blob: fa9c88f3c9d84a122bbe453ddbc221d7fbe88e96 [file] [log] [blame]
drha3152892007-05-05 11:48:52 +00001/*
2** 2001 September 15
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
drhfec00ea2008-06-14 16:56:21 +000012**
drha3152892007-05-05 11:48:52 +000013** Memory allocation functions used throughout sqlite.
14**
drhe50135e2008-08-05 17:53:22 +000015** $Id: malloc.c,v 1.34 2008/08/05 17:53:23 drh Exp $
drha3152892007-05-05 11:48:52 +000016*/
17#include "sqliteInt.h"
drha3152892007-05-05 11:48:52 +000018#include <stdarg.h>
19#include <ctype.h>
20
21/*
drhb21c8cd2007-08-21 19:33:56 +000022** This routine runs when the memory allocator sees that the
23** total memory allocation is about to exceed the soft heap
24** limit.
25*/
26static void softHeapLimitEnforcer(
27 void *NotUsed,
drh153c62c2007-08-24 03:51:33 +000028 sqlite3_int64 inUse,
29 int allocSize
drhb21c8cd2007-08-21 19:33:56 +000030){
31 sqlite3_release_memory(allocSize);
32}
33
34/*
danielk197784680242008-06-23 11:11:35 +000035** Set the soft heap-size limit for the library. Passing a zero or
36** negative value indicates no limit.
drha3152892007-05-05 11:48:52 +000037*/
38void sqlite3_soft_heap_limit(int n){
drhb21c8cd2007-08-21 19:33:56 +000039 sqlite3_uint64 iLimit;
40 int overage;
41 if( n<0 ){
42 iLimit = 0;
43 }else{
44 iLimit = n;
drha3152892007-05-05 11:48:52 +000045 }
drh9ac3fe92008-06-18 18:12:04 +000046 sqlite3_initialize();
drhb21c8cd2007-08-21 19:33:56 +000047 if( iLimit>0 ){
48 sqlite3_memory_alarm(softHeapLimitEnforcer, 0, iLimit);
49 }else{
50 sqlite3_memory_alarm(0, 0, 0);
51 }
52 overage = sqlite3_memory_used() - n;
53 if( overage>0 ){
54 sqlite3_release_memory(overage);
55 }
drha3152892007-05-05 11:48:52 +000056}
57
58/*
danielk197784680242008-06-23 11:11:35 +000059** Attempt to release up to n bytes of non-essential memory currently
60** held by SQLite. An example of non-essential memory is memory used to
61** cache database pages that are not currently in use.
drha3152892007-05-05 11:48:52 +000062*/
63int sqlite3_release_memory(int n){
drh86f8c192007-08-22 00:39:19 +000064#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
danielk1977dfb316d2008-03-26 18:34:43 +000065 int nRet = sqlite3VdbeReleaseMemory(n);
66 nRet += sqlite3PagerReleaseMemory(n-nRet);
67 return nRet;
danielk19771e536952007-08-16 10:09:01 +000068#else
69 return SQLITE_OK;
70#endif
drha3152892007-05-05 11:48:52 +000071}
drha3152892007-05-05 11:48:52 +000072
drhfec00ea2008-06-14 16:56:21 +000073/*
74** State information local to the memory allocation subsystem.
75*/
76static struct {
77 sqlite3_mutex *mutex; /* Mutex to serialize access */
78
79 /*
80 ** The alarm callback and its arguments. The mem0.mutex lock will
81 ** be held while the callback is running. Recursive calls into
82 ** the memory subsystem are allowed, but no new callbacks will be
83 ** issued. The alarmBusy variable is set to prevent recursive
84 ** callbacks.
85 */
86 sqlite3_int64 alarmThreshold;
87 void (*alarmCallback)(void*, sqlite3_int64,int);
88 void *alarmArg;
89 int alarmBusy;
90
91 /*
drh9ac3fe92008-06-18 18:12:04 +000092 ** Pointers to the end of sqlite3Config.pScratch and
93 ** sqlite3Config.pPage to a block of memory that records
94 ** which pages are available.
95 */
96 u32 *aScratchFree;
97 u32 *aPageFree;
98
99 /* Number of free pages for scratch and page-cache memory */
100 u32 nScratchFree;
101 u32 nPageFree;
drhfec00ea2008-06-14 16:56:21 +0000102} mem0;
103
104/*
105** Initialize the memory allocation subsystem.
106*/
107int sqlite3MallocInit(void){
108 if( sqlite3Config.m.xMalloc==0 ){
109 sqlite3MemSetDefault();
110 }
111 memset(&mem0, 0, sizeof(mem0));
drh9ac3fe92008-06-18 18:12:04 +0000112 if( sqlite3Config.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +0000113 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
drhfec00ea2008-06-14 16:56:21 +0000114 }
drh6480aad2008-08-01 16:31:14 +0000115 if( sqlite3Config.pScratch && sqlite3Config.szScratch>=100
116 && sqlite3Config.nScratch>=0 ){
drh9ac3fe92008-06-18 18:12:04 +0000117 int i;
drh0a60a382008-07-31 17:16:05 +0000118 sqlite3Config.szScratch -= 4;
drh9ac3fe92008-06-18 18:12:04 +0000119 mem0.aScratchFree = (u32*)&((char*)sqlite3Config.pScratch)
120 [sqlite3Config.szScratch*sqlite3Config.nScratch];
121 for(i=0; i<sqlite3Config.nScratch; i++){ mem0.aScratchFree[i] = i; }
122 mem0.nScratchFree = sqlite3Config.nScratch;
123 }else{
124 sqlite3Config.pScratch = 0;
drhf7141992008-06-19 00:16:08 +0000125 sqlite3Config.szScratch = 0;
drh9ac3fe92008-06-18 18:12:04 +0000126 }
127 if( sqlite3Config.pPage && sqlite3Config.szPage>=512
drh6480aad2008-08-01 16:31:14 +0000128 && sqlite3Config.nPage>=1 ){
drh9ac3fe92008-06-18 18:12:04 +0000129 int i;
drh0a60a382008-07-31 17:16:05 +0000130 int overhead;
131 int sz = sqlite3Config.szPage;
132 int n = sqlite3Config.nPage;
133 overhead = (4*n + sz - 1)/sz;
134 sqlite3Config.nPage -= overhead;
drh9ac3fe92008-06-18 18:12:04 +0000135 mem0.aPageFree = (u32*)&((char*)sqlite3Config.pPage)
136 [sqlite3Config.szPage*sqlite3Config.nPage];
137 for(i=0; i<sqlite3Config.nPage; i++){ mem0.aPageFree[i] = i; }
138 mem0.nPageFree = sqlite3Config.nPage;
139 }else{
140 sqlite3Config.pPage = 0;
drhf7141992008-06-19 00:16:08 +0000141 sqlite3Config.szPage = 0;
drh9ac3fe92008-06-18 18:12:04 +0000142 }
drhfec00ea2008-06-14 16:56:21 +0000143 return sqlite3Config.m.xInit(sqlite3Config.m.pAppData);
144}
145
146/*
147** Deinitialize the memory allocation subsystem.
148*/
149void sqlite3MallocEnd(void){
drh9ac3fe92008-06-18 18:12:04 +0000150 sqlite3Config.m.xShutdown(sqlite3Config.m.pAppData);
151 memset(&mem0, 0, sizeof(mem0));
drhfec00ea2008-06-14 16:56:21 +0000152}
153
154/*
155** Return the amount of memory currently checked out.
156*/
157sqlite3_int64 sqlite3_memory_used(void){
drhf7141992008-06-19 00:16:08 +0000158 int n, mx;
drhc376a192008-07-14 12:30:54 +0000159 sqlite3_int64 res;
drhf7141992008-06-19 00:16:08 +0000160 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0);
drhc376a192008-07-14 12:30:54 +0000161 res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */
162 return res;
drhfec00ea2008-06-14 16:56:21 +0000163}
164
165/*
166** Return the maximum amount of memory that has ever been
167** checked out since either the beginning of this process
168** or since the most recent reset.
169*/
170sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
drhf7141992008-06-19 00:16:08 +0000171 int n, mx;
drhc376a192008-07-14 12:30:54 +0000172 sqlite3_int64 res;
drhf7141992008-06-19 00:16:08 +0000173 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag);
drh7986a712008-07-14 12:38:20 +0000174 res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */
drhc376a192008-07-14 12:30:54 +0000175 return res;
drhfec00ea2008-06-14 16:56:21 +0000176}
177
178/*
179** Change the alarm callback
180*/
181int sqlite3_memory_alarm(
182 void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
183 void *pArg,
184 sqlite3_int64 iThreshold
185){
186 sqlite3_mutex_enter(mem0.mutex);
187 mem0.alarmCallback = xCallback;
188 mem0.alarmArg = pArg;
189 mem0.alarmThreshold = iThreshold;
190 sqlite3_mutex_leave(mem0.mutex);
191 return SQLITE_OK;
192}
193
194/*
195** Trigger the alarm
196*/
197static void sqlite3MallocAlarm(int nByte){
198 void (*xCallback)(void*,sqlite3_int64,int);
199 sqlite3_int64 nowUsed;
200 void *pArg;
201 if( mem0.alarmCallback==0 || mem0.alarmBusy ) return;
202 mem0.alarmBusy = 1;
203 xCallback = mem0.alarmCallback;
drhf7141992008-06-19 00:16:08 +0000204 nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
drhfec00ea2008-06-14 16:56:21 +0000205 pArg = mem0.alarmArg;
206 sqlite3_mutex_leave(mem0.mutex);
207 xCallback(pArg, nowUsed, nByte);
208 sqlite3_mutex_enter(mem0.mutex);
209 mem0.alarmBusy = 0;
210}
211
drhf7141992008-06-19 00:16:08 +0000212/*
213** Do a memory allocation with statistics and alarms. Assume the
214** lock is already held.
215*/
216static int mallocWithAlarm(int n, void **pp){
217 int nFull;
218 void *p;
219 assert( sqlite3_mutex_held(mem0.mutex) );
220 nFull = sqlite3Config.m.xRoundup(n);
221 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
222 if( mem0.alarmCallback!=0 ){
223 int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
224 if( nUsed+nFull >= mem0.alarmThreshold ){
225 sqlite3MallocAlarm(nFull);
226 }
227 }
danielk1977d09414c2008-06-19 18:17:49 +0000228 p = sqlite3Config.m.xMalloc(nFull);
229 if( p==0 && mem0.alarmCallback ){
230 sqlite3MallocAlarm(nFull);
drhf7141992008-06-19 00:16:08 +0000231 p = sqlite3Config.m.xMalloc(nFull);
drhf7141992008-06-19 00:16:08 +0000232 }
drhc702c7c2008-07-18 18:56:16 +0000233 if( p ){
234 nFull = sqlite3MallocSize(p);
235 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull);
236 }
drhf7141992008-06-19 00:16:08 +0000237 *pp = p;
238 return nFull;
239}
drhfec00ea2008-06-14 16:56:21 +0000240
241/*
242** Allocate memory. This routine is like sqlite3_malloc() except that it
243** assumes the memory subsystem has already been initialized.
244*/
245void *sqlite3Malloc(int n){
246 void *p;
drhfec00ea2008-06-14 16:56:21 +0000247 if( n<=0 ){
drhf7141992008-06-19 00:16:08 +0000248 p = 0;
drhfec00ea2008-06-14 16:56:21 +0000249 }else if( sqlite3Config.bMemstat ){
drhfec00ea2008-06-14 16:56:21 +0000250 sqlite3_mutex_enter(mem0.mutex);
drhf7141992008-06-19 00:16:08 +0000251 mallocWithAlarm(n, &p);
drhfec00ea2008-06-14 16:56:21 +0000252 sqlite3_mutex_leave(mem0.mutex);
253 }else{
254 p = sqlite3Config.m.xMalloc(n);
255 }
256 return p;
257}
258
259/*
260** This version of the memory allocation is for use by the application.
261** First make sure the memory subsystem is initialized, then do the
262** allocation.
263*/
264void *sqlite3_malloc(int n){
265#ifndef SQLITE_OMIT_AUTOINIT
266 if( sqlite3_initialize() ) return 0;
267#endif
268 return sqlite3Malloc(n);
269}
270
271/*
drhe5ae5732008-06-15 02:51:47 +0000272** Each thread may only have a single outstanding allocation from
drhfacf0302008-06-17 15:12:00 +0000273** xScratchMalloc(). We verify this constraint in the single-threaded
274** case by setting scratchAllocOut to 1 when an allocation
drhe5ae5732008-06-15 02:51:47 +0000275** is outstanding clearing it when the allocation is freed.
276*/
277#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
drhfacf0302008-06-17 15:12:00 +0000278static int scratchAllocOut = 0;
drhe5ae5732008-06-15 02:51:47 +0000279#endif
280
281
282/*
283** Allocate memory that is to be used and released right away.
284** This routine is similar to alloca() in that it is not intended
285** for situations where the memory might be held long-term. This
286** routine is intended to get memory to old large transient data
287** structures that would not normally fit on the stack of an
288** embedded processor.
289*/
drhfacf0302008-06-17 15:12:00 +0000290void *sqlite3ScratchMalloc(int n){
drhe5ae5732008-06-15 02:51:47 +0000291 void *p;
292 assert( n>0 );
drh9ac3fe92008-06-18 18:12:04 +0000293
drhe5ae5732008-06-15 02:51:47 +0000294#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
drh9ac3fe92008-06-18 18:12:04 +0000295 /* Verify that no more than one scratch allocation per thread
296 ** is outstanding at one time. (This is only checked in the
297 ** single-threaded case since checking in the multi-threaded case
298 ** would be much more complicated.) */
drhfacf0302008-06-17 15:12:00 +0000299 assert( scratchAllocOut==0 );
drhe5ae5732008-06-15 02:51:47 +0000300#endif
drh9ac3fe92008-06-18 18:12:04 +0000301
drhf7141992008-06-19 00:16:08 +0000302 if( sqlite3Config.szScratch<n ){
303 goto scratch_overflow;
304 }else{
305 sqlite3_mutex_enter(mem0.mutex);
306 if( mem0.nScratchFree==0 ){
307 sqlite3_mutex_leave(mem0.mutex);
308 goto scratch_overflow;
309 }else{
310 int i;
311 i = mem0.aScratchFree[--mem0.nScratchFree];
312 sqlite3_mutex_leave(mem0.mutex);
313 i *= sqlite3Config.szScratch;
314 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1);
drhe50135e2008-08-05 17:53:22 +0000315 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
drhf7141992008-06-19 00:16:08 +0000316 p = (void*)&((char*)sqlite3Config.pScratch)[i];
317 }
drhe5ae5732008-06-15 02:51:47 +0000318 }
drhf7141992008-06-19 00:16:08 +0000319#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
320 scratchAllocOut = p!=0;
321#endif
322
drhe5ae5732008-06-15 02:51:47 +0000323 return p;
drhf7141992008-06-19 00:16:08 +0000324
325scratch_overflow:
326 if( sqlite3Config.bMemstat ){
327 sqlite3_mutex_enter(mem0.mutex);
drhe50135e2008-08-05 17:53:22 +0000328 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
drhf7141992008-06-19 00:16:08 +0000329 n = mallocWithAlarm(n, &p);
330 if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n);
331 sqlite3_mutex_leave(mem0.mutex);
332 }else{
333 p = sqlite3Config.m.xMalloc(n);
334 }
335#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
336 scratchAllocOut = p!=0;
337#endif
338 return p;
drhe5ae5732008-06-15 02:51:47 +0000339}
drhfacf0302008-06-17 15:12:00 +0000340void sqlite3ScratchFree(void *p){
drhe5ae5732008-06-15 02:51:47 +0000341 if( p ){
drh9ac3fe92008-06-18 18:12:04 +0000342
drhe5ae5732008-06-15 02:51:47 +0000343#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
drh9ac3fe92008-06-18 18:12:04 +0000344 /* Verify that no more than one scratch allocation per thread
345 ** is outstanding at one time. (This is only checked in the
346 ** single-threaded case since checking in the multi-threaded case
347 ** would be much more complicated.) */
drhfacf0302008-06-17 15:12:00 +0000348 assert( scratchAllocOut==1 );
349 scratchAllocOut = 0;
drhe5ae5732008-06-15 02:51:47 +0000350#endif
drh9ac3fe92008-06-18 18:12:04 +0000351
352 if( sqlite3Config.pScratch==0
drhf7141992008-06-19 00:16:08 +0000353 || p<sqlite3Config.pScratch
354 || p>=(void*)mem0.aScratchFree ){
355 if( sqlite3Config.bMemstat ){
356 int iSize = sqlite3MallocSize(p);
357 sqlite3_mutex_enter(mem0.mutex);
358 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize);
359 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
360 sqlite3Config.m.xFree(p);
361 sqlite3_mutex_leave(mem0.mutex);
362 }else{
363 sqlite3Config.m.xFree(p);
364 }
drh9ac3fe92008-06-18 18:12:04 +0000365 }else{
366 int i;
danielk1977867d05a2008-06-23 14:03:45 +0000367 i = (u8 *)p - (u8 *)sqlite3Config.pScratch;
drh9ac3fe92008-06-18 18:12:04 +0000368 i /= sqlite3Config.szScratch;
369 assert( i>=0 && i<sqlite3Config.nScratch );
drhf7141992008-06-19 00:16:08 +0000370 sqlite3_mutex_enter(mem0.mutex);
371 assert( mem0.nScratchFree<sqlite3Config.nScratch );
drh9ac3fe92008-06-18 18:12:04 +0000372 mem0.aScratchFree[mem0.nScratchFree++] = i;
drhf7141992008-06-19 00:16:08 +0000373 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1);
drh9ac3fe92008-06-18 18:12:04 +0000374 sqlite3_mutex_leave(mem0.mutex);
375 }
drhe5ae5732008-06-15 02:51:47 +0000376 }
377}
378
379/*
drhf7141992008-06-19 00:16:08 +0000380** Allocate memory to be used by the page cache. Make use of the
381** memory buffer provided by SQLITE_CONFIG_PAGECACHE if there is one
382** and that memory is of the right size and is not completely
383** consumed. Otherwise, failover to sqlite3Malloc().
drhfacf0302008-06-17 15:12:00 +0000384*/
drhf7141992008-06-19 00:16:08 +0000385void *sqlite3PageMalloc(int n){
386 void *p;
387 assert( n>0 );
388 assert( (n & (n-1))==0 );
389 assert( n>=512 && n<=32768 );
drhf7141992008-06-19 00:16:08 +0000390
391 if( sqlite3Config.szPage<n ){
392 goto page_overflow;
393 }else{
394 sqlite3_mutex_enter(mem0.mutex);
395 if( mem0.nPageFree==0 ){
396 sqlite3_mutex_leave(mem0.mutex);
397 goto page_overflow;
398 }else{
399 int i;
400 i = mem0.aPageFree[--mem0.nPageFree];
401 sqlite3_mutex_leave(mem0.mutex);
402 i *= sqlite3Config.szPage;
drhe50135e2008-08-05 17:53:22 +0000403 sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, n);
drhf7141992008-06-19 00:16:08 +0000404 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
405 p = (void*)&((char*)sqlite3Config.pPage)[i];
406 }
407 }
408 return p;
409
410page_overflow:
411 if( sqlite3Config.bMemstat ){
412 sqlite3_mutex_enter(mem0.mutex);
drhe50135e2008-08-05 17:53:22 +0000413 sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, n);
drhf7141992008-06-19 00:16:08 +0000414 n = mallocWithAlarm(n, &p);
415 if( p ) sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, n);
416 sqlite3_mutex_leave(mem0.mutex);
417 }else{
418 p = sqlite3Config.m.xMalloc(n);
419 }
420 return p;
drhfacf0302008-06-17 15:12:00 +0000421}
drhf7141992008-06-19 00:16:08 +0000422void sqlite3PageFree(void *p){
423 if( p ){
424 if( sqlite3Config.pPage==0
425 || p<sqlite3Config.pPage
426 || p>=(void*)mem0.aPageFree ){
danielk19774b9507a2008-06-21 08:12:15 +0000427 /* In this case, the page allocation was obtained from a regular
428 ** call to sqlite3_mem_methods.xMalloc() (a page-cache-memory
429 ** "overflow"). Free the block with sqlite3_mem_methods.xFree().
430 */
drhf7141992008-06-19 00:16:08 +0000431 if( sqlite3Config.bMemstat ){
432 int iSize = sqlite3MallocSize(p);
433 sqlite3_mutex_enter(mem0.mutex);
434 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -iSize);
435 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
436 sqlite3Config.m.xFree(p);
437 sqlite3_mutex_leave(mem0.mutex);
438 }else{
439 sqlite3Config.m.xFree(p);
440 }
441 }else{
danielk19774b9507a2008-06-21 08:12:15 +0000442 /* The page allocation was allocated from the sqlite3Config.pPage
443 ** buffer. In this case all that is add the index of the page in
444 ** the sqlite3Config.pPage array to the set of free indexes stored
445 ** in the mem0.aPageFree[] array.
446 */
drhf7141992008-06-19 00:16:08 +0000447 int i;
danielk1977867d05a2008-06-23 14:03:45 +0000448 i = (u8 *)p - (u8 *)sqlite3Config.pPage;
drhf7141992008-06-19 00:16:08 +0000449 i /= sqlite3Config.szPage;
450 assert( i>=0 && i<sqlite3Config.nPage );
451 sqlite3_mutex_enter(mem0.mutex);
452 assert( mem0.nPageFree<sqlite3Config.nPage );
453 mem0.aPageFree[mem0.nPageFree++] = i;
454 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
455 sqlite3_mutex_leave(mem0.mutex);
drh5f4bcf12008-07-29 14:29:06 +0000456#if !defined(NDEBUG) && 0
danielk19774b9507a2008-06-21 08:12:15 +0000457 /* Assert that a duplicate was not just inserted into aPageFree[]. */
458 for(i=0; i<mem0.nPageFree-1; i++){
459 assert( mem0.aPageFree[i]!=mem0.aPageFree[mem0.nPageFree-1] );
460 }
461#endif
drhf7141992008-06-19 00:16:08 +0000462 }
463 }
drhfacf0302008-06-17 15:12:00 +0000464}
465
466/*
drh633e6d52008-07-28 19:34:53 +0000467** TRUE if p is a lookaside memory allocation from db
468*/
469static int isLookaside(sqlite3 *db, void *p){
470 return db && p && p>=db->lookaside.pStart && p<db->lookaside.pEnd;
471}
472
473/*
drhfec00ea2008-06-14 16:56:21 +0000474** Return the size of a memory allocation previously obtained from
475** sqlite3Malloc() or sqlite3_malloc().
476*/
477int sqlite3MallocSize(void *p){
478 return sqlite3Config.m.xSize(p);
479}
drh633e6d52008-07-28 19:34:53 +0000480int sqlite3DbMallocSize(sqlite3 *db, void *p){
481 if( isLookaside(db, p) ){
482 return db->lookaside.sz;
483 }else{
484 return sqlite3Config.m.xSize(p);
485 }
486}
drhfec00ea2008-06-14 16:56:21 +0000487
488/*
489** Free memory previously obtained from sqlite3Malloc().
490*/
491void sqlite3_free(void *p){
492 if( p==0 ) return;
493 if( sqlite3Config.bMemstat ){
494 sqlite3_mutex_enter(mem0.mutex);
drhf7141992008-06-19 00:16:08 +0000495 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p));
drhfec00ea2008-06-14 16:56:21 +0000496 sqlite3Config.m.xFree(p);
497 sqlite3_mutex_leave(mem0.mutex);
498 }else{
499 sqlite3Config.m.xFree(p);
500 }
501}
502
503/*
drh633e6d52008-07-28 19:34:53 +0000504** Free memory that might be associated with a particular database
505** connection.
506*/
507void sqlite3DbFree(sqlite3 *db, void *p){
508 if( isLookaside(db, p) ){
509 LookasideSlot *pBuf = (LookasideSlot*)p;
510 pBuf->pNext = db->lookaside.pFree;
511 db->lookaside.pFree = pBuf;
512 db->lookaside.nOut--;
513 }else{
514 sqlite3_free(p);
515 }
516}
517
518/*
drhfec00ea2008-06-14 16:56:21 +0000519** Change the size of an existing memory allocation
520*/
521void *sqlite3Realloc(void *pOld, int nBytes){
522 int nOld, nNew;
523 void *pNew;
524 if( pOld==0 ){
525 return sqlite3Malloc(nBytes);
526 }
527 if( nBytes<=0 ){
528 sqlite3_free(pOld);
529 return 0;
530 }
531 nOld = sqlite3MallocSize(pOld);
532 if( sqlite3Config.bMemstat ){
533 sqlite3_mutex_enter(mem0.mutex);
drhf7141992008-06-19 00:16:08 +0000534 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes);
drhfec00ea2008-06-14 16:56:21 +0000535 nNew = sqlite3Config.m.xRoundup(nBytes);
536 if( nOld==nNew ){
537 pNew = pOld;
538 }else{
drhf7141992008-06-19 00:16:08 +0000539 if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >=
540 mem0.alarmThreshold ){
drhfec00ea2008-06-14 16:56:21 +0000541 sqlite3MallocAlarm(nNew-nOld);
542 }
danielk1977d09414c2008-06-19 18:17:49 +0000543 pNew = sqlite3Config.m.xRealloc(pOld, nNew);
544 if( pNew==0 && mem0.alarmCallback ){
545 sqlite3MallocAlarm(nBytes);
drhfec00ea2008-06-14 16:56:21 +0000546 pNew = sqlite3Config.m.xRealloc(pOld, nNew);
drhfec00ea2008-06-14 16:56:21 +0000547 }
548 if( pNew ){
drhc702c7c2008-07-18 18:56:16 +0000549 nNew = sqlite3MallocSize(pNew);
drhf7141992008-06-19 00:16:08 +0000550 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
drhfec00ea2008-06-14 16:56:21 +0000551 }
552 }
553 sqlite3_mutex_leave(mem0.mutex);
554 }else{
555 pNew = sqlite3Config.m.xRealloc(pOld, nBytes);
556 }
557 return pNew;
558}
559
560/*
561** The public interface to sqlite3Realloc. Make sure that the memory
562** subsystem is initialized prior to invoking sqliteRealloc.
563*/
564void *sqlite3_realloc(void *pOld, int n){
565#ifndef SQLITE_OMIT_AUTOINIT
566 if( sqlite3_initialize() ) return 0;
567#endif
568 return sqlite3Realloc(pOld, n);
569}
570
drha3152892007-05-05 11:48:52 +0000571
572/*
drh17435752007-08-16 04:30:38 +0000573** Allocate and zero memory.
drha3152892007-05-05 11:48:52 +0000574*/
drhfec00ea2008-06-14 16:56:21 +0000575void *sqlite3MallocZero(int n){
576 void *p = sqlite3Malloc(n);
drha3152892007-05-05 11:48:52 +0000577 if( p ){
578 memset(p, 0, n);
579 }
580 return p;
581}
drh17435752007-08-16 04:30:38 +0000582
583/*
584** Allocate and zero memory. If the allocation fails, make
585** the mallocFailed flag in the connection pointer.
586*/
drhfec00ea2008-06-14 16:56:21 +0000587void *sqlite3DbMallocZero(sqlite3 *db, int n){
danielk1977a1644fd2007-08-29 12:31:25 +0000588 void *p = sqlite3DbMallocRaw(db, n);
drh17435752007-08-16 04:30:38 +0000589 if( p ){
590 memset(p, 0, n);
drh17435752007-08-16 04:30:38 +0000591 }
592 return p;
593}
594
595/*
596** Allocate and zero memory. If the allocation fails, make
597** the mallocFailed flag in the connection pointer.
598*/
drhfec00ea2008-06-14 16:56:21 +0000599void *sqlite3DbMallocRaw(sqlite3 *db, int n){
drh633e6d52008-07-28 19:34:53 +0000600 void *p;
601 if( db ){
602 LookasideSlot *pBuf;
603 if( db->mallocFailed ){
604 return 0;
danielk1977a1644fd2007-08-29 12:31:25 +0000605 }
drh633e6d52008-07-28 19:34:53 +0000606 if( db->lookaside.bEnabled && n<=db->lookaside.sz
607 && (pBuf = db->lookaside.pFree)!=0 ){
608 db->lookaside.pFree = pBuf->pNext;
609 db->lookaside.nOut++;
610 if( db->lookaside.nOut>db->lookaside.mxOut ){
611 db->lookaside.mxOut = db->lookaside.nOut;
612 }
613 return (void*)pBuf;
614 }
615 }
616 p = sqlite3Malloc(n);
617 if( !p && db ){
618 db->mallocFailed = 1;
drh17435752007-08-16 04:30:38 +0000619 }
620 return p;
621}
622
danielk197726783a52007-08-29 14:06:22 +0000623/*
624** Resize the block of memory pointed to by p to n bytes. If the
drh633e6d52008-07-28 19:34:53 +0000625** resize fails, set the mallocFailed flag in the connection object.
danielk197726783a52007-08-29 14:06:22 +0000626*/
danielk1977a1644fd2007-08-29 12:31:25 +0000627void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){
628 void *pNew = 0;
629 if( db->mallocFailed==0 ){
drh633e6d52008-07-28 19:34:53 +0000630 if( p==0 ){
631 return sqlite3DbMallocRaw(db, n);
632 }
633 if( isLookaside(db, p) ){
634 if( n<=db->lookaside.sz ){
635 return p;
636 }
637 pNew = sqlite3DbMallocRaw(db, n);
638 if( pNew ){
639 memcpy(pNew, p, db->lookaside.sz);
640 sqlite3DbFree(db, p);
641 }
642 }else{
643 pNew = sqlite3_realloc(p, n);
644 if( !pNew ){
645 db->mallocFailed = 1;
646 }
danielk1977a1644fd2007-08-29 12:31:25 +0000647 }
648 }
649 return pNew;
650}
651
drh17435752007-08-16 04:30:38 +0000652/*
653** Attempt to reallocate p. If the reallocation fails, then free p
654** and set the mallocFailed flag in the database connection.
655*/
656void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){
drha3152892007-05-05 11:48:52 +0000657 void *pNew;
danielk1977a1644fd2007-08-29 12:31:25 +0000658 pNew = sqlite3DbRealloc(db, p, n);
drha3152892007-05-05 11:48:52 +0000659 if( !pNew ){
drh633e6d52008-07-28 19:34:53 +0000660 sqlite3DbFree(db, p);
drha3152892007-05-05 11:48:52 +0000661 }
662 return pNew;
663}
664
drha3152892007-05-05 11:48:52 +0000665/*
666** Make a copy of a string in memory obtained from sqliteMalloc(). These
667** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
668** is because when memory debugging is turned on, these two functions are
669** called via macros that record the current file and line number in the
670** ThreadData structure.
671*/
drh633e6d52008-07-28 19:34:53 +0000672char *sqlite3DbStrDup(sqlite3 *db, const char *z){
drha3152892007-05-05 11:48:52 +0000673 char *zNew;
drh633e6d52008-07-28 19:34:53 +0000674 size_t n;
675 if( z==0 ){
676 return 0;
677 }
drha3152892007-05-05 11:48:52 +0000678 n = strlen(z)+1;
drh633e6d52008-07-28 19:34:53 +0000679 assert( (n&0x7fffffff)==n );
680 zNew = sqlite3DbMallocRaw(db, (int)n);
drha3152892007-05-05 11:48:52 +0000681 if( zNew ){
682 memcpy(zNew, z, n);
danielk19771e536952007-08-16 10:09:01 +0000683 }
684 return zNew;
685}
686char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){
drh633e6d52008-07-28 19:34:53 +0000687 char *zNew;
688 if( z==0 ){
689 return 0;
690 }
691 assert( (n&0x7fffffff)==n );
692 zNew = sqlite3DbMallocRaw(db, n+1);
693 if( zNew ){
694 memcpy(zNew, z, n);
695 zNew[n] = 0;
danielk19771e536952007-08-16 10:09:01 +0000696 }
697 return zNew;
698}
699
drha3152892007-05-05 11:48:52 +0000700/*
drhf089aa42008-07-08 19:34:06 +0000701** Create a string from the zFromat argument and the va_list that follows.
702** Store the string in memory obtained from sqliteMalloc() and make *pz
703** point to that string.
drha3152892007-05-05 11:48:52 +0000704*/
drhf089aa42008-07-08 19:34:06 +0000705void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){
drha3152892007-05-05 11:48:52 +0000706 va_list ap;
drhf089aa42008-07-08 19:34:06 +0000707 char *z;
drha3152892007-05-05 11:48:52 +0000708
drhf089aa42008-07-08 19:34:06 +0000709 va_start(ap, zFormat);
710 z = sqlite3VMPrintf(db, zFormat, ap);
drha3152892007-05-05 11:48:52 +0000711 va_end(ap);
drh633e6d52008-07-28 19:34:53 +0000712 sqlite3DbFree(db, *pz);
drhf089aa42008-07-08 19:34:06 +0000713 *pz = z;
drha3152892007-05-05 11:48:52 +0000714}
715
716
717/*
718** This function must be called before exiting any API function (i.e.
drh17435752007-08-16 04:30:38 +0000719** returning control to the user) that has called sqlite3_malloc or
720** sqlite3_realloc.
drha3152892007-05-05 11:48:52 +0000721**
722** The returned value is normally a copy of the second argument to this
723** function. However, if a malloc() failure has occured since the previous
724** invocation SQLITE_NOMEM is returned instead.
725**
726** If the first argument, db, is not NULL and a malloc() error has occured,
727** then the connection error-code (the value returned by sqlite3_errcode())
728** is set to SQLITE_NOMEM.
729*/
drha3152892007-05-05 11:48:52 +0000730int sqlite3ApiExit(sqlite3* db, int rc){
danielk1977a1644fd2007-08-29 12:31:25 +0000731 /* If the db handle is not NULL, then we must hold the connection handle
732 ** mutex here. Otherwise the read (and possible write) of db->mallocFailed
733 ** is unsafe, as is the call to sqlite3Error().
734 */
735 assert( !db || sqlite3_mutex_held(db->mutex) );
danielk19771e536952007-08-16 10:09:01 +0000736 if( db && db->mallocFailed ){
drha3152892007-05-05 11:48:52 +0000737 sqlite3Error(db, SQLITE_NOMEM, 0);
drh17435752007-08-16 04:30:38 +0000738 db->mallocFailed = 0;
drha3152892007-05-05 11:48:52 +0000739 rc = SQLITE_NOMEM;
740 }
741 return rc & (db ? db->errMask : 0xff);
742}