blob: e4be0abf626565c064cc5021fc3d515aefa93146 [file] [log] [blame]
dan7c246102010-04-12 19:00:29 +00001/*
drh7ed91f22010-04-29 22:34:07 +00002** 2010 February 1
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12**
drh027a1282010-05-19 01:53:53 +000013** This file contains the implementation of a write-ahead log (WAL) used in
14** "journal_mode=WAL" mode.
drh29d4dbe2010-05-18 23:29:52 +000015**
drh7ed91f22010-04-29 22:34:07 +000016** WRITE-AHEAD LOG (WAL) FILE FORMAT
dan97a31352010-04-16 13:59:31 +000017**
drh7e263722010-05-20 21:21:09 +000018** A WAL file consists of a header followed by zero or more "frames".
drh027a1282010-05-19 01:53:53 +000019** Each frame records the revised content of a single page from the
drh29d4dbe2010-05-18 23:29:52 +000020** database file. All changes to the database are recorded by writing
21** frames into the WAL. Transactions commit when a frame is written that
22** contains a commit marker. A single WAL can and usually does record
23** multiple transactions. Periodically, the content of the WAL is
24** transferred back into the database file in an operation called a
25** "checkpoint".
26**
27** A single WAL file can be used multiple times. In other words, the
drh027a1282010-05-19 01:53:53 +000028** WAL can fill up with frames and then be checkpointed and then new
drh29d4dbe2010-05-18 23:29:52 +000029** frames can overwrite the old ones. A WAL always grows from beginning
30** toward the end. Checksums and counters attached to each frame are
31** used to determine which frames within the WAL are valid and which
32** are leftovers from prior checkpoints.
33**
drh23ea97b2010-05-20 16:45:58 +000034** The WAL header is 24 bytes in size and consists of the following six
dan97a31352010-04-16 13:59:31 +000035** big-endian 32-bit unsigned integer values:
36**
drh1b78eaf2010-05-25 13:40:03 +000037** 0: Magic number. 0x377f0682 or 0x377f0683
drh23ea97b2010-05-20 16:45:58 +000038** 4: File format version. Currently 3007000
39** 8: Database page size. Example: 1024
40** 12: Checkpoint sequence number
drh7e263722010-05-20 21:21:09 +000041** 16: Salt-1, random integer incremented with each checkpoint
42** 20: Salt-2, a different random integer changing with each ckpt
dan97a31352010-04-16 13:59:31 +000043**
drh23ea97b2010-05-20 16:45:58 +000044** Immediately following the wal-header are zero or more frames. Each
45** frame consists of a 24-byte frame-header followed by a <page-size> bytes
46** of page data. The frame-header is broken into 6 big-endian 32-bit unsigned
dan97a31352010-04-16 13:59:31 +000047** integer values, as follows:
48**
dan3de777f2010-04-17 12:31:37 +000049** 0: Page number.
50** 4: For commit records, the size of the database image in pages
dan97a31352010-04-16 13:59:31 +000051** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +000052** 8: Salt-1 (copied from the header)
53** 12: Salt-2 (copied from the header)
drh23ea97b2010-05-20 16:45:58 +000054** 16: Checksum-1.
55** 20: Checksum-2.
drh29d4dbe2010-05-18 23:29:52 +000056**
drh7e263722010-05-20 21:21:09 +000057** A frame is considered valid if and only if the following conditions are
58** true:
59**
60** (1) The salt-1 and salt-2 values in the frame-header match
61** salt values in the wal-header
62**
63** (2) The checksum values in the final 8 bytes of the frame-header
drh1b78eaf2010-05-25 13:40:03 +000064** exactly match the checksum computed consecutively on the
65** WAL header and the first 8 bytes and the content of all frames
66** up to and including the current frame.
67**
68** The checksum is computed using 32-bit big-endian integers if the
69** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
70** is computed using little-endian if the magic number is 0x377f0682.
drh51b21b12010-05-25 15:53:31 +000071** The checksum values are always stored in the frame header in a
72** big-endian format regardless of which byte order is used to compute
73** the checksum. The checksum is computed by interpreting the input as
74** an even number of unsigned 32-bit integers: x[0] through x[N]. The
75**
76** for i from 0 to n-1 step 2:
77** s0 += x[i] + s1;
78** s1 += x[i+1] + s0;
79** endfor
drh7e263722010-05-20 21:21:09 +000080**
81** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
82** WAL is transferred into the database, then the database is VFS.xSync-ed.
83** The VFS.xSync operations server as write barriers - all writes launched
84** before the xSync must complete before any write that launches after the
85** xSync begins.
86**
87** After each checkpoint, the salt-1 value is incremented and the salt-2
88** value is randomized. This prevents old and new frames in the WAL from
89** being considered valid at the same time and being checkpointing together
90** following a crash.
91**
drh29d4dbe2010-05-18 23:29:52 +000092** READER ALGORITHM
93**
94** To read a page from the database (call it page number P), a reader
95** first checks the WAL to see if it contains page P. If so, then the
drh73b64e42010-05-30 19:55:15 +000096** last valid instance of page P that is a followed by a commit frame
97** or is a commit frame itself becomes the value read. If the WAL
98** contains no copies of page P that are valid and which are a commit
99** frame or are followed by a commit frame, then page P is read from
100** the database file.
drh29d4dbe2010-05-18 23:29:52 +0000101**
drh73b64e42010-05-30 19:55:15 +0000102** To start a read transaction, the reader records the index of the last
103** valid frame in the WAL. The reader uses this recorded "mxFrame" value
104** for all subsequent read operations. New transactions can be appended
105** to the WAL, but as long as the reader uses its original mxFrame value
106** and ignores the newly appended content, it will see a consistent snapshot
107** of the database from a single point in time. This technique allows
108** multiple concurrent readers to view different versions of the database
109** content simultaneously.
110**
111** The reader algorithm in the previous paragraphs works correctly, but
drh29d4dbe2010-05-18 23:29:52 +0000112** because frames for page P can appear anywhere within the WAL, the
drh027a1282010-05-19 01:53:53 +0000113** reader has to scan the entire WAL looking for page P frames. If the
drh29d4dbe2010-05-18 23:29:52 +0000114** WAL is large (multiple megabytes is typical) that scan can be slow,
drh027a1282010-05-19 01:53:53 +0000115** and read performance suffers. To overcome this problem, a separate
116** data structure called the wal-index is maintained to expedite the
drh29d4dbe2010-05-18 23:29:52 +0000117** search for frames of a particular page.
118**
119** WAL-INDEX FORMAT
120**
121** Conceptually, the wal-index is shared memory, though VFS implementations
122** might choose to implement the wal-index using a mmapped file. Because
123** the wal-index is shared memory, SQLite does not support journal_mode=WAL
124** on a network filesystem. All users of the database must be able to
125** share memory.
126**
127** The wal-index is transient. After a crash, the wal-index can (and should
128** be) reconstructed from the original WAL file. In fact, the VFS is required
129** to either truncate or zero the header of the wal-index when the last
130** connection to it closes. Because the wal-index is transient, it can
131** use an architecture-specific format; it does not have to be cross-platform.
132** Hence, unlike the database and WAL file formats which store all values
133** as big endian, the wal-index can store multi-byte values in the native
134** byte order of the host computer.
135**
136** The purpose of the wal-index is to answer this question quickly: Given
137** a page number P, return the index of the last frame for page P in the WAL,
138** or return NULL if there are no frames for page P in the WAL.
139**
140** The wal-index consists of a header region, followed by an one or
141** more index blocks.
142**
drh027a1282010-05-19 01:53:53 +0000143** The wal-index header contains the total number of frames within the WAL
144** in the the mxFrame field. Each index block contains information on
145** HASHTABLE_NPAGE frames. Each index block contains two sections, a
146** mapping which is a database page number for each frame, and a hash
147** table used to look up frames by page number. The mapping section is
148** an array of HASHTABLE_NPAGE 32-bit page numbers. The first entry on the
149** array is the page number for the first frame; the second entry is the
150** page number for the second frame; and so forth. The last index block
151** holds a total of (mxFrame%HASHTABLE_NPAGE) page numbers. All index
152** blocks other than the last are completely full with HASHTABLE_NPAGE
153** page numbers. All index blocks are the same size; the mapping section
154** of the last index block merely contains unused entries if mxFrame is
155** not an even multiple of HASHTABLE_NPAGE.
156**
157** Even without using the hash table, the last frame for page P
158** can be found by scanning the mapping sections of each index block
159** starting with the last index block and moving toward the first, and
160** within each index block, starting at the end and moving toward the
161** beginning. The first entry that equals P corresponds to the frame
162** holding the content for that page.
163**
164** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
165** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
166** hash table for each page number in the mapping section, so the hash
167** table is never more than half full. The expected number of collisions
168** prior to finding a match is 1. Each entry of the hash table is an
169** 1-based index of an entry in the mapping section of the same
170** index block. Let K be the 1-based index of the largest entry in
171** the mapping section. (For index blocks other than the last, K will
172** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
173** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
drh73b64e42010-05-30 19:55:15 +0000174** contain a value of 0.
drh027a1282010-05-19 01:53:53 +0000175**
176** To look for page P in the hash table, first compute a hash iKey on
177** P as follows:
178**
179** iKey = (P * 383) % HASHTABLE_NSLOT
180**
181** Then start scanning entries of the hash table, starting with iKey
182** (wrapping around to the beginning when the end of the hash table is
183** reached) until an unused hash slot is found. Let the first unused slot
184** be at index iUnused. (iUnused might be less than iKey if there was
185** wrap-around.) Because the hash table is never more than half full,
186** the search is guaranteed to eventually hit an unused entry. Let
187** iMax be the value between iKey and iUnused, closest to iUnused,
188** where aHash[iMax]==P. If there is no iMax entry (if there exists
189** no hash slot such that aHash[i]==p) then page P is not in the
190** current index block. Otherwise the iMax-th mapping entry of the
191** current index block corresponds to the last entry that references
192** page P.
193**
194** A hash search begins with the last index block and moves toward the
195** first index block, looking for entries corresponding to page P. On
196** average, only two or three slots in each index block need to be
197** examined in order to either find the last entry for page P, or to
198** establish that no such entry exists in the block. Each index block
199** holds over 4000 entries. So two or three index blocks are sufficient
200** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
201** comparisons (on average) suffice to either locate a frame in the
202** WAL or to establish that the frame does not exist in the WAL. This
203** is much faster than scanning the entire 10MB WAL.
204**
205** Note that entries are added in order of increasing K. Hence, one
206** reader might be using some value K0 and a second reader that started
207** at a later time (after additional transactions were added to the WAL
208** and to the wal-index) might be using a different value K1, where K1>K0.
209** Both readers can use the same hash table and mapping section to get
210** the correct result. There may be entries in the hash table with
211** K>K0 but to the first reader, those entries will appear to be unused
212** slots in the hash table and so the first reader will get an answer as
213** if no values greater than K0 had ever been inserted into the hash table
214** in the first place - which is what reader one wants. Meanwhile, the
215** second reader using K1 will see additional values that were inserted
216** later, which is exactly what reader two wants.
217**
dan6f150142010-05-21 15:31:56 +0000218** When a rollback occurs, the value of K is decreased. Hash table entries
219** that correspond to frames greater than the new K value are removed
220** from the hash table at this point.
dan97a31352010-04-16 13:59:31 +0000221*/
drh29d4dbe2010-05-18 23:29:52 +0000222#ifndef SQLITE_OMIT_WAL
dan97a31352010-04-16 13:59:31 +0000223
drh29d4dbe2010-05-18 23:29:52 +0000224#include "wal.h"
225
drh73b64e42010-05-30 19:55:15 +0000226/*
drhc74c3332010-05-31 12:15:19 +0000227** Trace output macros
228*/
drhc74c3332010-05-31 12:15:19 +0000229#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
drh15d68092010-05-31 16:56:14 +0000230int sqlite3WalTrace = 0;
drhc74c3332010-05-31 12:15:19 +0000231# define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
232#else
233# define WALTRACE(X)
234#endif
235
236
237/*
drh73b64e42010-05-30 19:55:15 +0000238** Indices of various locking bytes. WAL_NREADER is the number
239** of available reader locks and should be at least 3.
240*/
241#define WAL_WRITE_LOCK 0
242#define WAL_ALL_BUT_WRITE 1
243#define WAL_CKPT_LOCK 1
244#define WAL_RECOVER_LOCK 2
245#define WAL_READ_LOCK(I) (3+(I))
246#define WAL_NREADER (SQLITE_SHM_NLOCK-3)
247
dan97a31352010-04-16 13:59:31 +0000248
drh7ed91f22010-04-29 22:34:07 +0000249/* Object declarations */
250typedef struct WalIndexHdr WalIndexHdr;
251typedef struct WalIterator WalIterator;
drh73b64e42010-05-30 19:55:15 +0000252typedef struct WalCkptInfo WalCkptInfo;
dan7c246102010-04-12 19:00:29 +0000253
254
255/*
drh286a2882010-05-20 23:51:06 +0000256** The following object holds a copy of the wal-index header content.
257**
258** The actual header in the wal-index consists of two copies of this
259** object.
dan7c246102010-04-12 19:00:29 +0000260*/
drh7ed91f22010-04-29 22:34:07 +0000261struct WalIndexHdr {
dan71d89912010-05-24 13:57:42 +0000262 u32 iChange; /* Counter incremented each transaction */
drh4b82c382010-05-31 18:24:19 +0000263 u8 isInit; /* 1 when initialized */
264 u8 bigEndCksum; /* True if checksums in WAL are big-endian */
dan71d89912010-05-24 13:57:42 +0000265 u16 szPage; /* Database page size in bytes */
dand0aa3422010-05-31 16:41:53 +0000266 u32 mxFrame; /* Index of last valid frame in the WAL */
dan71d89912010-05-24 13:57:42 +0000267 u32 nPage; /* Size of database in pages */
268 u32 aFrameCksum[2]; /* Checksum of last frame in log */
269 u32 aSalt[2]; /* Two salt values copied from WAL header */
270 u32 aCksum[2]; /* Checksum over all prior fields */
dan7c246102010-04-12 19:00:29 +0000271};
272
drh73b64e42010-05-30 19:55:15 +0000273/*
274** A copy of the following object occurs in the wal-index immediately
275** following the second copy of the WalIndexHdr. This object stores
276** information used by checkpoint.
277**
278** nBackfill is the number of frames in the WAL that have been written
279** back into the database. (We call the act of moving content from WAL to
280** database "backfilling".) The nBackfill number is never greater than
281** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
282** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
283** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
284** mxFrame back to zero when the WAL is reset.
285**
286** There is one entry in aReadMark[] for each reader lock. If a reader
287** holds read-lock K, then the value in aReadMark[K] is no greater than
drhdb7f6472010-06-09 14:45:12 +0000288** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
289** for any aReadMark[] means that entry is unused. aReadMark[0] is
290** a special case; its value is never used and it exists as a place-holder
291** to avoid having to offset aReadMark[] indexs by one. Readers holding
292** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
293** directly from the database.
drh73b64e42010-05-30 19:55:15 +0000294**
295** The value of aReadMark[K] may only be changed by a thread that
296** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
297** aReadMark[K] cannot changed while there is a reader is using that mark
298** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
299**
300** The checkpointer may only transfer frames from WAL to database where
301** the frame numbers are less than or equal to every aReadMark[] that is
302** in use (that is, every aReadMark[j] for which there is a corresponding
303** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
304** largest value and will increase an unused aReadMark[] to mxFrame if there
305** is not already an aReadMark[] equal to mxFrame. The exception to the
306** previous sentence is when nBackfill equals mxFrame (meaning that everything
307** in the WAL has been backfilled into the database) then new readers
308** will choose aReadMark[0] which has value 0 and hence such reader will
309** get all their all content directly from the database file and ignore
310** the WAL.
311**
312** Writers normally append new frames to the end of the WAL. However,
313** if nBackfill equals mxFrame (meaning that all WAL content has been
314** written back into the database) and if no readers are using the WAL
315** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
316** the writer will first "reset" the WAL back to the beginning and start
317** writing new content beginning at frame 1.
318**
319** We assume that 32-bit loads are atomic and so no locks are needed in
320** order to read from any aReadMark[] entries.
321*/
322struct WalCkptInfo {
323 u32 nBackfill; /* Number of WAL frames backfilled into DB */
324 u32 aReadMark[WAL_NREADER]; /* Reader marks */
325};
drhdb7f6472010-06-09 14:45:12 +0000326#define READMARK_NOT_USED 0xffffffff
drh73b64e42010-05-30 19:55:15 +0000327
328
drh7e263722010-05-20 21:21:09 +0000329/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
330** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
331** only support mandatory file-locks, we do not read or write data
332** from the region of the file on which locks are applied.
danff207012010-04-24 04:49:15 +0000333*/
drh73b64e42010-05-30 19:55:15 +0000334#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo))
335#define WALINDEX_LOCK_RESERVED 16
drh026ac282010-05-26 15:06:38 +0000336#define WALINDEX_HDR_SIZE (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)
dan7c246102010-04-12 19:00:29 +0000337
drh7ed91f22010-04-29 22:34:07 +0000338/* Size of header before each frame in wal */
drh23ea97b2010-05-20 16:45:58 +0000339#define WAL_FRAME_HDRSIZE 24
danff207012010-04-24 04:49:15 +0000340
drh7ed91f22010-04-29 22:34:07 +0000341/* Size of write ahead log header */
drh23ea97b2010-05-20 16:45:58 +0000342#define WAL_HDRSIZE 24
dan97a31352010-04-16 13:59:31 +0000343
danb8fd6c22010-05-24 10:39:36 +0000344/* WAL magic value. Either this value, or the same value with the least
345** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
346** big-endian format in the first 4 bytes of a WAL file.
347**
348** If the LSB is set, then the checksums for each frame within the WAL
349** file are calculated by treating all data as an array of 32-bit
350** big-endian words. Otherwise, they are calculated by interpreting
351** all data as 32-bit little-endian words.
352*/
353#define WAL_MAGIC 0x377f0682
354
dan97a31352010-04-16 13:59:31 +0000355/*
drh7ed91f22010-04-29 22:34:07 +0000356** Return the offset of frame iFrame in the write-ahead log file,
drh6e810962010-05-19 17:49:50 +0000357** assuming a database page size of szPage bytes. The offset returned
drh7ed91f22010-04-29 22:34:07 +0000358** is to the start of the write-ahead log frame-header.
dan97a31352010-04-16 13:59:31 +0000359*/
drh6e810962010-05-19 17:49:50 +0000360#define walFrameOffset(iFrame, szPage) ( \
361 WAL_HDRSIZE + ((iFrame)-1)*((szPage)+WAL_FRAME_HDRSIZE) \
dan97a31352010-04-16 13:59:31 +0000362)
dan7c246102010-04-12 19:00:29 +0000363
364/*
drh7ed91f22010-04-29 22:34:07 +0000365** An open write-ahead log file is represented by an instance of the
366** following object.
dance4f05f2010-04-22 19:14:13 +0000367*/
drh7ed91f22010-04-29 22:34:07 +0000368struct Wal {
drh73b64e42010-05-30 19:55:15 +0000369 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
drhd9e5c4f2010-05-12 18:01:39 +0000370 sqlite3_file *pDbFd; /* File handle for the database file */
371 sqlite3_file *pWalFd; /* File handle for WAL file */
drh7ed91f22010-04-29 22:34:07 +0000372 u32 iCallback; /* Value to pass to log callback (or 0) */
dan13a3cb82010-06-11 19:04:21 +0000373 int nWiData; /* Size of array apWiData */
374 volatile u32 **apWiData; /* Pointer to wal-index content in memory */
drh73b64e42010-05-30 19:55:15 +0000375 u16 szPage; /* Database page size */
376 i16 readLock; /* Which read lock is being held. -1 for none */
dan55437592010-05-11 12:19:26 +0000377 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
drh73b64e42010-05-30 19:55:15 +0000378 u8 isWIndexOpen; /* True if ShmOpen() called on pDbFd */
379 u8 writeLock; /* True if in a write transaction */
380 u8 ckptLock; /* True if holding a checkpoint lock */
381 WalIndexHdr hdr; /* Wal-index header for current transaction */
drhd9e5c4f2010-05-12 18:01:39 +0000382 char *zWalName; /* Name of WAL file */
drh7e263722010-05-20 21:21:09 +0000383 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
drhaab4c022010-06-02 14:45:51 +0000384#ifdef SQLITE_DEBUG
385 u8 lockError; /* True if a locking error has occurred */
386#endif
dan7c246102010-04-12 19:00:29 +0000387};
388
drh73b64e42010-05-30 19:55:15 +0000389/*
dan067f3162010-06-14 10:30:12 +0000390** Each page of the wal-index mapping contains a hash-table made up of
391** an array of HASHTABLE_NSLOT elements of the following type.
392*/
393typedef u16 ht_slot;
394
395/*
dan13a3cb82010-06-11 19:04:21 +0000396** Define the parameters of the hash tables in the wal-index file. There
397** is a hash-table following every HASHTABLE_NPAGE page numbers in the
398** wal-index.
399**
400** Changing any of these constants will alter the wal-index format and
401** create incompatibilities.
402*/
dan067f3162010-06-14 10:30:12 +0000403#define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000404#define HASHTABLE_HASH_1 383 /* Should be prime */
405#define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
dan13a3cb82010-06-11 19:04:21 +0000406
407/* The block of page numbers associated with the first hash-table in a
408** wal-index is smaller than usual. This is so that there is a complete
409** hash-table on each aligned 32KB page of the wal-index.
410*/
dan067f3162010-06-14 10:30:12 +0000411#define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
dan13a3cb82010-06-11 19:04:21 +0000412
dan067f3162010-06-14 10:30:12 +0000413/* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
414#define WALINDEX_PGSZ ( \
415 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
416)
dan13a3cb82010-06-11 19:04:21 +0000417
418/*
419** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
dan067f3162010-06-14 10:30:12 +0000420** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
dan13a3cb82010-06-11 19:04:21 +0000421** numbered from zero.
422**
423** If this call is successful, *ppPage is set to point to the wal-index
424** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
425** then an SQLite error code is returned and *ppPage is set to 0.
426*/
427static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
428 int rc = SQLITE_OK;
429
430 /* Enlarge the pWal->apWiData[] array if required */
431 if( pWal->nWiData<=iPage ){
432 int nByte = sizeof(u32 *)*(iPage+1);
433 volatile u32 **apNew;
434 apNew = (volatile u32 **)sqlite3_realloc(pWal->apWiData, nByte);
435 if( !apNew ){
436 *ppPage = 0;
437 return SQLITE_NOMEM;
438 }
439 memset(&apNew[pWal->nWiData], 0, sizeof(u32 *)*(iPage+1-pWal->nWiData));
440 pWal->apWiData = apNew;
441 pWal->nWiData = iPage+1;
442 }
443
444 /* Request a pointer to the required page from the VFS */
445 if( pWal->apWiData[iPage]==0 ){
dan067f3162010-06-14 10:30:12 +0000446 rc = sqlite3OsShmPage(pWal->pDbFd, iPage, WALINDEX_PGSZ,
dan13a3cb82010-06-11 19:04:21 +0000447 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
448 );
449 }
450
451 *ppPage = pWal->apWiData[iPage];
452 assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
453 return rc;
454}
455
456/*
drh73b64e42010-05-30 19:55:15 +0000457** Return a pointer to the WalCkptInfo structure in the wal-index.
458*/
459static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000460 assert( pWal->nWiData>0 && pWal->apWiData[0] );
461 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
462}
463
464/*
465** Return a pointer to the WalIndexHdr structure in the wal-index.
466*/
467static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
468 assert( pWal->nWiData>0 && pWal->apWiData[0] );
469 return (volatile WalIndexHdr*)pWal->apWiData[0];
drh73b64e42010-05-30 19:55:15 +0000470}
471
dan7c246102010-04-12 19:00:29 +0000472/*
drha2a42012010-05-18 18:01:08 +0000473** This structure is used to implement an iterator that loops through
474** all frames in the WAL in database page order. Where two or more frames
dan7c246102010-04-12 19:00:29 +0000475** correspond to the same database page, the iterator visits only the
drha2a42012010-05-18 18:01:08 +0000476** frame most recently written to the WAL (in other words, the frame with
477** the largest index).
dan7c246102010-04-12 19:00:29 +0000478**
479** The internals of this structure are only accessed by:
480**
drh7ed91f22010-04-29 22:34:07 +0000481** walIteratorInit() - Create a new iterator,
482** walIteratorNext() - Step an iterator,
483** walIteratorFree() - Free an iterator.
dan7c246102010-04-12 19:00:29 +0000484**
drh7ed91f22010-04-29 22:34:07 +0000485** This functionality is used by the checkpoint code (see walCheckpoint()).
dan7c246102010-04-12 19:00:29 +0000486*/
drh7ed91f22010-04-29 22:34:07 +0000487struct WalIterator {
dan067f3162010-06-14 10:30:12 +0000488 int iPrior; /* Last result returned from the iterator */
489 int nSegment; /* Size of the aSegment[] array */
drh7ed91f22010-04-29 22:34:07 +0000490 struct WalSegment {
dan13a3cb82010-06-11 19:04:21 +0000491 int iNext; /* Next slot in aIndex[] not yet returned */
dan067f3162010-06-14 10:30:12 +0000492 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
dan13a3cb82010-06-11 19:04:21 +0000493 u32 *aPgno; /* Array of page numbers. */
494 int nEntry; /* Max size of aPgno[] and aIndex[] arrays */
495 int iZero; /* Frame number associated with aPgno[0] */
dan067f3162010-06-14 10:30:12 +0000496 } aSegment[1]; /* One for every 32KB page in the WAL */
dan7c246102010-04-12 19:00:29 +0000497};
498
danb8fd6c22010-05-24 10:39:36 +0000499/*
500** The argument to this macro must be of type u32. On a little-endian
501** architecture, it returns the u32 value that results from interpreting
502** the 4 bytes as a big-endian value. On a big-endian architecture, it
503** returns the value that would be produced by intepreting the 4 bytes
504** of the input value as a little-endian integer.
505*/
506#define BYTESWAP32(x) ( \
507 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
508 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
509)
dan64d039e2010-04-13 19:27:31 +0000510
dan7c246102010-04-12 19:00:29 +0000511/*
drh7e263722010-05-20 21:21:09 +0000512** Generate or extend an 8 byte checksum based on the data in
513** array aByte[] and the initial values of aIn[0] and aIn[1] (or
514** initial values of 0 and 0 if aIn==NULL).
515**
516** The checksum is written back into aOut[] before returning.
517**
518** nByte must be a positive multiple of 8.
dan7c246102010-04-12 19:00:29 +0000519*/
drh7e263722010-05-20 21:21:09 +0000520static void walChecksumBytes(
danb8fd6c22010-05-24 10:39:36 +0000521 int nativeCksum, /* True for native byte-order, false for non-native */
drh7e263722010-05-20 21:21:09 +0000522 u8 *a, /* Content to be checksummed */
523 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
524 const u32 *aIn, /* Initial checksum value input */
525 u32 *aOut /* OUT: Final checksum value output */
526){
527 u32 s1, s2;
danb8fd6c22010-05-24 10:39:36 +0000528 u32 *aData = (u32 *)a;
529 u32 *aEnd = (u32 *)&a[nByte];
530
drh7e263722010-05-20 21:21:09 +0000531 if( aIn ){
532 s1 = aIn[0];
533 s2 = aIn[1];
534 }else{
535 s1 = s2 = 0;
536 }
dan7c246102010-04-12 19:00:29 +0000537
drh584c7542010-05-19 18:08:10 +0000538 assert( nByte>=8 );
danb8fd6c22010-05-24 10:39:36 +0000539 assert( (nByte&0x00000007)==0 );
dan7c246102010-04-12 19:00:29 +0000540
danb8fd6c22010-05-24 10:39:36 +0000541 if( nativeCksum ){
542 do {
543 s1 += *aData++ + s2;
544 s2 += *aData++ + s1;
545 }while( aData<aEnd );
546 }else{
547 do {
548 s1 += BYTESWAP32(aData[0]) + s2;
549 s2 += BYTESWAP32(aData[1]) + s1;
550 aData += 2;
551 }while( aData<aEnd );
552 }
553
drh7e263722010-05-20 21:21:09 +0000554 aOut[0] = s1;
555 aOut[1] = s2;
dan7c246102010-04-12 19:00:29 +0000556}
557
558/*
drh7e263722010-05-20 21:21:09 +0000559** Write the header information in pWal->hdr into the wal-index.
560**
561** The checksum on pWal->hdr is updated before it is written.
drh7ed91f22010-04-29 22:34:07 +0000562*/
drh7e263722010-05-20 21:21:09 +0000563static void walIndexWriteHdr(Wal *pWal){
dan4280eb32010-06-12 12:02:35 +0000564 volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
565 const int nCksum = offsetof(WalIndexHdr, aCksum);
drh73b64e42010-05-30 19:55:15 +0000566
567 assert( pWal->writeLock );
drh4b82c382010-05-31 18:24:19 +0000568 pWal->hdr.isInit = 1;
dan4280eb32010-06-12 12:02:35 +0000569 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
570 memcpy((void *)&aHdr[1], (void *)&pWal->hdr, sizeof(WalIndexHdr));
drh286a2882010-05-20 23:51:06 +0000571 sqlite3OsShmBarrier(pWal->pDbFd);
dan4280eb32010-06-12 12:02:35 +0000572 memcpy((void *)&aHdr[0], (void *)&pWal->hdr, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +0000573}
574
575/*
576** This function encodes a single frame header and writes it to a buffer
drh7ed91f22010-04-29 22:34:07 +0000577** supplied by the caller. A frame-header is made up of a series of
dan7c246102010-04-12 19:00:29 +0000578** 4-byte big-endian integers, as follows:
579**
drh23ea97b2010-05-20 16:45:58 +0000580** 0: Page number.
581** 4: For commit records, the size of the database image in pages
582** after the commit. For all other records, zero.
drh7e263722010-05-20 21:21:09 +0000583** 8: Salt-1 (copied from the wal-header)
584** 12: Salt-2 (copied from the wal-header)
drh23ea97b2010-05-20 16:45:58 +0000585** 16: Checksum-1.
586** 20: Checksum-2.
dan7c246102010-04-12 19:00:29 +0000587*/
drh7ed91f22010-04-29 22:34:07 +0000588static void walEncodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000589 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000590 u32 iPage, /* Database page number for frame */
591 u32 nTruncate, /* New db size (or 0 for non-commit frames) */
drh7e263722010-05-20 21:21:09 +0000592 u8 *aData, /* Pointer to page data */
dan7c246102010-04-12 19:00:29 +0000593 u8 *aFrame /* OUT: Write encoded frame here */
594){
danb8fd6c22010-05-24 10:39:36 +0000595 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000596 u32 *aCksum = pWal->hdr.aFrameCksum;
drh23ea97b2010-05-20 16:45:58 +0000597 assert( WAL_FRAME_HDRSIZE==24 );
dan97a31352010-04-16 13:59:31 +0000598 sqlite3Put4byte(&aFrame[0], iPage);
599 sqlite3Put4byte(&aFrame[4], nTruncate);
drh7e263722010-05-20 21:21:09 +0000600 memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
dan7c246102010-04-12 19:00:29 +0000601
danb8fd6c22010-05-24 10:39:36 +0000602 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000603 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000604 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
dan7c246102010-04-12 19:00:29 +0000605
drh23ea97b2010-05-20 16:45:58 +0000606 sqlite3Put4byte(&aFrame[16], aCksum[0]);
607 sqlite3Put4byte(&aFrame[20], aCksum[1]);
dan7c246102010-04-12 19:00:29 +0000608}
609
610/*
drh7e263722010-05-20 21:21:09 +0000611** Check to see if the frame with header in aFrame[] and content
612** in aData[] is valid. If it is a valid frame, fill *piPage and
613** *pnTruncate and return true. Return if the frame is not valid.
dan7c246102010-04-12 19:00:29 +0000614*/
drh7ed91f22010-04-29 22:34:07 +0000615static int walDecodeFrame(
drh23ea97b2010-05-20 16:45:58 +0000616 Wal *pWal, /* The write-ahead log */
dan7c246102010-04-12 19:00:29 +0000617 u32 *piPage, /* OUT: Database page number for frame */
618 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
dan7c246102010-04-12 19:00:29 +0000619 u8 *aData, /* Pointer to page data (for checksum) */
620 u8 *aFrame /* Frame data */
621){
danb8fd6c22010-05-24 10:39:36 +0000622 int nativeCksum; /* True for native byte-order checksums */
dan71d89912010-05-24 13:57:42 +0000623 u32 *aCksum = pWal->hdr.aFrameCksum;
drhc8179152010-05-24 13:28:36 +0000624 u32 pgno; /* Page number of the frame */
drh23ea97b2010-05-20 16:45:58 +0000625 assert( WAL_FRAME_HDRSIZE==24 );
626
drh7e263722010-05-20 21:21:09 +0000627 /* A frame is only valid if the salt values in the frame-header
628 ** match the salt values in the wal-header.
629 */
630 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
drh23ea97b2010-05-20 16:45:58 +0000631 return 0;
632 }
dan4a4b01d2010-04-16 11:30:18 +0000633
drhc8179152010-05-24 13:28:36 +0000634 /* A frame is only valid if the page number is creater than zero.
635 */
636 pgno = sqlite3Get4byte(&aFrame[0]);
637 if( pgno==0 ){
638 return 0;
639 }
640
drh7e263722010-05-20 21:21:09 +0000641 /* A frame is only valid if a checksum of the first 16 bytes
642 ** of the frame-header, and the frame-data matches
643 ** the checksum in the last 8 bytes of the frame-header.
644 */
danb8fd6c22010-05-24 10:39:36 +0000645 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
dan71d89912010-05-24 13:57:42 +0000646 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
danb8fd6c22010-05-24 10:39:36 +0000647 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
drh23ea97b2010-05-20 16:45:58 +0000648 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
649 || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
dan7c246102010-04-12 19:00:29 +0000650 ){
651 /* Checksum failed. */
652 return 0;
653 }
654
drh7e263722010-05-20 21:21:09 +0000655 /* If we reach this point, the frame is valid. Return the page number
656 ** and the new database size.
657 */
drhc8179152010-05-24 13:28:36 +0000658 *piPage = pgno;
dan97a31352010-04-16 13:59:31 +0000659 *pnTruncate = sqlite3Get4byte(&aFrame[4]);
dan7c246102010-04-12 19:00:29 +0000660 return 1;
661}
662
dan7c246102010-04-12 19:00:29 +0000663
drhc74c3332010-05-31 12:15:19 +0000664#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
665/*
drh181e0912010-06-01 01:08:08 +0000666** Names of locks. This routine is used to provide debugging output and is not
667** a part of an ordinary build.
drhc74c3332010-05-31 12:15:19 +0000668*/
669static const char *walLockName(int lockIdx){
670 if( lockIdx==WAL_WRITE_LOCK ){
671 return "WRITE-LOCK";
672 }else if( lockIdx==WAL_CKPT_LOCK ){
673 return "CKPT-LOCK";
674 }else if( lockIdx==WAL_RECOVER_LOCK ){
675 return "RECOVER-LOCK";
676 }else{
677 static char zName[15];
678 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
679 lockIdx-WAL_READ_LOCK(0));
680 return zName;
681 }
682}
683#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
684
685
dan7c246102010-04-12 19:00:29 +0000686/*
drh181e0912010-06-01 01:08:08 +0000687** Set or release locks on the WAL. Locks are either shared or exclusive.
688** A lock cannot be moved directly between shared and exclusive - it must go
689** through the unlocked state first.
drh73b64e42010-05-30 19:55:15 +0000690**
691** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
692*/
693static int walLockShared(Wal *pWal, int lockIdx){
drhc74c3332010-05-31 12:15:19 +0000694 int rc;
drh73b64e42010-05-30 19:55:15 +0000695 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000696 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
697 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
698 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
699 walLockName(lockIdx), rc ? "failed" : "ok"));
drhaab4c022010-06-02 14:45:51 +0000700 VVA_ONLY( pWal->lockError = (rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000701 return rc;
drh73b64e42010-05-30 19:55:15 +0000702}
703static void walUnlockShared(Wal *pWal, int lockIdx){
704 if( pWal->exclusiveMode ) return;
705 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
706 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
drhc74c3332010-05-31 12:15:19 +0000707 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
drh73b64e42010-05-30 19:55:15 +0000708}
709static int walLockExclusive(Wal *pWal, int lockIdx, int n){
drhc74c3332010-05-31 12:15:19 +0000710 int rc;
drh73b64e42010-05-30 19:55:15 +0000711 if( pWal->exclusiveMode ) return SQLITE_OK;
drhc74c3332010-05-31 12:15:19 +0000712 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
713 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
714 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
715 walLockName(lockIdx), n, rc ? "failed" : "ok"));
drhaab4c022010-06-02 14:45:51 +0000716 VVA_ONLY( pWal->lockError = (rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
drhc74c3332010-05-31 12:15:19 +0000717 return rc;
drh73b64e42010-05-30 19:55:15 +0000718}
719static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
720 if( pWal->exclusiveMode ) return;
721 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
722 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
drhc74c3332010-05-31 12:15:19 +0000723 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
724 walLockName(lockIdx), n));
drh73b64e42010-05-30 19:55:15 +0000725}
726
727/*
drh29d4dbe2010-05-18 23:29:52 +0000728** Compute a hash on a page number. The resulting hash value must land
drh181e0912010-06-01 01:08:08 +0000729** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
730** the hash to the next value in the event of a collision.
drh29d4dbe2010-05-18 23:29:52 +0000731*/
732static int walHash(u32 iPage){
733 assert( iPage>0 );
734 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
735 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
736}
737static int walNextHash(int iPriorHash){
738 return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
danbb23aff2010-05-10 14:46:09 +0000739}
740
dan4280eb32010-06-12 12:02:35 +0000741/*
742** Return pointers to the hash table and page number array stored on
743** page iHash of the wal-index. The wal-index is broken into 32KB pages
744** numbered starting from 0.
745**
746** Set output variable *paHash to point to the start of the hash table
747** in the wal-index file. Set *piZero to one less than the frame
748** number of the first frame indexed by this hash table. If a
749** slot in the hash table is set to N, it refers to frame number
750** (*piZero+N) in the log.
751**
752** Finally, set *paPgno such that for all frames F between (*piZero+1) and
753** (*piZero+HASHTABLE_NPAGE), (*paPgno)[F] is the database page number
754** associated with frame F.
755*/
756static int walHashGet(
dan13a3cb82010-06-11 19:04:21 +0000757 Wal *pWal, /* WAL handle */
758 int iHash, /* Find the iHash'th table */
dan067f3162010-06-14 10:30:12 +0000759 volatile ht_slot **paHash, /* OUT: Pointer to hash index */
dan13a3cb82010-06-11 19:04:21 +0000760 volatile u32 **paPgno, /* OUT: Pointer to page number array */
761 u32 *piZero /* OUT: Frame associated with *paPgno[0] */
762){
dan4280eb32010-06-12 12:02:35 +0000763 int rc; /* Return code */
dan13a3cb82010-06-11 19:04:21 +0000764 volatile u32 *aPgno;
dan13a3cb82010-06-11 19:04:21 +0000765
dan4280eb32010-06-12 12:02:35 +0000766 rc = walIndexPage(pWal, iHash, &aPgno);
767 assert( rc==SQLITE_OK || iHash>0 );
dan13a3cb82010-06-11 19:04:21 +0000768
dan4280eb32010-06-12 12:02:35 +0000769 if( rc==SQLITE_OK ){
770 u32 iZero;
dan067f3162010-06-14 10:30:12 +0000771 volatile ht_slot *aHash;
dan4280eb32010-06-12 12:02:35 +0000772
dan067f3162010-06-14 10:30:12 +0000773 aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
dan4280eb32010-06-12 12:02:35 +0000774 if( iHash==0 ){
775 aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)-1];
776 iZero = 0;
777 }else{
778 iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
779 aPgno = &aPgno[-1*iZero-1];
780 }
781
782 *paPgno = aPgno;
783 *paHash = aHash;
784 *piZero = iZero;
dan13a3cb82010-06-11 19:04:21 +0000785 }
dan4280eb32010-06-12 12:02:35 +0000786 return rc;
dan13a3cb82010-06-11 19:04:21 +0000787}
788
dan4280eb32010-06-12 12:02:35 +0000789/*
790** Return the number of the wal-index page that contains the hash-table
791** and page-number array that contain entries corresponding to WAL frame
792** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
793** are numbered starting from 0.
794*/
dan13a3cb82010-06-11 19:04:21 +0000795static int walFramePage(u32 iFrame){
796 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
797 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
798 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
799 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
800 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
801 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
802 );
803 return iHash;
804}
805
806/*
807** Return the page number associated with frame iFrame in this WAL.
808*/
809static u32 walFramePgno(Wal *pWal, u32 iFrame){
810 int iHash = walFramePage(iFrame);
811 if( iHash==0 ){
812 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
813 }
814 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
815}
danbb23aff2010-05-10 14:46:09 +0000816
danca6b5ba2010-05-25 10:50:56 +0000817/*
818** Remove entries from the hash table that point to WAL slots greater
819** than pWal->hdr.mxFrame.
820**
821** This function is called whenever pWal->hdr.mxFrame is decreased due
822** to a rollback or savepoint.
823**
drh181e0912010-06-01 01:08:08 +0000824** At most only the hash table containing pWal->hdr.mxFrame needs to be
825** updated. Any later hash tables will be automatically cleared when
826** pWal->hdr.mxFrame advances to the point where those hash tables are
827** actually needed.
danca6b5ba2010-05-25 10:50:56 +0000828*/
829static void walCleanupHash(Wal *pWal){
dan067f3162010-06-14 10:30:12 +0000830 volatile ht_slot *aHash; /* Pointer to hash table to clear */
831 volatile u32 *aPgno; /* Page number array for hash table */
832 u32 iZero; /* frame == (aHash[x]+iZero) */
833 int iLimit = 0; /* Zero values greater than this */
834 int nByte; /* Number of bytes to zero in aPgno[] */
835 int i; /* Used to iterate through aHash[] */
danca6b5ba2010-05-25 10:50:56 +0000836
drh73b64e42010-05-30 19:55:15 +0000837 assert( pWal->writeLock );
drh9c156472010-06-01 12:58:41 +0000838 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE-1 );
839 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE );
840 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE+1 );
drh9c156472010-06-01 12:58:41 +0000841
dan4280eb32010-06-12 12:02:35 +0000842 if( pWal->hdr.mxFrame==0 ) return;
843
844 /* Obtain pointers to the hash-table and page-number array containing
845 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
846 ** that the page said hash-table and array reside on is already mapped.
847 */
848 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
849 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
850 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
851
852 /* Zero all hash-table entries that correspond to frame numbers greater
853 ** than pWal->hdr.mxFrame.
854 */
855 iLimit = pWal->hdr.mxFrame - iZero;
856 assert( iLimit>0 );
857 for(i=0; i<HASHTABLE_NSLOT; i++){
858 if( aHash[i]>iLimit ){
859 aHash[i] = 0;
danca6b5ba2010-05-25 10:50:56 +0000860 }
danca6b5ba2010-05-25 10:50:56 +0000861 }
dan4280eb32010-06-12 12:02:35 +0000862
863 /* Zero the entries in the aPgno array that correspond to frames with
864 ** frame numbers greater than pWal->hdr.mxFrame.
865 */
866 nByte = ((char *)aHash - (char *)&aPgno[pWal->hdr.mxFrame+1]);
867 memset((void *)&aPgno[pWal->hdr.mxFrame+1], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +0000868
869#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
870 /* Verify that the every entry in the mapping region is still reachable
871 ** via the hash table even after the cleanup.
872 */
drhf77bbd92010-06-01 13:17:44 +0000873 if( iLimit ){
danca6b5ba2010-05-25 10:50:56 +0000874 int i; /* Loop counter */
875 int iKey; /* Hash key */
876 for(i=1; i<=iLimit; i++){
877 for(iKey=walHash(aPgno[i+iZero]); aHash[iKey]; iKey=walNextHash(iKey)){
878 if( aHash[iKey]==i ) break;
879 }
880 assert( aHash[iKey]==i );
881 }
882 }
883#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
884}
885
danbb23aff2010-05-10 14:46:09 +0000886
drh7ed91f22010-04-29 22:34:07 +0000887/*
drh29d4dbe2010-05-18 23:29:52 +0000888** Set an entry in the wal-index that will map database page number
889** pPage into WAL frame iFrame.
dan7c246102010-04-12 19:00:29 +0000890*/
drh7ed91f22010-04-29 22:34:07 +0000891static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
dan4280eb32010-06-12 12:02:35 +0000892 int rc; /* Return code */
893 u32 iZero; /* One less than frame number of aPgno[1] */
894 volatile u32 *aPgno; /* Page number array */
dan067f3162010-06-14 10:30:12 +0000895 volatile ht_slot *aHash; /* Hash table */
dance4f05f2010-04-22 19:14:13 +0000896
dan4280eb32010-06-12 12:02:35 +0000897 rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
898
899 /* Assuming the wal-index file was successfully mapped, populate the
900 ** page number array and hash table entry.
dan7c246102010-04-12 19:00:29 +0000901 */
danbb23aff2010-05-10 14:46:09 +0000902 if( rc==SQLITE_OK ){
903 int iKey; /* Hash table key */
dan4280eb32010-06-12 12:02:35 +0000904 int idx; /* Value to write to hash-table slot */
905 TESTONLY( int nCollide = 0; /* Number of hash collisions */ )
dan7c246102010-04-12 19:00:29 +0000906
danbb23aff2010-05-10 14:46:09 +0000907 idx = iFrame - iZero;
dan4280eb32010-06-12 12:02:35 +0000908 assert( idx <= HASHTABLE_NSLOT/2 + 1 );
909
910 /* If this is the first entry to be added to this hash-table, zero the
911 ** entire hash table and aPgno[] array before proceding.
912 */
danca6b5ba2010-05-25 10:50:56 +0000913 if( idx==1 ){
dan13a3cb82010-06-11 19:04:21 +0000914 int nByte = (u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1+iZero];
915 memset((void*)&aPgno[1+iZero], 0, nByte);
danca6b5ba2010-05-25 10:50:56 +0000916 }
danca6b5ba2010-05-25 10:50:56 +0000917
dan4280eb32010-06-12 12:02:35 +0000918 /* If the entry in aPgno[] is already set, then the previous writer
919 ** must have exited unexpectedly in the middle of a transaction (after
920 ** writing one or more dirty pages to the WAL to free up memory).
921 ** Remove the remnants of that writers uncommitted transaction from
922 ** the hash-table before writing any new entries.
923 */
danca6b5ba2010-05-25 10:50:56 +0000924 if( aPgno[iFrame] ){
danca6b5ba2010-05-25 10:50:56 +0000925 walCleanupHash(pWal);
926 assert( !aPgno[iFrame] );
927 }
dan4280eb32010-06-12 12:02:35 +0000928
929 /* Write the aPgno[] array entry and the hash-table slot. */
dan6f150142010-05-21 15:31:56 +0000930 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
drh29d4dbe2010-05-18 23:29:52 +0000931 assert( nCollide++ < idx );
932 }
dan4280eb32010-06-12 12:02:35 +0000933 aPgno[iFrame] = iPage;
danbb23aff2010-05-10 14:46:09 +0000934 aHash[iKey] = idx;
drh4fa95bf2010-05-22 00:55:39 +0000935
936#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
937 /* Verify that the number of entries in the hash table exactly equals
938 ** the number of entries in the mapping region.
939 */
940 {
941 int i; /* Loop counter */
942 int nEntry = 0; /* Number of entries in the hash table */
943 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
944 assert( nEntry==idx );
945 }
946
947 /* Verify that the every entry in the mapping region is reachable
948 ** via the hash table. This turns out to be a really, really expensive
949 ** thing to check, so only do this occasionally - not on every
950 ** iteration.
951 */
952 if( (idx&0x3ff)==0 ){
953 int i; /* Loop counter */
954 for(i=1; i<=idx; i++){
955 for(iKey=walHash(aPgno[i+iZero]); aHash[iKey]; iKey=walNextHash(iKey)){
956 if( aHash[iKey]==i ) break;
957 }
958 assert( aHash[iKey]==i );
959 }
960 }
961#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
dan7c246102010-04-12 19:00:29 +0000962 }
dan31f98fc2010-04-27 05:42:32 +0000963
drh4fa95bf2010-05-22 00:55:39 +0000964
danbb23aff2010-05-10 14:46:09 +0000965 return rc;
dan7c246102010-04-12 19:00:29 +0000966}
967
968
969/*
drh7ed91f22010-04-29 22:34:07 +0000970** Recover the wal-index by reading the write-ahead log file.
drh73b64e42010-05-30 19:55:15 +0000971**
972** This routine first tries to establish an exclusive lock on the
973** wal-index to prevent other threads/processes from doing anything
974** with the WAL or wal-index while recovery is running. The
975** WAL_RECOVER_LOCK is also held so that other threads will know
976** that this thread is running recovery. If unable to establish
977** the necessary locks, this routine returns SQLITE_BUSY.
dan7c246102010-04-12 19:00:29 +0000978*/
drh7ed91f22010-04-29 22:34:07 +0000979static int walIndexRecover(Wal *pWal){
dan7c246102010-04-12 19:00:29 +0000980 int rc; /* Return Code */
981 i64 nSize; /* Size of log file */
dan71d89912010-05-24 13:57:42 +0000982 u32 aFrameCksum[2] = {0, 0};
dand0aa3422010-05-31 16:41:53 +0000983 int iLock; /* Lock offset to lock for checkpoint */
984 int nLock; /* Number of locks to hold */
dan7c246102010-04-12 19:00:29 +0000985
dand0aa3422010-05-31 16:41:53 +0000986 /* Obtain an exclusive lock on all byte in the locking range not already
987 ** locked by the caller. The caller is guaranteed to have locked the
988 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
989 ** If successful, the same bytes that are locked here are unlocked before
990 ** this function returns.
991 */
992 assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
993 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
994 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
995 assert( pWal->writeLock );
996 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
997 nLock = SQLITE_SHM_NLOCK - iLock;
998 rc = walLockExclusive(pWal, iLock, nLock);
drh73b64e42010-05-30 19:55:15 +0000999 if( rc ){
1000 return rc;
1001 }
drhc74c3332010-05-31 12:15:19 +00001002 WALTRACE(("WAL%p: recovery begin...\n", pWal));
drh73b64e42010-05-30 19:55:15 +00001003
dan71d89912010-05-24 13:57:42 +00001004 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan7c246102010-04-12 19:00:29 +00001005
drhd9e5c4f2010-05-12 18:01:39 +00001006 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
dan7c246102010-04-12 19:00:29 +00001007 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001008 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001009 }
1010
danb8fd6c22010-05-24 10:39:36 +00001011 if( nSize>WAL_HDRSIZE ){
1012 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
dan7c246102010-04-12 19:00:29 +00001013 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
drh584c7542010-05-19 18:08:10 +00001014 int szFrame; /* Number of bytes in buffer aFrame[] */
dan7c246102010-04-12 19:00:29 +00001015 u8 *aData; /* Pointer to data part of aFrame buffer */
1016 int iFrame; /* Index of last frame read */
1017 i64 iOffset; /* Next offset to read from log file */
drh6e810962010-05-19 17:49:50 +00001018 int szPage; /* Page size according to the log */
danb8fd6c22010-05-24 10:39:36 +00001019 u32 magic; /* Magic value read from WAL header */
dan7c246102010-04-12 19:00:29 +00001020
danb8fd6c22010-05-24 10:39:36 +00001021 /* Read in the WAL header. */
drhd9e5c4f2010-05-12 18:01:39 +00001022 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
dan7c246102010-04-12 19:00:29 +00001023 if( rc!=SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001024 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001025 }
1026
1027 /* If the database page size is not a power of two, or is greater than
danb8fd6c22010-05-24 10:39:36 +00001028 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1029 ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1030 ** WAL file.
dan7c246102010-04-12 19:00:29 +00001031 */
danb8fd6c22010-05-24 10:39:36 +00001032 magic = sqlite3Get4byte(&aBuf[0]);
drh23ea97b2010-05-20 16:45:58 +00001033 szPage = sqlite3Get4byte(&aBuf[8]);
danb8fd6c22010-05-24 10:39:36 +00001034 if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1035 || szPage&(szPage-1)
1036 || szPage>SQLITE_MAX_PAGE_SIZE
1037 || szPage<512
1038 ){
dan7c246102010-04-12 19:00:29 +00001039 goto finished;
1040 }
dan71d89912010-05-24 13:57:42 +00001041 pWal->hdr.bigEndCksum = (magic&0x00000001);
drh7e263722010-05-20 21:21:09 +00001042 pWal->szPage = szPage;
drh23ea97b2010-05-20 16:45:58 +00001043 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
drh7e263722010-05-20 21:21:09 +00001044 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
dan71d89912010-05-24 13:57:42 +00001045 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
1046 aBuf, WAL_HDRSIZE, 0, pWal->hdr.aFrameCksum
1047 );
dan7c246102010-04-12 19:00:29 +00001048
1049 /* Malloc a buffer to read frames into. */
drh584c7542010-05-19 18:08:10 +00001050 szFrame = szPage + WAL_FRAME_HDRSIZE;
1051 aFrame = (u8 *)sqlite3_malloc(szFrame);
dan7c246102010-04-12 19:00:29 +00001052 if( !aFrame ){
drh73b64e42010-05-30 19:55:15 +00001053 rc = SQLITE_NOMEM;
1054 goto recovery_error;
dan7c246102010-04-12 19:00:29 +00001055 }
drh7ed91f22010-04-29 22:34:07 +00001056 aData = &aFrame[WAL_FRAME_HDRSIZE];
dan7c246102010-04-12 19:00:29 +00001057
1058 /* Read all frames from the log file. */
1059 iFrame = 0;
drh584c7542010-05-19 18:08:10 +00001060 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
dan7c246102010-04-12 19:00:29 +00001061 u32 pgno; /* Database page number for frame */
1062 u32 nTruncate; /* dbsize field from frame header */
1063 int isValid; /* True if this frame is valid */
1064
1065 /* Read and decode the next log frame. */
drh584c7542010-05-19 18:08:10 +00001066 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
dan7c246102010-04-12 19:00:29 +00001067 if( rc!=SQLITE_OK ) break;
drh7e263722010-05-20 21:21:09 +00001068 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
dan7c246102010-04-12 19:00:29 +00001069 if( !isValid ) break;
danc7991bd2010-05-05 19:04:59 +00001070 rc = walIndexAppend(pWal, ++iFrame, pgno);
1071 if( rc!=SQLITE_OK ) break;
dan7c246102010-04-12 19:00:29 +00001072
1073 /* If nTruncate is non-zero, this is a commit record. */
1074 if( nTruncate ){
dan71d89912010-05-24 13:57:42 +00001075 pWal->hdr.mxFrame = iFrame;
1076 pWal->hdr.nPage = nTruncate;
1077 pWal->hdr.szPage = szPage;
1078 aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1079 aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
dan7c246102010-04-12 19:00:29 +00001080 }
1081 }
1082
1083 sqlite3_free(aFrame);
dan7c246102010-04-12 19:00:29 +00001084 }
1085
1086finished:
dan576bc322010-05-06 18:04:50 +00001087 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001088 volatile WalCkptInfo *pInfo;
1089 int i;
dan71d89912010-05-24 13:57:42 +00001090 pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1091 pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
drh7e263722010-05-20 21:21:09 +00001092 walIndexWriteHdr(pWal);
dan3dee6da2010-05-31 16:17:54 +00001093
drhdb7f6472010-06-09 14:45:12 +00001094 /* Reset the checkpoint-header. This is safe because this thread is
dan3dee6da2010-05-31 16:17:54 +00001095 ** currently holding locks that exclude all other readers, writers and
1096 ** checkpointers.
1097 */
drhdb7f6472010-06-09 14:45:12 +00001098 pInfo = walCkptInfo(pWal);
1099 pInfo->nBackfill = 0;
1100 pInfo->aReadMark[0] = 0;
1101 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
dan576bc322010-05-06 18:04:50 +00001102 }
drh73b64e42010-05-30 19:55:15 +00001103
1104recovery_error:
drhc74c3332010-05-31 12:15:19 +00001105 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
dand0aa3422010-05-31 16:41:53 +00001106 walUnlockExclusive(pWal, iLock, nLock);
dan7c246102010-04-12 19:00:29 +00001107 return rc;
1108}
1109
drha8e654e2010-05-04 17:38:42 +00001110/*
dan1018e902010-05-05 15:33:05 +00001111** Close an open wal-index.
drha8e654e2010-05-04 17:38:42 +00001112*/
dan1018e902010-05-05 15:33:05 +00001113static void walIndexClose(Wal *pWal, int isDelete){
drh73b64e42010-05-30 19:55:15 +00001114 if( pWal->isWIndexOpen ){
drhd9e5c4f2010-05-12 18:01:39 +00001115 sqlite3OsShmClose(pWal->pDbFd, isDelete);
drh73b64e42010-05-30 19:55:15 +00001116 pWal->isWIndexOpen = 0;
drha8e654e2010-05-04 17:38:42 +00001117 }
1118}
1119
dan7c246102010-04-12 19:00:29 +00001120/*
drh181e0912010-06-01 01:08:08 +00001121** Open a connection to the WAL file associated with database zDbName.
1122** The database file must already be opened on connection pDbFd.
dan3de777f2010-04-17 12:31:37 +00001123**
1124** A SHARED lock should be held on the database file when this function
1125** is called. The purpose of this SHARED lock is to prevent any other
drh181e0912010-06-01 01:08:08 +00001126** client from unlinking the WAL or wal-index file. If another process
dan3de777f2010-04-17 12:31:37 +00001127** were to do this just after this client opened one of these files, the
1128** system would be badly broken.
danef378022010-05-04 11:06:03 +00001129**
1130** If the log file is successfully opened, SQLITE_OK is returned and
1131** *ppWal is set to point to a new WAL handle. If an error occurs,
1132** an SQLite error code is returned and *ppWal is left unmodified.
dan7c246102010-04-12 19:00:29 +00001133*/
drhc438efd2010-04-26 00:19:45 +00001134int sqlite3WalOpen(
drh7ed91f22010-04-29 22:34:07 +00001135 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
drhd9e5c4f2010-05-12 18:01:39 +00001136 sqlite3_file *pDbFd, /* The open database file */
1137 const char *zDbName, /* Name of the database file */
drh7ed91f22010-04-29 22:34:07 +00001138 Wal **ppWal /* OUT: Allocated Wal handle */
dan7c246102010-04-12 19:00:29 +00001139){
danef378022010-05-04 11:06:03 +00001140 int rc; /* Return Code */
drh7ed91f22010-04-29 22:34:07 +00001141 Wal *pRet; /* Object to allocate and return */
dan7c246102010-04-12 19:00:29 +00001142 int flags; /* Flags passed to OsOpen() */
drhd9e5c4f2010-05-12 18:01:39 +00001143 char *zWal; /* Name of write-ahead log file */
dan7c246102010-04-12 19:00:29 +00001144 int nWal; /* Length of zWal in bytes */
1145
drhd9e5c4f2010-05-12 18:01:39 +00001146 assert( zDbName && zDbName[0] );
1147 assert( pDbFd );
dan7c246102010-04-12 19:00:29 +00001148
drh1b78eaf2010-05-25 13:40:03 +00001149 /* In the amalgamation, the os_unix.c and os_win.c source files come before
1150 ** this source file. Verify that the #defines of the locking byte offsets
1151 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1152 */
1153#ifdef WIN_SHM_BASE
1154 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1155#endif
1156#ifdef UNIX_SHM_BASE
1157 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1158#endif
1159
1160
drh7ed91f22010-04-29 22:34:07 +00001161 /* Allocate an instance of struct Wal to return. */
1162 *ppWal = 0;
drh686138f2010-05-12 18:10:52 +00001163 nWal = sqlite3Strlen30(zDbName) + 5;
drhd9e5c4f2010-05-12 18:01:39 +00001164 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile + nWal);
dan76ed3bc2010-05-03 17:18:24 +00001165 if( !pRet ){
1166 return SQLITE_NOMEM;
1167 }
1168
dan7c246102010-04-12 19:00:29 +00001169 pRet->pVfs = pVfs;
drhd9e5c4f2010-05-12 18:01:39 +00001170 pRet->pWalFd = (sqlite3_file *)&pRet[1];
1171 pRet->pDbFd = pDbFd;
drh73b64e42010-05-30 19:55:15 +00001172 pRet->readLock = -1;
drh7e263722010-05-20 21:21:09 +00001173 sqlite3_randomness(8, &pRet->hdr.aSalt);
drhd9e5c4f2010-05-12 18:01:39 +00001174 pRet->zWalName = zWal = pVfs->szOsFile + (char*)pRet->pWalFd;
1175 sqlite3_snprintf(nWal, zWal, "%s-wal", zDbName);
1176 rc = sqlite3OsShmOpen(pDbFd);
dan7c246102010-04-12 19:00:29 +00001177
drh7ed91f22010-04-29 22:34:07 +00001178 /* Open file handle on the write-ahead log file. */
dan76ed3bc2010-05-03 17:18:24 +00001179 if( rc==SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001180 pRet->isWIndexOpen = 1;
dan76ed3bc2010-05-03 17:18:24 +00001181 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_MAIN_JOURNAL);
drhd9e5c4f2010-05-12 18:01:39 +00001182 rc = sqlite3OsOpen(pVfs, zWal, pRet->pWalFd, flags, &flags);
dan76ed3bc2010-05-03 17:18:24 +00001183 }
dan7c246102010-04-12 19:00:29 +00001184
dan7c246102010-04-12 19:00:29 +00001185 if( rc!=SQLITE_OK ){
dan1018e902010-05-05 15:33:05 +00001186 walIndexClose(pRet, 0);
drhd9e5c4f2010-05-12 18:01:39 +00001187 sqlite3OsClose(pRet->pWalFd);
danef378022010-05-04 11:06:03 +00001188 sqlite3_free(pRet);
1189 }else{
1190 *ppWal = pRet;
drhc74c3332010-05-31 12:15:19 +00001191 WALTRACE(("WAL%d: opened\n", pRet));
dan7c246102010-04-12 19:00:29 +00001192 }
dan7c246102010-04-12 19:00:29 +00001193 return rc;
1194}
1195
drha2a42012010-05-18 18:01:08 +00001196/*
1197** Find the smallest page number out of all pages held in the WAL that
1198** has not been returned by any prior invocation of this method on the
1199** same WalIterator object. Write into *piFrame the frame index where
1200** that page was last written into the WAL. Write into *piPage the page
1201** number.
1202**
1203** Return 0 on success. If there are no pages in the WAL with a page
1204** number larger than *piPage, then return 1.
1205*/
drh7ed91f22010-04-29 22:34:07 +00001206static int walIteratorNext(
1207 WalIterator *p, /* Iterator */
drha2a42012010-05-18 18:01:08 +00001208 u32 *piPage, /* OUT: The page number of the next page */
1209 u32 *piFrame /* OUT: Wal frame index of next page */
dan7c246102010-04-12 19:00:29 +00001210){
drha2a42012010-05-18 18:01:08 +00001211 u32 iMin; /* Result pgno must be greater than iMin */
1212 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
1213 int i; /* For looping through segments */
dan7c246102010-04-12 19:00:29 +00001214
drha2a42012010-05-18 18:01:08 +00001215 iMin = p->iPrior;
1216 assert( iMin<0xffffffff );
dan7c246102010-04-12 19:00:29 +00001217 for(i=p->nSegment-1; i>=0; i--){
drh7ed91f22010-04-29 22:34:07 +00001218 struct WalSegment *pSegment = &p->aSegment[i];
dan13a3cb82010-06-11 19:04:21 +00001219 while( pSegment->iNext<pSegment->nEntry ){
drha2a42012010-05-18 18:01:08 +00001220 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
dan7c246102010-04-12 19:00:29 +00001221 if( iPg>iMin ){
1222 if( iPg<iRet ){
1223 iRet = iPg;
dan13a3cb82010-06-11 19:04:21 +00001224 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
dan7c246102010-04-12 19:00:29 +00001225 }
1226 break;
1227 }
1228 pSegment->iNext++;
1229 }
dan7c246102010-04-12 19:00:29 +00001230 }
1231
drha2a42012010-05-18 18:01:08 +00001232 *piPage = p->iPrior = iRet;
dan7c246102010-04-12 19:00:29 +00001233 return (iRet==0xFFFFFFFF);
1234}
1235
dan7c246102010-04-12 19:00:29 +00001236
dan13a3cb82010-06-11 19:04:21 +00001237static void walMergesort(
1238 u32 *aContent, /* Pages in wal */
dan067f3162010-06-14 10:30:12 +00001239 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
1240 ht_slot *aList, /* IN/OUT: List to sort */
drha2a42012010-05-18 18:01:08 +00001241 int *pnList /* IN/OUT: Number of elements in aList[] */
1242){
1243 int nList = *pnList;
1244 if( nList>1 ){
1245 int nLeft = nList / 2; /* Elements in left list */
1246 int nRight = nList - nLeft; /* Elements in right list */
drha2a42012010-05-18 18:01:08 +00001247 int iLeft = 0; /* Current index in aLeft */
1248 int iRight = 0; /* Current index in aright */
1249 int iOut = 0; /* Current index in output buffer */
dan067f3162010-06-14 10:30:12 +00001250 ht_slot *aLeft = aList; /* Left list */
1251 ht_slot *aRight = aList+nLeft;/* Right list */
drha2a42012010-05-18 18:01:08 +00001252
1253 /* TODO: Change to non-recursive version. */
dan13a3cb82010-06-11 19:04:21 +00001254 walMergesort(aContent, aBuffer, aLeft, &nLeft);
1255 walMergesort(aContent, aBuffer, aRight, &nRight);
drha2a42012010-05-18 18:01:08 +00001256
1257 while( iRight<nRight || iLeft<nLeft ){
dan067f3162010-06-14 10:30:12 +00001258 ht_slot logpage;
drha2a42012010-05-18 18:01:08 +00001259 Pgno dbpage;
1260
1261 if( (iLeft<nLeft)
1262 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1263 ){
1264 logpage = aLeft[iLeft++];
1265 }else{
1266 logpage = aRight[iRight++];
1267 }
1268 dbpage = aContent[logpage];
1269
1270 aBuffer[iOut++] = logpage;
1271 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1272
1273 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1274 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1275 }
1276 memcpy(aList, aBuffer, sizeof(aList[0])*iOut);
1277 *pnList = iOut;
1278 }
1279
1280#ifdef SQLITE_DEBUG
1281 {
1282 int i;
1283 for(i=1; i<*pnList; i++){
1284 assert( aContent[aList[i]] > aContent[aList[i-1]] );
1285 }
1286 }
1287#endif
1288}
1289
dan5d656852010-06-14 07:53:26 +00001290/*
1291** Free an iterator allocated by walIteratorInit().
1292*/
1293static void walIteratorFree(WalIterator *p){
1294 sqlite3_free(p);
1295}
1296
drha2a42012010-05-18 18:01:08 +00001297/*
1298** Map the wal-index into memory owned by this thread, if it is not
1299** mapped already. Then construct a WalInterator object that can be
1300** used to loop over all pages in the WAL in ascending order.
1301**
1302** On success, make *pp point to the newly allocated WalInterator object
1303** return SQLITE_OK. Otherwise, leave *pp unchanged and return an error
1304** code.
1305**
1306** The calling routine should invoke walIteratorFree() to destroy the
1307** WalIterator object when it has finished with it. The caller must
1308** also unmap the wal-index. But the wal-index must not be unmapped
1309** prior to the WalIterator object being destroyed.
1310*/
1311static int walIteratorInit(Wal *pWal, WalIterator **pp){
dan067f3162010-06-14 10:30:12 +00001312 WalIterator *p; /* Return value */
1313 int nSegment; /* Number of segments to merge */
1314 u32 iLast; /* Last frame in log */
1315 int nByte; /* Number of bytes to allocate */
1316 int i; /* Iterator variable */
1317 ht_slot *aTmp; /* Temp space used by merge-sort */
1318 ht_slot *aSpace; /* Space at the end of the allocation */
drha2a42012010-05-18 18:01:08 +00001319
1320 /* This routine only runs while holding SQLITE_SHM_CHECKPOINT. No other
1321 ** thread is able to write to shared memory while this routine is
1322 ** running (or, indeed, while the WalIterator object exists). Hence,
dan13a3cb82010-06-11 19:04:21 +00001323 ** we can cast off the volatile qualification from shared memory
drha2a42012010-05-18 18:01:08 +00001324 */
dan1beb9392010-05-31 12:02:30 +00001325 assert( pWal->ckptLock );
dan13a3cb82010-06-11 19:04:21 +00001326 iLast = pWal->hdr.mxFrame;
drha2a42012010-05-18 18:01:08 +00001327
1328 /* Allocate space for the WalIterator object */
dan13a3cb82010-06-11 19:04:21 +00001329 nSegment = walFramePage(iLast) + 1;
1330 nByte = sizeof(WalIterator)
1331 + nSegment*(sizeof(struct WalSegment))
dan067f3162010-06-14 10:30:12 +00001332 + (nSegment+1)*(HASHTABLE_NPAGE * sizeof(ht_slot));
drh7ed91f22010-04-29 22:34:07 +00001333 p = (WalIterator *)sqlite3_malloc(nByte);
dan8f6097c2010-05-06 07:43:58 +00001334 if( !p ){
drha2a42012010-05-18 18:01:08 +00001335 return SQLITE_NOMEM;
1336 }
1337 memset(p, 0, nByte);
dan76ed3bc2010-05-03 17:18:24 +00001338
dan13a3cb82010-06-11 19:04:21 +00001339 /* Allocate space for the WalIterator object */
drha2a42012010-05-18 18:01:08 +00001340 p->nSegment = nSegment;
dan067f3162010-06-14 10:30:12 +00001341 aSpace = (ht_slot *)&p->aSegment[nSegment];
dan13a3cb82010-06-11 19:04:21 +00001342 aTmp = &aSpace[HASHTABLE_NPAGE*nSegment];
drha2a42012010-05-18 18:01:08 +00001343 for(i=0; i<nSegment; i++){
dan067f3162010-06-14 10:30:12 +00001344 volatile ht_slot *aHash;
drha2a42012010-05-18 18:01:08 +00001345 int j;
dan13a3cb82010-06-11 19:04:21 +00001346 u32 iZero;
1347 int nEntry;
1348 volatile u32 *aPgno;
dan4280eb32010-06-12 12:02:35 +00001349 int rc;
dan13a3cb82010-06-11 19:04:21 +00001350
dan4280eb32010-06-12 12:02:35 +00001351 rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
1352 if( rc!=SQLITE_OK ){
dan5d656852010-06-14 07:53:26 +00001353 walIteratorFree(p);
dan4280eb32010-06-12 12:02:35 +00001354 return rc;
dan13a3cb82010-06-11 19:04:21 +00001355 }
dan4280eb32010-06-12 12:02:35 +00001356 nEntry = ((i+1)==nSegment)?iLast-iZero:(u32 *)aHash-(u32 *)&aPgno[iZero+1];
1357
dan13a3cb82010-06-11 19:04:21 +00001358 iZero++;
1359 aPgno += iZero;
1360
1361 for(j=0; j<nEntry; j++){
drha2a42012010-05-18 18:01:08 +00001362 aSpace[j] = j;
dan76ed3bc2010-05-03 17:18:24 +00001363 }
dan13a3cb82010-06-11 19:04:21 +00001364 walMergesort((u32 *)aPgno, aTmp, aSpace, &nEntry);
1365 p->aSegment[i].iZero = iZero;
1366 p->aSegment[i].nEntry = nEntry;
1367 p->aSegment[i].aIndex = aSpace;
1368 p->aSegment[i].aPgno = (u32 *)aPgno;
1369 aSpace += HASHTABLE_NPAGE;
dan7c246102010-04-12 19:00:29 +00001370 }
dan13a3cb82010-06-11 19:04:21 +00001371 assert( aSpace==aTmp );
dan7c246102010-04-12 19:00:29 +00001372
dan13a3cb82010-06-11 19:04:21 +00001373 /* Return the fully initialized WalIterator object */
dan8f6097c2010-05-06 07:43:58 +00001374 *pp = p;
drha2a42012010-05-18 18:01:08 +00001375 return SQLITE_OK ;
dan7c246102010-04-12 19:00:29 +00001376}
1377
dan7c246102010-04-12 19:00:29 +00001378/*
drh73b64e42010-05-30 19:55:15 +00001379** Copy as much content as we can from the WAL back into the database file
1380** in response to an sqlite3_wal_checkpoint() request or the equivalent.
1381**
1382** The amount of information copies from WAL to database might be limited
1383** by active readers. This routine will never overwrite a database page
1384** that a concurrent reader might be using.
1385**
1386** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
1387** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
1388** checkpoints are always run by a background thread or background
1389** process, foreground threads will never block on a lengthy fsync call.
1390**
1391** Fsync is called on the WAL before writing content out of the WAL and
1392** into the database. This ensures that if the new content is persistent
1393** in the WAL and can be recovered following a power-loss or hard reset.
1394**
1395** Fsync is also called on the database file if (and only if) the entire
1396** WAL content is copied into the database file. This second fsync makes
1397** it safe to delete the WAL since the new content will persist in the
1398** database file.
1399**
1400** This routine uses and updates the nBackfill field of the wal-index header.
1401** This is the only routine tha will increase the value of nBackfill.
1402** (A WAL reset or recovery will revert nBackfill to zero, but not increase
1403** its value.)
1404**
1405** The caller must be holding sufficient locks to ensure that no other
1406** checkpoint is running (in any other thread or process) at the same
1407** time.
dan7c246102010-04-12 19:00:29 +00001408*/
drh7ed91f22010-04-29 22:34:07 +00001409static int walCheckpoint(
1410 Wal *pWal, /* Wal connection */
danc5118782010-04-17 17:34:41 +00001411 int sync_flags, /* Flags for OsSync() (or 0) */
danb6e099a2010-05-04 14:47:39 +00001412 int nBuf, /* Size of zBuf in bytes */
dan7c246102010-04-12 19:00:29 +00001413 u8 *zBuf /* Temporary buffer to use */
1414){
1415 int rc; /* Return code */
drh6e810962010-05-19 17:49:50 +00001416 int szPage = pWal->hdr.szPage; /* Database page-size */
drh7ed91f22010-04-29 22:34:07 +00001417 WalIterator *pIter = 0; /* Wal iterator context */
dan7c246102010-04-12 19:00:29 +00001418 u32 iDbpage = 0; /* Next database page to write */
drh7ed91f22010-04-29 22:34:07 +00001419 u32 iFrame = 0; /* Wal frame containing data for iDbpage */
drh73b64e42010-05-30 19:55:15 +00001420 u32 mxSafeFrame; /* Max frame that can be backfilled */
1421 int i; /* Loop counter */
drh73b64e42010-05-30 19:55:15 +00001422 volatile WalCkptInfo *pInfo; /* The checkpoint status information */
dan7c246102010-04-12 19:00:29 +00001423
1424 /* Allocate the iterator */
dan8f6097c2010-05-06 07:43:58 +00001425 rc = walIteratorInit(pWal, &pIter);
drh027a1282010-05-19 01:53:53 +00001426 if( rc!=SQLITE_OK || pWal->hdr.mxFrame==0 ){
dan83f42d12010-06-04 10:37:05 +00001427 goto walcheckpoint_out;
danb6e099a2010-05-04 14:47:39 +00001428 }
1429
drh73b64e42010-05-30 19:55:15 +00001430 /*** TODO: Move this test out to the caller. Make it an assert() here ***/
drh6e810962010-05-19 17:49:50 +00001431 if( pWal->hdr.szPage!=nBuf ){
dan83f42d12010-06-04 10:37:05 +00001432 rc = SQLITE_CORRUPT_BKPT;
1433 goto walcheckpoint_out;
danb6e099a2010-05-04 14:47:39 +00001434 }
1435
drh73b64e42010-05-30 19:55:15 +00001436 /* Compute in mxSafeFrame the index of the last frame of the WAL that is
1437 ** safe to write into the database. Frames beyond mxSafeFrame might
1438 ** overwrite database pages that are in use by active readers and thus
1439 ** cannot be backfilled from the WAL.
1440 */
dand54ff602010-05-31 11:16:30 +00001441 mxSafeFrame = pWal->hdr.mxFrame;
dan13a3cb82010-06-11 19:04:21 +00001442 pInfo = walCkptInfo(pWal);
drh73b64e42010-05-30 19:55:15 +00001443 for(i=1; i<WAL_NREADER; i++){
1444 u32 y = pInfo->aReadMark[i];
drhdb7f6472010-06-09 14:45:12 +00001445 if( mxSafeFrame>=y ){
dan83f42d12010-06-04 10:37:05 +00001446 assert( y<=pWal->hdr.mxFrame );
1447 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
1448 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001449 pInfo->aReadMark[i] = READMARK_NOT_USED;
drh73b64e42010-05-30 19:55:15 +00001450 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
drh2d37e1c2010-06-02 20:38:20 +00001451 }else if( rc==SQLITE_BUSY ){
drhdb7f6472010-06-09 14:45:12 +00001452 mxSafeFrame = y;
drh2d37e1c2010-06-02 20:38:20 +00001453 }else{
dan83f42d12010-06-04 10:37:05 +00001454 goto walcheckpoint_out;
drh73b64e42010-05-30 19:55:15 +00001455 }
1456 }
danc5118782010-04-17 17:34:41 +00001457 }
dan7c246102010-04-12 19:00:29 +00001458
drh73b64e42010-05-30 19:55:15 +00001459 if( pInfo->nBackfill<mxSafeFrame
1460 && (rc = walLockExclusive(pWal, WAL_READ_LOCK(0), 1))==SQLITE_OK
1461 ){
1462 u32 nBackfill = pInfo->nBackfill;
1463
1464 /* Sync the WAL to disk */
1465 if( sync_flags ){
1466 rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
1467 }
1468
1469 /* Iterate through the contents of the WAL, copying data to the db file. */
1470 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
dan13a3cb82010-06-11 19:04:21 +00001471 assert( walFramePgno(pWal, iFrame)==iDbpage );
drh73b64e42010-05-30 19:55:15 +00001472 if( iFrame<=nBackfill || iFrame>mxSafeFrame ) continue;
1473 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage,
1474 walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE
1475 );
1476 if( rc!=SQLITE_OK ) break;
1477 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, (iDbpage-1)*szPage);
1478 if( rc!=SQLITE_OK ) break;
1479 }
1480
1481 /* If work was actually accomplished... */
dand764c7d2010-06-04 11:56:22 +00001482 if( rc==SQLITE_OK ){
dan4280eb32010-06-12 12:02:35 +00001483 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
drh73b64e42010-05-30 19:55:15 +00001484 rc = sqlite3OsTruncate(pWal->pDbFd, ((i64)pWal->hdr.nPage*(i64)szPage));
1485 if( rc==SQLITE_OK && sync_flags ){
1486 rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
1487 }
1488 }
dand764c7d2010-06-04 11:56:22 +00001489 if( rc==SQLITE_OK ){
1490 pInfo->nBackfill = mxSafeFrame;
1491 }
drh73b64e42010-05-30 19:55:15 +00001492 }
1493
1494 /* Release the reader lock held while backfilling */
1495 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
drh2d37e1c2010-06-02 20:38:20 +00001496 }else if( rc==SQLITE_BUSY ){
drh34116ea2010-05-31 12:30:52 +00001497 /* Reset the return code so as not to report a checkpoint failure
1498 ** just because active readers prevent any backfill.
1499 */
1500 rc = SQLITE_OK;
dan7c246102010-04-12 19:00:29 +00001501 }
1502
dan83f42d12010-06-04 10:37:05 +00001503 walcheckpoint_out:
drh7ed91f22010-04-29 22:34:07 +00001504 walIteratorFree(pIter);
dan7c246102010-04-12 19:00:29 +00001505 return rc;
1506}
1507
1508/*
1509** Close a connection to a log file.
1510*/
drhc438efd2010-04-26 00:19:45 +00001511int sqlite3WalClose(
drh7ed91f22010-04-29 22:34:07 +00001512 Wal *pWal, /* Wal to close */
danc5118782010-04-17 17:34:41 +00001513 int sync_flags, /* Flags to pass to OsSync() (or 0) */
danb6e099a2010-05-04 14:47:39 +00001514 int nBuf,
1515 u8 *zBuf /* Buffer of at least nBuf bytes */
dan7c246102010-04-12 19:00:29 +00001516){
1517 int rc = SQLITE_OK;
drh7ed91f22010-04-29 22:34:07 +00001518 if( pWal ){
dan30c86292010-04-30 16:24:46 +00001519 int isDelete = 0; /* True to unlink wal and wal-index files */
1520
1521 /* If an EXCLUSIVE lock can be obtained on the database file (using the
1522 ** ordinary, rollback-mode locking methods, this guarantees that the
1523 ** connection associated with this log file is the only connection to
1524 ** the database. In this case checkpoint the database and unlink both
1525 ** the wal and wal-index files.
1526 **
1527 ** The EXCLUSIVE lock is not released before returning.
1528 */
drhd9e5c4f2010-05-12 18:01:39 +00001529 rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE);
dan30c86292010-04-30 16:24:46 +00001530 if( rc==SQLITE_OK ){
drh73b64e42010-05-30 19:55:15 +00001531 pWal->exclusiveMode = 1;
dan1beb9392010-05-31 12:02:30 +00001532 rc = sqlite3WalCheckpoint(pWal, sync_flags, nBuf, zBuf);
dan30c86292010-04-30 16:24:46 +00001533 if( rc==SQLITE_OK ){
1534 isDelete = 1;
1535 }
dan30c86292010-04-30 16:24:46 +00001536 }
1537
dan1018e902010-05-05 15:33:05 +00001538 walIndexClose(pWal, isDelete);
drhd9e5c4f2010-05-12 18:01:39 +00001539 sqlite3OsClose(pWal->pWalFd);
dan30c86292010-04-30 16:24:46 +00001540 if( isDelete ){
drhd9e5c4f2010-05-12 18:01:39 +00001541 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
dan30c86292010-04-30 16:24:46 +00001542 }
drhc74c3332010-05-31 12:15:19 +00001543 WALTRACE(("WAL%p: closed\n", pWal));
dan13a3cb82010-06-11 19:04:21 +00001544 sqlite3_free(pWal->apWiData);
drh7ed91f22010-04-29 22:34:07 +00001545 sqlite3_free(pWal);
dan7c246102010-04-12 19:00:29 +00001546 }
1547 return rc;
1548}
1549
1550/*
drha2a42012010-05-18 18:01:08 +00001551** Try to read the wal-index header. Return 0 on success and 1 if
1552** there is a problem.
1553**
1554** The wal-index is in shared memory. Another thread or process might
1555** be writing the header at the same time this procedure is trying to
1556** read it, which might result in inconsistency. A dirty read is detected
drh73b64e42010-05-30 19:55:15 +00001557** by verifying that both copies of the header are the same and also by
1558** a checksum on the header.
drha2a42012010-05-18 18:01:08 +00001559**
1560** If and only if the read is consistent and the header is different from
1561** pWal->hdr, then pWal->hdr is updated to the content of the new header
1562** and *pChanged is set to 1.
danb9bf16b2010-04-14 11:23:30 +00001563**
dan84670502010-05-07 05:46:23 +00001564** If the checksum cannot be verified return non-zero. If the header
1565** is read successfully and the checksum verified, return zero.
danb9bf16b2010-04-14 11:23:30 +00001566*/
dan84670502010-05-07 05:46:23 +00001567int walIndexTryHdr(Wal *pWal, int *pChanged){
dan4280eb32010-06-12 12:02:35 +00001568 u32 aCksum[2]; /* Checksum on the header content */
1569 WalIndexHdr h1, h2; /* Two copies of the header content */
1570 WalIndexHdr volatile *aHdr; /* Header in shared memory */
danb9bf16b2010-04-14 11:23:30 +00001571
dan4280eb32010-06-12 12:02:35 +00001572 /* The first page of the wal-index must be mapped at this point. */
1573 assert( pWal->nWiData>0 && pWal->apWiData[0] );
drh79e6c782010-04-30 02:13:26 +00001574
drh73b64e42010-05-30 19:55:15 +00001575 /* Read the header. This might happen currently with a write to the
1576 ** same area of shared memory on a different CPU in a SMP,
1577 ** meaning it is possible that an inconsistent snapshot is read
dan84670502010-05-07 05:46:23 +00001578 ** from the file. If this happens, return non-zero.
drhf0b20f82010-05-21 13:16:18 +00001579 **
1580 ** There are two copies of the header at the beginning of the wal-index.
1581 ** When reading, read [0] first then [1]. Writes are in the reverse order.
1582 ** Memory barriers are used to prevent the compiler or the hardware from
1583 ** reordering the reads and writes.
danb9bf16b2010-04-14 11:23:30 +00001584 */
dan4280eb32010-06-12 12:02:35 +00001585 aHdr = walIndexHdr(pWal);
1586 memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
drh286a2882010-05-20 23:51:06 +00001587 sqlite3OsShmBarrier(pWal->pDbFd);
dan4280eb32010-06-12 12:02:35 +00001588 memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
drh286a2882010-05-20 23:51:06 +00001589
drhf0b20f82010-05-21 13:16:18 +00001590 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
1591 return 1; /* Dirty read */
drh286a2882010-05-20 23:51:06 +00001592 }
drh4b82c382010-05-31 18:24:19 +00001593 if( h1.isInit==0 ){
drhf0b20f82010-05-21 13:16:18 +00001594 return 1; /* Malformed header - probably all zeros */
1595 }
danb8fd6c22010-05-24 10:39:36 +00001596 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
drhf0b20f82010-05-21 13:16:18 +00001597 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
1598 return 1; /* Checksum does not match */
danb9bf16b2010-04-14 11:23:30 +00001599 }
1600
drhf0b20f82010-05-21 13:16:18 +00001601 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
dana8614692010-05-06 14:42:34 +00001602 *pChanged = 1;
drhf0b20f82010-05-21 13:16:18 +00001603 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
drh7e263722010-05-20 21:21:09 +00001604 pWal->szPage = pWal->hdr.szPage;
danb9bf16b2010-04-14 11:23:30 +00001605 }
dan84670502010-05-07 05:46:23 +00001606
1607 /* The header was successfully read. Return zero. */
1608 return 0;
danb9bf16b2010-04-14 11:23:30 +00001609}
1610
1611/*
drha2a42012010-05-18 18:01:08 +00001612** Read the wal-index header from the wal-index and into pWal->hdr.
1613** If the wal-header appears to be corrupt, try to recover the log
1614** before returning.
1615**
1616** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
1617** changed by this opertion. If pWal->hdr is unchanged, set *pChanged
1618** to 0.
1619**
1620** This routine also maps the wal-index content into memory and assigns
1621** ownership of that mapping to the current thread. In some implementations,
1622** only one thread at a time can hold a mapping of the wal-index. Hence,
1623** the caller should strive to invoke walIndexUnmap() as soon as possible
1624** after this routine returns.
danb9bf16b2010-04-14 11:23:30 +00001625**
drh7ed91f22010-04-29 22:34:07 +00001626** If the wal-index header is successfully read, return SQLITE_OK.
danb9bf16b2010-04-14 11:23:30 +00001627** Otherwise an SQLite error code.
1628*/
drh7ed91f22010-04-29 22:34:07 +00001629static int walIndexReadHdr(Wal *pWal, int *pChanged){
dan84670502010-05-07 05:46:23 +00001630 int rc; /* Return code */
drh73b64e42010-05-30 19:55:15 +00001631 int badHdr; /* True if a header read failed */
dan4280eb32010-06-12 12:02:35 +00001632 volatile u32 *page0;
danb9bf16b2010-04-14 11:23:30 +00001633
dan4280eb32010-06-12 12:02:35 +00001634 /* Ensure that page 0 of the wal-index (the page that contains the
1635 ** wal-index header) is mapped. Return early if an error occurs here.
1636 */
dana8614692010-05-06 14:42:34 +00001637 assert( pChanged );
dan4280eb32010-06-12 12:02:35 +00001638 rc = walIndexPage(pWal, 0, &page0);
danc7991bd2010-05-05 19:04:59 +00001639 if( rc!=SQLITE_OK ){
1640 return rc;
dan4280eb32010-06-12 12:02:35 +00001641 };
1642 assert( page0 || pWal->writeLock==0 );
drh7ed91f22010-04-29 22:34:07 +00001643
dan4280eb32010-06-12 12:02:35 +00001644 /* If the first page of the wal-index has been mapped, try to read the
1645 ** wal-index header immediately, without holding any lock. This usually
1646 ** works, but may fail if the wal-index header is corrupt or currently
1647 ** being modified by another user.
danb9bf16b2010-04-14 11:23:30 +00001648 */
dan4280eb32010-06-12 12:02:35 +00001649 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
drhbab7b912010-05-26 17:31:58 +00001650
drh73b64e42010-05-30 19:55:15 +00001651 /* If the first attempt failed, it might have been due to a race
1652 ** with a writer. So get a WRITE lock and try again.
1653 */
dand54ff602010-05-31 11:16:30 +00001654 assert( badHdr==0 || pWal->writeLock==0 );
dan4280eb32010-06-12 12:02:35 +00001655 if( badHdr && SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
1656 pWal->writeLock = 1;
1657 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
drh73b64e42010-05-30 19:55:15 +00001658 badHdr = walIndexTryHdr(pWal, pChanged);
1659 if( badHdr ){
1660 /* If the wal-index header is still malformed even while holding
1661 ** a WRITE lock, it can only mean that the header is corrupted and
1662 ** needs to be reconstructed. So run recovery to do exactly that.
1663 */
drhbab7b912010-05-26 17:31:58 +00001664 rc = walIndexRecover(pWal);
dan3dee6da2010-05-31 16:17:54 +00001665 *pChanged = 1;
drhbab7b912010-05-26 17:31:58 +00001666 }
drhbab7b912010-05-26 17:31:58 +00001667 }
dan4280eb32010-06-12 12:02:35 +00001668 pWal->writeLock = 0;
1669 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
danb9bf16b2010-04-14 11:23:30 +00001670 }
1671
danb9bf16b2010-04-14 11:23:30 +00001672 return rc;
1673}
1674
1675/*
drh73b64e42010-05-30 19:55:15 +00001676** This is the value that walTryBeginRead returns when it needs to
1677** be retried.
dan7c246102010-04-12 19:00:29 +00001678*/
drh73b64e42010-05-30 19:55:15 +00001679#define WAL_RETRY (-1)
dan64d039e2010-04-13 19:27:31 +00001680
drh73b64e42010-05-30 19:55:15 +00001681/*
1682** Attempt to start a read transaction. This might fail due to a race or
1683** other transient condition. When that happens, it returns WAL_RETRY to
1684** indicate to the caller that it is safe to retry immediately.
1685**
1686** On success return SQLITE_OK. On a permantent failure (such an
1687** I/O error or an SQLITE_BUSY because another process is running
1688** recovery) return a positive error code.
1689**
1690** On success, this routine obtains a read lock on
1691** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
1692** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
1693** that means the Wal does not hold any read lock. The reader must not
1694** access any database page that is modified by a WAL frame up to and
1695** including frame number aReadMark[pWal->readLock]. The reader will
1696** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
1697** Or if pWal->readLock==0, then the reader will ignore the WAL
1698** completely and get all content directly from the database file.
1699** When the read transaction is completed, the caller must release the
1700** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
1701**
1702** This routine uses the nBackfill and aReadMark[] fields of the header
1703** to select a particular WAL_READ_LOCK() that strives to let the
1704** checkpoint process do as much work as possible. This routine might
1705** update values of the aReadMark[] array in the header, but if it does
1706** so it takes care to hold an exclusive lock on the corresponding
1707** WAL_READ_LOCK() while changing values.
1708*/
drhaab4c022010-06-02 14:45:51 +00001709static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
drh73b64e42010-05-30 19:55:15 +00001710 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
1711 u32 mxReadMark; /* Largest aReadMark[] value */
1712 int mxI; /* Index of largest aReadMark[] value */
1713 int i; /* Loop counter */
dan13a3cb82010-06-11 19:04:21 +00001714 int rc = SQLITE_OK; /* Return code */
dan64d039e2010-04-13 19:27:31 +00001715
drh61e4ace2010-05-31 20:28:37 +00001716 assert( pWal->readLock<0 ); /* Not currently locked */
drh73b64e42010-05-30 19:55:15 +00001717
drhaab4c022010-06-02 14:45:51 +00001718 /* Take steps to avoid spinning forever if there is a protocol error. */
1719 if( cnt>5 ){
1720 if( cnt>100 ) return SQLITE_PROTOCOL;
1721 sqlite3OsSleep(pWal->pVfs, 1);
1722 }
1723
drh73b64e42010-05-30 19:55:15 +00001724 if( !useWal ){
drh7ed91f22010-04-29 22:34:07 +00001725 rc = walIndexReadHdr(pWal, pChanged);
drh73b64e42010-05-30 19:55:15 +00001726 if( rc==SQLITE_BUSY ){
1727 /* If there is not a recovery running in another thread or process
1728 ** then convert BUSY errors to WAL_RETRY. If recovery is known to
1729 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
1730 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
1731 ** would be technically correct. But the race is benign since with
1732 ** WAL_RETRY this routine will be called again and will probably be
1733 ** right on the second iteration.
1734 */
1735 rc = walLockShared(pWal, WAL_RECOVER_LOCK);
1736 if( rc==SQLITE_OK ){
1737 walUnlockShared(pWal, WAL_RECOVER_LOCK);
1738 rc = WAL_RETRY;
1739 }else if( rc==SQLITE_BUSY ){
1740 rc = SQLITE_BUSY_RECOVERY;
1741 }
1742 }
drh73b64e42010-05-30 19:55:15 +00001743 }
1744 if( rc!=SQLITE_OK ){
1745 return rc;
1746 }
1747
dan13a3cb82010-06-11 19:04:21 +00001748 pInfo = walCkptInfo(pWal);
drh73b64e42010-05-30 19:55:15 +00001749 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){
1750 /* The WAL has been completely backfilled (or it is empty).
1751 ** and can be safely ignored.
1752 */
1753 rc = walLockShared(pWal, WAL_READ_LOCK(0));
daneb8cb3a2010-06-05 18:34:26 +00001754 sqlite3OsShmBarrier(pWal->pDbFd);
drh73b64e42010-05-30 19:55:15 +00001755 if( rc==SQLITE_OK ){
dan4280eb32010-06-12 12:02:35 +00001756 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
dan493cc592010-06-05 18:12:23 +00001757 /* It is not safe to allow the reader to continue here if frames
1758 ** may have been appended to the log before READ_LOCK(0) was obtained.
1759 ** When holding READ_LOCK(0), the reader ignores the entire log file,
1760 ** which implies that the database file contains a trustworthy
1761 ** snapshoT. Since holding READ_LOCK(0) prevents a checkpoint from
1762 ** happening, this is usually correct.
1763 **
1764 ** However, if frames have been appended to the log (or if the log
1765 ** is wrapped and written for that matter) before the READ_LOCK(0)
1766 ** is obtained, that is not necessarily true. A checkpointer may
1767 ** have started to backfill the appended frames but crashed before
1768 ** it finished. Leaving a corrupt image in the database file.
1769 */
drh73b64e42010-05-30 19:55:15 +00001770 walUnlockShared(pWal, WAL_READ_LOCK(0));
1771 return WAL_RETRY;
1772 }
1773 pWal->readLock = 0;
1774 return SQLITE_OK;
1775 }else if( rc!=SQLITE_BUSY ){
1776 return rc;
dan64d039e2010-04-13 19:27:31 +00001777 }
dan7c246102010-04-12 19:00:29 +00001778 }
danba515902010-04-30 09:32:06 +00001779
drh73b64e42010-05-30 19:55:15 +00001780 /* If we get this far, it means that the reader will want to use
1781 ** the WAL to get at content from recent commits. The job now is
1782 ** to select one of the aReadMark[] entries that is closest to
1783 ** but not exceeding pWal->hdr.mxFrame and lock that entry.
1784 */
1785 mxReadMark = 0;
1786 mxI = 0;
1787 for(i=1; i<WAL_NREADER; i++){
1788 u32 thisMark = pInfo->aReadMark[i];
drhdb7f6472010-06-09 14:45:12 +00001789 if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){
1790 assert( thisMark!=READMARK_NOT_USED );
drh73b64e42010-05-30 19:55:15 +00001791 mxReadMark = thisMark;
1792 mxI = i;
1793 }
1794 }
1795 if( mxI==0 ){
1796 /* If we get here, it means that all of the aReadMark[] entries between
1797 ** 1 and WAL_NREADER-1 are zero. Try to initialize aReadMark[1] to
1798 ** be mxFrame, then retry.
1799 */
1800 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), 1);
1801 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001802 pInfo->aReadMark[1] = pWal->hdr.mxFrame;
drh73b64e42010-05-30 19:55:15 +00001803 walUnlockExclusive(pWal, WAL_READ_LOCK(1), 1);
drh38933f22010-06-02 15:43:18 +00001804 rc = WAL_RETRY;
1805 }else if( rc==SQLITE_BUSY ){
1806 rc = WAL_RETRY;
drh73b64e42010-05-30 19:55:15 +00001807 }
drh38933f22010-06-02 15:43:18 +00001808 return rc;
drh73b64e42010-05-30 19:55:15 +00001809 }else{
1810 if( mxReadMark < pWal->hdr.mxFrame ){
dand54ff602010-05-31 11:16:30 +00001811 for(i=1; i<WAL_NREADER; i++){
drh73b64e42010-05-30 19:55:15 +00001812 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
1813 if( rc==SQLITE_OK ){
drhdb7f6472010-06-09 14:45:12 +00001814 mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame;
drh73b64e42010-05-30 19:55:15 +00001815 mxI = i;
1816 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1817 break;
drh38933f22010-06-02 15:43:18 +00001818 }else if( rc!=SQLITE_BUSY ){
1819 return rc;
drh73b64e42010-05-30 19:55:15 +00001820 }
1821 }
1822 }
1823
1824 rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
1825 if( rc ){
1826 return rc==SQLITE_BUSY ? WAL_RETRY : rc;
1827 }
daneb8cb3a2010-06-05 18:34:26 +00001828 /* Now that the read-lock has been obtained, check that neither the
1829 ** value in the aReadMark[] array or the contents of the wal-index
1830 ** header have changed.
1831 **
1832 ** It is necessary to check that the wal-index header did not change
1833 ** between the time it was read and when the shared-lock was obtained
1834 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
1835 ** that the log file may have been wrapped by a writer, or that frames
1836 ** that occur later in the log than pWal->hdr.mxFrame may have been
1837 ** copied into the database by a checkpointer. If either of these things
1838 ** happened, then reading the database with the current value of
1839 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
1840 ** instead.
1841 **
dan640aac42010-06-05 19:18:59 +00001842 ** This does not guarantee that the copy of the wal-index header is up to
1843 ** date before proceeding. That would not be possible without somehow
1844 ** blocking writers. It only guarantees that a dangerous checkpoint or
daneb8cb3a2010-06-05 18:34:26 +00001845 ** log-wrap (either of which would require an exclusive lock on
1846 ** WAL_READ_LOCK(mxI)) has not occurred since the snapshot was valid.
1847 */
1848 sqlite3OsShmBarrier(pWal->pDbFd);
drh73b64e42010-05-30 19:55:15 +00001849 if( pInfo->aReadMark[mxI]!=mxReadMark
dan4280eb32010-06-12 12:02:35 +00001850 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
drh73b64e42010-05-30 19:55:15 +00001851 ){
1852 walUnlockShared(pWal, WAL_READ_LOCK(mxI));
1853 return WAL_RETRY;
1854 }else{
drhdb7f6472010-06-09 14:45:12 +00001855 assert( mxReadMark<=pWal->hdr.mxFrame );
drh73b64e42010-05-30 19:55:15 +00001856 pWal->readLock = mxI;
1857 }
1858 }
1859 return rc;
1860}
1861
1862/*
1863** Begin a read transaction on the database.
1864**
1865** This routine used to be called sqlite3OpenSnapshot() and with good reason:
1866** it takes a snapshot of the state of the WAL and wal-index for the current
1867** instant in time. The current thread will continue to use this snapshot.
1868** Other threads might append new content to the WAL and wal-index but
1869** that extra content is ignored by the current thread.
1870**
1871** If the database contents have changes since the previous read
1872** transaction, then *pChanged is set to 1 before returning. The
1873** Pager layer will use this to know that is cache is stale and
1874** needs to be flushed.
1875*/
1876int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
1877 int rc; /* Return code */
drhaab4c022010-06-02 14:45:51 +00001878 int cnt = 0; /* Number of TryBeginRead attempts */
drh73b64e42010-05-30 19:55:15 +00001879
1880 do{
drhaab4c022010-06-02 14:45:51 +00001881 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
drh73b64e42010-05-30 19:55:15 +00001882 }while( rc==WAL_RETRY );
dan7c246102010-04-12 19:00:29 +00001883 return rc;
1884}
1885
1886/*
drh73b64e42010-05-30 19:55:15 +00001887** Finish with a read transaction. All this does is release the
1888** read-lock.
dan7c246102010-04-12 19:00:29 +00001889*/
drh73b64e42010-05-30 19:55:15 +00001890void sqlite3WalEndReadTransaction(Wal *pWal){
1891 if( pWal->readLock>=0 ){
1892 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
1893 pWal->readLock = -1;
1894 }
dan7c246102010-04-12 19:00:29 +00001895}
1896
dan5e0ce872010-04-28 17:48:44 +00001897/*
drh73b64e42010-05-30 19:55:15 +00001898** Read a page from the WAL, if it is present in the WAL and if the
1899** current read transaction is configured to use the WAL.
1900**
1901** The *pInWal is set to 1 if the requested page is in the WAL and
1902** has been loaded. Or *pInWal is set to 0 if the page was not in
1903** the WAL and needs to be read out of the database.
dan7c246102010-04-12 19:00:29 +00001904*/
danb6e099a2010-05-04 14:47:39 +00001905int sqlite3WalRead(
danbb23aff2010-05-10 14:46:09 +00001906 Wal *pWal, /* WAL handle */
1907 Pgno pgno, /* Database page number to read data for */
1908 int *pInWal, /* OUT: True if data is read from WAL */
1909 int nOut, /* Size of buffer pOut in bytes */
1910 u8 *pOut /* Buffer to write page data to */
danb6e099a2010-05-04 14:47:39 +00001911){
danbb23aff2010-05-10 14:46:09 +00001912 u32 iRead = 0; /* If !=0, WAL frame to return data from */
drh027a1282010-05-19 01:53:53 +00001913 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
danbb23aff2010-05-10 14:46:09 +00001914 int iHash; /* Used to loop through N hash tables */
dan7c246102010-04-12 19:00:29 +00001915
drhaab4c022010-06-02 14:45:51 +00001916 /* This routine is only be called from within a read transaction. */
1917 assert( pWal->readLock>=0 || pWal->lockError );
drh73b64e42010-05-30 19:55:15 +00001918
danbb23aff2010-05-10 14:46:09 +00001919 /* If the "last page" field of the wal-index header snapshot is 0, then
1920 ** no data will be read from the wal under any circumstances. Return early
drh73b64e42010-05-30 19:55:15 +00001921 ** in this case to avoid the walIndexMap/Unmap overhead. Likewise, if
1922 ** pWal->readLock==0, then the WAL is ignored by the reader so
1923 ** return early, as if the WAL were empty.
danbb23aff2010-05-10 14:46:09 +00001924 */
drh73b64e42010-05-30 19:55:15 +00001925 if( iLast==0 || pWal->readLock==0 ){
danbb23aff2010-05-10 14:46:09 +00001926 *pInWal = 0;
1927 return SQLITE_OK;
1928 }
1929
danbb23aff2010-05-10 14:46:09 +00001930 /* Search the hash table or tables for an entry matching page number
1931 ** pgno. Each iteration of the following for() loop searches one
1932 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
1933 **
1934 ** This code may run concurrently to the code in walIndexAppend()
1935 ** that adds entries to the wal-index (and possibly to this hash
drh6e810962010-05-19 17:49:50 +00001936 ** table). This means the value just read from the hash
danbb23aff2010-05-10 14:46:09 +00001937 ** slot (aHash[iKey]) may have been added before or after the
1938 ** current read transaction was opened. Values added after the
1939 ** read transaction was opened may have been written incorrectly -
1940 ** i.e. these slots may contain garbage data. However, we assume
1941 ** that any slots written before the current read transaction was
1942 ** opened remain unmodified.
1943 **
1944 ** For the reasons above, the if(...) condition featured in the inner
1945 ** loop of the following block is more stringent that would be required
1946 ** if we had exclusive access to the hash-table:
1947 **
1948 ** (aPgno[iFrame]==pgno):
1949 ** This condition filters out normal hash-table collisions.
1950 **
1951 ** (iFrame<=iLast):
1952 ** This condition filters out entries that were added to the hash
1953 ** table after the current read-transaction had started.
dan7c246102010-04-12 19:00:29 +00001954 */
dan13a3cb82010-06-11 19:04:21 +00001955 for(iHash=walFramePage(iLast); iHash>=0 && iRead==0; iHash--){
dan067f3162010-06-14 10:30:12 +00001956 volatile ht_slot *aHash; /* Pointer to hash table */
1957 volatile u32 *aPgno; /* Pointer to array of page numbers */
danbb23aff2010-05-10 14:46:09 +00001958 u32 iZero; /* Frame number corresponding to aPgno[0] */
1959 int iKey; /* Hash slot index */
dan4280eb32010-06-12 12:02:35 +00001960 int rc;
danbb23aff2010-05-10 14:46:09 +00001961
dan4280eb32010-06-12 12:02:35 +00001962 rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
1963 if( rc!=SQLITE_OK ){
1964 return rc;
1965 }
dan6f150142010-05-21 15:31:56 +00001966 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
danbb23aff2010-05-10 14:46:09 +00001967 u32 iFrame = aHash[iKey] + iZero;
dan493cc592010-06-05 18:12:23 +00001968 if( iFrame<=iLast && aPgno[iFrame]==pgno ){
1969 assert( iFrame>iRead );
danbb23aff2010-05-10 14:46:09 +00001970 iRead = iFrame;
1971 }
dan7c246102010-04-12 19:00:29 +00001972 }
1973 }
dan7c246102010-04-12 19:00:29 +00001974
danbb23aff2010-05-10 14:46:09 +00001975#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1976 /* If expensive assert() statements are available, do a linear search
1977 ** of the wal-index file content. Make sure the results agree with the
1978 ** result obtained using the hash indexes above. */
1979 {
1980 u32 iRead2 = 0;
1981 u32 iTest;
1982 for(iTest=iLast; iTest>0; iTest--){
dan13a3cb82010-06-11 19:04:21 +00001983 if( walFramePgno(pWal, iTest)==pgno ){
danbb23aff2010-05-10 14:46:09 +00001984 iRead2 = iTest;
dan7c246102010-04-12 19:00:29 +00001985 break;
1986 }
dan7c246102010-04-12 19:00:29 +00001987 }
danbb23aff2010-05-10 14:46:09 +00001988 assert( iRead==iRead2 );
dan7c246102010-04-12 19:00:29 +00001989 }
danbb23aff2010-05-10 14:46:09 +00001990#endif
dancd11fb22010-04-26 10:40:52 +00001991
dan7c246102010-04-12 19:00:29 +00001992 /* If iRead is non-zero, then it is the log frame number that contains the
1993 ** required page. Read and return data from the log file.
1994 */
1995 if( iRead ){
drh6e810962010-05-19 17:49:50 +00001996 i64 iOffset = walFrameOffset(iRead, pWal->hdr.szPage) + WAL_FRAME_HDRSIZE;
drh7ed91f22010-04-29 22:34:07 +00001997 *pInWal = 1;
drhd9e5c4f2010-05-12 18:01:39 +00001998 return sqlite3OsRead(pWal->pWalFd, pOut, nOut, iOffset);
dan7c246102010-04-12 19:00:29 +00001999 }
2000
drh7ed91f22010-04-29 22:34:07 +00002001 *pInWal = 0;
dan7c246102010-04-12 19:00:29 +00002002 return SQLITE_OK;
2003}
2004
2005
2006/*
2007** Set *pPgno to the size of the database file (or zero, if unknown).
2008*/
drh7ed91f22010-04-29 22:34:07 +00002009void sqlite3WalDbsize(Wal *pWal, Pgno *pPgno){
drhaab4c022010-06-02 14:45:51 +00002010 assert( pWal->readLock>=0 || pWal->lockError );
drh7ed91f22010-04-29 22:34:07 +00002011 *pPgno = pWal->hdr.nPage;
dan7c246102010-04-12 19:00:29 +00002012}
2013
dan30c86292010-04-30 16:24:46 +00002014
drh73b64e42010-05-30 19:55:15 +00002015/*
2016** This function starts a write transaction on the WAL.
2017**
2018** A read transaction must have already been started by a prior call
2019** to sqlite3WalBeginReadTransaction().
2020**
2021** If another thread or process has written into the database since
2022** the read transaction was started, then it is not possible for this
2023** thread to write as doing so would cause a fork. So this routine
2024** returns SQLITE_BUSY in that case and no write transaction is started.
2025**
2026** There can only be a single writer active at a time.
2027*/
2028int sqlite3WalBeginWriteTransaction(Wal *pWal){
2029 int rc;
drh73b64e42010-05-30 19:55:15 +00002030
2031 /* Cannot start a write transaction without first holding a read
2032 ** transaction. */
2033 assert( pWal->readLock>=0 );
2034
2035 /* Only one writer allowed at a time. Get the write lock. Return
2036 ** SQLITE_BUSY if unable.
2037 */
2038 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
2039 if( rc ){
2040 return rc;
2041 }
drhc99597c2010-05-31 01:41:15 +00002042 pWal->writeLock = 1;
drh73b64e42010-05-30 19:55:15 +00002043
2044 /* If another connection has written to the database file since the
2045 ** time the read transaction on this connection was started, then
2046 ** the write is disallowed.
2047 */
dan4280eb32010-06-12 12:02:35 +00002048 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
drh73b64e42010-05-30 19:55:15 +00002049 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
drhc99597c2010-05-31 01:41:15 +00002050 pWal->writeLock = 0;
dan9971e712010-06-01 15:44:57 +00002051 rc = SQLITE_BUSY;
drh73b64e42010-05-30 19:55:15 +00002052 }
2053
drh7ed91f22010-04-29 22:34:07 +00002054 return rc;
dan7c246102010-04-12 19:00:29 +00002055}
2056
dan74d6cd82010-04-24 18:44:05 +00002057/*
drh73b64e42010-05-30 19:55:15 +00002058** End a write transaction. The commit has already been done. This
2059** routine merely releases the lock.
2060*/
2061int sqlite3WalEndWriteTransaction(Wal *pWal){
2062 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
dand54ff602010-05-31 11:16:30 +00002063 pWal->writeLock = 0;
drh73b64e42010-05-30 19:55:15 +00002064 return SQLITE_OK;
2065}
2066
2067/*
dan74d6cd82010-04-24 18:44:05 +00002068** If any data has been written (but not committed) to the log file, this
2069** function moves the write-pointer back to the start of the transaction.
2070**
2071** Additionally, the callback function is invoked for each frame written
drh73b64e42010-05-30 19:55:15 +00002072** to the WAL since the start of the transaction. If the callback returns
dan74d6cd82010-04-24 18:44:05 +00002073** other than SQLITE_OK, it is not invoked again and the error code is
2074** returned to the caller.
2075**
2076** Otherwise, if the callback function does not return an error, this
2077** function returns SQLITE_OK.
2078*/
drh7ed91f22010-04-29 22:34:07 +00002079int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
dan55437592010-05-11 12:19:26 +00002080 int rc = SQLITE_OK;
drh73b64e42010-05-30 19:55:15 +00002081 if( pWal->writeLock ){
drh027a1282010-05-19 01:53:53 +00002082 Pgno iMax = pWal->hdr.mxFrame;
dan55437592010-05-11 12:19:26 +00002083 Pgno iFrame;
2084
dan5d656852010-06-14 07:53:26 +00002085 /* Restore the clients cache of the wal-index header to the state it
2086 ** was in before the client began writing to the database.
2087 */
dan067f3162010-06-14 10:30:12 +00002088 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
dan5d656852010-06-14 07:53:26 +00002089
2090 for(iFrame=pWal->hdr.mxFrame+1;
2091 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
2092 iFrame++
2093 ){
2094 /* This call cannot fail. Unless the page for which the page number
2095 ** is passed as the second argument is (a) in the cache and
2096 ** (b) has an outstanding reference, then xUndo is either a no-op
2097 ** (if (a) is false) or simply expels the page from the cache (if (b)
2098 ** is false).
2099 **
2100 ** If the upper layer is doing a rollback, it is guaranteed that there
2101 ** are no outstanding references to any page other than page 1. And
2102 ** page 1 is never written to the log until the transaction is
2103 ** committed. As a result, the call to xUndo may not fail.
2104 */
dan5d656852010-06-14 07:53:26 +00002105 assert( walFramePgno(pWal, iFrame)!=1 );
2106 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
dan6f150142010-05-21 15:31:56 +00002107 }
dan5d656852010-06-14 07:53:26 +00002108 walCleanupHash(pWal);
dan74d6cd82010-04-24 18:44:05 +00002109 }
dan5d656852010-06-14 07:53:26 +00002110 assert( rc==SQLITE_OK );
dan74d6cd82010-04-24 18:44:05 +00002111 return rc;
2112}
2113
dan71d89912010-05-24 13:57:42 +00002114/*
2115** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
2116** values. This function populates the array with values required to
2117** "rollback" the write position of the WAL handle back to the current
2118** point in the event of a savepoint rollback (via WalSavepointUndo()).
drh7ed91f22010-04-29 22:34:07 +00002119*/
dan71d89912010-05-24 13:57:42 +00002120void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
drh73b64e42010-05-30 19:55:15 +00002121 assert( pWal->writeLock );
dan71d89912010-05-24 13:57:42 +00002122 aWalData[0] = pWal->hdr.mxFrame;
2123 aWalData[1] = pWal->hdr.aFrameCksum[0];
2124 aWalData[2] = pWal->hdr.aFrameCksum[1];
dan6e6bd562010-06-02 18:59:03 +00002125 aWalData[3] = pWal->nCkpt;
dan4cd78b42010-04-26 16:57:10 +00002126}
2127
dan71d89912010-05-24 13:57:42 +00002128/*
2129** Move the write position of the WAL back to the point identified by
2130** the values in the aWalData[] array. aWalData must point to an array
2131** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
2132** by a call to WalSavepoint().
drh7ed91f22010-04-29 22:34:07 +00002133*/
dan71d89912010-05-24 13:57:42 +00002134int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
dan4cd78b42010-04-26 16:57:10 +00002135 int rc = SQLITE_OK;
dan4cd78b42010-04-26 16:57:10 +00002136
dan6e6bd562010-06-02 18:59:03 +00002137 assert( pWal->writeLock );
2138 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
2139
2140 if( aWalData[3]!=pWal->nCkpt ){
2141 /* This savepoint was opened immediately after the write-transaction
2142 ** was started. Right after that, the writer decided to wrap around
2143 ** to the start of the log. Update the savepoint values to match.
2144 */
2145 aWalData[0] = 0;
2146 aWalData[3] = pWal->nCkpt;
2147 }
2148
dan71d89912010-05-24 13:57:42 +00002149 if( aWalData[0]<pWal->hdr.mxFrame ){
dan71d89912010-05-24 13:57:42 +00002150 pWal->hdr.mxFrame = aWalData[0];
2151 pWal->hdr.aFrameCksum[0] = aWalData[1];
2152 pWal->hdr.aFrameCksum[1] = aWalData[2];
dan5d656852010-06-14 07:53:26 +00002153 walCleanupHash(pWal);
dan6f150142010-05-21 15:31:56 +00002154 }
dan6e6bd562010-06-02 18:59:03 +00002155
dan4cd78b42010-04-26 16:57:10 +00002156 return rc;
2157}
2158
dan9971e712010-06-01 15:44:57 +00002159/*
2160** This function is called just before writing a set of frames to the log
2161** file (see sqlite3WalFrames()). It checks to see if, instead of appending
2162** to the current log file, it is possible to overwrite the start of the
2163** existing log file with the new frames (i.e. "reset" the log). If so,
2164** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
2165** unchanged.
2166**
2167** SQLITE_OK is returned if no error is encountered (regardless of whether
2168** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
2169** if some error
2170*/
2171static int walRestartLog(Wal *pWal){
2172 int rc = SQLITE_OK;
drhaab4c022010-06-02 14:45:51 +00002173 int cnt;
2174
dan13a3cb82010-06-11 19:04:21 +00002175 if( pWal->readLock==0 ){
dan9971e712010-06-01 15:44:57 +00002176 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2177 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2178 if( pInfo->nBackfill>0 ){
2179 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2180 if( rc==SQLITE_OK ){
2181 /* If all readers are using WAL_READ_LOCK(0) (in other words if no
2182 ** readers are currently using the WAL), then the transactions
2183 ** frames will overwrite the start of the existing log. Update the
2184 ** wal-index header to reflect this.
2185 **
2186 ** In theory it would be Ok to update the cache of the header only
2187 ** at this point. But updating the actual wal-index header is also
2188 ** safe and means there is no special case for sqlite3WalUndo()
2189 ** to handle if this transaction is rolled back.
2190 */
dan199100e2010-06-09 16:58:49 +00002191 int i; /* Loop counter */
dan9971e712010-06-01 15:44:57 +00002192 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
2193 pWal->nCkpt++;
2194 pWal->hdr.mxFrame = 0;
2195 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
2196 sqlite3_randomness(4, &aSalt[1]);
2197 walIndexWriteHdr(pWal);
dan199100e2010-06-09 16:58:49 +00002198 pInfo->nBackfill = 0;
2199 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
2200 assert( pInfo->aReadMark[0]==0 );
dan9971e712010-06-01 15:44:57 +00002201 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2202 }
2203 }
2204 walUnlockShared(pWal, WAL_READ_LOCK(0));
2205 pWal->readLock = -1;
drhaab4c022010-06-02 14:45:51 +00002206 cnt = 0;
dan9971e712010-06-01 15:44:57 +00002207 do{
2208 int notUsed;
drhaab4c022010-06-02 14:45:51 +00002209 rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
dan9971e712010-06-01 15:44:57 +00002210 }while( rc==WAL_RETRY );
dan9971e712010-06-01 15:44:57 +00002211 }
2212 return rc;
2213}
2214
dan7c246102010-04-12 19:00:29 +00002215/*
dan4cd78b42010-04-26 16:57:10 +00002216** Write a set of frames to the log. The caller must hold the write-lock
dan9971e712010-06-01 15:44:57 +00002217** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
dan7c246102010-04-12 19:00:29 +00002218*/
drhc438efd2010-04-26 00:19:45 +00002219int sqlite3WalFrames(
drh7ed91f22010-04-29 22:34:07 +00002220 Wal *pWal, /* Wal handle to write to */
drh6e810962010-05-19 17:49:50 +00002221 int szPage, /* Database page-size in bytes */
dan7c246102010-04-12 19:00:29 +00002222 PgHdr *pList, /* List of dirty pages to write */
2223 Pgno nTruncate, /* Database size after this commit */
2224 int isCommit, /* True if this is a commit */
danc5118782010-04-17 17:34:41 +00002225 int sync_flags /* Flags to pass to OsSync() (or 0) */
dan7c246102010-04-12 19:00:29 +00002226){
dan7c246102010-04-12 19:00:29 +00002227 int rc; /* Used to catch return codes */
2228 u32 iFrame; /* Next frame address */
drh7ed91f22010-04-29 22:34:07 +00002229 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
dan7c246102010-04-12 19:00:29 +00002230 PgHdr *p; /* Iterator to run through pList with. */
drhe874d9e2010-05-07 20:02:23 +00002231 PgHdr *pLast = 0; /* Last frame in list */
dan7c246102010-04-12 19:00:29 +00002232 int nLast = 0; /* Number of extra copies of last page */
2233
dan7c246102010-04-12 19:00:29 +00002234 assert( pList );
drh73b64e42010-05-30 19:55:15 +00002235 assert( pWal->writeLock );
dan7c246102010-04-12 19:00:29 +00002236
drhc74c3332010-05-31 12:15:19 +00002237#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
2238 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
2239 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
2240 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
2241 }
2242#endif
2243
dan9971e712010-06-01 15:44:57 +00002244 /* See if it is possible to write these frames into the start of the
2245 ** log file, instead of appending to it at pWal->hdr.mxFrame.
2246 */
2247 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
dan9971e712010-06-01 15:44:57 +00002248 return rc;
2249 }
dan9971e712010-06-01 15:44:57 +00002250
drha2a42012010-05-18 18:01:08 +00002251 /* If this is the first frame written into the log, write the WAL
2252 ** header to the start of the WAL file. See comments at the top of
2253 ** this source file for a description of the WAL header format.
dan97a31352010-04-16 13:59:31 +00002254 */
drh027a1282010-05-19 01:53:53 +00002255 iFrame = pWal->hdr.mxFrame;
dan97a31352010-04-16 13:59:31 +00002256 if( iFrame==0 ){
drh23ea97b2010-05-20 16:45:58 +00002257 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assembly wal-header in */
danb8fd6c22010-05-24 10:39:36 +00002258 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
drh23ea97b2010-05-20 16:45:58 +00002259 sqlite3Put4byte(&aWalHdr[4], 3007000);
2260 sqlite3Put4byte(&aWalHdr[8], szPage);
drh7e263722010-05-20 21:21:09 +00002261 pWal->szPage = szPage;
danb8fd6c22010-05-24 10:39:36 +00002262 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
drh23ea97b2010-05-20 16:45:58 +00002263 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
drh7e263722010-05-20 21:21:09 +00002264 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
drh23ea97b2010-05-20 16:45:58 +00002265 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
drhc74c3332010-05-31 12:15:19 +00002266 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
dan97a31352010-04-16 13:59:31 +00002267 if( rc!=SQLITE_OK ){
2268 return rc;
2269 }
dan71d89912010-05-24 13:57:42 +00002270 walChecksumBytes(1, aWalHdr, sizeof(aWalHdr), 0, pWal->hdr.aFrameCksum);
dan97a31352010-04-16 13:59:31 +00002271 }
drh7e263722010-05-20 21:21:09 +00002272 assert( pWal->szPage==szPage );
dan97a31352010-04-16 13:59:31 +00002273
dan9971e712010-06-01 15:44:57 +00002274 /* Write the log file. */
dan7c246102010-04-12 19:00:29 +00002275 for(p=pList; p; p=p->pDirty){
2276 u32 nDbsize; /* Db-size field for frame header */
2277 i64 iOffset; /* Write offset in log file */
2278
drh6e810962010-05-19 17:49:50 +00002279 iOffset = walFrameOffset(++iFrame, szPage);
dan7c246102010-04-12 19:00:29 +00002280
2281 /* Populate and write the frame header */
2282 nDbsize = (isCommit && p->pDirty==0) ? nTruncate : 0;
drh7e263722010-05-20 21:21:09 +00002283 walEncodeFrame(pWal, p->pgno, nDbsize, p->pData, aFrame);
drhd9e5c4f2010-05-12 18:01:39 +00002284 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset);
dan7c246102010-04-12 19:00:29 +00002285 if( rc!=SQLITE_OK ){
2286 return rc;
2287 }
2288
2289 /* Write the page data */
drh6e810962010-05-19 17:49:50 +00002290 rc = sqlite3OsWrite(pWal->pWalFd, p->pData, szPage, iOffset+sizeof(aFrame));
dan7c246102010-04-12 19:00:29 +00002291 if( rc!=SQLITE_OK ){
2292 return rc;
2293 }
2294 pLast = p;
2295 }
2296
2297 /* Sync the log file if the 'isSync' flag was specified. */
danc5118782010-04-17 17:34:41 +00002298 if( sync_flags ){
drhd9e5c4f2010-05-12 18:01:39 +00002299 i64 iSegment = sqlite3OsSectorSize(pWal->pWalFd);
drh6e810962010-05-19 17:49:50 +00002300 i64 iOffset = walFrameOffset(iFrame+1, szPage);
dan67032392010-04-17 15:42:43 +00002301
2302 assert( isCommit );
drh69c46962010-05-17 20:16:50 +00002303 assert( iSegment>0 );
dan7c246102010-04-12 19:00:29 +00002304
dan7c246102010-04-12 19:00:29 +00002305 iSegment = (((iOffset+iSegment-1)/iSegment) * iSegment);
2306 while( iOffset<iSegment ){
drh7e263722010-05-20 21:21:09 +00002307 walEncodeFrame(pWal, pLast->pgno, nTruncate, pLast->pData, aFrame);
drhd9e5c4f2010-05-12 18:01:39 +00002308 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset);
dan7c246102010-04-12 19:00:29 +00002309 if( rc!=SQLITE_OK ){
2310 return rc;
2311 }
2312
drh7ed91f22010-04-29 22:34:07 +00002313 iOffset += WAL_FRAME_HDRSIZE;
drh6e810962010-05-19 17:49:50 +00002314 rc = sqlite3OsWrite(pWal->pWalFd, pLast->pData, szPage, iOffset);
dan7c246102010-04-12 19:00:29 +00002315 if( rc!=SQLITE_OK ){
2316 return rc;
2317 }
2318 nLast++;
drh6e810962010-05-19 17:49:50 +00002319 iOffset += szPage;
dan7c246102010-04-12 19:00:29 +00002320 }
dan7c246102010-04-12 19:00:29 +00002321
drhd9e5c4f2010-05-12 18:01:39 +00002322 rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
dan7c246102010-04-12 19:00:29 +00002323 }
2324
drhe730fec2010-05-18 12:56:50 +00002325 /* Append data to the wal-index. It is not necessary to lock the
drha2a42012010-05-18 18:01:08 +00002326 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
dan7c246102010-04-12 19:00:29 +00002327 ** guarantees that there are no other writers, and no data that may
2328 ** be in use by existing readers is being overwritten.
2329 */
drh027a1282010-05-19 01:53:53 +00002330 iFrame = pWal->hdr.mxFrame;
danc7991bd2010-05-05 19:04:59 +00002331 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
dan7c246102010-04-12 19:00:29 +00002332 iFrame++;
danc7991bd2010-05-05 19:04:59 +00002333 rc = walIndexAppend(pWal, iFrame, p->pgno);
dan7c246102010-04-12 19:00:29 +00002334 }
danc7991bd2010-05-05 19:04:59 +00002335 while( nLast>0 && rc==SQLITE_OK ){
dan7c246102010-04-12 19:00:29 +00002336 iFrame++;
2337 nLast--;
danc7991bd2010-05-05 19:04:59 +00002338 rc = walIndexAppend(pWal, iFrame, pLast->pgno);
dan7c246102010-04-12 19:00:29 +00002339 }
2340
danc7991bd2010-05-05 19:04:59 +00002341 if( rc==SQLITE_OK ){
2342 /* Update the private copy of the header. */
drh6e810962010-05-19 17:49:50 +00002343 pWal->hdr.szPage = szPage;
drh027a1282010-05-19 01:53:53 +00002344 pWal->hdr.mxFrame = iFrame;
danc7991bd2010-05-05 19:04:59 +00002345 if( isCommit ){
2346 pWal->hdr.iChange++;
2347 pWal->hdr.nPage = nTruncate;
2348 }
danc7991bd2010-05-05 19:04:59 +00002349 /* If this is a commit, update the wal-index header too. */
2350 if( isCommit ){
drh7e263722010-05-20 21:21:09 +00002351 walIndexWriteHdr(pWal);
danc7991bd2010-05-05 19:04:59 +00002352 pWal->iCallback = iFrame;
2353 }
dan7c246102010-04-12 19:00:29 +00002354 }
danc7991bd2010-05-05 19:04:59 +00002355
drhc74c3332010-05-31 12:15:19 +00002356 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
dan8d22a172010-04-19 18:03:51 +00002357 return rc;
dan7c246102010-04-12 19:00:29 +00002358}
2359
2360/*
drh73b64e42010-05-30 19:55:15 +00002361** This routine is called to implement sqlite3_wal_checkpoint() and
2362** related interfaces.
danb9bf16b2010-04-14 11:23:30 +00002363**
drh73b64e42010-05-30 19:55:15 +00002364** Obtain a CHECKPOINT lock and then backfill as much information as
2365** we can from WAL into the database.
dan7c246102010-04-12 19:00:29 +00002366*/
drhc438efd2010-04-26 00:19:45 +00002367int sqlite3WalCheckpoint(
drh7ed91f22010-04-29 22:34:07 +00002368 Wal *pWal, /* Wal connection */
danc5118782010-04-17 17:34:41 +00002369 int sync_flags, /* Flags to sync db file with (or 0) */
danb6e099a2010-05-04 14:47:39 +00002370 int nBuf, /* Size of temporary buffer */
drh73b64e42010-05-30 19:55:15 +00002371 u8 *zBuf /* Temporary buffer to use */
dan7c246102010-04-12 19:00:29 +00002372){
danb9bf16b2010-04-14 11:23:30 +00002373 int rc; /* Return code */
dan31c03902010-04-29 14:51:33 +00002374 int isChanged = 0; /* True if a new wal-index header is loaded */
dan7c246102010-04-12 19:00:29 +00002375
dand54ff602010-05-31 11:16:30 +00002376 assert( pWal->ckptLock==0 );
dan39c79f52010-04-15 10:58:51 +00002377
drhc74c3332010-05-31 12:15:19 +00002378 WALTRACE(("WAL%p: checkpoint begins\n", pWal));
drh73b64e42010-05-30 19:55:15 +00002379 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2380 if( rc ){
2381 /* Usually this is SQLITE_BUSY meaning that another thread or process
2382 ** is already running a checkpoint, or maybe a recovery. But it might
2383 ** also be SQLITE_IOERR. */
danb9bf16b2010-04-14 11:23:30 +00002384 return rc;
2385 }
dand54ff602010-05-31 11:16:30 +00002386 pWal->ckptLock = 1;
dan64d039e2010-04-13 19:27:31 +00002387
danb9bf16b2010-04-14 11:23:30 +00002388 /* Copy data from the log to the database file. */
drh7ed91f22010-04-29 22:34:07 +00002389 rc = walIndexReadHdr(pWal, &isChanged);
danb9bf16b2010-04-14 11:23:30 +00002390 if( rc==SQLITE_OK ){
drhd9e5c4f2010-05-12 18:01:39 +00002391 rc = walCheckpoint(pWal, sync_flags, nBuf, zBuf);
danb9bf16b2010-04-14 11:23:30 +00002392 }
dan31c03902010-04-29 14:51:33 +00002393 if( isChanged ){
2394 /* If a new wal-index header was loaded before the checkpoint was
drha2a42012010-05-18 18:01:08 +00002395 ** performed, then the pager-cache associated with pWal is now
dan31c03902010-04-29 14:51:33 +00002396 ** out of date. So zero the cached wal-index header to ensure that
2397 ** next time the pager opens a snapshot on this database it knows that
2398 ** the cache needs to be reset.
2399 */
drh7ed91f22010-04-29 22:34:07 +00002400 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
dan31c03902010-04-29 14:51:33 +00002401 }
danb9bf16b2010-04-14 11:23:30 +00002402
2403 /* Release the locks. */
drh73b64e42010-05-30 19:55:15 +00002404 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
dand54ff602010-05-31 11:16:30 +00002405 pWal->ckptLock = 0;
drhc74c3332010-05-31 12:15:19 +00002406 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
dan64d039e2010-04-13 19:27:31 +00002407 return rc;
dan7c246102010-04-12 19:00:29 +00002408}
2409
drh7ed91f22010-04-29 22:34:07 +00002410/* Return the value to pass to a sqlite3_wal_hook callback, the
2411** number of frames in the WAL at the point of the last commit since
2412** sqlite3WalCallback() was called. If no commits have occurred since
2413** the last call, then return 0.
2414*/
2415int sqlite3WalCallback(Wal *pWal){
dan8d22a172010-04-19 18:03:51 +00002416 u32 ret = 0;
drh7ed91f22010-04-29 22:34:07 +00002417 if( pWal ){
2418 ret = pWal->iCallback;
2419 pWal->iCallback = 0;
dan8d22a172010-04-19 18:03:51 +00002420 }
2421 return (int)ret;
2422}
dan55437592010-05-11 12:19:26 +00002423
2424/*
drh61e4ace2010-05-31 20:28:37 +00002425** This function is called to change the WAL subsystem into or out
2426** of locking_mode=EXCLUSIVE.
dan55437592010-05-11 12:19:26 +00002427**
drh61e4ace2010-05-31 20:28:37 +00002428** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
2429** into locking_mode=NORMAL. This means that we must acquire a lock
2430** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
2431** or if the acquisition of the lock fails, then return 0. If the
2432** transition out of exclusive-mode is successful, return 1. This
2433** operation must occur while the pager is still holding the exclusive
2434** lock on the main database file.
dan55437592010-05-11 12:19:26 +00002435**
drh61e4ace2010-05-31 20:28:37 +00002436** If op is one, then change from locking_mode=NORMAL into
2437** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
2438** be released. Return 1 if the transition is made and 0 if the
2439** WAL is already in exclusive-locking mode - meaning that this
2440** routine is a no-op. The pager must already hold the exclusive lock
2441** on the main database file before invoking this operation.
2442**
2443** If op is negative, then do a dry-run of the op==1 case but do
2444** not actually change anything. The pager uses this to see if it
2445** should acquire the database exclusive lock prior to invoking
2446** the op==1 case.
dan55437592010-05-11 12:19:26 +00002447*/
2448int sqlite3WalExclusiveMode(Wal *pWal, int op){
drh61e4ace2010-05-31 20:28:37 +00002449 int rc;
drhaab4c022010-06-02 14:45:51 +00002450 assert( pWal->writeLock==0 );
dan3cac5dc2010-06-04 18:37:59 +00002451
2452 /* pWal->readLock is usually set, but might be -1 if there was a
2453 ** prior error while attempting to acquire are read-lock. This cannot
2454 ** happen if the connection is actually in exclusive mode (as no xShmLock
2455 ** locks are taken in this case). Nor should the pager attempt to
2456 ** upgrade to exclusive-mode following such an error.
2457 */
drhaab4c022010-06-02 14:45:51 +00002458 assert( pWal->readLock>=0 || pWal->lockError );
dan3cac5dc2010-06-04 18:37:59 +00002459 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
2460
drh61e4ace2010-05-31 20:28:37 +00002461 if( op==0 ){
2462 if( pWal->exclusiveMode ){
2463 pWal->exclusiveMode = 0;
dan3cac5dc2010-06-04 18:37:59 +00002464 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
drh61e4ace2010-05-31 20:28:37 +00002465 pWal->exclusiveMode = 1;
2466 }
2467 rc = pWal->exclusiveMode==0;
2468 }else{
drhaab4c022010-06-02 14:45:51 +00002469 /* Already in locking_mode=NORMAL */
drh61e4ace2010-05-31 20:28:37 +00002470 rc = 0;
2471 }
2472 }else if( op>0 ){
2473 assert( pWal->exclusiveMode==0 );
drhaab4c022010-06-02 14:45:51 +00002474 assert( pWal->readLock>=0 );
drh61e4ace2010-05-31 20:28:37 +00002475 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
2476 pWal->exclusiveMode = 1;
2477 rc = 1;
2478 }else{
2479 rc = pWal->exclusiveMode==0;
dan55437592010-05-11 12:19:26 +00002480 }
drh61e4ace2010-05-31 20:28:37 +00002481 return rc;
dan55437592010-05-11 12:19:26 +00002482}
2483
dan5cf53532010-05-01 16:40:20 +00002484#endif /* #ifndef SQLITE_OMIT_WAL */