blob: 6b8bb0d01bfc2f2c8909343710e0c36ab6dff8c8 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
peter.d.reid60ec9142014-09-06 16:39:46 +000012** This file implements an external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh5d433ce2010-08-14 16:02:52 +000035/*
36** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37** But if the value is zero, make it 65536.
38**
39** This routine is used to extract the "offset to cell content area" value
40** from the header of a btree page. If the page size is 65536 and the page
41** is empty, the offset should be 65536, but the 2-byte value stores zero.
42** This routine makes the necessary adjustment to 65536.
43*/
44#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
drh86f8c192007-08-22 00:39:19 +000045
dan09ff9e12013-03-11 11:49:03 +000046/*
47** Values passed as the 5th argument to allocateBtreePage()
48*/
49#define BTALLOC_ANY 0 /* Allocate any page */
50#define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51#define BTALLOC_LE 2 /* Allocate any page <= the parameter */
52
53/*
54** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55** defined, or 0 if it is. For example:
56**
57** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
58*/
59#ifndef SQLITE_OMIT_AUTOVACUUM
60#define IfNotOmitAV(expr) (expr)
61#else
62#define IfNotOmitAV(expr) 0
63#endif
64
drhe53831d2007-08-17 01:14:38 +000065#ifndef SQLITE_OMIT_SHARED_CACHE
66/*
danielk1977502b4e02008-09-02 14:07:24 +000067** A list of BtShared objects that are eligible for participation
68** in shared cache. This variable has file scope during normal builds,
69** but the test harness needs to access it so we make it global for
70** test builds.
drh7555d8e2009-03-20 13:15:30 +000071**
72** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000073*/
74#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000075BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000076#else
drh78f82d12008-09-02 00:52:52 +000077static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000078#endif
drhe53831d2007-08-17 01:14:38 +000079#endif /* SQLITE_OMIT_SHARED_CACHE */
80
81#ifndef SQLITE_OMIT_SHARED_CACHE
82/*
83** Enable or disable the shared pager and schema features.
84**
85** This routine has no effect on existing database connections.
86** The shared cache setting effects only future calls to
87** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
88*/
89int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000090 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000091 return SQLITE_OK;
92}
93#endif
94
drhd677b3d2007-08-20 22:48:41 +000095
danielk1977aef0bf62005-12-30 16:28:01 +000096
97#ifdef SQLITE_OMIT_SHARED_CACHE
98 /*
drhc25eabe2009-02-24 18:57:31 +000099 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +0000101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +0000104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +0000106 */
drhc25eabe2009-02-24 18:57:31 +0000107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +0000110 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +0000111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +0000113#endif
danielk1977aef0bf62005-12-30 16:28:01 +0000114
daneebf2f52017-11-18 17:30:08 +0000115/*
116** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
117** (MemPage*) as an argument. The (MemPage*) must not be NULL.
118**
119** If SQLITE_DEBUG is not defined, then this macro is equivalent to
120** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
121** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
122** with the page number and filename associated with the (MemPage*).
123*/
124#ifdef SQLITE_DEBUG
125int corruptPageError(int lineno, MemPage *p){
drh8bfe66a2018-01-22 15:45:12 +0000126 char *zMsg;
127 sqlite3BeginBenignMalloc();
128 zMsg = sqlite3_mprintf("database corruption page %d of %s",
daneebf2f52017-11-18 17:30:08 +0000129 (int)p->pgno, sqlite3PagerFilename(p->pBt->pPager, 0)
130 );
drh8bfe66a2018-01-22 15:45:12 +0000131 sqlite3EndBenignMalloc();
daneebf2f52017-11-18 17:30:08 +0000132 if( zMsg ){
133 sqlite3ReportError(SQLITE_CORRUPT, lineno, zMsg);
134 }
135 sqlite3_free(zMsg);
136 return SQLITE_CORRUPT_BKPT;
137}
138# define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
139#else
140# define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
141#endif
142
drhe53831d2007-08-17 01:14:38 +0000143#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +0000144
145#ifdef SQLITE_DEBUG
146/*
drh0ee3dbe2009-10-16 15:05:18 +0000147**** This function is only used as part of an assert() statement. ***
148**
149** Check to see if pBtree holds the required locks to read or write to the
150** table with root page iRoot. Return 1 if it does and 0 if not.
151**
152** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +0000153** Btree connection pBtree:
154**
155** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
156**
drh0ee3dbe2009-10-16 15:05:18 +0000157** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000158** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000159** the corresponding table. This makes things a bit more complicated,
160** as this module treats each table as a separate structure. To determine
161** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000162** function has to search through the database schema.
163**
drh0ee3dbe2009-10-16 15:05:18 +0000164** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000165** hold a write-lock on the schema table (root page 1). This is also
166** acceptable.
167*/
168static int hasSharedCacheTableLock(
169 Btree *pBtree, /* Handle that must hold lock */
170 Pgno iRoot, /* Root page of b-tree */
171 int isIndex, /* True if iRoot is the root of an index b-tree */
172 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
173){
174 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
175 Pgno iTab = 0;
176 BtLock *pLock;
177
drh0ee3dbe2009-10-16 15:05:18 +0000178 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000179 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000180 ** Return true immediately.
181 */
danielk197796d48e92009-06-29 06:00:37 +0000182 if( (pBtree->sharable==0)
drh169dd922017-06-26 13:57:49 +0000183 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommit))
danielk197796d48e92009-06-29 06:00:37 +0000184 ){
185 return 1;
186 }
187
drh0ee3dbe2009-10-16 15:05:18 +0000188 /* If the client is reading or writing an index and the schema is
189 ** not loaded, then it is too difficult to actually check to see if
190 ** the correct locks are held. So do not bother - just return true.
191 ** This case does not come up very often anyhow.
192 */
drh2c5e35f2014-08-05 11:04:21 +0000193 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
drh0ee3dbe2009-10-16 15:05:18 +0000194 return 1;
195 }
196
danielk197796d48e92009-06-29 06:00:37 +0000197 /* Figure out the root-page that the lock should be held on. For table
198 ** b-trees, this is just the root page of the b-tree being read or
199 ** written. For index b-trees, it is the root page of the associated
200 ** table. */
201 if( isIndex ){
202 HashElem *p;
203 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
204 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000205 if( pIdx->tnum==(int)iRoot ){
drh1ffede82015-01-30 20:59:27 +0000206 if( iTab ){
207 /* Two or more indexes share the same root page. There must
208 ** be imposter tables. So just return true. The assert is not
209 ** useful in that case. */
210 return 1;
211 }
shane5eff7cf2009-08-10 03:57:58 +0000212 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000213 }
214 }
215 }else{
216 iTab = iRoot;
217 }
218
219 /* Search for the required lock. Either a write-lock on root-page iTab, a
220 ** write-lock on the schema table, or (if the client is reading) a
221 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
222 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
223 if( pLock->pBtree==pBtree
224 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
225 && pLock->eLock>=eLockType
226 ){
227 return 1;
228 }
229 }
230
231 /* Failed to find the required lock. */
232 return 0;
233}
drh0ee3dbe2009-10-16 15:05:18 +0000234#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000235
drh0ee3dbe2009-10-16 15:05:18 +0000236#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000237/*
drh0ee3dbe2009-10-16 15:05:18 +0000238**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000239**
drh0ee3dbe2009-10-16 15:05:18 +0000240** Return true if it would be illegal for pBtree to write into the
241** table or index rooted at iRoot because other shared connections are
242** simultaneously reading that same table or index.
243**
244** It is illegal for pBtree to write if some other Btree object that
245** shares the same BtShared object is currently reading or writing
246** the iRoot table. Except, if the other Btree object has the
247** read-uncommitted flag set, then it is OK for the other object to
248** have a read cursor.
249**
250** For example, before writing to any part of the table or index
251** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000252**
253** assert( !hasReadConflicts(pBtree, iRoot) );
254*/
255static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
256 BtCursor *p;
257 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
258 if( p->pgnoRoot==iRoot
259 && p->pBtree!=pBtree
drh169dd922017-06-26 13:57:49 +0000260 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommit)
danielk197796d48e92009-06-29 06:00:37 +0000261 ){
262 return 1;
263 }
264 }
265 return 0;
266}
267#endif /* #ifdef SQLITE_DEBUG */
268
danielk1977da184232006-01-05 11:34:32 +0000269/*
drh0ee3dbe2009-10-16 15:05:18 +0000270** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000271** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000272** SQLITE_OK if the lock may be obtained (by calling
273** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000274*/
drhc25eabe2009-02-24 18:57:31 +0000275static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000276 BtShared *pBt = p->pBt;
277 BtLock *pIter;
278
drh1fee73e2007-08-29 04:00:57 +0000279 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000280 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
281 assert( p->db!=0 );
drh169dd922017-06-26 13:57:49 +0000282 assert( !(p->db->flags&SQLITE_ReadUncommit)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000283
danielk19775b413d72009-04-01 09:41:54 +0000284 /* If requesting a write-lock, then the Btree must have an open write
285 ** transaction on this file. And, obviously, for this to be so there
286 ** must be an open write transaction on the file itself.
287 */
288 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
289 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
290
drh0ee3dbe2009-10-16 15:05:18 +0000291 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000292 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000293 return SQLITE_OK;
294 }
295
danielk1977641b0f42007-12-21 04:47:25 +0000296 /* If some other connection is holding an exclusive lock, the
297 ** requested lock may not be obtained.
298 */
drhc9166342012-01-05 23:32:06 +0000299 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
danielk1977404ca072009-03-16 13:19:36 +0000300 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
301 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000302 }
303
danielk1977e0d9e6f2009-07-03 16:25:06 +0000304 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
305 /* The condition (pIter->eLock!=eLock) in the following if(...)
306 ** statement is a simplification of:
307 **
308 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
309 **
310 ** since we know that if eLock==WRITE_LOCK, then no other connection
311 ** may hold a WRITE_LOCK on any table in this file (since there can
312 ** only be a single writer).
313 */
314 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
315 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
316 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
317 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
318 if( eLock==WRITE_LOCK ){
319 assert( p==pBt->pWriter );
drhc9166342012-01-05 23:32:06 +0000320 pBt->btsFlags |= BTS_PENDING;
danielk1977da184232006-01-05 11:34:32 +0000321 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000322 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000323 }
324 }
325 return SQLITE_OK;
326}
drhe53831d2007-08-17 01:14:38 +0000327#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000328
drhe53831d2007-08-17 01:14:38 +0000329#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000330/*
331** Add a lock on the table with root-page iTable to the shared-btree used
332** by Btree handle p. Parameter eLock must be either READ_LOCK or
333** WRITE_LOCK.
334**
danielk19779d104862009-07-09 08:27:14 +0000335** This function assumes the following:
336**
drh0ee3dbe2009-10-16 15:05:18 +0000337** (a) The specified Btree object p is connected to a sharable
338** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000339**
drh0ee3dbe2009-10-16 15:05:18 +0000340** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000341** with the requested lock (i.e. querySharedCacheTableLock() has
342** already been called and returned SQLITE_OK).
343**
344** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
345** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000346*/
drhc25eabe2009-02-24 18:57:31 +0000347static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000348 BtShared *pBt = p->pBt;
349 BtLock *pLock = 0;
350 BtLock *pIter;
351
drh1fee73e2007-08-29 04:00:57 +0000352 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000353 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
354 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000355
danielk1977e0d9e6f2009-07-03 16:25:06 +0000356 /* A connection with the read-uncommitted flag set will never try to
357 ** obtain a read-lock using this function. The only read-lock obtained
358 ** by a connection in read-uncommitted mode is on the sqlite_master
359 ** table, and that lock is obtained in BtreeBeginTrans(). */
drh169dd922017-06-26 13:57:49 +0000360 assert( 0==(p->db->flags&SQLITE_ReadUncommit) || eLock==WRITE_LOCK );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000361
danielk19779d104862009-07-09 08:27:14 +0000362 /* This function should only be called on a sharable b-tree after it
363 ** has been determined that no other b-tree holds a conflicting lock. */
364 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000365 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000366
367 /* First search the list for an existing lock on this table. */
368 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
369 if( pIter->iTable==iTable && pIter->pBtree==p ){
370 pLock = pIter;
371 break;
372 }
373 }
374
375 /* If the above search did not find a BtLock struct associating Btree p
376 ** with table iTable, allocate one and link it into the list.
377 */
378 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000379 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000380 if( !pLock ){
mistachkinfad30392016-02-13 23:43:46 +0000381 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +0000382 }
383 pLock->iTable = iTable;
384 pLock->pBtree = p;
385 pLock->pNext = pBt->pLock;
386 pBt->pLock = pLock;
387 }
388
389 /* Set the BtLock.eLock variable to the maximum of the current lock
390 ** and the requested lock. This means if a write-lock was already held
391 ** and a read-lock requested, we don't incorrectly downgrade the lock.
392 */
393 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000394 if( eLock>pLock->eLock ){
395 pLock->eLock = eLock;
396 }
danielk1977aef0bf62005-12-30 16:28:01 +0000397
398 return SQLITE_OK;
399}
drhe53831d2007-08-17 01:14:38 +0000400#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000401
drhe53831d2007-08-17 01:14:38 +0000402#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000403/*
drhc25eabe2009-02-24 18:57:31 +0000404** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000405** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000406**
drh0ee3dbe2009-10-16 15:05:18 +0000407** This function assumes that Btree p has an open read or write
drhc9166342012-01-05 23:32:06 +0000408** transaction. If it does not, then the BTS_PENDING flag
danielk1977fa542f12009-04-02 18:28:08 +0000409** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000410*/
drhc25eabe2009-02-24 18:57:31 +0000411static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000412 BtShared *pBt = p->pBt;
413 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000414
drh1fee73e2007-08-29 04:00:57 +0000415 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000416 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000417 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000418
danielk1977aef0bf62005-12-30 16:28:01 +0000419 while( *ppIter ){
420 BtLock *pLock = *ppIter;
drhc9166342012-01-05 23:32:06 +0000421 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000422 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000423 if( pLock->pBtree==p ){
424 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000425 assert( pLock->iTable!=1 || pLock==&p->lock );
426 if( pLock->iTable!=1 ){
427 sqlite3_free(pLock);
428 }
danielk1977aef0bf62005-12-30 16:28:01 +0000429 }else{
430 ppIter = &pLock->pNext;
431 }
432 }
danielk1977641b0f42007-12-21 04:47:25 +0000433
drhc9166342012-01-05 23:32:06 +0000434 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
danielk1977404ca072009-03-16 13:19:36 +0000435 if( pBt->pWriter==p ){
436 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000437 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk1977404ca072009-03-16 13:19:36 +0000438 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000439 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000440 ** transaction. If there currently exists a writer, and p is not
441 ** that writer, then the number of locks held by connections other
442 ** than the writer must be about to drop to zero. In this case
drhc9166342012-01-05 23:32:06 +0000443 ** set the BTS_PENDING flag to 0.
danielk1977404ca072009-03-16 13:19:36 +0000444 **
drhc9166342012-01-05 23:32:06 +0000445 ** If there is not currently a writer, then BTS_PENDING must
danielk1977404ca072009-03-16 13:19:36 +0000446 ** be zero already. So this next line is harmless in that case.
447 */
drhc9166342012-01-05 23:32:06 +0000448 pBt->btsFlags &= ~BTS_PENDING;
danielk1977641b0f42007-12-21 04:47:25 +0000449 }
danielk1977aef0bf62005-12-30 16:28:01 +0000450}
danielk197794b30732009-07-02 17:21:57 +0000451
danielk1977e0d9e6f2009-07-03 16:25:06 +0000452/*
drh0ee3dbe2009-10-16 15:05:18 +0000453** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000454*/
danielk197794b30732009-07-02 17:21:57 +0000455static void downgradeAllSharedCacheTableLocks(Btree *p){
456 BtShared *pBt = p->pBt;
457 if( pBt->pWriter==p ){
458 BtLock *pLock;
459 pBt->pWriter = 0;
drhc9166342012-01-05 23:32:06 +0000460 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
danielk197794b30732009-07-02 17:21:57 +0000461 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
462 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
463 pLock->eLock = READ_LOCK;
464 }
465 }
466}
467
danielk1977aef0bf62005-12-30 16:28:01 +0000468#endif /* SQLITE_OMIT_SHARED_CACHE */
469
drh3908fe92017-09-01 14:50:19 +0000470static void releasePage(MemPage *pPage); /* Forward reference */
471static void releasePageOne(MemPage *pPage); /* Forward reference */
drh352a35a2017-08-15 03:46:47 +0000472static void releasePageNotNull(MemPage *pPage); /* Forward reference */
drh980b1a72006-08-16 16:42:48 +0000473
drh1fee73e2007-08-29 04:00:57 +0000474/*
drh0ee3dbe2009-10-16 15:05:18 +0000475***** This routine is used inside of assert() only ****
476**
477** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000478*/
drh0ee3dbe2009-10-16 15:05:18 +0000479#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000480static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000481 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000482}
drh5e08d0f2016-06-04 21:05:54 +0000483
484/* Verify that the cursor and the BtShared agree about what is the current
485** database connetion. This is important in shared-cache mode. If the database
486** connection pointers get out-of-sync, it is possible for routines like
487** btreeInitPage() to reference an stale connection pointer that references a
488** a connection that has already closed. This routine is used inside assert()
489** statements only and for the purpose of double-checking that the btree code
490** does keep the database connection pointers up-to-date.
491*/
dan7a2347e2016-01-07 16:43:54 +0000492static int cursorOwnsBtShared(BtCursor *p){
493 assert( cursorHoldsMutex(p) );
494 return (p->pBtree->db==p->pBt->db);
495}
drh1fee73e2007-08-29 04:00:57 +0000496#endif
497
danielk197792d4d7a2007-05-04 12:05:56 +0000498/*
dan5a500af2014-03-11 20:33:04 +0000499** Invalidate the overflow cache of the cursor passed as the first argument.
500** on the shared btree structure pBt.
danielk197792d4d7a2007-05-04 12:05:56 +0000501*/
drh036dbec2014-03-11 23:40:44 +0000502#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
danielk197792d4d7a2007-05-04 12:05:56 +0000503
504/*
505** Invalidate the overflow page-list cache for all cursors opened
506** on the shared btree structure pBt.
507*/
508static void invalidateAllOverflowCache(BtShared *pBt){
509 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000510 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000511 for(p=pBt->pCursor; p; p=p->pNext){
512 invalidateOverflowCache(p);
513 }
514}
danielk197796d48e92009-06-29 06:00:37 +0000515
dan5a500af2014-03-11 20:33:04 +0000516#ifndef SQLITE_OMIT_INCRBLOB
danielk197796d48e92009-06-29 06:00:37 +0000517/*
518** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000519** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000520** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000521**
522** If argument isClearTable is true, then the entire contents of the
523** table is about to be deleted. In this case invalidate all incrblob
524** cursors open on any row within the table with root-page pgnoRoot.
525**
526** Otherwise, if argument isClearTable is false, then the row with
527** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000528** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000529*/
530static void invalidateIncrblobCursors(
531 Btree *pBtree, /* The database file to check */
drh9ca431a2017-03-29 18:03:50 +0000532 Pgno pgnoRoot, /* The table that might be changing */
danielk197796d48e92009-06-29 06:00:37 +0000533 i64 iRow, /* The rowid that might be changing */
534 int isClearTable /* True if all rows are being deleted */
535){
536 BtCursor *p;
drh69180952015-06-25 13:03:10 +0000537 if( pBtree->hasIncrblobCur==0 ) return;
danielk197796d48e92009-06-29 06:00:37 +0000538 assert( sqlite3BtreeHoldsMutex(pBtree) );
drh69180952015-06-25 13:03:10 +0000539 pBtree->hasIncrblobCur = 0;
540 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
541 if( (p->curFlags & BTCF_Incrblob)!=0 ){
542 pBtree->hasIncrblobCur = 1;
drh9ca431a2017-03-29 18:03:50 +0000543 if( p->pgnoRoot==pgnoRoot && (isClearTable || p->info.nKey==iRow) ){
drh69180952015-06-25 13:03:10 +0000544 p->eState = CURSOR_INVALID;
545 }
danielk197796d48e92009-06-29 06:00:37 +0000546 }
547 }
548}
549
danielk197792d4d7a2007-05-04 12:05:56 +0000550#else
dan5a500af2014-03-11 20:33:04 +0000551 /* Stub function when INCRBLOB is omitted */
drh9ca431a2017-03-29 18:03:50 +0000552 #define invalidateIncrblobCursors(w,x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000553#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000554
drh980b1a72006-08-16 16:42:48 +0000555/*
danielk1977bea2a942009-01-20 17:06:27 +0000556** Set bit pgno of the BtShared.pHasContent bitvec. This is called
557** when a page that previously contained data becomes a free-list leaf
558** page.
559**
560** The BtShared.pHasContent bitvec exists to work around an obscure
561** bug caused by the interaction of two useful IO optimizations surrounding
562** free-list leaf pages:
563**
564** 1) When all data is deleted from a page and the page becomes
565** a free-list leaf page, the page is not written to the database
566** (as free-list leaf pages contain no meaningful data). Sometimes
567** such a page is not even journalled (as it will not be modified,
568** why bother journalling it?).
569**
570** 2) When a free-list leaf page is reused, its content is not read
571** from the database or written to the journal file (why should it
572** be, if it is not at all meaningful?).
573**
574** By themselves, these optimizations work fine and provide a handy
575** performance boost to bulk delete or insert operations. However, if
576** a page is moved to the free-list and then reused within the same
577** transaction, a problem comes up. If the page is not journalled when
578** it is moved to the free-list and it is also not journalled when it
579** is extracted from the free-list and reused, then the original data
580** may be lost. In the event of a rollback, it may not be possible
581** to restore the database to its original configuration.
582**
583** The solution is the BtShared.pHasContent bitvec. Whenever a page is
584** moved to become a free-list leaf page, the corresponding bit is
585** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000586** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000587** set in BtShared.pHasContent. The contents of the bitvec are cleared
588** at the end of every transaction.
589*/
590static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
591 int rc = SQLITE_OK;
592 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000593 assert( pgno<=pBt->nPage );
594 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000595 if( !pBt->pHasContent ){
mistachkinfad30392016-02-13 23:43:46 +0000596 rc = SQLITE_NOMEM_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +0000597 }
598 }
599 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
600 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
601 }
602 return rc;
603}
604
605/*
606** Query the BtShared.pHasContent vector.
607**
608** This function is called when a free-list leaf page is removed from the
609** free-list for reuse. It returns false if it is safe to retrieve the
610** page from the pager layer with the 'no-content' flag set. True otherwise.
611*/
612static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
613 Bitvec *p = pBt->pHasContent;
614 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
615}
616
617/*
618** Clear (destroy) the BtShared.pHasContent bitvec. This should be
619** invoked at the conclusion of each write-transaction.
620*/
621static void btreeClearHasContent(BtShared *pBt){
622 sqlite3BitvecDestroy(pBt->pHasContent);
623 pBt->pHasContent = 0;
624}
625
626/*
drh138eeeb2013-03-27 03:15:23 +0000627** Release all of the apPage[] pages for a cursor.
628*/
629static void btreeReleaseAllCursorPages(BtCursor *pCur){
630 int i;
drh352a35a2017-08-15 03:46:47 +0000631 if( pCur->iPage>=0 ){
632 for(i=0; i<pCur->iPage; i++){
633 releasePageNotNull(pCur->apPage[i]);
634 }
635 releasePageNotNull(pCur->pPage);
636 pCur->iPage = -1;
drh138eeeb2013-03-27 03:15:23 +0000637 }
drh138eeeb2013-03-27 03:15:23 +0000638}
639
danf0ee1d32015-09-12 19:26:11 +0000640/*
641** The cursor passed as the only argument must point to a valid entry
642** when this function is called (i.e. have eState==CURSOR_VALID). This
643** function saves the current cursor key in variables pCur->nKey and
644** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
645** code otherwise.
646**
647** If the cursor is open on an intkey table, then the integer key
648** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
649** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
650** set to point to a malloced buffer pCur->nKey bytes in size containing
651** the key.
652*/
653static int saveCursorKey(BtCursor *pCur){
drha7c90c42016-06-04 20:37:10 +0000654 int rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +0000655 assert( CURSOR_VALID==pCur->eState );
656 assert( 0==pCur->pKey );
657 assert( cursorHoldsMutex(pCur) );
658
drha7c90c42016-06-04 20:37:10 +0000659 if( pCur->curIntKey ){
660 /* Only the rowid is required for a table btree */
661 pCur->nKey = sqlite3BtreeIntegerKey(pCur);
662 }else{
danfffaf232018-12-14 13:18:35 +0000663 /* For an index btree, save the complete key content. It is possible
664 ** that the current key is corrupt. In that case, it is possible that
665 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
666 ** up to the size of 1 varint plus 1 8-byte value when the cursor
667 ** position is restored. Hence the 17 bytes of padding allocated
668 ** below. */
drhd66c4f82016-06-04 20:58:35 +0000669 void *pKey;
drha7c90c42016-06-04 20:37:10 +0000670 pCur->nKey = sqlite3BtreePayloadSize(pCur);
danfffaf232018-12-14 13:18:35 +0000671 pKey = sqlite3Malloc( pCur->nKey + 9 + 8 );
danf0ee1d32015-09-12 19:26:11 +0000672 if( pKey ){
drhcb3cabd2016-11-25 19:18:28 +0000673 rc = sqlite3BtreePayload(pCur, 0, (int)pCur->nKey, pKey);
danf0ee1d32015-09-12 19:26:11 +0000674 if( rc==SQLITE_OK ){
675 pCur->pKey = pKey;
676 }else{
677 sqlite3_free(pKey);
678 }
679 }else{
mistachkinfad30392016-02-13 23:43:46 +0000680 rc = SQLITE_NOMEM_BKPT;
danf0ee1d32015-09-12 19:26:11 +0000681 }
682 }
683 assert( !pCur->curIntKey || !pCur->pKey );
684 return rc;
685}
drh138eeeb2013-03-27 03:15:23 +0000686
687/*
drh980b1a72006-08-16 16:42:48 +0000688** Save the current cursor position in the variables BtCursor.nKey
689** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000690**
691** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
692** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000693*/
694static int saveCursorPosition(BtCursor *pCur){
695 int rc;
696
drhd2f83132015-03-25 17:35:01 +0000697 assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
drh980b1a72006-08-16 16:42:48 +0000698 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000699 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000700
drhd2f83132015-03-25 17:35:01 +0000701 if( pCur->eState==CURSOR_SKIPNEXT ){
702 pCur->eState = CURSOR_VALID;
703 }else{
704 pCur->skipNext = 0;
705 }
drh980b1a72006-08-16 16:42:48 +0000706
danf0ee1d32015-09-12 19:26:11 +0000707 rc = saveCursorKey(pCur);
drh980b1a72006-08-16 16:42:48 +0000708 if( rc==SQLITE_OK ){
drh138eeeb2013-03-27 03:15:23 +0000709 btreeReleaseAllCursorPages(pCur);
drh980b1a72006-08-16 16:42:48 +0000710 pCur->eState = CURSOR_REQUIRESEEK;
711 }
712
dane755e102015-09-30 12:59:12 +0000713 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast);
drh980b1a72006-08-16 16:42:48 +0000714 return rc;
715}
716
drh637f3d82014-08-22 22:26:07 +0000717/* Forward reference */
718static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
719
drh980b1a72006-08-16 16:42:48 +0000720/*
drh0ee3dbe2009-10-16 15:05:18 +0000721** Save the positions of all cursors (except pExcept) that are open on
drh637f3d82014-08-22 22:26:07 +0000722** the table with root-page iRoot. "Saving the cursor position" means that
723** the location in the btree is remembered in such a way that it can be
724** moved back to the same spot after the btree has been modified. This
725** routine is called just before cursor pExcept is used to modify the
726** table, for example in BtreeDelete() or BtreeInsert().
727**
drh27fb7462015-06-30 02:47:36 +0000728** If there are two or more cursors on the same btree, then all such
729** cursors should have their BTCF_Multiple flag set. The btreeCursor()
730** routine enforces that rule. This routine only needs to be called in
731** the uncommon case when pExpect has the BTCF_Multiple flag set.
732**
733** If pExpect!=NULL and if no other cursors are found on the same root-page,
734** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
735** pointless call to this routine.
736**
drh637f3d82014-08-22 22:26:07 +0000737** Implementation note: This routine merely checks to see if any cursors
738** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
739** event that cursors are in need to being saved.
drh980b1a72006-08-16 16:42:48 +0000740*/
741static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
742 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000743 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000744 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000745 for(p=pBt->pCursor; p; p=p->pNext){
drh637f3d82014-08-22 22:26:07 +0000746 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
747 }
drh27fb7462015-06-30 02:47:36 +0000748 if( p ) return saveCursorsOnList(p, iRoot, pExcept);
749 if( pExcept ) pExcept->curFlags &= ~BTCF_Multiple;
750 return SQLITE_OK;
drh637f3d82014-08-22 22:26:07 +0000751}
752
753/* This helper routine to saveAllCursors does the actual work of saving
754** the cursors if and when a cursor is found that actually requires saving.
755** The common case is that no cursors need to be saved, so this routine is
756** broken out from its caller to avoid unnecessary stack pointer movement.
757*/
758static int SQLITE_NOINLINE saveCursorsOnList(
drh3f387402014-09-24 01:23:00 +0000759 BtCursor *p, /* The first cursor that needs saving */
760 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
761 BtCursor *pExcept /* Do not save this cursor */
drh637f3d82014-08-22 22:26:07 +0000762){
763 do{
drh138eeeb2013-03-27 03:15:23 +0000764 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
drhd2f83132015-03-25 17:35:01 +0000765 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drh138eeeb2013-03-27 03:15:23 +0000766 int rc = saveCursorPosition(p);
767 if( SQLITE_OK!=rc ){
768 return rc;
769 }
770 }else{
drh85ef6302017-08-02 15:50:09 +0000771 testcase( p->iPage>=0 );
drh138eeeb2013-03-27 03:15:23 +0000772 btreeReleaseAllCursorPages(p);
drh980b1a72006-08-16 16:42:48 +0000773 }
774 }
drh637f3d82014-08-22 22:26:07 +0000775 p = p->pNext;
776 }while( p );
drh980b1a72006-08-16 16:42:48 +0000777 return SQLITE_OK;
778}
779
780/*
drhbf700f32007-03-31 02:36:44 +0000781** Clear the current cursor position.
782*/
danielk1977be51a652008-10-08 17:58:48 +0000783void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000784 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000785 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000786 pCur->pKey = 0;
787 pCur->eState = CURSOR_INVALID;
788}
789
790/*
danielk19773509a652009-07-06 18:56:13 +0000791** In this version of BtreeMoveto, pKey is a packed index record
792** such as is generated by the OP_MakeRecord opcode. Unpack the
793** record and then call BtreeMovetoUnpacked() to do the work.
794*/
795static int btreeMoveto(
796 BtCursor *pCur, /* Cursor open on the btree to be searched */
797 const void *pKey, /* Packed key if the btree is an index */
798 i64 nKey, /* Integer key for tables. Size of pKey for indices */
799 int bias, /* Bias search to the high end */
800 int *pRes /* Write search results here */
801){
802 int rc; /* Status code */
803 UnpackedRecord *pIdxKey; /* Unpacked index key */
danielk19773509a652009-07-06 18:56:13 +0000804
805 if( pKey ){
806 assert( nKey==(i64)(int)nKey );
drha582b012016-12-21 19:45:54 +0000807 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pCur->pKeyInfo);
mistachkinfad30392016-02-13 23:43:46 +0000808 if( pIdxKey==0 ) return SQLITE_NOMEM_BKPT;
mistachkin0fe5f952011-09-14 18:19:08 +0000809 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
drh094b7582013-11-30 12:49:28 +0000810 if( pIdxKey->nField==0 ){
mistachkin88a79732017-09-04 19:31:54 +0000811 rc = SQLITE_CORRUPT_BKPT;
drha582b012016-12-21 19:45:54 +0000812 goto moveto_done;
drh094b7582013-11-30 12:49:28 +0000813 }
danielk19773509a652009-07-06 18:56:13 +0000814 }else{
815 pIdxKey = 0;
816 }
817 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
drha582b012016-12-21 19:45:54 +0000818moveto_done:
819 if( pIdxKey ){
820 sqlite3DbFree(pCur->pKeyInfo->db, pIdxKey);
danielk19773509a652009-07-06 18:56:13 +0000821 }
822 return rc;
823}
824
825/*
drh980b1a72006-08-16 16:42:48 +0000826** Restore the cursor to the position it was in (or as close to as possible)
827** when saveCursorPosition() was called. Note that this call deletes the
828** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000829** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000830** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000831*/
danielk197730548662009-07-09 05:07:37 +0000832static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000833 int rc;
drhd2f83132015-03-25 17:35:01 +0000834 int skipNext;
dan7a2347e2016-01-07 16:43:54 +0000835 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +0000836 assert( pCur->eState>=CURSOR_REQUIRESEEK );
837 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000838 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000839 }
drh980b1a72006-08-16 16:42:48 +0000840 pCur->eState = CURSOR_INVALID;
drhd2f83132015-03-25 17:35:01 +0000841 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
drh980b1a72006-08-16 16:42:48 +0000842 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000843 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000844 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000845 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drhd2f83132015-03-25 17:35:01 +0000846 pCur->skipNext |= skipNext;
drh9b47ee32013-08-20 03:13:51 +0000847 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
848 pCur->eState = CURSOR_SKIPNEXT;
849 }
drh980b1a72006-08-16 16:42:48 +0000850 }
851 return rc;
852}
853
drha3460582008-07-11 21:02:53 +0000854#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000855 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000856 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000857 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000858
drha3460582008-07-11 21:02:53 +0000859/*
drh6848dad2014-08-22 23:33:03 +0000860** Determine whether or not a cursor has moved from the position where
861** it was last placed, or has been invalidated for any other reason.
862** Cursors can move when the row they are pointing at is deleted out
863** from under them, for example. Cursor might also move if a btree
864** is rebalanced.
drha3460582008-07-11 21:02:53 +0000865**
drh6848dad2014-08-22 23:33:03 +0000866** Calling this routine with a NULL cursor pointer returns false.
drh86dd3712014-03-25 11:00:21 +0000867**
drh6848dad2014-08-22 23:33:03 +0000868** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
869** back to where it ought to be if this routine returns true.
drha3460582008-07-11 21:02:53 +0000870*/
drh6848dad2014-08-22 23:33:03 +0000871int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
drh5ba5f5b2018-06-02 16:32:04 +0000872 assert( EIGHT_BYTE_ALIGNMENT(pCur)
873 || pCur==sqlite3BtreeFakeValidCursor() );
874 assert( offsetof(BtCursor, eState)==0 );
875 assert( sizeof(pCur->eState)==1 );
876 return CURSOR_VALID != *(u8*)pCur;
drh6848dad2014-08-22 23:33:03 +0000877}
878
879/*
drhfe0cf7a2017-08-16 19:20:20 +0000880** Return a pointer to a fake BtCursor object that will always answer
881** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
882** cursor returned must not be used with any other Btree interface.
883*/
884BtCursor *sqlite3BtreeFakeValidCursor(void){
885 static u8 fakeCursor = CURSOR_VALID;
886 assert( offsetof(BtCursor, eState)==0 );
887 return (BtCursor*)&fakeCursor;
888}
889
890/*
drh6848dad2014-08-22 23:33:03 +0000891** This routine restores a cursor back to its original position after it
892** has been moved by some outside activity (such as a btree rebalance or
893** a row having been deleted out from under the cursor).
894**
895** On success, the *pDifferentRow parameter is false if the cursor is left
896** pointing at exactly the same row. *pDifferntRow is the row the cursor
897** was pointing to has been deleted, forcing the cursor to point to some
898** nearby row.
899**
900** This routine should only be called for a cursor that just returned
901** TRUE from sqlite3BtreeCursorHasMoved().
902*/
903int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
drha3460582008-07-11 21:02:53 +0000904 int rc;
905
drh6848dad2014-08-22 23:33:03 +0000906 assert( pCur!=0 );
907 assert( pCur->eState!=CURSOR_VALID );
drha3460582008-07-11 21:02:53 +0000908 rc = restoreCursorPosition(pCur);
909 if( rc ){
drh6848dad2014-08-22 23:33:03 +0000910 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000911 return rc;
912 }
drh606a3572015-03-25 18:29:10 +0000913 if( pCur->eState!=CURSOR_VALID ){
drh6848dad2014-08-22 23:33:03 +0000914 *pDifferentRow = 1;
drha3460582008-07-11 21:02:53 +0000915 }else{
drh606a3572015-03-25 18:29:10 +0000916 assert( pCur->skipNext==0 );
drh6848dad2014-08-22 23:33:03 +0000917 *pDifferentRow = 0;
drha3460582008-07-11 21:02:53 +0000918 }
919 return SQLITE_OK;
920}
921
drhf7854c72015-10-27 13:24:37 +0000922#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh28935362013-12-07 20:39:19 +0000923/*
drh0df57012015-08-14 15:05:55 +0000924** Provide hints to the cursor. The particular hint given (and the type
925** and number of the varargs parameters) is determined by the eHintType
926** parameter. See the definitions of the BTREE_HINT_* macros for details.
drh28935362013-12-07 20:39:19 +0000927*/
drh0df57012015-08-14 15:05:55 +0000928void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
drhf7854c72015-10-27 13:24:37 +0000929 /* Used only by system that substitute their own storage engine */
drh28935362013-12-07 20:39:19 +0000930}
drhf7854c72015-10-27 13:24:37 +0000931#endif
932
933/*
934** Provide flag hints to the cursor.
935*/
936void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
937 assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
938 pCur->hints = x;
939}
940
drh28935362013-12-07 20:39:19 +0000941
danielk1977599fcba2004-11-08 07:13:13 +0000942#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000943/*
drha3152892007-05-05 11:48:52 +0000944** Given a page number of a regular database page, return the page
945** number for the pointer-map page that contains the entry for the
946** input page number.
drh5f77b2e2010-08-21 15:09:37 +0000947**
948** Return 0 (not a valid page) for pgno==1 since there is
949** no pointer map associated with page 1. The integrity_check logic
950** requires that ptrmapPageno(*,1)!=1.
danielk1977afcdd022004-10-31 16:25:42 +0000951*/
danielk1977266664d2006-02-10 08:24:21 +0000952static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000953 int nPagesPerMapPage;
954 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000955 assert( sqlite3_mutex_held(pBt->mutex) );
drh5f77b2e2010-08-21 15:09:37 +0000956 if( pgno<2 ) return 0;
drhd677b3d2007-08-20 22:48:41 +0000957 nPagesPerMapPage = (pBt->usableSize/5)+1;
958 iPtrMap = (pgno-2)/nPagesPerMapPage;
959 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000960 if( ret==PENDING_BYTE_PAGE(pBt) ){
961 ret++;
962 }
963 return ret;
964}
danielk1977a19df672004-11-03 11:37:07 +0000965
danielk1977afcdd022004-10-31 16:25:42 +0000966/*
danielk1977afcdd022004-10-31 16:25:42 +0000967** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000968**
969** This routine updates the pointer map entry for page number 'key'
970** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000971**
972** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
973** a no-op. If an error occurs, the appropriate error code is written
974** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000975*/
drh98add2e2009-07-20 17:11:49 +0000976static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000977 DbPage *pDbPage; /* The pointer map page */
978 u8 *pPtrmap; /* The pointer map data */
979 Pgno iPtrmap; /* The pointer map page number */
980 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000981 int rc; /* Return code from subfunctions */
982
983 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000984
drh1fee73e2007-08-29 04:00:57 +0000985 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000986 /* The master-journal page number must never be used as a pointer map page */
987 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
988
danielk1977ac11ee62005-01-15 12:45:51 +0000989 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000990 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000991 *pRC = SQLITE_CORRUPT_BKPT;
992 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000993 }
danielk1977266664d2006-02-10 08:24:21 +0000994 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +0000995 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977687566d2004-11-02 12:56:41 +0000996 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000997 *pRC = rc;
998 return;
danielk1977afcdd022004-10-31 16:25:42 +0000999 }
drh203b1ea2018-12-14 03:14:18 +00001000 if( ((char*)sqlite3PagerGetExtra(pDbPage))[0]!=0 ){
1001 /* The first byte of the extra data is the MemPage.isInit byte.
1002 ** If that byte is set, it means this page is also being used
1003 ** as a btree page. */
1004 *pRC = SQLITE_CORRUPT_BKPT;
1005 goto ptrmap_exit;
1006 }
danielk19778c666b12008-07-18 09:34:57 +00001007 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +00001008 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +00001009 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +00001010 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +00001011 }
drhfc243732011-05-17 15:21:56 +00001012 assert( offset <= (int)pBt->usableSize-5 );
danielk19773b8a05f2007-03-19 17:44:26 +00001013 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001014
drh615ae552005-01-16 23:21:00 +00001015 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
1016 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +00001017 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +00001018 if( rc==SQLITE_OK ){
1019 pPtrmap[offset] = eType;
1020 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +00001021 }
danielk1977afcdd022004-10-31 16:25:42 +00001022 }
1023
drh4925a552009-07-07 11:39:58 +00001024ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +00001025 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001026}
1027
1028/*
1029** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +00001030**
1031** This routine retrieves the pointer map entry for page 'key', writing
1032** the type and parent page number to *pEType and *pPgno respectively.
1033** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +00001034*/
danielk1977aef0bf62005-12-30 16:28:01 +00001035static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +00001036 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +00001037 int iPtrmap; /* Pointer map page index */
1038 u8 *pPtrmap; /* Pointer map page data */
1039 int offset; /* Offset of entry in pointer map */
1040 int rc;
1041
drh1fee73e2007-08-29 04:00:57 +00001042 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00001043
danielk1977266664d2006-02-10 08:24:21 +00001044 iPtrmap = PTRMAP_PAGENO(pBt, key);
drh9584f582015-11-04 20:22:37 +00001045 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
danielk1977afcdd022004-10-31 16:25:42 +00001046 if( rc!=0 ){
1047 return rc;
1048 }
danielk19773b8a05f2007-03-19 17:44:26 +00001049 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +00001050
danielk19778c666b12008-07-18 09:34:57 +00001051 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhfc243732011-05-17 15:21:56 +00001052 if( offset<0 ){
1053 sqlite3PagerUnref(pDbPage);
1054 return SQLITE_CORRUPT_BKPT;
1055 }
1056 assert( offset <= (int)pBt->usableSize-5 );
drh43617e92006-03-06 20:55:46 +00001057 assert( pEType!=0 );
1058 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +00001059 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +00001060
danielk19773b8a05f2007-03-19 17:44:26 +00001061 sqlite3PagerUnref(pDbPage);
drhcc97ca42017-06-07 22:32:59 +00001062 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap);
danielk1977afcdd022004-10-31 16:25:42 +00001063 return SQLITE_OK;
1064}
1065
danielk197785d90ca2008-07-19 14:25:15 +00001066#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +00001067 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +00001068 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh0f1bf4c2019-01-13 20:17:21 +00001069 #define ptrmapPutOvflPtr(x, y, z, rc)
danielk197785d90ca2008-07-19 14:25:15 +00001070#endif
danielk1977afcdd022004-10-31 16:25:42 +00001071
drh0d316a42002-08-11 20:10:47 +00001072/*
drh271efa52004-05-30 19:19:05 +00001073** Given a btree page and a cell index (0 means the first cell on
1074** the page, 1 means the second cell, and so forth) return a pointer
1075** to the cell content.
1076**
drhf44890a2015-06-27 03:58:15 +00001077** findCellPastPtr() does the same except it skips past the initial
1078** 4-byte child pointer found on interior pages, if there is one.
1079**
drh271efa52004-05-30 19:19:05 +00001080** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +00001081*/
drh1688c862008-07-18 02:44:17 +00001082#define findCell(P,I) \
drh329428e2015-06-30 13:28:18 +00001083 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drhf44890a2015-06-27 03:58:15 +00001084#define findCellPastPtr(P,I) \
drh329428e2015-06-30 13:28:18 +00001085 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
drh68f2a572011-06-03 17:50:49 +00001086
drh43605152004-05-29 21:46:49 +00001087
1088/*
drh5fa60512015-06-19 17:19:34 +00001089** This is common tail processing for btreeParseCellPtr() and
1090** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1091** on a single B-tree page. Make necessary adjustments to the CellInfo
1092** structure.
drh43605152004-05-29 21:46:49 +00001093*/
drh5fa60512015-06-19 17:19:34 +00001094static SQLITE_NOINLINE void btreeParseCellAdjustSizeForOverflow(
1095 MemPage *pPage, /* Page containing the cell */
1096 u8 *pCell, /* Pointer to the cell text. */
1097 CellInfo *pInfo /* Fill in this structure */
1098){
1099 /* If the payload will not fit completely on the local page, we have
1100 ** to decide how much to store locally and how much to spill onto
1101 ** overflow pages. The strategy is to minimize the amount of unused
1102 ** space on overflow pages while keeping the amount of local storage
1103 ** in between minLocal and maxLocal.
1104 **
1105 ** Warning: changing the way overflow payload is distributed in any
1106 ** way will result in an incompatible file format.
1107 */
1108 int minLocal; /* Minimum amount of payload held locally */
1109 int maxLocal; /* Maximum amount of payload held locally */
1110 int surplus; /* Overflow payload available for local storage */
1111
1112 minLocal = pPage->minLocal;
1113 maxLocal = pPage->maxLocal;
1114 surplus = minLocal + (pInfo->nPayload - minLocal)%(pPage->pBt->usableSize-4);
1115 testcase( surplus==maxLocal );
1116 testcase( surplus==maxLocal+1 );
1117 if( surplus <= maxLocal ){
1118 pInfo->nLocal = (u16)surplus;
1119 }else{
1120 pInfo->nLocal = (u16)minLocal;
drh43605152004-05-29 21:46:49 +00001121 }
drh45ac1c72015-12-18 03:59:16 +00001122 pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;
drh43605152004-05-29 21:46:49 +00001123}
1124
1125/*
drh5fa60512015-06-19 17:19:34 +00001126** The following routines are implementations of the MemPage.xParseCell()
1127** method.
danielk19771cc5ed82007-05-16 17:28:43 +00001128**
drh5fa60512015-06-19 17:19:34 +00001129** Parse a cell content block and fill in the CellInfo structure.
1130**
1131** btreeParseCellPtr() => table btree leaf nodes
1132** btreeParseCellNoPayload() => table btree internal nodes
1133** btreeParseCellPtrIndex() => index btree nodes
1134**
1135** There is also a wrapper function btreeParseCell() that works for
1136** all MemPage types and that references the cell by index rather than
1137** by pointer.
drh43605152004-05-29 21:46:49 +00001138*/
drh5fa60512015-06-19 17:19:34 +00001139static void btreeParseCellPtrNoPayload(
1140 MemPage *pPage, /* Page containing the cell */
1141 u8 *pCell, /* Pointer to the cell text. */
1142 CellInfo *pInfo /* Fill in this structure */
1143){
1144 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1145 assert( pPage->leaf==0 );
drh5fa60512015-06-19 17:19:34 +00001146 assert( pPage->childPtrSize==4 );
drh94a31152015-07-01 04:08:40 +00001147#ifndef SQLITE_DEBUG
1148 UNUSED_PARAMETER(pPage);
1149#endif
drh5fa60512015-06-19 17:19:34 +00001150 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
1151 pInfo->nPayload = 0;
1152 pInfo->nLocal = 0;
drh5fa60512015-06-19 17:19:34 +00001153 pInfo->pPayload = 0;
1154 return;
1155}
danielk197730548662009-07-09 05:07:37 +00001156static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +00001157 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +00001158 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +00001159 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +00001160){
drh3e28ff52014-09-24 00:59:08 +00001161 u8 *pIter; /* For scanning through pCell */
drh271efa52004-05-30 19:19:05 +00001162 u32 nPayload; /* Number of bytes of cell payload */
drh56cb04e2015-06-19 18:24:37 +00001163 u64 iKey; /* Extracted Key value */
drh43605152004-05-29 21:46:49 +00001164
drh1fee73e2007-08-29 04:00:57 +00001165 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhab01f612004-05-22 02:55:23 +00001166 assert( pPage->leaf==0 || pPage->leaf==1 );
drh5fa60512015-06-19 17:19:34 +00001167 assert( pPage->intKeyLeaf );
1168 assert( pPage->childPtrSize==0 );
drh56cb04e2015-06-19 18:24:37 +00001169 pIter = pCell;
1170
1171 /* The next block of code is equivalent to:
1172 **
1173 ** pIter += getVarint32(pIter, nPayload);
1174 **
1175 ** The code is inlined to avoid a function call.
1176 */
1177 nPayload = *pIter;
1178 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001179 u8 *pEnd = &pIter[8];
drh56cb04e2015-06-19 18:24:37 +00001180 nPayload &= 0x7f;
1181 do{
1182 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1183 }while( (*pIter)>=0x80 && pIter<pEnd );
drh6f11bef2004-05-13 01:12:56 +00001184 }
drh56cb04e2015-06-19 18:24:37 +00001185 pIter++;
1186
1187 /* The next block of code is equivalent to:
1188 **
1189 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1190 **
1191 ** The code is inlined to avoid a function call.
1192 */
1193 iKey = *pIter;
1194 if( iKey>=0x80 ){
1195 u8 *pEnd = &pIter[7];
1196 iKey &= 0x7f;
1197 while(1){
1198 iKey = (iKey<<7) | (*++pIter & 0x7f);
1199 if( (*pIter)<0x80 ) break;
1200 if( pIter>=pEnd ){
1201 iKey = (iKey<<8) | *++pIter;
1202 break;
1203 }
1204 }
1205 }
1206 pIter++;
1207
1208 pInfo->nKey = *(i64*)&iKey;
drh72365832007-03-06 15:53:44 +00001209 pInfo->nPayload = nPayload;
drhab1cc582014-09-23 21:25:19 +00001210 pInfo->pPayload = pIter;
drh0a45c272009-07-08 01:49:11 +00001211 testcase( nPayload==pPage->maxLocal );
1212 testcase( nPayload==pPage->maxLocal+1 );
drhab1cc582014-09-23 21:25:19 +00001213 if( nPayload<=pPage->maxLocal ){
drh271efa52004-05-30 19:19:05 +00001214 /* This is the (easy) common case where the entire payload fits
1215 ** on the local page. No overflow is required.
1216 */
drhab1cc582014-09-23 21:25:19 +00001217 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1218 if( pInfo->nSize<4 ) pInfo->nSize = 4;
drhf49661a2008-12-10 16:45:50 +00001219 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +00001220 }else{
drh5fa60512015-06-19 17:19:34 +00001221 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh6f11bef2004-05-13 01:12:56 +00001222 }
drh3aac2dd2004-04-26 14:10:20 +00001223}
drh5fa60512015-06-19 17:19:34 +00001224static void btreeParseCellPtrIndex(
1225 MemPage *pPage, /* Page containing the cell */
1226 u8 *pCell, /* Pointer to the cell text. */
1227 CellInfo *pInfo /* Fill in this structure */
1228){
1229 u8 *pIter; /* For scanning through pCell */
1230 u32 nPayload; /* Number of bytes of cell payload */
drh3aac2dd2004-04-26 14:10:20 +00001231
drh5fa60512015-06-19 17:19:34 +00001232 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1233 assert( pPage->leaf==0 || pPage->leaf==1 );
1234 assert( pPage->intKeyLeaf==0 );
drh5fa60512015-06-19 17:19:34 +00001235 pIter = pCell + pPage->childPtrSize;
1236 nPayload = *pIter;
1237 if( nPayload>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001238 u8 *pEnd = &pIter[8];
drh5fa60512015-06-19 17:19:34 +00001239 nPayload &= 0x7f;
1240 do{
1241 nPayload = (nPayload<<7) | (*++pIter & 0x7f);
1242 }while( *(pIter)>=0x80 && pIter<pEnd );
1243 }
1244 pIter++;
1245 pInfo->nKey = nPayload;
1246 pInfo->nPayload = nPayload;
1247 pInfo->pPayload = pIter;
1248 testcase( nPayload==pPage->maxLocal );
1249 testcase( nPayload==pPage->maxLocal+1 );
1250 if( nPayload<=pPage->maxLocal ){
1251 /* This is the (easy) common case where the entire payload fits
1252 ** on the local page. No overflow is required.
1253 */
1254 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1255 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1256 pInfo->nLocal = (u16)nPayload;
drh5fa60512015-06-19 17:19:34 +00001257 }else{
1258 btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
drh3aac2dd2004-04-26 14:10:20 +00001259 }
1260}
danielk197730548662009-07-09 05:07:37 +00001261static void btreeParseCell(
drh43605152004-05-29 21:46:49 +00001262 MemPage *pPage, /* Page containing the cell */
1263 int iCell, /* The cell index. First cell is 0 */
1264 CellInfo *pInfo /* Fill in this structure */
1265){
drh5fa60512015-06-19 17:19:34 +00001266 pPage->xParseCell(pPage, findCell(pPage, iCell), pInfo);
drh43605152004-05-29 21:46:49 +00001267}
drh3aac2dd2004-04-26 14:10:20 +00001268
1269/*
drh5fa60512015-06-19 17:19:34 +00001270** The following routines are implementations of the MemPage.xCellSize
1271** method.
1272**
drh43605152004-05-29 21:46:49 +00001273** Compute the total number of bytes that a Cell needs in the cell
1274** data area of the btree-page. The return number includes the cell
1275** data header and the local payload, but not any overflow page or
1276** the space used by the cell pointer.
drh25ada072015-06-19 15:07:14 +00001277**
drh5fa60512015-06-19 17:19:34 +00001278** cellSizePtrNoPayload() => table internal nodes
1279** cellSizePtr() => all index nodes & table leaf nodes
drh3b7511c2001-05-26 13:15:44 +00001280*/
danielk1977ae5558b2009-04-29 11:31:47 +00001281static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
drh3f387402014-09-24 01:23:00 +00001282 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1283 u8 *pEnd; /* End mark for a varint */
1284 u32 nSize; /* Size value to return */
danielk1977ae5558b2009-04-29 11:31:47 +00001285
1286#ifdef SQLITE_DEBUG
1287 /* The value returned by this function should always be the same as
1288 ** the (CellInfo.nSize) value found by doing a full parse of the
1289 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1290 ** this function verifies that this invariant is not violated. */
1291 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001292 pPage->xParseCell(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +00001293#endif
1294
drh3e28ff52014-09-24 00:59:08 +00001295 nSize = *pIter;
1296 if( nSize>=0x80 ){
drheeab2c62015-06-19 20:08:39 +00001297 pEnd = &pIter[8];
drh3e28ff52014-09-24 00:59:08 +00001298 nSize &= 0x7f;
1299 do{
1300 nSize = (nSize<<7) | (*++pIter & 0x7f);
1301 }while( *(pIter)>=0x80 && pIter<pEnd );
1302 }
1303 pIter++;
danielk1977ae5558b2009-04-29 11:31:47 +00001304 if( pPage->intKey ){
danielk1977ae5558b2009-04-29 11:31:47 +00001305 /* pIter now points at the 64-bit integer key value, a variable length
1306 ** integer. The following block moves pIter to point at the first byte
1307 ** past the end of the key value. */
1308 pEnd = &pIter[9];
1309 while( (*pIter++)&0x80 && pIter<pEnd );
danielk1977ae5558b2009-04-29 11:31:47 +00001310 }
drh0a45c272009-07-08 01:49:11 +00001311 testcase( nSize==pPage->maxLocal );
1312 testcase( nSize==pPage->maxLocal+1 );
drh3e28ff52014-09-24 00:59:08 +00001313 if( nSize<=pPage->maxLocal ){
1314 nSize += (u32)(pIter - pCell);
1315 if( nSize<4 ) nSize = 4;
1316 }else{
danielk1977ae5558b2009-04-29 11:31:47 +00001317 int minLocal = pPage->minLocal;
1318 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +00001319 testcase( nSize==pPage->maxLocal );
1320 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +00001321 if( nSize>pPage->maxLocal ){
1322 nSize = minLocal;
1323 }
drh3e28ff52014-09-24 00:59:08 +00001324 nSize += 4 + (u16)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001325 }
drhdc41d602014-09-22 19:51:35 +00001326 assert( nSize==debuginfo.nSize || CORRUPT_DB );
shane60a4b532009-05-06 18:57:09 +00001327 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001328}
drh25ada072015-06-19 15:07:14 +00001329static u16 cellSizePtrNoPayload(MemPage *pPage, u8 *pCell){
1330 u8 *pIter = pCell + 4; /* For looping over bytes of pCell */
1331 u8 *pEnd; /* End mark for a varint */
1332
1333#ifdef SQLITE_DEBUG
1334 /* The value returned by this function should always be the same as
1335 ** the (CellInfo.nSize) value found by doing a full parse of the
1336 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1337 ** this function verifies that this invariant is not violated. */
1338 CellInfo debuginfo;
drh5fa60512015-06-19 17:19:34 +00001339 pPage->xParseCell(pPage, pCell, &debuginfo);
drh94a31152015-07-01 04:08:40 +00001340#else
1341 UNUSED_PARAMETER(pPage);
drh25ada072015-06-19 15:07:14 +00001342#endif
1343
1344 assert( pPage->childPtrSize==4 );
1345 pEnd = pIter + 9;
1346 while( (*pIter++)&0x80 && pIter<pEnd );
1347 assert( debuginfo.nSize==(u16)(pIter - pCell) || CORRUPT_DB );
1348 return (u16)(pIter - pCell);
1349}
1350
drh0ee3dbe2009-10-16 15:05:18 +00001351
1352#ifdef SQLITE_DEBUG
1353/* This variation on cellSizePtr() is used inside of assert() statements
1354** only. */
drha9121e42008-02-19 14:59:35 +00001355static u16 cellSize(MemPage *pPage, int iCell){
drh25ada072015-06-19 15:07:14 +00001356 return pPage->xCellSize(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001357}
danielk1977bc6ada42004-06-30 08:20:16 +00001358#endif
drh3b7511c2001-05-26 13:15:44 +00001359
danielk197779a40da2005-01-16 08:00:01 +00001360#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001361/*
drh0f1bf4c2019-01-13 20:17:21 +00001362** The cell pCell is currently part of page pSrc but will ultimately be part
1363** of pPage. (pSrc and pPager are often the same.) If pCell contains a
1364** pointer to an overflow page, insert an entry into the pointer-map for
1365** the overflow page that will be valid after pCell has been moved to pPage.
danielk1977ac11ee62005-01-15 12:45:51 +00001366*/
drh0f1bf4c2019-01-13 20:17:21 +00001367static void ptrmapPutOvflPtr(MemPage *pPage, MemPage *pSrc, u8 *pCell,int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001368 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001369 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001370 assert( pCell!=0 );
drh5fa60512015-06-19 17:19:34 +00001371 pPage->xParseCell(pPage, pCell, &info);
drh45ac1c72015-12-18 03:59:16 +00001372 if( info.nLocal<info.nPayload ){
drhe7acce62018-12-14 16:00:38 +00001373 Pgno ovfl;
drh0f1bf4c2019-01-13 20:17:21 +00001374 if( SQLITE_WITHIN(pSrc->aDataEnd, pCell, pCell+info.nLocal) ){
1375 testcase( pSrc!=pPage );
drhe7acce62018-12-14 16:00:38 +00001376 *pRC = SQLITE_CORRUPT_BKPT;
1377 return;
1378 }
1379 ovfl = get4byte(&pCell[info.nSize-4]);
drh98add2e2009-07-20 17:11:49 +00001380 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001381 }
danielk1977ac11ee62005-01-15 12:45:51 +00001382}
danielk197779a40da2005-01-16 08:00:01 +00001383#endif
1384
danielk1977ac11ee62005-01-15 12:45:51 +00001385
drhda200cc2004-05-09 11:51:38 +00001386/*
dane6d065a2017-02-24 19:58:22 +00001387** Defragment the page given. This routine reorganizes cells within the
1388** page so that there are no free-blocks on the free-block list.
1389**
1390** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1391** present in the page after this routine returns.
drhfdab0262014-11-20 15:30:50 +00001392**
1393** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1394** b-tree page so that there are no freeblocks or fragment bytes, all
1395** unused bytes are contained in the unallocated space region, and all
1396** cells are packed tightly at the end of the page.
drh365d68f2001-05-11 11:02:46 +00001397*/
dane6d065a2017-02-24 19:58:22 +00001398static int defragmentPage(MemPage *pPage, int nMaxFrag){
drh43605152004-05-29 21:46:49 +00001399 int i; /* Loop counter */
peter.d.reid60ec9142014-09-06 16:39:46 +00001400 int pc; /* Address of the i-th cell */
drh43605152004-05-29 21:46:49 +00001401 int hdr; /* Offset to the page header */
1402 int size; /* Size of a cell */
1403 int usableSize; /* Number of usable bytes on a page */
1404 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001405 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001406 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001407 unsigned char *data; /* The page data */
1408 unsigned char *temp; /* Temp area for cell content */
drh588400b2014-09-27 05:00:25 +00001409 unsigned char *src; /* Source of content */
drh17146622009-07-07 17:38:38 +00001410 int iCellFirst; /* First allowable cell index */
1411 int iCellLast; /* Last possible cell index */
1412
danielk19773b8a05f2007-03-19 17:44:26 +00001413 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001414 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001415 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001416 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001417 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh588400b2014-09-27 05:00:25 +00001418 temp = 0;
1419 src = data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001420 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001421 cellOffset = pPage->cellOffset;
1422 nCell = pPage->nCell;
1423 assert( nCell==get2byte(&data[hdr+3]) );
dane6d065a2017-02-24 19:58:22 +00001424 iCellFirst = cellOffset + 2*nCell;
dan30741eb2017-03-03 20:02:53 +00001425 usableSize = pPage->pBt->usableSize;
dane6d065a2017-02-24 19:58:22 +00001426
1427 /* This block handles pages with two or fewer free blocks and nMaxFrag
1428 ** or fewer fragmented bytes. In this case it is faster to move the
1429 ** two (or one) blocks of cells using memmove() and add the required
1430 ** offsets to each pointer in the cell-pointer array than it is to
1431 ** reconstruct the entire page. */
1432 if( (int)data[hdr+7]<=nMaxFrag ){
1433 int iFree = get2byte(&data[hdr+1]);
drh5881dfe2018-12-13 03:36:13 +00001434
1435 /* If the initial freeblock offset were out of bounds, that would
1436 ** have been detected by btreeInitPage() when it was computing the
1437 ** number of free bytes on the page. */
1438 assert( iFree<=usableSize-4 );
dane6d065a2017-02-24 19:58:22 +00001439 if( iFree ){
1440 int iFree2 = get2byte(&data[iFree]);
drh5881dfe2018-12-13 03:36:13 +00001441 if( iFree2>usableSize-4 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001442 if( 0==iFree2 || (data[iFree2]==0 && data[iFree2+1]==0) ){
1443 u8 *pEnd = &data[cellOffset + nCell*2];
1444 u8 *pAddr;
1445 int sz2 = 0;
1446 int sz = get2byte(&data[iFree+2]);
1447 int top = get2byte(&data[hdr+5]);
drh4e6cec12017-09-28 13:47:35 +00001448 if( top>=iFree ){
daneebf2f52017-11-18 17:30:08 +00001449 return SQLITE_CORRUPT_PAGE(pPage);
drh4e6cec12017-09-28 13:47:35 +00001450 }
dane6d065a2017-02-24 19:58:22 +00001451 if( iFree2 ){
drh5881dfe2018-12-13 03:36:13 +00001452 if( iFree+sz>iFree2 ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001453 sz2 = get2byte(&data[iFree2+2]);
drh5881dfe2018-12-13 03:36:13 +00001454 if( iFree2+sz2 > usableSize ) return SQLITE_CORRUPT_PAGE(pPage);
dane6d065a2017-02-24 19:58:22 +00001455 memmove(&data[iFree+sz+sz2], &data[iFree+sz], iFree2-(iFree+sz));
1456 sz += sz2;
1457 }
1458 cbrk = top+sz;
dan30741eb2017-03-03 20:02:53 +00001459 assert( cbrk+(iFree-top) <= usableSize );
dane6d065a2017-02-24 19:58:22 +00001460 memmove(&data[cbrk], &data[top], iFree-top);
1461 for(pAddr=&data[cellOffset]; pAddr<pEnd; pAddr+=2){
1462 pc = get2byte(pAddr);
1463 if( pc<iFree ){ put2byte(pAddr, pc+sz); }
1464 else if( pc<iFree2 ){ put2byte(pAddr, pc+sz2); }
1465 }
1466 goto defragment_out;
1467 }
1468 }
1469 }
1470
drh281b21d2008-08-22 12:57:08 +00001471 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001472 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001473 for(i=0; i<nCell; i++){
1474 u8 *pAddr; /* The i-th cell pointer */
1475 pAddr = &data[cellOffset + i*2];
1476 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001477 testcase( pc==iCellFirst );
1478 testcase( pc==iCellLast );
danielk197730548662009-07-09 05:07:37 +00001479 /* These conditions have already been verified in btreeInitPage()
drh1421d982015-05-27 03:46:18 +00001480 ** if PRAGMA cell_size_check=ON.
drh17146622009-07-07 17:38:38 +00001481 */
1482 if( pc<iCellFirst || pc>iCellLast ){
daneebf2f52017-11-18 17:30:08 +00001483 return SQLITE_CORRUPT_PAGE(pPage);
shane0af3f892008-11-12 04:55:34 +00001484 }
drh17146622009-07-07 17:38:38 +00001485 assert( pc>=iCellFirst && pc<=iCellLast );
drh25ada072015-06-19 15:07:14 +00001486 size = pPage->xCellSize(pPage, &src[pc]);
drh281b21d2008-08-22 12:57:08 +00001487 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001488 if( cbrk<iCellFirst || pc+size>usableSize ){
daneebf2f52017-11-18 17:30:08 +00001489 return SQLITE_CORRUPT_PAGE(pPage);
drh17146622009-07-07 17:38:38 +00001490 }
drh7157e1d2009-07-09 13:25:32 +00001491 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001492 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001493 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001494 put2byte(pAddr, cbrk);
drh588400b2014-09-27 05:00:25 +00001495 if( temp==0 ){
1496 int x;
1497 if( cbrk==pc ) continue;
1498 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1499 x = get2byte(&data[hdr+5]);
1500 memcpy(&temp[x], &data[x], (cbrk+size) - x);
1501 src = temp;
1502 }
1503 memcpy(&data[cbrk], &src[pc], size);
drh2af926b2001-05-15 00:39:25 +00001504 }
dane6d065a2017-02-24 19:58:22 +00001505 data[hdr+7] = 0;
dane6d065a2017-02-24 19:58:22 +00001506
1507 defragment_out:
dan3b2ede12017-02-25 16:24:02 +00001508 if( data[hdr+7]+cbrk-iCellFirst!=pPage->nFree ){
daneebf2f52017-11-18 17:30:08 +00001509 return SQLITE_CORRUPT_PAGE(pPage);
dan3b2ede12017-02-25 16:24:02 +00001510 }
drh17146622009-07-07 17:38:38 +00001511 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001512 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001513 data[hdr+1] = 0;
1514 data[hdr+2] = 0;
drh17146622009-07-07 17:38:38 +00001515 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001516 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shane0af3f892008-11-12 04:55:34 +00001517 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001518}
1519
drha059ad02001-04-17 20:09:11 +00001520/*
dan8e9ba0c2014-10-14 17:27:04 +00001521** Search the free-list on page pPg for space to store a cell nByte bytes in
1522** size. If one can be found, return a pointer to the space and remove it
1523** from the free-list.
1524**
1525** If no suitable space can be found on the free-list, return NULL.
1526**
drhba0f9992014-10-30 20:48:44 +00001527** This function may detect corruption within pPg. If corruption is
1528** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
dan61e94c92014-10-27 08:02:16 +00001529**
drhb7580e82015-06-25 18:36:13 +00001530** Slots on the free list that are between 1 and 3 bytes larger than nByte
1531** will be ignored if adding the extra space to the fragmentation count
1532** causes the fragmentation count to exceed 60.
dan8e9ba0c2014-10-14 17:27:04 +00001533*/
drhb7580e82015-06-25 18:36:13 +00001534static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc){
dan8e9ba0c2014-10-14 17:27:04 +00001535 const int hdr = pPg->hdrOffset;
1536 u8 * const aData = pPg->aData;
drhb7580e82015-06-25 18:36:13 +00001537 int iAddr = hdr + 1;
1538 int pc = get2byte(&aData[iAddr]);
1539 int x;
dan8e9ba0c2014-10-14 17:27:04 +00001540 int usableSize = pPg->pBt->usableSize;
drh87d63c92017-08-23 23:09:03 +00001541 int size; /* Size of the free slot */
dan8e9ba0c2014-10-14 17:27:04 +00001542
drhb7580e82015-06-25 18:36:13 +00001543 assert( pc>0 );
drh87d63c92017-08-23 23:09:03 +00001544 while( pc<=usableSize-4 ){
drh113762a2014-11-19 16:36:25 +00001545 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1546 ** freeblock form a big-endian integer which is the size of the freeblock
1547 ** in bytes, including the 4-byte header. */
dan8e9ba0c2014-10-14 17:27:04 +00001548 size = get2byte(&aData[pc+2]);
drhb7580e82015-06-25 18:36:13 +00001549 if( (x = size - nByte)>=0 ){
dan8e9ba0c2014-10-14 17:27:04 +00001550 testcase( x==4 );
1551 testcase( x==3 );
drh5e398e42017-08-23 20:36:06 +00001552 if( size+pc > usableSize ){
daneebf2f52017-11-18 17:30:08 +00001553 *pRc = SQLITE_CORRUPT_PAGE(pPg);
drh24dee9d2015-06-02 19:36:29 +00001554 return 0;
1555 }else if( x<4 ){
drhfdab0262014-11-20 15:30:50 +00001556 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1557 ** number of bytes in fragments may not exceed 60. */
drhb7580e82015-06-25 18:36:13 +00001558 if( aData[hdr+7]>57 ) return 0;
1559
dan8e9ba0c2014-10-14 17:27:04 +00001560 /* Remove the slot from the free-list. Update the number of
1561 ** fragmented bytes within the page. */
1562 memcpy(&aData[iAddr], &aData[pc], 2);
1563 aData[hdr+7] += (u8)x;
dan8e9ba0c2014-10-14 17:27:04 +00001564 }else{
1565 /* The slot remains on the free-list. Reduce its size to account
1566 ** for the portion used by the new allocation. */
1567 put2byte(&aData[pc+2], x);
1568 }
1569 return &aData[pc + x];
1570 }
drhb7580e82015-06-25 18:36:13 +00001571 iAddr = pc;
1572 pc = get2byte(&aData[pc]);
drh87d63c92017-08-23 23:09:03 +00001573 if( pc<iAddr+size ) break;
1574 }
1575 if( pc ){
daneebf2f52017-11-18 17:30:08 +00001576 *pRc = SQLITE_CORRUPT_PAGE(pPg);
drh87d63c92017-08-23 23:09:03 +00001577 }
dan8e9ba0c2014-10-14 17:27:04 +00001578
1579 return 0;
1580}
1581
1582/*
danielk19776011a752009-04-01 16:25:32 +00001583** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001584** as the first argument. Write into *pIdx the index into pPage->aData[]
1585** of the first byte of allocated space. Return either SQLITE_OK or
1586** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001587**
drh0a45c272009-07-08 01:49:11 +00001588** The caller guarantees that there is sufficient space to make the
1589** allocation. This routine might need to defragment in order to bring
1590** all the space together, however. This routine will avoid using
1591** the first two bytes past the cell pointer area since presumably this
1592** allocation is being made in order to insert a new cell, so we will
1593** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001594*/
drh0a45c272009-07-08 01:49:11 +00001595static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001596 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1597 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
drh0a45c272009-07-08 01:49:11 +00001598 int top; /* First byte of cell content area */
drhfefa0942014-11-05 21:21:08 +00001599 int rc = SQLITE_OK; /* Integer return code */
drh0a45c272009-07-08 01:49:11 +00001600 int gap; /* First byte of gap between cell pointers and cell content */
drh43605152004-05-29 21:46:49 +00001601
danielk19773b8a05f2007-03-19 17:44:26 +00001602 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001603 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001604 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001605 assert( nByte>=0 ); /* Minimum cell size is 4 */
1606 assert( pPage->nFree>=nByte );
1607 assert( pPage->nOverflow==0 );
mistachkina95d8ca2014-10-27 19:42:02 +00001608 assert( nByte < (int)(pPage->pBt->usableSize-8) );
drh43605152004-05-29 21:46:49 +00001609
drh0a45c272009-07-08 01:49:11 +00001610 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1611 gap = pPage->cellOffset + 2*pPage->nCell;
drh75b31dc2014-08-20 00:54:46 +00001612 assert( gap<=65536 );
drhfdab0262014-11-20 15:30:50 +00001613 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1614 ** and the reserved space is zero (the usual value for reserved space)
1615 ** then the cell content offset of an empty page wants to be 65536.
1616 ** However, that integer is too large to be stored in a 2-byte unsigned
1617 ** integer, so a value of 0 is used in its place. */
drhded340e2015-06-25 15:04:56 +00001618 top = get2byte(&data[hdr+5]);
mistachkin68cdd0e2015-06-26 03:12:27 +00001619 assert( top<=(int)pPage->pBt->usableSize ); /* Prevent by getAndInitPage() */
drhded340e2015-06-25 15:04:56 +00001620 if( gap>top ){
1621 if( top==0 && pPage->pBt->usableSize==65536 ){
1622 top = 65536;
1623 }else{
daneebf2f52017-11-18 17:30:08 +00001624 return SQLITE_CORRUPT_PAGE(pPage);
drh9e572e62004-04-23 23:43:10 +00001625 }
1626 }
drh43605152004-05-29 21:46:49 +00001627
drh4c04f3c2014-08-20 11:56:14 +00001628 /* If there is enough space between gap and top for one more cell pointer
1629 ** array entry offset, and if the freelist is not empty, then search the
1630 ** freelist looking for a free slot big enough to satisfy the request.
1631 */
drh5e2f8b92001-05-28 00:41:15 +00001632 testcase( gap+2==top );
drh7aa128d2002-06-21 13:09:16 +00001633 testcase( gap+1==top );
drh14acc042001-06-10 19:56:58 +00001634 testcase( gap==top );
drhe674bf12015-06-25 16:01:44 +00001635 if( (data[hdr+2] || data[hdr+1]) && gap+2<=top ){
drhb7580e82015-06-25 18:36:13 +00001636 u8 *pSpace = pageFindSlot(pPage, nByte, &rc);
dan8e9ba0c2014-10-14 17:27:04 +00001637 if( pSpace ){
drhfefa0942014-11-05 21:21:08 +00001638 assert( pSpace>=data && (pSpace - data)<65536 );
1639 *pIdx = (int)(pSpace - data);
dan8e9ba0c2014-10-14 17:27:04 +00001640 return SQLITE_OK;
drhb7580e82015-06-25 18:36:13 +00001641 }else if( rc ){
1642 return rc;
drh9e572e62004-04-23 23:43:10 +00001643 }
1644 }
drh43605152004-05-29 21:46:49 +00001645
drh4c04f3c2014-08-20 11:56:14 +00001646 /* The request could not be fulfilled using a freelist slot. Check
1647 ** to see if defragmentation is necessary.
drh0a45c272009-07-08 01:49:11 +00001648 */
1649 testcase( gap+2+nByte==top );
1650 if( gap+2+nByte>top ){
drh1fd2d7d2014-12-02 16:16:47 +00001651 assert( pPage->nCell>0 || CORRUPT_DB );
dane6d065a2017-02-24 19:58:22 +00001652 rc = defragmentPage(pPage, MIN(4, pPage->nFree - (2+nByte)));
drh0a45c272009-07-08 01:49:11 +00001653 if( rc ) return rc;
drh5d433ce2010-08-14 16:02:52 +00001654 top = get2byteNotZero(&data[hdr+5]);
dan3b2ede12017-02-25 16:24:02 +00001655 assert( gap+2+nByte<=top );
drh0a45c272009-07-08 01:49:11 +00001656 }
1657
1658
drh43605152004-05-29 21:46:49 +00001659 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001660 ** and the cell content area. The btreeInitPage() call has already
1661 ** validated the freelist. Given that the freelist is valid, there
1662 ** is no way that the allocation can extend off the end of the page.
1663 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001664 */
drh0a45c272009-07-08 01:49:11 +00001665 top -= nByte;
drh43605152004-05-29 21:46:49 +00001666 put2byte(&data[hdr+5], top);
drhfcd71b62011-04-05 22:08:24 +00001667 assert( top+nByte <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001668 *pIdx = top;
1669 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001670}
1671
1672/*
drh9e572e62004-04-23 23:43:10 +00001673** Return a section of the pPage->aData to the freelist.
drh7fb91642014-08-20 14:37:09 +00001674** The first byte of the new free block is pPage->aData[iStart]
1675** and the size of the block is iSize bytes.
drh306dc212001-05-21 13:45:10 +00001676**
drh5f5c7532014-08-20 17:56:27 +00001677** Adjacent freeblocks are coalesced.
1678**
1679** Note that even though the freeblock list was checked by btreeInitPage(),
1680** that routine will not detect overlap between cells or freeblocks. Nor
1681** does it detect cells or freeblocks that encrouch into the reserved bytes
1682** at the end of the page. So do additional corruption checks inside this
1683** routine and return SQLITE_CORRUPT if any problems are found.
drh7e3b0a02001-04-28 16:52:40 +00001684*/
drh5f5c7532014-08-20 17:56:27 +00001685static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
drh3f387402014-09-24 01:23:00 +00001686 u16 iPtr; /* Address of ptr to next freeblock */
drh5f5c7532014-08-20 17:56:27 +00001687 u16 iFreeBlk; /* Address of the next freeblock */
1688 u8 hdr; /* Page header size. 0 or 100 */
1689 u8 nFrag = 0; /* Reduction in fragmentation */
1690 u16 iOrigSize = iSize; /* Original value of iSize */
drh5e398e42017-08-23 20:36:06 +00001691 u16 x; /* Offset to cell content area */
drh5f5c7532014-08-20 17:56:27 +00001692 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
drh7fb91642014-08-20 14:37:09 +00001693 unsigned char *data = pPage->aData; /* Page content */
drh2af926b2001-05-15 00:39:25 +00001694
drh9e572e62004-04-23 23:43:10 +00001695 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001696 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
dancf3d17c2015-05-25 15:03:49 +00001697 assert( CORRUPT_DB || iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
dan23eba452014-10-24 18:43:57 +00001698 assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001699 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh7fb91642014-08-20 14:37:09 +00001700 assert( iSize>=4 ); /* Minimum cell size is 4 */
drh5e398e42017-08-23 20:36:06 +00001701 assert( iStart<=pPage->pBt->usableSize-4 );
drhfcce93f2006-02-22 03:08:32 +00001702
drh5f5c7532014-08-20 17:56:27 +00001703 /* The list of freeblocks must be in ascending order. Find the
1704 ** spot on the list where iStart should be inserted.
drh0a45c272009-07-08 01:49:11 +00001705 */
drh43605152004-05-29 21:46:49 +00001706 hdr = pPage->hdrOffset;
drh7fb91642014-08-20 14:37:09 +00001707 iPtr = hdr + 1;
drh7bc4c452014-08-20 18:43:44 +00001708 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1709 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1710 }else{
drh85f071b2016-09-17 19:34:32 +00001711 while( (iFreeBlk = get2byte(&data[iPtr]))<iStart ){
1712 if( iFreeBlk<iPtr+4 ){
1713 if( iFreeBlk==0 ) break;
daneebf2f52017-11-18 17:30:08 +00001714 return SQLITE_CORRUPT_PAGE(pPage);
drh85f071b2016-09-17 19:34:32 +00001715 }
drh7bc4c452014-08-20 18:43:44 +00001716 iPtr = iFreeBlk;
shanedcc50b72008-11-13 18:29:50 +00001717 }
drh5e398e42017-08-23 20:36:06 +00001718 if( iFreeBlk>pPage->pBt->usableSize-4 ){
daneebf2f52017-11-18 17:30:08 +00001719 return SQLITE_CORRUPT_PAGE(pPage);
drh5e398e42017-08-23 20:36:06 +00001720 }
drh7bc4c452014-08-20 18:43:44 +00001721 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1722
1723 /* At this point:
1724 ** iFreeBlk: First freeblock after iStart, or zero if none
drh3e24a342015-06-15 16:09:35 +00001725 ** iPtr: The address of a pointer to iFreeBlk
drh7bc4c452014-08-20 18:43:44 +00001726 **
1727 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1728 */
1729 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1730 nFrag = iFreeBlk - iEnd;
daneebf2f52017-11-18 17:30:08 +00001731 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001732 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
drhcc97ca42017-06-07 22:32:59 +00001733 if( iEnd > pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00001734 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00001735 }
drh7bc4c452014-08-20 18:43:44 +00001736 iSize = iEnd - iStart;
1737 iFreeBlk = get2byte(&data[iFreeBlk]);
1738 }
1739
drh3f387402014-09-24 01:23:00 +00001740 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1741 ** pointer in the page header) then check to see if iStart should be
1742 ** coalesced onto the end of iPtr.
drh7bc4c452014-08-20 18:43:44 +00001743 */
1744 if( iPtr>hdr+1 ){
1745 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1746 if( iPtrEnd+3>=iStart ){
daneebf2f52017-11-18 17:30:08 +00001747 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001748 nFrag += iStart - iPtrEnd;
1749 iSize = iEnd - iPtr;
1750 iStart = iPtr;
shanedcc50b72008-11-13 18:29:50 +00001751 }
drh9e572e62004-04-23 23:43:10 +00001752 }
daneebf2f52017-11-18 17:30:08 +00001753 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_PAGE(pPage);
drh7bc4c452014-08-20 18:43:44 +00001754 data[hdr+7] -= nFrag;
drh9e572e62004-04-23 23:43:10 +00001755 }
drh5e398e42017-08-23 20:36:06 +00001756 x = get2byte(&data[hdr+5]);
1757 if( iStart<=x ){
drh5f5c7532014-08-20 17:56:27 +00001758 /* The new freeblock is at the beginning of the cell content area,
1759 ** so just extend the cell content area rather than create another
1760 ** freelist entry */
daneebf2f52017-11-18 17:30:08 +00001761 if( iStart<x || iPtr!=hdr+1 ) return SQLITE_CORRUPT_PAGE(pPage);
drh5f5c7532014-08-20 17:56:27 +00001762 put2byte(&data[hdr+1], iFreeBlk);
1763 put2byte(&data[hdr+5], iEnd);
1764 }else{
1765 /* Insert the new freeblock into the freelist */
1766 put2byte(&data[iPtr], iStart);
drh4b70f112004-05-02 21:12:19 +00001767 }
drh5e398e42017-08-23 20:36:06 +00001768 if( pPage->pBt->btsFlags & BTS_FAST_SECURE ){
1769 /* Overwrite deleted information with zeros when the secure_delete
1770 ** option is enabled */
1771 memset(&data[iStart], 0, iSize);
1772 }
1773 put2byte(&data[iStart], iFreeBlk);
1774 put2byte(&data[iStart+2], iSize);
drh5f5c7532014-08-20 17:56:27 +00001775 pPage->nFree += iOrigSize;
shanedcc50b72008-11-13 18:29:50 +00001776 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001777}
1778
1779/*
drh271efa52004-05-30 19:19:05 +00001780** Decode the flags byte (the first byte of the header) for a page
1781** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001782**
1783** Only the following combinations are supported. Anything different
1784** indicates a corrupt database files:
1785**
1786** PTF_ZERODATA
1787** PTF_ZERODATA | PTF_LEAF
1788** PTF_LEAFDATA | PTF_INTKEY
1789** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001790*/
drh44845222008-07-17 18:39:57 +00001791static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001792 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001793
1794 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001795 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001796 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001797 flagByte &= ~PTF_LEAF;
1798 pPage->childPtrSize = 4-4*pPage->leaf;
drh25ada072015-06-19 15:07:14 +00001799 pPage->xCellSize = cellSizePtr;
drh271efa52004-05-30 19:19:05 +00001800 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001801 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
drh3791c9c2016-05-09 23:11:47 +00001802 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1803 ** interior table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001804 assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
drh3791c9c2016-05-09 23:11:47 +00001805 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1806 ** leaf table b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001807 assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
drh44845222008-07-17 18:39:57 +00001808 pPage->intKey = 1;
drh25ada072015-06-19 15:07:14 +00001809 if( pPage->leaf ){
1810 pPage->intKeyLeaf = 1;
drh5fa60512015-06-19 17:19:34 +00001811 pPage->xParseCell = btreeParseCellPtr;
drh25ada072015-06-19 15:07:14 +00001812 }else{
1813 pPage->intKeyLeaf = 0;
drh25ada072015-06-19 15:07:14 +00001814 pPage->xCellSize = cellSizePtrNoPayload;
drh5fa60512015-06-19 17:19:34 +00001815 pPage->xParseCell = btreeParseCellPtrNoPayload;
drh25ada072015-06-19 15:07:14 +00001816 }
drh271efa52004-05-30 19:19:05 +00001817 pPage->maxLocal = pBt->maxLeaf;
1818 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001819 }else if( flagByte==PTF_ZERODATA ){
drh3791c9c2016-05-09 23:11:47 +00001820 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1821 ** interior index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001822 assert( (PTF_ZERODATA)==2 );
drh3791c9c2016-05-09 23:11:47 +00001823 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1824 ** leaf index b-tree page. */
drhfdab0262014-11-20 15:30:50 +00001825 assert( (PTF_ZERODATA|PTF_LEAF)==10 );
drh44845222008-07-17 18:39:57 +00001826 pPage->intKey = 0;
drh3e28ff52014-09-24 00:59:08 +00001827 pPage->intKeyLeaf = 0;
drh5fa60512015-06-19 17:19:34 +00001828 pPage->xParseCell = btreeParseCellPtrIndex;
drh271efa52004-05-30 19:19:05 +00001829 pPage->maxLocal = pBt->maxLocal;
1830 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001831 }else{
drhfdab0262014-11-20 15:30:50 +00001832 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1833 ** an error. */
daneebf2f52017-11-18 17:30:08 +00001834 return SQLITE_CORRUPT_PAGE(pPage);
drh271efa52004-05-30 19:19:05 +00001835 }
drhc9166342012-01-05 23:32:06 +00001836 pPage->max1bytePayload = pBt->max1bytePayload;
drh44845222008-07-17 18:39:57 +00001837 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001838}
1839
1840/*
drh7e3b0a02001-04-28 16:52:40 +00001841** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001842**
1843** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001844** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001845** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1846** guarantee that the page is well-formed. It only shows that
1847** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001848*/
danielk197730548662009-07-09 05:07:37 +00001849static int btreeInitPage(MemPage *pPage){
drh14e845a2017-05-25 21:35:56 +00001850 int pc; /* Address of a freeblock within pPage->aData[] */
1851 u8 hdr; /* Offset to beginning of page header */
1852 u8 *data; /* Equal to pPage->aData */
1853 BtShared *pBt; /* The main btree structure */
1854 int usableSize; /* Amount of usable space on each page */
1855 u16 cellOffset; /* Offset from start of page to first cell pointer */
1856 int nFree; /* Number of unused bytes on the page */
1857 int top; /* First byte of the cell content area */
1858 int iCellFirst; /* First allowable cell or freeblock offset */
1859 int iCellLast; /* Last possible cell or freeblock offset */
drh2af926b2001-05-15 00:39:25 +00001860
danielk197771d5d2c2008-09-29 11:49:47 +00001861 assert( pPage->pBt!=0 );
drh1421d982015-05-27 03:46:18 +00001862 assert( pPage->pBt->db!=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001863 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001864 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001865 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1866 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
drh14e845a2017-05-25 21:35:56 +00001867 assert( pPage->isInit==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001868
drh14e845a2017-05-25 21:35:56 +00001869 pBt = pPage->pBt;
1870 hdr = pPage->hdrOffset;
1871 data = pPage->aData;
1872 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
1873 ** the b-tree page type. */
drhcc97ca42017-06-07 22:32:59 +00001874 if( decodeFlags(pPage, data[hdr]) ){
daneebf2f52017-11-18 17:30:08 +00001875 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00001876 }
drh14e845a2017-05-25 21:35:56 +00001877 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1878 pPage->maskPage = (u16)(pBt->pageSize - 1);
1879 pPage->nOverflow = 0;
1880 usableSize = pBt->usableSize;
1881 pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
1882 pPage->aDataEnd = &data[usableSize];
1883 pPage->aCellIdx = &data[cellOffset];
1884 pPage->aDataOfst = &data[pPage->childPtrSize];
1885 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1886 ** the start of the cell content area. A zero value for this integer is
1887 ** interpreted as 65536. */
1888 top = get2byteNotZero(&data[hdr+5]);
1889 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
1890 ** number of cells on the page. */
1891 pPage->nCell = get2byte(&data[hdr+3]);
1892 if( pPage->nCell>MX_CELL(pBt) ){
1893 /* To many cells for a single page. The page must be corrupt */
daneebf2f52017-11-18 17:30:08 +00001894 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001895 }
1896 testcase( pPage->nCell==MX_CELL(pBt) );
1897 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
1898 ** possible for a root page of a table that contains no rows) then the
1899 ** offset to the cell content area will equal the page size minus the
1900 ** bytes of reserved space. */
1901 assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );
danielk197771d5d2c2008-09-29 11:49:47 +00001902
drh14e845a2017-05-25 21:35:56 +00001903 /* A malformed database page might cause us to read past the end
1904 ** of page when parsing a cell.
1905 **
1906 ** The following block of code checks early to see if a cell extends
1907 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1908 ** returned if it does.
1909 */
1910 iCellFirst = cellOffset + 2*pPage->nCell;
1911 iCellLast = usableSize - 4;
1912 if( pBt->db->flags & SQLITE_CellSizeCk ){
1913 int i; /* Index into the cell pointer array */
1914 int sz; /* Size of a cell */
danielk197771d5d2c2008-09-29 11:49:47 +00001915
drh14e845a2017-05-25 21:35:56 +00001916 if( !pPage->leaf ) iCellLast--;
1917 for(i=0; i<pPage->nCell; i++){
1918 pc = get2byteAligned(&data[cellOffset+i*2]);
1919 testcase( pc==iCellFirst );
1920 testcase( pc==iCellLast );
1921 if( pc<iCellFirst || pc>iCellLast ){
daneebf2f52017-11-18 17:30:08 +00001922 return SQLITE_CORRUPT_PAGE(pPage);
drh69e931e2009-06-03 21:04:35 +00001923 }
drh14e845a2017-05-25 21:35:56 +00001924 sz = pPage->xCellSize(pPage, &data[pc]);
1925 testcase( pc+sz==usableSize );
1926 if( pc+sz>usableSize ){
daneebf2f52017-11-18 17:30:08 +00001927 return SQLITE_CORRUPT_PAGE(pPage);
drh77dc0ed2016-12-12 01:30:01 +00001928 }
danielk1977eaa06f62008-09-18 17:34:44 +00001929 }
drh14e845a2017-05-25 21:35:56 +00001930 if( !pPage->leaf ) iCellLast++;
1931 }
danielk197793c829c2009-06-03 17:26:17 +00001932
drh14e845a2017-05-25 21:35:56 +00001933 /* Compute the total free space on the page
1934 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1935 ** start of the first freeblock on the page, or is zero if there are no
1936 ** freeblocks. */
1937 pc = get2byte(&data[hdr+1]);
1938 nFree = data[hdr+7] + top; /* Init nFree to non-freeblock free space */
1939 if( pc>0 ){
1940 u32 next, size;
1941 if( pc<iCellFirst ){
1942 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1943 ** always be at least one cell before the first freeblock.
1944 */
daneebf2f52017-11-18 17:30:08 +00001945 return SQLITE_CORRUPT_PAGE(pPage);
drhee696e22004-08-30 16:52:17 +00001946 }
drh14e845a2017-05-25 21:35:56 +00001947 while( 1 ){
1948 if( pc>iCellLast ){
drhcc97ca42017-06-07 22:32:59 +00001949 /* Freeblock off the end of the page */
daneebf2f52017-11-18 17:30:08 +00001950 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001951 }
1952 next = get2byte(&data[pc]);
1953 size = get2byte(&data[pc+2]);
1954 nFree = nFree + size;
1955 if( next<=pc+size+3 ) break;
1956 pc = next;
1957 }
1958 if( next>0 ){
drhcc97ca42017-06-07 22:32:59 +00001959 /* Freeblock not in ascending order */
daneebf2f52017-11-18 17:30:08 +00001960 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001961 }
1962 if( pc+size>(unsigned int)usableSize ){
drhcc97ca42017-06-07 22:32:59 +00001963 /* Last freeblock extends past page end */
daneebf2f52017-11-18 17:30:08 +00001964 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001965 }
danielk197771d5d2c2008-09-29 11:49:47 +00001966 }
drh14e845a2017-05-25 21:35:56 +00001967
1968 /* At this point, nFree contains the sum of the offset to the start
1969 ** of the cell-content area plus the number of free bytes within
1970 ** the cell-content area. If this is greater than the usable-size
1971 ** of the page, then the page must be corrupted. This check also
1972 ** serves to verify that the offset to the start of the cell-content
1973 ** area, according to the page header, lies within the page.
1974 */
1975 if( nFree>usableSize ){
daneebf2f52017-11-18 17:30:08 +00001976 return SQLITE_CORRUPT_PAGE(pPage);
drh14e845a2017-05-25 21:35:56 +00001977 }
1978 pPage->nFree = (u16)(nFree - iCellFirst);
1979 pPage->isInit = 1;
drh9e572e62004-04-23 23:43:10 +00001980 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001981}
1982
1983/*
drh8b2f49b2001-06-08 00:21:52 +00001984** Set up a raw page so that it looks like a database page holding
1985** no entries.
drhbd03cae2001-06-02 02:40:57 +00001986*/
drh9e572e62004-04-23 23:43:10 +00001987static void zeroPage(MemPage *pPage, int flags){
1988 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001989 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001990 u8 hdr = pPage->hdrOffset;
1991 u16 first;
drh9e572e62004-04-23 23:43:10 +00001992
danielk19773b8a05f2007-03-19 17:44:26 +00001993 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001994 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1995 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001996 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001997 assert( sqlite3_mutex_held(pBt->mutex) );
drha5907a82017-06-19 11:44:22 +00001998 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh5b47efa2010-02-12 18:18:39 +00001999 memset(&data[hdr], 0, pBt->usableSize - hdr);
2000 }
drh1bd10f82008-12-10 21:19:56 +00002001 data[hdr] = (char)flags;
drhfe485992014-02-12 23:52:16 +00002002 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
drh43605152004-05-29 21:46:49 +00002003 memset(&data[hdr+1], 0, 4);
2004 data[hdr+7] = 0;
2005 put2byte(&data[hdr+5], pBt->usableSize);
shaneh1df2db72010-08-18 02:28:48 +00002006 pPage->nFree = (u16)(pBt->usableSize - first);
drh271efa52004-05-30 19:19:05 +00002007 decodeFlags(pPage, flags);
drh43605152004-05-29 21:46:49 +00002008 pPage->cellOffset = first;
drh3def2352011-11-11 00:27:15 +00002009 pPage->aDataEnd = &data[pBt->usableSize];
2010 pPage->aCellIdx = &data[first];
drhf44890a2015-06-27 03:58:15 +00002011 pPage->aDataOfst = &data[pPage->childPtrSize];
drh43605152004-05-29 21:46:49 +00002012 pPage->nOverflow = 0;
drhb2eced52010-08-12 02:41:12 +00002013 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
2014 pPage->maskPage = (u16)(pBt->pageSize - 1);
drh43605152004-05-29 21:46:49 +00002015 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00002016 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00002017}
2018
drh897a8202008-09-18 01:08:15 +00002019
2020/*
2021** Convert a DbPage obtained from the pager into a MemPage used by
2022** the btree layer.
2023*/
2024static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
2025 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh8dd1c252015-11-04 22:31:02 +00002026 if( pgno!=pPage->pgno ){
2027 pPage->aData = sqlite3PagerGetData(pDbPage);
2028 pPage->pDbPage = pDbPage;
2029 pPage->pBt = pBt;
2030 pPage->pgno = pgno;
2031 pPage->hdrOffset = pgno==1 ? 100 : 0;
2032 }
2033 assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
drh897a8202008-09-18 01:08:15 +00002034 return pPage;
2035}
2036
drhbd03cae2001-06-02 02:40:57 +00002037/*
drh3aac2dd2004-04-26 14:10:20 +00002038** Get a page from the pager. Initialize the MemPage.pBt and
drh7e8c6f12015-05-28 03:28:27 +00002039** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
drh538f5702007-04-13 02:14:30 +00002040**
drh7e8c6f12015-05-28 03:28:27 +00002041** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2042** about the content of the page at this time. So do not go to the disk
drh538f5702007-04-13 02:14:30 +00002043** to fetch the content. Just fill in the content with zeros for now.
2044** If in the future we call sqlite3PagerWrite() on this page, that
2045** means we have started to be concerned about content and the disk
2046** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00002047*/
danielk197730548662009-07-09 05:07:37 +00002048static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00002049 BtShared *pBt, /* The btree */
2050 Pgno pgno, /* Number of the page to fetch */
2051 MemPage **ppPage, /* Return the page in this parameter */
drhb00fc3b2013-08-21 23:42:32 +00002052 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
drh16a9b832007-05-05 18:39:25 +00002053){
drh3aac2dd2004-04-26 14:10:20 +00002054 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00002055 DbPage *pDbPage;
2056
drhb00fc3b2013-08-21 23:42:32 +00002057 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
drh1fee73e2007-08-29 04:00:57 +00002058 assert( sqlite3_mutex_held(pBt->mutex) );
drh9584f582015-11-04 20:22:37 +00002059 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
drh3aac2dd2004-04-26 14:10:20 +00002060 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00002061 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00002062 return SQLITE_OK;
2063}
2064
2065/*
danielk1977bea2a942009-01-20 17:06:27 +00002066** Retrieve a page from the pager cache. If the requested page is not
2067** already in the pager cache return NULL. Initialize the MemPage.pBt and
2068** MemPage.aData elements if needed.
2069*/
2070static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
2071 DbPage *pDbPage;
2072 assert( sqlite3_mutex_held(pBt->mutex) );
2073 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
2074 if( pDbPage ){
2075 return btreePageFromDbPage(pDbPage, pgno, pBt);
2076 }
2077 return 0;
2078}
2079
2080/*
danielk197789d40042008-11-17 14:20:56 +00002081** Return the size of the database file in pages. If there is any kind of
2082** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00002083*/
drhb1299152010-03-30 22:58:33 +00002084static Pgno btreePagecount(BtShared *pBt){
2085 return pBt->nPage;
2086}
2087u32 sqlite3BtreeLastPage(Btree *p){
2088 assert( sqlite3BtreeHoldsMutex(p) );
drh8a181002017-10-12 01:19:06 +00002089 assert( ((p->pBt->nPage)&0x80000000)==0 );
drheac5bd72014-07-25 21:35:39 +00002090 return btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00002091}
2092
2093/*
drh28f58dd2015-06-27 19:45:03 +00002094** Get a page from the pager and initialize it.
danielk197789bc4bc2009-07-21 19:25:24 +00002095**
drh15a00212015-06-27 20:55:00 +00002096** If pCur!=0 then the page is being fetched as part of a moveToChild()
2097** call. Do additional sanity checking on the page in this case.
2098** And if the fetch fails, this routine must decrement pCur->iPage.
drh28f58dd2015-06-27 19:45:03 +00002099**
2100** The page is fetched as read-write unless pCur is not NULL and is
2101** a read-only cursor.
2102**
2103** If an error occurs, then *ppPage is undefined. It
danielk197789bc4bc2009-07-21 19:25:24 +00002104** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00002105*/
2106static int getAndInitPage(
dan11dcd112013-03-15 18:29:18 +00002107 BtShared *pBt, /* The database file */
2108 Pgno pgno, /* Number of the page to get */
2109 MemPage **ppPage, /* Write the page pointer here */
drh28f58dd2015-06-27 19:45:03 +00002110 BtCursor *pCur, /* Cursor to receive the page, or NULL */
2111 int bReadOnly /* True for a read-only page */
drhde647132004-05-07 17:57:49 +00002112){
2113 int rc;
drh28f58dd2015-06-27 19:45:03 +00002114 DbPage *pDbPage;
drh1fee73e2007-08-29 04:00:57 +00002115 assert( sqlite3_mutex_held(pBt->mutex) );
drh352a35a2017-08-15 03:46:47 +00002116 assert( pCur==0 || ppPage==&pCur->pPage );
drh28f58dd2015-06-27 19:45:03 +00002117 assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
drh15a00212015-06-27 20:55:00 +00002118 assert( pCur==0 || pCur->iPage>0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002119
danba3cbf32010-06-30 04:29:03 +00002120 if( pgno>btreePagecount(pBt) ){
2121 rc = SQLITE_CORRUPT_BKPT;
drh28f58dd2015-06-27 19:45:03 +00002122 goto getAndInitPage_error;
2123 }
drh9584f582015-11-04 20:22:37 +00002124 rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
drh28f58dd2015-06-27 19:45:03 +00002125 if( rc ){
2126 goto getAndInitPage_error;
2127 }
drh8dd1c252015-11-04 22:31:02 +00002128 *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
drh28f58dd2015-06-27 19:45:03 +00002129 if( (*ppPage)->isInit==0 ){
drh8dd1c252015-11-04 22:31:02 +00002130 btreePageFromDbPage(pDbPage, pgno, pBt);
drh28f58dd2015-06-27 19:45:03 +00002131 rc = btreeInitPage(*ppPage);
2132 if( rc!=SQLITE_OK ){
2133 releasePage(*ppPage);
2134 goto getAndInitPage_error;
danielk197789bc4bc2009-07-21 19:25:24 +00002135 }
drhee696e22004-08-30 16:52:17 +00002136 }
drh8dd1c252015-11-04 22:31:02 +00002137 assert( (*ppPage)->pgno==pgno );
2138 assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );
danba3cbf32010-06-30 04:29:03 +00002139
drh15a00212015-06-27 20:55:00 +00002140 /* If obtaining a child page for a cursor, we must verify that the page is
2141 ** compatible with the root page. */
drh8dd1c252015-11-04 22:31:02 +00002142 if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){
drhcc97ca42017-06-07 22:32:59 +00002143 rc = SQLITE_CORRUPT_PGNO(pgno);
drh28f58dd2015-06-27 19:45:03 +00002144 releasePage(*ppPage);
2145 goto getAndInitPage_error;
2146 }
drh28f58dd2015-06-27 19:45:03 +00002147 return SQLITE_OK;
2148
2149getAndInitPage_error:
drh352a35a2017-08-15 03:46:47 +00002150 if( pCur ){
2151 pCur->iPage--;
2152 pCur->pPage = pCur->apPage[pCur->iPage];
2153 }
danba3cbf32010-06-30 04:29:03 +00002154 testcase( pgno==0 );
2155 assert( pgno!=0 || rc==SQLITE_CORRUPT );
drhde647132004-05-07 17:57:49 +00002156 return rc;
2157}
2158
2159/*
drh3aac2dd2004-04-26 14:10:20 +00002160** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00002161** call to btreeGetPage.
drh3908fe92017-09-01 14:50:19 +00002162**
2163** Page1 is a special case and must be released using releasePageOne().
drh3aac2dd2004-04-26 14:10:20 +00002164*/
drhbbf0f862015-06-27 14:59:26 +00002165static void releasePageNotNull(MemPage *pPage){
2166 assert( pPage->aData );
2167 assert( pPage->pBt );
2168 assert( pPage->pDbPage!=0 );
2169 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2170 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2171 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2172 sqlite3PagerUnrefNotNull(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00002173}
drh3aac2dd2004-04-26 14:10:20 +00002174static void releasePage(MemPage *pPage){
drhbbf0f862015-06-27 14:59:26 +00002175 if( pPage ) releasePageNotNull(pPage);
drh3aac2dd2004-04-26 14:10:20 +00002176}
drh3908fe92017-09-01 14:50:19 +00002177static void releasePageOne(MemPage *pPage){
2178 assert( pPage!=0 );
2179 assert( pPage->aData );
2180 assert( pPage->pBt );
2181 assert( pPage->pDbPage!=0 );
2182 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
2183 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
2184 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2185 sqlite3PagerUnrefPageOne(pPage->pDbPage);
2186}
drh3aac2dd2004-04-26 14:10:20 +00002187
2188/*
drh7e8c6f12015-05-28 03:28:27 +00002189** Get an unused page.
2190**
2191** This works just like btreeGetPage() with the addition:
2192**
2193** * If the page is already in use for some other purpose, immediately
2194** release it and return an SQLITE_CURRUPT error.
2195** * Make sure the isInit flag is clear
2196*/
2197static int btreeGetUnusedPage(
2198 BtShared *pBt, /* The btree */
2199 Pgno pgno, /* Number of the page to fetch */
2200 MemPage **ppPage, /* Return the page in this parameter */
2201 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2202){
2203 int rc = btreeGetPage(pBt, pgno, ppPage, flags);
2204 if( rc==SQLITE_OK ){
2205 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
2206 releasePage(*ppPage);
2207 *ppPage = 0;
2208 return SQLITE_CORRUPT_BKPT;
2209 }
2210 (*ppPage)->isInit = 0;
2211 }else{
2212 *ppPage = 0;
2213 }
2214 return rc;
2215}
2216
drha059ad02001-04-17 20:09:11 +00002217
2218/*
drha6abd042004-06-09 17:37:22 +00002219** During a rollback, when the pager reloads information into the cache
2220** so that the cache is restored to its original state at the start of
2221** the transaction, for each page restored this routine is called.
2222**
2223** This routine needs to reset the extra data section at the end of the
2224** page to agree with the restored data.
2225*/
danielk1977eaa06f62008-09-18 17:34:44 +00002226static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00002227 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00002228 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00002229 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00002230 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00002231 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00002232 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00002233 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00002234 /* pPage might not be a btree page; it might be an overflow page
2235 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00002236 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00002237 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00002238 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00002239 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00002240 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00002241 }
drha6abd042004-06-09 17:37:22 +00002242 }
2243}
2244
2245/*
drhe5fe6902007-12-07 18:55:28 +00002246** Invoke the busy handler for a btree.
2247*/
danielk19771ceedd32008-11-19 10:22:33 +00002248static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00002249 BtShared *pBt = (BtShared*)pArg;
2250 assert( pBt->db );
2251 assert( sqlite3_mutex_held(pBt->db->mutex) );
drhf0119b22018-03-26 17:40:53 +00002252 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler,
2253 sqlite3PagerFile(pBt->pPager));
drhe5fe6902007-12-07 18:55:28 +00002254}
2255
2256/*
drhad3e0102004-09-03 23:32:18 +00002257** Open a database file.
2258**
drh382c0242001-10-06 16:33:02 +00002259** zFilename is the name of the database file. If zFilename is NULL
drh75c014c2010-08-30 15:02:28 +00002260** then an ephemeral database is created. The ephemeral database might
2261** be exclusively in memory, or it might use a disk-based memory cache.
2262** Either way, the ephemeral database will be automatically deleted
2263** when sqlite3BtreeClose() is called.
2264**
drhe53831d2007-08-17 01:14:38 +00002265** If zFilename is ":memory:" then an in-memory database is created
2266** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00002267**
drh33f111d2012-01-17 15:29:14 +00002268** The "flags" parameter is a bitmask that might contain bits like
2269** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
drh75c014c2010-08-30 15:02:28 +00002270**
drhc47fd8e2009-04-30 13:30:32 +00002271** If the database is already opened in the same database connection
2272** and we are in shared cache mode, then the open will fail with an
2273** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2274** objects in the same database connection since doing so will lead
2275** to problems with locking.
drha059ad02001-04-17 20:09:11 +00002276*/
drh23e11ca2004-05-04 17:27:28 +00002277int sqlite3BtreeOpen(
dan3a6d8ae2011-04-23 15:54:54 +00002278 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
drh3aac2dd2004-04-26 14:10:20 +00002279 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00002280 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00002281 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00002282 int flags, /* Options */
2283 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00002284){
drh7555d8e2009-03-20 13:15:30 +00002285 BtShared *pBt = 0; /* Shared part of btree structure */
2286 Btree *p; /* Handle to return */
2287 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
2288 int rc = SQLITE_OK; /* Result code from this function */
2289 u8 nReserve; /* Byte of unused space on each page */
2290 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00002291
drh75c014c2010-08-30 15:02:28 +00002292 /* True if opening an ephemeral, temporary database */
2293 const int isTempDb = zFilename==0 || zFilename[0]==0;
2294
danielk1977aef0bf62005-12-30 16:28:01 +00002295 /* Set the variable isMemdb to true for an in-memory database, or
drhb0a7c9c2010-12-06 21:09:59 +00002296 ** false for a file-based database.
danielk1977aef0bf62005-12-30 16:28:01 +00002297 */
drhb0a7c9c2010-12-06 21:09:59 +00002298#ifdef SQLITE_OMIT_MEMORYDB
2299 const int isMemdb = 0;
2300#else
2301 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
drh9c67b2a2012-05-28 13:58:00 +00002302 || (isTempDb && sqlite3TempInMemory(db))
2303 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
danielk1977aef0bf62005-12-30 16:28:01 +00002304#endif
2305
drhe5fe6902007-12-07 18:55:28 +00002306 assert( db!=0 );
dan3a6d8ae2011-04-23 15:54:54 +00002307 assert( pVfs!=0 );
drhe5fe6902007-12-07 18:55:28 +00002308 assert( sqlite3_mutex_held(db->mutex) );
drhd4187c72010-08-30 22:15:45 +00002309 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
2310
2311 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2312 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
2313
2314 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2315 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
drh153c62c2007-08-24 03:51:33 +00002316
drh75c014c2010-08-30 15:02:28 +00002317 if( isMemdb ){
2318 flags |= BTREE_MEMORY;
2319 }
2320 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
2321 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
2322 }
drh17435752007-08-16 04:30:38 +00002323 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00002324 if( !p ){
mistachkinfad30392016-02-13 23:43:46 +00002325 return SQLITE_NOMEM_BKPT;
danielk1977aef0bf62005-12-30 16:28:01 +00002326 }
2327 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00002328 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00002329#ifndef SQLITE_OMIT_SHARED_CACHE
2330 p->lock.pBtree = p;
2331 p->lock.iTable = 1;
2332#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002333
drh198bf392006-01-06 21:52:49 +00002334#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002335 /*
2336 ** If this Btree is a candidate for shared cache, try to find an
2337 ** existing BtShared object that we can share with
2338 */
drh4ab9d252012-05-26 20:08:49 +00002339 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
drhf1f12682009-09-09 14:17:52 +00002340 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
drh6b5f0eb2015-03-31 16:33:08 +00002341 int nFilename = sqlite3Strlen30(zFilename)+1;
danielk1977adfb9b02007-09-17 07:02:56 +00002342 int nFullPathname = pVfs->mxPathname+1;
drh6b5f0eb2015-03-31 16:33:08 +00002343 char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
drh30ddce62011-10-15 00:16:30 +00002344 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh6b5f0eb2015-03-31 16:33:08 +00002345
drhff0587c2007-08-29 17:43:19 +00002346 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00002347 if( !zFullPathname ){
2348 sqlite3_free(p);
mistachkinfad30392016-02-13 23:43:46 +00002349 return SQLITE_NOMEM_BKPT;
drhff0587c2007-08-29 17:43:19 +00002350 }
drhafc8b7f2012-05-26 18:06:38 +00002351 if( isMemdb ){
drh6b5f0eb2015-03-31 16:33:08 +00002352 memcpy(zFullPathname, zFilename, nFilename);
drhafc8b7f2012-05-26 18:06:38 +00002353 }else{
2354 rc = sqlite3OsFullPathname(pVfs, zFilename,
2355 nFullPathname, zFullPathname);
2356 if( rc ){
2357 sqlite3_free(zFullPathname);
2358 sqlite3_free(p);
2359 return rc;
2360 }
drh070ad6b2011-11-17 11:43:19 +00002361 }
drh30ddce62011-10-15 00:16:30 +00002362#if SQLITE_THREADSAFE
drh7555d8e2009-03-20 13:15:30 +00002363 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
2364 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00002365 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00002366 sqlite3_mutex_enter(mutexShared);
drh30ddce62011-10-15 00:16:30 +00002367#endif
drh78f82d12008-09-02 00:52:52 +00002368 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00002369 assert( pBt->nRef>0 );
drhd4e0bb02012-05-27 01:19:04 +00002370 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
drhff0587c2007-08-29 17:43:19 +00002371 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00002372 int iDb;
2373 for(iDb=db->nDb-1; iDb>=0; iDb--){
2374 Btree *pExisting = db->aDb[iDb].pBt;
2375 if( pExisting && pExisting->pBt==pBt ){
2376 sqlite3_mutex_leave(mutexShared);
2377 sqlite3_mutex_leave(mutexOpen);
2378 sqlite3_free(zFullPathname);
2379 sqlite3_free(p);
2380 return SQLITE_CONSTRAINT;
2381 }
2382 }
drhff0587c2007-08-29 17:43:19 +00002383 p->pBt = pBt;
2384 pBt->nRef++;
2385 break;
2386 }
2387 }
2388 sqlite3_mutex_leave(mutexShared);
2389 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00002390 }
drhff0587c2007-08-29 17:43:19 +00002391#ifdef SQLITE_DEBUG
2392 else{
2393 /* In debug mode, we mark all persistent databases as sharable
2394 ** even when they are not. This exercises the locking code and
2395 ** gives more opportunity for asserts(sqlite3_mutex_held())
2396 ** statements to find locking problems.
2397 */
2398 p->sharable = 1;
2399 }
2400#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002401 }
2402#endif
drha059ad02001-04-17 20:09:11 +00002403 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00002404 /*
2405 ** The following asserts make sure that structures used by the btree are
2406 ** the right size. This is to guard against size changes that result
2407 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00002408 */
drh062cf272015-03-23 19:03:51 +00002409 assert( sizeof(i64)==8 );
2410 assert( sizeof(u64)==8 );
drhe53831d2007-08-17 01:14:38 +00002411 assert( sizeof(u32)==4 );
2412 assert( sizeof(u16)==2 );
2413 assert( sizeof(Pgno)==4 );
2414
2415 pBt = sqlite3MallocZero( sizeof(*pBt) );
2416 if( pBt==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002417 rc = SQLITE_NOMEM_BKPT;
drhe53831d2007-08-17 01:14:38 +00002418 goto btree_open_out;
2419 }
danielk197771d5d2c2008-09-29 11:49:47 +00002420 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drha2ee5892016-12-09 16:02:00 +00002421 sizeof(MemPage), flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00002422 if( rc==SQLITE_OK ){
drh9b4c59f2013-04-15 17:03:42 +00002423 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
drhe53831d2007-08-17 01:14:38 +00002424 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
2425 }
2426 if( rc!=SQLITE_OK ){
2427 goto btree_open_out;
2428 }
shanehbd2aaf92010-09-01 02:38:21 +00002429 pBt->openFlags = (u8)flags;
danielk19772a50ff02009-04-10 09:47:06 +00002430 pBt->db = db;
drh80262892018-03-26 16:37:53 +00002431 sqlite3PagerSetBusyHandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00002432 p->pBt = pBt;
2433
drhe53831d2007-08-17 01:14:38 +00002434 pBt->pCursor = 0;
2435 pBt->pPage1 = 0;
drhc9166342012-01-05 23:32:06 +00002436 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
drha5907a82017-06-19 11:44:22 +00002437#if defined(SQLITE_SECURE_DELETE)
drhc9166342012-01-05 23:32:06 +00002438 pBt->btsFlags |= BTS_SECURE_DELETE;
drha5907a82017-06-19 11:44:22 +00002439#elif defined(SQLITE_FAST_SECURE_DELETE)
2440 pBt->btsFlags |= BTS_OVERWRITE;
drh5b47efa2010-02-12 18:18:39 +00002441#endif
drh113762a2014-11-19 16:36:25 +00002442 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2443 ** determined by the 2-byte integer located at an offset of 16 bytes from
2444 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00002445 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
drhe53831d2007-08-17 01:14:38 +00002446 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
2447 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00002448 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00002449#ifndef SQLITE_OMIT_AUTOVACUUM
2450 /* If the magic name ":memory:" will create an in-memory database, then
2451 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2452 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2453 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2454 ** regular file-name. In this case the auto-vacuum applies as per normal.
2455 */
2456 if( zFilename && !isMemdb ){
2457 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
2458 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
2459 }
2460#endif
2461 nReserve = 0;
2462 }else{
drh113762a2014-11-19 16:36:25 +00002463 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2464 ** determined by the one-byte unsigned integer found at an offset of 20
2465 ** into the database file header. */
drhe53831d2007-08-17 01:14:38 +00002466 nReserve = zDbHeader[20];
drhc9166342012-01-05 23:32:06 +00002467 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhe53831d2007-08-17 01:14:38 +00002468#ifndef SQLITE_OMIT_AUTOVACUUM
2469 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
2470 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
2471#endif
2472 }
drhfa9601a2009-06-18 17:22:39 +00002473 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00002474 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00002475 pBt->usableSize = pBt->pageSize - nReserve;
2476 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00002477
2478#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2479 /* Add the new BtShared object to the linked list sharable BtShareds.
2480 */
dan272989b2016-07-06 10:12:02 +00002481 pBt->nRef = 1;
drhe53831d2007-08-17 01:14:38 +00002482 if( p->sharable ){
drh30ddce62011-10-15 00:16:30 +00002483 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
drh30ddce62011-10-15 00:16:30 +00002484 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
danielk1977075c23a2008-09-01 18:34:20 +00002485 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00002486 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00002487 if( pBt->mutex==0 ){
mistachkinfad30392016-02-13 23:43:46 +00002488 rc = SQLITE_NOMEM_BKPT;
drh3285db22007-09-03 22:00:39 +00002489 goto btree_open_out;
2490 }
drhff0587c2007-08-29 17:43:19 +00002491 }
drhe53831d2007-08-17 01:14:38 +00002492 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00002493 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2494 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00002495 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00002496 }
drheee46cf2004-11-06 00:02:48 +00002497#endif
drh90f5ecb2004-07-22 01:19:35 +00002498 }
danielk1977aef0bf62005-12-30 16:28:01 +00002499
drhcfed7bc2006-03-13 14:28:05 +00002500#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00002501 /* If the new Btree uses a sharable pBtShared, then link the new
2502 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00002503 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00002504 */
drhe53831d2007-08-17 01:14:38 +00002505 if( p->sharable ){
2506 int i;
2507 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00002508 for(i=0; i<db->nDb; i++){
2509 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00002510 while( pSib->pPrev ){ pSib = pSib->pPrev; }
drh3bfa7e82016-03-22 14:37:59 +00002511 if( (uptr)p->pBt<(uptr)pSib->pBt ){
drhe53831d2007-08-17 01:14:38 +00002512 p->pNext = pSib;
2513 p->pPrev = 0;
2514 pSib->pPrev = p;
2515 }else{
drh3bfa7e82016-03-22 14:37:59 +00002516 while( pSib->pNext && (uptr)pSib->pNext->pBt<(uptr)p->pBt ){
drhe53831d2007-08-17 01:14:38 +00002517 pSib = pSib->pNext;
2518 }
2519 p->pNext = pSib->pNext;
2520 p->pPrev = pSib;
2521 if( p->pNext ){
2522 p->pNext->pPrev = p;
2523 }
2524 pSib->pNext = p;
2525 }
2526 break;
2527 }
2528 }
danielk1977aef0bf62005-12-30 16:28:01 +00002529 }
danielk1977aef0bf62005-12-30 16:28:01 +00002530#endif
2531 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00002532
2533btree_open_out:
2534 if( rc!=SQLITE_OK ){
2535 if( pBt && pBt->pPager ){
dan7fb89902016-08-12 16:21:15 +00002536 sqlite3PagerClose(pBt->pPager, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002537 }
drh17435752007-08-16 04:30:38 +00002538 sqlite3_free(pBt);
2539 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002540 *ppBtree = 0;
drh75c014c2010-08-30 15:02:28 +00002541 }else{
dan0f5a1862016-08-13 14:30:23 +00002542 sqlite3_file *pFile;
2543
drh75c014c2010-08-30 15:02:28 +00002544 /* If the B-Tree was successfully opened, set the pager-cache size to the
2545 ** default value. Except, when opening on an existing shared pager-cache,
2546 ** do not change the pager-cache size.
2547 */
2548 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2549 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2550 }
dan0f5a1862016-08-13 14:30:23 +00002551
2552 pFile = sqlite3PagerFile(pBt->pPager);
2553 if( pFile->pMethods ){
2554 sqlite3OsFileControlHint(pFile, SQLITE_FCNTL_PDB, (void*)&pBt->db);
2555 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002556 }
drh7555d8e2009-03-20 13:15:30 +00002557 if( mutexOpen ){
2558 assert( sqlite3_mutex_held(mutexOpen) );
2559 sqlite3_mutex_leave(mutexOpen);
2560 }
dan272989b2016-07-06 10:12:02 +00002561 assert( rc!=SQLITE_OK || sqlite3BtreeConnectionCount(*ppBtree)>0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002562 return rc;
drha059ad02001-04-17 20:09:11 +00002563}
2564
2565/*
drhe53831d2007-08-17 01:14:38 +00002566** Decrement the BtShared.nRef counter. When it reaches zero,
2567** remove the BtShared structure from the sharing list. Return
2568** true if the BtShared.nRef counter reaches zero and return
2569** false if it is still positive.
2570*/
2571static int removeFromSharingList(BtShared *pBt){
2572#ifndef SQLITE_OMIT_SHARED_CACHE
drh30ddce62011-10-15 00:16:30 +00002573 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
drhe53831d2007-08-17 01:14:38 +00002574 BtShared *pList;
2575 int removed = 0;
2576
drhd677b3d2007-08-20 22:48:41 +00002577 assert( sqlite3_mutex_notheld(pBt->mutex) );
drh30ddce62011-10-15 00:16:30 +00002578 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
drhe53831d2007-08-17 01:14:38 +00002579 sqlite3_mutex_enter(pMaster);
2580 pBt->nRef--;
2581 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00002582 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2583 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00002584 }else{
drh78f82d12008-09-02 00:52:52 +00002585 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00002586 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00002587 pList=pList->pNext;
2588 }
drh34004ce2008-07-11 16:15:17 +00002589 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00002590 pList->pNext = pBt->pNext;
2591 }
2592 }
drh3285db22007-09-03 22:00:39 +00002593 if( SQLITE_THREADSAFE ){
2594 sqlite3_mutex_free(pBt->mutex);
2595 }
drhe53831d2007-08-17 01:14:38 +00002596 removed = 1;
2597 }
2598 sqlite3_mutex_leave(pMaster);
2599 return removed;
2600#else
2601 return 1;
2602#endif
2603}
2604
2605/*
drhf7141992008-06-19 00:16:08 +00002606** Make sure pBt->pTmpSpace points to an allocation of
drh92787cf2014-10-15 11:55:51 +00002607** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2608** pointer.
drhf7141992008-06-19 00:16:08 +00002609*/
2610static void allocateTempSpace(BtShared *pBt){
2611 if( !pBt->pTmpSpace ){
2612 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
dan14285b72013-10-16 11:39:07 +00002613
2614 /* One of the uses of pBt->pTmpSpace is to format cells before
2615 ** inserting them into a leaf page (function fillInCell()). If
2616 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2617 ** by the various routines that manipulate binary cells. Which
2618 ** can mean that fillInCell() only initializes the first 2 or 3
2619 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2620 ** it into a database page. This is not actually a problem, but it
2621 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2622 ** data is passed to system call write(). So to avoid this error,
drh92787cf2014-10-15 11:55:51 +00002623 ** zero the first 4 bytes of temp space here.
2624 **
2625 ** Also: Provide four bytes of initialized space before the
2626 ** beginning of pTmpSpace as an area available to prepend the
2627 ** left-child pointer to the beginning of a cell.
2628 */
2629 if( pBt->pTmpSpace ){
2630 memset(pBt->pTmpSpace, 0, 8);
2631 pBt->pTmpSpace += 4;
2632 }
drhf7141992008-06-19 00:16:08 +00002633 }
2634}
2635
2636/*
2637** Free the pBt->pTmpSpace allocation
2638*/
2639static void freeTempSpace(BtShared *pBt){
drh92787cf2014-10-15 11:55:51 +00002640 if( pBt->pTmpSpace ){
2641 pBt->pTmpSpace -= 4;
2642 sqlite3PageFree(pBt->pTmpSpace);
2643 pBt->pTmpSpace = 0;
2644 }
drhf7141992008-06-19 00:16:08 +00002645}
2646
2647/*
drha059ad02001-04-17 20:09:11 +00002648** Close an open database and invalidate all cursors.
2649*/
danielk1977aef0bf62005-12-30 16:28:01 +00002650int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00002651 BtShared *pBt = p->pBt;
2652 BtCursor *pCur;
2653
danielk1977aef0bf62005-12-30 16:28:01 +00002654 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00002655 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00002656 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002657 pCur = pBt->pCursor;
2658 while( pCur ){
2659 BtCursor *pTmp = pCur;
2660 pCur = pCur->pNext;
2661 if( pTmp->pBtree==p ){
2662 sqlite3BtreeCloseCursor(pTmp);
2663 }
drha059ad02001-04-17 20:09:11 +00002664 }
danielk1977aef0bf62005-12-30 16:28:01 +00002665
danielk19778d34dfd2006-01-24 16:37:57 +00002666 /* Rollback any active transaction and free the handle structure.
2667 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2668 ** this handle.
2669 */
drh47b7fc72014-11-11 01:33:57 +00002670 sqlite3BtreeRollback(p, SQLITE_OK, 0);
drhe53831d2007-08-17 01:14:38 +00002671 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002672
danielk1977aef0bf62005-12-30 16:28:01 +00002673 /* If there are still other outstanding references to the shared-btree
2674 ** structure, return now. The remainder of this procedure cleans
2675 ** up the shared-btree.
2676 */
drhe53831d2007-08-17 01:14:38 +00002677 assert( p->wantToLock==0 && p->locked==0 );
2678 if( !p->sharable || removeFromSharingList(pBt) ){
2679 /* The pBt is no longer on the sharing list, so we can access
2680 ** it without having to hold the mutex.
2681 **
2682 ** Clean out and delete the BtShared object.
2683 */
2684 assert( !pBt->pCursor );
dan7fb89902016-08-12 16:21:15 +00002685 sqlite3PagerClose(pBt->pPager, p->db);
drhe53831d2007-08-17 01:14:38 +00002686 if( pBt->xFreeSchema && pBt->pSchema ){
2687 pBt->xFreeSchema(pBt->pSchema);
2688 }
drhb9755982010-07-24 16:34:37 +00002689 sqlite3DbFree(0, pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002690 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002691 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002692 }
2693
drhe53831d2007-08-17 01:14:38 +00002694#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002695 assert( p->wantToLock==0 );
2696 assert( p->locked==0 );
2697 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2698 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002699#endif
2700
drhe53831d2007-08-17 01:14:38 +00002701 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002702 return SQLITE_OK;
2703}
2704
2705/*
drh9b0cf342015-11-12 14:57:19 +00002706** Change the "soft" limit on the number of pages in the cache.
2707** Unused and unmodified pages will be recycled when the number of
2708** pages in the cache exceeds this soft limit. But the size of the
2709** cache is allowed to grow larger than this limit if it contains
2710** dirty pages or pages still in active use.
drhf57b14a2001-09-14 18:54:08 +00002711*/
danielk1977aef0bf62005-12-30 16:28:01 +00002712int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2713 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002714 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002715 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002716 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002717 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002718 return SQLITE_OK;
2719}
2720
drh9b0cf342015-11-12 14:57:19 +00002721/*
2722** Change the "spill" limit on the number of pages in the cache.
2723** If the number of pages exceeds this limit during a write transaction,
2724** the pager might attempt to "spill" pages to the journal early in
2725** order to free up memory.
2726**
2727** The value returned is the current spill size. If zero is passed
2728** as an argument, no changes are made to the spill size setting, so
2729** using mxPage of 0 is a way to query the current spill size.
2730*/
2731int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
2732 BtShared *pBt = p->pBt;
2733 int res;
2734 assert( sqlite3_mutex_held(p->db->mutex) );
2735 sqlite3BtreeEnter(p);
2736 res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
2737 sqlite3BtreeLeave(p);
2738 return res;
2739}
2740
drh18c7e402014-03-14 11:46:10 +00002741#if SQLITE_MAX_MMAP_SIZE>0
drhf57b14a2001-09-14 18:54:08 +00002742/*
dan5d8a1372013-03-19 19:28:06 +00002743** Change the limit on the amount of the database file that may be
2744** memory mapped.
2745*/
drh9b4c59f2013-04-15 17:03:42 +00002746int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
dan5d8a1372013-03-19 19:28:06 +00002747 BtShared *pBt = p->pBt;
2748 assert( sqlite3_mutex_held(p->db->mutex) );
2749 sqlite3BtreeEnter(p);
drh9b4c59f2013-04-15 17:03:42 +00002750 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
dan5d8a1372013-03-19 19:28:06 +00002751 sqlite3BtreeLeave(p);
2752 return SQLITE_OK;
2753}
drh18c7e402014-03-14 11:46:10 +00002754#endif /* SQLITE_MAX_MMAP_SIZE>0 */
dan5d8a1372013-03-19 19:28:06 +00002755
2756/*
drh973b6e32003-02-12 14:09:42 +00002757** Change the way data is synced to disk in order to increase or decrease
2758** how well the database resists damage due to OS crashes and power
2759** failures. Level 1 is the same as asynchronous (no syncs() occur and
2760** there is a high probability of damage) Level 2 is the default. There
2761** is a very low but non-zero probability of damage. Level 3 reduces the
2762** probability of damage to near zero but with a write performance reduction.
2763*/
danielk197793758c82005-01-21 08:13:14 +00002764#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drh40c39412013-08-16 20:42:20 +00002765int sqlite3BtreeSetPagerFlags(
drhc97d8462010-11-19 18:23:35 +00002766 Btree *p, /* The btree to set the safety level on */
drh40c39412013-08-16 20:42:20 +00002767 unsigned pgFlags /* Various PAGER_* flags */
drhc97d8462010-11-19 18:23:35 +00002768){
danielk1977aef0bf62005-12-30 16:28:01 +00002769 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002770 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002771 sqlite3BtreeEnter(p);
drh40c39412013-08-16 20:42:20 +00002772 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
drhd677b3d2007-08-20 22:48:41 +00002773 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002774 return SQLITE_OK;
2775}
danielk197793758c82005-01-21 08:13:14 +00002776#endif
drh973b6e32003-02-12 14:09:42 +00002777
drh2c8997b2005-08-27 16:36:48 +00002778/*
drh90f5ecb2004-07-22 01:19:35 +00002779** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002780** Or, if the page size has already been fixed, return SQLITE_READONLY
2781** without changing anything.
drh06f50212004-11-02 14:24:33 +00002782**
2783** The page size must be a power of 2 between 512 and 65536. If the page
2784** size supplied does not meet this constraint then the page size is not
2785** changed.
2786**
2787** Page sizes are constrained to be a power of two so that the region
2788** of the database file used for locking (beginning at PENDING_BYTE,
2789** the first byte past the 1GB boundary, 0x40000000) needs to occur
2790** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002791**
2792** If parameter nReserve is less than zero, then the number of reserved
2793** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002794**
drhc9166342012-01-05 23:32:06 +00002795** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
drhce4869f2009-04-02 20:16:58 +00002796** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002797*/
drhce4869f2009-04-02 20:16:58 +00002798int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002799 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002800 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002801 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002802 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002803#if SQLITE_HAS_CODEC
2804 if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
2805#endif
drhc9166342012-01-05 23:32:06 +00002806 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
drhd677b3d2007-08-20 22:48:41 +00002807 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002808 return SQLITE_READONLY;
2809 }
2810 if( nReserve<0 ){
2811 nReserve = pBt->pageSize - pBt->usableSize;
2812 }
drhf49661a2008-12-10 16:45:50 +00002813 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002814 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2815 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002816 assert( (pageSize & 7)==0 );
dandd14ecb2015-05-05 10:03:08 +00002817 assert( !pBt->pCursor );
drhb2eced52010-08-12 02:41:12 +00002818 pBt->pageSize = (u32)pageSize;
drhf7141992008-06-19 00:16:08 +00002819 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002820 }
drhfa9601a2009-06-18 17:22:39 +00002821 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002822 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhc9166342012-01-05 23:32:06 +00002823 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drhd677b3d2007-08-20 22:48:41 +00002824 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002825 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002826}
2827
2828/*
2829** Return the currently defined page size
2830*/
danielk1977aef0bf62005-12-30 16:28:01 +00002831int sqlite3BtreeGetPageSize(Btree *p){
2832 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002833}
drh7f751222009-03-17 22:33:00 +00002834
dan0094f372012-09-28 20:23:42 +00002835/*
2836** This function is similar to sqlite3BtreeGetReserve(), except that it
2837** may only be called if it is guaranteed that the b-tree mutex is already
2838** held.
2839**
2840** This is useful in one special case in the backup API code where it is
2841** known that the shared b-tree mutex is held, but the mutex on the
2842** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2843** were to be called, it might collide with some other operation on the
mistachkin48864df2013-03-21 21:20:32 +00002844** database handle that owns *p, causing undefined behavior.
dan0094f372012-09-28 20:23:42 +00002845*/
2846int sqlite3BtreeGetReserveNoMutex(Btree *p){
drhad0961b2015-02-21 00:19:25 +00002847 int n;
dan0094f372012-09-28 20:23:42 +00002848 assert( sqlite3_mutex_held(p->pBt->mutex) );
drhad0961b2015-02-21 00:19:25 +00002849 n = p->pBt->pageSize - p->pBt->usableSize;
2850 return n;
dan0094f372012-09-28 20:23:42 +00002851}
2852
drh7f751222009-03-17 22:33:00 +00002853/*
2854** Return the number of bytes of space at the end of every page that
2855** are intentually left unused. This is the "reserved" space that is
2856** sometimes used by extensions.
drhad0961b2015-02-21 00:19:25 +00002857**
2858** If SQLITE_HAS_MUTEX is defined then the number returned is the
2859** greater of the current reserved space and the maximum requested
2860** reserve space.
drh7f751222009-03-17 22:33:00 +00002861*/
drhad0961b2015-02-21 00:19:25 +00002862int sqlite3BtreeGetOptimalReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002863 int n;
2864 sqlite3BtreeEnter(p);
drhad0961b2015-02-21 00:19:25 +00002865 n = sqlite3BtreeGetReserveNoMutex(p);
2866#ifdef SQLITE_HAS_CODEC
2867 if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
2868#endif
drhd677b3d2007-08-20 22:48:41 +00002869 sqlite3BtreeLeave(p);
2870 return n;
drh2011d5f2004-07-22 02:40:37 +00002871}
drhf8e632b2007-05-08 14:51:36 +00002872
drhad0961b2015-02-21 00:19:25 +00002873
drhf8e632b2007-05-08 14:51:36 +00002874/*
2875** Set the maximum page count for a database if mxPage is positive.
2876** No changes are made if mxPage is 0 or negative.
2877** Regardless of the value of mxPage, return the maximum page count.
2878*/
2879int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002880 int n;
2881 sqlite3BtreeEnter(p);
2882 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2883 sqlite3BtreeLeave(p);
2884 return n;
drhf8e632b2007-05-08 14:51:36 +00002885}
drh5b47efa2010-02-12 18:18:39 +00002886
2887/*
drha5907a82017-06-19 11:44:22 +00002888** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2889**
2890** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
2891** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
2892** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
2893** newFlag==(-1) No changes
2894**
2895** This routine acts as a query if newFlag is less than zero
2896**
2897** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
2898** freelist leaf pages are not written back to the database. Thus in-page
2899** deleted content is cleared, but freelist deleted content is not.
2900**
2901** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
2902** that freelist leaf pages are written back into the database, increasing
2903** the amount of disk I/O.
drh5b47efa2010-02-12 18:18:39 +00002904*/
2905int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2906 int b;
drhaf034ed2010-02-12 19:46:26 +00002907 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002908 sqlite3BtreeEnter(p);
drha5907a82017-06-19 11:44:22 +00002909 assert( BTS_OVERWRITE==BTS_SECURE_DELETE*2 );
2910 assert( BTS_FAST_SECURE==(BTS_OVERWRITE|BTS_SECURE_DELETE) );
drh5b47efa2010-02-12 18:18:39 +00002911 if( newFlag>=0 ){
drha5907a82017-06-19 11:44:22 +00002912 p->pBt->btsFlags &= ~BTS_FAST_SECURE;
2913 p->pBt->btsFlags |= BTS_SECURE_DELETE*newFlag;
2914 }
2915 b = (p->pBt->btsFlags & BTS_FAST_SECURE)/BTS_SECURE_DELETE;
drh5b47efa2010-02-12 18:18:39 +00002916 sqlite3BtreeLeave(p);
2917 return b;
2918}
drh90f5ecb2004-07-22 01:19:35 +00002919
2920/*
danielk1977951af802004-11-05 15:45:09 +00002921** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2922** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2923** is disabled. The default value for the auto-vacuum property is
2924** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2925*/
danielk1977aef0bf62005-12-30 16:28:01 +00002926int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002927#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002928 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002929#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002930 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002931 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002932 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002933
2934 sqlite3BtreeEnter(p);
drhc9166342012-01-05 23:32:06 +00002935 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002936 rc = SQLITE_READONLY;
2937 }else{
drh076d4662009-02-18 20:31:18 +00002938 pBt->autoVacuum = av ?1:0;
2939 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002940 }
drhd677b3d2007-08-20 22:48:41 +00002941 sqlite3BtreeLeave(p);
2942 return rc;
danielk1977951af802004-11-05 15:45:09 +00002943#endif
2944}
2945
2946/*
2947** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2948** enabled 1 is returned. Otherwise 0.
2949*/
danielk1977aef0bf62005-12-30 16:28:01 +00002950int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002951#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002952 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002953#else
drhd677b3d2007-08-20 22:48:41 +00002954 int rc;
2955 sqlite3BtreeEnter(p);
2956 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002957 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2958 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2959 BTREE_AUTOVACUUM_INCR
2960 );
drhd677b3d2007-08-20 22:48:41 +00002961 sqlite3BtreeLeave(p);
2962 return rc;
danielk1977951af802004-11-05 15:45:09 +00002963#endif
2964}
2965
danf5da7db2017-03-16 18:14:39 +00002966/*
2967** If the user has not set the safety-level for this database connection
2968** using "PRAGMA synchronous", and if the safety-level is not already
2969** set to the value passed to this function as the second parameter,
2970** set it so.
2971*/
drh2ed57372017-10-05 20:57:38 +00002972#if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
2973 && !defined(SQLITE_OMIT_WAL)
danf5da7db2017-03-16 18:14:39 +00002974static void setDefaultSyncFlag(BtShared *pBt, u8 safety_level){
2975 sqlite3 *db;
2976 Db *pDb;
2977 if( (db=pBt->db)!=0 && (pDb=db->aDb)!=0 ){
2978 while( pDb->pBt==0 || pDb->pBt->pBt!=pBt ){ pDb++; }
2979 if( pDb->bSyncSet==0
2980 && pDb->safety_level!=safety_level
2981 && pDb!=&db->aDb[1]
2982 ){
2983 pDb->safety_level = safety_level;
2984 sqlite3PagerSetFlags(pBt->pPager,
2985 pDb->safety_level | (db->flags & PAGER_FLAGS_MASK));
2986 }
2987 }
2988}
2989#else
danfc8f4b62017-03-16 18:54:42 +00002990# define setDefaultSyncFlag(pBt,safety_level)
danf5da7db2017-03-16 18:14:39 +00002991#endif
danielk1977951af802004-11-05 15:45:09 +00002992
drh0314cf32018-04-28 01:27:09 +00002993/* Forward declaration */
2994static int newDatabase(BtShared*);
2995
2996
danielk1977951af802004-11-05 15:45:09 +00002997/*
drha34b6762004-05-07 13:30:42 +00002998** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002999** also acquire a readlock on that file.
3000**
3001** SQLITE_OK is returned on success. If the file is not a
3002** well-formed database file, then SQLITE_CORRUPT is returned.
3003** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00003004** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00003005*/
danielk1977aef0bf62005-12-30 16:28:01 +00003006static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00003007 int rc; /* Result code from subfunctions */
3008 MemPage *pPage1; /* Page 1 of the database file */
dane6370e92019-01-11 17:41:23 +00003009 u32 nPage; /* Number of pages in the database */
3010 u32 nPageFile = 0; /* Number of pages in the database file */
3011 u32 nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00003012
drh1fee73e2007-08-29 04:00:57 +00003013 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00003014 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00003015 rc = sqlite3PagerSharedLock(pBt->pPager);
3016 if( rc!=SQLITE_OK ) return rc;
drhb00fc3b2013-08-21 23:42:32 +00003017 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00003018 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00003019
3020 /* Do some checking to help insure the file we opened really is
3021 ** a valid database file.
3022 */
drhc2a4bab2010-04-02 12:46:45 +00003023 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
dane6370e92019-01-11 17:41:23 +00003024 sqlite3PagerPagecount(pBt->pPager, (int*)&nPageFile);
drhb28e59b2010-06-17 02:13:39 +00003025 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
drhc2a4bab2010-04-02 12:46:45 +00003026 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00003027 }
drh0314cf32018-04-28 01:27:09 +00003028 if( (pBt->db->flags & SQLITE_ResetDatabase)!=0 ){
3029 nPage = 0;
3030 }
drh97b59a52010-03-31 02:31:33 +00003031 if( nPage>0 ){
drh43b18e12010-08-17 19:40:08 +00003032 u32 pageSize;
3033 u32 usableSize;
drhb6f41482004-05-14 01:58:11 +00003034 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00003035 rc = SQLITE_NOTADB;
drh113762a2014-11-19 16:36:25 +00003036 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3037 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3038 ** 61 74 20 33 00. */
drhb6f41482004-05-14 01:58:11 +00003039 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00003040 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00003041 }
dan5cf53532010-05-01 16:40:20 +00003042
3043#ifdef SQLITE_OMIT_WAL
3044 if( page1[18]>1 ){
drhc9166342012-01-05 23:32:06 +00003045 pBt->btsFlags |= BTS_READ_ONLY;
dan5cf53532010-05-01 16:40:20 +00003046 }
3047 if( page1[19]>1 ){
3048 goto page1_init_failed;
3049 }
3050#else
dane04dc882010-04-20 18:53:15 +00003051 if( page1[18]>2 ){
drhc9166342012-01-05 23:32:06 +00003052 pBt->btsFlags |= BTS_READ_ONLY;
drh309169a2007-04-24 17:27:51 +00003053 }
dane04dc882010-04-20 18:53:15 +00003054 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00003055 goto page1_init_failed;
3056 }
drhe5ae5732008-06-15 02:51:47 +00003057
dana470aeb2010-04-21 11:43:38 +00003058 /* If the write version is set to 2, this database should be accessed
3059 ** in WAL mode. If the log is not already open, open it now. Then
3060 ** return SQLITE_OK and return without populating BtShared.pPage1.
3061 ** The caller detects this and calls this function again. This is
3062 ** required as the version of page 1 currently in the page1 buffer
3063 ** may not be the latest version - there may be a newer one in the log
3064 ** file.
3065 */
drhc9166342012-01-05 23:32:06 +00003066 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
dane04dc882010-04-20 18:53:15 +00003067 int isOpen = 0;
drh7ed91f22010-04-29 22:34:07 +00003068 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
dane04dc882010-04-20 18:53:15 +00003069 if( rc!=SQLITE_OK ){
3070 goto page1_init_failed;
drhe243de52016-03-08 15:14:26 +00003071 }else{
danf5da7db2017-03-16 18:14:39 +00003072 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_WAL_SYNCHRONOUS+1);
drhe243de52016-03-08 15:14:26 +00003073 if( isOpen==0 ){
drh3908fe92017-09-01 14:50:19 +00003074 releasePageOne(pPage1);
drhe243de52016-03-08 15:14:26 +00003075 return SQLITE_OK;
3076 }
dane04dc882010-04-20 18:53:15 +00003077 }
dan8b5444b2010-04-27 14:37:47 +00003078 rc = SQLITE_NOTADB;
danf5da7db2017-03-16 18:14:39 +00003079 }else{
3080 setDefaultSyncFlag(pBt, SQLITE_DEFAULT_SYNCHRONOUS+1);
dane04dc882010-04-20 18:53:15 +00003081 }
dan5cf53532010-05-01 16:40:20 +00003082#endif
dane04dc882010-04-20 18:53:15 +00003083
drh113762a2014-11-19 16:36:25 +00003084 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3085 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3086 **
drhe5ae5732008-06-15 02:51:47 +00003087 ** The original design allowed these amounts to vary, but as of
3088 ** version 3.6.0, we require them to be fixed.
3089 */
3090 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
3091 goto page1_init_failed;
3092 }
drh113762a2014-11-19 16:36:25 +00003093 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3094 ** determined by the 2-byte integer located at an offset of 16 bytes from
3095 ** the beginning of the database file. */
drhb2eced52010-08-12 02:41:12 +00003096 pageSize = (page1[16]<<8) | (page1[17]<<16);
drh113762a2014-11-19 16:36:25 +00003097 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3098 ** between 512 and 65536 inclusive. */
drhb2eced52010-08-12 02:41:12 +00003099 if( ((pageSize-1)&pageSize)!=0
3100 || pageSize>SQLITE_MAX_PAGE_SIZE
3101 || pageSize<=256
drh7dc385e2007-09-06 23:39:36 +00003102 ){
drh07d183d2005-05-01 22:52:42 +00003103 goto page1_init_failed;
3104 }
drhdcc27002019-01-06 02:06:31 +00003105 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
drh07d183d2005-05-01 22:52:42 +00003106 assert( (pageSize & 7)==0 );
drh113762a2014-11-19 16:36:25 +00003107 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3108 ** integer at offset 20 is the number of bytes of space at the end of
3109 ** each page to reserve for extensions.
3110 **
3111 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3112 ** determined by the one-byte unsigned integer found at an offset of 20
3113 ** into the database file header. */
danielk1977f653d782008-03-20 11:04:21 +00003114 usableSize = pageSize - page1[20];
shaneh1df2db72010-08-18 02:28:48 +00003115 if( (u32)pageSize!=pBt->pageSize ){
danielk1977f653d782008-03-20 11:04:21 +00003116 /* After reading the first page of the database assuming a page size
3117 ** of BtShared.pageSize, we have discovered that the page-size is
3118 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3119 ** zero and return SQLITE_OK. The caller will call this function
3120 ** again with the correct page-size.
3121 */
drh3908fe92017-09-01 14:50:19 +00003122 releasePageOne(pPage1);
drh43b18e12010-08-17 19:40:08 +00003123 pBt->usableSize = usableSize;
3124 pBt->pageSize = pageSize;
drhf7141992008-06-19 00:16:08 +00003125 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00003126 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
3127 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00003128 return rc;
danielk1977f653d782008-03-20 11:04:21 +00003129 }
drh0f1c2eb2018-11-03 17:31:48 +00003130 if( sqlite3WritableSchema(pBt->db)==0 && nPage>nPageFile ){
drhc2a4bab2010-04-02 12:46:45 +00003131 rc = SQLITE_CORRUPT_BKPT;
3132 goto page1_init_failed;
3133 }
drh113762a2014-11-19 16:36:25 +00003134 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3135 ** be less than 480. In other words, if the page size is 512, then the
3136 ** reserved space size cannot exceed 32. */
drhb33e1b92009-06-18 11:29:20 +00003137 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00003138 goto page1_init_failed;
3139 }
drh43b18e12010-08-17 19:40:08 +00003140 pBt->pageSize = pageSize;
3141 pBt->usableSize = usableSize;
drh057cd3a2005-02-15 16:23:02 +00003142#ifndef SQLITE_OMIT_AUTOVACUUM
3143 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00003144 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00003145#endif
drh306dc212001-05-21 13:45:10 +00003146 }
drhb6f41482004-05-14 01:58:11 +00003147
3148 /* maxLocal is the maximum amount of payload to store locally for
3149 ** a cell. Make sure it is small enough so that at least minFanout
3150 ** cells can will fit on one page. We assume a 10-byte page header.
3151 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00003152 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00003153 ** 4-byte child pointer
3154 ** 9-byte nKey value
3155 ** 4-byte nData value
3156 ** 4-byte overflow page pointer
drhe22e03e2010-08-18 21:19:03 +00003157 ** So a cell consists of a 2-byte pointer, a header which is as much as
drh43605152004-05-29 21:46:49 +00003158 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3159 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00003160 */
shaneh1df2db72010-08-18 02:28:48 +00003161 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
3162 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
3163 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
3164 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
drhc9166342012-01-05 23:32:06 +00003165 if( pBt->maxLocal>127 ){
3166 pBt->max1bytePayload = 127;
3167 }else{
mistachkin0547e2f2012-01-08 00:54:02 +00003168 pBt->max1bytePayload = (u8)pBt->maxLocal;
drhc9166342012-01-05 23:32:06 +00003169 }
drh2e38c322004-09-03 18:38:44 +00003170 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00003171 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00003172 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00003173 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00003174
drh72f82862001-05-24 21:06:34 +00003175page1_init_failed:
drh3908fe92017-09-01 14:50:19 +00003176 releasePageOne(pPage1);
drh3aac2dd2004-04-26 14:10:20 +00003177 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00003178 return rc;
drh306dc212001-05-21 13:45:10 +00003179}
3180
drh85ec3b62013-05-14 23:12:06 +00003181#ifndef NDEBUG
3182/*
3183** Return the number of cursors open on pBt. This is for use
3184** in assert() expressions, so it is only compiled if NDEBUG is not
3185** defined.
3186**
3187** Only write cursors are counted if wrOnly is true. If wrOnly is
3188** false then all cursors are counted.
3189**
3190** For the purposes of this routine, a cursor is any cursor that
peter.d.reid60ec9142014-09-06 16:39:46 +00003191** is capable of reading or writing to the database. Cursors that
drh85ec3b62013-05-14 23:12:06 +00003192** have been tripped into the CURSOR_FAULT state are not counted.
3193*/
3194static int countValidCursors(BtShared *pBt, int wrOnly){
3195 BtCursor *pCur;
3196 int r = 0;
3197 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drh036dbec2014-03-11 23:40:44 +00003198 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
3199 && pCur->eState!=CURSOR_FAULT ) r++;
drh85ec3b62013-05-14 23:12:06 +00003200 }
3201 return r;
3202}
3203#endif
3204
drh306dc212001-05-21 13:45:10 +00003205/*
drhb8ca3072001-12-05 00:21:20 +00003206** If there are no outstanding cursors and we are not in the middle
3207** of a transaction but there is a read lock on the database, then
3208** this routine unrefs the first page of the database file which
3209** has the effect of releasing the read lock.
3210**
drhb8ca3072001-12-05 00:21:20 +00003211** If there is a transaction in progress, this routine is a no-op.
3212*/
danielk1977aef0bf62005-12-30 16:28:01 +00003213static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00003214 assert( sqlite3_mutex_held(pBt->mutex) );
drh85ec3b62013-05-14 23:12:06 +00003215 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
danielk19771bc9ee92009-07-04 15:41:02 +00003216 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
drhb2325b72014-09-24 18:31:07 +00003217 MemPage *pPage1 = pBt->pPage1;
3218 assert( pPage1->aData );
danielk1977c1761e82009-06-25 09:40:03 +00003219 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
drh3aac2dd2004-04-26 14:10:20 +00003220 pBt->pPage1 = 0;
drh3908fe92017-09-01 14:50:19 +00003221 releasePageOne(pPage1);
drhb8ca3072001-12-05 00:21:20 +00003222 }
3223}
3224
3225/*
drhe39f2f92009-07-23 01:43:59 +00003226** If pBt points to an empty file then convert that empty file
3227** into a new empty database by initializing the first page of
3228** the database.
drh8b2f49b2001-06-08 00:21:52 +00003229*/
danielk1977aef0bf62005-12-30 16:28:01 +00003230static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00003231 MemPage *pP1;
3232 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00003233 int rc;
drhd677b3d2007-08-20 22:48:41 +00003234
drh1fee73e2007-08-29 04:00:57 +00003235 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00003236 if( pBt->nPage>0 ){
3237 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00003238 }
drh3aac2dd2004-04-26 14:10:20 +00003239 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00003240 assert( pP1!=0 );
3241 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00003242 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00003243 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00003244 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
3245 assert( sizeof(zMagicHeader)==16 );
shaneh1df2db72010-08-18 02:28:48 +00003246 data[16] = (u8)((pBt->pageSize>>8)&0xff);
3247 data[17] = (u8)((pBt->pageSize>>16)&0xff);
drh9e572e62004-04-23 23:43:10 +00003248 data[18] = 1;
3249 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00003250 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
3251 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00003252 data[21] = 64;
3253 data[22] = 32;
3254 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00003255 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00003256 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhc9166342012-01-05 23:32:06 +00003257 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
danielk1977003ba062004-11-04 02:57:33 +00003258#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00003259 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00003260 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00003261 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00003262 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00003263#endif
drhdd3cd972010-03-27 17:12:36 +00003264 pBt->nPage = 1;
3265 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00003266 return SQLITE_OK;
3267}
3268
3269/*
danb483eba2012-10-13 19:58:11 +00003270** Initialize the first page of the database file (creating a database
3271** consisting of a single page and no schema objects). Return SQLITE_OK
3272** if successful, or an SQLite error code otherwise.
3273*/
3274int sqlite3BtreeNewDb(Btree *p){
3275 int rc;
3276 sqlite3BtreeEnter(p);
3277 p->pBt->nPage = 0;
3278 rc = newDatabase(p->pBt);
3279 sqlite3BtreeLeave(p);
3280 return rc;
3281}
3282
3283/*
danielk1977ee5741e2004-05-31 10:01:34 +00003284** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00003285** is started if the second argument is nonzero, otherwise a read-
3286** transaction. If the second argument is 2 or more and exclusive
3287** transaction is started, meaning that no other process is allowed
3288** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00003289** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00003290** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00003291**
danielk1977ee5741e2004-05-31 10:01:34 +00003292** A write-transaction must be started before attempting any
3293** changes to the database. None of the following routines
3294** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00003295**
drh23e11ca2004-05-04 17:27:28 +00003296** sqlite3BtreeCreateTable()
3297** sqlite3BtreeCreateIndex()
3298** sqlite3BtreeClearTable()
3299** sqlite3BtreeDropTable()
3300** sqlite3BtreeInsert()
3301** sqlite3BtreeDelete()
3302** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00003303**
drhb8ef32c2005-03-14 02:01:49 +00003304** If an initial attempt to acquire the lock fails because of lock contention
3305** and the database was previously unlocked, then invoke the busy handler
3306** if there is one. But if there was previously a read-lock, do not
3307** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3308** returned when there is already a read-lock in order to avoid a deadlock.
3309**
3310** Suppose there are two processes A and B. A has a read lock and B has
3311** a reserved lock. B tries to promote to exclusive but is blocked because
3312** of A's read lock. A tries to promote to reserved but is blocked by B.
3313** One or the other of the two processes must give way or there can be
3314** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3315** when A already has a read lock, we encourage A to give up and let B
3316** proceed.
drha059ad02001-04-17 20:09:11 +00003317*/
drhbb2d9b12018-06-06 16:28:40 +00003318int sqlite3BtreeBeginTrans(Btree *p, int wrflag, int *pSchemaVersion){
danielk1977aef0bf62005-12-30 16:28:01 +00003319 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00003320 int rc = SQLITE_OK;
3321
drhd677b3d2007-08-20 22:48:41 +00003322 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003323 btreeIntegrity(p);
3324
danielk1977ee5741e2004-05-31 10:01:34 +00003325 /* If the btree is already in a write-transaction, or it
3326 ** is already in a read-transaction and a read-transaction
3327 ** is requested, this is a no-op.
3328 */
danielk1977aef0bf62005-12-30 16:28:01 +00003329 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00003330 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003331 }
dan56c517a2013-09-26 11:04:33 +00003332 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
drhb8ef32c2005-03-14 02:01:49 +00003333
danea933f02018-07-19 11:44:02 +00003334 if( (p->db->flags & SQLITE_ResetDatabase)
3335 && sqlite3PagerIsreadonly(pBt->pPager)==0
3336 ){
3337 pBt->btsFlags &= ~BTS_READ_ONLY;
3338 }
3339
drhb8ef32c2005-03-14 02:01:49 +00003340 /* Write transactions are not possible on a read-only database */
drhc9166342012-01-05 23:32:06 +00003341 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00003342 rc = SQLITE_READONLY;
3343 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00003344 }
3345
danielk1977404ca072009-03-16 13:19:36 +00003346#ifndef SQLITE_OMIT_SHARED_CACHE
drh5a1fb182016-01-08 19:34:39 +00003347 {
3348 sqlite3 *pBlock = 0;
3349 /* If another database handle has already opened a write transaction
3350 ** on this shared-btree structure and a second write transaction is
3351 ** requested, return SQLITE_LOCKED.
3352 */
3353 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
3354 || (pBt->btsFlags & BTS_PENDING)!=0
3355 ){
3356 pBlock = pBt->pWriter->db;
3357 }else if( wrflag>1 ){
3358 BtLock *pIter;
3359 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
3360 if( pIter->pBtree!=p ){
3361 pBlock = pIter->pBtree->db;
3362 break;
3363 }
danielk1977641b0f42007-12-21 04:47:25 +00003364 }
3365 }
drh5a1fb182016-01-08 19:34:39 +00003366 if( pBlock ){
3367 sqlite3ConnectionBlocked(p->db, pBlock);
3368 rc = SQLITE_LOCKED_SHAREDCACHE;
3369 goto trans_begun;
3370 }
danielk1977404ca072009-03-16 13:19:36 +00003371 }
danielk1977641b0f42007-12-21 04:47:25 +00003372#endif
3373
danielk1977602b4662009-07-02 07:47:33 +00003374 /* Any read-only or read-write transaction implies a read-lock on
3375 ** page 1. So if some other shared-cache client already has a write-lock
3376 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00003377 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
3378 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00003379
drhc9166342012-01-05 23:32:06 +00003380 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
3381 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
drhb8ef32c2005-03-14 02:01:49 +00003382 do {
danielk1977295dc102009-04-01 19:07:03 +00003383 /* Call lockBtree() until either pBt->pPage1 is populated or
3384 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3385 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3386 ** reading page 1 it discovers that the page-size of the database
3387 ** file is not pBt->pageSize. In this case lockBtree() will update
3388 ** pBt->pageSize to the page-size of the file on disk.
3389 */
3390 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00003391
drhb8ef32c2005-03-14 02:01:49 +00003392 if( rc==SQLITE_OK && wrflag ){
drhc9166342012-01-05 23:32:06 +00003393 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
drh309169a2007-04-24 17:27:51 +00003394 rc = SQLITE_READONLY;
3395 }else{
danielk1977d8293352009-04-30 09:10:37 +00003396 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00003397 if( rc==SQLITE_OK ){
3398 rc = newDatabase(pBt);
dan8bf6d702018-07-05 17:16:55 +00003399 }else if( rc==SQLITE_BUSY_SNAPSHOT && pBt->inTransaction==TRANS_NONE ){
3400 /* if there was no transaction opened when this function was
3401 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3402 ** code to SQLITE_BUSY. */
3403 rc = SQLITE_BUSY;
drh309169a2007-04-24 17:27:51 +00003404 }
drhb8ef32c2005-03-14 02:01:49 +00003405 }
3406 }
3407
danielk1977bd434552009-03-18 10:33:00 +00003408 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00003409 unlockBtreeIfUnused(pBt);
3410 }
danf9b76712010-06-01 14:12:45 +00003411 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00003412 btreeInvokeBusyHandler(pBt) );
drhfd725632018-03-26 20:43:05 +00003413 sqlite3PagerResetLockTimeout(pBt->pPager);
danielk1977aef0bf62005-12-30 16:28:01 +00003414
3415 if( rc==SQLITE_OK ){
3416 if( p->inTrans==TRANS_NONE ){
3417 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00003418#ifndef SQLITE_OMIT_SHARED_CACHE
3419 if( p->sharable ){
drhf2f105d2012-08-20 15:53:54 +00003420 assert( p->lock.pBtree==p && p->lock.iTable==1 );
danielk1977602b4662009-07-02 07:47:33 +00003421 p->lock.eLock = READ_LOCK;
3422 p->lock.pNext = pBt->pLock;
3423 pBt->pLock = &p->lock;
3424 }
3425#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003426 }
3427 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
3428 if( p->inTrans>pBt->inTransaction ){
3429 pBt->inTransaction = p->inTrans;
3430 }
danielk1977404ca072009-03-16 13:19:36 +00003431 if( wrflag ){
dan59257dc2010-08-04 11:34:31 +00003432 MemPage *pPage1 = pBt->pPage1;
3433#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00003434 assert( !pBt->pWriter );
3435 pBt->pWriter = p;
drhc9166342012-01-05 23:32:06 +00003436 pBt->btsFlags &= ~BTS_EXCLUSIVE;
3437 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
danielk1977641b0f42007-12-21 04:47:25 +00003438#endif
dan59257dc2010-08-04 11:34:31 +00003439
3440 /* If the db-size header field is incorrect (as it may be if an old
3441 ** client has been writing the database file), update it now. Doing
3442 ** this sooner rather than later means the database size can safely
3443 ** re-read the database size from page 1 if a savepoint or transaction
3444 ** rollback occurs within the transaction.
3445 */
3446 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
3447 rc = sqlite3PagerWrite(pPage1->pDbPage);
3448 if( rc==SQLITE_OK ){
3449 put4byte(&pPage1->aData[28], pBt->nPage);
3450 }
3451 }
3452 }
danielk1977aef0bf62005-12-30 16:28:01 +00003453 }
3454
drhd677b3d2007-08-20 22:48:41 +00003455trans_begun:
drhbb2d9b12018-06-06 16:28:40 +00003456 if( rc==SQLITE_OK ){
3457 if( pSchemaVersion ){
3458 *pSchemaVersion = get4byte(&pBt->pPage1->aData[40]);
3459 }
3460 if( wrflag ){
3461 /* This call makes sure that the pager has the correct number of
3462 ** open savepoints. If the second parameter is greater than 0 and
3463 ** the sub-journal is not already open, then it will be opened here.
3464 */
3465 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
3466 }
danielk1977fd7f0452008-12-17 17:30:26 +00003467 }
danielk197712dd5492008-12-18 15:45:07 +00003468
danielk1977aef0bf62005-12-30 16:28:01 +00003469 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00003470 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00003471 return rc;
drha059ad02001-04-17 20:09:11 +00003472}
3473
danielk1977687566d2004-11-02 12:56:41 +00003474#ifndef SQLITE_OMIT_AUTOVACUUM
3475
3476/*
3477** Set the pointer-map entries for all children of page pPage. Also, if
3478** pPage contains cells that point to overflow pages, set the pointer
3479** map entries for the overflow pages as well.
3480*/
3481static int setChildPtrmaps(MemPage *pPage){
3482 int i; /* Counter variable */
3483 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00003484 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00003485 BtShared *pBt = pPage->pBt;
danielk1977687566d2004-11-02 12:56:41 +00003486 Pgno pgno = pPage->pgno;
3487
drh1fee73e2007-08-29 04:00:57 +00003488 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh14e845a2017-05-25 21:35:56 +00003489 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drh2a702542016-12-12 18:12:03 +00003490 if( rc!=SQLITE_OK ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003491 nCell = pPage->nCell;
3492
3493 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003494 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003495
drh0f1bf4c2019-01-13 20:17:21 +00003496 ptrmapPutOvflPtr(pPage, pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00003497
danielk1977687566d2004-11-02 12:56:41 +00003498 if( !pPage->leaf ){
3499 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00003500 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003501 }
3502 }
3503
3504 if( !pPage->leaf ){
3505 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00003506 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00003507 }
3508
danielk1977687566d2004-11-02 12:56:41 +00003509 return rc;
3510}
3511
3512/*
drhf3aed592009-07-08 18:12:49 +00003513** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3514** that it points to iTo. Parameter eType describes the type of pointer to
3515** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00003516**
3517** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3518** page of pPage.
3519**
3520** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3521** page pointed to by one of the cells on pPage.
3522**
3523** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3524** overflow page in the list.
3525*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00003526static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00003527 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00003528 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00003529 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00003530 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00003531 if( get4byte(pPage->aData)!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003532 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003533 }
danielk1977f78fc082004-11-02 14:40:32 +00003534 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00003535 }else{
danielk1977687566d2004-11-02 12:56:41 +00003536 int i;
3537 int nCell;
drha1f75d92015-05-24 10:18:12 +00003538 int rc;
danielk1977687566d2004-11-02 12:56:41 +00003539
drh14e845a2017-05-25 21:35:56 +00003540 rc = pPage->isInit ? SQLITE_OK : btreeInitPage(pPage);
drha1f75d92015-05-24 10:18:12 +00003541 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00003542 nCell = pPage->nCell;
3543
danielk1977687566d2004-11-02 12:56:41 +00003544 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00003545 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00003546 if( eType==PTRMAP_OVERFLOW1 ){
3547 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00003548 pPage->xParseCell(pPage, pCell, &info);
drhb701c9a2017-01-12 15:11:03 +00003549 if( info.nLocal<info.nPayload ){
3550 if( pCell+info.nSize > pPage->aData+pPage->pBt->usableSize ){
daneebf2f52017-11-18 17:30:08 +00003551 return SQLITE_CORRUPT_PAGE(pPage);
drhb701c9a2017-01-12 15:11:03 +00003552 }
3553 if( iFrom==get4byte(pCell+info.nSize-4) ){
3554 put4byte(pCell+info.nSize-4, iTo);
3555 break;
3556 }
danielk1977687566d2004-11-02 12:56:41 +00003557 }
3558 }else{
3559 if( get4byte(pCell)==iFrom ){
3560 put4byte(pCell, iTo);
3561 break;
3562 }
3563 }
3564 }
3565
3566 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00003567 if( eType!=PTRMAP_BTREE ||
3568 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
daneebf2f52017-11-18 17:30:08 +00003569 return SQLITE_CORRUPT_PAGE(pPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003570 }
danielk1977687566d2004-11-02 12:56:41 +00003571 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
3572 }
danielk1977687566d2004-11-02 12:56:41 +00003573 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003574 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003575}
3576
danielk1977003ba062004-11-04 02:57:33 +00003577
danielk19777701e812005-01-10 12:59:51 +00003578/*
3579** Move the open database page pDbPage to location iFreePage in the
3580** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00003581**
3582** The isCommit flag indicates that there is no need to remember that
3583** the journal needs to be sync()ed before database page pDbPage->pgno
3584** can be written to. The caller has already promised not to write to that
3585** page.
danielk19777701e812005-01-10 12:59:51 +00003586*/
danielk1977003ba062004-11-04 02:57:33 +00003587static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00003588 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00003589 MemPage *pDbPage, /* Open page to move */
3590 u8 eType, /* Pointer map 'type' entry for pDbPage */
3591 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00003592 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00003593 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00003594){
3595 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3596 Pgno iDbPage = pDbPage->pgno;
3597 Pager *pPager = pBt->pPager;
3598 int rc;
3599
danielk1977a0bf2652004-11-04 14:30:04 +00003600 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3601 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00003602 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00003603 assert( pDbPage->pBt==pBt );
drh49272bc2018-10-31 01:04:18 +00003604 if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;
danielk1977003ba062004-11-04 02:57:33 +00003605
drh85b623f2007-12-13 21:54:09 +00003606 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00003607 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3608 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00003609 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00003610 if( rc!=SQLITE_OK ){
3611 return rc;
3612 }
3613 pDbPage->pgno = iFreePage;
3614
3615 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3616 ** that point to overflow pages. The pointer map entries for all these
3617 ** pages need to be changed.
3618 **
3619 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3620 ** pointer to a subsequent overflow page. If this is the case, then
3621 ** the pointer map needs to be updated for the subsequent overflow page.
3622 */
danielk1977a0bf2652004-11-04 14:30:04 +00003623 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00003624 rc = setChildPtrmaps(pDbPage);
3625 if( rc!=SQLITE_OK ){
3626 return rc;
3627 }
3628 }else{
3629 Pgno nextOvfl = get4byte(pDbPage->aData);
3630 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00003631 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00003632 if( rc!=SQLITE_OK ){
3633 return rc;
3634 }
3635 }
3636 }
3637
3638 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3639 ** that it points at iFreePage. Also fix the pointer map entry for
3640 ** iPtrPage.
3641 */
danielk1977a0bf2652004-11-04 14:30:04 +00003642 if( eType!=PTRMAP_ROOTPAGE ){
drhb00fc3b2013-08-21 23:42:32 +00003643 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00003644 if( rc!=SQLITE_OK ){
3645 return rc;
3646 }
danielk19773b8a05f2007-03-19 17:44:26 +00003647 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00003648 if( rc!=SQLITE_OK ){
3649 releasePage(pPtrPage);
3650 return rc;
3651 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00003652 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00003653 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003654 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00003655 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00003656 }
danielk1977003ba062004-11-04 02:57:33 +00003657 }
danielk1977003ba062004-11-04 02:57:33 +00003658 return rc;
3659}
3660
danielk1977dddbcdc2007-04-26 14:42:34 +00003661/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00003662static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00003663
3664/*
dan51f0b6d2013-02-22 20:16:34 +00003665** Perform a single step of an incremental-vacuum. If successful, return
3666** SQLITE_OK. If there is no work to do (and therefore no point in
3667** calling this function again), return SQLITE_DONE. Or, if an error
3668** occurs, return some other error code.
danielk1977dddbcdc2007-04-26 14:42:34 +00003669**
peter.d.reid60ec9142014-09-06 16:39:46 +00003670** More specifically, this function attempts to re-organize the database so
dan51f0b6d2013-02-22 20:16:34 +00003671** that the last page of the file currently in use is no longer in use.
danielk1977dddbcdc2007-04-26 14:42:34 +00003672**
dan51f0b6d2013-02-22 20:16:34 +00003673** Parameter nFin is the number of pages that this database would contain
3674** were this function called until it returns SQLITE_DONE.
3675**
3676** If the bCommit parameter is non-zero, this function assumes that the
3677** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
peter.d.reid60ec9142014-09-06 16:39:46 +00003678** or an error. bCommit is passed true for an auto-vacuum-on-commit
dan51f0b6d2013-02-22 20:16:34 +00003679** operation, or false for an incremental vacuum.
danielk1977dddbcdc2007-04-26 14:42:34 +00003680*/
dan51f0b6d2013-02-22 20:16:34 +00003681static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
danielk1977dddbcdc2007-04-26 14:42:34 +00003682 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00003683 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003684
drh1fee73e2007-08-29 04:00:57 +00003685 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00003686 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003687
3688 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003689 u8 eType;
3690 Pgno iPtrPage;
3691
3692 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00003693 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003694 return SQLITE_DONE;
3695 }
3696
3697 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3698 if( rc!=SQLITE_OK ){
3699 return rc;
3700 }
3701 if( eType==PTRMAP_ROOTPAGE ){
3702 return SQLITE_CORRUPT_BKPT;
3703 }
3704
3705 if( eType==PTRMAP_FREEPAGE ){
dan51f0b6d2013-02-22 20:16:34 +00003706 if( bCommit==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00003707 /* Remove the page from the files free-list. This is not required
dan51f0b6d2013-02-22 20:16:34 +00003708 ** if bCommit is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00003709 ** truncated to zero after this function returns, so it doesn't
3710 ** matter if it still contains some garbage entries.
3711 */
3712 Pgno iFreePg;
3713 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003714 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
danielk1977dddbcdc2007-04-26 14:42:34 +00003715 if( rc!=SQLITE_OK ){
3716 return rc;
3717 }
3718 assert( iFreePg==iLastPg );
3719 releasePage(pFreePg);
3720 }
3721 } else {
3722 Pgno iFreePg; /* Index of free page to move pLastPg to */
3723 MemPage *pLastPg;
dan51f0b6d2013-02-22 20:16:34 +00003724 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3725 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
danielk1977dddbcdc2007-04-26 14:42:34 +00003726
drhb00fc3b2013-08-21 23:42:32 +00003727 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00003728 if( rc!=SQLITE_OK ){
3729 return rc;
3730 }
3731
dan51f0b6d2013-02-22 20:16:34 +00003732 /* If bCommit is zero, this loop runs exactly once and page pLastPg
danielk1977b4626a32007-04-28 15:47:43 +00003733 ** is swapped with the first free page pulled off the free list.
3734 **
dan51f0b6d2013-02-22 20:16:34 +00003735 ** On the other hand, if bCommit is greater than zero, then keep
danielk1977b4626a32007-04-28 15:47:43 +00003736 ** looping until a free-page located within the first nFin pages
3737 ** of the file is found.
3738 */
dan51f0b6d2013-02-22 20:16:34 +00003739 if( bCommit==0 ){
3740 eMode = BTALLOC_LE;
3741 iNear = nFin;
3742 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003743 do {
3744 MemPage *pFreePg;
dan51f0b6d2013-02-22 20:16:34 +00003745 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
danielk1977dddbcdc2007-04-26 14:42:34 +00003746 if( rc!=SQLITE_OK ){
3747 releasePage(pLastPg);
3748 return rc;
3749 }
3750 releasePage(pFreePg);
dan51f0b6d2013-02-22 20:16:34 +00003751 }while( bCommit && iFreePg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00003752 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00003753
dane1df4e32013-03-05 11:27:04 +00003754 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
danielk1977dddbcdc2007-04-26 14:42:34 +00003755 releasePage(pLastPg);
3756 if( rc!=SQLITE_OK ){
3757 return rc;
danielk1977662278e2007-11-05 15:30:12 +00003758 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003759 }
3760 }
3761
dan51f0b6d2013-02-22 20:16:34 +00003762 if( bCommit==0 ){
danbc1a3c62013-02-23 16:40:46 +00003763 do {
danielk19773460d192008-12-27 15:23:13 +00003764 iLastPg--;
danbc1a3c62013-02-23 16:40:46 +00003765 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3766 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003767 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00003768 }
3769 return SQLITE_OK;
3770}
3771
3772/*
dan51f0b6d2013-02-22 20:16:34 +00003773** The database opened by the first argument is an auto-vacuum database
3774** nOrig pages in size containing nFree free pages. Return the expected
3775** size of the database in pages following an auto-vacuum operation.
3776*/
3777static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3778 int nEntry; /* Number of entries on one ptrmap page */
3779 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3780 Pgno nFin; /* Return value */
3781
3782 nEntry = pBt->usableSize/5;
3783 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3784 nFin = nOrig - nFree - nPtrmap;
3785 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3786 nFin--;
3787 }
3788 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3789 nFin--;
3790 }
dan51f0b6d2013-02-22 20:16:34 +00003791
3792 return nFin;
3793}
3794
3795/*
danielk1977dddbcdc2007-04-26 14:42:34 +00003796** A write-transaction must be opened before calling this function.
3797** It performs a single unit of work towards an incremental vacuum.
3798**
3799** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00003800** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00003801** SQLITE_OK is returned. Otherwise an SQLite error code.
3802*/
3803int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00003804 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003805 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003806
3807 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00003808 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3809 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00003810 rc = SQLITE_DONE;
3811 }else{
dan51f0b6d2013-02-22 20:16:34 +00003812 Pgno nOrig = btreePagecount(pBt);
3813 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3814 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3815
dan91384712013-02-24 11:50:43 +00003816 if( nOrig<nFin ){
3817 rc = SQLITE_CORRUPT_BKPT;
3818 }else if( nFree>0 ){
dan11dcd112013-03-15 18:29:18 +00003819 rc = saveAllCursors(pBt, 0, 0);
3820 if( rc==SQLITE_OK ){
3821 invalidateAllOverflowCache(pBt);
3822 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3823 }
dan51f0b6d2013-02-22 20:16:34 +00003824 if( rc==SQLITE_OK ){
3825 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3826 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3827 }
3828 }else{
3829 rc = SQLITE_DONE;
drhdd3cd972010-03-27 17:12:36 +00003830 }
danielk1977dddbcdc2007-04-26 14:42:34 +00003831 }
drhd677b3d2007-08-20 22:48:41 +00003832 sqlite3BtreeLeave(p);
3833 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00003834}
3835
3836/*
danielk19773b8a05f2007-03-19 17:44:26 +00003837** This routine is called prior to sqlite3PagerCommit when a transaction
drhf7b54962013-05-28 12:11:54 +00003838** is committed for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00003839**
3840** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3841** the database file should be truncated to during the commit process.
3842** i.e. the database has been reorganized so that only the first *pnTrunc
3843** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00003844*/
danielk19773460d192008-12-27 15:23:13 +00003845static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00003846 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00003847 Pager *pPager = pBt->pPager;
mistachkinc29cbb02015-07-02 16:52:01 +00003848 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager); )
danielk1977687566d2004-11-02 12:56:41 +00003849
drh1fee73e2007-08-29 04:00:57 +00003850 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00003851 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00003852 assert(pBt->autoVacuum);
3853 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00003854 Pgno nFin; /* Number of pages in database after autovacuuming */
3855 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00003856 Pgno iFree; /* The next page to be freed */
drh41d628c2009-07-11 17:04:08 +00003857 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00003858
drhb1299152010-03-30 22:58:33 +00003859 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00003860 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3861 /* It is not possible to create a database for which the final page
3862 ** is either a pointer-map page or the pending-byte page. If one
3863 ** is encountered, this indicates corruption.
3864 */
danielk19773460d192008-12-27 15:23:13 +00003865 return SQLITE_CORRUPT_BKPT;
3866 }
danielk1977ef165ce2009-04-06 17:50:03 +00003867
danielk19773460d192008-12-27 15:23:13 +00003868 nFree = get4byte(&pBt->pPage1->aData[36]);
dan51f0b6d2013-02-22 20:16:34 +00003869 nFin = finalDbSize(pBt, nOrig, nFree);
drhc5e47ac2009-06-04 00:11:56 +00003870 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
dan0aed84d2013-03-26 14:16:20 +00003871 if( nFin<nOrig ){
3872 rc = saveAllCursors(pBt, 0, 0);
3873 }
danielk19773460d192008-12-27 15:23:13 +00003874 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
dan51f0b6d2013-02-22 20:16:34 +00003875 rc = incrVacuumStep(pBt, nFin, iFree, 1);
danielk1977dddbcdc2007-04-26 14:42:34 +00003876 }
danielk19773460d192008-12-27 15:23:13 +00003877 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00003878 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3879 put4byte(&pBt->pPage1->aData[32], 0);
3880 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00003881 put4byte(&pBt->pPage1->aData[28], nFin);
danbc1a3c62013-02-23 16:40:46 +00003882 pBt->bDoTruncate = 1;
drhdd3cd972010-03-27 17:12:36 +00003883 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00003884 }
3885 if( rc!=SQLITE_OK ){
3886 sqlite3PagerRollback(pPager);
3887 }
danielk1977687566d2004-11-02 12:56:41 +00003888 }
3889
dan0aed84d2013-03-26 14:16:20 +00003890 assert( nRef>=sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00003891 return rc;
3892}
danielk1977dddbcdc2007-04-26 14:42:34 +00003893
danielk1977a50d9aa2009-06-08 14:49:45 +00003894#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3895# define setChildPtrmaps(x) SQLITE_OK
3896#endif
danielk1977687566d2004-11-02 12:56:41 +00003897
3898/*
drh80e35f42007-03-30 14:06:34 +00003899** This routine does the first phase of a two-phase commit. This routine
3900** causes a rollback journal to be created (if it does not already exist)
3901** and populated with enough information so that if a power loss occurs
3902** the database can be restored to its original state by playing back
3903** the journal. Then the contents of the journal are flushed out to
3904** the disk. After the journal is safely on oxide, the changes to the
3905** database are written into the database file and flushed to oxide.
3906** At the end of this call, the rollback journal still exists on the
3907** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003908** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003909** commit process.
3910**
3911** This call is a no-op if no write-transaction is currently active on pBt.
3912**
3913** Otherwise, sync the database file for the btree pBt. zMaster points to
3914** the name of a master journal file that should be written into the
3915** individual journal file, or is NULL, indicating no master journal file
3916** (single database transaction).
3917**
3918** When this is called, the master journal should already have been
3919** created, populated with this journal pointer and synced to disk.
3920**
3921** Once this is routine has returned, the only thing required to commit
3922** the write-transaction for this database file is to delete the journal.
3923*/
3924int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3925 int rc = SQLITE_OK;
3926 if( p->inTrans==TRANS_WRITE ){
3927 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003928 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003929#ifndef SQLITE_OMIT_AUTOVACUUM
3930 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003931 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003932 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003933 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003934 return rc;
3935 }
3936 }
danbc1a3c62013-02-23 16:40:46 +00003937 if( pBt->bDoTruncate ){
3938 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3939 }
drh80e35f42007-03-30 14:06:34 +00003940#endif
drh49b9d332009-01-02 18:10:42 +00003941 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003942 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003943 }
3944 return rc;
3945}
3946
3947/*
danielk197794b30732009-07-02 17:21:57 +00003948** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3949** at the conclusion of a transaction.
3950*/
3951static void btreeEndTransaction(Btree *p){
3952 BtShared *pBt = p->pBt;
drh1713afb2013-06-28 01:24:57 +00003953 sqlite3 *db = p->db;
danielk197794b30732009-07-02 17:21:57 +00003954 assert( sqlite3BtreeHoldsMutex(p) );
3955
danbc1a3c62013-02-23 16:40:46 +00003956#ifndef SQLITE_OMIT_AUTOVACUUM
3957 pBt->bDoTruncate = 0;
3958#endif
danc0537fe2013-06-28 19:41:43 +00003959 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
danfa401de2009-10-16 14:55:03 +00003960 /* If there are other active statements that belong to this database
3961 ** handle, downgrade to a read-only transaction. The other statements
3962 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003963 downgradeAllSharedCacheTableLocks(p);
3964 p->inTrans = TRANS_READ;
3965 }else{
3966 /* If the handle had any kind of transaction open, decrement the
3967 ** transaction count of the shared btree. If the transaction count
3968 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3969 ** call below will unlock the pager. */
3970 if( p->inTrans!=TRANS_NONE ){
3971 clearAllSharedCacheTableLocks(p);
3972 pBt->nTransaction--;
3973 if( 0==pBt->nTransaction ){
3974 pBt->inTransaction = TRANS_NONE;
3975 }
3976 }
3977
3978 /* Set the current transaction state to TRANS_NONE and unlock the
3979 ** pager if this call closed the only read or write transaction. */
3980 p->inTrans = TRANS_NONE;
3981 unlockBtreeIfUnused(pBt);
3982 }
3983
3984 btreeIntegrity(p);
3985}
3986
3987/*
drh2aa679f2001-06-25 02:11:07 +00003988** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003989**
drh6e345992007-03-30 11:12:08 +00003990** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003991** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3992** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3993** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003994** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003995** routine has to do is delete or truncate or zero the header in the
3996** the rollback journal (which causes the transaction to commit) and
3997** drop locks.
drh6e345992007-03-30 11:12:08 +00003998**
dan60939d02011-03-29 15:40:55 +00003999** Normally, if an error occurs while the pager layer is attempting to
4000** finalize the underlying journal file, this function returns an error and
4001** the upper layer will attempt a rollback. However, if the second argument
4002** is non-zero then this b-tree transaction is part of a multi-file
4003** transaction. In this case, the transaction has already been committed
4004** (by deleting a master journal file) and the caller will ignore this
4005** functions return code. So, even if an error occurs in the pager layer,
4006** reset the b-tree objects internal state to indicate that the write
4007** transaction has been closed. This is quite safe, as the pager will have
4008** transitioned to the error state.
4009**
drh5e00f6c2001-09-13 13:46:56 +00004010** This will release the write lock on the database file. If there
4011** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004012*/
dan60939d02011-03-29 15:40:55 +00004013int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
danielk1977aef0bf62005-12-30 16:28:01 +00004014
drh075ed302010-10-14 01:17:30 +00004015 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004016 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004017 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004018
4019 /* If the handle has a write-transaction open, commit the shared-btrees
4020 ** transaction and set the shared state to TRANS_READ.
4021 */
4022 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00004023 int rc;
drh075ed302010-10-14 01:17:30 +00004024 BtShared *pBt = p->pBt;
danielk1977aef0bf62005-12-30 16:28:01 +00004025 assert( pBt->inTransaction==TRANS_WRITE );
4026 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00004027 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
dan60939d02011-03-29 15:40:55 +00004028 if( rc!=SQLITE_OK && bCleanup==0 ){
drhd677b3d2007-08-20 22:48:41 +00004029 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004030 return rc;
4031 }
drh3da9c042014-12-22 18:41:21 +00004032 p->iDataVersion--; /* Compensate for pPager->iDataVersion++; */
danielk1977aef0bf62005-12-30 16:28:01 +00004033 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004034 btreeClearHasContent(pBt);
danielk1977ee5741e2004-05-31 10:01:34 +00004035 }
danielk1977aef0bf62005-12-30 16:28:01 +00004036
danielk197794b30732009-07-02 17:21:57 +00004037 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004038 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00004039 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004040}
4041
drh80e35f42007-03-30 14:06:34 +00004042/*
4043** Do both phases of a commit.
4044*/
4045int sqlite3BtreeCommit(Btree *p){
4046 int rc;
drhd677b3d2007-08-20 22:48:41 +00004047 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00004048 rc = sqlite3BtreeCommitPhaseOne(p, 0);
4049 if( rc==SQLITE_OK ){
dan60939d02011-03-29 15:40:55 +00004050 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
drh80e35f42007-03-30 14:06:34 +00004051 }
drhd677b3d2007-08-20 22:48:41 +00004052 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00004053 return rc;
4054}
4055
drhc39e0002004-05-07 23:50:57 +00004056/*
drhfb982642007-08-30 01:19:59 +00004057** This routine sets the state to CURSOR_FAULT and the error
drh47b7fc72014-11-11 01:33:57 +00004058** code to errCode for every cursor on any BtShared that pBtree
4059** references. Or if the writeOnly flag is set to 1, then only
4060** trip write cursors and leave read cursors unchanged.
drhfb982642007-08-30 01:19:59 +00004061**
drh47b7fc72014-11-11 01:33:57 +00004062** Every cursor is a candidate to be tripped, including cursors
4063** that belong to other database connections that happen to be
4064** sharing the cache with pBtree.
drhfb982642007-08-30 01:19:59 +00004065**
dan80231042014-11-12 14:56:02 +00004066** This routine gets called when a rollback occurs. If the writeOnly
4067** flag is true, then only write-cursors need be tripped - read-only
4068** cursors save their current positions so that they may continue
4069** following the rollback. Or, if writeOnly is false, all cursors are
4070** tripped. In general, writeOnly is false if the transaction being
4071** rolled back modified the database schema. In this case b-tree root
4072** pages may be moved or deleted from the database altogether, making
4073** it unsafe for read cursors to continue.
4074**
4075** If the writeOnly flag is true and an error is encountered while
4076** saving the current position of a read-only cursor, all cursors,
4077** including all read-cursors are tripped.
4078**
4079** SQLITE_OK is returned if successful, or if an error occurs while
4080** saving a cursor position, an SQLite error code.
drhfb982642007-08-30 01:19:59 +00004081*/
dan80231042014-11-12 14:56:02 +00004082int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
drhfb982642007-08-30 01:19:59 +00004083 BtCursor *p;
dan80231042014-11-12 14:56:02 +00004084 int rc = SQLITE_OK;
4085
drh47b7fc72014-11-11 01:33:57 +00004086 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
dan80231042014-11-12 14:56:02 +00004087 if( pBtree ){
4088 sqlite3BtreeEnter(pBtree);
4089 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
dan80231042014-11-12 14:56:02 +00004090 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
drhd2f83132015-03-25 17:35:01 +00004091 if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
drhbea3b972014-11-18 20:22:05 +00004092 rc = saveCursorPosition(p);
dan80231042014-11-12 14:56:02 +00004093 if( rc!=SQLITE_OK ){
4094 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
4095 break;
4096 }
4097 }
4098 }else{
4099 sqlite3BtreeClearCursor(p);
4100 p->eState = CURSOR_FAULT;
4101 p->skipNext = errCode;
4102 }
drh85ef6302017-08-02 15:50:09 +00004103 btreeReleaseAllCursorPages(p);
danielk1977bc2ca9e2008-11-13 14:28:28 +00004104 }
dan80231042014-11-12 14:56:02 +00004105 sqlite3BtreeLeave(pBtree);
drhfb982642007-08-30 01:19:59 +00004106 }
dan80231042014-11-12 14:56:02 +00004107 return rc;
drhfb982642007-08-30 01:19:59 +00004108}
4109
4110/*
drh47b7fc72014-11-11 01:33:57 +00004111** Rollback the transaction in progress.
4112**
4113** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4114** Only write cursors are tripped if writeOnly is true but all cursors are
4115** tripped if writeOnly is false. Any attempt to use
4116** a tripped cursor will result in an error.
drh5e00f6c2001-09-13 13:46:56 +00004117**
4118** This will release the write lock on the database file. If there
4119** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00004120*/
drh47b7fc72014-11-11 01:33:57 +00004121int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
danielk19778d34dfd2006-01-24 16:37:57 +00004122 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004123 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00004124 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00004125
drh47b7fc72014-11-11 01:33:57 +00004126 assert( writeOnly==1 || writeOnly==0 );
4127 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
drhd677b3d2007-08-20 22:48:41 +00004128 sqlite3BtreeEnter(p);
drh0f198a72012-02-13 16:43:16 +00004129 if( tripCode==SQLITE_OK ){
4130 rc = tripCode = saveAllCursors(pBt, 0, 0);
drh47b7fc72014-11-11 01:33:57 +00004131 if( rc ) writeOnly = 0;
drh0f198a72012-02-13 16:43:16 +00004132 }else{
4133 rc = SQLITE_OK;
danielk19772b8c13e2006-01-24 14:21:24 +00004134 }
drh0f198a72012-02-13 16:43:16 +00004135 if( tripCode ){
dan80231042014-11-12 14:56:02 +00004136 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
4137 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
4138 if( rc2!=SQLITE_OK ) rc = rc2;
drh0f198a72012-02-13 16:43:16 +00004139 }
danielk1977aef0bf62005-12-30 16:28:01 +00004140 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00004141
4142 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00004143 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00004144
danielk19778d34dfd2006-01-24 16:37:57 +00004145 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00004146 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00004147 if( rc2!=SQLITE_OK ){
4148 rc = rc2;
4149 }
4150
drh24cd67e2004-05-10 16:18:47 +00004151 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00004152 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00004153 ** sure pPage1->aData is set correctly. */
drhb00fc3b2013-08-21 23:42:32 +00004154 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00004155 int nPage = get4byte(28+(u8*)pPage1->aData);
4156 testcase( nPage==0 );
4157 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
4158 testcase( pBt->nPage!=nPage );
4159 pBt->nPage = nPage;
drh3908fe92017-09-01 14:50:19 +00004160 releasePageOne(pPage1);
drh24cd67e2004-05-10 16:18:47 +00004161 }
drh85ec3b62013-05-14 23:12:06 +00004162 assert( countValidCursors(pBt, 1)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00004163 pBt->inTransaction = TRANS_READ;
danbf0e57a2013-05-14 20:36:31 +00004164 btreeClearHasContent(pBt);
drh24cd67e2004-05-10 16:18:47 +00004165 }
danielk1977aef0bf62005-12-30 16:28:01 +00004166
danielk197794b30732009-07-02 17:21:57 +00004167 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00004168 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00004169 return rc;
4170}
4171
4172/*
peter.d.reid60ec9142014-09-06 16:39:46 +00004173** Start a statement subtransaction. The subtransaction can be rolled
danielk1977bd434552009-03-18 10:33:00 +00004174** back independently of the main transaction. You must start a transaction
4175** before starting a subtransaction. The subtransaction is ended automatically
4176** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00004177**
4178** Statement subtransactions are used around individual SQL statements
4179** that are contained within a BEGIN...COMMIT block. If a constraint
4180** error occurs within the statement, the effect of that one statement
4181** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00004182**
4183** A statement sub-transaction is implemented as an anonymous savepoint. The
4184** value passed as the second parameter is the total number of savepoints,
4185** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4186** are no active savepoints and no other statement-transactions open,
4187** iStatement is 1. This anonymous savepoint can be released or rolled back
4188** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00004189*/
danielk1977bd434552009-03-18 10:33:00 +00004190int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00004191 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00004192 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00004193 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00004194 assert( p->inTrans==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00004195 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977bd434552009-03-18 10:33:00 +00004196 assert( iStatement>0 );
4197 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00004198 assert( pBt->inTransaction==TRANS_WRITE );
4199 /* At the pager level, a statement transaction is a savepoint with
4200 ** an index greater than all savepoints created explicitly using
4201 ** SQL statements. It is illegal to open, release or rollback any
4202 ** such savepoints while the statement transaction savepoint is active.
4203 */
4204 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00004205 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00004206 return rc;
4207}
4208
4209/*
danielk1977fd7f0452008-12-17 17:30:26 +00004210** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4211** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00004212** savepoint identified by parameter iSavepoint, depending on the value
4213** of op.
4214**
4215** Normally, iSavepoint is greater than or equal to zero. However, if op is
4216** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4217** contents of the entire transaction are rolled back. This is different
4218** from a normal transaction rollback, as no locks are released and the
4219** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00004220*/
4221int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
4222 int rc = SQLITE_OK;
4223 if( p && p->inTrans==TRANS_WRITE ){
4224 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00004225 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
4226 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
4227 sqlite3BtreeEnter(p);
drh2343c7e2017-02-02 00:46:55 +00004228 if( op==SAVEPOINT_ROLLBACK ){
4229 rc = saveAllCursors(pBt, 0, 0);
4230 }
4231 if( rc==SQLITE_OK ){
4232 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
4233 }
drh9f0bbf92009-01-02 21:08:09 +00004234 if( rc==SQLITE_OK ){
drhc9166342012-01-05 23:32:06 +00004235 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
4236 pBt->nPage = 0;
4237 }
drh9f0bbf92009-01-02 21:08:09 +00004238 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00004239 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhb9b49bf2010-08-05 03:21:39 +00004240
4241 /* The database size was written into the offset 28 of the header
4242 ** when the transaction started, so we know that the value at offset
4243 ** 28 is nonzero. */
4244 assert( pBt->nPage>0 );
drh9f0bbf92009-01-02 21:08:09 +00004245 }
danielk1977fd7f0452008-12-17 17:30:26 +00004246 sqlite3BtreeLeave(p);
4247 }
4248 return rc;
4249}
4250
4251/*
drh8b2f49b2001-06-08 00:21:52 +00004252** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00004253** iTable. If a read-only cursor is requested, it is assumed that
4254** the caller already has at least a read-only transaction open
4255** on the database already. If a write-cursor is requested, then
4256** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00004257**
drhe807bdb2016-01-21 17:06:33 +00004258** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4259** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4260** can be used for reading or for writing if other conditions for writing
4261** are also met. These are the conditions that must be met in order
4262** for writing to be allowed:
drh6446c4d2001-12-15 14:22:18 +00004263**
drhe807bdb2016-01-21 17:06:33 +00004264** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
drhf74b8d92002-09-01 23:20:45 +00004265**
drhfe5d71d2007-03-19 11:54:10 +00004266** 2: Other database connections that share the same pager cache
4267** but which are not in the READ_UNCOMMITTED state may not have
4268** cursors open with wrFlag==0 on the same table. Otherwise
4269** the changes made by this write cursor would be visible to
4270** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00004271**
4272** 3: The database must be writable (not on read-only media)
4273**
4274** 4: There must be an active transaction.
4275**
drhe807bdb2016-01-21 17:06:33 +00004276** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4277** is set. If FORDELETE is set, that is a hint to the implementation that
4278** this cursor will only be used to seek to and delete entries of an index
4279** as part of a larger DELETE statement. The FORDELETE hint is not used by
4280** this implementation. But in a hypothetical alternative storage engine
4281** in which index entries are automatically deleted when corresponding table
4282** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4283** operations on this cursor can be no-ops and all READ operations can
4284** return a null row (2-bytes: 0x01 0x00).
4285**
drh6446c4d2001-12-15 14:22:18 +00004286** No checking is done to make sure that page iTable really is the
4287** root page of a b-tree. If it is not, then the cursor acquired
4288** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00004289**
drhf25a5072009-11-18 23:01:25 +00004290** It is assumed that the sqlite3BtreeCursorZero() has been called
4291** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00004292*/
drhd677b3d2007-08-20 22:48:41 +00004293static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004294 Btree *p, /* The btree */
4295 int iTable, /* Root page of table to open */
4296 int wrFlag, /* 1 to write. 0 read-only */
4297 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
4298 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00004299){
danielk19773e8add92009-07-04 17:16:00 +00004300 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drh27fb7462015-06-30 02:47:36 +00004301 BtCursor *pX; /* Looping over other all cursors */
drhecdc7532001-09-23 02:35:53 +00004302
drh1fee73e2007-08-29 04:00:57 +00004303 assert( sqlite3BtreeHoldsMutex(p) );
danfd261ec2015-10-22 20:54:33 +00004304 assert( wrFlag==0
4305 || wrFlag==BTREE_WRCSR
4306 || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE)
4307 );
danielk197796d48e92009-06-29 06:00:37 +00004308
danielk1977602b4662009-07-02 07:47:33 +00004309 /* The following assert statements verify that if this is a sharable
4310 ** b-tree database, the connection is holding the required table locks,
4311 ** and that no other connection has any open cursor that conflicts with
4312 ** this lock. */
danfd261ec2015-10-22 20:54:33 +00004313 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
danielk197796d48e92009-06-29 06:00:37 +00004314 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
4315
danielk19773e8add92009-07-04 17:16:00 +00004316 /* Assert that the caller has opened the required transaction. */
4317 assert( p->inTrans>TRANS_NONE );
4318 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
4319 assert( pBt->pPage1 && pBt->pPage1->aData );
drh98ef0f62015-06-30 01:25:52 +00004320 assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk19773e8add92009-07-04 17:16:00 +00004321
drh3fbb0222014-09-24 19:47:27 +00004322 if( wrFlag ){
4323 allocateTempSpace(pBt);
mistachkinfad30392016-02-13 23:43:46 +00004324 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM_BKPT;
drha0c9a112004-03-10 13:42:37 +00004325 }
drhb1299152010-03-30 22:58:33 +00004326 if( iTable==1 && btreePagecount(pBt)==0 ){
dana205a482011-08-27 18:48:57 +00004327 assert( wrFlag==0 );
4328 iTable = 0;
danielk19773e8add92009-07-04 17:16:00 +00004329 }
danielk1977aef0bf62005-12-30 16:28:01 +00004330
danielk1977aef0bf62005-12-30 16:28:01 +00004331 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00004332 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00004333 pCur->pgnoRoot = (Pgno)iTable;
4334 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00004335 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00004336 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00004337 pCur->pBt = pBt;
danfd261ec2015-10-22 20:54:33 +00004338 pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
drh28f58dd2015-06-27 19:45:03 +00004339 pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
drh27fb7462015-06-30 02:47:36 +00004340 /* If there are two or more cursors on the same btree, then all such
4341 ** cursors *must* have the BTCF_Multiple flag set. */
4342 for(pX=pBt->pCursor; pX; pX=pX->pNext){
4343 if( pX->pgnoRoot==(Pgno)iTable ){
4344 pX->curFlags |= BTCF_Multiple;
4345 pCur->curFlags |= BTCF_Multiple;
4346 }
drha059ad02001-04-17 20:09:11 +00004347 }
drh27fb7462015-06-30 02:47:36 +00004348 pCur->pNext = pBt->pCursor;
drha059ad02001-04-17 20:09:11 +00004349 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00004350 pCur->eState = CURSOR_INVALID;
danielk1977aef0bf62005-12-30 16:28:01 +00004351 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004352}
drhd677b3d2007-08-20 22:48:41 +00004353int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00004354 Btree *p, /* The btree */
4355 int iTable, /* Root page of table to open */
4356 int wrFlag, /* 1 to write. 0 read-only */
4357 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
4358 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00004359){
4360 int rc;
dan08f901b2015-05-25 19:24:36 +00004361 if( iTable<1 ){
4362 rc = SQLITE_CORRUPT_BKPT;
4363 }else{
4364 sqlite3BtreeEnter(p);
4365 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
4366 sqlite3BtreeLeave(p);
4367 }
drhd677b3d2007-08-20 22:48:41 +00004368 return rc;
4369}
drh7f751222009-03-17 22:33:00 +00004370
4371/*
4372** Return the size of a BtCursor object in bytes.
4373**
4374** This interfaces is needed so that users of cursors can preallocate
4375** sufficient storage to hold a cursor. The BtCursor object is opaque
4376** to users so they cannot do the sizeof() themselves - they must call
4377** this routine.
4378*/
4379int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00004380 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00004381}
4382
drh7f751222009-03-17 22:33:00 +00004383/*
drhf25a5072009-11-18 23:01:25 +00004384** Initialize memory that will be converted into a BtCursor object.
4385**
4386** The simple approach here would be to memset() the entire object
4387** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4388** do not need to be zeroed and they are large, so we can save a lot
4389** of run-time by skipping the initialization of those elements.
4390*/
4391void sqlite3BtreeCursorZero(BtCursor *p){
drhda6bc672018-01-24 16:04:21 +00004392 memset(p, 0, offsetof(BtCursor, BTCURSOR_FIRST_UNINIT));
drhf25a5072009-11-18 23:01:25 +00004393}
4394
4395/*
drh5e00f6c2001-09-13 13:46:56 +00004396** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00004397** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00004398*/
drh3aac2dd2004-04-26 14:10:20 +00004399int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00004400 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00004401 if( pBtree ){
4402 BtShared *pBt = pCur->pBt;
4403 sqlite3BtreeEnter(pBtree);
drh27fb7462015-06-30 02:47:36 +00004404 assert( pBt->pCursor!=0 );
4405 if( pBt->pCursor==pCur ){
danielk1977cd3e8f72008-03-25 09:47:35 +00004406 pBt->pCursor = pCur->pNext;
drh27fb7462015-06-30 02:47:36 +00004407 }else{
4408 BtCursor *pPrev = pBt->pCursor;
4409 do{
4410 if( pPrev->pNext==pCur ){
4411 pPrev->pNext = pCur->pNext;
4412 break;
4413 }
4414 pPrev = pPrev->pNext;
4415 }while( ALWAYS(pPrev) );
danielk1977cd3e8f72008-03-25 09:47:35 +00004416 }
drh352a35a2017-08-15 03:46:47 +00004417 btreeReleaseAllCursorPages(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00004418 unlockBtreeIfUnused(pBt);
dan85753662014-12-11 16:38:18 +00004419 sqlite3_free(pCur->aOverflow);
drhf38dd3b2017-08-14 23:53:02 +00004420 sqlite3_free(pCur->pKey);
danielk1977cd3e8f72008-03-25 09:47:35 +00004421 sqlite3BtreeLeave(pBtree);
dan97c8cb32019-01-01 18:00:17 +00004422 pCur->pBtree = 0;
drha059ad02001-04-17 20:09:11 +00004423 }
drh8c42ca92001-06-22 19:15:00 +00004424 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00004425}
4426
drh5e2f8b92001-05-28 00:41:15 +00004427/*
drh86057612007-06-26 01:04:48 +00004428** Make sure the BtCursor* given in the argument has a valid
4429** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00004430** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00004431**
4432** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00004433** Using this cache reduces the number of calls to btreeParseCell().
drh9188b382004-05-14 21:12:22 +00004434*/
drh9188b382004-05-14 21:12:22 +00004435#ifndef NDEBUG
drha224ee22018-02-19 13:53:56 +00004436 static int cellInfoEqual(CellInfo *a, CellInfo *b){
4437 if( a->nKey!=b->nKey ) return 0;
4438 if( a->pPayload!=b->pPayload ) return 0;
4439 if( a->nPayload!=b->nPayload ) return 0;
4440 if( a->nLocal!=b->nLocal ) return 0;
4441 if( a->nSize!=b->nSize ) return 0;
4442 return 1;
4443 }
danielk19771cc5ed82007-05-16 17:28:43 +00004444 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00004445 CellInfo info;
drh51c6d962004-06-06 00:42:25 +00004446 memset(&info, 0, sizeof(info));
drh352a35a2017-08-15 03:46:47 +00004447 btreeParseCell(pCur->pPage, pCur->ix, &info);
drha224ee22018-02-19 13:53:56 +00004448 assert( CORRUPT_DB || cellInfoEqual(&info, &pCur->info) );
drh9188b382004-05-14 21:12:22 +00004449 }
danielk19771cc5ed82007-05-16 17:28:43 +00004450#else
4451 #define assertCellInfo(x)
4452#endif
drhc5b41ac2015-06-17 02:11:46 +00004453static SQLITE_NOINLINE void getCellInfo(BtCursor *pCur){
4454 if( pCur->info.nSize==0 ){
drhc5b41ac2015-06-17 02:11:46 +00004455 pCur->curFlags |= BTCF_ValidNKey;
drh352a35a2017-08-15 03:46:47 +00004456 btreeParseCell(pCur->pPage,pCur->ix,&pCur->info);
drhc5b41ac2015-06-17 02:11:46 +00004457 }else{
4458 assertCellInfo(pCur);
drh86057612007-06-26 01:04:48 +00004459 }
drhc5b41ac2015-06-17 02:11:46 +00004460}
drh9188b382004-05-14 21:12:22 +00004461
drhea8ffdf2009-07-22 00:35:23 +00004462#ifndef NDEBUG /* The next routine used only within assert() statements */
4463/*
4464** Return true if the given BtCursor is valid. A valid cursor is one
4465** that is currently pointing to a row in a (non-empty) table.
4466** This is a verification routine is used only within assert() statements.
4467*/
4468int sqlite3BtreeCursorIsValid(BtCursor *pCur){
4469 return pCur && pCur->eState==CURSOR_VALID;
4470}
4471#endif /* NDEBUG */
drhd6ef5af2016-11-15 04:00:24 +00004472int sqlite3BtreeCursorIsValidNN(BtCursor *pCur){
4473 assert( pCur!=0 );
4474 return pCur->eState==CURSOR_VALID;
4475}
drhea8ffdf2009-07-22 00:35:23 +00004476
drh9188b382004-05-14 21:12:22 +00004477/*
drha7c90c42016-06-04 20:37:10 +00004478** Return the value of the integer key or "rowid" for a table btree.
4479** This routine is only valid for a cursor that is pointing into a
4480** ordinary table btree. If the cursor points to an index btree or
4481** is invalid, the result of this routine is undefined.
drh7e3b0a02001-04-28 16:52:40 +00004482*/
drha7c90c42016-06-04 20:37:10 +00004483i64 sqlite3BtreeIntegerKey(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004484 assert( cursorHoldsMutex(pCur) );
drhc5352b92014-11-17 20:33:07 +00004485 assert( pCur->eState==CURSOR_VALID );
drha7c90c42016-06-04 20:37:10 +00004486 assert( pCur->curIntKey );
drhc5352b92014-11-17 20:33:07 +00004487 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004488 return pCur->info.nKey;
drha059ad02001-04-17 20:09:11 +00004489}
drh2af926b2001-05-15 00:39:25 +00004490
drh092457b2017-12-29 15:04:49 +00004491#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
drh72f82862001-05-24 21:06:34 +00004492/*
drh2fc865c2017-12-16 20:20:37 +00004493** Return the offset into the database file for the start of the
4494** payload to which the cursor is pointing.
4495*/
drh092457b2017-12-29 15:04:49 +00004496i64 sqlite3BtreeOffset(BtCursor *pCur){
drh2fc865c2017-12-16 20:20:37 +00004497 assert( cursorHoldsMutex(pCur) );
4498 assert( pCur->eState==CURSOR_VALID );
drh2fc865c2017-12-16 20:20:37 +00004499 getCellInfo(pCur);
drhfe6d20e2017-12-29 14:33:54 +00004500 return (i64)pCur->pBt->pageSize*((i64)pCur->pPage->pgno - 1) +
drh2fc865c2017-12-16 20:20:37 +00004501 (i64)(pCur->info.pPayload - pCur->pPage->aData);
4502}
drh092457b2017-12-29 15:04:49 +00004503#endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
drh2fc865c2017-12-16 20:20:37 +00004504
4505/*
drha7c90c42016-06-04 20:37:10 +00004506** Return the number of bytes of payload for the entry that pCur is
4507** currently pointing to. For table btrees, this will be the amount
4508** of data. For index btrees, this will be the size of the key.
drhea8ffdf2009-07-22 00:35:23 +00004509**
4510** The caller must guarantee that the cursor is pointing to a non-NULL
4511** valid entry. In other words, the calling procedure must guarantee
4512** that the cursor has Cursor.eState==CURSOR_VALID.
drh0e1c19e2004-05-11 00:58:56 +00004513*/
drha7c90c42016-06-04 20:37:10 +00004514u32 sqlite3BtreePayloadSize(BtCursor *pCur){
4515 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00004516 assert( pCur->eState==CURSOR_VALID );
4517 getCellInfo(pCur);
drha7c90c42016-06-04 20:37:10 +00004518 return pCur->info.nPayload;
drh0e1c19e2004-05-11 00:58:56 +00004519}
4520
4521/*
danielk1977d04417962007-05-02 13:16:30 +00004522** Given the page number of an overflow page in the database (parameter
4523** ovfl), this function finds the page number of the next page in the
4524** linked list of overflow pages. If possible, it uses the auto-vacuum
4525** pointer-map data instead of reading the content of page ovfl to do so.
4526**
4527** If an error occurs an SQLite error code is returned. Otherwise:
4528**
danielk1977bea2a942009-01-20 17:06:27 +00004529** The page number of the next overflow page in the linked list is
4530** written to *pPgnoNext. If page ovfl is the last page in its linked
4531** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004532**
danielk1977bea2a942009-01-20 17:06:27 +00004533** If ppPage is not NULL, and a reference to the MemPage object corresponding
4534** to page number pOvfl was obtained, then *ppPage is set to point to that
4535** reference. It is the responsibility of the caller to call releasePage()
4536** on *ppPage to free the reference. In no reference was obtained (because
4537** the pointer-map was used to obtain the value for *pPgnoNext), then
4538** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00004539*/
4540static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00004541 BtShared *pBt, /* The database file */
4542 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00004543 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00004544 Pgno *pPgnoNext /* OUT: Next overflow page number */
4545){
4546 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00004547 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00004548 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00004549
drh1fee73e2007-08-29 04:00:57 +00004550 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00004551 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00004552
4553#ifndef SQLITE_OMIT_AUTOVACUUM
4554 /* Try to find the next page in the overflow list using the
4555 ** autovacuum pointer-map pages. Guess that the next page in
4556 ** the overflow list is page number (ovfl+1). If that guess turns
4557 ** out to be wrong, fall back to loading the data of page
4558 ** number ovfl to determine the next page number.
4559 */
4560 if( pBt->autoVacuum ){
4561 Pgno pgno;
4562 Pgno iGuess = ovfl+1;
4563 u8 eType;
4564
4565 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
4566 iGuess++;
4567 }
4568
drhb1299152010-03-30 22:58:33 +00004569 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00004570 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00004571 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00004572 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00004573 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00004574 }
4575 }
4576 }
4577#endif
4578
danielk1977d8a3f3d2009-07-11 11:45:23 +00004579 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00004580 if( rc==SQLITE_OK ){
drhb00fc3b2013-08-21 23:42:32 +00004581 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00004582 assert( rc==SQLITE_OK || pPage==0 );
4583 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00004584 next = get4byte(pPage->aData);
4585 }
danielk1977443c0592009-01-16 15:21:05 +00004586 }
danielk197745d68822009-01-16 16:23:38 +00004587
danielk1977bea2a942009-01-20 17:06:27 +00004588 *pPgnoNext = next;
4589 if( ppPage ){
4590 *ppPage = pPage;
4591 }else{
4592 releasePage(pPage);
4593 }
4594 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00004595}
4596
danielk1977da107192007-05-04 08:32:13 +00004597/*
4598** Copy data from a buffer to a page, or from a page to a buffer.
4599**
4600** pPayload is a pointer to data stored on database page pDbPage.
4601** If argument eOp is false, then nByte bytes of data are copied
4602** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4603** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4604** of data are copied from the buffer pBuf to pPayload.
4605**
4606** SQLITE_OK is returned on success, otherwise an error code.
4607*/
4608static int copyPayload(
4609 void *pPayload, /* Pointer to page data */
4610 void *pBuf, /* Pointer to buffer */
4611 int nByte, /* Number of bytes to copy */
4612 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4613 DbPage *pDbPage /* Page containing pPayload */
4614){
4615 if( eOp ){
4616 /* Copy data from buffer to page (a write operation) */
4617 int rc = sqlite3PagerWrite(pDbPage);
4618 if( rc!=SQLITE_OK ){
4619 return rc;
4620 }
4621 memcpy(pPayload, pBuf, nByte);
4622 }else{
4623 /* Copy data from page to buffer (a read operation) */
4624 memcpy(pBuf, pPayload, nByte);
4625 }
4626 return SQLITE_OK;
4627}
danielk1977d04417962007-05-02 13:16:30 +00004628
4629/*
danielk19779f8d6402007-05-02 17:48:45 +00004630** This function is used to read or overwrite payload information
dan5a500af2014-03-11 20:33:04 +00004631** for the entry that the pCur cursor is pointing to. The eOp
4632** argument is interpreted as follows:
4633**
4634** 0: The operation is a read. Populate the overflow cache.
4635** 1: The operation is a write. Populate the overflow cache.
danielk19779f8d6402007-05-02 17:48:45 +00004636**
4637** A total of "amt" bytes are read or written beginning at "offset".
4638** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00004639**
drh3bcdfd22009-07-12 02:32:21 +00004640** The content being read or written might appear on the main page
4641** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00004642**
drh42e28f12017-01-27 00:31:59 +00004643** If the current cursor entry uses one or more overflow pages
4644** this function may allocate space for and lazily populate
4645** the overflow page-list cache array (BtCursor.aOverflow).
dan5a500af2014-03-11 20:33:04 +00004646** Subsequent calls use this cache to make seeking to the supplied offset
4647** more efficient.
danielk1977da107192007-05-04 08:32:13 +00004648**
drh42e28f12017-01-27 00:31:59 +00004649** Once an overflow page-list cache has been allocated, it must be
danielk1977da107192007-05-04 08:32:13 +00004650** invalidated if some other cursor writes to the same table, or if
4651** the cursor is moved to a different row. Additionally, in auto-vacuum
4652** mode, the following events may invalidate an overflow page-list cache.
4653**
4654** * An incremental vacuum,
4655** * A commit in auto_vacuum="full" mode,
4656** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00004657*/
danielk19779f8d6402007-05-02 17:48:45 +00004658static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00004659 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00004660 u32 offset, /* Begin reading this far into payload */
4661 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00004662 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00004663 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00004664){
4665 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00004666 int rc = SQLITE_OK;
danielk19772dec9702007-05-02 16:48:37 +00004667 int iIdx = 0;
drh352a35a2017-08-15 03:46:47 +00004668 MemPage *pPage = pCur->pPage; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00004669 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh4c417182014-03-31 23:57:41 +00004670#ifdef SQLITE_DIRECT_OVERFLOW_READ
drh8bb9fd32017-01-26 16:27:32 +00004671 unsigned char * const pBufStart = pBuf; /* Start of original out buffer */
drh4c417182014-03-31 23:57:41 +00004672#endif
drh3aac2dd2004-04-26 14:10:20 +00004673
danielk1977da107192007-05-04 08:32:13 +00004674 assert( pPage );
drh42e28f12017-01-27 00:31:59 +00004675 assert( eOp==0 || eOp==1 );
danielk1977da184232006-01-05 11:34:32 +00004676 assert( pCur->eState==CURSOR_VALID );
drh75e96b32017-04-01 00:20:06 +00004677 assert( pCur->ix<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00004678 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00004679
drh86057612007-06-26 01:04:48 +00004680 getCellInfo(pCur);
drhab1cc582014-09-23 21:25:19 +00004681 aPayload = pCur->info.pPayload;
drhab1cc582014-09-23 21:25:19 +00004682 assert( offset+amt <= pCur->info.nPayload );
danielk1977da107192007-05-04 08:32:13 +00004683
drh0b982072016-03-22 14:10:45 +00004684 assert( aPayload > pPage->aData );
drhc5e7f942016-03-22 15:25:16 +00004685 if( (uptr)(aPayload - pPage->aData) > (pBt->usableSize - pCur->info.nLocal) ){
drh0b982072016-03-22 14:10:45 +00004686 /* Trying to read or write past the end of the data is an error. The
4687 ** conditional above is really:
4688 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4689 ** but is recast into its current form to avoid integer overflow problems
4690 */
daneebf2f52017-11-18 17:30:08 +00004691 return SQLITE_CORRUPT_PAGE(pPage);
drh3aac2dd2004-04-26 14:10:20 +00004692 }
danielk1977da107192007-05-04 08:32:13 +00004693
4694 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00004695 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00004696 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00004697 if( a+offset>pCur->info.nLocal ){
4698 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00004699 }
drh42e28f12017-01-27 00:31:59 +00004700 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00004701 offset = 0;
drha34b6762004-05-07 13:30:42 +00004702 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00004703 amt -= a;
drhdd793422001-06-28 01:54:48 +00004704 }else{
drhfa1a98a2004-05-14 19:08:17 +00004705 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00004706 }
danielk1977da107192007-05-04 08:32:13 +00004707
dan85753662014-12-11 16:38:18 +00004708
danielk1977da107192007-05-04 08:32:13 +00004709 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00004710 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00004711 Pgno nextPage;
4712
drhfa1a98a2004-05-14 19:08:17 +00004713 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00004714
drha38c9512014-04-01 01:24:34 +00004715 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
drha38c9512014-04-01 01:24:34 +00004716 **
4717 ** The aOverflow[] array is sized at one entry for each overflow page
4718 ** in the overflow chain. The page number of the first overflow page is
4719 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4720 ** means "not yet known" (the cache is lazily populated).
danielk1977da107192007-05-04 08:32:13 +00004721 */
drh42e28f12017-01-27 00:31:59 +00004722 if( (pCur->curFlags & BTCF_ValidOvfl)==0 ){
danielk19772dec9702007-05-02 16:48:37 +00004723 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drhda6bc672018-01-24 16:04:21 +00004724 if( pCur->aOverflow==0
mistachkin97f90592018-02-04 01:30:54 +00004725 || nOvfl*(int)sizeof(Pgno) > sqlite3MallocSize(pCur->aOverflow)
drhda6bc672018-01-24 16:04:21 +00004726 ){
dan85753662014-12-11 16:38:18 +00004727 Pgno *aNew = (Pgno*)sqlite3Realloc(
4728 pCur->aOverflow, nOvfl*2*sizeof(Pgno)
dan5a500af2014-03-11 20:33:04 +00004729 );
4730 if( aNew==0 ){
drhcd645532017-01-20 20:43:14 +00004731 return SQLITE_NOMEM_BKPT;
dan5a500af2014-03-11 20:33:04 +00004732 }else{
dan5a500af2014-03-11 20:33:04 +00004733 pCur->aOverflow = aNew;
4734 }
4735 }
drhcd645532017-01-20 20:43:14 +00004736 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4737 pCur->curFlags |= BTCF_ValidOvfl;
drhcdf360a2017-01-27 01:13:49 +00004738 }else{
4739 /* If the overflow page-list cache has been allocated and the
4740 ** entry for the first required overflow page is valid, skip
4741 ** directly to it.
4742 */
4743 if( pCur->aOverflow[offset/ovflSize] ){
4744 iIdx = (offset/ovflSize);
4745 nextPage = pCur->aOverflow[iIdx];
4746 offset = (offset%ovflSize);
4747 }
danielk19772dec9702007-05-02 16:48:37 +00004748 }
danielk1977da107192007-05-04 08:32:13 +00004749
drhcd645532017-01-20 20:43:14 +00004750 assert( rc==SQLITE_OK && amt>0 );
4751 while( nextPage ){
danielk1977da107192007-05-04 08:32:13 +00004752 /* If required, populate the overflow page-list cache. */
drh42e28f12017-01-27 00:31:59 +00004753 assert( pCur->aOverflow[iIdx]==0
4754 || pCur->aOverflow[iIdx]==nextPage
4755 || CORRUPT_DB );
4756 pCur->aOverflow[iIdx] = nextPage;
danielk1977da107192007-05-04 08:32:13 +00004757
danielk1977d04417962007-05-02 13:16:30 +00004758 if( offset>=ovflSize ){
4759 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00004760 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00004761 ** data is not required. So first try to lookup the overflow
4762 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00004763 ** function.
danielk1977d04417962007-05-02 13:16:30 +00004764 */
drha38c9512014-04-01 01:24:34 +00004765 assert( pCur->curFlags & BTCF_ValidOvfl );
dan85753662014-12-11 16:38:18 +00004766 assert( pCur->pBtree->db==pBt->db );
drha38c9512014-04-01 01:24:34 +00004767 if( pCur->aOverflow[iIdx+1] ){
danielk1977da107192007-05-04 08:32:13 +00004768 nextPage = pCur->aOverflow[iIdx+1];
drha38c9512014-04-01 01:24:34 +00004769 }else{
danielk1977da107192007-05-04 08:32:13 +00004770 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
drha38c9512014-04-01 01:24:34 +00004771 }
danielk1977da107192007-05-04 08:32:13 +00004772 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00004773 }else{
danielk19779f8d6402007-05-02 17:48:45 +00004774 /* Need to read this page properly. It contains some of the
4775 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00004776 */
danielk1977cfe9a692004-06-16 12:00:29 +00004777 int a = amt;
danf4ba1092011-10-08 14:57:07 +00004778 if( a + offset > ovflSize ){
4779 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00004780 }
danf4ba1092011-10-08 14:57:07 +00004781
4782#ifdef SQLITE_DIRECT_OVERFLOW_READ
4783 /* If all the following are true:
4784 **
4785 ** 1) this is a read operation, and
4786 ** 2) data is required from the start of this overflow page, and
dan09236752018-11-22 19:10:14 +00004787 ** 3) there are no dirty pages in the page-cache
drh8bb9fd32017-01-26 16:27:32 +00004788 ** 4) the database is file-backed, and
drhd930b5c2017-01-26 02:26:02 +00004789 ** 5) the page is not in the WAL file
drh8bb9fd32017-01-26 16:27:32 +00004790 ** 6) at least 4 bytes have already been read into the output buffer
danf4ba1092011-10-08 14:57:07 +00004791 **
4792 ** then data can be read directly from the database file into the
4793 ** output buffer, bypassing the page-cache altogether. This speeds
4794 ** up loading large records that span many overflow pages.
4795 */
drh42e28f12017-01-27 00:31:59 +00004796 if( eOp==0 /* (1) */
danf4ba1092011-10-08 14:57:07 +00004797 && offset==0 /* (2) */
dan09236752018-11-22 19:10:14 +00004798 && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */
drh8bb9fd32017-01-26 16:27:32 +00004799 && &pBuf[-4]>=pBufStart /* (6) */
danf4ba1092011-10-08 14:57:07 +00004800 ){
dan09236752018-11-22 19:10:14 +00004801 sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
danf4ba1092011-10-08 14:57:07 +00004802 u8 aSave[4];
4803 u8 *aWrite = &pBuf[-4];
drh8bb9fd32017-01-26 16:27:32 +00004804 assert( aWrite>=pBufStart ); /* due to (6) */
danf4ba1092011-10-08 14:57:07 +00004805 memcpy(aSave, aWrite, 4);
dan27d47fb2011-12-21 17:00:16 +00004806 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
danf4ba1092011-10-08 14:57:07 +00004807 nextPage = get4byte(aWrite);
4808 memcpy(aWrite, aSave, 4);
4809 }else
4810#endif
4811
4812 {
4813 DbPage *pDbPage;
drh9584f582015-11-04 20:22:37 +00004814 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
drh42e28f12017-01-27 00:31:59 +00004815 (eOp==0 ? PAGER_GET_READONLY : 0)
dan11dcd112013-03-15 18:29:18 +00004816 );
danf4ba1092011-10-08 14:57:07 +00004817 if( rc==SQLITE_OK ){
4818 aPayload = sqlite3PagerGetData(pDbPage);
4819 nextPage = get4byte(aPayload);
drh42e28f12017-01-27 00:31:59 +00004820 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
danf4ba1092011-10-08 14:57:07 +00004821 sqlite3PagerUnref(pDbPage);
4822 offset = 0;
4823 }
4824 }
4825 amt -= a;
drh6ee610b2017-01-27 01:25:00 +00004826 if( amt==0 ) return rc;
danf4ba1092011-10-08 14:57:07 +00004827 pBuf += a;
danielk1977cfe9a692004-06-16 12:00:29 +00004828 }
drhcd645532017-01-20 20:43:14 +00004829 if( rc ) break;
4830 iIdx++;
drh2af926b2001-05-15 00:39:25 +00004831 }
drh2af926b2001-05-15 00:39:25 +00004832 }
danielk1977cfe9a692004-06-16 12:00:29 +00004833
danielk1977da107192007-05-04 08:32:13 +00004834 if( rc==SQLITE_OK && amt>0 ){
drhcc97ca42017-06-07 22:32:59 +00004835 /* Overflow chain ends prematurely */
daneebf2f52017-11-18 17:30:08 +00004836 return SQLITE_CORRUPT_PAGE(pPage);
drha7fcb052001-12-14 15:09:55 +00004837 }
danielk1977da107192007-05-04 08:32:13 +00004838 return rc;
drh2af926b2001-05-15 00:39:25 +00004839}
4840
drh72f82862001-05-24 21:06:34 +00004841/*
drhcb3cabd2016-11-25 19:18:28 +00004842** Read part of the payload for the row at which that cursor pCur is currently
4843** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00004844** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00004845**
drhcb3cabd2016-11-25 19:18:28 +00004846** pCur can be pointing to either a table or an index b-tree.
4847** If pointing to a table btree, then the content section is read. If
4848** pCur is pointing to an index b-tree then the key section is read.
4849**
4850** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
4851** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
4852** cursor might be invalid or might need to be restored before being read.
drh5d1a8722009-07-22 18:07:40 +00004853**
drh3aac2dd2004-04-26 14:10:20 +00004854** Return SQLITE_OK on success or an error code if anything goes
4855** wrong. An error is returned if "offset+amt" is larger than
4856** the available payload.
drh72f82862001-05-24 21:06:34 +00004857*/
drhcb3cabd2016-11-25 19:18:28 +00004858int sqlite3BtreePayload(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00004859 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00004860 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00004861 assert( pCur->iPage>=0 && pCur->pPage );
4862 assert( pCur->ix<pCur->pPage->nCell );
drh5d1a8722009-07-22 18:07:40 +00004863 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00004864}
drh83ec2762017-01-26 16:54:47 +00004865
4866/*
4867** This variant of sqlite3BtreePayload() works even if the cursor has not
4868** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
4869** interface.
4870*/
danielk19773588ceb2008-06-10 17:30:26 +00004871#ifndef SQLITE_OMIT_INCRBLOB
drh83ec2762017-01-26 16:54:47 +00004872static SQLITE_NOINLINE int accessPayloadChecked(
4873 BtCursor *pCur,
4874 u32 offset,
4875 u32 amt,
4876 void *pBuf
4877){
drhcb3cabd2016-11-25 19:18:28 +00004878 int rc;
danielk19773588ceb2008-06-10 17:30:26 +00004879 if ( pCur->eState==CURSOR_INVALID ){
4880 return SQLITE_ABORT;
4881 }
dan7a2347e2016-01-07 16:43:54 +00004882 assert( cursorOwnsBtShared(pCur) );
drh945b0942017-01-26 21:30:00 +00004883 rc = btreeRestoreCursorPosition(pCur);
drh83ec2762017-01-26 16:54:47 +00004884 return rc ? rc : accessPayload(pCur, offset, amt, pBuf, 0);
4885}
4886int sqlite3BtreePayloadChecked(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4887 if( pCur->eState==CURSOR_VALID ){
4888 assert( cursorOwnsBtShared(pCur) );
4889 return accessPayload(pCur, offset, amt, pBuf, 0);
4890 }else{
4891 return accessPayloadChecked(pCur, offset, amt, pBuf);
danielk1977da184232006-01-05 11:34:32 +00004892 }
drh2af926b2001-05-15 00:39:25 +00004893}
drhcb3cabd2016-11-25 19:18:28 +00004894#endif /* SQLITE_OMIT_INCRBLOB */
drh2af926b2001-05-15 00:39:25 +00004895
drh72f82862001-05-24 21:06:34 +00004896/*
drh0e1c19e2004-05-11 00:58:56 +00004897** Return a pointer to payload information from the entry that the
4898** pCur cursor is pointing to. The pointer is to the beginning of
drh2a8d2262013-12-09 20:43:22 +00004899** the key if index btrees (pPage->intKey==0) and is the data for
4900** table btrees (pPage->intKey==1). The number of bytes of available
4901** key/data is written into *pAmt. If *pAmt==0, then the value
4902** returned will not be a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00004903**
4904** This routine is an optimization. It is common for the entire key
4905** and data to fit on the local page and for there to be no overflow
4906** pages. When that is so, this routine can be used to access the
4907** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00004908** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00004909** the key/data and copy it into a preallocated buffer.
4910**
4911** The pointer returned by this routine looks directly into the cached
4912** page of the database. The data might change or move the next time
4913** any btree routine is called.
4914*/
drh2a8d2262013-12-09 20:43:22 +00004915static const void *fetchPayload(
drh0e1c19e2004-05-11 00:58:56 +00004916 BtCursor *pCur, /* Cursor pointing to entry to read from */
drh2a8d2262013-12-09 20:43:22 +00004917 u32 *pAmt /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00004918){
danf2f72a02017-10-19 15:17:38 +00004919 int amt;
drh352a35a2017-08-15 03:46:47 +00004920 assert( pCur!=0 && pCur->iPage>=0 && pCur->pPage);
danielk1977da184232006-01-05 11:34:32 +00004921 assert( pCur->eState==CURSOR_VALID );
drh2a8d2262013-12-09 20:43:22 +00004922 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
dan7a2347e2016-01-07 16:43:54 +00004923 assert( cursorOwnsBtShared(pCur) );
drh352a35a2017-08-15 03:46:47 +00004924 assert( pCur->ix<pCur->pPage->nCell );
drh86dd3712014-03-25 11:00:21 +00004925 assert( pCur->info.nSize>0 );
drh352a35a2017-08-15 03:46:47 +00004926 assert( pCur->info.pPayload>pCur->pPage->aData || CORRUPT_DB );
4927 assert( pCur->info.pPayload<pCur->pPage->aDataEnd ||CORRUPT_DB);
danf2f72a02017-10-19 15:17:38 +00004928 amt = pCur->info.nLocal;
4929 if( amt>(int)(pCur->pPage->aDataEnd - pCur->info.pPayload) ){
4930 /* There is too little space on the page for the expected amount
4931 ** of local content. Database must be corrupt. */
4932 assert( CORRUPT_DB );
4933 amt = MAX(0, (int)(pCur->pPage->aDataEnd - pCur->info.pPayload));
4934 }
4935 *pAmt = (u32)amt;
drhab1cc582014-09-23 21:25:19 +00004936 return (void*)pCur->info.pPayload;
drh0e1c19e2004-05-11 00:58:56 +00004937}
4938
4939
4940/*
drhe51c44f2004-05-30 20:46:09 +00004941** For the entry that cursor pCur is point to, return as
4942** many bytes of the key or data as are available on the local
4943** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00004944**
4945** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00004946** or be destroyed on the next call to any Btree routine,
4947** including calls from other threads against the same cache.
4948** Hence, a mutex on the BtShared should be held prior to calling
4949** this routine.
drh0e1c19e2004-05-11 00:58:56 +00004950**
4951** These routines is used to get quick access to key and data
4952** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00004953*/
drha7c90c42016-06-04 20:37:10 +00004954const void *sqlite3BtreePayloadFetch(BtCursor *pCur, u32 *pAmt){
drh2a8d2262013-12-09 20:43:22 +00004955 return fetchPayload(pCur, pAmt);
drh0e1c19e2004-05-11 00:58:56 +00004956}
4957
4958
4959/*
drh8178a752003-01-05 21:41:40 +00004960** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004961** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004962**
4963** This function returns SQLITE_CORRUPT if the page-header flags field of
4964** the new child page does not match the flags field of the parent (i.e.
4965** if an intkey page appears to be the parent of a non-intkey page, or
4966** vice-versa).
drh72f82862001-05-24 21:06:34 +00004967*/
drh3aac2dd2004-04-26 14:10:20 +00004968static int moveToChild(BtCursor *pCur, u32 newPgno){
drhd0679ed2007-08-28 22:24:34 +00004969 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004970
dan7a2347e2016-01-07 16:43:54 +00004971 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004972 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004973 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
dan11dcd112013-03-15 18:29:18 +00004974 assert( pCur->iPage>=0 );
danielk197771d5d2c2008-09-29 11:49:47 +00004975 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4976 return SQLITE_CORRUPT_BKPT;
4977 }
drh271efa52004-05-30 19:19:05 +00004978 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00004979 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh352a35a2017-08-15 03:46:47 +00004980 pCur->aiIdx[pCur->iPage] = pCur->ix;
4981 pCur->apPage[pCur->iPage] = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00004982 pCur->ix = 0;
drh352a35a2017-08-15 03:46:47 +00004983 pCur->iPage++;
4984 return getAndInitPage(pBt, newPgno, &pCur->pPage, pCur, pCur->curPagerFlags);
drh72f82862001-05-24 21:06:34 +00004985}
4986
drhd879e3e2017-02-13 13:35:55 +00004987#ifdef SQLITE_DEBUG
danielk1977bf93c562008-09-29 15:53:25 +00004988/*
4989** Page pParent is an internal (non-leaf) tree page. This function
4990** asserts that page number iChild is the left-child if the iIdx'th
4991** cell in page pParent. Or, if iIdx is equal to the total number of
4992** cells in pParent, that page number iChild is the right-child of
4993** the page.
4994*/
4995static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
drhcbd33492015-03-25 13:06:54 +00004996 if( CORRUPT_DB ) return; /* The conditions tested below might not be true
4997 ** in a corrupt database */
danielk1977bf93c562008-09-29 15:53:25 +00004998 assert( iIdx<=pParent->nCell );
4999 if( iIdx==pParent->nCell ){
5000 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
5001 }else{
5002 assert( get4byte(findCell(pParent, iIdx))==iChild );
5003 }
5004}
5005#else
5006# define assertParentIndex(x,y,z)
5007#endif
5008
drh72f82862001-05-24 21:06:34 +00005009/*
drh5e2f8b92001-05-28 00:41:15 +00005010** Move the cursor up to the parent page.
5011**
5012** pCur->idx is set to the cell index that contains the pointer
5013** to the page we are coming from. If we are coming from the
5014** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00005015** the largest cell index.
drh72f82862001-05-24 21:06:34 +00005016*/
danielk197730548662009-07-09 05:07:37 +00005017static void moveToParent(BtCursor *pCur){
drh352a35a2017-08-15 03:46:47 +00005018 MemPage *pLeaf;
dan7a2347e2016-01-07 16:43:54 +00005019 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005020 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00005021 assert( pCur->iPage>0 );
drh352a35a2017-08-15 03:46:47 +00005022 assert( pCur->pPage );
danielk1977bf93c562008-09-29 15:53:25 +00005023 assertParentIndex(
5024 pCur->apPage[pCur->iPage-1],
5025 pCur->aiIdx[pCur->iPage-1],
drh352a35a2017-08-15 03:46:47 +00005026 pCur->pPage->pgno
danielk1977bf93c562008-09-29 15:53:25 +00005027 );
dan6c2688c2012-01-12 15:05:03 +00005028 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
drh271efa52004-05-30 19:19:05 +00005029 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005030 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh75e96b32017-04-01 00:20:06 +00005031 pCur->ix = pCur->aiIdx[pCur->iPage-1];
drh352a35a2017-08-15 03:46:47 +00005032 pLeaf = pCur->pPage;
5033 pCur->pPage = pCur->apPage[--pCur->iPage];
5034 releasePageNotNull(pLeaf);
drh72f82862001-05-24 21:06:34 +00005035}
5036
5037/*
danielk19778f880a82009-07-13 09:41:45 +00005038** Move the cursor to point to the root page of its b-tree structure.
5039**
5040** If the table has a virtual root page, then the cursor is moved to point
5041** to the virtual root page instead of the actual root page. A table has a
5042** virtual root page when the actual root page contains no cells and a
5043** single child page. This can only happen with the table rooted at page 1.
5044**
5045** If the b-tree structure is empty, the cursor state is set to
drh44548e72017-08-14 18:13:52 +00005046** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5047** the cursor is set to point to the first cell located on the root
5048** (or virtual root) page and the cursor state is set to CURSOR_VALID.
danielk19778f880a82009-07-13 09:41:45 +00005049**
5050** If this function returns successfully, it may be assumed that the
5051** page-header flags indicate that the [virtual] root-page is the expected
5052** kind of b-tree page (i.e. if when opening the cursor the caller did not
5053** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5054** indicating a table b-tree, or if the caller did specify a KeyInfo
5055** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5056** b-tree).
drh72f82862001-05-24 21:06:34 +00005057*/
drh5e2f8b92001-05-28 00:41:15 +00005058static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00005059 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00005060 int rc = SQLITE_OK;
drhbd03cae2001-06-02 02:40:57 +00005061
dan7a2347e2016-01-07 16:43:54 +00005062 assert( cursorOwnsBtShared(pCur) );
drhfb982642007-08-30 01:19:59 +00005063 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
5064 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
5065 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
drh85ef6302017-08-02 15:50:09 +00005066 assert( pCur->eState < CURSOR_REQUIRESEEK || pCur->iPage<0 );
drh44548e72017-08-14 18:13:52 +00005067 assert( pCur->pgnoRoot>0 || pCur->iPage<0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005068
5069 if( pCur->iPage>=0 ){
drh7ad3eb62016-10-24 01:01:09 +00005070 if( pCur->iPage ){
drh352a35a2017-08-15 03:46:47 +00005071 releasePageNotNull(pCur->pPage);
5072 while( --pCur->iPage ){
5073 releasePageNotNull(pCur->apPage[pCur->iPage]);
5074 }
5075 pCur->pPage = pCur->apPage[0];
drh7ad3eb62016-10-24 01:01:09 +00005076 goto skip_init;
drhbbf0f862015-06-27 14:59:26 +00005077 }
dana205a482011-08-27 18:48:57 +00005078 }else if( pCur->pgnoRoot==0 ){
5079 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005080 return SQLITE_EMPTY;
drh777e4c42006-01-13 04:31:58 +00005081 }else{
drh28f58dd2015-06-27 19:45:03 +00005082 assert( pCur->iPage==(-1) );
drh85ef6302017-08-02 15:50:09 +00005083 if( pCur->eState>=CURSOR_REQUIRESEEK ){
5084 if( pCur->eState==CURSOR_FAULT ){
5085 assert( pCur->skipNext!=SQLITE_OK );
5086 return pCur->skipNext;
5087 }
5088 sqlite3BtreeClearCursor(pCur);
5089 }
drh352a35a2017-08-15 03:46:47 +00005090 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->pPage,
drh15a00212015-06-27 20:55:00 +00005091 0, pCur->curPagerFlags);
drh4c301aa2009-07-15 17:25:45 +00005092 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00005093 pCur->eState = CURSOR_INVALID;
drhf0357d82017-08-14 17:03:58 +00005094 return rc;
drh777e4c42006-01-13 04:31:58 +00005095 }
danielk1977172114a2009-07-07 15:47:12 +00005096 pCur->iPage = 0;
drh352a35a2017-08-15 03:46:47 +00005097 pCur->curIntKey = pCur->pPage->intKey;
drhc39e0002004-05-07 23:50:57 +00005098 }
drh352a35a2017-08-15 03:46:47 +00005099 pRoot = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00005100 assert( pRoot->pgno==pCur->pgnoRoot );
dan7df42ab2014-01-20 18:25:44 +00005101
5102 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5103 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5104 ** NULL, the caller expects a table b-tree. If this is not the case,
5105 ** return an SQLITE_CORRUPT error.
5106 **
5107 ** Earlier versions of SQLite assumed that this test could not fail
5108 ** if the root page was already loaded when this function was called (i.e.
5109 ** if pCur->iPage>=0). But this is not so if the database is corrupted
5110 ** in such a way that page pRoot is linked into a second b-tree table
5111 ** (or the freelist). */
5112 assert( pRoot->intKey==1 || pRoot->intKey==0 );
5113 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
daneebf2f52017-11-18 17:30:08 +00005114 return SQLITE_CORRUPT_PAGE(pCur->pPage);
dan7df42ab2014-01-20 18:25:44 +00005115 }
danielk19778f880a82009-07-13 09:41:45 +00005116
drh7ad3eb62016-10-24 01:01:09 +00005117skip_init:
drh75e96b32017-04-01 00:20:06 +00005118 pCur->ix = 0;
drh271efa52004-05-30 19:19:05 +00005119 pCur->info.nSize = 0;
drh036dbec2014-03-11 23:40:44 +00005120 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
danielk197771d5d2c2008-09-29 11:49:47 +00005121
drh352a35a2017-08-15 03:46:47 +00005122 pRoot = pCur->pPage;
drh4e8fe3f2013-12-06 23:25:27 +00005123 if( pRoot->nCell>0 ){
5124 pCur->eState = CURSOR_VALID;
5125 }else if( !pRoot->leaf ){
drh8856d6a2004-04-29 14:42:46 +00005126 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00005127 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00005128 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00005129 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00005130 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00005131 }else{
drh4e8fe3f2013-12-06 23:25:27 +00005132 pCur->eState = CURSOR_INVALID;
drh44548e72017-08-14 18:13:52 +00005133 rc = SQLITE_EMPTY;
drh8856d6a2004-04-29 14:42:46 +00005134 }
5135 return rc;
drh72f82862001-05-24 21:06:34 +00005136}
drh2af926b2001-05-15 00:39:25 +00005137
drh5e2f8b92001-05-28 00:41:15 +00005138/*
5139** Move the cursor down to the left-most leaf entry beneath the
5140** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00005141**
5142** The left-most leaf is the one with the smallest key - the first
5143** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00005144*/
5145static int moveToLeftmost(BtCursor *pCur){
5146 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005147 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00005148 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00005149
dan7a2347e2016-01-07 16:43:54 +00005150 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005151 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005152 while( rc==SQLITE_OK && !(pPage = pCur->pPage)->leaf ){
drh75e96b32017-04-01 00:20:06 +00005153 assert( pCur->ix<pPage->nCell );
5154 pgno = get4byte(findCell(pPage, pCur->ix));
drh8178a752003-01-05 21:41:40 +00005155 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00005156 }
drhd677b3d2007-08-20 22:48:41 +00005157 return rc;
drh5e2f8b92001-05-28 00:41:15 +00005158}
5159
drh2dcc9aa2002-12-04 13:40:25 +00005160/*
5161** Move the cursor down to the right-most leaf entry beneath the
5162** page to which it is currently pointing. Notice the difference
5163** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5164** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5165** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00005166**
5167** The right-most entry is the one with the largest key - the last
5168** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00005169*/
5170static int moveToRightmost(BtCursor *pCur){
5171 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00005172 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00005173 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00005174
dan7a2347e2016-01-07 16:43:54 +00005175 assert( cursorOwnsBtShared(pCur) );
danielk1977da184232006-01-05 11:34:32 +00005176 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005177 while( !(pPage = pCur->pPage)->leaf ){
drh43605152004-05-29 21:46:49 +00005178 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh75e96b32017-04-01 00:20:06 +00005179 pCur->ix = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00005180 rc = moveToChild(pCur, pgno);
drhee6438d2014-09-01 13:29:32 +00005181 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005182 }
drh75e96b32017-04-01 00:20:06 +00005183 pCur->ix = pPage->nCell-1;
drhee6438d2014-09-01 13:29:32 +00005184 assert( pCur->info.nSize==0 );
5185 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
5186 return SQLITE_OK;
drh2dcc9aa2002-12-04 13:40:25 +00005187}
5188
drh5e00f6c2001-09-13 13:46:56 +00005189/* Move the cursor to the first entry in the table. Return SQLITE_OK
5190** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005191** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00005192*/
drh3aac2dd2004-04-26 14:10:20 +00005193int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00005194 int rc;
drhd677b3d2007-08-20 22:48:41 +00005195
dan7a2347e2016-01-07 16:43:54 +00005196 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005197 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00005198 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005199 if( rc==SQLITE_OK ){
drh352a35a2017-08-15 03:46:47 +00005200 assert( pCur->pPage->nCell>0 );
drh44548e72017-08-14 18:13:52 +00005201 *pRes = 0;
5202 rc = moveToLeftmost(pCur);
5203 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005204 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005205 *pRes = 1;
5206 rc = SQLITE_OK;
drh5e00f6c2001-09-13 13:46:56 +00005207 }
drh5e00f6c2001-09-13 13:46:56 +00005208 return rc;
5209}
drh5e2f8b92001-05-28 00:41:15 +00005210
danc0bb4452018-06-12 20:53:38 +00005211/*
5212** This function is a no-op if cursor pCur does not point to a valid row.
5213** Otherwise, if pCur is valid, configure it so that the next call to
5214** sqlite3BtreeNext() is a no-op.
5215*/
dan67a9b8e2018-06-22 20:51:35 +00005216#ifndef SQLITE_OMIT_WINDOWFUNC
danc3a20c12018-05-23 20:55:37 +00005217void sqlite3BtreeSkipNext(BtCursor *pCur){
drhf7103452018-07-09 20:41:39 +00005218 /* We believe that the cursor must always be in the valid state when
5219 ** this routine is called, but the proof is difficult, so we add an
5220 ** ALWaYS() test just in case we are wrong. */
5221 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
danc3a20c12018-05-23 20:55:37 +00005222 pCur->eState = CURSOR_SKIPNEXT;
5223 pCur->skipNext = 1;
5224 }
5225}
dan67a9b8e2018-06-22 20:51:35 +00005226#endif /* SQLITE_OMIT_WINDOWFUNC */
danc3a20c12018-05-23 20:55:37 +00005227
drh9562b552002-02-19 15:00:07 +00005228/* Move the cursor to the last entry in the table. Return SQLITE_OK
5229** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00005230** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00005231*/
drh3aac2dd2004-04-26 14:10:20 +00005232int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00005233 int rc;
drhd677b3d2007-08-20 22:48:41 +00005234
dan7a2347e2016-01-07 16:43:54 +00005235 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005236 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00005237
5238 /* If the cursor already points to the last entry, this is a no-op. */
drh036dbec2014-03-11 23:40:44 +00005239 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
danielk19773f632d52009-05-02 10:03:09 +00005240#ifdef SQLITE_DEBUG
5241 /* This block serves to assert() that the cursor really does point
5242 ** to the last entry in the b-tree. */
5243 int ii;
5244 for(ii=0; ii<pCur->iPage; ii++){
5245 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
5246 }
drh352a35a2017-08-15 03:46:47 +00005247 assert( pCur->ix==pCur->pPage->nCell-1 );
5248 assert( pCur->pPage->leaf );
danielk19773f632d52009-05-02 10:03:09 +00005249#endif
5250 return SQLITE_OK;
5251 }
5252
drh9562b552002-02-19 15:00:07 +00005253 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005254 if( rc==SQLITE_OK ){
drh44548e72017-08-14 18:13:52 +00005255 assert( pCur->eState==CURSOR_VALID );
5256 *pRes = 0;
5257 rc = moveToRightmost(pCur);
5258 if( rc==SQLITE_OK ){
5259 pCur->curFlags |= BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005260 }else{
drh44548e72017-08-14 18:13:52 +00005261 pCur->curFlags &= ~BTCF_AtLast;
drhd677b3d2007-08-20 22:48:41 +00005262 }
drh44548e72017-08-14 18:13:52 +00005263 }else if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005264 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005265 *pRes = 1;
5266 rc = SQLITE_OK;
drh9562b552002-02-19 15:00:07 +00005267 }
drh9562b552002-02-19 15:00:07 +00005268 return rc;
5269}
5270
drhe14006d2008-03-25 17:23:32 +00005271/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00005272** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00005273**
drhe63d9992008-08-13 19:11:48 +00005274** For INTKEY tables, the intKey parameter is used. pIdxKey
5275** must be NULL. For index tables, pIdxKey is used and intKey
5276** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00005277**
drh5e2f8b92001-05-28 00:41:15 +00005278** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00005279** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00005280** were present. The cursor might point to an entry that comes
5281** before or after the key.
5282**
drh64022502009-01-09 14:11:04 +00005283** An integer is written into *pRes which is the result of
5284** comparing the key with the entry to which the cursor is
5285** pointing. The meaning of the integer written into
5286** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00005287**
5288** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005289** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00005290** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00005291**
5292** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005293** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00005294**
5295** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00005296** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00005297**
drhb1d607d2015-11-05 22:30:54 +00005298** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5299** exists an entry in the table that exactly matches pIdxKey.
drha059ad02001-04-17 20:09:11 +00005300*/
drhe63d9992008-08-13 19:11:48 +00005301int sqlite3BtreeMovetoUnpacked(
5302 BtCursor *pCur, /* The cursor to be moved */
5303 UnpackedRecord *pIdxKey, /* Unpacked index key */
5304 i64 intKey, /* The table key */
5305 int biasRight, /* If true, bias the search to the high end */
5306 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00005307){
drh72f82862001-05-24 21:06:34 +00005308 int rc;
dan3b9330f2014-02-27 20:44:18 +00005309 RecordCompare xRecordCompare;
drhd677b3d2007-08-20 22:48:41 +00005310
dan7a2347e2016-01-07 16:43:54 +00005311 assert( cursorOwnsBtShared(pCur) );
drhe5fe6902007-12-07 18:55:28 +00005312 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00005313 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00005314 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drhdebaa862016-06-13 12:51:20 +00005315 assert( pCur->eState!=CURSOR_VALID || (pIdxKey==0)==(pCur->curIntKey!=0) );
drha2c20e42008-03-29 16:01:04 +00005316
5317 /* If the cursor is already positioned at the point we are trying
5318 ** to move to, then just return without doing any work */
drh05a36092016-06-06 01:54:20 +00005319 if( pIdxKey==0
5320 && pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
danielk197771d5d2c2008-09-29 11:49:47 +00005321 ){
drhe63d9992008-08-13 19:11:48 +00005322 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00005323 *pRes = 0;
5324 return SQLITE_OK;
5325 }
drh451e76d2017-01-21 16:54:19 +00005326 if( pCur->info.nKey<intKey ){
5327 if( (pCur->curFlags & BTCF_AtLast)!=0 ){
5328 *pRes = -1;
5329 return SQLITE_OK;
5330 }
drh7f11afa2017-01-21 21:47:54 +00005331 /* If the requested key is one more than the previous key, then
5332 ** try to get there using sqlite3BtreeNext() rather than a full
5333 ** binary search. This is an optimization only. The correct answer
drh2ab792e2017-05-30 18:34:07 +00005334 ** is still obtained without this case, only a little more slowely */
drh7f11afa2017-01-21 21:47:54 +00005335 if( pCur->info.nKey+1==intKey && !pCur->skipNext ){
5336 *pRes = 0;
drh2ab792e2017-05-30 18:34:07 +00005337 rc = sqlite3BtreeNext(pCur, 0);
5338 if( rc==SQLITE_OK ){
drh7f11afa2017-01-21 21:47:54 +00005339 getCellInfo(pCur);
5340 if( pCur->info.nKey==intKey ){
5341 return SQLITE_OK;
5342 }
drh2ab792e2017-05-30 18:34:07 +00005343 }else if( rc==SQLITE_DONE ){
5344 rc = SQLITE_OK;
5345 }else{
5346 return rc;
drh451e76d2017-01-21 16:54:19 +00005347 }
5348 }
drha2c20e42008-03-29 16:01:04 +00005349 }
5350 }
5351
dan1fed5da2014-02-25 21:01:25 +00005352 if( pIdxKey ){
5353 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
dan38fdead2014-04-01 10:19:02 +00005354 pIdxKey->errCode = 0;
dan3b9330f2014-02-27 20:44:18 +00005355 assert( pIdxKey->default_rc==1
5356 || pIdxKey->default_rc==0
5357 || pIdxKey->default_rc==-1
5358 );
drh13a747e2014-03-03 21:46:55 +00005359 }else{
drhb6e8fd12014-03-06 01:56:33 +00005360 xRecordCompare = 0; /* All keys are integers */
dan1fed5da2014-02-25 21:01:25 +00005361 }
5362
drh5e2f8b92001-05-28 00:41:15 +00005363 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00005364 if( rc ){
drh44548e72017-08-14 18:13:52 +00005365 if( rc==SQLITE_EMPTY ){
drh352a35a2017-08-15 03:46:47 +00005366 assert( pCur->pgnoRoot==0 || pCur->pPage->nCell==0 );
drh44548e72017-08-14 18:13:52 +00005367 *pRes = -1;
5368 return SQLITE_OK;
5369 }
drhd677b3d2007-08-20 22:48:41 +00005370 return rc;
5371 }
drh352a35a2017-08-15 03:46:47 +00005372 assert( pCur->pPage );
5373 assert( pCur->pPage->isInit );
drh44548e72017-08-14 18:13:52 +00005374 assert( pCur->eState==CURSOR_VALID );
drh352a35a2017-08-15 03:46:47 +00005375 assert( pCur->pPage->nCell > 0 );
5376 assert( pCur->iPage==0 || pCur->apPage[0]->intKey==pCur->curIntKey );
drhc75d8862015-06-27 23:55:20 +00005377 assert( pCur->curIntKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00005378 for(;;){
drhec3e6b12013-11-25 02:38:55 +00005379 int lwr, upr, idx, c;
drh72f82862001-05-24 21:06:34 +00005380 Pgno chldPg;
drh352a35a2017-08-15 03:46:47 +00005381 MemPage *pPage = pCur->pPage;
drhec3e6b12013-11-25 02:38:55 +00005382 u8 *pCell; /* Pointer to current cell in pPage */
danielk1977171fff32009-07-11 05:06:51 +00005383
5384 /* pPage->nCell must be greater than zero. If this is the root-page
5385 ** the cursor would have been INVALID above and this for(;;) loop
5386 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00005387 ** would have already detected db corruption. Similarly, pPage must
5388 ** be the right kind (index or table) of b-tree page. Otherwise
5389 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00005390 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00005391 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00005392 lwr = 0;
5393 upr = pPage->nCell-1;
drhebf10b12013-11-25 17:38:26 +00005394 assert( biasRight==0 || biasRight==1 );
5395 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
drh75e96b32017-04-01 00:20:06 +00005396 pCur->ix = (u16)idx;
dana4660bd2014-03-04 16:05:25 +00005397 if( xRecordCompare==0 ){
drhec3e6b12013-11-25 02:38:55 +00005398 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00005399 i64 nCellKey;
drhf44890a2015-06-27 03:58:15 +00005400 pCell = findCellPastPtr(pPage, idx);
drh3e28ff52014-09-24 00:59:08 +00005401 if( pPage->intKeyLeaf ){
drh9b2fc612013-11-25 20:14:13 +00005402 while( 0x80 <= *(pCell++) ){
drhcc97ca42017-06-07 22:32:59 +00005403 if( pCell>=pPage->aDataEnd ){
daneebf2f52017-11-18 17:30:08 +00005404 return SQLITE_CORRUPT_PAGE(pPage);
drhcc97ca42017-06-07 22:32:59 +00005405 }
drh9b2fc612013-11-25 20:14:13 +00005406 }
drhd172f862006-01-12 15:01:15 +00005407 }
drha2c20e42008-03-29 16:01:04 +00005408 getVarint(pCell, (u64*)&nCellKey);
drhbb933ef2013-11-25 15:01:38 +00005409 if( nCellKey<intKey ){
5410 lwr = idx+1;
5411 if( lwr>upr ){ c = -1; break; }
5412 }else if( nCellKey>intKey ){
5413 upr = idx-1;
5414 if( lwr>upr ){ c = +1; break; }
5415 }else{
5416 assert( nCellKey==intKey );
drh75e96b32017-04-01 00:20:06 +00005417 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005418 if( !pPage->leaf ){
5419 lwr = idx;
drhebf10b12013-11-25 17:38:26 +00005420 goto moveto_next_layer;
drhec3e6b12013-11-25 02:38:55 +00005421 }else{
drhd95ef5c2016-11-11 18:19:05 +00005422 pCur->curFlags |= BTCF_ValidNKey;
5423 pCur->info.nKey = nCellKey;
5424 pCur->info.nSize = 0;
drhec3e6b12013-11-25 02:38:55 +00005425 *pRes = 0;
drhd95ef5c2016-11-11 18:19:05 +00005426 return SQLITE_OK;
drhec3e6b12013-11-25 02:38:55 +00005427 }
drhd793f442013-11-25 14:10:15 +00005428 }
drhebf10b12013-11-25 17:38:26 +00005429 assert( lwr+upr>=0 );
5430 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
drhec3e6b12013-11-25 02:38:55 +00005431 }
5432 }else{
5433 for(;;){
drhc6827502015-05-28 15:14:32 +00005434 int nCell; /* Size of the pCell cell in bytes */
drhf44890a2015-06-27 03:58:15 +00005435 pCell = findCellPastPtr(pPage, idx);
drhec3e6b12013-11-25 02:38:55 +00005436
drhb2eced52010-08-12 02:41:12 +00005437 /* The maximum supported page-size is 65536 bytes. This means that
danielk197711c327a2009-05-04 19:01:26 +00005438 ** the maximum number of record bytes stored on an index B-Tree
drhb2eced52010-08-12 02:41:12 +00005439 ** page is less than 16384 bytes and may be stored as a 2-byte
danielk197711c327a2009-05-04 19:01:26 +00005440 ** varint. This information is used to attempt to avoid parsing
5441 ** the entire cell by checking for the cases where the record is
5442 ** stored entirely within the b-tree page by inspecting the first
5443 ** 2 bytes of the cell.
5444 */
drhec3e6b12013-11-25 02:38:55 +00005445 nCell = pCell[0];
drh72b8ef62013-12-06 22:44:51 +00005446 if( nCell<=pPage->max1bytePayload ){
danielk197711c327a2009-05-04 19:01:26 +00005447 /* This branch runs if the record-size field of the cell is a
5448 ** single byte varint and the record fits entirely on the main
5449 ** b-tree page. */
drh3def2352011-11-11 00:27:15 +00005450 testcase( pCell+nCell+1==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005451 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
danielk197711c327a2009-05-04 19:01:26 +00005452 }else if( !(pCell[1] & 0x80)
5453 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
5454 ){
5455 /* The record-size field is a 2 byte varint and the record
5456 ** fits entirely on the main b-tree page. */
drh3def2352011-11-11 00:27:15 +00005457 testcase( pCell+nCell+2==pPage->aDataEnd );
drh75179de2014-09-16 14:37:35 +00005458 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00005459 }else{
danielk197711c327a2009-05-04 19:01:26 +00005460 /* The record flows over onto one or more overflow pages. In
5461 ** this case the whole cell needs to be parsed, a buffer allocated
5462 ** and accessPayload() used to retrieve the record into the
dan3548db72015-05-27 14:21:05 +00005463 ** buffer before VdbeRecordCompare() can be called.
5464 **
5465 ** If the record is corrupt, the xRecordCompare routine may read
5466 ** up to two varints past the end of the buffer. An extra 18
5467 ** bytes of padding is allocated at the end of the buffer in
5468 ** case this happens. */
danielk197711c327a2009-05-04 19:01:26 +00005469 void *pCellKey;
5470 u8 * const pCellBody = pCell - pPage->childPtrSize;
drh5fa60512015-06-19 17:19:34 +00005471 pPage->xParseCell(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00005472 nCell = (int)pCur->info.nKey;
drhc6827502015-05-28 15:14:32 +00005473 testcase( nCell<0 ); /* True if key size is 2^32 or more */
5474 testcase( nCell==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5475 testcase( nCell==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5476 testcase( nCell==2 ); /* Minimum legal index key size */
dan3548db72015-05-27 14:21:05 +00005477 if( nCell<2 ){
daneebf2f52017-11-18 17:30:08 +00005478 rc = SQLITE_CORRUPT_PAGE(pPage);
dan3548db72015-05-27 14:21:05 +00005479 goto moveto_finish;
5480 }
5481 pCellKey = sqlite3Malloc( nCell+18 );
danielk19776507ecb2008-03-25 09:56:44 +00005482 if( pCellKey==0 ){
mistachkinfad30392016-02-13 23:43:46 +00005483 rc = SQLITE_NOMEM_BKPT;
danielk19776507ecb2008-03-25 09:56:44 +00005484 goto moveto_finish;
5485 }
drh75e96b32017-04-01 00:20:06 +00005486 pCur->ix = (u16)idx;
drh42e28f12017-01-27 00:31:59 +00005487 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
5488 pCur->curFlags &= ~BTCF_ValidOvfl;
drhec9b31f2009-08-25 13:53:49 +00005489 if( rc ){
5490 sqlite3_free(pCellKey);
5491 goto moveto_finish;
5492 }
drh75179de2014-09-16 14:37:35 +00005493 c = xRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00005494 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00005495 }
dan38fdead2014-04-01 10:19:02 +00005496 assert(
5497 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
dana7bf23c2014-05-02 17:12:41 +00005498 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
dan38fdead2014-04-01 10:19:02 +00005499 );
drhbb933ef2013-11-25 15:01:38 +00005500 if( c<0 ){
5501 lwr = idx+1;
5502 }else if( c>0 ){
5503 upr = idx-1;
5504 }else{
5505 assert( c==0 );
drh64022502009-01-09 14:11:04 +00005506 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00005507 rc = SQLITE_OK;
drh75e96b32017-04-01 00:20:06 +00005508 pCur->ix = (u16)idx;
mistachkin88a79732017-09-04 19:31:54 +00005509 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT_BKPT;
drh1e968a02008-03-25 00:22:21 +00005510 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00005511 }
drhebf10b12013-11-25 17:38:26 +00005512 if( lwr>upr ) break;
5513 assert( lwr+upr>=0 );
5514 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
drh72f82862001-05-24 21:06:34 +00005515 }
drh72f82862001-05-24 21:06:34 +00005516 }
drhb07028f2011-10-14 21:49:18 +00005517 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
danielk197771d5d2c2008-09-29 11:49:47 +00005518 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00005519 if( pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00005520 assert( pCur->ix<pCur->pPage->nCell );
drh75e96b32017-04-01 00:20:06 +00005521 pCur->ix = (u16)idx;
drhec3e6b12013-11-25 02:38:55 +00005522 *pRes = c;
5523 rc = SQLITE_OK;
5524 goto moveto_finish;
drhebf10b12013-11-25 17:38:26 +00005525 }
5526moveto_next_layer:
5527 if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00005528 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00005529 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00005530 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00005531 }
drh75e96b32017-04-01 00:20:06 +00005532 pCur->ix = (u16)lwr;
drh8178a752003-01-05 21:41:40 +00005533 rc = moveToChild(pCur, chldPg);
drhec3e6b12013-11-25 02:38:55 +00005534 if( rc ) break;
drh72f82862001-05-24 21:06:34 +00005535 }
drh1e968a02008-03-25 00:22:21 +00005536moveto_finish:
drhd2022b02013-11-25 16:23:52 +00005537 pCur->info.nSize = 0;
drhd95ef5c2016-11-11 18:19:05 +00005538 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhe63d9992008-08-13 19:11:48 +00005539 return rc;
5540}
5541
drhd677b3d2007-08-20 22:48:41 +00005542
drh72f82862001-05-24 21:06:34 +00005543/*
drhc39e0002004-05-07 23:50:57 +00005544** Return TRUE if the cursor is not pointing at an entry of the table.
5545**
5546** TRUE will be returned after a call to sqlite3BtreeNext() moves
5547** past the last entry in the table or sqlite3BtreePrev() moves past
5548** the first entry. TRUE is also returned if the table is empty.
5549*/
5550int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00005551 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5552 ** have been deleted? This API will need to change to return an error code
5553 ** as well as the boolean result value.
5554 */
5555 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00005556}
5557
5558/*
drh5e98e832017-02-17 19:24:06 +00005559** Return an estimate for the number of rows in the table that pCur is
5560** pointing to. Return a negative number if no estimate is currently
5561** available.
5562*/
5563i64 sqlite3BtreeRowCountEst(BtCursor *pCur){
5564 i64 n;
5565 u8 i;
5566
5567 assert( cursorOwnsBtShared(pCur) );
5568 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh555227b2017-02-23 02:15:33 +00005569
5570 /* Currently this interface is only called by the OP_IfSmaller
5571 ** opcode, and it that case the cursor will always be valid and
5572 ** will always point to a leaf node. */
5573 if( NEVER(pCur->eState!=CURSOR_VALID) ) return -1;
drh352a35a2017-08-15 03:46:47 +00005574 if( NEVER(pCur->pPage->leaf==0) ) return -1;
drh555227b2017-02-23 02:15:33 +00005575
drh352a35a2017-08-15 03:46:47 +00005576 n = pCur->pPage->nCell;
5577 for(i=0; i<pCur->iPage; i++){
drh5e98e832017-02-17 19:24:06 +00005578 n *= pCur->apPage[i]->nCell;
5579 }
5580 return n;
5581}
5582
5583/*
drh2ab792e2017-05-30 18:34:07 +00005584** Advance the cursor to the next entry in the database.
5585** Return value:
5586**
5587** SQLITE_OK success
5588** SQLITE_DONE cursor is already pointing at the last element
5589** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005590**
drhee6438d2014-09-01 13:29:32 +00005591** The main entry point is sqlite3BtreeNext(). That routine is optimized
5592** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5593** to the next cell on the current page. The (slower) btreeNext() helper
5594** routine is called when it is necessary to move to a different page or
5595** to restore the cursor.
5596**
drh89997982017-07-11 18:11:33 +00005597** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5598** cursor corresponds to an SQL index and this routine could have been
5599** skipped if the SQL index had been a unique index. The F argument
5600** is a hint to the implement. SQLite btree implementation does not use
5601** this hint, but COMDB2 does.
drh72f82862001-05-24 21:06:34 +00005602*/
drh89997982017-07-11 18:11:33 +00005603static SQLITE_NOINLINE int btreeNext(BtCursor *pCur){
drh72f82862001-05-24 21:06:34 +00005604 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00005605 int idx;
danielk197797a227c2006-01-20 16:32:04 +00005606 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00005607
dan7a2347e2016-01-07 16:43:54 +00005608 assert( cursorOwnsBtShared(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005609 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhf66f26a2013-08-19 20:04:10 +00005610 if( pCur->eState!=CURSOR_VALID ){
drhee6438d2014-09-01 13:29:32 +00005611 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
drhf66f26a2013-08-19 20:04:10 +00005612 rc = restoreCursorPosition(pCur);
5613 if( rc!=SQLITE_OK ){
5614 return rc;
5615 }
5616 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00005617 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00005618 }
drh9b47ee32013-08-20 03:13:51 +00005619 if( pCur->skipNext ){
5620 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5621 pCur->eState = CURSOR_VALID;
5622 if( pCur->skipNext>0 ){
5623 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005624 return SQLITE_OK;
5625 }
drhf66f26a2013-08-19 20:04:10 +00005626 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005627 }
danielk1977da184232006-01-05 11:34:32 +00005628 }
danielk1977da184232006-01-05 11:34:32 +00005629
drh352a35a2017-08-15 03:46:47 +00005630 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005631 idx = ++pCur->ix;
drhf3cd0c82018-06-08 19:13:57 +00005632 if( !pPage->isInit ){
5633 /* The only known way for this to happen is for there to be a
5634 ** recursive SQL function that does a DELETE operation as part of a
5635 ** SELECT which deletes content out from under an active cursor
5636 ** in a corrupt database file where the table being DELETE-ed from
5637 ** has pages in common with the table being queried. See TH3
5638 ** module cov1/btree78.test testcase 220 (2018-06-08) for an
5639 ** example. */
5640 return SQLITE_CORRUPT_BKPT;
5641 }
danbb246c42012-01-12 14:25:55 +00005642
5643 /* If the database file is corrupt, it is possible for the value of idx
5644 ** to be invalid here. This can only occur if a second cursor modifies
5645 ** the page while cursor pCur is holding a reference to it. Which can
5646 ** only happen if the database is corrupt in such a way as to link the
5647 ** page into more than one b-tree structure. */
5648 testcase( idx>pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00005649
danielk197771d5d2c2008-09-29 11:49:47 +00005650 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00005651 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00005652 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drhee6438d2014-09-01 13:29:32 +00005653 if( rc ) return rc;
5654 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005655 }
drh5e2f8b92001-05-28 00:41:15 +00005656 do{
danielk197771d5d2c2008-09-29 11:49:47 +00005657 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005658 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00005659 return SQLITE_DONE;
drh5e2f8b92001-05-28 00:41:15 +00005660 }
danielk197730548662009-07-09 05:07:37 +00005661 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00005662 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005663 }while( pCur->ix>=pPage->nCell );
drh44845222008-07-17 18:39:57 +00005664 if( pPage->intKey ){
drh89997982017-07-11 18:11:33 +00005665 return sqlite3BtreeNext(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00005666 }else{
drhee6438d2014-09-01 13:29:32 +00005667 return SQLITE_OK;
drh8b18dd42004-05-12 19:18:15 +00005668 }
drh8178a752003-01-05 21:41:40 +00005669 }
drh3aac2dd2004-04-26 14:10:20 +00005670 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00005671 return SQLITE_OK;
drhee6438d2014-09-01 13:29:32 +00005672 }else{
5673 return moveToLeftmost(pCur);
drh72f82862001-05-24 21:06:34 +00005674 }
drh72f82862001-05-24 21:06:34 +00005675}
drh2ab792e2017-05-30 18:34:07 +00005676int sqlite3BtreeNext(BtCursor *pCur, int flags){
drhee6438d2014-09-01 13:29:32 +00005677 MemPage *pPage;
drh89997982017-07-11 18:11:33 +00005678 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
dan7a2347e2016-01-07 16:43:54 +00005679 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00005680 assert( flags==0 || flags==1 );
drhee6438d2014-09-01 13:29:32 +00005681 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5682 pCur->info.nSize = 0;
5683 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
drh89997982017-07-11 18:11:33 +00005684 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur);
drh352a35a2017-08-15 03:46:47 +00005685 pPage = pCur->pPage;
drh75e96b32017-04-01 00:20:06 +00005686 if( (++pCur->ix)>=pPage->nCell ){
5687 pCur->ix--;
drh89997982017-07-11 18:11:33 +00005688 return btreeNext(pCur);
drhee6438d2014-09-01 13:29:32 +00005689 }
5690 if( pPage->leaf ){
5691 return SQLITE_OK;
5692 }else{
5693 return moveToLeftmost(pCur);
5694 }
5695}
drh72f82862001-05-24 21:06:34 +00005696
drh3b7511c2001-05-26 13:15:44 +00005697/*
drh2ab792e2017-05-30 18:34:07 +00005698** Step the cursor to the back to the previous entry in the database.
5699** Return values:
5700**
5701** SQLITE_OK success
5702** SQLITE_DONE the cursor is already on the first element of the table
5703** otherwise some kind of error occurred
drhe39a7322014-02-03 14:04:11 +00005704**
drhee6438d2014-09-01 13:29:32 +00005705** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5706** for the common case of merely decrementing the cell counter BtCursor.aiIdx
drh3f387402014-09-24 01:23:00 +00005707** to the previous cell on the current page. The (slower) btreePrevious()
5708** helper routine is called when it is necessary to move to a different page
5709** or to restore the cursor.
drhee6438d2014-09-01 13:29:32 +00005710**
drh89997982017-07-11 18:11:33 +00005711** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5712** the cursor corresponds to an SQL index and this routine could have been
5713** skipped if the SQL index had been a unique index. The F argument is a
5714** hint to the implement. The native SQLite btree implementation does not
5715** use this hint, but COMDB2 does.
drh2dcc9aa2002-12-04 13:40:25 +00005716*/
drh89997982017-07-11 18:11:33 +00005717static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur){
drh2dcc9aa2002-12-04 13:40:25 +00005718 int rc;
drh8178a752003-01-05 21:41:40 +00005719 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00005720
dan7a2347e2016-01-07 16:43:54 +00005721 assert( cursorOwnsBtShared(pCur) );
drh9b47ee32013-08-20 03:13:51 +00005722 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drhee6438d2014-09-01 13:29:32 +00005723 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5724 assert( pCur->info.nSize==0 );
drhf66f26a2013-08-19 20:04:10 +00005725 if( pCur->eState!=CURSOR_VALID ){
drh7682a472014-09-29 15:00:28 +00005726 rc = restoreCursorPosition(pCur);
drhee6438d2014-09-01 13:29:32 +00005727 if( rc!=SQLITE_OK ){
5728 return rc;
drhf66f26a2013-08-19 20:04:10 +00005729 }
5730 if( CURSOR_INVALID==pCur->eState ){
drh2ab792e2017-05-30 18:34:07 +00005731 return SQLITE_DONE;
drhf66f26a2013-08-19 20:04:10 +00005732 }
drh9b47ee32013-08-20 03:13:51 +00005733 if( pCur->skipNext ){
5734 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5735 pCur->eState = CURSOR_VALID;
5736 if( pCur->skipNext<0 ){
5737 pCur->skipNext = 0;
drh9b47ee32013-08-20 03:13:51 +00005738 return SQLITE_OK;
5739 }
drhf66f26a2013-08-19 20:04:10 +00005740 pCur->skipNext = 0;
drhf66f26a2013-08-19 20:04:10 +00005741 }
danielk1977da184232006-01-05 11:34:32 +00005742 }
danielk1977da184232006-01-05 11:34:32 +00005743
drh352a35a2017-08-15 03:46:47 +00005744 pPage = pCur->pPage;
danielk197771d5d2c2008-09-29 11:49:47 +00005745 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00005746 if( !pPage->leaf ){
drh75e96b32017-04-01 00:20:06 +00005747 int idx = pCur->ix;
danielk197771d5d2c2008-09-29 11:49:47 +00005748 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhee6438d2014-09-01 13:29:32 +00005749 if( rc ) return rc;
drh2dcc9aa2002-12-04 13:40:25 +00005750 rc = moveToRightmost(pCur);
5751 }else{
drh75e96b32017-04-01 00:20:06 +00005752 while( pCur->ix==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00005753 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00005754 pCur->eState = CURSOR_INVALID;
drh2ab792e2017-05-30 18:34:07 +00005755 return SQLITE_DONE;
drh2dcc9aa2002-12-04 13:40:25 +00005756 }
danielk197730548662009-07-09 05:07:37 +00005757 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00005758 }
drhee6438d2014-09-01 13:29:32 +00005759 assert( pCur->info.nSize==0 );
drhd95ef5c2016-11-11 18:19:05 +00005760 assert( (pCur->curFlags & (BTCF_ValidOvfl))==0 );
danielk197771d5d2c2008-09-29 11:49:47 +00005761
drh75e96b32017-04-01 00:20:06 +00005762 pCur->ix--;
drh352a35a2017-08-15 03:46:47 +00005763 pPage = pCur->pPage;
drh44845222008-07-17 18:39:57 +00005764 if( pPage->intKey && !pPage->leaf ){
drh89997982017-07-11 18:11:33 +00005765 rc = sqlite3BtreePrevious(pCur, 0);
drh8b18dd42004-05-12 19:18:15 +00005766 }else{
5767 rc = SQLITE_OK;
5768 }
drh2dcc9aa2002-12-04 13:40:25 +00005769 }
drh2dcc9aa2002-12-04 13:40:25 +00005770 return rc;
5771}
drh2ab792e2017-05-30 18:34:07 +00005772int sqlite3BtreePrevious(BtCursor *pCur, int flags){
dan7a2347e2016-01-07 16:43:54 +00005773 assert( cursorOwnsBtShared(pCur) );
drh2ab792e2017-05-30 18:34:07 +00005774 assert( flags==0 || flags==1 );
drhee6438d2014-09-01 13:29:32 +00005775 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
drh89997982017-07-11 18:11:33 +00005776 UNUSED_PARAMETER( flags ); /* Used in COMDB2 but not native SQLite */
drhee6438d2014-09-01 13:29:32 +00005777 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5778 pCur->info.nSize = 0;
5779 if( pCur->eState!=CURSOR_VALID
drh75e96b32017-04-01 00:20:06 +00005780 || pCur->ix==0
drh352a35a2017-08-15 03:46:47 +00005781 || pCur->pPage->leaf==0
drhee6438d2014-09-01 13:29:32 +00005782 ){
drh89997982017-07-11 18:11:33 +00005783 return btreePrevious(pCur);
drhee6438d2014-09-01 13:29:32 +00005784 }
drh75e96b32017-04-01 00:20:06 +00005785 pCur->ix--;
drhee6438d2014-09-01 13:29:32 +00005786 return SQLITE_OK;
5787}
drh2dcc9aa2002-12-04 13:40:25 +00005788
5789/*
drh3b7511c2001-05-26 13:15:44 +00005790** Allocate a new page from the database file.
5791**
danielk19773b8a05f2007-03-19 17:44:26 +00005792** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00005793** has already been called on the new page.) The new page has also
5794** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00005795** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00005796**
5797** SQLITE_OK is returned on success. Any other return value indicates
drh1c8bade2015-05-29 18:42:11 +00005798** an error. *ppPage is set to NULL in the event of an error.
drhbea00b92002-07-08 10:59:50 +00005799**
drh82e647d2013-03-02 03:25:55 +00005800** If the "nearby" parameter is not 0, then an effort is made to
drh199e3cf2002-07-18 11:01:47 +00005801** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00005802** attempt to keep related pages close to each other in the database file,
5803** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00005804**
drh82e647d2013-03-02 03:25:55 +00005805** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5806** anywhere on the free-list, then it is guaranteed to be returned. If
5807** eMode is BTALLOC_LT then the page returned will be less than or equal
5808** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5809** are no restrictions on which page is returned.
drh3b7511c2001-05-26 13:15:44 +00005810*/
drh4f0c5872007-03-26 22:05:01 +00005811static int allocateBtreePage(
drh82e647d2013-03-02 03:25:55 +00005812 BtShared *pBt, /* The btree */
5813 MemPage **ppPage, /* Store pointer to the allocated page here */
5814 Pgno *pPgno, /* Store the page number here */
5815 Pgno nearby, /* Search for a page near this one */
5816 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005817){
drh3aac2dd2004-04-26 14:10:20 +00005818 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00005819 int rc;
drh35cd6432009-06-05 14:17:21 +00005820 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00005821 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00005822 MemPage *pTrunk = 0;
5823 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00005824 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00005825
drh1fee73e2007-08-29 04:00:57 +00005826 assert( sqlite3_mutex_held(pBt->mutex) );
dan09ff9e12013-03-11 11:49:03 +00005827 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
drh3aac2dd2004-04-26 14:10:20 +00005828 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00005829 mxPage = btreePagecount(pBt);
drh113762a2014-11-19 16:36:25 +00005830 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5831 ** stores stores the total number of pages on the freelist. */
drh3aac2dd2004-04-26 14:10:20 +00005832 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00005833 testcase( n==mxPage-1 );
5834 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00005835 return SQLITE_CORRUPT_BKPT;
5836 }
drh3aac2dd2004-04-26 14:10:20 +00005837 if( n>0 ){
drh91025292004-05-03 19:49:32 +00005838 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005839 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005840 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
drhc6e956f2015-06-24 13:32:10 +00005841 u32 nSearch = 0; /* Count of the number of search attempts */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005842
drh82e647d2013-03-02 03:25:55 +00005843 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00005844 ** shows that the page 'nearby' is somewhere on the free-list, then
5845 ** the entire-list will be searched for that page.
5846 */
5847#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005848 if( eMode==BTALLOC_EXACT ){
5849 if( nearby<=mxPage ){
5850 u8 eType;
5851 assert( nearby>0 );
5852 assert( pBt->autoVacuum );
5853 rc = ptrmapGet(pBt, nearby, &eType, 0);
5854 if( rc ) return rc;
5855 if( eType==PTRMAP_FREEPAGE ){
5856 searchList = 1;
5857 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005858 }
dan51f0b6d2013-02-22 20:16:34 +00005859 }else if( eMode==BTALLOC_LE ){
5860 searchList = 1;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005861 }
5862#endif
5863
5864 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5865 ** first free-list trunk page. iPrevTrunk is initially 1.
5866 */
danielk19773b8a05f2007-03-19 17:44:26 +00005867 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00005868 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00005869 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005870
5871 /* The code within this loop is run only once if the 'searchList' variable
5872 ** is not true. Otherwise, it runs once for each trunk-page on the
drh82e647d2013-03-02 03:25:55 +00005873 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5874 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
danielk1977cb1a7eb2004-11-05 12:27:02 +00005875 */
5876 do {
5877 pPrevTrunk = pTrunk;
5878 if( pPrevTrunk ){
drh113762a2014-11-19 16:36:25 +00005879 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
5880 ** is the page number of the next freelist trunk page in the list or
5881 ** zero if this is the last freelist trunk page. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005882 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00005883 }else{
drh113762a2014-11-19 16:36:25 +00005884 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
5885 ** stores the page number of the first page of the freelist, or zero if
5886 ** the freelist is empty. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00005887 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00005888 }
drhdf35a082009-07-09 02:24:35 +00005889 testcase( iTrunk==mxPage );
drh9e7804d2015-06-24 12:24:03 +00005890 if( iTrunk>mxPage || nSearch++ > n ){
drhc62aab52017-06-11 18:26:15 +00005891 rc = SQLITE_CORRUPT_PGNO(pPrevTrunk ? pPrevTrunk->pgno : 1);
drh1662b5a2009-06-04 19:06:09 +00005892 }else{
drh7e8c6f12015-05-28 03:28:27 +00005893 rc = btreeGetUnusedPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00005894 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005895 if( rc ){
drhd3627af2006-12-18 18:34:51 +00005896 pTrunk = 0;
5897 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005898 }
drhb07028f2011-10-14 21:49:18 +00005899 assert( pTrunk!=0 );
5900 assert( pTrunk->aData!=0 );
drh113762a2014-11-19 16:36:25 +00005901 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
5902 ** is the number of leaf page pointers to follow. */
5903 k = get4byte(&pTrunk->aData[4]);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005904 if( k==0 && !searchList ){
5905 /* The trunk has no leaves and the list is not being searched.
5906 ** So extract the trunk page itself and use it as the newly
5907 ** allocated page */
5908 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00005909 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005910 if( rc ){
5911 goto end_allocate_page;
5912 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005913 *pPgno = iTrunk;
5914 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5915 *ppPage = pTrunk;
5916 pTrunk = 0;
5917 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00005918 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005919 /* Value of k is out of range. Database corruption */
drhcc97ca42017-06-07 22:32:59 +00005920 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drhd3627af2006-12-18 18:34:51 +00005921 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005922#ifndef SQLITE_OMIT_AUTOVACUUM
dan51f0b6d2013-02-22 20:16:34 +00005923 }else if( searchList
5924 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5925 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005926 /* The list is being searched and this trunk page is the page
5927 ** to allocate, regardless of whether it has leaves.
5928 */
dan51f0b6d2013-02-22 20:16:34 +00005929 *pPgno = iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005930 *ppPage = pTrunk;
5931 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00005932 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005933 if( rc ){
5934 goto end_allocate_page;
5935 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005936 if( k==0 ){
5937 if( !pPrevTrunk ){
5938 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5939 }else{
danf48c3552010-08-23 15:41:24 +00005940 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5941 if( rc!=SQLITE_OK ){
5942 goto end_allocate_page;
5943 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005944 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5945 }
5946 }else{
5947 /* The trunk page is required by the caller but it contains
5948 ** pointers to free-list leaves. The first leaf becomes a trunk
5949 ** page in this case.
5950 */
5951 MemPage *pNewTrunk;
5952 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00005953 if( iNewTrunk>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00005954 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00005955 goto end_allocate_page;
5956 }
drhdf35a082009-07-09 02:24:35 +00005957 testcase( iNewTrunk==mxPage );
drh7e8c6f12015-05-28 03:28:27 +00005958 rc = btreeGetUnusedPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005959 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00005960 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005961 }
danielk19773b8a05f2007-03-19 17:44:26 +00005962 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005963 if( rc!=SQLITE_OK ){
5964 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00005965 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005966 }
5967 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5968 put4byte(&pNewTrunk->aData[4], k-1);
5969 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00005970 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00005971 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00005972 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00005973 put4byte(&pPage1->aData[32], iNewTrunk);
5974 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00005975 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00005976 if( rc ){
5977 goto end_allocate_page;
5978 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005979 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5980 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00005981 }
5982 pTrunk = 0;
5983 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5984#endif
danielk1977e5765212009-06-17 11:13:28 +00005985 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00005986 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00005987 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005988 Pgno iPage;
5989 unsigned char *aData = pTrunk->aData;
5990 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00005991 u32 i;
danielk1977cb1a7eb2004-11-05 12:27:02 +00005992 closest = 0;
danf38b65a2013-02-22 20:57:47 +00005993 if( eMode==BTALLOC_LE ){
5994 for(i=0; i<k; i++){
5995 iPage = get4byte(&aData[8+i*4]);
dan87ade192013-02-23 17:49:16 +00005996 if( iPage<=nearby ){
danf38b65a2013-02-22 20:57:47 +00005997 closest = i;
5998 break;
5999 }
6000 }
6001 }else{
6002 int dist;
6003 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
6004 for(i=1; i<k; i++){
6005 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
6006 if( d2<dist ){
6007 closest = i;
6008 dist = d2;
6009 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006010 }
6011 }
6012 }else{
6013 closest = 0;
6014 }
6015
6016 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00006017 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00006018 if( iPage>mxPage ){
drhcc97ca42017-06-07 22:32:59 +00006019 rc = SQLITE_CORRUPT_PGNO(iTrunk);
drh1662b5a2009-06-04 19:06:09 +00006020 goto end_allocate_page;
6021 }
drhdf35a082009-07-09 02:24:35 +00006022 testcase( iPage==mxPage );
dan51f0b6d2013-02-22 20:16:34 +00006023 if( !searchList
6024 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
6025 ){
danielk1977bea2a942009-01-20 17:06:27 +00006026 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00006027 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006028 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6029 ": %d more free pages\n",
6030 *pPgno, closest+1, k, pTrunk->pgno, n-1));
drh93b4fc72011-04-07 14:47:01 +00006031 rc = sqlite3PagerWrite(pTrunk->pDbPage);
6032 if( rc ) goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006033 if( closest<k-1 ){
6034 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
6035 }
6036 put4byte(&aData[4], k-1);
drh3f387402014-09-24 01:23:00 +00006037 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
drh7e8c6f12015-05-28 03:28:27 +00006038 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00006039 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00006040 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006041 if( rc!=SQLITE_OK ){
6042 releasePage(*ppPage);
drh1c8bade2015-05-29 18:42:11 +00006043 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006044 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006045 }
6046 searchList = 0;
6047 }
drhee696e22004-08-30 16:52:17 +00006048 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00006049 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00006050 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00006051 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00006052 }else{
danbc1a3c62013-02-23 16:40:46 +00006053 /* There are no pages on the freelist, so append a new page to the
6054 ** database image.
6055 **
6056 ** Normally, new pages allocated by this block can be requested from the
6057 ** pager layer with the 'no-content' flag set. This prevents the pager
6058 ** from trying to read the pages content from disk. However, if the
6059 ** current transaction has already run one or more incremental-vacuum
6060 ** steps, then the page we are about to allocate may contain content
6061 ** that is required in the event of a rollback. In this case, do
6062 ** not set the no-content flag. This causes the pager to load and journal
6063 ** the current page content before overwriting it.
6064 **
6065 ** Note that the pager will not actually attempt to load or journal
6066 ** content for any page that really does lie past the end of the database
6067 ** file on disk. So the effects of disabling the no-content optimization
6068 ** here are confined to those pages that lie between the end of the
6069 ** database image and the end of the database file.
6070 */
drh3f387402014-09-24 01:23:00 +00006071 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
danbc1a3c62013-02-23 16:40:46 +00006072
drhdd3cd972010-03-27 17:12:36 +00006073 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
6074 if( rc ) return rc;
6075 pBt->nPage++;
6076 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00006077
danielk1977afcdd022004-10-31 16:25:42 +00006078#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00006079 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00006080 /* If *pPgno refers to a pointer-map page, allocate two new pages
6081 ** at the end of the file instead of one. The first allocated page
6082 ** becomes a new pointer-map page, the second is used by the caller.
6083 */
danielk1977ac861692009-03-28 10:54:22 +00006084 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00006085 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
6086 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006087 rc = btreeGetUnusedPage(pBt, pBt->nPage, &pPg, bNoContent);
danielk1977ac861692009-03-28 10:54:22 +00006088 if( rc==SQLITE_OK ){
6089 rc = sqlite3PagerWrite(pPg->pDbPage);
6090 releasePage(pPg);
6091 }
6092 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00006093 pBt->nPage++;
6094 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00006095 }
6096#endif
drhdd3cd972010-03-27 17:12:36 +00006097 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
6098 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00006099
danielk1977599fcba2004-11-08 07:13:13 +00006100 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh7e8c6f12015-05-28 03:28:27 +00006101 rc = btreeGetUnusedPage(pBt, *pPgno, ppPage, bNoContent);
drh3b7511c2001-05-26 13:15:44 +00006102 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00006103 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00006104 if( rc!=SQLITE_OK ){
6105 releasePage(*ppPage);
drh7e8c6f12015-05-28 03:28:27 +00006106 *ppPage = 0;
danielk1977aac0a382005-01-16 11:07:06 +00006107 }
drh3a4c1412004-05-09 20:40:11 +00006108 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00006109 }
danielk1977599fcba2004-11-08 07:13:13 +00006110
6111 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00006112
6113end_allocate_page:
6114 releasePage(pTrunk);
6115 releasePage(pPrevTrunk);
drh7e8c6f12015-05-28 03:28:27 +00006116 assert( rc!=SQLITE_OK || sqlite3PagerPageRefcount((*ppPage)->pDbPage)<=1 );
6117 assert( rc!=SQLITE_OK || (*ppPage)->isInit==0 );
drh3b7511c2001-05-26 13:15:44 +00006118 return rc;
6119}
6120
6121/*
danielk1977bea2a942009-01-20 17:06:27 +00006122** This function is used to add page iPage to the database file free-list.
6123** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00006124**
danielk1977bea2a942009-01-20 17:06:27 +00006125** The value passed as the second argument to this function is optional.
6126** If the caller happens to have a pointer to the MemPage object
6127** corresponding to page iPage handy, it may pass it as the second value.
6128** Otherwise, it may pass NULL.
6129**
6130** If a pointer to a MemPage object is passed as the second argument,
6131** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00006132*/
danielk1977bea2a942009-01-20 17:06:27 +00006133static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
6134 MemPage *pTrunk = 0; /* Free-list trunk page */
6135 Pgno iTrunk = 0; /* Page number of free-list trunk page */
6136 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
6137 MemPage *pPage; /* Page being freed. May be NULL. */
6138 int rc; /* Return Code */
6139 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00006140
danielk1977bea2a942009-01-20 17:06:27 +00006141 assert( sqlite3_mutex_held(pBt->mutex) );
danfb0246b2015-05-26 12:18:17 +00006142 assert( CORRUPT_DB || iPage>1 );
danielk1977bea2a942009-01-20 17:06:27 +00006143 assert( !pMemPage || pMemPage->pgno==iPage );
6144
danfb0246b2015-05-26 12:18:17 +00006145 if( iPage<2 ) return SQLITE_CORRUPT_BKPT;
danielk1977bea2a942009-01-20 17:06:27 +00006146 if( pMemPage ){
6147 pPage = pMemPage;
6148 sqlite3PagerRef(pPage->pDbPage);
6149 }else{
6150 pPage = btreePageLookup(pBt, iPage);
6151 }
drh3aac2dd2004-04-26 14:10:20 +00006152
drha34b6762004-05-07 13:30:42 +00006153 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00006154 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00006155 if( rc ) goto freepage_out;
6156 nFree = get4byte(&pPage1->aData[36]);
6157 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00006158
drhc9166342012-01-05 23:32:06 +00006159 if( pBt->btsFlags & BTS_SECURE_DELETE ){
drh5b47efa2010-02-12 18:18:39 +00006160 /* If the secure_delete option is enabled, then
6161 ** always fully overwrite deleted information with zeros.
6162 */
drhb00fc3b2013-08-21 23:42:32 +00006163 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
shaneh84f4b2f2010-02-26 01:46:54 +00006164 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00006165 ){
6166 goto freepage_out;
6167 }
6168 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00006169 }
drhfcce93f2006-02-22 03:08:32 +00006170
danielk1977687566d2004-11-02 12:56:41 +00006171 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00006172 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00006173 */
danielk197785d90ca2008-07-19 14:25:15 +00006174 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006175 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00006176 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00006177 }
danielk1977687566d2004-11-02 12:56:41 +00006178
danielk1977bea2a942009-01-20 17:06:27 +00006179 /* Now manipulate the actual database free-list structure. There are two
6180 ** possibilities. If the free-list is currently empty, or if the first
6181 ** trunk page in the free-list is full, then this page will become a
6182 ** new free-list trunk page. Otherwise, it will become a leaf of the
6183 ** first trunk page in the current free-list. This block tests if it
6184 ** is possible to add the page as a new free-list leaf.
6185 */
6186 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00006187 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00006188
6189 iTrunk = get4byte(&pPage1->aData[32]);
drhb00fc3b2013-08-21 23:42:32 +00006190 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00006191 if( rc!=SQLITE_OK ){
6192 goto freepage_out;
6193 }
6194
6195 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00006196 assert( pBt->usableSize>32 );
6197 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00006198 rc = SQLITE_CORRUPT_BKPT;
6199 goto freepage_out;
6200 }
drheeb844a2009-08-08 18:01:07 +00006201 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00006202 /* In this case there is room on the trunk page to insert the page
6203 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00006204 **
6205 ** Note that the trunk page is not really full until it contains
6206 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6207 ** coded. But due to a coding error in versions of SQLite prior to
6208 ** 3.6.0, databases with freelist trunk pages holding more than
6209 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6210 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00006211 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00006212 ** for now. At some point in the future (once everyone has upgraded
6213 ** to 3.6.0 or later) we should consider fixing the conditional above
6214 ** to read "usableSize/4-2" instead of "usableSize/4-8".
drh113762a2014-11-19 16:36:25 +00006215 **
6216 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6217 ** avoid using the last six entries in the freelist trunk page array in
6218 ** order that database files created by newer versions of SQLite can be
6219 ** read by older versions of SQLite.
drh45b1fac2008-07-04 17:52:42 +00006220 */
danielk19773b8a05f2007-03-19 17:44:26 +00006221 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00006222 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006223 put4byte(&pTrunk->aData[4], nLeaf+1);
6224 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drhc9166342012-01-05 23:32:06 +00006225 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
danielk1977bea2a942009-01-20 17:06:27 +00006226 sqlite3PagerDontWrite(pPage->pDbPage);
6227 }
danielk1977bea2a942009-01-20 17:06:27 +00006228 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00006229 }
drh3a4c1412004-05-09 20:40:11 +00006230 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00006231 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00006232 }
drh3b7511c2001-05-26 13:15:44 +00006233 }
danielk1977bea2a942009-01-20 17:06:27 +00006234
6235 /* If control flows to this point, then it was not possible to add the
6236 ** the page being freed as a leaf page of the first trunk in the free-list.
6237 ** Possibly because the free-list is empty, or possibly because the
6238 ** first trunk in the free-list is full. Either way, the page being freed
6239 ** will become the new first trunk page in the free-list.
6240 */
drhb00fc3b2013-08-21 23:42:32 +00006241 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
drhc046e3e2009-07-15 11:26:44 +00006242 goto freepage_out;
6243 }
6244 rc = sqlite3PagerWrite(pPage->pDbPage);
6245 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00006246 goto freepage_out;
6247 }
6248 put4byte(pPage->aData, iTrunk);
6249 put4byte(&pPage->aData[4], 0);
6250 put4byte(&pPage1->aData[32], iPage);
6251 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
6252
6253freepage_out:
6254 if( pPage ){
6255 pPage->isInit = 0;
6256 }
6257 releasePage(pPage);
6258 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00006259 return rc;
6260}
drhc314dc72009-07-21 11:52:34 +00006261static void freePage(MemPage *pPage, int *pRC){
6262 if( (*pRC)==SQLITE_OK ){
6263 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
6264 }
danielk1977bea2a942009-01-20 17:06:27 +00006265}
drh3b7511c2001-05-26 13:15:44 +00006266
6267/*
drh8d7f1632018-01-23 13:30:38 +00006268** Free any overflow pages associated with the given Cell. Store
6269** size information about the cell in pInfo.
drh3b7511c2001-05-26 13:15:44 +00006270*/
drh9bfdc252014-09-24 02:05:41 +00006271static int clearCell(
6272 MemPage *pPage, /* The page that contains the Cell */
6273 unsigned char *pCell, /* First byte of the Cell */
drh80159da2016-12-09 17:32:51 +00006274 CellInfo *pInfo /* Size information about the cell */
drh9bfdc252014-09-24 02:05:41 +00006275){
drh60172a52017-08-02 18:27:50 +00006276 BtShared *pBt;
drh3aac2dd2004-04-26 14:10:20 +00006277 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00006278 int rc;
drh94440812007-03-06 11:42:19 +00006279 int nOvfl;
shaneh1df2db72010-08-18 02:28:48 +00006280 u32 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00006281
drh1fee73e2007-08-29 04:00:57 +00006282 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh80159da2016-12-09 17:32:51 +00006283 pPage->xParseCell(pPage, pCell, pInfo);
6284 if( pInfo->nLocal==pInfo->nPayload ){
drha34b6762004-05-07 13:30:42 +00006285 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00006286 }
drh6fcf83a2018-05-05 01:23:28 +00006287 testcase( pCell + pInfo->nSize == pPage->aDataEnd );
6288 testcase( pCell + (pInfo->nSize-1) == pPage->aDataEnd );
6289 if( pCell + pInfo->nSize > pPage->aDataEnd ){
drhcc97ca42017-06-07 22:32:59 +00006290 /* Cell extends past end of page */
daneebf2f52017-11-18 17:30:08 +00006291 return SQLITE_CORRUPT_PAGE(pPage);
drhe42a9b42011-08-31 13:27:19 +00006292 }
drh80159da2016-12-09 17:32:51 +00006293 ovflPgno = get4byte(pCell + pInfo->nSize - 4);
drh60172a52017-08-02 18:27:50 +00006294 pBt = pPage->pBt;
shane63207ab2009-02-04 01:49:30 +00006295 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00006296 ovflPageSize = pBt->usableSize - 4;
drh80159da2016-12-09 17:32:51 +00006297 nOvfl = (pInfo->nPayload - pInfo->nLocal + ovflPageSize - 1)/ovflPageSize;
dan0f8076d2015-05-25 18:47:26 +00006298 assert( nOvfl>0 ||
drh80159da2016-12-09 17:32:51 +00006299 (CORRUPT_DB && (pInfo->nPayload + ovflPageSize)<ovflPageSize)
dan0f8076d2015-05-25 18:47:26 +00006300 );
drh72365832007-03-06 15:53:44 +00006301 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00006302 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00006303 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00006304 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00006305 /* 0 is not a legal page number and page 1 cannot be an
6306 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6307 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00006308 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006309 }
danielk1977bea2a942009-01-20 17:06:27 +00006310 if( nOvfl ){
6311 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
6312 if( rc ) return rc;
6313 }
dan887d4b22010-02-25 12:09:16 +00006314
shaneh1da207e2010-03-09 14:41:12 +00006315 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00006316 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
6317 ){
6318 /* There is no reason any cursor should have an outstanding reference
6319 ** to an overflow page belonging to a cell that is being deleted/updated.
6320 ** So if there exists more than one reference to this page, then it
6321 ** must not really be an overflow page and the database must be corrupt.
6322 ** It is helpful to detect this before calling freePage2(), as
6323 ** freePage2() may zero the page contents if secure-delete mode is
6324 ** enabled. If this 'overflow' page happens to be a page that the
6325 ** caller is iterating through or using in some other way, this
6326 ** can be problematic.
6327 */
6328 rc = SQLITE_CORRUPT_BKPT;
6329 }else{
6330 rc = freePage2(pBt, pOvfl, ovflPgno);
6331 }
6332
danielk1977bea2a942009-01-20 17:06:27 +00006333 if( pOvfl ){
6334 sqlite3PagerUnref(pOvfl->pDbPage);
6335 }
drh3b7511c2001-05-26 13:15:44 +00006336 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00006337 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00006338 }
drh5e2f8b92001-05-28 00:41:15 +00006339 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00006340}
6341
6342/*
drh91025292004-05-03 19:49:32 +00006343** Create the byte sequence used to represent a cell on page pPage
6344** and write that byte sequence into pCell[]. Overflow pages are
6345** allocated and filled in as necessary. The calling procedure
6346** is responsible for making sure sufficient space has been allocated
6347** for pCell[].
6348**
6349** Note that pCell does not necessary need to point to the pPage->aData
6350** area. pCell might point to some temporary storage. The cell will
6351** be constructed in this temporary area then copied into pPage->aData
6352** later.
drh3b7511c2001-05-26 13:15:44 +00006353*/
6354static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00006355 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00006356 unsigned char *pCell, /* Complete text of the cell */
drh8eeb4462016-05-21 20:03:42 +00006357 const BtreePayload *pX, /* Payload with which to construct the cell */
drh4b70f112004-05-02 21:12:19 +00006358 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00006359){
drh3b7511c2001-05-26 13:15:44 +00006360 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00006361 const u8 *pSrc;
drh5e27e1d2017-08-23 14:45:59 +00006362 int nSrc, n, rc, mn;
drh3aac2dd2004-04-26 14:10:20 +00006363 int spaceLeft;
drh5e27e1d2017-08-23 14:45:59 +00006364 MemPage *pToRelease;
drh3aac2dd2004-04-26 14:10:20 +00006365 unsigned char *pPrior;
6366 unsigned char *pPayload;
drh5e27e1d2017-08-23 14:45:59 +00006367 BtShared *pBt;
6368 Pgno pgnoOvfl;
drh4b70f112004-05-02 21:12:19 +00006369 int nHeader;
drh3b7511c2001-05-26 13:15:44 +00006370
drh1fee73e2007-08-29 04:00:57 +00006371 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00006372
drhc5053fb2008-11-27 02:22:10 +00006373 /* pPage is not necessarily writeable since pCell might be auxiliary
6374 ** buffer space that is separate from the pPage buffer area */
drh5e27e1d2017-08-23 14:45:59 +00006375 assert( pCell<pPage->aData || pCell>=&pPage->aData[pPage->pBt->pageSize]
drhc5053fb2008-11-27 02:22:10 +00006376 || sqlite3PagerIswriteable(pPage->pDbPage) );
6377
drh91025292004-05-03 19:49:32 +00006378 /* Fill in the header. */
drh6200c882014-09-23 22:36:25 +00006379 nHeader = pPage->childPtrSize;
drhdfc2daa2016-05-21 23:25:29 +00006380 if( pPage->intKey ){
6381 nPayload = pX->nData + pX->nZero;
6382 pSrc = pX->pData;
6383 nSrc = pX->nData;
6384 assert( pPage->intKeyLeaf ); /* fillInCell() only called for leaves */
drh6200c882014-09-23 22:36:25 +00006385 nHeader += putVarint32(&pCell[nHeader], nPayload);
drhdfc2daa2016-05-21 23:25:29 +00006386 nHeader += putVarint(&pCell[nHeader], *(u64*)&pX->nKey);
drh6f11bef2004-05-13 01:12:56 +00006387 }else{
drh8eeb4462016-05-21 20:03:42 +00006388 assert( pX->nKey<=0x7fffffff && pX->pKey!=0 );
6389 nSrc = nPayload = (int)pX->nKey;
6390 pSrc = pX->pKey;
drhdfc2daa2016-05-21 23:25:29 +00006391 nHeader += putVarint32(&pCell[nHeader], nPayload);
drh3aac2dd2004-04-26 14:10:20 +00006392 }
drhdfc2daa2016-05-21 23:25:29 +00006393
6394 /* Fill in the payload */
drh5e27e1d2017-08-23 14:45:59 +00006395 pPayload = &pCell[nHeader];
drh6200c882014-09-23 22:36:25 +00006396 if( nPayload<=pPage->maxLocal ){
drh5e27e1d2017-08-23 14:45:59 +00006397 /* This is the common case where everything fits on the btree page
6398 ** and no overflow pages are required. */
drh6200c882014-09-23 22:36:25 +00006399 n = nHeader + nPayload;
6400 testcase( n==3 );
6401 testcase( n==4 );
6402 if( n<4 ) n = 4;
6403 *pnSize = n;
drh5e27e1d2017-08-23 14:45:59 +00006404 assert( nSrc<=nPayload );
6405 testcase( nSrc<nPayload );
6406 memcpy(pPayload, pSrc, nSrc);
6407 memset(pPayload+nSrc, 0, nPayload-nSrc);
6408 return SQLITE_OK;
drh6200c882014-09-23 22:36:25 +00006409 }
drh5e27e1d2017-08-23 14:45:59 +00006410
6411 /* If we reach this point, it means that some of the content will need
6412 ** to spill onto overflow pages.
6413 */
6414 mn = pPage->minLocal;
6415 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
6416 testcase( n==pPage->maxLocal );
6417 testcase( n==pPage->maxLocal+1 );
6418 if( n > pPage->maxLocal ) n = mn;
6419 spaceLeft = n;
6420 *pnSize = n + nHeader + 4;
6421 pPrior = &pCell[nHeader+n];
6422 pToRelease = 0;
6423 pgnoOvfl = 0;
6424 pBt = pPage->pBt;
drh3b7511c2001-05-26 13:15:44 +00006425
drh6200c882014-09-23 22:36:25 +00006426 /* At this point variables should be set as follows:
6427 **
6428 ** nPayload Total payload size in bytes
6429 ** pPayload Begin writing payload here
6430 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6431 ** that means content must spill into overflow pages.
6432 ** *pnSize Size of the local cell (not counting overflow pages)
6433 ** pPrior Where to write the pgno of the first overflow page
6434 **
6435 ** Use a call to btreeParseCellPtr() to verify that the values above
6436 ** were computed correctly.
6437 */
drhd879e3e2017-02-13 13:35:55 +00006438#ifdef SQLITE_DEBUG
drh6200c882014-09-23 22:36:25 +00006439 {
6440 CellInfo info;
drh5fa60512015-06-19 17:19:34 +00006441 pPage->xParseCell(pPage, pCell, &info);
drhcc5f8a42016-02-06 22:32:06 +00006442 assert( nHeader==(int)(info.pPayload - pCell) );
drh8eeb4462016-05-21 20:03:42 +00006443 assert( info.nKey==pX->nKey );
drh6200c882014-09-23 22:36:25 +00006444 assert( *pnSize == info.nSize );
6445 assert( spaceLeft == info.nLocal );
drh6200c882014-09-23 22:36:25 +00006446 }
6447#endif
6448
6449 /* Write the payload into the local Cell and any extra into overflow pages */
drh5e27e1d2017-08-23 14:45:59 +00006450 while( 1 ){
6451 n = nPayload;
6452 if( n>spaceLeft ) n = spaceLeft;
6453
6454 /* If pToRelease is not zero than pPayload points into the data area
6455 ** of pToRelease. Make sure pToRelease is still writeable. */
6456 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6457
6458 /* If pPayload is part of the data area of pPage, then make sure pPage
6459 ** is still writeable */
6460 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
6461 || sqlite3PagerIswriteable(pPage->pDbPage) );
6462
6463 if( nSrc>=n ){
6464 memcpy(pPayload, pSrc, n);
6465 }else if( nSrc>0 ){
6466 n = nSrc;
6467 memcpy(pPayload, pSrc, n);
6468 }else{
6469 memset(pPayload, 0, n);
6470 }
6471 nPayload -= n;
6472 if( nPayload<=0 ) break;
6473 pPayload += n;
6474 pSrc += n;
6475 nSrc -= n;
6476 spaceLeft -= n;
drh3b7511c2001-05-26 13:15:44 +00006477 if( spaceLeft==0 ){
drh5e27e1d2017-08-23 14:45:59 +00006478 MemPage *pOvfl = 0;
danielk1977afcdd022004-10-31 16:25:42 +00006479#ifndef SQLITE_OMIT_AUTOVACUUM
6480 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00006481 if( pBt->autoVacuum ){
6482 do{
6483 pgnoOvfl++;
6484 } while(
6485 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
6486 );
danielk1977b39f70b2007-05-17 18:28:11 +00006487 }
danielk1977afcdd022004-10-31 16:25:42 +00006488#endif
drhf49661a2008-12-10 16:45:50 +00006489 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00006490#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00006491 /* If the database supports auto-vacuum, and the second or subsequent
6492 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00006493 ** for that page now.
6494 **
6495 ** If this is the first overflow page, then write a partial entry
6496 ** to the pointer-map. If we write nothing to this pointer-map slot,
6497 ** then the optimistic overflow chain processing in clearCell()
mistachkin48864df2013-03-21 21:20:32 +00006498 ** may misinterpret the uninitialized values and delete the
danielk19774ef24492007-05-23 09:52:41 +00006499 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00006500 */
danielk19774ef24492007-05-23 09:52:41 +00006501 if( pBt->autoVacuum && rc==SQLITE_OK ){
6502 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00006503 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00006504 if( rc ){
6505 releasePage(pOvfl);
6506 }
danielk1977afcdd022004-10-31 16:25:42 +00006507 }
6508#endif
drh3b7511c2001-05-26 13:15:44 +00006509 if( rc ){
drh9b171272004-05-08 02:03:22 +00006510 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006511 return rc;
6512 }
drhc5053fb2008-11-27 02:22:10 +00006513
6514 /* If pToRelease is not zero than pPrior points into the data area
6515 ** of pToRelease. Make sure pToRelease is still writeable. */
6516 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
6517
6518 /* If pPrior is part of the data area of pPage, then make sure pPage
6519 ** is still writeable */
6520 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
6521 || sqlite3PagerIswriteable(pPage->pDbPage) );
6522
drh3aac2dd2004-04-26 14:10:20 +00006523 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00006524 releasePage(pToRelease);
6525 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00006526 pPrior = pOvfl->aData;
6527 put4byte(pPrior, 0);
6528 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00006529 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00006530 }
drhdd793422001-06-28 01:54:48 +00006531 }
drh9b171272004-05-08 02:03:22 +00006532 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00006533 return SQLITE_OK;
6534}
6535
drh14acc042001-06-10 19:56:58 +00006536/*
6537** Remove the i-th cell from pPage. This routine effects pPage only.
6538** The cell content is not freed or deallocated. It is assumed that
6539** the cell content has been copied someplace else. This routine just
6540** removes the reference to the cell from pPage.
6541**
6542** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00006543*/
drh98add2e2009-07-20 17:11:49 +00006544static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43b18e12010-08-17 19:40:08 +00006545 u32 pc; /* Offset to cell content of cell being deleted */
drh43605152004-05-29 21:46:49 +00006546 u8 *data; /* pPage->aData */
6547 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00006548 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00006549 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00006550
drh98add2e2009-07-20 17:11:49 +00006551 if( *pRC ) return;
drh8c42ca92001-06-22 19:15:00 +00006552 assert( idx>=0 && idx<pPage->nCell );
dan0f8076d2015-05-25 18:47:26 +00006553 assert( CORRUPT_DB || sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00006554 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00006555 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00006556 data = pPage->aData;
drh3def2352011-11-11 00:27:15 +00006557 ptr = &pPage->aCellIdx[2*idx];
shane0af3f892008-11-12 04:55:34 +00006558 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00006559 hdr = pPage->hdrOffset;
6560 testcase( pc==get2byte(&data[hdr+5]) );
6561 testcase( pc+sz==pPage->pBt->usableSize );
drh5e398e42017-08-23 20:36:06 +00006562 if( pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00006563 *pRC = SQLITE_CORRUPT_BKPT;
6564 return;
shane0af3f892008-11-12 04:55:34 +00006565 }
shanedcc50b72008-11-13 18:29:50 +00006566 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00006567 if( rc ){
6568 *pRC = rc;
6569 return;
shanedcc50b72008-11-13 18:29:50 +00006570 }
drh14acc042001-06-10 19:56:58 +00006571 pPage->nCell--;
drhfdab0262014-11-20 15:30:50 +00006572 if( pPage->nCell==0 ){
6573 memset(&data[hdr+1], 0, 4);
6574 data[hdr+7] = 0;
6575 put2byte(&data[hdr+5], pPage->pBt->usableSize);
6576 pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
6577 - pPage->childPtrSize - 8;
6578 }else{
6579 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
6580 put2byte(&data[hdr+3], pPage->nCell);
6581 pPage->nFree += 2;
6582 }
drh14acc042001-06-10 19:56:58 +00006583}
6584
6585/*
6586** Insert a new cell on pPage at cell index "i". pCell points to the
6587** content of the cell.
6588**
6589** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00006590** will not fit, then make a copy of the cell content into pTemp if
6591** pTemp is not null. Regardless of pTemp, allocate a new entry
drh2cbd78b2012-02-02 19:37:18 +00006592** in pPage->apOvfl[] and make it point to the cell content (either
drh43605152004-05-29 21:46:49 +00006593** in pTemp or the original pCell) and also record its index.
6594** Allocating a new entry in pPage->aCell[] implies that
6595** pPage->nOverflow is incremented.
drhcb89f4a2016-05-21 11:23:26 +00006596**
6597** *pRC must be SQLITE_OK when this routine is called.
drh14acc042001-06-10 19:56:58 +00006598*/
drh98add2e2009-07-20 17:11:49 +00006599static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00006600 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00006601 int i, /* New cell becomes the i-th cell of the page */
6602 u8 *pCell, /* Content of the new cell */
6603 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00006604 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00006605 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
6606 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00006607){
drh383d30f2010-02-26 13:07:37 +00006608 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00006609 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00006610 u8 *data; /* The content of the whole page */
drh2c8fb922015-06-25 19:53:48 +00006611 u8 *pIns; /* The point in pPage->aCellIdx[] where no cell inserted */
danielk19774dbaa892009-06-16 16:50:22 +00006612
drhcb89f4a2016-05-21 11:23:26 +00006613 assert( *pRC==SQLITE_OK );
drh43605152004-05-29 21:46:49 +00006614 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
danf216e322014-08-14 19:53:37 +00006615 assert( MX_CELL(pPage->pBt)<=10921 );
6616 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
drh2cbd78b2012-02-02 19:37:18 +00006617 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
6618 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
drh1fee73e2007-08-29 04:00:57 +00006619 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00006620 /* The cell should normally be sized correctly. However, when moving a
6621 ** malformed cell from a leaf page to an interior page, if the cell size
6622 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
6623 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
6624 ** the term after the || in the following assert(). */
drh25ada072015-06-19 15:07:14 +00006625 assert( sz==pPage->xCellSize(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00006626 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00006627 if( pTemp ){
drhd6176c42014-10-11 17:22:55 +00006628 memcpy(pTemp, pCell, sz);
drh43605152004-05-29 21:46:49 +00006629 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00006630 }
danielk19774dbaa892009-06-16 16:50:22 +00006631 if( iChild ){
6632 put4byte(pCell, iChild);
6633 }
drh43605152004-05-29 21:46:49 +00006634 j = pPage->nOverflow++;
drha2ee5892016-12-09 16:02:00 +00006635 /* Comparison against ArraySize-1 since we hold back one extra slot
6636 ** as a contingency. In other words, never need more than 3 overflow
6637 ** slots but 4 are allocated, just to be safe. */
6638 assert( j < ArraySize(pPage->apOvfl)-1 );
drh2cbd78b2012-02-02 19:37:18 +00006639 pPage->apOvfl[j] = pCell;
6640 pPage->aiOvfl[j] = (u16)i;
drhfe647dc2015-06-23 18:24:25 +00006641
6642 /* When multiple overflows occur, they are always sequential and in
6643 ** sorted order. This invariants arise because multiple overflows can
6644 ** only occur when inserting divider cells into the parent page during
6645 ** balancing, and the dividers are adjacent and sorted.
6646 */
6647 assert( j==0 || pPage->aiOvfl[j-1]<(u16)i ); /* Overflows in sorted order */
6648 assert( j==0 || i==pPage->aiOvfl[j-1]+1 ); /* Overflows are sequential */
drh14acc042001-06-10 19:56:58 +00006649 }else{
danielk19776e465eb2007-08-21 13:11:00 +00006650 int rc = sqlite3PagerWrite(pPage->pDbPage);
6651 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00006652 *pRC = rc;
6653 return;
danielk19776e465eb2007-08-21 13:11:00 +00006654 }
6655 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00006656 data = pPage->aData;
drh2c8fb922015-06-25 19:53:48 +00006657 assert( &data[pPage->cellOffset]==pPage->aCellIdx );
drh0a45c272009-07-08 01:49:11 +00006658 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00006659 if( rc ){ *pRC = rc; return; }
drhcd8fb7c2015-06-02 14:02:18 +00006660 /* The allocateSpace() routine guarantees the following properties
6661 ** if it returns successfully */
drh2c8fb922015-06-25 19:53:48 +00006662 assert( idx >= 0 );
6663 assert( idx >= pPage->cellOffset+2*pPage->nCell+2 || CORRUPT_DB );
drhfcd71b62011-04-05 22:08:24 +00006664 assert( idx+sz <= (int)pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00006665 pPage->nFree -= (u16)(2 + sz);
drhd6176c42014-10-11 17:22:55 +00006666 memcpy(&data[idx], pCell, sz);
danielk19774dbaa892009-06-16 16:50:22 +00006667 if( iChild ){
6668 put4byte(&data[idx], iChild);
6669 }
drh2c8fb922015-06-25 19:53:48 +00006670 pIns = pPage->aCellIdx + i*2;
6671 memmove(pIns+2, pIns, 2*(pPage->nCell - i));
6672 put2byte(pIns, idx);
6673 pPage->nCell++;
6674 /* increment the cell count */
6675 if( (++data[pPage->hdrOffset+4])==0 ) data[pPage->hdrOffset+3]++;
6676 assert( get2byte(&data[pPage->hdrOffset+3])==pPage->nCell );
danielk1977a19df672004-11-03 11:37:07 +00006677#ifndef SQLITE_OMIT_AUTOVACUUM
6678 if( pPage->pBt->autoVacuum ){
6679 /* The cell may contain a pointer to an overflow page. If so, write
6680 ** the entry for the overflow page into the pointer map.
6681 */
drh0f1bf4c2019-01-13 20:17:21 +00006682 ptrmapPutOvflPtr(pPage, pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00006683 }
6684#endif
drh14acc042001-06-10 19:56:58 +00006685 }
6686}
6687
6688/*
drh1ffd2472015-06-23 02:37:30 +00006689** A CellArray object contains a cache of pointers and sizes for a
drhc0d269e2016-08-03 14:51:16 +00006690** consecutive sequence of cells that might be held on multiple pages.
drhfa1a98a2004-05-14 19:08:17 +00006691*/
drh1ffd2472015-06-23 02:37:30 +00006692typedef struct CellArray CellArray;
6693struct CellArray {
6694 int nCell; /* Number of cells in apCell[] */
6695 MemPage *pRef; /* Reference page */
6696 u8 **apCell; /* All cells begin balanced */
6697 u16 *szCell; /* Local size of all cells in apCell[] */
6698};
drhfa1a98a2004-05-14 19:08:17 +00006699
drh1ffd2472015-06-23 02:37:30 +00006700/*
6701** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6702** computed.
6703*/
6704static void populateCellCache(CellArray *p, int idx, int N){
6705 assert( idx>=0 && idx+N<=p->nCell );
6706 while( N>0 ){
6707 assert( p->apCell[idx]!=0 );
6708 if( p->szCell[idx]==0 ){
6709 p->szCell[idx] = p->pRef->xCellSize(p->pRef, p->apCell[idx]);
6710 }else{
6711 assert( CORRUPT_DB ||
6712 p->szCell[idx]==p->pRef->xCellSize(p->pRef, p->apCell[idx]) );
6713 }
6714 idx++;
6715 N--;
drhfa1a98a2004-05-14 19:08:17 +00006716 }
drh1ffd2472015-06-23 02:37:30 +00006717}
6718
6719/*
6720** Return the size of the Nth element of the cell array
6721*/
6722static SQLITE_NOINLINE u16 computeCellSize(CellArray *p, int N){
6723 assert( N>=0 && N<p->nCell );
6724 assert( p->szCell[N]==0 );
6725 p->szCell[N] = p->pRef->xCellSize(p->pRef, p->apCell[N]);
6726 return p->szCell[N];
6727}
6728static u16 cachedCellSize(CellArray *p, int N){
6729 assert( N>=0 && N<p->nCell );
6730 if( p->szCell[N] ) return p->szCell[N];
6731 return computeCellSize(p, N);
6732}
6733
6734/*
dan8e9ba0c2014-10-14 17:27:04 +00006735** Array apCell[] contains pointers to nCell b-tree page cells. The
6736** szCell[] array contains the size in bytes of each cell. This function
6737** replaces the current contents of page pPg with the contents of the cell
6738** array.
6739**
6740** Some of the cells in apCell[] may currently be stored in pPg. This
6741** function works around problems caused by this by making a copy of any
6742** such cells before overwriting the page data.
6743**
6744** The MemPage.nFree field is invalidated by this function. It is the
6745** responsibility of the caller to set it correctly.
drhfa1a98a2004-05-14 19:08:17 +00006746*/
drh658873b2015-06-22 20:02:04 +00006747static int rebuildPage(
dan33ea4862014-10-09 19:35:37 +00006748 MemPage *pPg, /* Edit this page */
dan33ea4862014-10-09 19:35:37 +00006749 int nCell, /* Final number of cells on page */
dan09c68402014-10-11 20:00:24 +00006750 u8 **apCell, /* Array of cells */
6751 u16 *szCell /* Array of cell sizes */
dan33ea4862014-10-09 19:35:37 +00006752){
6753 const int hdr = pPg->hdrOffset; /* Offset of header on pPg */
6754 u8 * const aData = pPg->aData; /* Pointer to data for pPg */
6755 const int usableSize = pPg->pBt->usableSize;
6756 u8 * const pEnd = &aData[usableSize];
6757 int i;
6758 u8 *pCellptr = pPg->aCellIdx;
6759 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6760 u8 *pData;
6761
6762 i = get2byte(&aData[hdr+5]);
6763 memcpy(&pTmp[i], &aData[i], usableSize - i);
dan33ea4862014-10-09 19:35:37 +00006764
dan8e9ba0c2014-10-14 17:27:04 +00006765 pData = pEnd;
dan33ea4862014-10-09 19:35:37 +00006766 for(i=0; i<nCell; i++){
6767 u8 *pCell = apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00006768 if( SQLITE_WITHIN(pCell,aData,pEnd) ){
drhd7a5e492018-12-14 16:20:54 +00006769 if( ((uptr)(pCell+szCell[i]))>(uptr)pEnd ) return SQLITE_CORRUPT_BKPT;
dan33ea4862014-10-09 19:35:37 +00006770 pCell = &pTmp[pCell - aData];
6771 }
6772 pData -= szCell[i];
dan33ea4862014-10-09 19:35:37 +00006773 put2byte(pCellptr, (pData - aData));
6774 pCellptr += 2;
drh658873b2015-06-22 20:02:04 +00006775 if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
6776 memcpy(pData, pCell, szCell[i]);
drh25ada072015-06-19 15:07:14 +00006777 assert( szCell[i]==pPg->xCellSize(pPg, pCell) || CORRUPT_DB );
drhea82b372015-06-23 21:35:28 +00006778 testcase( szCell[i]!=pPg->xCellSize(pPg,pCell) );
dan33ea4862014-10-09 19:35:37 +00006779 }
6780
dand7b545b2014-10-13 18:03:27 +00006781 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
dan33ea4862014-10-09 19:35:37 +00006782 pPg->nCell = nCell;
6783 pPg->nOverflow = 0;
6784
6785 put2byte(&aData[hdr+1], 0);
6786 put2byte(&aData[hdr+3], pPg->nCell);
6787 put2byte(&aData[hdr+5], pData - aData);
6788 aData[hdr+7] = 0x00;
drh658873b2015-06-22 20:02:04 +00006789 return SQLITE_OK;
dan33ea4862014-10-09 19:35:37 +00006790}
6791
dan8e9ba0c2014-10-14 17:27:04 +00006792/*
6793** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6794** contains the size in bytes of each such cell. This function attempts to
6795** add the cells stored in the array to page pPg. If it cannot (because
6796** the page needs to be defragmented before the cells will fit), non-zero
6797** is returned. Otherwise, if the cells are added successfully, zero is
6798** returned.
6799**
6800** Argument pCellptr points to the first entry in the cell-pointer array
6801** (part of page pPg) to populate. After cell apCell[0] is written to the
6802** page body, a 16-bit offset is written to pCellptr. And so on, for each
6803** cell in the array. It is the responsibility of the caller to ensure
6804** that it is safe to overwrite this part of the cell-pointer array.
6805**
6806** When this function is called, *ppData points to the start of the
6807** content area on page pPg. If the size of the content area is extended,
6808** *ppData is updated to point to the new start of the content area
6809** before returning.
6810**
6811** Finally, argument pBegin points to the byte immediately following the
6812** end of the space required by this page for the cell-pointer area (for
6813** all cells - not just those inserted by the current call). If the content
6814** area must be extended to before this point in order to accomodate all
6815** cells in apCell[], then the cells do not fit and non-zero is returned.
6816*/
dand7b545b2014-10-13 18:03:27 +00006817static int pageInsertArray(
dan8e9ba0c2014-10-14 17:27:04 +00006818 MemPage *pPg, /* Page to add cells to */
6819 u8 *pBegin, /* End of cell-pointer array */
6820 u8 **ppData, /* IN/OUT: Page content -area pointer */
6821 u8 *pCellptr, /* Pointer to cell-pointer area */
drhf7838932015-06-23 15:36:34 +00006822 int iFirst, /* Index of first cell to add */
dan8e9ba0c2014-10-14 17:27:04 +00006823 int nCell, /* Number of cells to add to pPg */
drhf7838932015-06-23 15:36:34 +00006824 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006825){
6826 int i;
6827 u8 *aData = pPg->aData;
6828 u8 *pData = *ppData;
drhf7838932015-06-23 15:36:34 +00006829 int iEnd = iFirst + nCell;
dan23eba452014-10-24 18:43:57 +00006830 assert( CORRUPT_DB || pPg->hdrOffset==0 ); /* Never called on page 1 */
drhf7838932015-06-23 15:36:34 +00006831 for(i=iFirst; i<iEnd; i++){
6832 int sz, rc;
dand7b545b2014-10-13 18:03:27 +00006833 u8 *pSlot;
drhf7838932015-06-23 15:36:34 +00006834 sz = cachedCellSize(pCArray, i);
drhb7580e82015-06-25 18:36:13 +00006835 if( (aData[1]==0 && aData[2]==0) || (pSlot = pageFindSlot(pPg,sz,&rc))==0 ){
drhcca66982016-04-05 13:19:19 +00006836 if( (pData - pBegin)<sz ) return 1;
dand7b545b2014-10-13 18:03:27 +00006837 pData -= sz;
dand7b545b2014-10-13 18:03:27 +00006838 pSlot = pData;
6839 }
drh48310f82015-10-10 16:41:28 +00006840 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
6841 ** database. But they might for a corrupt database. Hence use memmove()
6842 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
6843 assert( (pSlot+sz)<=pCArray->apCell[i]
6844 || pSlot>=(pCArray->apCell[i]+sz)
6845 || CORRUPT_DB );
6846 memmove(pSlot, pCArray->apCell[i], sz);
dand7b545b2014-10-13 18:03:27 +00006847 put2byte(pCellptr, (pSlot - aData));
6848 pCellptr += 2;
6849 }
6850 *ppData = pData;
6851 return 0;
6852}
6853
dan8e9ba0c2014-10-14 17:27:04 +00006854/*
6855** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
6856** contains the size in bytes of each such cell. This function adds the
6857** space associated with each cell in the array that is currently stored
6858** within the body of pPg to the pPg free-list. The cell-pointers and other
6859** fields of the page are not updated.
6860**
6861** This function returns the total number of cells added to the free-list.
6862*/
dand7b545b2014-10-13 18:03:27 +00006863static int pageFreeArray(
6864 MemPage *pPg, /* Page to edit */
drhf7838932015-06-23 15:36:34 +00006865 int iFirst, /* First cell to delete */
dand7b545b2014-10-13 18:03:27 +00006866 int nCell, /* Cells to delete */
drhf7838932015-06-23 15:36:34 +00006867 CellArray *pCArray /* Array of cells */
dand7b545b2014-10-13 18:03:27 +00006868){
6869 u8 * const aData = pPg->aData;
6870 u8 * const pEnd = &aData[pPg->pBt->usableSize];
dan89ca0b32014-10-25 20:36:28 +00006871 u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
dand7b545b2014-10-13 18:03:27 +00006872 int nRet = 0;
6873 int i;
drhf7838932015-06-23 15:36:34 +00006874 int iEnd = iFirst + nCell;
dand7b545b2014-10-13 18:03:27 +00006875 u8 *pFree = 0;
6876 int szFree = 0;
6877
drhf7838932015-06-23 15:36:34 +00006878 for(i=iFirst; i<iEnd; i++){
6879 u8 *pCell = pCArray->apCell[i];
drh8b0ba7b2015-12-16 13:07:35 +00006880 if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
drhf7838932015-06-23 15:36:34 +00006881 int sz;
6882 /* No need to use cachedCellSize() here. The sizes of all cells that
6883 ** are to be freed have already been computing while deciding which
6884 ** cells need freeing */
6885 sz = pCArray->szCell[i]; assert( sz>0 );
dand7b545b2014-10-13 18:03:27 +00006886 if( pFree!=(pCell + sz) ){
drhfefa0942014-11-05 21:21:08 +00006887 if( pFree ){
6888 assert( pFree>aData && (pFree - aData)<65536 );
6889 freeSpace(pPg, (u16)(pFree - aData), szFree);
6890 }
dand7b545b2014-10-13 18:03:27 +00006891 pFree = pCell;
6892 szFree = sz;
dan89ca0b32014-10-25 20:36:28 +00006893 if( pFree+sz>pEnd ) return 0;
dand7b545b2014-10-13 18:03:27 +00006894 }else{
6895 pFree = pCell;
6896 szFree += sz;
6897 }
6898 nRet++;
6899 }
6900 }
drhfefa0942014-11-05 21:21:08 +00006901 if( pFree ){
6902 assert( pFree>aData && (pFree - aData)<65536 );
6903 freeSpace(pPg, (u16)(pFree - aData), szFree);
6904 }
dand7b545b2014-10-13 18:03:27 +00006905 return nRet;
6906}
6907
dand7b545b2014-10-13 18:03:27 +00006908/*
drh5ab63772014-11-27 03:46:04 +00006909** apCell[] and szCell[] contains pointers to and sizes of all cells in the
6910** pages being balanced. The current page, pPg, has pPg->nCell cells starting
6911** with apCell[iOld]. After balancing, this page should hold nNew cells
6912** starting at apCell[iNew].
6913**
6914** This routine makes the necessary adjustments to pPg so that it contains
6915** the correct cells after being balanced.
6916**
dand7b545b2014-10-13 18:03:27 +00006917** The pPg->nFree field is invalid when this function returns. It is the
6918** responsibility of the caller to set it correctly.
6919*/
drh658873b2015-06-22 20:02:04 +00006920static int editPage(
dan09c68402014-10-11 20:00:24 +00006921 MemPage *pPg, /* Edit this page */
6922 int iOld, /* Index of first cell currently on page */
6923 int iNew, /* Index of new first cell on page */
6924 int nNew, /* Final number of cells on page */
drh1ffd2472015-06-23 02:37:30 +00006925 CellArray *pCArray /* Array of cells and sizes */
dan09c68402014-10-11 20:00:24 +00006926){
dand7b545b2014-10-13 18:03:27 +00006927 u8 * const aData = pPg->aData;
6928 const int hdr = pPg->hdrOffset;
6929 u8 *pBegin = &pPg->aCellIdx[nNew * 2];
6930 int nCell = pPg->nCell; /* Cells stored on pPg */
6931 u8 *pData;
6932 u8 *pCellptr;
6933 int i;
6934 int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
6935 int iNewEnd = iNew + nNew;
dan09c68402014-10-11 20:00:24 +00006936
6937#ifdef SQLITE_DEBUG
dand7b545b2014-10-13 18:03:27 +00006938 u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
6939 memcpy(pTmp, aData, pPg->pBt->usableSize);
dan09c68402014-10-11 20:00:24 +00006940#endif
6941
dand7b545b2014-10-13 18:03:27 +00006942 /* Remove cells from the start and end of the page */
6943 if( iOld<iNew ){
drhf7838932015-06-23 15:36:34 +00006944 int nShift = pageFreeArray(pPg, iOld, iNew-iOld, pCArray);
dand7b545b2014-10-13 18:03:27 +00006945 memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
6946 nCell -= nShift;
6947 }
6948 if( iNewEnd < iOldEnd ){
drhf7838932015-06-23 15:36:34 +00006949 nCell -= pageFreeArray(pPg, iNewEnd, iOldEnd - iNewEnd, pCArray);
dand7b545b2014-10-13 18:03:27 +00006950 }
dan09c68402014-10-11 20:00:24 +00006951
drh5ab63772014-11-27 03:46:04 +00006952 pData = &aData[get2byteNotZero(&aData[hdr+5])];
dand7b545b2014-10-13 18:03:27 +00006953 if( pData<pBegin ) goto editpage_fail;
6954
6955 /* Add cells to the start of the page */
6956 if( iNew<iOld ){
drh5ab63772014-11-27 03:46:04 +00006957 int nAdd = MIN(nNew,iOld-iNew);
6958 assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
dand7b545b2014-10-13 18:03:27 +00006959 pCellptr = pPg->aCellIdx;
6960 memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
6961 if( pageInsertArray(
6962 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006963 iNew, nAdd, pCArray
dand7b545b2014-10-13 18:03:27 +00006964 ) ) goto editpage_fail;
6965 nCell += nAdd;
6966 }
6967
6968 /* Add any overflow cells */
6969 for(i=0; i<pPg->nOverflow; i++){
6970 int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
6971 if( iCell>=0 && iCell<nNew ){
drhfefa0942014-11-05 21:21:08 +00006972 pCellptr = &pPg->aCellIdx[iCell * 2];
dand7b545b2014-10-13 18:03:27 +00006973 memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
6974 nCell++;
6975 if( pageInsertArray(
6976 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006977 iCell+iNew, 1, pCArray
dand7b545b2014-10-13 18:03:27 +00006978 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006979 }
dand7b545b2014-10-13 18:03:27 +00006980 }
dan09c68402014-10-11 20:00:24 +00006981
dand7b545b2014-10-13 18:03:27 +00006982 /* Append cells to the end of the page */
6983 pCellptr = &pPg->aCellIdx[nCell*2];
6984 if( pageInsertArray(
6985 pPg, pBegin, &pData, pCellptr,
drhf7838932015-06-23 15:36:34 +00006986 iNew+nCell, nNew-nCell, pCArray
dand7b545b2014-10-13 18:03:27 +00006987 ) ) goto editpage_fail;
dan09c68402014-10-11 20:00:24 +00006988
dand7b545b2014-10-13 18:03:27 +00006989 pPg->nCell = nNew;
6990 pPg->nOverflow = 0;
dan09c68402014-10-11 20:00:24 +00006991
dand7b545b2014-10-13 18:03:27 +00006992 put2byte(&aData[hdr+3], pPg->nCell);
6993 put2byte(&aData[hdr+5], pData - aData);
dan09c68402014-10-11 20:00:24 +00006994
6995#ifdef SQLITE_DEBUG
dan23eba452014-10-24 18:43:57 +00006996 for(i=0; i<nNew && !CORRUPT_DB; i++){
drh1ffd2472015-06-23 02:37:30 +00006997 u8 *pCell = pCArray->apCell[i+iNew];
drh329428e2015-06-30 13:28:18 +00006998 int iOff = get2byteAligned(&pPg->aCellIdx[i*2]);
drh1c715f62016-04-05 13:35:43 +00006999 if( SQLITE_WITHIN(pCell, aData, &aData[pPg->pBt->usableSize]) ){
dand7b545b2014-10-13 18:03:27 +00007000 pCell = &pTmp[pCell - aData];
dan09c68402014-10-11 20:00:24 +00007001 }
drh1ffd2472015-06-23 02:37:30 +00007002 assert( 0==memcmp(pCell, &aData[iOff],
7003 pCArray->pRef->xCellSize(pCArray->pRef, pCArray->apCell[i+iNew])) );
dand7b545b2014-10-13 18:03:27 +00007004 }
dan09c68402014-10-11 20:00:24 +00007005#endif
7006
drh658873b2015-06-22 20:02:04 +00007007 return SQLITE_OK;
dan09c68402014-10-11 20:00:24 +00007008 editpage_fail:
dan09c68402014-10-11 20:00:24 +00007009 /* Unable to edit this page. Rebuild it from scratch instead. */
drh1ffd2472015-06-23 02:37:30 +00007010 populateCellCache(pCArray, iNew, nNew);
7011 return rebuildPage(pPg, nNew, &pCArray->apCell[iNew], &pCArray->szCell[iNew]);
drhfa1a98a2004-05-14 19:08:17 +00007012}
7013
drh14acc042001-06-10 19:56:58 +00007014/*
drhc3b70572003-01-04 19:44:07 +00007015** The following parameters determine how many adjacent pages get involved
7016** in a balancing operation. NN is the number of neighbors on either side
7017** of the page that participate in the balancing operation. NB is the
7018** total number of pages that participate, including the target page and
7019** NN neighbors on either side.
7020**
7021** The minimum value of NN is 1 (of course). Increasing NN above 1
7022** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
7023** in exchange for a larger degradation in INSERT and UPDATE performance.
7024** The value of NN appears to give the best results overall.
7025*/
7026#define NN 1 /* Number of neighbors on either side of pPage */
7027#define NB (NN*2+1) /* Total pages involved in the balance */
7028
danielk1977ac245ec2005-01-14 13:50:11 +00007029
drh615ae552005-01-16 23:21:00 +00007030#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00007031/*
7032** This version of balance() handles the common special case where
7033** a new entry is being inserted on the extreme right-end of the
7034** tree, in other words, when the new entry will become the largest
7035** entry in the tree.
7036**
drhc314dc72009-07-21 11:52:34 +00007037** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00007038** a new page to the right-hand side and put the one new entry in
7039** that page. This leaves the right side of the tree somewhat
7040** unbalanced. But odds are that we will be inserting new entries
7041** at the end soon afterwards so the nearly empty page will quickly
7042** fill up. On average.
7043**
7044** pPage is the leaf page which is the right-most page in the tree.
7045** pParent is its parent. pPage must have a single overflow entry
7046** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00007047**
7048** The pSpace buffer is used to store a temporary copy of the divider
7049** cell that will be inserted into pParent. Such a cell consists of a 4
7050** byte page number followed by a variable length integer. In other
7051** words, at most 13 bytes. Hence the pSpace buffer must be at
7052** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00007053*/
danielk1977a50d9aa2009-06-08 14:49:45 +00007054static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
7055 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00007056 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00007057 int rc; /* Return Code */
7058 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00007059
drh1fee73e2007-08-29 04:00:57 +00007060 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00007061 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00007062 assert( pPage->nOverflow==1 );
7063
drh6301c432018-12-13 21:52:18 +00007064 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; /* dbfuzz001.test */
drhd677b3d2007-08-20 22:48:41 +00007065
danielk1977a50d9aa2009-06-08 14:49:45 +00007066 /* Allocate a new page. This page will become the right-sibling of
7067 ** pPage. Make the parent page writable, so that the new divider cell
7068 ** may be inserted. If both these operations are successful, proceed.
7069 */
drh4f0c5872007-03-26 22:05:01 +00007070 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007071
danielk1977eaa06f62008-09-18 17:34:44 +00007072 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00007073
7074 u8 *pOut = &pSpace[4];
drh2cbd78b2012-02-02 19:37:18 +00007075 u8 *pCell = pPage->apOvfl[0];
drh25ada072015-06-19 15:07:14 +00007076 u16 szCell = pPage->xCellSize(pPage, pCell);
danielk19776f235cc2009-06-04 14:46:08 +00007077 u8 *pStop;
7078
drhc5053fb2008-11-27 02:22:10 +00007079 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00007080 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
7081 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
drh658873b2015-06-22 20:02:04 +00007082 rc = rebuildPage(pNew, 1, &pCell, &szCell);
drhea82b372015-06-23 21:35:28 +00007083 if( NEVER(rc) ) return rc;
dan8e9ba0c2014-10-14 17:27:04 +00007084 pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;
danielk19774dbaa892009-06-16 16:50:22 +00007085
7086 /* If this is an auto-vacuum database, update the pointer map
7087 ** with entries for the new page, and any pointer from the
7088 ** cell on the page to an overflow page. If either of these
7089 ** operations fails, the return code is set, but the contents
7090 ** of the parent page are still manipulated by thh code below.
7091 ** That is Ok, at this point the parent page is guaranteed to
7092 ** be marked as dirty. Returning an error code will cause a
7093 ** rollback, undoing any changes made to the parent page.
7094 */
7095 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007096 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
7097 if( szCell>pNew->minLocal ){
drh0f1bf4c2019-01-13 20:17:21 +00007098 ptrmapPutOvflPtr(pNew, pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007099 }
7100 }
danielk1977eaa06f62008-09-18 17:34:44 +00007101
danielk19776f235cc2009-06-04 14:46:08 +00007102 /* Create a divider cell to insert into pParent. The divider cell
7103 ** consists of a 4-byte page number (the page number of pPage) and
7104 ** a variable length key value (which must be the same value as the
7105 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00007106 **
danielk19776f235cc2009-06-04 14:46:08 +00007107 ** To find the largest key value on pPage, first find the right-most
7108 ** cell on pPage. The first two fields of this cell are the
7109 ** record-length (a variable length integer at most 32-bits in size)
7110 ** and the key value (a variable length integer, may have any value).
7111 ** The first of the while(...) loops below skips over the record-length
7112 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00007113 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00007114 */
danielk1977eaa06f62008-09-18 17:34:44 +00007115 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00007116 pStop = &pCell[9];
7117 while( (*(pCell++)&0x80) && pCell<pStop );
7118 pStop = &pCell[9];
7119 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
7120
danielk19774dbaa892009-06-16 16:50:22 +00007121 /* Insert the new divider cell into pParent. */
drhcb89f4a2016-05-21 11:23:26 +00007122 if( rc==SQLITE_OK ){
7123 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
7124 0, pPage->pgno, &rc);
7125 }
danielk19776f235cc2009-06-04 14:46:08 +00007126
7127 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00007128 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
7129
danielk1977e08a3c42008-09-18 18:17:03 +00007130 /* Release the reference to the new page. */
7131 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00007132 }
7133
danielk1977eaa06f62008-09-18 17:34:44 +00007134 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00007135}
drh615ae552005-01-16 23:21:00 +00007136#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00007137
danielk19774dbaa892009-06-16 16:50:22 +00007138#if 0
drhc3b70572003-01-04 19:44:07 +00007139/*
danielk19774dbaa892009-06-16 16:50:22 +00007140** This function does not contribute anything to the operation of SQLite.
7141** it is sometimes activated temporarily while debugging code responsible
7142** for setting pointer-map entries.
7143*/
7144static int ptrmapCheckPages(MemPage **apPage, int nPage){
7145 int i, j;
7146 for(i=0; i<nPage; i++){
7147 Pgno n;
7148 u8 e;
7149 MemPage *pPage = apPage[i];
7150 BtShared *pBt = pPage->pBt;
7151 assert( pPage->isInit );
7152
7153 for(j=0; j<pPage->nCell; j++){
7154 CellInfo info;
7155 u8 *z;
7156
7157 z = findCell(pPage, j);
drh5fa60512015-06-19 17:19:34 +00007158 pPage->xParseCell(pPage, z, &info);
drh45ac1c72015-12-18 03:59:16 +00007159 if( info.nLocal<info.nPayload ){
7160 Pgno ovfl = get4byte(&z[info.nSize-4]);
danielk19774dbaa892009-06-16 16:50:22 +00007161 ptrmapGet(pBt, ovfl, &e, &n);
7162 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
7163 }
7164 if( !pPage->leaf ){
7165 Pgno child = get4byte(z);
7166 ptrmapGet(pBt, child, &e, &n);
7167 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7168 }
7169 }
7170 if( !pPage->leaf ){
7171 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
7172 ptrmapGet(pBt, child, &e, &n);
7173 assert( n==pPage->pgno && e==PTRMAP_BTREE );
7174 }
7175 }
7176 return 1;
7177}
7178#endif
7179
danielk1977cd581a72009-06-23 15:43:39 +00007180/*
7181** This function is used to copy the contents of the b-tree node stored
7182** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7183** the pointer-map entries for each child page are updated so that the
7184** parent page stored in the pointer map is page pTo. If pFrom contained
7185** any cells with overflow page pointers, then the corresponding pointer
7186** map entries are also updated so that the parent page is page pTo.
7187**
7188** If pFrom is currently carrying any overflow cells (entries in the
drh2cbd78b2012-02-02 19:37:18 +00007189** MemPage.apOvfl[] array), they are not copied to pTo.
danielk1977cd581a72009-06-23 15:43:39 +00007190**
danielk197730548662009-07-09 05:07:37 +00007191** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00007192**
7193** The performance of this function is not critical. It is only used by
7194** the balance_shallower() and balance_deeper() procedures, neither of
7195** which are called often under normal circumstances.
7196*/
drhc314dc72009-07-21 11:52:34 +00007197static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
7198 if( (*pRC)==SQLITE_OK ){
7199 BtShared * const pBt = pFrom->pBt;
7200 u8 * const aFrom = pFrom->aData;
7201 u8 * const aTo = pTo->aData;
7202 int const iFromHdr = pFrom->hdrOffset;
7203 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00007204 int rc;
drhc314dc72009-07-21 11:52:34 +00007205 int iData;
7206
7207
7208 assert( pFrom->isInit );
7209 assert( pFrom->nFree>=iToHdr );
drhfcd71b62011-04-05 22:08:24 +00007210 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
drhc314dc72009-07-21 11:52:34 +00007211
7212 /* Copy the b-tree node content from page pFrom to page pTo. */
7213 iData = get2byte(&aFrom[iFromHdr+5]);
7214 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
7215 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
7216
7217 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00007218 ** match the new data. The initialization of pTo can actually fail under
7219 ** fairly obscure circumstances, even though it is a copy of initialized
7220 ** page pFrom.
7221 */
drhc314dc72009-07-21 11:52:34 +00007222 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00007223 rc = btreeInitPage(pTo);
7224 if( rc!=SQLITE_OK ){
7225 *pRC = rc;
7226 return;
7227 }
drhc314dc72009-07-21 11:52:34 +00007228
7229 /* If this is an auto-vacuum database, update the pointer-map entries
7230 ** for any b-tree or overflow pages that pTo now contains the pointers to.
7231 */
7232 if( ISAUTOVACUUM ){
7233 *pRC = setChildPtrmaps(pTo);
7234 }
danielk1977cd581a72009-06-23 15:43:39 +00007235 }
danielk1977cd581a72009-06-23 15:43:39 +00007236}
7237
7238/*
danielk19774dbaa892009-06-16 16:50:22 +00007239** This routine redistributes cells on the iParentIdx'th child of pParent
7240** (hereafter "the page") and up to 2 siblings so that all pages have about the
7241** same amount of free space. Usually a single sibling on either side of the
7242** page are used in the balancing, though both siblings might come from one
7243** side if the page is the first or last child of its parent. If the page
7244** has fewer than 2 siblings (something which can only happen if the page
7245** is a root page or a child of a root page) then all available siblings
7246** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00007247**
danielk19774dbaa892009-06-16 16:50:22 +00007248** The number of siblings of the page might be increased or decreased by
7249** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00007250**
danielk19774dbaa892009-06-16 16:50:22 +00007251** Note that when this routine is called, some of the cells on the page
7252** might not actually be stored in MemPage.aData[]. This can happen
7253** if the page is overfull. This routine ensures that all cells allocated
7254** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00007255**
danielk19774dbaa892009-06-16 16:50:22 +00007256** In the course of balancing the page and its siblings, cells may be
7257** inserted into or removed from the parent page (pParent). Doing so
7258** may cause the parent page to become overfull or underfull. If this
7259** happens, it is the responsibility of the caller to invoke the correct
7260** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00007261**
drh5e00f6c2001-09-13 13:46:56 +00007262** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00007263** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00007264** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00007265**
7266** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00007267** buffer big enough to hold one page. If while inserting cells into the parent
7268** page (pParent) the parent page becomes overfull, this buffer is
7269** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00007270** a maximum of four divider cells into the parent page, and the maximum
7271** size of a cell stored within an internal node is always less than 1/4
7272** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7273** enough for all overflow cells.
7274**
7275** If aOvflSpace is set to a null pointer, this function returns
7276** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00007277*/
danielk19774dbaa892009-06-16 16:50:22 +00007278static int balance_nonroot(
7279 MemPage *pParent, /* Parent page of siblings being balanced */
7280 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00007281 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
dan428c2182012-08-06 18:50:11 +00007282 int isRoot, /* True if pParent is a root-page */
7283 int bBulk /* True if this call is part of a bulk load */
danielk19774dbaa892009-06-16 16:50:22 +00007284){
drh16a9b832007-05-05 18:39:25 +00007285 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00007286 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00007287 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00007288 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00007289 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00007290 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00007291 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00007292 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00007293 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00007294 int usableSpace; /* Bytes in pPage beyond the header */
7295 int pageFlags; /* Value of pPage->aData[0] */
drhe5ae5732008-06-15 02:51:47 +00007296 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00007297 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00007298 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00007299 MemPage *apOld[NB]; /* pPage and up to two siblings */
drha2fce642004-06-05 00:01:44 +00007300 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00007301 u8 *pRight; /* Location in parent of right-sibling pointer */
7302 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drh1ffd2472015-06-23 02:37:30 +00007303 int cntNew[NB+2]; /* Index in b.paCell[] of cell after i-th page */
7304 int cntOld[NB+2]; /* Old index in b.apCell[] */
drh2a0df922014-10-30 23:14:56 +00007305 int szNew[NB+2]; /* Combined size of cells placed on i-th page */
danielk19774dbaa892009-06-16 16:50:22 +00007306 u8 *aSpace1; /* Space for copies of dividers cells */
7307 Pgno pgno; /* Temp var to store a page number in */
dane6593d82014-10-24 16:40:49 +00007308 u8 abDone[NB+2]; /* True after i'th new page is populated */
7309 Pgno aPgno[NB+2]; /* Page numbers of new pages before shuffling */
drh00fe08a2014-10-31 00:05:23 +00007310 Pgno aPgOrder[NB+2]; /* Copy of aPgno[] used for sorting pages */
dane6593d82014-10-24 16:40:49 +00007311 u16 aPgFlags[NB+2]; /* flags field of new pages before shuffling */
drh1ffd2472015-06-23 02:37:30 +00007312 CellArray b; /* Parsed information on cells being balanced */
drh8b2f49b2001-06-08 00:21:52 +00007313
dan33ea4862014-10-09 19:35:37 +00007314 memset(abDone, 0, sizeof(abDone));
drh1ffd2472015-06-23 02:37:30 +00007315 b.nCell = 0;
7316 b.apCell = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00007317 pBt = pParent->pBt;
7318 assert( sqlite3_mutex_held(pBt->mutex) );
7319 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00007320
danielk19774dbaa892009-06-16 16:50:22 +00007321 /* At this point pParent may have at most one overflow cell. And if
7322 ** this overflow cell is present, it must be the cell with
7323 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00007324 ** is called (indirectly) from sqlite3BtreeDelete().
7325 */
danielk19774dbaa892009-06-16 16:50:22 +00007326 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
drh2cbd78b2012-02-02 19:37:18 +00007327 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
danielk19774dbaa892009-06-16 16:50:22 +00007328
danielk197711a8a862009-06-17 11:49:52 +00007329 if( !aOvflSpace ){
mistachkinfad30392016-02-13 23:43:46 +00007330 return SQLITE_NOMEM_BKPT;
danielk197711a8a862009-06-17 11:49:52 +00007331 }
7332
danielk1977a50d9aa2009-06-08 14:49:45 +00007333 /* Find the sibling pages to balance. Also locate the cells in pParent
7334 ** that divide the siblings. An attempt is made to find NN siblings on
7335 ** either side of pPage. More siblings are taken from one side, however,
7336 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00007337 ** has NB or fewer children then all children of pParent are taken.
7338 **
7339 ** This loop also drops the divider cells from the parent page. This
7340 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00007341 ** overflow cells in the parent page, since if any existed they will
7342 ** have already been removed.
7343 */
danielk19774dbaa892009-06-16 16:50:22 +00007344 i = pParent->nOverflow + pParent->nCell;
7345 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00007346 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00007347 }else{
dan7d6885a2012-08-08 14:04:56 +00007348 assert( bBulk==0 || bBulk==1 );
danielk19774dbaa892009-06-16 16:50:22 +00007349 if( iParentIdx==0 ){
7350 nxDiv = 0;
7351 }else if( iParentIdx==i ){
dan7d6885a2012-08-08 14:04:56 +00007352 nxDiv = i-2+bBulk;
drh14acc042001-06-10 19:56:58 +00007353 }else{
danielk19774dbaa892009-06-16 16:50:22 +00007354 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00007355 }
dan7d6885a2012-08-08 14:04:56 +00007356 i = 2-bBulk;
danielk19774dbaa892009-06-16 16:50:22 +00007357 }
dan7d6885a2012-08-08 14:04:56 +00007358 nOld = i+1;
danielk19774dbaa892009-06-16 16:50:22 +00007359 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
7360 pRight = &pParent->aData[pParent->hdrOffset+8];
7361 }else{
7362 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
7363 }
7364 pgno = get4byte(pRight);
7365 while( 1 ){
drh28f58dd2015-06-27 19:45:03 +00007366 rc = getAndInitPage(pBt, pgno, &apOld[i], 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00007367 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00007368 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00007369 goto balance_cleanup;
7370 }
danielk1977634f2982005-03-28 08:44:07 +00007371 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00007372 if( (i--)==0 ) break;
7373
drh9cc5b4e2016-12-26 01:41:33 +00007374 if( pParent->nOverflow && i+nxDiv==pParent->aiOvfl[0] ){
drh2cbd78b2012-02-02 19:37:18 +00007375 apDiv[i] = pParent->apOvfl[0];
danielk19774dbaa892009-06-16 16:50:22 +00007376 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007377 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007378 pParent->nOverflow = 0;
7379 }else{
7380 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
7381 pgno = get4byte(apDiv[i]);
drh25ada072015-06-19 15:07:14 +00007382 szNew[i] = pParent->xCellSize(pParent, apDiv[i]);
danielk19774dbaa892009-06-16 16:50:22 +00007383
7384 /* Drop the cell from the parent page. apDiv[i] still points to
7385 ** the cell within the parent, even though it has been dropped.
7386 ** This is safe because dropping a cell only overwrites the first
7387 ** four bytes of it, and this function does not need the first
7388 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00007389 ** later on.
7390 **
drh8a575d92011-10-12 17:00:28 +00007391 ** But not if we are in secure-delete mode. In secure-delete mode,
danielk197711a8a862009-06-17 11:49:52 +00007392 ** the dropCell() routine will overwrite the entire cell with zeroes.
7393 ** In this case, temporarily copy the cell into the aOvflSpace[]
7394 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7395 ** is allocated. */
drha5907a82017-06-19 11:44:22 +00007396 if( pBt->btsFlags & BTS_FAST_SECURE ){
drh8a575d92011-10-12 17:00:28 +00007397 int iOff;
7398
7399 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
drh43b18e12010-08-17 19:40:08 +00007400 if( (iOff+szNew[i])>(int)pBt->usableSize ){
dan2ed11e72010-02-26 15:09:19 +00007401 rc = SQLITE_CORRUPT_BKPT;
7402 memset(apOld, 0, (i+1)*sizeof(MemPage*));
7403 goto balance_cleanup;
7404 }else{
7405 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
7406 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
7407 }
drh5b47efa2010-02-12 18:18:39 +00007408 }
drh98add2e2009-07-20 17:11:49 +00007409 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007410 }
drh8b2f49b2001-06-08 00:21:52 +00007411 }
7412
drha9121e42008-02-19 14:59:35 +00007413 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00007414 ** alignment */
drha9121e42008-02-19 14:59:35 +00007415 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00007416
drh8b2f49b2001-06-08 00:21:52 +00007417 /*
danielk1977634f2982005-03-28 08:44:07 +00007418 ** Allocate space for memory structures
7419 */
drhfacf0302008-06-17 15:12:00 +00007420 szScratch =
drh1ffd2472015-06-23 02:37:30 +00007421 nMaxCells*sizeof(u8*) /* b.apCell */
7422 + nMaxCells*sizeof(u16) /* b.szCell */
dan33ea4862014-10-09 19:35:37 +00007423 + pBt->pageSize; /* aSpace1 */
drh5279d342014-11-04 13:41:32 +00007424
mistachkin0fbd7352014-12-09 04:26:56 +00007425 assert( szScratch<=6*(int)pBt->pageSize );
drhb2a0f752017-08-28 15:51:35 +00007426 b.apCell = sqlite3StackAllocRaw(0, szScratch );
drh1ffd2472015-06-23 02:37:30 +00007427 if( b.apCell==0 ){
mistachkinfad30392016-02-13 23:43:46 +00007428 rc = SQLITE_NOMEM_BKPT;
danielk1977634f2982005-03-28 08:44:07 +00007429 goto balance_cleanup;
7430 }
drh1ffd2472015-06-23 02:37:30 +00007431 b.szCell = (u16*)&b.apCell[nMaxCells];
7432 aSpace1 = (u8*)&b.szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00007433 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00007434
7435 /*
7436 ** Load pointers to all cells on sibling pages and the divider cells
drh1ffd2472015-06-23 02:37:30 +00007437 ** into the local b.apCell[] array. Make copies of the divider cells
dan33ea4862014-10-09 19:35:37 +00007438 ** into space obtained from aSpace1[]. The divider cells have already
7439 ** been removed from pParent.
drh4b70f112004-05-02 21:12:19 +00007440 **
7441 ** If the siblings are on leaf pages, then the child pointers of the
7442 ** divider cells are stripped from the cells before they are copied
drh1ffd2472015-06-23 02:37:30 +00007443 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
drh4b70f112004-05-02 21:12:19 +00007444 ** child pointers. If siblings are not leaves, then all cell in
drh1ffd2472015-06-23 02:37:30 +00007445 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
drh4b70f112004-05-02 21:12:19 +00007446 ** are alike.
drh96f5b762004-05-16 16:24:36 +00007447 **
7448 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7449 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00007450 */
drh1ffd2472015-06-23 02:37:30 +00007451 b.pRef = apOld[0];
7452 leafCorrection = b.pRef->leaf*4;
7453 leafData = b.pRef->intKeyLeaf;
drh8b2f49b2001-06-08 00:21:52 +00007454 for(i=0; i<nOld; i++){
dan33ea4862014-10-09 19:35:37 +00007455 MemPage *pOld = apOld[i];
drh4edfdd32015-06-23 14:49:42 +00007456 int limit = pOld->nCell;
7457 u8 *aData = pOld->aData;
7458 u16 maskPage = pOld->maskPage;
drh4f4bf772015-06-23 17:09:53 +00007459 u8 *piCell = aData + pOld->cellOffset;
drhfe647dc2015-06-23 18:24:25 +00007460 u8 *piEnd;
danielk19774dbaa892009-06-16 16:50:22 +00007461
drh73d340a2015-05-28 11:23:11 +00007462 /* Verify that all sibling pages are of the same "type" (table-leaf,
7463 ** table-interior, index-leaf, or index-interior).
7464 */
7465 if( pOld->aData[0]!=apOld[0]->aData[0] ){
7466 rc = SQLITE_CORRUPT_BKPT;
7467 goto balance_cleanup;
7468 }
7469
drhfe647dc2015-06-23 18:24:25 +00007470 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
drh8d7f1632018-01-23 13:30:38 +00007471 ** contains overflow cells, include them in the b.apCell[] array
drhfe647dc2015-06-23 18:24:25 +00007472 ** in the correct spot.
7473 **
7474 ** Note that when there are multiple overflow cells, it is always the
7475 ** case that they are sequential and adjacent. This invariant arises
7476 ** because multiple overflows can only occurs when inserting divider
7477 ** cells into a parent on a prior balance, and divider cells are always
7478 ** adjacent and are inserted in order. There is an assert() tagged
7479 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7480 ** invariant.
drh4edfdd32015-06-23 14:49:42 +00007481 **
7482 ** This must be done in advance. Once the balance starts, the cell
7483 ** offset section of the btree page will be overwritten and we will no
7484 ** long be able to find the cells if a pointer to each cell is not saved
7485 ** first.
7486 */
drh36b78ee2016-01-20 01:32:00 +00007487 memset(&b.szCell[b.nCell], 0, sizeof(b.szCell[0])*(limit+pOld->nOverflow));
drh68f2a572011-06-03 17:50:49 +00007488 if( pOld->nOverflow>0 ){
drhfe647dc2015-06-23 18:24:25 +00007489 limit = pOld->aiOvfl[0];
drh68f2a572011-06-03 17:50:49 +00007490 for(j=0; j<limit; j++){
drh329428e2015-06-30 13:28:18 +00007491 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drhfe647dc2015-06-23 18:24:25 +00007492 piCell += 2;
7493 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007494 }
drhfe647dc2015-06-23 18:24:25 +00007495 for(k=0; k<pOld->nOverflow; k++){
7496 assert( k==0 || pOld->aiOvfl[k-1]+1==pOld->aiOvfl[k] );/* NOTE 1 */
drh4edfdd32015-06-23 14:49:42 +00007497 b.apCell[b.nCell] = pOld->apOvfl[k];
drh1ffd2472015-06-23 02:37:30 +00007498 b.nCell++;
drh68f2a572011-06-03 17:50:49 +00007499 }
drh1ffd2472015-06-23 02:37:30 +00007500 }
drhfe647dc2015-06-23 18:24:25 +00007501 piEnd = aData + pOld->cellOffset + 2*pOld->nCell;
7502 while( piCell<piEnd ){
drh4edfdd32015-06-23 14:49:42 +00007503 assert( b.nCell<nMaxCells );
drh329428e2015-06-30 13:28:18 +00007504 b.apCell[b.nCell] = aData + (maskPage & get2byteAligned(piCell));
drh4f4bf772015-06-23 17:09:53 +00007505 piCell += 2;
drh4edfdd32015-06-23 14:49:42 +00007506 b.nCell++;
drh4edfdd32015-06-23 14:49:42 +00007507 }
7508
drh1ffd2472015-06-23 02:37:30 +00007509 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007510 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00007511 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00007512 u8 *pTemp;
drh1ffd2472015-06-23 02:37:30 +00007513 assert( b.nCell<nMaxCells );
7514 b.szCell[b.nCell] = sz;
danielk19774dbaa892009-06-16 16:50:22 +00007515 pTemp = &aSpace1[iSpace1];
7516 iSpace1 += sz;
drhe22e03e2010-08-18 21:19:03 +00007517 assert( sz<=pBt->maxLocal+23 );
drhfcd71b62011-04-05 22:08:24 +00007518 assert( iSpace1 <= (int)pBt->pageSize );
danielk19774dbaa892009-06-16 16:50:22 +00007519 memcpy(pTemp, apDiv[i], sz);
drh1ffd2472015-06-23 02:37:30 +00007520 b.apCell[b.nCell] = pTemp+leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007521 assert( leafCorrection==0 || leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007522 b.szCell[b.nCell] = b.szCell[b.nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00007523 if( !pOld->leaf ){
7524 assert( leafCorrection==0 );
7525 assert( pOld->hdrOffset==0 );
7526 /* The right pointer of the child page pOld becomes the left
7527 ** pointer of the divider cell */
drh1ffd2472015-06-23 02:37:30 +00007528 memcpy(b.apCell[b.nCell], &pOld->aData[8], 4);
danielk19774dbaa892009-06-16 16:50:22 +00007529 }else{
7530 assert( leafCorrection==4 );
drh1ffd2472015-06-23 02:37:30 +00007531 while( b.szCell[b.nCell]<4 ){
dan8f1eb8a2014-12-06 14:56:49 +00007532 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7533 ** does exist, pad it with 0x00 bytes. */
drh1ffd2472015-06-23 02:37:30 +00007534 assert( b.szCell[b.nCell]==3 || CORRUPT_DB );
7535 assert( b.apCell[b.nCell]==&aSpace1[iSpace1-3] || CORRUPT_DB );
danee7172f2014-12-24 18:11:50 +00007536 aSpace1[iSpace1++] = 0x00;
drh1ffd2472015-06-23 02:37:30 +00007537 b.szCell[b.nCell]++;
danielk1977ac11ee62005-01-15 12:45:51 +00007538 }
7539 }
drh1ffd2472015-06-23 02:37:30 +00007540 b.nCell++;
drh8b2f49b2001-06-08 00:21:52 +00007541 }
drh8b2f49b2001-06-08 00:21:52 +00007542 }
7543
7544 /*
drh1ffd2472015-06-23 02:37:30 +00007545 ** Figure out the number of pages needed to hold all b.nCell cells.
drh6019e162001-07-02 17:51:45 +00007546 ** Store this number in "k". Also compute szNew[] which is the total
7547 ** size of all cells on the i-th page and cntNew[] which is the index
drh1ffd2472015-06-23 02:37:30 +00007548 ** in b.apCell[] of the cell that divides page i from page i+1.
7549 ** cntNew[k] should equal b.nCell.
drh6019e162001-07-02 17:51:45 +00007550 **
drh96f5b762004-05-16 16:24:36 +00007551 ** Values computed by this block:
7552 **
7553 ** k: The total number of sibling pages
7554 ** szNew[i]: Spaced used on the i-th sibling page.
drh1ffd2472015-06-23 02:37:30 +00007555 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
drh96f5b762004-05-16 16:24:36 +00007556 ** the right of the i-th sibling page.
7557 ** usableSpace: Number of bytes of space available on each sibling.
7558 **
drh8b2f49b2001-06-08 00:21:52 +00007559 */
drh43605152004-05-29 21:46:49 +00007560 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh658873b2015-06-22 20:02:04 +00007561 for(i=0; i<nOld; i++){
7562 MemPage *p = apOld[i];
7563 szNew[i] = usableSpace - p->nFree;
drh658873b2015-06-22 20:02:04 +00007564 for(j=0; j<p->nOverflow; j++){
7565 szNew[i] += 2 + p->xCellSize(p, p->apOvfl[j]);
7566 }
7567 cntNew[i] = cntOld[i];
7568 }
7569 k = nOld;
7570 for(i=0; i<k; i++){
7571 int sz;
7572 while( szNew[i]>usableSpace ){
7573 if( i+1>=k ){
7574 k = i+2;
7575 if( k>NB+2 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
7576 szNew[k-1] = 0;
drh1ffd2472015-06-23 02:37:30 +00007577 cntNew[k-1] = b.nCell;
drh658873b2015-06-22 20:02:04 +00007578 }
drh1ffd2472015-06-23 02:37:30 +00007579 sz = 2 + cachedCellSize(&b, cntNew[i]-1);
drh658873b2015-06-22 20:02:04 +00007580 szNew[i] -= sz;
7581 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007582 if( cntNew[i]<b.nCell ){
7583 sz = 2 + cachedCellSize(&b, cntNew[i]);
7584 }else{
7585 sz = 0;
7586 }
drh658873b2015-06-22 20:02:04 +00007587 }
7588 szNew[i+1] += sz;
7589 cntNew[i]--;
7590 }
drh1ffd2472015-06-23 02:37:30 +00007591 while( cntNew[i]<b.nCell ){
7592 sz = 2 + cachedCellSize(&b, cntNew[i]);
drh658873b2015-06-22 20:02:04 +00007593 if( szNew[i]+sz>usableSpace ) break;
7594 szNew[i] += sz;
7595 cntNew[i]++;
7596 if( !leafData ){
drh1ffd2472015-06-23 02:37:30 +00007597 if( cntNew[i]<b.nCell ){
7598 sz = 2 + cachedCellSize(&b, cntNew[i]);
7599 }else{
7600 sz = 0;
7601 }
drh658873b2015-06-22 20:02:04 +00007602 }
7603 szNew[i+1] -= sz;
7604 }
drh1ffd2472015-06-23 02:37:30 +00007605 if( cntNew[i]>=b.nCell ){
drh658873b2015-06-22 20:02:04 +00007606 k = i+1;
drh672073a2015-06-24 12:07:40 +00007607 }else if( cntNew[i] <= (i>0 ? cntNew[i-1] : 0) ){
drh658873b2015-06-22 20:02:04 +00007608 rc = SQLITE_CORRUPT_BKPT;
7609 goto balance_cleanup;
drh6019e162001-07-02 17:51:45 +00007610 }
7611 }
drh96f5b762004-05-16 16:24:36 +00007612
7613 /*
7614 ** The packing computed by the previous block is biased toward the siblings
drh2a0df922014-10-30 23:14:56 +00007615 ** on the left side (siblings with smaller keys). The left siblings are
7616 ** always nearly full, while the right-most sibling might be nearly empty.
7617 ** The next block of code attempts to adjust the packing of siblings to
7618 ** get a better balance.
drh96f5b762004-05-16 16:24:36 +00007619 **
7620 ** This adjustment is more than an optimization. The packing above might
7621 ** be so out of balance as to be illegal. For example, the right-most
7622 ** sibling might be completely empty. This adjustment is not optional.
7623 */
drh6019e162001-07-02 17:51:45 +00007624 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00007625 int szRight = szNew[i]; /* Size of sibling on the right */
7626 int szLeft = szNew[i-1]; /* Size of sibling on the left */
7627 int r; /* Index of right-most cell in left sibling */
7628 int d; /* Index of first cell to the left of right sibling */
7629
7630 r = cntNew[i-1] - 1;
7631 d = r + 1 - leafData;
drh008d64c2015-06-23 16:00:24 +00007632 (void)cachedCellSize(&b, d);
drh672073a2015-06-24 12:07:40 +00007633 do{
drh1ffd2472015-06-23 02:37:30 +00007634 assert( d<nMaxCells );
7635 assert( r<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007636 (void)cachedCellSize(&b, r);
7637 if( szRight!=0
drh0b4c0422016-07-14 19:48:08 +00007638 && (bBulk || szRight+b.szCell[d]+2 > szLeft-(b.szCell[r]+(i==k-1?0:2)))){
drh1ffd2472015-06-23 02:37:30 +00007639 break;
7640 }
7641 szRight += b.szCell[d] + 2;
7642 szLeft -= b.szCell[r] + 2;
drh008d64c2015-06-23 16:00:24 +00007643 cntNew[i-1] = r;
drh008d64c2015-06-23 16:00:24 +00007644 r--;
7645 d--;
drh672073a2015-06-24 12:07:40 +00007646 }while( r>=0 );
drh96f5b762004-05-16 16:24:36 +00007647 szNew[i] = szRight;
7648 szNew[i-1] = szLeft;
drh672073a2015-06-24 12:07:40 +00007649 if( cntNew[i-1] <= (i>1 ? cntNew[i-2] : 0) ){
7650 rc = SQLITE_CORRUPT_BKPT;
7651 goto balance_cleanup;
7652 }
drh6019e162001-07-02 17:51:45 +00007653 }
drh09d0deb2005-08-02 17:13:09 +00007654
drh2a0df922014-10-30 23:14:56 +00007655 /* Sanity check: For a non-corrupt database file one of the follwing
7656 ** must be true:
7657 ** (1) We found one or more cells (cntNew[0])>0), or
7658 ** (2) pPage is a virtual root page. A virtual root page is when
7659 ** the real root page is page 1 and we are the only child of
7660 ** that page.
drh09d0deb2005-08-02 17:13:09 +00007661 */
drh2a0df922014-10-30 23:14:56 +00007662 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);
dan33ea4862014-10-09 19:35:37 +00007663 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7664 apOld[0]->pgno, apOld[0]->nCell,
7665 nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
7666 nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
danielk1977e5765212009-06-17 11:13:28 +00007667 ));
7668
drh8b2f49b2001-06-08 00:21:52 +00007669 /*
drh6b308672002-07-08 02:16:37 +00007670 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00007671 */
danielk1977a50d9aa2009-06-08 14:49:45 +00007672 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00007673 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00007674 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00007675 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00007676 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00007677 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00007678 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00007679 nNew++;
danielk197728129562005-01-11 10:25:06 +00007680 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00007681 }else{
drh7aa8f852006-03-28 00:24:44 +00007682 assert( i>0 );
dan428c2182012-08-06 18:50:11 +00007683 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
drh6b308672002-07-08 02:16:37 +00007684 if( rc ) goto balance_cleanup;
dan33ea4862014-10-09 19:35:37 +00007685 zeroPage(pNew, pageFlags);
drhda200cc2004-05-09 11:51:38 +00007686 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00007687 nNew++;
drh1ffd2472015-06-23 02:37:30 +00007688 cntOld[i] = b.nCell;
danielk19774dbaa892009-06-16 16:50:22 +00007689
7690 /* Set the pointer-map entry for the new sibling page. */
7691 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00007692 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007693 if( rc!=SQLITE_OK ){
7694 goto balance_cleanup;
7695 }
7696 }
drh6b308672002-07-08 02:16:37 +00007697 }
drh8b2f49b2001-06-08 00:21:52 +00007698 }
7699
7700 /*
dan33ea4862014-10-09 19:35:37 +00007701 ** Reassign page numbers so that the new pages are in ascending order.
7702 ** This helps to keep entries in the disk file in order so that a scan
7703 ** of the table is closer to a linear scan through the file. That in turn
7704 ** helps the operating system to deliver pages from the disk more rapidly.
drhf9ffac92002-03-02 19:00:31 +00007705 **
dan33ea4862014-10-09 19:35:37 +00007706 ** An O(n^2) insertion sort algorithm is used, but since n is never more
7707 ** than (NB+2) (a small constant), that should not be a problem.
drhf9ffac92002-03-02 19:00:31 +00007708 **
dan33ea4862014-10-09 19:35:37 +00007709 ** When NB==3, this one optimization makes the database about 25% faster
7710 ** for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00007711 */
dan33ea4862014-10-09 19:35:37 +00007712 for(i=0; i<nNew; i++){
drh00fe08a2014-10-31 00:05:23 +00007713 aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
dan33ea4862014-10-09 19:35:37 +00007714 aPgFlags[i] = apNew[i]->pDbPage->flags;
dan89ca0b32014-10-25 20:36:28 +00007715 for(j=0; j<i; j++){
7716 if( aPgno[j]==aPgno[i] ){
7717 /* This branch is taken if the set of sibling pages somehow contains
7718 ** duplicate entries. This can happen if the database is corrupt.
7719 ** It would be simpler to detect this as part of the loop below, but
drhba0f9992014-10-30 20:48:44 +00007720 ** we do the detection here in order to avoid populating the pager
7721 ** cache with two separate objects associated with the same
7722 ** page number. */
dan89ca0b32014-10-25 20:36:28 +00007723 assert( CORRUPT_DB );
7724 rc = SQLITE_CORRUPT_BKPT;
7725 goto balance_cleanup;
drhf9ffac92002-03-02 19:00:31 +00007726 }
7727 }
dan33ea4862014-10-09 19:35:37 +00007728 }
7729 for(i=0; i<nNew; i++){
dan31f4e992014-10-24 20:57:03 +00007730 int iBest = 0; /* aPgno[] index of page number to use */
dan31f4e992014-10-24 20:57:03 +00007731 for(j=1; j<nNew; j++){
drh00fe08a2014-10-31 00:05:23 +00007732 if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
drhf9ffac92002-03-02 19:00:31 +00007733 }
drh00fe08a2014-10-31 00:05:23 +00007734 pgno = aPgOrder[iBest];
7735 aPgOrder[iBest] = 0xffffffff;
dan31f4e992014-10-24 20:57:03 +00007736 if( iBest!=i ){
7737 if( iBest>i ){
7738 sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
7739 }
7740 sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
7741 apNew[i]->pgno = pgno;
drhf9ffac92002-03-02 19:00:31 +00007742 }
7743 }
dan33ea4862014-10-09 19:35:37 +00007744
7745 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
7746 "%d(%d nc=%d) %d(%d nc=%d)\n",
7747 apNew[0]->pgno, szNew[0], cntNew[0],
danielk19774dbaa892009-06-16 16:50:22 +00007748 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
dan33ea4862014-10-09 19:35:37 +00007749 nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007750 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
dan33ea4862014-10-09 19:35:37 +00007751 nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
danielk19774dbaa892009-06-16 16:50:22 +00007752 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
dan33ea4862014-10-09 19:35:37 +00007753 nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
7754 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
7755 nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
7756 ));
danielk19774dbaa892009-06-16 16:50:22 +00007757
7758 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7759 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00007760
dan33ea4862014-10-09 19:35:37 +00007761 /* If the sibling pages are not leaves, ensure that the right-child pointer
7762 ** of the right-most new sibling page is set to the value that was
7763 ** originally in the same field of the right-most old sibling page. */
7764 if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
7765 MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
7766 memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
7767 }
danielk1977ac11ee62005-01-15 12:45:51 +00007768
dan33ea4862014-10-09 19:35:37 +00007769 /* Make any required updates to pointer map entries associated with
7770 ** cells stored on sibling pages following the balance operation. Pointer
7771 ** map entries associated with divider cells are set by the insertCell()
7772 ** routine. The associated pointer map entries are:
7773 **
7774 ** a) if the cell contains a reference to an overflow chain, the
7775 ** entry associated with the first page in the overflow chain, and
7776 **
7777 ** b) if the sibling pages are not leaves, the child page associated
7778 ** with the cell.
7779 **
7780 ** If the sibling pages are not leaves, then the pointer map entry
7781 ** associated with the right-child of each sibling may also need to be
7782 ** updated. This happens below, after the sibling pages have been
7783 ** populated, not here.
danielk1977ac11ee62005-01-15 12:45:51 +00007784 */
dan33ea4862014-10-09 19:35:37 +00007785 if( ISAUTOVACUUM ){
drh0f1bf4c2019-01-13 20:17:21 +00007786 MemPage *pOld;
7787 MemPage *pNew = pOld = apNew[0];
dan33ea4862014-10-09 19:35:37 +00007788 u8 *aOld = pNew->aData;
7789 int cntOldNext = pNew->nCell + pNew->nOverflow;
7790 int usableSize = pBt->usableSize;
7791 int iNew = 0;
7792 int iOld = 0;
danielk1977ac11ee62005-01-15 12:45:51 +00007793
drh1ffd2472015-06-23 02:37:30 +00007794 for(i=0; i<b.nCell; i++){
7795 u8 *pCell = b.apCell[i];
dan33ea4862014-10-09 19:35:37 +00007796 if( i==cntOldNext ){
drh0f1bf4c2019-01-13 20:17:21 +00007797 pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
dan33ea4862014-10-09 19:35:37 +00007798 cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
7799 aOld = pOld->aData;
drh4b70f112004-05-02 21:12:19 +00007800 }
dan33ea4862014-10-09 19:35:37 +00007801 if( i==cntNew[iNew] ){
7802 pNew = apNew[++iNew];
7803 if( !leafData ) continue;
7804 }
danielk197785d90ca2008-07-19 14:25:15 +00007805
dan33ea4862014-10-09 19:35:37 +00007806 /* Cell pCell is destined for new sibling page pNew. Originally, it
drhba0f9992014-10-30 20:48:44 +00007807 ** was either part of sibling page iOld (possibly an overflow cell),
dan33ea4862014-10-09 19:35:37 +00007808 ** or else the divider cell to the left of sibling page iOld. So,
7809 ** if sibling page iOld had the same page number as pNew, and if
7810 ** pCell really was a part of sibling page iOld (not a divider or
7811 ** overflow cell), we can skip updating the pointer map entries. */
drhd52d52b2014-12-06 02:05:44 +00007812 if( iOld>=nNew
7813 || pNew->pgno!=aPgno[iOld]
drhac536e62015-12-10 15:09:17 +00007814 || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize])
drhd52d52b2014-12-06 02:05:44 +00007815 ){
dan33ea4862014-10-09 19:35:37 +00007816 if( !leafCorrection ){
7817 ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
7818 }
drh1ffd2472015-06-23 02:37:30 +00007819 if( cachedCellSize(&b,i)>pNew->minLocal ){
drh0f1bf4c2019-01-13 20:17:21 +00007820 ptrmapPutOvflPtr(pNew, pOld, pCell, &rc);
danielk1977ac11ee62005-01-15 12:45:51 +00007821 }
drhea82b372015-06-23 21:35:28 +00007822 if( rc ) goto balance_cleanup;
drh43605152004-05-29 21:46:49 +00007823 }
drh14acc042001-06-10 19:56:58 +00007824 }
7825 }
dan33ea4862014-10-09 19:35:37 +00007826
7827 /* Insert new divider cells into pParent. */
7828 for(i=0; i<nNew-1; i++){
7829 u8 *pCell;
7830 u8 *pTemp;
7831 int sz;
7832 MemPage *pNew = apNew[i];
7833 j = cntNew[i];
7834
7835 assert( j<nMaxCells );
drh1ffd2472015-06-23 02:37:30 +00007836 assert( b.apCell[j]!=0 );
7837 pCell = b.apCell[j];
7838 sz = b.szCell[j] + leafCorrection;
dan33ea4862014-10-09 19:35:37 +00007839 pTemp = &aOvflSpace[iOvflSpace];
7840 if( !pNew->leaf ){
7841 memcpy(&pNew->aData[8], pCell, 4);
7842 }else if( leafData ){
7843 /* If the tree is a leaf-data tree, and the siblings are leaves,
drh1ffd2472015-06-23 02:37:30 +00007844 ** then there is no divider cell in b.apCell[]. Instead, the divider
dan33ea4862014-10-09 19:35:37 +00007845 ** cell consists of the integer key for the right-most cell of
7846 ** the sibling-page assembled above only.
7847 */
7848 CellInfo info;
7849 j--;
drh1ffd2472015-06-23 02:37:30 +00007850 pNew->xParseCell(pNew, b.apCell[j], &info);
dan33ea4862014-10-09 19:35:37 +00007851 pCell = pTemp;
7852 sz = 4 + putVarint(&pCell[4], info.nKey);
7853 pTemp = 0;
7854 }else{
7855 pCell -= 4;
7856 /* Obscure case for non-leaf-data trees: If the cell at pCell was
7857 ** previously stored on a leaf node, and its reported size was 4
7858 ** bytes, then it may actually be smaller than this
7859 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
7860 ** any cell). But it is important to pass the correct size to
7861 ** insertCell(), so reparse the cell now.
7862 **
drhc1fb2b82016-03-09 03:29:27 +00007863 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
7864 ** and WITHOUT ROWID tables with exactly one column which is the
7865 ** primary key.
dan33ea4862014-10-09 19:35:37 +00007866 */
drh1ffd2472015-06-23 02:37:30 +00007867 if( b.szCell[j]==4 ){
dan33ea4862014-10-09 19:35:37 +00007868 assert(leafCorrection==4);
drh25ada072015-06-19 15:07:14 +00007869 sz = pParent->xCellSize(pParent, pCell);
dan33ea4862014-10-09 19:35:37 +00007870 }
7871 }
7872 iOvflSpace += sz;
7873 assert( sz<=pBt->maxLocal+23 );
7874 assert( iOvflSpace <= (int)pBt->pageSize );
7875 insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
7876 if( rc!=SQLITE_OK ) goto balance_cleanup;
7877 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
7878 }
7879
7880 /* Now update the actual sibling pages. The order in which they are updated
7881 ** is important, as this code needs to avoid disrupting any page from which
7882 ** cells may still to be read. In practice, this means:
7883 **
drhd836d422014-10-31 14:26:36 +00007884 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
7885 ** then it is not safe to update page apNew[iPg] until after
7886 ** the left-hand sibling apNew[iPg-1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007887 **
drhd836d422014-10-31 14:26:36 +00007888 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
7889 ** then it is not safe to update page apNew[iPg] until after
7890 ** the right-hand sibling apNew[iPg+1] has been updated.
dan33ea4862014-10-09 19:35:37 +00007891 **
7892 ** If neither of the above apply, the page is safe to update.
drhd836d422014-10-31 14:26:36 +00007893 **
7894 ** The iPg value in the following loop starts at nNew-1 goes down
7895 ** to 0, then back up to nNew-1 again, thus making two passes over
7896 ** the pages. On the initial downward pass, only condition (1) above
7897 ** needs to be tested because (2) will always be true from the previous
7898 ** step. On the upward pass, both conditions are always true, so the
7899 ** upwards pass simply processes pages that were missed on the downward
7900 ** pass.
dan33ea4862014-10-09 19:35:37 +00007901 */
drhbec021b2014-10-31 12:22:00 +00007902 for(i=1-nNew; i<nNew; i++){
7903 int iPg = i<0 ? -i : i;
drhbec021b2014-10-31 12:22:00 +00007904 assert( iPg>=0 && iPg<nNew );
drhd836d422014-10-31 14:26:36 +00007905 if( abDone[iPg] ) continue; /* Skip pages already processed */
7906 if( i>=0 /* On the upwards pass, or... */
7907 || cntOld[iPg-1]>=cntNew[iPg-1] /* Condition (1) is true */
dan33ea4862014-10-09 19:35:37 +00007908 ){
dan09c68402014-10-11 20:00:24 +00007909 int iNew;
7910 int iOld;
7911 int nNewCell;
7912
drhd836d422014-10-31 14:26:36 +00007913 /* Verify condition (1): If cells are moving left, update iPg
7914 ** only after iPg-1 has already been updated. */
7915 assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );
7916
7917 /* Verify condition (2): If cells are moving right, update iPg
7918 ** only after iPg+1 has already been updated. */
7919 assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );
7920
dan09c68402014-10-11 20:00:24 +00007921 if( iPg==0 ){
7922 iNew = iOld = 0;
7923 nNewCell = cntNew[0];
7924 }else{
drh1ffd2472015-06-23 02:37:30 +00007925 iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : b.nCell;
dan09c68402014-10-11 20:00:24 +00007926 iNew = cntNew[iPg-1] + !leafData;
7927 nNewCell = cntNew[iPg] - iNew;
7928 }
7929
drh1ffd2472015-06-23 02:37:30 +00007930 rc = editPage(apNew[iPg], iOld, iNew, nNewCell, &b);
drh658873b2015-06-22 20:02:04 +00007931 if( rc ) goto balance_cleanup;
drhd836d422014-10-31 14:26:36 +00007932 abDone[iPg]++;
dand7b545b2014-10-13 18:03:27 +00007933 apNew[iPg]->nFree = usableSpace-szNew[iPg];
dan09c68402014-10-11 20:00:24 +00007934 assert( apNew[iPg]->nOverflow==0 );
7935 assert( apNew[iPg]->nCell==nNewCell );
dan33ea4862014-10-09 19:35:37 +00007936 }
7937 }
drhd836d422014-10-31 14:26:36 +00007938
7939 /* All pages have been processed exactly once */
dan33ea4862014-10-09 19:35:37 +00007940 assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );
7941
drh7aa8f852006-03-28 00:24:44 +00007942 assert( nOld>0 );
7943 assert( nNew>0 );
drh14acc042001-06-10 19:56:58 +00007944
danielk197713bd99f2009-06-24 05:40:34 +00007945 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
7946 /* The root page of the b-tree now contains no cells. The only sibling
7947 ** page is the right-child of the parent. Copy the contents of the
7948 ** child page into the parent, decreasing the overall height of the
7949 ** b-tree structure by one. This is described as the "balance-shallower"
7950 ** sub-algorithm in some documentation.
7951 **
7952 ** If this is an auto-vacuum database, the call to copyNodeContent()
7953 ** sets all pointer-map entries corresponding to database image pages
7954 ** for which the pointer is stored within the content being copied.
7955 **
drh768f2902014-10-31 02:51:41 +00007956 ** It is critical that the child page be defragmented before being
7957 ** copied into the parent, because if the parent is page 1 then it will
7958 ** by smaller than the child due to the database header, and so all the
7959 ** free space needs to be up front.
7960 */
drh9b5351d2015-09-30 14:19:08 +00007961 assert( nNew==1 || CORRUPT_DB );
dan3b2ede12017-02-25 16:24:02 +00007962 rc = defragmentPage(apNew[0], -1);
drh768f2902014-10-31 02:51:41 +00007963 testcase( rc!=SQLITE_OK );
danielk197713bd99f2009-06-24 05:40:34 +00007964 assert( apNew[0]->nFree ==
drh768f2902014-10-31 02:51:41 +00007965 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
7966 || rc!=SQLITE_OK
danielk197713bd99f2009-06-24 05:40:34 +00007967 );
drhc314dc72009-07-21 11:52:34 +00007968 copyNodeContent(apNew[0], pParent, &rc);
7969 freePage(apNew[0], &rc);
dan33ea4862014-10-09 19:35:37 +00007970 }else if( ISAUTOVACUUM && !leafCorrection ){
7971 /* Fix the pointer map entries associated with the right-child of each
7972 ** sibling page. All other pointer map entries have already been taken
7973 ** care of. */
7974 for(i=0; i<nNew; i++){
7975 u32 key = get4byte(&apNew[i]->aData[8]);
7976 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00007977 }
dan33ea4862014-10-09 19:35:37 +00007978 }
danielk19774dbaa892009-06-16 16:50:22 +00007979
dan33ea4862014-10-09 19:35:37 +00007980 assert( pParent->isInit );
7981 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
drh1ffd2472015-06-23 02:37:30 +00007982 nOld, nNew, b.nCell));
danielk19774dbaa892009-06-16 16:50:22 +00007983
dan33ea4862014-10-09 19:35:37 +00007984 /* Free any old pages that were not reused as new pages.
7985 */
7986 for(i=nNew; i<nOld; i++){
7987 freePage(apOld[i], &rc);
7988 }
danielk19774dbaa892009-06-16 16:50:22 +00007989
7990#if 0
dan33ea4862014-10-09 19:35:37 +00007991 if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
danielk19774dbaa892009-06-16 16:50:22 +00007992 /* The ptrmapCheckPages() contains assert() statements that verify that
7993 ** all pointer map pages are set correctly. This is helpful while
7994 ** debugging. This is usually disabled because a corrupt database may
7995 ** cause an assert() statement to fail. */
7996 ptrmapCheckPages(apNew, nNew);
7997 ptrmapCheckPages(&pParent, 1);
danielk19774dbaa892009-06-16 16:50:22 +00007998 }
dan33ea4862014-10-09 19:35:37 +00007999#endif
danielk1977cd581a72009-06-23 15:43:39 +00008000
drh8b2f49b2001-06-08 00:21:52 +00008001 /*
drh14acc042001-06-10 19:56:58 +00008002 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00008003 */
drh14acc042001-06-10 19:56:58 +00008004balance_cleanup:
drhb2a0f752017-08-28 15:51:35 +00008005 sqlite3StackFree(0, b.apCell);
drh8b2f49b2001-06-08 00:21:52 +00008006 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00008007 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00008008 }
drh14acc042001-06-10 19:56:58 +00008009 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00008010 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00008011 }
danielk1977eaa06f62008-09-18 17:34:44 +00008012
drh8b2f49b2001-06-08 00:21:52 +00008013 return rc;
8014}
8015
drh43605152004-05-29 21:46:49 +00008016
8017/*
danielk1977a50d9aa2009-06-08 14:49:45 +00008018** This function is called when the root page of a b-tree structure is
8019** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00008020**
danielk1977a50d9aa2009-06-08 14:49:45 +00008021** A new child page is allocated and the contents of the current root
8022** page, including overflow cells, are copied into the child. The root
8023** page is then overwritten to make it an empty page with the right-child
8024** pointer pointing to the new page.
8025**
8026** Before returning, all pointer-map entries corresponding to pages
8027** that the new child-page now contains pointers to are updated. The
8028** entry corresponding to the new right-child pointer of the root
8029** page is also updated.
8030**
8031** If successful, *ppChild is set to contain a reference to the child
8032** page and SQLITE_OK is returned. In this case the caller is required
8033** to call releasePage() on *ppChild exactly once. If an error occurs,
8034** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00008035*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008036static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
8037 int rc; /* Return value from subprocedures */
8038 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00008039 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00008040 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00008041
danielk1977a50d9aa2009-06-08 14:49:45 +00008042 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00008043 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00008044
danielk1977a50d9aa2009-06-08 14:49:45 +00008045 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8046 ** page that will become the new right-child of pPage. Copy the contents
8047 ** of the node stored on pRoot into the new child page.
8048 */
drh98add2e2009-07-20 17:11:49 +00008049 rc = sqlite3PagerWrite(pRoot->pDbPage);
8050 if( rc==SQLITE_OK ){
8051 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00008052 copyNodeContent(pRoot, pChild, &rc);
8053 if( ISAUTOVACUUM ){
8054 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00008055 }
8056 }
8057 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00008058 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008059 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00008060 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00008061 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008062 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
8063 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
8064 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00008065
danielk1977a50d9aa2009-06-08 14:49:45 +00008066 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
8067
8068 /* Copy the overflow cells from pRoot to pChild */
drh2cbd78b2012-02-02 19:37:18 +00008069 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
8070 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
8071 memcpy(pChild->apOvfl, pRoot->apOvfl,
8072 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
danielk1977a50d9aa2009-06-08 14:49:45 +00008073 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00008074
8075 /* Zero the contents of pRoot. Then install pChild as the right-child. */
8076 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
8077 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
8078
8079 *ppChild = pChild;
8080 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00008081}
8082
8083/*
danielk197771d5d2c2008-09-29 11:49:47 +00008084** The page that pCur currently points to has just been modified in
8085** some way. This function figures out if this modification means the
8086** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00008087** routine. Balancing routines are:
8088**
8089** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00008090** balance_deeper()
8091** balance_nonroot()
drh43605152004-05-29 21:46:49 +00008092*/
danielk1977a50d9aa2009-06-08 14:49:45 +00008093static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00008094 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00008095 const int nMin = pCur->pBt->usableSize * 2 / 3;
8096 u8 aBalanceQuickSpace[13];
8097 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008098
drhcc5f8a42016-02-06 22:32:06 +00008099 VVA_ONLY( int balance_quick_called = 0 );
8100 VVA_ONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00008101
8102 do {
8103 int iPage = pCur->iPage;
drh352a35a2017-08-15 03:46:47 +00008104 MemPage *pPage = pCur->pPage;
danielk1977a50d9aa2009-06-08 14:49:45 +00008105
8106 if( iPage==0 ){
8107 if( pPage->nOverflow ){
8108 /* The root page of the b-tree is overfull. In this case call the
8109 ** balance_deeper() function to create a new child for the root-page
8110 ** and copy the current contents of the root-page to it. The
8111 ** next iteration of the do-loop will balance the child page.
8112 */
drhcc5f8a42016-02-06 22:32:06 +00008113 assert( balance_deeper_called==0 );
8114 VVA_ONLY( balance_deeper_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008115 rc = balance_deeper(pPage, &pCur->apPage[1]);
8116 if( rc==SQLITE_OK ){
8117 pCur->iPage = 1;
drh75e96b32017-04-01 00:20:06 +00008118 pCur->ix = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00008119 pCur->aiIdx[0] = 0;
drh352a35a2017-08-15 03:46:47 +00008120 pCur->apPage[0] = pPage;
8121 pCur->pPage = pCur->apPage[1];
8122 assert( pCur->pPage->nOverflow );
danielk1977a50d9aa2009-06-08 14:49:45 +00008123 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008124 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00008125 break;
8126 }
8127 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
8128 break;
8129 }else{
8130 MemPage * const pParent = pCur->apPage[iPage-1];
8131 int const iIdx = pCur->aiIdx[iPage-1];
8132
8133 rc = sqlite3PagerWrite(pParent->pDbPage);
8134 if( rc==SQLITE_OK ){
8135#ifndef SQLITE_OMIT_QUICKBALANCE
drh3e28ff52014-09-24 00:59:08 +00008136 if( pPage->intKeyLeaf
danielk1977a50d9aa2009-06-08 14:49:45 +00008137 && pPage->nOverflow==1
drh2cbd78b2012-02-02 19:37:18 +00008138 && pPage->aiOvfl[0]==pPage->nCell
danielk1977a50d9aa2009-06-08 14:49:45 +00008139 && pParent->pgno!=1
8140 && pParent->nCell==iIdx
8141 ){
8142 /* Call balance_quick() to create a new sibling of pPage on which
8143 ** to store the overflow cell. balance_quick() inserts a new cell
8144 ** into pParent, which may cause pParent overflow. If this
peter.d.reid60ec9142014-09-06 16:39:46 +00008145 ** happens, the next iteration of the do-loop will balance pParent
danielk1977a50d9aa2009-06-08 14:49:45 +00008146 ** use either balance_nonroot() or balance_deeper(). Until this
8147 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8148 ** buffer.
8149 **
8150 ** The purpose of the following assert() is to check that only a
8151 ** single call to balance_quick() is made for each call to this
8152 ** function. If this were not verified, a subtle bug involving reuse
8153 ** of the aBalanceQuickSpace[] might sneak in.
8154 */
drhcc5f8a42016-02-06 22:32:06 +00008155 assert( balance_quick_called==0 );
8156 VVA_ONLY( balance_quick_called++ );
danielk1977a50d9aa2009-06-08 14:49:45 +00008157 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
8158 }else
8159#endif
8160 {
8161 /* In this case, call balance_nonroot() to redistribute cells
8162 ** between pPage and up to 2 of its sibling pages. This involves
8163 ** modifying the contents of pParent, which may cause pParent to
8164 ** become overfull or underfull. The next iteration of the do-loop
8165 ** will balance the parent page to correct this.
8166 **
8167 ** If the parent page becomes overfull, the overflow cell or cells
8168 ** are stored in the pSpace buffer allocated immediately below.
8169 ** A subsequent iteration of the do-loop will deal with this by
8170 ** calling balance_nonroot() (balance_deeper() may be called first,
8171 ** but it doesn't deal with overflow cells - just moves them to a
8172 ** different page). Once this subsequent call to balance_nonroot()
8173 ** has completed, it is safe to release the pSpace buffer used by
8174 ** the previous call, as the overflow cell data will have been
8175 ** copied either into the body of a database page or into the new
8176 ** pSpace buffer passed to the latter call to balance_nonroot().
8177 */
8178 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
drhe0997b32015-03-20 14:57:50 +00008179 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
8180 pCur->hints&BTREE_BULKLOAD);
danielk1977a50d9aa2009-06-08 14:49:45 +00008181 if( pFree ){
8182 /* If pFree is not NULL, it points to the pSpace buffer used
8183 ** by a previous call to balance_nonroot(). Its contents are
8184 ** now stored either on real database pages or within the
8185 ** new pSpace buffer, so it may be safely freed here. */
8186 sqlite3PageFree(pFree);
8187 }
8188
danielk19774dbaa892009-06-16 16:50:22 +00008189 /* The pSpace buffer will be freed after the next call to
8190 ** balance_nonroot(), or just before this function returns, whichever
8191 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00008192 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00008193 }
8194 }
8195
8196 pPage->nOverflow = 0;
8197
8198 /* The next iteration of the do-loop balances the parent page. */
8199 releasePage(pPage);
8200 pCur->iPage--;
drhcbd33492015-03-25 13:06:54 +00008201 assert( pCur->iPage>=0 );
drh352a35a2017-08-15 03:46:47 +00008202 pCur->pPage = pCur->apPage[pCur->iPage];
drh43605152004-05-29 21:46:49 +00008203 }
danielk1977a50d9aa2009-06-08 14:49:45 +00008204 }while( rc==SQLITE_OK );
8205
8206 if( pFree ){
8207 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00008208 }
8209 return rc;
8210}
8211
drh3de5d162018-05-03 03:59:02 +00008212/* Overwrite content from pX into pDest. Only do the write if the
8213** content is different from what is already there.
8214*/
8215static int btreeOverwriteContent(
8216 MemPage *pPage, /* MemPage on which writing will occur */
8217 u8 *pDest, /* Pointer to the place to start writing */
8218 const BtreePayload *pX, /* Source of data to write */
8219 int iOffset, /* Offset of first byte to write */
8220 int iAmt /* Number of bytes to be written */
8221){
8222 int nData = pX->nData - iOffset;
8223 if( nData<=0 ){
8224 /* Overwritting with zeros */
8225 int i;
8226 for(i=0; i<iAmt && pDest[i]==0; i++){}
8227 if( i<iAmt ){
8228 int rc = sqlite3PagerWrite(pPage->pDbPage);
8229 if( rc ) return rc;
8230 memset(pDest + i, 0, iAmt - i);
8231 }
8232 }else{
8233 if( nData<iAmt ){
8234 /* Mixed read data and zeros at the end. Make a recursive call
8235 ** to write the zeros then fall through to write the real data */
drhd5aa9262018-05-03 16:56:06 +00008236 int rc = btreeOverwriteContent(pPage, pDest+nData, pX, iOffset+nData,
8237 iAmt-nData);
8238 if( rc ) return rc;
drh3de5d162018-05-03 03:59:02 +00008239 iAmt = nData;
8240 }
8241 if( memcmp(pDest, ((u8*)pX->pData) + iOffset, iAmt)!=0 ){
8242 int rc = sqlite3PagerWrite(pPage->pDbPage);
8243 if( rc ) return rc;
8244 memcpy(pDest, ((u8*)pX->pData) + iOffset, iAmt);
8245 }
8246 }
8247 return SQLITE_OK;
8248}
8249
8250/*
8251** Overwrite the cell that cursor pCur is pointing to with fresh content
8252** contained in pX.
8253*/
8254static int btreeOverwriteCell(BtCursor *pCur, const BtreePayload *pX){
8255 int iOffset; /* Next byte of pX->pData to write */
8256 int nTotal = pX->nData + pX->nZero; /* Total bytes of to write */
8257 int rc; /* Return code */
8258 MemPage *pPage = pCur->pPage; /* Page being written */
8259 BtShared *pBt; /* Btree */
8260 Pgno ovflPgno; /* Next overflow page to write */
8261 u32 ovflPageSize; /* Size to write on overflow page */
8262
drh4f84e9c2018-05-03 13:56:23 +00008263 if( pCur->info.pPayload + pCur->info.nLocal > pPage->aDataEnd ){
8264 return SQLITE_CORRUPT_BKPT;
8265 }
drh3de5d162018-05-03 03:59:02 +00008266 /* Overwrite the local portion first */
8267 rc = btreeOverwriteContent(pPage, pCur->info.pPayload, pX,
8268 0, pCur->info.nLocal);
8269 if( rc ) return rc;
8270 if( pCur->info.nLocal==nTotal ) return SQLITE_OK;
8271
8272 /* Now overwrite the overflow pages */
8273 iOffset = pCur->info.nLocal;
drh30f7a252018-05-07 11:29:59 +00008274 assert( nTotal>=0 );
8275 assert( iOffset>=0 );
drh3de5d162018-05-03 03:59:02 +00008276 ovflPgno = get4byte(pCur->info.pPayload + iOffset);
8277 pBt = pPage->pBt;
8278 ovflPageSize = pBt->usableSize - 4;
8279 do{
8280 rc = btreeGetPage(pBt, ovflPgno, &pPage, 0);
8281 if( rc ) return rc;
drh4f84e9c2018-05-03 13:56:23 +00008282 if( sqlite3PagerPageRefcount(pPage->pDbPage)!=1 ){
drhd5aa9262018-05-03 16:56:06 +00008283 rc = SQLITE_CORRUPT_BKPT;
drh3de5d162018-05-03 03:59:02 +00008284 }else{
drh30f7a252018-05-07 11:29:59 +00008285 if( iOffset+ovflPageSize<(u32)nTotal ){
drhd5aa9262018-05-03 16:56:06 +00008286 ovflPgno = get4byte(pPage->aData);
8287 }else{
8288 ovflPageSize = nTotal - iOffset;
8289 }
8290 rc = btreeOverwriteContent(pPage, pPage->aData+4, pX,
8291 iOffset, ovflPageSize);
drh3de5d162018-05-03 03:59:02 +00008292 }
drhd5aa9262018-05-03 16:56:06 +00008293 sqlite3PagerUnref(pPage->pDbPage);
drh3de5d162018-05-03 03:59:02 +00008294 if( rc ) return rc;
8295 iOffset += ovflPageSize;
drh3de5d162018-05-03 03:59:02 +00008296 }while( iOffset<nTotal );
8297 return SQLITE_OK;
8298}
8299
drhf74b8d92002-09-01 23:20:45 +00008300
8301/*
drh8eeb4462016-05-21 20:03:42 +00008302** Insert a new record into the BTree. The content of the new record
8303** is described by the pX object. The pCur cursor is used only to
8304** define what table the record should be inserted into, and is left
8305** pointing at a random location.
drh4b70f112004-05-02 21:12:19 +00008306**
drh8eeb4462016-05-21 20:03:42 +00008307** For a table btree (used for rowid tables), only the pX.nKey value of
8308** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
8309** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
8310** hold the content of the row.
8311**
8312** For an index btree (used for indexes and WITHOUT ROWID tables), the
8313** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
8314** pX.pData,nData,nZero fields must be zero.
danielk1977de630352009-05-04 11:42:29 +00008315**
8316** If the seekResult parameter is non-zero, then a successful call to
drheaf6ae22016-11-09 20:14:34 +00008317** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8318** been performed. In other words, if seekResult!=0 then the cursor
8319** is currently pointing to a cell that will be adjacent to the cell
8320** to be inserted. If seekResult<0 then pCur points to a cell that is
8321** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
8322** that is larger than (pKey,nKey).
danielk1977de630352009-05-04 11:42:29 +00008323**
drheaf6ae22016-11-09 20:14:34 +00008324** If seekResult==0, that means pCur is pointing at some unknown location.
8325** In that case, this routine must seek the cursor to the correct insertion
8326** point for (pKey,nKey) before doing the insertion. For index btrees,
8327** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8328** key values and pX->aMem can be used instead of pX->pKey to avoid having
8329** to decode the key.
drh3b7511c2001-05-26 13:15:44 +00008330*/
drh3aac2dd2004-04-26 14:10:20 +00008331int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00008332 BtCursor *pCur, /* Insert data into the table of this cursor */
drh8eeb4462016-05-21 20:03:42 +00008333 const BtreePayload *pX, /* Content of the row to be inserted */
danf91c1312017-01-10 20:04:38 +00008334 int flags, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00008335 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00008336){
drh3b7511c2001-05-26 13:15:44 +00008337 int rc;
drh3e9ca092009-09-08 01:14:48 +00008338 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00008339 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00008340 int idx;
drh3b7511c2001-05-26 13:15:44 +00008341 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00008342 Btree *p = pCur->pBtree;
8343 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00008344 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00008345 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00008346
danf91c1312017-01-10 20:04:38 +00008347 assert( (flags & (BTREE_SAVEPOSITION|BTREE_APPEND))==flags );
8348
drh98add2e2009-07-20 17:11:49 +00008349 if( pCur->eState==CURSOR_FAULT ){
8350 assert( pCur->skipNext!=SQLITE_OK );
8351 return pCur->skipNext;
8352 }
8353
dan7a2347e2016-01-07 16:43:54 +00008354 assert( cursorOwnsBtShared(pCur) );
drh3f387402014-09-24 01:23:00 +00008355 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
8356 && pBt->inTransaction==TRANS_WRITE
drhc9166342012-01-05 23:32:06 +00008357 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk197796d48e92009-06-29 06:00:37 +00008358 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8359
danielk197731d31b82009-07-13 13:18:07 +00008360 /* Assert that the caller has been consistent. If this cursor was opened
8361 ** expecting an index b-tree, then the caller should be inserting blob
8362 ** keys with no associated data. If the cursor was opened expecting an
8363 ** intkey table, the caller should be inserting integer keys with a
8364 ** blob of associated data. */
drh8eeb4462016-05-21 20:03:42 +00008365 assert( (pX->pKey==0)==(pCur->pKeyInfo==0) );
danielk197731d31b82009-07-13 13:18:07 +00008366
danielk19779c3acf32009-05-02 07:36:49 +00008367 /* Save the positions of any other cursors open on this table.
8368 **
danielk19773509a652009-07-06 18:56:13 +00008369 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00008370 ** example, when inserting data into a table with auto-generated integer
8371 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8372 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00008373 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00008374 ** that the cursor is already where it needs to be and returns without
8375 ** doing any work. To avoid thwarting these optimizations, it is important
8376 ** not to clear the cursor here.
8377 */
drh27fb7462015-06-30 02:47:36 +00008378 if( pCur->curFlags & BTCF_Multiple ){
8379 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8380 if( rc ) return rc;
drhd60f4f42012-03-23 14:23:52 +00008381 }
8382
danielk197771d5d2c2008-09-29 11:49:47 +00008383 if( pCur->pKeyInfo==0 ){
drh8eeb4462016-05-21 20:03:42 +00008384 assert( pX->pKey==0 );
drhe0670b62014-02-12 21:31:12 +00008385 /* If this is an insert into a table b-tree, invalidate any incrblob
8386 ** cursors open on the row being replaced */
drh9ca431a2017-03-29 18:03:50 +00008387 invalidateIncrblobCursors(p, pCur->pgnoRoot, pX->nKey, 0);
drhe0670b62014-02-12 21:31:12 +00008388
danf91c1312017-01-10 20:04:38 +00008389 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
drhd720d392018-05-07 17:27:04 +00008390 ** to a row with the same key as the new entry being inserted.
8391 */
8392#ifdef SQLITE_DEBUG
8393 if( flags & BTREE_SAVEPOSITION ){
8394 assert( pCur->curFlags & BTCF_ValidNKey );
8395 assert( pX->nKey==pCur->info.nKey );
8396 assert( pCur->info.nSize!=0 );
8397 assert( loc==0 );
8398 }
8399#endif
danf91c1312017-01-10 20:04:38 +00008400
drhd720d392018-05-07 17:27:04 +00008401 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
8402 ** that the cursor is not pointing to a row to be overwritten.
8403 ** So do a complete check.
8404 */
drh7a1c28d2016-11-10 20:42:08 +00008405 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && pX->nKey==pCur->info.nKey ){
drhd720d392018-05-07 17:27:04 +00008406 /* The cursor is pointing to the entry that is to be
drh3de5d162018-05-03 03:59:02 +00008407 ** overwritten */
drh30f7a252018-05-07 11:29:59 +00008408 assert( pX->nData>=0 && pX->nZero>=0 );
8409 if( pCur->info.nSize!=0
8410 && pCur->info.nPayload==(u32)pX->nData+pX->nZero
8411 ){
drhd720d392018-05-07 17:27:04 +00008412 /* New entry is the same size as the old. Do an overwrite */
drh3de5d162018-05-03 03:59:02 +00008413 return btreeOverwriteCell(pCur, pX);
8414 }
drhd720d392018-05-07 17:27:04 +00008415 assert( loc==0 );
drh207c8172015-06-29 23:01:32 +00008416 }else if( loc==0 ){
drhd720d392018-05-07 17:27:04 +00008417 /* The cursor is *not* pointing to the cell to be overwritten, nor
8418 ** to an adjacent cell. Move the cursor so that it is pointing either
8419 ** to the cell to be overwritten or an adjacent cell.
8420 */
danf91c1312017-01-10 20:04:38 +00008421 rc = sqlite3BtreeMovetoUnpacked(pCur, 0, pX->nKey, flags!=0, &loc);
drh207c8172015-06-29 23:01:32 +00008422 if( rc ) return rc;
drhe0670b62014-02-12 21:31:12 +00008423 }
drhd720d392018-05-07 17:27:04 +00008424 }else{
8425 /* This is an index or a WITHOUT ROWID table */
8426
8427 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8428 ** to a row with the same key as the new entry being inserted.
8429 */
8430 assert( (flags & BTREE_SAVEPOSITION)==0 || loc==0 );
8431
8432 /* If the cursor is not already pointing either to the cell to be
8433 ** overwritten, or if a new cell is being inserted, if the cursor is
8434 ** not pointing to an immediately adjacent cell, then move the cursor
8435 ** so that it does.
8436 */
8437 if( loc==0 && (flags & BTREE_SAVEPOSITION)==0 ){
8438 if( pX->nMem ){
8439 UnpackedRecord r;
8440 r.pKeyInfo = pCur->pKeyInfo;
8441 r.aMem = pX->aMem;
8442 r.nField = pX->nMem;
8443 r.default_rc = 0;
8444 r.errCode = 0;
8445 r.r1 = 0;
8446 r.r2 = 0;
8447 r.eqSeen = 0;
8448 rc = sqlite3BtreeMovetoUnpacked(pCur, &r, 0, flags!=0, &loc);
8449 }else{
8450 rc = btreeMoveto(pCur, pX->pKey, pX->nKey, flags!=0, &loc);
8451 }
8452 if( rc ) return rc;
drh9b4eaeb2016-11-09 00:10:33 +00008453 }
drh89ee2292018-05-07 18:41:19 +00008454
8455 /* If the cursor is currently pointing to an entry to be overwritten
8456 ** and the new content is the same as as the old, then use the
8457 ** overwrite optimization.
8458 */
8459 if( loc==0 ){
8460 getCellInfo(pCur);
8461 if( pCur->info.nKey==pX->nKey ){
8462 BtreePayload x2;
8463 x2.pData = pX->pKey;
8464 x2.nData = pX->nKey;
8465 x2.nZero = 0;
8466 return btreeOverwriteCell(pCur, &x2);
8467 }
8468 }
8469
danielk1977da184232006-01-05 11:34:32 +00008470 }
danielk1977b980d2212009-06-22 18:03:51 +00008471 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00008472
drh352a35a2017-08-15 03:46:47 +00008473 pPage = pCur->pPage;
drh8eeb4462016-05-21 20:03:42 +00008474 assert( pPage->intKey || pX->nKey>=0 );
drh44845222008-07-17 18:39:57 +00008475 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00008476
drh3a4c1412004-05-09 20:40:11 +00008477 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
drh8eeb4462016-05-21 20:03:42 +00008478 pCur->pgnoRoot, pX->nKey, pX->nData, pPage->pgno,
drh3a4c1412004-05-09 20:40:11 +00008479 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00008480 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00008481 newCell = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008482 assert( newCell!=0 );
drh8eeb4462016-05-21 20:03:42 +00008483 rc = fillInCell(pPage, newCell, pX, &szNew);
drh2e38c322004-09-03 18:38:44 +00008484 if( rc ) goto end_insert;
drh25ada072015-06-19 15:07:14 +00008485 assert( szNew==pPage->xCellSize(pPage, newCell) );
drhfcd71b62011-04-05 22:08:24 +00008486 assert( szNew <= MX_CELL_SIZE(pBt) );
drh75e96b32017-04-01 00:20:06 +00008487 idx = pCur->ix;
danielk1977b980d2212009-06-22 18:03:51 +00008488 if( loc==0 ){
drh80159da2016-12-09 17:32:51 +00008489 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00008490 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00008491 rc = sqlite3PagerWrite(pPage->pDbPage);
8492 if( rc ){
8493 goto end_insert;
8494 }
danielk197771d5d2c2008-09-29 11:49:47 +00008495 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00008496 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00008497 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00008498 }
drh80159da2016-12-09 17:32:51 +00008499 rc = clearCell(pPage, oldCell, &info);
danca66f6c2017-06-08 11:14:08 +00008500 if( info.nSize==szNew && info.nLocal==info.nPayload
8501 && (!ISAUTOVACUUM || szNew<pPage->minLocal)
8502 ){
drhf9238252016-12-09 18:09:42 +00008503 /* Overwrite the old cell with the new if they are the same size.
8504 ** We could also try to do this if the old cell is smaller, then add
8505 ** the leftover space to the free list. But experiments show that
8506 ** doing that is no faster then skipping this optimization and just
danca66f6c2017-06-08 11:14:08 +00008507 ** calling dropCell() and insertCell().
8508 **
8509 ** This optimization cannot be used on an autovacuum database if the
8510 ** new entry uses overflow pages, as the insertCell() call below is
8511 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
drhf9238252016-12-09 18:09:42 +00008512 assert( rc==SQLITE_OK ); /* clearCell never fails when nLocal==nPayload */
drh2d083432016-12-09 19:42:18 +00008513 if( oldCell+szNew > pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
drh80159da2016-12-09 17:32:51 +00008514 memcpy(oldCell, newCell, szNew);
8515 return SQLITE_OK;
8516 }
8517 dropCell(pPage, idx, info.nSize, &rc);
drh2e38c322004-09-03 18:38:44 +00008518 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00008519 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00008520 assert( pPage->leaf );
drh75e96b32017-04-01 00:20:06 +00008521 idx = ++pCur->ix;
dan874080b2017-05-01 18:12:56 +00008522 pCur->curFlags &= ~BTCF_ValidNKey;
drh14acc042001-06-10 19:56:58 +00008523 }else{
drh4b70f112004-05-02 21:12:19 +00008524 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00008525 }
drh98add2e2009-07-20 17:11:49 +00008526 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
drh09a4e922016-05-21 12:29:04 +00008527 assert( pPage->nOverflow==0 || rc==SQLITE_OK );
danielk19773f632d52009-05-02 10:03:09 +00008528 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00008529
mistachkin48864df2013-03-21 21:20:32 +00008530 /* If no error has occurred and pPage has an overflow cell, call balance()
danielk1977a50d9aa2009-06-08 14:49:45 +00008531 ** to redistribute the cells within the tree. Since balance() may move
drh036dbec2014-03-11 23:40:44 +00008532 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
danielk1977a50d9aa2009-06-08 14:49:45 +00008533 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00008534 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008535 ** Previous versions of SQLite called moveToRoot() to move the cursor
8536 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00008537 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8538 ** set the cursor state to "invalid". This makes common insert operations
8539 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00008540 **
danielk1977a50d9aa2009-06-08 14:49:45 +00008541 ** There is a subtle but important optimization here too. When inserting
8542 ** multiple records into an intkey b-tree using a single cursor (as can
8543 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8544 ** is advantageous to leave the cursor pointing to the last entry in
8545 ** the b-tree if possible. If the cursor is left pointing to the last
8546 ** entry in the table, and the next row inserted has an integer key
8547 ** larger than the largest existing key, it is possible to insert the
8548 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00008549 */
danielk1977a50d9aa2009-06-08 14:49:45 +00008550 pCur->info.nSize = 0;
drh09a4e922016-05-21 12:29:04 +00008551 if( pPage->nOverflow ){
8552 assert( rc==SQLITE_OK );
drh036dbec2014-03-11 23:40:44 +00008553 pCur->curFlags &= ~(BTCF_ValidNKey);
danielk1977a50d9aa2009-06-08 14:49:45 +00008554 rc = balance(pCur);
8555
8556 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00008557 ** fails. Internal data structure corruption will result otherwise.
8558 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8559 ** from trying to save the current position of the cursor. */
drh352a35a2017-08-15 03:46:47 +00008560 pCur->pPage->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00008561 pCur->eState = CURSOR_INVALID;
danf91c1312017-01-10 20:04:38 +00008562 if( (flags & BTREE_SAVEPOSITION) && rc==SQLITE_OK ){
drh85ef6302017-08-02 15:50:09 +00008563 btreeReleaseAllCursorPages(pCur);
drh7b20a152017-01-12 19:10:55 +00008564 if( pCur->pKeyInfo ){
danf91c1312017-01-10 20:04:38 +00008565 assert( pCur->pKey==0 );
8566 pCur->pKey = sqlite3Malloc( pX->nKey );
8567 if( pCur->pKey==0 ){
8568 rc = SQLITE_NOMEM;
8569 }else{
8570 memcpy(pCur->pKey, pX->pKey, pX->nKey);
8571 }
8572 }
8573 pCur->eState = CURSOR_REQUIRESEEK;
8574 pCur->nKey = pX->nKey;
8575 }
danielk19773f632d52009-05-02 10:03:09 +00008576 }
drh352a35a2017-08-15 03:46:47 +00008577 assert( pCur->iPage<0 || pCur->pPage->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00008578
drh2e38c322004-09-03 18:38:44 +00008579end_insert:
drh5e2f8b92001-05-28 00:41:15 +00008580 return rc;
8581}
8582
8583/*
danf0ee1d32015-09-12 19:26:11 +00008584** Delete the entry that the cursor is pointing to.
8585**
drhe807bdb2016-01-21 17:06:33 +00008586** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
8587** the cursor is left pointing at an arbitrary location after the delete.
8588** But if that bit is set, then the cursor is left in a state such that
8589** the next call to BtreeNext() or BtreePrev() moves it to the same row
8590** as it would have been on if the call to BtreeDelete() had been omitted.
8591**
drhdef19e32016-01-27 16:26:25 +00008592** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
8593** associated with a single table entry and its indexes. Only one of those
8594** deletes is considered the "primary" delete. The primary delete occurs
8595** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
8596** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
8597** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
drhe807bdb2016-01-21 17:06:33 +00008598** but which might be used by alternative storage engines.
drh3b7511c2001-05-26 13:15:44 +00008599*/
drhe807bdb2016-01-21 17:06:33 +00008600int sqlite3BtreeDelete(BtCursor *pCur, u8 flags){
drhd677b3d2007-08-20 22:48:41 +00008601 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00008602 BtShared *pBt = p->pBt;
8603 int rc; /* Return code */
8604 MemPage *pPage; /* Page to delete cell from */
8605 unsigned char *pCell; /* Pointer to cell to delete */
8606 int iCellIdx; /* Index of cell to delete */
8607 int iCellDepth; /* Depth of node containing pCell */
drh80159da2016-12-09 17:32:51 +00008608 CellInfo info; /* Size of the cell being deleted */
danf0ee1d32015-09-12 19:26:11 +00008609 int bSkipnext = 0; /* Leaf cursor in SKIPNEXT state */
drhe807bdb2016-01-21 17:06:33 +00008610 u8 bPreserve = flags & BTREE_SAVEPOSITION; /* Keep cursor valid */
drh8b2f49b2001-06-08 00:21:52 +00008611
dan7a2347e2016-01-07 16:43:54 +00008612 assert( cursorOwnsBtShared(pCur) );
drh64022502009-01-09 14:11:04 +00008613 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008614 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
drh036dbec2014-03-11 23:40:44 +00008615 assert( pCur->curFlags & BTCF_WriteFlag );
danielk197796d48e92009-06-29 06:00:37 +00008616 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
8617 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
drh352a35a2017-08-15 03:46:47 +00008618 assert( pCur->ix<pCur->pPage->nCell );
drh98ef0f62015-06-30 01:25:52 +00008619 assert( pCur->eState==CURSOR_VALID );
drhdef19e32016-01-27 16:26:25 +00008620 assert( (flags & ~(BTREE_SAVEPOSITION | BTREE_AUXDELETE))==0 );
danielk1977da184232006-01-05 11:34:32 +00008621
danielk19774dbaa892009-06-16 16:50:22 +00008622 iCellDepth = pCur->iPage;
drh75e96b32017-04-01 00:20:06 +00008623 iCellIdx = pCur->ix;
drh352a35a2017-08-15 03:46:47 +00008624 pPage = pCur->pPage;
danielk19774dbaa892009-06-16 16:50:22 +00008625 pCell = findCell(pPage, iCellIdx);
8626
drhbfc7a8b2016-04-09 17:04:05 +00008627 /* If the bPreserve flag is set to true, then the cursor position must
8628 ** be preserved following this delete operation. If the current delete
8629 ** will cause a b-tree rebalance, then this is done by saving the cursor
8630 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
8631 ** returning.
8632 **
8633 ** Or, if the current delete will not cause a rebalance, then the cursor
8634 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
8635 ** before or after the deleted entry. In this case set bSkipnext to true. */
8636 if( bPreserve ){
8637 if( !pPage->leaf
8638 || (pPage->nFree+cellSizePtr(pPage,pCell)+2)>(int)(pBt->usableSize*2/3)
drh1641f112018-12-13 21:05:45 +00008639 || pPage->nCell==1 /* See dbfuzz001.test for a test case */
drhbfc7a8b2016-04-09 17:04:05 +00008640 ){
8641 /* A b-tree rebalance will be required after deleting this entry.
8642 ** Save the cursor key. */
8643 rc = saveCursorKey(pCur);
8644 if( rc ) return rc;
8645 }else{
8646 bSkipnext = 1;
8647 }
8648 }
8649
danielk19774dbaa892009-06-16 16:50:22 +00008650 /* If the page containing the entry to delete is not a leaf page, move
8651 ** the cursor to the largest entry in the tree that is smaller than
8652 ** the entry being deleted. This cell will replace the cell being deleted
8653 ** from the internal node. The 'previous' entry is used for this instead
8654 ** of the 'next' entry, as the previous entry is always a part of the
8655 ** sub-tree headed by the child page of the cell being deleted. This makes
8656 ** balancing the tree following the delete operation easier. */
8657 if( !pPage->leaf ){
drh2ab792e2017-05-30 18:34:07 +00008658 rc = sqlite3BtreePrevious(pCur, 0);
8659 assert( rc!=SQLITE_DONE );
drh4c301aa2009-07-15 17:25:45 +00008660 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00008661 }
8662
8663 /* Save the positions of any other cursors open on this table before
danf0ee1d32015-09-12 19:26:11 +00008664 ** making any modifications. */
drh27fb7462015-06-30 02:47:36 +00008665 if( pCur->curFlags & BTCF_Multiple ){
8666 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
8667 if( rc ) return rc;
8668 }
drhd60f4f42012-03-23 14:23:52 +00008669
8670 /* If this is a delete operation to remove a row from a table b-tree,
8671 ** invalidate any incrblob cursors open on the row being deleted. */
8672 if( pCur->pKeyInfo==0 ){
drh9ca431a2017-03-29 18:03:50 +00008673 invalidateIncrblobCursors(p, pCur->pgnoRoot, pCur->info.nKey, 0);
drhd60f4f42012-03-23 14:23:52 +00008674 }
8675
danf0ee1d32015-09-12 19:26:11 +00008676 /* Make the page containing the entry to be deleted writable. Then free any
8677 ** overflow pages associated with the entry and finally remove the cell
8678 ** itself from within the page. */
drha4ec1d42009-07-11 13:13:11 +00008679 rc = sqlite3PagerWrite(pPage->pDbPage);
8680 if( rc ) return rc;
drh80159da2016-12-09 17:32:51 +00008681 rc = clearCell(pPage, pCell, &info);
8682 dropCell(pPage, iCellIdx, info.nSize, &rc);
drha4ec1d42009-07-11 13:13:11 +00008683 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00008684
danielk19774dbaa892009-06-16 16:50:22 +00008685 /* If the cell deleted was not located on a leaf page, then the cursor
8686 ** is currently pointing to the largest entry in the sub-tree headed
8687 ** by the child-page of the cell that was just deleted from an internal
8688 ** node. The cell from the leaf node needs to be moved to the internal
8689 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00008690 if( !pPage->leaf ){
drh352a35a2017-08-15 03:46:47 +00008691 MemPage *pLeaf = pCur->pPage;
danielk19774dbaa892009-06-16 16:50:22 +00008692 int nCell;
drh352a35a2017-08-15 03:46:47 +00008693 Pgno n;
danielk19774dbaa892009-06-16 16:50:22 +00008694 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00008695
drh352a35a2017-08-15 03:46:47 +00008696 if( iCellDepth<pCur->iPage-1 ){
8697 n = pCur->apPage[iCellDepth+1]->pgno;
8698 }else{
8699 n = pCur->pPage->pgno;
8700 }
danielk19774dbaa892009-06-16 16:50:22 +00008701 pCell = findCell(pLeaf, pLeaf->nCell-1);
drhb468ce12015-06-24 01:07:30 +00008702 if( pCell<&pLeaf->aData[4] ) return SQLITE_CORRUPT_BKPT;
drh25ada072015-06-19 15:07:14 +00008703 nCell = pLeaf->xCellSize(pLeaf, pCell);
drhfcd71b62011-04-05 22:08:24 +00008704 assert( MX_CELL_SIZE(pBt) >= nCell );
danielk19774dbaa892009-06-16 16:50:22 +00008705 pTmp = pBt->pTmpSpace;
drh3fbb0222014-09-24 19:47:27 +00008706 assert( pTmp!=0 );
drha4ec1d42009-07-11 13:13:11 +00008707 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drhcb89f4a2016-05-21 11:23:26 +00008708 if( rc==SQLITE_OK ){
8709 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
8710 }
drh98add2e2009-07-20 17:11:49 +00008711 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00008712 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00008713 }
danielk19774dbaa892009-06-16 16:50:22 +00008714
8715 /* Balance the tree. If the entry deleted was located on a leaf page,
8716 ** then the cursor still points to that page. In this case the first
8717 ** call to balance() repairs the tree, and the if(...) condition is
8718 ** never true.
8719 **
8720 ** Otherwise, if the entry deleted was on an internal node page, then
8721 ** pCur is pointing to the leaf page from which a cell was removed to
8722 ** replace the cell deleted from the internal node. This is slightly
8723 ** tricky as the leaf node may be underfull, and the internal node may
8724 ** be either under or overfull. In this case run the balancing algorithm
8725 ** on the leaf node first. If the balance proceeds far enough up the
8726 ** tree that we can be sure that any problem in the internal node has
8727 ** been corrected, so be it. Otherwise, after balancing the leaf node,
8728 ** walk the cursor up the tree to the internal node and balance it as
8729 ** well. */
8730 rc = balance(pCur);
8731 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
drh352a35a2017-08-15 03:46:47 +00008732 releasePageNotNull(pCur->pPage);
8733 pCur->iPage--;
danielk19774dbaa892009-06-16 16:50:22 +00008734 while( pCur->iPage>iCellDepth ){
8735 releasePage(pCur->apPage[pCur->iPage--]);
8736 }
drh352a35a2017-08-15 03:46:47 +00008737 pCur->pPage = pCur->apPage[pCur->iPage];
danielk19774dbaa892009-06-16 16:50:22 +00008738 rc = balance(pCur);
8739 }
8740
danielk19776b456a22005-03-21 04:04:02 +00008741 if( rc==SQLITE_OK ){
danf0ee1d32015-09-12 19:26:11 +00008742 if( bSkipnext ){
drha660caf2016-01-01 03:37:44 +00008743 assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
drh352a35a2017-08-15 03:46:47 +00008744 assert( pPage==pCur->pPage || CORRUPT_DB );
drh78ac1092015-09-20 22:57:47 +00008745 assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
danf0ee1d32015-09-12 19:26:11 +00008746 pCur->eState = CURSOR_SKIPNEXT;
8747 if( iCellIdx>=pPage->nCell ){
8748 pCur->skipNext = -1;
drh75e96b32017-04-01 00:20:06 +00008749 pCur->ix = pPage->nCell-1;
danf0ee1d32015-09-12 19:26:11 +00008750 }else{
8751 pCur->skipNext = 1;
8752 }
8753 }else{
8754 rc = moveToRoot(pCur);
8755 if( bPreserve ){
drh85ef6302017-08-02 15:50:09 +00008756 btreeReleaseAllCursorPages(pCur);
danf0ee1d32015-09-12 19:26:11 +00008757 pCur->eState = CURSOR_REQUIRESEEK;
8758 }
drh44548e72017-08-14 18:13:52 +00008759 if( rc==SQLITE_EMPTY ) rc = SQLITE_OK;
danf0ee1d32015-09-12 19:26:11 +00008760 }
danielk19776b456a22005-03-21 04:04:02 +00008761 }
drh5e2f8b92001-05-28 00:41:15 +00008762 return rc;
drh3b7511c2001-05-26 13:15:44 +00008763}
drh8b2f49b2001-06-08 00:21:52 +00008764
8765/*
drhc6b52df2002-01-04 03:09:29 +00008766** Create a new BTree table. Write into *piTable the page
8767** number for the root page of the new table.
8768**
drhab01f612004-05-22 02:55:23 +00008769** The type of type is determined by the flags parameter. Only the
8770** following values of flags are currently in use. Other values for
8771** flags might not work:
8772**
8773** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
8774** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00008775*/
drhd4187c72010-08-30 22:15:45 +00008776static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
danielk1977aef0bf62005-12-30 16:28:01 +00008777 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00008778 MemPage *pRoot;
8779 Pgno pgnoRoot;
8780 int rc;
drhd4187c72010-08-30 22:15:45 +00008781 int ptfFlags; /* Page-type flage for the root page of new table */
drhd677b3d2007-08-20 22:48:41 +00008782
drh1fee73e2007-08-29 04:00:57 +00008783 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00008784 assert( pBt->inTransaction==TRANS_WRITE );
drhc9166342012-01-05 23:32:06 +00008785 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
danielk1977e6efa742004-11-10 11:55:10 +00008786
danielk1977003ba062004-11-04 02:57:33 +00008787#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00008788 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00008789 if( rc ){
8790 return rc;
8791 }
danielk1977003ba062004-11-04 02:57:33 +00008792#else
danielk1977687566d2004-11-02 12:56:41 +00008793 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00008794 Pgno pgnoMove; /* Move a page here to make room for the root-page */
8795 MemPage *pPageMove; /* The page to move to. */
8796
danielk197720713f32007-05-03 11:43:33 +00008797 /* Creating a new table may probably require moving an existing database
8798 ** to make room for the new tables root page. In case this page turns
8799 ** out to be an overflow page, delete all overflow page-map caches
8800 ** held by open cursors.
8801 */
danielk197792d4d7a2007-05-04 12:05:56 +00008802 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00008803
danielk1977003ba062004-11-04 02:57:33 +00008804 /* Read the value of meta[3] from the database to determine where the
8805 ** root page of the new table should go. meta[3] is the largest root-page
8806 ** created so far, so the new root-page is (meta[3]+1).
8807 */
danielk1977602b4662009-07-02 07:47:33 +00008808 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00008809 pgnoRoot++;
8810
danielk1977599fcba2004-11-08 07:13:13 +00008811 /* The new root-page may not be allocated on a pointer-map page, or the
8812 ** PENDING_BYTE page.
8813 */
drh72190432008-01-31 14:54:43 +00008814 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00008815 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00008816 pgnoRoot++;
8817 }
drh499e15b2015-05-22 12:37:37 +00008818 assert( pgnoRoot>=3 || CORRUPT_DB );
8819 testcase( pgnoRoot<3 );
danielk1977003ba062004-11-04 02:57:33 +00008820
8821 /* Allocate a page. The page that currently resides at pgnoRoot will
8822 ** be moved to the allocated page (unless the allocated page happens
8823 ** to reside at pgnoRoot).
8824 */
dan51f0b6d2013-02-22 20:16:34 +00008825 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
danielk1977003ba062004-11-04 02:57:33 +00008826 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00008827 return rc;
8828 }
danielk1977003ba062004-11-04 02:57:33 +00008829
8830 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00008831 /* pgnoRoot is the page that will be used for the root-page of
8832 ** the new table (assuming an error did not occur). But we were
8833 ** allocated pgnoMove. If required (i.e. if it was not allocated
8834 ** by extending the file), the current page at position pgnoMove
8835 ** is already journaled.
8836 */
drheeb844a2009-08-08 18:01:07 +00008837 u8 eType = 0;
8838 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00008839
danf7679ad2013-04-03 11:38:36 +00008840 /* Save the positions of any open cursors. This is required in
8841 ** case they are holding a reference to an xFetch reference
8842 ** corresponding to page pgnoRoot. */
8843 rc = saveAllCursors(pBt, 0, 0);
danielk1977003ba062004-11-04 02:57:33 +00008844 releasePage(pPageMove);
danf7679ad2013-04-03 11:38:36 +00008845 if( rc!=SQLITE_OK ){
8846 return rc;
8847 }
danielk1977f35843b2007-04-07 15:03:17 +00008848
8849 /* Move the page currently at pgnoRoot to pgnoMove. */
drhb00fc3b2013-08-21 23:42:32 +00008850 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008851 if( rc!=SQLITE_OK ){
8852 return rc;
8853 }
8854 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00008855 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
8856 rc = SQLITE_CORRUPT_BKPT;
8857 }
8858 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00008859 releasePage(pRoot);
8860 return rc;
8861 }
drhccae6022005-02-26 17:31:26 +00008862 assert( eType!=PTRMAP_ROOTPAGE );
8863 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00008864 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00008865 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00008866
8867 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00008868 if( rc!=SQLITE_OK ){
8869 return rc;
8870 }
drhb00fc3b2013-08-21 23:42:32 +00008871 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00008872 if( rc!=SQLITE_OK ){
8873 return rc;
8874 }
danielk19773b8a05f2007-03-19 17:44:26 +00008875 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00008876 if( rc!=SQLITE_OK ){
8877 releasePage(pRoot);
8878 return rc;
8879 }
8880 }else{
8881 pRoot = pPageMove;
8882 }
8883
danielk197742741be2005-01-08 12:42:39 +00008884 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00008885 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00008886 if( rc ){
8887 releasePage(pRoot);
8888 return rc;
8889 }
drhbf592832010-03-30 15:51:12 +00008890
8891 /* When the new root page was allocated, page 1 was made writable in
8892 ** order either to increase the database filesize, or to decrement the
8893 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
8894 */
8895 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00008896 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00008897 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00008898 releasePage(pRoot);
8899 return rc;
8900 }
danielk197742741be2005-01-08 12:42:39 +00008901
danielk1977003ba062004-11-04 02:57:33 +00008902 }else{
drh4f0c5872007-03-26 22:05:01 +00008903 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00008904 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00008905 }
8906#endif
danielk19773b8a05f2007-03-19 17:44:26 +00008907 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhd4187c72010-08-30 22:15:45 +00008908 if( createTabFlags & BTREE_INTKEY ){
8909 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
8910 }else{
8911 ptfFlags = PTF_ZERODATA | PTF_LEAF;
8912 }
8913 zeroPage(pRoot, ptfFlags);
danielk19773b8a05f2007-03-19 17:44:26 +00008914 sqlite3PagerUnref(pRoot->pDbPage);
drhd4187c72010-08-30 22:15:45 +00008915 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
drh8b2f49b2001-06-08 00:21:52 +00008916 *piTable = (int)pgnoRoot;
8917 return SQLITE_OK;
8918}
drhd677b3d2007-08-20 22:48:41 +00008919int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
8920 int rc;
8921 sqlite3BtreeEnter(p);
8922 rc = btreeCreateTable(p, piTable, flags);
8923 sqlite3BtreeLeave(p);
8924 return rc;
8925}
drh8b2f49b2001-06-08 00:21:52 +00008926
8927/*
8928** Erase the given database page and all its children. Return
8929** the page to the freelist.
8930*/
drh4b70f112004-05-02 21:12:19 +00008931static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00008932 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00008933 Pgno pgno, /* Page number to clear */
8934 int freePageFlag, /* Deallocate page if true */
8935 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00008936){
danielk1977146ba992009-07-22 14:08:13 +00008937 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00008938 int rc;
drh4b70f112004-05-02 21:12:19 +00008939 unsigned char *pCell;
8940 int i;
dan8ce71842014-01-14 20:14:09 +00008941 int hdr;
drh80159da2016-12-09 17:32:51 +00008942 CellInfo info;
drh8b2f49b2001-06-08 00:21:52 +00008943
drh1fee73e2007-08-29 04:00:57 +00008944 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00008945 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00008946 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00008947 }
drh28f58dd2015-06-27 19:45:03 +00008948 rc = getAndInitPage(pBt, pgno, &pPage, 0, 0);
danielk1977146ba992009-07-22 14:08:13 +00008949 if( rc ) return rc;
drhccf46d02015-04-01 13:21:33 +00008950 if( pPage->bBusy ){
8951 rc = SQLITE_CORRUPT_BKPT;
8952 goto cleardatabasepage_out;
8953 }
8954 pPage->bBusy = 1;
dan8ce71842014-01-14 20:14:09 +00008955 hdr = pPage->hdrOffset;
drh4b70f112004-05-02 21:12:19 +00008956 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00008957 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00008958 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00008959 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008960 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008961 }
drh80159da2016-12-09 17:32:51 +00008962 rc = clearCell(pPage, pCell, &info);
danielk19776b456a22005-03-21 04:04:02 +00008963 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00008964 }
drha34b6762004-05-07 13:30:42 +00008965 if( !pPage->leaf ){
dan8ce71842014-01-14 20:14:09 +00008966 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00008967 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00008968 }else if( pnChange ){
drhafe028a2015-05-22 13:09:50 +00008969 assert( pPage->intKey || CORRUPT_DB );
8970 testcase( !pPage->intKey );
danielk1977c7af4842008-10-27 13:59:33 +00008971 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00008972 }
8973 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00008974 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00008975 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
dan8ce71842014-01-14 20:14:09 +00008976 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00008977 }
danielk19776b456a22005-03-21 04:04:02 +00008978
8979cleardatabasepage_out:
drhccf46d02015-04-01 13:21:33 +00008980 pPage->bBusy = 0;
drh4b70f112004-05-02 21:12:19 +00008981 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00008982 return rc;
drh8b2f49b2001-06-08 00:21:52 +00008983}
8984
8985/*
drhab01f612004-05-22 02:55:23 +00008986** Delete all information from a single table in the database. iTable is
8987** the page number of the root of the table. After this routine returns,
8988** the root page is empty, but still exists.
8989**
8990** This routine will fail with SQLITE_LOCKED if there are any open
8991** read cursors on the table. Open write cursors are moved to the
8992** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00008993**
8994** If pnChange is not NULL, then table iTable must be an intkey table. The
8995** integer value pointed to by pnChange is incremented by the number of
8996** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00008997*/
danielk1977c7af4842008-10-27 13:59:33 +00008998int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00008999 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00009000 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00009001 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00009002 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00009003
drhc046e3e2009-07-15 11:26:44 +00009004 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
drhd60f4f42012-03-23 14:23:52 +00009005
drhc046e3e2009-07-15 11:26:44 +00009006 if( SQLITE_OK==rc ){
drhd60f4f42012-03-23 14:23:52 +00009007 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
9008 ** is the root of a table b-tree - if it is not, the following call is
9009 ** a no-op). */
drh9ca431a2017-03-29 18:03:50 +00009010 invalidateIncrblobCursors(p, (Pgno)iTable, 0, 1);
danielk197762c14b32008-11-19 09:05:26 +00009011 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00009012 }
drhd677b3d2007-08-20 22:48:41 +00009013 sqlite3BtreeLeave(p);
9014 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009015}
9016
9017/*
drh079a3072014-03-19 14:10:55 +00009018** Delete all information from the single table that pCur is open on.
9019**
9020** This routine only work for pCur on an ephemeral table.
9021*/
9022int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
9023 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
9024}
9025
9026/*
drh8b2f49b2001-06-08 00:21:52 +00009027** Erase all information in a table and add the root of the table to
9028** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00009029** page 1) is never added to the freelist.
9030**
9031** This routine will fail with SQLITE_LOCKED if there are any open
9032** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00009033**
9034** If AUTOVACUUM is enabled and the page at iTable is not the last
9035** root page in the database file, then the last root page
9036** in the database file is moved into the slot formerly occupied by
9037** iTable and that last slot formerly occupied by the last root page
9038** is added to the freelist instead of iTable. In this say, all
9039** root pages are kept at the beginning of the database file, which
9040** is necessary for AUTOVACUUM to work right. *piMoved is set to the
9041** page number that used to be the last root page in the file before
9042** the move. If no page gets moved, *piMoved is set to 0.
9043** The last root page is recorded in meta[3] and the value of
9044** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00009045*/
danielk197789d40042008-11-17 14:20:56 +00009046static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00009047 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00009048 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00009049 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00009050
drh1fee73e2007-08-29 04:00:57 +00009051 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00009052 assert( p->inTrans==TRANS_WRITE );
drh65f38d92016-11-22 01:26:42 +00009053 assert( iTable>=2 );
drh055f2982016-01-15 15:06:41 +00009054
drhb00fc3b2013-08-21 23:42:32 +00009055 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00009056 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00009057 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00009058 if( rc ){
9059 releasePage(pPage);
9060 return rc;
9061 }
danielk1977a0bf2652004-11-04 14:30:04 +00009062
drh205f48e2004-11-05 00:43:11 +00009063 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00009064
danielk1977a0bf2652004-11-04 14:30:04 +00009065#ifdef SQLITE_OMIT_AUTOVACUUM
drh055f2982016-01-15 15:06:41 +00009066 freePage(pPage, &rc);
9067 releasePage(pPage);
danielk1977a0bf2652004-11-04 14:30:04 +00009068#else
drh055f2982016-01-15 15:06:41 +00009069 if( pBt->autoVacuum ){
9070 Pgno maxRootPgno;
9071 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00009072
drh055f2982016-01-15 15:06:41 +00009073 if( iTable==maxRootPgno ){
9074 /* If the table being dropped is the table with the largest root-page
9075 ** number in the database, put the root page on the free list.
danielk1977599fcba2004-11-08 07:13:13 +00009076 */
drhc314dc72009-07-21 11:52:34 +00009077 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00009078 releasePage(pPage);
drh055f2982016-01-15 15:06:41 +00009079 if( rc!=SQLITE_OK ){
9080 return rc;
9081 }
9082 }else{
9083 /* The table being dropped does not have the largest root-page
9084 ** number in the database. So move the page that does into the
9085 ** gap left by the deleted root-page.
9086 */
9087 MemPage *pMove;
9088 releasePage(pPage);
9089 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9090 if( rc!=SQLITE_OK ){
9091 return rc;
9092 }
9093 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
9094 releasePage(pMove);
9095 if( rc!=SQLITE_OK ){
9096 return rc;
9097 }
9098 pMove = 0;
9099 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
9100 freePage(pMove, &rc);
9101 releasePage(pMove);
9102 if( rc!=SQLITE_OK ){
9103 return rc;
9104 }
9105 *piMoved = maxRootPgno;
danielk1977a0bf2652004-11-04 14:30:04 +00009106 }
drh055f2982016-01-15 15:06:41 +00009107
9108 /* Set the new 'max-root-page' value in the database header. This
9109 ** is the old value less one, less one more if that happens to
9110 ** be a root-page number, less one again if that is the
9111 ** PENDING_BYTE_PAGE.
drhc046e3e2009-07-15 11:26:44 +00009112 */
drh055f2982016-01-15 15:06:41 +00009113 maxRootPgno--;
9114 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
9115 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
9116 maxRootPgno--;
9117 }
9118 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
9119
9120 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
9121 }else{
9122 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00009123 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00009124 }
drh055f2982016-01-15 15:06:41 +00009125#endif
drh8b2f49b2001-06-08 00:21:52 +00009126 return rc;
9127}
drhd677b3d2007-08-20 22:48:41 +00009128int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
9129 int rc;
9130 sqlite3BtreeEnter(p);
dan7733a4d2011-09-02 18:03:16 +00009131 rc = btreeDropTable(p, iTable, piMoved);
drhd677b3d2007-08-20 22:48:41 +00009132 sqlite3BtreeLeave(p);
9133 return rc;
9134}
drh8b2f49b2001-06-08 00:21:52 +00009135
drh001bbcb2003-03-19 03:14:00 +00009136
drh8b2f49b2001-06-08 00:21:52 +00009137/*
danielk1977602b4662009-07-02 07:47:33 +00009138** This function may only be called if the b-tree connection already
9139** has a read or write transaction open on the database.
9140**
drh23e11ca2004-05-04 17:27:28 +00009141** Read the meta-information out of a database file. Meta[0]
9142** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00009143** through meta[15] are available for use by higher layers. Meta[0]
9144** is read-only, the others are read/write.
9145**
9146** The schema layer numbers meta values differently. At the schema
9147** layer (and the SetCookie and ReadCookie opcodes) the number of
9148** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh91618562014-12-19 19:28:02 +00009149**
9150** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
9151** of reading the value out of the header, it instead loads the "DataVersion"
9152** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
9153** database file. It is a number computed by the pager. But its access
9154** pattern is the same as header meta values, and so it is convenient to
9155** read it from this routine.
drh8b2f49b2001-06-08 00:21:52 +00009156*/
danielk1977602b4662009-07-02 07:47:33 +00009157void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00009158 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00009159
drhd677b3d2007-08-20 22:48:41 +00009160 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00009161 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00009162 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00009163 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00009164 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00009165
drh91618562014-12-19 19:28:02 +00009166 if( idx==BTREE_DATA_VERSION ){
drh3da9c042014-12-22 18:41:21 +00009167 *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
drh91618562014-12-19 19:28:02 +00009168 }else{
9169 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
9170 }
drhae157872004-08-14 19:20:09 +00009171
danielk1977602b4662009-07-02 07:47:33 +00009172 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
9173 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00009174#ifdef SQLITE_OMIT_AUTOVACUUM
drhc9166342012-01-05 23:32:06 +00009175 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
9176 pBt->btsFlags |= BTS_READ_ONLY;
9177 }
danielk1977003ba062004-11-04 02:57:33 +00009178#endif
drhae157872004-08-14 19:20:09 +00009179
drhd677b3d2007-08-20 22:48:41 +00009180 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00009181}
9182
9183/*
drh23e11ca2004-05-04 17:27:28 +00009184** Write meta-information back into the database. Meta[0] is
9185** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00009186*/
danielk1977aef0bf62005-12-30 16:28:01 +00009187int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
9188 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00009189 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00009190 int rc;
drh23e11ca2004-05-04 17:27:28 +00009191 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00009192 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00009193 assert( p->inTrans==TRANS_WRITE );
9194 assert( pBt->pPage1!=0 );
9195 pP1 = pBt->pPage1->aData;
9196 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
9197 if( rc==SQLITE_OK ){
9198 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00009199#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00009200 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00009201 assert( pBt->autoVacuum || iMeta==0 );
9202 assert( iMeta==0 || iMeta==1 );
9203 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00009204 }
drh64022502009-01-09 14:11:04 +00009205#endif
drh5df72a52002-06-06 23:16:05 +00009206 }
drhd677b3d2007-08-20 22:48:41 +00009207 sqlite3BtreeLeave(p);
9208 return rc;
drh8b2f49b2001-06-08 00:21:52 +00009209}
drh8c42ca92001-06-22 19:15:00 +00009210
danielk1977a5533162009-02-24 10:01:51 +00009211#ifndef SQLITE_OMIT_BTREECOUNT
9212/*
9213** The first argument, pCur, is a cursor opened on some b-tree. Count the
9214** number of entries in the b-tree and write the result to *pnEntry.
9215**
9216** SQLITE_OK is returned if the operation is successfully executed.
9217** Otherwise, if an error is encountered (i.e. an IO error or database
9218** corruption) an SQLite error code is returned.
9219*/
9220int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
9221 i64 nEntry = 0; /* Value to return in *pnEntry */
9222 int rc; /* Return code */
dana205a482011-08-27 18:48:57 +00009223
drh44548e72017-08-14 18:13:52 +00009224 rc = moveToRoot(pCur);
9225 if( rc==SQLITE_EMPTY ){
dana205a482011-08-27 18:48:57 +00009226 *pnEntry = 0;
9227 return SQLITE_OK;
9228 }
danielk1977a5533162009-02-24 10:01:51 +00009229
9230 /* Unless an error occurs, the following loop runs one iteration for each
9231 ** page in the B-Tree structure (not including overflow pages).
9232 */
9233 while( rc==SQLITE_OK ){
9234 int iIdx; /* Index of child node in parent */
9235 MemPage *pPage; /* Current page of the b-tree */
9236
9237 /* If this is a leaf page or the tree is not an int-key tree, then
9238 ** this page contains countable entries. Increment the entry counter
9239 ** accordingly.
9240 */
drh352a35a2017-08-15 03:46:47 +00009241 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +00009242 if( pPage->leaf || !pPage->intKey ){
9243 nEntry += pPage->nCell;
9244 }
9245
9246 /* pPage is a leaf node. This loop navigates the cursor so that it
9247 ** points to the first interior cell that it points to the parent of
9248 ** the next page in the tree that has not yet been visited. The
9249 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
9250 ** of the page, or to the number of cells in the page if the next page
9251 ** to visit is the right-child of its parent.
9252 **
9253 ** If all pages in the tree have been visited, return SQLITE_OK to the
9254 ** caller.
9255 */
9256 if( pPage->leaf ){
9257 do {
9258 if( pCur->iPage==0 ){
9259 /* All pages of the b-tree have been visited. Return successfully. */
9260 *pnEntry = nEntry;
drh7efa4262014-12-16 00:08:31 +00009261 return moveToRoot(pCur);
danielk1977a5533162009-02-24 10:01:51 +00009262 }
danielk197730548662009-07-09 05:07:37 +00009263 moveToParent(pCur);
drh352a35a2017-08-15 03:46:47 +00009264 }while ( pCur->ix>=pCur->pPage->nCell );
danielk1977a5533162009-02-24 10:01:51 +00009265
drh75e96b32017-04-01 00:20:06 +00009266 pCur->ix++;
drh352a35a2017-08-15 03:46:47 +00009267 pPage = pCur->pPage;
danielk1977a5533162009-02-24 10:01:51 +00009268 }
9269
9270 /* Descend to the child node of the cell that the cursor currently
9271 ** points at. This is the right-child if (iIdx==pPage->nCell).
9272 */
drh75e96b32017-04-01 00:20:06 +00009273 iIdx = pCur->ix;
danielk1977a5533162009-02-24 10:01:51 +00009274 if( iIdx==pPage->nCell ){
9275 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
9276 }else{
9277 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
9278 }
9279 }
9280
shanebe217792009-03-05 04:20:31 +00009281 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00009282 return rc;
9283}
9284#endif
drhdd793422001-06-28 01:54:48 +00009285
drhdd793422001-06-28 01:54:48 +00009286/*
drh5eddca62001-06-30 21:53:53 +00009287** Return the pager associated with a BTree. This routine is used for
9288** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00009289*/
danielk1977aef0bf62005-12-30 16:28:01 +00009290Pager *sqlite3BtreePager(Btree *p){
9291 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00009292}
drh5eddca62001-06-30 21:53:53 +00009293
drhb7f91642004-10-31 02:22:47 +00009294#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009295/*
9296** Append a message to the error message string.
9297*/
drh2e38c322004-09-03 18:38:44 +00009298static void checkAppendMsg(
9299 IntegrityCk *pCheck,
drh2e38c322004-09-03 18:38:44 +00009300 const char *zFormat,
9301 ...
9302){
9303 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00009304 if( !pCheck->mxErr ) return;
9305 pCheck->mxErr--;
9306 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00009307 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00009308 if( pCheck->errMsg.nChar ){
drh0cdbe1a2018-05-09 13:46:26 +00009309 sqlite3_str_append(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00009310 }
drh867db832014-09-26 02:41:05 +00009311 if( pCheck->zPfx ){
drh0cdbe1a2018-05-09 13:46:26 +00009312 sqlite3_str_appendf(&pCheck->errMsg, pCheck->zPfx, pCheck->v1, pCheck->v2);
drhf089aa42008-07-08 19:34:06 +00009313 }
drh0cdbe1a2018-05-09 13:46:26 +00009314 sqlite3_str_vappendf(&pCheck->errMsg, zFormat, ap);
drhf089aa42008-07-08 19:34:06 +00009315 va_end(ap);
drh0cdbe1a2018-05-09 13:46:26 +00009316 if( pCheck->errMsg.accError==SQLITE_NOMEM ){
drhc890fec2008-08-01 20:10:08 +00009317 pCheck->mallocFailed = 1;
9318 }
drh5eddca62001-06-30 21:53:53 +00009319}
drhb7f91642004-10-31 02:22:47 +00009320#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009321
drhb7f91642004-10-31 02:22:47 +00009322#ifndef SQLITE_OMIT_INTEGRITY_CHECK
dan1235bb12012-04-03 17:43:28 +00009323
9324/*
9325** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9326** corresponds to page iPg is already set.
9327*/
9328static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9329 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9330 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
9331}
9332
9333/*
9334** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
9335*/
9336static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
9337 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
9338 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
9339}
9340
9341
drh5eddca62001-06-30 21:53:53 +00009342/*
9343** Add 1 to the reference count for page iPage. If this is the second
9344** reference to the page, add an error message to pCheck->zErrMsg.
peter.d.reid60ec9142014-09-06 16:39:46 +00009345** Return 1 if there are 2 or more references to the page and 0 if
drh5eddca62001-06-30 21:53:53 +00009346** if this is the first reference to the page.
9347**
9348** Also check that the page number is in bounds.
9349*/
drh867db832014-09-26 02:41:05 +00009350static int checkRef(IntegrityCk *pCheck, Pgno iPage){
drh91d58662018-07-20 13:39:28 +00009351 if( iPage>pCheck->nPage || iPage==0 ){
drh867db832014-09-26 02:41:05 +00009352 checkAppendMsg(pCheck, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009353 return 1;
9354 }
dan1235bb12012-04-03 17:43:28 +00009355 if( getPageReferenced(pCheck, iPage) ){
drh867db832014-09-26 02:41:05 +00009356 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009357 return 1;
9358 }
dan1235bb12012-04-03 17:43:28 +00009359 setPageReferenced(pCheck, iPage);
9360 return 0;
drh5eddca62001-06-30 21:53:53 +00009361}
9362
danielk1977afcdd022004-10-31 16:25:42 +00009363#ifndef SQLITE_OMIT_AUTOVACUUM
9364/*
9365** Check that the entry in the pointer-map for page iChild maps to
9366** page iParent, pointer type ptrType. If not, append an error message
9367** to pCheck.
9368*/
9369static void checkPtrmap(
9370 IntegrityCk *pCheck, /* Integrity check context */
9371 Pgno iChild, /* Child page number */
9372 u8 eType, /* Expected pointer map type */
drh867db832014-09-26 02:41:05 +00009373 Pgno iParent /* Expected pointer map parent page number */
danielk1977afcdd022004-10-31 16:25:42 +00009374){
9375 int rc;
9376 u8 ePtrmapType;
9377 Pgno iPtrmapParent;
9378
9379 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
9380 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00009381 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
drh867db832014-09-26 02:41:05 +00009382 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
danielk1977afcdd022004-10-31 16:25:42 +00009383 return;
9384 }
9385
9386 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
drh867db832014-09-26 02:41:05 +00009387 checkAppendMsg(pCheck,
danielk1977afcdd022004-10-31 16:25:42 +00009388 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
9389 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
9390 }
9391}
9392#endif
9393
drh5eddca62001-06-30 21:53:53 +00009394/*
9395** Check the integrity of the freelist or of an overflow page list.
9396** Verify that the number of pages on the list is N.
9397*/
drh30e58752002-03-02 20:41:57 +00009398static void checkList(
9399 IntegrityCk *pCheck, /* Integrity checking context */
9400 int isFreeList, /* True for a freelist. False for overflow page list */
9401 int iPage, /* Page number for first page in the list */
drh867db832014-09-26 02:41:05 +00009402 int N /* Expected number of pages in the list */
drh30e58752002-03-02 20:41:57 +00009403){
9404 int i;
drh3a4c1412004-05-09 20:40:11 +00009405 int expected = N;
drh91d58662018-07-20 13:39:28 +00009406 int nErrAtStart = pCheck->nErr;
9407 while( iPage!=0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00009408 DbPage *pOvflPage;
9409 unsigned char *pOvflData;
drh867db832014-09-26 02:41:05 +00009410 if( checkRef(pCheck, iPage) ) break;
drh91d58662018-07-20 13:39:28 +00009411 N--;
drh9584f582015-11-04 20:22:37 +00009412 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
drh867db832014-09-26 02:41:05 +00009413 checkAppendMsg(pCheck, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00009414 break;
9415 }
danielk19773b8a05f2007-03-19 17:44:26 +00009416 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00009417 if( isFreeList ){
drhae104742018-12-14 17:57:01 +00009418 u32 n = (u32)get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00009419#ifndef SQLITE_OMIT_AUTOVACUUM
9420 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009421 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009422 }
9423#endif
drhae104742018-12-14 17:57:01 +00009424 if( n>pCheck->pBt->usableSize/4-2 ){
drh867db832014-09-26 02:41:05 +00009425 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009426 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00009427 N--;
9428 }else{
drhae104742018-12-14 17:57:01 +00009429 for(i=0; i<(int)n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00009430 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00009431#ifndef SQLITE_OMIT_AUTOVACUUM
9432 if( pCheck->pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009433 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009434 }
9435#endif
drh867db832014-09-26 02:41:05 +00009436 checkRef(pCheck, iFreePage);
drhee696e22004-08-30 16:52:17 +00009437 }
9438 N -= n;
drh30e58752002-03-02 20:41:57 +00009439 }
drh30e58752002-03-02 20:41:57 +00009440 }
danielk1977afcdd022004-10-31 16:25:42 +00009441#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009442 else{
9443 /* If this database supports auto-vacuum and iPage is not the last
9444 ** page in this overflow list, check that the pointer-map entry for
9445 ** the following page matches iPage.
9446 */
9447 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00009448 i = get4byte(pOvflData);
drh867db832014-09-26 02:41:05 +00009449 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
danielk1977687566d2004-11-02 12:56:41 +00009450 }
danielk1977afcdd022004-10-31 16:25:42 +00009451 }
9452#endif
danielk19773b8a05f2007-03-19 17:44:26 +00009453 iPage = get4byte(pOvflData);
9454 sqlite3PagerUnref(pOvflPage);
drh91d58662018-07-20 13:39:28 +00009455 }
9456 if( N && nErrAtStart==pCheck->nErr ){
9457 checkAppendMsg(pCheck,
9458 "%s is %d but should be %d",
9459 isFreeList ? "size" : "overflow list length",
9460 expected-N, expected);
drh5eddca62001-06-30 21:53:53 +00009461 }
9462}
drhb7f91642004-10-31 02:22:47 +00009463#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009464
drh67731a92015-04-16 11:56:03 +00009465/*
9466** An implementation of a min-heap.
9467**
9468** aHeap[0] is the number of elements on the heap. aHeap[1] is the
drha33b6832015-04-16 21:57:37 +00009469** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
drh67731a92015-04-16 11:56:03 +00009470** and aHeap[N*2+1].
9471**
9472** The heap property is this: Every node is less than or equal to both
9473** of its daughter nodes. A consequence of the heap property is that the
drh42c0a2b2015-04-28 01:28:36 +00009474** root node aHeap[1] is always the minimum value currently in the heap.
drh67731a92015-04-16 11:56:03 +00009475**
9476** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
9477** the heap, preserving the heap property. The btreeHeapPull() routine
9478** removes the root element from the heap (the minimum value in the heap)
drh42c0a2b2015-04-28 01:28:36 +00009479** and then moves other nodes around as necessary to preserve the heap
drh67731a92015-04-16 11:56:03 +00009480** property.
9481**
9482** This heap is used for cell overlap and coverage testing. Each u32
9483** entry represents the span of a cell or freeblock on a btree page.
9484** The upper 16 bits are the index of the first byte of a range and the
9485** lower 16 bits are the index of the last byte of that range.
9486*/
9487static void btreeHeapInsert(u32 *aHeap, u32 x){
9488 u32 j, i = ++aHeap[0];
9489 aHeap[i] = x;
drha33b6832015-04-16 21:57:37 +00009490 while( (j = i/2)>0 && aHeap[j]>aHeap[i] ){
drh67731a92015-04-16 11:56:03 +00009491 x = aHeap[j];
9492 aHeap[j] = aHeap[i];
9493 aHeap[i] = x;
9494 i = j;
9495 }
9496}
9497static int btreeHeapPull(u32 *aHeap, u32 *pOut){
9498 u32 j, i, x;
9499 if( (x = aHeap[0])==0 ) return 0;
9500 *pOut = aHeap[1];
9501 aHeap[1] = aHeap[x];
9502 aHeap[x] = 0xffffffff;
9503 aHeap[0]--;
9504 i = 1;
9505 while( (j = i*2)<=aHeap[0] ){
9506 if( aHeap[j]>aHeap[j+1] ) j++;
9507 if( aHeap[i]<aHeap[j] ) break;
9508 x = aHeap[i];
9509 aHeap[i] = aHeap[j];
9510 aHeap[j] = x;
9511 i = j;
9512 }
9513 return 1;
9514}
9515
drhb7f91642004-10-31 02:22:47 +00009516#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009517/*
9518** Do various sanity checks on a single page of a tree. Return
9519** the tree depth. Root pages return 0. Parents of root pages
9520** return 1, and so forth.
9521**
9522** These checks are done:
9523**
9524** 1. Make sure that cells and freeblocks do not overlap
9525** but combine to completely cover the page.
drhe05b3f82015-07-01 17:53:49 +00009526** 2. Make sure integer cell keys are in order.
9527** 3. Check the integrity of overflow pages.
9528** 4. Recursively call checkTreePage on all children.
9529** 5. Verify that the depth of all children is the same.
drh5eddca62001-06-30 21:53:53 +00009530*/
9531static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00009532 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00009533 int iPage, /* Page number of the page to check */
drhcbc6b712015-07-02 16:17:30 +00009534 i64 *piMinKey, /* Write minimum integer primary key here */
9535 i64 maxKey /* Error if integer primary key greater than this */
drh5eddca62001-06-30 21:53:53 +00009536){
drhcbc6b712015-07-02 16:17:30 +00009537 MemPage *pPage = 0; /* The page being analyzed */
9538 int i; /* Loop counter */
9539 int rc; /* Result code from subroutine call */
9540 int depth = -1, d2; /* Depth of a subtree */
9541 int pgno; /* Page number */
9542 int nFrag; /* Number of fragmented bytes on the page */
9543 int hdr; /* Offset to the page header */
9544 int cellStart; /* Offset to the start of the cell pointer array */
9545 int nCell; /* Number of cells */
9546 int doCoverageCheck = 1; /* True if cell coverage checking should be done */
9547 int keyCanBeEqual = 1; /* True if IPK can be equal to maxKey
9548 ** False if IPK must be strictly less than maxKey */
9549 u8 *data; /* Page content */
9550 u8 *pCell; /* Cell content */
9551 u8 *pCellIdx; /* Next element of the cell pointer array */
9552 BtShared *pBt; /* The BtShared object that owns pPage */
9553 u32 pc; /* Address of a cell */
9554 u32 usableSize; /* Usable size of the page */
9555 u32 contentOffset; /* Offset to the start of the cell content area */
9556 u32 *heap = 0; /* Min-heap used for checking cell coverage */
drhd2dc87f2015-07-02 19:47:08 +00009557 u32 x, prev = 0; /* Next and previous entry on the min-heap */
drh867db832014-09-26 02:41:05 +00009558 const char *saved_zPfx = pCheck->zPfx;
9559 int saved_v1 = pCheck->v1;
9560 int saved_v2 = pCheck->v2;
mistachkin532f1792015-07-14 17:18:05 +00009561 u8 savedIsInit = 0;
danielk1977ef73ee92004-11-06 12:26:07 +00009562
drh5eddca62001-06-30 21:53:53 +00009563 /* Check that the page exists
9564 */
drhd9cb6ac2005-10-20 07:28:17 +00009565 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00009566 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00009567 if( iPage==0 ) return 0;
drh867db832014-09-26 02:41:05 +00009568 if( checkRef(pCheck, iPage) ) return 0;
9569 pCheck->zPfx = "Page %d: ";
9570 pCheck->v1 = iPage;
drhb00fc3b2013-08-21 23:42:32 +00009571 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh867db832014-09-26 02:41:05 +00009572 checkAppendMsg(pCheck,
drh2e38c322004-09-03 18:38:44 +00009573 "unable to get the page. error code=%d", rc);
drh867db832014-09-26 02:41:05 +00009574 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009575 }
danielk197793caf5a2009-07-11 06:55:33 +00009576
9577 /* Clear MemPage.isInit to make sure the corruption detection code in
9578 ** btreeInitPage() is executed. */
drh72e191e2015-07-04 11:14:20 +00009579 savedIsInit = pPage->isInit;
danielk197793caf5a2009-07-11 06:55:33 +00009580 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00009581 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00009582 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh867db832014-09-26 02:41:05 +00009583 checkAppendMsg(pCheck,
danielk197730548662009-07-09 05:07:37 +00009584 "btreeInitPage() returns error code %d", rc);
drh867db832014-09-26 02:41:05 +00009585 goto end_of_check;
drh5eddca62001-06-30 21:53:53 +00009586 }
drhcbc6b712015-07-02 16:17:30 +00009587 data = pPage->aData;
9588 hdr = pPage->hdrOffset;
drh5eddca62001-06-30 21:53:53 +00009589
drhcbc6b712015-07-02 16:17:30 +00009590 /* Set up for cell analysis */
drhe05b3f82015-07-01 17:53:49 +00009591 pCheck->zPfx = "On tree page %d cell %d: ";
drhcbc6b712015-07-02 16:17:30 +00009592 contentOffset = get2byteNotZero(&data[hdr+5]);
9593 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
9594
9595 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
9596 ** number of cells on the page. */
9597 nCell = get2byte(&data[hdr+3]);
9598 assert( pPage->nCell==nCell );
9599
9600 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
9601 ** immediately follows the b-tree page header. */
9602 cellStart = hdr + 12 - 4*pPage->leaf;
9603 assert( pPage->aCellIdx==&data[cellStart] );
9604 pCellIdx = &data[cellStart + 2*(nCell-1)];
9605
9606 if( !pPage->leaf ){
9607 /* Analyze the right-child page of internal pages */
9608 pgno = get4byte(&data[hdr+8]);
9609#ifndef SQLITE_OMIT_AUTOVACUUM
9610 if( pBt->autoVacuum ){
9611 pCheck->zPfx = "On page %d at right child: ";
9612 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
9613 }
9614#endif
9615 depth = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9616 keyCanBeEqual = 0;
9617 }else{
9618 /* For leaf pages, the coverage check will occur in the same loop
9619 ** as the other cell checks, so initialize the heap. */
9620 heap = pCheck->heap;
9621 heap[0] = 0;
drh5eddca62001-06-30 21:53:53 +00009622 }
9623
drhcbc6b712015-07-02 16:17:30 +00009624 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
9625 ** integer offsets to the cell contents. */
9626 for(i=nCell-1; i>=0 && pCheck->mxErr; i--){
drh6f11bef2004-05-13 01:12:56 +00009627 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00009628
drhcbc6b712015-07-02 16:17:30 +00009629 /* Check cell size */
drh867db832014-09-26 02:41:05 +00009630 pCheck->v2 = i;
drhcbc6b712015-07-02 16:17:30 +00009631 assert( pCellIdx==&data[cellStart + i*2] );
9632 pc = get2byteAligned(pCellIdx);
9633 pCellIdx -= 2;
9634 if( pc<contentOffset || pc>usableSize-4 ){
9635 checkAppendMsg(pCheck, "Offset %d out of range %d..%d",
9636 pc, contentOffset, usableSize-4);
9637 doCoverageCheck = 0;
9638 continue;
shaneh195475d2010-02-19 04:28:08 +00009639 }
drhcbc6b712015-07-02 16:17:30 +00009640 pCell = &data[pc];
9641 pPage->xParseCell(pPage, pCell, &info);
9642 if( pc+info.nSize>usableSize ){
9643 checkAppendMsg(pCheck, "Extends off end of page");
9644 doCoverageCheck = 0;
9645 continue;
drh5eddca62001-06-30 21:53:53 +00009646 }
9647
drhcbc6b712015-07-02 16:17:30 +00009648 /* Check for integer primary key out of range */
9649 if( pPage->intKey ){
9650 if( keyCanBeEqual ? (info.nKey > maxKey) : (info.nKey >= maxKey) ){
9651 checkAppendMsg(pCheck, "Rowid %lld out of order", info.nKey);
9652 }
9653 maxKey = info.nKey;
dan4b2667c2017-05-01 18:24:01 +00009654 keyCanBeEqual = 0; /* Only the first key on the page may ==maxKey */
drhcbc6b712015-07-02 16:17:30 +00009655 }
9656
9657 /* Check the content overflow list */
9658 if( info.nPayload>info.nLocal ){
9659 int nPage; /* Number of pages on the overflow chain */
9660 Pgno pgnoOvfl; /* First page of the overflow chain */
drh45ac1c72015-12-18 03:59:16 +00009661 assert( pc + info.nSize - 4 <= usableSize );
drhcbc6b712015-07-02 16:17:30 +00009662 nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
drh45ac1c72015-12-18 03:59:16 +00009663 pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
drhda200cc2004-05-09 11:51:38 +00009664#ifndef SQLITE_OMIT_AUTOVACUUM
9665 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009666 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
drhda200cc2004-05-09 11:51:38 +00009667 }
9668#endif
drh867db832014-09-26 02:41:05 +00009669 checkList(pCheck, 0, pgnoOvfl, nPage);
drh5eddca62001-06-30 21:53:53 +00009670 }
9671
drh5eddca62001-06-30 21:53:53 +00009672 if( !pPage->leaf ){
drhcbc6b712015-07-02 16:17:30 +00009673 /* Check sanity of left child page for internal pages */
drh43605152004-05-29 21:46:49 +00009674 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00009675#ifndef SQLITE_OMIT_AUTOVACUUM
9676 if( pBt->autoVacuum ){
drh867db832014-09-26 02:41:05 +00009677 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
danielk1977afcdd022004-10-31 16:25:42 +00009678 }
9679#endif
drhcbc6b712015-07-02 16:17:30 +00009680 d2 = checkTreePage(pCheck, pgno, &maxKey, maxKey);
9681 keyCanBeEqual = 0;
9682 if( d2!=depth ){
drh867db832014-09-26 02:41:05 +00009683 checkAppendMsg(pCheck, "Child page depth differs");
drhcbc6b712015-07-02 16:17:30 +00009684 depth = d2;
drh5eddca62001-06-30 21:53:53 +00009685 }
drhcbc6b712015-07-02 16:17:30 +00009686 }else{
9687 /* Populate the coverage-checking heap for leaf pages */
9688 btreeHeapInsert(heap, (pc<<16)|(pc+info.nSize-1));
drh5eddca62001-06-30 21:53:53 +00009689 }
9690 }
drhcbc6b712015-07-02 16:17:30 +00009691 *piMinKey = maxKey;
shaneh195475d2010-02-19 04:28:08 +00009692
drh5eddca62001-06-30 21:53:53 +00009693 /* Check for complete coverage of the page
9694 */
drh867db832014-09-26 02:41:05 +00009695 pCheck->zPfx = 0;
drhcbc6b712015-07-02 16:17:30 +00009696 if( doCoverageCheck && pCheck->mxErr>0 ){
9697 /* For leaf pages, the min-heap has already been initialized and the
9698 ** cells have already been inserted. But for internal pages, that has
9699 ** not yet been done, so do it now */
9700 if( !pPage->leaf ){
9701 heap = pCheck->heap;
9702 heap[0] = 0;
drhcbc6b712015-07-02 16:17:30 +00009703 for(i=nCell-1; i>=0; i--){
drh1910def2015-07-02 16:29:56 +00009704 u32 size;
9705 pc = get2byteAligned(&data[cellStart+i*2]);
9706 size = pPage->xCellSize(pPage, &data[pc]);
drh67731a92015-04-16 11:56:03 +00009707 btreeHeapInsert(heap, (pc<<16)|(pc+size-1));
danielk19777701e812005-01-10 12:59:51 +00009708 }
drh2e38c322004-09-03 18:38:44 +00009709 }
drhcbc6b712015-07-02 16:17:30 +00009710 /* Add the freeblocks to the min-heap
9711 **
9712 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
drhfdab0262014-11-20 15:30:50 +00009713 ** is the offset of the first freeblock, or zero if there are no
drhcbc6b712015-07-02 16:17:30 +00009714 ** freeblocks on the page.
9715 */
drh8c2bbb62009-07-10 02:52:20 +00009716 i = get2byte(&data[hdr+1]);
9717 while( i>0 ){
9718 int size, j;
mistachkinc29cbb02015-07-02 16:52:01 +00009719 assert( (u32)i<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009720 size = get2byte(&data[i+2]);
mistachkinc29cbb02015-07-02 16:52:01 +00009721 assert( (u32)(i+size)<=usableSize ); /* Enforced by btreeInitPage() */
drhe56d4302015-07-08 01:22:52 +00009722 btreeHeapInsert(heap, (((u32)i)<<16)|(i+size-1));
drhfdab0262014-11-20 15:30:50 +00009723 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
9724 ** big-endian integer which is the offset in the b-tree page of the next
9725 ** freeblock in the chain, or zero if the freeblock is the last on the
9726 ** chain. */
drh8c2bbb62009-07-10 02:52:20 +00009727 j = get2byte(&data[i]);
drhfdab0262014-11-20 15:30:50 +00009728 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
9729 ** increasing offset. */
drh8c2bbb62009-07-10 02:52:20 +00009730 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
mistachkinc29cbb02015-07-02 16:52:01 +00009731 assert( (u32)j<=usableSize-4 ); /* Enforced by btreeInitPage() */
drh8c2bbb62009-07-10 02:52:20 +00009732 i = j;
drh2e38c322004-09-03 18:38:44 +00009733 }
drhcbc6b712015-07-02 16:17:30 +00009734 /* Analyze the min-heap looking for overlap between cells and/or
9735 ** freeblocks, and counting the number of untracked bytes in nFrag.
drhd2dc87f2015-07-02 19:47:08 +00009736 **
9737 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
9738 ** There is an implied first entry the covers the page header, the cell
9739 ** pointer index, and the gap between the cell pointer index and the start
9740 ** of cell content.
9741 **
9742 ** The loop below pulls entries from the min-heap in order and compares
9743 ** the start_address against the previous end_address. If there is an
9744 ** overlap, that means bytes are used multiple times. If there is a gap,
9745 ** that gap is added to the fragmentation count.
drhcbc6b712015-07-02 16:17:30 +00009746 */
9747 nFrag = 0;
drhd2dc87f2015-07-02 19:47:08 +00009748 prev = contentOffset - 1; /* Implied first min-heap entry */
drh67731a92015-04-16 11:56:03 +00009749 while( btreeHeapPull(heap,&x) ){
drhd2dc87f2015-07-02 19:47:08 +00009750 if( (prev&0xffff)>=(x>>16) ){
drh867db832014-09-26 02:41:05 +00009751 checkAppendMsg(pCheck,
drh67731a92015-04-16 11:56:03 +00009752 "Multiple uses for byte %u of page %d", x>>16, iPage);
drh2e38c322004-09-03 18:38:44 +00009753 break;
drh67731a92015-04-16 11:56:03 +00009754 }else{
drhcbc6b712015-07-02 16:17:30 +00009755 nFrag += (x>>16) - (prev&0xffff) - 1;
drh67731a92015-04-16 11:56:03 +00009756 prev = x;
drh2e38c322004-09-03 18:38:44 +00009757 }
9758 }
drhcbc6b712015-07-02 16:17:30 +00009759 nFrag += usableSize - (prev&0xffff) - 1;
drhfdab0262014-11-20 15:30:50 +00009760 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
9761 ** is stored in the fifth field of the b-tree page header.
9762 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
9763 ** number of fragmented free bytes within the cell content area.
9764 */
drhcbc6b712015-07-02 16:17:30 +00009765 if( heap[0]==0 && nFrag!=data[hdr+7] ){
drh867db832014-09-26 02:41:05 +00009766 checkAppendMsg(pCheck,
drh8c2bbb62009-07-10 02:52:20 +00009767 "Fragmentation of %d bytes reported as %d on page %d",
drhcbc6b712015-07-02 16:17:30 +00009768 nFrag, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00009769 }
9770 }
drh867db832014-09-26 02:41:05 +00009771
9772end_of_check:
drh72e191e2015-07-04 11:14:20 +00009773 if( !doCoverageCheck ) pPage->isInit = savedIsInit;
drh4b70f112004-05-02 21:12:19 +00009774 releasePage(pPage);
drh867db832014-09-26 02:41:05 +00009775 pCheck->zPfx = saved_zPfx;
9776 pCheck->v1 = saved_v1;
9777 pCheck->v2 = saved_v2;
drhda200cc2004-05-09 11:51:38 +00009778 return depth+1;
drh5eddca62001-06-30 21:53:53 +00009779}
drhb7f91642004-10-31 02:22:47 +00009780#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00009781
drhb7f91642004-10-31 02:22:47 +00009782#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00009783/*
9784** This routine does a complete check of the given BTree file. aRoot[] is
9785** an array of pages numbers were each page number is the root page of
9786** a table. nRoot is the number of entries in aRoot.
9787**
danielk19773509a652009-07-06 18:56:13 +00009788** A read-only or read-write transaction must be opened before calling
9789** this function.
9790**
drhc890fec2008-08-01 20:10:08 +00009791** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00009792** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00009793** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00009794** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00009795*/
drh1dcdbc02007-01-27 02:24:54 +00009796char *sqlite3BtreeIntegrityCheck(
9797 Btree *p, /* The btree to be checked */
9798 int *aRoot, /* An array of root pages numbers for individual trees */
9799 int nRoot, /* Number of entries in aRoot[] */
9800 int mxErr, /* Stop reporting errors after this many */
9801 int *pnErr /* Write number of errors seen to this variable */
9802){
danielk197789d40042008-11-17 14:20:56 +00009803 Pgno i;
drhaaab5722002-02-19 13:39:21 +00009804 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00009805 BtShared *pBt = p->pBt;
drhf10ce632019-01-11 14:46:44 +00009806 u64 savedDbFlags = pBt->db->flags;
drhf089aa42008-07-08 19:34:06 +00009807 char zErr[100];
drhcbc6b712015-07-02 16:17:30 +00009808 VVA_ONLY( int nRef );
drh5eddca62001-06-30 21:53:53 +00009809
drhd677b3d2007-08-20 22:48:41 +00009810 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00009811 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
drhcc5f8a42016-02-06 22:32:06 +00009812 VVA_ONLY( nRef = sqlite3PagerRefcount(pBt->pPager) );
9813 assert( nRef>=0 );
drh5eddca62001-06-30 21:53:53 +00009814 sCheck.pBt = pBt;
9815 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00009816 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00009817 sCheck.mxErr = mxErr;
9818 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00009819 sCheck.mallocFailed = 0;
drh867db832014-09-26 02:41:05 +00009820 sCheck.zPfx = 0;
9821 sCheck.v1 = 0;
9822 sCheck.v2 = 0;
drhe05b3f82015-07-01 17:53:49 +00009823 sCheck.aPgRef = 0;
9824 sCheck.heap = 0;
9825 sqlite3StrAccumInit(&sCheck.errMsg, 0, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
drh5f4a6862016-01-30 12:50:25 +00009826 sCheck.errMsg.printfFlags = SQLITE_PRINTF_INTERNAL;
drh0de8c112002-07-06 16:32:14 +00009827 if( sCheck.nPage==0 ){
drhe05b3f82015-07-01 17:53:49 +00009828 goto integrity_ck_cleanup;
drh0de8c112002-07-06 16:32:14 +00009829 }
dan1235bb12012-04-03 17:43:28 +00009830
9831 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
9832 if( !sCheck.aPgRef ){
drhe05b3f82015-07-01 17:53:49 +00009833 sCheck.mallocFailed = 1;
9834 goto integrity_ck_cleanup;
danielk1977ac245ec2005-01-14 13:50:11 +00009835 }
drhe05b3f82015-07-01 17:53:49 +00009836 sCheck.heap = (u32*)sqlite3PageMalloc( pBt->pageSize );
9837 if( sCheck.heap==0 ){
9838 sCheck.mallocFailed = 1;
9839 goto integrity_ck_cleanup;
9840 }
9841
drh42cac6d2004-11-20 20:31:11 +00009842 i = PENDING_BYTE_PAGE(pBt);
dan1235bb12012-04-03 17:43:28 +00009843 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
drh5eddca62001-06-30 21:53:53 +00009844
9845 /* Check the integrity of the freelist
9846 */
drh867db832014-09-26 02:41:05 +00009847 sCheck.zPfx = "Main freelist: ";
drha34b6762004-05-07 13:30:42 +00009848 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
drh867db832014-09-26 02:41:05 +00009849 get4byte(&pBt->pPage1->aData[36]));
9850 sCheck.zPfx = 0;
drh5eddca62001-06-30 21:53:53 +00009851
9852 /* Check all the tables.
9853 */
drh040d77a2018-07-20 15:44:09 +00009854#ifndef SQLITE_OMIT_AUTOVACUUM
9855 if( pBt->autoVacuum ){
9856 int mx = 0;
9857 int mxInHdr;
9858 for(i=0; (int)i<nRoot; i++) if( mx<aRoot[i] ) mx = aRoot[i];
9859 mxInHdr = get4byte(&pBt->pPage1->aData[52]);
9860 if( mx!=mxInHdr ){
9861 checkAppendMsg(&sCheck,
9862 "max rootpage (%d) disagrees with header (%d)",
9863 mx, mxInHdr
9864 );
9865 }
9866 }else if( get4byte(&pBt->pPage1->aData[64])!=0 ){
9867 checkAppendMsg(&sCheck,
9868 "incremental_vacuum enabled with a max rootpage of zero"
9869 );
9870 }
9871#endif
drhcbc6b712015-07-02 16:17:30 +00009872 testcase( pBt->db->flags & SQLITE_CellSizeCk );
drhd5b44d62018-12-06 17:06:02 +00009873 pBt->db->flags &= ~(u64)SQLITE_CellSizeCk;
danielk197789d40042008-11-17 14:20:56 +00009874 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drhcbc6b712015-07-02 16:17:30 +00009875 i64 notUsed;
drh4ff6dfa2002-03-03 23:06:00 +00009876 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00009877#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00009878 if( pBt->autoVacuum && aRoot[i]>1 ){
drh867db832014-09-26 02:41:05 +00009879 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
danielk1977687566d2004-11-02 12:56:41 +00009880 }
9881#endif
drhcbc6b712015-07-02 16:17:30 +00009882 checkTreePage(&sCheck, aRoot[i], &notUsed, LARGEST_INT64);
drh5eddca62001-06-30 21:53:53 +00009883 }
drhcbc6b712015-07-02 16:17:30 +00009884 pBt->db->flags = savedDbFlags;
drh5eddca62001-06-30 21:53:53 +00009885
9886 /* Make sure every page in the file is referenced
9887 */
drh1dcdbc02007-01-27 02:24:54 +00009888 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00009889#ifdef SQLITE_OMIT_AUTOVACUUM
dan1235bb12012-04-03 17:43:28 +00009890 if( getPageReferenced(&sCheck, i)==0 ){
drh867db832014-09-26 02:41:05 +00009891 checkAppendMsg(&sCheck, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00009892 }
danielk1977afcdd022004-10-31 16:25:42 +00009893#else
9894 /* If the database supports auto-vacuum, make sure no tables contain
9895 ** references to pointer-map pages.
9896 */
dan1235bb12012-04-03 17:43:28 +00009897 if( getPageReferenced(&sCheck, i)==0 &&
danielk1977266664d2006-02-10 08:24:21 +00009898 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009899 checkAppendMsg(&sCheck, "Page %d is never used", i);
danielk1977afcdd022004-10-31 16:25:42 +00009900 }
dan1235bb12012-04-03 17:43:28 +00009901 if( getPageReferenced(&sCheck, i)!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00009902 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
drh867db832014-09-26 02:41:05 +00009903 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
danielk1977afcdd022004-10-31 16:25:42 +00009904 }
9905#endif
drh5eddca62001-06-30 21:53:53 +00009906 }
9907
drh5eddca62001-06-30 21:53:53 +00009908 /* Clean up and report errors.
9909 */
drhe05b3f82015-07-01 17:53:49 +00009910integrity_ck_cleanup:
9911 sqlite3PageFree(sCheck.heap);
dan1235bb12012-04-03 17:43:28 +00009912 sqlite3_free(sCheck.aPgRef);
drhc890fec2008-08-01 20:10:08 +00009913 if( sCheck.mallocFailed ){
drh0cdbe1a2018-05-09 13:46:26 +00009914 sqlite3_str_reset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009915 sCheck.nErr++;
drhc890fec2008-08-01 20:10:08 +00009916 }
drh1dcdbc02007-01-27 02:24:54 +00009917 *pnErr = sCheck.nErr;
drh0cdbe1a2018-05-09 13:46:26 +00009918 if( sCheck.nErr==0 ) sqlite3_str_reset(&sCheck.errMsg);
drhe05b3f82015-07-01 17:53:49 +00009919 /* Make sure this analysis did not leave any unref() pages. */
9920 assert( nRef==sqlite3PagerRefcount(pBt->pPager) );
9921 sqlite3BtreeLeave(p);
drhf089aa42008-07-08 19:34:06 +00009922 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00009923}
drhb7f91642004-10-31 02:22:47 +00009924#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00009925
drh73509ee2003-04-06 20:44:45 +00009926/*
drhd4e0bb02012-05-27 01:19:04 +00009927** Return the full pathname of the underlying database file. Return
9928** an empty string if the database is in-memory or a TEMP database.
drhd0679ed2007-08-28 22:24:34 +00009929**
9930** The pager filename is invariant as long as the pager is
9931** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00009932*/
danielk1977aef0bf62005-12-30 16:28:01 +00009933const char *sqlite3BtreeGetFilename(Btree *p){
9934 assert( p->pBt->pPager!=0 );
drhd4e0bb02012-05-27 01:19:04 +00009935 return sqlite3PagerFilename(p->pBt->pPager, 1);
drh73509ee2003-04-06 20:44:45 +00009936}
9937
9938/*
danielk19775865e3d2004-06-14 06:03:57 +00009939** Return the pathname of the journal file for this database. The return
9940** value of this routine is the same regardless of whether the journal file
9941** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00009942**
9943** The pager journal filename is invariant as long as the pager is
9944** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00009945*/
danielk1977aef0bf62005-12-30 16:28:01 +00009946const char *sqlite3BtreeGetJournalname(Btree *p){
9947 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00009948 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00009949}
9950
danielk19771d850a72004-05-31 08:26:49 +00009951/*
9952** Return non-zero if a transaction is active.
9953*/
danielk1977aef0bf62005-12-30 16:28:01 +00009954int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00009955 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00009956 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00009957}
9958
dana550f2d2010-08-02 10:47:05 +00009959#ifndef SQLITE_OMIT_WAL
9960/*
9961** Run a checkpoint on the Btree passed as the first argument.
9962**
9963** Return SQLITE_LOCKED if this or any other connection has an open
9964** transaction on the shared-cache the argument Btree is connected to.
dana58f26f2010-11-16 18:56:51 +00009965**
dancdc1f042010-11-18 12:11:05 +00009966** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
dana550f2d2010-08-02 10:47:05 +00009967*/
dancdc1f042010-11-18 12:11:05 +00009968int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
dana550f2d2010-08-02 10:47:05 +00009969 int rc = SQLITE_OK;
9970 if( p ){
9971 BtShared *pBt = p->pBt;
9972 sqlite3BtreeEnter(p);
9973 if( pBt->inTransaction!=TRANS_NONE ){
9974 rc = SQLITE_LOCKED;
9975 }else{
dan7fb89902016-08-12 16:21:15 +00009976 rc = sqlite3PagerCheckpoint(pBt->pPager, p->db, eMode, pnLog, pnCkpt);
dana550f2d2010-08-02 10:47:05 +00009977 }
9978 sqlite3BtreeLeave(p);
9979 }
9980 return rc;
9981}
9982#endif
9983
danielk19771d850a72004-05-31 08:26:49 +00009984/*
danielk19772372c2b2006-06-27 16:34:56 +00009985** Return non-zero if a read (or write) transaction is active.
9986*/
9987int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00009988 assert( p );
drhe5fe6902007-12-07 18:55:28 +00009989 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00009990 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00009991}
9992
danielk197704103022009-02-03 16:51:24 +00009993int sqlite3BtreeIsInBackup(Btree *p){
9994 assert( p );
9995 assert( sqlite3_mutex_held(p->db->mutex) );
9996 return p->nBackup!=0;
9997}
9998
danielk19772372c2b2006-06-27 16:34:56 +00009999/*
danielk1977da184232006-01-05 11:34:32 +000010000** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +000010001** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +000010002** purposes (for example, to store a high-level schema associated with
10003** the shared-btree). The btree layer manages reference counting issues.
10004**
10005** The first time this is called on a shared-btree, nBytes bytes of memory
10006** are allocated, zeroed, and returned to the caller. For each subsequent
10007** call the nBytes parameter is ignored and a pointer to the same blob
10008** of memory returned.
10009**
danielk1977171bfed2008-06-23 09:50:50 +000010010** If the nBytes parameter is 0 and the blob of memory has not yet been
10011** allocated, a null pointer is returned. If the blob has already been
10012** allocated, it is returned as normal.
10013**
danielk1977da184232006-01-05 11:34:32 +000010014** Just before the shared-btree is closed, the function passed as the
10015** xFree argument when the memory allocation was made is invoked on the
drh4fa7d7c2011-04-03 02:41:00 +000010016** blob of allocated memory. The xFree function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +000010017** on the memory, the btree layer does that.
10018*/
10019void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
10020 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +000010021 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +000010022 if( !pBt->pSchema && nBytes ){
drhb9755982010-07-24 16:34:37 +000010023 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
danielk1977da184232006-01-05 11:34:32 +000010024 pBt->xFreeSchema = xFree;
10025 }
drh27641702007-08-22 02:56:42 +000010026 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +000010027 return pBt->pSchema;
10028}
10029
danielk1977c87d34d2006-01-06 13:00:28 +000010030/*
danielk1977404ca072009-03-16 13:19:36 +000010031** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
10032** btree as the argument handle holds an exclusive lock on the
10033** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +000010034*/
10035int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +000010036 int rc;
drhe5fe6902007-12-07 18:55:28 +000010037 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +000010038 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +000010039 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
10040 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +000010041 sqlite3BtreeLeave(p);
10042 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +000010043}
10044
drha154dcd2006-03-22 22:10:07 +000010045
10046#ifndef SQLITE_OMIT_SHARED_CACHE
10047/*
10048** Obtain a lock on the table whose root page is iTab. The
10049** lock is a write lock if isWritelock is true or a read lock
10050** if it is false.
10051*/
danielk1977c00da102006-01-07 13:21:04 +000010052int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +000010053 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +000010054 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +000010055 if( p->sharable ){
10056 u8 lockType = READ_LOCK + isWriteLock;
10057 assert( READ_LOCK+1==WRITE_LOCK );
10058 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +000010059
drh6a9ad3d2008-04-02 16:29:30 +000010060 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +000010061 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +000010062 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +000010063 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +000010064 }
10065 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +000010066 }
10067 return rc;
10068}
drha154dcd2006-03-22 22:10:07 +000010069#endif
danielk1977b82e7ed2006-01-11 14:09:31 +000010070
danielk1977b4e9af92007-05-01 17:49:49 +000010071#ifndef SQLITE_OMIT_INCRBLOB
10072/*
10073** Argument pCsr must be a cursor opened for writing on an
10074** INTKEY table currently pointing at a valid table entry.
10075** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +000010076**
10077** Only the data content may only be modified, it is not possible to
10078** change the length of the data stored. If this function is called with
10079** parameters that attempt to write past the end of the existing data,
10080** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +000010081*/
danielk1977dcbb5d32007-05-04 18:36:44 +000010082int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +000010083 int rc;
dan7a2347e2016-01-07 16:43:54 +000010084 assert( cursorOwnsBtShared(pCsr) );
drhe5fe6902007-12-07 18:55:28 +000010085 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
drh036dbec2014-03-11 23:40:44 +000010086 assert( pCsr->curFlags & BTCF_Incrblob );
danielk19773588ceb2008-06-10 17:30:26 +000010087
danielk1977c9000e62009-07-08 13:55:28 +000010088 rc = restoreCursorPosition(pCsr);
10089 if( rc!=SQLITE_OK ){
10090 return rc;
10091 }
danielk19773588ceb2008-06-10 17:30:26 +000010092 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
10093 if( pCsr->eState!=CURSOR_VALID ){
10094 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +000010095 }
10096
dan227a1c42013-04-03 11:17:39 +000010097 /* Save the positions of all other cursors open on this table. This is
10098 ** required in case any of them are holding references to an xFetch
10099 ** version of the b-tree page modified by the accessPayload call below.
drh370c9f42013-04-03 20:04:04 +000010100 **
drh3f387402014-09-24 01:23:00 +000010101 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
drh370c9f42013-04-03 20:04:04 +000010102 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
10103 ** saveAllCursors can only return SQLITE_OK.
dan227a1c42013-04-03 11:17:39 +000010104 */
drh370c9f42013-04-03 20:04:04 +000010105 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
10106 assert( rc==SQLITE_OK );
dan227a1c42013-04-03 11:17:39 +000010107
danielk1977c9000e62009-07-08 13:55:28 +000010108 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +000010109 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +000010110 ** (b) there is a read/write transaction open,
10111 ** (c) the connection holds a write-lock on the table (if required),
10112 ** (d) there are no conflicting read-locks, and
10113 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +000010114 */
drh036dbec2014-03-11 23:40:44 +000010115 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
danielk19774f029602009-07-08 18:45:37 +000010116 return SQLITE_READONLY;
10117 }
drhc9166342012-01-05 23:32:06 +000010118 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
10119 && pCsr->pBt->inTransaction==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +000010120 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
10121 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
drh352a35a2017-08-15 03:46:47 +000010122 assert( pCsr->pPage->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +000010123
drhfb192682009-07-11 18:26:28 +000010124 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +000010125}
danielk19772dec9702007-05-02 16:48:37 +000010126
10127/*
dan5a500af2014-03-11 20:33:04 +000010128** Mark this cursor as an incremental blob cursor.
danielk19772dec9702007-05-02 16:48:37 +000010129*/
dan5a500af2014-03-11 20:33:04 +000010130void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
drh036dbec2014-03-11 23:40:44 +000010131 pCur->curFlags |= BTCF_Incrblob;
drh69180952015-06-25 13:03:10 +000010132 pCur->pBtree->hasIncrblobCur = 1;
danielk19772dec9702007-05-02 16:48:37 +000010133}
danielk1977b4e9af92007-05-01 17:49:49 +000010134#endif
dane04dc882010-04-20 18:53:15 +000010135
10136/*
10137** Set both the "read version" (single byte at byte offset 18) and
10138** "write version" (single byte at byte offset 19) fields in the database
10139** header to iVersion.
10140*/
10141int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
10142 BtShared *pBt = pBtree->pBt;
10143 int rc; /* Return code */
10144
dane04dc882010-04-20 18:53:15 +000010145 assert( iVersion==1 || iVersion==2 );
10146
danb9780022010-04-21 18:37:57 +000010147 /* If setting the version fields to 1, do not automatically open the
10148 ** WAL connection, even if the version fields are currently set to 2.
10149 */
drhc9166342012-01-05 23:32:06 +000010150 pBt->btsFlags &= ~BTS_NO_WAL;
10151 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
danb9780022010-04-21 18:37:57 +000010152
drhbb2d9b12018-06-06 16:28:40 +000010153 rc = sqlite3BtreeBeginTrans(pBtree, 0, 0);
dane04dc882010-04-20 18:53:15 +000010154 if( rc==SQLITE_OK ){
10155 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +000010156 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
drhbb2d9b12018-06-06 16:28:40 +000010157 rc = sqlite3BtreeBeginTrans(pBtree, 2, 0);
danb9780022010-04-21 18:37:57 +000010158 if( rc==SQLITE_OK ){
10159 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
10160 if( rc==SQLITE_OK ){
10161 aData[18] = (u8)iVersion;
10162 aData[19] = (u8)iVersion;
10163 }
10164 }
10165 }
dane04dc882010-04-20 18:53:15 +000010166 }
10167
drhc9166342012-01-05 23:32:06 +000010168 pBt->btsFlags &= ~BTS_NO_WAL;
dane04dc882010-04-20 18:53:15 +000010169 return rc;
10170}
dan428c2182012-08-06 18:50:11 +000010171
drhe0997b32015-03-20 14:57:50 +000010172/*
10173** Return true if the cursor has a hint specified. This routine is
10174** only used from within assert() statements
10175*/
10176int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
10177 return (pCsr->hints & mask)!=0;
10178}
drhe0997b32015-03-20 14:57:50 +000010179
drh781597f2014-05-21 08:21:07 +000010180/*
10181** Return true if the given Btree is read-only.
10182*/
10183int sqlite3BtreeIsReadonly(Btree *p){
10184 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
10185}
drhdef68892014-11-04 12:11:23 +000010186
10187/*
10188** Return the size of the header added to each page by this module.
10189*/
drh37c057b2014-12-30 00:57:29 +000010190int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }
dan20d876f2016-01-07 16:06:22 +000010191
drh5a1fb182016-01-08 19:34:39 +000010192#if !defined(SQLITE_OMIT_SHARED_CACHE)
dan20d876f2016-01-07 16:06:22 +000010193/*
10194** Return true if the Btree passed as the only argument is sharable.
10195*/
10196int sqlite3BtreeSharable(Btree *p){
10197 return p->sharable;
10198}
dan272989b2016-07-06 10:12:02 +000010199
10200/*
10201** Return the number of connections to the BtShared object accessed by
10202** the Btree handle passed as the only argument. For private caches
10203** this is always 1. For shared caches it may be 1 or greater.
10204*/
10205int sqlite3BtreeConnectionCount(Btree *p){
10206 testcase( p->sharable );
10207 return p->pBt->nRef;
10208}
drh5a1fb182016-01-08 19:34:39 +000010209#endif