drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 1 | /* |
| 2 | ** 2004 April 13 |
| 3 | ** |
| 4 | ** The author disclaims copyright to this source code. In place of |
| 5 | ** a legal notice, here is a blessing: |
| 6 | ** |
| 7 | ** May you do good and not evil. |
| 8 | ** May you find forgiveness for yourself and forgive others. |
| 9 | ** May you share freely, never taking more than you give. |
| 10 | ** |
| 11 | ************************************************************************* |
| 12 | ** This file contains routines used to translate between UTF-8, |
| 13 | ** UTF-16, UTF-16BE, and UTF-16LE. |
| 14 | ** |
danielk1977 | e7d00f5 | 2004-05-29 02:44:02 +0000 | [diff] [blame^] | 15 | ** $Id: utf.c,v 1.14 2004/05/29 02:44:02 danielk1977 Exp $ |
drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 16 | ** |
| 17 | ** Notes on UTF-8: |
| 18 | ** |
| 19 | ** Byte-0 Byte-1 Byte-2 Byte-3 Value |
| 20 | ** 0xxxxxxx 00000000 00000000 0xxxxxxx |
| 21 | ** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx |
| 22 | ** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx |
| 23 | ** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx |
| 24 | ** |
| 25 | ** |
| 26 | ** Notes on UTF-16: (with wwww+1==uuuuu) |
| 27 | ** |
drh | 51846b5 | 2004-05-28 16:00:21 +0000 | [diff] [blame] | 28 | ** Word-0 Word-1 Value |
| 29 | ** 110110ww wwzzzzyy 110111yy yyxxxxxx 000uuuuu zzzzyyyy yyxxxxxx |
| 30 | ** zzzzyyyy yyxxxxxx 00000000 zzzzyyyy yyxxxxxx |
drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 31 | ** |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 32 | ** |
drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 33 | ** BOM or Byte Order Mark: |
| 34 | ** 0xff 0xfe little-endian utf-16 follows |
| 35 | ** 0xfe 0xff big-endian utf-16 follows |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 36 | ** |
| 37 | ** |
| 38 | ** Handling of malformed strings: |
| 39 | ** |
| 40 | ** SQLite accepts and processes malformed strings without an error wherever |
| 41 | ** possible. However this is not possible when converting between UTF-8 and |
| 42 | ** UTF-16. |
| 43 | ** |
| 44 | ** When converting malformed UTF-8 strings to UTF-16, one instance of the |
| 45 | ** replacement character U+FFFD for each byte that cannot be interpeted as |
| 46 | ** part of a valid unicode character. |
| 47 | ** |
| 48 | ** When converting malformed UTF-16 strings to UTF-8, one instance of the |
| 49 | ** replacement character U+FFFD for each pair of bytes that cannot be |
| 50 | ** interpeted as part of a valid unicode character. |
drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 51 | */ |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 52 | #include <assert.h> |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 53 | #include "sqliteInt.h" |
| 54 | |
| 55 | typedef struct UtfString UtfString; |
| 56 | struct UtfString { |
| 57 | unsigned char *pZ; /* Raw string data */ |
| 58 | int n; /* Allocated length of pZ in bytes */ |
| 59 | int c; /* Number of pZ bytes already read or written */ |
| 60 | }; |
| 61 | |
| 62 | /* TODO: Implement this macro in os.h. It should be 1 on big-endian |
| 63 | ** machines, and 0 on little-endian. |
| 64 | */ |
| 65 | #define SQLITE3_NATIVE_BIGENDIAN 0 |
| 66 | |
| 67 | #if SQLITE3_NATIVE_BIGENDIAN == 1 |
| 68 | #define BOM_BIGENDIAN 0x0000FFFE |
| 69 | #define BOM_LITTLEENDIAN 0x0000FEFF |
| 70 | #else |
| 71 | #define BOM_BIGENDIAN 0x0000FEFF |
| 72 | #define BOM_LITTLEENDIAN 0x0000FFFE |
| 73 | #endif |
| 74 | |
| 75 | /* |
| 76 | ** These two macros are used to interpret the first two bytes of the |
| 77 | ** unsigned char array pZ as a 16-bit unsigned int. BE16() for a big-endian |
| 78 | ** interpretation, LE16() for little-endian. |
| 79 | */ |
| 80 | #define BE16(pZ) (((u16)((pZ)[0])<<8) + (u16)((pZ)[1])) |
| 81 | #define LE16(pZ) (((u16)((pZ)[1])<<8) + (u16)((pZ)[0])) |
| 82 | |
| 83 | /* |
| 84 | ** READ_16 interprets the first two bytes of the unsigned char array pZ |
| 85 | ** as a 16-bit unsigned int. If big_endian is non-zero the intepretation |
| 86 | ** is big-endian, otherwise little-endian. |
| 87 | */ |
| 88 | #define READ_16(pZ,big_endian) (big_endian?BE16(pZ):LE16(pZ)) |
| 89 | |
| 90 | /* |
| 91 | ** Read the BOM from the start of *pStr, if one is present. Return zero |
| 92 | ** for little-endian, non-zero for big-endian. If no BOM is present, return |
danielk1977 | b1bc953 | 2004-05-22 03:05:33 +0000 | [diff] [blame] | 93 | ** the value of the parameter "big_endian". |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 94 | ** |
| 95 | ** Return values: |
| 96 | ** 1 -> big-endian string |
| 97 | ** 0 -> little-endian string |
| 98 | */ |
danielk1977 | b1bc953 | 2004-05-22 03:05:33 +0000 | [diff] [blame] | 99 | static int readUtf16Bom(UtfString *pStr, int big_endian){ |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 100 | /* The BOM must be the first thing read from the string */ |
| 101 | assert( pStr->c==0 ); |
| 102 | |
| 103 | /* If the string data consists of 1 byte or less, the BOM will make no |
| 104 | ** difference anyway. In this case just fall through to the default case |
| 105 | ** and return the native byte-order for this machine. |
| 106 | ** |
| 107 | ** Otherwise, check the first 2 bytes of the string to see if a BOM is |
| 108 | ** present. |
| 109 | */ |
| 110 | if( pStr->n>1 ){ |
| 111 | u32 bom = BE16(pStr->pZ); |
| 112 | if( bom==BOM_BIGENDIAN ){ |
| 113 | pStr->c = 2; |
| 114 | return 1; |
| 115 | } |
| 116 | if( bom==BOM_LITTLEENDIAN ){ |
| 117 | pStr->c = 2; |
| 118 | return 0; |
| 119 | } |
| 120 | } |
| 121 | |
danielk1977 | b1bc953 | 2004-05-22 03:05:33 +0000 | [diff] [blame] | 122 | return big_endian; |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 123 | } |
| 124 | |
danielk1977 | 93d4675 | 2004-05-23 13:30:58 +0000 | [diff] [blame] | 125 | /* |
| 126 | ** zData is a UTF-16 encoded string, nData bytes in length. This routine |
| 127 | ** checks if there is a byte-order mark at the start of zData. If no |
| 128 | ** byte order mark is found 0 is returned. Otherwise TEXT_Utf16be or |
| 129 | ** TEXT_Utf16le is returned, depending on whether The BOM indicates that |
| 130 | ** the text is big-endian or little-endian. |
| 131 | */ |
| 132 | u8 sqlite3UtfReadBom(const void *zData, int nData){ |
| 133 | if( nData<0 || nData>1 ){ |
| 134 | u8 b1 = *(u8 *)zData; |
| 135 | u8 b2 = *(((u8 *)zData) + 1); |
| 136 | if( b1==0xFE && b2==0xFF ){ |
| 137 | return TEXT_Utf16be; |
| 138 | } |
| 139 | if( b1==0xFF && b2==0xFE ){ |
| 140 | return TEXT_Utf16le; |
| 141 | } |
| 142 | } |
| 143 | return 0; |
| 144 | } |
| 145 | |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 146 | |
| 147 | /* |
| 148 | ** Read a single unicode character from the UTF-8 encoded string *pStr. The |
| 149 | ** value returned is a unicode scalar value. In the case of malformed |
| 150 | ** strings, the unicode replacement character U+FFFD may be returned. |
| 151 | */ |
| 152 | static u32 readUtf8(UtfString *pStr){ |
| 153 | struct Utf8TblRow { |
| 154 | u8 b1_mask; |
| 155 | u8 b1_masked_val; |
| 156 | u8 b1_value_mask; |
| 157 | int trailing_bytes; |
| 158 | }; |
| 159 | static const struct Utf8TblRow utf8tbl[] = { |
| 160 | { 0x80, 0x00, 0x7F, 0 }, |
| 161 | { 0xE0, 0xC0, 0x1F, 1 }, |
| 162 | { 0xF0, 0xE0, 0x0F, 2 }, |
| 163 | { 0xF8, 0xF0, 0x0E, 3 }, |
| 164 | { 0, 0, 0, 0} |
| 165 | }; |
| 166 | |
| 167 | u8 b1; /* First byte of the potentially multi-byte utf-8 character */ |
| 168 | u32 ret = 0; /* Return value */ |
| 169 | int ii; |
| 170 | struct Utf8TblRow const *pRow; |
| 171 | |
| 172 | pRow = &(utf8tbl[0]); |
| 173 | |
| 174 | b1 = pStr->pZ[pStr->c]; |
| 175 | pStr->c++; |
| 176 | while( pRow->b1_mask && (b1&pRow->b1_mask)!=pRow->b1_masked_val ){ |
| 177 | pRow++; |
| 178 | } |
| 179 | if( !pRow->b1_mask ){ |
| 180 | return 0xFFFD; |
| 181 | } |
| 182 | |
| 183 | ret = (u32)(b1&pRow->b1_value_mask); |
| 184 | for( ii=0; ii<pRow->trailing_bytes; ii++ ){ |
| 185 | u8 b = pStr->pZ[pStr->c+ii]; |
| 186 | if( (b&0xC0)!=0x80 ){ |
| 187 | return 0xFFFD; |
| 188 | } |
| 189 | ret = (ret<<6) + (u32)(b&0x3F); |
| 190 | } |
| 191 | |
| 192 | pStr->c += pRow->trailing_bytes; |
| 193 | return ret; |
| 194 | } |
| 195 | |
| 196 | /* |
| 197 | ** Write the unicode character 'code' to the string pStr using UTF-8 |
| 198 | ** encoding. SQLITE_NOMEM may be returned if sqlite3Malloc() fails. |
| 199 | */ |
| 200 | static int writeUtf8(UtfString *pStr, u32 code){ |
| 201 | struct Utf8WriteTblRow { |
| 202 | u32 max_code; |
| 203 | int trailing_bytes; |
| 204 | u8 b1_and_mask; |
| 205 | u8 b1_or_mask; |
| 206 | }; |
| 207 | static const struct Utf8WriteTblRow utf8tbl[] = { |
| 208 | {0x0000007F, 0, 0x7F, 0x00}, |
| 209 | {0x000007FF, 1, 0xDF, 0xC0}, |
| 210 | {0x0000FFFF, 2, 0xEF, 0xE0}, |
| 211 | {0x0010FFFF, 3, 0xF7, 0xF0}, |
| 212 | {0x00000000, 0, 0x00, 0x00} |
| 213 | }; |
danielk1977 | 6622cce | 2004-05-20 11:00:52 +0000 | [diff] [blame] | 214 | const struct Utf8WriteTblRow *pRow = &utf8tbl[0]; |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 215 | |
danielk1977 | 295ba55 | 2004-05-19 10:34:51 +0000 | [diff] [blame] | 216 | while( code>pRow->max_code ){ |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 217 | assert( pRow->max_code ); |
| 218 | pRow++; |
| 219 | } |
| 220 | |
| 221 | /* Ensure there is enough room left in the output buffer to write |
| 222 | ** this UTF-8 character. |
| 223 | */ |
| 224 | assert( (pStr->n-pStr->c)>=(pRow->trailing_bytes+1) ); |
| 225 | |
| 226 | /* Write the UTF-8 encoded character to pStr. All cases below are |
| 227 | ** intentionally fall-through. |
| 228 | */ |
| 229 | switch( pRow->trailing_bytes ){ |
| 230 | case 3: |
| 231 | pStr->pZ[pStr->c+3] = (((u8)code)&0x3F)|0x80; |
| 232 | code = code>>6; |
| 233 | case 2: |
| 234 | pStr->pZ[pStr->c+2] = (((u8)code)&0x3F)|0x80; |
| 235 | code = code>>6; |
| 236 | case 1: |
| 237 | pStr->pZ[pStr->c+1] = (((u8)code)&0x3F)|0x80; |
| 238 | code = code>>6; |
| 239 | case 0: |
| 240 | pStr->pZ[pStr->c] = (((u8)code)&(pRow->b1_and_mask))|(pRow->b1_or_mask); |
| 241 | } |
| 242 | pStr->c += (pRow->trailing_bytes + 1); |
| 243 | |
| 244 | return 0; |
| 245 | } |
| 246 | |
| 247 | /* |
| 248 | ** Read a single unicode character from the UTF-16 encoded string *pStr. The |
| 249 | ** value returned is a unicode scalar value. In the case of malformed |
| 250 | ** strings, the unicode replacement character U+FFFD may be returned. |
| 251 | ** |
| 252 | ** If big_endian is true, the string is assumed to be UTF-16BE encoded. |
| 253 | ** Otherwise, it is UTF-16LE encoded. |
| 254 | */ |
| 255 | static u32 readUtf16(UtfString *pStr, int big_endian){ |
| 256 | u32 code_point; /* the first code-point in the character */ |
| 257 | |
| 258 | /* If there is only one byte of data left in the string, return the |
| 259 | ** replacement character. |
| 260 | */ |
| 261 | if( (pStr->n-pStr->c)==1 ){ |
| 262 | pStr->c++; |
| 263 | return (int)0xFFFD; |
| 264 | } |
| 265 | |
| 266 | code_point = READ_16(&(pStr->pZ[pStr->c]), big_endian); |
| 267 | pStr->c += 2; |
| 268 | |
| 269 | /* If this is a non-surrogate code-point, just cast it to an int and |
| 270 | ** return the code-point value. |
| 271 | */ |
| 272 | if( code_point<0xD800 || code_point>0xE000 ){ |
| 273 | return code_point; |
| 274 | } |
| 275 | |
| 276 | /* If this is a trailing surrogate code-point, then the string is |
| 277 | ** malformed; return the replacement character. |
| 278 | */ |
| 279 | if( code_point>0xDBFF ){ |
| 280 | return 0xFFFD; |
| 281 | } |
| 282 | |
| 283 | /* The code-point just read is a leading surrogate code-point. If their |
| 284 | ** is not enough data left or the next code-point is not a trailing |
| 285 | ** surrogate, return the replacement character. |
| 286 | */ |
| 287 | if( (pStr->n-pStr->c)>1 ){ |
| 288 | u32 code_point2 = READ_16(&pStr->pZ[pStr->c], big_endian); |
| 289 | if( code_point2<0xDC00 || code_point>0xDFFF ){ |
| 290 | return 0xFFFD; |
| 291 | } |
| 292 | pStr->c += 2; |
| 293 | |
| 294 | return ( |
| 295 | (((code_point&0x03C0)+0x0040)<<16) + /* uuuuu */ |
| 296 | ((code_point&0x003F)<<10) + /* xxxxxx */ |
| 297 | (code_point2&0x03FF) /* yy yyyyyyyy */ |
| 298 | ); |
| 299 | |
| 300 | }else{ |
| 301 | return (int)0xFFFD; |
| 302 | } |
| 303 | |
| 304 | /* not reached */ |
| 305 | } |
| 306 | |
| 307 | static int writeUtf16(UtfString *pStr, int code, int big_endian){ |
| 308 | int bytes; |
| 309 | unsigned char *hi_byte; |
| 310 | unsigned char *lo_byte; |
| 311 | |
| 312 | bytes = (code>0x0000FFFF?4:2); |
| 313 | |
| 314 | /* Ensure there is enough room left in the output buffer to write |
| 315 | ** this UTF-8 character. |
| 316 | */ |
| 317 | assert( (pStr->n-pStr->c)>=bytes ); |
| 318 | |
| 319 | /* Initialise hi_byte and lo_byte to point at the locations into which |
| 320 | ** the MSB and LSB of the (first) 16-bit unicode code-point written for |
| 321 | ** this character. |
| 322 | */ |
| 323 | hi_byte = (big_endian?&pStr->pZ[pStr->c]:&pStr->pZ[pStr->c+1]); |
| 324 | lo_byte = (big_endian?&pStr->pZ[pStr->c+1]:&pStr->pZ[pStr->c]); |
| 325 | |
| 326 | if( bytes==2 ){ |
| 327 | *hi_byte = (u8)((code&0x0000FF00)>>8); |
| 328 | *lo_byte = (u8)(code&0x000000FF); |
| 329 | }else{ |
| 330 | u32 wrd; |
| 331 | wrd = ((((code&0x001F0000)-0x00010000)+(code&0x0000FC00))>>10)|0x0000D800; |
| 332 | *hi_byte = (u8)((wrd&0x0000FF00)>>8); |
| 333 | *lo_byte = (u8)(wrd&0x000000FF); |
| 334 | |
| 335 | wrd = (code&0x000003FF)|0x0000DC00; |
| 336 | *(hi_byte+2) = (u8)((wrd&0x0000FF00)>>8); |
| 337 | *(lo_byte+2) = (u8)(wrd&0x000000FF); |
| 338 | } |
| 339 | |
| 340 | pStr->c += bytes; |
| 341 | |
| 342 | return 0; |
| 343 | } |
| 344 | |
| 345 | /* |
danielk1977 | 6622cce | 2004-05-20 11:00:52 +0000 | [diff] [blame] | 346 | ** pZ is a UTF-8 encoded unicode string. If nByte is less than zero, |
| 347 | ** return the number of unicode characters in pZ up to (but not including) |
| 348 | ** the first 0x00 byte. If nByte is not less than zero, return the |
| 349 | ** number of unicode characters in the first nByte of pZ (or up to |
| 350 | ** the first 0x00, whichever comes first). |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 351 | */ |
danielk1977 | 6622cce | 2004-05-20 11:00:52 +0000 | [diff] [blame] | 352 | int sqlite3utf8CharLen(const char *pZ, int nByte){ |
| 353 | UtfString str; |
| 354 | int ret = 0; |
| 355 | u32 code = 1; |
| 356 | |
| 357 | str.pZ = (char *)pZ; |
| 358 | str.n = nByte; |
| 359 | str.c = 0; |
| 360 | |
| 361 | while( (nByte<0 || str.c<str.n) && code!=0 ){ |
| 362 | code = readUtf8(&str); |
| 363 | ret++; |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 364 | } |
danielk1977 | 6622cce | 2004-05-20 11:00:52 +0000 | [diff] [blame] | 365 | if( code==0 ) ret--; |
| 366 | |
| 367 | return ret; |
| 368 | } |
| 369 | |
| 370 | /* |
| 371 | ** pZ is a UTF-16 encoded unicode string. If nChar is less than zero, |
| 372 | ** return the number of bytes up to (but not including), the first pair |
| 373 | ** of consecutive 0x00 bytes in pZ. If nChar is not less than zero, |
| 374 | ** then return the number of bytes in the first nChar unicode characters |
| 375 | ** in pZ (or up until the first pair of 0x00 bytes, whichever comes first). |
| 376 | */ |
| 377 | int sqlite3utf16ByteLen(const void *pZ, int nChar){ |
| 378 | if( nChar<0 ){ |
danielk1977 | e7d00f5 | 2004-05-29 02:44:02 +0000 | [diff] [blame^] | 379 | const unsigned char *pC1 = (unsigned char *)pZ; |
| 380 | const unsigned char *pC2 = (unsigned char *)pZ+1; |
danielk1977 | 6622cce | 2004-05-20 11:00:52 +0000 | [diff] [blame] | 381 | while( *pC1 || *pC2 ){ |
| 382 | pC1 += 2; |
| 383 | pC2 += 2; |
| 384 | } |
| 385 | return pC1-(unsigned char *)pZ; |
| 386 | }else{ |
| 387 | UtfString str; |
| 388 | u32 code = 1; |
| 389 | int big_endian; |
| 390 | int nRead = 0; |
| 391 | int ret; |
| 392 | |
| 393 | str.pZ = (char *)pZ; |
| 394 | str.c = 0; |
| 395 | str.n = -1; |
| 396 | |
danielk1977 | b1bc953 | 2004-05-22 03:05:33 +0000 | [diff] [blame] | 397 | /* Check for a BOM. We just ignore it if there is one, it's only read |
| 398 | ** so that it is not counted as a character. |
| 399 | */ |
| 400 | big_endian = readUtf16Bom(&str, 0); |
danielk1977 | 6622cce | 2004-05-20 11:00:52 +0000 | [diff] [blame] | 401 | ret = 0-str.c; |
| 402 | |
| 403 | while( code!=0 && nRead<nChar ){ |
| 404 | code = readUtf16(&str, big_endian); |
| 405 | nRead++; |
| 406 | } |
| 407 | if( code==0 ){ |
| 408 | ret -= 2; |
| 409 | } |
| 410 | return str.c + ret; |
| 411 | } |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 412 | } |
| 413 | |
drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 414 | /* |
| 415 | ** Convert a string in UTF-16 native byte (or with a Byte-order-mark or |
| 416 | ** "BOM") into a UTF-8 string. The UTF-8 string is written into space |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 417 | ** obtained from sqlite3Malloc() and must be released by the calling function. |
drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 418 | ** |
| 419 | ** The parameter N is the number of bytes in the UTF-16 string. If N is |
| 420 | ** negative, the entire string up to the first \u0000 character is translated. |
| 421 | ** |
| 422 | ** The returned UTF-8 string is always \000 terminated. |
| 423 | */ |
danielk1977 | b1bc953 | 2004-05-22 03:05:33 +0000 | [diff] [blame] | 424 | unsigned char *sqlite3utf16to8(const void *pData, int N, int big_endian){ |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 425 | UtfString in; |
| 426 | UtfString out; |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 427 | |
| 428 | out.pZ = 0; |
| 429 | |
| 430 | in.pZ = (unsigned char *)pData; |
| 431 | in.n = N; |
| 432 | in.c = 0; |
| 433 | |
| 434 | if( in.n<0 ){ |
danielk1977 | 6622cce | 2004-05-20 11:00:52 +0000 | [diff] [blame] | 435 | in.n = sqlite3utf16ByteLen(in.pZ, -1); |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 436 | } |
| 437 | |
| 438 | /* A UTF-8 encoding of a unicode string can require at most 1.5 times as |
| 439 | ** much space to store as the same string encoded using UTF-16. Allocate |
| 440 | ** this now. |
| 441 | */ |
| 442 | out.n = (in.n*1.5) + 1; |
danielk1977 | 295ba55 | 2004-05-19 10:34:51 +0000 | [diff] [blame] | 443 | out.pZ = sqliteMalloc(out.n); |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 444 | if( !out.pZ ){ |
| 445 | return 0; |
| 446 | } |
| 447 | out.c = 0; |
| 448 | |
danielk1977 | b1bc953 | 2004-05-22 03:05:33 +0000 | [diff] [blame] | 449 | big_endian = readUtf16Bom(&in, big_endian); |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 450 | while( in.c<in.n ){ |
| 451 | writeUtf8(&out, readUtf16(&in, big_endian)); |
| 452 | } |
| 453 | |
| 454 | /* Add the NULL-terminator character */ |
| 455 | assert( out.c<out.n ); |
| 456 | out.pZ[out.c] = 0x00; |
| 457 | |
| 458 | return out.pZ; |
| 459 | } |
| 460 | |
| 461 | static void *utf8toUtf16(const unsigned char *pIn, int N, int big_endian){ |
| 462 | UtfString in; |
| 463 | UtfString out; |
| 464 | |
| 465 | in.pZ = (unsigned char *)pIn; |
| 466 | in.n = N; |
| 467 | in.c = 0; |
| 468 | |
| 469 | if( in.n<0 ){ |
| 470 | in.n = strlen(in.pZ); |
| 471 | } |
| 472 | |
| 473 | /* A UTF-16 encoding of a unicode string can require at most twice as |
| 474 | ** much space to store as the same string encoded using UTF-8. Allocate |
| 475 | ** this now. |
| 476 | */ |
| 477 | out.n = (in.n*2) + 2; |
danielk1977 | 295ba55 | 2004-05-19 10:34:51 +0000 | [diff] [blame] | 478 | out.pZ = sqliteMalloc(out.n); |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 479 | if( !out.pZ ){ |
| 480 | return 0; |
| 481 | } |
| 482 | out.c = 0; |
| 483 | |
| 484 | while( in.c<in.n ){ |
| 485 | writeUtf16(&out, readUtf8(&in), big_endian); |
| 486 | } |
| 487 | |
| 488 | /* Add the NULL-terminator character */ |
| 489 | assert( (out.c+1)<out.n ); |
| 490 | out.pZ[out.c] = 0x00; |
| 491 | out.pZ[out.c+1] = 0x00; |
| 492 | |
| 493 | return out.pZ; |
| 494 | } |
| 495 | |
| 496 | /* |
| 497 | ** Translate UTF-8 to UTF-16BE or UTF-16LE |
| 498 | */ |
| 499 | void *sqlite3utf8to16be(const unsigned char *pIn, int N){ |
| 500 | return utf8toUtf16(pIn, N, 1); |
| 501 | } |
| 502 | |
| 503 | void *sqlite3utf8to16le(const unsigned char *pIn, int N){ |
| 504 | return utf8toUtf16(pIn, N, 0); |
| 505 | } |
| 506 | |
| 507 | /* |
| 508 | ** This routine does the work for sqlite3utf16to16le() and |
| 509 | ** sqlite3utf16to16be(). If big_endian is 1 the input string is |
| 510 | ** transformed in place to UTF-16BE encoding. If big_endian is 0 then |
| 511 | ** the input is transformed to UTF-16LE. |
| 512 | ** |
| 513 | ** Unless the first two bytes of the input string is a BOM, the input is |
| 514 | ** assumed to be UTF-16 encoded using the machines native byte ordering. |
| 515 | */ |
| 516 | static void utf16to16(void *pData, int N, int big_endian){ |
| 517 | UtfString inout; |
| 518 | inout.pZ = (unsigned char *)pData; |
| 519 | inout.c = 0; |
| 520 | inout.n = N; |
| 521 | |
| 522 | if( inout.n<0 ){ |
danielk1977 | 6622cce | 2004-05-20 11:00:52 +0000 | [diff] [blame] | 523 | inout.n = sqlite3utf16ByteLen(inout.pZ, -1); |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 524 | } |
| 525 | |
danielk1977 | b1bc953 | 2004-05-22 03:05:33 +0000 | [diff] [blame] | 526 | if( readUtf16Bom(&inout, SQLITE3_BIGENDIAN)!=big_endian ){ |
danielk1977 | 295ba55 | 2004-05-19 10:34:51 +0000 | [diff] [blame] | 527 | /* swab(&inout.pZ[inout.c], inout.pZ, inout.n-inout.c); */ |
| 528 | int i; |
| 529 | for(i=0; i<(inout.n-inout.c); i += 2){ |
| 530 | char c1 = inout.pZ[i+inout.c]; |
| 531 | char c2 = inout.pZ[i+inout.c+1]; |
| 532 | inout.pZ[i] = c2; |
| 533 | inout.pZ[i+1] = c1; |
| 534 | } |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 535 | }else if( inout.c ){ |
| 536 | memmove(inout.pZ, &inout.pZ[inout.c], inout.n-inout.c); |
| 537 | } |
danielk1977 | 295ba55 | 2004-05-19 10:34:51 +0000 | [diff] [blame] | 538 | |
| 539 | inout.pZ[inout.n-inout.c] = 0x00; |
| 540 | inout.pZ[inout.n-inout.c+1] = 0x00; |
drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 541 | } |
| 542 | |
| 543 | /* |
| 544 | ** Convert a string in UTF-16 native byte or with a BOM into a UTF-16LE |
| 545 | ** string. The conversion occurs in-place. The output overwrites the |
| 546 | ** input. N bytes are converted. If N is negative everything is converted |
| 547 | ** up to the first \u0000 character. |
| 548 | ** |
| 549 | ** If the native byte order is little-endian and there is no BOM, then |
| 550 | ** this routine is a no-op. If there is a BOM at the start of the string, |
| 551 | ** it is removed. |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 552 | ** |
drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 553 | ** Translation from UTF-16LE to UTF-16BE and back again is accomplished |
| 554 | ** using the library function swab(). |
| 555 | */ |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 556 | void sqlite3utf16to16le(void *pData, int N){ |
| 557 | utf16to16(pData, N, 0); |
| 558 | } |
drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 559 | |
| 560 | /* |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 561 | ** Convert a string in UTF-16 native byte or with a BOM into a UTF-16BE |
| 562 | ** string. The conversion occurs in-place. The output overwrites the |
| 563 | ** input. N bytes are converted. If N is negative everything is converted |
| 564 | ** up to the first \u0000 character. |
| 565 | ** |
| 566 | ** If the native byte order is little-endian and there is no BOM, then |
| 567 | ** this routine is a no-op. If there is a BOM at the start of the string, |
| 568 | ** it is removed. |
| 569 | ** |
| 570 | ** Translation from UTF-16LE to UTF-16BE and back again is accomplished |
| 571 | ** using the library function swab(). |
drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 572 | */ |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 573 | void sqlite3utf16to16be(void *pData, int N){ |
| 574 | utf16to16(pData, N, 1); |
drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 575 | } |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame] | 576 | |
danielk1977 | b1bc953 | 2004-05-22 03:05:33 +0000 | [diff] [blame] | 577 | /* |
| 578 | ** This function is used to translate between UTF-8 and UTF-16. The |
| 579 | ** result is returned in dynamically allocated memory. |
| 580 | */ |
| 581 | int sqlite3utfTranslate( |
drh | eb2e176 | 2004-05-27 01:53:56 +0000 | [diff] [blame] | 582 | const void *zData, int nData, /* Input string */ |
| 583 | u8 enc1, /* Encoding of zData */ |
| 584 | void **zOut, int *nOut, /* Output string */ |
| 585 | u8 enc2 /* Desired encoding of output */ |
danielk1977 | b1bc953 | 2004-05-22 03:05:33 +0000 | [diff] [blame] | 586 | ){ |
| 587 | assert( enc1==TEXT_Utf8 || enc1==TEXT_Utf16le || enc1==TEXT_Utf16be ); |
| 588 | assert( enc2==TEXT_Utf8 || enc2==TEXT_Utf16le || enc2==TEXT_Utf16be ); |
| 589 | assert( |
| 590 | (enc1==TEXT_Utf8 && (enc2==TEXT_Utf16le || enc2==TEXT_Utf16be)) || |
| 591 | (enc2==TEXT_Utf8 && (enc1==TEXT_Utf16le || enc1==TEXT_Utf16be)) |
| 592 | ); |
danielk1977 | 4adee20 | 2004-05-08 08:23:19 +0000 | [diff] [blame] | 593 | |
danielk1977 | b1bc953 | 2004-05-22 03:05:33 +0000 | [diff] [blame] | 594 | if( enc1==TEXT_Utf8 ){ |
| 595 | if( enc2==TEXT_Utf16le ){ |
| 596 | *zOut = sqlite3utf8to16le(zData, nData); |
| 597 | }else{ |
| 598 | *zOut = sqlite3utf8to16be(zData, nData); |
| 599 | } |
| 600 | if( !(*zOut) ) return SQLITE_NOMEM; |
danielk1977 | c572ef7 | 2004-05-27 09:28:41 +0000 | [diff] [blame] | 601 | *nOut = sqlite3utf16ByteLen(*zOut, -1); |
danielk1977 | b1bc953 | 2004-05-22 03:05:33 +0000 | [diff] [blame] | 602 | }else{ |
| 603 | *zOut = sqlite3utf16to8(zData, nData, enc1==TEXT_Utf16be); |
| 604 | if( !(*zOut) ) return SQLITE_NOMEM; |
danielk1977 | c572ef7 | 2004-05-27 09:28:41 +0000 | [diff] [blame] | 605 | *nOut = strlen(*zOut); |
danielk1977 | b1bc953 | 2004-05-22 03:05:33 +0000 | [diff] [blame] | 606 | } |
| 607 | return SQLITE_OK; |
| 608 | } |