))
209#define WO_GE (WO_EQ<<(TK_GE-TK_EQ))
drh165be382008-12-05 02:36:33 +0000210#define WO_MATCH 0x040
211#define WO_ISNULL 0x080
drh700a2262008-12-17 19:22:15 +0000212#define WO_OR 0x100 /* Two or more OR-connected terms */
213#define WO_AND 0x200 /* Two or more AND-connected terms */
drh51147ba2005-07-23 22:59:55 +0000214
drhec1724e2008-12-09 01:32:03 +0000215#define WO_ALL 0xfff /* Mask of all possible WO_* values */
drh1a58fe02008-12-20 02:06:13 +0000216#define WO_SINGLE 0x0ff /* Mask of all non-compound WO_* values */
drhec1724e2008-12-09 01:32:03 +0000217
drh51147ba2005-07-23 22:59:55 +0000218/*
drh700a2262008-12-17 19:22:15 +0000219** Value for wsFlags returned by bestIndex() and stored in
220** WhereLevel.wsFlags. These flags determine which search
221** strategies are appropriate.
drhf2d315d2007-01-25 16:56:06 +0000222**
drh165be382008-12-05 02:36:33 +0000223** The least significant 12 bits is reserved as a mask for WO_ values above.
drh700a2262008-12-17 19:22:15 +0000224** The WhereLevel.wsFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
225** But if the table is the right table of a left join, WhereLevel.wsFlags
226** is set to WO_IN|WO_EQ. The WhereLevel.wsFlags field can then be used as
drhf2d315d2007-01-25 16:56:06 +0000227** the "op" parameter to findTerm when we are resolving equality constraints.
228** ISNULL constraints will then not be used on the right table of a left
229** join. Tickets #2177 and #2189.
drh51147ba2005-07-23 22:59:55 +0000230*/
drh165be382008-12-05 02:36:33 +0000231#define WHERE_ROWID_EQ 0x00001000 /* rowid=EXPR or rowid IN (...) */
232#define WHERE_ROWID_RANGE 0x00002000 /* rowid<EXPR and/or rowid>EXPR */
drh46619d62009-04-24 14:51:42 +0000233#define WHERE_COLUMN_EQ 0x00010000 /* x=EXPR or x IN (...) or x IS NULL */
drh165be382008-12-05 02:36:33 +0000234#define WHERE_COLUMN_RANGE 0x00020000 /* x<EXPR and/or x>EXPR */
235#define WHERE_COLUMN_IN 0x00040000 /* x IN (...) */
drh46619d62009-04-24 14:51:42 +0000236#define WHERE_COLUMN_NULL 0x00080000 /* x IS NULL */
237#define WHERE_INDEXED 0x000f0000 /* Anything that uses an index */
drh8b307fb2010-04-06 15:57:05 +0000238#define WHERE_NOT_FULLSCAN 0x000f3000 /* Does not do a full table scan */
drh46619d62009-04-24 14:51:42 +0000239#define WHERE_IN_ABLE 0x000f1000 /* Able to support an IN operator */
drh165be382008-12-05 02:36:33 +0000240#define WHERE_TOP_LIMIT 0x00100000 /* x<EXPR or x<=EXPR constraint */
241#define WHERE_BTM_LIMIT 0x00200000 /* x>EXPR or x>=EXPR constraint */
242#define WHERE_IDX_ONLY 0x00800000 /* Use index only - omit table */
243#define WHERE_ORDERBY 0x01000000 /* Output will appear in correct order */
244#define WHERE_REVERSE 0x02000000 /* Scan in reverse order */
245#define WHERE_UNIQUE 0x04000000 /* Selects no more than one row */
246#define WHERE_VIRTUALTABLE 0x08000000 /* Use virtual-table processing */
247#define WHERE_MULTI_OR 0x10000000 /* OR using multiple indices */
drh8b307fb2010-04-06 15:57:05 +0000248#define WHERE_TEMP_INDEX 0x20000000 /* Uses an ephemeral index */
drh51147ba2005-07-23 22:59:55 +0000249
250/*
drh0aa74ed2005-07-16 13:33:20 +0000251** Initialize a preallocated WhereClause structure.
drh75897232000-05-29 14:26:00 +0000252*/
drh7b4fc6a2007-02-06 13:26:32 +0000253static void whereClauseInit(
254 WhereClause *pWC, /* The WhereClause to be initialized */
255 Parse *pParse, /* The parsing context */
drh111a6a72008-12-21 03:51:16 +0000256 WhereMaskSet *pMaskSet /* Mapping from table cursor numbers to bitmasks */
drh7b4fc6a2007-02-06 13:26:32 +0000257){
drhfe05af82005-07-21 03:14:59 +0000258 pWC->pParse = pParse;
drh7b4fc6a2007-02-06 13:26:32 +0000259 pWC->pMaskSet = pMaskSet;
drh0aa74ed2005-07-16 13:33:20 +0000260 pWC->nTerm = 0;
drhcad651e2007-04-20 12:22:01 +0000261 pWC->nSlot = ArraySize(pWC->aStatic);
drh0aa74ed2005-07-16 13:33:20 +0000262 pWC->a = pWC->aStatic;
danielk1977e672c8e2009-05-22 15:43:26 +0000263 pWC->vmask = 0;
drh0aa74ed2005-07-16 13:33:20 +0000264}
265
drh700a2262008-12-17 19:22:15 +0000266/* Forward reference */
267static void whereClauseClear(WhereClause*);
268
269/*
270** Deallocate all memory associated with a WhereOrInfo object.
271*/
272static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){
drh5bd98ae2009-01-07 18:24:03 +0000273 whereClauseClear(&p->wc);
274 sqlite3DbFree(db, p);
drh700a2262008-12-17 19:22:15 +0000275}
276
277/*
278** Deallocate all memory associated with a WhereAndInfo object.
279*/
280static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){
drh5bd98ae2009-01-07 18:24:03 +0000281 whereClauseClear(&p->wc);
282 sqlite3DbFree(db, p);
drh700a2262008-12-17 19:22:15 +0000283}
284
drh0aa74ed2005-07-16 13:33:20 +0000285/*
286** Deallocate a WhereClause structure. The WhereClause structure
287** itself is not freed. This routine is the inverse of whereClauseInit().
288*/
289static void whereClauseClear(WhereClause *pWC){
290 int i;
291 WhereTerm *a;
drh633e6d52008-07-28 19:34:53 +0000292 sqlite3 *db = pWC->pParse->db;
drh0aa74ed2005-07-16 13:33:20 +0000293 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
drh165be382008-12-05 02:36:33 +0000294 if( a->wtFlags & TERM_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +0000295 sqlite3ExprDelete(db, a->pExpr);
drh0aa74ed2005-07-16 13:33:20 +0000296 }
drh700a2262008-12-17 19:22:15 +0000297 if( a->wtFlags & TERM_ORINFO ){
298 whereOrInfoDelete(db, a->u.pOrInfo);
299 }else if( a->wtFlags & TERM_ANDINFO ){
300 whereAndInfoDelete(db, a->u.pAndInfo);
301 }
drh0aa74ed2005-07-16 13:33:20 +0000302 }
303 if( pWC->a!=pWC->aStatic ){
drh633e6d52008-07-28 19:34:53 +0000304 sqlite3DbFree(db, pWC->a);
drh0aa74ed2005-07-16 13:33:20 +0000305 }
306}
307
308/*
drh6a1e0712008-12-05 15:24:15 +0000309** Add a single new WhereTerm entry to the WhereClause object pWC.
310** The new WhereTerm object is constructed from Expr p and with wtFlags.
311** The index in pWC->a[] of the new WhereTerm is returned on success.
312** 0 is returned if the new WhereTerm could not be added due to a memory
313** allocation error. The memory allocation failure will be recorded in
314** the db->mallocFailed flag so that higher-level functions can detect it.
315**
316** This routine will increase the size of the pWC->a[] array as necessary.
drh9eb20282005-08-24 03:52:18 +0000317**
drh165be382008-12-05 02:36:33 +0000318** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
drh6a1e0712008-12-05 15:24:15 +0000319** for freeing the expression p is assumed by the WhereClause object pWC.
320** This is true even if this routine fails to allocate a new WhereTerm.
drhb63a53d2007-03-31 01:34:44 +0000321**
drh9eb20282005-08-24 03:52:18 +0000322** WARNING: This routine might reallocate the space used to store
drh909626d2008-05-30 14:58:37 +0000323** WhereTerms. All pointers to WhereTerms should be invalidated after
drh9eb20282005-08-24 03:52:18 +0000324** calling this routine. Such pointers may be reinitialized by referencing
325** the pWC->a[] array.
drh0aa74ed2005-07-16 13:33:20 +0000326*/
drhec1724e2008-12-09 01:32:03 +0000327static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){
drh0aa74ed2005-07-16 13:33:20 +0000328 WhereTerm *pTerm;
drh9eb20282005-08-24 03:52:18 +0000329 int idx;
drh0aa74ed2005-07-16 13:33:20 +0000330 if( pWC->nTerm>=pWC->nSlot ){
331 WhereTerm *pOld = pWC->a;
drh633e6d52008-07-28 19:34:53 +0000332 sqlite3 *db = pWC->pParse->db;
333 pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
drhb63a53d2007-03-31 01:34:44 +0000334 if( pWC->a==0 ){
drh165be382008-12-05 02:36:33 +0000335 if( wtFlags & TERM_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +0000336 sqlite3ExprDelete(db, p);
drhb63a53d2007-03-31 01:34:44 +0000337 }
drhf998b732007-11-26 13:36:00 +0000338 pWC->a = pOld;
drhb63a53d2007-03-31 01:34:44 +0000339 return 0;
340 }
drh0aa74ed2005-07-16 13:33:20 +0000341 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
342 if( pOld!=pWC->aStatic ){
drh633e6d52008-07-28 19:34:53 +0000343 sqlite3DbFree(db, pOld);
drh0aa74ed2005-07-16 13:33:20 +0000344 }
drh6a1e0712008-12-05 15:24:15 +0000345 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);
drh0aa74ed2005-07-16 13:33:20 +0000346 }
drh6a1e0712008-12-05 15:24:15 +0000347 pTerm = &pWC->a[idx = pWC->nTerm++];
drh0fcef5e2005-07-19 17:38:22 +0000348 pTerm->pExpr = p;
drh165be382008-12-05 02:36:33 +0000349 pTerm->wtFlags = wtFlags;
drh0fcef5e2005-07-19 17:38:22 +0000350 pTerm->pWC = pWC;
drh45b1ee42005-08-02 17:48:22 +0000351 pTerm->iParent = -1;
drh9eb20282005-08-24 03:52:18 +0000352 return idx;
drh0aa74ed2005-07-16 13:33:20 +0000353}
drh75897232000-05-29 14:26:00 +0000354
355/*
drh51669862004-12-18 18:40:26 +0000356** This routine identifies subexpressions in the WHERE clause where
drhb6fb62d2005-09-20 08:47:20 +0000357** each subexpression is separated by the AND operator or some other
drh6c30be82005-07-29 15:10:17 +0000358** operator specified in the op parameter. The WhereClause structure
359** is filled with pointers to subexpressions. For example:
drh75897232000-05-29 14:26:00 +0000360**
drh51669862004-12-18 18:40:26 +0000361** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
362** \________/ \_______________/ \________________/
363** slot[0] slot[1] slot[2]
364**
365** The original WHERE clause in pExpr is unaltered. All this routine
drh51147ba2005-07-23 22:59:55 +0000366** does is make slot[] entries point to substructure within pExpr.
drh51669862004-12-18 18:40:26 +0000367**
drh51147ba2005-07-23 22:59:55 +0000368** In the previous sentence and in the diagram, "slot[]" refers to
drh902b9ee2008-12-05 17:17:07 +0000369** the WhereClause.a[] array. The slot[] array grows as needed to contain
drh51147ba2005-07-23 22:59:55 +0000370** all terms of the WHERE clause.
drh75897232000-05-29 14:26:00 +0000371*/
drh6c30be82005-07-29 15:10:17 +0000372static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
drh29435252008-12-28 18:35:08 +0000373 pWC->op = (u8)op;
drh0aa74ed2005-07-16 13:33:20 +0000374 if( pExpr==0 ) return;
drh6c30be82005-07-29 15:10:17 +0000375 if( pExpr->op!=op ){
drh0aa74ed2005-07-16 13:33:20 +0000376 whereClauseInsert(pWC, pExpr, 0);
drh75897232000-05-29 14:26:00 +0000377 }else{
drh6c30be82005-07-29 15:10:17 +0000378 whereSplit(pWC, pExpr->pLeft, op);
379 whereSplit(pWC, pExpr->pRight, op);
drh75897232000-05-29 14:26:00 +0000380 }
drh75897232000-05-29 14:26:00 +0000381}
382
383/*
drh61495262009-04-22 15:32:59 +0000384** Initialize an expression mask set (a WhereMaskSet object)
drh6a3ea0e2003-05-02 14:32:12 +0000385*/
386#define initMaskSet(P) memset(P, 0, sizeof(*P))
387
388/*
drh1398ad32005-01-19 23:24:50 +0000389** Return the bitmask for the given cursor number. Return 0 if
390** iCursor is not in the set.
drh6a3ea0e2003-05-02 14:32:12 +0000391*/
drh111a6a72008-12-21 03:51:16 +0000392static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){
drh6a3ea0e2003-05-02 14:32:12 +0000393 int i;
drh3500ed62009-05-05 15:46:43 +0000394 assert( pMaskSet->n<=sizeof(Bitmask)*8 );
drh6a3ea0e2003-05-02 14:32:12 +0000395 for(i=0; i<pMaskSet->n; i++){
drh51669862004-12-18 18:40:26 +0000396 if( pMaskSet->ix[i]==iCursor ){
397 return ((Bitmask)1)<<i;
398 }
drh6a3ea0e2003-05-02 14:32:12 +0000399 }
drh6a3ea0e2003-05-02 14:32:12 +0000400 return 0;
401}
402
403/*
drh1398ad32005-01-19 23:24:50 +0000404** Create a new mask for cursor iCursor.
drh0fcef5e2005-07-19 17:38:22 +0000405**
406** There is one cursor per table in the FROM clause. The number of
407** tables in the FROM clause is limited by a test early in the
drhb6fb62d2005-09-20 08:47:20 +0000408** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
drh0fcef5e2005-07-19 17:38:22 +0000409** array will never overflow.
drh1398ad32005-01-19 23:24:50 +0000410*/
drh111a6a72008-12-21 03:51:16 +0000411static void createMask(WhereMaskSet *pMaskSet, int iCursor){
drhcad651e2007-04-20 12:22:01 +0000412 assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
drh0fcef5e2005-07-19 17:38:22 +0000413 pMaskSet->ix[pMaskSet->n++] = iCursor;
drh1398ad32005-01-19 23:24:50 +0000414}
415
416/*
drh75897232000-05-29 14:26:00 +0000417** This routine walks (recursively) an expression tree and generates
418** a bitmask indicating which tables are used in that expression
drh6a3ea0e2003-05-02 14:32:12 +0000419** tree.
drh75897232000-05-29 14:26:00 +0000420**
421** In order for this routine to work, the calling function must have
drh7d10d5a2008-08-20 16:35:10 +0000422** previously invoked sqlite3ResolveExprNames() on the expression. See
drh75897232000-05-29 14:26:00 +0000423** the header comment on that routine for additional information.
drh7d10d5a2008-08-20 16:35:10 +0000424** The sqlite3ResolveExprNames() routines looks for column names and
drh6a3ea0e2003-05-02 14:32:12 +0000425** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
drh51147ba2005-07-23 22:59:55 +0000426** the VDBE cursor number of the table. This routine just has to
427** translate the cursor numbers into bitmask values and OR all
428** the bitmasks together.
drh75897232000-05-29 14:26:00 +0000429*/
drh111a6a72008-12-21 03:51:16 +0000430static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*);
431static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*);
432static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){
drh51669862004-12-18 18:40:26 +0000433 Bitmask mask = 0;
drh75897232000-05-29 14:26:00 +0000434 if( p==0 ) return 0;
drh967e8b72000-06-21 13:59:10 +0000435 if( p->op==TK_COLUMN ){
drh8feb4b12004-07-19 02:12:14 +0000436 mask = getMask(pMaskSet, p->iTable);
drh8feb4b12004-07-19 02:12:14 +0000437 return mask;
drh75897232000-05-29 14:26:00 +0000438 }
danielk1977b3bce662005-01-29 08:32:43 +0000439 mask = exprTableUsage(pMaskSet, p->pRight);
440 mask |= exprTableUsage(pMaskSet, p->pLeft);
danielk19776ab3a2e2009-02-19 14:39:25 +0000441 if( ExprHasProperty(p, EP_xIsSelect) ){
442 mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect);
443 }else{
444 mask |= exprListTableUsage(pMaskSet, p->x.pList);
445 }
danielk1977b3bce662005-01-29 08:32:43 +0000446 return mask;
447}
drh111a6a72008-12-21 03:51:16 +0000448static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){
danielk1977b3bce662005-01-29 08:32:43 +0000449 int i;
450 Bitmask mask = 0;
451 if( pList ){
452 for(i=0; i<pList->nExpr; i++){
453 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
drhdd579122002-04-02 01:58:57 +0000454 }
455 }
drh75897232000-05-29 14:26:00 +0000456 return mask;
457}
drh111a6a72008-12-21 03:51:16 +0000458static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){
drha430ae82007-09-12 15:41:01 +0000459 Bitmask mask = 0;
460 while( pS ){
461 mask |= exprListTableUsage(pMaskSet, pS->pEList);
drhf5b11382005-09-17 13:07:13 +0000462 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
463 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
464 mask |= exprTableUsage(pMaskSet, pS->pWhere);
465 mask |= exprTableUsage(pMaskSet, pS->pHaving);
drha430ae82007-09-12 15:41:01 +0000466 pS = pS->pPrior;
drhf5b11382005-09-17 13:07:13 +0000467 }
468 return mask;
469}
drh75897232000-05-29 14:26:00 +0000470
471/*
drh487ab3c2001-11-08 00:45:21 +0000472** Return TRUE if the given operator is one of the operators that is
drh51669862004-12-18 18:40:26 +0000473** allowed for an indexable WHERE clause term. The allowed operators are
drhc27a1ce2002-06-14 20:58:45 +0000474** "=", "<", ">", "<=", ">=", and "IN".
drh487ab3c2001-11-08 00:45:21 +0000475*/
476static int allowedOp(int op){
drhfe05af82005-07-21 03:14:59 +0000477 assert( TK_GT>TK_EQ && TK_GT<TK_GE );
478 assert( TK_LT>TK_EQ && TK_LT<TK_GE );
479 assert( TK_LE>TK_EQ && TK_LE<TK_GE );
480 assert( TK_GE==TK_EQ+4 );
drh50b39962006-10-28 00:28:09 +0000481 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
drh487ab3c2001-11-08 00:45:21 +0000482}
483
484/*
drh902b9ee2008-12-05 17:17:07 +0000485** Swap two objects of type TYPE.
drh193bd772004-07-20 18:23:14 +0000486*/
487#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
488
489/*
drh909626d2008-05-30 14:58:37 +0000490** Commute a comparison operator. Expressions of the form "X op Y"
drh0fcef5e2005-07-19 17:38:22 +0000491** are converted into "Y op X".
danielk1977eb5453d2007-07-30 14:40:48 +0000492**
493** If a collation sequence is associated with either the left or right
494** side of the comparison, it remains associated with the same side after
495** the commutation. So "Y collate NOCASE op X" becomes
496** "X collate NOCASE op Y". This is because any collation sequence on
497** the left hand side of a comparison overrides any collation sequence
498** attached to the right. For the same reason the EP_ExpCollate flag
499** is not commuted.
drh193bd772004-07-20 18:23:14 +0000500*/
drh7d10d5a2008-08-20 16:35:10 +0000501static void exprCommute(Parse *pParse, Expr *pExpr){
danielk1977eb5453d2007-07-30 14:40:48 +0000502 u16 expRight = (pExpr->pRight->flags & EP_ExpCollate);
503 u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate);
drhfe05af82005-07-21 03:14:59 +0000504 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
drh7d10d5a2008-08-20 16:35:10 +0000505 pExpr->pRight->pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight);
506 pExpr->pLeft->pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
drh0fcef5e2005-07-19 17:38:22 +0000507 SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
danielk1977eb5453d2007-07-30 14:40:48 +0000508 pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft;
509 pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight;
drh0fcef5e2005-07-19 17:38:22 +0000510 SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
511 if( pExpr->op>=TK_GT ){
512 assert( TK_LT==TK_GT+2 );
513 assert( TK_GE==TK_LE+2 );
514 assert( TK_GT>TK_EQ );
515 assert( TK_GT<TK_LE );
516 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
517 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
drh193bd772004-07-20 18:23:14 +0000518 }
drh193bd772004-07-20 18:23:14 +0000519}
520
521/*
drhfe05af82005-07-21 03:14:59 +0000522** Translate from TK_xx operator to WO_xx bitmask.
523*/
drhec1724e2008-12-09 01:32:03 +0000524static u16 operatorMask(int op){
525 u16 c;
drhfe05af82005-07-21 03:14:59 +0000526 assert( allowedOp(op) );
527 if( op==TK_IN ){
drh51147ba2005-07-23 22:59:55 +0000528 c = WO_IN;
drh50b39962006-10-28 00:28:09 +0000529 }else if( op==TK_ISNULL ){
530 c = WO_ISNULL;
drhfe05af82005-07-21 03:14:59 +0000531 }else{
drhec1724e2008-12-09 01:32:03 +0000532 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff );
533 c = (u16)(WO_EQ<<(op-TK_EQ));
drhfe05af82005-07-21 03:14:59 +0000534 }
drh50b39962006-10-28 00:28:09 +0000535 assert( op!=TK_ISNULL || c==WO_ISNULL );
drh51147ba2005-07-23 22:59:55 +0000536 assert( op!=TK_IN || c==WO_IN );
537 assert( op!=TK_EQ || c==WO_EQ );
538 assert( op!=TK_LT || c==WO_LT );
539 assert( op!=TK_LE || c==WO_LE );
540 assert( op!=TK_GT || c==WO_GT );
541 assert( op!=TK_GE || c==WO_GE );
542 return c;
drhfe05af82005-07-21 03:14:59 +0000543}
544
545/*
546** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
547** where X is a reference to the iColumn of table iCur and <op> is one of
548** the WO_xx operator codes specified by the op parameter.
549** Return a pointer to the term. Return 0 if not found.
550*/
551static WhereTerm *findTerm(
552 WhereClause *pWC, /* The WHERE clause to be searched */
553 int iCur, /* Cursor number of LHS */
554 int iColumn, /* Column number of LHS */
555 Bitmask notReady, /* RHS must not overlap with this mask */
drhec1724e2008-12-09 01:32:03 +0000556 u32 op, /* Mask of WO_xx values describing operator */
drhfe05af82005-07-21 03:14:59 +0000557 Index *pIdx /* Must be compatible with this index, if not NULL */
558){
559 WhereTerm *pTerm;
560 int k;
drh22c24032008-07-09 13:28:53 +0000561 assert( iCur>=0 );
drhec1724e2008-12-09 01:32:03 +0000562 op &= WO_ALL;
drhfe05af82005-07-21 03:14:59 +0000563 for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
564 if( pTerm->leftCursor==iCur
565 && (pTerm->prereqRight & notReady)==0
drh700a2262008-12-17 19:22:15 +0000566 && pTerm->u.leftColumn==iColumn
drhb52076c2006-01-23 13:22:09 +0000567 && (pTerm->eOperator & op)!=0
drhfe05af82005-07-21 03:14:59 +0000568 ){
drh22c24032008-07-09 13:28:53 +0000569 if( pIdx && pTerm->eOperator!=WO_ISNULL ){
drhfe05af82005-07-21 03:14:59 +0000570 Expr *pX = pTerm->pExpr;
571 CollSeq *pColl;
572 char idxaff;
danielk1977f0113002006-01-24 12:09:17 +0000573 int j;
drhfe05af82005-07-21 03:14:59 +0000574 Parse *pParse = pWC->pParse;
575
576 idxaff = pIdx->pTable->aCol[iColumn].affinity;
577 if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
danielk1977bcbb04e2007-05-29 12:11:29 +0000578
579 /* Figure out the collation sequence required from an index for
580 ** it to be useful for optimising expression pX. Store this
581 ** value in variable pColl.
582 */
583 assert(pX->pLeft);
584 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
danielk197793574162008-12-30 15:26:29 +0000585 assert(pColl || pParse->nErr);
danielk1977bcbb04e2007-05-29 12:11:29 +0000586
drh22c24032008-07-09 13:28:53 +0000587 for(j=0; pIdx->aiColumn[j]!=iColumn; j++){
drh34004ce2008-07-11 16:15:17 +0000588 if( NEVER(j>=pIdx->nColumn) ) return 0;
drh22c24032008-07-09 13:28:53 +0000589 }
danielk197793574162008-12-30 15:26:29 +0000590 if( pColl && sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
drhfe05af82005-07-21 03:14:59 +0000591 }
592 return pTerm;
593 }
594 }
595 return 0;
596}
597
drh6c30be82005-07-29 15:10:17 +0000598/* Forward reference */
drh7b4fc6a2007-02-06 13:26:32 +0000599static void exprAnalyze(SrcList*, WhereClause*, int);
drh6c30be82005-07-29 15:10:17 +0000600
601/*
602** Call exprAnalyze on all terms in a WHERE clause.
603**
604**
605*/
606static void exprAnalyzeAll(
607 SrcList *pTabList, /* the FROM clause */
drh6c30be82005-07-29 15:10:17 +0000608 WhereClause *pWC /* the WHERE clause to be analyzed */
609){
drh6c30be82005-07-29 15:10:17 +0000610 int i;
drh9eb20282005-08-24 03:52:18 +0000611 for(i=pWC->nTerm-1; i>=0; i--){
drh7b4fc6a2007-02-06 13:26:32 +0000612 exprAnalyze(pTabList, pWC, i);
drh6c30be82005-07-29 15:10:17 +0000613 }
614}
615
drhd2687b72005-08-12 22:56:09 +0000616#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
617/*
618** Check to see if the given expression is a LIKE or GLOB operator that
619** can be optimized using inequality constraints. Return TRUE if it is
620** so and false if not.
621**
622** In order for the operator to be optimizible, the RHS must be a string
623** literal that does not begin with a wildcard.
624*/
625static int isLikeOrGlob(
drh7d10d5a2008-08-20 16:35:10 +0000626 Parse *pParse, /* Parsing and code generating context */
drhd2687b72005-08-12 22:56:09 +0000627 Expr *pExpr, /* Test this expression */
dan937d0de2009-10-15 18:35:38 +0000628 Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */
drh9f504ea2008-02-23 21:55:39 +0000629 int *pisComplete, /* True if the only wildcard is % in the last character */
630 int *pnoCase /* True if uppercase is equivalent to lowercase */
drhd2687b72005-08-12 22:56:09 +0000631){
dan937d0de2009-10-15 18:35:38 +0000632 const char *z = 0; /* String on RHS of LIKE operator */
drh5bd98ae2009-01-07 18:24:03 +0000633 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */
634 ExprList *pList; /* List of operands to the LIKE operator */
635 int c; /* One character in z[] */
636 int cnt; /* Number of non-wildcard prefix characters */
637 char wc[3]; /* Wildcard characters */
drh5bd98ae2009-01-07 18:24:03 +0000638 sqlite3 *db = pParse->db; /* Database connection */
dan937d0de2009-10-15 18:35:38 +0000639 sqlite3_value *pVal = 0;
640 int op; /* Opcode of pRight */
drhd64fe2f2005-08-28 17:00:23 +0000641
drh9f504ea2008-02-23 21:55:39 +0000642 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){
drhd2687b72005-08-12 22:56:09 +0000643 return 0;
644 }
drh9f504ea2008-02-23 21:55:39 +0000645#ifdef SQLITE_EBCDIC
646 if( *pnoCase ) return 0;
647#endif
danielk19776ab3a2e2009-02-19 14:39:25 +0000648 pList = pExpr->x.pList;
drh55ef4d92005-08-14 01:20:37 +0000649 pLeft = pList->a[1].pExpr;
drhd91ca492009-10-22 20:50:36 +0000650 if( pLeft->op!=TK_COLUMN || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT ){
651 /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must
652 ** be the name of an indexed column with TEXT affinity. */
drhd2687b72005-08-12 22:56:09 +0000653 return 0;
654 }
drhd91ca492009-10-22 20:50:36 +0000655 assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */
dan937d0de2009-10-15 18:35:38 +0000656
657 pRight = pList->a[0].pExpr;
658 op = pRight->op;
659 if( op==TK_REGISTER ){
660 op = pRight->op2;
661 }
662 if( op==TK_VARIABLE ){
663 Vdbe *pReprepare = pParse->pReprepare;
664 pVal = sqlite3VdbeGetValue(pReprepare, pRight->iColumn, SQLITE_AFF_NONE);
665 if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){
666 z = (char *)sqlite3_value_text(pVal);
667 }
dan1d2ce4f2009-10-19 18:11:09 +0000668 sqlite3VdbeSetVarmask(pParse->pVdbe, pRight->iColumn);
dan937d0de2009-10-15 18:35:38 +0000669 assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER );
670 }else if( op==TK_STRING ){
671 z = pRight->u.zToken;
672 }
673 if( z ){
shane85095702009-06-15 16:27:08 +0000674 cnt = 0;
drhb7916a72009-05-27 10:31:29 +0000675 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){
drh24fb6272009-05-01 21:13:36 +0000676 cnt++;
677 }
drh93ee23c2010-07-22 12:33:57 +0000678 if( cnt!=0 && 255!=(u8)z[cnt-1] ){
dan937d0de2009-10-15 18:35:38 +0000679 Expr *pPrefix;
drh93ee23c2010-07-22 12:33:57 +0000680 *pisComplete = c==wc[0] && z[cnt+1]==0;
dan937d0de2009-10-15 18:35:38 +0000681 pPrefix = sqlite3Expr(db, TK_STRING, z);
682 if( pPrefix ) pPrefix->u.zToken[cnt] = 0;
683 *ppPrefix = pPrefix;
684 if( op==TK_VARIABLE ){
685 Vdbe *v = pParse->pVdbe;
dan1d2ce4f2009-10-19 18:11:09 +0000686 sqlite3VdbeSetVarmask(v, pRight->iColumn);
dan937d0de2009-10-15 18:35:38 +0000687 if( *pisComplete && pRight->u.zToken[1] ){
688 /* If the rhs of the LIKE expression is a variable, and the current
689 ** value of the variable means there is no need to invoke the LIKE
690 ** function, then no OP_Variable will be added to the program.
691 ** This causes problems for the sqlite3_bind_parameter_name()
drhbec451f2009-10-17 13:13:02 +0000692 ** API. To workaround them, add a dummy OP_Variable here.
693 */
694 int r1 = sqlite3GetTempReg(pParse);
695 sqlite3ExprCodeTarget(pParse, pRight, r1);
dan937d0de2009-10-15 18:35:38 +0000696 sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0);
drhbec451f2009-10-17 13:13:02 +0000697 sqlite3ReleaseTempReg(pParse, r1);
dan937d0de2009-10-15 18:35:38 +0000698 }
699 }
700 }else{
701 z = 0;
shane85095702009-06-15 16:27:08 +0000702 }
drhf998b732007-11-26 13:36:00 +0000703 }
dan937d0de2009-10-15 18:35:38 +0000704
705 sqlite3ValueFree(pVal);
706 return (z!=0);
drhd2687b72005-08-12 22:56:09 +0000707}
708#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
709
drhedb193b2006-06-27 13:20:21 +0000710
711#ifndef SQLITE_OMIT_VIRTUALTABLE
drhfe05af82005-07-21 03:14:59 +0000712/*
drh7f375902006-06-13 17:38:59 +0000713** Check to see if the given expression is of the form
714**
715** column MATCH expr
716**
717** If it is then return TRUE. If not, return FALSE.
718*/
719static int isMatchOfColumn(
720 Expr *pExpr /* Test this expression */
721){
722 ExprList *pList;
723
724 if( pExpr->op!=TK_FUNCTION ){
725 return 0;
726 }
drh33e619f2009-05-28 01:00:55 +0000727 if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){
drh7f375902006-06-13 17:38:59 +0000728 return 0;
729 }
danielk19776ab3a2e2009-02-19 14:39:25 +0000730 pList = pExpr->x.pList;
drh7f375902006-06-13 17:38:59 +0000731 if( pList->nExpr!=2 ){
732 return 0;
733 }
734 if( pList->a[1].pExpr->op != TK_COLUMN ){
735 return 0;
736 }
737 return 1;
738}
drhedb193b2006-06-27 13:20:21 +0000739#endif /* SQLITE_OMIT_VIRTUALTABLE */
drh7f375902006-06-13 17:38:59 +0000740
741/*
drh54a167d2005-11-26 14:08:07 +0000742** If the pBase expression originated in the ON or USING clause of
743** a join, then transfer the appropriate markings over to derived.
744*/
745static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
746 pDerived->flags |= pBase->flags & EP_FromJoin;
747 pDerived->iRightJoinTable = pBase->iRightJoinTable;
748}
749
drh3e355802007-02-23 23:13:33 +0000750#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
751/*
drh1a58fe02008-12-20 02:06:13 +0000752** Analyze a term that consists of two or more OR-connected
753** subterms. So in:
drh3e355802007-02-23 23:13:33 +0000754**
drh1a58fe02008-12-20 02:06:13 +0000755** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
756** ^^^^^^^^^^^^^^^^^^^^
drh3e355802007-02-23 23:13:33 +0000757**
drh1a58fe02008-12-20 02:06:13 +0000758** This routine analyzes terms such as the middle term in the above example.
759** A WhereOrTerm object is computed and attached to the term under
760** analysis, regardless of the outcome of the analysis. Hence:
drh3e355802007-02-23 23:13:33 +0000761**
drh1a58fe02008-12-20 02:06:13 +0000762** WhereTerm.wtFlags |= TERM_ORINFO
763** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object
drh3e355802007-02-23 23:13:33 +0000764**
drh1a58fe02008-12-20 02:06:13 +0000765** The term being analyzed must have two or more of OR-connected subterms.
danielk1977fdc40192008-12-29 18:33:32 +0000766** A single subterm might be a set of AND-connected sub-subterms.
drh1a58fe02008-12-20 02:06:13 +0000767** Examples of terms under analysis:
drh3e355802007-02-23 23:13:33 +0000768**
drh1a58fe02008-12-20 02:06:13 +0000769** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
770** (B) x=expr1 OR expr2=x OR x=expr3
771** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
772** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
773** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
drh3e355802007-02-23 23:13:33 +0000774**
drh1a58fe02008-12-20 02:06:13 +0000775** CASE 1:
776**
777** If all subterms are of the form T.C=expr for some single column of C
778** a single table T (as shown in example B above) then create a new virtual
779** term that is an equivalent IN expression. In other words, if the term
780** being analyzed is:
781**
782** x = expr1 OR expr2 = x OR x = expr3
783**
784** then create a new virtual term like this:
785**
786** x IN (expr1,expr2,expr3)
787**
788** CASE 2:
789**
790** If all subterms are indexable by a single table T, then set
791**
792** WhereTerm.eOperator = WO_OR
793** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T
794**
795** A subterm is "indexable" if it is of the form
796** "T.C <op> <expr>" where C is any column of table T and
797** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
798** A subterm is also indexable if it is an AND of two or more
799** subsubterms at least one of which is indexable. Indexable AND
800** subterms have their eOperator set to WO_AND and they have
801** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
802**
803** From another point of view, "indexable" means that the subterm could
804** potentially be used with an index if an appropriate index exists.
805** This analysis does not consider whether or not the index exists; that
806** is something the bestIndex() routine will determine. This analysis
807** only looks at whether subterms appropriate for indexing exist.
808**
809** All examples A through E above all satisfy case 2. But if a term
810** also statisfies case 1 (such as B) we know that the optimizer will
811** always prefer case 1, so in that case we pretend that case 2 is not
812** satisfied.
813**
814** It might be the case that multiple tables are indexable. For example,
815** (E) above is indexable on tables P, Q, and R.
816**
817** Terms that satisfy case 2 are candidates for lookup by using
818** separate indices to find rowids for each subterm and composing
819** the union of all rowids using a RowSet object. This is similar
820** to "bitmap indices" in other database engines.
821**
822** OTHERWISE:
823**
824** If neither case 1 nor case 2 apply, then leave the eOperator set to
825** zero. This term is not useful for search.
drh3e355802007-02-23 23:13:33 +0000826*/
drh1a58fe02008-12-20 02:06:13 +0000827static void exprAnalyzeOrTerm(
828 SrcList *pSrc, /* the FROM clause */
829 WhereClause *pWC, /* the complete WHERE clause */
830 int idxTerm /* Index of the OR-term to be analyzed */
831){
832 Parse *pParse = pWC->pParse; /* Parser context */
833 sqlite3 *db = pParse->db; /* Database connection */
834 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */
835 Expr *pExpr = pTerm->pExpr; /* The expression of the term */
drh111a6a72008-12-21 03:51:16 +0000836 WhereMaskSet *pMaskSet = pWC->pMaskSet; /* Table use masks */
drh1a58fe02008-12-20 02:06:13 +0000837 int i; /* Loop counters */
838 WhereClause *pOrWc; /* Breakup of pTerm into subterms */
839 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */
840 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */
841 Bitmask chngToIN; /* Tables that might satisfy case 1 */
842 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */
drh3e355802007-02-23 23:13:33 +0000843
drh1a58fe02008-12-20 02:06:13 +0000844 /*
845 ** Break the OR clause into its separate subterms. The subterms are
846 ** stored in a WhereClause structure containing within the WhereOrInfo
847 ** object that is attached to the original OR clause term.
848 */
849 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
850 assert( pExpr->op==TK_OR );
drh954701a2008-12-29 23:45:07 +0000851 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
drh1a58fe02008-12-20 02:06:13 +0000852 if( pOrInfo==0 ) return;
853 pTerm->wtFlags |= TERM_ORINFO;
854 pOrWc = &pOrInfo->wc;
855 whereClauseInit(pOrWc, pWC->pParse, pMaskSet);
856 whereSplit(pOrWc, pExpr, TK_OR);
857 exprAnalyzeAll(pSrc, pOrWc);
858 if( db->mallocFailed ) return;
859 assert( pOrWc->nTerm>=2 );
860
861 /*
862 ** Compute the set of tables that might satisfy cases 1 or 2.
863 */
danielk1977e672c8e2009-05-22 15:43:26 +0000864 indexable = ~(Bitmask)0;
865 chngToIN = ~(pWC->vmask);
drh1a58fe02008-12-20 02:06:13 +0000866 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
867 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
drh29435252008-12-28 18:35:08 +0000868 WhereAndInfo *pAndInfo;
869 assert( pOrTerm->eOperator==0 );
870 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
drh1a58fe02008-12-20 02:06:13 +0000871 chngToIN = 0;
drh29435252008-12-28 18:35:08 +0000872 pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo));
873 if( pAndInfo ){
874 WhereClause *pAndWC;
875 WhereTerm *pAndTerm;
876 int j;
877 Bitmask b = 0;
878 pOrTerm->u.pAndInfo = pAndInfo;
879 pOrTerm->wtFlags |= TERM_ANDINFO;
880 pOrTerm->eOperator = WO_AND;
881 pAndWC = &pAndInfo->wc;
882 whereClauseInit(pAndWC, pWC->pParse, pMaskSet);
883 whereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
884 exprAnalyzeAll(pSrc, pAndWC);
drh7c2fbde2009-01-07 20:58:57 +0000885 testcase( db->mallocFailed );
drh96c7a7d2009-01-10 15:34:12 +0000886 if( !db->mallocFailed ){
887 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
888 assert( pAndTerm->pExpr );
889 if( allowedOp(pAndTerm->pExpr->op) ){
890 b |= getMask(pMaskSet, pAndTerm->leftCursor);
891 }
drh29435252008-12-28 18:35:08 +0000892 }
893 }
894 indexable &= b;
895 }
drh1a58fe02008-12-20 02:06:13 +0000896 }else if( pOrTerm->wtFlags & TERM_COPIED ){
897 /* Skip this term for now. We revisit it when we process the
898 ** corresponding TERM_VIRTUAL term */
899 }else{
900 Bitmask b;
901 b = getMask(pMaskSet, pOrTerm->leftCursor);
902 if( pOrTerm->wtFlags & TERM_VIRTUAL ){
903 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
904 b |= getMask(pMaskSet, pOther->leftCursor);
905 }
906 indexable &= b;
907 if( pOrTerm->eOperator!=WO_EQ ){
908 chngToIN = 0;
909 }else{
910 chngToIN &= b;
911 }
912 }
drh3e355802007-02-23 23:13:33 +0000913 }
drh1a58fe02008-12-20 02:06:13 +0000914
915 /*
916 ** Record the set of tables that satisfy case 2. The set might be
drh111a6a72008-12-21 03:51:16 +0000917 ** empty.
drh1a58fe02008-12-20 02:06:13 +0000918 */
919 pOrInfo->indexable = indexable;
drh111a6a72008-12-21 03:51:16 +0000920 pTerm->eOperator = indexable==0 ? 0 : WO_OR;
drh1a58fe02008-12-20 02:06:13 +0000921
922 /*
923 ** chngToIN holds a set of tables that *might* satisfy case 1. But
924 ** we have to do some additional checking to see if case 1 really
925 ** is satisfied.
drh4e8be3b2009-06-08 17:11:08 +0000926 **
927 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means
928 ** that there is no possibility of transforming the OR clause into an
929 ** IN operator because one or more terms in the OR clause contain
930 ** something other than == on a column in the single table. The 1-bit
931 ** case means that every term of the OR clause is of the form
932 ** "table.column=expr" for some single table. The one bit that is set
933 ** will correspond to the common table. We still need to check to make
934 ** sure the same column is used on all terms. The 2-bit case is when
935 ** the all terms are of the form "table1.column=table2.column". It
936 ** might be possible to form an IN operator with either table1.column
937 ** or table2.column as the LHS if either is common to every term of
938 ** the OR clause.
939 **
940 ** Note that terms of the form "table.column1=table.column2" (the
941 ** same table on both sizes of the ==) cannot be optimized.
drh1a58fe02008-12-20 02:06:13 +0000942 */
943 if( chngToIN ){
944 int okToChngToIN = 0; /* True if the conversion to IN is valid */
945 int iColumn = -1; /* Column index on lhs of IN operator */
shane63207ab2009-02-04 01:49:30 +0000946 int iCursor = -1; /* Table cursor common to all terms */
drh1a58fe02008-12-20 02:06:13 +0000947 int j = 0; /* Loop counter */
948
949 /* Search for a table and column that appears on one side or the
950 ** other of the == operator in every subterm. That table and column
951 ** will be recorded in iCursor and iColumn. There might not be any
952 ** such table and column. Set okToChngToIN if an appropriate table
953 ** and column is found but leave okToChngToIN false if not found.
954 */
955 for(j=0; j<2 && !okToChngToIN; j++){
956 pOrTerm = pOrWc->a;
957 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
958 assert( pOrTerm->eOperator==WO_EQ );
959 pOrTerm->wtFlags &= ~TERM_OR_OK;
drh4e8be3b2009-06-08 17:11:08 +0000960 if( pOrTerm->leftCursor==iCursor ){
961 /* This is the 2-bit case and we are on the second iteration and
962 ** current term is from the first iteration. So skip this term. */
963 assert( j==1 );
964 continue;
965 }
966 if( (chngToIN & getMask(pMaskSet, pOrTerm->leftCursor))==0 ){
967 /* This term must be of the form t1.a==t2.b where t2 is in the
968 ** chngToIN set but t1 is not. This term will be either preceeded
969 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term
970 ** and use its inversion. */
971 testcase( pOrTerm->wtFlags & TERM_COPIED );
972 testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
973 assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
974 continue;
975 }
drh1a58fe02008-12-20 02:06:13 +0000976 iColumn = pOrTerm->u.leftColumn;
977 iCursor = pOrTerm->leftCursor;
978 break;
979 }
980 if( i<0 ){
drh4e8be3b2009-06-08 17:11:08 +0000981 /* No candidate table+column was found. This can only occur
982 ** on the second iteration */
drh1a58fe02008-12-20 02:06:13 +0000983 assert( j==1 );
984 assert( (chngToIN&(chngToIN-1))==0 );
drh4e8be3b2009-06-08 17:11:08 +0000985 assert( chngToIN==getMask(pMaskSet, iCursor) );
drh1a58fe02008-12-20 02:06:13 +0000986 break;
987 }
drh4e8be3b2009-06-08 17:11:08 +0000988 testcase( j==1 );
989
990 /* We have found a candidate table and column. Check to see if that
991 ** table and column is common to every term in the OR clause */
drh1a58fe02008-12-20 02:06:13 +0000992 okToChngToIN = 1;
993 for(; i>=0 && okToChngToIN; i--, pOrTerm++){
994 assert( pOrTerm->eOperator==WO_EQ );
995 if( pOrTerm->leftCursor!=iCursor ){
996 pOrTerm->wtFlags &= ~TERM_OR_OK;
997 }else if( pOrTerm->u.leftColumn!=iColumn ){
998 okToChngToIN = 0;
999 }else{
1000 int affLeft, affRight;
1001 /* If the right-hand side is also a column, then the affinities
1002 ** of both right and left sides must be such that no type
1003 ** conversions are required on the right. (Ticket #2249)
1004 */
1005 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
1006 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
1007 if( affRight!=0 && affRight!=affLeft ){
1008 okToChngToIN = 0;
1009 }else{
1010 pOrTerm->wtFlags |= TERM_OR_OK;
1011 }
1012 }
1013 }
1014 }
1015
1016 /* At this point, okToChngToIN is true if original pTerm satisfies
1017 ** case 1. In that case, construct a new virtual term that is
1018 ** pTerm converted into an IN operator.
1019 */
1020 if( okToChngToIN ){
1021 Expr *pDup; /* A transient duplicate expression */
1022 ExprList *pList = 0; /* The RHS of the IN operator */
1023 Expr *pLeft = 0; /* The LHS of the IN operator */
1024 Expr *pNew; /* The complete IN operator */
1025
1026 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
1027 if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
1028 assert( pOrTerm->eOperator==WO_EQ );
1029 assert( pOrTerm->leftCursor==iCursor );
1030 assert( pOrTerm->u.leftColumn==iColumn );
danielk19776ab3a2e2009-02-19 14:39:25 +00001031 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
drhb7916a72009-05-27 10:31:29 +00001032 pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup);
drh1a58fe02008-12-20 02:06:13 +00001033 pLeft = pOrTerm->pExpr->pLeft;
1034 }
1035 assert( pLeft!=0 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001036 pDup = sqlite3ExprDup(db, pLeft, 0);
drhb7916a72009-05-27 10:31:29 +00001037 pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0);
drh1a58fe02008-12-20 02:06:13 +00001038 if( pNew ){
1039 int idxNew;
1040 transferJoinMarkings(pNew, pExpr);
danielk19776ab3a2e2009-02-19 14:39:25 +00001041 assert( !ExprHasProperty(pNew, EP_xIsSelect) );
1042 pNew->x.pList = pList;
drh1a58fe02008-12-20 02:06:13 +00001043 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
1044 testcase( idxNew==0 );
1045 exprAnalyze(pSrc, pWC, idxNew);
1046 pTerm = &pWC->a[idxTerm];
1047 pWC->a[idxNew].iParent = idxTerm;
1048 pTerm->nChild = 1;
1049 }else{
1050 sqlite3ExprListDelete(db, pList);
1051 }
1052 pTerm->eOperator = 0; /* case 1 trumps case 2 */
1053 }
drh3e355802007-02-23 23:13:33 +00001054 }
drh3e355802007-02-23 23:13:33 +00001055}
1056#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
drh54a167d2005-11-26 14:08:07 +00001057
drh1a58fe02008-12-20 02:06:13 +00001058
drh54a167d2005-11-26 14:08:07 +00001059/*
drh0aa74ed2005-07-16 13:33:20 +00001060** The input to this routine is an WhereTerm structure with only the
drh51147ba2005-07-23 22:59:55 +00001061** "pExpr" field filled in. The job of this routine is to analyze the
drh0aa74ed2005-07-16 13:33:20 +00001062** subexpression and populate all the other fields of the WhereTerm
drh75897232000-05-29 14:26:00 +00001063** structure.
drh51147ba2005-07-23 22:59:55 +00001064**
1065** If the expression is of the form "<expr> <op> X" it gets commuted
drh1a58fe02008-12-20 02:06:13 +00001066** to the standard form of "X <op> <expr>".
1067**
1068** If the expression is of the form "X <op> Y" where both X and Y are
1069** columns, then the original expression is unchanged and a new virtual
1070** term of the form "Y <op> X" is added to the WHERE clause and
1071** analyzed separately. The original term is marked with TERM_COPIED
1072** and the new term is marked with TERM_DYNAMIC (because it's pExpr
1073** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
1074** is a commuted copy of a prior term.) The original term has nChild=1
1075** and the copy has idxParent set to the index of the original term.
drh75897232000-05-29 14:26:00 +00001076*/
drh0fcef5e2005-07-19 17:38:22 +00001077static void exprAnalyze(
1078 SrcList *pSrc, /* the FROM clause */
drh9eb20282005-08-24 03:52:18 +00001079 WhereClause *pWC, /* the WHERE clause */
1080 int idxTerm /* Index of the term to be analyzed */
drh0fcef5e2005-07-19 17:38:22 +00001081){
drh1a58fe02008-12-20 02:06:13 +00001082 WhereTerm *pTerm; /* The term to be analyzed */
drh111a6a72008-12-21 03:51:16 +00001083 WhereMaskSet *pMaskSet; /* Set of table index masks */
drh1a58fe02008-12-20 02:06:13 +00001084 Expr *pExpr; /* The expression to be analyzed */
1085 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */
1086 Bitmask prereqAll; /* Prerequesites of pExpr */
drh5e767c52010-02-25 04:15:47 +00001087 Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */
drh1d452e12009-11-01 19:26:59 +00001088 Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */
1089 int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */
1090 int noCase = 0; /* LIKE/GLOB distinguishes case */
drh1a58fe02008-12-20 02:06:13 +00001091 int op; /* Top-level operator. pExpr->op */
1092 Parse *pParse = pWC->pParse; /* Parsing context */
1093 sqlite3 *db = pParse->db; /* Database connection */
drh0fcef5e2005-07-19 17:38:22 +00001094
drhf998b732007-11-26 13:36:00 +00001095 if( db->mallocFailed ){
1096 return;
1097 }
1098 pTerm = &pWC->a[idxTerm];
1099 pMaskSet = pWC->pMaskSet;
1100 pExpr = pTerm->pExpr;
drh0fcef5e2005-07-19 17:38:22 +00001101 prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
drh50b39962006-10-28 00:28:09 +00001102 op = pExpr->op;
1103 if( op==TK_IN ){
drhf5b11382005-09-17 13:07:13 +00001104 assert( pExpr->pRight==0 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001105 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1106 pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect);
1107 }else{
1108 pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList);
1109 }
drh50b39962006-10-28 00:28:09 +00001110 }else if( op==TK_ISNULL ){
1111 pTerm->prereqRight = 0;
drhf5b11382005-09-17 13:07:13 +00001112 }else{
1113 pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
1114 }
drh22d6a532005-09-19 21:05:48 +00001115 prereqAll = exprTableUsage(pMaskSet, pExpr);
1116 if( ExprHasProperty(pExpr, EP_FromJoin) ){
drh42165be2008-03-26 14:56:34 +00001117 Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable);
1118 prereqAll |= x;
drhdafc0ce2008-04-17 19:14:02 +00001119 extraRight = x-1; /* ON clause terms may not be used with an index
1120 ** on left table of a LEFT JOIN. Ticket #3015 */
drh22d6a532005-09-19 21:05:48 +00001121 }
1122 pTerm->prereqAll = prereqAll;
drh0fcef5e2005-07-19 17:38:22 +00001123 pTerm->leftCursor = -1;
drh45b1ee42005-08-02 17:48:22 +00001124 pTerm->iParent = -1;
drhb52076c2006-01-23 13:22:09 +00001125 pTerm->eOperator = 0;
drh50b39962006-10-28 00:28:09 +00001126 if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){
drh0fcef5e2005-07-19 17:38:22 +00001127 Expr *pLeft = pExpr->pLeft;
1128 Expr *pRight = pExpr->pRight;
1129 if( pLeft->op==TK_COLUMN ){
1130 pTerm->leftCursor = pLeft->iTable;
drh700a2262008-12-17 19:22:15 +00001131 pTerm->u.leftColumn = pLeft->iColumn;
drh50b39962006-10-28 00:28:09 +00001132 pTerm->eOperator = operatorMask(op);
drh75897232000-05-29 14:26:00 +00001133 }
drh0fcef5e2005-07-19 17:38:22 +00001134 if( pRight && pRight->op==TK_COLUMN ){
1135 WhereTerm *pNew;
1136 Expr *pDup;
1137 if( pTerm->leftCursor>=0 ){
drh9eb20282005-08-24 03:52:18 +00001138 int idxNew;
danielk19776ab3a2e2009-02-19 14:39:25 +00001139 pDup = sqlite3ExprDup(db, pExpr, 0);
drh17435752007-08-16 04:30:38 +00001140 if( db->mallocFailed ){
drh633e6d52008-07-28 19:34:53 +00001141 sqlite3ExprDelete(db, pDup);
drh28f45912006-10-18 23:26:38 +00001142 return;
1143 }
drh9eb20282005-08-24 03:52:18 +00001144 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
1145 if( idxNew==0 ) return;
1146 pNew = &pWC->a[idxNew];
1147 pNew->iParent = idxTerm;
1148 pTerm = &pWC->a[idxTerm];
drh45b1ee42005-08-02 17:48:22 +00001149 pTerm->nChild = 1;
drh165be382008-12-05 02:36:33 +00001150 pTerm->wtFlags |= TERM_COPIED;
drh0fcef5e2005-07-19 17:38:22 +00001151 }else{
1152 pDup = pExpr;
1153 pNew = pTerm;
1154 }
drh7d10d5a2008-08-20 16:35:10 +00001155 exprCommute(pParse, pDup);
drh0fcef5e2005-07-19 17:38:22 +00001156 pLeft = pDup->pLeft;
1157 pNew->leftCursor = pLeft->iTable;
drh700a2262008-12-17 19:22:15 +00001158 pNew->u.leftColumn = pLeft->iColumn;
drh5e767c52010-02-25 04:15:47 +00001159 testcase( (prereqLeft | extraRight) != prereqLeft );
1160 pNew->prereqRight = prereqLeft | extraRight;
drh0fcef5e2005-07-19 17:38:22 +00001161 pNew->prereqAll = prereqAll;
drhb52076c2006-01-23 13:22:09 +00001162 pNew->eOperator = operatorMask(pDup->op);
drh75897232000-05-29 14:26:00 +00001163 }
1164 }
drhed378002005-07-28 23:12:08 +00001165
drhd2687b72005-08-12 22:56:09 +00001166#ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
drhed378002005-07-28 23:12:08 +00001167 /* If a term is the BETWEEN operator, create two new virtual terms
drh1a58fe02008-12-20 02:06:13 +00001168 ** that define the range that the BETWEEN implements. For example:
1169 **
1170 ** a BETWEEN b AND c
1171 **
1172 ** is converted into:
1173 **
1174 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
1175 **
1176 ** The two new terms are added onto the end of the WhereClause object.
1177 ** The new terms are "dynamic" and are children of the original BETWEEN
1178 ** term. That means that if the BETWEEN term is coded, the children are
1179 ** skipped. Or, if the children are satisfied by an index, the original
1180 ** BETWEEN term is skipped.
drhed378002005-07-28 23:12:08 +00001181 */
drh29435252008-12-28 18:35:08 +00001182 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){
danielk19776ab3a2e2009-02-19 14:39:25 +00001183 ExprList *pList = pExpr->x.pList;
drhed378002005-07-28 23:12:08 +00001184 int i;
1185 static const u8 ops[] = {TK_GE, TK_LE};
1186 assert( pList!=0 );
1187 assert( pList->nExpr==2 );
1188 for(i=0; i<2; i++){
1189 Expr *pNewExpr;
drh9eb20282005-08-24 03:52:18 +00001190 int idxNew;
drhb7916a72009-05-27 10:31:29 +00001191 pNewExpr = sqlite3PExpr(pParse, ops[i],
1192 sqlite3ExprDup(db, pExpr->pLeft, 0),
danielk19776ab3a2e2009-02-19 14:39:25 +00001193 sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0);
drh9eb20282005-08-24 03:52:18 +00001194 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
drh6a1e0712008-12-05 15:24:15 +00001195 testcase( idxNew==0 );
drh7b4fc6a2007-02-06 13:26:32 +00001196 exprAnalyze(pSrc, pWC, idxNew);
drh9eb20282005-08-24 03:52:18 +00001197 pTerm = &pWC->a[idxTerm];
1198 pWC->a[idxNew].iParent = idxTerm;
drhed378002005-07-28 23:12:08 +00001199 }
drh45b1ee42005-08-02 17:48:22 +00001200 pTerm->nChild = 2;
drhed378002005-07-28 23:12:08 +00001201 }
drhd2687b72005-08-12 22:56:09 +00001202#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
drhed378002005-07-28 23:12:08 +00001203
danielk19771576cd92006-01-14 08:02:28 +00001204#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
drh1a58fe02008-12-20 02:06:13 +00001205 /* Analyze a term that is composed of two or more subterms connected by
1206 ** an OR operator.
drh6c30be82005-07-29 15:10:17 +00001207 */
1208 else if( pExpr->op==TK_OR ){
drh29435252008-12-28 18:35:08 +00001209 assert( pWC->op==TK_AND );
drh1a58fe02008-12-20 02:06:13 +00001210 exprAnalyzeOrTerm(pSrc, pWC, idxTerm);
danielk1977f51d1bd2009-07-31 06:14:51 +00001211 pTerm = &pWC->a[idxTerm];
drh6c30be82005-07-29 15:10:17 +00001212 }
drhd2687b72005-08-12 22:56:09 +00001213#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1214
1215#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
1216 /* Add constraints to reduce the search space on a LIKE or GLOB
1217 ** operator.
drh9f504ea2008-02-23 21:55:39 +00001218 **
1219 ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
1220 **
1221 ** x>='abc' AND x<'abd' AND x LIKE 'abc%'
1222 **
1223 ** The last character of the prefix "abc" is incremented to form the
shane7bc71e52008-05-28 18:01:44 +00001224 ** termination condition "abd".
drhd2687b72005-08-12 22:56:09 +00001225 */
dan937d0de2009-10-15 18:35:38 +00001226 if( pWC->op==TK_AND
1227 && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase)
1228 ){
drh1d452e12009-11-01 19:26:59 +00001229 Expr *pLeft; /* LHS of LIKE/GLOB operator */
1230 Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */
1231 Expr *pNewExpr1;
1232 Expr *pNewExpr2;
1233 int idxNew1;
1234 int idxNew2;
drh8342e492010-07-22 17:49:52 +00001235 CollSeq *pColl; /* Collating sequence to use */
drh9eb20282005-08-24 03:52:18 +00001236
danielk19776ab3a2e2009-02-19 14:39:25 +00001237 pLeft = pExpr->x.pList->a[1].pExpr;
danielk19776ab3a2e2009-02-19 14:39:25 +00001238 pStr2 = sqlite3ExprDup(db, pStr1, 0);
drhf998b732007-11-26 13:36:00 +00001239 if( !db->mallocFailed ){
drh254993e2009-06-08 19:44:36 +00001240 u8 c, *pC; /* Last character before the first wildcard */
dan937d0de2009-10-15 18:35:38 +00001241 pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1];
drh9f504ea2008-02-23 21:55:39 +00001242 c = *pC;
drh02a50b72008-05-26 18:33:40 +00001243 if( noCase ){
drh254993e2009-06-08 19:44:36 +00001244 /* The point is to increment the last character before the first
1245 ** wildcard. But if we increment '@', that will push it into the
1246 ** alphabetic range where case conversions will mess up the
1247 ** inequality. To avoid this, make sure to also run the full
1248 ** LIKE on all candidate expressions by clearing the isComplete flag
1249 */
1250 if( c=='A'-1 ) isComplete = 0;
1251
drh02a50b72008-05-26 18:33:40 +00001252 c = sqlite3UpperToLower[c];
1253 }
drh9f504ea2008-02-23 21:55:39 +00001254 *pC = c + 1;
drhd2687b72005-08-12 22:56:09 +00001255 }
drh8342e492010-07-22 17:49:52 +00001256 pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, noCase ? "NOCASE" : "BINARY",0);
1257 pNewExpr1 = sqlite3PExpr(pParse, TK_GE,
1258 sqlite3ExprSetColl(sqlite3ExprDup(db,pLeft,0), pColl),
1259 pStr1, 0);
drh9eb20282005-08-24 03:52:18 +00001260 idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
drh6a1e0712008-12-05 15:24:15 +00001261 testcase( idxNew1==0 );
drh7b4fc6a2007-02-06 13:26:32 +00001262 exprAnalyze(pSrc, pWC, idxNew1);
drh8342e492010-07-22 17:49:52 +00001263 pNewExpr2 = sqlite3PExpr(pParse, TK_LT,
1264 sqlite3ExprSetColl(sqlite3ExprDup(db,pLeft,0), pColl),
1265 pStr2, 0);
drh9eb20282005-08-24 03:52:18 +00001266 idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
drh6a1e0712008-12-05 15:24:15 +00001267 testcase( idxNew2==0 );
drh7b4fc6a2007-02-06 13:26:32 +00001268 exprAnalyze(pSrc, pWC, idxNew2);
drh9eb20282005-08-24 03:52:18 +00001269 pTerm = &pWC->a[idxTerm];
drhd2687b72005-08-12 22:56:09 +00001270 if( isComplete ){
drh9eb20282005-08-24 03:52:18 +00001271 pWC->a[idxNew1].iParent = idxTerm;
1272 pWC->a[idxNew2].iParent = idxTerm;
drhd2687b72005-08-12 22:56:09 +00001273 pTerm->nChild = 2;
1274 }
1275 }
1276#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
drh7f375902006-06-13 17:38:59 +00001277
1278#ifndef SQLITE_OMIT_VIRTUALTABLE
1279 /* Add a WO_MATCH auxiliary term to the constraint set if the
1280 ** current expression is of the form: column MATCH expr.
1281 ** This information is used by the xBestIndex methods of
1282 ** virtual tables. The native query optimizer does not attempt
1283 ** to do anything with MATCH functions.
1284 */
1285 if( isMatchOfColumn(pExpr) ){
1286 int idxNew;
1287 Expr *pRight, *pLeft;
1288 WhereTerm *pNewTerm;
1289 Bitmask prereqColumn, prereqExpr;
1290
danielk19776ab3a2e2009-02-19 14:39:25 +00001291 pRight = pExpr->x.pList->a[0].pExpr;
1292 pLeft = pExpr->x.pList->a[1].pExpr;
drh7f375902006-06-13 17:38:59 +00001293 prereqExpr = exprTableUsage(pMaskSet, pRight);
1294 prereqColumn = exprTableUsage(pMaskSet, pLeft);
1295 if( (prereqExpr & prereqColumn)==0 ){
drh1a90e092006-06-14 22:07:10 +00001296 Expr *pNewExpr;
drhb7916a72009-05-27 10:31:29 +00001297 pNewExpr = sqlite3PExpr(pParse, TK_MATCH,
1298 0, sqlite3ExprDup(db, pRight, 0), 0);
drh1a90e092006-06-14 22:07:10 +00001299 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
drh6a1e0712008-12-05 15:24:15 +00001300 testcase( idxNew==0 );
drh7f375902006-06-13 17:38:59 +00001301 pNewTerm = &pWC->a[idxNew];
1302 pNewTerm->prereqRight = prereqExpr;
1303 pNewTerm->leftCursor = pLeft->iTable;
drh700a2262008-12-17 19:22:15 +00001304 pNewTerm->u.leftColumn = pLeft->iColumn;
drh7f375902006-06-13 17:38:59 +00001305 pNewTerm->eOperator = WO_MATCH;
1306 pNewTerm->iParent = idxTerm;
drhd2ca60d2006-06-27 02:36:58 +00001307 pTerm = &pWC->a[idxTerm];
drh7f375902006-06-13 17:38:59 +00001308 pTerm->nChild = 1;
drh165be382008-12-05 02:36:33 +00001309 pTerm->wtFlags |= TERM_COPIED;
drh7f375902006-06-13 17:38:59 +00001310 pNewTerm->prereqAll = pTerm->prereqAll;
1311 }
1312 }
1313#endif /* SQLITE_OMIT_VIRTUALTABLE */
drhdafc0ce2008-04-17 19:14:02 +00001314
1315 /* Prevent ON clause terms of a LEFT JOIN from being used to drive
1316 ** an index for tables to the left of the join.
1317 */
1318 pTerm->prereqRight |= extraRight;
drh75897232000-05-29 14:26:00 +00001319}
1320
drh7b4fc6a2007-02-06 13:26:32 +00001321/*
1322** Return TRUE if any of the expressions in pList->a[iFirst...] contain
1323** a reference to any table other than the iBase table.
1324*/
1325static int referencesOtherTables(
1326 ExprList *pList, /* Search expressions in ths list */
drh111a6a72008-12-21 03:51:16 +00001327 WhereMaskSet *pMaskSet, /* Mapping from tables to bitmaps */
drh7b4fc6a2007-02-06 13:26:32 +00001328 int iFirst, /* Be searching with the iFirst-th expression */
1329 int iBase /* Ignore references to this table */
1330){
1331 Bitmask allowed = ~getMask(pMaskSet, iBase);
1332 while( iFirst<pList->nExpr ){
1333 if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){
1334 return 1;
1335 }
1336 }
1337 return 0;
1338}
1339
drh0fcef5e2005-07-19 17:38:22 +00001340
drh75897232000-05-29 14:26:00 +00001341/*
drh51669862004-12-18 18:40:26 +00001342** This routine decides if pIdx can be used to satisfy the ORDER BY
1343** clause. If it can, it returns 1. If pIdx cannot satisfy the
1344** ORDER BY clause, this routine returns 0.
1345**
1346** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
1347** left-most table in the FROM clause of that same SELECT statement and
1348** the table has a cursor number of "base". pIdx is an index on pTab.
1349**
1350** nEqCol is the number of columns of pIdx that are used as equality
1351** constraints. Any of these columns may be missing from the ORDER BY
1352** clause and the match can still be a success.
1353**
drh51669862004-12-18 18:40:26 +00001354** All terms of the ORDER BY that match against the index must be either
1355** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE
1356** index do not need to satisfy this constraint.) The *pbRev value is
1357** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
1358** the ORDER BY clause is all ASC.
1359*/
1360static int isSortingIndex(
1361 Parse *pParse, /* Parsing context */
drh111a6a72008-12-21 03:51:16 +00001362 WhereMaskSet *pMaskSet, /* Mapping from table cursor numbers to bitmaps */
drh51669862004-12-18 18:40:26 +00001363 Index *pIdx, /* The index we are testing */
drh74161702006-02-24 02:53:49 +00001364 int base, /* Cursor number for the table to be sorted */
drh51669862004-12-18 18:40:26 +00001365 ExprList *pOrderBy, /* The ORDER BY clause */
1366 int nEqCol, /* Number of index columns with == constraints */
1367 int *pbRev /* Set to 1 if ORDER BY is DESC */
1368){
drhb46b5772005-08-29 16:40:52 +00001369 int i, j; /* Loop counters */
drh85eeb692005-12-21 03:16:42 +00001370 int sortOrder = 0; /* XOR of index and ORDER BY sort direction */
drhb46b5772005-08-29 16:40:52 +00001371 int nTerm; /* Number of ORDER BY terms */
1372 struct ExprList_item *pTerm; /* A term of the ORDER BY clause */
drh51669862004-12-18 18:40:26 +00001373 sqlite3 *db = pParse->db;
1374
1375 assert( pOrderBy!=0 );
1376 nTerm = pOrderBy->nExpr;
1377 assert( nTerm>0 );
1378
dan5236ac12009-08-13 07:09:33 +00001379 /* Argument pIdx must either point to a 'real' named index structure,
1380 ** or an index structure allocated on the stack by bestBtreeIndex() to
1381 ** represent the rowid index that is part of every table. */
1382 assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) );
1383
drh51669862004-12-18 18:40:26 +00001384 /* Match terms of the ORDER BY clause against columns of
1385 ** the index.
drhcc192542006-12-20 03:24:19 +00001386 **
1387 ** Note that indices have pIdx->nColumn regular columns plus
1388 ** one additional column containing the rowid. The rowid column
1389 ** of the index is also allowed to match against the ORDER BY
1390 ** clause.
drh51669862004-12-18 18:40:26 +00001391 */
drhcc192542006-12-20 03:24:19 +00001392 for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){
drh51669862004-12-18 18:40:26 +00001393 Expr *pExpr; /* The expression of the ORDER BY pTerm */
1394 CollSeq *pColl; /* The collating sequence of pExpr */
drh85eeb692005-12-21 03:16:42 +00001395 int termSortOrder; /* Sort order for this term */
drhcc192542006-12-20 03:24:19 +00001396 int iColumn; /* The i-th column of the index. -1 for rowid */
1397 int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */
1398 const char *zColl; /* Name of the collating sequence for i-th index term */
drh51669862004-12-18 18:40:26 +00001399
1400 pExpr = pTerm->pExpr;
1401 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
1402 /* Can not use an index sort on anything that is not a column in the
1403 ** left-most table of the FROM clause */
drh7b4fc6a2007-02-06 13:26:32 +00001404 break;
drh51669862004-12-18 18:40:26 +00001405 }
1406 pColl = sqlite3ExprCollSeq(pParse, pExpr);
drhcc192542006-12-20 03:24:19 +00001407 if( !pColl ){
1408 pColl = db->pDfltColl;
1409 }
dan5236ac12009-08-13 07:09:33 +00001410 if( pIdx->zName && i<pIdx->nColumn ){
drhcc192542006-12-20 03:24:19 +00001411 iColumn = pIdx->aiColumn[i];
1412 if( iColumn==pIdx->pTable->iPKey ){
1413 iColumn = -1;
1414 }
1415 iSortOrder = pIdx->aSortOrder[i];
1416 zColl = pIdx->azColl[i];
1417 }else{
1418 iColumn = -1;
1419 iSortOrder = 0;
1420 zColl = pColl->zName;
1421 }
1422 if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){
drh9012bcb2004-12-19 00:11:35 +00001423 /* Term j of the ORDER BY clause does not match column i of the index */
1424 if( i<nEqCol ){
drh51669862004-12-18 18:40:26 +00001425 /* If an index column that is constrained by == fails to match an
1426 ** ORDER BY term, that is OK. Just ignore that column of the index
1427 */
1428 continue;
drhff354e92008-06-25 02:47:57 +00001429 }else if( i==pIdx->nColumn ){
1430 /* Index column i is the rowid. All other terms match. */
1431 break;
drh51669862004-12-18 18:40:26 +00001432 }else{
1433 /* If an index column fails to match and is not constrained by ==
1434 ** then the index cannot satisfy the ORDER BY constraint.
1435 */
1436 return 0;
1437 }
1438 }
dan5236ac12009-08-13 07:09:33 +00001439 assert( pIdx->aSortOrder!=0 || iColumn==-1 );
drh85eeb692005-12-21 03:16:42 +00001440 assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
drhcc192542006-12-20 03:24:19 +00001441 assert( iSortOrder==0 || iSortOrder==1 );
1442 termSortOrder = iSortOrder ^ pTerm->sortOrder;
drh51669862004-12-18 18:40:26 +00001443 if( i>nEqCol ){
drh85eeb692005-12-21 03:16:42 +00001444 if( termSortOrder!=sortOrder ){
drh51669862004-12-18 18:40:26 +00001445 /* Indices can only be used if all ORDER BY terms past the
1446 ** equality constraints are all either DESC or ASC. */
1447 return 0;
1448 }
1449 }else{
drh85eeb692005-12-21 03:16:42 +00001450 sortOrder = termSortOrder;
drh51669862004-12-18 18:40:26 +00001451 }
1452 j++;
1453 pTerm++;
drh7b4fc6a2007-02-06 13:26:32 +00001454 if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
drhcc192542006-12-20 03:24:19 +00001455 /* If the indexed column is the primary key and everything matches
drh7b4fc6a2007-02-06 13:26:32 +00001456 ** so far and none of the ORDER BY terms to the right reference other
1457 ** tables in the join, then we are assured that the index can be used
1458 ** to sort because the primary key is unique and so none of the other
1459 ** columns will make any difference
drhcc192542006-12-20 03:24:19 +00001460 */
1461 j = nTerm;
1462 }
drh51669862004-12-18 18:40:26 +00001463 }
1464
drhcc192542006-12-20 03:24:19 +00001465 *pbRev = sortOrder!=0;
drh8718f522005-08-13 16:13:04 +00001466 if( j>=nTerm ){
drhcc192542006-12-20 03:24:19 +00001467 /* All terms of the ORDER BY clause are covered by this index so
1468 ** this index can be used for sorting. */
1469 return 1;
1470 }
drh7b4fc6a2007-02-06 13:26:32 +00001471 if( pIdx->onError!=OE_None && i==pIdx->nColumn
1472 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
drhcc192542006-12-20 03:24:19 +00001473 /* All terms of this index match some prefix of the ORDER BY clause
drh7b4fc6a2007-02-06 13:26:32 +00001474 ** and the index is UNIQUE and no terms on the tail of the ORDER BY
1475 ** clause reference other tables in a join. If this is all true then
1476 ** the order by clause is superfluous. */
drh51669862004-12-18 18:40:26 +00001477 return 1;
1478 }
1479 return 0;
1480}
1481
1482/*
drhb6fb62d2005-09-20 08:47:20 +00001483** Prepare a crude estimate of the logarithm of the input value.
drh28c4cf42005-07-27 20:41:43 +00001484** The results need not be exact. This is only used for estimating
drh909626d2008-05-30 14:58:37 +00001485** the total cost of performing operations with O(logN) or O(NlogN)
drh28c4cf42005-07-27 20:41:43 +00001486** complexity. Because N is just a guess, it is no great tragedy if
1487** logN is a little off.
drh28c4cf42005-07-27 20:41:43 +00001488*/
1489static double estLog(double N){
drhb37df7b2005-10-13 02:09:49 +00001490 double logN = 1;
1491 double x = 10;
drh28c4cf42005-07-27 20:41:43 +00001492 while( N>x ){
drhb37df7b2005-10-13 02:09:49 +00001493 logN += 1;
drh28c4cf42005-07-27 20:41:43 +00001494 x *= 10;
1495 }
1496 return logN;
1497}
1498
drh6d209d82006-06-27 01:54:26 +00001499/*
1500** Two routines for printing the content of an sqlite3_index_info
1501** structure. Used for testing and debugging only. If neither
1502** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
1503** are no-ops.
1504*/
drh77a2a5e2007-04-06 01:04:39 +00001505#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
drh6d209d82006-06-27 01:54:26 +00001506static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
1507 int i;
mlcreech3a00f902008-03-04 17:45:01 +00001508 if( !sqlite3WhereTrace ) return;
drh6d209d82006-06-27 01:54:26 +00001509 for(i=0; i<p->nConstraint; i++){
1510 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
1511 i,
1512 p->aConstraint[i].iColumn,
1513 p->aConstraint[i].iTermOffset,
1514 p->aConstraint[i].op,
1515 p->aConstraint[i].usable);
1516 }
1517 for(i=0; i<p->nOrderBy; i++){
1518 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
1519 i,
1520 p->aOrderBy[i].iColumn,
1521 p->aOrderBy[i].desc);
1522 }
1523}
1524static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
1525 int i;
mlcreech3a00f902008-03-04 17:45:01 +00001526 if( !sqlite3WhereTrace ) return;
drh6d209d82006-06-27 01:54:26 +00001527 for(i=0; i<p->nConstraint; i++){
1528 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
1529 i,
1530 p->aConstraintUsage[i].argvIndex,
1531 p->aConstraintUsage[i].omit);
1532 }
1533 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum);
1534 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr);
1535 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed);
1536 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost);
1537}
1538#else
1539#define TRACE_IDX_INPUTS(A)
1540#define TRACE_IDX_OUTPUTS(A)
1541#endif
1542
danielk19771d461462009-04-21 09:02:45 +00001543/*
1544** Required because bestIndex() is called by bestOrClauseIndex()
1545*/
1546static void bestIndex(
1547 Parse*, WhereClause*, struct SrcList_item*, Bitmask, ExprList*, WhereCost*);
1548
1549/*
1550** This routine attempts to find an scanning strategy that can be used
1551** to optimize an 'OR' expression that is part of a WHERE clause.
1552**
1553** The table associated with FROM clause term pSrc may be either a
1554** regular B-Tree table or a virtual table.
1555*/
1556static void bestOrClauseIndex(
1557 Parse *pParse, /* The parsing context */
1558 WhereClause *pWC, /* The WHERE clause */
1559 struct SrcList_item *pSrc, /* The FROM clause term to search */
1560 Bitmask notReady, /* Mask of cursors that are not available */
1561 ExprList *pOrderBy, /* The ORDER BY clause */
1562 WhereCost *pCost /* Lowest cost query plan */
1563){
1564#ifndef SQLITE_OMIT_OR_OPTIMIZATION
1565 const int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */
1566 const Bitmask maskSrc = getMask(pWC->pMaskSet, iCur); /* Bitmask for pSrc */
1567 WhereTerm * const pWCEnd = &pWC->a[pWC->nTerm]; /* End of pWC->a[] */
1568 WhereTerm *pTerm; /* A single term of the WHERE clause */
1569
drhed754ce2010-04-15 01:04:54 +00001570 /* No OR-clause optimization allowed if the NOT INDEXED clause is used */
1571 if( pSrc->notIndexed ){
1572 return;
1573 }
1574
danielk19771d461462009-04-21 09:02:45 +00001575 /* Search the WHERE clause terms for a usable WO_OR term. */
1576 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
1577 if( pTerm->eOperator==WO_OR
1578 && ((pTerm->prereqAll & ~maskSrc) & notReady)==0
1579 && (pTerm->u.pOrInfo->indexable & maskSrc)!=0
1580 ){
1581 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
1582 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
1583 WhereTerm *pOrTerm;
1584 int flags = WHERE_MULTI_OR;
1585 double rTotal = 0;
1586 double nRow = 0;
dan5236ac12009-08-13 07:09:33 +00001587 Bitmask used = 0;
danielk19771d461462009-04-21 09:02:45 +00001588
1589 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
1590 WhereCost sTermCost;
1591 WHERETRACE(("... Multi-index OR testing for term %d of %d....\n",
1592 (pOrTerm - pOrWC->a), (pTerm - pWC->a)
1593 ));
1594 if( pOrTerm->eOperator==WO_AND ){
1595 WhereClause *pAndWC = &pOrTerm->u.pAndInfo->wc;
1596 bestIndex(pParse, pAndWC, pSrc, notReady, 0, &sTermCost);
1597 }else if( pOrTerm->leftCursor==iCur ){
1598 WhereClause tempWC;
1599 tempWC.pParse = pWC->pParse;
1600 tempWC.pMaskSet = pWC->pMaskSet;
1601 tempWC.op = TK_AND;
1602 tempWC.a = pOrTerm;
1603 tempWC.nTerm = 1;
1604 bestIndex(pParse, &tempWC, pSrc, notReady, 0, &sTermCost);
1605 }else{
1606 continue;
1607 }
1608 rTotal += sTermCost.rCost;
1609 nRow += sTermCost.nRow;
dan5236ac12009-08-13 07:09:33 +00001610 used |= sTermCost.used;
danielk19771d461462009-04-21 09:02:45 +00001611 if( rTotal>=pCost->rCost ) break;
1612 }
1613
1614 /* If there is an ORDER BY clause, increase the scan cost to account
1615 ** for the cost of the sort. */
1616 if( pOrderBy!=0 ){
drhed754ce2010-04-15 01:04:54 +00001617 WHERETRACE(("... sorting increases OR cost %.9g to %.9g\n",
1618 rTotal, rTotal+nRow*estLog(nRow)));
danielk19771d461462009-04-21 09:02:45 +00001619 rTotal += nRow*estLog(nRow);
danielk19771d461462009-04-21 09:02:45 +00001620 }
1621
1622 /* If the cost of scanning using this OR term for optimization is
1623 ** less than the current cost stored in pCost, replace the contents
1624 ** of pCost. */
1625 WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow));
1626 if( rTotal<pCost->rCost ){
1627 pCost->rCost = rTotal;
1628 pCost->nRow = nRow;
dan5236ac12009-08-13 07:09:33 +00001629 pCost->used = used;
danielk19771d461462009-04-21 09:02:45 +00001630 pCost->plan.wsFlags = flags;
1631 pCost->plan.u.pTerm = pTerm;
1632 }
1633 }
1634 }
1635#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1636}
1637
drhc6339082010-04-07 16:54:58 +00001638#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
drh8b307fb2010-04-06 15:57:05 +00001639/*
drh4139c992010-04-07 14:59:45 +00001640** Return TRUE if the WHERE clause term pTerm is of a form where it
1641** could be used with an index to access pSrc, assuming an appropriate
1642** index existed.
1643*/
1644static int termCanDriveIndex(
1645 WhereTerm *pTerm, /* WHERE clause term to check */
1646 struct SrcList_item *pSrc, /* Table we are trying to access */
1647 Bitmask notReady /* Tables in outer loops of the join */
1648){
1649 char aff;
1650 if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
1651 if( pTerm->eOperator!=WO_EQ ) return 0;
1652 if( (pTerm->prereqRight & notReady)!=0 ) return 0;
1653 aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
1654 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
1655 return 1;
1656}
drhc6339082010-04-07 16:54:58 +00001657#endif
drh4139c992010-04-07 14:59:45 +00001658
drhc6339082010-04-07 16:54:58 +00001659#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
drh4139c992010-04-07 14:59:45 +00001660/*
drh8b307fb2010-04-06 15:57:05 +00001661** If the query plan for pSrc specified in pCost is a full table scan
drh4139c992010-04-07 14:59:45 +00001662** and indexing is allows (if there is no NOT INDEXED clause) and it
drh8b307fb2010-04-06 15:57:05 +00001663** possible to construct a transient index that would perform better
1664** than a full table scan even when the cost of constructing the index
1665** is taken into account, then alter the query plan to use the
1666** transient index.
1667*/
drhc6339082010-04-07 16:54:58 +00001668static void bestAutomaticIndex(
drh8b307fb2010-04-06 15:57:05 +00001669 Parse *pParse, /* The parsing context */
1670 WhereClause *pWC, /* The WHERE clause */
1671 struct SrcList_item *pSrc, /* The FROM clause term to search */
1672 Bitmask notReady, /* Mask of cursors that are not available */
1673 WhereCost *pCost /* Lowest cost query plan */
1674){
1675 double nTableRow; /* Rows in the input table */
1676 double logN; /* log(nTableRow) */
1677 double costTempIdx; /* per-query cost of the transient index */
1678 WhereTerm *pTerm; /* A single term of the WHERE clause */
1679 WhereTerm *pWCEnd; /* End of pWC->a[] */
drh424aab82010-04-06 18:28:20 +00001680 Table *pTable; /* Table tht might be indexed */
drh8b307fb2010-04-06 15:57:05 +00001681
drhc6339082010-04-07 16:54:58 +00001682 if( (pParse->db->flags & SQLITE_AutoIndex)==0 ){
1683 /* Automatic indices are disabled at run-time */
1684 return;
1685 }
drh8b307fb2010-04-06 15:57:05 +00001686 if( (pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)!=0 ){
1687 /* We already have some kind of index in use for this query. */
1688 return;
1689 }
1690 if( pSrc->notIndexed ){
1691 /* The NOT INDEXED clause appears in the SQL. */
1692 return;
1693 }
1694
1695 assert( pParse->nQueryLoop >= (double)1 );
drh8bd54122010-04-08 15:00:59 +00001696 pTable = pSrc->pTab;
1697 nTableRow = pTable->pIndex ? pTable->pIndex->aiRowEst[0] : 1000000;
drh8b307fb2010-04-06 15:57:05 +00001698 logN = estLog(nTableRow);
1699 costTempIdx = 2*logN*(nTableRow/pParse->nQueryLoop + 1);
1700 if( costTempIdx>=pCost->rCost ){
1701 /* The cost of creating the transient table would be greater than
1702 ** doing the full table scan */
1703 return;
1704 }
1705
1706 /* Search for any equality comparison term */
1707 pWCEnd = &pWC->a[pWC->nTerm];
1708 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
drh4139c992010-04-07 14:59:45 +00001709 if( termCanDriveIndex(pTerm, pSrc, notReady) ){
drh8b307fb2010-04-06 15:57:05 +00001710 WHERETRACE(("auto-index reduces cost from %.2f to %.2f\n",
1711 pCost->rCost, costTempIdx));
1712 pCost->rCost = costTempIdx;
1713 pCost->nRow = logN + 1;
1714 pCost->plan.wsFlags = WHERE_TEMP_INDEX;
1715 pCost->used = pTerm->prereqRight;
1716 break;
1717 }
1718 }
1719}
drhc6339082010-04-07 16:54:58 +00001720#else
1721# define bestAutomaticIndex(A,B,C,D,E) /* no-op */
1722#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
drh8b307fb2010-04-06 15:57:05 +00001723
drhc6339082010-04-07 16:54:58 +00001724
1725#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
drh8b307fb2010-04-06 15:57:05 +00001726/*
drhc6339082010-04-07 16:54:58 +00001727** Generate code to construct the Index object for an automatic index
1728** and to set up the WhereLevel object pLevel so that the code generator
1729** makes use of the automatic index.
drh8b307fb2010-04-06 15:57:05 +00001730*/
drhc6339082010-04-07 16:54:58 +00001731static void constructAutomaticIndex(
drh8b307fb2010-04-06 15:57:05 +00001732 Parse *pParse, /* The parsing context */
1733 WhereClause *pWC, /* The WHERE clause */
1734 struct SrcList_item *pSrc, /* The FROM clause term to get the next index */
1735 Bitmask notReady, /* Mask of cursors that are not available */
1736 WhereLevel *pLevel /* Write new index here */
1737){
1738 int nColumn; /* Number of columns in the constructed index */
1739 WhereTerm *pTerm; /* A single term of the WHERE clause */
1740 WhereTerm *pWCEnd; /* End of pWC->a[] */
1741 int nByte; /* Byte of memory needed for pIdx */
1742 Index *pIdx; /* Object describing the transient index */
1743 Vdbe *v; /* Prepared statement under construction */
1744 int regIsInit; /* Register set by initialization */
1745 int addrInit; /* Address of the initialization bypass jump */
1746 Table *pTable; /* The table being indexed */
1747 KeyInfo *pKeyinfo; /* Key information for the index */
1748 int addrTop; /* Top of the index fill loop */
1749 int regRecord; /* Register holding an index record */
1750 int n; /* Column counter */
drh4139c992010-04-07 14:59:45 +00001751 int i; /* Loop counter */
1752 int mxBitCol; /* Maximum column in pSrc->colUsed */
drh424aab82010-04-06 18:28:20 +00001753 CollSeq *pColl; /* Collating sequence to on a column */
drh4139c992010-04-07 14:59:45 +00001754 Bitmask idxCols; /* Bitmap of columns used for indexing */
1755 Bitmask extraCols; /* Bitmap of additional columns */
drh8b307fb2010-04-06 15:57:05 +00001756
1757 /* Generate code to skip over the creation and initialization of the
1758 ** transient index on 2nd and subsequent iterations of the loop. */
1759 v = pParse->pVdbe;
1760 assert( v!=0 );
1761 regIsInit = ++pParse->nMem;
1762 addrInit = sqlite3VdbeAddOp1(v, OP_If, regIsInit);
1763 sqlite3VdbeAddOp2(v, OP_Integer, 1, regIsInit);
1764
drh4139c992010-04-07 14:59:45 +00001765 /* Count the number of columns that will be added to the index
1766 ** and used to match WHERE clause constraints */
drh8b307fb2010-04-06 15:57:05 +00001767 nColumn = 0;
drh424aab82010-04-06 18:28:20 +00001768 pTable = pSrc->pTab;
drh8b307fb2010-04-06 15:57:05 +00001769 pWCEnd = &pWC->a[pWC->nTerm];
drh4139c992010-04-07 14:59:45 +00001770 idxCols = 0;
drh8b307fb2010-04-06 15:57:05 +00001771 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
drh4139c992010-04-07 14:59:45 +00001772 if( termCanDriveIndex(pTerm, pSrc, notReady) ){
1773 int iCol = pTerm->u.leftColumn;
drh0013e722010-04-08 00:40:15 +00001774 Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol;
drh52ff8ea2010-04-08 14:15:56 +00001775 testcase( iCol==BMS );
1776 testcase( iCol==BMS-1 );
drh0013e722010-04-08 00:40:15 +00001777 if( (idxCols & cMask)==0 ){
1778 nColumn++;
1779 idxCols |= cMask;
1780 }
drh8b307fb2010-04-06 15:57:05 +00001781 }
1782 }
1783 assert( nColumn>0 );
drh424aab82010-04-06 18:28:20 +00001784 pLevel->plan.nEq = nColumn;
drh4139c992010-04-07 14:59:45 +00001785
1786 /* Count the number of additional columns needed to create a
1787 ** covering index. A "covering index" is an index that contains all
1788 ** columns that are needed by the query. With a covering index, the
1789 ** original table never needs to be accessed. Automatic indices must
1790 ** be a covering index because the index will not be updated if the
1791 ** original table changes and the index and table cannot both be used
1792 ** if they go out of sync.
1793 */
drh0013e722010-04-08 00:40:15 +00001794 extraCols = pSrc->colUsed & (~idxCols | (((Bitmask)1)<<(BMS-1)));
drh4139c992010-04-07 14:59:45 +00001795 mxBitCol = (pTable->nCol >= BMS-1) ? BMS-1 : pTable->nCol;
drh52ff8ea2010-04-08 14:15:56 +00001796 testcase( pTable->nCol==BMS-1 );
1797 testcase( pTable->nCol==BMS-2 );
drh4139c992010-04-07 14:59:45 +00001798 for(i=0; i<mxBitCol; i++){
drh67ae0cb2010-04-08 14:38:51 +00001799 if( extraCols & (((Bitmask)1)<<i) ) nColumn++;
drh4139c992010-04-07 14:59:45 +00001800 }
1801 if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){
1802 nColumn += pTable->nCol - BMS + 1;
1803 }
1804 pLevel->plan.wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WO_EQ;
drh8b307fb2010-04-06 15:57:05 +00001805
1806 /* Construct the Index object to describe this index */
1807 nByte = sizeof(Index);
1808 nByte += nColumn*sizeof(int); /* Index.aiColumn */
1809 nByte += nColumn*sizeof(char*); /* Index.azColl */
1810 nByte += nColumn; /* Index.aSortOrder */
1811 pIdx = sqlite3DbMallocZero(pParse->db, nByte);
1812 if( pIdx==0 ) return;
1813 pLevel->plan.u.pIdx = pIdx;
1814 pIdx->azColl = (char**)&pIdx[1];
1815 pIdx->aiColumn = (int*)&pIdx->azColl[nColumn];
1816 pIdx->aSortOrder = (u8*)&pIdx->aiColumn[nColumn];
1817 pIdx->zName = "auto-index";
1818 pIdx->nColumn = nColumn;
drh424aab82010-04-06 18:28:20 +00001819 pIdx->pTable = pTable;
drh8b307fb2010-04-06 15:57:05 +00001820 n = 0;
drh0013e722010-04-08 00:40:15 +00001821 idxCols = 0;
drh8b307fb2010-04-06 15:57:05 +00001822 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
drh4139c992010-04-07 14:59:45 +00001823 if( termCanDriveIndex(pTerm, pSrc, notReady) ){
drh0013e722010-04-08 00:40:15 +00001824 int iCol = pTerm->u.leftColumn;
1825 Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol;
1826 if( (idxCols & cMask)==0 ){
1827 Expr *pX = pTerm->pExpr;
1828 idxCols |= cMask;
1829 pIdx->aiColumn[n] = pTerm->u.leftColumn;
1830 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
1831 pIdx->azColl[n] = pColl->zName;
1832 n++;
1833 }
drh8b307fb2010-04-06 15:57:05 +00001834 }
1835 }
shaneh5eba1f62010-07-02 17:05:03 +00001836 assert( (u32)n==pLevel->plan.nEq );
drh4139c992010-04-07 14:59:45 +00001837
drhc6339082010-04-07 16:54:58 +00001838 /* Add additional columns needed to make the automatic index into
1839 ** a covering index */
drh4139c992010-04-07 14:59:45 +00001840 for(i=0; i<mxBitCol; i++){
drh67ae0cb2010-04-08 14:38:51 +00001841 if( extraCols & (((Bitmask)1)<<i) ){
drh4139c992010-04-07 14:59:45 +00001842 pIdx->aiColumn[n] = i;
1843 pIdx->azColl[n] = "BINARY";
1844 n++;
1845 }
1846 }
1847 if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){
1848 for(i=BMS-1; i<pTable->nCol; i++){
1849 pIdx->aiColumn[n] = i;
1850 pIdx->azColl[n] = "BINARY";
1851 n++;
1852 }
1853 }
1854 assert( n==nColumn );
drh8b307fb2010-04-06 15:57:05 +00001855
drhc6339082010-04-07 16:54:58 +00001856 /* Create the automatic index */
drh8b307fb2010-04-06 15:57:05 +00001857 pKeyinfo = sqlite3IndexKeyinfo(pParse, pIdx);
1858 assert( pLevel->iIdxCur>=0 );
drha21a64d2010-04-06 22:33:55 +00001859 sqlite3VdbeAddOp4(v, OP_OpenAutoindex, pLevel->iIdxCur, nColumn+1, 0,
drh8b307fb2010-04-06 15:57:05 +00001860 (char*)pKeyinfo, P4_KEYINFO_HANDOFF);
drha21a64d2010-04-06 22:33:55 +00001861 VdbeComment((v, "for %s", pTable->zName));
drh8b307fb2010-04-06 15:57:05 +00001862
drhc6339082010-04-07 16:54:58 +00001863 /* Fill the automatic index with content */
drh8b307fb2010-04-06 15:57:05 +00001864 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur);
1865 regRecord = sqlite3GetTempReg(pParse);
1866 sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 1);
1867 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
1868 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1869 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1);
drha21a64d2010-04-06 22:33:55 +00001870 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
drh8b307fb2010-04-06 15:57:05 +00001871 sqlite3VdbeJumpHere(v, addrTop);
1872 sqlite3ReleaseTempReg(pParse, regRecord);
1873
1874 /* Jump here when skipping the initialization */
1875 sqlite3VdbeJumpHere(v, addrInit);
1876}
drhc6339082010-04-07 16:54:58 +00001877#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
drh8b307fb2010-04-06 15:57:05 +00001878
drh9eff6162006-06-12 21:59:13 +00001879#ifndef SQLITE_OMIT_VIRTUALTABLE
1880/*
danielk19771d461462009-04-21 09:02:45 +00001881** Allocate and populate an sqlite3_index_info structure. It is the
1882** responsibility of the caller to eventually release the structure
1883** by passing the pointer returned by this function to sqlite3_free().
1884*/
1885static sqlite3_index_info *allocateIndexInfo(
1886 Parse *pParse,
1887 WhereClause *pWC,
1888 struct SrcList_item *pSrc,
1889 ExprList *pOrderBy
1890){
1891 int i, j;
1892 int nTerm;
1893 struct sqlite3_index_constraint *pIdxCons;
1894 struct sqlite3_index_orderby *pIdxOrderBy;
1895 struct sqlite3_index_constraint_usage *pUsage;
1896 WhereTerm *pTerm;
1897 int nOrderBy;
1898 sqlite3_index_info *pIdxInfo;
1899
1900 WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName));
1901
1902 /* Count the number of possible WHERE clause constraints referring
1903 ** to this virtual table */
1904 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1905 if( pTerm->leftCursor != pSrc->iCursor ) continue;
1906 assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
1907 testcase( pTerm->eOperator==WO_IN );
1908 testcase( pTerm->eOperator==WO_ISNULL );
1909 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
1910 nTerm++;
1911 }
1912
1913 /* If the ORDER BY clause contains only columns in the current
1914 ** virtual table then allocate space for the aOrderBy part of
1915 ** the sqlite3_index_info structure.
1916 */
1917 nOrderBy = 0;
1918 if( pOrderBy ){
1919 for(i=0; i<pOrderBy->nExpr; i++){
1920 Expr *pExpr = pOrderBy->a[i].pExpr;
1921 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
1922 }
1923 if( i==pOrderBy->nExpr ){
1924 nOrderBy = pOrderBy->nExpr;
1925 }
1926 }
1927
1928 /* Allocate the sqlite3_index_info structure
1929 */
1930 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
1931 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
1932 + sizeof(*pIdxOrderBy)*nOrderBy );
1933 if( pIdxInfo==0 ){
1934 sqlite3ErrorMsg(pParse, "out of memory");
1935 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1936 return 0;
1937 }
1938
1939 /* Initialize the structure. The sqlite3_index_info structure contains
1940 ** many fields that are declared "const" to prevent xBestIndex from
1941 ** changing them. We have to do some funky casting in order to
1942 ** initialize those fields.
1943 */
1944 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
1945 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
1946 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
1947 *(int*)&pIdxInfo->nConstraint = nTerm;
1948 *(int*)&pIdxInfo->nOrderBy = nOrderBy;
1949 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
1950 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
1951 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
1952 pUsage;
1953
1954 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1955 if( pTerm->leftCursor != pSrc->iCursor ) continue;
1956 assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
1957 testcase( pTerm->eOperator==WO_IN );
1958 testcase( pTerm->eOperator==WO_ISNULL );
1959 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
1960 pIdxCons[j].iColumn = pTerm->u.leftColumn;
1961 pIdxCons[j].iTermOffset = i;
1962 pIdxCons[j].op = (u8)pTerm->eOperator;
1963 /* The direct assignment in the previous line is possible only because
1964 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
1965 ** following asserts verify this fact. */
1966 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1967 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1968 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1969 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1970 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1971 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
1972 assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
1973 j++;
1974 }
1975 for(i=0; i<nOrderBy; i++){
1976 Expr *pExpr = pOrderBy->a[i].pExpr;
1977 pIdxOrderBy[i].iColumn = pExpr->iColumn;
1978 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
1979 }
1980
1981 return pIdxInfo;
1982}
1983
1984/*
1985** The table object reference passed as the second argument to this function
1986** must represent a virtual table. This function invokes the xBestIndex()
1987** method of the virtual table with the sqlite3_index_info pointer passed
1988** as the argument.
1989**
1990** If an error occurs, pParse is populated with an error message and a
1991** non-zero value is returned. Otherwise, 0 is returned and the output
1992** part of the sqlite3_index_info structure is left populated.
1993**
1994** Whether or not an error is returned, it is the responsibility of the
1995** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1996** that this is required.
1997*/
1998static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
danielk1977595a5232009-07-24 17:58:53 +00001999 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
danielk19771d461462009-04-21 09:02:45 +00002000 int i;
2001 int rc;
2002
danielk19771d461462009-04-21 09:02:45 +00002003 WHERETRACE(("xBestIndex for %s\n", pTab->zName));
2004 TRACE_IDX_INPUTS(p);
2005 rc = pVtab->pModule->xBestIndex(pVtab, p);
2006 TRACE_IDX_OUTPUTS(p);
danielk19771d461462009-04-21 09:02:45 +00002007
2008 if( rc!=SQLITE_OK ){
2009 if( rc==SQLITE_NOMEM ){
2010 pParse->db->mallocFailed = 1;
2011 }else if( !pVtab->zErrMsg ){
2012 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
2013 }else{
2014 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
2015 }
2016 }
2017 sqlite3DbFree(pParse->db, pVtab->zErrMsg);
2018 pVtab->zErrMsg = 0;
2019
2020 for(i=0; i<p->nConstraint; i++){
2021 if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){
2022 sqlite3ErrorMsg(pParse,
2023 "table %s: xBestIndex returned an invalid plan", pTab->zName);
2024 }
2025 }
2026
2027 return pParse->nErr;
2028}
2029
2030
2031/*
drh7f375902006-06-13 17:38:59 +00002032** Compute the best index for a virtual table.
2033**
2034** The best index is computed by the xBestIndex method of the virtual
2035** table module. This routine is really just a wrapper that sets up
2036** the sqlite3_index_info structure that is used to communicate with
2037** xBestIndex.
2038**
2039** In a join, this routine might be called multiple times for the
2040** same virtual table. The sqlite3_index_info structure is created
2041** and initialized on the first invocation and reused on all subsequent
2042** invocations. The sqlite3_index_info structure is also used when
2043** code is generated to access the virtual table. The whereInfoDelete()
2044** routine takes care of freeing the sqlite3_index_info structure after
2045** everybody has finished with it.
drh9eff6162006-06-12 21:59:13 +00002046*/
danielk19771d461462009-04-21 09:02:45 +00002047static void bestVirtualIndex(
2048 Parse *pParse, /* The parsing context */
2049 WhereClause *pWC, /* The WHERE clause */
2050 struct SrcList_item *pSrc, /* The FROM clause term to search */
2051 Bitmask notReady, /* Mask of cursors that are not available */
2052 ExprList *pOrderBy, /* The order by clause */
2053 WhereCost *pCost, /* Lowest cost query plan */
2054 sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */
drh9eff6162006-06-12 21:59:13 +00002055){
2056 Table *pTab = pSrc->pTab;
2057 sqlite3_index_info *pIdxInfo;
2058 struct sqlite3_index_constraint *pIdxCons;
drh9eff6162006-06-12 21:59:13 +00002059 struct sqlite3_index_constraint_usage *pUsage;
2060 WhereTerm *pTerm;
2061 int i, j;
2062 int nOrderBy;
danc26c0042010-03-27 09:44:42 +00002063 double rCost;
drh9eff6162006-06-12 21:59:13 +00002064
danielk19776eacd282009-04-29 11:50:53 +00002065 /* Make sure wsFlags is initialized to some sane value. Otherwise, if the
2066 ** malloc in allocateIndexInfo() fails and this function returns leaving
2067 ** wsFlags in an uninitialized state, the caller may behave unpredictably.
2068 */
drh6a863cd2009-05-06 18:42:21 +00002069 memset(pCost, 0, sizeof(*pCost));
danielk19776eacd282009-04-29 11:50:53 +00002070 pCost->plan.wsFlags = WHERE_VIRTUALTABLE;
2071
drh9eff6162006-06-12 21:59:13 +00002072 /* If the sqlite3_index_info structure has not been previously
danielk19771d461462009-04-21 09:02:45 +00002073 ** allocated and initialized, then allocate and initialize it now.
drh9eff6162006-06-12 21:59:13 +00002074 */
2075 pIdxInfo = *ppIdxInfo;
2076 if( pIdxInfo==0 ){
danielk19771d461462009-04-21 09:02:45 +00002077 *ppIdxInfo = pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pOrderBy);
drh9eff6162006-06-12 21:59:13 +00002078 }
danielk1977732dc552009-04-21 17:23:04 +00002079 if( pIdxInfo==0 ){
2080 return;
2081 }
drh9eff6162006-06-12 21:59:13 +00002082
drh7f375902006-06-13 17:38:59 +00002083 /* At this point, the sqlite3_index_info structure that pIdxInfo points
2084 ** to will have been initialized, either during the current invocation or
2085 ** during some prior invocation. Now we just have to customize the
2086 ** details of pIdxInfo for the current invocation and pass it to
2087 ** xBestIndex.
2088 */
2089
danielk1977935ed5e2007-03-30 09:13:13 +00002090 /* The module name must be defined. Also, by this point there must
2091 ** be a pointer to an sqlite3_vtab structure. Otherwise
2092 ** sqlite3ViewGetColumnNames() would have picked up the error.
2093 */
drh9eff6162006-06-12 21:59:13 +00002094 assert( pTab->azModuleArg && pTab->azModuleArg[0] );
danielk1977595a5232009-07-24 17:58:53 +00002095 assert( sqlite3GetVTable(pParse->db, pTab) );
drh9eff6162006-06-12 21:59:13 +00002096
2097 /* Set the aConstraint[].usable fields and initialize all
drh7f375902006-06-13 17:38:59 +00002098 ** output variables to zero.
2099 **
2100 ** aConstraint[].usable is true for constraints where the right-hand
2101 ** side contains only references to tables to the left of the current
2102 ** table. In other words, if the constraint is of the form:
2103 **
2104 ** column = expr
2105 **
2106 ** and we are evaluating a join, then the constraint on column is
2107 ** only valid if all tables referenced in expr occur to the left
2108 ** of the table containing column.
2109 **
2110 ** The aConstraints[] array contains entries for all constraints
2111 ** on the current table. That way we only have to compute it once
2112 ** even though we might try to pick the best index multiple times.
2113 ** For each attempt at picking an index, the order of tables in the
2114 ** join might be different so we have to recompute the usable flag
2115 ** each time.
drh9eff6162006-06-12 21:59:13 +00002116 */
2117 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
2118 pUsage = pIdxInfo->aConstraintUsage;
2119 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
2120 j = pIdxCons->iTermOffset;
2121 pTerm = &pWC->a[j];
dan5236ac12009-08-13 07:09:33 +00002122 pIdxCons->usable = (pTerm->prereqRight&notReady) ? 0 : 1;
drh9eff6162006-06-12 21:59:13 +00002123 }
2124 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
drh4be8b512006-06-13 23:51:34 +00002125 if( pIdxInfo->needToFreeIdxStr ){
2126 sqlite3_free(pIdxInfo->idxStr);
2127 }
2128 pIdxInfo->idxStr = 0;
2129 pIdxInfo->idxNum = 0;
2130 pIdxInfo->needToFreeIdxStr = 0;
drh9eff6162006-06-12 21:59:13 +00002131 pIdxInfo->orderByConsumed = 0;
shanefbd60f82009-02-04 03:59:25 +00002132 /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */
2133 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2);
drh9eff6162006-06-12 21:59:13 +00002134 nOrderBy = pIdxInfo->nOrderBy;
danielk19771d461462009-04-21 09:02:45 +00002135 if( !pOrderBy ){
2136 pIdxInfo->nOrderBy = 0;
drh9eff6162006-06-12 21:59:13 +00002137 }
danielk197774cdba42006-06-19 12:02:58 +00002138
danielk19771d461462009-04-21 09:02:45 +00002139 if( vtabBestIndex(pParse, pTab, pIdxInfo) ){
2140 return;
danielk197739359dc2008-03-17 09:36:44 +00002141 }
2142
dan5236ac12009-08-13 07:09:33 +00002143 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
2144 for(i=0; i<pIdxInfo->nConstraint; i++){
2145 if( pUsage[i].argvIndex>0 ){
2146 pCost->used |= pWC->a[pIdxCons[i].iTermOffset].prereqRight;
2147 }
2148 }
2149
danc26c0042010-03-27 09:44:42 +00002150 /* If there is an ORDER BY clause, and the selected virtual table index
2151 ** does not satisfy it, increase the cost of the scan accordingly. This
2152 ** matches the processing for non-virtual tables in bestBtreeIndex().
2153 */
2154 rCost = pIdxInfo->estimatedCost;
2155 if( pOrderBy && pIdxInfo->orderByConsumed==0 ){
2156 rCost += estLog(rCost)*rCost;
2157 }
2158
danielk19771d461462009-04-21 09:02:45 +00002159 /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
2160 ** inital value of lowestCost in this loop. If it is, then the
2161 ** (cost<lowestCost) test below will never be true.
2162 **
2163 ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT
2164 ** is defined.
2165 */
danc26c0042010-03-27 09:44:42 +00002166 if( (SQLITE_BIG_DBL/((double)2))<rCost ){
danielk19771d461462009-04-21 09:02:45 +00002167 pCost->rCost = (SQLITE_BIG_DBL/((double)2));
2168 }else{
danc26c0042010-03-27 09:44:42 +00002169 pCost->rCost = rCost;
danielk19771d461462009-04-21 09:02:45 +00002170 }
danielk19771d461462009-04-21 09:02:45 +00002171 pCost->plan.u.pVtabIdx = pIdxInfo;
drh5901b572009-06-10 19:33:28 +00002172 if( pIdxInfo->orderByConsumed ){
danielk19771d461462009-04-21 09:02:45 +00002173 pCost->plan.wsFlags |= WHERE_ORDERBY;
2174 }
2175 pCost->plan.nEq = 0;
2176 pIdxInfo->nOrderBy = nOrderBy;
2177
2178 /* Try to find a more efficient access pattern by using multiple indexes
2179 ** to optimize an OR expression within the WHERE clause.
2180 */
2181 bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
drh9eff6162006-06-12 21:59:13 +00002182}
2183#endif /* SQLITE_OMIT_VIRTUALTABLE */
2184
drh28c4cf42005-07-27 20:41:43 +00002185/*
dan02fa4692009-08-17 17:06:58 +00002186** Argument pIdx is a pointer to an index structure that has an array of
2187** SQLITE_INDEX_SAMPLES evenly spaced samples of the first indexed column
2188** stored in Index.aSample. The domain of values stored in said column
2189** may be thought of as divided into (SQLITE_INDEX_SAMPLES+1) regions.
2190** Region 0 contains all values smaller than the first sample value. Region
2191** 1 contains values larger than or equal to the value of the first sample,
2192** but smaller than the value of the second. And so on.
2193**
2194** If successful, this function determines which of the regions value
drh98cdf622009-08-20 18:14:42 +00002195** pVal lies in, sets *piRegion to the region index (a value between 0
2196** and SQLITE_INDEX_SAMPLES+1, inclusive) and returns SQLITE_OK.
dan02fa4692009-08-17 17:06:58 +00002197** Or, if an OOM occurs while converting text values between encodings,
drh98cdf622009-08-20 18:14:42 +00002198** SQLITE_NOMEM is returned and *piRegion is undefined.
dan02fa4692009-08-17 17:06:58 +00002199*/
dan69188d92009-08-19 08:18:32 +00002200#ifdef SQLITE_ENABLE_STAT2
dan02fa4692009-08-17 17:06:58 +00002201static int whereRangeRegion(
2202 Parse *pParse, /* Database connection */
2203 Index *pIdx, /* Index to consider domain of */
2204 sqlite3_value *pVal, /* Value to consider */
2205 int *piRegion /* OUT: Region of domain in which value lies */
2206){
drhdaf4a9f2009-08-20 20:05:55 +00002207 if( ALWAYS(pVal) ){
dan02fa4692009-08-17 17:06:58 +00002208 IndexSample *aSample = pIdx->aSample;
2209 int i = 0;
2210 int eType = sqlite3_value_type(pVal);
2211
2212 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
2213 double r = sqlite3_value_double(pVal);
2214 for(i=0; i<SQLITE_INDEX_SAMPLES; i++){
2215 if( aSample[i].eType==SQLITE_NULL ) continue;
2216 if( aSample[i].eType>=SQLITE_TEXT || aSample[i].u.r>r ) break;
2217 }
drhcdaca552009-08-20 13:45:07 +00002218 }else{
dan02fa4692009-08-17 17:06:58 +00002219 sqlite3 *db = pParse->db;
2220 CollSeq *pColl;
2221 const u8 *z;
2222 int n;
drhcdaca552009-08-20 13:45:07 +00002223
2224 /* pVal comes from sqlite3ValueFromExpr() so the type cannot be NULL */
2225 assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB );
2226
dan02fa4692009-08-17 17:06:58 +00002227 if( eType==SQLITE_BLOB ){
2228 z = (const u8 *)sqlite3_value_blob(pVal);
2229 pColl = db->pDfltColl;
dane275dc32009-08-18 16:24:58 +00002230 assert( pColl->enc==SQLITE_UTF8 );
dan02fa4692009-08-17 17:06:58 +00002231 }else{
drh9aeda792009-08-20 02:34:15 +00002232 pColl = sqlite3GetCollSeq(db, SQLITE_UTF8, 0, *pIdx->azColl);
2233 if( pColl==0 ){
2234 sqlite3ErrorMsg(pParse, "no such collation sequence: %s",
2235 *pIdx->azColl);
dane275dc32009-08-18 16:24:58 +00002236 return SQLITE_ERROR;
2237 }
dan02fa4692009-08-17 17:06:58 +00002238 z = (const u8 *)sqlite3ValueText(pVal, pColl->enc);
dane275dc32009-08-18 16:24:58 +00002239 if( !z ){
2240 return SQLITE_NOMEM;
2241 }
dan02fa4692009-08-17 17:06:58 +00002242 assert( z && pColl && pColl->xCmp );
2243 }
2244 n = sqlite3ValueBytes(pVal, pColl->enc);
2245
2246 for(i=0; i<SQLITE_INDEX_SAMPLES; i++){
dane275dc32009-08-18 16:24:58 +00002247 int r;
dan02fa4692009-08-17 17:06:58 +00002248 int eSampletype = aSample[i].eType;
2249 if( eSampletype==SQLITE_NULL || eSampletype<eType ) continue;
2250 if( (eSampletype!=eType) ) break;
dane83c4f32009-09-21 16:34:24 +00002251#ifndef SQLITE_OMIT_UTF16
2252 if( pColl->enc!=SQLITE_UTF8 ){
dane275dc32009-08-18 16:24:58 +00002253 int nSample;
2254 char *zSample = sqlite3Utf8to16(
dan02fa4692009-08-17 17:06:58 +00002255 db, pColl->enc, aSample[i].u.z, aSample[i].nByte, &nSample
2256 );
dane275dc32009-08-18 16:24:58 +00002257 if( !zSample ){
2258 assert( db->mallocFailed );
2259 return SQLITE_NOMEM;
2260 }
2261 r = pColl->xCmp(pColl->pUser, nSample, zSample, n, z);
2262 sqlite3DbFree(db, zSample);
dane83c4f32009-09-21 16:34:24 +00002263 }else
2264#endif
2265 {
2266 r = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z);
dan02fa4692009-08-17 17:06:58 +00002267 }
dane275dc32009-08-18 16:24:58 +00002268 if( r>0 ) break;
dan02fa4692009-08-17 17:06:58 +00002269 }
2270 }
2271
drha8f57612009-08-25 16:28:14 +00002272 assert( i>=0 && i<=SQLITE_INDEX_SAMPLES );
dan02fa4692009-08-17 17:06:58 +00002273 *piRegion = i;
2274 }
2275 return SQLITE_OK;
2276}
dan69188d92009-08-19 08:18:32 +00002277#endif /* #ifdef SQLITE_ENABLE_STAT2 */
dan02fa4692009-08-17 17:06:58 +00002278
2279/*
dan937d0de2009-10-15 18:35:38 +00002280** If expression pExpr represents a literal value, set *pp to point to
2281** an sqlite3_value structure containing the same value, with affinity
2282** aff applied to it, before returning. It is the responsibility of the
2283** caller to eventually release this structure by passing it to
2284** sqlite3ValueFree().
2285**
2286** If the current parse is a recompile (sqlite3Reprepare()) and pExpr
2287** is an SQL variable that currently has a non-NULL value bound to it,
2288** create an sqlite3_value structure containing this value, again with
2289** affinity aff applied to it, instead.
2290**
2291** If neither of the above apply, set *pp to NULL.
2292**
2293** If an error occurs, return an error code. Otherwise, SQLITE_OK.
2294*/
danf7b0b0a2009-10-19 15:52:32 +00002295#ifdef SQLITE_ENABLE_STAT2
dan937d0de2009-10-15 18:35:38 +00002296static int valueFromExpr(
2297 Parse *pParse,
2298 Expr *pExpr,
2299 u8 aff,
2300 sqlite3_value **pp
2301){
drhb4138de2009-10-19 22:41:06 +00002302 /* The evalConstExpr() function will have already converted any TK_VARIABLE
2303 ** expression involved in an comparison into a TK_REGISTER. */
2304 assert( pExpr->op!=TK_VARIABLE );
2305 if( pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE ){
dan937d0de2009-10-15 18:35:38 +00002306 int iVar = pExpr->iColumn;
dan1d2ce4f2009-10-19 18:11:09 +00002307 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
dan937d0de2009-10-15 18:35:38 +00002308 *pp = sqlite3VdbeGetValue(pParse->pReprepare, iVar, aff);
2309 return SQLITE_OK;
2310 }
2311 return sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, aff, pp);
2312}
danf7b0b0a2009-10-19 15:52:32 +00002313#endif
dan937d0de2009-10-15 18:35:38 +00002314
2315/*
dan02fa4692009-08-17 17:06:58 +00002316** This function is used to estimate the number of rows that will be visited
2317** by scanning an index for a range of values. The range may have an upper
2318** bound, a lower bound, or both. The WHERE clause terms that set the upper
2319** and lower bounds are represented by pLower and pUpper respectively. For
2320** example, assuming that index p is on t1(a):
2321**
2322** ... FROM t1 WHERE a > ? AND a < ? ...
2323** |_____| |_____|
2324** | |
2325** pLower pUpper
2326**
drh98cdf622009-08-20 18:14:42 +00002327** If either of the upper or lower bound is not present, then NULL is passed in
drhcdaca552009-08-20 13:45:07 +00002328** place of the corresponding WhereTerm.
dan02fa4692009-08-17 17:06:58 +00002329**
2330** The nEq parameter is passed the index of the index column subject to the
2331** range constraint. Or, equivalently, the number of equality constraints
2332** optimized by the proposed index scan. For example, assuming index p is
2333** on t1(a, b), and the SQL query is:
2334**
2335** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
2336**
2337** then nEq should be passed the value 1 (as the range restricted column,
2338** b, is the second left-most column of the index). Or, if the query is:
2339**
2340** ... FROM t1 WHERE a > ? AND a < ? ...
2341**
2342** then nEq should be passed 0.
2343**
drh98cdf622009-08-20 18:14:42 +00002344** The returned value is an integer between 1 and 100, inclusive. A return
dan02fa4692009-08-17 17:06:58 +00002345** value of 1 indicates that the proposed range scan is expected to visit
drh98cdf622009-08-20 18:14:42 +00002346** approximately 1/100th (1%) of the rows selected by the nEq equality
2347** constraints (if any). A return value of 100 indicates that it is expected
2348** that the range scan will visit every row (100%) selected by the equality
dan02fa4692009-08-17 17:06:58 +00002349** constraints.
drh98cdf622009-08-20 18:14:42 +00002350**
2351** In the absence of sqlite_stat2 ANALYZE data, each range inequality
2352** reduces the search space by 2/3rds. Hence a single constraint (x>?)
2353** results in a return of 33 and a range constraint (x>? AND x<?) results
2354** in a return of 11.
dan02fa4692009-08-17 17:06:58 +00002355*/
2356static int whereRangeScanEst(
drhcdaca552009-08-20 13:45:07 +00002357 Parse *pParse, /* Parsing & code generating context */
2358 Index *p, /* The index containing the range-compared column; "x" */
2359 int nEq, /* index into p->aCol[] of the range-compared column */
2360 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
2361 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
2362 int *piEst /* OUT: Return value */
dan02fa4692009-08-17 17:06:58 +00002363){
dan69188d92009-08-19 08:18:32 +00002364 int rc = SQLITE_OK;
2365
2366#ifdef SQLITE_ENABLE_STAT2
dan02fa4692009-08-17 17:06:58 +00002367
2368 if( nEq==0 && p->aSample ){
dan937d0de2009-10-15 18:35:38 +00002369 sqlite3_value *pLowerVal = 0;
2370 sqlite3_value *pUpperVal = 0;
dan02fa4692009-08-17 17:06:58 +00002371 int iEst;
drh011cfca2009-08-25 15:56:51 +00002372 int iLower = 0;
2373 int iUpper = SQLITE_INDEX_SAMPLES;
dan937d0de2009-10-15 18:35:38 +00002374 u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity;
drh98cdf622009-08-20 18:14:42 +00002375
dan02fa4692009-08-17 17:06:58 +00002376 if( pLower ){
2377 Expr *pExpr = pLower->pExpr->pRight;
dan937d0de2009-10-15 18:35:38 +00002378 rc = valueFromExpr(pParse, pExpr, aff, &pLowerVal);
dan02fa4692009-08-17 17:06:58 +00002379 }
drh98cdf622009-08-20 18:14:42 +00002380 if( rc==SQLITE_OK && pUpper ){
dan02fa4692009-08-17 17:06:58 +00002381 Expr *pExpr = pUpper->pExpr->pRight;
dan937d0de2009-10-15 18:35:38 +00002382 rc = valueFromExpr(pParse, pExpr, aff, &pUpperVal);
drh98cdf622009-08-20 18:14:42 +00002383 }
2384
2385 if( rc!=SQLITE_OK || (pLowerVal==0 && pUpperVal==0) ){
2386 sqlite3ValueFree(pLowerVal);
2387 sqlite3ValueFree(pUpperVal);
2388 goto range_est_fallback;
2389 }else if( pLowerVal==0 ){
2390 rc = whereRangeRegion(pParse, p, pUpperVal, &iUpper);
drh011cfca2009-08-25 15:56:51 +00002391 if( pLower ) iLower = iUpper/2;
drh98cdf622009-08-20 18:14:42 +00002392 }else if( pUpperVal==0 ){
2393 rc = whereRangeRegion(pParse, p, pLowerVal, &iLower);
drh011cfca2009-08-25 15:56:51 +00002394 if( pUpper ) iUpper = (iLower + SQLITE_INDEX_SAMPLES + 1)/2;
drh98cdf622009-08-20 18:14:42 +00002395 }else{
2396 rc = whereRangeRegion(pParse, p, pUpperVal, &iUpper);
2397 if( rc==SQLITE_OK ){
2398 rc = whereRangeRegion(pParse, p, pLowerVal, &iLower);
dan02fa4692009-08-17 17:06:58 +00002399 }
2400 }
2401
dan02fa4692009-08-17 17:06:58 +00002402 iEst = iUpper - iLower;
drha8f57612009-08-25 16:28:14 +00002403 testcase( iEst==SQLITE_INDEX_SAMPLES );
2404 assert( iEst<=SQLITE_INDEX_SAMPLES );
2405 if( iEst<1 ){
drh98cdf622009-08-20 18:14:42 +00002406 iEst = 1;
2407 }
dan02fa4692009-08-17 17:06:58 +00002408
2409 sqlite3ValueFree(pLowerVal);
2410 sqlite3ValueFree(pUpperVal);
drh98cdf622009-08-20 18:14:42 +00002411 *piEst = (iEst * 100)/SQLITE_INDEX_SAMPLES;
dan02fa4692009-08-17 17:06:58 +00002412 return rc;
2413 }
drh98cdf622009-08-20 18:14:42 +00002414range_est_fallback:
drh3f022182009-09-09 16:10:50 +00002415#else
2416 UNUSED_PARAMETER(pParse);
2417 UNUSED_PARAMETER(p);
2418 UNUSED_PARAMETER(nEq);
dan69188d92009-08-19 08:18:32 +00002419#endif
dan02fa4692009-08-17 17:06:58 +00002420 assert( pLower || pUpper );
drh98cdf622009-08-20 18:14:42 +00002421 if( pLower && pUpper ){
2422 *piEst = 11;
2423 }else{
2424 *piEst = 33;
2425 }
dan02fa4692009-08-17 17:06:58 +00002426 return rc;
2427}
2428
2429
2430/*
drh111a6a72008-12-21 03:51:16 +00002431** Find the query plan for accessing a particular table. Write the
2432** best query plan and its cost into the WhereCost object supplied as the
2433** last parameter.
drh51147ba2005-07-23 22:59:55 +00002434**
drh111a6a72008-12-21 03:51:16 +00002435** The lowest cost plan wins. The cost is an estimate of the amount of
2436** CPU and disk I/O need to process the request using the selected plan.
drh51147ba2005-07-23 22:59:55 +00002437** Factors that influence cost include:
2438**
2439** * The estimated number of rows that will be retrieved. (The
2440** fewer the better.)
2441**
2442** * Whether or not sorting must occur.
2443**
2444** * Whether or not there must be separate lookups in the
2445** index and in the main table.
2446**
danielk1977e2d7b242009-02-23 17:33:49 +00002447** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in
2448** the SQL statement, then this function only considers plans using the
drh296a4832009-03-22 20:36:18 +00002449** named index. If no such plan is found, then the returned cost is
2450** SQLITE_BIG_DBL. If a plan is found that uses the named index,
danielk197785574e32008-10-06 05:32:18 +00002451** then the cost is calculated in the usual way.
2452**
danielk1977e2d7b242009-02-23 17:33:49 +00002453** If a NOT INDEXED clause (pSrc->notIndexed!=0) was attached to the table
2454** in the SELECT statement, then no indexes are considered. However, the
2455** selected plan may still take advantage of the tables built-in rowid
danielk197785574e32008-10-06 05:32:18 +00002456** index.
drhfe05af82005-07-21 03:14:59 +00002457*/
danielk19771d461462009-04-21 09:02:45 +00002458static void bestBtreeIndex(
drhfe05af82005-07-21 03:14:59 +00002459 Parse *pParse, /* The parsing context */
2460 WhereClause *pWC, /* The WHERE clause */
2461 struct SrcList_item *pSrc, /* The FROM clause term to search */
2462 Bitmask notReady, /* Mask of cursors that are not available */
drh111a6a72008-12-21 03:51:16 +00002463 ExprList *pOrderBy, /* The ORDER BY clause */
2464 WhereCost *pCost /* Lowest cost query plan */
drhfe05af82005-07-21 03:14:59 +00002465){
drh51147ba2005-07-23 22:59:55 +00002466 int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */
2467 Index *pProbe; /* An index we are evaluating */
dan5236ac12009-08-13 07:09:33 +00002468 Index *pIdx; /* Copy of pProbe, or zero for IPK index */
2469 int eqTermMask; /* Current mask of valid equality operators */
2470 int idxEqTermMask; /* Index mask of valid equality operators */
drhcdaca552009-08-20 13:45:07 +00002471 Index sPk; /* A fake index object for the primary key */
2472 unsigned int aiRowEstPk[2]; /* The aiRowEst[] value for the sPk index */
2473 int aiColumnPk = -1; /* The aColumn[] value for the sPk index */
2474 int wsFlagMask; /* Allowed flags in pCost->plan.wsFlag */
drhfe05af82005-07-21 03:14:59 +00002475
drhcdaca552009-08-20 13:45:07 +00002476 /* Initialize the cost to a worst-case value */
drh111a6a72008-12-21 03:51:16 +00002477 memset(pCost, 0, sizeof(*pCost));
drh111a6a72008-12-21 03:51:16 +00002478 pCost->rCost = SQLITE_BIG_DBL;
drh51147ba2005-07-23 22:59:55 +00002479
drhc49de5d2007-01-19 01:06:01 +00002480 /* If the pSrc table is the right table of a LEFT JOIN then we may not
2481 ** use an index to satisfy IS NULL constraints on that table. This is
2482 ** because columns might end up being NULL if the table does not match -
2483 ** a circumstance which the index cannot help us discover. Ticket #2177.
2484 */
dan5236ac12009-08-13 07:09:33 +00002485 if( pSrc->jointype & JT_LEFT ){
2486 idxEqTermMask = WO_EQ|WO_IN;
drhc49de5d2007-01-19 01:06:01 +00002487 }else{
dan5236ac12009-08-13 07:09:33 +00002488 idxEqTermMask = WO_EQ|WO_IN|WO_ISNULL;
drhc49de5d2007-01-19 01:06:01 +00002489 }
2490
danielk197785574e32008-10-06 05:32:18 +00002491 if( pSrc->pIndex ){
drhcdaca552009-08-20 13:45:07 +00002492 /* An INDEXED BY clause specifies a particular index to use */
dan5236ac12009-08-13 07:09:33 +00002493 pIdx = pProbe = pSrc->pIndex;
2494 wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
2495 eqTermMask = idxEqTermMask;
2496 }else{
drhcdaca552009-08-20 13:45:07 +00002497 /* There is no INDEXED BY clause. Create a fake Index object to
2498 ** represent the primary key */
2499 Index *pFirst; /* Any other index on the table */
2500 memset(&sPk, 0, sizeof(Index));
2501 sPk.nColumn = 1;
2502 sPk.aiColumn = &aiColumnPk;
2503 sPk.aiRowEst = aiRowEstPk;
2504 aiRowEstPk[1] = 1;
2505 sPk.onError = OE_Replace;
2506 sPk.pTable = pSrc->pTab;
2507 pFirst = pSrc->pTab->pIndex;
dan5236ac12009-08-13 07:09:33 +00002508 if( pSrc->notIndexed==0 ){
drhcdaca552009-08-20 13:45:07 +00002509 sPk.pNext = pFirst;
dan5236ac12009-08-13 07:09:33 +00002510 }
drhcdaca552009-08-20 13:45:07 +00002511 /* The aiRowEstPk[0] is an estimate of the total number of rows in the
2512 ** table. Get this information from the ANALYZE information if it is
2513 ** available. If not available, assume the table 1 million rows in size.
2514 */
2515 if( pFirst ){
2516 assert( pFirst->aiRowEst!=0 ); /* Allocated together with pFirst */
2517 aiRowEstPk[0] = pFirst->aiRowEst[0];
2518 }else{
2519 aiRowEstPk[0] = 1000000;
dan5236ac12009-08-13 07:09:33 +00002520 }
drhcdaca552009-08-20 13:45:07 +00002521 pProbe = &sPk;
dan5236ac12009-08-13 07:09:33 +00002522 wsFlagMask = ~(
2523 WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE
2524 );
2525 eqTermMask = WO_EQ|WO_IN;
2526 pIdx = 0;
danielk197785574e32008-10-06 05:32:18 +00002527 }
drh51147ba2005-07-23 22:59:55 +00002528
drhcdaca552009-08-20 13:45:07 +00002529 /* Loop over all indices looking for the best one to use
2530 */
dan5236ac12009-08-13 07:09:33 +00002531 for(; pProbe; pIdx=pProbe=pProbe->pNext){
2532 const unsigned int * const aiRowEst = pProbe->aiRowEst;
2533 double cost; /* Cost of using pProbe */
2534 double nRow; /* Estimated number of rows in result set */
2535 int rev; /* True to scan in reverse order */
2536 int wsFlags = 0;
2537 Bitmask used = 0;
2538
2539 /* The following variables are populated based on the properties of
2540 ** scan being evaluated. They are then used to determine the expected
2541 ** cost and number of rows returned.
2542 **
2543 ** nEq:
2544 ** Number of equality terms that can be implemented using the index.
2545 **
2546 ** nInMul:
2547 ** The "in-multiplier". This is an estimate of how many seek operations
2548 ** SQLite must perform on the index in question. For example, if the
2549 ** WHERE clause is:
2550 **
2551 ** WHERE a IN (1, 2, 3) AND b IN (4, 5, 6)
2552 **
2553 ** SQLite must perform 9 lookups on an index on (a, b), so nInMul is
2554 ** set to 9. Given the same schema and either of the following WHERE
2555 ** clauses:
2556 **
2557 ** WHERE a = 1
2558 ** WHERE a >= 2
2559 **
2560 ** nInMul is set to 1.
2561 **
2562 ** If there exists a WHERE term of the form "x IN (SELECT ...)", then
2563 ** the sub-select is assumed to return 25 rows for the purposes of
2564 ** determining nInMul.
2565 **
2566 ** bInEst:
2567 ** Set to true if there was at least one "x IN (SELECT ...)" term used
2568 ** in determining the value of nInMul.
2569 **
drhed754ce2010-04-15 01:04:54 +00002570 ** estBound:
drh98cdf622009-08-20 18:14:42 +00002571 ** An estimate on the amount of the table that must be searched. A
2572 ** value of 100 means the entire table is searched. Range constraints
2573 ** might reduce this to a value less than 100 to indicate that only
2574 ** a fraction of the table needs searching. In the absence of
2575 ** sqlite_stat2 ANALYZE data, a single inequality reduces the search
2576 ** space to 1/3rd its original size. So an x>? constraint reduces
drhed754ce2010-04-15 01:04:54 +00002577 ** estBound to 33. Two constraints (x>? AND x<?) reduce estBound to 11.
dan5236ac12009-08-13 07:09:33 +00002578 **
2579 ** bSort:
2580 ** Boolean. True if there is an ORDER BY clause that will require an
2581 ** external sort (i.e. scanning the index being evaluated will not
2582 ** correctly order records).
2583 **
2584 ** bLookup:
2585 ** Boolean. True if for each index entry visited a lookup on the
2586 ** corresponding table b-tree is required. This is always false
2587 ** for the rowid index. For other indexes, it is true unless all the
2588 ** columns of the table used by the SELECT statement are present in
2589 ** the index (such an index is sometimes described as a covering index).
2590 ** For example, given the index on (a, b), the second of the following
2591 ** two queries requires table b-tree lookups, but the first does not.
2592 **
2593 ** SELECT a, b FROM tbl WHERE a = 1;
2594 ** SELECT a, b, c FROM tbl WHERE a = 1;
drhfe05af82005-07-21 03:14:59 +00002595 */
dan5236ac12009-08-13 07:09:33 +00002596 int nEq;
2597 int bInEst = 0;
2598 int nInMul = 1;
drhed754ce2010-04-15 01:04:54 +00002599 int estBound = 100;
2600 int nBound = 0; /* Number of range constraints seen */
dan5236ac12009-08-13 07:09:33 +00002601 int bSort = 0;
2602 int bLookup = 0;
drh1e0f4a82010-04-14 19:01:44 +00002603 WhereTerm *pTerm; /* A single term of the WHERE clause */
dan5236ac12009-08-13 07:09:33 +00002604
2605 /* Determine the values of nEq and nInMul */
2606 for(nEq=0; nEq<pProbe->nColumn; nEq++){
dan5236ac12009-08-13 07:09:33 +00002607 int j = pProbe->aiColumn[nEq];
2608 pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pIdx);
drhfe05af82005-07-21 03:14:59 +00002609 if( pTerm==0 ) break;
dan5236ac12009-08-13 07:09:33 +00002610 wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ);
drhb52076c2006-01-23 13:22:09 +00002611 if( pTerm->eOperator & WO_IN ){
drha6110402005-07-28 20:51:19 +00002612 Expr *pExpr = pTerm->pExpr;
drh165be382008-12-05 02:36:33 +00002613 wsFlags |= WHERE_COLUMN_IN;
danielk19776ab3a2e2009-02-19 14:39:25 +00002614 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
dan5236ac12009-08-13 07:09:33 +00002615 nInMul *= 25;
2616 bInEst = 1;
drha7d2db12010-07-14 20:23:52 +00002617 }else if( ALWAYS(pExpr->x.pList) ){
dan5236ac12009-08-13 07:09:33 +00002618 nInMul *= pExpr->x.pList->nExpr + 1;
drhfe05af82005-07-21 03:14:59 +00002619 }
drh46619d62009-04-24 14:51:42 +00002620 }else if( pTerm->eOperator & WO_ISNULL ){
2621 wsFlags |= WHERE_COLUMN_NULL;
drhfe05af82005-07-21 03:14:59 +00002622 }
dan5236ac12009-08-13 07:09:33 +00002623 used |= pTerm->prereqRight;
drhfe05af82005-07-21 03:14:59 +00002624 }
dan5236ac12009-08-13 07:09:33 +00002625
drhed754ce2010-04-15 01:04:54 +00002626 /* Determine the value of estBound. */
dan5236ac12009-08-13 07:09:33 +00002627 if( nEq<pProbe->nColumn ){
2628 int j = pProbe->aiColumn[nEq];
2629 if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){
2630 WhereTerm *pTop = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pIdx);
2631 WhereTerm *pBtm = findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pIdx);
drhed754ce2010-04-15 01:04:54 +00002632 whereRangeScanEst(pParse, pProbe, nEq, pBtm, pTop, &estBound);
dan5236ac12009-08-13 07:09:33 +00002633 if( pTop ){
drhed754ce2010-04-15 01:04:54 +00002634 nBound = 1;
dan5236ac12009-08-13 07:09:33 +00002635 wsFlags |= WHERE_TOP_LIMIT;
dan5236ac12009-08-13 07:09:33 +00002636 used |= pTop->prereqRight;
2637 }
2638 if( pBtm ){
drhed754ce2010-04-15 01:04:54 +00002639 nBound++;
dan5236ac12009-08-13 07:09:33 +00002640 wsFlags |= WHERE_BTM_LIMIT;
dan5236ac12009-08-13 07:09:33 +00002641 used |= pBtm->prereqRight;
2642 }
2643 wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE);
2644 }
2645 }else if( pProbe->onError!=OE_None ){
drh46619d62009-04-24 14:51:42 +00002646 testcase( wsFlags & WHERE_COLUMN_IN );
2647 testcase( wsFlags & WHERE_COLUMN_NULL );
2648 if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){
2649 wsFlags |= WHERE_UNIQUE;
2650 }
drh943af3c2005-07-29 19:43:58 +00002651 }
drhfe05af82005-07-21 03:14:59 +00002652
dan5236ac12009-08-13 07:09:33 +00002653 /* If there is an ORDER BY clause and the index being considered will
2654 ** naturally scan rows in the required order, set the appropriate flags
2655 ** in wsFlags. Otherwise, if there is an ORDER BY clause but the index
2656 ** will scan rows in a different order, set the bSort variable. */
drh28c4cf42005-07-27 20:41:43 +00002657 if( pOrderBy ){
drh46619d62009-04-24 14:51:42 +00002658 if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0
dan5236ac12009-08-13 07:09:33 +00002659 && isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev)
drh46619d62009-04-24 14:51:42 +00002660 ){
dan5236ac12009-08-13 07:09:33 +00002661 wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_ORDERBY;
2662 wsFlags |= (rev ? WHERE_REVERSE : 0);
drh28c4cf42005-07-27 20:41:43 +00002663 }else{
dan5236ac12009-08-13 07:09:33 +00002664 bSort = 1;
drh51147ba2005-07-23 22:59:55 +00002665 }
drhfe05af82005-07-21 03:14:59 +00002666 }
2667
dan5236ac12009-08-13 07:09:33 +00002668 /* If currently calculating the cost of using an index (not the IPK
2669 ** index), determine if all required column data may be obtained without
drh4139c992010-04-07 14:59:45 +00002670 ** using the main table (i.e. if the index is a covering
dan5236ac12009-08-13 07:09:33 +00002671 ** index for this query). If it is, set the WHERE_IDX_ONLY flag in
2672 ** wsFlags. Otherwise, set the bLookup variable to true. */
2673 if( pIdx && wsFlags ){
drhfe05af82005-07-21 03:14:59 +00002674 Bitmask m = pSrc->colUsed;
2675 int j;
dan5236ac12009-08-13 07:09:33 +00002676 for(j=0; j<pIdx->nColumn; j++){
2677 int x = pIdx->aiColumn[j];
drhfe05af82005-07-21 03:14:59 +00002678 if( x<BMS-1 ){
2679 m &= ~(((Bitmask)1)<<x);
2680 }
2681 }
2682 if( m==0 ){
drh165be382008-12-05 02:36:33 +00002683 wsFlags |= WHERE_IDX_ONLY;
dan5236ac12009-08-13 07:09:33 +00002684 }else{
2685 bLookup = 1;
drhfe05af82005-07-21 03:14:59 +00002686 }
2687 }
2688
drh1e0f4a82010-04-14 19:01:44 +00002689 /*
drhcdaca552009-08-20 13:45:07 +00002690 ** Estimate the number of rows of output. For an IN operator,
2691 ** do not let the estimate exceed half the rows in the table.
2692 */
dan5236ac12009-08-13 07:09:33 +00002693 nRow = (double)(aiRowEst[nEq] * nInMul);
2694 if( bInEst && nRow*2>aiRowEst[0] ){
2695 nRow = aiRowEst[0]/2;
shanecea72b22009-09-07 04:38:36 +00002696 nInMul = (int)(nRow / aiRowEst[nEq]);
dan5236ac12009-08-13 07:09:33 +00002697 }
drhcdaca552009-08-20 13:45:07 +00002698
2699 /* Assume constant cost to access a row and logarithmic cost to
2700 ** do a binary search. Hence, the initial cost is the number of output
2701 ** rows plus log2(table-size) times the number of binary searches.
2702 */
dan5236ac12009-08-13 07:09:33 +00002703 cost = nRow + nInMul*estLog(aiRowEst[0]);
drhcdaca552009-08-20 13:45:07 +00002704
2705 /* Adjust the number of rows and the cost downward to reflect rows
2706 ** that are excluded by range constraints.
2707 */
drhed754ce2010-04-15 01:04:54 +00002708 nRow = (nRow * (double)estBound) / (double)100;
2709 cost = (cost * (double)estBound) / (double)100;
drhcdaca552009-08-20 13:45:07 +00002710
2711 /* Add in the estimated cost of sorting the result
2712 */
dan5236ac12009-08-13 07:09:33 +00002713 if( bSort ){
2714 cost += cost*estLog(cost);
2715 }
drhcdaca552009-08-20 13:45:07 +00002716
2717 /* If all information can be taken directly from the index, we avoid
2718 ** doing table lookups. This reduces the cost by half. (Not really -
2719 ** this needs to be fixed.)
2720 */
dan5236ac12009-08-13 07:09:33 +00002721 if( pIdx && bLookup==0 ){
drhcdaca552009-08-20 13:45:07 +00002722 cost /= (double)2;
dan5236ac12009-08-13 07:09:33 +00002723 }
drhcdaca552009-08-20 13:45:07 +00002724 /**** Cost of using this index has now been computed ****/
dan5236ac12009-08-13 07:09:33 +00002725
drh1e0f4a82010-04-14 19:01:44 +00002726 /* If there are additional constraints on this table that cannot
2727 ** be used with the current index, but which might lower the number
2728 ** of output rows, adjust the nRow value accordingly. This only
2729 ** matters if the current index is the least costly, so do not bother
2730 ** with this step if we already know this index will not be chosen.
drhed754ce2010-04-15 01:04:54 +00002731 ** Also, never reduce the output row count below 2 using this step.
drhed808ac2010-04-15 13:29:37 +00002732 **
2733 ** Do not reduce the output row count if pSrc is the only table that
2734 ** is notReady; if notReady is a power of two. This will be the case
2735 ** when the main sqlite3WhereBegin() loop is scanning for a table with
2736 ** and "optimal" index, and on such a scan the output row count
2737 ** reduction is not valid because it does not update the "pCost->used"
2738 ** bitmap. The notReady bitmap will also be a power of two when we
2739 ** are scanning for the last table in a 64-way join. We are willing
2740 ** to bypass this optimization in that corner case.
drh1e0f4a82010-04-14 19:01:44 +00002741 */
drhed808ac2010-04-15 13:29:37 +00002742 if( nRow>2 && cost<=pCost->rCost && (notReady & (notReady-1))!=0 ){
2743 int k; /* Loop counter */
2744 int nSkipEq = nEq; /* Number of == constraints to skip */
2745 int nSkipRange = nBound; /* Number of < constraints to skip */
2746 Bitmask thisTab; /* Bitmap for pSrc */
2747
2748 thisTab = getMask(pWC->pMaskSet, iCur);
drh1e0f4a82010-04-14 19:01:44 +00002749 for(pTerm=pWC->a, k=pWC->nTerm; nRow>2 && k; k--, pTerm++){
2750 if( pTerm->wtFlags & TERM_VIRTUAL ) continue;
2751 if( (pTerm->prereqAll & notReady)!=thisTab ) continue;
2752 if( pTerm->eOperator & (WO_EQ|WO_IN|WO_ISNULL) ){
drhed754ce2010-04-15 01:04:54 +00002753 if( nSkipEq ){
drh1e0f4a82010-04-14 19:01:44 +00002754 /* Ignore the first nEq equality matches since the index
2755 ** has already accounted for these */
drhed754ce2010-04-15 01:04:54 +00002756 nSkipEq--;
drh1e0f4a82010-04-14 19:01:44 +00002757 }else{
2758 /* Assume each additional equality match reduces the result
2759 ** set size by a factor of 10 */
2760 nRow /= 10;
2761 }
drhed754ce2010-04-15 01:04:54 +00002762 }else if( pTerm->eOperator & (WO_LT|WO_LE|WO_GT|WO_GE) ){
2763 if( nSkipRange ){
2764 /* Ignore the first nBound range constraints since the index
2765 ** has already accounted for these */
2766 nSkipRange--;
2767 }else{
2768 /* Assume each additional range constraint reduces the result
2769 ** set size by a factor of 3 */
2770 nRow /= 3;
2771 }
drh1e0f4a82010-04-14 19:01:44 +00002772 }else{
2773 /* Any other expression lowers the output row count by half */
2774 nRow /= 2;
2775 }
2776 }
2777 if( nRow<2 ) nRow = 2;
2778 }
2779
2780
dan5236ac12009-08-13 07:09:33 +00002781 WHERETRACE((
drhed754ce2010-04-15 01:04:54 +00002782 "%s(%s): nEq=%d nInMul=%d estBound=%d bSort=%d bLookup=%d wsFlags=0x%x\n"
drh8b307fb2010-04-06 15:57:05 +00002783 " notReady=0x%llx nRow=%.2f cost=%.2f used=0x%llx\n",
dan5236ac12009-08-13 07:09:33 +00002784 pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk"),
drhed754ce2010-04-15 01:04:54 +00002785 nEq, nInMul, estBound, bSort, bLookup, wsFlags,
2786 notReady, nRow, cost, used
dan5236ac12009-08-13 07:09:33 +00002787 ));
2788
drhcdaca552009-08-20 13:45:07 +00002789 /* If this index is the best we have seen so far, then record this
2790 ** index and its cost in the pCost structure.
2791 */
drh1e0f4a82010-04-14 19:01:44 +00002792 if( (!pIdx || wsFlags)
drhed754ce2010-04-15 01:04:54 +00002793 && (cost<pCost->rCost || (cost<=pCost->rCost && nRow<pCost->nRow))
drh1e0f4a82010-04-14 19:01:44 +00002794 ){
drh111a6a72008-12-21 03:51:16 +00002795 pCost->rCost = cost;
2796 pCost->nRow = nRow;
dan5236ac12009-08-13 07:09:33 +00002797 pCost->used = used;
2798 pCost->plan.wsFlags = (wsFlags&wsFlagMask);
drh111a6a72008-12-21 03:51:16 +00002799 pCost->plan.nEq = nEq;
dan5236ac12009-08-13 07:09:33 +00002800 pCost->plan.u.pIdx = pIdx;
drhfe05af82005-07-21 03:14:59 +00002801 }
dan5236ac12009-08-13 07:09:33 +00002802
drhcdaca552009-08-20 13:45:07 +00002803 /* If there was an INDEXED BY clause, then only that one index is
2804 ** considered. */
dan5236ac12009-08-13 07:09:33 +00002805 if( pSrc->pIndex ) break;
drhcdaca552009-08-20 13:45:07 +00002806
2807 /* Reset masks for the next index in the loop */
dan5236ac12009-08-13 07:09:33 +00002808 wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
2809 eqTermMask = idxEqTermMask;
drhfe05af82005-07-21 03:14:59 +00002810 }
2811
dan5236ac12009-08-13 07:09:33 +00002812 /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag
2813 ** is set, then reverse the order that the index will be scanned
2814 ** in. This is used for application testing, to help find cases
2815 ** where application behaviour depends on the (undefined) order that
2816 ** SQLite outputs rows in in the absence of an ORDER BY clause. */
2817 if( !pOrderBy && pParse->db->flags & SQLITE_ReverseOrder ){
2818 pCost->plan.wsFlags |= WHERE_REVERSE;
2819 }
2820
2821 assert( pOrderBy || (pCost->plan.wsFlags&WHERE_ORDERBY)==0 );
2822 assert( pCost->plan.u.pIdx==0 || (pCost->plan.wsFlags&WHERE_ROWID_EQ)==0 );
2823 assert( pSrc->pIndex==0
2824 || pCost->plan.u.pIdx==0
2825 || pCost->plan.u.pIdx==pSrc->pIndex
2826 );
2827
2828 WHERETRACE(("best index is: %s\n",
drh1e0f4a82010-04-14 19:01:44 +00002829 ((pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ? "none" :
2830 pCost->plan.u.pIdx ? pCost->plan.u.pIdx->zName : "ipk")
dan5236ac12009-08-13 07:09:33 +00002831 ));
2832
2833 bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
drhc6339082010-04-07 16:54:58 +00002834 bestAutomaticIndex(pParse, pWC, pSrc, notReady, pCost);
drh111a6a72008-12-21 03:51:16 +00002835 pCost->plan.wsFlags |= eqTermMask;
drhfe05af82005-07-21 03:14:59 +00002836}
2837
danielk19771d461462009-04-21 09:02:45 +00002838/*
2839** Find the query plan for accessing table pSrc->pTab. Write the
2840** best query plan and its cost into the WhereCost object supplied
2841** as the last parameter. This function may calculate the cost of
2842** both real and virtual table scans.
2843*/
2844static void bestIndex(
2845 Parse *pParse, /* The parsing context */
2846 WhereClause *pWC, /* The WHERE clause */
2847 struct SrcList_item *pSrc, /* The FROM clause term to search */
2848 Bitmask notReady, /* Mask of cursors that are not available */
2849 ExprList *pOrderBy, /* The ORDER BY clause */
2850 WhereCost *pCost /* Lowest cost query plan */
2851){
shanee26fa4c2009-06-16 14:15:22 +00002852#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk19771d461462009-04-21 09:02:45 +00002853 if( IsVirtual(pSrc->pTab) ){
2854 sqlite3_index_info *p = 0;
2855 bestVirtualIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost, &p);
2856 if( p->needToFreeIdxStr ){
2857 sqlite3_free(p->idxStr);
2858 }
2859 sqlite3DbFree(pParse->db, p);
shanee26fa4c2009-06-16 14:15:22 +00002860 }else
2861#endif
2862 {
danielk19771d461462009-04-21 09:02:45 +00002863 bestBtreeIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
2864 }
2865}
drhb6c29892004-11-22 19:12:19 +00002866
2867/*
drh2ffb1182004-07-19 19:14:01 +00002868** Disable a term in the WHERE clause. Except, do not disable the term
2869** if it controls a LEFT OUTER JOIN and it did not originate in the ON
2870** or USING clause of that join.
2871**
2872** Consider the term t2.z='ok' in the following queries:
2873**
2874** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
2875** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
2876** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
2877**
drh23bf66d2004-12-14 03:34:34 +00002878** The t2.z='ok' is disabled in the in (2) because it originates
drh2ffb1182004-07-19 19:14:01 +00002879** in the ON clause. The term is disabled in (3) because it is not part
2880** of a LEFT OUTER JOIN. In (1), the term is not disabled.
2881**
2882** Disabling a term causes that term to not be tested in the inner loop
drhb6fb62d2005-09-20 08:47:20 +00002883** of the join. Disabling is an optimization. When terms are satisfied
2884** by indices, we disable them to prevent redundant tests in the inner
2885** loop. We would get the correct results if nothing were ever disabled,
2886** but joins might run a little slower. The trick is to disable as much
2887** as we can without disabling too much. If we disabled in (1), we'd get
2888** the wrong answer. See ticket #813.
drh2ffb1182004-07-19 19:14:01 +00002889*/
drh0fcef5e2005-07-19 17:38:22 +00002890static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
2891 if( pTerm
drhbe837bd2010-04-30 21:03:24 +00002892 && (pTerm->wtFlags & TERM_CODED)==0
drh0fcef5e2005-07-19 17:38:22 +00002893 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
2894 ){
drh165be382008-12-05 02:36:33 +00002895 pTerm->wtFlags |= TERM_CODED;
drh45b1ee42005-08-02 17:48:22 +00002896 if( pTerm->iParent>=0 ){
2897 WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
2898 if( (--pOther->nChild)==0 ){
drhed378002005-07-28 23:12:08 +00002899 disableTerm(pLevel, pOther);
2900 }
drh0fcef5e2005-07-19 17:38:22 +00002901 }
drh2ffb1182004-07-19 19:14:01 +00002902 }
2903}
2904
2905/*
dan69f8bb92009-08-13 19:21:16 +00002906** Code an OP_Affinity opcode to apply the column affinity string zAff
2907** to the n registers starting at base.
2908**
drh039fc322009-11-17 18:31:47 +00002909** As an optimization, SQLITE_AFF_NONE entries (which are no-ops) at the
2910** beginning and end of zAff are ignored. If all entries in zAff are
2911** SQLITE_AFF_NONE, then no code gets generated.
2912**
2913** This routine makes its own copy of zAff so that the caller is free
2914** to modify zAff after this routine returns.
drh94a11212004-09-25 13:12:14 +00002915*/
dan69f8bb92009-08-13 19:21:16 +00002916static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
2917 Vdbe *v = pParse->pVdbe;
drh039fc322009-11-17 18:31:47 +00002918 if( zAff==0 ){
2919 assert( pParse->db->mallocFailed );
2920 return;
2921 }
dan69f8bb92009-08-13 19:21:16 +00002922 assert( v!=0 );
drh039fc322009-11-17 18:31:47 +00002923
2924 /* Adjust base and n to skip over SQLITE_AFF_NONE entries at the beginning
2925 ** and end of the affinity string.
2926 */
2927 while( n>0 && zAff[0]==SQLITE_AFF_NONE ){
2928 n--;
2929 base++;
2930 zAff++;
2931 }
2932 while( n>1 && zAff[n-1]==SQLITE_AFF_NONE ){
2933 n--;
2934 }
2935
2936 /* Code the OP_Affinity opcode if there is anything left to do. */
2937 if( n>0 ){
2938 sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
2939 sqlite3VdbeChangeP4(v, -1, zAff, n);
2940 sqlite3ExprCacheAffinityChange(pParse, base, n);
2941 }
drh94a11212004-09-25 13:12:14 +00002942}
2943
drhe8b97272005-07-19 22:22:12 +00002944
2945/*
drh51147ba2005-07-23 22:59:55 +00002946** Generate code for a single equality term of the WHERE clause. An equality
2947** term can be either X=expr or X IN (...). pTerm is the term to be
2948** coded.
2949**
drh1db639c2008-01-17 02:36:28 +00002950** The current value for the constraint is left in register iReg.
drh51147ba2005-07-23 22:59:55 +00002951**
2952** For a constraint of the form X=expr, the expression is evaluated and its
2953** result is left on the stack. For constraints of the form X IN (...)
2954** this routine sets up a loop that will iterate over all values of X.
drh94a11212004-09-25 13:12:14 +00002955*/
drh678ccce2008-03-31 18:19:54 +00002956static int codeEqualityTerm(
drh94a11212004-09-25 13:12:14 +00002957 Parse *pParse, /* The parsing context */
drhe23399f2005-07-22 00:31:39 +00002958 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
drh1db639c2008-01-17 02:36:28 +00002959 WhereLevel *pLevel, /* When level of the FROM clause we are working on */
drh678ccce2008-03-31 18:19:54 +00002960 int iTarget /* Attempt to leave results in this register */
drh94a11212004-09-25 13:12:14 +00002961){
drh0fcef5e2005-07-19 17:38:22 +00002962 Expr *pX = pTerm->pExpr;
drh50b39962006-10-28 00:28:09 +00002963 Vdbe *v = pParse->pVdbe;
drh678ccce2008-03-31 18:19:54 +00002964 int iReg; /* Register holding results */
drh1db639c2008-01-17 02:36:28 +00002965
danielk19772d605492008-10-01 08:43:03 +00002966 assert( iTarget>0 );
drh50b39962006-10-28 00:28:09 +00002967 if( pX->op==TK_EQ ){
drh678ccce2008-03-31 18:19:54 +00002968 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
drh50b39962006-10-28 00:28:09 +00002969 }else if( pX->op==TK_ISNULL ){
drh678ccce2008-03-31 18:19:54 +00002970 iReg = iTarget;
drh1db639c2008-01-17 02:36:28 +00002971 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
danielk1977b3bce662005-01-29 08:32:43 +00002972#ifndef SQLITE_OMIT_SUBQUERY
drh94a11212004-09-25 13:12:14 +00002973 }else{
danielk19779a96b662007-11-29 17:05:18 +00002974 int eType;
danielk1977b3bce662005-01-29 08:32:43 +00002975 int iTab;
drh72e8fa42007-03-28 14:30:06 +00002976 struct InLoop *pIn;
danielk1977b3bce662005-01-29 08:32:43 +00002977
drh50b39962006-10-28 00:28:09 +00002978 assert( pX->op==TK_IN );
drh678ccce2008-03-31 18:19:54 +00002979 iReg = iTarget;
danielk19770cdc0222008-06-26 18:04:03 +00002980 eType = sqlite3FindInIndex(pParse, pX, 0);
danielk1977b3bce662005-01-29 08:32:43 +00002981 iTab = pX->iTable;
drh66a51672008-01-03 00:01:23 +00002982 sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
drh111a6a72008-12-21 03:51:16 +00002983 assert( pLevel->plan.wsFlags & WHERE_IN_ABLE );
2984 if( pLevel->u.in.nIn==0 ){
drhb3190c12008-12-08 21:37:14 +00002985 pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
drh72e8fa42007-03-28 14:30:06 +00002986 }
drh111a6a72008-12-21 03:51:16 +00002987 pLevel->u.in.nIn++;
2988 pLevel->u.in.aInLoop =
2989 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
2990 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
2991 pIn = pLevel->u.in.aInLoop;
drh72e8fa42007-03-28 14:30:06 +00002992 if( pIn ){
drh111a6a72008-12-21 03:51:16 +00002993 pIn += pLevel->u.in.nIn - 1;
drh72e8fa42007-03-28 14:30:06 +00002994 pIn->iCur = iTab;
drh1db639c2008-01-17 02:36:28 +00002995 if( eType==IN_INDEX_ROWID ){
drhb3190c12008-12-08 21:37:14 +00002996 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
drh1db639c2008-01-17 02:36:28 +00002997 }else{
drhb3190c12008-12-08 21:37:14 +00002998 pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
drh1db639c2008-01-17 02:36:28 +00002999 }
3000 sqlite3VdbeAddOp1(v, OP_IsNull, iReg);
drha6110402005-07-28 20:51:19 +00003001 }else{
drh111a6a72008-12-21 03:51:16 +00003002 pLevel->u.in.nIn = 0;
drhe23399f2005-07-22 00:31:39 +00003003 }
danielk1977b3bce662005-01-29 08:32:43 +00003004#endif
drh94a11212004-09-25 13:12:14 +00003005 }
drh0fcef5e2005-07-19 17:38:22 +00003006 disableTerm(pLevel, pTerm);
drh678ccce2008-03-31 18:19:54 +00003007 return iReg;
drh94a11212004-09-25 13:12:14 +00003008}
3009
drh51147ba2005-07-23 22:59:55 +00003010/*
3011** Generate code that will evaluate all == and IN constraints for an
drh039fc322009-11-17 18:31:47 +00003012** index.
drh51147ba2005-07-23 22:59:55 +00003013**
3014** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
3015** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
3016** The index has as many as three equality constraints, but in this
3017** example, the third "c" value is an inequality. So only two
3018** constraints are coded. This routine will generate code to evaluate
drh6df2acd2008-12-28 16:55:25 +00003019** a==5 and b IN (1,2,3). The current values for a and b will be stored
3020** in consecutive registers and the index of the first register is returned.
drh51147ba2005-07-23 22:59:55 +00003021**
3022** In the example above nEq==2. But this subroutine works for any value
3023** of nEq including 0. If nEq==0, this routine is nearly a no-op.
drh039fc322009-11-17 18:31:47 +00003024** The only thing it does is allocate the pLevel->iMem memory cell and
3025** compute the affinity string.
drh51147ba2005-07-23 22:59:55 +00003026**
drh700a2262008-12-17 19:22:15 +00003027** This routine always allocates at least one memory cell and returns
3028** the index of that memory cell. The code that
3029** calls this routine will use that memory cell to store the termination
drh51147ba2005-07-23 22:59:55 +00003030** key value of the loop. If one or more IN operators appear, then
3031** this routine allocates an additional nEq memory cells for internal
3032** use.
dan69f8bb92009-08-13 19:21:16 +00003033**
3034** Before returning, *pzAff is set to point to a buffer containing a
3035** copy of the column affinity string of the index allocated using
3036** sqlite3DbMalloc(). Except, entries in the copy of the string associated
3037** with equality constraints that use NONE affinity are set to
3038** SQLITE_AFF_NONE. This is to deal with SQL such as the following:
3039**
3040** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
3041** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
3042**
3043** In the example above, the index on t1(a) has TEXT affinity. But since
3044** the right hand side of the equality constraint (t2.b) has NONE affinity,
3045** no conversion should be attempted before using a t2.b value as part of
3046** a key to search the index. Hence the first byte in the returned affinity
3047** string in this example would be set to SQLITE_AFF_NONE.
drh51147ba2005-07-23 22:59:55 +00003048*/
drh1db639c2008-01-17 02:36:28 +00003049static int codeAllEqualityTerms(
drh51147ba2005-07-23 22:59:55 +00003050 Parse *pParse, /* Parsing context */
3051 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
3052 WhereClause *pWC, /* The WHERE clause */
drh1db639c2008-01-17 02:36:28 +00003053 Bitmask notReady, /* Which parts of FROM have not yet been coded */
dan69f8bb92009-08-13 19:21:16 +00003054 int nExtraReg, /* Number of extra registers to allocate */
3055 char **pzAff /* OUT: Set to point to affinity string */
drh51147ba2005-07-23 22:59:55 +00003056){
drh111a6a72008-12-21 03:51:16 +00003057 int nEq = pLevel->plan.nEq; /* The number of == or IN constraints to code */
3058 Vdbe *v = pParse->pVdbe; /* The vm under construction */
3059 Index *pIdx; /* The index being used for this loop */
drh51147ba2005-07-23 22:59:55 +00003060 int iCur = pLevel->iTabCur; /* The cursor of the table */
3061 WhereTerm *pTerm; /* A single constraint term */
3062 int j; /* Loop counter */
drh1db639c2008-01-17 02:36:28 +00003063 int regBase; /* Base register */
drh6df2acd2008-12-28 16:55:25 +00003064 int nReg; /* Number of registers to allocate */
dan69f8bb92009-08-13 19:21:16 +00003065 char *zAff; /* Affinity string to return */
drh51147ba2005-07-23 22:59:55 +00003066
drh111a6a72008-12-21 03:51:16 +00003067 /* This module is only called on query plans that use an index. */
3068 assert( pLevel->plan.wsFlags & WHERE_INDEXED );
3069 pIdx = pLevel->plan.u.pIdx;
3070
drh51147ba2005-07-23 22:59:55 +00003071 /* Figure out how many memory cells we will need then allocate them.
drh51147ba2005-07-23 22:59:55 +00003072 */
drh700a2262008-12-17 19:22:15 +00003073 regBase = pParse->nMem + 1;
drh6df2acd2008-12-28 16:55:25 +00003074 nReg = pLevel->plan.nEq + nExtraReg;
3075 pParse->nMem += nReg;
drh51147ba2005-07-23 22:59:55 +00003076
dan69f8bb92009-08-13 19:21:16 +00003077 zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx));
3078 if( !zAff ){
3079 pParse->db->mallocFailed = 1;
3080 }
3081
drh51147ba2005-07-23 22:59:55 +00003082 /* Evaluate the equality constraints
3083 */
drhc49de5d2007-01-19 01:06:01 +00003084 assert( pIdx->nColumn>=nEq );
3085 for(j=0; j<nEq; j++){
drh678ccce2008-03-31 18:19:54 +00003086 int r1;
drh51147ba2005-07-23 22:59:55 +00003087 int k = pIdx->aiColumn[j];
drh111a6a72008-12-21 03:51:16 +00003088 pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx);
drh34004ce2008-07-11 16:15:17 +00003089 if( NEVER(pTerm==0) ) break;
drhbe837bd2010-04-30 21:03:24 +00003090 /* The following true for indices with redundant columns.
3091 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
3092 testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
drh678ccce2008-03-31 18:19:54 +00003093 r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j);
3094 if( r1!=regBase+j ){
drh6df2acd2008-12-28 16:55:25 +00003095 if( nReg==1 ){
3096 sqlite3ReleaseTempReg(pParse, regBase);
3097 regBase = r1;
3098 }else{
3099 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
3100 }
drh678ccce2008-03-31 18:19:54 +00003101 }
drh981642f2008-04-19 14:40:43 +00003102 testcase( pTerm->eOperator & WO_ISNULL );
3103 testcase( pTerm->eOperator & WO_IN );
drh72e8fa42007-03-28 14:30:06 +00003104 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
drh039fc322009-11-17 18:31:47 +00003105 Expr *pRight = pTerm->pExpr->pRight;
drh2f2855b2009-11-18 01:25:26 +00003106 sqlite3ExprCodeIsNullJump(v, pRight, regBase+j, pLevel->addrBrk);
drh039fc322009-11-17 18:31:47 +00003107 if( zAff ){
3108 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_NONE ){
3109 zAff[j] = SQLITE_AFF_NONE;
3110 }
3111 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
3112 zAff[j] = SQLITE_AFF_NONE;
3113 }
dan69f8bb92009-08-13 19:21:16 +00003114 }
drh51147ba2005-07-23 22:59:55 +00003115 }
3116 }
dan69f8bb92009-08-13 19:21:16 +00003117 *pzAff = zAff;
drh1db639c2008-01-17 02:36:28 +00003118 return regBase;
drh51147ba2005-07-23 22:59:55 +00003119}
3120
drh111a6a72008-12-21 03:51:16 +00003121/*
3122** Generate code for the start of the iLevel-th loop in the WHERE clause
3123** implementation described by pWInfo.
3124*/
3125static Bitmask codeOneLoopStart(
3126 WhereInfo *pWInfo, /* Complete information about the WHERE clause */
3127 int iLevel, /* Which level of pWInfo->a[] should be coded */
drh336a5302009-04-24 15:46:21 +00003128 u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */
drh111a6a72008-12-21 03:51:16 +00003129 Bitmask notReady /* Which tables are currently available */
3130){
3131 int j, k; /* Loop counters */
3132 int iCur; /* The VDBE cursor for the table */
3133 int addrNxt; /* Where to jump to continue with the next IN case */
3134 int omitTable; /* True if we use the index only */
3135 int bRev; /* True if we need to scan in reverse order */
3136 WhereLevel *pLevel; /* The where level to be coded */
3137 WhereClause *pWC; /* Decomposition of the entire WHERE clause */
3138 WhereTerm *pTerm; /* A WHERE clause term */
3139 Parse *pParse; /* Parsing context */
3140 Vdbe *v; /* The prepared stmt under constructions */
3141 struct SrcList_item *pTabItem; /* FROM clause term being coded */
drh23d04d52008-12-23 23:56:22 +00003142 int addrBrk; /* Jump here to break out of the loop */
3143 int addrCont; /* Jump here to continue with next cycle */
drh61495262009-04-22 15:32:59 +00003144 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */
3145 int iReleaseReg = 0; /* Temp register to free before returning */
drh111a6a72008-12-21 03:51:16 +00003146
3147 pParse = pWInfo->pParse;
3148 v = pParse->pVdbe;
3149 pWC = pWInfo->pWC;
3150 pLevel = &pWInfo->a[iLevel];
3151 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
3152 iCur = pTabItem->iCursor;
3153 bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0;
danielk19771d461462009-04-21 09:02:45 +00003154 omitTable = (pLevel->plan.wsFlags & WHERE_IDX_ONLY)!=0
drh336a5302009-04-24 15:46:21 +00003155 && (wctrlFlags & WHERE_FORCE_TABLE)==0;
drh111a6a72008-12-21 03:51:16 +00003156
3157 /* Create labels for the "break" and "continue" instructions
3158 ** for the current loop. Jump to addrBrk to break out of a loop.
3159 ** Jump to cont to go immediately to the next iteration of the
3160 ** loop.
3161 **
3162 ** When there is an IN operator, we also have a "addrNxt" label that
3163 ** means to continue with the next IN value combination. When
3164 ** there are no IN operators in the constraints, the "addrNxt" label
3165 ** is the same as "addrBrk".
3166 */
3167 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
3168 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
3169
3170 /* If this is the right table of a LEFT OUTER JOIN, allocate and
3171 ** initialize a memory cell that records if this table matches any
3172 ** row of the left table of the join.
3173 */
3174 if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
3175 pLevel->iLeftJoin = ++pParse->nMem;
3176 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
3177 VdbeComment((v, "init LEFT JOIN no-match flag"));
3178 }
3179
3180#ifndef SQLITE_OMIT_VIRTUALTABLE
3181 if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
3182 /* Case 0: The table is a virtual-table. Use the VFilter and VNext
3183 ** to access the data.
3184 */
3185 int iReg; /* P3 Value for OP_VFilter */
3186 sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
3187 int nConstraint = pVtabIdx->nConstraint;
3188 struct sqlite3_index_constraint_usage *aUsage =
3189 pVtabIdx->aConstraintUsage;
3190 const struct sqlite3_index_constraint *aConstraint =
3191 pVtabIdx->aConstraint;
3192
drha62bb8d2009-11-23 21:23:45 +00003193 sqlite3ExprCachePush(pParse);
drh111a6a72008-12-21 03:51:16 +00003194 iReg = sqlite3GetTempRange(pParse, nConstraint+2);
drh111a6a72008-12-21 03:51:16 +00003195 for(j=1; j<=nConstraint; j++){
3196 for(k=0; k<nConstraint; k++){
3197 if( aUsage[k].argvIndex==j ){
3198 int iTerm = aConstraint[k].iTermOffset;
drh111a6a72008-12-21 03:51:16 +00003199 sqlite3ExprCode(pParse, pWC->a[iTerm].pExpr->pRight, iReg+j+1);
3200 break;
3201 }
3202 }
3203 if( k==nConstraint ) break;
3204 }
drh111a6a72008-12-21 03:51:16 +00003205 sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg);
3206 sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1);
3207 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrBrk, iReg, pVtabIdx->idxStr,
3208 pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
drh111a6a72008-12-21 03:51:16 +00003209 pVtabIdx->needToFreeIdxStr = 0;
3210 for(j=0; j<nConstraint; j++){
3211 if( aUsage[j].omit ){
3212 int iTerm = aConstraint[j].iTermOffset;
3213 disableTerm(pLevel, &pWC->a[iTerm]);
3214 }
3215 }
3216 pLevel->op = OP_VNext;
3217 pLevel->p1 = iCur;
3218 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
drh23d04d52008-12-23 23:56:22 +00003219 sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
drha62bb8d2009-11-23 21:23:45 +00003220 sqlite3ExprCachePop(pParse, 1);
drh111a6a72008-12-21 03:51:16 +00003221 }else
3222#endif /* SQLITE_OMIT_VIRTUALTABLE */
3223
3224 if( pLevel->plan.wsFlags & WHERE_ROWID_EQ ){
3225 /* Case 1: We can directly reference a single row using an
3226 ** equality comparison against the ROWID field. Or
3227 ** we reference multiple rows using a "rowid IN (...)"
3228 ** construct.
3229 */
danielk19771d461462009-04-21 09:02:45 +00003230 iReleaseReg = sqlite3GetTempReg(pParse);
drh111a6a72008-12-21 03:51:16 +00003231 pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
3232 assert( pTerm!=0 );
3233 assert( pTerm->pExpr!=0 );
3234 assert( pTerm->leftCursor==iCur );
3235 assert( omitTable==0 );
danielk19771d461462009-04-21 09:02:45 +00003236 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, iReleaseReg);
drh111a6a72008-12-21 03:51:16 +00003237 addrNxt = pLevel->addrNxt;
danielk19771d461462009-04-21 09:02:45 +00003238 sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt);
3239 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
drhceea3322009-04-23 13:22:42 +00003240 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
drh111a6a72008-12-21 03:51:16 +00003241 VdbeComment((v, "pk"));
3242 pLevel->op = OP_Noop;
3243 }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){
3244 /* Case 2: We have an inequality comparison against the ROWID field.
3245 */
3246 int testOp = OP_Noop;
3247 int start;
3248 int memEndValue = 0;
3249 WhereTerm *pStart, *pEnd;
3250
3251 assert( omitTable==0 );
3252 pStart = findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0);
3253 pEnd = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0);
3254 if( bRev ){
3255 pTerm = pStart;
3256 pStart = pEnd;
3257 pEnd = pTerm;
3258 }
3259 if( pStart ){
3260 Expr *pX; /* The expression that defines the start bound */
3261 int r1, rTemp; /* Registers for holding the start boundary */
3262
3263 /* The following constant maps TK_xx codes into corresponding
3264 ** seek opcodes. It depends on a particular ordering of TK_xx
3265 */
3266 const u8 aMoveOp[] = {
3267 /* TK_GT */ OP_SeekGt,
3268 /* TK_LE */ OP_SeekLe,
3269 /* TK_LT */ OP_SeekLt,
3270 /* TK_GE */ OP_SeekGe
3271 };
3272 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */
3273 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */
3274 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */
3275
3276 pX = pStart->pExpr;
3277 assert( pX!=0 );
3278 assert( pStart->leftCursor==iCur );
3279 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
3280 sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1);
3281 VdbeComment((v, "pk"));
3282 sqlite3ExprCacheAffinityChange(pParse, r1, 1);
3283 sqlite3ReleaseTempReg(pParse, rTemp);
3284 disableTerm(pLevel, pStart);
3285 }else{
3286 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
3287 }
3288 if( pEnd ){
3289 Expr *pX;
3290 pX = pEnd->pExpr;
3291 assert( pX!=0 );
3292 assert( pEnd->leftCursor==iCur );
3293 memEndValue = ++pParse->nMem;
3294 sqlite3ExprCode(pParse, pX->pRight, memEndValue);
3295 if( pX->op==TK_LT || pX->op==TK_GT ){
3296 testOp = bRev ? OP_Le : OP_Ge;
3297 }else{
3298 testOp = bRev ? OP_Lt : OP_Gt;
3299 }
3300 disableTerm(pLevel, pEnd);
3301 }
3302 start = sqlite3VdbeCurrentAddr(v);
3303 pLevel->op = bRev ? OP_Prev : OP_Next;
3304 pLevel->p1 = iCur;
3305 pLevel->p2 = start;
drhafc266a2010-03-31 17:47:44 +00003306 if( pStart==0 && pEnd==0 ){
3307 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
3308 }else{
3309 assert( pLevel->p5==0 );
3310 }
danielk19771d461462009-04-21 09:02:45 +00003311 if( testOp!=OP_Noop ){
3312 iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
3313 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
drhceea3322009-04-23 13:22:42 +00003314 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
danielk19771d461462009-04-21 09:02:45 +00003315 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
3316 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
drh111a6a72008-12-21 03:51:16 +00003317 }
3318 }else if( pLevel->plan.wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){
3319 /* Case 3: A scan using an index.
3320 **
3321 ** The WHERE clause may contain zero or more equality
3322 ** terms ("==" or "IN" operators) that refer to the N
3323 ** left-most columns of the index. It may also contain
3324 ** inequality constraints (>, <, >= or <=) on the indexed
3325 ** column that immediately follows the N equalities. Only
3326 ** the right-most column can be an inequality - the rest must
3327 ** use the "==" and "IN" operators. For example, if the
3328 ** index is on (x,y,z), then the following clauses are all
3329 ** optimized:
3330 **
3331 ** x=5
3332 ** x=5 AND y=10
3333 ** x=5 AND y<10
3334 ** x=5 AND y>5 AND y<10
3335 ** x=5 AND y=5 AND z<=10
3336 **
3337 ** The z<10 term of the following cannot be used, only
3338 ** the x=5 term:
3339 **
3340 ** x=5 AND z<10
3341 **
3342 ** N may be zero if there are inequality constraints.
3343 ** If there are no inequality constraints, then N is at
3344 ** least one.
3345 **
3346 ** This case is also used when there are no WHERE clause
3347 ** constraints but an index is selected anyway, in order
3348 ** to force the output order to conform to an ORDER BY.
3349 */
3350 int aStartOp[] = {
3351 0,
3352 0,
3353 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
3354 OP_Last, /* 3: (!start_constraints && startEq && bRev) */
3355 OP_SeekGt, /* 4: (start_constraints && !startEq && !bRev) */
3356 OP_SeekLt, /* 5: (start_constraints && !startEq && bRev) */
3357 OP_SeekGe, /* 6: (start_constraints && startEq && !bRev) */
3358 OP_SeekLe /* 7: (start_constraints && startEq && bRev) */
3359 };
3360 int aEndOp[] = {
3361 OP_Noop, /* 0: (!end_constraints) */
3362 OP_IdxGE, /* 1: (end_constraints && !bRev) */
3363 OP_IdxLT /* 2: (end_constraints && bRev) */
3364 };
3365 int nEq = pLevel->plan.nEq;
3366 int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */
3367 int regBase; /* Base register holding constraint values */
3368 int r1; /* Temp register */
3369 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
3370 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
3371 int startEq; /* True if range start uses ==, >= or <= */
3372 int endEq; /* True if range end uses ==, >= or <= */
3373 int start_constraints; /* Start of range is constrained */
3374 int nConstraint; /* Number of constraint terms */
3375 Index *pIdx; /* The index we will be using */
3376 int iIdxCur; /* The VDBE cursor for the index */
drh6df2acd2008-12-28 16:55:25 +00003377 int nExtraReg = 0; /* Number of extra registers needed */
3378 int op; /* Instruction opcode */
dan6ac43392010-06-09 15:47:11 +00003379 char *zStartAff; /* Affinity for start of range constraint */
3380 char *zEndAff; /* Affinity for end of range constraint */
drh111a6a72008-12-21 03:51:16 +00003381
3382 pIdx = pLevel->plan.u.pIdx;
3383 iIdxCur = pLevel->iIdxCur;
3384 k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */
3385
drh111a6a72008-12-21 03:51:16 +00003386 /* If this loop satisfies a sort order (pOrderBy) request that
3387 ** was passed to this function to implement a "SELECT min(x) ..."
3388 ** query, then the caller will only allow the loop to run for
3389 ** a single iteration. This means that the first row returned
3390 ** should not have a NULL value stored in 'x'. If column 'x' is
3391 ** the first one after the nEq equality constraints in the index,
3392 ** this requires some special handling.
3393 */
3394 if( (wctrlFlags&WHERE_ORDERBY_MIN)!=0
3395 && (pLevel->plan.wsFlags&WHERE_ORDERBY)
3396 && (pIdx->nColumn>nEq)
3397 ){
3398 /* assert( pOrderBy->nExpr==1 ); */
3399 /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */
3400 isMinQuery = 1;
drh6df2acd2008-12-28 16:55:25 +00003401 nExtraReg = 1;
drh111a6a72008-12-21 03:51:16 +00003402 }
3403
3404 /* Find any inequality constraint terms for the start and end
3405 ** of the range.
3406 */
3407 if( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ){
3408 pRangeEnd = findTerm(pWC, iCur, k, notReady, (WO_LT|WO_LE), pIdx);
drh6df2acd2008-12-28 16:55:25 +00003409 nExtraReg = 1;
drh111a6a72008-12-21 03:51:16 +00003410 }
3411 if( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ){
3412 pRangeStart = findTerm(pWC, iCur, k, notReady, (WO_GT|WO_GE), pIdx);
drh6df2acd2008-12-28 16:55:25 +00003413 nExtraReg = 1;
drh111a6a72008-12-21 03:51:16 +00003414 }
3415
drh6df2acd2008-12-28 16:55:25 +00003416 /* Generate code to evaluate all constraint terms using == or IN
3417 ** and store the values of those terms in an array of registers
3418 ** starting at regBase.
3419 */
dan69f8bb92009-08-13 19:21:16 +00003420 regBase = codeAllEqualityTerms(
dan6ac43392010-06-09 15:47:11 +00003421 pParse, pLevel, pWC, notReady, nExtraReg, &zStartAff
dan69f8bb92009-08-13 19:21:16 +00003422 );
dan6ac43392010-06-09 15:47:11 +00003423 zEndAff = sqlite3DbStrDup(pParse->db, zStartAff);
drh6df2acd2008-12-28 16:55:25 +00003424 addrNxt = pLevel->addrNxt;
3425
drh111a6a72008-12-21 03:51:16 +00003426 /* If we are doing a reverse order scan on an ascending index, or
3427 ** a forward order scan on a descending index, interchange the
3428 ** start and end terms (pRangeStart and pRangeEnd).
3429 */
drh0eb77d02010-07-03 01:44:27 +00003430 if( nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){
drh111a6a72008-12-21 03:51:16 +00003431 SWAP(WhereTerm *, pRangeEnd, pRangeStart);
3432 }
3433
3434 testcase( pRangeStart && pRangeStart->eOperator & WO_LE );
3435 testcase( pRangeStart && pRangeStart->eOperator & WO_GE );
3436 testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE );
3437 testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE );
3438 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
3439 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
3440 start_constraints = pRangeStart || nEq>0;
3441
3442 /* Seek the index cursor to the start of the range. */
3443 nConstraint = nEq;
3444 if( pRangeStart ){
dan69f8bb92009-08-13 19:21:16 +00003445 Expr *pRight = pRangeStart->pExpr->pRight;
3446 sqlite3ExprCode(pParse, pRight, regBase+nEq);
drh2f2855b2009-11-18 01:25:26 +00003447 sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt);
dan6ac43392010-06-09 15:47:11 +00003448 if( zStartAff ){
3449 if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_NONE){
drh039fc322009-11-17 18:31:47 +00003450 /* Since the comparison is to be performed with no conversions
3451 ** applied to the operands, set the affinity to apply to pRight to
3452 ** SQLITE_AFF_NONE. */
dan6ac43392010-06-09 15:47:11 +00003453 zStartAff[nEq] = SQLITE_AFF_NONE;
drh039fc322009-11-17 18:31:47 +00003454 }
dan6ac43392010-06-09 15:47:11 +00003455 if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){
3456 zStartAff[nEq] = SQLITE_AFF_NONE;
drh039fc322009-11-17 18:31:47 +00003457 }
3458 }
drh111a6a72008-12-21 03:51:16 +00003459 nConstraint++;
3460 }else if( isMinQuery ){
3461 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
3462 nConstraint++;
3463 startEq = 0;
3464 start_constraints = 1;
3465 }
dan6ac43392010-06-09 15:47:11 +00003466 codeApplyAffinity(pParse, regBase, nConstraint, zStartAff);
drh111a6a72008-12-21 03:51:16 +00003467 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
3468 assert( op!=0 );
3469 testcase( op==OP_Rewind );
3470 testcase( op==OP_Last );
3471 testcase( op==OP_SeekGt );
3472 testcase( op==OP_SeekGe );
3473 testcase( op==OP_SeekLe );
3474 testcase( op==OP_SeekLt );
drh8cff69d2009-11-12 19:59:44 +00003475 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
drh111a6a72008-12-21 03:51:16 +00003476
3477 /* Load the value for the inequality constraint at the end of the
3478 ** range (if any).
3479 */
3480 nConstraint = nEq;
3481 if( pRangeEnd ){
dan69f8bb92009-08-13 19:21:16 +00003482 Expr *pRight = pRangeEnd->pExpr->pRight;
drhf49f3522009-12-30 14:12:38 +00003483 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
dan69f8bb92009-08-13 19:21:16 +00003484 sqlite3ExprCode(pParse, pRight, regBase+nEq);
drh2f2855b2009-11-18 01:25:26 +00003485 sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt);
dan6ac43392010-06-09 15:47:11 +00003486 if( zEndAff ){
3487 if( sqlite3CompareAffinity(pRight, zEndAff[nEq])==SQLITE_AFF_NONE){
drh039fc322009-11-17 18:31:47 +00003488 /* Since the comparison is to be performed with no conversions
3489 ** applied to the operands, set the affinity to apply to pRight to
3490 ** SQLITE_AFF_NONE. */
dan6ac43392010-06-09 15:47:11 +00003491 zEndAff[nEq] = SQLITE_AFF_NONE;
drh039fc322009-11-17 18:31:47 +00003492 }
dan6ac43392010-06-09 15:47:11 +00003493 if( sqlite3ExprNeedsNoAffinityChange(pRight, zEndAff[nEq]) ){
3494 zEndAff[nEq] = SQLITE_AFF_NONE;
drh039fc322009-11-17 18:31:47 +00003495 }
3496 }
dan6ac43392010-06-09 15:47:11 +00003497 codeApplyAffinity(pParse, regBase, nEq+1, zEndAff);
drh111a6a72008-12-21 03:51:16 +00003498 nConstraint++;
3499 }
dan6ac43392010-06-09 15:47:11 +00003500 sqlite3DbFree(pParse->db, zStartAff);
3501 sqlite3DbFree(pParse->db, zEndAff);
drh111a6a72008-12-21 03:51:16 +00003502
3503 /* Top of the loop body */
3504 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
3505
3506 /* Check if the index cursor is past the end of the range. */
3507 op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)];
3508 testcase( op==OP_Noop );
3509 testcase( op==OP_IdxGE );
3510 testcase( op==OP_IdxLT );
drh6df2acd2008-12-28 16:55:25 +00003511 if( op!=OP_Noop ){
drh8cff69d2009-11-12 19:59:44 +00003512 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
drh6df2acd2008-12-28 16:55:25 +00003513 sqlite3VdbeChangeP5(v, endEq!=bRev ?1:0);
3514 }
drh111a6a72008-12-21 03:51:16 +00003515
3516 /* If there are inequality constraints, check that the value
3517 ** of the table column that the inequality contrains is not NULL.
3518 ** If it is, jump to the next iteration of the loop.
3519 */
3520 r1 = sqlite3GetTempReg(pParse);
3521 testcase( pLevel->plan.wsFlags & WHERE_BTM_LIMIT );
3522 testcase( pLevel->plan.wsFlags & WHERE_TOP_LIMIT );
3523 if( pLevel->plan.wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT) ){
3524 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1);
3525 sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont);
3526 }
danielk19771d461462009-04-21 09:02:45 +00003527 sqlite3ReleaseTempReg(pParse, r1);
drh111a6a72008-12-21 03:51:16 +00003528
3529 /* Seek the table cursor, if required */
drh23d04d52008-12-23 23:56:22 +00003530 disableTerm(pLevel, pRangeStart);
3531 disableTerm(pLevel, pRangeEnd);
danielk19771d461462009-04-21 09:02:45 +00003532 if( !omitTable ){
3533 iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
3534 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
drhceea3322009-04-23 13:22:42 +00003535 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
danielk19771d461462009-04-21 09:02:45 +00003536 sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */
drh111a6a72008-12-21 03:51:16 +00003537 }
drh111a6a72008-12-21 03:51:16 +00003538
3539 /* Record the instruction used to terminate the loop. Disable
3540 ** WHERE clause terms made redundant by the index range scan.
3541 */
3542 pLevel->op = bRev ? OP_Prev : OP_Next;
3543 pLevel->p1 = iIdxCur;
drhdd5f5a62008-12-23 13:35:23 +00003544 }else
3545
drh23d04d52008-12-23 23:56:22 +00003546#ifndef SQLITE_OMIT_OR_OPTIMIZATION
drhdd5f5a62008-12-23 13:35:23 +00003547 if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){
drh111a6a72008-12-21 03:51:16 +00003548 /* Case 4: Two or more separately indexed terms connected by OR
3549 **
3550 ** Example:
3551 **
3552 ** CREATE TABLE t1(a,b,c,d);
3553 ** CREATE INDEX i1 ON t1(a);
3554 ** CREATE INDEX i2 ON t1(b);
3555 ** CREATE INDEX i3 ON t1(c);
3556 **
3557 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
3558 **
3559 ** In the example, there are three indexed terms connected by OR.
danielk19771d461462009-04-21 09:02:45 +00003560 ** The top of the loop looks like this:
drh111a6a72008-12-21 03:51:16 +00003561 **
drh1b26c7c2009-04-22 02:15:47 +00003562 ** Null 1 # Zero the rowset in reg 1
drh111a6a72008-12-21 03:51:16 +00003563 **
danielk19771d461462009-04-21 09:02:45 +00003564 ** Then, for each indexed term, the following. The arguments to
drh1b26c7c2009-04-22 02:15:47 +00003565 ** RowSetTest are such that the rowid of the current row is inserted
3566 ** into the RowSet. If it is already present, control skips the
danielk19771d461462009-04-21 09:02:45 +00003567 ** Gosub opcode and jumps straight to the code generated by WhereEnd().
drh111a6a72008-12-21 03:51:16 +00003568 **
danielk19771d461462009-04-21 09:02:45 +00003569 ** sqlite3WhereBegin(<term>)
drh1b26c7c2009-04-22 02:15:47 +00003570 ** RowSetTest # Insert rowid into rowset
danielk19771d461462009-04-21 09:02:45 +00003571 ** Gosub 2 A
3572 ** sqlite3WhereEnd()
3573 **
3574 ** Following the above, code to terminate the loop. Label A, the target
3575 ** of the Gosub above, jumps to the instruction right after the Goto.
3576 **
drh1b26c7c2009-04-22 02:15:47 +00003577 ** Null 1 # Zero the rowset in reg 1
danielk19771d461462009-04-21 09:02:45 +00003578 ** Goto B # The loop is finished.
3579 **
3580 ** A: <loop body> # Return data, whatever.
3581 **
3582 ** Return 2 # Jump back to the Gosub
3583 **
3584 ** B: <after the loop>
3585 **
drh111a6a72008-12-21 03:51:16 +00003586 */
drh111a6a72008-12-21 03:51:16 +00003587 WhereClause *pOrWc; /* The OR-clause broken out into subterms */
danielk19771d461462009-04-21 09:02:45 +00003588 WhereTerm *pFinal; /* Final subterm within the OR-clause. */
drhc01a3c12009-12-16 22:10:49 +00003589 SrcList *pOrTab; /* Shortened table list or OR-clause generation */
danielk19771d461462009-04-21 09:02:45 +00003590
3591 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */
shane85095702009-06-15 16:27:08 +00003592 int regRowset = 0; /* Register for RowSet object */
3593 int regRowid = 0; /* Register holding rowid */
danielk19771d461462009-04-21 09:02:45 +00003594 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */
3595 int iRetInit; /* Address of regReturn init */
drhc01a3c12009-12-16 22:10:49 +00003596 int untestedTerms = 0; /* Some terms not completely tested */
danielk19771d461462009-04-21 09:02:45 +00003597 int ii;
drh111a6a72008-12-21 03:51:16 +00003598
3599 pTerm = pLevel->plan.u.pTerm;
3600 assert( pTerm!=0 );
3601 assert( pTerm->eOperator==WO_OR );
3602 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
3603 pOrWc = &pTerm->u.pOrInfo->wc;
danielk19771d461462009-04-21 09:02:45 +00003604 pFinal = &pOrWc->a[pOrWc->nTerm-1];
drhc01a3c12009-12-16 22:10:49 +00003605 pLevel->op = OP_Return;
3606 pLevel->p1 = regReturn;
drh23d04d52008-12-23 23:56:22 +00003607
drhc01a3c12009-12-16 22:10:49 +00003608 /* Set up a new SrcList ni pOrTab containing the table being scanned
3609 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
3610 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
3611 */
3612 if( pWInfo->nLevel>1 ){
3613 int nNotReady; /* The number of notReady tables */
3614 struct SrcList_item *origSrc; /* Original list of tables */
3615 nNotReady = pWInfo->nLevel - iLevel - 1;
3616 pOrTab = sqlite3StackAllocRaw(pParse->db,
3617 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
3618 if( pOrTab==0 ) return notReady;
shaneh46aae3c2009-12-31 19:06:23 +00003619 pOrTab->nAlloc = (i16)(nNotReady + 1);
3620 pOrTab->nSrc = pOrTab->nAlloc;
drhc01a3c12009-12-16 22:10:49 +00003621 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
3622 origSrc = pWInfo->pTabList->a;
3623 for(k=1; k<=nNotReady; k++){
3624 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
3625 }
3626 }else{
3627 pOrTab = pWInfo->pTabList;
3628 }
danielk19771d461462009-04-21 09:02:45 +00003629
drh1b26c7c2009-04-22 02:15:47 +00003630 /* Initialize the rowset register to contain NULL. An SQL NULL is
3631 ** equivalent to an empty rowset.
danielk19771d461462009-04-21 09:02:45 +00003632 **
3633 ** Also initialize regReturn to contain the address of the instruction
3634 ** immediately following the OP_Return at the bottom of the loop. This
3635 ** is required in a few obscure LEFT JOIN cases where control jumps
3636 ** over the top of the loop into the body of it. In this case the
3637 ** correct response for the end-of-loop code (the OP_Return) is to
3638 ** fall through to the next instruction, just as an OP_Next does if
3639 ** called on an uninitialized cursor.
3640 */
drh336a5302009-04-24 15:46:21 +00003641 if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
3642 regRowset = ++pParse->nMem;
3643 regRowid = ++pParse->nMem;
3644 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
3645 }
danielk19771d461462009-04-21 09:02:45 +00003646 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
3647
danielk19771d461462009-04-21 09:02:45 +00003648 for(ii=0; ii<pOrWc->nTerm; ii++){
3649 WhereTerm *pOrTerm = &pOrWc->a[ii];
3650 if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){
3651 WhereInfo *pSubWInfo; /* Info for single OR-term scan */
danielk19771d461462009-04-21 09:02:45 +00003652 /* Loop through table entries that match term pOrTerm. */
drhc01a3c12009-12-16 22:10:49 +00003653 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrTerm->pExpr, 0,
3654 WHERE_OMIT_OPEN | WHERE_OMIT_CLOSE |
3655 WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY);
danielk19771d461462009-04-21 09:02:45 +00003656 if( pSubWInfo ){
drh336a5302009-04-24 15:46:21 +00003657 if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
3658 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
3659 int r;
3660 r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur,
drhb6da74e2009-12-24 16:00:28 +00003661 regRowid);
drh8cff69d2009-11-12 19:59:44 +00003662 sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset,
3663 sqlite3VdbeCurrentAddr(v)+2, r, iSet);
drh336a5302009-04-24 15:46:21 +00003664 }
danielk19771d461462009-04-21 09:02:45 +00003665 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
3666
drhc01a3c12009-12-16 22:10:49 +00003667 /* The pSubWInfo->untestedTerms flag means that this OR term
3668 ** contained one or more AND term from a notReady table. The
3669 ** terms from the notReady table could not be tested and will
3670 ** need to be tested later.
3671 */
3672 if( pSubWInfo->untestedTerms ) untestedTerms = 1;
3673
danielk19771d461462009-04-21 09:02:45 +00003674 /* Finish the loop through table entries that match term pOrTerm. */
3675 sqlite3WhereEnd(pSubWInfo);
3676 }
drhdd5f5a62008-12-23 13:35:23 +00003677 }
3678 }
danielk19771d461462009-04-21 09:02:45 +00003679 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
danielk19771d461462009-04-21 09:02:45 +00003680 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk);
3681 sqlite3VdbeResolveLabel(v, iLoopBody);
3682
drhc01a3c12009-12-16 22:10:49 +00003683 if( pWInfo->nLevel>1 ) sqlite3StackFree(pParse->db, pOrTab);
3684 if( !untestedTerms ) disableTerm(pLevel, pTerm);
drhdd5f5a62008-12-23 13:35:23 +00003685 }else
drh23d04d52008-12-23 23:56:22 +00003686#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
drhdd5f5a62008-12-23 13:35:23 +00003687
3688 {
drh111a6a72008-12-21 03:51:16 +00003689 /* Case 5: There is no usable index. We must do a complete
3690 ** scan of the entire table.
3691 */
drh699b3d42009-02-23 16:52:07 +00003692 static const u8 aStep[] = { OP_Next, OP_Prev };
3693 static const u8 aStart[] = { OP_Rewind, OP_Last };
3694 assert( bRev==0 || bRev==1 );
drh111a6a72008-12-21 03:51:16 +00003695 assert( omitTable==0 );
drh699b3d42009-02-23 16:52:07 +00003696 pLevel->op = aStep[bRev];
drh111a6a72008-12-21 03:51:16 +00003697 pLevel->p1 = iCur;
drh699b3d42009-02-23 16:52:07 +00003698 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
drh111a6a72008-12-21 03:51:16 +00003699 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
3700 }
3701 notReady &= ~getMask(pWC->pMaskSet, iCur);
3702
3703 /* Insert code to test every subexpression that can be completely
3704 ** computed using the current set of tables.
3705 */
3706 k = 0;
3707 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
3708 Expr *pE;
3709 testcase( pTerm->wtFlags & TERM_VIRTUAL );
3710 testcase( pTerm->wtFlags & TERM_CODED );
3711 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
drhc01a3c12009-12-16 22:10:49 +00003712 if( (pTerm->prereqAll & notReady)!=0 ){
3713 testcase( pWInfo->untestedTerms==0
3714 && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 );
3715 pWInfo->untestedTerms = 1;
3716 continue;
3717 }
drh111a6a72008-12-21 03:51:16 +00003718 pE = pTerm->pExpr;
3719 assert( pE!=0 );
3720 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
3721 continue;
3722 }
drh111a6a72008-12-21 03:51:16 +00003723 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
drh111a6a72008-12-21 03:51:16 +00003724 k = 1;
3725 pTerm->wtFlags |= TERM_CODED;
3726 }
3727
3728 /* For a LEFT OUTER JOIN, generate code that will record the fact that
3729 ** at least one row of the right table has matched the left table.
3730 */
3731 if( pLevel->iLeftJoin ){
3732 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
3733 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
3734 VdbeComment((v, "record LEFT JOIN hit"));
drhceea3322009-04-23 13:22:42 +00003735 sqlite3ExprCacheClear(pParse);
drh111a6a72008-12-21 03:51:16 +00003736 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
3737 testcase( pTerm->wtFlags & TERM_VIRTUAL );
3738 testcase( pTerm->wtFlags & TERM_CODED );
3739 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
drhc01a3c12009-12-16 22:10:49 +00003740 if( (pTerm->prereqAll & notReady)!=0 ){
drhb057e562009-12-16 23:43:55 +00003741 assert( pWInfo->untestedTerms );
drhc01a3c12009-12-16 22:10:49 +00003742 continue;
3743 }
drh111a6a72008-12-21 03:51:16 +00003744 assert( pTerm->pExpr );
3745 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
3746 pTerm->wtFlags |= TERM_CODED;
3747 }
3748 }
danielk19771d461462009-04-21 09:02:45 +00003749 sqlite3ReleaseTempReg(pParse, iReleaseReg);
drh23d04d52008-12-23 23:56:22 +00003750
drh111a6a72008-12-21 03:51:16 +00003751 return notReady;
3752}
3753
drh549c8b62005-09-19 13:15:23 +00003754#if defined(SQLITE_TEST)
drh84bfda42005-07-15 13:05:21 +00003755/*
3756** The following variable holds a text description of query plan generated
3757** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin
3758** overwrites the previous. This information is used for testing and
3759** analysis only.
3760*/
3761char sqlite3_query_plan[BMS*2*40]; /* Text of the join */
3762static int nQPlan = 0; /* Next free slow in _query_plan[] */
3763
3764#endif /* SQLITE_TEST */
3765
3766
drh9eff6162006-06-12 21:59:13 +00003767/*
3768** Free a WhereInfo structure
3769*/
drh10fe8402008-10-11 16:47:35 +00003770static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
drh52ff8ea2010-04-08 14:15:56 +00003771 if( ALWAYS(pWInfo) ){
drh9eff6162006-06-12 21:59:13 +00003772 int i;
3773 for(i=0; i<pWInfo->nLevel; i++){
drh4be8b512006-06-13 23:51:34 +00003774 sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
3775 if( pInfo ){
danielk19771d461462009-04-21 09:02:45 +00003776 /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */
danielk197780442942008-12-24 11:25:39 +00003777 if( pInfo->needToFreeIdxStr ){
3778 sqlite3_free(pInfo->idxStr);
danielk1977be229652009-03-20 14:18:51 +00003779 }
drh633e6d52008-07-28 19:34:53 +00003780 sqlite3DbFree(db, pInfo);
danielk1977be8a7832006-06-13 15:00:54 +00003781 }
drh8b307fb2010-04-06 15:57:05 +00003782 if( pWInfo->a[i].plan.wsFlags & WHERE_TEMP_INDEX ){
drha21a64d2010-04-06 22:33:55 +00003783 Index *pIdx = pWInfo->a[i].plan.u.pIdx;
3784 if( pIdx ){
3785 sqlite3DbFree(db, pIdx->zColAff);
3786 sqlite3DbFree(db, pIdx);
3787 }
drh8b307fb2010-04-06 15:57:05 +00003788 }
drh9eff6162006-06-12 21:59:13 +00003789 }
drh111a6a72008-12-21 03:51:16 +00003790 whereClauseClear(pWInfo->pWC);
drh633e6d52008-07-28 19:34:53 +00003791 sqlite3DbFree(db, pWInfo);
drh9eff6162006-06-12 21:59:13 +00003792 }
3793}
3794
drh94a11212004-09-25 13:12:14 +00003795
3796/*
drhe3184742002-06-19 14:27:05 +00003797** Generate the beginning of the loop used for WHERE clause processing.
drhacf3b982005-01-03 01:27:18 +00003798** The return value is a pointer to an opaque structure that contains
drh75897232000-05-29 14:26:00 +00003799** information needed to terminate the loop. Later, the calling routine
danielk19774adee202004-05-08 08:23:19 +00003800** should invoke sqlite3WhereEnd() with the return value of this function
drh75897232000-05-29 14:26:00 +00003801** in order to complete the WHERE clause processing.
3802**
3803** If an error occurs, this routine returns NULL.
drhc27a1ce2002-06-14 20:58:45 +00003804**
3805** The basic idea is to do a nested loop, one loop for each table in
3806** the FROM clause of a select. (INSERT and UPDATE statements are the
3807** same as a SELECT with only a single table in the FROM clause.) For
3808** example, if the SQL is this:
3809**
3810** SELECT * FROM t1, t2, t3 WHERE ...;
3811**
3812** Then the code generated is conceptually like the following:
3813**
3814** foreach row1 in t1 do \ Code generated
danielk19774adee202004-05-08 08:23:19 +00003815** foreach row2 in t2 do |-- by sqlite3WhereBegin()
drhc27a1ce2002-06-14 20:58:45 +00003816** foreach row3 in t3 do /
3817** ...
3818** end \ Code generated
danielk19774adee202004-05-08 08:23:19 +00003819** end |-- by sqlite3WhereEnd()
drhc27a1ce2002-06-14 20:58:45 +00003820** end /
3821**
drh29dda4a2005-07-21 18:23:20 +00003822** Note that the loops might not be nested in the order in which they
3823** appear in the FROM clause if a different order is better able to make
drh51147ba2005-07-23 22:59:55 +00003824** use of indices. Note also that when the IN operator appears in
3825** the WHERE clause, it might result in additional nested loops for
3826** scanning through all values on the right-hand side of the IN.
drh29dda4a2005-07-21 18:23:20 +00003827**
drhc27a1ce2002-06-14 20:58:45 +00003828** There are Btree cursors associated with each table. t1 uses cursor
drh6a3ea0e2003-05-02 14:32:12 +00003829** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
3830** And so forth. This routine generates code to open those VDBE cursors
danielk19774adee202004-05-08 08:23:19 +00003831** and sqlite3WhereEnd() generates the code to close them.
drhc27a1ce2002-06-14 20:58:45 +00003832**
drhe6f85e72004-12-25 01:03:13 +00003833** The code that sqlite3WhereBegin() generates leaves the cursors named
3834** in pTabList pointing at their appropriate entries. The [...] code
drhf0863fe2005-06-12 21:35:51 +00003835** can use OP_Column and OP_Rowid opcodes on these cursors to extract
drhe6f85e72004-12-25 01:03:13 +00003836** data from the various tables of the loop.
3837**
drhc27a1ce2002-06-14 20:58:45 +00003838** If the WHERE clause is empty, the foreach loops must each scan their
3839** entire tables. Thus a three-way join is an O(N^3) operation. But if
3840** the tables have indices and there are terms in the WHERE clause that
3841** refer to those indices, a complete table scan can be avoided and the
3842** code will run much faster. Most of the work of this routine is checking
3843** to see if there are indices that can be used to speed up the loop.
3844**
3845** Terms of the WHERE clause are also used to limit which rows actually
3846** make it to the "..." in the middle of the loop. After each "foreach",
3847** terms of the WHERE clause that use only terms in that loop and outer
3848** loops are evaluated and if false a jump is made around all subsequent
3849** inner loops (or around the "..." if the test occurs within the inner-
3850** most loop)
3851**
3852** OUTER JOINS
3853**
3854** An outer join of tables t1 and t2 is conceptally coded as follows:
3855**
3856** foreach row1 in t1 do
3857** flag = 0
3858** foreach row2 in t2 do
3859** start:
3860** ...
3861** flag = 1
3862** end
drhe3184742002-06-19 14:27:05 +00003863** if flag==0 then
3864** move the row2 cursor to a null row
3865** goto start
3866** fi
drhc27a1ce2002-06-14 20:58:45 +00003867** end
3868**
drhe3184742002-06-19 14:27:05 +00003869** ORDER BY CLAUSE PROCESSING
3870**
3871** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
3872** if there is one. If there is no ORDER BY clause or if this routine
3873** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
3874**
3875** If an index can be used so that the natural output order of the table
3876** scan is correct for the ORDER BY clause, then that index is used and
3877** *ppOrderBy is set to NULL. This is an optimization that prevents an
3878** unnecessary sort of the result set if an index appropriate for the
3879** ORDER BY clause already exists.
3880**
3881** If the where clause loops cannot be arranged to provide the correct
3882** output order, then the *ppOrderBy is unchanged.
drh75897232000-05-29 14:26:00 +00003883*/
danielk19774adee202004-05-08 08:23:19 +00003884WhereInfo *sqlite3WhereBegin(
danielk1977ed326d72004-11-16 15:50:19 +00003885 Parse *pParse, /* The parser context */
3886 SrcList *pTabList, /* A list of all tables to be scanned */
3887 Expr *pWhere, /* The WHERE clause */
danielk1977a9d1ccb2008-01-05 17:39:29 +00003888 ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */
drh336a5302009-04-24 15:46:21 +00003889 u16 wctrlFlags /* One of the WHERE_* flags defined in sqliteInt.h */
drh75897232000-05-29 14:26:00 +00003890){
3891 int i; /* Loop counter */
danielk1977be229652009-03-20 14:18:51 +00003892 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */
drhc01a3c12009-12-16 22:10:49 +00003893 int nTabList; /* Number of elements in pTabList */
drh75897232000-05-29 14:26:00 +00003894 WhereInfo *pWInfo; /* Will become the return value of this function */
3895 Vdbe *v = pParse->pVdbe; /* The virtual database engine */
drhfe05af82005-07-21 03:14:59 +00003896 Bitmask notReady; /* Cursors that are not yet positioned */
drh111a6a72008-12-21 03:51:16 +00003897 WhereMaskSet *pMaskSet; /* The expression mask set */
drh111a6a72008-12-21 03:51:16 +00003898 WhereClause *pWC; /* Decomposition of the WHERE clause */
drh9012bcb2004-12-19 00:11:35 +00003899 struct SrcList_item *pTabItem; /* A single entry from pTabList */
3900 WhereLevel *pLevel; /* A single level in the pWInfo list */
drh29dda4a2005-07-21 18:23:20 +00003901 int iFrom; /* First unused FROM clause element */
drh111a6a72008-12-21 03:51:16 +00003902 int andFlags; /* AND-ed combination of all pWC->a[].wtFlags */
drh17435752007-08-16 04:30:38 +00003903 sqlite3 *db; /* Database connection */
drh75897232000-05-29 14:26:00 +00003904
drh29dda4a2005-07-21 18:23:20 +00003905 /* The number of tables in the FROM clause is limited by the number of
drh1398ad32005-01-19 23:24:50 +00003906 ** bits in a Bitmask
3907 */
drh67ae0cb2010-04-08 14:38:51 +00003908 testcase( pTabList->nSrc==BMS );
drh29dda4a2005-07-21 18:23:20 +00003909 if( pTabList->nSrc>BMS ){
3910 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
drh1398ad32005-01-19 23:24:50 +00003911 return 0;
3912 }
3913
drhc01a3c12009-12-16 22:10:49 +00003914 /* This function normally generates a nested loop for all tables in
3915 ** pTabList. But if the WHERE_ONETABLE_ONLY flag is set, then we should
3916 ** only generate code for the first table in pTabList and assume that
3917 ** any cursors associated with subsequent tables are uninitialized.
3918 */
3919 nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc;
3920
drh75897232000-05-29 14:26:00 +00003921 /* Allocate and initialize the WhereInfo structure that will become the
danielk1977be229652009-03-20 14:18:51 +00003922 ** return value. A single allocation is used to store the WhereInfo
3923 ** struct, the contents of WhereInfo.a[], the WhereClause structure
3924 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
3925 ** field (type Bitmask) it must be aligned on an 8-byte boundary on
3926 ** some architectures. Hence the ROUND8() below.
drh75897232000-05-29 14:26:00 +00003927 */
drh17435752007-08-16 04:30:38 +00003928 db = pParse->db;
drhc01a3c12009-12-16 22:10:49 +00003929 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
danielk1977be229652009-03-20 14:18:51 +00003930 pWInfo = sqlite3DbMallocZero(db,
3931 nByteWInfo +
3932 sizeof(WhereClause) +
3933 sizeof(WhereMaskSet)
3934 );
drh17435752007-08-16 04:30:38 +00003935 if( db->mallocFailed ){
drh8b307fb2010-04-06 15:57:05 +00003936 sqlite3DbFree(db, pWInfo);
3937 pWInfo = 0;
danielk197785574e32008-10-06 05:32:18 +00003938 goto whereBeginError;
drh75897232000-05-29 14:26:00 +00003939 }
drhc01a3c12009-12-16 22:10:49 +00003940 pWInfo->nLevel = nTabList;
drh75897232000-05-29 14:26:00 +00003941 pWInfo->pParse = pParse;
3942 pWInfo->pTabList = pTabList;
danielk19774adee202004-05-08 08:23:19 +00003943 pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
danielk1977be229652009-03-20 14:18:51 +00003944 pWInfo->pWC = pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo];
drh6df2acd2008-12-28 16:55:25 +00003945 pWInfo->wctrlFlags = wctrlFlags;
drh8b307fb2010-04-06 15:57:05 +00003946 pWInfo->savedNQueryLoop = pParse->nQueryLoop;
drh111a6a72008-12-21 03:51:16 +00003947 pMaskSet = (WhereMaskSet*)&pWC[1];
drh08192d52002-04-30 19:20:28 +00003948
drh111a6a72008-12-21 03:51:16 +00003949 /* Split the WHERE clause into separate subexpressions where each
3950 ** subexpression is separated by an AND operator.
3951 */
3952 initMaskSet(pMaskSet);
3953 whereClauseInit(pWC, pParse, pMaskSet);
3954 sqlite3ExprCodeConstants(pParse, pWhere);
3955 whereSplit(pWC, pWhere, TK_AND);
3956
drh08192d52002-04-30 19:20:28 +00003957 /* Special case: a WHERE clause that is constant. Evaluate the
3958 ** expression and either jump over all of the code or fall thru.
3959 */
drhc01a3c12009-12-16 22:10:49 +00003960 if( pWhere && (nTabList==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
drh35573352008-01-08 23:54:25 +00003961 sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL);
drhdf199a22002-06-14 22:38:41 +00003962 pWhere = 0;
drh08192d52002-04-30 19:20:28 +00003963 }
drh75897232000-05-29 14:26:00 +00003964
drh42165be2008-03-26 14:56:34 +00003965 /* Assign a bit from the bitmask to every term in the FROM clause.
3966 **
3967 ** When assigning bitmask values to FROM clause cursors, it must be
3968 ** the case that if X is the bitmask for the N-th FROM clause term then
3969 ** the bitmask for all FROM clause terms to the left of the N-th term
3970 ** is (X-1). An expression from the ON clause of a LEFT JOIN can use
3971 ** its Expr.iRightJoinTable value to find the bitmask of the right table
3972 ** of the join. Subtracting one from the right table bitmask gives a
3973 ** bitmask for all tables to the left of the join. Knowing the bitmask
3974 ** for all tables to the left of a left join is important. Ticket #3015.
danielk1977e672c8e2009-05-22 15:43:26 +00003975 **
3976 ** Configure the WhereClause.vmask variable so that bits that correspond
3977 ** to virtual table cursors are set. This is used to selectively disable
3978 ** the OR-to-IN transformation in exprAnalyzeOrTerm(). It is not helpful
3979 ** with virtual tables.
drhc01a3c12009-12-16 22:10:49 +00003980 **
3981 ** Note that bitmasks are created for all pTabList->nSrc tables in
3982 ** pTabList, not just the first nTabList tables. nTabList is normally
3983 ** equal to pTabList->nSrc but might be shortened to 1 if the
3984 ** WHERE_ONETABLE_ONLY flag is set.
drh42165be2008-03-26 14:56:34 +00003985 */
danielk1977e672c8e2009-05-22 15:43:26 +00003986 assert( pWC->vmask==0 && pMaskSet->n==0 );
drh42165be2008-03-26 14:56:34 +00003987 for(i=0; i<pTabList->nSrc; i++){
drh111a6a72008-12-21 03:51:16 +00003988 createMask(pMaskSet, pTabList->a[i].iCursor);
shanee26fa4c2009-06-16 14:15:22 +00003989#ifndef SQLITE_OMIT_VIRTUALTABLE
drh2c1a0c52009-06-11 17:04:28 +00003990 if( ALWAYS(pTabList->a[i].pTab) && IsVirtual(pTabList->a[i].pTab) ){
danielk1977e672c8e2009-05-22 15:43:26 +00003991 pWC->vmask |= ((Bitmask)1 << i);
3992 }
shanee26fa4c2009-06-16 14:15:22 +00003993#endif
drh42165be2008-03-26 14:56:34 +00003994 }
3995#ifndef NDEBUG
3996 {
3997 Bitmask toTheLeft = 0;
3998 for(i=0; i<pTabList->nSrc; i++){
drh111a6a72008-12-21 03:51:16 +00003999 Bitmask m = getMask(pMaskSet, pTabList->a[i].iCursor);
drh42165be2008-03-26 14:56:34 +00004000 assert( (m-1)==toTheLeft );
4001 toTheLeft |= m;
4002 }
4003 }
4004#endif
4005
drh29dda4a2005-07-21 18:23:20 +00004006 /* Analyze all of the subexpressions. Note that exprAnalyze() might
4007 ** add new virtual terms onto the end of the WHERE clause. We do not
4008 ** want to analyze these virtual terms, so start analyzing at the end
drhb6fb62d2005-09-20 08:47:20 +00004009 ** and work forward so that the added virtual terms are never processed.
drh75897232000-05-29 14:26:00 +00004010 */
drh111a6a72008-12-21 03:51:16 +00004011 exprAnalyzeAll(pTabList, pWC);
drh17435752007-08-16 04:30:38 +00004012 if( db->mallocFailed ){
danielk197785574e32008-10-06 05:32:18 +00004013 goto whereBeginError;
drh0bbaa1b2005-08-19 19:14:12 +00004014 }
drh75897232000-05-29 14:26:00 +00004015
drh29dda4a2005-07-21 18:23:20 +00004016 /* Chose the best index to use for each table in the FROM clause.
4017 **
drh51147ba2005-07-23 22:59:55 +00004018 ** This loop fills in the following fields:
4019 **
4020 ** pWInfo->a[].pIdx The index to use for this level of the loop.
drh165be382008-12-05 02:36:33 +00004021 ** pWInfo->a[].wsFlags WHERE_xxx flags associated with pIdx
drh51147ba2005-07-23 22:59:55 +00004022 ** pWInfo->a[].nEq The number of == and IN constraints
danielk197785574e32008-10-06 05:32:18 +00004023 ** pWInfo->a[].iFrom Which term of the FROM clause is being coded
drh51147ba2005-07-23 22:59:55 +00004024 ** pWInfo->a[].iTabCur The VDBE cursor for the database table
4025 ** pWInfo->a[].iIdxCur The VDBE cursor for the index
drh111a6a72008-12-21 03:51:16 +00004026 ** pWInfo->a[].pTerm When wsFlags==WO_OR, the OR-clause term
drh51147ba2005-07-23 22:59:55 +00004027 **
4028 ** This loop also figures out the nesting order of tables in the FROM
4029 ** clause.
drh75897232000-05-29 14:26:00 +00004030 */
drhfe05af82005-07-21 03:14:59 +00004031 notReady = ~(Bitmask)0;
drh9012bcb2004-12-19 00:11:35 +00004032 pTabItem = pTabList->a;
4033 pLevel = pWInfo->a;
drh943af3c2005-07-29 19:43:58 +00004034 andFlags = ~0;
drh4f0c5872007-03-26 22:05:01 +00004035 WHERETRACE(("*** Optimizer Start ***\n"));
drhc01a3c12009-12-16 22:10:49 +00004036 for(i=iFrom=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){
drh111a6a72008-12-21 03:51:16 +00004037 WhereCost bestPlan; /* Most efficient plan seen so far */
drh29dda4a2005-07-21 18:23:20 +00004038 Index *pIdx; /* Index for FROM table at pTabItem */
drh29dda4a2005-07-21 18:23:20 +00004039 int j; /* For looping over FROM tables */
dan5236ac12009-08-13 07:09:33 +00004040 int bestJ = -1; /* The value of j */
drh29dda4a2005-07-21 18:23:20 +00004041 Bitmask m; /* Bitmask value for j or bestJ */
dan5236ac12009-08-13 07:09:33 +00004042 int isOptimal; /* Iterator for optimal/non-optimal search */
drh29dda4a2005-07-21 18:23:20 +00004043
drh111a6a72008-12-21 03:51:16 +00004044 memset(&bestPlan, 0, sizeof(bestPlan));
4045 bestPlan.rCost = SQLITE_BIG_DBL;
drhdf26fd52006-06-06 11:45:54 +00004046
dan5236ac12009-08-13 07:09:33 +00004047 /* Loop through the remaining entries in the FROM clause to find the
drhed754ce2010-04-15 01:04:54 +00004048 ** next nested loop. The loop tests all FROM clause entries
dan5236ac12009-08-13 07:09:33 +00004049 ** either once or twice.
4050 **
drhed754ce2010-04-15 01:04:54 +00004051 ** The first test is always performed if there are two or more entries
4052 ** remaining and never performed if there is only one FROM clause entry
4053 ** to choose from. The first test looks for an "optimal" scan. In
dan5236ac12009-08-13 07:09:33 +00004054 ** this context an optimal scan is one that uses the same strategy
4055 ** for the given FROM clause entry as would be selected if the entry
drhd0015162009-08-21 13:22:25 +00004056 ** were used as the innermost nested loop. In other words, a table
4057 ** is chosen such that the cost of running that table cannot be reduced
drhed754ce2010-04-15 01:04:54 +00004058 ** by waiting for other tables to run first. This "optimal" test works
4059 ** by first assuming that the FROM clause is on the inner loop and finding
4060 ** its query plan, then checking to see if that query plan uses any
4061 ** other FROM clause terms that are notReady. If no notReady terms are
4062 ** used then the "optimal" query plan works.
dan5236ac12009-08-13 07:09:33 +00004063 **
drhed754ce2010-04-15 01:04:54 +00004064 ** The second loop iteration is only performed if no optimal scan
4065 ** strategies were found by the first loop. This 2nd iteration is used to
4066 ** search for the lowest cost scan overall.
dan5236ac12009-08-13 07:09:33 +00004067 **
4068 ** Previous versions of SQLite performed only the second iteration -
4069 ** the next outermost loop was always that with the lowest overall
4070 ** cost. However, this meant that SQLite could select the wrong plan
4071 ** for scripts such as the following:
4072 **
4073 ** CREATE TABLE t1(a, b);
4074 ** CREATE TABLE t2(c, d);
4075 ** SELECT * FROM t2, t1 WHERE t2.rowid = t1.a;
4076 **
4077 ** The best strategy is to iterate through table t1 first. However it
4078 ** is not possible to determine this with a simple greedy algorithm.
4079 ** However, since the cost of a linear scan through table t2 is the same
4080 ** as the cost of a linear scan through table t1, a simple greedy
4081 ** algorithm may choose to use t2 for the outer loop, which is a much
4082 ** costlier approach.
4083 */
drhed754ce2010-04-15 01:04:54 +00004084 for(isOptimal=(iFrom<nTabList-1); isOptimal>=0; isOptimal--){
4085 Bitmask mask; /* Mask of tables not yet ready */
drhc01a3c12009-12-16 22:10:49 +00004086 for(j=iFrom, pTabItem=&pTabList->a[j]; j<nTabList; j++, pTabItem++){
dan5236ac12009-08-13 07:09:33 +00004087 int doNotReorder; /* True if this table should not be reordered */
4088 WhereCost sCost; /* Cost information from best[Virtual]Index() */
4089 ExprList *pOrderBy; /* ORDER BY clause for index to optimize */
4090
4091 doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
4092 if( j!=iFrom && doNotReorder ) break;
4093 m = getMask(pMaskSet, pTabItem->iCursor);
4094 if( (m & notReady)==0 ){
4095 if( j==iFrom ) iFrom++;
4096 continue;
4097 }
drhed754ce2010-04-15 01:04:54 +00004098 mask = (isOptimal ? m : notReady);
dan5236ac12009-08-13 07:09:33 +00004099 pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0);
4100
4101 assert( pTabItem->pTab );
drh9eff6162006-06-12 21:59:13 +00004102#ifndef SQLITE_OMIT_VIRTUALTABLE
dan5236ac12009-08-13 07:09:33 +00004103 if( IsVirtual(pTabItem->pTab) ){
4104 sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo;
4105 bestVirtualIndex(pParse, pWC, pTabItem, mask, pOrderBy, &sCost, pp);
4106 }else
drh9eff6162006-06-12 21:59:13 +00004107#endif
dan5236ac12009-08-13 07:09:33 +00004108 {
4109 bestBtreeIndex(pParse, pWC, pTabItem, mask, pOrderBy, &sCost);
4110 }
4111 assert( isOptimal || (sCost.used&notReady)==0 );
4112
4113 if( (sCost.used&notReady)==0
drhed754ce2010-04-15 01:04:54 +00004114 && (bestJ<0 || sCost.rCost<bestPlan.rCost
4115 || (sCost.rCost<=bestPlan.rCost && sCost.nRow<bestPlan.nRow))
dan5236ac12009-08-13 07:09:33 +00004116 ){
drhed754ce2010-04-15 01:04:54 +00004117 WHERETRACE(("... best so far with cost=%g and nRow=%g\n",
4118 sCost.rCost, sCost.nRow));
dan5236ac12009-08-13 07:09:33 +00004119 bestPlan = sCost;
4120 bestJ = j;
4121 }
4122 if( doNotReorder ) break;
drh9eff6162006-06-12 21:59:13 +00004123 }
drh29dda4a2005-07-21 18:23:20 +00004124 }
dan5236ac12009-08-13 07:09:33 +00004125 assert( bestJ>=0 );
danielk1977992347f2008-12-30 09:45:45 +00004126 assert( notReady & getMask(pMaskSet, pTabList->a[bestJ].iCursor) );
drhcb041342008-06-12 00:07:29 +00004127 WHERETRACE(("*** Optimizer selects table %d for loop %d\n", bestJ,
drh3dec2232005-09-10 15:28:09 +00004128 pLevel-pWInfo->a));
drh111a6a72008-12-21 03:51:16 +00004129 if( (bestPlan.plan.wsFlags & WHERE_ORDERBY)!=0 ){
drhfe05af82005-07-21 03:14:59 +00004130 *ppOrderBy = 0;
drhc4a3c772001-04-04 11:48:57 +00004131 }
drh111a6a72008-12-21 03:51:16 +00004132 andFlags &= bestPlan.plan.wsFlags;
4133 pLevel->plan = bestPlan.plan;
drh8b307fb2010-04-06 15:57:05 +00004134 testcase( bestPlan.plan.wsFlags & WHERE_INDEXED );
4135 testcase( bestPlan.plan.wsFlags & WHERE_TEMP_INDEX );
4136 if( bestPlan.plan.wsFlags & (WHERE_INDEXED|WHERE_TEMP_INDEX) ){
drh9012bcb2004-12-19 00:11:35 +00004137 pLevel->iIdxCur = pParse->nTab++;
drhfe05af82005-07-21 03:14:59 +00004138 }else{
4139 pLevel->iIdxCur = -1;
drh6b563442001-11-07 16:48:26 +00004140 }
drh111a6a72008-12-21 03:51:16 +00004141 notReady &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor);
shaned87897d2009-01-30 05:40:27 +00004142 pLevel->iFrom = (u8)bestJ;
drh8b307fb2010-04-06 15:57:05 +00004143 if( bestPlan.nRow>=(double)1 ) pParse->nQueryLoop *= bestPlan.nRow;
danielk197785574e32008-10-06 05:32:18 +00004144
4145 /* Check that if the table scanned by this loop iteration had an
4146 ** INDEXED BY clause attached to it, that the named index is being
4147 ** used for the scan. If not, then query compilation has failed.
4148 ** Return an error.
4149 */
4150 pIdx = pTabList->a[bestJ].pIndex;
drh171256c2009-01-08 03:11:19 +00004151 if( pIdx ){
4152 if( (bestPlan.plan.wsFlags & WHERE_INDEXED)==0 ){
4153 sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName);
4154 goto whereBeginError;
4155 }else{
4156 /* If an INDEXED BY clause is used, the bestIndex() function is
4157 ** guaranteed to find the index specified in the INDEXED BY clause
4158 ** if it find an index at all. */
4159 assert( bestPlan.plan.u.pIdx==pIdx );
4160 }
danielk197785574e32008-10-06 05:32:18 +00004161 }
drh75897232000-05-29 14:26:00 +00004162 }
drh4f0c5872007-03-26 22:05:01 +00004163 WHERETRACE(("*** Optimizer Finished ***\n"));
danielk19771d461462009-04-21 09:02:45 +00004164 if( pParse->nErr || db->mallocFailed ){
danielk197780442942008-12-24 11:25:39 +00004165 goto whereBeginError;
4166 }
drh75897232000-05-29 14:26:00 +00004167
drh943af3c2005-07-29 19:43:58 +00004168 /* If the total query only selects a single row, then the ORDER BY
4169 ** clause is irrelevant.
4170 */
4171 if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
4172 *ppOrderBy = 0;
4173 }
4174
drh08c88eb2008-04-10 13:33:18 +00004175 /* If the caller is an UPDATE or DELETE statement that is requesting
4176 ** to use a one-pass algorithm, determine if this is appropriate.
4177 ** The one-pass algorithm only works if the WHERE clause constraints
4178 ** the statement to update a single row.
4179 */
drh165be382008-12-05 02:36:33 +00004180 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
4181 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){
drh08c88eb2008-04-10 13:33:18 +00004182 pWInfo->okOnePass = 1;
drh111a6a72008-12-21 03:51:16 +00004183 pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY;
drh08c88eb2008-04-10 13:33:18 +00004184 }
4185
drh9012bcb2004-12-19 00:11:35 +00004186 /* Open all tables in the pTabList and any indices selected for
4187 ** searching those tables.
4188 */
4189 sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
drh8b307fb2010-04-06 15:57:05 +00004190 notReady = ~(Bitmask)0;
drhc01a3c12009-12-16 22:10:49 +00004191 for(i=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){
danielk1977da184232006-01-05 11:34:32 +00004192 Table *pTab; /* Table to open */
danielk1977da184232006-01-05 11:34:32 +00004193 int iDb; /* Index of database containing table/index */
drh9012bcb2004-12-19 00:11:35 +00004194
drhecc92422005-09-10 16:46:12 +00004195#ifndef SQLITE_OMIT_EXPLAIN
4196 if( pParse->explain==2 ){
4197 char *zMsg;
4198 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
danielk19771e536952007-08-16 10:09:01 +00004199 zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName);
drhecc92422005-09-10 16:46:12 +00004200 if( pItem->zAlias ){
drh633e6d52008-07-28 19:34:53 +00004201 zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias);
drhecc92422005-09-10 16:46:12 +00004202 }
drh8b307fb2010-04-06 15:57:05 +00004203 if( (pLevel->plan.wsFlags & WHERE_TEMP_INDEX)!=0 ){
4204 zMsg = sqlite3MAppendf(db, zMsg, "%s WITH AUTOMATIC INDEX", zMsg);
4205 }else if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
drh111a6a72008-12-21 03:51:16 +00004206 zMsg = sqlite3MAppendf(db, zMsg, "%s WITH INDEX %s",
4207 zMsg, pLevel->plan.u.pIdx->zName);
drh46129af2008-12-30 16:18:47 +00004208 }else if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){
4209 zMsg = sqlite3MAppendf(db, zMsg, "%s VIA MULTI-INDEX UNION", zMsg);
drh111a6a72008-12-21 03:51:16 +00004210 }else if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
drh633e6d52008-07-28 19:34:53 +00004211 zMsg = sqlite3MAppendf(db, zMsg, "%s USING PRIMARY KEY", zMsg);
drhecc92422005-09-10 16:46:12 +00004212 }
drh9eff6162006-06-12 21:59:13 +00004213#ifndef SQLITE_OMIT_VIRTUALTABLE
drh111a6a72008-12-21 03:51:16 +00004214 else if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
4215 sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
drh633e6d52008-07-28 19:34:53 +00004216 zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg,
drh111a6a72008-12-21 03:51:16 +00004217 pVtabIdx->idxNum, pVtabIdx->idxStr);
drh9eff6162006-06-12 21:59:13 +00004218 }
4219#endif
drh111a6a72008-12-21 03:51:16 +00004220 if( pLevel->plan.wsFlags & WHERE_ORDERBY ){
drh633e6d52008-07-28 19:34:53 +00004221 zMsg = sqlite3MAppendf(db, zMsg, "%s ORDER BY", zMsg);
drhe2b39092006-04-21 09:38:36 +00004222 }
drh66a51672008-01-03 00:01:23 +00004223 sqlite3VdbeAddOp4(v, OP_Explain, i, pLevel->iFrom, 0, zMsg, P4_DYNAMIC);
drhecc92422005-09-10 16:46:12 +00004224 }
4225#endif /* SQLITE_OMIT_EXPLAIN */
drh29dda4a2005-07-21 18:23:20 +00004226 pTabItem = &pTabList->a[pLevel->iFrom];
drh9012bcb2004-12-19 00:11:35 +00004227 pTab = pTabItem->pTab;
drh424aab82010-04-06 18:28:20 +00004228 pLevel->iTabCur = pTabItem->iCursor;
danielk1977595a5232009-07-24 17:58:53 +00004229 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
drh424aab82010-04-06 18:28:20 +00004230 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
drh75bb9f52010-04-06 18:51:42 +00004231 /* Do nothing */
4232 }else
drh9eff6162006-06-12 21:59:13 +00004233#ifndef SQLITE_OMIT_VIRTUALTABLE
drh111a6a72008-12-21 03:51:16 +00004234 if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
danielk1977595a5232009-07-24 17:58:53 +00004235 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
danielk197793626f42006-06-20 13:07:27 +00004236 int iCur = pTabItem->iCursor;
danielk1977595a5232009-07-24 17:58:53 +00004237 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
drh9eff6162006-06-12 21:59:13 +00004238 }else
4239#endif
drh6df2acd2008-12-28 16:55:25 +00004240 if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
4241 && (wctrlFlags & WHERE_OMIT_OPEN)==0 ){
drh08c88eb2008-04-10 13:33:18 +00004242 int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead;
4243 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
drh67ae0cb2010-04-08 14:38:51 +00004244 testcase( pTab->nCol==BMS-1 );
4245 testcase( pTab->nCol==BMS );
danielk197723432972008-11-17 16:42:00 +00004246 if( !pWInfo->okOnePass && pTab->nCol<BMS ){
danielk19779792eef2006-01-13 15:58:43 +00004247 Bitmask b = pTabItem->colUsed;
4248 int n = 0;
drh74161702006-02-24 02:53:49 +00004249 for(; b; b=b>>1, n++){}
drh8cff69d2009-11-12 19:59:44 +00004250 sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1,
4251 SQLITE_INT_TO_PTR(n), P4_INT32);
danielk19779792eef2006-01-13 15:58:43 +00004252 assert( n<=pTab->nCol );
4253 }
danielk1977c00da102006-01-07 13:21:04 +00004254 }else{
4255 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
drh9012bcb2004-12-19 00:11:35 +00004256 }
drhc6339082010-04-07 16:54:58 +00004257#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
drh8b307fb2010-04-06 15:57:05 +00004258 if( (pLevel->plan.wsFlags & WHERE_TEMP_INDEX)!=0 ){
drhc6339082010-04-07 16:54:58 +00004259 constructAutomaticIndex(pParse, pWC, pTabItem, notReady, pLevel);
4260 }else
4261#endif
4262 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
drh111a6a72008-12-21 03:51:16 +00004263 Index *pIx = pLevel->plan.u.pIdx;
danielk1977b3bf5562006-01-10 17:58:23 +00004264 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
drh111a6a72008-12-21 03:51:16 +00004265 int iIdxCur = pLevel->iIdxCur;
danielk1977da184232006-01-05 11:34:32 +00004266 assert( pIx->pSchema==pTab->pSchema );
drh111a6a72008-12-21 03:51:16 +00004267 assert( iIdxCur>=0 );
danielk1977207872a2008-01-03 07:54:23 +00004268 sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb,
drh66a51672008-01-03 00:01:23 +00004269 (char*)pKey, P4_KEYINFO_HANDOFF);
danielk1977207872a2008-01-03 07:54:23 +00004270 VdbeComment((v, "%s", pIx->zName));
drh9012bcb2004-12-19 00:11:35 +00004271 }
danielk1977da184232006-01-05 11:34:32 +00004272 sqlite3CodeVerifySchema(pParse, iDb);
drh8b307fb2010-04-06 15:57:05 +00004273 notReady &= ~getMask(pWC->pMaskSet, pTabItem->iCursor);
drh9012bcb2004-12-19 00:11:35 +00004274 }
4275 pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
drha21a64d2010-04-06 22:33:55 +00004276 if( db->mallocFailed ) goto whereBeginError;
drh9012bcb2004-12-19 00:11:35 +00004277
drh29dda4a2005-07-21 18:23:20 +00004278 /* Generate the code to do the search. Each iteration of the for
4279 ** loop below generates code for a single nested loop of the VM
4280 ** program.
drh75897232000-05-29 14:26:00 +00004281 */
drhfe05af82005-07-21 03:14:59 +00004282 notReady = ~(Bitmask)0;
drhc01a3c12009-12-16 22:10:49 +00004283 for(i=0; i<nTabList; i++){
drh111a6a72008-12-21 03:51:16 +00004284 notReady = codeOneLoopStart(pWInfo, i, wctrlFlags, notReady);
drh813f31e2009-01-06 00:08:02 +00004285 pWInfo->iContinue = pWInfo->a[i].addrCont;
drh75897232000-05-29 14:26:00 +00004286 }
drh7ec764a2005-07-21 03:48:20 +00004287
4288#ifdef SQLITE_TEST /* For testing and debugging use only */
4289 /* Record in the query plan information about the current table
4290 ** and the index used to access it (if any). If the table itself
4291 ** is not used, its name is just '{}'. If no index is used
4292 ** the index is listed as "{}". If the primary key is used the
4293 ** index name is '*'.
4294 */
drhc01a3c12009-12-16 22:10:49 +00004295 for(i=0; i<nTabList; i++){
drh7ec764a2005-07-21 03:48:20 +00004296 char *z;
4297 int n;
drh7ec764a2005-07-21 03:48:20 +00004298 pLevel = &pWInfo->a[i];
drh29dda4a2005-07-21 18:23:20 +00004299 pTabItem = &pTabList->a[pLevel->iFrom];
drh7ec764a2005-07-21 03:48:20 +00004300 z = pTabItem->zAlias;
4301 if( z==0 ) z = pTabItem->pTab->zName;
drhea678832008-12-10 19:26:22 +00004302 n = sqlite3Strlen30(z);
drh7ec764a2005-07-21 03:48:20 +00004303 if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
drh111a6a72008-12-21 03:51:16 +00004304 if( pLevel->plan.wsFlags & WHERE_IDX_ONLY ){
drh5bb3eb92007-05-04 13:15:55 +00004305 memcpy(&sqlite3_query_plan[nQPlan], "{}", 2);
drh7ec764a2005-07-21 03:48:20 +00004306 nQPlan += 2;
4307 }else{
drh5bb3eb92007-05-04 13:15:55 +00004308 memcpy(&sqlite3_query_plan[nQPlan], z, n);
drh7ec764a2005-07-21 03:48:20 +00004309 nQPlan += n;
4310 }
4311 sqlite3_query_plan[nQPlan++] = ' ';
4312 }
drh111a6a72008-12-21 03:51:16 +00004313 testcase( pLevel->plan.wsFlags & WHERE_ROWID_EQ );
4314 testcase( pLevel->plan.wsFlags & WHERE_ROWID_RANGE );
4315 if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
drh5bb3eb92007-05-04 13:15:55 +00004316 memcpy(&sqlite3_query_plan[nQPlan], "* ", 2);
drh7ec764a2005-07-21 03:48:20 +00004317 nQPlan += 2;
drh111a6a72008-12-21 03:51:16 +00004318 }else if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
4319 n = sqlite3Strlen30(pLevel->plan.u.pIdx->zName);
drh7ec764a2005-07-21 03:48:20 +00004320 if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
drh111a6a72008-12-21 03:51:16 +00004321 memcpy(&sqlite3_query_plan[nQPlan], pLevel->plan.u.pIdx->zName, n);
drh7ec764a2005-07-21 03:48:20 +00004322 nQPlan += n;
4323 sqlite3_query_plan[nQPlan++] = ' ';
4324 }
drh111a6a72008-12-21 03:51:16 +00004325 }else{
4326 memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3);
4327 nQPlan += 3;
drh7ec764a2005-07-21 03:48:20 +00004328 }
4329 }
4330 while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
4331 sqlite3_query_plan[--nQPlan] = 0;
4332 }
4333 sqlite3_query_plan[nQPlan] = 0;
4334 nQPlan = 0;
4335#endif /* SQLITE_TEST // Testing and debugging use only */
4336
drh29dda4a2005-07-21 18:23:20 +00004337 /* Record the continuation address in the WhereInfo structure. Then
4338 ** clean up and return.
4339 */
drh75897232000-05-29 14:26:00 +00004340 return pWInfo;
drhe23399f2005-07-22 00:31:39 +00004341
4342 /* Jump here if malloc fails */
danielk197785574e32008-10-06 05:32:18 +00004343whereBeginError:
drh8b307fb2010-04-06 15:57:05 +00004344 if( pWInfo ){
4345 pParse->nQueryLoop = pWInfo->savedNQueryLoop;
4346 whereInfoFree(db, pWInfo);
4347 }
drhe23399f2005-07-22 00:31:39 +00004348 return 0;
drh75897232000-05-29 14:26:00 +00004349}
4350
4351/*
drhc27a1ce2002-06-14 20:58:45 +00004352** Generate the end of the WHERE loop. See comments on
danielk19774adee202004-05-08 08:23:19 +00004353** sqlite3WhereBegin() for additional information.
drh75897232000-05-29 14:26:00 +00004354*/
danielk19774adee202004-05-08 08:23:19 +00004355void sqlite3WhereEnd(WhereInfo *pWInfo){
drh633e6d52008-07-28 19:34:53 +00004356 Parse *pParse = pWInfo->pParse;
4357 Vdbe *v = pParse->pVdbe;
drh19a775c2000-06-05 18:54:46 +00004358 int i;
drh6b563442001-11-07 16:48:26 +00004359 WhereLevel *pLevel;
drhad3cab52002-05-24 02:04:32 +00004360 SrcList *pTabList = pWInfo->pTabList;
drh633e6d52008-07-28 19:34:53 +00004361 sqlite3 *db = pParse->db;
drh19a775c2000-06-05 18:54:46 +00004362
drh9012bcb2004-12-19 00:11:35 +00004363 /* Generate loop termination code.
4364 */
drhceea3322009-04-23 13:22:42 +00004365 sqlite3ExprCacheClear(pParse);
drhc01a3c12009-12-16 22:10:49 +00004366 for(i=pWInfo->nLevel-1; i>=0; i--){
drh6b563442001-11-07 16:48:26 +00004367 pLevel = &pWInfo->a[i];
drhb3190c12008-12-08 21:37:14 +00004368 sqlite3VdbeResolveLabel(v, pLevel->addrCont);
drh6b563442001-11-07 16:48:26 +00004369 if( pLevel->op!=OP_Noop ){
drh66a51672008-01-03 00:01:23 +00004370 sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
drhd1d38482008-10-07 23:46:38 +00004371 sqlite3VdbeChangeP5(v, pLevel->p5);
drh19a775c2000-06-05 18:54:46 +00004372 }
drh111a6a72008-12-21 03:51:16 +00004373 if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
drh72e8fa42007-03-28 14:30:06 +00004374 struct InLoop *pIn;
drhe23399f2005-07-22 00:31:39 +00004375 int j;
drhb3190c12008-12-08 21:37:14 +00004376 sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
drh111a6a72008-12-21 03:51:16 +00004377 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
drhb3190c12008-12-08 21:37:14 +00004378 sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
4379 sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->addrInTop);
4380 sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
drhe23399f2005-07-22 00:31:39 +00004381 }
drh111a6a72008-12-21 03:51:16 +00004382 sqlite3DbFree(db, pLevel->u.in.aInLoop);
drhd99f7062002-06-08 23:25:08 +00004383 }
drhb3190c12008-12-08 21:37:14 +00004384 sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
drhad2d8302002-05-24 20:31:36 +00004385 if( pLevel->iLeftJoin ){
4386 int addr;
drh3c84ddf2008-01-09 02:15:38 +00004387 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin);
drh35451c62009-11-12 04:26:39 +00004388 assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
4389 || (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 );
4390 if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){
4391 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
4392 }
drh9012bcb2004-12-19 00:11:35 +00004393 if( pLevel->iIdxCur>=0 ){
drh3c84ddf2008-01-09 02:15:38 +00004394 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
drh7f09b3e2002-08-13 13:15:49 +00004395 }
drh336a5302009-04-24 15:46:21 +00004396 if( pLevel->op==OP_Return ){
4397 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
4398 }else{
4399 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst);
4400 }
drhd654be82005-09-20 17:42:23 +00004401 sqlite3VdbeJumpHere(v, addr);
drhad2d8302002-05-24 20:31:36 +00004402 }
drh19a775c2000-06-05 18:54:46 +00004403 }
drh9012bcb2004-12-19 00:11:35 +00004404
4405 /* The "break" point is here, just past the end of the outer loop.
4406 ** Set it.
4407 */
danielk19774adee202004-05-08 08:23:19 +00004408 sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
drh9012bcb2004-12-19 00:11:35 +00004409
drh29dda4a2005-07-21 18:23:20 +00004410 /* Close all of the cursors that were opened by sqlite3WhereBegin.
drh9012bcb2004-12-19 00:11:35 +00004411 */
drhc01a3c12009-12-16 22:10:49 +00004412 assert( pWInfo->nLevel==1 || pWInfo->nLevel==pTabList->nSrc );
4413 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
drh29dda4a2005-07-21 18:23:20 +00004414 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
drh9012bcb2004-12-19 00:11:35 +00004415 Table *pTab = pTabItem->pTab;
drh5cf590c2003-04-24 01:45:04 +00004416 assert( pTab!=0 );
drh4139c992010-04-07 14:59:45 +00004417 if( (pTab->tabFlags & TF_Ephemeral)==0
4418 && pTab->pSelect==0
4419 && (pWInfo->wctrlFlags & WHERE_OMIT_CLOSE)==0
4420 ){
drh8b307fb2010-04-06 15:57:05 +00004421 int ws = pLevel->plan.wsFlags;
4422 if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){
drh6df2acd2008-12-28 16:55:25 +00004423 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
4424 }
drhf12cde52010-04-08 17:28:00 +00004425 if( (ws & WHERE_INDEXED)!=0 && (ws & WHERE_TEMP_INDEX)==0 ){
drh6df2acd2008-12-28 16:55:25 +00004426 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
4427 }
drh9012bcb2004-12-19 00:11:35 +00004428 }
4429
danielk197721de2e72007-11-29 17:43:27 +00004430 /* If this scan uses an index, make code substitutions to read data
4431 ** from the index in preference to the table. Sometimes, this means
4432 ** the table need never be read from. This is a performance boost,
4433 ** as the vdbe level waits until the table is read before actually
4434 ** seeking the table cursor to the record corresponding to the current
4435 ** position in the index.
drh9012bcb2004-12-19 00:11:35 +00004436 **
4437 ** Calls to the code generator in between sqlite3WhereBegin and
4438 ** sqlite3WhereEnd will have created code that references the table
4439 ** directly. This loop scans all that code looking for opcodes
4440 ** that reference the table and converts them into opcodes that
4441 ** reference the index.
4442 */
drh125feff2009-06-06 15:17:27 +00004443 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 && !db->mallocFailed){
danielk1977f0113002006-01-24 12:09:17 +00004444 int k, j, last;
drh9012bcb2004-12-19 00:11:35 +00004445 VdbeOp *pOp;
drh111a6a72008-12-21 03:51:16 +00004446 Index *pIdx = pLevel->plan.u.pIdx;
drh9012bcb2004-12-19 00:11:35 +00004447
4448 assert( pIdx!=0 );
4449 pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
4450 last = sqlite3VdbeCurrentAddr(v);
danielk1977f0113002006-01-24 12:09:17 +00004451 for(k=pWInfo->iTop; k<last; k++, pOp++){
drh9012bcb2004-12-19 00:11:35 +00004452 if( pOp->p1!=pLevel->iTabCur ) continue;
4453 if( pOp->opcode==OP_Column ){
drh9012bcb2004-12-19 00:11:35 +00004454 for(j=0; j<pIdx->nColumn; j++){
4455 if( pOp->p2==pIdx->aiColumn[j] ){
4456 pOp->p2 = j;
danielk197721de2e72007-11-29 17:43:27 +00004457 pOp->p1 = pLevel->iIdxCur;
drh9012bcb2004-12-19 00:11:35 +00004458 break;
4459 }
4460 }
drh35451c62009-11-12 04:26:39 +00004461 assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
4462 || j<pIdx->nColumn );
drhf0863fe2005-06-12 21:35:51 +00004463 }else if( pOp->opcode==OP_Rowid ){
drh9012bcb2004-12-19 00:11:35 +00004464 pOp->p1 = pLevel->iIdxCur;
drhf0863fe2005-06-12 21:35:51 +00004465 pOp->opcode = OP_IdxRowid;
drh9012bcb2004-12-19 00:11:35 +00004466 }
4467 }
drh6b563442001-11-07 16:48:26 +00004468 }
drh19a775c2000-06-05 18:54:46 +00004469 }
drh9012bcb2004-12-19 00:11:35 +00004470
4471 /* Final cleanup
4472 */
drhf12cde52010-04-08 17:28:00 +00004473 pParse->nQueryLoop = pWInfo->savedNQueryLoop;
4474 whereInfoFree(db, pWInfo);
drh75897232000-05-29 14:26:00 +00004475 return;
4476}