blob: 7ec256d7bcc35779d30bdd4e05600950e882e1e3 [file] [log] [blame]
dan1da40a32009-09-19 17:00:31 +00001/*
2**
3** The author disclaims copyright to this source code. In place of
4** a legal notice, here is a blessing:
5**
6** May you do good and not evil.
7** May you find forgiveness for yourself and forgive others.
8** May you share freely, never taking more than you give.
9**
10*************************************************************************
11** This file contains code used by the compiler to add foreign key
12** support to compiled SQL statements.
13*/
14#include "sqliteInt.h"
15
16#ifndef SQLITE_OMIT_FOREIGN_KEY
dan75cbd982009-09-21 16:06:03 +000017#ifndef SQLITE_OMIT_TRIGGER
dan1da40a32009-09-19 17:00:31 +000018
19/*
20** Deferred and Immediate FKs
21** --------------------------
22**
23** Foreign keys in SQLite come in two flavours: deferred and immediate.
dan8a2fff72009-09-23 18:07:22 +000024** If an immediate foreign key constraint is violated, SQLITE_CONSTRAINT
25** is returned and the current statement transaction rolled back. If a
dan1da40a32009-09-19 17:00:31 +000026** deferred foreign key constraint is violated, no action is taken
27** immediately. However if the application attempts to commit the
28** transaction before fixing the constraint violation, the attempt fails.
29**
30** Deferred constraints are implemented using a simple counter associated
31** with the database handle. The counter is set to zero each time a
32** database transaction is opened. Each time a statement is executed
33** that causes a foreign key violation, the counter is incremented. Each
34** time a statement is executed that removes an existing violation from
35** the database, the counter is decremented. When the transaction is
36** committed, the commit fails if the current value of the counter is
37** greater than zero. This scheme has two big drawbacks:
38**
39** * When a commit fails due to a deferred foreign key constraint,
40** there is no way to tell which foreign constraint is not satisfied,
41** or which row it is not satisfied for.
42**
43** * If the database contains foreign key violations when the
44** transaction is opened, this may cause the mechanism to malfunction.
45**
46** Despite these problems, this approach is adopted as it seems simpler
47** than the alternatives.
48**
49** INSERT operations:
50**
dan8099ce62009-09-23 08:43:35 +000051** I.1) For each FK for which the table is the child table, search
dan8a2fff72009-09-23 18:07:22 +000052** the parent table for a match. If none is found increment the
53** constraint counter.
dan1da40a32009-09-19 17:00:31 +000054**
dan8a2fff72009-09-23 18:07:22 +000055** I.2) For each FK for which the table is the parent table,
dan8099ce62009-09-23 08:43:35 +000056** search the child table for rows that correspond to the new
57** row in the parent table. Decrement the counter for each row
dan1da40a32009-09-19 17:00:31 +000058** found (as the constraint is now satisfied).
59**
60** DELETE operations:
61**
dan8a2fff72009-09-23 18:07:22 +000062** D.1) For each FK for which the table is the child table,
dan8099ce62009-09-23 08:43:35 +000063** search the parent table for a row that corresponds to the
64** deleted row in the child table. If such a row is not found,
dan1da40a32009-09-19 17:00:31 +000065** decrement the counter.
66**
dan8099ce62009-09-23 08:43:35 +000067** D.2) For each FK for which the table is the parent table, search
68** the child table for rows that correspond to the deleted row
dan8a2fff72009-09-23 18:07:22 +000069** in the parent table. For each found increment the counter.
dan1da40a32009-09-19 17:00:31 +000070**
71** UPDATE operations:
72**
73** An UPDATE command requires that all 4 steps above are taken, but only
74** for FK constraints for which the affected columns are actually
75** modified (values must be compared at runtime).
76**
77** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2.
78** This simplifies the implementation a bit.
79**
80** For the purposes of immediate FK constraints, the OR REPLACE conflict
81** resolution is considered to delete rows before the new row is inserted.
82** If a delete caused by OR REPLACE violates an FK constraint, an exception
83** is thrown, even if the FK constraint would be satisfied after the new
84** row is inserted.
85**
danbd747832009-09-25 12:00:01 +000086** Immediate constraints are usually handled similarly. The only difference
87** is that the counter used is stored as part of each individual statement
88** object (struct Vdbe). If, after the statement has run, its immediate
89** constraint counter is greater than zero, it returns SQLITE_CONSTRAINT
90** and the statement transaction is rolled back. An exception is an INSERT
91** statement that inserts a single row only (no triggers). In this case,
92** instead of using a counter, an exception is thrown immediately if the
93** INSERT violates a foreign key constraint. This is necessary as such
94** an INSERT does not open a statement transaction.
95**
dan1da40a32009-09-19 17:00:31 +000096** TODO: How should dropping a table be handled? How should renaming a
97** table be handled?
dan8099ce62009-09-23 08:43:35 +000098**
99**
dan1da40a32009-09-19 17:00:31 +0000100** Query API Notes
101** ---------------
102**
103** Before coding an UPDATE or DELETE row operation, the code-generator
104** for those two operations needs to know whether or not the operation
105** requires any FK processing and, if so, which columns of the original
106** row are required by the FK processing VDBE code (i.e. if FKs were
107** implemented using triggers, which of the old.* columns would be
108** accessed). No information is required by the code-generator before
dan8099ce62009-09-23 08:43:35 +0000109** coding an INSERT operation. The functions used by the UPDATE/DELETE
110** generation code to query for this information are:
dan1da40a32009-09-19 17:00:31 +0000111**
dan8099ce62009-09-23 08:43:35 +0000112** sqlite3FkRequired() - Test to see if FK processing is required.
113** sqlite3FkOldmask() - Query for the set of required old.* columns.
114**
115**
116** Externally accessible module functions
117** --------------------------------------
118**
119** sqlite3FkCheck() - Check for foreign key violations.
120** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions.
121** sqlite3FkDelete() - Delete an FKey structure.
dan1da40a32009-09-19 17:00:31 +0000122*/
123
124/*
125** VDBE Calling Convention
126** -----------------------
127**
128** Example:
129**
130** For the following INSERT statement:
131**
132** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c);
133** INSERT INTO t1 VALUES(1, 2, 3.1);
134**
135** Register (x): 2 (type integer)
136** Register (x+1): 1 (type integer)
137** Register (x+2): NULL (type NULL)
138** Register (x+3): 3.1 (type real)
139*/
140
141/*
dan8099ce62009-09-23 08:43:35 +0000142** A foreign key constraint requires that the key columns in the parent
dan1da40a32009-09-19 17:00:31 +0000143** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
dan8099ce62009-09-23 08:43:35 +0000144** Given that pParent is the parent table for foreign key constraint pFKey,
145** search the schema a unique index on the parent key columns.
dan1da40a32009-09-19 17:00:31 +0000146**
dan8099ce62009-09-23 08:43:35 +0000147** If successful, zero is returned. If the parent key is an INTEGER PRIMARY
148** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx
149** is set to point to the unique index.
150**
151** If the parent key consists of a single column (the foreign key constraint
152** is not a composite foreign key), output variable *paiCol is set to NULL.
153** Otherwise, it is set to point to an allocated array of size N, where
154** N is the number of columns in the parent key. The first element of the
155** array is the index of the child table column that is mapped by the FK
156** constraint to the parent table column stored in the left-most column
157** of index *ppIdx. The second element of the array is the index of the
158** child table column that corresponds to the second left-most column of
159** *ppIdx, and so on.
160**
161** If the required index cannot be found, either because:
162**
163** 1) The named parent key columns do not exist, or
164**
165** 2) The named parent key columns do exist, but are not subject to a
166** UNIQUE or PRIMARY KEY constraint, or
167**
168** 3) No parent key columns were provided explicitly as part of the
169** foreign key definition, and the parent table does not have a
170** PRIMARY KEY, or
171**
172** 4) No parent key columns were provided explicitly as part of the
173** foreign key definition, and the PRIMARY KEY of the parent table
174** consists of a a different number of columns to the child key in
175** the child table.
176**
177** then non-zero is returned, and a "foreign key mismatch" error loaded
178** into pParse. If an OOM error occurs, non-zero is returned and the
179** pParse->db->mallocFailed flag is set.
dan1da40a32009-09-19 17:00:31 +0000180*/
181static int locateFkeyIndex(
182 Parse *pParse, /* Parse context to store any error in */
dan8099ce62009-09-23 08:43:35 +0000183 Table *pParent, /* Parent table of FK constraint pFKey */
dan1da40a32009-09-19 17:00:31 +0000184 FKey *pFKey, /* Foreign key to find index for */
dan8099ce62009-09-23 08:43:35 +0000185 Index **ppIdx, /* OUT: Unique index on parent table */
dan1da40a32009-09-19 17:00:31 +0000186 int **paiCol /* OUT: Map of index columns in pFKey */
187){
dan8099ce62009-09-23 08:43:35 +0000188 Index *pIdx = 0; /* Value to return via *ppIdx */
189 int *aiCol = 0; /* Value to return via *paiCol */
190 int nCol = pFKey->nCol; /* Number of columns in parent key */
191 char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */
dan1da40a32009-09-19 17:00:31 +0000192
193 /* The caller is responsible for zeroing output parameters. */
194 assert( ppIdx && *ppIdx==0 );
195 assert( !paiCol || *paiCol==0 );
danf7a94542009-09-30 08:11:07 +0000196 assert( pParse );
dan1da40a32009-09-19 17:00:31 +0000197
198 /* If this is a non-composite (single column) foreign key, check if it
dan8099ce62009-09-23 08:43:35 +0000199 ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx
dan1da40a32009-09-19 17:00:31 +0000200 ** and *paiCol set to zero and return early.
201 **
202 ** Otherwise, for a composite foreign key (more than one column), allocate
203 ** space for the aiCol array (returned via output parameter *paiCol).
204 ** Non-composite foreign keys do not require the aiCol array.
205 */
206 if( nCol==1 ){
207 /* The FK maps to the IPK if any of the following are true:
208 **
dand981d442009-09-23 13:59:17 +0000209 ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly
210 ** mapped to the primary key of table pParent, or
211 ** 2) The FK is explicitly mapped to a column declared as INTEGER
dan1da40a32009-09-19 17:00:31 +0000212 ** PRIMARY KEY.
213 */
dan8099ce62009-09-23 08:43:35 +0000214 if( pParent->iPKey>=0 ){
215 if( !zKey ) return 0;
216 if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0;
dan1da40a32009-09-19 17:00:31 +0000217 }
218 }else if( paiCol ){
219 assert( nCol>1 );
220 aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int));
221 if( !aiCol ) return 1;
222 *paiCol = aiCol;
223 }
224
dan8099ce62009-09-23 08:43:35 +0000225 for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){
dan1da40a32009-09-19 17:00:31 +0000226 if( pIdx->nColumn==nCol && pIdx->onError!=OE_None ){
227 /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
228 ** of columns. If each indexed column corresponds to a foreign key
229 ** column of pFKey, then this index is a winner. */
230
dan8099ce62009-09-23 08:43:35 +0000231 if( zKey==0 ){
232 /* If zKey is NULL, then this foreign key is implicitly mapped to
233 ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be
dan1da40a32009-09-19 17:00:31 +0000234 ** identified by the test (Index.autoIndex==2). */
235 if( pIdx->autoIndex==2 ){
dan8a2fff72009-09-23 18:07:22 +0000236 if( aiCol ){
237 int i;
238 for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom;
239 }
dan1da40a32009-09-19 17:00:31 +0000240 break;
241 }
242 }else{
dan8099ce62009-09-23 08:43:35 +0000243 /* If zKey is non-NULL, then this foreign key was declared to
244 ** map to an explicit list of columns in table pParent. Check if this
dan9707c7b2009-09-29 15:41:57 +0000245 ** index matches those columns. Also, check that the index uses
246 ** the default collation sequences for each column. */
dan1da40a32009-09-19 17:00:31 +0000247 int i, j;
248 for(i=0; i<nCol; i++){
dan9707c7b2009-09-29 15:41:57 +0000249 int iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */
250 char *zDfltColl; /* Def. collation for column */
251 char *zIdxCol; /* Name of indexed column */
252
253 /* If the index uses a collation sequence that is different from
254 ** the default collation sequence for the column, this index is
255 ** unusable. Bail out early in this case. */
256 zDfltColl = pParent->aCol[iCol].zColl;
257 if( !zDfltColl ){
258 zDfltColl = "BINARY";
259 }
260 if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break;
261
262 zIdxCol = pParent->aCol[iCol].zName;
dan1da40a32009-09-19 17:00:31 +0000263 for(j=0; j<nCol; j++){
264 if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){
265 if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom;
266 break;
267 }
268 }
269 if( j==nCol ) break;
270 }
271 if( i==nCol ) break; /* pIdx is usable */
272 }
273 }
274 }
275
danf7a94542009-09-30 08:11:07 +0000276 if( !pIdx ){
danf0662562009-09-28 18:52:11 +0000277 if( !pParse->disableTriggers ){
278 sqlite3ErrorMsg(pParse, "foreign key mismatch");
279 }
dan1da40a32009-09-19 17:00:31 +0000280 sqlite3DbFree(pParse->db, aiCol);
281 return 1;
282 }
283
284 *ppIdx = pIdx;
285 return 0;
286}
287
dan8099ce62009-09-23 08:43:35 +0000288/*
danbd747832009-09-25 12:00:01 +0000289** This function is called when a row is inserted into or deleted from the
290** child table of foreign key constraint pFKey. If an SQL UPDATE is executed
291** on the child table of pFKey, this function is invoked twice for each row
dan8099ce62009-09-23 08:43:35 +0000292** affected - once to "delete" the old row, and then again to "insert" the
293** new row.
294**
295** Each time it is called, this function generates VDBE code to locate the
296** row in the parent table that corresponds to the row being inserted into
297** or deleted from the child table. If the parent row can be found, no
298** special action is taken. Otherwise, if the parent row can *not* be
299** found in the parent table:
300**
301** Operation | FK type | Action taken
302** --------------------------------------------------------------------------
danbd747832009-09-25 12:00:01 +0000303** INSERT immediate Increment the "immediate constraint counter".
304**
305** DELETE immediate Decrement the "immediate constraint counter".
dan8099ce62009-09-23 08:43:35 +0000306**
307** INSERT deferred Increment the "deferred constraint counter".
308**
309** DELETE deferred Decrement the "deferred constraint counter".
310**
danbd747832009-09-25 12:00:01 +0000311** These operations are identified in the comment at the top of this file
312** (fkey.c) as "I.1" and "D.1".
dan8099ce62009-09-23 08:43:35 +0000313*/
314static void fkLookupParent(
dan1da40a32009-09-19 17:00:31 +0000315 Parse *pParse, /* Parse context */
316 int iDb, /* Index of database housing pTab */
dan8099ce62009-09-23 08:43:35 +0000317 Table *pTab, /* Parent table of FK pFKey */
318 Index *pIdx, /* Unique index on parent key columns in pTab */
319 FKey *pFKey, /* Foreign key constraint */
320 int *aiCol, /* Map from parent key columns to child table columns */
321 int regData, /* Address of array containing child table row */
dan32b09f22009-09-23 17:29:59 +0000322 int nIncr /* Increment constraint counter by this */
dan1da40a32009-09-19 17:00:31 +0000323){
dan8099ce62009-09-23 08:43:35 +0000324 int i; /* Iterator variable */
325 Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */
326 int iCur = pParse->nTab - 1; /* Cursor number to use */
327 int iOk = sqlite3VdbeMakeLabel(v); /* jump here if parent key found */
dan1da40a32009-09-19 17:00:31 +0000328
dan0ff297e2009-09-25 17:03:14 +0000329 /* If nIncr is less than zero, then check at runtime if there are any
330 ** outstanding constraints to resolve. If there are not, there is no need
331 ** to check if deleting this row resolves any outstanding violations.
332 **
333 ** Check if any of the key columns in the child table row are NULL. If
334 ** any are, then the constraint is considered satisfied. No need to
335 ** search for a matching row in the parent table. */
336 if( nIncr<0 ){
337 sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk);
338 }
dan1da40a32009-09-19 17:00:31 +0000339 for(i=0; i<pFKey->nCol; i++){
dan36062642009-09-21 18:56:23 +0000340 int iReg = aiCol[i] + regData + 1;
dan1da40a32009-09-19 17:00:31 +0000341 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk);
342 }
343
344 if( pIdx==0 ){
dan8099ce62009-09-23 08:43:35 +0000345 /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY
346 ** column of the parent table (table pTab). */
dan9277efa2009-09-28 11:54:21 +0000347 int iMustBeInt; /* Address of MustBeInt instruction */
dan140026b2009-09-24 18:19:41 +0000348 int regTemp = sqlite3GetTempReg(pParse);
349
350 /* Invoke MustBeInt to coerce the child key value to an integer (i.e.
351 ** apply the affinity of the parent key). If this fails, then there
352 ** is no matching parent key. Before using MustBeInt, make a copy of
353 ** the value. Otherwise, the value inserted into the child key column
354 ** will have INTEGER affinity applied to it, which may not be correct. */
355 sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp);
dan9277efa2009-09-28 11:54:21 +0000356 iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0);
357
358 /* If the parent table is the same as the child table, and we are about
359 ** to increment the constraint-counter (i.e. this is an INSERT operation),
360 ** then check if the row being inserted matches itself. If so, do not
361 ** increment the constraint-counter. */
362 if( pTab==pFKey->pFrom && nIncr==1 ){
363 sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp);
364 }
365
dan1da40a32009-09-19 17:00:31 +0000366 sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
dan140026b2009-09-24 18:19:41 +0000367 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp);
dan1da40a32009-09-19 17:00:31 +0000368 sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
369 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
dan9277efa2009-09-28 11:54:21 +0000370 sqlite3VdbeJumpHere(v, iMustBeInt);
dan140026b2009-09-24 18:19:41 +0000371 sqlite3ReleaseTempReg(pParse, regTemp);
dan1da40a32009-09-19 17:00:31 +0000372 }else{
dan140026b2009-09-24 18:19:41 +0000373 int nCol = pFKey->nCol;
374 int regTemp = sqlite3GetTempRange(pParse, nCol);
dan1da40a32009-09-19 17:00:31 +0000375 int regRec = sqlite3GetTempReg(pParse);
376 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
377
378 sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb);
379 sqlite3VdbeChangeP4(v, -1, (char*)pKey, P4_KEYINFO_HANDOFF);
dan9277efa2009-09-28 11:54:21 +0000380 for(i=0; i<nCol; i++){
dan140026b2009-09-24 18:19:41 +0000381 sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[i]+1+regData, regTemp+i);
dan1da40a32009-09-19 17:00:31 +0000382 }
dan9277efa2009-09-28 11:54:21 +0000383
384 /* If the parent table is the same as the child table, and we are about
385 ** to increment the constraint-counter (i.e. this is an INSERT operation),
386 ** then check if the row being inserted matches itself. If so, do not
387 ** increment the constraint-counter. */
388 if( pTab==pFKey->pFrom && nIncr==1 ){
389 int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1;
390 for(i=0; i<nCol; i++){
391 int iChild = aiCol[i]+1+regData;
392 int iParent = pIdx->aiColumn[i]+1+regData;
393 sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent);
394 }
395 sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
396 }
397
dan140026b2009-09-24 18:19:41 +0000398 sqlite3VdbeAddOp3(v, OP_MakeRecord, regTemp, nCol, regRec);
399 sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), 0);
dan1da40a32009-09-19 17:00:31 +0000400 sqlite3VdbeAddOp3(v, OP_Found, iCur, iOk, regRec);
dan9277efa2009-09-28 11:54:21 +0000401
dan1da40a32009-09-19 17:00:31 +0000402 sqlite3ReleaseTempReg(pParse, regRec);
dan140026b2009-09-24 18:19:41 +0000403 sqlite3ReleaseTempRange(pParse, regTemp, nCol);
dan1da40a32009-09-19 17:00:31 +0000404 }
405
dan32b09f22009-09-23 17:29:59 +0000406 if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
407 /* Special case: If this is an INSERT statement that will insert exactly
408 ** one row into the table, raise a constraint immediately instead of
409 ** incrementing a counter. This is necessary as the VM code is being
410 ** generated for will not open a statement transaction. */
411 assert( nIncr==1 );
dan1da40a32009-09-19 17:00:31 +0000412 sqlite3HaltConstraint(
413 pParse, OE_Abort, "foreign key constraint failed", P4_STATIC
414 );
dan32b09f22009-09-23 17:29:59 +0000415 }else{
416 if( nIncr>0 && pFKey->isDeferred==0 ){
417 sqlite3ParseToplevel(pParse)->mayAbort = 1;
418 }
dan0ff297e2009-09-25 17:03:14 +0000419 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
dan1da40a32009-09-19 17:00:31 +0000420 }
421
422 sqlite3VdbeResolveLabel(v, iOk);
423}
424
dan8099ce62009-09-23 08:43:35 +0000425/*
426** This function is called to generate code executed when a row is deleted
427** from the parent table of foreign key constraint pFKey and, if pFKey is
428** deferred, when a row is inserted into the same table. When generating
429** code for an SQL UPDATE operation, this function may be called twice -
430** once to "delete" the old row and once to "insert" the new row.
431**
432** The code generated by this function scans through the rows in the child
433** table that correspond to the parent table row being deleted or inserted.
434** For each child row found, one of the following actions is taken:
435**
436** Operation | FK type | Action taken
437** --------------------------------------------------------------------------
danbd747832009-09-25 12:00:01 +0000438** DELETE immediate Increment the "immediate constraint counter".
439** Or, if the ON (UPDATE|DELETE) action is RESTRICT,
440** throw a "foreign key constraint failed" exception.
441**
442** INSERT immediate Decrement the "immediate constraint counter".
dan8099ce62009-09-23 08:43:35 +0000443**
444** DELETE deferred Increment the "deferred constraint counter".
445** Or, if the ON (UPDATE|DELETE) action is RESTRICT,
446** throw a "foreign key constraint failed" exception.
447**
448** INSERT deferred Decrement the "deferred constraint counter".
449**
danbd747832009-09-25 12:00:01 +0000450** These operations are identified in the comment at the top of this file
451** (fkey.c) as "I.2" and "D.2".
dan8099ce62009-09-23 08:43:35 +0000452*/
453static void fkScanChildren(
dan1da40a32009-09-19 17:00:31 +0000454 Parse *pParse, /* Parse context */
455 SrcList *pSrc, /* SrcList containing the table to scan */
dan9277efa2009-09-28 11:54:21 +0000456 Table *pTab,
dan1da40a32009-09-19 17:00:31 +0000457 Index *pIdx, /* Foreign key index */
458 FKey *pFKey, /* Foreign key relationship */
dan8099ce62009-09-23 08:43:35 +0000459 int *aiCol, /* Map from pIdx cols to child table cols */
dan1da40a32009-09-19 17:00:31 +0000460 int regData, /* Referenced table data starts here */
461 int nIncr /* Amount to increment deferred counter by */
462){
463 sqlite3 *db = pParse->db; /* Database handle */
464 int i; /* Iterator variable */
465 Expr *pWhere = 0; /* WHERE clause to scan with */
466 NameContext sNameContext; /* Context used to resolve WHERE clause */
467 WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */
dan0ff297e2009-09-25 17:03:14 +0000468 int iFkIfZero = 0; /* Address of OP_FkIfZero */
469 Vdbe *v = sqlite3GetVdbe(pParse);
470
dan9277efa2009-09-28 11:54:21 +0000471 assert( !pIdx || pIdx->pTable==pTab );
472
dan0ff297e2009-09-25 17:03:14 +0000473 if( nIncr<0 ){
474 iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0);
475 }
dan1da40a32009-09-19 17:00:31 +0000476
danbd747832009-09-25 12:00:01 +0000477 /* Create an Expr object representing an SQL expression like:
478 **
479 ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ...
480 **
481 ** The collation sequence used for the comparison should be that of
482 ** the parent key columns. The affinity of the parent key column should
483 ** be applied to each child key value before the comparison takes place.
484 */
dan1da40a32009-09-19 17:00:31 +0000485 for(i=0; i<pFKey->nCol; i++){
dan8099ce62009-09-23 08:43:35 +0000486 Expr *pLeft; /* Value from parent table row */
487 Expr *pRight; /* Column ref to child table */
dan1da40a32009-09-19 17:00:31 +0000488 Expr *pEq; /* Expression (pLeft = pRight) */
dan8099ce62009-09-23 08:43:35 +0000489 int iCol; /* Index of column in child table */
490 const char *zCol; /* Name of column in child table */
dan1da40a32009-09-19 17:00:31 +0000491
492 pLeft = sqlite3Expr(db, TK_REGISTER, 0);
493 if( pLeft ){
danbd747832009-09-25 12:00:01 +0000494 /* Set the collation sequence and affinity of the LHS of each TK_EQ
495 ** expression to the parent key column defaults. */
dan140026b2009-09-24 18:19:41 +0000496 if( pIdx ){
497 int iCol = pIdx->aiColumn[i];
498 Column *pCol = &pIdx->pTable->aCol[iCol];
499 pLeft->iTable = regData+iCol+1;
500 pLeft->affinity = pCol->affinity;
501 pLeft->pColl = sqlite3LocateCollSeq(pParse, pCol->zColl);
502 }else{
503 pLeft->iTable = regData;
504 pLeft->affinity = SQLITE_AFF_INTEGER;
505 }
dan1da40a32009-09-19 17:00:31 +0000506 }
507 iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
dana8f0bf62009-09-23 12:06:52 +0000508 assert( iCol>=0 );
509 zCol = pFKey->pFrom->aCol[iCol].zName;
dan1da40a32009-09-19 17:00:31 +0000510 pRight = sqlite3Expr(db, TK_ID, zCol);
511 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0);
512 pWhere = sqlite3ExprAnd(db, pWhere, pEq);
513 }
514
dan9277efa2009-09-28 11:54:21 +0000515 /* If the child table is the same as the parent table, and this scan
516 ** is taking place as part of a DELETE operation (operation D.2), omit the
517 ** row being deleted from the scan by adding ($rowid != rowid) to the WHERE
518 ** clause, where $rowid is the rowid of the row being deleted. */
519 if( pTab==pFKey->pFrom && nIncr>0 ){
520 Expr *pEq; /* Expression (pLeft = pRight) */
521 Expr *pLeft; /* Value from parent table row */
522 Expr *pRight; /* Column ref to child table */
523 pLeft = sqlite3Expr(db, TK_REGISTER, 0);
524 pRight = sqlite3Expr(db, TK_COLUMN, 0);
525 if( pLeft && pRight ){
526 pLeft->iTable = regData;
527 pLeft->affinity = SQLITE_AFF_INTEGER;
528 pRight->iTable = pSrc->a[0].iCursor;
529 pRight->iColumn = -1;
530 }
531 pEq = sqlite3PExpr(pParse, TK_NE, pLeft, pRight, 0);
532 pWhere = sqlite3ExprAnd(db, pWhere, pEq);
533 }
534
dan1da40a32009-09-19 17:00:31 +0000535 /* Resolve the references in the WHERE clause. */
536 memset(&sNameContext, 0, sizeof(NameContext));
537 sNameContext.pSrcList = pSrc;
538 sNameContext.pParse = pParse;
539 sqlite3ResolveExprNames(&sNameContext, pWhere);
540
541 /* Create VDBE to loop through the entries in pSrc that match the WHERE
542 ** clause. If the constraint is not deferred, throw an exception for
543 ** each row found. Otherwise, for deferred constraints, increment the
544 ** deferred constraint counter by nIncr for each row selected. */
545 pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0);
danf7a94542009-09-30 08:11:07 +0000546 if( nIncr>0 && pFKey->isDeferred==0 ){
547 sqlite3ParseToplevel(pParse)->mayAbort = 1;
dan1da40a32009-09-19 17:00:31 +0000548 }
danf7a94542009-09-30 08:11:07 +0000549 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
danf59c5ca2009-09-22 16:55:38 +0000550 if( pWInfo ){
551 sqlite3WhereEnd(pWInfo);
552 }
dan1da40a32009-09-19 17:00:31 +0000553
554 /* Clean up the WHERE clause constructed above. */
555 sqlite3ExprDelete(db, pWhere);
dan0ff297e2009-09-25 17:03:14 +0000556 if( iFkIfZero ){
557 sqlite3VdbeJumpHere(v, iFkIfZero);
558 }
dan1da40a32009-09-19 17:00:31 +0000559}
560
561/*
562** This function returns a pointer to the head of a linked list of FK
dan8099ce62009-09-23 08:43:35 +0000563** constraints for which table pTab is the parent table. For example,
dan1da40a32009-09-19 17:00:31 +0000564** given the following schema:
565**
566** CREATE TABLE t1(a PRIMARY KEY);
567** CREATE TABLE t2(b REFERENCES t1(a);
568**
569** Calling this function with table "t1" as an argument returns a pointer
570** to the FKey structure representing the foreign key constraint on table
571** "t2". Calling this function with "t2" as the argument would return a
dan8099ce62009-09-23 08:43:35 +0000572** NULL pointer (as there are no FK constraints for which t2 is the parent
573** table).
dan1da40a32009-09-19 17:00:31 +0000574*/
dan432cc5b2009-09-26 17:51:48 +0000575FKey *sqlite3FkReferences(Table *pTab){
dan1da40a32009-09-19 17:00:31 +0000576 int nName = sqlite3Strlen30(pTab->zName);
577 return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName, nName);
578}
579
dan8099ce62009-09-23 08:43:35 +0000580/*
581** The second argument is a Trigger structure allocated by the
582** fkActionTrigger() routine. This function deletes the Trigger structure
583** and all of its sub-components.
584**
585** The Trigger structure or any of its sub-components may be allocated from
586** the lookaside buffer belonging to database handle dbMem.
587*/
dan75cbd982009-09-21 16:06:03 +0000588static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){
589 if( p ){
590 TriggerStep *pStep = p->step_list;
591 sqlite3ExprDelete(dbMem, pStep->pWhere);
592 sqlite3ExprListDelete(dbMem, pStep->pExprList);
dan9277efa2009-09-28 11:54:21 +0000593 sqlite3SelectDelete(dbMem, pStep->pSelect);
drh788536b2009-09-23 03:01:58 +0000594 sqlite3ExprDelete(dbMem, p->pWhen);
dan75cbd982009-09-21 16:06:03 +0000595 sqlite3DbFree(dbMem, p);
596 }
597}
598
dan8099ce62009-09-23 08:43:35 +0000599/*
dand66c8302009-09-28 14:49:01 +0000600** This function is called to generate code that runs when table pTab is
601** being dropped from the database. The SrcList passed as the second argument
602** to this function contains a single entry guaranteed to resolve to
603** table pTab.
604**
605** Normally, no code is required. However, if either
606**
607** (a) The table is the parent table of a FK constraint, or
608** (b) The table is the child table of a deferred FK constraint and it is
609** determined at runtime that there are outstanding deferred FK
610** constraint violations in the database,
611**
612** then the equivalent of "DELETE FROM <tbl>" is executed before dropping
613** the table from the database. Triggers are disabled while running this
614** DELETE, but foreign key actions are not.
615*/
616void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){
617 sqlite3 *db = pParse->db;
618 if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) && !pTab->pSelect ){
619 int iSkip = 0;
620 Vdbe *v = sqlite3GetVdbe(pParse);
621
622 assert( v ); /* VDBE has already been allocated */
623 if( sqlite3FkReferences(pTab)==0 ){
624 /* Search for a deferred foreign key constraint for which this table
625 ** is the child table. If one cannot be found, return without
626 ** generating any VDBE code. If one can be found, then jump over
627 ** the entire DELETE if there are no outstanding deferred constraints
628 ** when this statement is run. */
629 FKey *p;
630 for(p=pTab->pFKey; p; p=p->pNextFrom){
631 if( p->isDeferred ) break;
632 }
633 if( !p ) return;
634 iSkip = sqlite3VdbeMakeLabel(v);
635 sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip);
636 }
637
638 pParse->disableTriggers = 1;
639 sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0);
640 pParse->disableTriggers = 0;
641
642 /* If the DELETE has generated immediate foreign key constraint
643 ** violations, halt the VDBE and return an error at this point, before
644 ** any modifications to the schema are made. This is because statement
645 ** transactions are not able to rollback schema changes. */
646 sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2);
647 sqlite3HaltConstraint(
648 pParse, OE_Abort, "foreign key constraint failed", P4_STATIC
649 );
650
651 if( iSkip ){
652 sqlite3VdbeResolveLabel(v, iSkip);
653 }
654 }
655}
656
657/*
dan8099ce62009-09-23 08:43:35 +0000658** This function is called when inserting, deleting or updating a row of
659** table pTab to generate VDBE code to perform foreign key constraint
660** processing for the operation.
661**
662** For a DELETE operation, parameter regOld is passed the index of the
663** first register in an array of (pTab->nCol+1) registers containing the
664** rowid of the row being deleted, followed by each of the column values
665** of the row being deleted, from left to right. Parameter regNew is passed
666** zero in this case.
667**
dan8099ce62009-09-23 08:43:35 +0000668** For an INSERT operation, regOld is passed zero and regNew is passed the
669** first register of an array of (pTab->nCol+1) registers containing the new
670** row data.
671**
dan9277efa2009-09-28 11:54:21 +0000672** For an UPDATE operation, this function is called twice. Once before
673** the original record is deleted from the table using the calling convention
674** described for DELETE. Then again after the original record is deleted
675** but before the new record is inserted using the INSERT convention. In
676** both cases parameter pChanges is passed the list of columns being
677** updated by the statement.
dan8099ce62009-09-23 08:43:35 +0000678*/
dan1da40a32009-09-19 17:00:31 +0000679void sqlite3FkCheck(
680 Parse *pParse, /* Parse context */
681 Table *pTab, /* Row is being deleted from this table */
682 ExprList *pChanges, /* Changed columns if this is an UPDATE */
683 int regOld, /* Previous row data is stored here */
684 int regNew /* New row data is stored here */
685){
686 sqlite3 *db = pParse->db; /* Database handle */
687 Vdbe *v; /* VM to write code to */
688 FKey *pFKey; /* Used to iterate through FKs */
689 int iDb; /* Index of database containing pTab */
690 const char *zDb; /* Name of database containing pTab */
danf0662562009-09-28 18:52:11 +0000691 int isIgnoreErrors = pParse->disableTriggers;
dan1da40a32009-09-19 17:00:31 +0000692
dan792e9202009-09-29 11:28:51 +0000693 /* Exactly one of regOld and regNew should be non-zero. */
694 assert( (regOld==0)!=(regNew==0) );
dan1da40a32009-09-19 17:00:31 +0000695
696 /* If foreign-keys are disabled, this function is a no-op. */
697 if( (db->flags&SQLITE_ForeignKeys)==0 ) return;
698
699 v = sqlite3GetVdbe(pParse);
700 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
701 zDb = db->aDb[iDb].zName;
702
dan8099ce62009-09-23 08:43:35 +0000703 /* Loop through all the foreign key constraints for which pTab is the
704 ** child table (the table that the foreign key definition is part of). */
dan1da40a32009-09-19 17:00:31 +0000705 for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){
dan8099ce62009-09-23 08:43:35 +0000706 Table *pTo; /* Parent table of foreign key pFKey */
dan1da40a32009-09-19 17:00:31 +0000707 Index *pIdx = 0; /* Index on key columns in pTo */
dan36062642009-09-21 18:56:23 +0000708 int *aiFree = 0;
709 int *aiCol;
710 int iCol;
711 int i;
dan1da40a32009-09-19 17:00:31 +0000712
dan8099ce62009-09-23 08:43:35 +0000713 /* Find the parent table of this foreign key. Also find a unique index
714 ** on the parent key columns in the parent table. If either of these
715 ** schema items cannot be located, set an error in pParse and return
716 ** early. */
danf0662562009-09-28 18:52:11 +0000717 if( pParse->disableTriggers ){
718 pTo = sqlite3FindTable(db, pFKey->zTo, zDb);
719 }else{
720 pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
721 }
722 if( !pTo || locateFkeyIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){
723 if( !isIgnoreErrors || db->mallocFailed ) return;
724 continue;
725 }
dan36062642009-09-21 18:56:23 +0000726 assert( pFKey->nCol==1 || (aiFree && pIdx) );
dan1da40a32009-09-19 17:00:31 +0000727
728 /* If the key does not overlap with the pChanges list, skip this FK. */
729 if( pChanges ){
730 /* TODO */
731 }
732
dan36062642009-09-21 18:56:23 +0000733 if( aiFree ){
734 aiCol = aiFree;
735 }else{
736 iCol = pFKey->aCol[0].iFrom;
737 aiCol = &iCol;
738 }
739 for(i=0; i<pFKey->nCol; i++){
740 if( aiCol[i]==pTab->iPKey ){
741 aiCol[i] = -1;
742 }
743 }
744
dan8099ce62009-09-23 08:43:35 +0000745 /* Take a shared-cache advisory read-lock on the parent table. Allocate
746 ** a cursor to use to search the unique index on the parent key columns
747 ** in the parent table. */
dan1da40a32009-09-19 17:00:31 +0000748 sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName);
749 pParse->nTab++;
750
dan32b09f22009-09-23 17:29:59 +0000751 if( regOld!=0 ){
752 /* A row is being removed from the child table. Search for the parent.
753 ** If the parent does not exist, removing the child row resolves an
754 ** outstanding foreign key constraint violation. */
dan8099ce62009-09-23 08:43:35 +0000755 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1);
dan1da40a32009-09-19 17:00:31 +0000756 }
757 if( regNew!=0 ){
dan32b09f22009-09-23 17:29:59 +0000758 /* A row is being added to the child table. If a parent row cannot
759 ** be found, adding the child row has violated the FK constraint. */
dan8099ce62009-09-23 08:43:35 +0000760 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1);
dan1da40a32009-09-19 17:00:31 +0000761 }
762
dan36062642009-09-21 18:56:23 +0000763 sqlite3DbFree(db, aiFree);
dan1da40a32009-09-19 17:00:31 +0000764 }
765
766 /* Loop through all the foreign key constraints that refer to this table */
dan432cc5b2009-09-26 17:51:48 +0000767 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
dan1da40a32009-09-19 17:00:31 +0000768 Index *pIdx = 0; /* Foreign key index for pFKey */
769 SrcList *pSrc;
770 int *aiCol = 0;
771
dan32b09f22009-09-23 17:29:59 +0000772 if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
773 assert( regOld==0 && regNew!=0 );
774 /* Inserting a single row into a parent table cannot cause an immediate
775 ** foreign key violation. So do nothing in this case. */
danf0662562009-09-28 18:52:11 +0000776 continue;
dan1da40a32009-09-19 17:00:31 +0000777 }
778
danf0662562009-09-28 18:52:11 +0000779 if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){
780 if( !isIgnoreErrors || db->mallocFailed ) return;
781 continue;
782 }
dan1da40a32009-09-19 17:00:31 +0000783 assert( aiCol || pFKey->nCol==1 );
784
dan8099ce62009-09-23 08:43:35 +0000785 /* Check if this update statement has modified any of the child key
786 ** columns for this foreign key constraint. If it has not, there is
787 ** no need to search the child table for rows in violation. This is
dan1da40a32009-09-19 17:00:31 +0000788 ** just an optimization. Things would work fine without this check. */
789 if( pChanges ){
790 /* TODO */
791 }
792
793 /* Create a SrcList structure containing a single table (the table
794 ** the foreign key that refers to this table is attached to). This
795 ** is required for the sqlite3WhereXXX() interface. */
796 pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
danf59c5ca2009-09-22 16:55:38 +0000797 if( pSrc ){
798 pSrc->a->pTab = pFKey->pFrom;
799 pSrc->a->pTab->nRef++;
800 pSrc->a->iCursor = pParse->nTab++;
801
dan32b09f22009-09-23 17:29:59 +0000802 if( regNew!=0 ){
dan9277efa2009-09-28 11:54:21 +0000803 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1);
danf59c5ca2009-09-22 16:55:38 +0000804 }
805 if( regOld!=0 ){
806 /* If there is a RESTRICT action configured for the current operation
dan8099ce62009-09-23 08:43:35 +0000807 ** on the parent table of this FK, then throw an exception
danf59c5ca2009-09-22 16:55:38 +0000808 ** immediately if the FK constraint is violated, even if this is a
809 ** deferred trigger. That's what RESTRICT means. To defer checking
810 ** the constraint, the FK should specify NO ACTION (represented
811 ** using OE_None). NO ACTION is the default. */
dan9277efa2009-09-28 11:54:21 +0000812 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1);
danf59c5ca2009-09-22 16:55:38 +0000813 }
814
danf59c5ca2009-09-22 16:55:38 +0000815 sqlite3SrcListDelete(db, pSrc);
dan1da40a32009-09-19 17:00:31 +0000816 }
dan1da40a32009-09-19 17:00:31 +0000817 sqlite3DbFree(db, aiCol);
818 }
819}
820
821#define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x)))
822
823/*
824** This function is called before generating code to update or delete a
825** row contained in table pTab. If the operation is an update, then
826** pChanges is a pointer to the list of columns to modify. If this is a
827** delete, then pChanges is NULL.
828*/
829u32 sqlite3FkOldmask(
830 Parse *pParse, /* Parse context */
831 Table *pTab, /* Table being modified */
832 ExprList *pChanges /* Non-NULL for UPDATE operations */
833){
834 u32 mask = 0;
835 if( pParse->db->flags&SQLITE_ForeignKeys ){
836 FKey *p;
837 int i;
838 for(p=pTab->pFKey; p; p=p->pNextFrom){
dan32b09f22009-09-23 17:29:59 +0000839 for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom);
dan1da40a32009-09-19 17:00:31 +0000840 }
dan432cc5b2009-09-26 17:51:48 +0000841 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
dan1da40a32009-09-19 17:00:31 +0000842 Index *pIdx = 0;
danf0662562009-09-28 18:52:11 +0000843 locateFkeyIndex(pParse, pTab, p, &pIdx, 0);
dan1da40a32009-09-19 17:00:31 +0000844 if( pIdx ){
845 for(i=0; i<pIdx->nColumn; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]);
846 }
847 }
848 }
849 return mask;
850}
851
852/*
853** This function is called before generating code to update or delete a
854** row contained in table pTab. If the operation is an update, then
855** pChanges is a pointer to the list of columns to modify. If this is a
856** delete, then pChanges is NULL.
857**
858** If any foreign key processing will be required, this function returns
859** true. If there is no foreign key related processing, this function
860** returns false.
861*/
862int sqlite3FkRequired(
863 Parse *pParse, /* Parse context */
864 Table *pTab, /* Table being modified */
865 ExprList *pChanges /* Non-NULL for UPDATE operations */
866){
867 if( pParse->db->flags&SQLITE_ForeignKeys ){
dan432cc5b2009-09-26 17:51:48 +0000868 if( sqlite3FkReferences(pTab) || pTab->pFKey ) return 1;
dan1da40a32009-09-19 17:00:31 +0000869 }
870 return 0;
871}
872
dan8099ce62009-09-23 08:43:35 +0000873/*
874** This function is called when an UPDATE or DELETE operation is being
875** compiled on table pTab, which is the parent table of foreign-key pFKey.
876** If the current operation is an UPDATE, then the pChanges parameter is
877** passed a pointer to the list of columns being modified. If it is a
878** DELETE, pChanges is passed a NULL pointer.
879**
880** It returns a pointer to a Trigger structure containing a trigger
881** equivalent to the ON UPDATE or ON DELETE action specified by pFKey.
882** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is
883** returned (these actions require no special handling by the triggers
884** sub-system, code for them is created by fkScanChildren()).
885**
886** For example, if pFKey is the foreign key and pTab is table "p" in
887** the following schema:
888**
889** CREATE TABLE p(pk PRIMARY KEY);
890** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE);
891**
892** then the returned trigger structure is equivalent to:
893**
894** CREATE TRIGGER ... DELETE ON p BEGIN
895** DELETE FROM c WHERE ck = old.pk;
896** END;
897**
898** The returned pointer is cached as part of the foreign key object. It
899** is eventually freed along with the rest of the foreign key object by
900** sqlite3FkDelete().
901*/
dan1da40a32009-09-19 17:00:31 +0000902static Trigger *fkActionTrigger(
dan8099ce62009-09-23 08:43:35 +0000903 Parse *pParse, /* Parse context */
dan1da40a32009-09-19 17:00:31 +0000904 Table *pTab, /* Table being updated or deleted from */
905 FKey *pFKey, /* Foreign key to get action for */
906 ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */
907){
908 sqlite3 *db = pParse->db; /* Database handle */
dan29c7f9c2009-09-22 15:53:47 +0000909 int action; /* One of OE_None, OE_Cascade etc. */
910 Trigger *pTrigger; /* Trigger definition to return */
dan8099ce62009-09-23 08:43:35 +0000911 int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */
dan1da40a32009-09-19 17:00:31 +0000912
dan8099ce62009-09-23 08:43:35 +0000913 action = pFKey->aAction[iAction];
914 pTrigger = pFKey->apTrigger[iAction];
dan1da40a32009-09-19 17:00:31 +0000915
dan9277efa2009-09-28 11:54:21 +0000916 if( action!=OE_None && !pTrigger ){
dan29c7f9c2009-09-22 15:53:47 +0000917 u8 enableLookaside; /* Copy of db->lookaside.bEnabled */
dan8099ce62009-09-23 08:43:35 +0000918 char const *zFrom; /* Name of child table */
dan1da40a32009-09-19 17:00:31 +0000919 int nFrom; /* Length in bytes of zFrom */
dan29c7f9c2009-09-22 15:53:47 +0000920 Index *pIdx = 0; /* Parent key index for this FK */
921 int *aiCol = 0; /* child table cols -> parent key cols */
922 TriggerStep *pStep; /* First (only) step of trigger program */
923 Expr *pWhere = 0; /* WHERE clause of trigger step */
924 ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */
dan9277efa2009-09-28 11:54:21 +0000925 Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */
dan29c7f9c2009-09-22 15:53:47 +0000926 int i; /* Iterator variable */
drh788536b2009-09-23 03:01:58 +0000927 Expr *pWhen = 0; /* WHEN clause for the trigger */
dan1da40a32009-09-19 17:00:31 +0000928
929 if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0;
930 assert( aiCol || pFKey->nCol==1 );
931
dan1da40a32009-09-19 17:00:31 +0000932 for(i=0; i<pFKey->nCol; i++){
dan1da40a32009-09-19 17:00:31 +0000933 Token tOld = { "old", 3 }; /* Literal "old" token */
934 Token tNew = { "new", 3 }; /* Literal "new" token */
dan8099ce62009-09-23 08:43:35 +0000935 Token tFromCol; /* Name of column in child table */
936 Token tToCol; /* Name of column in parent table */
937 int iFromCol; /* Idx of column in child table */
dan29c7f9c2009-09-22 15:53:47 +0000938 Expr *pEq; /* tFromCol = OLD.tToCol */
dan1da40a32009-09-19 17:00:31 +0000939
940 iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
dana8f0bf62009-09-23 12:06:52 +0000941 assert( iFromCol>=0 );
dan1da40a32009-09-19 17:00:31 +0000942 tToCol.z = pIdx ? pTab->aCol[pIdx->aiColumn[i]].zName : "oid";
dana8f0bf62009-09-23 12:06:52 +0000943 tFromCol.z = pFKey->pFrom->aCol[iFromCol].zName;
dan1da40a32009-09-19 17:00:31 +0000944
945 tToCol.n = sqlite3Strlen30(tToCol.z);
946 tFromCol.n = sqlite3Strlen30(tFromCol.z);
947
dan652ac1d2009-09-29 16:38:59 +0000948 /* Create the expression "OLD.zToCol = zFromCol". It is important
949 ** that the "OLD.zToCol" term is on the LHS of the = operator, so
950 ** that the affinity and collation sequence associated with the
951 ** parent table are used for the comparison. */
dan1da40a32009-09-19 17:00:31 +0000952 pEq = sqlite3PExpr(pParse, TK_EQ,
dan1da40a32009-09-19 17:00:31 +0000953 sqlite3PExpr(pParse, TK_DOT,
954 sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
955 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
dan652ac1d2009-09-29 16:38:59 +0000956 , 0),
957 sqlite3PExpr(pParse, TK_ID, 0, 0, &tFromCol)
dan1da40a32009-09-19 17:00:31 +0000958 , 0);
dan29c7f9c2009-09-22 15:53:47 +0000959 pWhere = sqlite3ExprAnd(db, pWhere, pEq);
dan1da40a32009-09-19 17:00:31 +0000960
drh788536b2009-09-23 03:01:58 +0000961 /* For ON UPDATE, construct the next term of the WHEN clause.
962 ** The final WHEN clause will be like this:
963 **
964 ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN)
965 */
966 if( pChanges ){
967 pEq = sqlite3PExpr(pParse, TK_IS,
968 sqlite3PExpr(pParse, TK_DOT,
969 sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
970 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol),
971 0),
972 sqlite3PExpr(pParse, TK_DOT,
973 sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
974 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol),
975 0),
976 0);
977 pWhen = sqlite3ExprAnd(db, pWhen, pEq);
978 }
979
dan9277efa2009-09-28 11:54:21 +0000980 if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){
dan1da40a32009-09-19 17:00:31 +0000981 Expr *pNew;
982 if( action==OE_Cascade ){
983 pNew = sqlite3PExpr(pParse, TK_DOT,
984 sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
985 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
986 , 0);
987 }else if( action==OE_SetDflt ){
dan934ce302009-09-22 16:08:58 +0000988 Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt;
dan1da40a32009-09-19 17:00:31 +0000989 if( pDflt ){
990 pNew = sqlite3ExprDup(db, pDflt, 0);
991 }else{
992 pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
993 }
994 }else{
995 pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
996 }
997 pList = sqlite3ExprListAppend(pParse, pList, pNew);
998 sqlite3ExprListSetName(pParse, pList, &tFromCol, 0);
999 }
1000 }
dan29c7f9c2009-09-22 15:53:47 +00001001 sqlite3DbFree(db, aiCol);
dan1da40a32009-09-19 17:00:31 +00001002
dan9277efa2009-09-28 11:54:21 +00001003 zFrom = pFKey->pFrom->zName;
1004 nFrom = sqlite3Strlen30(zFrom);
1005
1006 if( action==OE_Restrict ){
1007 Token tFrom;
1008 Expr *pRaise;
1009
1010 tFrom.z = zFrom;
1011 tFrom.n = nFrom;
1012 pRaise = sqlite3Expr(db, TK_RAISE, "foreign key constraint failed");
1013 if( pRaise ){
1014 pRaise->affinity = OE_Abort;
1015 }
1016 pSelect = sqlite3SelectNew(pParse,
1017 sqlite3ExprListAppend(pParse, 0, pRaise),
1018 sqlite3SrcListAppend(db, 0, &tFrom, 0),
1019 pWhere,
1020 0, 0, 0, 0, 0, 0
1021 );
1022 pWhere = 0;
1023 }
1024
drh1f638ce2009-09-24 13:48:10 +00001025 /* In the current implementation, pTab->dbMem==0 for all tables except
1026 ** for temporary tables used to describe subqueries. And temporary
1027 ** tables do not have foreign key constraints. Hence, pTab->dbMem
1028 ** should always be 0 there.
1029 */
dan29c7f9c2009-09-22 15:53:47 +00001030 enableLookaside = db->lookaside.bEnabled;
drh46803c32009-09-24 14:27:33 +00001031 db->lookaside.bEnabled = 0;
dan29c7f9c2009-09-22 15:53:47 +00001032
dan29c7f9c2009-09-22 15:53:47 +00001033 pTrigger = (Trigger *)sqlite3DbMallocZero(db,
1034 sizeof(Trigger) + /* struct Trigger */
1035 sizeof(TriggerStep) + /* Single step in trigger program */
1036 nFrom + 1 /* Space for pStep->target.z */
1037 );
1038 if( pTrigger ){
1039 pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1];
1040 pStep->target.z = (char *)&pStep[1];
1041 pStep->target.n = nFrom;
1042 memcpy((char *)pStep->target.z, zFrom, nFrom);
1043
1044 pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
1045 pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE);
dan9277efa2009-09-28 11:54:21 +00001046 pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
drh788536b2009-09-23 03:01:58 +00001047 if( pWhen ){
1048 pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0, 0);
1049 pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
1050 }
dan29c7f9c2009-09-22 15:53:47 +00001051 }
1052
1053 /* Re-enable the lookaside buffer, if it was disabled earlier. */
1054 db->lookaside.bEnabled = enableLookaside;
1055
drh788536b2009-09-23 03:01:58 +00001056 sqlite3ExprDelete(db, pWhere);
1057 sqlite3ExprDelete(db, pWhen);
1058 sqlite3ExprListDelete(db, pList);
dan9277efa2009-09-28 11:54:21 +00001059 sqlite3SelectDelete(db, pSelect);
dan29c7f9c2009-09-22 15:53:47 +00001060 if( db->mallocFailed==1 ){
1061 fkTriggerDelete(db, pTrigger);
1062 return 0;
1063 }
dan1da40a32009-09-19 17:00:31 +00001064
dan9277efa2009-09-28 11:54:21 +00001065 switch( action ){
1066 case OE_Restrict:
1067 pStep->op = TK_SELECT;
1068 break;
1069 case OE_Cascade:
1070 if( !pChanges ){
1071 pStep->op = TK_DELETE;
1072 break;
1073 }
1074 default:
1075 pStep->op = TK_UPDATE;
1076 }
dan1da40a32009-09-19 17:00:31 +00001077 pStep->pTrig = pTrigger;
1078 pTrigger->pSchema = pTab->pSchema;
1079 pTrigger->pTabSchema = pTab->pSchema;
dan8099ce62009-09-23 08:43:35 +00001080 pFKey->apTrigger[iAction] = pTrigger;
1081 pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE);
dan1da40a32009-09-19 17:00:31 +00001082 }
1083
1084 return pTrigger;
1085}
1086
dan1da40a32009-09-19 17:00:31 +00001087/*
1088** This function is called when deleting or updating a row to implement
1089** any required CASCADE, SET NULL or SET DEFAULT actions.
1090*/
1091void sqlite3FkActions(
1092 Parse *pParse, /* Parse context */
1093 Table *pTab, /* Table being updated or deleted from */
1094 ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */
1095 int regOld /* Address of array containing old row */
1096){
1097 /* If foreign-key support is enabled, iterate through all FKs that
1098 ** refer to table pTab. If there is an action associated with the FK
1099 ** for this operation (either update or delete), invoke the associated
1100 ** trigger sub-program. */
1101 if( pParse->db->flags&SQLITE_ForeignKeys ){
1102 FKey *pFKey; /* Iterator variable */
dan432cc5b2009-09-26 17:51:48 +00001103 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
dan1da40a32009-09-19 17:00:31 +00001104 Trigger *pAction = fkActionTrigger(pParse, pTab, pFKey, pChanges);
1105 if( pAction ){
1106 sqlite3CodeRowTriggerDirect(pParse, pAction, pTab, regOld, OE_Abort, 0);
1107 }
1108 }
1109 }
1110}
1111
dan75cbd982009-09-21 16:06:03 +00001112#endif /* ifndef SQLITE_OMIT_TRIGGER */
1113
dan1da40a32009-09-19 17:00:31 +00001114/*
1115** Free all memory associated with foreign key definitions attached to
1116** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
1117** hash table.
1118*/
1119void sqlite3FkDelete(Table *pTab){
1120 FKey *pFKey; /* Iterator variable */
1121 FKey *pNext; /* Copy of pFKey->pNextFrom */
1122
1123 for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){
1124
1125 /* Remove the FK from the fkeyHash hash table. */
1126 if( pFKey->pPrevTo ){
1127 pFKey->pPrevTo->pNextTo = pFKey->pNextTo;
1128 }else{
1129 void *data = (void *)pFKey->pNextTo;
1130 const char *z = (data ? pFKey->pNextTo->zTo : pFKey->zTo);
1131 sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, sqlite3Strlen30(z), data);
1132 }
1133 if( pFKey->pNextTo ){
1134 pFKey->pNextTo->pPrevTo = pFKey->pPrevTo;
1135 }
1136
1137 /* Delete any triggers created to implement actions for this FK. */
dan75cbd982009-09-21 16:06:03 +00001138#ifndef SQLITE_OMIT_TRIGGER
dan8099ce62009-09-23 08:43:35 +00001139 fkTriggerDelete(pTab->dbMem, pFKey->apTrigger[0]);
1140 fkTriggerDelete(pTab->dbMem, pFKey->apTrigger[1]);
dan75cbd982009-09-21 16:06:03 +00001141#endif
dan1da40a32009-09-19 17:00:31 +00001142
1143 /* Delete the memory allocated for the FK structure. */
1144 pNext = pFKey->pNextFrom;
1145 sqlite3DbFree(pTab->dbMem, pFKey);
1146 }
1147}
dan75cbd982009-09-21 16:06:03 +00001148#endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */