blob: f5f45da39731e1b21a2a1bb60299aebc0293b9ab [file] [log] [blame]
drh6f82e852015-06-06 20:12:09 +00001/*
2** 2015-06-06
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12** This module contains C code that generates VDBE code used to process
13** the WHERE clause of SQL statements.
14**
15** This file was split off from where.c on 2015-06-06 in order to reduce the
16** size of where.c and make it easier to edit. This file contains the routines
17** that actually generate the bulk of the WHERE loop code. The original where.c
18** file retains the code that does query planning and analysis.
19*/
20#include "sqliteInt.h"
21#include "whereInt.h"
22
23#ifndef SQLITE_OMIT_EXPLAIN
24/*
25** This routine is a helper for explainIndexRange() below
26**
27** pStr holds the text of an expression that we are building up one term
28** at a time. This routine adds a new term to the end of the expression.
29** Terms are separated by AND so add the "AND" text for second and subsequent
30** terms only.
31*/
32static void explainAppendTerm(
33 StrAccum *pStr, /* The text expression being built */
34 int iTerm, /* Index of this term. First is zero */
35 const char *zColumn, /* Name of the column */
36 const char *zOp /* Name of the operator */
37){
38 if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5);
39 sqlite3StrAccumAppendAll(pStr, zColumn);
40 sqlite3StrAccumAppend(pStr, zOp, 1);
41 sqlite3StrAccumAppend(pStr, "?", 1);
42}
43
44/*
drhc7c46802015-08-27 20:33:38 +000045** Return the name of the i-th column of the pIdx index.
46*/
47static const char *explainIndexColumnName(Index *pIdx, int i){
48 i = pIdx->aiColumn[i];
drh4b92f982015-09-29 17:20:14 +000049 if( i==XN_EXPR ) return "<expr>";
50 if( i==XN_ROWID ) return "rowid";
drhc7c46802015-08-27 20:33:38 +000051 return pIdx->pTable->aCol[i].zName;
52}
53
54/*
drh6f82e852015-06-06 20:12:09 +000055** Argument pLevel describes a strategy for scanning table pTab. This
56** function appends text to pStr that describes the subset of table
57** rows scanned by the strategy in the form of an SQL expression.
58**
59** For example, if the query:
60**
61** SELECT * FROM t1 WHERE a=1 AND b>2;
62**
63** is run and there is an index on (a, b), then this function returns a
64** string similar to:
65**
66** "a=? AND b>?"
67*/
drh8faee872015-09-19 18:08:13 +000068static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
drh6f82e852015-06-06 20:12:09 +000069 Index *pIndex = pLoop->u.btree.pIndex;
70 u16 nEq = pLoop->u.btree.nEq;
71 u16 nSkip = pLoop->nSkip;
72 int i, j;
drh6f82e852015-06-06 20:12:09 +000073
74 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
75 sqlite3StrAccumAppend(pStr, " (", 2);
76 for(i=0; i<nEq; i++){
drhc7c46802015-08-27 20:33:38 +000077 const char *z = explainIndexColumnName(pIndex, i);
drh2ed0d802015-09-02 16:51:37 +000078 if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5);
drh5f4a6862016-01-30 12:50:25 +000079 sqlite3XPrintf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
drh6f82e852015-06-06 20:12:09 +000080 }
81
82 j = i;
83 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
drhc7c46802015-08-27 20:33:38 +000084 const char *z = explainIndexColumnName(pIndex, i);
drh6f82e852015-06-06 20:12:09 +000085 explainAppendTerm(pStr, i++, z, ">");
86 }
87 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
drhc7c46802015-08-27 20:33:38 +000088 const char *z = explainIndexColumnName(pIndex, j);
drh6f82e852015-06-06 20:12:09 +000089 explainAppendTerm(pStr, i, z, "<");
90 }
91 sqlite3StrAccumAppend(pStr, ")", 1);
92}
93
94/*
95** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
96** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
97** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
98** is added to the output to describe the table scan strategy in pLevel.
99**
100** If an OP_Explain opcode is added to the VM, its address is returned.
101** Otherwise, if no OP_Explain is coded, zero is returned.
102*/
103int sqlite3WhereExplainOneScan(
104 Parse *pParse, /* Parse context */
105 SrcList *pTabList, /* Table list this loop refers to */
106 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */
107 int iLevel, /* Value for "level" column of output */
108 int iFrom, /* Value for "from" column of output */
109 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */
110){
111 int ret = 0;
112#if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
113 if( pParse->explain==2 )
114#endif
115 {
116 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
117 Vdbe *v = pParse->pVdbe; /* VM being constructed */
118 sqlite3 *db = pParse->db; /* Database handle */
119 int iId = pParse->iSelectId; /* Select id (left-most output column) */
120 int isSearch; /* True for a SEARCH. False for SCAN. */
121 WhereLoop *pLoop; /* The controlling WhereLoop object */
122 u32 flags; /* Flags that describe this loop */
123 char *zMsg; /* Text to add to EQP output */
124 StrAccum str; /* EQP output string */
125 char zBuf[100]; /* Initial space for EQP output string */
126
127 pLoop = pLevel->pWLoop;
128 flags = pLoop->wsFlags;
129 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return 0;
130
131 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
132 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
133 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
134
135 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
136 sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN");
137 if( pItem->pSelect ){
drh5f4a6862016-01-30 12:50:25 +0000138 sqlite3XPrintf(&str, " SUBQUERY %d", pItem->iSelectId);
drh6f82e852015-06-06 20:12:09 +0000139 }else{
drh5f4a6862016-01-30 12:50:25 +0000140 sqlite3XPrintf(&str, " TABLE %s", pItem->zName);
drh6f82e852015-06-06 20:12:09 +0000141 }
142
143 if( pItem->zAlias ){
drh5f4a6862016-01-30 12:50:25 +0000144 sqlite3XPrintf(&str, " AS %s", pItem->zAlias);
drh6f82e852015-06-06 20:12:09 +0000145 }
146 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
147 const char *zFmt = 0;
148 Index *pIdx;
149
150 assert( pLoop->u.btree.pIndex!=0 );
151 pIdx = pLoop->u.btree.pIndex;
152 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
153 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
154 if( isSearch ){
155 zFmt = "PRIMARY KEY";
156 }
157 }else if( flags & WHERE_PARTIALIDX ){
158 zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
159 }else if( flags & WHERE_AUTO_INDEX ){
160 zFmt = "AUTOMATIC COVERING INDEX";
161 }else if( flags & WHERE_IDX_ONLY ){
162 zFmt = "COVERING INDEX %s";
163 }else{
164 zFmt = "INDEX %s";
165 }
166 if( zFmt ){
167 sqlite3StrAccumAppend(&str, " USING ", 7);
drh5f4a6862016-01-30 12:50:25 +0000168 sqlite3XPrintf(&str, zFmt, pIdx->zName);
drh8faee872015-09-19 18:08:13 +0000169 explainIndexRange(&str, pLoop);
drh6f82e852015-06-06 20:12:09 +0000170 }
171 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
drhd37bea52015-09-02 15:37:50 +0000172 const char *zRangeOp;
drh6f82e852015-06-06 20:12:09 +0000173 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
drhd37bea52015-09-02 15:37:50 +0000174 zRangeOp = "=";
drh6f82e852015-06-06 20:12:09 +0000175 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
drhd37bea52015-09-02 15:37:50 +0000176 zRangeOp = ">? AND rowid<";
drh6f82e852015-06-06 20:12:09 +0000177 }else if( flags&WHERE_BTM_LIMIT ){
drhd37bea52015-09-02 15:37:50 +0000178 zRangeOp = ">";
drh6f82e852015-06-06 20:12:09 +0000179 }else{
180 assert( flags&WHERE_TOP_LIMIT);
drhd37bea52015-09-02 15:37:50 +0000181 zRangeOp = "<";
drh6f82e852015-06-06 20:12:09 +0000182 }
drh5f4a6862016-01-30 12:50:25 +0000183 sqlite3XPrintf(&str, " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
drh6f82e852015-06-06 20:12:09 +0000184 }
185#ifndef SQLITE_OMIT_VIRTUALTABLE
186 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
drh5f4a6862016-01-30 12:50:25 +0000187 sqlite3XPrintf(&str, " VIRTUAL TABLE INDEX %d:%s",
drh6f82e852015-06-06 20:12:09 +0000188 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
189 }
190#endif
191#ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
192 if( pLoop->nOut>=10 ){
drh5f4a6862016-01-30 12:50:25 +0000193 sqlite3XPrintf(&str, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut));
drh6f82e852015-06-06 20:12:09 +0000194 }else{
195 sqlite3StrAccumAppend(&str, " (~1 row)", 9);
196 }
197#endif
198 zMsg = sqlite3StrAccumFinish(&str);
199 ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC);
200 }
201 return ret;
202}
203#endif /* SQLITE_OMIT_EXPLAIN */
204
205#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
206/*
207** Configure the VM passed as the first argument with an
208** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
209** implement level pLvl. Argument pSrclist is a pointer to the FROM
210** clause that the scan reads data from.
211**
212** If argument addrExplain is not 0, it must be the address of an
213** OP_Explain instruction that describes the same loop.
214*/
215void sqlite3WhereAddScanStatus(
216 Vdbe *v, /* Vdbe to add scanstatus entry to */
217 SrcList *pSrclist, /* FROM clause pLvl reads data from */
218 WhereLevel *pLvl, /* Level to add scanstatus() entry for */
219 int addrExplain /* Address of OP_Explain (or 0) */
220){
221 const char *zObj = 0;
222 WhereLoop *pLoop = pLvl->pWLoop;
223 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){
224 zObj = pLoop->u.btree.pIndex->zName;
225 }else{
226 zObj = pSrclist->a[pLvl->iFrom].zName;
227 }
228 sqlite3VdbeScanStatus(
229 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
230 );
231}
232#endif
233
234
235/*
236** Disable a term in the WHERE clause. Except, do not disable the term
237** if it controls a LEFT OUTER JOIN and it did not originate in the ON
238** or USING clause of that join.
239**
240** Consider the term t2.z='ok' in the following queries:
241**
242** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
243** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
244** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
245**
246** The t2.z='ok' is disabled in the in (2) because it originates
247** in the ON clause. The term is disabled in (3) because it is not part
248** of a LEFT OUTER JOIN. In (1), the term is not disabled.
249**
250** Disabling a term causes that term to not be tested in the inner loop
251** of the join. Disabling is an optimization. When terms are satisfied
252** by indices, we disable them to prevent redundant tests in the inner
253** loop. We would get the correct results if nothing were ever disabled,
254** but joins might run a little slower. The trick is to disable as much
255** as we can without disabling too much. If we disabled in (1), we'd get
256** the wrong answer. See ticket #813.
257**
258** If all the children of a term are disabled, then that term is also
259** automatically disabled. In this way, terms get disabled if derived
260** virtual terms are tested first. For example:
261**
262** x GLOB 'abc*' AND x>='abc' AND x<'acd'
263** \___________/ \______/ \_____/
264** parent child1 child2
265**
266** Only the parent term was in the original WHERE clause. The child1
267** and child2 terms were added by the LIKE optimization. If both of
268** the virtual child terms are valid, then testing of the parent can be
269** skipped.
270**
271** Usually the parent term is marked as TERM_CODED. But if the parent
272** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
273** The TERM_LIKECOND marking indicates that the term should be coded inside
274** a conditional such that is only evaluated on the second pass of a
275** LIKE-optimization loop, when scanning BLOBs instead of strings.
276*/
277static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
278 int nLoop = 0;
279 while( pTerm
280 && (pTerm->wtFlags & TERM_CODED)==0
281 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
282 && (pLevel->notReady & pTerm->prereqAll)==0
283 ){
284 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
285 pTerm->wtFlags |= TERM_LIKECOND;
286 }else{
287 pTerm->wtFlags |= TERM_CODED;
288 }
289 if( pTerm->iParent<0 ) break;
290 pTerm = &pTerm->pWC->a[pTerm->iParent];
291 pTerm->nChild--;
292 if( pTerm->nChild!=0 ) break;
293 nLoop++;
294 }
295}
296
297/*
298** Code an OP_Affinity opcode to apply the column affinity string zAff
299** to the n registers starting at base.
300**
301** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the
302** beginning and end of zAff are ignored. If all entries in zAff are
303** SQLITE_AFF_BLOB, then no code gets generated.
304**
305** This routine makes its own copy of zAff so that the caller is free
306** to modify zAff after this routine returns.
307*/
308static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
309 Vdbe *v = pParse->pVdbe;
310 if( zAff==0 ){
311 assert( pParse->db->mallocFailed );
312 return;
313 }
314 assert( v!=0 );
315
316 /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning
317 ** and end of the affinity string.
318 */
319 while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){
320 n--;
321 base++;
322 zAff++;
323 }
324 while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){
325 n--;
326 }
327
328 /* Code the OP_Affinity opcode if there is anything left to do. */
329 if( n>0 ){
drh9b34abe2016-01-16 15:12:35 +0000330 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
drh6f82e852015-06-06 20:12:09 +0000331 sqlite3ExprCacheAffinityChange(pParse, base, n);
332 }
333}
334
335
336/*
337** Generate code for a single equality term of the WHERE clause. An equality
338** term can be either X=expr or X IN (...). pTerm is the term to be
339** coded.
340**
341** The current value for the constraint is left in register iReg.
342**
343** For a constraint of the form X=expr, the expression is evaluated and its
344** result is left on the stack. For constraints of the form X IN (...)
345** this routine sets up a loop that will iterate over all values of X.
346*/
347static int codeEqualityTerm(
348 Parse *pParse, /* The parsing context */
349 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
350 WhereLevel *pLevel, /* The level of the FROM clause we are working on */
351 int iEq, /* Index of the equality term within this level */
352 int bRev, /* True for reverse-order IN operations */
353 int iTarget /* Attempt to leave results in this register */
354){
355 Expr *pX = pTerm->pExpr;
356 Vdbe *v = pParse->pVdbe;
357 int iReg; /* Register holding results */
358
359 assert( iTarget>0 );
360 if( pX->op==TK_EQ || pX->op==TK_IS ){
361 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
362 }else if( pX->op==TK_ISNULL ){
363 iReg = iTarget;
364 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
365#ifndef SQLITE_OMIT_SUBQUERY
366 }else{
367 int eType;
368 int iTab;
369 struct InLoop *pIn;
370 WhereLoop *pLoop = pLevel->pWLoop;
371
372 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
373 && pLoop->u.btree.pIndex!=0
374 && pLoop->u.btree.pIndex->aSortOrder[iEq]
375 ){
376 testcase( iEq==0 );
377 testcase( bRev );
378 bRev = !bRev;
379 }
380 assert( pX->op==TK_IN );
381 iReg = iTarget;
382 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0);
383 if( eType==IN_INDEX_INDEX_DESC ){
384 testcase( bRev );
385 bRev = !bRev;
386 }
387 iTab = pX->iTable;
388 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
389 VdbeCoverageIf(v, bRev);
390 VdbeCoverageIf(v, !bRev);
391 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
392 pLoop->wsFlags |= WHERE_IN_ABLE;
393 if( pLevel->u.in.nIn==0 ){
394 pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
395 }
396 pLevel->u.in.nIn++;
397 pLevel->u.in.aInLoop =
398 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
399 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
400 pIn = pLevel->u.in.aInLoop;
401 if( pIn ){
402 pIn += pLevel->u.in.nIn - 1;
403 pIn->iCur = iTab;
404 if( eType==IN_INDEX_ROWID ){
405 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
406 }else{
407 pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
408 }
409 pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen;
410 sqlite3VdbeAddOp1(v, OP_IsNull, iReg); VdbeCoverage(v);
411 }else{
412 pLevel->u.in.nIn = 0;
413 }
414#endif
415 }
416 disableTerm(pLevel, pTerm);
417 return iReg;
418}
419
420/*
421** Generate code that will evaluate all == and IN constraints for an
422** index scan.
423**
424** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
425** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
426** The index has as many as three equality constraints, but in this
427** example, the third "c" value is an inequality. So only two
428** constraints are coded. This routine will generate code to evaluate
429** a==5 and b IN (1,2,3). The current values for a and b will be stored
430** in consecutive registers and the index of the first register is returned.
431**
432** In the example above nEq==2. But this subroutine works for any value
433** of nEq including 0. If nEq==0, this routine is nearly a no-op.
434** The only thing it does is allocate the pLevel->iMem memory cell and
435** compute the affinity string.
436**
437** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints
438** are == or IN and are covered by the nEq. nExtraReg is 1 if there is
439** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
440** occurs after the nEq quality constraints.
441**
442** This routine allocates a range of nEq+nExtraReg memory cells and returns
443** the index of the first memory cell in that range. The code that
444** calls this routine will use that memory range to store keys for
445** start and termination conditions of the loop.
446** key value of the loop. If one or more IN operators appear, then
447** this routine allocates an additional nEq memory cells for internal
448** use.
449**
450** Before returning, *pzAff is set to point to a buffer containing a
451** copy of the column affinity string of the index allocated using
452** sqlite3DbMalloc(). Except, entries in the copy of the string associated
453** with equality constraints that use BLOB or NONE affinity are set to
454** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
455**
456** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
457** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
458**
459** In the example above, the index on t1(a) has TEXT affinity. But since
460** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
461** no conversion should be attempted before using a t2.b value as part of
462** a key to search the index. Hence the first byte in the returned affinity
463** string in this example would be set to SQLITE_AFF_BLOB.
464*/
465static int codeAllEqualityTerms(
466 Parse *pParse, /* Parsing context */
467 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
468 int bRev, /* Reverse the order of IN operators */
469 int nExtraReg, /* Number of extra registers to allocate */
470 char **pzAff /* OUT: Set to point to affinity string */
471){
472 u16 nEq; /* The number of == or IN constraints to code */
473 u16 nSkip; /* Number of left-most columns to skip */
474 Vdbe *v = pParse->pVdbe; /* The vm under construction */
475 Index *pIdx; /* The index being used for this loop */
476 WhereTerm *pTerm; /* A single constraint term */
477 WhereLoop *pLoop; /* The WhereLoop object */
478 int j; /* Loop counter */
479 int regBase; /* Base register */
480 int nReg; /* Number of registers to allocate */
481 char *zAff; /* Affinity string to return */
482
483 /* This module is only called on query plans that use an index. */
484 pLoop = pLevel->pWLoop;
485 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
486 nEq = pLoop->u.btree.nEq;
487 nSkip = pLoop->nSkip;
488 pIdx = pLoop->u.btree.pIndex;
489 assert( pIdx!=0 );
490
491 /* Figure out how many memory cells we will need then allocate them.
492 */
493 regBase = pParse->nMem + 1;
494 nReg = pLoop->u.btree.nEq + nExtraReg;
495 pParse->nMem += nReg;
496
drhe9107692015-08-25 19:20:04 +0000497 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
drh6f82e852015-06-06 20:12:09 +0000498 if( !zAff ){
499 pParse->db->mallocFailed = 1;
500 }
501
502 if( nSkip ){
503 int iIdxCur = pLevel->iIdxCur;
504 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
505 VdbeCoverageIf(v, bRev==0);
506 VdbeCoverageIf(v, bRev!=0);
507 VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
508 j = sqlite3VdbeAddOp0(v, OP_Goto);
509 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
510 iIdxCur, 0, regBase, nSkip);
511 VdbeCoverageIf(v, bRev==0);
512 VdbeCoverageIf(v, bRev!=0);
513 sqlite3VdbeJumpHere(v, j);
514 for(j=0; j<nSkip; j++){
515 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
drh4b92f982015-09-29 17:20:14 +0000516 testcase( pIdx->aiColumn[j]==XN_EXPR );
drhe63e8a62015-09-18 18:09:28 +0000517 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
drh6f82e852015-06-06 20:12:09 +0000518 }
519 }
520
521 /* Evaluate the equality constraints
522 */
523 assert( zAff==0 || (int)strlen(zAff)>=nEq );
524 for(j=nSkip; j<nEq; j++){
525 int r1;
526 pTerm = pLoop->aLTerm[j];
527 assert( pTerm!=0 );
528 /* The following testcase is true for indices with redundant columns.
529 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
530 testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
531 testcase( pTerm->wtFlags & TERM_VIRTUAL );
532 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
533 if( r1!=regBase+j ){
534 if( nReg==1 ){
535 sqlite3ReleaseTempReg(pParse, regBase);
536 regBase = r1;
537 }else{
538 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
539 }
540 }
541 testcase( pTerm->eOperator & WO_ISNULL );
542 testcase( pTerm->eOperator & WO_IN );
543 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
544 Expr *pRight = pTerm->pExpr->pRight;
545 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
546 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
547 VdbeCoverage(v);
548 }
549 if( zAff ){
550 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
551 zAff[j] = SQLITE_AFF_BLOB;
552 }
553 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
554 zAff[j] = SQLITE_AFF_BLOB;
555 }
556 }
557 }
558 }
559 *pzAff = zAff;
560 return regBase;
561}
562
drh41d2e662015-12-01 21:23:07 +0000563#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
drh6f82e852015-06-06 20:12:09 +0000564/*
565** If the most recently coded instruction is a constant range contraint
566** that originated from the LIKE optimization, then change the P3 to be
567** pLoop->iLikeRepCntr and set P5.
568**
569** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
570** expression: "x>='ABC' AND x<'abd'". But this requires that the range
571** scan loop run twice, once for strings and a second time for BLOBs.
572** The OP_String opcodes on the second pass convert the upper and lower
573** bound string contants to blobs. This routine makes the necessary changes
574** to the OP_String opcodes for that to happen.
drh41d2e662015-12-01 21:23:07 +0000575**
576** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
577** only the one pass through the string space is required, so this routine
578** becomes a no-op.
drh6f82e852015-06-06 20:12:09 +0000579*/
580static void whereLikeOptimizationStringFixup(
581 Vdbe *v, /* prepared statement under construction */
582 WhereLevel *pLevel, /* The loop that contains the LIKE operator */
583 WhereTerm *pTerm /* The upper or lower bound just coded */
584){
585 if( pTerm->wtFlags & TERM_LIKEOPT ){
586 VdbeOp *pOp;
587 assert( pLevel->iLikeRepCntr>0 );
588 pOp = sqlite3VdbeGetOp(v, -1);
589 assert( pOp!=0 );
590 assert( pOp->opcode==OP_String8
591 || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
592 pOp->p3 = pLevel->iLikeRepCntr;
593 pOp->p5 = 1;
594 }
595}
drh41d2e662015-12-01 21:23:07 +0000596#else
597# define whereLikeOptimizationStringFixup(A,B,C)
598#endif
drh6f82e852015-06-06 20:12:09 +0000599
drhbec24762015-08-13 20:07:13 +0000600#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh2f2b0272015-08-14 18:50:04 +0000601/*
602** Information is passed from codeCursorHint() down to individual nodes of
603** the expression tree (by sqlite3WalkExpr()) using an instance of this
604** structure.
605*/
606struct CCurHint {
607 int iTabCur; /* Cursor for the main table */
608 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */
609 Index *pIdx; /* The index used to access the table */
610};
611
612/*
613** This function is called for every node of an expression that is a candidate
614** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference
615** the table CCurHint.iTabCur, verify that the same column can be
616** accessed through the index. If it cannot, then set pWalker->eCode to 1.
617*/
618static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
619 struct CCurHint *pHint = pWalker->u.pCCurHint;
620 assert( pHint->pIdx!=0 );
621 if( pExpr->op==TK_COLUMN
622 && pExpr->iTable==pHint->iTabCur
623 && sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn)<0
624 ){
625 pWalker->eCode = 1;
626 }
627 return WRC_Continue;
628}
629
drhbec24762015-08-13 20:07:13 +0000630
631/*
632** This function is called on every node of an expression tree used as an
633** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
drh2f2b0272015-08-14 18:50:04 +0000634** that accesses any table other than the one identified by
635** CCurHint.iTabCur, then do the following:
drhbec24762015-08-13 20:07:13 +0000636**
637** 1) allocate a register and code an OP_Column instruction to read
638** the specified column into the new register, and
639**
640** 2) transform the expression node to a TK_REGISTER node that reads
641** from the newly populated register.
drh2f2b0272015-08-14 18:50:04 +0000642**
643** Also, if the node is a TK_COLUMN that does access the table idenified
644** by pCCurHint.iTabCur, and an index is being used (which we will
645** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
646** an access of the index rather than the original table.
drhbec24762015-08-13 20:07:13 +0000647*/
648static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
649 int rc = WRC_Continue;
drh2f2b0272015-08-14 18:50:04 +0000650 struct CCurHint *pHint = pWalker->u.pCCurHint;
651 if( pExpr->op==TK_COLUMN ){
652 if( pExpr->iTable!=pHint->iTabCur ){
653 Vdbe *v = pWalker->pParse->pVdbe;
654 int reg = ++pWalker->pParse->nMem; /* Register for column value */
655 sqlite3ExprCodeGetColumnOfTable(
656 v, pExpr->pTab, pExpr->iTable, pExpr->iColumn, reg
657 );
658 pExpr->op = TK_REGISTER;
659 pExpr->iTable = reg;
660 }else if( pHint->pIdx!=0 ){
661 pExpr->iTable = pHint->iIdxCur;
662 pExpr->iColumn = sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn);
663 assert( pExpr->iColumn>=0 );
664 }
drhbec24762015-08-13 20:07:13 +0000665 }else if( pExpr->op==TK_AGG_FUNCTION ){
666 /* An aggregate function in the WHERE clause of a query means this must
667 ** be a correlated sub-query, and expression pExpr is an aggregate from
668 ** the parent context. Do not walk the function arguments in this case.
669 **
670 ** todo: It should be possible to replace this node with a TK_REGISTER
671 ** expression, as the result of the expression must be stored in a
672 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
673 rc = WRC_Prune;
674 }
675 return rc;
676}
677
678/*
679** Insert an OP_CursorHint instruction if it is appropriate to do so.
680*/
681static void codeCursorHint(
drhb413a542015-08-17 17:19:28 +0000682 WhereInfo *pWInfo, /* The where clause */
683 WhereLevel *pLevel, /* Which loop to provide hints for */
684 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */
drhbec24762015-08-13 20:07:13 +0000685){
686 Parse *pParse = pWInfo->pParse;
687 sqlite3 *db = pParse->db;
688 Vdbe *v = pParse->pVdbe;
drhbec24762015-08-13 20:07:13 +0000689 Expr *pExpr = 0;
drh2f2b0272015-08-14 18:50:04 +0000690 WhereLoop *pLoop = pLevel->pWLoop;
drhbec24762015-08-13 20:07:13 +0000691 int iCur;
692 WhereClause *pWC;
693 WhereTerm *pTerm;
drhb413a542015-08-17 17:19:28 +0000694 int i, j;
drh2f2b0272015-08-14 18:50:04 +0000695 struct CCurHint sHint;
696 Walker sWalker;
drhbec24762015-08-13 20:07:13 +0000697
698 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
drh2f2b0272015-08-14 18:50:04 +0000699 iCur = pLevel->iTabCur;
700 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
701 sHint.iTabCur = iCur;
702 sHint.iIdxCur = pLevel->iIdxCur;
703 sHint.pIdx = pLoop->u.btree.pIndex;
704 memset(&sWalker, 0, sizeof(sWalker));
705 sWalker.pParse = pParse;
706 sWalker.u.pCCurHint = &sHint;
drhbec24762015-08-13 20:07:13 +0000707 pWC = &pWInfo->sWC;
708 for(i=0; i<pWC->nTerm; i++){
709 pTerm = &pWC->a[i];
710 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
711 if( pTerm->prereqAll & pLevel->notReady ) continue;
712 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;
drhb413a542015-08-17 17:19:28 +0000713
714 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
drhbcf40a72015-08-18 15:58:05 +0000715 ** the cursor. These terms are not needed as hints for a pure range
716 ** scan (that has no == terms) so omit them. */
717 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
718 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
719 if( j<pLoop->nLTerm ) continue;
drhb413a542015-08-17 17:19:28 +0000720 }
721
722 /* No subqueries or non-deterministic functions allowed */
drhbec24762015-08-13 20:07:13 +0000723 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
drhb413a542015-08-17 17:19:28 +0000724
725 /* For an index scan, make sure referenced columns are actually in
726 ** the index. */
drh2f2b0272015-08-14 18:50:04 +0000727 if( sHint.pIdx!=0 ){
728 sWalker.eCode = 0;
729 sWalker.xExprCallback = codeCursorHintCheckExpr;
730 sqlite3WalkExpr(&sWalker, pTerm->pExpr);
731 if( sWalker.eCode ) continue;
732 }
drhb413a542015-08-17 17:19:28 +0000733
734 /* If we survive all prior tests, that means this term is worth hinting */
drhbec24762015-08-13 20:07:13 +0000735 pExpr = sqlite3ExprAnd(db, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
736 }
737 if( pExpr!=0 ){
drhbec24762015-08-13 20:07:13 +0000738 sWalker.xExprCallback = codeCursorHintFixExpr;
drhbec24762015-08-13 20:07:13 +0000739 sqlite3WalkExpr(&sWalker, pExpr);
drh2f2b0272015-08-14 18:50:04 +0000740 sqlite3VdbeAddOp4(v, OP_CursorHint,
741 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
742 (const char*)pExpr, P4_EXPR);
drhbec24762015-08-13 20:07:13 +0000743 }
744}
745#else
drhb413a542015-08-17 17:19:28 +0000746# define codeCursorHint(A,B,C) /* No-op */
drhbec24762015-08-13 20:07:13 +0000747#endif /* SQLITE_ENABLE_CURSOR_HINTS */
drh6f82e852015-06-06 20:12:09 +0000748
749/*
dande892d92016-01-29 19:29:45 +0000750** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
751** a rowid value just read from cursor iIdxCur, open on index pIdx. This
752** function generates code to do a deferred seek of cursor iCur to the
753** rowid stored in register iRowid.
754**
755** Normally, this is just:
756**
757** OP_Seek $iCur $iRowid
758**
759** However, if the scan currently being coded is a branch of an OR-loop and
760** the statement currently being coded is a SELECT, then P3 of the OP_Seek
761** is set to iIdxCur and P4 is set to point to an array of integers
762** containing one entry for each column of the table cursor iCur is open
763** on. For each table column, if the column is the i'th column of the
764** index, then the corresponding array entry is set to (i+1). If the column
765** does not appear in the index at all, the array entry is set to 0.
766*/
767static void codeDeferredSeek(
768 WhereInfo *pWInfo, /* Where clause context */
769 Index *pIdx, /* Index scan is using */
770 int iCur, /* Cursor for IPK b-tree */
dande892d92016-01-29 19:29:45 +0000771 int iIdxCur /* Index cursor */
772){
773 Parse *pParse = pWInfo->pParse; /* Parse context */
774 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */
775
776 assert( iIdxCur>0 );
777 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
778
drh784c1b92016-01-30 16:59:56 +0000779 sqlite3VdbeAddOp3(v, OP_Seek, iIdxCur, 0, iCur);
dande892d92016-01-29 19:29:45 +0000780 if( (pWInfo->wctrlFlags & WHERE_FORCE_TABLE)
dancddb6ba2016-02-01 13:58:56 +0000781 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
dande892d92016-01-29 19:29:45 +0000782 ){
783 int i;
784 Table *pTab = pIdx->pTable;
drhb1702022016-01-30 00:45:18 +0000785 int *ai = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*(pTab->nCol+1));
dande892d92016-01-29 19:29:45 +0000786 if( ai ){
drhb1702022016-01-30 00:45:18 +0000787 ai[0] = pTab->nCol;
dande892d92016-01-29 19:29:45 +0000788 for(i=0; i<pIdx->nColumn-1; i++){
789 assert( pIdx->aiColumn[i]<pTab->nCol );
drhb1702022016-01-30 00:45:18 +0000790 if( pIdx->aiColumn[i]>=0 ) ai[pIdx->aiColumn[i]+1] = i+1;
dande892d92016-01-29 19:29:45 +0000791 }
792 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
793 }
794 }
795}
796
797/*
drh6f82e852015-06-06 20:12:09 +0000798** Generate code for the start of the iLevel-th loop in the WHERE clause
799** implementation described by pWInfo.
800*/
801Bitmask sqlite3WhereCodeOneLoopStart(
802 WhereInfo *pWInfo, /* Complete information about the WHERE clause */
803 int iLevel, /* Which level of pWInfo->a[] should be coded */
804 Bitmask notReady /* Which tables are currently available */
805){
806 int j, k; /* Loop counters */
807 int iCur; /* The VDBE cursor for the table */
808 int addrNxt; /* Where to jump to continue with the next IN case */
809 int omitTable; /* True if we use the index only */
810 int bRev; /* True if we need to scan in reverse order */
811 WhereLevel *pLevel; /* The where level to be coded */
812 WhereLoop *pLoop; /* The WhereLoop object being coded */
813 WhereClause *pWC; /* Decomposition of the entire WHERE clause */
814 WhereTerm *pTerm; /* A WHERE clause term */
815 Parse *pParse; /* Parsing context */
816 sqlite3 *db; /* Database connection */
817 Vdbe *v; /* The prepared stmt under constructions */
818 struct SrcList_item *pTabItem; /* FROM clause term being coded */
819 int addrBrk; /* Jump here to break out of the loop */
820 int addrCont; /* Jump here to continue with next cycle */
821 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */
822 int iReleaseReg = 0; /* Temp register to free before returning */
823
824 pParse = pWInfo->pParse;
825 v = pParse->pVdbe;
826 pWC = &pWInfo->sWC;
827 db = pParse->db;
828 pLevel = &pWInfo->a[iLevel];
829 pLoop = pLevel->pWLoop;
830 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
831 iCur = pTabItem->iCursor;
832 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
833 bRev = (pWInfo->revMask>>iLevel)&1;
834 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
835 && (pWInfo->wctrlFlags & WHERE_FORCE_TABLE)==0;
836 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
837
838 /* Create labels for the "break" and "continue" instructions
839 ** for the current loop. Jump to addrBrk to break out of a loop.
840 ** Jump to cont to go immediately to the next iteration of the
841 ** loop.
842 **
843 ** When there is an IN operator, we also have a "addrNxt" label that
844 ** means to continue with the next IN value combination. When
845 ** there are no IN operators in the constraints, the "addrNxt" label
846 ** is the same as "addrBrk".
847 */
848 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
849 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
850
851 /* If this is the right table of a LEFT OUTER JOIN, allocate and
852 ** initialize a memory cell that records if this table matches any
853 ** row of the left table of the join.
854 */
drh8a48b9c2015-08-19 15:20:00 +0000855 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
drh6f82e852015-06-06 20:12:09 +0000856 pLevel->iLeftJoin = ++pParse->nMem;
857 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
858 VdbeComment((v, "init LEFT JOIN no-match flag"));
859 }
860
861 /* Special case of a FROM clause subquery implemented as a co-routine */
drh8a48b9c2015-08-19 15:20:00 +0000862 if( pTabItem->fg.viaCoroutine ){
drh6f82e852015-06-06 20:12:09 +0000863 int regYield = pTabItem->regReturn;
864 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
865 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
866 VdbeCoverage(v);
867 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
868 pLevel->op = OP_Goto;
869 }else
870
871#ifndef SQLITE_OMIT_VIRTUALTABLE
872 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
873 /* Case 1: The table is a virtual-table. Use the VFilter and VNext
874 ** to access the data.
875 */
876 int iReg; /* P3 Value for OP_VFilter */
877 int addrNotFound;
878 int nConstraint = pLoop->nLTerm;
879
880 sqlite3ExprCachePush(pParse);
881 iReg = sqlite3GetTempRange(pParse, nConstraint+2);
882 addrNotFound = pLevel->addrBrk;
883 for(j=0; j<nConstraint; j++){
884 int iTarget = iReg+j+2;
885 pTerm = pLoop->aLTerm[j];
886 if( pTerm==0 ) continue;
887 if( pTerm->eOperator & WO_IN ){
888 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
889 addrNotFound = pLevel->addrNxt;
890 }else{
891 sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget);
892 }
893 }
894 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
895 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
896 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
897 pLoop->u.vtab.idxStr,
898 pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC);
899 VdbeCoverage(v);
900 pLoop->u.vtab.needFree = 0;
901 for(j=0; j<nConstraint && j<16; j++){
902 if( (pLoop->u.vtab.omitMask>>j)&1 ){
903 disableTerm(pLevel, pLoop->aLTerm[j]);
904 }
905 }
drh6f82e852015-06-06 20:12:09 +0000906 pLevel->p1 = iCur;
dan354474a2015-09-29 10:11:26 +0000907 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
drh6f82e852015-06-06 20:12:09 +0000908 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
909 sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
910 sqlite3ExprCachePop(pParse);
911 }else
912#endif /* SQLITE_OMIT_VIRTUALTABLE */
913
914 if( (pLoop->wsFlags & WHERE_IPK)!=0
915 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
916 ){
917 /* Case 2: We can directly reference a single row using an
918 ** equality comparison against the ROWID field. Or
919 ** we reference multiple rows using a "rowid IN (...)"
920 ** construct.
921 */
922 assert( pLoop->u.btree.nEq==1 );
923 pTerm = pLoop->aLTerm[0];
924 assert( pTerm!=0 );
925 assert( pTerm->pExpr!=0 );
926 assert( omitTable==0 );
927 testcase( pTerm->wtFlags & TERM_VIRTUAL );
928 iReleaseReg = ++pParse->nMem;
929 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
930 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
931 addrNxt = pLevel->addrNxt;
932 sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); VdbeCoverage(v);
933 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
934 VdbeCoverage(v);
935 sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1);
936 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
937 VdbeComment((v, "pk"));
938 pLevel->op = OP_Noop;
939 }else if( (pLoop->wsFlags & WHERE_IPK)!=0
940 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
941 ){
942 /* Case 3: We have an inequality comparison against the ROWID field.
943 */
944 int testOp = OP_Noop;
945 int start;
946 int memEndValue = 0;
947 WhereTerm *pStart, *pEnd;
948
949 assert( omitTable==0 );
950 j = 0;
951 pStart = pEnd = 0;
952 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
953 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
954 assert( pStart!=0 || pEnd!=0 );
955 if( bRev ){
956 pTerm = pStart;
957 pStart = pEnd;
958 pEnd = pTerm;
959 }
drhb413a542015-08-17 17:19:28 +0000960 codeCursorHint(pWInfo, pLevel, pEnd);
drh6f82e852015-06-06 20:12:09 +0000961 if( pStart ){
962 Expr *pX; /* The expression that defines the start bound */
963 int r1, rTemp; /* Registers for holding the start boundary */
964
965 /* The following constant maps TK_xx codes into corresponding
966 ** seek opcodes. It depends on a particular ordering of TK_xx
967 */
968 const u8 aMoveOp[] = {
969 /* TK_GT */ OP_SeekGT,
970 /* TK_LE */ OP_SeekLE,
971 /* TK_LT */ OP_SeekLT,
972 /* TK_GE */ OP_SeekGE
973 };
974 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */
975 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */
976 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */
977
978 assert( (pStart->wtFlags & TERM_VNULL)==0 );
979 testcase( pStart->wtFlags & TERM_VIRTUAL );
980 pX = pStart->pExpr;
981 assert( pX!=0 );
982 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
983 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
984 sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1);
985 VdbeComment((v, "pk"));
986 VdbeCoverageIf(v, pX->op==TK_GT);
987 VdbeCoverageIf(v, pX->op==TK_LE);
988 VdbeCoverageIf(v, pX->op==TK_LT);
989 VdbeCoverageIf(v, pX->op==TK_GE);
990 sqlite3ExprCacheAffinityChange(pParse, r1, 1);
991 sqlite3ReleaseTempReg(pParse, rTemp);
992 disableTerm(pLevel, pStart);
993 }else{
994 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
995 VdbeCoverageIf(v, bRev==0);
996 VdbeCoverageIf(v, bRev!=0);
997 }
998 if( pEnd ){
999 Expr *pX;
1000 pX = pEnd->pExpr;
1001 assert( pX!=0 );
1002 assert( (pEnd->wtFlags & TERM_VNULL)==0 );
1003 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
1004 testcase( pEnd->wtFlags & TERM_VIRTUAL );
1005 memEndValue = ++pParse->nMem;
1006 sqlite3ExprCode(pParse, pX->pRight, memEndValue);
1007 if( pX->op==TK_LT || pX->op==TK_GT ){
1008 testOp = bRev ? OP_Le : OP_Ge;
1009 }else{
1010 testOp = bRev ? OP_Lt : OP_Gt;
1011 }
1012 disableTerm(pLevel, pEnd);
1013 }
1014 start = sqlite3VdbeCurrentAddr(v);
1015 pLevel->op = bRev ? OP_Prev : OP_Next;
1016 pLevel->p1 = iCur;
1017 pLevel->p2 = start;
1018 assert( pLevel->p5==0 );
1019 if( testOp!=OP_Noop ){
1020 iRowidReg = ++pParse->nMem;
1021 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
1022 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1023 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
1024 VdbeCoverageIf(v, testOp==OP_Le);
1025 VdbeCoverageIf(v, testOp==OP_Lt);
1026 VdbeCoverageIf(v, testOp==OP_Ge);
1027 VdbeCoverageIf(v, testOp==OP_Gt);
1028 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
1029 }
1030 }else if( pLoop->wsFlags & WHERE_INDEXED ){
1031 /* Case 4: A scan using an index.
1032 **
1033 ** The WHERE clause may contain zero or more equality
1034 ** terms ("==" or "IN" operators) that refer to the N
1035 ** left-most columns of the index. It may also contain
1036 ** inequality constraints (>, <, >= or <=) on the indexed
1037 ** column that immediately follows the N equalities. Only
1038 ** the right-most column can be an inequality - the rest must
1039 ** use the "==" and "IN" operators. For example, if the
1040 ** index is on (x,y,z), then the following clauses are all
1041 ** optimized:
1042 **
1043 ** x=5
1044 ** x=5 AND y=10
1045 ** x=5 AND y<10
1046 ** x=5 AND y>5 AND y<10
1047 ** x=5 AND y=5 AND z<=10
1048 **
1049 ** The z<10 term of the following cannot be used, only
1050 ** the x=5 term:
1051 **
1052 ** x=5 AND z<10
1053 **
1054 ** N may be zero if there are inequality constraints.
1055 ** If there are no inequality constraints, then N is at
1056 ** least one.
1057 **
1058 ** This case is also used when there are no WHERE clause
1059 ** constraints but an index is selected anyway, in order
1060 ** to force the output order to conform to an ORDER BY.
1061 */
1062 static const u8 aStartOp[] = {
1063 0,
1064 0,
1065 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
1066 OP_Last, /* 3: (!start_constraints && startEq && bRev) */
1067 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */
1068 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */
1069 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */
1070 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */
1071 };
1072 static const u8 aEndOp[] = {
1073 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */
1074 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */
1075 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */
1076 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */
1077 };
1078 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */
1079 int regBase; /* Base register holding constraint values */
1080 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
1081 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
1082 int startEq; /* True if range start uses ==, >= or <= */
1083 int endEq; /* True if range end uses ==, >= or <= */
1084 int start_constraints; /* Start of range is constrained */
1085 int nConstraint; /* Number of constraint terms */
1086 Index *pIdx; /* The index we will be using */
1087 int iIdxCur; /* The VDBE cursor for the index */
1088 int nExtraReg = 0; /* Number of extra registers needed */
1089 int op; /* Instruction opcode */
1090 char *zStartAff; /* Affinity for start of range constraint */
1091 char cEndAff = 0; /* Affinity for end of range constraint */
1092 u8 bSeekPastNull = 0; /* True to seek past initial nulls */
1093 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */
1094
1095 pIdx = pLoop->u.btree.pIndex;
1096 iIdxCur = pLevel->iIdxCur;
1097 assert( nEq>=pLoop->nSkip );
1098
1099 /* If this loop satisfies a sort order (pOrderBy) request that
1100 ** was passed to this function to implement a "SELECT min(x) ..."
1101 ** query, then the caller will only allow the loop to run for
1102 ** a single iteration. This means that the first row returned
1103 ** should not have a NULL value stored in 'x'. If column 'x' is
1104 ** the first one after the nEq equality constraints in the index,
1105 ** this requires some special handling.
1106 */
1107 assert( pWInfo->pOrderBy==0
1108 || pWInfo->pOrderBy->nExpr==1
1109 || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 );
1110 if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0
1111 && pWInfo->nOBSat>0
1112 && (pIdx->nKeyCol>nEq)
1113 ){
1114 assert( pLoop->nSkip==0 );
1115 bSeekPastNull = 1;
1116 nExtraReg = 1;
1117 }
1118
1119 /* Find any inequality constraint terms for the start and end
1120 ** of the range.
1121 */
1122 j = nEq;
1123 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1124 pRangeStart = pLoop->aLTerm[j++];
1125 nExtraReg = 1;
1126 /* Like optimization range constraints always occur in pairs */
1127 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1128 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1129 }
1130 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1131 pRangeEnd = pLoop->aLTerm[j++];
1132 nExtraReg = 1;
drh41d2e662015-12-01 21:23:07 +00001133#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
drh6f82e852015-06-06 20:12:09 +00001134 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1135 assert( pRangeStart!=0 ); /* LIKE opt constraints */
1136 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */
1137 pLevel->iLikeRepCntr = ++pParse->nMem;
1138 testcase( bRev );
1139 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1140 sqlite3VdbeAddOp2(v, OP_Integer,
1141 bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC),
1142 pLevel->iLikeRepCntr);
1143 VdbeComment((v, "LIKE loop counter"));
1144 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1145 }
drh41d2e662015-12-01 21:23:07 +00001146#endif
drh6f82e852015-06-06 20:12:09 +00001147 if( pRangeStart==0
1148 && (j = pIdx->aiColumn[nEq])>=0
1149 && pIdx->pTable->aCol[j].notNull==0
1150 ){
1151 bSeekPastNull = 1;
1152 }
1153 }
1154 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1155
drh6f82e852015-06-06 20:12:09 +00001156 /* If we are doing a reverse order scan on an ascending index, or
1157 ** a forward order scan on a descending index, interchange the
1158 ** start and end terms (pRangeStart and pRangeEnd).
1159 */
1160 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
1161 || (bRev && pIdx->nKeyCol==nEq)
1162 ){
1163 SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1164 SWAP(u8, bSeekPastNull, bStopAtNull);
1165 }
1166
drhbcf40a72015-08-18 15:58:05 +00001167 /* Generate code to evaluate all constraint terms using == or IN
1168 ** and store the values of those terms in an array of registers
1169 ** starting at regBase.
1170 */
1171 codeCursorHint(pWInfo, pLevel, pRangeEnd);
1172 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1173 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1174 if( zStartAff ) cEndAff = zStartAff[nEq];
1175 addrNxt = pLevel->addrNxt;
1176
drh6f82e852015-06-06 20:12:09 +00001177 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1178 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1179 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1180 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1181 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1182 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1183 start_constraints = pRangeStart || nEq>0;
1184
1185 /* Seek the index cursor to the start of the range. */
1186 nConstraint = nEq;
1187 if( pRangeStart ){
1188 Expr *pRight = pRangeStart->pExpr->pRight;
1189 sqlite3ExprCode(pParse, pRight, regBase+nEq);
1190 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1191 if( (pRangeStart->wtFlags & TERM_VNULL)==0
1192 && sqlite3ExprCanBeNull(pRight)
1193 ){
1194 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1195 VdbeCoverage(v);
1196 }
1197 if( zStartAff ){
1198 if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_BLOB){
1199 /* Since the comparison is to be performed with no conversions
1200 ** applied to the operands, set the affinity to apply to pRight to
1201 ** SQLITE_AFF_BLOB. */
1202 zStartAff[nEq] = SQLITE_AFF_BLOB;
1203 }
1204 if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){
1205 zStartAff[nEq] = SQLITE_AFF_BLOB;
1206 }
1207 }
1208 nConstraint++;
1209 testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1210 }else if( bSeekPastNull ){
1211 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1212 nConstraint++;
1213 startEq = 0;
1214 start_constraints = 1;
1215 }
1216 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1217 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1218 assert( op!=0 );
1219 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1220 VdbeCoverage(v);
1221 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind );
1222 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last );
1223 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT );
1224 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE );
1225 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE );
1226 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT );
1227
1228 /* Load the value for the inequality constraint at the end of the
1229 ** range (if any).
1230 */
1231 nConstraint = nEq;
1232 if( pRangeEnd ){
1233 Expr *pRight = pRangeEnd->pExpr->pRight;
1234 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
1235 sqlite3ExprCode(pParse, pRight, regBase+nEq);
1236 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1237 if( (pRangeEnd->wtFlags & TERM_VNULL)==0
1238 && sqlite3ExprCanBeNull(pRight)
1239 ){
1240 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1241 VdbeCoverage(v);
1242 }
1243 if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_BLOB
1244 && !sqlite3ExprNeedsNoAffinityChange(pRight, cEndAff)
1245 ){
1246 codeApplyAffinity(pParse, regBase+nEq, 1, &cEndAff);
1247 }
1248 nConstraint++;
1249 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
1250 }else if( bStopAtNull ){
1251 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1252 endEq = 0;
1253 nConstraint++;
1254 }
1255 sqlite3DbFree(db, zStartAff);
1256
1257 /* Top of the loop body */
1258 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1259
1260 /* Check if the index cursor is past the end of the range. */
1261 if( nConstraint ){
1262 op = aEndOp[bRev*2 + endEq];
1263 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1264 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT );
1265 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE );
1266 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT );
1267 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE );
1268 }
1269
1270 /* Seek the table cursor, if required */
1271 disableTerm(pLevel, pRangeStart);
1272 disableTerm(pLevel, pRangeEnd);
1273 if( omitTable ){
1274 /* pIdx is a covering index. No need to access the main table. */
1275 }else if( HasRowid(pIdx->pTable) ){
drhb0264ee2015-09-14 14:45:50 +00001276 if( pWInfo->eOnePass!=ONEPASS_OFF ){
drh784c1b92016-01-30 16:59:56 +00001277 iRowidReg = ++pParse->nMem;
1278 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
1279 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
danc6157e12015-09-14 09:23:47 +00001280 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg);
drh66336f32015-09-14 14:08:25 +00001281 VdbeCoverage(v);
danc6157e12015-09-14 09:23:47 +00001282 }else{
drh784c1b92016-01-30 16:59:56 +00001283 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
danc6157e12015-09-14 09:23:47 +00001284 }
drh6f82e852015-06-06 20:12:09 +00001285 }else if( iCur!=iIdxCur ){
1286 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1287 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1288 for(j=0; j<pPk->nKeyCol; j++){
1289 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
1290 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
1291 }
1292 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
1293 iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
1294 }
1295
1296 /* Record the instruction used to terminate the loop. Disable
1297 ** WHERE clause terms made redundant by the index range scan.
1298 */
1299 if( pLoop->wsFlags & WHERE_ONEROW ){
1300 pLevel->op = OP_Noop;
1301 }else if( bRev ){
1302 pLevel->op = OP_Prev;
1303 }else{
1304 pLevel->op = OP_Next;
1305 }
1306 pLevel->p1 = iIdxCur;
1307 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
1308 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
1309 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1310 }else{
1311 assert( pLevel->p5==0 );
1312 }
1313 }else
1314
1315#ifndef SQLITE_OMIT_OR_OPTIMIZATION
1316 if( pLoop->wsFlags & WHERE_MULTI_OR ){
1317 /* Case 5: Two or more separately indexed terms connected by OR
1318 **
1319 ** Example:
1320 **
1321 ** CREATE TABLE t1(a,b,c,d);
1322 ** CREATE INDEX i1 ON t1(a);
1323 ** CREATE INDEX i2 ON t1(b);
1324 ** CREATE INDEX i3 ON t1(c);
1325 **
1326 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
1327 **
1328 ** In the example, there are three indexed terms connected by OR.
1329 ** The top of the loop looks like this:
1330 **
1331 ** Null 1 # Zero the rowset in reg 1
1332 **
1333 ** Then, for each indexed term, the following. The arguments to
1334 ** RowSetTest are such that the rowid of the current row is inserted
1335 ** into the RowSet. If it is already present, control skips the
1336 ** Gosub opcode and jumps straight to the code generated by WhereEnd().
1337 **
1338 ** sqlite3WhereBegin(<term>)
1339 ** RowSetTest # Insert rowid into rowset
1340 ** Gosub 2 A
1341 ** sqlite3WhereEnd()
1342 **
1343 ** Following the above, code to terminate the loop. Label A, the target
1344 ** of the Gosub above, jumps to the instruction right after the Goto.
1345 **
1346 ** Null 1 # Zero the rowset in reg 1
1347 ** Goto B # The loop is finished.
1348 **
1349 ** A: <loop body> # Return data, whatever.
1350 **
1351 ** Return 2 # Jump back to the Gosub
1352 **
1353 ** B: <after the loop>
1354 **
1355 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
1356 ** use an ephemeral index instead of a RowSet to record the primary
1357 ** keys of the rows we have already seen.
1358 **
1359 */
1360 WhereClause *pOrWc; /* The OR-clause broken out into subterms */
1361 SrcList *pOrTab; /* Shortened table list or OR-clause generation */
1362 Index *pCov = 0; /* Potential covering index (or NULL) */
1363 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */
1364
1365 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */
1366 int regRowset = 0; /* Register for RowSet object */
1367 int regRowid = 0; /* Register holding rowid */
1368 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */
1369 int iRetInit; /* Address of regReturn init */
1370 int untestedTerms = 0; /* Some terms not completely tested */
1371 int ii; /* Loop counter */
1372 u16 wctrlFlags; /* Flags for sub-WHERE clause */
1373 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */
1374 Table *pTab = pTabItem->pTab;
1375
1376 pTerm = pLoop->aLTerm[0];
1377 assert( pTerm!=0 );
1378 assert( pTerm->eOperator & WO_OR );
1379 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
1380 pOrWc = &pTerm->u.pOrInfo->wc;
1381 pLevel->op = OP_Return;
1382 pLevel->p1 = regReturn;
1383
1384 /* Set up a new SrcList in pOrTab containing the table being scanned
1385 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
1386 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
1387 */
1388 if( pWInfo->nLevel>1 ){
1389 int nNotReady; /* The number of notReady tables */
1390 struct SrcList_item *origSrc; /* Original list of tables */
1391 nNotReady = pWInfo->nLevel - iLevel - 1;
1392 pOrTab = sqlite3StackAllocRaw(db,
1393 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
1394 if( pOrTab==0 ) return notReady;
1395 pOrTab->nAlloc = (u8)(nNotReady + 1);
1396 pOrTab->nSrc = pOrTab->nAlloc;
1397 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
1398 origSrc = pWInfo->pTabList->a;
1399 for(k=1; k<=nNotReady; k++){
1400 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
1401 }
1402 }else{
1403 pOrTab = pWInfo->pTabList;
1404 }
1405
1406 /* Initialize the rowset register to contain NULL. An SQL NULL is
1407 ** equivalent to an empty rowset. Or, create an ephemeral index
1408 ** capable of holding primary keys in the case of a WITHOUT ROWID.
1409 **
1410 ** Also initialize regReturn to contain the address of the instruction
1411 ** immediately following the OP_Return at the bottom of the loop. This
1412 ** is required in a few obscure LEFT JOIN cases where control jumps
1413 ** over the top of the loop into the body of it. In this case the
1414 ** correct response for the end-of-loop code (the OP_Return) is to
1415 ** fall through to the next instruction, just as an OP_Next does if
1416 ** called on an uninitialized cursor.
1417 */
1418 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1419 if( HasRowid(pTab) ){
1420 regRowset = ++pParse->nMem;
1421 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
1422 }else{
1423 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1424 regRowset = pParse->nTab++;
1425 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
1426 sqlite3VdbeSetP4KeyInfo(pParse, pPk);
1427 }
1428 regRowid = ++pParse->nMem;
1429 }
1430 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
1431
1432 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y
1433 ** Then for every term xN, evaluate as the subexpression: xN AND z
1434 ** That way, terms in y that are factored into the disjunction will
1435 ** be picked up by the recursive calls to sqlite3WhereBegin() below.
1436 **
1437 ** Actually, each subexpression is converted to "xN AND w" where w is
1438 ** the "interesting" terms of z - terms that did not originate in the
1439 ** ON or USING clause of a LEFT JOIN, and terms that are usable as
1440 ** indices.
1441 **
1442 ** This optimization also only applies if the (x1 OR x2 OR ...) term
1443 ** is not contained in the ON clause of a LEFT JOIN.
1444 ** See ticket http://www.sqlite.org/src/info/f2369304e4
1445 */
1446 if( pWC->nTerm>1 ){
1447 int iTerm;
1448 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
1449 Expr *pExpr = pWC->a[iTerm].pExpr;
1450 if( &pWC->a[iTerm] == pTerm ) continue;
1451 if( ExprHasProperty(pExpr, EP_FromJoin) ) continue;
drh3b83f0c2016-01-29 16:57:06 +00001452 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
1453 testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
1454 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue;
drh6f82e852015-06-06 20:12:09 +00001455 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
1456 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
1457 pExpr = sqlite3ExprDup(db, pExpr, 0);
1458 pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr);
1459 }
1460 if( pAndExpr ){
drh1167d322015-10-28 20:01:45 +00001461 pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr, 0);
drh6f82e852015-06-06 20:12:09 +00001462 }
1463 }
1464
1465 /* Run a separate WHERE clause for each term of the OR clause. After
1466 ** eliminating duplicates from other WHERE clauses, the action for each
1467 ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
1468 */
1469 wctrlFlags = WHERE_OMIT_OPEN_CLOSE
1470 | WHERE_FORCE_TABLE
1471 | WHERE_ONETABLE_ONLY
1472 | WHERE_NO_AUTOINDEX;
1473 for(ii=0; ii<pOrWc->nTerm; ii++){
1474 WhereTerm *pOrTerm = &pOrWc->a[ii];
1475 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
1476 WhereInfo *pSubWInfo; /* Info for single OR-term scan */
1477 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
drh728e0f92015-10-10 14:41:28 +00001478 int jmp1 = 0; /* Address of jump operation */
drh6f82e852015-06-06 20:12:09 +00001479 if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){
1480 pAndExpr->pLeft = pOrExpr;
1481 pOrExpr = pAndExpr;
1482 }
1483 /* Loop through table entries that match term pOrTerm. */
1484 WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
1485 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
1486 wctrlFlags, iCovCur);
1487 assert( pSubWInfo || pParse->nErr || db->mallocFailed );
1488 if( pSubWInfo ){
1489 WhereLoop *pSubLoop;
1490 int addrExplain = sqlite3WhereExplainOneScan(
1491 pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
1492 );
1493 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
1494
1495 /* This is the sub-WHERE clause body. First skip over
1496 ** duplicate rows from prior sub-WHERE clauses, and record the
1497 ** rowid (or PRIMARY KEY) for the current row so that the same
1498 ** row will be skipped in subsequent sub-WHERE clauses.
1499 */
1500 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1501 int r;
1502 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
1503 if( HasRowid(pTab) ){
1504 r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0);
drh728e0f92015-10-10 14:41:28 +00001505 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
1506 r,iSet);
drh6f82e852015-06-06 20:12:09 +00001507 VdbeCoverage(v);
1508 }else{
1509 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1510 int nPk = pPk->nKeyCol;
1511 int iPk;
1512
1513 /* Read the PK into an array of temp registers. */
1514 r = sqlite3GetTempRange(pParse, nPk);
1515 for(iPk=0; iPk<nPk; iPk++){
1516 int iCol = pPk->aiColumn[iPk];
drhce78bc62015-10-15 19:21:51 +00001517 sqlite3ExprCodeGetColumnToReg(pParse, pTab, iCol, iCur, r+iPk);
drh6f82e852015-06-06 20:12:09 +00001518 }
1519
1520 /* Check if the temp table already contains this key. If so,
1521 ** the row has already been included in the result set and
1522 ** can be ignored (by jumping past the Gosub below). Otherwise,
1523 ** insert the key into the temp table and proceed with processing
1524 ** the row.
1525 **
1526 ** Use some of the same optimizations as OP_RowSetTest: If iSet
1527 ** is zero, assume that the key cannot already be present in
1528 ** the temp table. And if iSet is -1, assume that there is no
1529 ** need to insert the key into the temp table, as it will never
1530 ** be tested for. */
1531 if( iSet ){
drh728e0f92015-10-10 14:41:28 +00001532 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
drh6f82e852015-06-06 20:12:09 +00001533 VdbeCoverage(v);
1534 }
1535 if( iSet>=0 ){
1536 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
1537 sqlite3VdbeAddOp3(v, OP_IdxInsert, regRowset, regRowid, 0);
1538 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1539 }
1540
1541 /* Release the array of temp registers */
1542 sqlite3ReleaseTempRange(pParse, r, nPk);
1543 }
1544 }
1545
1546 /* Invoke the main loop body as a subroutine */
1547 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
1548
1549 /* Jump here (skipping the main loop body subroutine) if the
1550 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
drh728e0f92015-10-10 14:41:28 +00001551 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
drh6f82e852015-06-06 20:12:09 +00001552
1553 /* The pSubWInfo->untestedTerms flag means that this OR term
1554 ** contained one or more AND term from a notReady table. The
1555 ** terms from the notReady table could not be tested and will
1556 ** need to be tested later.
1557 */
1558 if( pSubWInfo->untestedTerms ) untestedTerms = 1;
1559
1560 /* If all of the OR-connected terms are optimized using the same
1561 ** index, and the index is opened using the same cursor number
1562 ** by each call to sqlite3WhereBegin() made by this loop, it may
1563 ** be possible to use that index as a covering index.
1564 **
1565 ** If the call to sqlite3WhereBegin() above resulted in a scan that
1566 ** uses an index, and this is either the first OR-connected term
1567 ** processed or the index is the same as that used by all previous
1568 ** terms, set pCov to the candidate covering index. Otherwise, set
1569 ** pCov to NULL to indicate that no candidate covering index will
1570 ** be available.
1571 */
1572 pSubLoop = pSubWInfo->a[0].pWLoop;
1573 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
1574 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
1575 && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
1576 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
1577 ){
1578 assert( pSubWInfo->a[0].iIdxCur==iCovCur );
1579 pCov = pSubLoop->u.btree.pIndex;
1580 wctrlFlags |= WHERE_REOPEN_IDX;
1581 }else{
1582 pCov = 0;
1583 }
1584
1585 /* Finish the loop through table entries that match term pOrTerm. */
1586 sqlite3WhereEnd(pSubWInfo);
1587 }
1588 }
1589 }
1590 pLevel->u.pCovidx = pCov;
1591 if( pCov ) pLevel->iIdxCur = iCovCur;
1592 if( pAndExpr ){
1593 pAndExpr->pLeft = 0;
1594 sqlite3ExprDelete(db, pAndExpr);
1595 }
1596 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
drh076e85f2015-09-03 13:46:12 +00001597 sqlite3VdbeGoto(v, pLevel->addrBrk);
drh6f82e852015-06-06 20:12:09 +00001598 sqlite3VdbeResolveLabel(v, iLoopBody);
1599
1600 if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab);
1601 if( !untestedTerms ) disableTerm(pLevel, pTerm);
1602 }else
1603#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1604
1605 {
1606 /* Case 6: There is no usable index. We must do a complete
1607 ** scan of the entire table.
1608 */
1609 static const u8 aStep[] = { OP_Next, OP_Prev };
1610 static const u8 aStart[] = { OP_Rewind, OP_Last };
1611 assert( bRev==0 || bRev==1 );
drh8a48b9c2015-08-19 15:20:00 +00001612 if( pTabItem->fg.isRecursive ){
drh6f82e852015-06-06 20:12:09 +00001613 /* Tables marked isRecursive have only a single row that is stored in
1614 ** a pseudo-cursor. No need to Rewind or Next such cursors. */
1615 pLevel->op = OP_Noop;
1616 }else{
drhb413a542015-08-17 17:19:28 +00001617 codeCursorHint(pWInfo, pLevel, 0);
drh6f82e852015-06-06 20:12:09 +00001618 pLevel->op = aStep[bRev];
1619 pLevel->p1 = iCur;
1620 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
1621 VdbeCoverageIf(v, bRev==0);
1622 VdbeCoverageIf(v, bRev!=0);
1623 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1624 }
1625 }
1626
1627#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1628 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
1629#endif
1630
1631 /* Insert code to test every subexpression that can be completely
1632 ** computed using the current set of tables.
1633 */
1634 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
1635 Expr *pE;
1636 int skipLikeAddr = 0;
1637 testcase( pTerm->wtFlags & TERM_VIRTUAL );
1638 testcase( pTerm->wtFlags & TERM_CODED );
1639 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1640 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
1641 testcase( pWInfo->untestedTerms==0
1642 && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 );
1643 pWInfo->untestedTerms = 1;
1644 continue;
1645 }
1646 pE = pTerm->pExpr;
1647 assert( pE!=0 );
1648 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
1649 continue;
1650 }
1651 if( pTerm->wtFlags & TERM_LIKECOND ){
drh41d2e662015-12-01 21:23:07 +00001652#ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1653 continue;
1654#else
drh6f82e852015-06-06 20:12:09 +00001655 assert( pLevel->iLikeRepCntr>0 );
1656 skipLikeAddr = sqlite3VdbeAddOp1(v, OP_IfNot, pLevel->iLikeRepCntr);
1657 VdbeCoverage(v);
drh41d2e662015-12-01 21:23:07 +00001658#endif
drh6f82e852015-06-06 20:12:09 +00001659 }
1660 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
1661 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
1662 pTerm->wtFlags |= TERM_CODED;
1663 }
1664
1665 /* Insert code to test for implied constraints based on transitivity
1666 ** of the "==" operator.
1667 **
1668 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
1669 ** and we are coding the t1 loop and the t2 loop has not yet coded,
1670 ** then we cannot use the "t1.a=t2.b" constraint, but we can code
1671 ** the implied "t1.a=123" constraint.
1672 */
1673 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
1674 Expr *pE, *pEAlt;
1675 WhereTerm *pAlt;
1676 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1677 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
1678 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
1679 if( pTerm->leftCursor!=iCur ) continue;
1680 if( pLevel->iLeftJoin ) continue;
1681 pE = pTerm->pExpr;
1682 assert( !ExprHasProperty(pE, EP_FromJoin) );
1683 assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
1684 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady,
1685 WO_EQ|WO_IN|WO_IS, 0);
1686 if( pAlt==0 ) continue;
1687 if( pAlt->wtFlags & (TERM_CODED) ) continue;
1688 testcase( pAlt->eOperator & WO_EQ );
1689 testcase( pAlt->eOperator & WO_IS );
1690 testcase( pAlt->eOperator & WO_IN );
1691 VdbeModuleComment((v, "begin transitive constraint"));
1692 pEAlt = sqlite3StackAllocRaw(db, sizeof(*pEAlt));
1693 if( pEAlt ){
1694 *pEAlt = *pAlt->pExpr;
1695 pEAlt->pLeft = pE->pLeft;
1696 sqlite3ExprIfFalse(pParse, pEAlt, addrCont, SQLITE_JUMPIFNULL);
1697 sqlite3StackFree(db, pEAlt);
1698 }
1699 }
1700
1701 /* For a LEFT OUTER JOIN, generate code that will record the fact that
1702 ** at least one row of the right table has matched the left table.
1703 */
1704 if( pLevel->iLeftJoin ){
1705 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
1706 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
1707 VdbeComment((v, "record LEFT JOIN hit"));
1708 sqlite3ExprCacheClear(pParse);
1709 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
1710 testcase( pTerm->wtFlags & TERM_VIRTUAL );
1711 testcase( pTerm->wtFlags & TERM_CODED );
1712 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1713 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
1714 assert( pWInfo->untestedTerms );
1715 continue;
1716 }
1717 assert( pTerm->pExpr );
1718 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
1719 pTerm->wtFlags |= TERM_CODED;
1720 }
1721 }
1722
1723 return pLevel->notReady;
1724}