blob: 9a9b2dc0e8f907316ec36c377aec073bc4aed37b [file] [log] [blame]
dan7c246102010-04-12 19:00:29 +00001/*
drh7ed91f22010-04-29 22:34:07 +00002** 2010 February 1
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
drh027a1282010-05-19 01:53:53 +000013** This file contains the implementation of a write-ahead log (WAL) used in
14** "journal_mode=WAL" mode.
drh29d4dbe2010-05-18 23:29:52 +000015**
drh7ed91f22010-04-29 22:34:07 +000016** WRITE-AHEAD LOG (WAL) FILE FORMAT
dan97a31352010-04-16 13:59:31 +000017**
drh7e263722010-05-20 21:21:09 +000018** A WAL file consists of a header followed by zero or more "frames".
drh027a1282010-05-19 01:53:53 +000019** Each frame records the revised content of a single page from the
drh29d4dbe2010-05-18 23:29:52 +000020** database file. All changes to the database are recorded by writing
21** frames into the WAL. Transactions commit when a frame is written that
22** contains a commit marker. A single WAL can and usually does record
23** multiple transactions. Periodically, the content of the WAL is
24** transferred back into the database file in an operation called a
25** "checkpoint".
26**
27** A single WAL file can be used multiple times. In other words, the
drh027a1282010-05-19 01:53:53 +000028** WAL can fill up with frames and then be checkpointed and then new
drh29d4dbe2010-05-18 23:29:52 +000029** frames can overwrite the old ones. A WAL always grows from beginning
30** toward the end. Checksums and counters attached to each frame are
31** used to determine which frames within the WAL are valid and which
32** are leftovers from prior checkpoints.
33**
drhcd285082010-06-23 22:00:35 +000034** The WAL header is 32 bytes in size and consists of the following eight
dan97a31352010-04-16 13:59:31 +000035** big-endian 32-bit unsigned integer values:
36**
drh1b78eaf2010-05-25 13:40:03 +000037** 0: Magic number. 0x377f0682 or 0x377f0683
drh23ea97b2010-05-20 16:45:58 +000038** 4: File format version. Currently 3007000
39** 8: Database page size. Example: 1024
40** 12: Checkpoint sequence number
drh7e263722010-05-20 21:21:09 +000041** 16: Salt-1, random integer incremented with each checkpoint
42** 20: Salt-2, a different random integer changing with each ckpt
dan10f5a502010-06-23 15:55:43 +000043** 24: Checksum-1 (first part of checksum for first 24 bytes of header).
44** 28: Checksum-2 (second part of checksum for first 24 bytes of header).
dan97a31352010-04-16 13:59:31 +000045**
drh23ea97b2010-05-20 16:45:58 +000046** Immediately following the wal-header are zero or more frames. Each
47** frame consists of a 24-byte frame-header followed by a <page-size> bytes
drhcd285082010-06-23 22:00:35 +000048** of page data. The frame-header is six big-endian 32-bit unsigned
dan97a31352010-04-16 13:59:31 +000049** integer values, as follows:
50**
dan3de777f2010-04-17 12:31:37 +000051** 0: Page number.
52** 4: For commit records, the size of the database image in pages
dan97a31352010-04-16 13:59:31 +000053** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +000054** 8: Salt-1 (copied from the header)
55** 12: Salt-2 (copied from the header)
drh23ea97b2010-05-20 16:45:58 +000056** 16: Checksum-1.
57** 20: Checksum-2.
drh29d4dbe2010-05-18 23:29:52 +000058**
drh7e263722010-05-20 21:21:09 +000059** A frame is considered valid if and only if the following conditions are
60** true:
61**
62** (1) The salt-1 and salt-2 values in the frame-header match
63** salt values in the wal-header
64**
65** (2) The checksum values in the final 8 bytes of the frame-header
drh1b78eaf2010-05-25 13:40:03 +000066** exactly match the checksum computed consecutively on the
67** WAL header and the first 8 bytes and the content of all frames
68** up to and including the current frame.
69**
70** The checksum is computed using 32-bit big-endian integers if the
71** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72** is computed using little-endian if the magic number is 0x377f0682.
drh51b21b12010-05-25 15:53:31 +000073** The checksum values are always stored in the frame header in a
74** big-endian format regardless of which byte order is used to compute
75** the checksum. The checksum is computed by interpreting the input as
76** an even number of unsigned 32-bit integers: x[0] through x[N]. The
drhffca4302010-06-15 11:21:54 +000077** algorithm used for the checksum is as follows:
drh51b21b12010-05-25 15:53:31 +000078**
79** for i from 0 to n-1 step 2:
80** s0 += x[i] + s1;
81** s1 += x[i+1] + s0;
82** endfor
drh7e263722010-05-20 21:21:09 +000083**
drhcd285082010-06-23 22:00:35 +000084** Note that s0 and s1 are both weighted checksums using fibonacci weights
85** in reverse order (the largest fibonacci weight occurs on the first element
86** of the sequence being summed.) The s1 value spans all 32-bit
87** terms of the sequence whereas s0 omits the final term.
88**
drh7e263722010-05-20 21:21:09 +000089** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90** WAL is transferred into the database, then the database is VFS.xSync-ed.
drhffca4302010-06-15 11:21:54 +000091** The VFS.xSync operations serve as write barriers - all writes launched
drh7e263722010-05-20 21:21:09 +000092** before the xSync must complete before any write that launches after the
93** xSync begins.
94**
95** After each checkpoint, the salt-1 value is incremented and the salt-2
96** value is randomized. This prevents old and new frames in the WAL from
97** being considered valid at the same time and being checkpointing together
98** following a crash.
99**
drh29d4dbe2010-05-18 23:29:52 +0000100** READER ALGORITHM
101**
102** To read a page from the database (call it page number P), a reader
103** first checks the WAL to see if it contains page P. If so, then the
drh73b64e42010-05-30 19:55:15 +0000104** last valid instance of page P that is a followed by a commit frame
105** or is a commit frame itself becomes the value read. If the WAL
106** contains no copies of page P that are valid and which are a commit
107** frame or are followed by a commit frame, then page P is read from
108** the database file.
drh29d4dbe2010-05-18 23:29:52 +0000109**
drh73b64e42010-05-30 19:55:15 +0000110** To start a read transaction, the reader records the index of the last
111** valid frame in the WAL. The reader uses this recorded "mxFrame" value
112** for all subsequent read operations. New transactions can be appended
113** to the WAL, but as long as the reader uses its original mxFrame value
114** and ignores the newly appended content, it will see a consistent snapshot
115** of the database from a single point in time. This technique allows
116** multiple concurrent readers to view different versions of the database
117** content simultaneously.
118**
119** The reader algorithm in the previous paragraphs works correctly, but
drh29d4dbe2010-05-18 23:29:52 +0000120** because frames for page P can appear anywhere within the WAL, the
drh027a1282010-05-19 01:53:53 +0000121** reader has to scan the entire WAL looking for page P frames. If the
drh29d4dbe2010-05-18 23:29:52 +0000122** WAL is large (multiple megabytes is typical) that scan can be slow,
drh027a1282010-05-19 01:53:53 +0000123** and read performance suffers. To overcome this problem, a separate
124** data structure called the wal-index is maintained to expedite the
drh29d4dbe2010-05-18 23:29:52 +0000125** search for frames of a particular page.
126**
127** WAL-INDEX FORMAT
128**
129** Conceptually, the wal-index is shared memory, though VFS implementations
130** might choose to implement the wal-index using a mmapped file. Because
131** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132** on a network filesystem. All users of the database must be able to
133** share memory.
134**
135** The wal-index is transient. After a crash, the wal-index can (and should
136** be) reconstructed from the original WAL file. In fact, the VFS is required
137** to either truncate or zero the header of the wal-index when the last
138** connection to it closes. Because the wal-index is transient, it can
139** use an architecture-specific format; it does not have to be cross-platform.
140** Hence, unlike the database and WAL file formats which store all values
141** as big endian, the wal-index can store multi-byte values in the native
142** byte order of the host computer.
143**
144** The purpose of the wal-index is to answer this question quickly: Given
145** a page number P, return the index of the last frame for page P in the WAL,
146** or return NULL if there are no frames for page P in the WAL.
147**
148** The wal-index consists of a header region, followed by an one or
149** more index blocks.
150**
drh027a1282010-05-19 01:53:53 +0000151** The wal-index header contains the total number of frames within the WAL
danad3cadd2010-06-14 11:49:26 +0000152** in the the mxFrame field.
153**
154** Each index block except for the first contains information on
155** HASHTABLE_NPAGE frames. The first index block contains information on
156** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
157** HASHTABLE_NPAGE are selected so that together the wal-index header and
158** first index block are the same size as all other index blocks in the
159** wal-index.
160**
161** Each index block contains two sections, a page-mapping that contains the
162** database page number associated with each wal frame, and a hash-table
drhffca4302010-06-15 11:21:54 +0000163** that allows readers to query an index block for a specific page number.
danad3cadd2010-06-14 11:49:26 +0000164** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
165** for the first index block) 32-bit page numbers. The first entry in the
166** first index-block contains the database page number corresponding to the
167** first frame in the WAL file. The first entry in the second index block
168** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
169** the log, and so on.
170**
171** The last index block in a wal-index usually contains less than the full
172** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
173** depending on the contents of the WAL file. This does not change the
174** allocated size of the page-mapping array - the page-mapping array merely
175** contains unused entries.
drh027a1282010-05-19 01:53:53 +0000176**
177** Even without using the hash table, the last frame for page P
danad3cadd2010-06-14 11:49:26 +0000178** can be found by scanning the page-mapping sections of each index block
drh027a1282010-05-19 01:53:53 +0000179** starting with the last index block and moving toward the first, and
180** within each index block, starting at the end and moving toward the
181** beginning. The first entry that equals P corresponds to the frame
182** holding the content for that page.
183**
184** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
185** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
186** hash table for each page number in the mapping section, so the hash
187** table is never more than half full. The expected number of collisions
188** prior to finding a match is 1. Each entry of the hash table is an
189** 1-based index of an entry in the mapping section of the same
190** index block. Let K be the 1-based index of the largest entry in
191** the mapping section. (For index blocks other than the last, K will
192** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
193** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
drh73b64e42010-05-30 19:55:15 +0000194** contain a value of 0.
drh027a1282010-05-19 01:53:53 +0000195**
196** To look for page P in the hash table, first compute a hash iKey on
197** P as follows:
198**
199** iKey = (P * 383) % HASHTABLE_NSLOT
200**
201** Then start scanning entries of the hash table, starting with iKey
202** (wrapping around to the beginning when the end of the hash table is
203** reached) until an unused hash slot is found. Let the first unused slot
204** be at index iUnused. (iUnused might be less than iKey if there was
205** wrap-around.) Because the hash table is never more than half full,
206** the search is guaranteed to eventually hit an unused entry. Let
207** iMax be the value between iKey and iUnused, closest to iUnused,
208** where aHash[iMax]==P. If there is no iMax entry (if there exists
209** no hash slot such that aHash[i]==p) then page P is not in the
210** current index block. Otherwise the iMax-th mapping entry of the
211** current index block corresponds to the last entry that references
212** page P.
213**
214** A hash search begins with the last index block and moves toward the
215** first index block, looking for entries corresponding to page P. On
216** average, only two or three slots in each index block need to be
217** examined in order to either find the last entry for page P, or to
218** establish that no such entry exists in the block. Each index block
219** holds over 4000 entries. So two or three index blocks are sufficient
220** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
221** comparisons (on average) suffice to either locate a frame in the
222** WAL or to establish that the frame does not exist in the WAL. This
223** is much faster than scanning the entire 10MB WAL.
224**
225** Note that entries are added in order of increasing K. Hence, one
226** reader might be using some value K0 and a second reader that started
227** at a later time (after additional transactions were added to the WAL
228** and to the wal-index) might be using a different value K1, where K1>K0.
229** Both readers can use the same hash table and mapping section to get
230** the correct result. There may be entries in the hash table with
231** K>K0 but to the first reader, those entries will appear to be unused
232** slots in the hash table and so the first reader will get an answer as
233** if no values greater than K0 had ever been inserted into the hash table
234** in the first place - which is what reader one wants. Meanwhile, the
235** second reader using K1 will see additional values that were inserted
236** later, which is exactly what reader two wants.
237**
dan6f150142010-05-21 15:31:56 +0000238** When a rollback occurs, the value of K is decreased. Hash table entries
239** that correspond to frames greater than the new K value are removed
240** from the hash table at this point.
dan97a31352010-04-16 13:59:31 +0000241*/
drh29d4dbe2010-05-18 23:29:52 +0000242#ifndef SQLITE_OMIT_WAL
dan97a31352010-04-16 13:59:31 +0000243
drh29d4dbe2010-05-18 23:29:52 +0000244#include "wal.h"
245
drh73b64e42010-05-30 19:55:15 +0000246/*
drhc74c3332010-05-31 12:15:19 +0000247** Trace output macros
248*/
drhc74c3332010-05-31 12:15:19 +0000249#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
drh15d68092010-05-31 16:56:14 +0000250int sqlite3WalTrace = 0;
drhc74c3332010-05-31 12:15:19 +0000251# define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
252#else
253# define WALTRACE(X)
254#endif
255
dan10f5a502010-06-23 15:55:43 +0000256/*
257** The maximum (and only) versions of the wal and wal-index formats
258** that may be interpreted by this version of SQLite.
259**
260** If a client begins recovering a WAL file and finds that (a) the checksum
261** values in the wal-header are correct and (b) the version field is not
262** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
263**
264** Similarly, if a client successfully reads a wal-index header (i.e. the
265** checksum test is successful) and finds that the version field is not
266** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
267** returns SQLITE_CANTOPEN.
268*/
269#define WAL_MAX_VERSION 3007000
270#define WALINDEX_MAX_VERSION 3007000
drhc74c3332010-05-31 12:15:19 +0000271
272/*
drh73b64e42010-05-30 19:55:15 +0000273** Indices of various locking bytes. WAL_NREADER is the number
274** of available reader locks and should be at least 3.
275*/
276#define WAL_WRITE_LOCK 0
277#define WAL_ALL_BUT_WRITE 1
278#define WAL_CKPT_LOCK 1
279#define WAL_RECOVER_LOCK 2
280#define WAL_READ_LOCK(I) (3+(I))
281#define WAL_NREADER (SQLITE_SHM_NLOCK-3)
282
dan97a31352010-04-16 13:59:31 +0000283
drh7ed91f22010-04-29 22:34:07 +0000284/* Object declarations */
285typedef struct WalIndexHdr WalIndexHdr;
286typedef struct WalIterator WalIterator;
drh73b64e42010-05-30 19:55:15 +0000287typedef struct WalCkptInfo WalCkptInfo;
dan7c246102010-04-12 19:00:29 +0000288
289
290/*
drh286a2882010-05-20 23:51:06 +0000291** The following object holds a copy of the wal-index header content.
292**
293** The actual header in the wal-index consists of two copies of this
294** object.
dan7c246102010-04-12 19:00:29 +0000295*/
drh7ed91f22010-04-29 22:34:07 +0000296struct WalIndexHdr {
dan10f5a502010-06-23 15:55:43 +0000297 u32 iVersion; /* Wal-index version */
298 u32 unused; /* Unused (padding) field */
dan71d89912010-05-24 13:57:42 +0000299 u32 iChange; /* Counter incremented each transaction */
drh4b82c382010-05-31 18:24:19 +0000300 u8 isInit; /* 1 when initialized */
301 u8 bigEndCksum; /* True if checksums in WAL are big-endian */
dan71d89912010-05-24 13:57:42 +0000302 u16 szPage; /* Database page size in bytes */
dand0aa3422010-05-31 16:41:53 +0000303 u32 mxFrame; /* Index of last valid frame in the WAL */
dan71d89912010-05-24 13:57:42 +0000304 u32 nPage; /* Size of database in pages */
305 u32 aFrameCksum[2]; /* Checksum of last frame in log */
306 u32 aSalt[2]; /* Two salt values copied from WAL header */
307 u32 aCksum[2]; /* Checksum over all prior fields */
dan7c246102010-04-12 19:00:29 +0000308};
309
drh73b64e42010-05-30 19:55:15 +0000310/*
311** A copy of the following object occurs in the wal-index immediately
312** following the second copy of the WalIndexHdr. This object stores
313** information used by checkpoint.
314**
315** nBackfill is the number of frames in the WAL that have been written
316** back into the database. (We call the act of moving content from WAL to
317** database "backfilling".) The nBackfill number is never greater than
318** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
319** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
320** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
321** mxFrame back to zero when the WAL is reset.
322**
323** There is one entry in aReadMark[] for each reader lock. If a reader
324** holds read-lock K, then the value in aReadMark[K] is no greater than
drhdb7f6472010-06-09 14:45:12 +0000325** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
326** for any aReadMark[] means that entry is unused. aReadMark[0] is
327** a special case; its value is never used and it exists as a place-holder
328** to avoid having to offset aReadMark[] indexs by one. Readers holding
329** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
330** directly from the database.
drh73b64e42010-05-30 19:55:15 +0000331**
332** The value of aReadMark[K] may only be changed by a thread that
333** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
334** aReadMark[K] cannot changed while there is a reader is using that mark
335** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
336**
337** The checkpointer may only transfer frames from WAL to database where
338** the frame numbers are less than or equal to every aReadMark[] that is
339** in use (that is, every aReadMark[j] for which there is a corresponding
340** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
341** largest value and will increase an unused aReadMark[] to mxFrame if there
342** is not already an aReadMark[] equal to mxFrame. The exception to the
343** previous sentence is when nBackfill equals mxFrame (meaning that everything
344** in the WAL has been backfilled into the database) then new readers
345** will choose aReadMark[0] which has value 0 and hence such reader will
346** get all their all content directly from the database file and ignore
347** the WAL.
348**
349** Writers normally append new frames to the end of the WAL. However,
350** if nBackfill equals mxFrame (meaning that all WAL content has been
351** written back into the database) and if no readers are using the WAL
352** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
353** the writer will first "reset" the WAL back to the beginning and start
354** writing new content beginning at frame 1.
355**
356** We assume that 32-bit loads are atomic and so no locks are needed in
357** order to read from any aReadMark[] entries.
358*/
359struct WalCkptInfo {
360 u32 nBackfill; /* Number of WAL frames backfilled into DB */
361 u32 aReadMark[WAL_NREADER]; /* Reader marks */
362};
drhdb7f6472010-06-09 14:45:12 +0000363#define READMARK_NOT_USED 0xffffffff
drh73b64e42010-05-30 19:55:15 +0000364
365
drh7e263722010-05-20 21:21:09 +0000366/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
367** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
368** only support mandatory file-locks, we do not read or write data
369** from the region of the file on which locks are applied.
danff207012010-04-24 04:49:15 +0000370*/
drh73b64e42010-05-30 19:55:15 +0000371#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo))
372#define WALINDEX_LOCK_RESERVED 16
drh026ac282010-05-26 15:06:38 +0000373#define WALINDEX_HDR_SIZE (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)
dan7c246102010-04-12 19:00:29 +0000374
drh7ed91f22010-04-29 22:34:07 +0000375/* Size of header before each frame in wal */
drh23ea97b2010-05-20 16:45:58 +0000376#define WAL_FRAME_HDRSIZE 24
danff207012010-04-24 04:49:15 +0000377
dan10f5a502010-06-23 15:55:43 +0000378/* Size of write ahead log header, including checksum. */
379/* #define WAL_HDRSIZE 24 */
380#define WAL_HDRSIZE 32
dan97a31352010-04-16 13:59:31 +0000381
danb8fd6c22010-05-24 10:39:36 +0000382/* WAL magic value. Either this value, or the same value with the least
383** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
384** big-endian format in the first 4 bytes of a WAL file.
385**
386** If the LSB is set, then the checksums for each frame within the WAL
387** file are calculated by treating all data as an array of 32-bit
388** big-endian words. Otherwise, they are calculated by interpreting
389** all data as 32-bit little-endian words.
390*/
391#define WAL_MAGIC 0x377f0682
392
dan97a31352010-04-16 13:59:31 +0000393/*
drh7ed91f22010-04-29 22:34:07 +0000394** Return the offset of frame iFrame in the write-ahead log file,
drh6e810962010-05-19 17:49:50 +0000395** assuming a database page size of szPage bytes. The offset returned
drh7ed91f22010-04-29 22:34:07 +0000396** is to the start of the write-ahead log frame-header.
dan97a31352010-04-16 13:59:31 +0000397*/
drh6e810962010-05-19 17:49:50 +0000398#define walFrameOffset(iFrame, szPage) ( \
danbd0e9072010-07-07 09:48:44 +0000399 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \
dan97a31352010-04-16 13:59:31 +0000400)
dan7c246102010-04-12 19:00:29 +0000401
402/*
drh7ed91f22010-04-29 22:34:07 +0000403** An open write-ahead log file is represented by an instance of the
404** following object.
dance4f05f2010-04-22 19:14:13 +0000405*/
drh7ed91f22010-04-29 22:34:07 +0000406struct Wal {
drh73b64e42010-05-30 19:55:15 +0000407 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
drhd9e5c4f2010-05-12 18:01:39 +0000408 sqlite3_file *pDbFd; /* File handle for the database file */
409 sqlite3_file *pWalFd; /* File handle for WAL file */
drh7ed91f22010-04-29 22:34:07 +0000410 u32 iCallback; /* Value to pass to log callback (or 0) */
dan13a3cb82010-06-11 19:04:21 +0000411 int nWiData; /* Size of array apWiData */
412 volatile u32 **apWiData; /* Pointer to wal-index content in memory */
drh73b64e42010-05-30 19:55:15 +0000413 u16 szPage; /* Database page size */
414 i16 readLock; /* Which read lock is being held. -1 for none */
dan55437592010-05-11 12:19:26 +0000415 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
drh73b64e42010-05-30 19:55:15 +0000416 u8 writeLock; /* True if in a write transaction */
417 u8 ckptLock; /* True if holding a checkpoint lock */
418 WalIndexHdr hdr; /* Wal-index header for current transaction */
dan3e875ef2010-07-05 19:03:35 +0000419 const char *zWalName; /* Name of WAL file */
drh7e263722010-05-20 21:21:09 +0000420 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
drhaab4c022010-06-02 14:45:51 +0000421#ifdef SQLITE_DEBUG
422 u8 lockError; /* True if a locking error has occurred */
423#endif
dan7c246102010-04-12 19:00:29 +0000424};
425
drh73b64e42010-05-30 19:55:15 +0000426/*
dan067f3162010-06-14 10:30:12 +0000427** Each page of the wal-index mapping contains a hash-table made up of
428** an array of HASHTABLE_NSLOT elements of the following type.
429*/
430typedef u16 ht_slot;
431
432/*
danad3cadd2010-06-14 11:49:26 +0000433** This structure is used to implement an iterator that loops through
434** all frames in the WAL in database page order. Where two or more frames
435** correspond to the same database page, the iterator visits only the
436** frame most recently written to the WAL (in other words, the frame with
437** the largest index).
438**
439** The internals of this structure are only accessed by:
440**
441** walIteratorInit() - Create a new iterator,
442** walIteratorNext() - Step an iterator,
443** walIteratorFree() - Free an iterator.
444**
445** This functionality is used by the checkpoint code (see walCheckpoint()).
446*/
447struct WalIterator {
448 int iPrior; /* Last result returned from the iterator */
449 int nSegment; /* Size of the aSegment[] array */
450 struct WalSegment {
451 int iNext; /* Next slot in aIndex[] not yet returned */
452 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
453 u32 *aPgno; /* Array of page numbers. */
454 int nEntry; /* Max size of aPgno[] and aIndex[] arrays */
455 int iZero; /* Frame number associated with aPgno[0] */
456 } aSegment[1]; /* One for every 32KB page in the WAL */
457};
458
459/*
dan13a3cb82010-06-11 19:04:21 +0000460** Define the parameters of the hash tables in the wal-index file. There
461** is a hash-table following every HASHTABLE_NPAGE page numbers in the
462** wal-index.
463**
464** Changing any of these constants will alter the wal-index format and
465** create incompatibilities.
466*/
dan067f3162010-06-14 10:30:12 +0000467#define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000468#define HASHTABLE_HASH_1 383 /* Should be prime */
469#define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000470
danad3cadd2010-06-14 11:49:26 +0000471/*
472** The block of page numbers associated with the first hash-table in a
dan13a3cb82010-06-11 19:04:21 +0000473** wal-index is smaller than usual. This is so that there is a complete
474** hash-table on each aligned 32KB page of the wal-index.
475*/
dan067f3162010-06-14 10:30:12 +0000476#define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
dan13a3cb82010-06-11 19:04:21 +0000477
dan067f3162010-06-14 10:30:12 +0000478/* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
479#define WALINDEX_PGSZ ( \
480 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
481)
dan13a3cb82010-06-11 19:04:21 +0000482
483/*
484** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
dan067f3162010-06-14 10:30:12 +0000485** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
dan13a3cb82010-06-11 19:04:21 +0000486** numbered from zero.
487**
488** If this call is successful, *ppPage is set to point to the wal-index
489** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
490** then an SQLite error code is returned and *ppPage is set to 0.
491*/
492static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
493 int rc = SQLITE_OK;
494
495 /* Enlarge the pWal->apWiData[] array if required */
496 if( pWal->nWiData<=iPage ){
drh519426a2010-07-09 03:19:07 +0000497 int nByte = sizeof(u32*)*(iPage+1);
dan13a3cb82010-06-11 19:04:21 +0000498 volatile u32 **apNew;
shaneh8a300f82010-07-02 18:15:31 +0000499 apNew = (volatile u32 **)sqlite3_realloc((void *)pWal->apWiData, nByte);
dan13a3cb82010-06-11 19:04:21 +0000500 if( !apNew ){
501 *ppPage = 0;
502 return SQLITE_NOMEM;
503 }
drh519426a2010-07-09 03:19:07 +0000504 memset((void*)&apNew[pWal->nWiData], 0,
505 sizeof(u32*)*(iPage+1-pWal->nWiData));
dan13a3cb82010-06-11 19:04:21 +0000506 pWal->apWiData = apNew;
507 pWal->nWiData = iPage+1;
508 }
509
510 /* Request a pointer to the required page from the VFS */
511 if( pWal->apWiData[iPage]==0 ){
dan18801912010-06-14 14:07:50 +0000512 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
dan13a3cb82010-06-11 19:04:21 +0000513 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
514 );
515 }
516
517 *ppPage = pWal->apWiData[iPage];
518 assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
519 return rc;
520}
521
522/*
drh73b64e42010-05-30 19:55:15 +0000523** Return a pointer to the WalCkptInfo structure in the wal-index.
524*/
525static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000526 assert( pWal->nWiData>0 && pWal->apWiData[0] );
527 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
528}
529
530/*
531** Return a pointer to the WalIndexHdr structure in the wal-index.
532*/
533static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
534 assert( pWal->nWiData>0 && pWal->apWiData[0] );
535 return (volatile WalIndexHdr*)pWal->apWiData[0];
drh73b64e42010-05-30 19:55:15 +0000536}
537
dan7c246102010-04-12 19:00:29 +0000538/*
danb8fd6c22010-05-24 10:39:36 +0000539** The argument to this macro must be of type u32. On a little-endian
540** architecture, it returns the u32 value that results from interpreting
541** the 4 bytes as a big-endian value. On a big-endian architecture, it
542** returns the value that would be produced by intepreting the 4 bytes
543** of the input value as a little-endian integer.
544*/
545#define BYTESWAP32(x) ( \
546 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
547 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
548)
dan64d039e2010-04-13 19:27:31 +0000549
dan7c246102010-04-12 19:00:29 +0000550/*
drh7e263722010-05-20 21:21:09 +0000551** Generate or extend an 8 byte checksum based on the data in
552** array aByte[] and the initial values of aIn[0] and aIn[1] (or
553** initial values of 0 and 0 if aIn==NULL).
554**
555** The checksum is written back into aOut[] before returning.
556**
557** nByte must be a positive multiple of 8.
dan7c246102010-04-12 19:00:29 +0000558*/
drh7e263722010-05-20 21:21:09 +0000559static void walChecksumBytes(
danb8fd6c22010-05-24 10:39:36 +0000560 int nativeCksum, /* True for native byte-order, false for non-native */
drh7e263722010-05-20 21:21:09 +0000561 u8 *a, /* Content to be checksummed */
562 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
563 const u32 *aIn, /* Initial checksum value input */
564 u32 *aOut /* OUT: Final checksum value output */
565){
566 u32 s1, s2;
danb8fd6c22010-05-24 10:39:36 +0000567 u32 *aData = (u32 *)a;
568 u32 *aEnd = (u32 *)&a[nByte];
569
drh7e263722010-05-20 21:21:09 +0000570 if( aIn ){
571 s1 = aIn[0];
572 s2 = aIn[1];
573 }else{
574 s1 = s2 = 0;
575 }
dan7c246102010-04-12 19:00:29 +0000576
drh584c7542010-05-19 18:08:10 +0000577 assert( nByte>=8 );
danb8fd6c22010-05-24 10:39:36 +0000578 assert( (nByte&0x00000007)==0 );
dan7c246102010-04-12 19:00:29 +0000579
danb8fd6c22010-05-24 10:39:36 +0000580 if( nativeCksum ){
581 do {
582 s1 += *aData++ + s2;
583 s2 += *aData++ + s1;
584 }while( aData<aEnd );
585 }else{
586 do {
587 s1 += BYTESWAP32(aData[0]) + s2;
588 s2 += BYTESWAP32(aData[1]) + s1;
589 aData += 2;
590 }while( aData<aEnd );
591 }
592
drh7e263722010-05-20 21:21:09 +0000593 aOut[0] = s1;
594 aOut[1] = s2;
dan7c246102010-04-12 19:00:29 +0000595}
596
597/*
drh7e263722010-05-20 21:21:09 +0000598** Write the header information in pWal->hdr into the wal-index.
599**
600** The checksum on pWal->hdr is updated before it is written.
drh7ed91f22010-04-29 22:34:07 +0000601*/
drh7e263722010-05-20 21:21:09 +0000602static void walIndexWriteHdr(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000603 volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
604 const int nCksum = offsetof(WalIndexHdr, aCksum);
drh73b64e42010-05-30 19:55:15 +0000605
606 assert( pWal->writeLock );
drh4b82c382010-05-31 18:24:19 +0000607 pWal->hdr.isInit = 1;
dan10f5a502010-06-23 15:55:43 +0000608 pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
dan4280eb32010-06-12 12:02:35 +0000609 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
610 memcpy((void *)&aHdr[1], (void *)&pWal->hdr, sizeof(WalIndexHdr));
drh286a2882010-05-20 23:51:06 +0000611 sqlite3OsShmBarrier(pWal->pDbFd);
dan4280eb32010-06-12 12:02:35 +0000612 memcpy((void *)&aHdr[0], (void *)&pWal->hdr, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +0000613}
614
615/*
616** This function encodes a single frame header and writes it to a buffer
drh7ed91f22010-04-29 22:34:07 +0000617** supplied by the caller. A frame-header is made up of a series of
dan7c246102010-04-12 19:00:29 +0000618** 4-byte big-endian integers, as follows:
619**
drh23ea97b2010-05-20 16:45:58 +0000620** 0: Page number.
621** 4: For commit records, the size of the database image in pages
622** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +0000623** 8: Salt-1 (copied from the wal-header)
624** 12: Salt-2 (copied from the wal-header)
drh23ea97b2010-05-20 16:45:58 +0000625** 16: Checksum-1.
626** 20: Checksum-2.
dan7c246102010-04-12 19:00:29 +0000627*/
drh7ed91f22010-04-29 22:34:07 +0000628static void walEncodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000629 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000630 u32 iPage, /* Database page number for frame */
631 u32 nTruncate, /* New db size (or 0 for non-commit frames) */
drh7e263722010-05-20 21:21:09 +0000632 u8 *aData, /* Pointer to page data */
dan7c246102010-04-12 19:00:29 +0000633 u8 *aFrame /* OUT: Write encoded frame here */
634){
danb8fd6c22010-05-24 10:39:36 +0000635 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000636 u32 *aCksum = pWal->hdr.aFrameCksum;
drh23ea97b2010-05-20 16:45:58 +0000637 assert( WAL_FRAME_HDRSIZE==24 );
dan97a31352010-04-16 13:59:31 +0000638 sqlite3Put4byte(&aFrame[0], iPage);
639 sqlite3Put4byte(&aFrame[4], nTruncate);
drh7e263722010-05-20 21:21:09 +0000640 memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
dan7c246102010-04-12 19:00:29 +0000641
danb8fd6c22010-05-24 10:39:36 +0000642 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000643 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000644 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
dan7c246102010-04-12 19:00:29 +0000645
drh23ea97b2010-05-20 16:45:58 +0000646 sqlite3Put4byte(&aFrame[16], aCksum[0]);
647 sqlite3Put4byte(&aFrame[20], aCksum[1]);
dan7c246102010-04-12 19:00:29 +0000648}
649
650/*
drh7e263722010-05-20 21:21:09 +0000651** Check to see if the frame with header in aFrame[] and content
652** in aData[] is valid. If it is a valid frame, fill *piPage and
653** *pnTruncate and return true. Return if the frame is not valid.
dan7c246102010-04-12 19:00:29 +0000654*/
drh7ed91f22010-04-29 22:34:07 +0000655static int walDecodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000656 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000657 u32 *piPage, /* OUT: Database page number for frame */
658 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
dan7c246102010-04-12 19:00:29 +0000659 u8 *aData, /* Pointer to page data (for checksum) */
660 u8 *aFrame /* Frame data */
661){
danb8fd6c22010-05-24 10:39:36 +0000662 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000663 u32 *aCksum = pWal->hdr.aFrameCksum;
drhc8179152010-05-24 13:28:36 +0000664 u32 pgno; /* Page number of the frame */
drh23ea97b2010-05-20 16:45:58 +0000665 assert( WAL_FRAME_HDRSIZE==24 );
666
drh7e263722010-05-20 21:21:09 +0000667 /* A frame is only valid if the salt values in the frame-header
668 ** match the salt values in the wal-header.
669 */
670 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
drh23ea97b2010-05-20 16:45:58 +0000671 return 0;
672 }
dan4a4b01d2010-04-16 11:30:18 +0000673
drhc8179152010-05-24 13:28:36 +0000674 /* A frame is only valid if the page number is creater than zero.
675 */
676 pgno = sqlite3Get4byte(&aFrame[0]);
677 if( pgno==0 ){
678 return 0;
679 }
680
drh519426a2010-07-09 03:19:07 +0000681 /* A frame is only valid if a checksum of the WAL header,
682 ** all prior frams, the first 16 bytes of this frame-header,
683 ** and the frame-data matches the checksum in the last 8
684 ** bytes of this frame-header.
drh7e263722010-05-20 21:21:09 +0000685 */
danb8fd6c22010-05-24 10:39:36 +0000686 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000687 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000688 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
drh23ea97b2010-05-20 16:45:58 +0000689 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
690 || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
dan7c246102010-04-12 19:00:29 +0000691 ){
692 /* Checksum failed. */
693 return 0;
694 }
695
drh7e263722010-05-20 21:21:09 +0000696 /* If we reach this point, the frame is valid. Return the page number
697 ** and the new database size.
698 */
drhc8179152010-05-24 13:28:36 +0000699 *piPage = pgno;
dan97a31352010-04-16 13:59:31 +0000700 *pnTruncate = sqlite3Get4byte(&aFrame[4]);
dan7c246102010-04-12 19:00:29 +0000701 return 1;
702}
703
dan7c246102010-04-12 19:00:29 +0000704
drhc74c3332010-05-31 12:15:19 +0000705#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
706/*
drh181e0912010-06-01 01:08:08 +0000707** Names of locks. This routine is used to provide debugging output and is not
708** a part of an ordinary build.
drhc74c3332010-05-31 12:15:19 +0000709*/
710static const char *walLockName(int lockIdx){
711 if( lockIdx==WAL_WRITE_LOCK ){
712 return "WRITE-LOCK";
713 }else if( lockIdx==WAL_CKPT_LOCK ){
714 return "CKPT-LOCK";
715 }else if( lockIdx==WAL_RECOVER_LOCK ){
716 return "RECOVER-LOCK";
717 }else{
718 static char zName[15];
719 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
720 lockIdx-WAL_READ_LOCK(0));
721 return zName;
722 }
723}
724#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
725
726
dan7c246102010-04-12 19:00:29 +0000727/*
drh181e0912010-06-01 01:08:08 +0000728** Set or release locks on the WAL. Locks are either shared or exclusive.
729** A lock cannot be moved directly between shared and exclusive - it must go
730** through the unlocked state first.
drh73b64e42010-05-30 19:55:15 +0000731**
732** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
733*/
734static int walLockShared(Wal *pWal, int lockIdx){
drhc74c3332010-05-31 12:15:19 +0000735 int rc;
drh73b64e42010-05-30 19:55:15 +0000736 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000737 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
738 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
739 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
740 walLockName(lockIdx), rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000741 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000742 return rc;
drh73b64e42010-05-30 19:55:15 +0000743}
744static void walUnlockShared(Wal *pWal, int lockIdx){
745 if( pWal->exclusiveMode ) return;
746 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
747 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
drhc74c3332010-05-31 12:15:19 +0000748 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
drh73b64e42010-05-30 19:55:15 +0000749}
750static int walLockExclusive(Wal *pWal, int lockIdx, int n){
drhc74c3332010-05-31 12:15:19 +0000751 int rc;
drh73b64e42010-05-30 19:55:15 +0000752 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000753 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
754 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
755 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
756 walLockName(lockIdx), n, rc ? "failed" : "ok"));
shaneh5eba1f62010-07-02 17:05:03 +0000757 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000758 return rc;
drh73b64e42010-05-30 19:55:15 +0000759}
760static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
761 if( pWal->exclusiveMode ) return;
762 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
763 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
drhc74c3332010-05-31 12:15:19 +0000764 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
765 walLockName(lockIdx), n));
drh73b64e42010-05-30 19:55:15 +0000766}
767
768/*
drh29d4dbe2010-05-18 23:29:52 +0000769** Compute a hash on a page number. The resulting hash value must land
drh181e0912010-06-01 01:08:08 +0000770** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
771** the hash to the next value in the event of a collision.
drh29d4dbe2010-05-18 23:29:52 +0000772*/
773static int walHash(u32 iPage){
774 assert( iPage>0 );
775 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
776 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
777}
778static int walNextHash(int iPriorHash){
779 return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
danbb23aff2010-05-10 14:46:09 +0000780}
781
dan4280eb32010-06-12 12:02:35 +0000782/*
783** Return pointers to the hash table and page number array stored on
784** page iHash of the wal-index. The wal-index is broken into 32KB pages
785** numbered starting from 0.
786**
787** Set output variable *paHash to point to the start of the hash table
788** in the wal-index file. Set *piZero to one less than the frame
789** number of the first frame indexed by this hash table. If a
790** slot in the hash table is set to N, it refers to frame number
791** (*piZero+N) in the log.
792**
dand60bf112010-06-14 11:18:50 +0000793** Finally, set *paPgno so that *paPgno[1] is the page number of the
794** first frame indexed by the hash table, frame (*piZero+1).
dan4280eb32010-06-12 12:02:35 +0000795*/
796static int walHashGet(
dan13a3cb82010-06-11 19:04:21 +0000797 Wal *pWal, /* WAL handle */
798 int iHash, /* Find the iHash'th table */
dan067f3162010-06-14 10:30:12 +0000799 volatile ht_slot **paHash, /* OUT: Pointer to hash index */
dan13a3cb82010-06-11 19:04:21 +0000800 volatile u32 **paPgno, /* OUT: Pointer to page number array */
801 u32 *piZero /* OUT: Frame associated with *paPgno[0] */
802){
dan4280eb32010-06-12 12:02:35 +0000803 int rc; /* Return code */
dan13a3cb82010-06-11 19:04:21 +0000804 volatile u32 *aPgno;
dan13a3cb82010-06-11 19:04:21 +0000805
dan4280eb32010-06-12 12:02:35 +0000806 rc = walIndexPage(pWal, iHash, &aPgno);
807 assert( rc==SQLITE_OK || iHash>0 );
dan13a3cb82010-06-11 19:04:21 +0000808
dan4280eb32010-06-12 12:02:35 +0000809 if( rc==SQLITE_OK ){
810 u32 iZero;
dan067f3162010-06-14 10:30:12 +0000811 volatile ht_slot *aHash;
dan4280eb32010-06-12 12:02:35 +0000812
dan067f3162010-06-14 10:30:12 +0000813 aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
dan4280eb32010-06-12 12:02:35 +0000814 if( iHash==0 ){
dand60bf112010-06-14 11:18:50 +0000815 aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
dan4280eb32010-06-12 12:02:35 +0000816 iZero = 0;
817 }else{
818 iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
dan4280eb32010-06-12 12:02:35 +0000819 }
820
dand60bf112010-06-14 11:18:50 +0000821 *paPgno = &aPgno[-1];
dan4280eb32010-06-12 12:02:35 +0000822 *paHash = aHash;
823 *piZero = iZero;
dan13a3cb82010-06-11 19:04:21 +0000824 }
dan4280eb32010-06-12 12:02:35 +0000825 return rc;
dan13a3cb82010-06-11 19:04:21 +0000826}
827
dan4280eb32010-06-12 12:02:35 +0000828/*
829** Return the number of the wal-index page that contains the hash-table
830** and page-number array that contain entries corresponding to WAL frame
831** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
832** are numbered starting from 0.
833*/
dan13a3cb82010-06-11 19:04:21 +0000834static int walFramePage(u32 iFrame){
835 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
836 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
837 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
838 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
839 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
840 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
841 );
842 return iHash;
843}
844
845/*
846** Return the page number associated with frame iFrame in this WAL.
847*/
848static u32 walFramePgno(Wal *pWal, u32 iFrame){
849 int iHash = walFramePage(iFrame);
850 if( iHash==0 ){
851 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
852 }
853 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
854}
danbb23aff2010-05-10 14:46:09 +0000855
danca6b5ba2010-05-25 10:50:56 +0000856/*
857** Remove entries from the hash table that point to WAL slots greater
858** than pWal->hdr.mxFrame.
859**
860** This function is called whenever pWal->hdr.mxFrame is decreased due
861** to a rollback or savepoint.
862**
drh181e0912010-06-01 01:08:08 +0000863** At most only the hash table containing pWal->hdr.mxFrame needs to be
864** updated. Any later hash tables will be automatically cleared when
865** pWal->hdr.mxFrame advances to the point where those hash tables are
866** actually needed.
danca6b5ba2010-05-25 10:50:56 +0000867*/
868static void walCleanupHash(Wal *pWal){
drhff828942010-06-26 21:34:06 +0000869 volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */
870 volatile u32 *aPgno = 0; /* Page number array for hash table */
871 u32 iZero = 0; /* frame == (aHash[x]+iZero) */
dan067f3162010-06-14 10:30:12 +0000872 int iLimit = 0; /* Zero values greater than this */
873 int nByte; /* Number of bytes to zero in aPgno[] */
874 int i; /* Used to iterate through aHash[] */
danca6b5ba2010-05-25 10:50:56 +0000875
drh73b64e42010-05-30 19:55:15 +0000876 assert( pWal->writeLock );
drhffca4302010-06-15 11:21:54 +0000877 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
878 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
879 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
drh9c156472010-06-01 12:58:41 +0000880
dan4280eb32010-06-12 12:02:35 +0000881 if( pWal->hdr.mxFrame==0 ) return;
882
883 /* Obtain pointers to the hash-table and page-number array containing
884 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
885 ** that the page said hash-table and array reside on is already mapped.
886 */
887 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
888 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
889 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
890
891 /* Zero all hash-table entries that correspond to frame numbers greater
892 ** than pWal->hdr.mxFrame.
893 */
894 iLimit = pWal->hdr.mxFrame - iZero;
895 assert( iLimit>0 );
896 for(i=0; i<HASHTABLE_NSLOT; i++){
897 if( aHash[i]>iLimit ){
898 aHash[i] = 0;
danca6b5ba2010-05-25 10:50:56 +0000899 }
danca6b5ba2010-05-25 10:50:56 +0000900 }
dan4280eb32010-06-12 12:02:35 +0000901
902 /* Zero the entries in the aPgno array that correspond to frames with
903 ** frame numbers greater than pWal->hdr.mxFrame.
904 */
shaneh5eba1f62010-07-02 17:05:03 +0000905 nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
dand60bf112010-06-14 11:18:50 +0000906 memset((void *)&aPgno[iLimit+1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +0000907
908#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
909 /* Verify that the every entry in the mapping region is still reachable
910 ** via the hash table even after the cleanup.
911 */
drhf77bbd92010-06-01 13:17:44 +0000912 if( iLimit ){
danca6b5ba2010-05-25 10:50:56 +0000913 int i; /* Loop counter */
914 int iKey; /* Hash key */
915 for(i=1; i<=iLimit; i++){
dand60bf112010-06-14 11:18:50 +0000916 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
danca6b5ba2010-05-25 10:50:56 +0000917 if( aHash[iKey]==i ) break;
918 }
919 assert( aHash[iKey]==i );
920 }
921 }
922#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
923}
924
danbb23aff2010-05-10 14:46:09 +0000925
drh7ed91f22010-04-29 22:34:07 +0000926/*
drh29d4dbe2010-05-18 23:29:52 +0000927** Set an entry in the wal-index that will map database page number
928** pPage into WAL frame iFrame.
dan7c246102010-04-12 19:00:29 +0000929*/
drh7ed91f22010-04-29 22:34:07 +0000930static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
dan4280eb32010-06-12 12:02:35 +0000931 int rc; /* Return code */
drhff828942010-06-26 21:34:06 +0000932 u32 iZero = 0; /* One less than frame number of aPgno[1] */
933 volatile u32 *aPgno = 0; /* Page number array */
934 volatile ht_slot *aHash = 0; /* Hash table */
dance4f05f2010-04-22 19:14:13 +0000935
dan4280eb32010-06-12 12:02:35 +0000936 rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
937
938 /* Assuming the wal-index file was successfully mapped, populate the
939 ** page number array and hash table entry.
dan7c246102010-04-12 19:00:29 +0000940 */
danbb23aff2010-05-10 14:46:09 +0000941 if( rc==SQLITE_OK ){
942 int iKey; /* Hash table key */
dan4280eb32010-06-12 12:02:35 +0000943 int idx; /* Value to write to hash-table slot */
drh519426a2010-07-09 03:19:07 +0000944 int nCollide; /* Number of hash collisions */
dan7c246102010-04-12 19:00:29 +0000945
danbb23aff2010-05-10 14:46:09 +0000946 idx = iFrame - iZero;
dan4280eb32010-06-12 12:02:35 +0000947 assert( idx <= HASHTABLE_NSLOT/2 + 1 );
948
949 /* If this is the first entry to be added to this hash-table, zero the
950 ** entire hash table and aPgno[] array before proceding.
951 */
danca6b5ba2010-05-25 10:50:56 +0000952 if( idx==1 ){
shaneh5eba1f62010-07-02 17:05:03 +0000953 int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
dand60bf112010-06-14 11:18:50 +0000954 memset((void*)&aPgno[1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +0000955 }
danca6b5ba2010-05-25 10:50:56 +0000956
dan4280eb32010-06-12 12:02:35 +0000957 /* If the entry in aPgno[] is already set, then the previous writer
958 ** must have exited unexpectedly in the middle of a transaction (after
959 ** writing one or more dirty pages to the WAL to free up memory).
960 ** Remove the remnants of that writers uncommitted transaction from
961 ** the hash-table before writing any new entries.
962 */
dand60bf112010-06-14 11:18:50 +0000963 if( aPgno[idx] ){
danca6b5ba2010-05-25 10:50:56 +0000964 walCleanupHash(pWal);
dand60bf112010-06-14 11:18:50 +0000965 assert( !aPgno[idx] );
danca6b5ba2010-05-25 10:50:56 +0000966 }
dan4280eb32010-06-12 12:02:35 +0000967
968 /* Write the aPgno[] array entry and the hash-table slot. */
drh519426a2010-07-09 03:19:07 +0000969 nCollide = idx;
dan6f150142010-05-21 15:31:56 +0000970 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
drh519426a2010-07-09 03:19:07 +0000971 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
drh29d4dbe2010-05-18 23:29:52 +0000972 }
dand60bf112010-06-14 11:18:50 +0000973 aPgno[idx] = iPage;
shaneh5eba1f62010-07-02 17:05:03 +0000974 aHash[iKey] = (ht_slot)idx;
drh4fa95bf2010-05-22 00:55:39 +0000975
976#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
977 /* Verify that the number of entries in the hash table exactly equals
978 ** the number of entries in the mapping region.
979 */
980 {
981 int i; /* Loop counter */
982 int nEntry = 0; /* Number of entries in the hash table */
983 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
984 assert( nEntry==idx );
985 }
986
987 /* Verify that the every entry in the mapping region is reachable
988 ** via the hash table. This turns out to be a really, really expensive
989 ** thing to check, so only do this occasionally - not on every
990 ** iteration.
991 */
992 if( (idx&0x3ff)==0 ){
993 int i; /* Loop counter */
994 for(i=1; i<=idx; i++){
dand60bf112010-06-14 11:18:50 +0000995 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
drh4fa95bf2010-05-22 00:55:39 +0000996 if( aHash[iKey]==i ) break;
997 }
998 assert( aHash[iKey]==i );
999 }
1000 }
1001#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
dan7c246102010-04-12 19:00:29 +00001002 }
dan31f98fc2010-04-27 05:42:32 +00001003
drh4fa95bf2010-05-22 00:55:39 +00001004
danbb23aff2010-05-10 14:46:09 +00001005 return rc;
dan7c246102010-04-12 19:00:29 +00001006}
1007
1008
1009/*
drh7ed91f22010-04-29 22:34:07 +00001010** Recover the wal-index by reading the write-ahead log file.
drh73b64e42010-05-30 19:55:15 +00001011**
1012** This routine first tries to establish an exclusive lock on the
1013** wal-index to prevent other threads/processes from doing anything
1014** with the WAL or wal-index while recovery is running. The
1015** WAL_RECOVER_LOCK is also held so that other threads will know
1016** that this thread is running recovery. If unable to establish
1017** the necessary locks, this routine returns SQLITE_BUSY.
dan7c246102010-04-12 19:00:29 +00001018*/
drh7ed91f22010-04-29 22:34:07 +00001019static int walIndexRecover(Wal *pWal){
dan7c246102010-04-12 19:00:29 +00001020 int rc; /* Return Code */
1021 i64 nSize; /* Size of log file */
dan71d89912010-05-24 13:57:42 +00001022 u32 aFrameCksum[2] = {0, 0};
dand0aa3422010-05-31 16:41:53 +00001023 int iLock; /* Lock offset to lock for checkpoint */
1024 int nLock; /* Number of locks to hold */
dan7c246102010-04-12 19:00:29 +00001025
dand0aa3422010-05-31 16:41:53 +00001026 /* Obtain an exclusive lock on all byte in the locking range not already
1027 ** locked by the caller. The caller is guaranteed to have locked the
1028 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1029 ** If successful, the same bytes that are locked here are unlocked before
1030 ** this function returns.
1031 */
1032 assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1033 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1034 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1035 assert( pWal->writeLock );
1036 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1037 nLock = SQLITE_SHM_NLOCK - iLock;
1038 rc = walLockExclusive(pWal, iLock, nLock);
drh73b64e42010-05-30 19:55:15 +00001039 if( rc ){
1040 return rc;
1041 }
drhc74c3332010-05-31 12:15:19 +00001042 WALTRACE(("WAL%p: recovery begin...\n", pWal));
drh73b64e42010-05-30 19:55:15 +00001043
dan71d89912010-05-24 13:57:42 +00001044 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +00001045
drhd9e5c4f2010-05-12 18:01:39 +00001046 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
dan7c246102010-04-12 19:00:29 +00001047 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001048 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001049 }
1050
danb8fd6c22010-05-24 10:39:36 +00001051 if( nSize>WAL_HDRSIZE ){
1052 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
dan7c246102010-04-12 19:00:29 +00001053 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
drh584c7542010-05-19 18:08:10 +00001054 int szFrame; /* Number of bytes in buffer aFrame[] */
dan7c246102010-04-12 19:00:29 +00001055 u8 *aData; /* Pointer to data part of aFrame buffer */
1056 int iFrame; /* Index of last frame read */
1057 i64 iOffset; /* Next offset to read from log file */
drh6e810962010-05-19 17:49:50 +00001058 int szPage; /* Page size according to the log */
danb8fd6c22010-05-24 10:39:36 +00001059 u32 magic; /* Magic value read from WAL header */
dan10f5a502010-06-23 15:55:43 +00001060 u32 version; /* Magic value read from WAL header */
dan7c246102010-04-12 19:00:29 +00001061
danb8fd6c22010-05-24 10:39:36 +00001062 /* Read in the WAL header. */
drhd9e5c4f2010-05-12 18:01:39 +00001063 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
dan7c246102010-04-12 19:00:29 +00001064 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001065 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001066 }
1067
1068 /* If the database page size is not a power of two, or is greater than
danb8fd6c22010-05-24 10:39:36 +00001069 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1070 ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1071 ** WAL file.
dan7c246102010-04-12 19:00:29 +00001072 */
danb8fd6c22010-05-24 10:39:36 +00001073 magic = sqlite3Get4byte(&aBuf[0]);
drh23ea97b2010-05-20 16:45:58 +00001074 szPage = sqlite3Get4byte(&aBuf[8]);
danb8fd6c22010-05-24 10:39:36 +00001075 if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1076 || szPage&(szPage-1)
1077 || szPage>SQLITE_MAX_PAGE_SIZE
1078 || szPage<512
1079 ){
dan7c246102010-04-12 19:00:29 +00001080 goto finished;
1081 }
shaneh5eba1f62010-07-02 17:05:03 +00001082 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
1083 pWal->szPage = (u16)szPage;
drh23ea97b2010-05-20 16:45:58 +00001084 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
drh7e263722010-05-20 21:21:09 +00001085 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
drhcd285082010-06-23 22:00:35 +00001086
1087 /* Verify that the WAL header checksum is correct */
dan71d89912010-05-24 13:57:42 +00001088 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
dan10f5a502010-06-23 15:55:43 +00001089 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
dan71d89912010-05-24 13:57:42 +00001090 );
dan10f5a502010-06-23 15:55:43 +00001091 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1092 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1093 ){
1094 goto finished;
1095 }
1096
drhcd285082010-06-23 22:00:35 +00001097 /* Verify that the version number on the WAL format is one that
1098 ** are able to understand */
dan10f5a502010-06-23 15:55:43 +00001099 version = sqlite3Get4byte(&aBuf[4]);
1100 if( version!=WAL_MAX_VERSION ){
1101 rc = SQLITE_CANTOPEN_BKPT;
1102 goto finished;
1103 }
1104
dan7c246102010-04-12 19:00:29 +00001105 /* Malloc a buffer to read frames into. */
drh584c7542010-05-19 18:08:10 +00001106 szFrame = szPage + WAL_FRAME_HDRSIZE;
1107 aFrame = (u8 *)sqlite3_malloc(szFrame);
dan7c246102010-04-12 19:00:29 +00001108 if( !aFrame ){
drh73b64e42010-05-30 19:55:15 +00001109 rc = SQLITE_NOMEM;
1110 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001111 }
drh7ed91f22010-04-29 22:34:07 +00001112 aData = &aFrame[WAL_FRAME_HDRSIZE];
dan7c246102010-04-12 19:00:29 +00001113
1114 /* Read all frames from the log file. */
1115 iFrame = 0;
drh584c7542010-05-19 18:08:10 +00001116 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
dan7c246102010-04-12 19:00:29 +00001117 u32 pgno; /* Database page number for frame */
1118 u32 nTruncate; /* dbsize field from frame header */
1119 int isValid; /* True if this frame is valid */
1120
1121 /* Read and decode the next log frame. */
drh584c7542010-05-19 18:08:10 +00001122 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
dan7c246102010-04-12 19:00:29 +00001123 if( rc!=SQLITE_OK ) break;
drh7e263722010-05-20 21:21:09 +00001124 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
dan7c246102010-04-12 19:00:29 +00001125 if( !isValid ) break;
danc7991bd2010-05-05 19:04:59 +00001126 rc = walIndexAppend(pWal, ++iFrame, pgno);
1127 if( rc!=SQLITE_OK ) break;
dan7c246102010-04-12 19:00:29 +00001128
1129 /* If nTruncate is non-zero, this is a commit record. */
1130 if( nTruncate ){
dan71d89912010-05-24 13:57:42 +00001131 pWal->hdr.mxFrame = iFrame;
1132 pWal->hdr.nPage = nTruncate;
shaneh5eba1f62010-07-02 17:05:03 +00001133 pWal->hdr.szPage = (u16)szPage;
dan71d89912010-05-24 13:57:42 +00001134 aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1135 aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
dan7c246102010-04-12 19:00:29 +00001136 }
1137 }
1138
1139 sqlite3_free(aFrame);
dan7c246102010-04-12 19:00:29 +00001140 }
1141
1142finished:
dan576bc322010-05-06 18:04:50 +00001143 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001144 volatile WalCkptInfo *pInfo;
1145 int i;
dan71d89912010-05-24 13:57:42 +00001146 pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1147 pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
drh7e263722010-05-20 21:21:09 +00001148 walIndexWriteHdr(pWal);
dan3dee6da2010-05-31 16:17:54 +00001149
drhdb7f6472010-06-09 14:45:12 +00001150 /* Reset the checkpoint-header. This is safe because this thread is
dan3dee6da2010-05-31 16:17:54 +00001151 ** currently holding locks that exclude all other readers, writers and
1152 ** checkpointers.
1153 */
drhdb7f6472010-06-09 14:45:12 +00001154 pInfo = walCkptInfo(pWal);
1155 pInfo->nBackfill = 0;
1156 pInfo->aReadMark[0] = 0;
1157 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
dan576bc322010-05-06 18:04:50 +00001158 }
drh73b64e42010-05-30 19:55:15 +00001159
1160recovery_error:
drhc74c3332010-05-31 12:15:19 +00001161 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
dand0aa3422010-05-31 16:41:53 +00001162 walUnlockExclusive(pWal, iLock, nLock);
dan7c246102010-04-12 19:00:29 +00001163 return rc;
1164}
1165
drha8e654e2010-05-04 17:38:42 +00001166/*
dan1018e902010-05-05 15:33:05 +00001167** Close an open wal-index.
drha8e654e2010-05-04 17:38:42 +00001168*/
dan1018e902010-05-05 15:33:05 +00001169static void walIndexClose(Wal *pWal, int isDelete){
drhe11fedc2010-07-14 00:14:30 +00001170 sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
drha8e654e2010-05-04 17:38:42 +00001171}
1172
dan7c246102010-04-12 19:00:29 +00001173/*
dan3e875ef2010-07-05 19:03:35 +00001174** Open a connection to the WAL file zWalName. The database file must
1175** already be opened on connection pDbFd. The buffer that zWalName points
1176** to must remain valid for the lifetime of the returned Wal* handle.
dan3de777f2010-04-17 12:31:37 +00001177**
1178** A SHARED lock should be held on the database file when this function
1179** is called. The purpose of this SHARED lock is to prevent any other
drh181e0912010-06-01 01:08:08 +00001180** client from unlinking the WAL or wal-index file. If another process
dan3de777f2010-04-17 12:31:37 +00001181** were to do this just after this client opened one of these files, the
1182** system would be badly broken.
danef378022010-05-04 11:06:03 +00001183**
1184** If the log file is successfully opened, SQLITE_OK is returned and
1185** *ppWal is set to point to a new WAL handle. If an error occurs,
1186** an SQLite error code is returned and *ppWal is left unmodified.
dan7c246102010-04-12 19:00:29 +00001187*/
drhc438efd2010-04-26 00:19:45 +00001188int sqlite3WalOpen(
drh7ed91f22010-04-29 22:34:07 +00001189 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
drhd9e5c4f2010-05-12 18:01:39 +00001190 sqlite3_file *pDbFd, /* The open database file */
dan3e875ef2010-07-05 19:03:35 +00001191 const char *zWalName, /* Name of the WAL file */
drh7ed91f22010-04-29 22:34:07 +00001192 Wal **ppWal /* OUT: Allocated Wal handle */
dan7c246102010-04-12 19:00:29 +00001193){
danef378022010-05-04 11:06:03 +00001194 int rc; /* Return Code */
drh7ed91f22010-04-29 22:34:07 +00001195 Wal *pRet; /* Object to allocate and return */
dan7c246102010-04-12 19:00:29 +00001196 int flags; /* Flags passed to OsOpen() */
dan7c246102010-04-12 19:00:29 +00001197
dan3e875ef2010-07-05 19:03:35 +00001198 assert( zWalName && zWalName[0] );
drhd9e5c4f2010-05-12 18:01:39 +00001199 assert( pDbFd );
dan7c246102010-04-12 19:00:29 +00001200
drh1b78eaf2010-05-25 13:40:03 +00001201 /* In the amalgamation, the os_unix.c and os_win.c source files come before
1202 ** this source file. Verify that the #defines of the locking byte offsets
1203 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1204 */
1205#ifdef WIN_SHM_BASE
1206 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1207#endif
1208#ifdef UNIX_SHM_BASE
1209 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1210#endif
1211
1212
drh7ed91f22010-04-29 22:34:07 +00001213 /* Allocate an instance of struct Wal to return. */
1214 *ppWal = 0;
dan3e875ef2010-07-05 19:03:35 +00001215 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
dan76ed3bc2010-05-03 17:18:24 +00001216 if( !pRet ){
1217 return SQLITE_NOMEM;
1218 }
1219
dan7c246102010-04-12 19:00:29 +00001220 pRet->pVfs = pVfs;
drhd9e5c4f2010-05-12 18:01:39 +00001221 pRet->pWalFd = (sqlite3_file *)&pRet[1];
1222 pRet->pDbFd = pDbFd;
drh73b64e42010-05-30 19:55:15 +00001223 pRet->readLock = -1;
dan3e875ef2010-07-05 19:03:35 +00001224 pRet->zWalName = zWalName;
dan7c246102010-04-12 19:00:29 +00001225
drh7ed91f22010-04-29 22:34:07 +00001226 /* Open file handle on the write-ahead log file. */
danda9fe0c2010-07-13 18:44:03 +00001227 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_MAIN_JOURNAL);
1228 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
dan7c246102010-04-12 19:00:29 +00001229
dan7c246102010-04-12 19:00:29 +00001230 if( rc!=SQLITE_OK ){
dan1018e902010-05-05 15:33:05 +00001231 walIndexClose(pRet, 0);
drhd9e5c4f2010-05-12 18:01:39 +00001232 sqlite3OsClose(pRet->pWalFd);
danef378022010-05-04 11:06:03 +00001233 sqlite3_free(pRet);
1234 }else{
1235 *ppWal = pRet;
drhc74c3332010-05-31 12:15:19 +00001236 WALTRACE(("WAL%d: opened\n", pRet));
dan7c246102010-04-12 19:00:29 +00001237 }
dan7c246102010-04-12 19:00:29 +00001238 return rc;
1239}
1240
drha2a42012010-05-18 18:01:08 +00001241/*
1242** Find the smallest page number out of all pages held in the WAL that
1243** has not been returned by any prior invocation of this method on the
1244** same WalIterator object. Write into *piFrame the frame index where
1245** that page was last written into the WAL. Write into *piPage the page
1246** number.
1247**
1248** Return 0 on success. If there are no pages in the WAL with a page
1249** number larger than *piPage, then return 1.
1250*/
drh7ed91f22010-04-29 22:34:07 +00001251static int walIteratorNext(
1252 WalIterator *p, /* Iterator */
drha2a42012010-05-18 18:01:08 +00001253 u32 *piPage, /* OUT: The page number of the next page */
1254 u32 *piFrame /* OUT: Wal frame index of next page */
dan7c246102010-04-12 19:00:29 +00001255){
drha2a42012010-05-18 18:01:08 +00001256 u32 iMin; /* Result pgno must be greater than iMin */
1257 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
1258 int i; /* For looping through segments */
dan7c246102010-04-12 19:00:29 +00001259
drha2a42012010-05-18 18:01:08 +00001260 iMin = p->iPrior;
1261 assert( iMin<0xffffffff );
dan7c246102010-04-12 19:00:29 +00001262 for(i=p->nSegment-1; i>=0; i--){
drh7ed91f22010-04-29 22:34:07 +00001263 struct WalSegment *pSegment = &p->aSegment[i];
dan13a3cb82010-06-11 19:04:21 +00001264 while( pSegment->iNext<pSegment->nEntry ){
drha2a42012010-05-18 18:01:08 +00001265 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
dan7c246102010-04-12 19:00:29 +00001266 if( iPg>iMin ){
1267 if( iPg<iRet ){
1268 iRet = iPg;
dan13a3cb82010-06-11 19:04:21 +00001269 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
dan7c246102010-04-12 19:00:29 +00001270 }
1271 break;
1272 }
1273 pSegment->iNext++;
1274 }
dan7c246102010-04-12 19:00:29 +00001275 }
1276
drha2a42012010-05-18 18:01:08 +00001277 *piPage = p->iPrior = iRet;
dan7c246102010-04-12 19:00:29 +00001278 return (iRet==0xFFFFFFFF);
1279}
1280
danf544b4c2010-06-25 11:35:52 +00001281/*
1282** This function merges two sorted lists into a single sorted list.
1283*/
1284static void walMerge(
1285 u32 *aContent, /* Pages in wal */
1286 ht_slot *aLeft, /* IN: Left hand input list */
1287 int nLeft, /* IN: Elements in array *paLeft */
1288 ht_slot **paRight, /* IN/OUT: Right hand input list */
1289 int *pnRight, /* IN/OUT: Elements in *paRight */
1290 ht_slot *aTmp /* Temporary buffer */
1291){
1292 int iLeft = 0; /* Current index in aLeft */
1293 int iRight = 0; /* Current index in aRight */
1294 int iOut = 0; /* Current index in output buffer */
1295 int nRight = *pnRight;
1296 ht_slot *aRight = *paRight;
dan7c246102010-04-12 19:00:29 +00001297
danf544b4c2010-06-25 11:35:52 +00001298 assert( nLeft>0 && nRight>0 );
1299 while( iRight<nRight || iLeft<nLeft ){
1300 ht_slot logpage;
1301 Pgno dbpage;
1302
1303 if( (iLeft<nLeft)
1304 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1305 ){
1306 logpage = aLeft[iLeft++];
1307 }else{
1308 logpage = aRight[iRight++];
1309 }
1310 dbpage = aContent[logpage];
1311
1312 aTmp[iOut++] = logpage;
1313 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1314
1315 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1316 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1317 }
1318
1319 *paRight = aLeft;
1320 *pnRight = iOut;
1321 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1322}
1323
1324/*
1325** Sort the elements in list aList, removing any duplicates.
1326*/
dan13a3cb82010-06-11 19:04:21 +00001327static void walMergesort(
1328 u32 *aContent, /* Pages in wal */
dan067f3162010-06-14 10:30:12 +00001329 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
1330 ht_slot *aList, /* IN/OUT: List to sort */
drha2a42012010-05-18 18:01:08 +00001331 int *pnList /* IN/OUT: Number of elements in aList[] */
1332){
danf544b4c2010-06-25 11:35:52 +00001333 struct Sublist {
1334 int nList; /* Number of elements in aList */
1335 ht_slot *aList; /* Pointer to sub-list content */
1336 };
drha2a42012010-05-18 18:01:08 +00001337
danf544b4c2010-06-25 11:35:52 +00001338 const int nList = *pnList; /* Size of input list */
drhff828942010-06-26 21:34:06 +00001339 int nMerge = 0; /* Number of elements in list aMerge */
1340 ht_slot *aMerge = 0; /* List to be merged */
danf544b4c2010-06-25 11:35:52 +00001341 int iList; /* Index into input list */
drh7d113eb2010-06-26 20:00:54 +00001342 int iSub = 0; /* Index into aSub array */
danf544b4c2010-06-25 11:35:52 +00001343 struct Sublist aSub[13]; /* Array of sub-lists */
drha2a42012010-05-18 18:01:08 +00001344
danf544b4c2010-06-25 11:35:52 +00001345 memset(aSub, 0, sizeof(aSub));
1346 assert( nList<=HASHTABLE_NPAGE && nList>0 );
1347 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
drha2a42012010-05-18 18:01:08 +00001348
danf544b4c2010-06-25 11:35:52 +00001349 for(iList=0; iList<nList; iList++){
1350 nMerge = 1;
1351 aMerge = &aList[iList];
1352 for(iSub=0; iList & (1<<iSub); iSub++){
1353 struct Sublist *p = &aSub[iSub];
1354 assert( p->aList && p->nList<=(1<<iSub) );
danbdf1e242010-06-25 15:16:25 +00001355 assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001356 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
drha2a42012010-05-18 18:01:08 +00001357 }
danf544b4c2010-06-25 11:35:52 +00001358 aSub[iSub].aList = aMerge;
1359 aSub[iSub].nList = nMerge;
drha2a42012010-05-18 18:01:08 +00001360 }
1361
danf544b4c2010-06-25 11:35:52 +00001362 for(iSub++; iSub<ArraySize(aSub); iSub++){
1363 if( nList & (1<<iSub) ){
1364 struct Sublist *p = &aSub[iSub];
danbdf1e242010-06-25 15:16:25 +00001365 assert( p->nList<=(1<<iSub) );
1366 assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
danf544b4c2010-06-25 11:35:52 +00001367 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1368 }
1369 }
1370 assert( aMerge==aList );
1371 *pnList = nMerge;
1372
drha2a42012010-05-18 18:01:08 +00001373#ifdef SQLITE_DEBUG
1374 {
1375 int i;
1376 for(i=1; i<*pnList; i++){
1377 assert( aContent[aList[i]] > aContent[aList[i-1]] );
1378 }
1379 }
1380#endif
1381}
1382
dan5d656852010-06-14 07:53:26 +00001383/*
1384** Free an iterator allocated by walIteratorInit().
1385*/
1386static void walIteratorFree(WalIterator *p){
danbdf1e242010-06-25 15:16:25 +00001387 sqlite3ScratchFree(p);
dan5d656852010-06-14 07:53:26 +00001388}
1389
drha2a42012010-05-18 18:01:08 +00001390/*
danbdf1e242010-06-25 15:16:25 +00001391** Construct a WalInterator object that can be used to loop over all
1392** pages in the WAL in ascending order. The caller must hold the checkpoint
drha2a42012010-05-18 18:01:08 +00001393**
1394** On success, make *pp point to the newly allocated WalInterator object
danbdf1e242010-06-25 15:16:25 +00001395** return SQLITE_OK. Otherwise, return an error code. If this routine
1396** returns an error, the value of *pp is undefined.
drha2a42012010-05-18 18:01:08 +00001397**
1398** The calling routine should invoke walIteratorFree() to destroy the
danbdf1e242010-06-25 15:16:25 +00001399** WalIterator object when it has finished with it.
drha2a42012010-05-18 18:01:08 +00001400*/
1401static int walIteratorInit(Wal *pWal, WalIterator **pp){
dan067f3162010-06-14 10:30:12 +00001402 WalIterator *p; /* Return value */
1403 int nSegment; /* Number of segments to merge */
1404 u32 iLast; /* Last frame in log */
1405 int nByte; /* Number of bytes to allocate */
1406 int i; /* Iterator variable */
1407 ht_slot *aTmp; /* Temp space used by merge-sort */
danbdf1e242010-06-25 15:16:25 +00001408 int rc = SQLITE_OK; /* Return Code */
drha2a42012010-05-18 18:01:08 +00001409
danbdf1e242010-06-25 15:16:25 +00001410 /* This routine only runs while holding the checkpoint lock. And
1411 ** it only runs if there is actually content in the log (mxFrame>0).
drha2a42012010-05-18 18:01:08 +00001412 */
danbdf1e242010-06-25 15:16:25 +00001413 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
dan13a3cb82010-06-11 19:04:21 +00001414 iLast = pWal->hdr.mxFrame;
drha2a42012010-05-18 18:01:08 +00001415
danbdf1e242010-06-25 15:16:25 +00001416 /* Allocate space for the WalIterator object. */
dan13a3cb82010-06-11 19:04:21 +00001417 nSegment = walFramePage(iLast) + 1;
1418 nByte = sizeof(WalIterator)
dan52d6fc02010-06-25 16:34:32 +00001419 + (nSegment-1)*sizeof(struct WalSegment)
1420 + iLast*sizeof(ht_slot);
danbdf1e242010-06-25 15:16:25 +00001421 p = (WalIterator *)sqlite3ScratchMalloc(nByte);
dan8f6097c2010-05-06 07:43:58 +00001422 if( !p ){
drha2a42012010-05-18 18:01:08 +00001423 return SQLITE_NOMEM;
1424 }
1425 memset(p, 0, nByte);
drha2a42012010-05-18 18:01:08 +00001426 p->nSegment = nSegment;
danbdf1e242010-06-25 15:16:25 +00001427
1428 /* Allocate temporary space used by the merge-sort routine. This block
1429 ** of memory will be freed before this function returns.
1430 */
dan52d6fc02010-06-25 16:34:32 +00001431 aTmp = (ht_slot *)sqlite3ScratchMalloc(
1432 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1433 );
danbdf1e242010-06-25 15:16:25 +00001434 if( !aTmp ){
1435 rc = SQLITE_NOMEM;
1436 }
1437
1438 for(i=0; rc==SQLITE_OK && i<nSegment; i++){
dan067f3162010-06-14 10:30:12 +00001439 volatile ht_slot *aHash;
dan13a3cb82010-06-11 19:04:21 +00001440 u32 iZero;
dan13a3cb82010-06-11 19:04:21 +00001441 volatile u32 *aPgno;
1442
dan4280eb32010-06-12 12:02:35 +00001443 rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
danbdf1e242010-06-25 15:16:25 +00001444 if( rc==SQLITE_OK ){
dan52d6fc02010-06-25 16:34:32 +00001445 int j; /* Counter variable */
1446 int nEntry; /* Number of entries in this segment */
1447 ht_slot *aIndex; /* Sorted index for this segment */
1448
danbdf1e242010-06-25 15:16:25 +00001449 aPgno++;
drh519426a2010-07-09 03:19:07 +00001450 if( (i+1)==nSegment ){
1451 nEntry = (int)(iLast - iZero);
1452 }else{
shaneh55897962010-07-09 12:57:53 +00001453 nEntry = (int)((u32*)aHash - (u32*)aPgno);
drh519426a2010-07-09 03:19:07 +00001454 }
dan52d6fc02010-06-25 16:34:32 +00001455 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
danbdf1e242010-06-25 15:16:25 +00001456 iZero++;
1457
danbdf1e242010-06-25 15:16:25 +00001458 for(j=0; j<nEntry; j++){
shaneh5eba1f62010-07-02 17:05:03 +00001459 aIndex[j] = (ht_slot)j;
danbdf1e242010-06-25 15:16:25 +00001460 }
1461 walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
1462 p->aSegment[i].iZero = iZero;
1463 p->aSegment[i].nEntry = nEntry;
1464 p->aSegment[i].aIndex = aIndex;
1465 p->aSegment[i].aPgno = (u32 *)aPgno;
dan13a3cb82010-06-11 19:04:21 +00001466 }
dan7c246102010-04-12 19:00:29 +00001467 }
danbdf1e242010-06-25 15:16:25 +00001468 sqlite3ScratchFree(aTmp);
dan7c246102010-04-12 19:00:29 +00001469
danbdf1e242010-06-25 15:16:25 +00001470 if( rc!=SQLITE_OK ){
1471 walIteratorFree(p);
1472 }
dan8f6097c2010-05-06 07:43:58 +00001473 *pp = p;
danbdf1e242010-06-25 15:16:25 +00001474 return rc;
dan7c246102010-04-12 19:00:29 +00001475}
1476
dan7c246102010-04-12 19:00:29 +00001477/*
drh73b64e42010-05-30 19:55:15 +00001478** Copy as much content as we can from the WAL back into the database file
1479** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1480**
1481** The amount of information copies from WAL to database might be limited
1482** by active readers. This routine will never overwrite a database page
1483** that a concurrent reader might be using.
1484**
1485** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1486** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
1487** checkpoints are always run by a background thread or background
1488** process, foreground threads will never block on a lengthy fsync call.
1489**
1490** Fsync is called on the WAL before writing content out of the WAL and
1491** into the database. This ensures that if the new content is persistent
1492** in the WAL and can be recovered following a power-loss or hard reset.
1493**
1494** Fsync is also called on the database file if (and only if) the entire
1495** WAL content is copied into the database file. This second fsync makes
1496** it safe to delete the WAL since the new content will persist in the
1497** database file.
1498**
1499** This routine uses and updates the nBackfill field of the wal-index header.
1500** This is the only routine tha will increase the value of nBackfill.
1501** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1502** its value.)
1503**
1504** The caller must be holding sufficient locks to ensure that no other
1505** checkpoint is running (in any other thread or process) at the same
1506** time.
dan7c246102010-04-12 19:00:29 +00001507*/
drh7ed91f22010-04-29 22:34:07 +00001508static int walCheckpoint(
1509 Wal *pWal, /* Wal connection */
danc5118782010-04-17 17:34:41 +00001510 int sync_flags, /* Flags for OsSync() (or 0) */
danb6e099a2010-05-04 14:47:39 +00001511 int nBuf, /* Size of zBuf in bytes */
dan7c246102010-04-12 19:00:29 +00001512 u8 *zBuf /* Temporary buffer to use */
1513){
1514 int rc; /* Return code */
drh6e810962010-05-19 17:49:50 +00001515 int szPage = pWal->hdr.szPage; /* Database page-size */
drh7ed91f22010-04-29 22:34:07 +00001516 WalIterator *pIter = 0; /* Wal iterator context */
dan7c246102010-04-12 19:00:29 +00001517 u32 iDbpage = 0; /* Next database page to write */
drh7ed91f22010-04-29 22:34:07 +00001518 u32 iFrame = 0; /* Wal frame containing data for iDbpage */
drh73b64e42010-05-30 19:55:15 +00001519 u32 mxSafeFrame; /* Max frame that can be backfilled */
1520 int i; /* Loop counter */
drh73b64e42010-05-30 19:55:15 +00001521 volatile WalCkptInfo *pInfo; /* The checkpoint status information */
dan7c246102010-04-12 19:00:29 +00001522
danf544b4c2010-06-25 11:35:52 +00001523 if( pWal->hdr.mxFrame==0 ) return SQLITE_OK;
1524
dan7c246102010-04-12 19:00:29 +00001525 /* Allocate the iterator */
dan8f6097c2010-05-06 07:43:58 +00001526 rc = walIteratorInit(pWal, &pIter);
danf544b4c2010-06-25 11:35:52 +00001527 if( rc!=SQLITE_OK ){
danbdf1e242010-06-25 15:16:25 +00001528 return rc;
danb6e099a2010-05-04 14:47:39 +00001529 }
danf544b4c2010-06-25 11:35:52 +00001530 assert( pIter );
danb6e099a2010-05-04 14:47:39 +00001531
drh73b64e42010-05-30 19:55:15 +00001532 /*** TODO: Move this test out to the caller. Make it an assert() here ***/
drh6e810962010-05-19 17:49:50 +00001533 if( pWal->hdr.szPage!=nBuf ){
dan83f42d12010-06-04 10:37:05 +00001534 rc = SQLITE_CORRUPT_BKPT;
1535 goto walcheckpoint_out;
danb6e099a2010-05-04 14:47:39 +00001536 }
1537
drh73b64e42010-05-30 19:55:15 +00001538 /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1539 ** safe to write into the database. Frames beyond mxSafeFrame might
1540 ** overwrite database pages that are in use by active readers and thus
1541 ** cannot be backfilled from the WAL.
1542 */
dand54ff602010-05-31 11:16:30 +00001543 mxSafeFrame = pWal->hdr.mxFrame;
dan13a3cb82010-06-11 19:04:21 +00001544 pInfo = walCkptInfo(pWal);
drh73b64e42010-05-30 19:55:15 +00001545 for(i=1; i<WAL_NREADER; i++){
1546 u32 y = pInfo->aReadMark[i];
drhdb7f6472010-06-09 14:45:12 +00001547 if( mxSafeFrame>=y ){
dan83f42d12010-06-04 10:37:05 +00001548 assert( y<=pWal->hdr.mxFrame );
1549 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
1550 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001551 pInfo->aReadMark[i] = READMARK_NOT_USED;
drh73b64e42010-05-30 19:55:15 +00001552 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
drh2d37e1c2010-06-02 20:38:20 +00001553 }else if( rc==SQLITE_BUSY ){
drhdb7f6472010-06-09 14:45:12 +00001554 mxSafeFrame = y;
drh2d37e1c2010-06-02 20:38:20 +00001555 }else{
dan83f42d12010-06-04 10:37:05 +00001556 goto walcheckpoint_out;
drh73b64e42010-05-30 19:55:15 +00001557 }
1558 }
danc5118782010-04-17 17:34:41 +00001559 }
dan7c246102010-04-12 19:00:29 +00001560
drh73b64e42010-05-30 19:55:15 +00001561 if( pInfo->nBackfill<mxSafeFrame
1562 && (rc = walLockExclusive(pWal, WAL_READ_LOCK(0), 1))==SQLITE_OK
1563 ){
1564 u32 nBackfill = pInfo->nBackfill;
1565
1566 /* Sync the WAL to disk */
1567 if( sync_flags ){
1568 rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
1569 }
1570
1571 /* Iterate through the contents of the WAL, copying data to the db file. */
1572 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
drh3e8e7ec2010-07-07 13:43:19 +00001573 i64 iOffset;
dan13a3cb82010-06-11 19:04:21 +00001574 assert( walFramePgno(pWal, iFrame)==iDbpage );
drh73b64e42010-05-30 19:55:15 +00001575 if( iFrame<=nBackfill || iFrame>mxSafeFrame ) continue;
drh3e8e7ec2010-07-07 13:43:19 +00001576 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
drh09b5dbc2010-07-07 14:35:58 +00001577 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
drh3e8e7ec2010-07-07 13:43:19 +00001578 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
1579 if( rc!=SQLITE_OK ) break;
1580 iOffset = (iDbpage-1)*(i64)szPage;
1581 testcase( IS_BIG_INT(iOffset) );
1582 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
1583 if( rc!=SQLITE_OK ) break;
drh73b64e42010-05-30 19:55:15 +00001584 }
1585
1586 /* If work was actually accomplished... */
dand764c7d2010-06-04 11:56:22 +00001587 if( rc==SQLITE_OK ){
dan4280eb32010-06-12 12:02:35 +00001588 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
drh3e8e7ec2010-07-07 13:43:19 +00001589 i64 szDb = pWal->hdr.nPage*(i64)szPage;
1590 testcase( IS_BIG_INT(szDb) );
1591 rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
drh73b64e42010-05-30 19:55:15 +00001592 if( rc==SQLITE_OK && sync_flags ){
1593 rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
1594 }
1595 }
dand764c7d2010-06-04 11:56:22 +00001596 if( rc==SQLITE_OK ){
1597 pInfo->nBackfill = mxSafeFrame;
1598 }
drh73b64e42010-05-30 19:55:15 +00001599 }
1600
1601 /* Release the reader lock held while backfilling */
1602 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
drh2d37e1c2010-06-02 20:38:20 +00001603 }else if( rc==SQLITE_BUSY ){
drh34116ea2010-05-31 12:30:52 +00001604 /* Reset the return code so as not to report a checkpoint failure
1605 ** just because active readers prevent any backfill.
1606 */
1607 rc = SQLITE_OK;
dan7c246102010-04-12 19:00:29 +00001608 }
1609
dan83f42d12010-06-04 10:37:05 +00001610 walcheckpoint_out:
drh7ed91f22010-04-29 22:34:07 +00001611 walIteratorFree(pIter);
dan7c246102010-04-12 19:00:29 +00001612 return rc;
1613}
1614
1615/*
1616** Close a connection to a log file.
1617*/
drhc438efd2010-04-26 00:19:45 +00001618int sqlite3WalClose(
drh7ed91f22010-04-29 22:34:07 +00001619 Wal *pWal, /* Wal to close */
danc5118782010-04-17 17:34:41 +00001620 int sync_flags, /* Flags to pass to OsSync() (or 0) */
danb6e099a2010-05-04 14:47:39 +00001621 int nBuf,
1622 u8 *zBuf /* Buffer of at least nBuf bytes */
dan7c246102010-04-12 19:00:29 +00001623){
1624 int rc = SQLITE_OK;
drh7ed91f22010-04-29 22:34:07 +00001625 if( pWal ){
dan30c86292010-04-30 16:24:46 +00001626 int isDelete = 0; /* True to unlink wal and wal-index files */
1627
1628 /* If an EXCLUSIVE lock can be obtained on the database file (using the
1629 ** ordinary, rollback-mode locking methods, this guarantees that the
1630 ** connection associated with this log file is the only connection to
1631 ** the database. In this case checkpoint the database and unlink both
1632 ** the wal and wal-index files.
1633 **
1634 ** The EXCLUSIVE lock is not released before returning.
1635 */
drhd9e5c4f2010-05-12 18:01:39 +00001636 rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
dan30c86292010-04-30 16:24:46 +00001637 if( rc==SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001638 pWal->exclusiveMode = 1;
dan1beb9392010-05-31 12:02:30 +00001639 rc = sqlite3WalCheckpoint(pWal, sync_flags, nBuf, zBuf);
dan30c86292010-04-30 16:24:46 +00001640 if( rc==SQLITE_OK ){
1641 isDelete = 1;
1642 }
dan30c86292010-04-30 16:24:46 +00001643 }
1644
dan1018e902010-05-05 15:33:05 +00001645 walIndexClose(pWal, isDelete);
drhd9e5c4f2010-05-12 18:01:39 +00001646 sqlite3OsClose(pWal->pWalFd);
dan30c86292010-04-30 16:24:46 +00001647 if( isDelete ){
drhd9e5c4f2010-05-12 18:01:39 +00001648 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
dan30c86292010-04-30 16:24:46 +00001649 }
drhc74c3332010-05-31 12:15:19 +00001650 WALTRACE(("WAL%p: closed\n", pWal));
shaneh8a300f82010-07-02 18:15:31 +00001651 sqlite3_free((void *)pWal->apWiData);
drh7ed91f22010-04-29 22:34:07 +00001652 sqlite3_free(pWal);
dan7c246102010-04-12 19:00:29 +00001653 }
1654 return rc;
1655}
1656
1657/*
drha2a42012010-05-18 18:01:08 +00001658** Try to read the wal-index header. Return 0 on success and 1 if
1659** there is a problem.
1660**
1661** The wal-index is in shared memory. Another thread or process might
1662** be writing the header at the same time this procedure is trying to
1663** read it, which might result in inconsistency. A dirty read is detected
drh73b64e42010-05-30 19:55:15 +00001664** by verifying that both copies of the header are the same and also by
1665** a checksum on the header.
drha2a42012010-05-18 18:01:08 +00001666**
1667** If and only if the read is consistent and the header is different from
1668** pWal->hdr, then pWal->hdr is updated to the content of the new header
1669** and *pChanged is set to 1.
danb9bf16b2010-04-14 11:23:30 +00001670**
dan84670502010-05-07 05:46:23 +00001671** If the checksum cannot be verified return non-zero. If the header
1672** is read successfully and the checksum verified, return zero.
danb9bf16b2010-04-14 11:23:30 +00001673*/
drh7750ab42010-06-26 22:16:02 +00001674static int walIndexTryHdr(Wal *pWal, int *pChanged){
dan4280eb32010-06-12 12:02:35 +00001675 u32 aCksum[2]; /* Checksum on the header content */
1676 WalIndexHdr h1, h2; /* Two copies of the header content */
1677 WalIndexHdr volatile *aHdr; /* Header in shared memory */
danb9bf16b2010-04-14 11:23:30 +00001678
dan4280eb32010-06-12 12:02:35 +00001679 /* The first page of the wal-index must be mapped at this point. */
1680 assert( pWal->nWiData>0 && pWal->apWiData[0] );
drh79e6c782010-04-30 02:13:26 +00001681
drh73b64e42010-05-30 19:55:15 +00001682 /* Read the header. This might happen currently with a write to the
1683 ** same area of shared memory on a different CPU in a SMP,
1684 ** meaning it is possible that an inconsistent snapshot is read
dan84670502010-05-07 05:46:23 +00001685 ** from the file. If this happens, return non-zero.
drhf0b20f82010-05-21 13:16:18 +00001686 **
1687 ** There are two copies of the header at the beginning of the wal-index.
1688 ** When reading, read [0] first then [1]. Writes are in the reverse order.
1689 ** Memory barriers are used to prevent the compiler or the hardware from
1690 ** reordering the reads and writes.
danb9bf16b2010-04-14 11:23:30 +00001691 */
dan4280eb32010-06-12 12:02:35 +00001692 aHdr = walIndexHdr(pWal);
1693 memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
drh286a2882010-05-20 23:51:06 +00001694 sqlite3OsShmBarrier(pWal->pDbFd);
dan4280eb32010-06-12 12:02:35 +00001695 memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
drh286a2882010-05-20 23:51:06 +00001696
drhf0b20f82010-05-21 13:16:18 +00001697 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
1698 return 1; /* Dirty read */
drh286a2882010-05-20 23:51:06 +00001699 }
drh4b82c382010-05-31 18:24:19 +00001700 if( h1.isInit==0 ){
drhf0b20f82010-05-21 13:16:18 +00001701 return 1; /* Malformed header - probably all zeros */
1702 }
danb8fd6c22010-05-24 10:39:36 +00001703 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
drhf0b20f82010-05-21 13:16:18 +00001704 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
1705 return 1; /* Checksum does not match */
danb9bf16b2010-04-14 11:23:30 +00001706 }
1707
drhf0b20f82010-05-21 13:16:18 +00001708 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
dana8614692010-05-06 14:42:34 +00001709 *pChanged = 1;
drhf0b20f82010-05-21 13:16:18 +00001710 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
drh7e263722010-05-20 21:21:09 +00001711 pWal->szPage = pWal->hdr.szPage;
danb9bf16b2010-04-14 11:23:30 +00001712 }
dan84670502010-05-07 05:46:23 +00001713
1714 /* The header was successfully read. Return zero. */
1715 return 0;
danb9bf16b2010-04-14 11:23:30 +00001716}
1717
1718/*
drha2a42012010-05-18 18:01:08 +00001719** Read the wal-index header from the wal-index and into pWal->hdr.
drha927e942010-06-24 02:46:48 +00001720** If the wal-header appears to be corrupt, try to reconstruct the
1721** wal-index from the WAL before returning.
drha2a42012010-05-18 18:01:08 +00001722**
1723** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
1724** changed by this opertion. If pWal->hdr is unchanged, set *pChanged
1725** to 0.
1726**
drh7ed91f22010-04-29 22:34:07 +00001727** If the wal-index header is successfully read, return SQLITE_OK.
danb9bf16b2010-04-14 11:23:30 +00001728** Otherwise an SQLite error code.
1729*/
drh7ed91f22010-04-29 22:34:07 +00001730static int walIndexReadHdr(Wal *pWal, int *pChanged){
dan84670502010-05-07 05:46:23 +00001731 int rc; /* Return code */
drh73b64e42010-05-30 19:55:15 +00001732 int badHdr; /* True if a header read failed */
drha927e942010-06-24 02:46:48 +00001733 volatile u32 *page0; /* Chunk of wal-index containing header */
danb9bf16b2010-04-14 11:23:30 +00001734
dan4280eb32010-06-12 12:02:35 +00001735 /* Ensure that page 0 of the wal-index (the page that contains the
1736 ** wal-index header) is mapped. Return early if an error occurs here.
1737 */
dana8614692010-05-06 14:42:34 +00001738 assert( pChanged );
dan4280eb32010-06-12 12:02:35 +00001739 rc = walIndexPage(pWal, 0, &page0);
danc7991bd2010-05-05 19:04:59 +00001740 if( rc!=SQLITE_OK ){
1741 return rc;
dan4280eb32010-06-12 12:02:35 +00001742 };
1743 assert( page0 || pWal->writeLock==0 );
drh7ed91f22010-04-29 22:34:07 +00001744
dan4280eb32010-06-12 12:02:35 +00001745 /* If the first page of the wal-index has been mapped, try to read the
1746 ** wal-index header immediately, without holding any lock. This usually
1747 ** works, but may fail if the wal-index header is corrupt or currently
drha927e942010-06-24 02:46:48 +00001748 ** being modified by another thread or process.
danb9bf16b2010-04-14 11:23:30 +00001749 */
dan4280eb32010-06-12 12:02:35 +00001750 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
drhbab7b912010-05-26 17:31:58 +00001751
drh73b64e42010-05-30 19:55:15 +00001752 /* If the first attempt failed, it might have been due to a race
1753 ** with a writer. So get a WRITE lock and try again.
1754 */
dand54ff602010-05-31 11:16:30 +00001755 assert( badHdr==0 || pWal->writeLock==0 );
dan4280eb32010-06-12 12:02:35 +00001756 if( badHdr && SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
1757 pWal->writeLock = 1;
1758 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
drh73b64e42010-05-30 19:55:15 +00001759 badHdr = walIndexTryHdr(pWal, pChanged);
1760 if( badHdr ){
1761 /* If the wal-index header is still malformed even while holding
1762 ** a WRITE lock, it can only mean that the header is corrupted and
1763 ** needs to be reconstructed. So run recovery to do exactly that.
1764 */
drhbab7b912010-05-26 17:31:58 +00001765 rc = walIndexRecover(pWal);
dan3dee6da2010-05-31 16:17:54 +00001766 *pChanged = 1;
drhbab7b912010-05-26 17:31:58 +00001767 }
drhbab7b912010-05-26 17:31:58 +00001768 }
dan4280eb32010-06-12 12:02:35 +00001769 pWal->writeLock = 0;
1770 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
danb9bf16b2010-04-14 11:23:30 +00001771 }
1772
drha927e942010-06-24 02:46:48 +00001773 /* If the header is read successfully, check the version number to make
1774 ** sure the wal-index was not constructed with some future format that
1775 ** this version of SQLite cannot understand.
1776 */
1777 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
1778 rc = SQLITE_CANTOPEN_BKPT;
1779 }
1780
danb9bf16b2010-04-14 11:23:30 +00001781 return rc;
1782}
1783
1784/*
drh73b64e42010-05-30 19:55:15 +00001785** This is the value that walTryBeginRead returns when it needs to
1786** be retried.
dan7c246102010-04-12 19:00:29 +00001787*/
drh73b64e42010-05-30 19:55:15 +00001788#define WAL_RETRY (-1)
dan64d039e2010-04-13 19:27:31 +00001789
drh73b64e42010-05-30 19:55:15 +00001790/*
1791** Attempt to start a read transaction. This might fail due to a race or
1792** other transient condition. When that happens, it returns WAL_RETRY to
1793** indicate to the caller that it is safe to retry immediately.
1794**
drha927e942010-06-24 02:46:48 +00001795** On success return SQLITE_OK. On a permanent failure (such an
drh73b64e42010-05-30 19:55:15 +00001796** I/O error or an SQLITE_BUSY because another process is running
1797** recovery) return a positive error code.
1798**
drha927e942010-06-24 02:46:48 +00001799** The useWal parameter is true to force the use of the WAL and disable
1800** the case where the WAL is bypassed because it has been completely
1801** checkpointed. If useWal==0 then this routine calls walIndexReadHdr()
1802** to make a copy of the wal-index header into pWal->hdr. If the
1803** wal-index header has changed, *pChanged is set to 1 (as an indication
1804** to the caller that the local paget cache is obsolete and needs to be
1805** flushed.) When useWal==1, the wal-index header is assumed to already
1806** be loaded and the pChanged parameter is unused.
1807**
1808** The caller must set the cnt parameter to the number of prior calls to
1809** this routine during the current read attempt that returned WAL_RETRY.
1810** This routine will start taking more aggressive measures to clear the
1811** race conditions after multiple WAL_RETRY returns, and after an excessive
1812** number of errors will ultimately return SQLITE_PROTOCOL. The
1813** SQLITE_PROTOCOL return indicates that some other process has gone rogue
1814** and is not honoring the locking protocol. There is a vanishingly small
1815** chance that SQLITE_PROTOCOL could be returned because of a run of really
1816** bad luck when there is lots of contention for the wal-index, but that
1817** possibility is so small that it can be safely neglected, we believe.
1818**
drh73b64e42010-05-30 19:55:15 +00001819** On success, this routine obtains a read lock on
1820** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
1821** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
1822** that means the Wal does not hold any read lock. The reader must not
1823** access any database page that is modified by a WAL frame up to and
1824** including frame number aReadMark[pWal->readLock]. The reader will
1825** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
1826** Or if pWal->readLock==0, then the reader will ignore the WAL
1827** completely and get all content directly from the database file.
drha927e942010-06-24 02:46:48 +00001828** If the useWal parameter is 1 then the WAL will never be ignored and
1829** this routine will always set pWal->readLock>0 on success.
drh73b64e42010-05-30 19:55:15 +00001830** When the read transaction is completed, the caller must release the
1831** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
1832**
1833** This routine uses the nBackfill and aReadMark[] fields of the header
1834** to select a particular WAL_READ_LOCK() that strives to let the
1835** checkpoint process do as much work as possible. This routine might
1836** update values of the aReadMark[] array in the header, but if it does
1837** so it takes care to hold an exclusive lock on the corresponding
1838** WAL_READ_LOCK() while changing values.
1839*/
drhaab4c022010-06-02 14:45:51 +00001840static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
drh73b64e42010-05-30 19:55:15 +00001841 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
1842 u32 mxReadMark; /* Largest aReadMark[] value */
1843 int mxI; /* Index of largest aReadMark[] value */
1844 int i; /* Loop counter */
dan13a3cb82010-06-11 19:04:21 +00001845 int rc = SQLITE_OK; /* Return code */
dan64d039e2010-04-13 19:27:31 +00001846
drh61e4ace2010-05-31 20:28:37 +00001847 assert( pWal->readLock<0 ); /* Not currently locked */
drh73b64e42010-05-30 19:55:15 +00001848
drhaab4c022010-06-02 14:45:51 +00001849 /* Take steps to avoid spinning forever if there is a protocol error. */
1850 if( cnt>5 ){
1851 if( cnt>100 ) return SQLITE_PROTOCOL;
1852 sqlite3OsSleep(pWal->pVfs, 1);
1853 }
1854
drh73b64e42010-05-30 19:55:15 +00001855 if( !useWal ){
drh7ed91f22010-04-29 22:34:07 +00001856 rc = walIndexReadHdr(pWal, pChanged);
drh73b64e42010-05-30 19:55:15 +00001857 if( rc==SQLITE_BUSY ){
1858 /* If there is not a recovery running in another thread or process
1859 ** then convert BUSY errors to WAL_RETRY. If recovery is known to
1860 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
1861 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
1862 ** would be technically correct. But the race is benign since with
1863 ** WAL_RETRY this routine will be called again and will probably be
1864 ** right on the second iteration.
1865 */
1866 rc = walLockShared(pWal, WAL_RECOVER_LOCK);
1867 if( rc==SQLITE_OK ){
1868 walUnlockShared(pWal, WAL_RECOVER_LOCK);
1869 rc = WAL_RETRY;
1870 }else if( rc==SQLITE_BUSY ){
1871 rc = SQLITE_BUSY_RECOVERY;
1872 }
1873 }
drha927e942010-06-24 02:46:48 +00001874 if( rc!=SQLITE_OK ){
1875 return rc;
1876 }
drh73b64e42010-05-30 19:55:15 +00001877 }
1878
dan13a3cb82010-06-11 19:04:21 +00001879 pInfo = walCkptInfo(pWal);
drh73b64e42010-05-30 19:55:15 +00001880 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){
1881 /* The WAL has been completely backfilled (or it is empty).
1882 ** and can be safely ignored.
1883 */
1884 rc = walLockShared(pWal, WAL_READ_LOCK(0));
daneb8cb3a2010-06-05 18:34:26 +00001885 sqlite3OsShmBarrier(pWal->pDbFd);
drh73b64e42010-05-30 19:55:15 +00001886 if( rc==SQLITE_OK ){
dan4280eb32010-06-12 12:02:35 +00001887 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
dan493cc592010-06-05 18:12:23 +00001888 /* It is not safe to allow the reader to continue here if frames
1889 ** may have been appended to the log before READ_LOCK(0) was obtained.
1890 ** When holding READ_LOCK(0), the reader ignores the entire log file,
1891 ** which implies that the database file contains a trustworthy
1892 ** snapshoT. Since holding READ_LOCK(0) prevents a checkpoint from
1893 ** happening, this is usually correct.
1894 **
1895 ** However, if frames have been appended to the log (or if the log
1896 ** is wrapped and written for that matter) before the READ_LOCK(0)
1897 ** is obtained, that is not necessarily true. A checkpointer may
1898 ** have started to backfill the appended frames but crashed before
1899 ** it finished. Leaving a corrupt image in the database file.
1900 */
drh73b64e42010-05-30 19:55:15 +00001901 walUnlockShared(pWal, WAL_READ_LOCK(0));
1902 return WAL_RETRY;
1903 }
1904 pWal->readLock = 0;
1905 return SQLITE_OK;
1906 }else if( rc!=SQLITE_BUSY ){
1907 return rc;
dan64d039e2010-04-13 19:27:31 +00001908 }
dan7c246102010-04-12 19:00:29 +00001909 }
danba515902010-04-30 09:32:06 +00001910
drh73b64e42010-05-30 19:55:15 +00001911 /* If we get this far, it means that the reader will want to use
1912 ** the WAL to get at content from recent commits. The job now is
1913 ** to select one of the aReadMark[] entries that is closest to
1914 ** but not exceeding pWal->hdr.mxFrame and lock that entry.
1915 */
1916 mxReadMark = 0;
1917 mxI = 0;
1918 for(i=1; i<WAL_NREADER; i++){
1919 u32 thisMark = pInfo->aReadMark[i];
drhdb7f6472010-06-09 14:45:12 +00001920 if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){
1921 assert( thisMark!=READMARK_NOT_USED );
drh73b64e42010-05-30 19:55:15 +00001922 mxReadMark = thisMark;
1923 mxI = i;
1924 }
1925 }
1926 if( mxI==0 ){
1927 /* If we get here, it means that all of the aReadMark[] entries between
1928 ** 1 and WAL_NREADER-1 are zero. Try to initialize aReadMark[1] to
1929 ** be mxFrame, then retry.
1930 */
1931 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), 1);
1932 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001933 pInfo->aReadMark[1] = pWal->hdr.mxFrame;
drh73b64e42010-05-30 19:55:15 +00001934 walUnlockExclusive(pWal, WAL_READ_LOCK(1), 1);
drh38933f22010-06-02 15:43:18 +00001935 rc = WAL_RETRY;
1936 }else if( rc==SQLITE_BUSY ){
1937 rc = WAL_RETRY;
drh73b64e42010-05-30 19:55:15 +00001938 }
drh38933f22010-06-02 15:43:18 +00001939 return rc;
drh73b64e42010-05-30 19:55:15 +00001940 }else{
1941 if( mxReadMark < pWal->hdr.mxFrame ){
dand54ff602010-05-31 11:16:30 +00001942 for(i=1; i<WAL_NREADER; i++){
drh73b64e42010-05-30 19:55:15 +00001943 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
1944 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001945 mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame;
drh73b64e42010-05-30 19:55:15 +00001946 mxI = i;
1947 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1948 break;
drh38933f22010-06-02 15:43:18 +00001949 }else if( rc!=SQLITE_BUSY ){
1950 return rc;
drh73b64e42010-05-30 19:55:15 +00001951 }
1952 }
1953 }
1954
1955 rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
1956 if( rc ){
1957 return rc==SQLITE_BUSY ? WAL_RETRY : rc;
1958 }
daneb8cb3a2010-06-05 18:34:26 +00001959 /* Now that the read-lock has been obtained, check that neither the
1960 ** value in the aReadMark[] array or the contents of the wal-index
1961 ** header have changed.
1962 **
1963 ** It is necessary to check that the wal-index header did not change
1964 ** between the time it was read and when the shared-lock was obtained
1965 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
1966 ** that the log file may have been wrapped by a writer, or that frames
1967 ** that occur later in the log than pWal->hdr.mxFrame may have been
1968 ** copied into the database by a checkpointer. If either of these things
1969 ** happened, then reading the database with the current value of
1970 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
1971 ** instead.
1972 **
dan640aac42010-06-05 19:18:59 +00001973 ** This does not guarantee that the copy of the wal-index header is up to
1974 ** date before proceeding. That would not be possible without somehow
1975 ** blocking writers. It only guarantees that a dangerous checkpoint or
daneb8cb3a2010-06-05 18:34:26 +00001976 ** log-wrap (either of which would require an exclusive lock on
1977 ** WAL_READ_LOCK(mxI)) has not occurred since the snapshot was valid.
1978 */
1979 sqlite3OsShmBarrier(pWal->pDbFd);
drh73b64e42010-05-30 19:55:15 +00001980 if( pInfo->aReadMark[mxI]!=mxReadMark
dan4280eb32010-06-12 12:02:35 +00001981 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
drh73b64e42010-05-30 19:55:15 +00001982 ){
1983 walUnlockShared(pWal, WAL_READ_LOCK(mxI));
1984 return WAL_RETRY;
1985 }else{
drhdb7f6472010-06-09 14:45:12 +00001986 assert( mxReadMark<=pWal->hdr.mxFrame );
shaneh5eba1f62010-07-02 17:05:03 +00001987 pWal->readLock = (i16)mxI;
drh73b64e42010-05-30 19:55:15 +00001988 }
1989 }
1990 return rc;
1991}
1992
1993/*
1994** Begin a read transaction on the database.
1995**
1996** This routine used to be called sqlite3OpenSnapshot() and with good reason:
1997** it takes a snapshot of the state of the WAL and wal-index for the current
1998** instant in time. The current thread will continue to use this snapshot.
1999** Other threads might append new content to the WAL and wal-index but
2000** that extra content is ignored by the current thread.
2001**
2002** If the database contents have changes since the previous read
2003** transaction, then *pChanged is set to 1 before returning. The
2004** Pager layer will use this to know that is cache is stale and
2005** needs to be flushed.
2006*/
2007int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
2008 int rc; /* Return code */
drhaab4c022010-06-02 14:45:51 +00002009 int cnt = 0; /* Number of TryBeginRead attempts */
drh73b64e42010-05-30 19:55:15 +00002010
2011 do{
drhaab4c022010-06-02 14:45:51 +00002012 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
drh73b64e42010-05-30 19:55:15 +00002013 }while( rc==WAL_RETRY );
dan7c246102010-04-12 19:00:29 +00002014 return rc;
2015}
2016
2017/*
drh73b64e42010-05-30 19:55:15 +00002018** Finish with a read transaction. All this does is release the
2019** read-lock.
dan7c246102010-04-12 19:00:29 +00002020*/
drh73b64e42010-05-30 19:55:15 +00002021void sqlite3WalEndReadTransaction(Wal *pWal){
2022 if( pWal->readLock>=0 ){
2023 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2024 pWal->readLock = -1;
2025 }
dan7c246102010-04-12 19:00:29 +00002026}
2027
dan5e0ce872010-04-28 17:48:44 +00002028/*
drh73b64e42010-05-30 19:55:15 +00002029** Read a page from the WAL, if it is present in the WAL and if the
2030** current read transaction is configured to use the WAL.
2031**
2032** The *pInWal is set to 1 if the requested page is in the WAL and
2033** has been loaded. Or *pInWal is set to 0 if the page was not in
2034** the WAL and needs to be read out of the database.
dan7c246102010-04-12 19:00:29 +00002035*/
danb6e099a2010-05-04 14:47:39 +00002036int sqlite3WalRead(
danbb23aff2010-05-10 14:46:09 +00002037 Wal *pWal, /* WAL handle */
2038 Pgno pgno, /* Database page number to read data for */
2039 int *pInWal, /* OUT: True if data is read from WAL */
2040 int nOut, /* Size of buffer pOut in bytes */
2041 u8 *pOut /* Buffer to write page data to */
danb6e099a2010-05-04 14:47:39 +00002042){
danbb23aff2010-05-10 14:46:09 +00002043 u32 iRead = 0; /* If !=0, WAL frame to return data from */
drh027a1282010-05-19 01:53:53 +00002044 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
danbb23aff2010-05-10 14:46:09 +00002045 int iHash; /* Used to loop through N hash tables */
dan7c246102010-04-12 19:00:29 +00002046
drhaab4c022010-06-02 14:45:51 +00002047 /* This routine is only be called from within a read transaction. */
2048 assert( pWal->readLock>=0 || pWal->lockError );
drh73b64e42010-05-30 19:55:15 +00002049
danbb23aff2010-05-10 14:46:09 +00002050 /* If the "last page" field of the wal-index header snapshot is 0, then
2051 ** no data will be read from the wal under any circumstances. Return early
drha927e942010-06-24 02:46:48 +00002052 ** in this case as an optimization. Likewise, if pWal->readLock==0,
2053 ** then the WAL is ignored by the reader so return early, as if the
2054 ** WAL were empty.
danbb23aff2010-05-10 14:46:09 +00002055 */
drh73b64e42010-05-30 19:55:15 +00002056 if( iLast==0 || pWal->readLock==0 ){
danbb23aff2010-05-10 14:46:09 +00002057 *pInWal = 0;
2058 return SQLITE_OK;
2059 }
2060
danbb23aff2010-05-10 14:46:09 +00002061 /* Search the hash table or tables for an entry matching page number
2062 ** pgno. Each iteration of the following for() loop searches one
2063 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
2064 **
drha927e942010-06-24 02:46:48 +00002065 ** This code might run concurrently to the code in walIndexAppend()
danbb23aff2010-05-10 14:46:09 +00002066 ** that adds entries to the wal-index (and possibly to this hash
drh6e810962010-05-19 17:49:50 +00002067 ** table). This means the value just read from the hash
danbb23aff2010-05-10 14:46:09 +00002068 ** slot (aHash[iKey]) may have been added before or after the
2069 ** current read transaction was opened. Values added after the
2070 ** read transaction was opened may have been written incorrectly -
2071 ** i.e. these slots may contain garbage data. However, we assume
2072 ** that any slots written before the current read transaction was
2073 ** opened remain unmodified.
2074 **
2075 ** For the reasons above, the if(...) condition featured in the inner
2076 ** loop of the following block is more stringent that would be required
2077 ** if we had exclusive access to the hash-table:
2078 **
2079 ** (aPgno[iFrame]==pgno):
2080 ** This condition filters out normal hash-table collisions.
2081 **
2082 ** (iFrame<=iLast):
2083 ** This condition filters out entries that were added to the hash
2084 ** table after the current read-transaction had started.
dan7c246102010-04-12 19:00:29 +00002085 */
dan13a3cb82010-06-11 19:04:21 +00002086 for(iHash=walFramePage(iLast); iHash>=0 && iRead==0; iHash--){
dan067f3162010-06-14 10:30:12 +00002087 volatile ht_slot *aHash; /* Pointer to hash table */
2088 volatile u32 *aPgno; /* Pointer to array of page numbers */
danbb23aff2010-05-10 14:46:09 +00002089 u32 iZero; /* Frame number corresponding to aPgno[0] */
2090 int iKey; /* Hash slot index */
drh519426a2010-07-09 03:19:07 +00002091 int nCollide; /* Number of hash collisions remaining */
2092 int rc; /* Error code */
danbb23aff2010-05-10 14:46:09 +00002093
dan4280eb32010-06-12 12:02:35 +00002094 rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
2095 if( rc!=SQLITE_OK ){
2096 return rc;
2097 }
drh519426a2010-07-09 03:19:07 +00002098 nCollide = HASHTABLE_NSLOT;
dan6f150142010-05-21 15:31:56 +00002099 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
danbb23aff2010-05-10 14:46:09 +00002100 u32 iFrame = aHash[iKey] + iZero;
dand60bf112010-06-14 11:18:50 +00002101 if( iFrame<=iLast && aPgno[aHash[iKey]]==pgno ){
dan493cc592010-06-05 18:12:23 +00002102 assert( iFrame>iRead );
danbb23aff2010-05-10 14:46:09 +00002103 iRead = iFrame;
2104 }
drh519426a2010-07-09 03:19:07 +00002105 if( (nCollide--)==0 ){
2106 return SQLITE_CORRUPT_BKPT;
2107 }
dan7c246102010-04-12 19:00:29 +00002108 }
2109 }
dan7c246102010-04-12 19:00:29 +00002110
danbb23aff2010-05-10 14:46:09 +00002111#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
2112 /* If expensive assert() statements are available, do a linear search
2113 ** of the wal-index file content. Make sure the results agree with the
2114 ** result obtained using the hash indexes above. */
2115 {
2116 u32 iRead2 = 0;
2117 u32 iTest;
2118 for(iTest=iLast; iTest>0; iTest--){
dan13a3cb82010-06-11 19:04:21 +00002119 if( walFramePgno(pWal, iTest)==pgno ){
danbb23aff2010-05-10 14:46:09 +00002120 iRead2 = iTest;
dan7c246102010-04-12 19:00:29 +00002121 break;
2122 }
dan7c246102010-04-12 19:00:29 +00002123 }
danbb23aff2010-05-10 14:46:09 +00002124 assert( iRead==iRead2 );
dan7c246102010-04-12 19:00:29 +00002125 }
danbb23aff2010-05-10 14:46:09 +00002126#endif
dancd11fb22010-04-26 10:40:52 +00002127
dan7c246102010-04-12 19:00:29 +00002128 /* If iRead is non-zero, then it is the log frame number that contains the
2129 ** required page. Read and return data from the log file.
2130 */
2131 if( iRead ){
drh6e810962010-05-19 17:49:50 +00002132 i64 iOffset = walFrameOffset(iRead, pWal->hdr.szPage) + WAL_FRAME_HDRSIZE;
drh7ed91f22010-04-29 22:34:07 +00002133 *pInWal = 1;
drh09b5dbc2010-07-07 14:35:58 +00002134 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
drhd9e5c4f2010-05-12 18:01:39 +00002135 return sqlite3OsRead(pWal->pWalFd, pOut, nOut, iOffset);
dan7c246102010-04-12 19:00:29 +00002136 }
2137
drh7ed91f22010-04-29 22:34:07 +00002138 *pInWal = 0;
dan7c246102010-04-12 19:00:29 +00002139 return SQLITE_OK;
2140}
2141
2142
2143/*
2144** Set *pPgno to the size of the database file (or zero, if unknown).
2145*/
drh7ed91f22010-04-29 22:34:07 +00002146void sqlite3WalDbsize(Wal *pWal, Pgno *pPgno){
drhaab4c022010-06-02 14:45:51 +00002147 assert( pWal->readLock>=0 || pWal->lockError );
drh7ed91f22010-04-29 22:34:07 +00002148 *pPgno = pWal->hdr.nPage;
dan7c246102010-04-12 19:00:29 +00002149}
2150
dan30c86292010-04-30 16:24:46 +00002151
drh73b64e42010-05-30 19:55:15 +00002152/*
2153** This function starts a write transaction on the WAL.
2154**
2155** A read transaction must have already been started by a prior call
2156** to sqlite3WalBeginReadTransaction().
2157**
2158** If another thread or process has written into the database since
2159** the read transaction was started, then it is not possible for this
2160** thread to write as doing so would cause a fork. So this routine
2161** returns SQLITE_BUSY in that case and no write transaction is started.
2162**
2163** There can only be a single writer active at a time.
2164*/
2165int sqlite3WalBeginWriteTransaction(Wal *pWal){
2166 int rc;
drh73b64e42010-05-30 19:55:15 +00002167
2168 /* Cannot start a write transaction without first holding a read
2169 ** transaction. */
2170 assert( pWal->readLock>=0 );
2171
2172 /* Only one writer allowed at a time. Get the write lock. Return
2173 ** SQLITE_BUSY if unable.
2174 */
2175 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
2176 if( rc ){
2177 return rc;
2178 }
drhc99597c2010-05-31 01:41:15 +00002179 pWal->writeLock = 1;
drh73b64e42010-05-30 19:55:15 +00002180
2181 /* If another connection has written to the database file since the
2182 ** time the read transaction on this connection was started, then
2183 ** the write is disallowed.
2184 */
dan4280eb32010-06-12 12:02:35 +00002185 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
drh73b64e42010-05-30 19:55:15 +00002186 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhc99597c2010-05-31 01:41:15 +00002187 pWal->writeLock = 0;
dan9971e712010-06-01 15:44:57 +00002188 rc = SQLITE_BUSY;
drh73b64e42010-05-30 19:55:15 +00002189 }
2190
drh7ed91f22010-04-29 22:34:07 +00002191 return rc;
dan7c246102010-04-12 19:00:29 +00002192}
2193
dan74d6cd82010-04-24 18:44:05 +00002194/*
drh73b64e42010-05-30 19:55:15 +00002195** End a write transaction. The commit has already been done. This
2196** routine merely releases the lock.
2197*/
2198int sqlite3WalEndWriteTransaction(Wal *pWal){
danda9fe0c2010-07-13 18:44:03 +00002199 if( pWal->writeLock ){
2200 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2201 pWal->writeLock = 0;
2202 }
drh73b64e42010-05-30 19:55:15 +00002203 return SQLITE_OK;
2204}
2205
2206/*
dan74d6cd82010-04-24 18:44:05 +00002207** If any data has been written (but not committed) to the log file, this
2208** function moves the write-pointer back to the start of the transaction.
2209**
2210** Additionally, the callback function is invoked for each frame written
drh73b64e42010-05-30 19:55:15 +00002211** to the WAL since the start of the transaction. If the callback returns
dan74d6cd82010-04-24 18:44:05 +00002212** other than SQLITE_OK, it is not invoked again and the error code is
2213** returned to the caller.
2214**
2215** Otherwise, if the callback function does not return an error, this
2216** function returns SQLITE_OK.
2217*/
drh7ed91f22010-04-29 22:34:07 +00002218int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
dan55437592010-05-11 12:19:26 +00002219 int rc = SQLITE_OK;
drh73b64e42010-05-30 19:55:15 +00002220 if( pWal->writeLock ){
drh027a1282010-05-19 01:53:53 +00002221 Pgno iMax = pWal->hdr.mxFrame;
dan55437592010-05-11 12:19:26 +00002222 Pgno iFrame;
2223
dan5d656852010-06-14 07:53:26 +00002224 /* Restore the clients cache of the wal-index header to the state it
2225 ** was in before the client began writing to the database.
2226 */
dan067f3162010-06-14 10:30:12 +00002227 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
dan5d656852010-06-14 07:53:26 +00002228
2229 for(iFrame=pWal->hdr.mxFrame+1;
2230 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
2231 iFrame++
2232 ){
2233 /* This call cannot fail. Unless the page for which the page number
2234 ** is passed as the second argument is (a) in the cache and
2235 ** (b) has an outstanding reference, then xUndo is either a no-op
2236 ** (if (a) is false) or simply expels the page from the cache (if (b)
2237 ** is false).
2238 **
2239 ** If the upper layer is doing a rollback, it is guaranteed that there
2240 ** are no outstanding references to any page other than page 1. And
2241 ** page 1 is never written to the log until the transaction is
2242 ** committed. As a result, the call to xUndo may not fail.
2243 */
dan5d656852010-06-14 07:53:26 +00002244 assert( walFramePgno(pWal, iFrame)!=1 );
2245 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
dan6f150142010-05-21 15:31:56 +00002246 }
dan5d656852010-06-14 07:53:26 +00002247 walCleanupHash(pWal);
dan74d6cd82010-04-24 18:44:05 +00002248 }
dan5d656852010-06-14 07:53:26 +00002249 assert( rc==SQLITE_OK );
dan74d6cd82010-04-24 18:44:05 +00002250 return rc;
2251}
2252
dan71d89912010-05-24 13:57:42 +00002253/*
2254** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
2255** values. This function populates the array with values required to
2256** "rollback" the write position of the WAL handle back to the current
2257** point in the event of a savepoint rollback (via WalSavepointUndo()).
drh7ed91f22010-04-29 22:34:07 +00002258*/
dan71d89912010-05-24 13:57:42 +00002259void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
drh73b64e42010-05-30 19:55:15 +00002260 assert( pWal->writeLock );
dan71d89912010-05-24 13:57:42 +00002261 aWalData[0] = pWal->hdr.mxFrame;
2262 aWalData[1] = pWal->hdr.aFrameCksum[0];
2263 aWalData[2] = pWal->hdr.aFrameCksum[1];
dan6e6bd562010-06-02 18:59:03 +00002264 aWalData[3] = pWal->nCkpt;
dan4cd78b42010-04-26 16:57:10 +00002265}
2266
dan71d89912010-05-24 13:57:42 +00002267/*
2268** Move the write position of the WAL back to the point identified by
2269** the values in the aWalData[] array. aWalData must point to an array
2270** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
2271** by a call to WalSavepoint().
drh7ed91f22010-04-29 22:34:07 +00002272*/
dan71d89912010-05-24 13:57:42 +00002273int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
dan4cd78b42010-04-26 16:57:10 +00002274 int rc = SQLITE_OK;
dan4cd78b42010-04-26 16:57:10 +00002275
dan6e6bd562010-06-02 18:59:03 +00002276 assert( pWal->writeLock );
2277 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
2278
2279 if( aWalData[3]!=pWal->nCkpt ){
2280 /* This savepoint was opened immediately after the write-transaction
2281 ** was started. Right after that, the writer decided to wrap around
2282 ** to the start of the log. Update the savepoint values to match.
2283 */
2284 aWalData[0] = 0;
2285 aWalData[3] = pWal->nCkpt;
2286 }
2287
dan71d89912010-05-24 13:57:42 +00002288 if( aWalData[0]<pWal->hdr.mxFrame ){
dan71d89912010-05-24 13:57:42 +00002289 pWal->hdr.mxFrame = aWalData[0];
2290 pWal->hdr.aFrameCksum[0] = aWalData[1];
2291 pWal->hdr.aFrameCksum[1] = aWalData[2];
dan5d656852010-06-14 07:53:26 +00002292 walCleanupHash(pWal);
dan6f150142010-05-21 15:31:56 +00002293 }
dan6e6bd562010-06-02 18:59:03 +00002294
dan4cd78b42010-04-26 16:57:10 +00002295 return rc;
2296}
2297
dan9971e712010-06-01 15:44:57 +00002298/*
2299** This function is called just before writing a set of frames to the log
2300** file (see sqlite3WalFrames()). It checks to see if, instead of appending
2301** to the current log file, it is possible to overwrite the start of the
2302** existing log file with the new frames (i.e. "reset" the log). If so,
2303** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
2304** unchanged.
2305**
2306** SQLITE_OK is returned if no error is encountered (regardless of whether
2307** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
2308** if some error
2309*/
2310static int walRestartLog(Wal *pWal){
2311 int rc = SQLITE_OK;
drhaab4c022010-06-02 14:45:51 +00002312 int cnt;
2313
dan13a3cb82010-06-11 19:04:21 +00002314 if( pWal->readLock==0 ){
dan9971e712010-06-01 15:44:57 +00002315 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2316 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2317 if( pInfo->nBackfill>0 ){
2318 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2319 if( rc==SQLITE_OK ){
2320 /* If all readers are using WAL_READ_LOCK(0) (in other words if no
2321 ** readers are currently using the WAL), then the transactions
2322 ** frames will overwrite the start of the existing log. Update the
2323 ** wal-index header to reflect this.
2324 **
2325 ** In theory it would be Ok to update the cache of the header only
2326 ** at this point. But updating the actual wal-index header is also
2327 ** safe and means there is no special case for sqlite3WalUndo()
2328 ** to handle if this transaction is rolled back.
2329 */
dan199100e2010-06-09 16:58:49 +00002330 int i; /* Loop counter */
dan9971e712010-06-01 15:44:57 +00002331 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
2332 pWal->nCkpt++;
2333 pWal->hdr.mxFrame = 0;
2334 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
2335 sqlite3_randomness(4, &aSalt[1]);
2336 walIndexWriteHdr(pWal);
dan199100e2010-06-09 16:58:49 +00002337 pInfo->nBackfill = 0;
2338 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
2339 assert( pInfo->aReadMark[0]==0 );
dan9971e712010-06-01 15:44:57 +00002340 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2341 }
2342 }
2343 walUnlockShared(pWal, WAL_READ_LOCK(0));
2344 pWal->readLock = -1;
drhaab4c022010-06-02 14:45:51 +00002345 cnt = 0;
dan9971e712010-06-01 15:44:57 +00002346 do{
2347 int notUsed;
drhaab4c022010-06-02 14:45:51 +00002348 rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
dan9971e712010-06-01 15:44:57 +00002349 }while( rc==WAL_RETRY );
dan9971e712010-06-01 15:44:57 +00002350 }
2351 return rc;
2352}
2353
dan7c246102010-04-12 19:00:29 +00002354/*
dan4cd78b42010-04-26 16:57:10 +00002355** Write a set of frames to the log. The caller must hold the write-lock
dan9971e712010-06-01 15:44:57 +00002356** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
dan7c246102010-04-12 19:00:29 +00002357*/
drhc438efd2010-04-26 00:19:45 +00002358int sqlite3WalFrames(
drh7ed91f22010-04-29 22:34:07 +00002359 Wal *pWal, /* Wal handle to write to */
drh6e810962010-05-19 17:49:50 +00002360 int szPage, /* Database page-size in bytes */
dan7c246102010-04-12 19:00:29 +00002361 PgHdr *pList, /* List of dirty pages to write */
2362 Pgno nTruncate, /* Database size after this commit */
2363 int isCommit, /* True if this is a commit */
danc5118782010-04-17 17:34:41 +00002364 int sync_flags /* Flags to pass to OsSync() (or 0) */
dan7c246102010-04-12 19:00:29 +00002365){
dan7c246102010-04-12 19:00:29 +00002366 int rc; /* Used to catch return codes */
2367 u32 iFrame; /* Next frame address */
drh7ed91f22010-04-29 22:34:07 +00002368 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
dan7c246102010-04-12 19:00:29 +00002369 PgHdr *p; /* Iterator to run through pList with. */
drhe874d9e2010-05-07 20:02:23 +00002370 PgHdr *pLast = 0; /* Last frame in list */
dan7c246102010-04-12 19:00:29 +00002371 int nLast = 0; /* Number of extra copies of last page */
2372
dan7c246102010-04-12 19:00:29 +00002373 assert( pList );
drh73b64e42010-05-30 19:55:15 +00002374 assert( pWal->writeLock );
dan7c246102010-04-12 19:00:29 +00002375
drhc74c3332010-05-31 12:15:19 +00002376#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
2377 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
2378 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
2379 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
2380 }
2381#endif
2382
dan9971e712010-06-01 15:44:57 +00002383 /* See if it is possible to write these frames into the start of the
2384 ** log file, instead of appending to it at pWal->hdr.mxFrame.
2385 */
2386 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
dan9971e712010-06-01 15:44:57 +00002387 return rc;
2388 }
dan9971e712010-06-01 15:44:57 +00002389
drha2a42012010-05-18 18:01:08 +00002390 /* If this is the first frame written into the log, write the WAL
2391 ** header to the start of the WAL file. See comments at the top of
2392 ** this source file for a description of the WAL header format.
dan97a31352010-04-16 13:59:31 +00002393 */
drh027a1282010-05-19 01:53:53 +00002394 iFrame = pWal->hdr.mxFrame;
dan97a31352010-04-16 13:59:31 +00002395 if( iFrame==0 ){
dan10f5a502010-06-23 15:55:43 +00002396 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */
2397 u32 aCksum[2]; /* Checksum for wal-header */
2398
danb8fd6c22010-05-24 10:39:36 +00002399 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
dan10f5a502010-06-23 15:55:43 +00002400 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
drh23ea97b2010-05-20 16:45:58 +00002401 sqlite3Put4byte(&aWalHdr[8], szPage);
2402 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
drh2327f5a2010-07-07 21:06:48 +00002403 sqlite3_randomness(8, pWal->hdr.aSalt);
drh7e263722010-05-20 21:21:09 +00002404 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
dan10f5a502010-06-23 15:55:43 +00002405 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
2406 sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
2407 sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
2408
shaneh5eba1f62010-07-02 17:05:03 +00002409 pWal->szPage = (u16)szPage;
dan10f5a502010-06-23 15:55:43 +00002410 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
2411 pWal->hdr.aFrameCksum[0] = aCksum[0];
2412 pWal->hdr.aFrameCksum[1] = aCksum[1];
2413
drh23ea97b2010-05-20 16:45:58 +00002414 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
drhc74c3332010-05-31 12:15:19 +00002415 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
dan97a31352010-04-16 13:59:31 +00002416 if( rc!=SQLITE_OK ){
2417 return rc;
2418 }
2419 }
drh7e263722010-05-20 21:21:09 +00002420 assert( pWal->szPage==szPage );
dan97a31352010-04-16 13:59:31 +00002421
dan9971e712010-06-01 15:44:57 +00002422 /* Write the log file. */
dan7c246102010-04-12 19:00:29 +00002423 for(p=pList; p; p=p->pDirty){
2424 u32 nDbsize; /* Db-size field for frame header */
2425 i64 iOffset; /* Write offset in log file */
dan47ee3862010-06-22 15:18:44 +00002426 void *pData;
2427
drh6e810962010-05-19 17:49:50 +00002428 iOffset = walFrameOffset(++iFrame, szPage);
drhe9187b42010-07-07 14:39:59 +00002429 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
dan7c246102010-04-12 19:00:29 +00002430
2431 /* Populate and write the frame header */
2432 nDbsize = (isCommit && p->pDirty==0) ? nTruncate : 0;
drha7152112010-06-22 21:15:49 +00002433#if defined(SQLITE_HAS_CODEC)
dan47ee3862010-06-22 15:18:44 +00002434 if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM;
drha7152112010-06-22 21:15:49 +00002435#else
2436 pData = p->pData;
2437#endif
dan47ee3862010-06-22 15:18:44 +00002438 walEncodeFrame(pWal, p->pgno, nDbsize, pData, aFrame);
drhd9e5c4f2010-05-12 18:01:39 +00002439 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset);
dan7c246102010-04-12 19:00:29 +00002440 if( rc!=SQLITE_OK ){
2441 return rc;
2442 }
2443
2444 /* Write the page data */
dan47ee3862010-06-22 15:18:44 +00002445 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOffset+sizeof(aFrame));
dan7c246102010-04-12 19:00:29 +00002446 if( rc!=SQLITE_OK ){
2447 return rc;
2448 }
2449 pLast = p;
2450 }
2451
2452 /* Sync the log file if the 'isSync' flag was specified. */
danc5118782010-04-17 17:34:41 +00002453 if( sync_flags ){
drhd9e5c4f2010-05-12 18:01:39 +00002454 i64 iSegment = sqlite3OsSectorSize(pWal->pWalFd);
drh6e810962010-05-19 17:49:50 +00002455 i64 iOffset = walFrameOffset(iFrame+1, szPage);
dan67032392010-04-17 15:42:43 +00002456
2457 assert( isCommit );
drh69c46962010-05-17 20:16:50 +00002458 assert( iSegment>0 );
dan7c246102010-04-12 19:00:29 +00002459
dan7c246102010-04-12 19:00:29 +00002460 iSegment = (((iOffset+iSegment-1)/iSegment) * iSegment);
2461 while( iOffset<iSegment ){
dan47ee3862010-06-22 15:18:44 +00002462 void *pData;
drha7152112010-06-22 21:15:49 +00002463#if defined(SQLITE_HAS_CODEC)
dan47ee3862010-06-22 15:18:44 +00002464 if( (pData = sqlite3PagerCodec(pLast))==0 ) return SQLITE_NOMEM;
drha7152112010-06-22 21:15:49 +00002465#else
2466 pData = pLast->pData;
2467#endif
dan47ee3862010-06-22 15:18:44 +00002468 walEncodeFrame(pWal, pLast->pgno, nTruncate, pData, aFrame);
drhe9187b42010-07-07 14:39:59 +00002469 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
drhd9e5c4f2010-05-12 18:01:39 +00002470 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset);
dan7c246102010-04-12 19:00:29 +00002471 if( rc!=SQLITE_OK ){
2472 return rc;
2473 }
drh7ed91f22010-04-29 22:34:07 +00002474 iOffset += WAL_FRAME_HDRSIZE;
dan47ee3862010-06-22 15:18:44 +00002475 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOffset);
dan7c246102010-04-12 19:00:29 +00002476 if( rc!=SQLITE_OK ){
2477 return rc;
2478 }
2479 nLast++;
drh6e810962010-05-19 17:49:50 +00002480 iOffset += szPage;
dan7c246102010-04-12 19:00:29 +00002481 }
dan7c246102010-04-12 19:00:29 +00002482
drhd9e5c4f2010-05-12 18:01:39 +00002483 rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
dan7c246102010-04-12 19:00:29 +00002484 }
2485
drhe730fec2010-05-18 12:56:50 +00002486 /* Append data to the wal-index. It is not necessary to lock the
drha2a42012010-05-18 18:01:08 +00002487 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
dan7c246102010-04-12 19:00:29 +00002488 ** guarantees that there are no other writers, and no data that may
2489 ** be in use by existing readers is being overwritten.
2490 */
drh027a1282010-05-19 01:53:53 +00002491 iFrame = pWal->hdr.mxFrame;
danc7991bd2010-05-05 19:04:59 +00002492 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
dan7c246102010-04-12 19:00:29 +00002493 iFrame++;
danc7991bd2010-05-05 19:04:59 +00002494 rc = walIndexAppend(pWal, iFrame, p->pgno);
dan7c246102010-04-12 19:00:29 +00002495 }
danc7991bd2010-05-05 19:04:59 +00002496 while( nLast>0 && rc==SQLITE_OK ){
dan7c246102010-04-12 19:00:29 +00002497 iFrame++;
2498 nLast--;
danc7991bd2010-05-05 19:04:59 +00002499 rc = walIndexAppend(pWal, iFrame, pLast->pgno);
dan7c246102010-04-12 19:00:29 +00002500 }
2501
danc7991bd2010-05-05 19:04:59 +00002502 if( rc==SQLITE_OK ){
2503 /* Update the private copy of the header. */
shaneh5eba1f62010-07-02 17:05:03 +00002504 pWal->hdr.szPage = (u16)szPage;
drh027a1282010-05-19 01:53:53 +00002505 pWal->hdr.mxFrame = iFrame;
danc7991bd2010-05-05 19:04:59 +00002506 if( isCommit ){
2507 pWal->hdr.iChange++;
2508 pWal->hdr.nPage = nTruncate;
2509 }
danc7991bd2010-05-05 19:04:59 +00002510 /* If this is a commit, update the wal-index header too. */
2511 if( isCommit ){
drh7e263722010-05-20 21:21:09 +00002512 walIndexWriteHdr(pWal);
danc7991bd2010-05-05 19:04:59 +00002513 pWal->iCallback = iFrame;
2514 }
dan7c246102010-04-12 19:00:29 +00002515 }
danc7991bd2010-05-05 19:04:59 +00002516
drhc74c3332010-05-31 12:15:19 +00002517 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
dan8d22a172010-04-19 18:03:51 +00002518 return rc;
dan7c246102010-04-12 19:00:29 +00002519}
2520
2521/*
drh73b64e42010-05-30 19:55:15 +00002522** This routine is called to implement sqlite3_wal_checkpoint() and
2523** related interfaces.
danb9bf16b2010-04-14 11:23:30 +00002524**
drh73b64e42010-05-30 19:55:15 +00002525** Obtain a CHECKPOINT lock and then backfill as much information as
2526** we can from WAL into the database.
dan7c246102010-04-12 19:00:29 +00002527*/
drhc438efd2010-04-26 00:19:45 +00002528int sqlite3WalCheckpoint(
drh7ed91f22010-04-29 22:34:07 +00002529 Wal *pWal, /* Wal connection */
danc5118782010-04-17 17:34:41 +00002530 int sync_flags, /* Flags to sync db file with (or 0) */
danb6e099a2010-05-04 14:47:39 +00002531 int nBuf, /* Size of temporary buffer */
drh73b64e42010-05-30 19:55:15 +00002532 u8 *zBuf /* Temporary buffer to use */
dan7c246102010-04-12 19:00:29 +00002533){
danb9bf16b2010-04-14 11:23:30 +00002534 int rc; /* Return code */
dan31c03902010-04-29 14:51:33 +00002535 int isChanged = 0; /* True if a new wal-index header is loaded */
dan7c246102010-04-12 19:00:29 +00002536
dand54ff602010-05-31 11:16:30 +00002537 assert( pWal->ckptLock==0 );
dan39c79f52010-04-15 10:58:51 +00002538
drhc74c3332010-05-31 12:15:19 +00002539 WALTRACE(("WAL%p: checkpoint begins\n", pWal));
drh73b64e42010-05-30 19:55:15 +00002540 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2541 if( rc ){
2542 /* Usually this is SQLITE_BUSY meaning that another thread or process
2543 ** is already running a checkpoint, or maybe a recovery. But it might
2544 ** also be SQLITE_IOERR. */
danb9bf16b2010-04-14 11:23:30 +00002545 return rc;
2546 }
dand54ff602010-05-31 11:16:30 +00002547 pWal->ckptLock = 1;
dan64d039e2010-04-13 19:27:31 +00002548
danb9bf16b2010-04-14 11:23:30 +00002549 /* Copy data from the log to the database file. */
drh7ed91f22010-04-29 22:34:07 +00002550 rc = walIndexReadHdr(pWal, &isChanged);
danb9bf16b2010-04-14 11:23:30 +00002551 if( rc==SQLITE_OK ){
drhd9e5c4f2010-05-12 18:01:39 +00002552 rc = walCheckpoint(pWal, sync_flags, nBuf, zBuf);
danb9bf16b2010-04-14 11:23:30 +00002553 }
dan31c03902010-04-29 14:51:33 +00002554 if( isChanged ){
2555 /* If a new wal-index header was loaded before the checkpoint was
drha2a42012010-05-18 18:01:08 +00002556 ** performed, then the pager-cache associated with pWal is now
dan31c03902010-04-29 14:51:33 +00002557 ** out of date. So zero the cached wal-index header to ensure that
2558 ** next time the pager opens a snapshot on this database it knows that
2559 ** the cache needs to be reset.
2560 */
drh7ed91f22010-04-29 22:34:07 +00002561 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan31c03902010-04-29 14:51:33 +00002562 }
danb9bf16b2010-04-14 11:23:30 +00002563
2564 /* Release the locks. */
drh73b64e42010-05-30 19:55:15 +00002565 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
dand54ff602010-05-31 11:16:30 +00002566 pWal->ckptLock = 0;
drhc74c3332010-05-31 12:15:19 +00002567 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
dan64d039e2010-04-13 19:27:31 +00002568 return rc;
dan7c246102010-04-12 19:00:29 +00002569}
2570
drh7ed91f22010-04-29 22:34:07 +00002571/* Return the value to pass to a sqlite3_wal_hook callback, the
2572** number of frames in the WAL at the point of the last commit since
2573** sqlite3WalCallback() was called. If no commits have occurred since
2574** the last call, then return 0.
2575*/
2576int sqlite3WalCallback(Wal *pWal){
dan8d22a172010-04-19 18:03:51 +00002577 u32 ret = 0;
drh7ed91f22010-04-29 22:34:07 +00002578 if( pWal ){
2579 ret = pWal->iCallback;
2580 pWal->iCallback = 0;
dan8d22a172010-04-19 18:03:51 +00002581 }
2582 return (int)ret;
2583}
dan55437592010-05-11 12:19:26 +00002584
2585/*
drh61e4ace2010-05-31 20:28:37 +00002586** This function is called to change the WAL subsystem into or out
2587** of locking_mode=EXCLUSIVE.
dan55437592010-05-11 12:19:26 +00002588**
drh61e4ace2010-05-31 20:28:37 +00002589** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
2590** into locking_mode=NORMAL. This means that we must acquire a lock
2591** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
2592** or if the acquisition of the lock fails, then return 0. If the
2593** transition out of exclusive-mode is successful, return 1. This
2594** operation must occur while the pager is still holding the exclusive
2595** lock on the main database file.
dan55437592010-05-11 12:19:26 +00002596**
drh61e4ace2010-05-31 20:28:37 +00002597** If op is one, then change from locking_mode=NORMAL into
2598** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
2599** be released. Return 1 if the transition is made and 0 if the
2600** WAL is already in exclusive-locking mode - meaning that this
2601** routine is a no-op. The pager must already hold the exclusive lock
2602** on the main database file before invoking this operation.
2603**
2604** If op is negative, then do a dry-run of the op==1 case but do
2605** not actually change anything. The pager uses this to see if it
2606** should acquire the database exclusive lock prior to invoking
2607** the op==1 case.
dan55437592010-05-11 12:19:26 +00002608*/
2609int sqlite3WalExclusiveMode(Wal *pWal, int op){
drh61e4ace2010-05-31 20:28:37 +00002610 int rc;
drhaab4c022010-06-02 14:45:51 +00002611 assert( pWal->writeLock==0 );
dan3cac5dc2010-06-04 18:37:59 +00002612
2613 /* pWal->readLock is usually set, but might be -1 if there was a
2614 ** prior error while attempting to acquire are read-lock. This cannot
2615 ** happen if the connection is actually in exclusive mode (as no xShmLock
2616 ** locks are taken in this case). Nor should the pager attempt to
2617 ** upgrade to exclusive-mode following such an error.
2618 */
drhaab4c022010-06-02 14:45:51 +00002619 assert( pWal->readLock>=0 || pWal->lockError );
dan3cac5dc2010-06-04 18:37:59 +00002620 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
2621
drh61e4ace2010-05-31 20:28:37 +00002622 if( op==0 ){
2623 if( pWal->exclusiveMode ){
2624 pWal->exclusiveMode = 0;
dan3cac5dc2010-06-04 18:37:59 +00002625 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
drh61e4ace2010-05-31 20:28:37 +00002626 pWal->exclusiveMode = 1;
2627 }
2628 rc = pWal->exclusiveMode==0;
2629 }else{
drhaab4c022010-06-02 14:45:51 +00002630 /* Already in locking_mode=NORMAL */
drh61e4ace2010-05-31 20:28:37 +00002631 rc = 0;
2632 }
2633 }else if( op>0 ){
2634 assert( pWal->exclusiveMode==0 );
drhaab4c022010-06-02 14:45:51 +00002635 assert( pWal->readLock>=0 );
drh61e4ace2010-05-31 20:28:37 +00002636 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2637 pWal->exclusiveMode = 1;
2638 rc = 1;
2639 }else{
2640 rc = pWal->exclusiveMode==0;
dan55437592010-05-11 12:19:26 +00002641 }
drh61e4ace2010-05-31 20:28:37 +00002642 return rc;
dan55437592010-05-11 12:19:26 +00002643}
2644
dan5cf53532010-05-01 16:40:20 +00002645#endif /* #ifndef SQLITE_OMIT_WAL */