dan | 7c24610 | 2010-04-12 19:00:29 +0000 | [diff] [blame] | 1 | |
| 2 | /* |
| 3 | ** This file contains the implementation of a log file used in |
| 4 | ** "journal_mode=wal" mode. |
| 5 | */ |
| 6 | |
| 7 | #include "log.h" |
| 8 | |
| 9 | #include <unistd.h> |
| 10 | #include <fcntl.h> |
| 11 | #include <sys/mman.h> |
| 12 | |
| 13 | typedef struct LogSummaryHdr LogSummaryHdr; |
| 14 | typedef struct LogSummary LogSummary; |
| 15 | typedef struct LogCheckpoint LogCheckpoint; |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 16 | typedef struct LogLock LogLock; |
dan | 7c24610 | 2010-04-12 19:00:29 +0000 | [diff] [blame] | 17 | |
| 18 | |
| 19 | /* |
| 20 | ** The following structure may be used to store the same data that |
| 21 | ** is stored in the log-summary header. |
| 22 | ** |
| 23 | ** Member variables iCheck1 and iCheck2 contain the checksum for the |
| 24 | ** last frame written to the log, or 2 and 3 respectively if the log |
| 25 | ** is currently empty. |
| 26 | */ |
| 27 | struct LogSummaryHdr { |
| 28 | u32 iChange; /* Counter incremented each transaction */ |
| 29 | u32 pgsz; /* Database page size in bytes */ |
| 30 | u32 iLastPg; /* Address of last valid frame in log */ |
| 31 | u32 nPage; /* Size of database in pages */ |
| 32 | u32 iCheck1; /* Checkpoint value 1 */ |
| 33 | u32 iCheck2; /* Checkpoint value 2 */ |
| 34 | }; |
| 35 | |
| 36 | /* Size of serialized LogSummaryHdr object. */ |
| 37 | #define LOGSUMMARY_HDR_NFIELD (sizeof(LogSummaryHdr) / sizeof(u32)) |
| 38 | |
| 39 | #define LOGSUMMARY_FRAME_OFFSET \ |
| 40 | (LOGSUMMARY_HDR_NFIELD + LOG_CKSM_BYTES/sizeof(u32)) |
| 41 | |
| 42 | /* Size of frame header */ |
| 43 | #define LOG_FRAME_HDRSIZE 20 |
| 44 | |
| 45 | /* |
| 46 | ** There is one instance of this structure for each log-summary object |
| 47 | ** that this process has a connection to. They are stored in a linked |
| 48 | ** list starting at pLogSummary (global variable). |
| 49 | ** |
| 50 | ** TODO: LogSummary.fd is a unix file descriptor. Unix APIs are used |
| 51 | ** directly in this implementation because the VFS does not support |
| 52 | ** the required blocking file-locks. |
| 53 | */ |
| 54 | struct LogSummary { |
| 55 | sqlite3_mutex *mutex; /* Mutex used to protect this object */ |
| 56 | int nRef; /* Number of pointers to this structure */ |
| 57 | int fd; /* File descriptor open on log-summary */ |
| 58 | char *zPath; /* Path to associated WAL file */ |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 59 | LogLock *pLock; /* Linked list of locks on this object */ |
dan | 7c24610 | 2010-04-12 19:00:29 +0000 | [diff] [blame] | 60 | LogSummary *pNext; /* Next in global list */ |
| 61 | int nData; /* Size of aData allocation/mapping */ |
| 62 | u32 *aData; /* File body */ |
| 63 | }; |
| 64 | |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 65 | |
dan | 7c24610 | 2010-04-12 19:00:29 +0000 | [diff] [blame] | 66 | /* |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 67 | ** The four lockable regions associated with each log-summary. A connection |
| 68 | ** may take either a SHARED or EXCLUSIVE lock on each. |
dan | 7c24610 | 2010-04-12 19:00:29 +0000 | [diff] [blame] | 69 | */ |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 70 | #define LOG_REGION_A 0x01 |
| 71 | #define LOG_REGION_B 0x02 |
| 72 | #define LOG_REGION_C 0x04 |
| 73 | #define LOG_REGION_D 0x08 |
| 74 | |
| 75 | /* |
| 76 | ** A single instance of this structure is allocated as part of each |
| 77 | ** connection to a database log. All structures associated with the |
| 78 | ** same log file are linked together into a list using LogLock.pNext |
| 79 | ** starting at LogSummary.pLock. |
| 80 | ** |
| 81 | ** The mLock field of the structure describes the locks (if any) |
| 82 | ** currently held by the connection. If a SHARED lock is held on |
| 83 | ** any of the four locking regions, then the associated LOG_REGION_X |
| 84 | ** bit (see above) is set. If an EXCLUSIVE lock is held on the region, |
| 85 | ** then the (LOG_REGION_X << 8) bit is set. |
| 86 | */ |
| 87 | struct LogLock { |
| 88 | LogLock *pNext; /* Next lock on the same log */ |
| 89 | u32 mLock; /* Mask of locks */ |
| 90 | }; |
dan | 7c24610 | 2010-04-12 19:00:29 +0000 | [diff] [blame] | 91 | |
| 92 | struct Log { |
| 93 | LogSummary *pSummary; /* Log file summary data */ |
| 94 | sqlite3_vfs *pVfs; /* The VFS used to create pFd */ |
| 95 | sqlite3_file *pFd; /* File handle for log file */ |
| 96 | int sync_flags; /* Flags to use with OsSync() */ |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 97 | int isLocked; /* Non-zero if a snapshot is held open */ |
dan | 7c24610 | 2010-04-12 19:00:29 +0000 | [diff] [blame] | 98 | int isWriteLocked; /* True if this is the writer connection */ |
| 99 | LogSummaryHdr hdr; /* Log summary header for current snapshot */ |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 100 | LogLock lock; /* Lock held by this connection (if any) */ |
dan | 7c24610 | 2010-04-12 19:00:29 +0000 | [diff] [blame] | 101 | }; |
| 102 | |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 103 | |
dan | 7c24610 | 2010-04-12 19:00:29 +0000 | [diff] [blame] | 104 | /* |
| 105 | ** This structure is used to implement an iterator that iterates through |
| 106 | ** all frames in the log in database page order. Where two or more frames |
| 107 | ** correspond to the same database page, the iterator visits only the |
| 108 | ** frame most recently written to the log. |
| 109 | ** |
| 110 | ** The internals of this structure are only accessed by: |
| 111 | ** |
| 112 | ** logCheckpointInit() - Create a new iterator, |
| 113 | ** logCheckpointNext() - Step an iterator, |
| 114 | ** logCheckpointFree() - Free an iterator. |
| 115 | ** |
| 116 | ** This functionality is used by the checkpoint code (see logCheckpoint()). |
| 117 | */ |
| 118 | struct LogCheckpoint { |
| 119 | int nSegment; /* Size of LogCheckpoint.aSummary[] array */ |
| 120 | int nFinal; /* Elements in segment nSegment-1 */ |
| 121 | struct LogSegment { |
| 122 | int iNext; /* Next aIndex index */ |
| 123 | u8 *aIndex; /* Pointer to index array */ |
| 124 | u32 *aDbPage; /* Pointer to db page array */ |
| 125 | } aSegment[1]; |
| 126 | }; |
| 127 | |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 128 | |
| 129 | /* |
| 130 | ** List of all LogSummary objects created by this process. Protected by |
| 131 | ** static mutex LOG_SUMMARY_MUTEX. TODO: Should have a dedicated mutex |
| 132 | ** here instead of borrowing the LRU mutex. |
| 133 | */ |
| 134 | #define LOG_SUMMARY_MUTEX SQLITE_MUTEX_STATIC_LRU |
| 135 | static LogSummary *pLogSummary = 0; |
| 136 | |
dan | 7c24610 | 2010-04-12 19:00:29 +0000 | [diff] [blame] | 137 | /* |
| 138 | ** Generate an 8 byte checksum based on the data in array aByte[] and the |
| 139 | ** initial values of aCksum[0] and aCksum[1]. The checksum is written into |
| 140 | ** aCksum[] before returning. |
| 141 | */ |
| 142 | #define LOG_CKSM_BYTES 8 |
| 143 | static void logChecksumBytes(u8 *aByte, int nByte, u32 *aCksum){ |
| 144 | u32 *z32 = (u32 *)aByte; |
| 145 | int n32 = nByte / sizeof(u32); |
| 146 | int i; |
| 147 | |
| 148 | assert( LOG_CKSM_BYTES==2*sizeof(u32) ); |
| 149 | assert( (nByte&0x00000003)==0 ); |
| 150 | |
| 151 | u32 cksum0 = aCksum[0]; |
| 152 | u32 cksum1 = aCksum[1]; |
| 153 | |
| 154 | for(i=0; i<n32; i++){ |
| 155 | cksum0 = (cksum0 >> 8) + (cksum0 ^ z32[i]); |
| 156 | cksum1 = (cksum1 >> 8) + (cksum1 ^ z32[i]); |
| 157 | } |
| 158 | |
| 159 | aCksum[0] = cksum0; |
| 160 | aCksum[1] = cksum1; |
| 161 | } |
| 162 | |
| 163 | /* |
| 164 | ** Argument zPath must be a nul-terminated string containing a path-name. |
| 165 | ** This function modifies the string in-place by removing any "./" or "../" |
| 166 | ** elements in the path. For example, the following input: |
| 167 | ** |
| 168 | ** "/home/user/plans/good/../evil/./world_domination.txt" |
| 169 | ** |
| 170 | ** is overwritten with the 'normalized' version: |
| 171 | ** |
| 172 | ** "/home/user/plans/evil/world_domination.txt" |
| 173 | */ |
| 174 | static void logNormalizePath(char *zPath){ |
| 175 | int i, j; |
| 176 | char *z = zPath; |
| 177 | int n = strlen(z); |
| 178 | |
| 179 | while( n>1 && z[n-1]=='/' ){ n--; } |
| 180 | for(i=j=0; i<n; i++){ |
| 181 | if( z[i]=='/' ){ |
| 182 | if( z[i+1]=='/' ) continue; |
| 183 | if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){ |
| 184 | i += 1; |
| 185 | continue; |
| 186 | } |
| 187 | if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){ |
| 188 | while( j>0 && z[j-1]!='/' ){ j--; } |
| 189 | if( j>0 ){ j--; } |
| 190 | i += 2; |
| 191 | continue; |
| 192 | } |
| 193 | } |
| 194 | z[j++] = z[i]; |
| 195 | } |
| 196 | z[j] = 0; |
| 197 | } |
| 198 | |
| 199 | /* |
| 200 | ** Lock the summary file pSummary->fd. |
| 201 | */ |
| 202 | static int logSummaryLock(LogSummary *pSummary){ |
| 203 | int rc; |
| 204 | struct flock f; |
| 205 | memset(&f, 0, sizeof(f)); |
| 206 | f.l_type = F_WRLCK; |
| 207 | f.l_whence = SEEK_SET; |
| 208 | f.l_start = 0; |
| 209 | f.l_len = 1; |
| 210 | rc = fcntl(pSummary->fd, F_SETLKW, &f); |
| 211 | if( rc!=0 ){ |
| 212 | return SQLITE_IOERR; |
| 213 | } |
| 214 | return SQLITE_OK; |
| 215 | } |
| 216 | |
| 217 | /* |
| 218 | ** Unlock the summary file pSummary->fd. |
| 219 | */ |
| 220 | static int logSummaryUnlock(LogSummary *pSummary){ |
| 221 | int rc; |
| 222 | struct flock f; |
| 223 | memset(&f, 0, sizeof(f)); |
| 224 | f.l_type = F_UNLCK; |
| 225 | f.l_whence = SEEK_SET; |
| 226 | f.l_start = 0; |
| 227 | f.l_len = 1; |
| 228 | rc = fcntl(pSummary->fd, F_SETLK, &f); |
| 229 | if( rc!=0 ){ |
| 230 | return SQLITE_IOERR; |
| 231 | } |
| 232 | return SQLITE_OK; |
| 233 | } |
| 234 | |
| 235 | /* |
| 236 | ** Memory map the first nByte bytes of the summary file opened with |
| 237 | ** pSummary->fd at pSummary->aData. If the summary file is smaller than |
| 238 | ** nByte bytes in size when this function is called, ftruncate() is |
| 239 | ** used to expand it before it is mapped. |
| 240 | ** |
| 241 | ** It is assumed that an exclusive lock is held on the summary file |
| 242 | ** by the caller (to protect the ftruncate()). |
| 243 | */ |
| 244 | static int logSummaryMap(LogSummary *pSummary, int nByte){ |
| 245 | struct stat sStat; |
| 246 | int rc; |
| 247 | int fd = pSummary->fd; |
| 248 | void *pMap; |
| 249 | |
| 250 | assert( pSummary->aData==0 ); |
| 251 | |
| 252 | /* If the file is less than nByte bytes in size, cause it to grow. */ |
| 253 | rc = fstat(fd, &sStat); |
| 254 | if( rc!=0 ) return SQLITE_IOERR; |
| 255 | if( sStat.st_size<nByte ){ |
| 256 | rc = ftruncate(fd, nByte); |
| 257 | if( rc!=0 ) return SQLITE_IOERR; |
| 258 | } |
| 259 | |
| 260 | /* Map the file. */ |
| 261 | pMap = mmap(0, nByte, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0); |
| 262 | if( pMap==MAP_FAILED ){ |
| 263 | return SQLITE_IOERR; |
| 264 | } |
| 265 | pSummary->aData = (u32 *)pMap; |
| 266 | pSummary->nData = nByte; |
| 267 | |
| 268 | return SQLITE_OK; |
| 269 | } |
| 270 | |
| 271 | /* |
| 272 | ** Unmap the log-summary mapping and close the file-descriptor. If |
| 273 | ** the isTruncate argument is non-zero, truncate the log-summary file |
| 274 | ** region to zero bytes. |
| 275 | ** |
| 276 | ** Regardless of the value of isTruncate, close the file-descriptor |
| 277 | ** opened on the log-summary file. |
| 278 | */ |
| 279 | static int logSummaryUnmap(LogSummary *pSummary, int isTruncate){ |
| 280 | int rc = SQLITE_OK; |
| 281 | if( pSummary->aData ){ |
| 282 | assert( pSummary->fd>0 ); |
| 283 | munmap(pSummary->aData, pSummary->nData); |
| 284 | pSummary->aData = 0; |
| 285 | if( isTruncate ){ |
| 286 | rc = (ftruncate(pSummary->fd, 0) ? SQLITE_IOERR : SQLITE_OK); |
| 287 | } |
| 288 | } |
| 289 | if( pSummary->fd>0 ){ |
| 290 | close(pSummary->fd); |
| 291 | pSummary->fd = -1; |
| 292 | } |
| 293 | return rc; |
| 294 | } |
| 295 | |
| 296 | |
| 297 | static void logSummaryWriteHdr(LogSummary *pSummary, LogSummaryHdr *pHdr){ |
| 298 | u32 *aData = pSummary->aData; |
| 299 | memcpy(aData, pHdr, sizeof(LogSummaryHdr)); |
| 300 | aData[LOGSUMMARY_HDR_NFIELD] = 1; |
| 301 | aData[LOGSUMMARY_HDR_NFIELD+1] = 1; |
| 302 | logChecksumBytes( |
| 303 | (u8 *)aData, sizeof(LogSummaryHdr), &aData[LOGSUMMARY_HDR_NFIELD] |
| 304 | ); |
| 305 | } |
| 306 | |
| 307 | /* |
| 308 | ** This function encodes a single frame header and writes it to a buffer |
| 309 | ** supplied by the caller. A log frame-header is made up of a series of |
| 310 | ** 4-byte big-endian integers, as follows: |
| 311 | ** |
| 312 | ** 0: Database page size in bytes. |
| 313 | ** 4: Page number. |
| 314 | ** 8: New database size (for commit frames, otherwise zero). |
| 315 | ** 12: Frame checksum 1. |
| 316 | ** 16: Frame checksum 2. |
| 317 | */ |
| 318 | static void logEncodeFrame( |
| 319 | u32 *aCksum, /* IN/OUT: Checksum values */ |
| 320 | u32 iPage, /* Database page number for frame */ |
| 321 | u32 nTruncate, /* New db size (or 0 for non-commit frames) */ |
| 322 | int nData, /* Database page size (size of aData[]) */ |
| 323 | u8 *aData, /* Pointer to page data (for checksum) */ |
| 324 | u8 *aFrame /* OUT: Write encoded frame here */ |
| 325 | ){ |
| 326 | assert( LOG_FRAME_HDRSIZE==20 ); |
| 327 | |
| 328 | sqlite3Put4byte(&aFrame[0], nData); |
| 329 | sqlite3Put4byte(&aFrame[4], iPage); |
| 330 | sqlite3Put4byte(&aFrame[8], nTruncate); |
| 331 | |
| 332 | logChecksumBytes(aFrame, 12, aCksum); |
| 333 | logChecksumBytes(aData, nData, aCksum); |
| 334 | |
| 335 | sqlite3Put4byte(&aFrame[12], aCksum[0]); |
| 336 | sqlite3Put4byte(&aFrame[16], aCksum[1]); |
| 337 | } |
| 338 | |
| 339 | /* |
| 340 | ** Return 1 and populate *piPage, *pnTruncate and aCksum if the |
| 341 | ** frame checksum looks Ok. Otherwise return 0. |
| 342 | */ |
| 343 | static int logDecodeFrame( |
| 344 | u32 *aCksum, /* IN/OUT: Checksum values */ |
| 345 | u32 *piPage, /* OUT: Database page number for frame */ |
| 346 | u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ |
| 347 | int nData, /* Database page size (size of aData[]) */ |
| 348 | u8 *aData, /* Pointer to page data (for checksum) */ |
| 349 | u8 *aFrame /* Frame data */ |
| 350 | ){ |
| 351 | logChecksumBytes(aFrame, 12, aCksum); |
| 352 | logChecksumBytes(aData, nData, aCksum); |
| 353 | |
| 354 | if( aCksum[0]!=sqlite3Get4byte(&aFrame[12]) |
| 355 | || aCksum[1]!=sqlite3Get4byte(&aFrame[16]) |
| 356 | ){ |
| 357 | /* Checksum failed. */ |
| 358 | return 0; |
| 359 | } |
| 360 | |
| 361 | *piPage = sqlite3Get4byte(&aFrame[4]); |
| 362 | *pnTruncate = sqlite3Get4byte(&aFrame[8]); |
| 363 | return 1; |
| 364 | } |
| 365 | |
| 366 | static void logMergesort8( |
| 367 | Pgno *aContent, /* Pages in log */ |
| 368 | u8 *aBuffer, /* Buffer of at least *pnList items to use */ |
| 369 | u8 *aList, /* IN/OUT: List to sort */ |
| 370 | int *pnList /* IN/OUT: Number of elements in aList[] */ |
| 371 | ){ |
| 372 | int nList = *pnList; |
| 373 | if( nList>1 ){ |
| 374 | int nLeft = nList / 2; /* Elements in left list */ |
| 375 | int nRight = nList - nLeft; /* Elements in right list */ |
| 376 | u8 *aLeft = aList; /* Left list */ |
| 377 | u8 *aRight = &aList[nLeft]; /* Right list */ |
| 378 | int iLeft = 0; /* Current index in aLeft */ |
| 379 | int iRight = 0; /* Current index in aright */ |
| 380 | int iOut = 0; /* Current index in output buffer */ |
| 381 | |
| 382 | /* TODO: Change to non-recursive version. */ |
| 383 | logMergesort8(aContent, aBuffer, aLeft, &nLeft); |
| 384 | logMergesort8(aContent, aBuffer, aRight, &nRight); |
| 385 | |
| 386 | while( iRight<nRight || iLeft<nLeft ){ |
| 387 | u8 logpage; |
| 388 | Pgno dbpage; |
| 389 | |
| 390 | if( (iLeft<nLeft) |
| 391 | && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) |
| 392 | ){ |
| 393 | logpage = aLeft[iLeft++]; |
| 394 | }else{ |
| 395 | logpage = aRight[iRight++]; |
| 396 | } |
| 397 | dbpage = aContent[logpage]; |
| 398 | |
| 399 | aBuffer[iOut++] = logpage; |
| 400 | if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++; |
| 401 | |
| 402 | assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage ); |
| 403 | assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); |
| 404 | } |
| 405 | memcpy(aList, aBuffer, sizeof(aList[0])*iOut); |
| 406 | *pnList = iOut; |
| 407 | } |
| 408 | |
| 409 | #ifdef SQLITE_DEBUG |
| 410 | { |
| 411 | int i; |
| 412 | for(i=1; i<*pnList; i++){ |
| 413 | assert( aContent[aList[i]] > aContent[aList[i-1]] ); |
| 414 | } |
| 415 | } |
| 416 | #endif |
| 417 | } |
| 418 | |
| 419 | |
| 420 | /* |
| 421 | ** Return the index in the LogSummary.aData array that corresponds to |
| 422 | ** frame iFrame. The log-summary file consists of a header, followed by |
| 423 | ** alternating "map" and "index" blocks. |
| 424 | */ |
| 425 | static int logSummaryEntry(u32 iFrame){ |
| 426 | return ((((iFrame-1)>>8)<<6) + iFrame-1 + 2 + LOGSUMMARY_HDR_NFIELD); |
| 427 | } |
| 428 | |
| 429 | |
| 430 | /* |
| 431 | ** Set an entry in the log-summary map to map log frame iFrame to db |
| 432 | ** page iPage. Values are always appended to the log-summary (i.e. the |
| 433 | ** value of iFrame is always exactly one more than the value passed to |
| 434 | ** the previous call), but that restriction is not enforced or asserted |
| 435 | ** here. |
| 436 | */ |
| 437 | static void logSummaryAppend(LogSummary *pSummary, u32 iFrame, u32 iPage){ |
| 438 | u32 iSlot = logSummaryEntry(iFrame); |
| 439 | |
| 440 | /* Set the log-summary entry itself */ |
| 441 | pSummary->aData[iSlot] = iPage; |
| 442 | |
| 443 | /* If the frame number is a multiple of 256 (frames are numbered starting |
| 444 | ** at 1), build an index of the most recently added 256 frames. |
| 445 | */ |
| 446 | if( (iFrame&0x000000FF)==0 ){ |
| 447 | int i; /* Iterator used while initializing aIndex */ |
| 448 | u32 *aFrame; /* Pointer to array of 256 frames */ |
| 449 | int nIndex; /* Number of entries in index */ |
| 450 | u8 *aIndex; /* 256 bytes to build index in */ |
| 451 | u8 *aTmp; /* Scratch space to use while sorting */ |
| 452 | |
| 453 | aFrame = &pSummary->aData[iSlot-255]; |
| 454 | aIndex = (u8 *)&pSummary->aData[iSlot+1]; |
| 455 | aTmp = &aIndex[256]; |
| 456 | |
| 457 | nIndex = 256; |
| 458 | for(i=0; i<256; i++) aIndex[i] = (u8)i; |
| 459 | logMergesort8(aFrame, aTmp, aIndex, &nIndex); |
| 460 | memset(&aIndex[nIndex], aIndex[nIndex-1], 256-nIndex); |
| 461 | } |
| 462 | } |
| 463 | |
| 464 | |
| 465 | /* |
| 466 | ** Recover the log-summary by reading the log file. The caller must hold |
| 467 | ** an exclusive lock on the log-summary file. |
| 468 | */ |
| 469 | static int logSummaryRecover(LogSummary *pSummary, sqlite3_file *pFd){ |
| 470 | int rc; /* Return Code */ |
| 471 | i64 nSize; /* Size of log file */ |
| 472 | LogSummaryHdr hdr; /* Recovered log-summary header */ |
| 473 | |
| 474 | memset(&hdr, 0, sizeof(hdr)); |
| 475 | |
| 476 | rc = sqlite3OsFileSize(pFd, &nSize); |
| 477 | if( rc!=SQLITE_OK ){ |
| 478 | return rc; |
| 479 | } |
| 480 | |
| 481 | if( nSize>LOG_FRAME_HDRSIZE ){ |
| 482 | u8 aBuf[LOG_FRAME_HDRSIZE]; /* Buffer to load first frame header into */ |
| 483 | u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ |
| 484 | int nFrame; /* Number of bytes at aFrame */ |
| 485 | u8 *aData; /* Pointer to data part of aFrame buffer */ |
| 486 | int iFrame; /* Index of last frame read */ |
| 487 | i64 iOffset; /* Next offset to read from log file */ |
| 488 | int nPgsz; /* Page size according to the log */ |
| 489 | u32 aCksum[2] = {2, 3}; /* Running checksum */ |
| 490 | |
| 491 | /* Read in the first frame header in the file (to determine the |
| 492 | ** database page size). |
| 493 | */ |
| 494 | rc = sqlite3OsRead(pFd, aBuf, LOG_FRAME_HDRSIZE, 0); |
| 495 | if( rc!=SQLITE_OK ){ |
| 496 | return rc; |
| 497 | } |
| 498 | |
| 499 | /* If the database page size is not a power of two, or is greater than |
| 500 | ** SQLITE_MAX_PAGE_SIZE, conclude that the log file contains no valid data. |
| 501 | */ |
| 502 | nPgsz = sqlite3Get4byte(&aBuf[0]); |
| 503 | if( nPgsz&(nPgsz-1) || nPgsz>SQLITE_MAX_PAGE_SIZE ){ |
| 504 | goto finished; |
| 505 | } |
| 506 | |
| 507 | /* Malloc a buffer to read frames into. */ |
| 508 | nFrame = nPgsz + LOG_FRAME_HDRSIZE; |
| 509 | aFrame = (u8 *)sqlite3_malloc(nFrame); |
| 510 | if( !aFrame ){ |
| 511 | return SQLITE_NOMEM; |
| 512 | } |
| 513 | aData = &aFrame[LOG_FRAME_HDRSIZE]; |
| 514 | |
| 515 | /* Read all frames from the log file. */ |
| 516 | iFrame = 0; |
| 517 | iOffset = 0; |
| 518 | for(iOffset=0; (iOffset+nFrame)<nSize; iOffset+=nFrame){ |
| 519 | u32 pgno; /* Database page number for frame */ |
| 520 | u32 nTruncate; /* dbsize field from frame header */ |
| 521 | int isValid; /* True if this frame is valid */ |
| 522 | |
| 523 | /* Read and decode the next log frame. */ |
| 524 | rc = sqlite3OsRead(pFd, aFrame, nFrame, iOffset); |
| 525 | if( rc!=SQLITE_OK ) break; |
| 526 | isValid = logDecodeFrame(aCksum, &pgno, &nTruncate, nPgsz, aData, aFrame); |
| 527 | if( !isValid ) break; |
| 528 | logSummaryAppend(pSummary, ++iFrame, pgno); |
| 529 | |
| 530 | /* If nTruncate is non-zero, this is a commit record. */ |
| 531 | if( nTruncate ){ |
| 532 | hdr.iCheck1 = aCksum[0]; |
| 533 | hdr.iCheck2 = aCksum[1]; |
| 534 | hdr.iLastPg = iFrame; |
| 535 | hdr.nPage = nTruncate; |
| 536 | hdr.pgsz = nPgsz; |
| 537 | } |
| 538 | } |
| 539 | |
| 540 | sqlite3_free(aFrame); |
| 541 | }else{ |
| 542 | hdr.iCheck1 = 2; |
| 543 | hdr.iCheck2 = 3; |
| 544 | } |
| 545 | |
| 546 | finished: |
| 547 | logSummaryWriteHdr(pSummary, &hdr); |
| 548 | return rc; |
| 549 | } |
| 550 | |
| 551 | |
| 552 | /* |
| 553 | ** This function intializes the connection to the log-summary identified |
| 554 | ** by struct pSummary. |
| 555 | */ |
| 556 | static int logSummaryInit(LogSummary *pSummary, sqlite3_file *pFd){ |
| 557 | int rc; /* Return Code */ |
| 558 | char *zFile; /* File name for summary file */ |
| 559 | |
| 560 | assert( pSummary->fd<0 ); |
| 561 | assert( pSummary->aData==0 ); |
| 562 | assert( pSummary->nRef>0 ); |
| 563 | assert( pSummary->zPath ); |
| 564 | |
| 565 | /* Open a file descriptor on the summary file. */ |
| 566 | zFile = sqlite3_mprintf("%s-summary", pSummary->zPath); |
| 567 | if( !zFile ){ |
| 568 | return SQLITE_NOMEM; |
| 569 | } |
| 570 | pSummary->fd = open(zFile, O_RDWR|O_CREAT, S_IWUSR|S_IRUSR); |
| 571 | sqlite3_free(zFile); |
| 572 | if( pSummary->fd<0 ){ |
| 573 | return SQLITE_IOERR; |
| 574 | } |
| 575 | |
| 576 | /* Grab an exclusive lock the summary file. Then mmap() it. TODO: This |
| 577 | ** code needs to be enhanced to support a growable mapping. For now, just |
| 578 | ** make the mapping very large to start with. |
| 579 | */ |
| 580 | rc = logSummaryLock(pSummary); |
| 581 | if( rc!=SQLITE_OK ) return rc; |
| 582 | rc = logSummaryMap(pSummary, 512*1024); |
| 583 | if( rc!=SQLITE_OK ) goto out; |
| 584 | |
| 585 | /* Grab a SHARED lock on the log file. Then try to upgrade to an EXCLUSIVE |
| 586 | ** lock. If successful, then this is the first (and only) connection to |
| 587 | ** the database. In this case assume the contents of the log-summary |
| 588 | ** cannot be trusted. Zero the log-summary header to make sure. |
| 589 | ** |
| 590 | ** The SHARED lock on the log file is not released until the connection |
| 591 | ** to the database is closed. |
| 592 | */ |
| 593 | rc = sqlite3OsLock(pFd, SQLITE_LOCK_SHARED); |
| 594 | if( rc!=SQLITE_OK ) goto out; |
| 595 | rc = sqlite3OsLock(pFd, SQLITE_LOCK_EXCLUSIVE); |
| 596 | if( rc==SQLITE_OK ){ |
| 597 | /* This is the first and only connection. */ |
| 598 | memset(pSummary->aData, 0, (LOGSUMMARY_HDR_NFIELD+2)*sizeof(u32) ); |
| 599 | rc = sqlite3OsUnlock(pFd, SQLITE_LOCK_SHARED); |
| 600 | }else if( rc==SQLITE_BUSY ){ |
| 601 | rc = SQLITE_OK; |
| 602 | } |
| 603 | |
| 604 | out: |
| 605 | logSummaryUnlock(pSummary); |
| 606 | return rc; |
| 607 | } |
| 608 | |
| 609 | /* |
| 610 | ** Open a connection to the log file associated with database zDb. The |
| 611 | ** database file does not actually have to exist. zDb is used only to |
| 612 | ** figure out the name of the log file to open. If the log file does not |
| 613 | ** exist it is created by this call. |
| 614 | */ |
| 615 | int sqlite3LogOpen( |
| 616 | sqlite3_vfs *pVfs, /* vfs module to open log file with */ |
| 617 | const char *zDb, /* Name of database file */ |
| 618 | Log **ppLog /* OUT: Allocated Log handle */ |
| 619 | ){ |
dan | b9bf16b | 2010-04-14 11:23:30 +0000 | [diff] [blame] | 620 | int rc = SQLITE_OK; /* Return Code */ |
dan | 7c24610 | 2010-04-12 19:00:29 +0000 | [diff] [blame] | 621 | Log *pRet; /* Object to allocate and return */ |
| 622 | LogSummary *pSummary = 0; /* Summary object */ |
| 623 | sqlite3_mutex *mutex = 0; /* LOG_SUMMARY_MUTEX mutex */ |
| 624 | int flags; /* Flags passed to OsOpen() */ |
| 625 | char *zWal = 0; /* Path to WAL file */ |
| 626 | int nWal; /* Length of zWal in bytes */ |
| 627 | |
| 628 | /* Zero output variables */ |
| 629 | assert( zDb ); |
| 630 | *ppLog = 0; |
| 631 | |
| 632 | /* Allocate an instance of struct Log to return. */ |
| 633 | pRet = (Log *)sqlite3MallocZero(sizeof(Log) + pVfs->szOsFile); |
| 634 | if( !pRet ) goto out; |
| 635 | pRet->pVfs = pVfs; |
| 636 | pRet->pFd = (sqlite3_file *)&pRet[1]; |
| 637 | pRet->sync_flags = SQLITE_SYNC_NORMAL; |
| 638 | |
| 639 | /* Normalize the path name. */ |
| 640 | zWal = sqlite3_mprintf("%s-wal", zDb); |
| 641 | if( !zWal ) goto out; |
| 642 | logNormalizePath(zWal); |
| 643 | flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_MAIN_DB); |
| 644 | nWal = sqlite3Strlen30(zWal); |
| 645 | |
| 646 | /* Enter the mutex that protects the linked-list of LogSummary structures */ |
| 647 | if( sqlite3GlobalConfig.bCoreMutex ){ |
| 648 | mutex = sqlite3_mutex_alloc(LOG_SUMMARY_MUTEX); |
| 649 | } |
| 650 | sqlite3_mutex_enter(mutex); |
| 651 | |
| 652 | /* Search for an existing log summary object in the linked list. If one |
| 653 | ** cannot be found, allocate and initialize a new object. |
| 654 | */ |
| 655 | for(pSummary=pLogSummary; pSummary; pSummary=pSummary->pNext){ |
| 656 | int nPath = sqlite3Strlen30(pSummary->zPath); |
| 657 | if( nWal==nPath && 0==memcmp(pSummary->zPath, zWal, nPath) ) break; |
| 658 | } |
| 659 | if( !pSummary ){ |
| 660 | int nByte = sizeof(LogSummary) + nWal + 1; |
| 661 | pSummary = (LogSummary *)sqlite3MallocZero(nByte); |
| 662 | if( !pSummary ){ |
| 663 | rc = SQLITE_NOMEM; |
| 664 | goto out; |
| 665 | } |
| 666 | if( sqlite3GlobalConfig.bCoreMutex ){ |
| 667 | pSummary->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_RECURSIVE); |
| 668 | } |
| 669 | pSummary->zPath = (char *)&pSummary[1]; |
| 670 | pSummary->fd = -1; |
| 671 | memcpy(pSummary->zPath, zWal, nWal); |
| 672 | pSummary->pNext = pLogSummary; |
| 673 | pLogSummary = pSummary; |
| 674 | } |
| 675 | pSummary->nRef++; |
| 676 | pRet->pSummary = pSummary; |
| 677 | |
| 678 | /* Exit the mutex protecting the linked-list of LogSummary objects. */ |
| 679 | sqlite3_mutex_leave(mutex); |
| 680 | mutex = 0; |
| 681 | |
| 682 | /* Open file handle on the log file. */ |
| 683 | rc = sqlite3OsOpen(pVfs, pSummary->zPath, pRet->pFd, flags, &flags); |
| 684 | if( rc!=SQLITE_OK ) goto out; |
| 685 | |
| 686 | /* Object pSummary is shared between all connections to the database made |
| 687 | ** by this process. So at this point it may or may not be connected to |
| 688 | ** the log-summary. If it is not, connect it. Otherwise, just take the |
| 689 | ** SHARED lock on the log file. |
| 690 | */ |
| 691 | sqlite3_mutex_enter(pSummary->mutex); |
| 692 | mutex = pSummary->mutex; |
| 693 | if( pSummary->fd<0 ){ |
| 694 | rc = logSummaryInit(pSummary, pRet->pFd); |
| 695 | }else{ |
| 696 | rc = sqlite3OsLock(pRet->pFd, SQLITE_LOCK_SHARED); |
| 697 | } |
| 698 | |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 699 | pRet->lock.pNext = pSummary->pLock; |
| 700 | pSummary->pLock = &pRet->lock; |
| 701 | |
dan | 7c24610 | 2010-04-12 19:00:29 +0000 | [diff] [blame] | 702 | out: |
| 703 | sqlite3_mutex_leave(mutex); |
| 704 | sqlite3_free(zWal); |
| 705 | if( rc!=SQLITE_OK ){ |
| 706 | assert(0); |
| 707 | if( pRet ){ |
| 708 | sqlite3OsClose(pRet->pFd); |
| 709 | sqlite3_free(pRet); |
| 710 | } |
| 711 | assert( !pSummary || pSummary->nRef==0 ); |
| 712 | sqlite3_free(pSummary); |
| 713 | } |
| 714 | *ppLog = pRet; |
| 715 | return rc; |
| 716 | } |
| 717 | |
| 718 | static int logCheckpointNext( |
| 719 | LogCheckpoint *p, /* Iterator */ |
| 720 | u32 *piPage, /* OUT: Next db page to write */ |
| 721 | u32 *piFrame /* OUT: Log frame to read from */ |
| 722 | ){ |
| 723 | u32 iMin = *piPage; |
| 724 | u32 iRet = 0xFFFFFFFF; |
| 725 | int i; |
| 726 | int nBlock = p->nFinal; |
| 727 | |
| 728 | for(i=p->nSegment-1; i>=0; i--){ |
| 729 | struct LogSegment *pSegment = &p->aSegment[i]; |
| 730 | while( pSegment->iNext<nBlock ){ |
| 731 | u32 iPg = pSegment->aDbPage[pSegment->aIndex[pSegment->iNext]]; |
| 732 | if( iPg>iMin ){ |
| 733 | if( iPg<iRet ){ |
| 734 | iRet = iPg; |
| 735 | *piFrame = i*256 + 1 + pSegment->aIndex[pSegment->iNext]; |
| 736 | } |
| 737 | break; |
| 738 | } |
| 739 | pSegment->iNext++; |
| 740 | } |
| 741 | |
| 742 | nBlock = 256; |
| 743 | } |
| 744 | |
| 745 | *piPage = iRet; |
| 746 | return (iRet==0xFFFFFFFF); |
| 747 | } |
| 748 | |
| 749 | static LogCheckpoint *logCheckpointInit(Log *pLog){ |
| 750 | u32 *aData = pLog->pSummary->aData; |
| 751 | LogCheckpoint *p; /* Return value */ |
| 752 | int nSegment; /* Number of segments to merge */ |
| 753 | u32 iLast; /* Last frame in log */ |
| 754 | int nByte; /* Number of bytes to allocate */ |
| 755 | int i; /* Iterator variable */ |
| 756 | int nFinal; /* Number of unindexed entries */ |
| 757 | struct LogSegment *pFinal; /* Final (unindexed) segment */ |
| 758 | u8 *aTmp; /* Temp space used by merge-sort */ |
| 759 | |
| 760 | iLast = pLog->hdr.iLastPg; |
| 761 | nSegment = (iLast >> 8) + 1; |
| 762 | nFinal = (iLast & 0x000000FF); |
| 763 | |
| 764 | nByte = sizeof(LogCheckpoint) + (nSegment-1)*sizeof(struct LogSegment) + 512; |
| 765 | p = (LogCheckpoint *)sqlite3_malloc(nByte); |
| 766 | if( p ){ |
| 767 | memset(p, 0, nByte); |
| 768 | p->nSegment = nSegment; |
| 769 | p->nFinal = nFinal; |
| 770 | } |
| 771 | |
| 772 | for(i=0; i<nSegment-1; i++){ |
| 773 | p->aSegment[i].aDbPage = &aData[logSummaryEntry(i*256+1)]; |
| 774 | p->aSegment[i].aIndex = (u8 *)&aData[logSummaryEntry(i*256+1)+256]; |
| 775 | } |
| 776 | pFinal = &p->aSegment[nSegment-1]; |
| 777 | |
| 778 | pFinal->aDbPage = &aData[logSummaryEntry((nSegment-1)*256+1)]; |
| 779 | pFinal->aIndex = (u8 *)&pFinal[1]; |
| 780 | aTmp = &pFinal->aIndex[256]; |
| 781 | for(i=0; i<nFinal; i++){ |
| 782 | pFinal->aIndex[i] = i; |
| 783 | } |
| 784 | logMergesort8(pFinal->aDbPage, aTmp, pFinal->aIndex, &nFinal); |
| 785 | p->nFinal = nFinal; |
| 786 | |
| 787 | return p; |
| 788 | } |
| 789 | |
| 790 | /* |
| 791 | ** Free a log iterator allocated by logCheckpointInit(). |
| 792 | */ |
| 793 | static void logCheckpointFree(LogCheckpoint *p){ |
| 794 | sqlite3_free(p); |
| 795 | } |
| 796 | |
| 797 | /* |
| 798 | ** Checkpoint the contents of the log file. |
| 799 | */ |
| 800 | static int logCheckpoint( |
| 801 | Log *pLog, /* Log connection */ |
| 802 | sqlite3_file *pFd, /* File descriptor open on db file */ |
| 803 | u8 *zBuf /* Temporary buffer to use */ |
| 804 | ){ |
| 805 | int rc; /* Return code */ |
| 806 | int pgsz = pLog->hdr.pgsz; /* Database page-size */ |
| 807 | LogCheckpoint *pIter = 0; /* Log iterator context */ |
| 808 | u32 iDbpage = 0; /* Next database page to write */ |
dan | b9bf16b | 2010-04-14 11:23:30 +0000 | [diff] [blame] | 809 | u32 iFrame = 0; /* Log frame containing data for iDbpage */ |
dan | 7c24610 | 2010-04-12 19:00:29 +0000 | [diff] [blame] | 810 | |
| 811 | /* Allocate the iterator */ |
| 812 | pIter = logCheckpointInit(pLog); |
| 813 | if( !pIter ) return SQLITE_NOMEM; |
| 814 | |
| 815 | /* Sync the log file to disk */ |
| 816 | rc = sqlite3OsSync(pLog->pFd, pLog->sync_flags); |
| 817 | if( rc!=SQLITE_OK ) goto out; |
| 818 | |
| 819 | /* Iterate through the contents of the log, copying data to the db file. */ |
| 820 | while( 0==logCheckpointNext(pIter, &iDbpage, &iFrame) ){ |
| 821 | rc = sqlite3OsRead(pLog->pFd, zBuf, pgsz, |
| 822 | (iFrame-1) * (pgsz+LOG_FRAME_HDRSIZE) + LOG_FRAME_HDRSIZE |
| 823 | ); |
| 824 | if( rc!=SQLITE_OK ) goto out; |
| 825 | rc = sqlite3OsWrite(pFd, zBuf, pgsz, (iDbpage-1)*pgsz); |
| 826 | if( rc!=SQLITE_OK ) goto out; |
| 827 | } |
| 828 | |
| 829 | /* Truncate the database file */ |
| 830 | rc = sqlite3OsTruncate(pFd, ((i64)pLog->hdr.nPage*(i64)pgsz)); |
| 831 | if( rc!=SQLITE_OK ) goto out; |
| 832 | |
| 833 | /* Sync the database file. If successful, update the log-summary. */ |
| 834 | rc = sqlite3OsSync(pFd, pLog->sync_flags); |
| 835 | if( rc!=SQLITE_OK ) goto out; |
| 836 | pLog->hdr.iLastPg = 0; |
| 837 | pLog->hdr.iCheck1 = 2; |
| 838 | pLog->hdr.iCheck2 = 3; |
| 839 | logSummaryWriteHdr(pLog->pSummary, &pLog->hdr); |
| 840 | |
| 841 | /* TODO: If a crash occurs and the current log is copied into the |
| 842 | ** database there is no problem. However, if a crash occurs while |
| 843 | ** writing the next transaction into the start of the log, such that: |
| 844 | ** |
| 845 | ** * The first transaction currently in the log is left intact, but |
| 846 | ** * The second (or subsequent) transaction is damaged, |
| 847 | ** |
| 848 | ** then the database could become corrupt. |
| 849 | ** |
| 850 | ** The easiest thing to do would be to write and sync a dummy header |
| 851 | ** into the log at this point. Unfortunately, that turns out to be |
| 852 | ** an unwelcome performance hit. Alternatives are... |
| 853 | */ |
| 854 | #if 0 |
| 855 | memset(zBuf, 0, LOG_FRAME_HDRSIZE); |
| 856 | rc = sqlite3OsWrite(pLog->pFd, zBuf, LOG_FRAME_HDRSIZE, 0); |
| 857 | if( rc!=SQLITE_OK ) goto out; |
| 858 | rc = sqlite3OsSync(pLog->pFd, pLog->sync_flags); |
| 859 | #endif |
| 860 | |
| 861 | out: |
| 862 | logCheckpointFree(pIter); |
| 863 | return rc; |
| 864 | } |
| 865 | |
| 866 | /* |
| 867 | ** Close a connection to a log file. |
| 868 | */ |
| 869 | int sqlite3LogClose( |
| 870 | Log *pLog, /* Log to close */ |
| 871 | sqlite3_file *pFd, /* Database file */ |
| 872 | u8 *zBuf /* Buffer of at least page-size bytes */ |
| 873 | ){ |
| 874 | int rc = SQLITE_OK; |
| 875 | if( pLog ){ |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 876 | LogLock **ppL; |
dan | 7c24610 | 2010-04-12 19:00:29 +0000 | [diff] [blame] | 877 | LogSummary *pSummary = pLog->pSummary; |
| 878 | sqlite3_mutex *mutex = 0; |
| 879 | |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 880 | sqlite3_mutex_enter(pSummary->mutex); |
| 881 | for(ppL=&pSummary->pLock; *ppL!=&pLog->lock; ppL=&(*ppL)->pNext); |
| 882 | *ppL = pLog->lock.pNext; |
| 883 | sqlite3_mutex_leave(pSummary->mutex); |
| 884 | |
dan | 7c24610 | 2010-04-12 19:00:29 +0000 | [diff] [blame] | 885 | if( sqlite3GlobalConfig.bCoreMutex ){ |
| 886 | mutex = sqlite3_mutex_alloc(LOG_SUMMARY_MUTEX); |
| 887 | } |
| 888 | sqlite3_mutex_enter(mutex); |
| 889 | |
| 890 | /* Decrement the reference count on the log summary. If this is the last |
| 891 | ** reference to the log summary object in this process, the object will |
| 892 | ** be freed. If this is also the last connection to the database, then |
| 893 | ** checkpoint the database and truncate the log and log-summary files |
| 894 | ** to zero bytes in size. |
| 895 | **/ |
| 896 | pSummary->nRef--; |
| 897 | if( pSummary->nRef==0 ){ |
| 898 | LogSummary **pp; |
| 899 | |
| 900 | rc = logSummaryLock(pSummary); |
| 901 | if( rc==SQLITE_OK ){ |
| 902 | int isTruncate = 0; |
| 903 | int rc2 = sqlite3OsLock(pLog->pFd, SQLITE_LOCK_EXCLUSIVE); |
| 904 | if( rc2==SQLITE_OK ){ |
| 905 | /* This is the last connection to the database (including other |
| 906 | ** processes). Do three things: |
| 907 | ** |
| 908 | ** 1. Checkpoint the db. |
| 909 | ** 2. Truncate the log file to zero bytes. |
| 910 | ** 3. Truncate the log-summary file to zero bytes. |
| 911 | */ |
| 912 | rc2 = logCheckpoint(pLog, pFd, zBuf); |
| 913 | if( rc2==SQLITE_OK ){ |
| 914 | rc2 = sqlite3OsTruncate(pLog->pFd, 0); |
| 915 | } |
| 916 | isTruncate = 1; |
| 917 | }else if( rc2==SQLITE_BUSY ){ |
| 918 | rc2 = SQLITE_OK; |
| 919 | } |
| 920 | logSummaryUnmap(pSummary, isTruncate); |
| 921 | sqlite3OsUnlock(pLog->pFd, SQLITE_LOCK_NONE); |
| 922 | rc = logSummaryUnlock(pSummary); |
| 923 | if( rc2!=SQLITE_OK ) rc = rc2; |
| 924 | } |
| 925 | |
| 926 | /* Remove the LogSummary object from the global list. Then free the |
| 927 | ** mutex and the object itself. |
| 928 | */ |
| 929 | for(pp=&pLogSummary; *pp!=pSummary; pp=&(*pp)->pNext); |
| 930 | *pp = (*pp)->pNext; |
| 931 | sqlite3_mutex_free(pSummary->mutex); |
| 932 | sqlite3_free(pSummary); |
| 933 | } |
| 934 | |
| 935 | sqlite3_mutex_leave(mutex); |
| 936 | |
| 937 | /* Close the connection to the log file and free the Log handle. */ |
| 938 | sqlite3OsClose(pLog->pFd); |
| 939 | sqlite3_free(pLog); |
| 940 | } |
| 941 | return rc; |
| 942 | } |
| 943 | |
| 944 | /* |
| 945 | ** Set the flags to pass to the sqlite3OsSync() function when syncing |
| 946 | ** the log file. |
| 947 | */ |
| 948 | #if 0 |
| 949 | void sqlite3LogSetSyncflags(Log *pLog, int sync_flags){ |
| 950 | assert( sync_flags==SQLITE_SYNC_NORMAL || sync_flags==SQLITE_SYNC_FULL ); |
| 951 | pLog->sync_flags = sync_flags; |
| 952 | } |
| 953 | #endif |
| 954 | |
| 955 | /* |
| 956 | ** Enter and leave the log-summary mutex. In this context, entering the |
| 957 | ** log-summary mutex means: |
| 958 | ** |
| 959 | ** 1. Obtaining mutex pLog->pSummary->mutex, and |
| 960 | ** 2. Taking an exclusive lock on the log-summary file. |
| 961 | ** |
| 962 | ** i.e. this mutex locks out other processes as well as other threads |
| 963 | ** hosted in this address space. |
| 964 | */ |
| 965 | static int logEnterMutex(Log *pLog){ |
| 966 | LogSummary *pSummary = pLog->pSummary; |
| 967 | int rc; |
| 968 | |
| 969 | sqlite3_mutex_enter(pSummary->mutex); |
| 970 | rc = logSummaryLock(pSummary); |
| 971 | if( rc!=SQLITE_OK ){ |
| 972 | sqlite3_mutex_leave(pSummary->mutex); |
| 973 | } |
| 974 | return rc; |
| 975 | } |
| 976 | static void logLeaveMutex(Log *pLog){ |
| 977 | LogSummary *pSummary = pLog->pSummary; |
| 978 | logSummaryUnlock(pSummary); |
| 979 | sqlite3_mutex_leave(pSummary->mutex); |
| 980 | } |
| 981 | |
| 982 | /* |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 983 | ** Values for the second parameter to logLockRegion(). |
| 984 | */ |
| 985 | #define LOG_UNLOCK 0 |
| 986 | #define LOG_RDLOCK 1 |
| 987 | #define LOG_WRLOCK 2 |
| 988 | |
| 989 | static int logLockRegion(Log *pLog, u32 mRegion, int op){ |
| 990 | LogSummary *pSummary = pLog->pSummary; |
| 991 | LogLock *p; /* Used to iterate through in-process locks */ |
dan | 02bb596 | 2010-04-14 15:49:40 +0000 | [diff] [blame^] | 992 | u32 mOther; /* Locks held by other connections */ |
| 993 | u32 mNew; /* New mask for pLog */ |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 994 | |
| 995 | assert( |
| 996 | /* Writer lock operations */ |
| 997 | (op==LOG_WRLOCK && mRegion==(LOG_REGION_C|LOG_REGION_D)) |
| 998 | || (op==LOG_UNLOCK && mRegion==(LOG_REGION_C|LOG_REGION_D)) |
| 999 | |
dan | 02bb596 | 2010-04-14 15:49:40 +0000 | [diff] [blame^] | 1000 | /* Normal reader lock operations */ |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 1001 | || (op==LOG_RDLOCK && mRegion==(LOG_REGION_A|LOG_REGION_B)) |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 1002 | || (op==LOG_UNLOCK && mRegion==(LOG_REGION_A)) |
| 1003 | || (op==LOG_UNLOCK && mRegion==(LOG_REGION_B)) |
dan | 02bb596 | 2010-04-14 15:49:40 +0000 | [diff] [blame^] | 1004 | |
| 1005 | /* Region D reader lock operations */ |
| 1006 | || (op==LOG_RDLOCK && mRegion==(LOG_REGION_D)) |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 1007 | || (op==LOG_UNLOCK && mRegion==(LOG_REGION_D)) |
| 1008 | |
| 1009 | /* Checkpointer lock operations */ |
| 1010 | || (op==LOG_WRLOCK && mRegion==(LOG_REGION_B|LOG_REGION_C)) |
| 1011 | || (op==LOG_WRLOCK && mRegion==(LOG_REGION_A)) |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 1012 | || (op==LOG_UNLOCK && mRegion==(LOG_REGION_B|LOG_REGION_C)) |
dan | 02bb596 | 2010-04-14 15:49:40 +0000 | [diff] [blame^] | 1013 | || (op==LOG_UNLOCK && mRegion==(LOG_REGION_A|LOG_REGION_B|LOG_REGION_C)) |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 1014 | ); |
| 1015 | |
dan | 02bb596 | 2010-04-14 15:49:40 +0000 | [diff] [blame^] | 1016 | /* Assert that a connection never tries to go from an EXCLUSIVE to a |
| 1017 | ** SHARED lock on a region. Moving from SHARED to EXCLUSIVE sometimes |
| 1018 | ** happens though (when a region D reader upgrades to a writer). |
| 1019 | */ |
| 1020 | assert( op!=LOG_RDLOCK || 0==(pLog->lock.mLock & (mRegion<<8)) ); |
| 1021 | |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 1022 | sqlite3_mutex_enter(pSummary->mutex); |
| 1023 | |
dan | 02bb596 | 2010-04-14 15:49:40 +0000 | [diff] [blame^] | 1024 | /* Calculate a mask of logs held by all connections in this process apart |
| 1025 | ** from this one. The least significant byte of the mask contains a mask |
| 1026 | ** of the SHARED logs held. The next least significant byte of the mask |
| 1027 | ** indicates the EXCLUSIVE locks held. For example, to test if some other |
| 1028 | ** connection is holding a SHARED lock on region A, or an EXCLUSIVE lock |
| 1029 | ** on region C, do: |
| 1030 | ** |
| 1031 | ** hasSharedOnA = (mOther & (LOG_REGION_A<<0)); |
| 1032 | ** hasExclusiveOnC = (mOther & (LOG_REGION_C<<8)); |
| 1033 | ** |
| 1034 | ** In all masks, if the bit in the EXCLUSIVE byte mask is set, so is the |
| 1035 | ** corresponding bit in the SHARED mask. |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 1036 | */ |
dan | 02bb596 | 2010-04-14 15:49:40 +0000 | [diff] [blame^] | 1037 | mOther = 0; |
| 1038 | for(p=pSummary->pLock; p; p=p->pNext){ |
| 1039 | assert( (p->mLock & (p->mLock<<8))==(p->mLock&0x0000FF00) ); |
| 1040 | if( p!=&pLog->lock ){ |
| 1041 | mOther |= p->mLock; |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 1042 | } |
| 1043 | } |
| 1044 | |
dan | 02bb596 | 2010-04-14 15:49:40 +0000 | [diff] [blame^] | 1045 | /* If this call is to lock a region (not to unlock one), test if locks held |
| 1046 | ** by any other connection in this process prevent the new locks from |
| 1047 | ** begin granted. If so, exit the summary mutex and return SQLITE_BUSY. |
| 1048 | */ |
| 1049 | if( op && (mOther & (mRegion << (op==LOG_RDLOCK ? 8 : 0))) ){ |
| 1050 | sqlite3_mutex_leave(pSummary->mutex); |
| 1051 | return SQLITE_BUSY; |
| 1052 | } |
| 1053 | |
| 1054 | /* Figure out the new log mask for this connection. */ |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 1055 | switch( op ){ |
| 1056 | case LOG_UNLOCK: |
dan | 02bb596 | 2010-04-14 15:49:40 +0000 | [diff] [blame^] | 1057 | mNew = (pLog->lock.mLock & ~(mRegion|(mRegion<<8))); |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 1058 | break; |
| 1059 | case LOG_RDLOCK: |
dan | 02bb596 | 2010-04-14 15:49:40 +0000 | [diff] [blame^] | 1060 | mNew = (pLog->lock.mLock | mRegion); |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 1061 | break; |
| 1062 | default: |
| 1063 | assert( op==LOG_WRLOCK ); |
dan | 02bb596 | 2010-04-14 15:49:40 +0000 | [diff] [blame^] | 1064 | mNew = (pLog->lock.mLock | (mRegion<<8) | mRegion); |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 1065 | break; |
| 1066 | } |
| 1067 | |
dan | 02bb596 | 2010-04-14 15:49:40 +0000 | [diff] [blame^] | 1068 | /* Now modify the locks held on the log-summary file descriptor. This |
| 1069 | ** file descriptor is shared by all log connections in this process. |
| 1070 | ** Therefore: |
| 1071 | ** |
| 1072 | ** + If one or more log connections in this process hold a SHARED lock |
| 1073 | ** on a region, the file-descriptor should hold a SHARED lock on |
| 1074 | ** the file region. |
| 1075 | ** |
| 1076 | ** + If a log connection in this process holds an EXCLUSIVE lock on a |
| 1077 | ** region, the file-descriptor should also hold an EXCLUSIVE lock on |
| 1078 | ** the region in question. |
| 1079 | ** |
| 1080 | ** If this is an LOG_UNLOCK operation, only regions for which no other |
| 1081 | ** connection holds a lock should actually be unlocked. And if this |
| 1082 | ** is a LOG_RDLOCK operation and other connections already hold all |
| 1083 | ** the required SHARED locks, then no system call is required. |
| 1084 | */ |
| 1085 | if( op==LOG_UNLOCK ){ |
| 1086 | mRegion = (mRegion & ~mOther); |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 1087 | } |
dan | 02bb596 | 2010-04-14 15:49:40 +0000 | [diff] [blame^] | 1088 | if( (op==LOG_WRLOCK) |
| 1089 | || (op==LOG_UNLOCK && mRegion) |
| 1090 | || (op==LOG_RDLOCK && (mOther&mRegion)!=mRegion) |
| 1091 | ){ |
| 1092 | struct LockMap { |
| 1093 | int iStart; /* Byte offset to start locking operation */ |
| 1094 | int iLen; /* Length field for locking operation */ |
| 1095 | } aMap[] = { |
| 1096 | /* 0000 */ {0, 0}, /* 0001 */ {4, 1}, |
| 1097 | /* 0010 */ {3, 1}, /* 0011 */ {3, 2}, |
| 1098 | /* 0100 */ {2, 1}, /* 0101 */ {0, 0}, |
| 1099 | /* 0110 */ {2, 2}, /* 0111 */ {2, 3}, |
| 1100 | /* 1000 */ {1, 1}, /* 1001 */ {0, 0}, |
| 1101 | /* 1010 */ {0, 0}, /* 1011 */ {0, 0}, |
| 1102 | /* 1100 */ {1, 2}, /* 1101 */ {0, 0}, |
| 1103 | /* 1110 */ {1, 3}, /* 1111 */ {0, 0} |
| 1104 | }; |
| 1105 | int rc; /* Return code of fcntl() */ |
| 1106 | struct flock f; /* Locking operation */ |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 1107 | |
dan | 02bb596 | 2010-04-14 15:49:40 +0000 | [diff] [blame^] | 1108 | assert( mRegion<ArraySize(aMap) && aMap[mRegion].iStart!=0 ); |
| 1109 | |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 1110 | memset(&f, 0, sizeof(f)); |
| 1111 | f.l_type = (op==LOG_WRLOCK?F_WRLCK:(op==LOG_RDLOCK?F_RDLCK:F_UNLCK)); |
| 1112 | f.l_whence = SEEK_SET; |
dan | 02bb596 | 2010-04-14 15:49:40 +0000 | [diff] [blame^] | 1113 | f.l_start = 32 + aMap[mRegion].iStart; |
| 1114 | f.l_len = aMap[mRegion].iLen; |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 1115 | |
| 1116 | rc = fcntl(pSummary->fd, F_SETLK, &f); |
| 1117 | if( rc!=0 ){ |
| 1118 | sqlite3_mutex_leave(pSummary->mutex); |
| 1119 | return SQLITE_BUSY; |
| 1120 | } |
| 1121 | } |
| 1122 | |
dan | 02bb596 | 2010-04-14 15:49:40 +0000 | [diff] [blame^] | 1123 | pLog->lock.mLock = mNew; |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 1124 | sqlite3_mutex_leave(pSummary->mutex); |
| 1125 | return SQLITE_OK; |
| 1126 | } |
| 1127 | |
| 1128 | /* |
dan | b9bf16b | 2010-04-14 11:23:30 +0000 | [diff] [blame] | 1129 | ** Try to read the log-summary header. Attempt to verify the header |
| 1130 | ** checksum. If the checksum can be verified, copy the log-summary |
| 1131 | ** header into structure pLog->hdr. If the contents of pLog->hdr are |
| 1132 | ** modified by this and pChanged is not NULL, set *pChanged to 1. |
| 1133 | ** Otherwise leave *pChanged unmodified. |
| 1134 | ** |
| 1135 | ** If the checksum cannot be verified return SQLITE_ERROR. |
| 1136 | */ |
| 1137 | int logSummaryTryHdr(Log *pLog, int *pChanged){ |
| 1138 | u32 aCksum[2] = {1, 1}; |
| 1139 | u32 aHdr[LOGSUMMARY_HDR_NFIELD+2]; |
| 1140 | |
| 1141 | /* First try to read the header without a lock. Verify the checksum |
| 1142 | ** before returning. This will almost always work. |
| 1143 | */ |
| 1144 | memcpy(aHdr, pLog->pSummary->aData, sizeof(aHdr)); |
| 1145 | logChecksumBytes((u8*)aHdr, sizeof(u32)*LOGSUMMARY_HDR_NFIELD, aCksum); |
| 1146 | if( aCksum[0]!=aHdr[LOGSUMMARY_HDR_NFIELD] |
| 1147 | || aCksum[1]!=aHdr[LOGSUMMARY_HDR_NFIELD+1] |
| 1148 | ){ |
| 1149 | return SQLITE_ERROR; |
| 1150 | } |
| 1151 | |
| 1152 | if( memcmp(&pLog->hdr, aHdr, sizeof(LogSummaryHdr)) ){ |
| 1153 | if( pChanged ){ |
| 1154 | *pChanged = 1; |
| 1155 | } |
| 1156 | memcpy(&pLog->hdr, aHdr, sizeof(LogSummaryHdr)); |
| 1157 | } |
| 1158 | return SQLITE_OK; |
| 1159 | } |
| 1160 | |
| 1161 | /* |
| 1162 | ** Read the log-summary header from the log-summary file into structure |
| 1163 | ** pLog->hdr. If attempting to verify the header checksum fails, try |
| 1164 | ** to recover the log before returning. |
| 1165 | ** |
| 1166 | ** If the log-summary header is successfully read, return SQLITE_OK. |
| 1167 | ** Otherwise an SQLite error code. |
| 1168 | */ |
| 1169 | int logSummaryReadHdr(Log *pLog, int *pChanged){ |
| 1170 | int rc; |
| 1171 | |
| 1172 | /* First try to read the header without a lock. Verify the checksum |
| 1173 | ** before returning. This will almost always work. |
| 1174 | */ |
| 1175 | if( SQLITE_OK==logSummaryTryHdr(pLog, pChanged) ){ |
| 1176 | return SQLITE_OK; |
| 1177 | } |
| 1178 | |
| 1179 | /* If the first attempt to read the header failed, lock the log-summary |
| 1180 | ** file and try again. If the header checksum verification fails this |
| 1181 | ** time as well, run log recovery. |
| 1182 | */ |
| 1183 | if( SQLITE_OK==(rc = logEnterMutex(pLog)) ){ |
| 1184 | if( SQLITE_OK!=logSummaryTryHdr(pLog, pChanged) ){ |
| 1185 | if( pChanged ){ |
| 1186 | *pChanged = 1; |
| 1187 | } |
| 1188 | rc = logSummaryRecover(pLog->pSummary, pLog->pFd); |
| 1189 | if( rc==SQLITE_OK ){ |
| 1190 | rc = logSummaryTryHdr(pLog, 0); |
| 1191 | } |
| 1192 | } |
| 1193 | logLeaveMutex(pLog); |
| 1194 | } |
| 1195 | |
| 1196 | return rc; |
| 1197 | } |
| 1198 | |
| 1199 | /* |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 1200 | ** Lock a snapshot. |
dan | 7c24610 | 2010-04-12 19:00:29 +0000 | [diff] [blame] | 1201 | ** |
| 1202 | ** If this call obtains a new read-lock and the database contents have been |
| 1203 | ** modified since the most recent call to LogCloseSnapshot() on this Log |
| 1204 | ** connection, then *pChanged is set to 1 before returning. Otherwise, it |
| 1205 | ** is left unmodified. This is used by the pager layer to determine whether |
| 1206 | ** or not any cached pages may be safely reused. |
| 1207 | */ |
| 1208 | int sqlite3LogOpenSnapshot(Log *pLog, int *pChanged){ |
| 1209 | int rc = SQLITE_OK; |
| 1210 | if( pLog->isLocked==0 ){ |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 1211 | int nAttempt; |
| 1212 | |
| 1213 | /* Obtain a snapshot-lock on the log-summary file. The procedure |
| 1214 | ** for obtaining the snapshot log is: |
| 1215 | ** |
| 1216 | ** 1. Attempt a SHARED lock on regions A and B. |
| 1217 | ** 2a. If step 1 is successful, drop the lock on region B. |
| 1218 | ** 2b. If step 1 is unsuccessful, attempt a SHARED lock on region D. |
| 1219 | ** 3. Repeat the above until the lock attempt in step 1 or 2b is |
| 1220 | ** successful. |
| 1221 | ** |
| 1222 | ** If neither of the locks can be obtained after 5 tries, presumably |
| 1223 | ** something is wrong (i.e. a process not following the locking protocol). |
| 1224 | ** Return an error code in this case. |
| 1225 | */ |
| 1226 | rc = SQLITE_BUSY; |
| 1227 | for(nAttempt=0; nAttempt<5 && rc==SQLITE_BUSY; nAttempt++){ |
| 1228 | rc = logLockRegion(pLog, LOG_REGION_A|LOG_REGION_B, LOG_RDLOCK); |
| 1229 | if( rc==SQLITE_BUSY ){ |
| 1230 | rc = logLockRegion(pLog, LOG_REGION_D, LOG_RDLOCK); |
| 1231 | if( rc==SQLITE_OK ) pLog->isLocked = LOG_REGION_D; |
| 1232 | }else{ |
| 1233 | logLockRegion(pLog, LOG_REGION_B, LOG_UNLOCK); |
| 1234 | pLog->isLocked = LOG_REGION_A; |
| 1235 | } |
| 1236 | } |
| 1237 | if( rc!=SQLITE_OK ){ |
| 1238 | return rc; |
| 1239 | } |
| 1240 | |
dan | b9bf16b | 2010-04-14 11:23:30 +0000 | [diff] [blame] | 1241 | rc = logSummaryReadHdr(pLog, pChanged); |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 1242 | if( rc!=SQLITE_OK ){ |
| 1243 | /* An error occured while attempting log recovery. */ |
| 1244 | sqlite3LogCloseSnapshot(pLog); |
| 1245 | } |
dan | 7c24610 | 2010-04-12 19:00:29 +0000 | [diff] [blame] | 1246 | } |
| 1247 | return rc; |
| 1248 | } |
| 1249 | |
| 1250 | /* |
| 1251 | ** Unlock the current snapshot. |
| 1252 | */ |
| 1253 | void sqlite3LogCloseSnapshot(Log *pLog){ |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 1254 | if( pLog->isLocked ){ |
| 1255 | assert( pLog->isLocked==LOG_REGION_A || pLog->isLocked==LOG_REGION_D ); |
| 1256 | logLockRegion(pLog, pLog->isLocked, LOG_UNLOCK); |
| 1257 | } |
dan | 7c24610 | 2010-04-12 19:00:29 +0000 | [diff] [blame] | 1258 | pLog->isLocked = 0; |
| 1259 | } |
| 1260 | |
| 1261 | |
| 1262 | |
| 1263 | /* |
| 1264 | ** Read a page from the log, if it is present. |
| 1265 | */ |
| 1266 | int sqlite3LogRead(Log *pLog, Pgno pgno, int *pInLog, u8 *pOut){ |
| 1267 | u32 iRead = 0; |
| 1268 | u32 *aData = pLog->pSummary->aData; |
| 1269 | int iFrame = (pLog->hdr.iLastPg & 0xFFFFFF00); |
| 1270 | |
| 1271 | /* Do a linear search of the unindexed block of page-numbers (if any) |
| 1272 | ** at the end of the log-summary. An alternative to this would be to |
| 1273 | ** build an index in private memory each time a read transaction is |
| 1274 | ** opened on a new snapshot. |
| 1275 | */ |
| 1276 | if( pLog->hdr.iLastPg ){ |
| 1277 | u32 *pi = &aData[logSummaryEntry(pLog->hdr.iLastPg)]; |
| 1278 | u32 *piStop = pi - (pLog->hdr.iLastPg & 0xFF); |
| 1279 | while( *pi!=pgno && pi!=piStop ) pi--; |
| 1280 | if( pi!=piStop ){ |
| 1281 | iRead = (pi-piStop) + iFrame; |
| 1282 | } |
| 1283 | } |
| 1284 | assert( iRead==0 || aData[logSummaryEntry(iRead)]==pgno ); |
| 1285 | |
| 1286 | while( iRead==0 && iFrame>0 ){ |
| 1287 | int iLow = 0; |
| 1288 | int iHigh = 255; |
| 1289 | u32 *aFrame; |
| 1290 | u8 *aIndex; |
| 1291 | |
| 1292 | iFrame -= 256; |
| 1293 | aFrame = &aData[logSummaryEntry(iFrame+1)]; |
| 1294 | aIndex = (u8 *)&aFrame[256]; |
| 1295 | |
| 1296 | while( iLow<=iHigh ){ |
| 1297 | int iTest = (iLow+iHigh)>>1; |
| 1298 | u32 iPg = aFrame[aIndex[iTest]]; |
| 1299 | |
| 1300 | if( iPg==pgno ){ |
| 1301 | iRead = iFrame + 1 + aIndex[iTest]; |
| 1302 | break; |
| 1303 | } |
| 1304 | else if( iPg<pgno ){ |
| 1305 | iLow = iTest+1; |
| 1306 | }else{ |
| 1307 | iHigh = iTest-1; |
| 1308 | } |
| 1309 | } |
| 1310 | } |
| 1311 | assert( iRead==0 || aData[logSummaryEntry(iRead)]==pgno ); |
| 1312 | |
| 1313 | /* If iRead is non-zero, then it is the log frame number that contains the |
| 1314 | ** required page. Read and return data from the log file. |
| 1315 | */ |
| 1316 | if( iRead ){ |
| 1317 | i64 iOffset = (iRead-1) * (pLog->hdr.pgsz+LOG_FRAME_HDRSIZE); |
| 1318 | iOffset += LOG_FRAME_HDRSIZE; |
| 1319 | *pInLog = 1; |
| 1320 | return sqlite3OsRead(pLog->pFd, pOut, pLog->hdr.pgsz, iOffset); |
| 1321 | } |
| 1322 | |
| 1323 | *pInLog = 0; |
| 1324 | return SQLITE_OK; |
| 1325 | } |
| 1326 | |
| 1327 | |
| 1328 | /* |
| 1329 | ** Set *pPgno to the size of the database file (or zero, if unknown). |
| 1330 | */ |
| 1331 | void sqlite3LogMaxpgno(Log *pLog, Pgno *pPgno){ |
| 1332 | assert( pLog->isLocked ); |
| 1333 | *pPgno = pLog->hdr.nPage; |
| 1334 | } |
| 1335 | |
| 1336 | /* |
| 1337 | ** The caller must hold at least a RESERVED lock on the database file |
| 1338 | ** when invoking this function. |
| 1339 | ** |
| 1340 | ** This function returns SQLITE_OK if the caller may write to the database. |
| 1341 | ** Otherwise, if the caller is operating on a snapshot that has already |
| 1342 | ** been overwritten by another writer, SQLITE_OBE is returned. |
| 1343 | */ |
| 1344 | int sqlite3LogWriteLock(Log *pLog, int op){ |
| 1345 | assert( pLog->isLocked ); |
| 1346 | if( op ){ |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 1347 | |
| 1348 | /* Obtain the writer lock */ |
| 1349 | int rc = logLockRegion(pLog, LOG_REGION_C|LOG_REGION_D, LOG_WRLOCK); |
| 1350 | if( rc!=SQLITE_OK ){ |
| 1351 | return rc; |
| 1352 | } |
| 1353 | |
dan | 02bb596 | 2010-04-14 15:49:40 +0000 | [diff] [blame^] | 1354 | /* TODO: What if this is a region D reader? And after writing this |
| 1355 | ** transaction it continues to hold a read-lock on the db? Maybe we |
| 1356 | ** need to switch it to a region A reader here so that unlocking C|D |
| 1357 | ** does not leave the connection with no lock at all. |
| 1358 | */ |
| 1359 | assert( pLog->isLocked!=LOG_REGION_D ); |
| 1360 | |
dan | 7c24610 | 2010-04-12 19:00:29 +0000 | [diff] [blame] | 1361 | if( memcmp(&pLog->hdr, pLog->pSummary->aData, sizeof(pLog->hdr)) ){ |
| 1362 | return SQLITE_BUSY; |
| 1363 | } |
| 1364 | pLog->isWriteLocked = 1; |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 1365 | |
dan | 7c24610 | 2010-04-12 19:00:29 +0000 | [diff] [blame] | 1366 | }else if( pLog->isWriteLocked ){ |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 1367 | logLockRegion(pLog, LOG_REGION_C|LOG_REGION_D, LOG_UNLOCK); |
dan | 7c24610 | 2010-04-12 19:00:29 +0000 | [diff] [blame] | 1368 | memcpy(&pLog->hdr, pLog->pSummary->aData, sizeof(pLog->hdr)); |
| 1369 | pLog->isWriteLocked = 0; |
| 1370 | } |
| 1371 | return SQLITE_OK; |
| 1372 | } |
| 1373 | |
| 1374 | /* |
| 1375 | ** Write a set of frames to the log. The caller must hold at least a |
| 1376 | ** RESERVED lock on the database file. |
| 1377 | */ |
| 1378 | int sqlite3LogFrames( |
| 1379 | Log *pLog, /* Log handle to write to */ |
| 1380 | int nPgsz, /* Database page-size in bytes */ |
| 1381 | PgHdr *pList, /* List of dirty pages to write */ |
| 1382 | Pgno nTruncate, /* Database size after this commit */ |
| 1383 | int isCommit, /* True if this is a commit */ |
| 1384 | int isSync /* True to sync the log file */ |
| 1385 | ){ |
| 1386 | /* Each frame has a 20 byte header, as follows: |
| 1387 | ** |
| 1388 | ** + Pseudo-random salt (4 bytes) |
| 1389 | ** + Page number (4 bytes) |
| 1390 | ** + New database size, or 0 if not a commit frame (4 bytes) |
| 1391 | ** + Checksum (CHECKSUM_BYTES bytes); |
| 1392 | ** |
| 1393 | ** The checksum is computed based on the following: |
| 1394 | ** |
| 1395 | ** + The previous checksum, or {2, 3} for the first frame in the log. |
| 1396 | ** + The non-checksum fields of the frame header, and |
| 1397 | ** + The frame contents (page data). |
| 1398 | ** |
| 1399 | ** This format must also be understood by the code in logSummaryRecover(). |
| 1400 | ** The size of the frame header is used by LogRead() and LogCheckpoint(). |
| 1401 | */ |
| 1402 | int rc; /* Used to catch return codes */ |
| 1403 | u32 iFrame; /* Next frame address */ |
| 1404 | u8 aFrame[LOG_FRAME_HDRSIZE]; |
| 1405 | PgHdr *p; /* Iterator to run through pList with. */ |
| 1406 | u32 aCksum[2]; |
| 1407 | |
| 1408 | PgHdr *pLast; /* Last frame in list */ |
| 1409 | int nLast = 0; /* Number of extra copies of last page */ |
| 1410 | |
| 1411 | assert( LOG_FRAME_HDRSIZE==(4 * 3 + LOG_CKSM_BYTES) ); |
| 1412 | assert( pList ); |
| 1413 | |
| 1414 | aCksum[0] = pLog->hdr.iCheck1; |
| 1415 | aCksum[1] = pLog->hdr.iCheck2; |
| 1416 | |
| 1417 | /* Write the log file. */ |
| 1418 | iFrame = pLog->hdr.iLastPg; |
| 1419 | for(p=pList; p; p=p->pDirty){ |
| 1420 | u32 nDbsize; /* Db-size field for frame header */ |
| 1421 | i64 iOffset; /* Write offset in log file */ |
| 1422 | |
| 1423 | iFrame++; |
| 1424 | iOffset = (iFrame-1) * (nPgsz+sizeof(aFrame)); |
| 1425 | |
| 1426 | /* Populate and write the frame header */ |
| 1427 | nDbsize = (isCommit && p->pDirty==0) ? nTruncate : 0; |
| 1428 | logEncodeFrame(aCksum, p->pgno, nDbsize, nPgsz, p->pData, aFrame); |
| 1429 | rc = sqlite3OsWrite(pLog->pFd, aFrame, sizeof(aFrame), iOffset); |
| 1430 | if( rc!=SQLITE_OK ){ |
| 1431 | return rc; |
| 1432 | } |
| 1433 | |
| 1434 | /* Write the page data */ |
| 1435 | rc = sqlite3OsWrite(pLog->pFd, p->pData, nPgsz, iOffset + sizeof(aFrame)); |
| 1436 | if( rc!=SQLITE_OK ){ |
| 1437 | return rc; |
| 1438 | } |
| 1439 | pLast = p; |
| 1440 | } |
| 1441 | |
| 1442 | /* Sync the log file if the 'isSync' flag was specified. */ |
| 1443 | if( isSync ){ |
| 1444 | #if 0 |
| 1445 | i64 iSegment = sqlite3OsSectorSize(pLog->pFd); |
| 1446 | i64 iOffset = iFrame * (nPgsz+sizeof(aFrame)); |
| 1447 | |
| 1448 | if( iSegment<SQLITE_DEFAULT_SECTOR_SIZE ){ |
| 1449 | iSegment = SQLITE_DEFAULT_SECTOR_SIZE; |
| 1450 | } |
| 1451 | iSegment = (((iOffset+iSegment-1)/iSegment) * iSegment); |
| 1452 | while( iOffset<iSegment ){ |
| 1453 | logEncodeFrame(aCksum,pLast->pgno,nTruncate,nPgsz,pLast->pData,aFrame); |
| 1454 | rc = sqlite3OsWrite(pLog->pFd, aFrame, sizeof(aFrame), iOffset); |
| 1455 | if( rc!=SQLITE_OK ){ |
| 1456 | return rc; |
| 1457 | } |
| 1458 | |
| 1459 | iOffset += LOG_FRAME_HDRSIZE; |
| 1460 | rc = sqlite3OsWrite(pLog->pFd, pLast->pData, nPgsz, iOffset); |
| 1461 | if( rc!=SQLITE_OK ){ |
| 1462 | return rc; |
| 1463 | } |
| 1464 | nLast++; |
| 1465 | iOffset += nPgsz; |
| 1466 | } |
| 1467 | #endif |
| 1468 | |
| 1469 | rc = sqlite3OsSync(pLog->pFd, pLog->sync_flags); |
| 1470 | if( rc!=SQLITE_OK ){ |
| 1471 | return rc; |
| 1472 | } |
| 1473 | } |
| 1474 | |
| 1475 | /* Append data to the log summary. It is not necessary to lock the |
| 1476 | ** log-summary to do this as the RESERVED lock held on the db file |
| 1477 | ** guarantees that there are no other writers, and no data that may |
| 1478 | ** be in use by existing readers is being overwritten. |
| 1479 | */ |
| 1480 | iFrame = pLog->hdr.iLastPg; |
| 1481 | for(p=pList; p; p=p->pDirty){ |
| 1482 | iFrame++; |
| 1483 | logSummaryAppend(pLog->pSummary, iFrame, p->pgno); |
| 1484 | } |
| 1485 | while( nLast>0 ){ |
| 1486 | iFrame++; |
| 1487 | nLast--; |
| 1488 | logSummaryAppend(pLog->pSummary, iFrame, pLast->pgno); |
| 1489 | } |
| 1490 | |
| 1491 | /* Update the private copy of the header. */ |
| 1492 | pLog->hdr.pgsz = nPgsz; |
| 1493 | pLog->hdr.iLastPg = iFrame; |
| 1494 | if( isCommit ){ |
| 1495 | pLog->hdr.iChange++; |
| 1496 | pLog->hdr.nPage = nTruncate; |
| 1497 | } |
| 1498 | pLog->hdr.iCheck1 = aCksum[0]; |
| 1499 | pLog->hdr.iCheck2 = aCksum[1]; |
| 1500 | |
| 1501 | /* If this is a commit, update the log-summary header too. */ |
| 1502 | if( isCommit && SQLITE_OK==(rc = logEnterMutex(pLog)) ){ |
| 1503 | logSummaryWriteHdr(pLog->pSummary, &pLog->hdr); |
| 1504 | logLeaveMutex(pLog); |
| 1505 | } |
| 1506 | |
| 1507 | return SQLITE_OK; |
| 1508 | } |
| 1509 | |
| 1510 | /* |
dan | b9bf16b | 2010-04-14 11:23:30 +0000 | [diff] [blame] | 1511 | ** Checkpoint the database: |
| 1512 | ** |
| 1513 | ** 1. Wait for an EXCLUSIVE lock on regions B and C. |
| 1514 | ** 2. Wait for an EXCLUSIVE lock on region A. |
| 1515 | ** 3. Copy the contents of the log into the database file. |
| 1516 | ** 4. Zero the log-summary header (so new readers will ignore the log). |
| 1517 | ** 5. Drop the locks obtained in steps 1 and 2. |
dan | 7c24610 | 2010-04-12 19:00:29 +0000 | [diff] [blame] | 1518 | */ |
| 1519 | int sqlite3LogCheckpoint( |
| 1520 | Log *pLog, /* Log connection */ |
| 1521 | sqlite3_file *pFd, /* File descriptor open on db file */ |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 1522 | u8 *zBuf, /* Temporary buffer to use */ |
| 1523 | int (*xBusyHandler)(void *), /* Pointer to busy-handler function */ |
| 1524 | void *pBusyHandlerArg /* Argument to pass to xBusyHandler */ |
dan | 7c24610 | 2010-04-12 19:00:29 +0000 | [diff] [blame] | 1525 | ){ |
dan | b9bf16b | 2010-04-14 11:23:30 +0000 | [diff] [blame] | 1526 | int rc; /* Return code */ |
dan | 7c24610 | 2010-04-12 19:00:29 +0000 | [diff] [blame] | 1527 | |
dan | b9bf16b | 2010-04-14 11:23:30 +0000 | [diff] [blame] | 1528 | /* Wait for a write-lock on regions B and C. */ |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 1529 | do { |
| 1530 | rc = logLockRegion(pLog, LOG_REGION_B|LOG_REGION_C, LOG_WRLOCK); |
| 1531 | }while( rc==SQLITE_BUSY && xBusyHandler(pBusyHandlerArg) ); |
| 1532 | if( rc!=SQLITE_OK ) return rc; |
| 1533 | |
dan | b9bf16b | 2010-04-14 11:23:30 +0000 | [diff] [blame] | 1534 | /* Wait for a write-lock on region A. */ |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 1535 | do { |
| 1536 | rc = logLockRegion(pLog, LOG_REGION_A, LOG_WRLOCK); |
| 1537 | }while( rc==SQLITE_BUSY && xBusyHandler(pBusyHandlerArg) ); |
dan | b9bf16b | 2010-04-14 11:23:30 +0000 | [diff] [blame] | 1538 | if( rc!=SQLITE_OK ){ |
| 1539 | logLockRegion(pLog, LOG_REGION_B|LOG_REGION_C, LOG_UNLOCK); |
| 1540 | return rc; |
| 1541 | } |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 1542 | |
dan | b9bf16b | 2010-04-14 11:23:30 +0000 | [diff] [blame] | 1543 | /* Copy data from the log to the database file. */ |
| 1544 | rc = logSummaryReadHdr(pLog, 0); |
| 1545 | if( rc==SQLITE_OK ){ |
| 1546 | rc = logCheckpoint(pLog, pFd, zBuf); |
| 1547 | } |
| 1548 | |
| 1549 | /* Release the locks. */ |
dan | 64d039e | 2010-04-13 19:27:31 +0000 | [diff] [blame] | 1550 | logLockRegion(pLog, LOG_REGION_A|LOG_REGION_B|LOG_REGION_C, LOG_UNLOCK); |
| 1551 | return rc; |
dan | 7c24610 | 2010-04-12 19:00:29 +0000 | [diff] [blame] | 1552 | } |
| 1553 | |