blob: 44c0195caf3a5947242bdbf517699504b104c2df [file] [log] [blame]
drhc81c11f2009-11-10 01:30:52 +00001/*
2** 2001 September 15
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12** Utility functions used throughout sqlite.
13**
14** This file contains functions for allocating memory, comparing
15** strings, and stuff like that.
16**
17*/
18#include "sqliteInt.h"
19#include <stdarg.h>
drhef9f7192020-01-17 19:14:08 +000020#ifndef SQLITE_OMIT_FLOATING_POINT
drh7e6dc5d2019-05-10 12:14:51 +000021#include <math.h>
drhef9f7192020-01-17 19:14:08 +000022#endif
drhc81c11f2009-11-10 01:30:52 +000023
24/*
25** Routine needed to support the testcase() macro.
26*/
27#ifdef SQLITE_COVERAGE_TEST
28void sqlite3Coverage(int x){
drh68bf0672011-04-11 15:35:24 +000029 static unsigned dummy = 0;
30 dummy += (unsigned)x;
drhc81c11f2009-11-10 01:30:52 +000031}
32#endif
33
drhc007f612014-05-16 14:17:01 +000034/*
drhce059e52019-04-05 17:22:50 +000035** Calls to sqlite3FaultSim() are used to simulate a failure during testing,
36** or to bypass normal error detection during testing in order to let
37** execute proceed futher downstream.
drhc007f612014-05-16 14:17:01 +000038**
drhce059e52019-04-05 17:22:50 +000039** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0). The
40** sqlite3FaultSim() function only returns non-zero during testing.
drhc007f612014-05-16 14:17:01 +000041**
drhce059e52019-04-05 17:22:50 +000042** During testing, if the test harness has set a fault-sim callback using
43** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then
44** each call to sqlite3FaultSim() is relayed to that application-supplied
45** callback and the integer return value form the application-supplied
46** callback is returned by sqlite3FaultSim().
47**
48** The integer argument to sqlite3FaultSim() is a code to identify which
49** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim()
50** should have a unique code. To prevent legacy testing applications from
51** breaking, the codes should not be changed or reused.
drhc007f612014-05-16 14:17:01 +000052*/
drhd12602a2016-12-07 15:49:02 +000053#ifndef SQLITE_UNTESTABLE
drhc007f612014-05-16 14:17:01 +000054int sqlite3FaultSim(int iTest){
55 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
56 return xCallback ? xCallback(iTest) : SQLITE_OK;
57}
58#endif
59
drh85c8f292010-01-13 17:39:53 +000060#ifndef SQLITE_OMIT_FLOATING_POINT
drhc81c11f2009-11-10 01:30:52 +000061/*
62** Return true if the floating point value is Not a Number (NaN).
drhe534c7b2021-09-06 11:44:19 +000063**
64** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
65** Otherwise, we have our own implementation that works on most systems.
drhc81c11f2009-11-10 01:30:52 +000066*/
67int sqlite3IsNaN(double x){
drhe534c7b2021-09-06 11:44:19 +000068 int rc; /* The value return */
69#if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
drh05921222019-05-30 00:46:37 +000070 u64 y;
71 memcpy(&y,&x,sizeof(y));
drhe534c7b2021-09-06 11:44:19 +000072 rc = IsNaN(y);
73#else
74 rc = isnan(x);
75#endif /* HAVE_ISNAN */
76 testcase( rc );
77 return rc;
drhc81c11f2009-11-10 01:30:52 +000078}
drh85c8f292010-01-13 17:39:53 +000079#endif /* SQLITE_OMIT_FLOATING_POINT */
drhc81c11f2009-11-10 01:30:52 +000080
81/*
82** Compute a string length that is limited to what can be stored in
83** lower 30 bits of a 32-bit signed integer.
84**
85** The value returned will never be negative. Nor will it ever be greater
86** than the actual length of the string. For very long strings (greater
87** than 1GiB) the value returned might be less than the true string length.
88*/
89int sqlite3Strlen30(const char *z){
drhc81c11f2009-11-10 01:30:52 +000090 if( z==0 ) return 0;
drh1116bf12015-06-30 03:18:33 +000091 return 0x3fffffff & (int)strlen(z);
drhc81c11f2009-11-10 01:30:52 +000092}
93
94/*
drhd7564862016-03-22 20:05:09 +000095** Return the declared type of a column. Or return zDflt if the column
96** has no declared type.
97**
98** The column type is an extra string stored after the zero-terminator on
99** the column name if and only if the COLFLAG_HASTYPE flag is set.
drh94eaafa2016-02-29 15:53:11 +0000100*/
drhd7564862016-03-22 20:05:09 +0000101char *sqlite3ColumnType(Column *pCol, char *zDflt){
drh77441fa2021-07-30 18:39:59 +0000102 if( pCol->colFlags & COLFLAG_HASTYPE ){
drhcf9d36d2021-08-02 18:03:43 +0000103 return pCol->zCnName + strlen(pCol->zCnName) + 1;
drhb70f2ea2021-08-18 12:05:22 +0000104 }else if( pCol->eCType ){
105 assert( pCol->eCType<=SQLITE_N_STDTYPE );
106 return (char*)sqlite3StdType[pCol->eCType-1];
drh77441fa2021-07-30 18:39:59 +0000107 }else{
108 return zDflt;
109 }
drh94eaafa2016-02-29 15:53:11 +0000110}
111
112/*
drh80fbee02016-03-21 11:57:13 +0000113** Helper function for sqlite3Error() - called rarely. Broken out into
114** a separate routine to avoid unnecessary register saves on entry to
115** sqlite3Error().
drh13f40da2014-08-22 18:00:11 +0000116*/
drh8d2f41c2016-03-21 11:38:01 +0000117static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){
118 if( db->pErr ) sqlite3ValueSetNull(db->pErr);
119 sqlite3SystemError(db, err_code);
120}
drh80fbee02016-03-21 11:57:13 +0000121
122/*
123** Set the current error code to err_code and clear any prior error message.
124** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
125** that would be appropriate.
126*/
drh13f40da2014-08-22 18:00:11 +0000127void sqlite3Error(sqlite3 *db, int err_code){
128 assert( db!=0 );
129 db->errCode = err_code;
drh8d2f41c2016-03-21 11:38:01 +0000130 if( err_code || db->pErr ) sqlite3ErrorFinish(db, err_code);
drh13f40da2014-08-22 18:00:11 +0000131}
132
133/*
drh88efc792021-01-01 18:23:56 +0000134** The equivalent of sqlite3Error(db, SQLITE_OK). Clear the error state
135** and error message.
136*/
137void sqlite3ErrorClear(sqlite3 *db){
138 assert( db!=0 );
139 db->errCode = SQLITE_OK;
140 if( db->pErr ) sqlite3ValueSetNull(db->pErr);
141}
142
143/*
drh1b9f2142016-03-17 16:01:23 +0000144** Load the sqlite3.iSysErrno field if that is an appropriate thing
145** to do based on the SQLite error code in rc.
146*/
147void sqlite3SystemError(sqlite3 *db, int rc){
148 if( rc==SQLITE_IOERR_NOMEM ) return;
149 rc &= 0xff;
150 if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){
151 db->iSysErrno = sqlite3OsGetLastError(db->pVfs);
152 }
153}
154
155/*
drhc81c11f2009-11-10 01:30:52 +0000156** Set the most recent error code and error string for the sqlite
157** handle "db". The error code is set to "err_code".
158**
159** If it is not NULL, string zFormat specifies the format of the
160** error string in the style of the printf functions: The following
161** format characters are allowed:
162**
163** %s Insert a string
164** %z A string that should be freed after use
165** %d Insert an integer
166** %T Insert a token
167** %S Insert the first element of a SrcList
168**
169** zFormat and any string tokens that follow it are assumed to be
170** encoded in UTF-8.
171**
172** To clear the most recent error for sqlite handle "db", sqlite3Error
173** should be called with err_code set to SQLITE_OK and zFormat set
174** to NULL.
175*/
drh13f40da2014-08-22 18:00:11 +0000176void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
drha3cc0072013-12-13 16:23:55 +0000177 assert( db!=0 );
178 db->errCode = err_code;
drh8d2f41c2016-03-21 11:38:01 +0000179 sqlite3SystemError(db, err_code);
drh13f40da2014-08-22 18:00:11 +0000180 if( zFormat==0 ){
181 sqlite3Error(db, err_code);
182 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
drha3cc0072013-12-13 16:23:55 +0000183 char *z;
184 va_list ap;
185 va_start(ap, zFormat);
186 z = sqlite3VMPrintf(db, zFormat, ap);
187 va_end(ap);
188 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
drhc81c11f2009-11-10 01:30:52 +0000189 }
190}
191
192/*
193** Add an error message to pParse->zErrMsg and increment pParse->nErr.
194** The following formatting characters are allowed:
195**
196** %s Insert a string
197** %z A string that should be freed after use
198** %d Insert an integer
199** %T Insert a token
200** %S Insert the first element of a SrcList
201**
drh13f40da2014-08-22 18:00:11 +0000202** This function should be used to report any error that occurs while
drhc81c11f2009-11-10 01:30:52 +0000203** compiling an SQL statement (i.e. within sqlite3_prepare()). The
204** last thing the sqlite3_prepare() function does is copy the error
205** stored by this function into the database handle using sqlite3Error().
drh13f40da2014-08-22 18:00:11 +0000206** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
207** during statement execution (sqlite3_step() etc.).
drhc81c11f2009-11-10 01:30:52 +0000208*/
209void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
drha7564662010-02-22 19:32:31 +0000210 char *zMsg;
drhc81c11f2009-11-10 01:30:52 +0000211 va_list ap;
212 sqlite3 *db = pParse->db;
drhc81c11f2009-11-10 01:30:52 +0000213 va_start(ap, zFormat);
drha7564662010-02-22 19:32:31 +0000214 zMsg = sqlite3VMPrintf(db, zFormat, ap);
drhc81c11f2009-11-10 01:30:52 +0000215 va_end(ap);
drha7564662010-02-22 19:32:31 +0000216 if( db->suppressErr ){
217 sqlite3DbFree(db, zMsg);
218 }else{
219 pParse->nErr++;
220 sqlite3DbFree(db, pParse->zErrMsg);
221 pParse->zErrMsg = zMsg;
222 pParse->rc = SQLITE_ERROR;
drh46a31cd2019-11-09 14:38:58 +0000223 pParse->pWith = 0;
drha7564662010-02-22 19:32:31 +0000224 }
drhc81c11f2009-11-10 01:30:52 +0000225}
226
227/*
drhc3dcdba2019-04-09 21:32:46 +0000228** If database connection db is currently parsing SQL, then transfer
229** error code errCode to that parser if the parser has not already
230** encountered some other kind of error.
231*/
232int sqlite3ErrorToParser(sqlite3 *db, int errCode){
233 Parse *pParse;
234 if( db==0 || (pParse = db->pParse)==0 ) return errCode;
235 pParse->rc = errCode;
236 pParse->nErr++;
237 return errCode;
238}
239
240/*
drhc81c11f2009-11-10 01:30:52 +0000241** Convert an SQL-style quoted string into a normal string by removing
242** the quote characters. The conversion is done in-place. If the
243** input does not begin with a quote character, then this routine
244** is a no-op.
245**
246** The input string must be zero-terminated. A new zero-terminator
247** is added to the dequoted string.
248**
249** The return value is -1 if no dequoting occurs or the length of the
250** dequoted string, exclusive of the zero terminator, if dequoting does
251** occur.
252**
drh51d35b02019-01-11 13:32:23 +0000253** 2002-02-14: This routine is extended to remove MS-Access style
peter.d.reid60ec9142014-09-06 16:39:46 +0000254** brackets from around identifiers. For example: "[a-b-c]" becomes
drhc81c11f2009-11-10 01:30:52 +0000255** "a-b-c".
256*/
drh244b9d62016-04-11 19:01:08 +0000257void sqlite3Dequote(char *z){
drhc81c11f2009-11-10 01:30:52 +0000258 char quote;
259 int i, j;
drh244b9d62016-04-11 19:01:08 +0000260 if( z==0 ) return;
drhc81c11f2009-11-10 01:30:52 +0000261 quote = z[0];
drh244b9d62016-04-11 19:01:08 +0000262 if( !sqlite3Isquote(quote) ) return;
263 if( quote=='[' ) quote = ']';
drh9ccd8652013-09-13 16:36:46 +0000264 for(i=1, j=0;; i++){
265 assert( z[i] );
drhc81c11f2009-11-10 01:30:52 +0000266 if( z[i]==quote ){
267 if( z[i+1]==quote ){
268 z[j++] = quote;
269 i++;
270 }else{
271 break;
272 }
273 }else{
274 z[j++] = z[i];
275 }
276 }
277 z[j] = 0;
drhc81c11f2009-11-10 01:30:52 +0000278}
drh51d35b02019-01-11 13:32:23 +0000279void sqlite3DequoteExpr(Expr *p){
280 assert( sqlite3Isquote(p->u.zToken[0]) );
281 p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted;
282 sqlite3Dequote(p->u.zToken);
283}
drhc81c11f2009-11-10 01:30:52 +0000284
drh40aced52016-01-22 17:48:09 +0000285/*
drh77441fa2021-07-30 18:39:59 +0000286** If the input token p is quoted, try to adjust the token to remove
287** the quotes. This is not always possible:
288**
289** "abc" -> abc
290** "ab""cd" -> (not possible because of the interior "")
291**
292** Remove the quotes if possible. This is a optimization. The overall
293** system should still return the correct answer even if this routine
294** is always a no-op.
295*/
296void sqlite3DequoteToken(Token *p){
drh15482bc2021-08-06 15:26:01 +0000297 unsigned int i;
drh77441fa2021-07-30 18:39:59 +0000298 if( p->n<2 ) return;
299 if( !sqlite3Isquote(p->z[0]) ) return;
300 for(i=1; i<p->n-1; i++){
301 if( sqlite3Isquote(p->z[i]) ) return;
302 }
303 p->n -= 2;
304 p->z++;
305}
306
307/*
drh40aced52016-01-22 17:48:09 +0000308** Generate a Token object from a string
309*/
310void sqlite3TokenInit(Token *p, char *z){
311 p->z = z;
312 p->n = sqlite3Strlen30(z);
313}
314
drhc81c11f2009-11-10 01:30:52 +0000315/* Convenient short-hand */
316#define UpperToLower sqlite3UpperToLower
317
318/*
319** Some systems have stricmp(). Others have strcasecmp(). Because
320** there is no consistency, we will define our own.
drh9f129f42010-08-31 15:27:32 +0000321**
drh0299b402012-03-19 17:42:46 +0000322** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
323** sqlite3_strnicmp() APIs allow applications and extensions to compare
324** the contents of two buffers containing UTF-8 strings in a
325** case-independent fashion, using the same definition of "case
326** independence" that SQLite uses internally when comparing identifiers.
drhc81c11f2009-11-10 01:30:52 +0000327*/
drh3fa97302012-02-22 16:58:36 +0000328int sqlite3_stricmp(const char *zLeft, const char *zRight){
drh9ca95732014-10-24 00:35:58 +0000329 if( zLeft==0 ){
330 return zRight ? -1 : 0;
331 }else if( zRight==0 ){
332 return 1;
333 }
drh80738d92016-02-15 00:34:16 +0000334 return sqlite3StrICmp(zLeft, zRight);
335}
336int sqlite3StrICmp(const char *zLeft, const char *zRight){
337 unsigned char *a, *b;
drh7e427332019-04-17 11:34:44 +0000338 int c, x;
drhc81c11f2009-11-10 01:30:52 +0000339 a = (unsigned char *)zLeft;
340 b = (unsigned char *)zRight;
drh80738d92016-02-15 00:34:16 +0000341 for(;;){
drh7e427332019-04-17 11:34:44 +0000342 c = *a;
343 x = *b;
344 if( c==x ){
345 if( c==0 ) break;
346 }else{
347 c = (int)UpperToLower[c] - (int)UpperToLower[x];
348 if( c ) break;
349 }
drh80738d92016-02-15 00:34:16 +0000350 a++;
351 b++;
352 }
353 return c;
drhc81c11f2009-11-10 01:30:52 +0000354}
355int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
356 register unsigned char *a, *b;
drh9ca95732014-10-24 00:35:58 +0000357 if( zLeft==0 ){
358 return zRight ? -1 : 0;
359 }else if( zRight==0 ){
360 return 1;
361 }
drhc81c11f2009-11-10 01:30:52 +0000362 a = (unsigned char *)zLeft;
363 b = (unsigned char *)zRight;
364 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
365 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
366}
367
368/*
drhd44390c2020-04-06 18:16:31 +0000369** Compute an 8-bit hash on a string that is insensitive to case differences
370*/
371u8 sqlite3StrIHash(const char *z){
372 u8 h = 0;
373 if( z==0 ) return 0;
374 while( z[0] ){
375 h += UpperToLower[(unsigned char)z[0]];
376 z++;
377 }
378 return h;
379}
380
381/*
drh02a43f62017-12-26 14:46:20 +0000382** Compute 10 to the E-th power. Examples: E==1 results in 10.
383** E==2 results in 100. E==50 results in 1.0e50.
384**
385** This routine only works for values of E between 1 and 341.
386*/
387static LONGDOUBLE_TYPE sqlite3Pow10(int E){
drh3dc97272018-01-17 21:14:17 +0000388#if defined(_MSC_VER)
389 static const LONGDOUBLE_TYPE x[] = {
drh38a59af2019-05-25 17:41:07 +0000390 1.0e+001L,
391 1.0e+002L,
392 1.0e+004L,
393 1.0e+008L,
394 1.0e+016L,
395 1.0e+032L,
396 1.0e+064L,
397 1.0e+128L,
398 1.0e+256L
drh3dc97272018-01-17 21:14:17 +0000399 };
400 LONGDOUBLE_TYPE r = 1.0;
401 int i;
402 assert( E>=0 && E<=307 );
403 for(i=0; E!=0; i++, E >>=1){
404 if( E & 1 ) r *= x[i];
405 }
406 return r;
407#else
drh02a43f62017-12-26 14:46:20 +0000408 LONGDOUBLE_TYPE x = 10.0;
409 LONGDOUBLE_TYPE r = 1.0;
410 while(1){
411 if( E & 1 ) r *= x;
412 E >>= 1;
413 if( E==0 ) break;
414 x *= x;
415 }
416 return r;
drh3dc97272018-01-17 21:14:17 +0000417#endif
drh02a43f62017-12-26 14:46:20 +0000418}
419
420/*
drh9339da12010-09-30 00:50:49 +0000421** The string z[] is an text representation of a real number.
drh025586a2010-09-30 17:33:11 +0000422** Convert this string to a double and write it into *pResult.
drhc81c11f2009-11-10 01:30:52 +0000423**
drh9339da12010-09-30 00:50:49 +0000424** The string z[] is length bytes in length (bytes, not characters) and
425** uses the encoding enc. The string is not necessarily zero-terminated.
drhc81c11f2009-11-10 01:30:52 +0000426**
drh9339da12010-09-30 00:50:49 +0000427** Return TRUE if the result is a valid real number (or integer) and FALSE
drh8a3884e2019-05-29 21:18:27 +0000428** if the string is empty or contains extraneous text. More specifically
429** return
430** 1 => The input string is a pure integer
431** 2 or more => The input has a decimal point or eNNN clause
drh9a278222019-06-07 22:26:08 +0000432** 0 or less => The input string is not a valid number
433** -1 => Not a valid number, but has a valid prefix which
434** includes a decimal point and/or an eNNN clause
drh8a3884e2019-05-29 21:18:27 +0000435**
436** Valid numbers are in one of these formats:
drh025586a2010-09-30 17:33:11 +0000437**
438** [+-]digits[E[+-]digits]
439** [+-]digits.[digits][E[+-]digits]
440** [+-].digits[E[+-]digits]
441**
442** Leading and trailing whitespace is ignored for the purpose of determining
443** validity.
444**
445** If some prefix of the input string is a valid number, this routine
446** returns FALSE but it still converts the prefix and writes the result
447** into *pResult.
drhc81c11f2009-11-10 01:30:52 +0000448*/
mistachkin6dcf9a42019-10-10 23:58:16 +0000449#if defined(_MSC_VER)
450#pragma warning(disable : 4756)
451#endif
drh9339da12010-09-30 00:50:49 +0000452int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
drhc81c11f2009-11-10 01:30:52 +0000453#ifndef SQLITE_OMIT_FLOATING_POINT
drh0e5fba72013-03-20 12:04:29 +0000454 int incr;
drhe3a4f2c2019-12-13 23:38:57 +0000455 const char *zEnd;
drhc81c11f2009-11-10 01:30:52 +0000456 /* sign * significand * (10 ^ (esign * exponent)) */
drh025586a2010-09-30 17:33:11 +0000457 int sign = 1; /* sign of significand */
458 i64 s = 0; /* significand */
459 int d = 0; /* adjust exponent for shifting decimal point */
460 int esign = 1; /* sign of exponent */
461 int e = 0; /* exponent */
462 int eValid = 1; /* True exponent is either not used or is well-formed */
drhc81c11f2009-11-10 01:30:52 +0000463 double result;
drhc2b893a2019-05-25 18:17:53 +0000464 int nDigit = 0; /* Number of digits processed */
drh8a3884e2019-05-29 21:18:27 +0000465 int eType = 1; /* 1: pure integer, 2+: fractional -1 or less: bad UTF16 */
drhc81c11f2009-11-10 01:30:52 +0000466
drh0e5fba72013-03-20 12:04:29 +0000467 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
drh025586a2010-09-30 17:33:11 +0000468 *pResult = 0.0; /* Default return value, in case of an error */
drhe3a4f2c2019-12-13 23:38:57 +0000469 if( length==0 ) return 0;
drh025586a2010-09-30 17:33:11 +0000470
drh0e5fba72013-03-20 12:04:29 +0000471 if( enc==SQLITE_UTF8 ){
472 incr = 1;
drhe3a4f2c2019-12-13 23:38:57 +0000473 zEnd = z + length;
drh0e5fba72013-03-20 12:04:29 +0000474 }else{
475 int i;
476 incr = 2;
drh87969b22020-01-08 12:17:46 +0000477 length &= ~1;
drh0e5fba72013-03-20 12:04:29 +0000478 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
drh84422db2019-05-30 13:47:10 +0000479 testcase( enc==SQLITE_UTF16LE );
480 testcase( enc==SQLITE_UTF16BE );
drh0e5fba72013-03-20 12:04:29 +0000481 for(i=3-enc; i<length && z[i]==0; i+=2){}
drh8a3884e2019-05-29 21:18:27 +0000482 if( i<length ) eType = -100;
drhad975d52016-04-27 15:24:13 +0000483 zEnd = &z[i^1];
drh0e5fba72013-03-20 12:04:29 +0000484 z += (enc&1);
485 }
drh9339da12010-09-30 00:50:49 +0000486
drhc81c11f2009-11-10 01:30:52 +0000487 /* skip leading spaces */
drh9339da12010-09-30 00:50:49 +0000488 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
drh025586a2010-09-30 17:33:11 +0000489 if( z>=zEnd ) return 0;
drh9339da12010-09-30 00:50:49 +0000490
drhc81c11f2009-11-10 01:30:52 +0000491 /* get sign of significand */
492 if( *z=='-' ){
493 sign = -1;
drh9339da12010-09-30 00:50:49 +0000494 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000495 }else if( *z=='+' ){
drh9339da12010-09-30 00:50:49 +0000496 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000497 }
drh9339da12010-09-30 00:50:49 +0000498
drhc81c11f2009-11-10 01:30:52 +0000499 /* copy max significant digits to significand */
drhc2b893a2019-05-25 18:17:53 +0000500 while( z<zEnd && sqlite3Isdigit(*z) ){
drhc81c11f2009-11-10 01:30:52 +0000501 s = s*10 + (*z - '0');
drhc2b893a2019-05-25 18:17:53 +0000502 z+=incr; nDigit++;
503 if( s>=((LARGEST_INT64-9)/10) ){
504 /* skip non-significant significand digits
505 ** (increase exponent by d to shift decimal left) */
506 while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; }
507 }
drhc81c11f2009-11-10 01:30:52 +0000508 }
drh9339da12010-09-30 00:50:49 +0000509 if( z>=zEnd ) goto do_atof_calc;
drhc81c11f2009-11-10 01:30:52 +0000510
511 /* if decimal point is present */
512 if( *z=='.' ){
drh9339da12010-09-30 00:50:49 +0000513 z+=incr;
drh8a3884e2019-05-29 21:18:27 +0000514 eType++;
drhc81c11f2009-11-10 01:30:52 +0000515 /* copy digits from after decimal to significand
516 ** (decrease exponent by d to shift decimal right) */
drh15af62a2016-04-26 23:14:45 +0000517 while( z<zEnd && sqlite3Isdigit(*z) ){
518 if( s<((LARGEST_INT64-9)/10) ){
519 s = s*10 + (*z - '0');
520 d--;
drhc2b893a2019-05-25 18:17:53 +0000521 nDigit++;
drh15af62a2016-04-26 23:14:45 +0000522 }
drhc2b893a2019-05-25 18:17:53 +0000523 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000524 }
drhc81c11f2009-11-10 01:30:52 +0000525 }
drh9339da12010-09-30 00:50:49 +0000526 if( z>=zEnd ) goto do_atof_calc;
drhc81c11f2009-11-10 01:30:52 +0000527
528 /* if exponent is present */
529 if( *z=='e' || *z=='E' ){
drh9339da12010-09-30 00:50:49 +0000530 z+=incr;
drh025586a2010-09-30 17:33:11 +0000531 eValid = 0;
drh8a3884e2019-05-29 21:18:27 +0000532 eType++;
drhad975d52016-04-27 15:24:13 +0000533
534 /* This branch is needed to avoid a (harmless) buffer overread. The
535 ** special comment alerts the mutation tester that the correct answer
536 ** is obtained even if the branch is omitted */
537 if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/
538
drhc81c11f2009-11-10 01:30:52 +0000539 /* get sign of exponent */
540 if( *z=='-' ){
541 esign = -1;
drh9339da12010-09-30 00:50:49 +0000542 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000543 }else if( *z=='+' ){
drh9339da12010-09-30 00:50:49 +0000544 z+=incr;
drhc81c11f2009-11-10 01:30:52 +0000545 }
546 /* copy digits to exponent */
drh9339da12010-09-30 00:50:49 +0000547 while( z<zEnd && sqlite3Isdigit(*z) ){
drh57db4a72011-10-17 20:41:46 +0000548 e = e<10000 ? (e*10 + (*z - '0')) : 10000;
drh9339da12010-09-30 00:50:49 +0000549 z+=incr;
drh025586a2010-09-30 17:33:11 +0000550 eValid = 1;
drhc81c11f2009-11-10 01:30:52 +0000551 }
552 }
553
drh025586a2010-09-30 17:33:11 +0000554 /* skip trailing spaces */
drhc6daa012016-04-27 02:35:03 +0000555 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
drh025586a2010-09-30 17:33:11 +0000556
drh9339da12010-09-30 00:50:49 +0000557do_atof_calc:
drhc81c11f2009-11-10 01:30:52 +0000558 /* adjust exponent by d, and update sign */
559 e = (e*esign) + d;
560 if( e<0 ) {
561 esign = -1;
562 e *= -1;
563 } else {
564 esign = 1;
565 }
566
drhad975d52016-04-27 15:24:13 +0000567 if( s==0 ) {
568 /* In the IEEE 754 standard, zero is signed. */
drhc6daa012016-04-27 02:35:03 +0000569 result = sign<0 ? -(double)0 : (double)0;
drhc81c11f2009-11-10 01:30:52 +0000570 } else {
drhad975d52016-04-27 15:24:13 +0000571 /* Attempt to reduce exponent.
572 **
573 ** Branches that are not required for the correct answer but which only
574 ** help to obtain the correct answer faster are marked with special
575 ** comments, as a hint to the mutation tester.
576 */
577 while( e>0 ){ /*OPTIMIZATION-IF-TRUE*/
578 if( esign>0 ){
579 if( s>=(LARGEST_INT64/10) ) break; /*OPTIMIZATION-IF-FALSE*/
580 s *= 10;
581 }else{
582 if( s%10!=0 ) break; /*OPTIMIZATION-IF-FALSE*/
583 s /= 10;
584 }
585 e--;
drhc81c11f2009-11-10 01:30:52 +0000586 }
587
588 /* adjust the sign of significand */
589 s = sign<0 ? -s : s;
590
drhad975d52016-04-27 15:24:13 +0000591 if( e==0 ){ /*OPTIMIZATION-IF-TRUE*/
592 result = (double)s;
593 }else{
drhc81c11f2009-11-10 01:30:52 +0000594 /* attempt to handle extremely small/large numbers better */
drhad975d52016-04-27 15:24:13 +0000595 if( e>307 ){ /*OPTIMIZATION-IF-TRUE*/
596 if( e<342 ){ /*OPTIMIZATION-IF-TRUE*/
drh02a43f62017-12-26 14:46:20 +0000597 LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308);
drhad975d52016-04-27 15:24:13 +0000598 if( esign<0 ){
599 result = s / scale;
600 result /= 1.0e+308;
601 }else{
602 result = s * scale;
603 result *= 1.0e+308;
604 }
605 }else{ assert( e>=342 );
606 if( esign<0 ){
607 result = 0.0*s;
608 }else{
drhb9772e72017-09-12 13:27:43 +0000609#ifdef INFINITY
drh3ba18ad2017-09-12 15:05:34 +0000610 result = INFINITY*s;
drhb9772e72017-09-12 13:27:43 +0000611#else
drhad975d52016-04-27 15:24:13 +0000612 result = 1e308*1e308*s; /* Infinity */
drhb9772e72017-09-12 13:27:43 +0000613#endif
drhad975d52016-04-27 15:24:13 +0000614 }
drh2458a2e2011-10-17 12:14:26 +0000615 }
drhc81c11f2009-11-10 01:30:52 +0000616 }else{
drh02a43f62017-12-26 14:46:20 +0000617 LONGDOUBLE_TYPE scale = sqlite3Pow10(e);
drhc81c11f2009-11-10 01:30:52 +0000618 if( esign<0 ){
619 result = s / scale;
620 }else{
621 result = s * scale;
622 }
623 }
drhc81c11f2009-11-10 01:30:52 +0000624 }
625 }
626
627 /* store the result */
628 *pResult = result;
629
drh025586a2010-09-30 17:33:11 +0000630 /* return true if number and no extra non-whitespace chracters after */
drh9a278222019-06-07 22:26:08 +0000631 if( z==zEnd && nDigit>0 && eValid && eType>0 ){
632 return eType;
drh378a7d32019-06-10 23:45:10 +0000633 }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){
drh9a278222019-06-07 22:26:08 +0000634 return -1;
635 }else{
636 return 0;
637 }
drhc81c11f2009-11-10 01:30:52 +0000638#else
shaneh5f1d6b62010-09-30 16:51:25 +0000639 return !sqlite3Atoi64(z, pResult, length, enc);
drhc81c11f2009-11-10 01:30:52 +0000640#endif /* SQLITE_OMIT_FLOATING_POINT */
641}
mistachkin6dcf9a42019-10-10 23:58:16 +0000642#if defined(_MSC_VER)
643#pragma warning(default : 4756)
644#endif
drhc81c11f2009-11-10 01:30:52 +0000645
646/*
drh82b0f102020-07-21 18:25:19 +0000647** Render an signed 64-bit integer as text. Store the result in zOut[].
648**
649** The caller must ensure that zOut[] is at least 21 bytes in size.
650*/
651void sqlite3Int64ToText(i64 v, char *zOut){
652 int i;
653 u64 x;
654 char zTemp[22];
655 if( v<0 ){
drh8deae5a2020-07-29 12:23:20 +0000656 x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : (u64)-v;
drh82b0f102020-07-21 18:25:19 +0000657 }else{
658 x = v;
659 }
660 i = sizeof(zTemp)-2;
661 zTemp[sizeof(zTemp)-1] = 0;
662 do{
663 zTemp[i--] = (x%10) + '0';
664 x = x/10;
665 }while( x );
666 if( v<0 ) zTemp[i--] = '-';
667 memcpy(zOut, &zTemp[i+1], sizeof(zTemp)-1-i);
668}
669
670/*
drhc81c11f2009-11-10 01:30:52 +0000671** Compare the 19-character string zNum against the text representation
672** value 2^63: 9223372036854775808. Return negative, zero, or positive
673** if zNum is less than, equal to, or greater than the string.
shaneh5f1d6b62010-09-30 16:51:25 +0000674** Note that zNum must contain exactly 19 characters.
drhc81c11f2009-11-10 01:30:52 +0000675**
676** Unlike memcmp() this routine is guaranteed to return the difference
677** in the values of the last digit if the only difference is in the
678** last digit. So, for example,
679**
drh9339da12010-09-30 00:50:49 +0000680** compare2pow63("9223372036854775800", 1)
drhc81c11f2009-11-10 01:30:52 +0000681**
682** will return -8.
683*/
drh9339da12010-09-30 00:50:49 +0000684static int compare2pow63(const char *zNum, int incr){
685 int c = 0;
686 int i;
687 /* 012345678901234567 */
688 const char *pow63 = "922337203685477580";
689 for(i=0; c==0 && i<18; i++){
690 c = (zNum[i*incr]-pow63[i])*10;
691 }
drhc81c11f2009-11-10 01:30:52 +0000692 if( c==0 ){
drh9339da12010-09-30 00:50:49 +0000693 c = zNum[18*incr] - '8';
drh44dbca82010-01-13 04:22:20 +0000694 testcase( c==(-1) );
695 testcase( c==0 );
696 testcase( c==(+1) );
drhc81c11f2009-11-10 01:30:52 +0000697 }
698 return c;
699}
700
drhc81c11f2009-11-10 01:30:52 +0000701/*
drh9296c182014-07-23 13:40:49 +0000702** Convert zNum to a 64-bit signed integer. zNum must be decimal. This
703** routine does *not* accept hexadecimal notation.
drh158b9cb2011-03-05 20:59:46 +0000704**
drh84d4f1a2017-09-20 10:47:10 +0000705** Returns:
drh158b9cb2011-03-05 20:59:46 +0000706**
drh9a278222019-06-07 22:26:08 +0000707** -1 Not even a prefix of the input text looks like an integer
drh84d4f1a2017-09-20 10:47:10 +0000708** 0 Successful transformation. Fits in a 64-bit signed integer.
drh4eb57ce2018-01-26 18:37:34 +0000709** 1 Excess non-space text after the integer value
drh84d4f1a2017-09-20 10:47:10 +0000710** 2 Integer too large for a 64-bit signed integer or is malformed
711** 3 Special case of 9223372036854775808
drhc81c11f2009-11-10 01:30:52 +0000712**
drh9339da12010-09-30 00:50:49 +0000713** length is the number of bytes in the string (bytes, not characters).
714** The string is not necessarily zero-terminated. The encoding is
715** given by enc.
drhc81c11f2009-11-10 01:30:52 +0000716*/
drh9339da12010-09-30 00:50:49 +0000717int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
drh0e5fba72013-03-20 12:04:29 +0000718 int incr;
drh158b9cb2011-03-05 20:59:46 +0000719 u64 u = 0;
shaneh5f1d6b62010-09-30 16:51:25 +0000720 int neg = 0; /* assume positive */
drh9339da12010-09-30 00:50:49 +0000721 int i;
722 int c = 0;
drh609d5842016-04-28 00:32:16 +0000723 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */
drh84d4f1a2017-09-20 10:47:10 +0000724 int rc; /* Baseline return code */
drhc81c11f2009-11-10 01:30:52 +0000725 const char *zStart;
drh9339da12010-09-30 00:50:49 +0000726 const char *zEnd = zNum + length;
drh0e5fba72013-03-20 12:04:29 +0000727 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
728 if( enc==SQLITE_UTF8 ){
729 incr = 1;
730 }else{
731 incr = 2;
drh359941b2020-08-27 16:28:30 +0000732 length &= ~1;
drh0e5fba72013-03-20 12:04:29 +0000733 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
734 for(i=3-enc; i<length && zNum[i]==0; i+=2){}
735 nonNum = i<length;
drh609d5842016-04-28 00:32:16 +0000736 zEnd = &zNum[i^1];
drh0e5fba72013-03-20 12:04:29 +0000737 zNum += (enc&1);
738 }
drh9339da12010-09-30 00:50:49 +0000739 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
drh158b9cb2011-03-05 20:59:46 +0000740 if( zNum<zEnd ){
741 if( *zNum=='-' ){
742 neg = 1;
743 zNum+=incr;
744 }else if( *zNum=='+' ){
745 zNum+=incr;
746 }
drhc81c11f2009-11-10 01:30:52 +0000747 }
748 zStart = zNum;
drh9339da12010-09-30 00:50:49 +0000749 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
750 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
drh158b9cb2011-03-05 20:59:46 +0000751 u = u*10 + c - '0';
drhc81c11f2009-11-10 01:30:52 +0000752 }
drh4eb57ce2018-01-26 18:37:34 +0000753 testcase( i==18*incr );
754 testcase( i==19*incr );
755 testcase( i==20*incr );
drh1822ebf2018-01-27 14:25:27 +0000756 if( u>LARGEST_INT64 ){
757 /* This test and assignment is needed only to suppress UB warnings
758 ** from clang and -fsanitize=undefined. This test and assignment make
759 ** the code a little larger and slower, and no harm comes from omitting
760 ** them, but we must appaise the undefined-behavior pharisees. */
761 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
762 }else if( neg ){
drh158b9cb2011-03-05 20:59:46 +0000763 *pNum = -(i64)u;
764 }else{
765 *pNum = (i64)u;
766 }
drh4eb57ce2018-01-26 18:37:34 +0000767 rc = 0;
drh9a278222019-06-07 22:26:08 +0000768 if( i==0 && zStart==zNum ){ /* No digits */
769 rc = -1;
770 }else if( nonNum ){ /* UTF16 with high-order bytes non-zero */
drh84d4f1a2017-09-20 10:47:10 +0000771 rc = 1;
drh4eb57ce2018-01-26 18:37:34 +0000772 }else if( &zNum[i]<zEnd ){ /* Extra bytes at the end */
773 int jj = i;
774 do{
775 if( !sqlite3Isspace(zNum[jj]) ){
776 rc = 1; /* Extra non-space text after the integer */
777 break;
778 }
779 jj += incr;
780 }while( &zNum[jj]<zEnd );
drh84d4f1a2017-09-20 10:47:10 +0000781 }
drh4eb57ce2018-01-26 18:37:34 +0000782 if( i<19*incr ){
drhc81c11f2009-11-10 01:30:52 +0000783 /* Less than 19 digits, so we know that it fits in 64 bits */
drh158b9cb2011-03-05 20:59:46 +0000784 assert( u<=LARGEST_INT64 );
drh84d4f1a2017-09-20 10:47:10 +0000785 return rc;
drhc81c11f2009-11-10 01:30:52 +0000786 }else{
drh158b9cb2011-03-05 20:59:46 +0000787 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
drh4eb57ce2018-01-26 18:37:34 +0000788 c = i>19*incr ? 1 : compare2pow63(zNum, incr);
drh158b9cb2011-03-05 20:59:46 +0000789 if( c<0 ){
790 /* zNum is less than 9223372036854775808 so it fits */
791 assert( u<=LARGEST_INT64 );
drh84d4f1a2017-09-20 10:47:10 +0000792 return rc;
drh158b9cb2011-03-05 20:59:46 +0000793 }else{
drh4eb57ce2018-01-26 18:37:34 +0000794 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
795 if( c>0 ){
796 /* zNum is greater than 9223372036854775808 so it overflows */
797 return 2;
798 }else{
799 /* zNum is exactly 9223372036854775808. Fits if negative. The
800 ** special case 2 overflow if positive */
801 assert( u-1==LARGEST_INT64 );
802 return neg ? rc : 3;
803 }
drh158b9cb2011-03-05 20:59:46 +0000804 }
drhc81c11f2009-11-10 01:30:52 +0000805 }
806}
807
808/*
drh9296c182014-07-23 13:40:49 +0000809** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
810** into a 64-bit signed integer. This routine accepts hexadecimal literals,
811** whereas sqlite3Atoi64() does not.
812**
813** Returns:
814**
815** 0 Successful transformation. Fits in a 64-bit signed integer.
drh84d4f1a2017-09-20 10:47:10 +0000816** 1 Excess text after the integer value
817** 2 Integer too large for a 64-bit signed integer or is malformed
818** 3 Special case of 9223372036854775808
drh9296c182014-07-23 13:40:49 +0000819*/
820int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
821#ifndef SQLITE_OMIT_HEX_INTEGER
822 if( z[0]=='0'
823 && (z[1]=='x' || z[1]=='X')
drh9296c182014-07-23 13:40:49 +0000824 ){
825 u64 u = 0;
826 int i, k;
827 for(i=2; z[i]=='0'; i++){}
828 for(k=i; sqlite3Isxdigit(z[k]); k++){
829 u = u*16 + sqlite3HexToInt(z[k]);
830 }
831 memcpy(pOut, &u, 8);
drh84d4f1a2017-09-20 10:47:10 +0000832 return (z[k]==0 && k-i<=16) ? 0 : 2;
drh9296c182014-07-23 13:40:49 +0000833 }else
834#endif /* SQLITE_OMIT_HEX_INTEGER */
835 {
836 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
837 }
838}
839
840/*
drhc81c11f2009-11-10 01:30:52 +0000841** If zNum represents an integer that will fit in 32-bits, then set
842** *pValue to that integer and return true. Otherwise return false.
843**
drh9296c182014-07-23 13:40:49 +0000844** This routine accepts both decimal and hexadecimal notation for integers.
845**
drhc81c11f2009-11-10 01:30:52 +0000846** Any non-numeric characters that following zNum are ignored.
847** This is different from sqlite3Atoi64() which requires the
848** input number to be zero-terminated.
849*/
850int sqlite3GetInt32(const char *zNum, int *pValue){
851 sqlite_int64 v = 0;
852 int i, c;
853 int neg = 0;
854 if( zNum[0]=='-' ){
855 neg = 1;
856 zNum++;
857 }else if( zNum[0]=='+' ){
858 zNum++;
859 }
drh28e048c2014-07-23 01:26:51 +0000860#ifndef SQLITE_OMIT_HEX_INTEGER
861 else if( zNum[0]=='0'
862 && (zNum[1]=='x' || zNum[1]=='X')
863 && sqlite3Isxdigit(zNum[2])
864 ){
865 u32 u = 0;
866 zNum += 2;
867 while( zNum[0]=='0' ) zNum++;
868 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
869 u = u*16 + sqlite3HexToInt(zNum[i]);
870 }
871 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
872 memcpy(pValue, &u, 4);
873 return 1;
874 }else{
875 return 0;
876 }
877 }
878#endif
drh313e6fd2017-05-03 17:44:28 +0000879 if( !sqlite3Isdigit(zNum[0]) ) return 0;
drh935f2e72015-04-18 04:45:00 +0000880 while( zNum[0]=='0' ) zNum++;
drhc81c11f2009-11-10 01:30:52 +0000881 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
882 v = v*10 + c;
883 }
884
885 /* The longest decimal representation of a 32 bit integer is 10 digits:
886 **
887 ** 1234567890
888 ** 2^31 -> 2147483648
889 */
drh44dbca82010-01-13 04:22:20 +0000890 testcase( i==10 );
drhc81c11f2009-11-10 01:30:52 +0000891 if( i>10 ){
892 return 0;
893 }
drh44dbca82010-01-13 04:22:20 +0000894 testcase( v-neg==2147483647 );
drhc81c11f2009-11-10 01:30:52 +0000895 if( v-neg>2147483647 ){
896 return 0;
897 }
898 if( neg ){
899 v = -v;
900 }
901 *pValue = (int)v;
902 return 1;
903}
904
905/*
drh60ac3f42010-11-23 18:59:27 +0000906** Return a 32-bit integer value extracted from a string. If the
907** string is not an integer, just return 0.
908*/
909int sqlite3Atoi(const char *z){
910 int x = 0;
drh48bf2d72020-07-30 17:14:55 +0000911 sqlite3GetInt32(z, &x);
drh60ac3f42010-11-23 18:59:27 +0000912 return x;
913}
914
915/*
drhabc38152020-07-22 13:38:04 +0000916** Try to convert z into an unsigned 32-bit integer. Return true on
917** success and false if there is an error.
918**
919** Only decimal notation is accepted.
920*/
921int sqlite3GetUInt32(const char *z, u32 *pI){
922 u64 v = 0;
923 int i;
924 for(i=0; sqlite3Isdigit(z[i]); i++){
925 v = v*10 + z[i] - '0';
drh69306bf2020-07-22 20:12:10 +0000926 if( v>4294967296LL ){ *pI = 0; return 0; }
drhabc38152020-07-22 13:38:04 +0000927 }
drh69306bf2020-07-22 20:12:10 +0000928 if( i==0 || z[i]!=0 ){ *pI = 0; return 0; }
drhabc38152020-07-22 13:38:04 +0000929 *pI = (u32)v;
930 return 1;
931}
932
933/*
drhc81c11f2009-11-10 01:30:52 +0000934** The variable-length integer encoding is as follows:
935**
936** KEY:
937** A = 0xxxxxxx 7 bits of data and one flag bit
938** B = 1xxxxxxx 7 bits of data and one flag bit
939** C = xxxxxxxx 8 bits of data
940**
941** 7 bits - A
942** 14 bits - BA
943** 21 bits - BBA
944** 28 bits - BBBA
945** 35 bits - BBBBA
946** 42 bits - BBBBBA
947** 49 bits - BBBBBBA
948** 56 bits - BBBBBBBA
949** 64 bits - BBBBBBBBC
950*/
951
952/*
953** Write a 64-bit variable-length integer to memory starting at p[0].
954** The length of data write will be between 1 and 9 bytes. The number
955** of bytes written is returned.
956**
957** A variable-length integer consists of the lower 7 bits of each byte
958** for all bytes that have the 8th bit set and one byte with the 8th
959** bit clear. Except, if we get to the 9th byte, it stores the full
960** 8 bits and is the last byte.
961*/
drh2f2b2b82014-08-22 18:48:25 +0000962static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
drhc81c11f2009-11-10 01:30:52 +0000963 int i, j, n;
964 u8 buf[10];
965 if( v & (((u64)0xff000000)<<32) ){
966 p[8] = (u8)v;
967 v >>= 8;
968 for(i=7; i>=0; i--){
969 p[i] = (u8)((v & 0x7f) | 0x80);
970 v >>= 7;
971 }
972 return 9;
973 }
974 n = 0;
975 do{
976 buf[n++] = (u8)((v & 0x7f) | 0x80);
977 v >>= 7;
978 }while( v!=0 );
979 buf[0] &= 0x7f;
980 assert( n<=9 );
981 for(i=0, j=n-1; j>=0; j--, i++){
982 p[i] = buf[j];
983 }
984 return n;
985}
drh2f2b2b82014-08-22 18:48:25 +0000986int sqlite3PutVarint(unsigned char *p, u64 v){
987 if( v<=0x7f ){
988 p[0] = v&0x7f;
drhc81c11f2009-11-10 01:30:52 +0000989 return 1;
990 }
drh2f2b2b82014-08-22 18:48:25 +0000991 if( v<=0x3fff ){
992 p[0] = ((v>>7)&0x7f)|0x80;
993 p[1] = v&0x7f;
drhc81c11f2009-11-10 01:30:52 +0000994 return 2;
995 }
drh2f2b2b82014-08-22 18:48:25 +0000996 return putVarint64(p,v);
drhc81c11f2009-11-10 01:30:52 +0000997}
998
999/*
drh0b2864c2010-03-03 15:18:38 +00001000** Bitmasks used by sqlite3GetVarint(). These precomputed constants
1001** are defined here rather than simply putting the constant expressions
1002** inline in order to work around bugs in the RVT compiler.
1003**
1004** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
1005**
1006** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
1007*/
1008#define SLOT_2_0 0x001fc07f
1009#define SLOT_4_2_0 0xf01fc07f
1010
1011
1012/*
drhc81c11f2009-11-10 01:30:52 +00001013** Read a 64-bit variable-length integer from memory starting at p[0].
1014** Return the number of bytes read. The value is stored in *v.
1015*/
1016u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
1017 u32 a,b,s;
1018
drh698c86f2019-04-17 12:07:08 +00001019 if( ((signed char*)p)[0]>=0 ){
1020 *v = *p;
drhc81c11f2009-11-10 01:30:52 +00001021 return 1;
1022 }
drh698c86f2019-04-17 12:07:08 +00001023 if( ((signed char*)p)[1]>=0 ){
1024 *v = ((u32)(p[0]&0x7f)<<7) | p[1];
drhc81c11f2009-11-10 01:30:52 +00001025 return 2;
1026 }
1027
drh0b2864c2010-03-03 15:18:38 +00001028 /* Verify that constants are precomputed correctly */
1029 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
shaneh1da207e2010-03-09 14:41:12 +00001030 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
drh0b2864c2010-03-03 15:18:38 +00001031
drh698c86f2019-04-17 12:07:08 +00001032 a = ((u32)p[0])<<14;
1033 b = p[1];
1034 p += 2;
drhc81c11f2009-11-10 01:30:52 +00001035 a |= *p;
1036 /* a: p0<<14 | p2 (unmasked) */
1037 if (!(a&0x80))
1038 {
drh0b2864c2010-03-03 15:18:38 +00001039 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +00001040 b &= 0x7f;
1041 b = b<<7;
1042 a |= b;
1043 *v = a;
1044 return 3;
1045 }
1046
1047 /* CSE1 from below */
drh0b2864c2010-03-03 15:18:38 +00001048 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +00001049 p++;
1050 b = b<<14;
1051 b |= *p;
1052 /* b: p1<<14 | p3 (unmasked) */
1053 if (!(b&0x80))
1054 {
drh0b2864c2010-03-03 15:18:38 +00001055 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +00001056 /* moved CSE1 up */
1057 /* a &= (0x7f<<14)|(0x7f); */
1058 a = a<<7;
1059 a |= b;
1060 *v = a;
1061 return 4;
1062 }
1063
1064 /* a: p0<<14 | p2 (masked) */
1065 /* b: p1<<14 | p3 (unmasked) */
1066 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1067 /* moved CSE1 up */
1068 /* a &= (0x7f<<14)|(0x7f); */
drh0b2864c2010-03-03 15:18:38 +00001069 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +00001070 s = a;
1071 /* s: p0<<14 | p2 (masked) */
1072
1073 p++;
1074 a = a<<14;
1075 a |= *p;
1076 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1077 if (!(a&0x80))
1078 {
drh62aaa6c2015-11-21 17:27:42 +00001079 /* we can skip these cause they were (effectively) done above
1080 ** while calculating s */
drhc81c11f2009-11-10 01:30:52 +00001081 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1082 /* b &= (0x7f<<14)|(0x7f); */
1083 b = b<<7;
1084 a |= b;
1085 s = s>>18;
1086 *v = ((u64)s)<<32 | a;
1087 return 5;
1088 }
1089
1090 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1091 s = s<<7;
1092 s |= b;
1093 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1094
1095 p++;
1096 b = b<<14;
1097 b |= *p;
1098 /* b: p1<<28 | p3<<14 | p5 (unmasked) */
1099 if (!(b&0x80))
1100 {
1101 /* we can skip this cause it was (effectively) done above in calc'ing s */
1102 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
drh0b2864c2010-03-03 15:18:38 +00001103 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +00001104 a = a<<7;
1105 a |= b;
1106 s = s>>18;
1107 *v = ((u64)s)<<32 | a;
1108 return 6;
1109 }
1110
1111 p++;
1112 a = a<<14;
1113 a |= *p;
1114 /* a: p2<<28 | p4<<14 | p6 (unmasked) */
1115 if (!(a&0x80))
1116 {
drh0b2864c2010-03-03 15:18:38 +00001117 a &= SLOT_4_2_0;
1118 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +00001119 b = b<<7;
1120 a |= b;
1121 s = s>>11;
1122 *v = ((u64)s)<<32 | a;
1123 return 7;
1124 }
1125
1126 /* CSE2 from below */
drh0b2864c2010-03-03 15:18:38 +00001127 a &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +00001128 p++;
1129 b = b<<14;
1130 b |= *p;
1131 /* b: p3<<28 | p5<<14 | p7 (unmasked) */
1132 if (!(b&0x80))
1133 {
drh0b2864c2010-03-03 15:18:38 +00001134 b &= SLOT_4_2_0;
drhc81c11f2009-11-10 01:30:52 +00001135 /* moved CSE2 up */
1136 /* a &= (0x7f<<14)|(0x7f); */
1137 a = a<<7;
1138 a |= b;
1139 s = s>>4;
1140 *v = ((u64)s)<<32 | a;
1141 return 8;
1142 }
1143
1144 p++;
1145 a = a<<15;
1146 a |= *p;
1147 /* a: p4<<29 | p6<<15 | p8 (unmasked) */
1148
1149 /* moved CSE2 up */
1150 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
drh0b2864c2010-03-03 15:18:38 +00001151 b &= SLOT_2_0;
drhc81c11f2009-11-10 01:30:52 +00001152 b = b<<8;
1153 a |= b;
1154
1155 s = s<<4;
1156 b = p[-4];
1157 b &= 0x7f;
1158 b = b>>3;
1159 s |= b;
1160
1161 *v = ((u64)s)<<32 | a;
1162
1163 return 9;
1164}
1165
1166/*
1167** Read a 32-bit variable-length integer from memory starting at p[0].
1168** Return the number of bytes read. The value is stored in *v.
1169**
1170** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
1171** integer, then set *v to 0xffffffff.
1172**
1173** A MACRO version, getVarint32, is provided which inlines the
1174** single-byte case. All code should use the MACRO version as
1175** this function assumes the single-byte case has already been handled.
1176*/
1177u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
1178 u32 a,b;
1179
1180 /* The 1-byte case. Overwhelmingly the most common. Handled inline
1181 ** by the getVarin32() macro */
1182 a = *p;
1183 /* a: p0 (unmasked) */
1184#ifndef getVarint32
1185 if (!(a&0x80))
1186 {
1187 /* Values between 0 and 127 */
1188 *v = a;
1189 return 1;
1190 }
1191#endif
1192
1193 /* The 2-byte case */
1194 p++;
1195 b = *p;
1196 /* b: p1 (unmasked) */
1197 if (!(b&0x80))
1198 {
1199 /* Values between 128 and 16383 */
1200 a &= 0x7f;
1201 a = a<<7;
1202 *v = a | b;
1203 return 2;
1204 }
1205
1206 /* The 3-byte case */
1207 p++;
1208 a = a<<14;
1209 a |= *p;
1210 /* a: p0<<14 | p2 (unmasked) */
1211 if (!(a&0x80))
1212 {
1213 /* Values between 16384 and 2097151 */
1214 a &= (0x7f<<14)|(0x7f);
1215 b &= 0x7f;
1216 b = b<<7;
1217 *v = a | b;
1218 return 3;
1219 }
1220
1221 /* A 32-bit varint is used to store size information in btrees.
1222 ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
1223 ** A 3-byte varint is sufficient, for example, to record the size
1224 ** of a 1048569-byte BLOB or string.
1225 **
1226 ** We only unroll the first 1-, 2-, and 3- byte cases. The very
1227 ** rare larger cases can be handled by the slower 64-bit varint
1228 ** routine.
1229 */
1230#if 1
1231 {
1232 u64 v64;
1233 u8 n;
1234
drh15cedda2020-07-02 17:05:11 +00001235 n = sqlite3GetVarint(p-2, &v64);
drhc81c11f2009-11-10 01:30:52 +00001236 assert( n>3 && n<=9 );
1237 if( (v64 & SQLITE_MAX_U32)!=v64 ){
1238 *v = 0xffffffff;
1239 }else{
1240 *v = (u32)v64;
1241 }
1242 return n;
1243 }
1244
1245#else
1246 /* For following code (kept for historical record only) shows an
1247 ** unrolling for the 3- and 4-byte varint cases. This code is
1248 ** slightly faster, but it is also larger and much harder to test.
1249 */
1250 p++;
1251 b = b<<14;
1252 b |= *p;
1253 /* b: p1<<14 | p3 (unmasked) */
1254 if (!(b&0x80))
1255 {
1256 /* Values between 2097152 and 268435455 */
1257 b &= (0x7f<<14)|(0x7f);
1258 a &= (0x7f<<14)|(0x7f);
1259 a = a<<7;
1260 *v = a | b;
1261 return 4;
1262 }
1263
1264 p++;
1265 a = a<<14;
1266 a |= *p;
1267 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1268 if (!(a&0x80))
1269 {
dan3bbe7612010-03-03 16:02:05 +00001270 /* Values between 268435456 and 34359738367 */
1271 a &= SLOT_4_2_0;
1272 b &= SLOT_4_2_0;
drhc81c11f2009-11-10 01:30:52 +00001273 b = b<<7;
1274 *v = a | b;
1275 return 5;
1276 }
1277
1278 /* We can only reach this point when reading a corrupt database
1279 ** file. In that case we are not in any hurry. Use the (relatively
1280 ** slow) general-purpose sqlite3GetVarint() routine to extract the
1281 ** value. */
1282 {
1283 u64 v64;
1284 u8 n;
1285
1286 p -= 4;
1287 n = sqlite3GetVarint(p, &v64);
1288 assert( n>5 && n<=9 );
1289 *v = (u32)v64;
1290 return n;
1291 }
1292#endif
1293}
1294
1295/*
1296** Return the number of bytes that will be needed to store the given
1297** 64-bit integer.
1298*/
1299int sqlite3VarintLen(u64 v){
drh59a53642015-09-01 22:29:07 +00001300 int i;
drh6f17c092016-03-04 21:18:09 +00001301 for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); }
drhc81c11f2009-11-10 01:30:52 +00001302 return i;
1303}
1304
1305
1306/*
1307** Read or write a four-byte big-endian integer value.
1308*/
1309u32 sqlite3Get4byte(const u8 *p){
drh5372e4d2015-06-30 12:47:09 +00001310#if SQLITE_BYTEORDER==4321
1311 u32 x;
1312 memcpy(&x,p,4);
1313 return x;
drhdc5ece82017-02-15 15:09:09 +00001314#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
drh5372e4d2015-06-30 12:47:09 +00001315 u32 x;
1316 memcpy(&x,p,4);
1317 return __builtin_bswap32(x);
drha39284b2017-02-09 17:12:22 +00001318#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
mistachkin647ca462015-06-30 17:28:40 +00001319 u32 x;
1320 memcpy(&x,p,4);
1321 return _byteswap_ulong(x);
drh5372e4d2015-06-30 12:47:09 +00001322#else
drh693e6712014-01-24 22:58:00 +00001323 testcase( p[0]&0x80 );
1324 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
drh5372e4d2015-06-30 12:47:09 +00001325#endif
drhc81c11f2009-11-10 01:30:52 +00001326}
1327void sqlite3Put4byte(unsigned char *p, u32 v){
drh5372e4d2015-06-30 12:47:09 +00001328#if SQLITE_BYTEORDER==4321
1329 memcpy(p,&v,4);
drhdc5ece82017-02-15 15:09:09 +00001330#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
drh5372e4d2015-06-30 12:47:09 +00001331 u32 x = __builtin_bswap32(v);
1332 memcpy(p,&x,4);
drha39284b2017-02-09 17:12:22 +00001333#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
mistachkin647ca462015-06-30 17:28:40 +00001334 u32 x = _byteswap_ulong(v);
1335 memcpy(p,&x,4);
drh5372e4d2015-06-30 12:47:09 +00001336#else
drhc81c11f2009-11-10 01:30:52 +00001337 p[0] = (u8)(v>>24);
1338 p[1] = (u8)(v>>16);
1339 p[2] = (u8)(v>>8);
1340 p[3] = (u8)v;
drh5372e4d2015-06-30 12:47:09 +00001341#endif
drhc81c11f2009-11-10 01:30:52 +00001342}
1343
drh9296c182014-07-23 13:40:49 +00001344
1345
1346/*
1347** Translate a single byte of Hex into an integer.
1348** This routine only works if h really is a valid hexadecimal
1349** character: 0..9a..fA..F
1350*/
1351u8 sqlite3HexToInt(int h){
1352 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
1353#ifdef SQLITE_ASCII
1354 h += 9*(1&(h>>6));
1355#endif
1356#ifdef SQLITE_EBCDIC
1357 h += 9*(1&~(h>>4));
1358#endif
1359 return (u8)(h & 0xf);
1360}
1361
drhb48c0d52020-02-07 01:12:53 +00001362#if !defined(SQLITE_OMIT_BLOB_LITERAL)
drhc81c11f2009-11-10 01:30:52 +00001363/*
1364** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1365** value. Return a pointer to its binary value. Space to hold the
1366** binary value has been obtained from malloc and must be freed by
1367** the calling routine.
1368*/
1369void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1370 char *zBlob;
1371 int i;
1372
drh575fad62016-02-05 13:38:36 +00001373 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
drhc81c11f2009-11-10 01:30:52 +00001374 n--;
1375 if( zBlob ){
1376 for(i=0; i<n; i+=2){
dancd74b612011-04-22 19:37:32 +00001377 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
drhc81c11f2009-11-10 01:30:52 +00001378 }
1379 zBlob[i/2] = 0;
1380 }
1381 return zBlob;
1382}
drhb48c0d52020-02-07 01:12:53 +00001383#endif /* !SQLITE_OMIT_BLOB_LITERAL */
drhc81c11f2009-11-10 01:30:52 +00001384
drh413c3d32010-02-23 20:11:56 +00001385/*
1386** Log an error that is an API call on a connection pointer that should
1387** not have been used. The "type" of connection pointer is given as the
1388** argument. The zType is a word like "NULL" or "closed" or "invalid".
1389*/
1390static void logBadConnection(const char *zType){
1391 sqlite3_log(SQLITE_MISUSE,
1392 "API call with %s database connection pointer",
1393 zType
1394 );
1395}
drhc81c11f2009-11-10 01:30:52 +00001396
1397/*
drhc81c11f2009-11-10 01:30:52 +00001398** Check to make sure we have a valid db pointer. This test is not
1399** foolproof but it does provide some measure of protection against
1400** misuse of the interface such as passing in db pointers that are
1401** NULL or which have been previously closed. If this routine returns
1402** 1 it means that the db pointer is valid and 0 if it should not be
1403** dereferenced for any reason. The calling function should invoke
1404** SQLITE_MISUSE immediately.
1405**
1406** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1407** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1408** open properly and is not fit for general use but which can be
1409** used as an argument to sqlite3_errmsg() or sqlite3_close().
1410*/
1411int sqlite3SafetyCheckOk(sqlite3 *db){
drh5f9de6e2021-08-07 23:16:52 +00001412 u8 eOpenState;
drh413c3d32010-02-23 20:11:56 +00001413 if( db==0 ){
1414 logBadConnection("NULL");
1415 return 0;
1416 }
drh5f9de6e2021-08-07 23:16:52 +00001417 eOpenState = db->eOpenState;
1418 if( eOpenState!=SQLITE_STATE_OPEN ){
drhe294da02010-02-25 23:44:15 +00001419 if( sqlite3SafetyCheckSickOrOk(db) ){
1420 testcase( sqlite3GlobalConfig.xLog!=0 );
drh413c3d32010-02-23 20:11:56 +00001421 logBadConnection("unopened");
1422 }
drhc81c11f2009-11-10 01:30:52 +00001423 return 0;
1424 }else{
1425 return 1;
1426 }
1427}
1428int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
drh5f9de6e2021-08-07 23:16:52 +00001429 u8 eOpenState;
1430 eOpenState = db->eOpenState;
1431 if( eOpenState!=SQLITE_STATE_SICK &&
1432 eOpenState!=SQLITE_STATE_OPEN &&
1433 eOpenState!=SQLITE_STATE_BUSY ){
drhe294da02010-02-25 23:44:15 +00001434 testcase( sqlite3GlobalConfig.xLog!=0 );
drhaf46dc12010-02-24 21:44:07 +00001435 logBadConnection("invalid");
drh413c3d32010-02-23 20:11:56 +00001436 return 0;
1437 }else{
1438 return 1;
1439 }
drhc81c11f2009-11-10 01:30:52 +00001440}
drh158b9cb2011-03-05 20:59:46 +00001441
1442/*
1443** Attempt to add, substract, or multiply the 64-bit signed value iB against
1444** the other 64-bit signed integer at *pA and store the result in *pA.
1445** Return 0 on success. Or if the operation would have resulted in an
1446** overflow, leave *pA unchanged and return 1.
1447*/
1448int sqlite3AddInt64(i64 *pA, i64 iB){
drhb9772e72017-09-12 13:27:43 +00001449#if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
drh4a477612017-01-03 17:33:43 +00001450 return __builtin_add_overflow(*pA, iB, pA);
1451#else
drh158b9cb2011-03-05 20:59:46 +00001452 i64 iA = *pA;
1453 testcase( iA==0 ); testcase( iA==1 );
1454 testcase( iB==-1 ); testcase( iB==0 );
1455 if( iB>=0 ){
1456 testcase( iA>0 && LARGEST_INT64 - iA == iB );
1457 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1458 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
drh158b9cb2011-03-05 20:59:46 +00001459 }else{
1460 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1461 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1462 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
drh158b9cb2011-03-05 20:59:46 +00001463 }
drh53a6eb32014-02-10 12:59:15 +00001464 *pA += iB;
drh158b9cb2011-03-05 20:59:46 +00001465 return 0;
drh4a477612017-01-03 17:33:43 +00001466#endif
drh158b9cb2011-03-05 20:59:46 +00001467}
1468int sqlite3SubInt64(i64 *pA, i64 iB){
drhb9772e72017-09-12 13:27:43 +00001469#if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
drh4a477612017-01-03 17:33:43 +00001470 return __builtin_sub_overflow(*pA, iB, pA);
1471#else
drh158b9cb2011-03-05 20:59:46 +00001472 testcase( iB==SMALLEST_INT64+1 );
1473 if( iB==SMALLEST_INT64 ){
1474 testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1475 if( (*pA)>=0 ) return 1;
1476 *pA -= iB;
1477 return 0;
1478 }else{
1479 return sqlite3AddInt64(pA, -iB);
1480 }
drh4a477612017-01-03 17:33:43 +00001481#endif
drh158b9cb2011-03-05 20:59:46 +00001482}
drh158b9cb2011-03-05 20:59:46 +00001483int sqlite3MulInt64(i64 *pA, i64 iB){
drhb9772e72017-09-12 13:27:43 +00001484#if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
drh4a477612017-01-03 17:33:43 +00001485 return __builtin_mul_overflow(*pA, iB, pA);
1486#else
drh158b9cb2011-03-05 20:59:46 +00001487 i64 iA = *pA;
drh09952c62016-09-20 22:04:05 +00001488 if( iB>0 ){
1489 if( iA>LARGEST_INT64/iB ) return 1;
1490 if( iA<SMALLEST_INT64/iB ) return 1;
1491 }else if( iB<0 ){
1492 if( iA>0 ){
1493 if( iB<SMALLEST_INT64/iA ) return 1;
1494 }else if( iA<0 ){
1495 if( iB==SMALLEST_INT64 ) return 1;
1496 if( iA==SMALLEST_INT64 ) return 1;
1497 if( -iA>LARGEST_INT64/-iB ) return 1;
drh53a6eb32014-02-10 12:59:15 +00001498 }
drh53a6eb32014-02-10 12:59:15 +00001499 }
drh09952c62016-09-20 22:04:05 +00001500 *pA = iA*iB;
drh158b9cb2011-03-05 20:59:46 +00001501 return 0;
drh4a477612017-01-03 17:33:43 +00001502#endif
drh158b9cb2011-03-05 20:59:46 +00001503}
drhd50ffc42011-03-08 02:38:28 +00001504
1505/*
1506** Compute the absolute value of a 32-bit signed integer, of possible. Or
1507** if the integer has a value of -2147483648, return +2147483647
1508*/
1509int sqlite3AbsInt32(int x){
1510 if( x>=0 ) return x;
drh87e79ae2011-03-08 13:06:41 +00001511 if( x==(int)0x80000000 ) return 0x7fffffff;
drhd50ffc42011-03-08 02:38:28 +00001512 return -x;
1513}
drh81cc5162011-05-17 20:36:21 +00001514
1515#ifdef SQLITE_ENABLE_8_3_NAMES
1516/*
drhb51bf432011-07-21 21:29:35 +00001517** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
drh81cc5162011-05-17 20:36:21 +00001518** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1519** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1520** three characters, then shorten the suffix on z[] to be the last three
1521** characters of the original suffix.
1522**
drhb51bf432011-07-21 21:29:35 +00001523** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1524** do the suffix shortening regardless of URI parameter.
1525**
drh81cc5162011-05-17 20:36:21 +00001526** Examples:
1527**
1528** test.db-journal => test.nal
1529** test.db-wal => test.wal
1530** test.db-shm => test.shm
drhf5808602011-12-16 00:33:04 +00001531** test.db-mj7f3319fa => test.9fa
drh81cc5162011-05-17 20:36:21 +00001532*/
1533void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
drhb51bf432011-07-21 21:29:35 +00001534#if SQLITE_ENABLE_8_3_NAMES<2
drh7d39e172012-01-02 12:41:53 +00001535 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
drhb51bf432011-07-21 21:29:35 +00001536#endif
1537 {
drh81cc5162011-05-17 20:36:21 +00001538 int i, sz;
1539 sz = sqlite3Strlen30(z);
drhc83f2d42011-05-18 02:41:10 +00001540 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
drhc02a43a2012-01-10 23:18:38 +00001541 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
drh81cc5162011-05-17 20:36:21 +00001542 }
1543}
1544#endif
drhbf539c42013-10-05 18:16:02 +00001545
1546/*
1547** Find (an approximate) sum of two LogEst values. This computation is
1548** not a simple "+" operator because LogEst is stored as a logarithmic
1549** value.
1550**
1551*/
1552LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1553 static const unsigned char x[] = {
1554 10, 10, /* 0,1 */
1555 9, 9, /* 2,3 */
1556 8, 8, /* 4,5 */
1557 7, 7, 7, /* 6,7,8 */
1558 6, 6, 6, /* 9,10,11 */
1559 5, 5, 5, /* 12-14 */
1560 4, 4, 4, 4, /* 15-18 */
1561 3, 3, 3, 3, 3, 3, /* 19-24 */
1562 2, 2, 2, 2, 2, 2, 2, /* 25-31 */
1563 };
1564 if( a>=b ){
1565 if( a>b+49 ) return a;
1566 if( a>b+31 ) return a+1;
1567 return a+x[a-b];
1568 }else{
1569 if( b>a+49 ) return b;
1570 if( b>a+31 ) return b+1;
1571 return b+x[b-a];
1572 }
1573}
1574
1575/*
drh224155d2014-04-30 13:19:09 +00001576** Convert an integer into a LogEst. In other words, compute an
1577** approximation for 10*log2(x).
drhbf539c42013-10-05 18:16:02 +00001578*/
1579LogEst sqlite3LogEst(u64 x){
1580 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1581 LogEst y = 40;
1582 if( x<8 ){
1583 if( x<2 ) return 0;
1584 while( x<8 ){ y -= 10; x <<= 1; }
1585 }else{
drhceb4b1d2017-08-17 20:53:07 +00001586#if GCC_VERSION>=5004000
1587 int i = 60 - __builtin_clzll(x);
1588 y += i*10;
1589 x >>= i;
1590#else
drh75ab50c2016-04-28 14:15:12 +00001591 while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/
drhbf539c42013-10-05 18:16:02 +00001592 while( x>15 ){ y += 10; x >>= 1; }
drhceb4b1d2017-08-17 20:53:07 +00001593#endif
drhbf539c42013-10-05 18:16:02 +00001594 }
1595 return a[x&7] + y - 10;
1596}
1597
1598#ifndef SQLITE_OMIT_VIRTUALTABLE
1599/*
1600** Convert a double into a LogEst
1601** In other words, compute an approximation for 10*log2(x).
1602*/
1603LogEst sqlite3LogEstFromDouble(double x){
1604 u64 a;
1605 LogEst e;
1606 assert( sizeof(x)==8 && sizeof(a)==8 );
1607 if( x<=1 ) return 0;
1608 if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1609 memcpy(&a, &x, 8);
1610 e = (a>>52) - 1022;
1611 return e*10;
1612}
1613#endif /* SQLITE_OMIT_VIRTUALTABLE */
1614
drh14bfd992016-03-05 14:00:09 +00001615#if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
drh175b8f02019-08-08 15:24:17 +00001616 defined(SQLITE_ENABLE_STAT4) || \
drhd566c952016-02-25 21:19:03 +00001617 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
drhbf539c42013-10-05 18:16:02 +00001618/*
1619** Convert a LogEst into an integer.
drhd566c952016-02-25 21:19:03 +00001620**
1621** Note that this routine is only used when one or more of various
1622** non-standard compile-time options is enabled.
drhbf539c42013-10-05 18:16:02 +00001623*/
1624u64 sqlite3LogEstToInt(LogEst x){
1625 u64 n;
drhbf539c42013-10-05 18:16:02 +00001626 n = x%10;
1627 x /= 10;
1628 if( n>=5 ) n -= 2;
1629 else if( n>=1 ) n -= 1;
drhecdf20d2016-03-10 14:28:24 +00001630#if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || \
1631 defined(SQLITE_EXPLAIN_ESTIMATED_ROWS)
1632 if( x>60 ) return (u64)LARGEST_INT64;
1633#else
drh175b8f02019-08-08 15:24:17 +00001634 /* If only SQLITE_ENABLE_STAT4 is on, then the largest input
drhecdf20d2016-03-10 14:28:24 +00001635 ** possible to this routine is 310, resulting in a maximum x of 31 */
1636 assert( x<=60 );
1637#endif
1638 return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x);
drhbf539c42013-10-05 18:16:02 +00001639}
drhd566c952016-02-25 21:19:03 +00001640#endif /* defined SCANSTAT or STAT4 or ESTIMATED_ROWS */
drh9bf755c2016-12-23 03:59:31 +00001641
1642/*
1643** Add a new name/number pair to a VList. This might require that the
1644** VList object be reallocated, so return the new VList. If an OOM
drhce1bbe52016-12-23 13:52:45 +00001645** error occurs, the original VList returned and the
drh9bf755c2016-12-23 03:59:31 +00001646** db->mallocFailed flag is set.
1647**
1648** A VList is really just an array of integers. To destroy a VList,
1649** simply pass it to sqlite3DbFree().
1650**
1651** The first integer is the number of integers allocated for the whole
1652** VList. The second integer is the number of integers actually used.
1653** Each name/number pair is encoded by subsequent groups of 3 or more
1654** integers.
1655**
drhce1bbe52016-12-23 13:52:45 +00001656** Each name/number pair starts with two integers which are the numeric
drh9bf755c2016-12-23 03:59:31 +00001657** value for the pair and the size of the name/number pair, respectively.
1658** The text name overlays one or more following integers. The text name
1659** is always zero-terminated.
drhce1bbe52016-12-23 13:52:45 +00001660**
1661** Conceptually:
1662**
1663** struct VList {
1664** int nAlloc; // Number of allocated slots
1665** int nUsed; // Number of used slots
1666** struct VListEntry {
1667** int iValue; // Value for this entry
1668** int nSlot; // Slots used by this entry
1669** // ... variable name goes here
1670** } a[0];
1671** }
1672**
1673** During code generation, pointers to the variable names within the
1674** VList are taken. When that happens, nAlloc is set to zero as an
1675** indication that the VList may never again be enlarged, since the
1676** accompanying realloc() would invalidate the pointers.
drh9bf755c2016-12-23 03:59:31 +00001677*/
1678VList *sqlite3VListAdd(
1679 sqlite3 *db, /* The database connection used for malloc() */
1680 VList *pIn, /* The input VList. Might be NULL */
1681 const char *zName, /* Name of symbol to add */
1682 int nName, /* Bytes of text in zName */
1683 int iVal /* Value to associate with zName */
1684){
1685 int nInt; /* number of sizeof(int) objects needed for zName */
drhce1bbe52016-12-23 13:52:45 +00001686 char *z; /* Pointer to where zName will be stored */
1687 int i; /* Index in pIn[] where zName is stored */
drh9bf755c2016-12-23 03:59:31 +00001688
1689 nInt = nName/4 + 3;
drhce1bbe52016-12-23 13:52:45 +00001690 assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */
drh9bf755c2016-12-23 03:59:31 +00001691 if( pIn==0 || pIn[1]+nInt > pIn[0] ){
1692 /* Enlarge the allocation */
drh0aa32312019-04-13 04:01:12 +00001693 sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt;
drh9bf755c2016-12-23 03:59:31 +00001694 VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int));
drhce1bbe52016-12-23 13:52:45 +00001695 if( pOut==0 ) return pIn;
drh9bf755c2016-12-23 03:59:31 +00001696 if( pIn==0 ) pOut[1] = 2;
1697 pIn = pOut;
1698 pIn[0] = nAlloc;
1699 }
1700 i = pIn[1];
1701 pIn[i] = iVal;
1702 pIn[i+1] = nInt;
1703 z = (char*)&pIn[i+2];
1704 pIn[1] = i+nInt;
1705 assert( pIn[1]<=pIn[0] );
1706 memcpy(z, zName, nName);
1707 z[nName] = 0;
1708 return pIn;
1709}
1710
1711/*
1712** Return a pointer to the name of a variable in the given VList that
1713** has the value iVal. Or return a NULL if there is no such variable in
1714** the list
1715*/
1716const char *sqlite3VListNumToName(VList *pIn, int iVal){
1717 int i, mx;
1718 if( pIn==0 ) return 0;
1719 mx = pIn[1];
1720 i = 2;
1721 do{
1722 if( pIn[i]==iVal ) return (char*)&pIn[i+2];
1723 i += pIn[i+1];
1724 }while( i<mx );
1725 return 0;
1726}
1727
1728/*
1729** Return the number of the variable named zName, if it is in VList.
1730** or return 0 if there is no such variable.
1731*/
1732int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){
1733 int i, mx;
1734 if( pIn==0 ) return 0;
1735 mx = pIn[1];
1736 i = 2;
1737 do{
1738 const char *z = (const char*)&pIn[i+2];
1739 if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i];
1740 i += pIn[i+1];
1741 }while( i<mx );
1742 return 0;
1743}