drh | f5e7bb5 | 2008-02-18 14:47:33 +0000 | [diff] [blame] | 1 | /* |
| 2 | ** 2008 February 16 |
| 3 | ** |
| 4 | ** The author disclaims copyright to this source code. In place of |
| 5 | ** a legal notice, here is a blessing: |
| 6 | ** |
| 7 | ** May you do good and not evil. |
| 8 | ** May you find forgiveness for yourself and forgive others. |
| 9 | ** May you share freely, never taking more than you give. |
| 10 | ** |
| 11 | ************************************************************************* |
| 12 | ** This file implements an object that represents a fixed-length |
| 13 | ** bitmap. Bits are numbered starting with 1. |
| 14 | ** |
| 15 | ** A bitmap is used to record what pages a database file have been |
| 16 | ** journalled during a transaction. Usually only a few pages are |
| 17 | ** journalled. So the bitmap is usually sparse and has low cardinality. |
| 18 | ** But sometimes (for example when during a DROP of a large table) most |
| 19 | ** or all of the pages get journalled. In those cases, the bitmap becomes |
| 20 | ** dense. The algorithm needs to handle both cases well. |
| 21 | ** |
| 22 | ** The size of the bitmap is fixed when the object is created. |
| 23 | ** |
| 24 | ** All bits are clear when the bitmap is created. Individual bits |
| 25 | ** may be set or cleared one at a time. |
| 26 | ** |
| 27 | ** Test operations are about 100 times more common that set operations. |
| 28 | ** Clear operations are exceedingly rare. There are usually between |
| 29 | ** 5 and 500 set operations per Bitvec object, though the number of sets can |
| 30 | ** sometimes grow into tens of thousands or larger. The size of the |
| 31 | ** Bitvec object is the number of pages in the database file at the |
| 32 | ** start of a transaction, and is thus usually less than a few thousand, |
| 33 | ** but can be as large as 2 billion for a really big database. |
| 34 | ** |
| 35 | ** @(#) $Id: bitvec.c,v 1.1 2008/02/18 14:47:34 drh Exp $ |
| 36 | */ |
| 37 | #include "sqliteInt.h" |
| 38 | |
| 39 | #define BITVEC_SZ 512 |
| 40 | #define BITVEC_NCHAR (BITVEC_SZ-12) |
| 41 | #define BITVEC_NBIT (BITVEC_NCHAR*8) |
| 42 | #define BITVEC_NINT ((BITVEC_SZ-12)/4) |
| 43 | #define BITVEC_MXHASH (BITVEC_NINT/2) |
| 44 | #define BITVEC_NPTR ((BITVEC_SZ-12)/8) |
| 45 | |
| 46 | #define BITVEC_HASH(X) (((X)*37)%BITVEC_NINT) |
| 47 | |
| 48 | /* |
| 49 | ** A bitmap is an instance of the following structure. |
| 50 | ** |
| 51 | ** This bitmap records the existance of zero or more bits |
| 52 | ** with values between 1 and iSize, inclusive. |
| 53 | ** |
| 54 | ** There are three possible representations of the bitmap. |
| 55 | ** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight |
| 56 | ** bitmap. The least significant bit is bit 1. |
| 57 | ** |
| 58 | ** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is |
| 59 | ** a hash table that will hold up to BITVEC_MXHASH distinct values. |
| 60 | ** |
| 61 | ** Otherwise, the value i is redirected into one of BITVEC_NPTR |
| 62 | ** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap |
| 63 | ** handles up to iDivisor separate values of i. apSub[0] holds |
| 64 | ** values between 1 and iDivisor. apSub[1] holds values between |
| 65 | ** iDivisor+1 and 2*iDivisor. apSub[N] holds values between |
| 66 | ** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized |
| 67 | ** to hold deal with values between 1 and iDivisor. |
| 68 | */ |
| 69 | struct Bitvec { |
| 70 | u32 iSize; /* Maximum bit index */ |
| 71 | u32 nSet; /* Number of bits that are set */ |
| 72 | u32 iDivisor; /* Number of bits handled by each apSub[] entry */ |
| 73 | union { |
| 74 | u8 aBitmap[BITVEC_NCHAR]; /* Bitmap representation */ |
| 75 | u32 aHash[BITVEC_NINT]; /* Hash table representation */ |
| 76 | Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */ |
| 77 | } u; |
| 78 | }; |
| 79 | |
| 80 | /* |
| 81 | ** Create a new bitmap object able to handle bits between 0 and iSize, |
| 82 | ** inclusive. Return a pointer to the new object. Return NULL if |
| 83 | ** malloc fails. |
| 84 | */ |
| 85 | Bitvec *sqlite3BitvecCreate(u32 iSize){ |
| 86 | Bitvec *p; |
| 87 | assert( sizeof(*p)==BITVEC_SZ ); |
| 88 | p = sqlite3MallocZero( sizeof(*p) ); |
| 89 | if( p ){ |
| 90 | p->iSize = iSize; |
| 91 | } |
| 92 | return p; |
| 93 | } |
| 94 | |
| 95 | /* |
| 96 | ** Check to see if the i-th bit is set. Return true or false. |
| 97 | ** If p is NULL (if the bitmap has not been created) or if |
| 98 | ** i is out of range, then return false. |
| 99 | */ |
| 100 | int sqlite3BitvecTest(Bitvec *p, u32 i){ |
| 101 | assert( i>0 ); |
| 102 | if( p==0 ) return 0; |
| 103 | if( i>p->iSize ) return 0; |
| 104 | if( p->iSize<=BITVEC_NBIT ){ |
| 105 | i--; |
| 106 | return (p->u.aBitmap[i/8] & (1<<(i&7)))!=0; |
| 107 | } |
| 108 | if( p->iDivisor>0 ){ |
| 109 | u32 bin = (i-1)/p->iDivisor; |
| 110 | i = (i-1)%p->iDivisor + 1; |
| 111 | return sqlite3BitvecTest(p->u.apSub[bin], i); |
| 112 | }else{ |
| 113 | u32 h = BITVEC_HASH(i); |
| 114 | while( p->u.aHash[h] ){ |
| 115 | if( p->u.aHash[h]==i ) return 1; |
| 116 | h++; |
| 117 | if( h>=BITVEC_NINT ) h = 0; |
| 118 | } |
| 119 | return 0; |
| 120 | } |
| 121 | } |
| 122 | |
| 123 | /* |
| 124 | ** Set the i-th bit. Return 0 on success and an error code if |
| 125 | ** anything goes wrong. |
| 126 | */ |
| 127 | int sqlite3BitvecSet(Bitvec *p, u32 i){ |
| 128 | u32 h; |
| 129 | assert( p!=0 ); |
| 130 | if( p->iSize<=BITVEC_NBIT ){ |
| 131 | i--; |
| 132 | p->u.aBitmap[i/8] |= 1 << (i&7); |
| 133 | return SQLITE_OK; |
| 134 | } |
| 135 | if( p->iDivisor ){ |
| 136 | u32 bin = (i-1)/p->iDivisor; |
| 137 | i = (i-1)%p->iDivisor + 1; |
| 138 | if( p->u.apSub[bin]==0 ){ |
| 139 | sqlite3FaultBenign(SQLITE_FAULTINJECTOR_MALLOC, 1); |
| 140 | p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor ); |
| 141 | sqlite3FaultBenign(SQLITE_FAULTINJECTOR_MALLOC, 0); |
| 142 | if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM; |
| 143 | } |
| 144 | return sqlite3BitvecSet(p->u.apSub[bin], i); |
| 145 | } |
| 146 | h = BITVEC_HASH(i); |
| 147 | while( p->u.aHash[h] ){ |
| 148 | if( p->u.aHash[h]==i ) return SQLITE_OK; |
| 149 | h++; |
| 150 | if( h==BITVEC_NINT ) h = 0; |
| 151 | } |
| 152 | p->nSet++; |
| 153 | if( p->nSet>=BITVEC_MXHASH ){ |
| 154 | int j, rc; |
| 155 | u32 aiValues[BITVEC_NINT]; |
| 156 | memcpy(aiValues, p->u.aHash, sizeof(aiValues)); |
| 157 | memset(p->u.apSub, 0, sizeof(p->u.apSub[0])*BITVEC_NPTR); |
| 158 | p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR; |
| 159 | sqlite3BitvecSet(p, i); |
| 160 | for(rc=j=0; j<BITVEC_NINT; j++){ |
| 161 | if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]); |
| 162 | } |
| 163 | return rc; |
| 164 | } |
| 165 | p->u.aHash[h] = i; |
| 166 | return SQLITE_OK; |
| 167 | } |
| 168 | |
| 169 | /* |
| 170 | ** Clear the i-th bit. Return 0 on success and an error code if |
| 171 | ** anything goes wrong. |
| 172 | */ |
| 173 | void sqlite3BitvecClear(Bitvec *p, u32 i){ |
| 174 | assert( p!=0 ); |
| 175 | if( p->iSize<=BITVEC_NBIT ){ |
| 176 | i--; |
| 177 | p->u.aBitmap[i/8] &= ~(1 << (i&7)); |
| 178 | }else if( p->iDivisor ){ |
| 179 | u32 bin = (i-1)/p->iDivisor; |
| 180 | i = (i-1)%p->iDivisor + 1; |
| 181 | if( p->u.apSub[bin] ){ |
| 182 | sqlite3BitvecClear(p->u.apSub[bin], i); |
| 183 | } |
| 184 | }else{ |
| 185 | int j; |
| 186 | u32 aiValues[BITVEC_NINT]; |
| 187 | memcpy(aiValues, p->u.aHash, sizeof(aiValues)); |
| 188 | memset(p->u.aHash, 0, sizeof(p->u.aHash[0])*BITVEC_NINT); |
| 189 | p->nSet = 0; |
| 190 | for(j=0; j<BITVEC_NINT; j++){ |
| 191 | if( aiValues[j] && aiValues[j]!=i ) sqlite3BitvecSet(p, aiValues[j]); |
| 192 | } |
| 193 | } |
| 194 | } |
| 195 | |
| 196 | /* |
| 197 | ** Destroy a bitmap object. Reclaim all memory used. |
| 198 | */ |
| 199 | void sqlite3BitvecDestroy(Bitvec *p){ |
| 200 | if( p==0 ) return; |
| 201 | if( p->iDivisor ){ |
| 202 | int i; |
| 203 | for(i=0; i<BITVEC_NPTR; i++){ |
| 204 | sqlite3BitvecDestroy(p->u.apSub[i]); |
| 205 | } |
| 206 | } |
| 207 | sqlite3_free(p); |
| 208 | } |