blob: a7d693d53a4b90a18eb05391f92947d8e18779d9 [file] [log] [blame]
drh75897232000-05-29 14:26:00 +00001/*
drhb19a2bc2001-09-16 00:13:26 +00002** 2001 September 15
drh75897232000-05-29 14:26:00 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drh75897232000-05-29 14:26:00 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drh75897232000-05-29 14:26:00 +000010**
11*************************************************************************
drh9a324642003-09-06 20:12:01 +000012** The code in this file implements execution method of the
13** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
14** handles housekeeping details such as creating and deleting
15** VDBE instances. This file is solely interested in executing
16** the VDBE program.
17**
danielk1977fc57d7b2004-05-26 02:04:57 +000018** In the external interface, an "sqlite3_stmt*" is an opaque pointer
drh9a324642003-09-06 20:12:01 +000019** to a VDBE.
drh75897232000-05-29 14:26:00 +000020**
21** The SQL parser generates a program which is then executed by
22** the VDBE to do the work of the SQL statement. VDBE programs are
23** similar in form to assembly language. The program consists of
24** a linear sequence of operations. Each operation has an opcode
drh9cbf3422008-01-17 16:22:13 +000025** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4
26** is a null-terminated string. Operand P5 is an unsigned character.
27** Few opcodes use all 5 operands.
drh75897232000-05-29 14:26:00 +000028**
drh9cbf3422008-01-17 16:22:13 +000029** Computation results are stored on a set of registers numbered beginning
30** with 1 and going up to Vdbe.nMem. Each register can store
31** either an integer, a null-terminated string, a floating point
shane21e7feb2008-05-30 15:59:49 +000032** number, or the SQL "NULL" value. An implicit conversion from one
drhb19a2bc2001-09-16 00:13:26 +000033** type to the other occurs as necessary.
drh75897232000-05-29 14:26:00 +000034**
danielk19774adee202004-05-08 08:23:19 +000035** Most of the code in this file is taken up by the sqlite3VdbeExec()
drh75897232000-05-29 14:26:00 +000036** function which does the work of interpreting a VDBE program.
37** But other routines are also provided to help in building up
38** a program instruction by instruction.
39**
drhac82fcf2002-09-08 17:23:41 +000040** Various scripts scan this source file in order to generate HTML
41** documentation, headers files, or other derived files. The formatting
42** of the code in this file is, therefore, important. See other comments
43** in this file for details. If in doubt, do not deviate from existing
44** commenting and indentation practices when changing or adding code.
drh75897232000-05-29 14:26:00 +000045*/
46#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000047#include "vdbeInt.h"
drh8f619cc2002-09-08 00:04:50 +000048
49/*
drh487ab3c2001-11-08 00:45:21 +000050** The following global variable is incremented every time a cursor
drh959403f2008-12-12 17:56:16 +000051** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
drh487ab3c2001-11-08 00:45:21 +000052** procedures use this information to make sure that indices are
drhac82fcf2002-09-08 17:23:41 +000053** working correctly. This variable has no function other than to
54** help verify the correct operation of the library.
drh487ab3c2001-11-08 00:45:21 +000055*/
drh0f7eb612006-08-08 13:51:43 +000056#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000057int sqlite3_search_count = 0;
drh0f7eb612006-08-08 13:51:43 +000058#endif
drh487ab3c2001-11-08 00:45:21 +000059
drhf6038712004-02-08 18:07:34 +000060/*
61** When this global variable is positive, it gets decremented once before
drh881feaa2006-07-26 01:39:30 +000062** each instruction in the VDBE. When reaches zero, the u1.isInterrupted
63** field of the sqlite3 structure is set in order to simulate and interrupt.
drhf6038712004-02-08 18:07:34 +000064**
65** This facility is used for testing purposes only. It does not function
66** in an ordinary build.
67*/
drh0f7eb612006-08-08 13:51:43 +000068#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000069int sqlite3_interrupt_count = 0;
drh0f7eb612006-08-08 13:51:43 +000070#endif
drh1350b032002-02-27 19:00:20 +000071
danielk19777e18c252004-05-25 11:47:24 +000072/*
drh6bf89572004-11-03 16:27:01 +000073** The next global variable is incremented each type the OP_Sort opcode
74** is executed. The test procedures use this information to make sure that
shane21e7feb2008-05-30 15:59:49 +000075** sorting is occurring or not occurring at appropriate times. This variable
drh6bf89572004-11-03 16:27:01 +000076** has no function other than to help verify the correct operation of the
77** library.
78*/
drh0f7eb612006-08-08 13:51:43 +000079#ifdef SQLITE_TEST
drh6bf89572004-11-03 16:27:01 +000080int sqlite3_sort_count = 0;
drh0f7eb612006-08-08 13:51:43 +000081#endif
drh6bf89572004-11-03 16:27:01 +000082
83/*
drhae7e1512007-05-02 16:51:59 +000084** The next global variable records the size of the largest MEM_Blob
drh9cbf3422008-01-17 16:22:13 +000085** or MEM_Str that has been used by a VDBE opcode. The test procedures
drhae7e1512007-05-02 16:51:59 +000086** use this information to make sure that the zero-blob functionality
87** is working correctly. This variable has no function other than to
88** help verify the correct operation of the library.
89*/
90#ifdef SQLITE_TEST
91int sqlite3_max_blobsize = 0;
drhca48c902008-01-18 14:08:24 +000092static void updateMaxBlobsize(Mem *p){
93 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
94 sqlite3_max_blobsize = p->n;
95 }
96}
drhae7e1512007-05-02 16:51:59 +000097#endif
98
99/*
dan0ff297e2009-09-25 17:03:14 +0000100** The next global variable is incremented each type the OP_Found opcode
101** is executed. This is used to test whether or not the foreign key
102** operation implemented using OP_FkIsZero is working. This variable
103** has no function other than to help verify the correct operation of the
104** library.
105*/
106#ifdef SQLITE_TEST
107int sqlite3_found_count = 0;
108#endif
109
110/*
drhb7654112008-01-12 12:48:07 +0000111** Test a register to see if it exceeds the current maximum blob size.
112** If it does, record the new maximum blob size.
113*/
drh678ccce2008-03-31 18:19:54 +0000114#if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
drhca48c902008-01-18 14:08:24 +0000115# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
drhb7654112008-01-12 12:48:07 +0000116#else
117# define UPDATE_MAX_BLOBSIZE(P)
118#endif
119
120/*
drh9cbf3422008-01-17 16:22:13 +0000121** Convert the given register into a string if it isn't one
danielk1977bd7e4602004-05-24 07:34:48 +0000122** already. Return non-zero if a malloc() fails.
123*/
drhb21c8cd2007-08-21 19:33:56 +0000124#define Stringify(P, enc) \
125 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
drhf4479502004-05-27 03:12:53 +0000126 { goto no_mem; }
danielk1977bd7e4602004-05-24 07:34:48 +0000127
128/*
danielk1977bd7e4602004-05-24 07:34:48 +0000129** An ephemeral string value (signified by the MEM_Ephem flag) contains
130** a pointer to a dynamically allocated string where some other entity
drh9cbf3422008-01-17 16:22:13 +0000131** is responsible for deallocating that string. Because the register
132** does not control the string, it might be deleted without the register
133** knowing it.
danielk1977bd7e4602004-05-24 07:34:48 +0000134**
135** This routine converts an ephemeral string into a dynamically allocated
drh9cbf3422008-01-17 16:22:13 +0000136** string that the register itself controls. In other words, it
danielk1977bd7e4602004-05-24 07:34:48 +0000137** converts an MEM_Ephem string into an MEM_Dyn string.
138*/
drhb21c8cd2007-08-21 19:33:56 +0000139#define Deephemeralize(P) \
drheb2e1762004-05-27 01:53:56 +0000140 if( ((P)->flags&MEM_Ephem)!=0 \
drhb21c8cd2007-08-21 19:33:56 +0000141 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
danielk197793d46752004-05-23 13:30:58 +0000142
143/*
danielk19771cc5ed82007-05-16 17:28:43 +0000144** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
145** P if required.
146*/
drhb21c8cd2007-08-21 19:33:56 +0000147#define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
danielk19771cc5ed82007-05-16 17:28:43 +0000148
149/*
shane21e7feb2008-05-30 15:59:49 +0000150** Argument pMem points at a register that will be passed to a
danielk1977c572ef72004-05-27 09:28:41 +0000151** user-defined function or returned to the user as the result of a query.
dan937d0de2009-10-15 18:35:38 +0000152** This routine sets the pMem->type variable used by the sqlite3_value_*()
153** routines.
danielk1977c572ef72004-05-27 09:28:41 +0000154*/
dan937d0de2009-10-15 18:35:38 +0000155void sqlite3VdbeMemStoreType(Mem *pMem){
danielk1977c572ef72004-05-27 09:28:41 +0000156 int flags = pMem->flags;
157 if( flags & MEM_Null ){
drh9c054832004-05-31 18:51:57 +0000158 pMem->type = SQLITE_NULL;
danielk1977c572ef72004-05-27 09:28:41 +0000159 }
160 else if( flags & MEM_Int ){
drh9c054832004-05-31 18:51:57 +0000161 pMem->type = SQLITE_INTEGER;
danielk1977c572ef72004-05-27 09:28:41 +0000162 }
163 else if( flags & MEM_Real ){
drh9c054832004-05-31 18:51:57 +0000164 pMem->type = SQLITE_FLOAT;
danielk1977c572ef72004-05-27 09:28:41 +0000165 }
166 else if( flags & MEM_Str ){
drh9c054832004-05-31 18:51:57 +0000167 pMem->type = SQLITE_TEXT;
danielk1977c572ef72004-05-27 09:28:41 +0000168 }else{
drh9c054832004-05-31 18:51:57 +0000169 pMem->type = SQLITE_BLOB;
danielk1977c572ef72004-05-27 09:28:41 +0000170 }
171}
danielk19778a6b5412004-05-24 07:04:25 +0000172
173/*
drhdfe88ec2008-11-03 20:55:06 +0000174** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
drh4774b132004-06-12 20:12:51 +0000175** if we run out of memory.
drh8c74a8c2002-08-25 19:20:40 +0000176*/
drhdfe88ec2008-11-03 20:55:06 +0000177static VdbeCursor *allocateCursor(
178 Vdbe *p, /* The virtual machine */
179 int iCur, /* Index of the new VdbeCursor */
danielk1977d336e222009-02-20 10:58:41 +0000180 int nField, /* Number of fields in the table or index */
drh3d4501e2008-12-04 20:40:10 +0000181 int iDb, /* When database the cursor belongs to, or -1 */
drh3e9ca092009-09-08 01:14:48 +0000182 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */
danielk1977cd3e8f72008-03-25 09:47:35 +0000183){
184 /* Find the memory cell that will be used to store the blob of memory
drhdfe88ec2008-11-03 20:55:06 +0000185 ** required for this VdbeCursor structure. It is convenient to use a
danielk1977cd3e8f72008-03-25 09:47:35 +0000186 ** vdbe memory cell to manage the memory allocation required for a
drhdfe88ec2008-11-03 20:55:06 +0000187 ** VdbeCursor structure for the following reasons:
danielk1977cd3e8f72008-03-25 09:47:35 +0000188 **
189 ** * Sometimes cursor numbers are used for a couple of different
190 ** purposes in a vdbe program. The different uses might require
191 ** different sized allocations. Memory cells provide growable
192 ** allocations.
193 **
194 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
195 ** be freed lazily via the sqlite3_release_memory() API. This
196 ** minimizes the number of malloc calls made by the system.
197 **
198 ** Memory cells for cursors are allocated at the top of the address
199 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
200 ** cursor 1 is managed by memory cell (p->nMem-1), etc.
201 */
202 Mem *pMem = &p->aMem[p->nMem-iCur];
203
danielk19775f096132008-03-28 15:44:09 +0000204 int nByte;
drhdfe88ec2008-11-03 20:55:06 +0000205 VdbeCursor *pCx = 0;
danielk19775f096132008-03-28 15:44:09 +0000206 nByte =
drhc54055b2009-11-13 17:05:53 +0000207 ROUND8(sizeof(VdbeCursor)) +
danielk1977cd3e8f72008-03-25 09:47:35 +0000208 (isBtreeCursor?sqlite3BtreeCursorSize():0) +
209 2*nField*sizeof(u32);
210
drh290c1942004-08-21 17:54:45 +0000211 assert( iCur<p->nCursor );
212 if( p->apCsr[iCur] ){
danielk1977be718892006-06-23 08:05:19 +0000213 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
danielk1977cd3e8f72008-03-25 09:47:35 +0000214 p->apCsr[iCur] = 0;
drh8c74a8c2002-08-25 19:20:40 +0000215 }
danielk1977cd3e8f72008-03-25 09:47:35 +0000216 if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
drhdfe88ec2008-11-03 20:55:06 +0000217 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
drhf25a5072009-11-18 23:01:25 +0000218 memset(pCx, 0, sizeof(VdbeCursor));
danielk197794eb6a12005-12-15 15:22:08 +0000219 pCx->iDb = iDb;
danielk1977cd3e8f72008-03-25 09:47:35 +0000220 pCx->nField = nField;
221 if( nField ){
drhc54055b2009-11-13 17:05:53 +0000222 pCx->aType = (u32 *)&pMem->z[ROUND8(sizeof(VdbeCursor))];
danielk1977cd3e8f72008-03-25 09:47:35 +0000223 }
224 if( isBtreeCursor ){
drhdfe88ec2008-11-03 20:55:06 +0000225 pCx->pCursor = (BtCursor*)
drhc54055b2009-11-13 17:05:53 +0000226 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*nField*sizeof(u32)];
drhf25a5072009-11-18 23:01:25 +0000227 sqlite3BtreeCursorZero(pCx->pCursor);
danielk1977cd3e8f72008-03-25 09:47:35 +0000228 }
danielk197794eb6a12005-12-15 15:22:08 +0000229 }
drh4774b132004-06-12 20:12:51 +0000230 return pCx;
drh8c74a8c2002-08-25 19:20:40 +0000231}
232
danielk19773d1bfea2004-05-14 11:00:53 +0000233/*
drh29d72102006-02-09 22:13:41 +0000234** Try to convert a value into a numeric representation if we can
235** do so without loss of information. In other words, if the string
236** looks like a number, convert it into a number. If it does not
237** look like a number, leave it alone.
238*/
drhb21c8cd2007-08-21 19:33:56 +0000239static void applyNumericAffinity(Mem *pRec){
drh29d72102006-02-09 22:13:41 +0000240 if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
241 int realnum;
drhb21c8cd2007-08-21 19:33:56 +0000242 sqlite3VdbeMemNulTerminate(pRec);
drh29d72102006-02-09 22:13:41 +0000243 if( (pRec->flags&MEM_Str)
244 && sqlite3IsNumber(pRec->z, &realnum, pRec->enc) ){
245 i64 value;
drhb21c8cd2007-08-21 19:33:56 +0000246 sqlite3VdbeChangeEncoding(pRec, SQLITE_UTF8);
drhb6a9ece2007-06-26 00:37:27 +0000247 if( !realnum && sqlite3Atoi64(pRec->z, &value) ){
drh3c024d62007-03-30 11:23:45 +0000248 pRec->u.i = value;
danielk1977a7a8e142008-02-13 18:25:27 +0000249 MemSetTypeFlag(pRec, MEM_Int);
drh29d72102006-02-09 22:13:41 +0000250 }else{
251 sqlite3VdbeMemRealify(pRec);
252 }
253 }
254 }
255}
256
257/*
drh8a512562005-11-14 22:29:05 +0000258** Processing is determine by the affinity parameter:
danielk19773d1bfea2004-05-14 11:00:53 +0000259**
drh8a512562005-11-14 22:29:05 +0000260** SQLITE_AFF_INTEGER:
261** SQLITE_AFF_REAL:
262** SQLITE_AFF_NUMERIC:
263** Try to convert pRec to an integer representation or a
264** floating-point representation if an integer representation
265** is not possible. Note that the integer representation is
266** always preferred, even if the affinity is REAL, because
267** an integer representation is more space efficient on disk.
268**
269** SQLITE_AFF_TEXT:
270** Convert pRec to a text representation.
271**
272** SQLITE_AFF_NONE:
273** No-op. pRec is unchanged.
danielk19773d1bfea2004-05-14 11:00:53 +0000274*/
drh17435752007-08-16 04:30:38 +0000275static void applyAffinity(
drh17435752007-08-16 04:30:38 +0000276 Mem *pRec, /* The value to apply affinity to */
277 char affinity, /* The affinity to be applied */
278 u8 enc /* Use this text encoding */
279){
drh8a512562005-11-14 22:29:05 +0000280 if( affinity==SQLITE_AFF_TEXT ){
drh17c40292004-07-21 02:53:29 +0000281 /* Only attempt the conversion to TEXT if there is an integer or real
282 ** representation (blob and NULL do not get converted) but no string
283 ** representation.
284 */
285 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
drhb21c8cd2007-08-21 19:33:56 +0000286 sqlite3VdbeMemStringify(pRec, enc);
drh17c40292004-07-21 02:53:29 +0000287 }
288 pRec->flags &= ~(MEM_Real|MEM_Int);
drh8a512562005-11-14 22:29:05 +0000289 }else if( affinity!=SQLITE_AFF_NONE ){
290 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
291 || affinity==SQLITE_AFF_NUMERIC );
drhb21c8cd2007-08-21 19:33:56 +0000292 applyNumericAffinity(pRec);
drh29d72102006-02-09 22:13:41 +0000293 if( pRec->flags & MEM_Real ){
drh8df447f2005-11-01 15:48:24 +0000294 sqlite3VdbeIntegerAffinity(pRec);
drh17c40292004-07-21 02:53:29 +0000295 }
danielk19773d1bfea2004-05-14 11:00:53 +0000296 }
297}
298
danielk1977aee18ef2005-03-09 12:26:50 +0000299/*
drh29d72102006-02-09 22:13:41 +0000300** Try to convert the type of a function argument or a result column
301** into a numeric representation. Use either INTEGER or REAL whichever
302** is appropriate. But only do the conversion if it is possible without
303** loss of information and return the revised type of the argument.
304**
305** This is an EXPERIMENTAL api and is subject to change or removal.
306*/
307int sqlite3_value_numeric_type(sqlite3_value *pVal){
308 Mem *pMem = (Mem*)pVal;
drhb21c8cd2007-08-21 19:33:56 +0000309 applyNumericAffinity(pMem);
dan937d0de2009-10-15 18:35:38 +0000310 sqlite3VdbeMemStoreType(pMem);
drh29d72102006-02-09 22:13:41 +0000311 return pMem->type;
312}
313
314/*
danielk1977aee18ef2005-03-09 12:26:50 +0000315** Exported version of applyAffinity(). This one works on sqlite3_value*,
316** not the internal Mem* type.
317*/
danielk19771e536952007-08-16 10:09:01 +0000318void sqlite3ValueApplyAffinity(
danielk19771e536952007-08-16 10:09:01 +0000319 sqlite3_value *pVal,
320 u8 affinity,
321 u8 enc
322){
drhb21c8cd2007-08-21 19:33:56 +0000323 applyAffinity((Mem *)pVal, affinity, enc);
danielk1977aee18ef2005-03-09 12:26:50 +0000324}
325
danielk1977b5402fb2005-01-12 07:15:04 +0000326#ifdef SQLITE_DEBUG
drhb6f54522004-05-20 02:42:16 +0000327/*
danielk1977ca6b2912004-05-21 10:49:47 +0000328** Write a nice string representation of the contents of cell pMem
329** into buffer zBuf, length nBuf.
330*/
drh74161702006-02-24 02:53:49 +0000331void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
danielk1977ca6b2912004-05-21 10:49:47 +0000332 char *zCsr = zBuf;
333 int f = pMem->flags;
334
drh57196282004-10-06 15:41:16 +0000335 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
danielk1977bfd6cce2004-06-18 04:24:54 +0000336
danielk1977ca6b2912004-05-21 10:49:47 +0000337 if( f&MEM_Blob ){
338 int i;
339 char c;
340 if( f & MEM_Dyn ){
341 c = 'z';
342 assert( (f & (MEM_Static|MEM_Ephem))==0 );
343 }else if( f & MEM_Static ){
344 c = 't';
345 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
346 }else if( f & MEM_Ephem ){
347 c = 'e';
348 assert( (f & (MEM_Static|MEM_Dyn))==0 );
349 }else{
350 c = 's';
351 }
352
drh5bb3eb92007-05-04 13:15:55 +0000353 sqlite3_snprintf(100, zCsr, "%c", c);
drhea678832008-12-10 19:26:22 +0000354 zCsr += sqlite3Strlen30(zCsr);
drh5bb3eb92007-05-04 13:15:55 +0000355 sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
drhea678832008-12-10 19:26:22 +0000356 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000357 for(i=0; i<16 && i<pMem->n; i++){
drh5bb3eb92007-05-04 13:15:55 +0000358 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
drhea678832008-12-10 19:26:22 +0000359 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000360 }
361 for(i=0; i<16 && i<pMem->n; i++){
362 char z = pMem->z[i];
363 if( z<32 || z>126 ) *zCsr++ = '.';
364 else *zCsr++ = z;
365 }
366
drhe718efe2007-05-10 21:14:03 +0000367 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000368 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000369 if( f & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +0000370 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
drhea678832008-12-10 19:26:22 +0000371 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000372 }
danielk1977b1bc9532004-05-22 03:05:33 +0000373 *zCsr = '\0';
374 }else if( f & MEM_Str ){
375 int j, k;
376 zBuf[0] = ' ';
377 if( f & MEM_Dyn ){
378 zBuf[1] = 'z';
379 assert( (f & (MEM_Static|MEM_Ephem))==0 );
380 }else if( f & MEM_Static ){
381 zBuf[1] = 't';
382 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
383 }else if( f & MEM_Ephem ){
384 zBuf[1] = 'e';
385 assert( (f & (MEM_Static|MEM_Dyn))==0 );
386 }else{
387 zBuf[1] = 's';
388 }
389 k = 2;
drh5bb3eb92007-05-04 13:15:55 +0000390 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
drhea678832008-12-10 19:26:22 +0000391 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000392 zBuf[k++] = '[';
393 for(j=0; j<15 && j<pMem->n; j++){
394 u8 c = pMem->z[j];
danielk1977b1bc9532004-05-22 03:05:33 +0000395 if( c>=0x20 && c<0x7f ){
396 zBuf[k++] = c;
397 }else{
398 zBuf[k++] = '.';
399 }
400 }
401 zBuf[k++] = ']';
drh5bb3eb92007-05-04 13:15:55 +0000402 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000403 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000404 zBuf[k++] = 0;
danielk1977ca6b2912004-05-21 10:49:47 +0000405 }
danielk1977ca6b2912004-05-21 10:49:47 +0000406}
407#endif
408
drh5b6afba2008-01-05 16:29:28 +0000409#ifdef SQLITE_DEBUG
410/*
411** Print the value of a register for tracing purposes:
412*/
413static void memTracePrint(FILE *out, Mem *p){
414 if( p->flags & MEM_Null ){
415 fprintf(out, " NULL");
416 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
417 fprintf(out, " si:%lld", p->u.i);
418 }else if( p->flags & MEM_Int ){
419 fprintf(out, " i:%lld", p->u.i);
drh0b3bf922009-06-15 20:45:34 +0000420#ifndef SQLITE_OMIT_FLOATING_POINT
drh5b6afba2008-01-05 16:29:28 +0000421 }else if( p->flags & MEM_Real ){
422 fprintf(out, " r:%g", p->r);
drh0b3bf922009-06-15 20:45:34 +0000423#endif
drh733bf1b2009-04-22 00:47:00 +0000424 }else if( p->flags & MEM_RowSet ){
425 fprintf(out, " (rowset)");
drh5b6afba2008-01-05 16:29:28 +0000426 }else{
427 char zBuf[200];
428 sqlite3VdbeMemPrettyPrint(p, zBuf);
429 fprintf(out, " ");
430 fprintf(out, "%s", zBuf);
431 }
432}
433static void registerTrace(FILE *out, int iReg, Mem *p){
434 fprintf(out, "REG[%d] = ", iReg);
435 memTracePrint(out, p);
436 fprintf(out, "\n");
437}
438#endif
439
440#ifdef SQLITE_DEBUG
drhb21e7c72008-06-22 12:37:57 +0000441# define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
drh5b6afba2008-01-05 16:29:28 +0000442#else
443# define REGISTER_TRACE(R,M)
444#endif
445
danielk197784ac9d02004-05-18 09:58:06 +0000446
drh7b396862003-01-01 23:06:20 +0000447#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000448
449/*
450** hwtime.h contains inline assembler code for implementing
451** high-performance timing routines.
drh7b396862003-01-01 23:06:20 +0000452*/
shane9bcbdad2008-05-29 20:22:37 +0000453#include "hwtime.h"
454
drh7b396862003-01-01 23:06:20 +0000455#endif
456
drh8c74a8c2002-08-25 19:20:40 +0000457/*
drhcaec2f12003-01-07 02:47:47 +0000458** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
danielk19776f8a5032004-05-10 10:34:51 +0000459** sqlite3_interrupt() routine has been called. If it has been, then
drhcaec2f12003-01-07 02:47:47 +0000460** processing of the VDBE program is interrupted.
461**
462** This macro added to every instruction that does a jump in order to
463** implement a loop. This test used to be on every single instruction,
464** but that meant we more testing that we needed. By only testing the
465** flag on jump instructions, we get a (small) speed improvement.
466*/
467#define CHECK_FOR_INTERRUPT \
drh881feaa2006-07-26 01:39:30 +0000468 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drhcaec2f12003-01-07 02:47:47 +0000469
danielk1977861f7452008-06-05 11:39:11 +0000470#ifdef SQLITE_DEBUG
471static int fileExists(sqlite3 *db, const char *zFile){
danielk1977ad0132d2008-06-07 08:58:22 +0000472 int res = 0;
473 int rc = SQLITE_OK;
474#ifdef SQLITE_TEST
475 /* If we are currently testing IO errors, then do not call OsAccess() to
476 ** test for the presence of zFile. This is because any IO error that
477 ** occurs here will not be reported, causing the test to fail.
478 */
479 extern int sqlite3_io_error_pending;
480 if( sqlite3_io_error_pending<=0 )
481#endif
482 rc = sqlite3OsAccess(db->pVfs, zFile, SQLITE_ACCESS_EXISTS, &res);
danielk1977861f7452008-06-05 11:39:11 +0000483 return (res && rc==SQLITE_OK);
484}
485#endif
drhcaec2f12003-01-07 02:47:47 +0000486
danielk1977fd7f0452008-12-17 17:30:26 +0000487#ifndef NDEBUG
488/*
489** This function is only called from within an assert() expression. It
490** checks that the sqlite3.nTransaction variable is correctly set to
491** the number of non-transaction savepoints currently in the
492** linked list starting at sqlite3.pSavepoint.
493**
494** Usage:
495**
496** assert( checkSavepointCount(db) );
497*/
498static int checkSavepointCount(sqlite3 *db){
499 int n = 0;
500 Savepoint *p;
501 for(p=db->pSavepoint; p; p=p->pNext) n++;
502 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
503 return 1;
504}
505#endif
506
drhcaec2f12003-01-07 02:47:47 +0000507/*
drhb86ccfb2003-01-28 23:13:10 +0000508** Execute as much of a VDBE program as we can then return.
509**
danielk19774adee202004-05-08 08:23:19 +0000510** sqlite3VdbeMakeReady() must be called before this routine in order to
drhb86ccfb2003-01-28 23:13:10 +0000511** close the program with a final OP_Halt and to set up the callbacks
512** and the error message pointer.
513**
514** Whenever a row or result data is available, this routine will either
515** invoke the result callback (if there is one) or return with
drh326dce72003-01-29 14:06:07 +0000516** SQLITE_ROW.
drhb86ccfb2003-01-28 23:13:10 +0000517**
518** If an attempt is made to open a locked database, then this routine
519** will either invoke the busy callback (if there is one) or it will
520** return SQLITE_BUSY.
521**
522** If an error occurs, an error message is written to memory obtained
drh17435752007-08-16 04:30:38 +0000523** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
drhb86ccfb2003-01-28 23:13:10 +0000524** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
525**
526** If the callback ever returns non-zero, then the program exits
527** immediately. There will be no error message but the p->rc field is
528** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
529**
drh9468c7f2003-03-07 19:50:07 +0000530** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
531** routine to return SQLITE_ERROR.
drhb86ccfb2003-01-28 23:13:10 +0000532**
533** Other fatal errors return SQLITE_ERROR.
534**
danielk19774adee202004-05-08 08:23:19 +0000535** After this routine has finished, sqlite3VdbeFinalize() should be
drhb86ccfb2003-01-28 23:13:10 +0000536** used to clean up the mess that was left behind.
537*/
danielk19774adee202004-05-08 08:23:19 +0000538int sqlite3VdbeExec(
drhb86ccfb2003-01-28 23:13:10 +0000539 Vdbe *p /* The VDBE */
540){
541 int pc; /* The program counter */
drhbbe879d2009-11-14 18:04:35 +0000542 Op *aOp = p->aOp; /* Copy of p->aOp */
drhb86ccfb2003-01-28 23:13:10 +0000543 Op *pOp; /* Current operation */
544 int rc = SQLITE_OK; /* Value to return */
drh9bb575f2004-09-06 17:24:11 +0000545 sqlite3 *db = p->db; /* The database */
drh32783152009-11-20 15:02:34 +0000546 u8 resetSchemaOnFault = 0; /* Reset schema after an error if true */
drh8079a0d2006-01-12 17:20:50 +0000547 u8 encoding = ENC(db); /* The database encoding */
drha6c2ed92009-11-14 23:22:23 +0000548#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
shaneh5e17e8b2009-12-03 04:40:47 +0000549 int checkProgress; /* True if progress callbacks are enabled */
drha6c2ed92009-11-14 23:22:23 +0000550 int nProgressOps = 0; /* Opcodes executed since progress callback. */
551#endif
552 Mem *aMem = p->aMem; /* Copy of p->aMem */
drhb27b7f52008-12-10 18:03:45 +0000553 Mem *pIn1 = 0; /* 1st input operand */
554 Mem *pIn2 = 0; /* 2nd input operand */
555 Mem *pIn3 = 0; /* 3rd input operand */
556 Mem *pOut = 0; /* Output operand */
drh0acb7e42008-06-25 00:12:41 +0000557 int iCompare = 0; /* Result of last OP_Compare operation */
shanebe217792009-03-05 04:20:31 +0000558 int *aPermute = 0; /* Permutation of columns for OP_Compare */
drhb86ccfb2003-01-28 23:13:10 +0000559#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000560 u64 start; /* CPU clock count at start of opcode */
drhb86ccfb2003-01-28 23:13:10 +0000561 int origPc; /* Program counter at start of opcode */
562#endif
drh856c1032009-06-02 15:21:42 +0000563 /*** INSERT STACK UNION HERE ***/
drhe63d9992008-08-13 19:11:48 +0000564
drhca48c902008-01-18 14:08:24 +0000565 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
drhb86ccfb2003-01-28 23:13:10 +0000566 assert( db->magic==SQLITE_MAGIC_BUSY );
danielk1977f7590db2009-04-10 12:55:16 +0000567 sqlite3VdbeMutexArrayEnter(p);
danielk19772e588c72005-12-09 14:25:08 +0000568 if( p->rc==SQLITE_NOMEM ){
569 /* This happens if a malloc() inside a call to sqlite3_column_text() or
570 ** sqlite3_column_text16() failed. */
571 goto no_mem;
572 }
drh3a840692003-01-29 22:58:26 +0000573 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
574 p->rc = SQLITE_OK;
drhb86ccfb2003-01-28 23:13:10 +0000575 assert( p->explain==0 );
drhd4e70eb2008-01-02 00:34:36 +0000576 p->pResultSet = 0;
drha4afb652005-07-09 02:16:02 +0000577 db->busyHandler.nBusy = 0;
drh93581642004-02-12 13:02:55 +0000578 CHECK_FOR_INTERRUPT;
drh602c2372007-03-01 00:29:13 +0000579 sqlite3VdbeIOTraceSql(p);
drha6c2ed92009-11-14 23:22:23 +0000580#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
581 checkProgress = db->xProgress!=0;
582#endif
drh3c23a882007-01-09 14:01:13 +0000583#ifdef SQLITE_DEBUG
danielk19772d1d86f2008-06-20 14:59:51 +0000584 sqlite3BeginBenignMalloc();
danielk1977861f7452008-06-05 11:39:11 +0000585 if( p->pc==0
586 && ((p->db->flags & SQLITE_VdbeListing) || fileExists(db, "vdbe_explain"))
drh3c23a882007-01-09 14:01:13 +0000587 ){
588 int i;
589 printf("VDBE Program Listing:\n");
590 sqlite3VdbePrintSql(p);
591 for(i=0; i<p->nOp; i++){
drhbbe879d2009-11-14 18:04:35 +0000592 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
drh3c23a882007-01-09 14:01:13 +0000593 }
594 }
danielk1977861f7452008-06-05 11:39:11 +0000595 if( fileExists(db, "vdbe_trace") ){
drh3c23a882007-01-09 14:01:13 +0000596 p->trace = stdout;
597 }
danielk19772d1d86f2008-06-20 14:59:51 +0000598 sqlite3EndBenignMalloc();
drh3c23a882007-01-09 14:01:13 +0000599#endif
drhb86ccfb2003-01-28 23:13:10 +0000600 for(pc=p->pc; rc==SQLITE_OK; pc++){
drhcaec2f12003-01-07 02:47:47 +0000601 assert( pc>=0 && pc<p->nOp );
drh17435752007-08-16 04:30:38 +0000602 if( db->mallocFailed ) goto no_mem;
drh7b396862003-01-01 23:06:20 +0000603#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +0000604 origPc = pc;
shane9bcbdad2008-05-29 20:22:37 +0000605 start = sqlite3Hwtime();
drh7b396862003-01-01 23:06:20 +0000606#endif
drhbbe879d2009-11-14 18:04:35 +0000607 pOp = &aOp[pc];
drh6e142f52000-06-08 13:36:40 +0000608
danielk19778b60e0f2005-01-12 09:10:39 +0000609 /* Only allow tracing if SQLITE_DEBUG is defined.
drh6e142f52000-06-08 13:36:40 +0000610 */
danielk19778b60e0f2005-01-12 09:10:39 +0000611#ifdef SQLITE_DEBUG
drh75897232000-05-29 14:26:00 +0000612 if( p->trace ){
drh3f7d4e42004-07-24 14:35:58 +0000613 if( pc==0 ){
614 printf("VDBE Execution Trace:\n");
615 sqlite3VdbePrintSql(p);
616 }
danielk19774adee202004-05-08 08:23:19 +0000617 sqlite3VdbePrintOp(p->trace, pc, pOp);
drh75897232000-05-29 14:26:00 +0000618 }
drh19db9352008-03-27 22:42:51 +0000619 if( p->trace==0 && pc==0 ){
danielk19772d1d86f2008-06-20 14:59:51 +0000620 sqlite3BeginBenignMalloc();
danielk1977861f7452008-06-05 11:39:11 +0000621 if( fileExists(db, "vdbe_sqltrace") ){
drh19db9352008-03-27 22:42:51 +0000622 sqlite3VdbePrintSql(p);
623 }
danielk19772d1d86f2008-06-20 14:59:51 +0000624 sqlite3EndBenignMalloc();
drh3f7d4e42004-07-24 14:35:58 +0000625 }
626#endif
627
drh6e142f52000-06-08 13:36:40 +0000628
drhf6038712004-02-08 18:07:34 +0000629 /* Check to see if we need to simulate an interrupt. This only happens
630 ** if we have a special test build.
631 */
632#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +0000633 if( sqlite3_interrupt_count>0 ){
634 sqlite3_interrupt_count--;
635 if( sqlite3_interrupt_count==0 ){
636 sqlite3_interrupt(db);
drhf6038712004-02-08 18:07:34 +0000637 }
638 }
639#endif
640
danielk1977348bb5d2003-10-18 09:37:26 +0000641#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
642 /* Call the progress callback if it is configured and the required number
643 ** of VDBE ops have been executed (either since this invocation of
danielk19774adee202004-05-08 08:23:19 +0000644 ** sqlite3VdbeExec() or since last time the progress callback was called).
danielk1977348bb5d2003-10-18 09:37:26 +0000645 ** If the progress callback returns non-zero, exit the virtual machine with
646 ** a return code SQLITE_ABORT.
647 */
drha6c2ed92009-11-14 23:22:23 +0000648 if( checkProgress ){
drh3914aed2004-01-31 20:40:42 +0000649 if( db->nProgressOps==nProgressOps ){
danielk1977de523ac2007-06-15 14:53:53 +0000650 int prc;
drhf8888bb2006-05-26 19:57:19 +0000651 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
danielk1977de523ac2007-06-15 14:53:53 +0000652 prc =db->xProgress(db->pProgressArg);
drhf8888bb2006-05-26 19:57:19 +0000653 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
danielk1977de523ac2007-06-15 14:53:53 +0000654 if( prc!=0 ){
655 rc = SQLITE_INTERRUPT;
drha05a7222008-01-19 03:35:58 +0000656 goto vdbe_error_halt;
danielk1977de523ac2007-06-15 14:53:53 +0000657 }
danielk19773fe11f32007-06-13 16:49:48 +0000658 nProgressOps = 0;
danielk1977348bb5d2003-10-18 09:37:26 +0000659 }
drh3914aed2004-01-31 20:40:42 +0000660 nProgressOps++;
danielk1977348bb5d2003-10-18 09:37:26 +0000661 }
danielk1977348bb5d2003-10-18 09:37:26 +0000662#endif
663
drh3c657212009-11-17 23:59:58 +0000664 /* On any opcode with the "out2-prerelase" tag, free any
665 ** external allocations out of mem[p2] and set mem[p2] to be
666 ** an undefined integer. Opcodes will either fill in the integer
667 ** value or convert mem[p2] to a different type.
drh4c583122008-01-04 22:01:03 +0000668 */
drha6c2ed92009-11-14 23:22:23 +0000669 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
drh3c657212009-11-17 23:59:58 +0000670 if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
671 assert( pOp->p2>0 );
672 assert( pOp->p2<=p->nMem );
673 pOut = &aMem[pOp->p2];
674 sqlite3VdbeMemReleaseExternal(pOut);
675 pOut->flags = MEM_Int;
drh4c583122008-01-04 22:01:03 +0000676 }
drh3c657212009-11-17 23:59:58 +0000677
678 /* Sanity checking on other operands */
679#ifdef SQLITE_DEBUG
680 if( (pOp->opflags & OPFLG_IN1)!=0 ){
681 assert( pOp->p1>0 );
682 assert( pOp->p1<=p->nMem );
683 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
684 }
685 if( (pOp->opflags & OPFLG_IN2)!=0 ){
686 assert( pOp->p2>0 );
687 assert( pOp->p2<=p->nMem );
688 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
689 }
690 if( (pOp->opflags & OPFLG_IN3)!=0 ){
691 assert( pOp->p3>0 );
692 assert( pOp->p3<=p->nMem );
693 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
694 }
695 if( (pOp->opflags & OPFLG_OUT2)!=0 ){
696 assert( pOp->p2>0 );
697 assert( pOp->p2<=p->nMem );
698 }
699 if( (pOp->opflags & OPFLG_OUT3)!=0 ){
700 assert( pOp->p3>0 );
701 assert( pOp->p3<=p->nMem );
702 }
703#endif
drh93952eb2009-11-13 19:43:43 +0000704
drh75897232000-05-29 14:26:00 +0000705 switch( pOp->opcode ){
drh75897232000-05-29 14:26:00 +0000706
drh5e00f6c2001-09-13 13:46:56 +0000707/*****************************************************************************
708** What follows is a massive switch statement where each case implements a
709** separate instruction in the virtual machine. If we follow the usual
710** indentation conventions, each case should be indented by 6 spaces. But
711** that is a lot of wasted space on the left margin. So the code within
712** the switch statement will break with convention and be flush-left. Another
713** big comment (similar to this one) will mark the point in the code where
714** we transition back to normal indentation.
drhac82fcf2002-09-08 17:23:41 +0000715**
716** The formatting of each case is important. The makefile for SQLite
717** generates two C files "opcodes.h" and "opcodes.c" by scanning this
718** file looking for lines that begin with "case OP_". The opcodes.h files
719** will be filled with #defines that give unique integer values to each
720** opcode and the opcodes.c file is filled with an array of strings where
drhf2bc0132004-10-04 13:19:23 +0000721** each string is the symbolic name for the corresponding opcode. If the
722** case statement is followed by a comment of the form "/# same as ... #/"
723** that comment is used to determine the particular value of the opcode.
drhac82fcf2002-09-08 17:23:41 +0000724**
drh9cbf3422008-01-17 16:22:13 +0000725** Other keywords in the comment that follows each case are used to
726** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
727** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
728** the mkopcodeh.awk script for additional information.
danielk1977bc04f852005-03-29 08:26:13 +0000729**
drhac82fcf2002-09-08 17:23:41 +0000730** Documentation about VDBE opcodes is generated by scanning this file
731** for lines of that contain "Opcode:". That line and all subsequent
732** comment lines are used in the generation of the opcode.html documentation
733** file.
734**
735** SUMMARY:
736**
737** Formatting is important to scripts that scan this file.
738** Do not deviate from the formatting style currently in use.
739**
drh5e00f6c2001-09-13 13:46:56 +0000740*****************************************************************************/
drh75897232000-05-29 14:26:00 +0000741
drh9cbf3422008-01-17 16:22:13 +0000742/* Opcode: Goto * P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000743**
744** An unconditional jump to address P2.
745** The next instruction executed will be
746** the one at index P2 from the beginning of
747** the program.
748*/
drh9cbf3422008-01-17 16:22:13 +0000749case OP_Goto: { /* jump */
drhcaec2f12003-01-07 02:47:47 +0000750 CHECK_FOR_INTERRUPT;
drh5e00f6c2001-09-13 13:46:56 +0000751 pc = pOp->p2 - 1;
752 break;
753}
drh75897232000-05-29 14:26:00 +0000754
drh2eb95372008-06-06 15:04:36 +0000755/* Opcode: Gosub P1 P2 * * *
drh8c74a8c2002-08-25 19:20:40 +0000756**
drh2eb95372008-06-06 15:04:36 +0000757** Write the current address onto register P1
drh8c74a8c2002-08-25 19:20:40 +0000758** and then jump to address P2.
drh8c74a8c2002-08-25 19:20:40 +0000759*/
drh93952eb2009-11-13 19:43:43 +0000760case OP_Gosub: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +0000761 pIn1 = &aMem[pOp->p1];
drh2eb95372008-06-06 15:04:36 +0000762 assert( (pIn1->flags & MEM_Dyn)==0 );
763 pIn1->flags = MEM_Int;
764 pIn1->u.i = pc;
765 REGISTER_TRACE(pOp->p1, pIn1);
drh8c74a8c2002-08-25 19:20:40 +0000766 pc = pOp->p2 - 1;
767 break;
768}
769
drh2eb95372008-06-06 15:04:36 +0000770/* Opcode: Return P1 * * * *
drh8c74a8c2002-08-25 19:20:40 +0000771**
drh2eb95372008-06-06 15:04:36 +0000772** Jump to the next instruction after the address in register P1.
drh8c74a8c2002-08-25 19:20:40 +0000773*/
drh2eb95372008-06-06 15:04:36 +0000774case OP_Return: { /* in1 */
drh3c657212009-11-17 23:59:58 +0000775 pIn1 = &aMem[pOp->p1];
drh2eb95372008-06-06 15:04:36 +0000776 assert( pIn1->flags & MEM_Int );
drh9c1905f2008-12-10 22:32:56 +0000777 pc = (int)pIn1->u.i;
drh8c74a8c2002-08-25 19:20:40 +0000778 break;
779}
780
drhe00ee6e2008-06-20 15:24:01 +0000781/* Opcode: Yield P1 * * * *
782**
783** Swap the program counter with the value in register P1.
784*/
danielk1977f73ab8b2008-12-29 10:39:53 +0000785case OP_Yield: { /* in1 */
drhe00ee6e2008-06-20 15:24:01 +0000786 int pcDest;
drh3c657212009-11-17 23:59:58 +0000787 pIn1 = &aMem[pOp->p1];
drhe00ee6e2008-06-20 15:24:01 +0000788 assert( (pIn1->flags & MEM_Dyn)==0 );
789 pIn1->flags = MEM_Int;
drh9c1905f2008-12-10 22:32:56 +0000790 pcDest = (int)pIn1->u.i;
drhe00ee6e2008-06-20 15:24:01 +0000791 pIn1->u.i = pc;
792 REGISTER_TRACE(pOp->p1, pIn1);
793 pc = pcDest;
794 break;
795}
796
drh5053a792009-02-20 03:02:23 +0000797/* Opcode: HaltIfNull P1 P2 P3 P4 *
798**
799** Check the value in register P3. If is is NULL then Halt using
800** parameter P1, P2, and P4 as if this were a Halt instruction. If the
801** value in register P3 is not NULL, then this routine is a no-op.
802*/
803case OP_HaltIfNull: { /* in3 */
drh3c657212009-11-17 23:59:58 +0000804 pIn3 = &aMem[pOp->p3];
drh5053a792009-02-20 03:02:23 +0000805 if( (pIn3->flags & MEM_Null)==0 ) break;
806 /* Fall through into OP_Halt */
807}
drhe00ee6e2008-06-20 15:24:01 +0000808
drh9cbf3422008-01-17 16:22:13 +0000809/* Opcode: Halt P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +0000810**
drh3d4501e2008-12-04 20:40:10 +0000811** Exit immediately. All open cursors, etc are closed
drh5e00f6c2001-09-13 13:46:56 +0000812** automatically.
drhb19a2bc2001-09-16 00:13:26 +0000813**
drh92f02c32004-09-02 14:57:08 +0000814** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
815** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
816** For errors, it can be some other value. If P1!=0 then P2 will determine
817** whether or not to rollback the current transaction. Do not rollback
818** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
819** then back out all changes that have occurred during this execution of the
drhb798fa62002-09-03 19:43:23 +0000820** VDBE, but do not rollback the transaction.
drh9cfcf5d2002-01-29 18:41:24 +0000821**
drh66a51672008-01-03 00:01:23 +0000822** If P4 is not null then it is an error message string.
drh7f057c92005-06-24 03:53:06 +0000823**
drh9cfcf5d2002-01-29 18:41:24 +0000824** There is an implied "Halt 0 0 0" instruction inserted at the very end of
drhb19a2bc2001-09-16 00:13:26 +0000825** every program. So a jump past the last instruction of the program
826** is the same as executing Halt.
drh5e00f6c2001-09-13 13:46:56 +0000827*/
drh9cbf3422008-01-17 16:22:13 +0000828case OP_Halt: {
dan165921a2009-08-28 18:53:45 +0000829 if( pOp->p1==SQLITE_OK && p->pFrame ){
dan2832ad42009-08-31 15:27:27 +0000830 /* Halt the sub-program. Return control to the parent frame. */
dan165921a2009-08-28 18:53:45 +0000831 VdbeFrame *pFrame = p->pFrame;
832 p->pFrame = pFrame->pParent;
833 p->nFrame--;
dan2832ad42009-08-31 15:27:27 +0000834 sqlite3VdbeSetChanges(db, p->nChange);
dan165921a2009-08-28 18:53:45 +0000835 pc = sqlite3VdbeFrameRestore(pFrame);
836 if( pOp->p2==OE_Ignore ){
dan2832ad42009-08-31 15:27:27 +0000837 /* Instruction pc is the OP_Program that invoked the sub-program
838 ** currently being halted. If the p2 instruction of this OP_Halt
839 ** instruction is set to OE_Ignore, then the sub-program is throwing
840 ** an IGNORE exception. In this case jump to the address specified
841 ** as the p2 of the calling OP_Program. */
dan76d462e2009-08-30 11:42:51 +0000842 pc = p->aOp[pc].p2-1;
dan165921a2009-08-28 18:53:45 +0000843 }
drhbbe879d2009-11-14 18:04:35 +0000844 aOp = p->aOp;
drha6c2ed92009-11-14 23:22:23 +0000845 aMem = p->aMem;
dan165921a2009-08-28 18:53:45 +0000846 break;
847 }
dan2832ad42009-08-31 15:27:27 +0000848
drh92f02c32004-09-02 14:57:08 +0000849 p->rc = pOp->p1;
shane36840fd2009-06-26 16:32:13 +0000850 p->errorAction = (u8)pOp->p2;
dan165921a2009-08-28 18:53:45 +0000851 p->pc = pc;
danielk19772dca4ac2008-01-03 11:50:29 +0000852 if( pOp->p4.z ){
drhf089aa42008-07-08 19:34:06 +0000853 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
drh9cfcf5d2002-01-29 18:41:24 +0000854 }
drh92f02c32004-09-02 14:57:08 +0000855 rc = sqlite3VdbeHalt(p);
dan1da40a32009-09-19 17:00:31 +0000856 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
drh92f02c32004-09-02 14:57:08 +0000857 if( rc==SQLITE_BUSY ){
drh900b31e2007-08-28 02:27:51 +0000858 p->rc = rc = SQLITE_BUSY;
859 }else{
dan1da40a32009-09-19 17:00:31 +0000860 assert( rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT );
861 assert( rc==SQLITE_OK || db->nDeferredCons>0 );
drh900b31e2007-08-28 02:27:51 +0000862 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
drh92f02c32004-09-02 14:57:08 +0000863 }
drh900b31e2007-08-28 02:27:51 +0000864 goto vdbe_return;
drh5e00f6c2001-09-13 13:46:56 +0000865}
drhc61053b2000-06-04 12:58:36 +0000866
drh4c583122008-01-04 22:01:03 +0000867/* Opcode: Integer P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000868**
drh9cbf3422008-01-17 16:22:13 +0000869** The 32-bit integer value P1 is written into register P2.
drh5e00f6c2001-09-13 13:46:56 +0000870*/
drh4c583122008-01-04 22:01:03 +0000871case OP_Integer: { /* out2-prerelease */
drh4c583122008-01-04 22:01:03 +0000872 pOut->u.i = pOp->p1;
drh29dda4a2005-07-21 18:23:20 +0000873 break;
874}
875
drh4c583122008-01-04 22:01:03 +0000876/* Opcode: Int64 * P2 * P4 *
drh29dda4a2005-07-21 18:23:20 +0000877**
drh66a51672008-01-03 00:01:23 +0000878** P4 is a pointer to a 64-bit integer value.
drh9cbf3422008-01-17 16:22:13 +0000879** Write that value into register P2.
drh29dda4a2005-07-21 18:23:20 +0000880*/
drh4c583122008-01-04 22:01:03 +0000881case OP_Int64: { /* out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000882 assert( pOp->p4.pI64!=0 );
drh4c583122008-01-04 22:01:03 +0000883 pOut->u.i = *pOp->p4.pI64;
drhf4479502004-05-27 03:12:53 +0000884 break;
885}
drh4f26d6c2004-05-26 23:25:30 +0000886
drh13573c72010-01-12 17:04:07 +0000887#ifndef SQLITE_OMIT_FLOATING_POINT
drh4c583122008-01-04 22:01:03 +0000888/* Opcode: Real * P2 * P4 *
drhf4479502004-05-27 03:12:53 +0000889**
drh4c583122008-01-04 22:01:03 +0000890** P4 is a pointer to a 64-bit floating point value.
drh9cbf3422008-01-17 16:22:13 +0000891** Write that value into register P2.
drhf4479502004-05-27 03:12:53 +0000892*/
drh4c583122008-01-04 22:01:03 +0000893case OP_Real: { /* same as TK_FLOAT, out2-prerelease */
894 pOut->flags = MEM_Real;
drh2eaf93d2008-04-29 00:15:20 +0000895 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
drh4c583122008-01-04 22:01:03 +0000896 pOut->r = *pOp->p4.pReal;
drhf4479502004-05-27 03:12:53 +0000897 break;
898}
drh13573c72010-01-12 17:04:07 +0000899#endif
danielk1977cbb18d22004-05-28 11:37:27 +0000900
drh3c84ddf2008-01-09 02:15:38 +0000901/* Opcode: String8 * P2 * P4 *
danielk1977cbb18d22004-05-28 11:37:27 +0000902**
drh66a51672008-01-03 00:01:23 +0000903** P4 points to a nul terminated UTF-8 string. This opcode is transformed
danielk19770f69c1e2004-05-29 11:24:50 +0000904** into an OP_String before it is executed for the first time.
danielk1977cbb18d22004-05-28 11:37:27 +0000905*/
drh4c583122008-01-04 22:01:03 +0000906case OP_String8: { /* same as TK_STRING, out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000907 assert( pOp->p4.z!=0 );
drhed2df7f2005-11-16 04:34:32 +0000908 pOp->opcode = OP_String;
drhea678832008-12-10 19:26:22 +0000909 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
drhed2df7f2005-11-16 04:34:32 +0000910
911#ifndef SQLITE_OMIT_UTF16
drh8079a0d2006-01-12 17:20:50 +0000912 if( encoding!=SQLITE_UTF8 ){
drh3a9cf172009-06-17 21:42:33 +0000913 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
914 if( rc==SQLITE_TOOBIG ) goto too_big;
drh4c583122008-01-04 22:01:03 +0000915 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
drh3a9cf172009-06-17 21:42:33 +0000916 assert( pOut->zMalloc==pOut->z );
917 assert( pOut->flags & MEM_Dyn );
danielk19775f096132008-03-28 15:44:09 +0000918 pOut->zMalloc = 0;
drh4c583122008-01-04 22:01:03 +0000919 pOut->flags |= MEM_Static;
drh191b54c2008-04-15 12:14:21 +0000920 pOut->flags &= ~MEM_Dyn;
drh66a51672008-01-03 00:01:23 +0000921 if( pOp->p4type==P4_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +0000922 sqlite3DbFree(db, pOp->p4.z);
danielk1977e0048402004-06-15 16:51:01 +0000923 }
drh66a51672008-01-03 00:01:23 +0000924 pOp->p4type = P4_DYNAMIC;
drh4c583122008-01-04 22:01:03 +0000925 pOp->p4.z = pOut->z;
926 pOp->p1 = pOut->n;
danielk19770f69c1e2004-05-29 11:24:50 +0000927 }
danielk197793758c82005-01-21 08:13:14 +0000928#endif
drhbb4957f2008-03-20 14:03:29 +0000929 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhcbd2da92007-12-17 16:20:06 +0000930 goto too_big;
931 }
932 /* Fall through to the next case, OP_String */
danielk1977cbb18d22004-05-28 11:37:27 +0000933}
drhf4479502004-05-27 03:12:53 +0000934
drh4c583122008-01-04 22:01:03 +0000935/* Opcode: String P1 P2 * P4 *
drhf4479502004-05-27 03:12:53 +0000936**
drh9cbf3422008-01-17 16:22:13 +0000937** The string value P4 of length P1 (bytes) is stored in register P2.
drhf4479502004-05-27 03:12:53 +0000938*/
drh4c583122008-01-04 22:01:03 +0000939case OP_String: { /* out2-prerelease */
danielk19772dca4ac2008-01-03 11:50:29 +0000940 assert( pOp->p4.z!=0 );
drh4c583122008-01-04 22:01:03 +0000941 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
942 pOut->z = pOp->p4.z;
943 pOut->n = pOp->p1;
944 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +0000945 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977c572ef72004-05-27 09:28:41 +0000946 break;
947}
948
drh4c583122008-01-04 22:01:03 +0000949/* Opcode: Null * P2 * * *
drhf0863fe2005-06-12 21:35:51 +0000950**
drh9cbf3422008-01-17 16:22:13 +0000951** Write a NULL into register P2.
drhf0863fe2005-06-12 21:35:51 +0000952*/
drh4c583122008-01-04 22:01:03 +0000953case OP_Null: { /* out2-prerelease */
drh3c657212009-11-17 23:59:58 +0000954 pOut->flags = MEM_Null;
drhf0863fe2005-06-12 21:35:51 +0000955 break;
956}
957
958
drh9de221d2008-01-05 06:51:30 +0000959/* Opcode: Blob P1 P2 * P4
danielk1977c572ef72004-05-27 09:28:41 +0000960**
drh9de221d2008-01-05 06:51:30 +0000961** P4 points to a blob of data P1 bytes long. Store this
962** blob in register P2. This instruction is not coded directly
danielk1977cbb18d22004-05-28 11:37:27 +0000963** by the compiler. Instead, the compiler layer specifies
964** an OP_HexBlob opcode, with the hex string representation of
drh66a51672008-01-03 00:01:23 +0000965** the blob as P4. This opcode is transformed to an OP_Blob
danielk197793758c82005-01-21 08:13:14 +0000966** the first time it is executed.
danielk1977c572ef72004-05-27 09:28:41 +0000967*/
drh4c583122008-01-04 22:01:03 +0000968case OP_Blob: { /* out2-prerelease */
drhcbd2da92007-12-17 16:20:06 +0000969 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
drh4c583122008-01-04 22:01:03 +0000970 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
drh9de221d2008-01-05 06:51:30 +0000971 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +0000972 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977a37cdde2004-05-16 11:15:36 +0000973 break;
974}
975
drh08de1492009-02-20 03:55:05 +0000976/* Opcode: Variable P1 P2 P3 P4 *
drh50457892003-09-06 01:10:47 +0000977**
drh08de1492009-02-20 03:55:05 +0000978** Transfer the values of bound parameters P1..P1+P3-1 into registers
979** P2..P2+P3-1.
980**
981** If the parameter is named, then its name appears in P4 and P3==1.
982** The P4 value is used by sqlite3_bind_parameter_name().
drh50457892003-09-06 01:10:47 +0000983*/
drh08de1492009-02-20 03:55:05 +0000984case OP_Variable: {
drh856c1032009-06-02 15:21:42 +0000985 int p1; /* Variable to copy from */
986 int p2; /* Register to copy to */
987 int n; /* Number of values left to copy */
988 Mem *pVar; /* Value being transferred */
989
990 p1 = pOp->p1 - 1;
991 p2 = pOp->p2;
992 n = pOp->p3;
993 assert( p1>=0 && p1+n<=p->nVar );
994 assert( p2>=1 && p2+n-1<=p->nMem );
dan937d0de2009-10-15 18:35:38 +0000995 assert( pOp->p4.z==0 || pOp->p3==1 || pOp->p3==0 );
danielk1977295ba552004-05-19 10:34:51 +0000996
drh08de1492009-02-20 03:55:05 +0000997 while( n-- > 0 ){
drh856c1032009-06-02 15:21:42 +0000998 pVar = &p->aVar[p1++];
drh08de1492009-02-20 03:55:05 +0000999 if( sqlite3VdbeMemTooBig(pVar) ){
1000 goto too_big;
1001 }
drha6c2ed92009-11-14 23:22:23 +00001002 pOut = &aMem[p2++];
drh08de1492009-02-20 03:55:05 +00001003 sqlite3VdbeMemReleaseExternal(pOut);
1004 pOut->flags = MEM_Null;
1005 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1006 UPDATE_MAX_BLOBSIZE(pOut);
drh023ae032007-05-08 12:12:16 +00001007 }
danielk197793d46752004-05-23 13:30:58 +00001008 break;
1009}
danielk1977295ba552004-05-19 10:34:51 +00001010
drhb21e7c72008-06-22 12:37:57 +00001011/* Opcode: Move P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001012**
drhb21e7c72008-06-22 12:37:57 +00001013** Move the values in register P1..P1+P3-1 over into
1014** registers P2..P2+P3-1. Registers P1..P1+P1-1 are
1015** left holding a NULL. It is an error for register ranges
1016** P1..P1+P3-1 and P2..P2+P3-1 to overlap.
drh5e00f6c2001-09-13 13:46:56 +00001017*/
drhe1349cb2008-04-01 00:36:10 +00001018case OP_Move: {
drh856c1032009-06-02 15:21:42 +00001019 char *zMalloc; /* Holding variable for allocated memory */
1020 int n; /* Number of registers left to copy */
1021 int p1; /* Register to copy from */
1022 int p2; /* Register to copy to */
1023
1024 n = pOp->p3;
1025 p1 = pOp->p1;
1026 p2 = pOp->p2;
danielk19776ab3a2e2009-02-19 14:39:25 +00001027 assert( n>0 && p1>0 && p2>0 );
drhb21e7c72008-06-22 12:37:57 +00001028 assert( p1+n<=p2 || p2+n<=p1 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001029
drha6c2ed92009-11-14 23:22:23 +00001030 pIn1 = &aMem[p1];
1031 pOut = &aMem[p2];
drhb21e7c72008-06-22 12:37:57 +00001032 while( n-- ){
drha6c2ed92009-11-14 23:22:23 +00001033 assert( pOut<=&aMem[p->nMem] );
1034 assert( pIn1<=&aMem[p->nMem] );
drhb21e7c72008-06-22 12:37:57 +00001035 zMalloc = pOut->zMalloc;
1036 pOut->zMalloc = 0;
1037 sqlite3VdbeMemMove(pOut, pIn1);
1038 pIn1->zMalloc = zMalloc;
1039 REGISTER_TRACE(p2++, pOut);
1040 pIn1++;
1041 pOut++;
1042 }
drhe1349cb2008-04-01 00:36:10 +00001043 break;
1044}
1045
drhb1fdb2a2008-01-05 04:06:03 +00001046/* Opcode: Copy P1 P2 * * *
1047**
drh9cbf3422008-01-17 16:22:13 +00001048** Make a copy of register P1 into register P2.
drhb1fdb2a2008-01-05 04:06:03 +00001049**
1050** This instruction makes a deep copy of the value. A duplicate
1051** is made of any string or blob constant. See also OP_SCopy.
1052*/
drh93952eb2009-11-13 19:43:43 +00001053case OP_Copy: { /* in1, out2 */
drh3c657212009-11-17 23:59:58 +00001054 pIn1 = &aMem[pOp->p1];
1055 pOut = &aMem[pOp->p2];
drhe1349cb2008-04-01 00:36:10 +00001056 assert( pOut!=pIn1 );
1057 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1058 Deephemeralize(pOut);
1059 REGISTER_TRACE(pOp->p2, pOut);
1060 break;
1061}
1062
drhb1fdb2a2008-01-05 04:06:03 +00001063/* Opcode: SCopy P1 P2 * * *
1064**
drh9cbf3422008-01-17 16:22:13 +00001065** Make a shallow copy of register P1 into register P2.
drhb1fdb2a2008-01-05 04:06:03 +00001066**
1067** This instruction makes a shallow copy of the value. If the value
1068** is a string or blob, then the copy is only a pointer to the
1069** original and hence if the original changes so will the copy.
1070** Worse, if the original is deallocated, the copy becomes invalid.
1071** Thus the program must guarantee that the original will not change
1072** during the lifetime of the copy. Use OP_Copy to make a complete
1073** copy.
1074*/
drh93952eb2009-11-13 19:43:43 +00001075case OP_SCopy: { /* in1, out2 */
drh3c657212009-11-17 23:59:58 +00001076 pIn1 = &aMem[pOp->p1];
1077 pOut = &aMem[pOp->p2];
drh2d401ab2008-01-10 23:50:11 +00001078 assert( pOut!=pIn1 );
drhe1349cb2008-04-01 00:36:10 +00001079 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
drh5b6afba2008-01-05 16:29:28 +00001080 REGISTER_TRACE(pOp->p2, pOut);
drh5e00f6c2001-09-13 13:46:56 +00001081 break;
1082}
drh75897232000-05-29 14:26:00 +00001083
drh9cbf3422008-01-17 16:22:13 +00001084/* Opcode: ResultRow P1 P2 * * *
drhd4e70eb2008-01-02 00:34:36 +00001085**
shane21e7feb2008-05-30 15:59:49 +00001086** The registers P1 through P1+P2-1 contain a single row of
drhd4e70eb2008-01-02 00:34:36 +00001087** results. This opcode causes the sqlite3_step() call to terminate
1088** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1089** structure to provide access to the top P1 values as the result
drh9cbf3422008-01-17 16:22:13 +00001090** row.
drhd4e70eb2008-01-02 00:34:36 +00001091*/
drh9cbf3422008-01-17 16:22:13 +00001092case OP_ResultRow: {
drhd4e70eb2008-01-02 00:34:36 +00001093 Mem *pMem;
1094 int i;
1095 assert( p->nResColumn==pOp->p2 );
drh0a07c102008-01-03 18:03:08 +00001096 assert( pOp->p1>0 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001097 assert( pOp->p1+pOp->p2<=p->nMem+1 );
drhd4e70eb2008-01-02 00:34:36 +00001098
dan32b09f22009-09-23 17:29:59 +00001099 /* If this statement has violated immediate foreign key constraints, do
1100 ** not return the number of rows modified. And do not RELEASE the statement
1101 ** transaction. It needs to be rolled back. */
1102 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1103 assert( db->flags&SQLITE_CountRows );
1104 assert( p->usesStmtJournal );
1105 break;
1106 }
1107
danielk1977bd434552009-03-18 10:33:00 +00001108 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1109 ** DML statements invoke this opcode to return the number of rows
1110 ** modified to the user. This is the only way that a VM that
1111 ** opens a statement transaction may invoke this opcode.
1112 **
1113 ** In case this is such a statement, close any statement transaction
1114 ** opened by this VM before returning control to the user. This is to
1115 ** ensure that statement-transactions are always nested, not overlapping.
1116 ** If the open statement-transaction is not closed here, then the user
1117 ** may step another VM that opens its own statement transaction. This
1118 ** may lead to overlapping statement transactions.
drhaa736092009-06-22 00:55:30 +00001119 **
1120 ** The statement transaction is never a top-level transaction. Hence
1121 ** the RELEASE call below can never fail.
danielk1977bd434552009-03-18 10:33:00 +00001122 */
1123 assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
drhaa736092009-06-22 00:55:30 +00001124 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1125 if( NEVER(rc!=SQLITE_OK) ){
danielk1977bd434552009-03-18 10:33:00 +00001126 break;
1127 }
1128
drhd4e70eb2008-01-02 00:34:36 +00001129 /* Invalidate all ephemeral cursor row caches */
1130 p->cacheCtr = (p->cacheCtr + 2)|1;
1131
1132 /* Make sure the results of the current row are \000 terminated
shane21e7feb2008-05-30 15:59:49 +00001133 ** and have an assigned type. The results are de-ephemeralized as
drhd4e70eb2008-01-02 00:34:36 +00001134 ** as side effect.
1135 */
drha6c2ed92009-11-14 23:22:23 +00001136 pMem = p->pResultSet = &aMem[pOp->p1];
drhd4e70eb2008-01-02 00:34:36 +00001137 for(i=0; i<pOp->p2; i++){
1138 sqlite3VdbeMemNulTerminate(&pMem[i]);
dan937d0de2009-10-15 18:35:38 +00001139 sqlite3VdbeMemStoreType(&pMem[i]);
drh0acb7e42008-06-25 00:12:41 +00001140 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
drhd4e70eb2008-01-02 00:34:36 +00001141 }
drh28039692008-03-17 16:54:01 +00001142 if( db->mallocFailed ) goto no_mem;
drhd4e70eb2008-01-02 00:34:36 +00001143
1144 /* Return SQLITE_ROW
1145 */
drhd4e70eb2008-01-02 00:34:36 +00001146 p->pc = pc + 1;
drhd4e70eb2008-01-02 00:34:36 +00001147 rc = SQLITE_ROW;
1148 goto vdbe_return;
1149}
1150
drh5b6afba2008-01-05 16:29:28 +00001151/* Opcode: Concat P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001152**
drh5b6afba2008-01-05 16:29:28 +00001153** Add the text in register P1 onto the end of the text in
1154** register P2 and store the result in register P3.
1155** If either the P1 or P2 text are NULL then store NULL in P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001156**
1157** P3 = P2 || P1
1158**
1159** It is illegal for P1 and P3 to be the same register. Sometimes,
1160** if P3 is the same register as P2, the implementation is able
1161** to avoid a memcpy().
drh5e00f6c2001-09-13 13:46:56 +00001162*/
drh5b6afba2008-01-05 16:29:28 +00001163case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
drh023ae032007-05-08 12:12:16 +00001164 i64 nByte;
danielk19778a6b5412004-05-24 07:04:25 +00001165
drh3c657212009-11-17 23:59:58 +00001166 pIn1 = &aMem[pOp->p1];
1167 pIn2 = &aMem[pOp->p2];
1168 pOut = &aMem[pOp->p3];
danielk1977a7a8e142008-02-13 18:25:27 +00001169 assert( pIn1!=pOut );
drh5b6afba2008-01-05 16:29:28 +00001170 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
danielk1977a7a8e142008-02-13 18:25:27 +00001171 sqlite3VdbeMemSetNull(pOut);
drh5b6afba2008-01-05 16:29:28 +00001172 break;
drh5e00f6c2001-09-13 13:46:56 +00001173 }
drha0c06522009-06-17 22:50:41 +00001174 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
drh5b6afba2008-01-05 16:29:28 +00001175 Stringify(pIn1, encoding);
drh5b6afba2008-01-05 16:29:28 +00001176 Stringify(pIn2, encoding);
1177 nByte = pIn1->n + pIn2->n;
drhbb4957f2008-03-20 14:03:29 +00001178 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh5b6afba2008-01-05 16:29:28 +00001179 goto too_big;
drh5e00f6c2001-09-13 13:46:56 +00001180 }
danielk1977a7a8e142008-02-13 18:25:27 +00001181 MemSetTypeFlag(pOut, MEM_Str);
drh9c1905f2008-12-10 22:32:56 +00001182 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
drh5b6afba2008-01-05 16:29:28 +00001183 goto no_mem;
1184 }
danielk1977a7a8e142008-02-13 18:25:27 +00001185 if( pOut!=pIn2 ){
1186 memcpy(pOut->z, pIn2->z, pIn2->n);
1187 }
1188 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1189 pOut->z[nByte] = 0;
1190 pOut->z[nByte+1] = 0;
1191 pOut->flags |= MEM_Term;
drh9c1905f2008-12-10 22:32:56 +00001192 pOut->n = (int)nByte;
drh5b6afba2008-01-05 16:29:28 +00001193 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001194 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001195 break;
1196}
drh75897232000-05-29 14:26:00 +00001197
drh3c84ddf2008-01-09 02:15:38 +00001198/* Opcode: Add P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001199**
drh60a713c2008-01-21 16:22:45 +00001200** Add the value in register P1 to the value in register P2
shane21e7feb2008-05-30 15:59:49 +00001201** and store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001202** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001203*/
drh3c84ddf2008-01-09 02:15:38 +00001204/* Opcode: Multiply P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001205**
drh3c84ddf2008-01-09 02:15:38 +00001206**
shane21e7feb2008-05-30 15:59:49 +00001207** Multiply the value in register P1 by the value in register P2
drh60a713c2008-01-21 16:22:45 +00001208** and store the result in register P3.
1209** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001210*/
drh3c84ddf2008-01-09 02:15:38 +00001211/* Opcode: Subtract P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001212**
drh60a713c2008-01-21 16:22:45 +00001213** Subtract the value in register P1 from the value in register P2
1214** and store the result in register P3.
1215** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001216*/
drh9cbf3422008-01-17 16:22:13 +00001217/* Opcode: Divide P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001218**
drh60a713c2008-01-21 16:22:45 +00001219** Divide the value in register P1 by the value in register P2
dane275dc32009-08-18 16:24:58 +00001220** and store the result in register P3 (P3=P2/P1). If the value in
1221** register P1 is zero, then the result is NULL. If either input is
1222** NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001223*/
drh9cbf3422008-01-17 16:22:13 +00001224/* Opcode: Remainder P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001225**
drh3c84ddf2008-01-09 02:15:38 +00001226** Compute the remainder after integer division of the value in
1227** register P1 by the value in register P2 and store the result in P3.
1228** If the value in register P2 is zero the result is NULL.
drhf5905aa2002-05-26 20:54:33 +00001229** If either operand is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001230*/
drh5b6afba2008-01-05 16:29:28 +00001231case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1232case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1233case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1234case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1235case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00001236 int flags; /* Combined MEM_* flags from both inputs */
1237 i64 iA; /* Integer value of left operand */
1238 i64 iB; /* Integer value of right operand */
1239 double rA; /* Real value of left operand */
1240 double rB; /* Real value of right operand */
1241
drh3c657212009-11-17 23:59:58 +00001242 pIn1 = &aMem[pOp->p1];
drh61669b32008-07-30 13:27:10 +00001243 applyNumericAffinity(pIn1);
drh3c657212009-11-17 23:59:58 +00001244 pIn2 = &aMem[pOp->p2];
drh61669b32008-07-30 13:27:10 +00001245 applyNumericAffinity(pIn2);
drh3c657212009-11-17 23:59:58 +00001246 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001247 flags = pIn1->flags | pIn2->flags;
drha05a7222008-01-19 03:35:58 +00001248 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
1249 if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
drh856c1032009-06-02 15:21:42 +00001250 iA = pIn1->u.i;
1251 iB = pIn2->u.i;
drh5e00f6c2001-09-13 13:46:56 +00001252 switch( pOp->opcode ){
drh856c1032009-06-02 15:21:42 +00001253 case OP_Add: iB += iA; break;
1254 case OP_Subtract: iB -= iA; break;
1255 case OP_Multiply: iB *= iA; break;
drhbf4133c2001-10-13 02:59:08 +00001256 case OP_Divide: {
drh856c1032009-06-02 15:21:42 +00001257 if( iA==0 ) goto arithmetic_result_is_null;
danielk197742d4ef22007-06-26 11:13:25 +00001258 /* Dividing the largest possible negative 64-bit integer (1<<63) by
drh0f050352008-05-09 18:03:13 +00001259 ** -1 returns an integer too large to store in a 64-bit data-type. On
danielk197742d4ef22007-06-26 11:13:25 +00001260 ** some architectures, the value overflows to (1<<63). On others,
1261 ** a SIGFPE is issued. The following statement normalizes this
shane21e7feb2008-05-30 15:59:49 +00001262 ** behavior so that all architectures behave as if integer
1263 ** overflow occurred.
danielk197742d4ef22007-06-26 11:13:25 +00001264 */
drh856c1032009-06-02 15:21:42 +00001265 if( iA==-1 && iB==SMALLEST_INT64 ) iA = 1;
1266 iB /= iA;
drh75897232000-05-29 14:26:00 +00001267 break;
1268 }
drhbf4133c2001-10-13 02:59:08 +00001269 default: {
drh856c1032009-06-02 15:21:42 +00001270 if( iA==0 ) goto arithmetic_result_is_null;
1271 if( iA==-1 ) iA = 1;
1272 iB %= iA;
drhbf4133c2001-10-13 02:59:08 +00001273 break;
1274 }
drh75897232000-05-29 14:26:00 +00001275 }
drh856c1032009-06-02 15:21:42 +00001276 pOut->u.i = iB;
danielk1977a7a8e142008-02-13 18:25:27 +00001277 MemSetTypeFlag(pOut, MEM_Int);
drh5e00f6c2001-09-13 13:46:56 +00001278 }else{
drh856c1032009-06-02 15:21:42 +00001279 rA = sqlite3VdbeRealValue(pIn1);
1280 rB = sqlite3VdbeRealValue(pIn2);
drh5e00f6c2001-09-13 13:46:56 +00001281 switch( pOp->opcode ){
drh856c1032009-06-02 15:21:42 +00001282 case OP_Add: rB += rA; break;
1283 case OP_Subtract: rB -= rA; break;
1284 case OP_Multiply: rB *= rA; break;
drhbf4133c2001-10-13 02:59:08 +00001285 case OP_Divide: {
shanefbd60f82009-02-04 03:59:25 +00001286 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
drh856c1032009-06-02 15:21:42 +00001287 if( rA==(double)0 ) goto arithmetic_result_is_null;
1288 rB /= rA;
drh5e00f6c2001-09-13 13:46:56 +00001289 break;
1290 }
drhbf4133c2001-10-13 02:59:08 +00001291 default: {
shane75ac1de2009-06-09 18:58:52 +00001292 iA = (i64)rA;
1293 iB = (i64)rB;
drh856c1032009-06-02 15:21:42 +00001294 if( iA==0 ) goto arithmetic_result_is_null;
1295 if( iA==-1 ) iA = 1;
1296 rB = (double)(iB % iA);
drhbf4133c2001-10-13 02:59:08 +00001297 break;
1298 }
drh5e00f6c2001-09-13 13:46:56 +00001299 }
drh856c1032009-06-02 15:21:42 +00001300 if( sqlite3IsNaN(rB) ){
drha05a7222008-01-19 03:35:58 +00001301 goto arithmetic_result_is_null;
drh53c14022007-05-10 17:23:11 +00001302 }
drh856c1032009-06-02 15:21:42 +00001303 pOut->r = rB;
danielk1977a7a8e142008-02-13 18:25:27 +00001304 MemSetTypeFlag(pOut, MEM_Real);
drh8a512562005-11-14 22:29:05 +00001305 if( (flags & MEM_Real)==0 ){
drh5b6afba2008-01-05 16:29:28 +00001306 sqlite3VdbeIntegerAffinity(pOut);
drh8a512562005-11-14 22:29:05 +00001307 }
drh5e00f6c2001-09-13 13:46:56 +00001308 }
1309 break;
1310
drha05a7222008-01-19 03:35:58 +00001311arithmetic_result_is_null:
1312 sqlite3VdbeMemSetNull(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001313 break;
1314}
1315
drh66a51672008-01-03 00:01:23 +00001316/* Opcode: CollSeq * * P4
danielk1977dc1bdc42004-06-11 10:51:27 +00001317**
drh66a51672008-01-03 00:01:23 +00001318** P4 is a pointer to a CollSeq struct. If the next call to a user function
danielk1977dc1bdc42004-06-11 10:51:27 +00001319** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1320** be returned. This is used by the built-in min(), max() and nullif()
drhe6f85e72004-12-25 01:03:13 +00001321** functions.
danielk1977dc1bdc42004-06-11 10:51:27 +00001322**
1323** The interface used by the implementation of the aforementioned functions
1324** to retrieve the collation sequence set by this opcode is not available
1325** publicly, only to user functions defined in func.c.
1326*/
drh9cbf3422008-01-17 16:22:13 +00001327case OP_CollSeq: {
drh66a51672008-01-03 00:01:23 +00001328 assert( pOp->p4type==P4_COLLSEQ );
danielk1977dc1bdc42004-06-11 10:51:27 +00001329 break;
1330}
1331
drh98757152008-01-09 23:04:12 +00001332/* Opcode: Function P1 P2 P3 P4 P5
drh8e0a2f92002-02-23 23:45:45 +00001333**
drh66a51672008-01-03 00:01:23 +00001334** Invoke a user function (P4 is a pointer to a Function structure that
drh98757152008-01-09 23:04:12 +00001335** defines the function) with P5 arguments taken from register P2 and
drh9cbf3422008-01-17 16:22:13 +00001336** successors. The result of the function is stored in register P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001337** Register P3 must not be one of the function inputs.
danielk1977682f68b2004-06-05 10:22:17 +00001338**
drh13449892005-09-07 21:22:45 +00001339** P1 is a 32-bit bitmask indicating whether or not each argument to the
danielk1977682f68b2004-06-05 10:22:17 +00001340** function was determined to be constant at compile time. If the first
drh13449892005-09-07 21:22:45 +00001341** argument was constant then bit 0 of P1 is set. This is used to determine
danielk1977682f68b2004-06-05 10:22:17 +00001342** whether meta data associated with a user function argument using the
1343** sqlite3_set_auxdata() API may be safely retained until the next
1344** invocation of this opcode.
drh1350b032002-02-27 19:00:20 +00001345**
drh13449892005-09-07 21:22:45 +00001346** See also: AggStep and AggFinal
drh8e0a2f92002-02-23 23:45:45 +00001347*/
drh0bce8352002-02-28 00:41:10 +00001348case OP_Function: {
danielk197751ad0ec2004-05-24 12:39:02 +00001349 int i;
drh6810ce62004-01-31 19:22:56 +00001350 Mem *pArg;
danielk197722322fd2004-05-25 23:35:17 +00001351 sqlite3_context ctx;
danielk197751ad0ec2004-05-24 12:39:02 +00001352 sqlite3_value **apVal;
drh856c1032009-06-02 15:21:42 +00001353 int n;
drh1350b032002-02-27 19:00:20 +00001354
drh856c1032009-06-02 15:21:42 +00001355 n = pOp->p5;
danielk19776ddcca52004-05-24 23:48:25 +00001356 apVal = p->apArg;
danielk197751ad0ec2004-05-24 12:39:02 +00001357 assert( apVal || n==0 );
1358
danielk19776ab3a2e2009-02-19 14:39:25 +00001359 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) );
danielk1977a7a8e142008-02-13 18:25:27 +00001360 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
drha6c2ed92009-11-14 23:22:23 +00001361 pArg = &aMem[pOp->p2];
drh6810ce62004-01-31 19:22:56 +00001362 for(i=0; i<n; i++, pArg++){
danielk197751ad0ec2004-05-24 12:39:02 +00001363 apVal[i] = pArg;
dan937d0de2009-10-15 18:35:38 +00001364 sqlite3VdbeMemStoreType(pArg);
drh2dcef112008-01-12 19:03:48 +00001365 REGISTER_TRACE(pOp->p2, pArg);
drh8e0a2f92002-02-23 23:45:45 +00001366 }
danielk197751ad0ec2004-05-24 12:39:02 +00001367
drh66a51672008-01-03 00:01:23 +00001368 assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
1369 if( pOp->p4type==P4_FUNCDEF ){
danielk19772dca4ac2008-01-03 11:50:29 +00001370 ctx.pFunc = pOp->p4.pFunc;
danielk1977682f68b2004-06-05 10:22:17 +00001371 ctx.pVdbeFunc = 0;
1372 }else{
danielk19772dca4ac2008-01-03 11:50:29 +00001373 ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc;
danielk1977682f68b2004-06-05 10:22:17 +00001374 ctx.pFunc = ctx.pVdbeFunc->pFunc;
1375 }
1376
danielk1977a7a8e142008-02-13 18:25:27 +00001377 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00001378 pOut = &aMem[pOp->p3];
drh00706be2004-01-30 14:49:16 +00001379 ctx.s.flags = MEM_Null;
drhfa4a4b92008-03-19 21:45:51 +00001380 ctx.s.db = db;
danielk19775f096132008-03-28 15:44:09 +00001381 ctx.s.xDel = 0;
1382 ctx.s.zMalloc = 0;
danielk1977a7a8e142008-02-13 18:25:27 +00001383
1384 /* The output cell may already have a buffer allocated. Move
1385 ** the pointer to ctx.s so in case the user-function can use
1386 ** the already allocated buffer instead of allocating a new one.
1387 */
1388 sqlite3VdbeMemMove(&ctx.s, pOut);
1389 MemSetTypeFlag(&ctx.s, MEM_Null);
1390
drh8e0a2f92002-02-23 23:45:45 +00001391 ctx.isError = 0;
drhe82f5d02008-10-07 19:53:14 +00001392 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
drhbbe879d2009-11-14 18:04:35 +00001393 assert( pOp>aOp );
drh66a51672008-01-03 00:01:23 +00001394 assert( pOp[-1].p4type==P4_COLLSEQ );
danielk1977dc1bdc42004-06-11 10:51:27 +00001395 assert( pOp[-1].opcode==OP_CollSeq );
danielk19772dca4ac2008-01-03 11:50:29 +00001396 ctx.pColl = pOp[-1].p4.pColl;
danielk1977dc1bdc42004-06-11 10:51:27 +00001397 }
danielk19774adee202004-05-08 08:23:19 +00001398 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
danielk197751ad0ec2004-05-24 12:39:02 +00001399 (*ctx.pFunc->xFunc)(&ctx, n, apVal);
danielk197775eb0162008-03-28 19:16:33 +00001400 if( sqlite3SafetyOn(db) ){
1401 sqlite3VdbeMemRelease(&ctx.s);
1402 goto abort_due_to_misuse;
1403 }
drh17435752007-08-16 04:30:38 +00001404 if( db->mallocFailed ){
danielk1977e0fc5262007-07-26 06:50:05 +00001405 /* Even though a malloc() has failed, the implementation of the
1406 ** user function may have called an sqlite3_result_XXX() function
1407 ** to return a value. The following call releases any resources
1408 ** associated with such a value.
1409 **
1410 ** Note: Maybe MemRelease() should be called if sqlite3SafetyOn()
1411 ** fails also (the if(...) statement above). But if people are
1412 ** misusing sqlite, they have bigger problems than a leaked value.
1413 */
1414 sqlite3VdbeMemRelease(&ctx.s);
1415 goto no_mem;
1416 }
danielk19777e18c252004-05-25 11:47:24 +00001417
shane21e7feb2008-05-30 15:59:49 +00001418 /* If any auxiliary data functions have been called by this user function,
danielk1977682f68b2004-06-05 10:22:17 +00001419 ** immediately call the destructor for any non-static values.
1420 */
1421 if( ctx.pVdbeFunc ){
drh13449892005-09-07 21:22:45 +00001422 sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
danielk19772dca4ac2008-01-03 11:50:29 +00001423 pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
drh66a51672008-01-03 00:01:23 +00001424 pOp->p4type = P4_VDBEFUNC;
danielk1977682f68b2004-06-05 10:22:17 +00001425 }
1426
drh90669c12006-01-20 15:45:36 +00001427 /* If the function returned an error, throw an exception */
1428 if( ctx.isError ){
drhf089aa42008-07-08 19:34:06 +00001429 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
drh69544ec2008-02-06 14:11:34 +00001430 rc = ctx.isError;
drh90669c12006-01-20 15:45:36 +00001431 }
1432
drh9cbf3422008-01-17 16:22:13 +00001433 /* Copy the result of the function into register P3 */
drhb21c8cd2007-08-21 19:33:56 +00001434 sqlite3VdbeChangeEncoding(&ctx.s, encoding);
drh98757152008-01-09 23:04:12 +00001435 sqlite3VdbeMemMove(pOut, &ctx.s);
1436 if( sqlite3VdbeMemTooBig(pOut) ){
drh023ae032007-05-08 12:12:16 +00001437 goto too_big;
1438 }
drh2dcef112008-01-12 19:03:48 +00001439 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00001440 UPDATE_MAX_BLOBSIZE(pOut);
drh8e0a2f92002-02-23 23:45:45 +00001441 break;
1442}
1443
drh98757152008-01-09 23:04:12 +00001444/* Opcode: BitAnd P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001445**
drh98757152008-01-09 23:04:12 +00001446** Take the bit-wise AND of the values in register P1 and P2 and
1447** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001448** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001449*/
drh98757152008-01-09 23:04:12 +00001450/* Opcode: BitOr P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001451**
drh98757152008-01-09 23:04:12 +00001452** Take the bit-wise OR of the values in register P1 and P2 and
1453** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001454** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001455*/
drh98757152008-01-09 23:04:12 +00001456/* Opcode: ShiftLeft P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001457**
drh98757152008-01-09 23:04:12 +00001458** Shift the integer value in register P2 to the left by the
drh60a713c2008-01-21 16:22:45 +00001459** number of bits specified by the integer in regiser P1.
drh98757152008-01-09 23:04:12 +00001460** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001461** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001462*/
drh98757152008-01-09 23:04:12 +00001463/* Opcode: ShiftRight P1 P2 P3 * *
drhbf4133c2001-10-13 02:59:08 +00001464**
drh98757152008-01-09 23:04:12 +00001465** Shift the integer value in register P2 to the right by the
drh60a713c2008-01-21 16:22:45 +00001466** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001467** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001468** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001469*/
drh5b6afba2008-01-05 16:29:28 +00001470case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1471case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1472case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1473case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00001474 i64 a;
1475 i64 b;
drh6810ce62004-01-31 19:22:56 +00001476
drh3c657212009-11-17 23:59:58 +00001477 pIn1 = &aMem[pOp->p1];
1478 pIn2 = &aMem[pOp->p2];
1479 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001480 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
drha05a7222008-01-19 03:35:58 +00001481 sqlite3VdbeMemSetNull(pOut);
drhf5905aa2002-05-26 20:54:33 +00001482 break;
1483 }
drh5b6afba2008-01-05 16:29:28 +00001484 a = sqlite3VdbeIntValue(pIn2);
1485 b = sqlite3VdbeIntValue(pIn1);
drhbf4133c2001-10-13 02:59:08 +00001486 switch( pOp->opcode ){
1487 case OP_BitAnd: a &= b; break;
1488 case OP_BitOr: a |= b; break;
1489 case OP_ShiftLeft: a <<= b; break;
drha05a7222008-01-19 03:35:58 +00001490 default: assert( pOp->opcode==OP_ShiftRight );
1491 a >>= b; break;
drhbf4133c2001-10-13 02:59:08 +00001492 }
drh5b6afba2008-01-05 16:29:28 +00001493 pOut->u.i = a;
danielk1977a7a8e142008-02-13 18:25:27 +00001494 MemSetTypeFlag(pOut, MEM_Int);
drhbf4133c2001-10-13 02:59:08 +00001495 break;
1496}
1497
drh8558cde2008-01-05 05:20:10 +00001498/* Opcode: AddImm P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00001499**
danielk19770cdc0222008-06-26 18:04:03 +00001500** Add the constant P2 to the value in register P1.
drh8558cde2008-01-05 05:20:10 +00001501** The result is always an integer.
drh4a324312001-12-21 14:30:42 +00001502**
drh8558cde2008-01-05 05:20:10 +00001503** To force any register to be an integer, just add 0.
drh5e00f6c2001-09-13 13:46:56 +00001504*/
drh9cbf3422008-01-17 16:22:13 +00001505case OP_AddImm: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001506 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001507 sqlite3VdbeMemIntegerify(pIn1);
1508 pIn1->u.i += pOp->p2;
drh5e00f6c2001-09-13 13:46:56 +00001509 break;
1510}
1511
drh9cbf3422008-01-17 16:22:13 +00001512/* Opcode: MustBeInt P1 P2 * * *
drh8aff1012001-12-22 14:49:24 +00001513**
drh9cbf3422008-01-17 16:22:13 +00001514** Force the value in register P1 to be an integer. If the value
1515** in P1 is not an integer and cannot be converted into an integer
danielk19779a96b662007-11-29 17:05:18 +00001516** without data loss, then jump immediately to P2, or if P2==0
drh8aff1012001-12-22 14:49:24 +00001517** raise an SQLITE_MISMATCH exception.
1518*/
drh9cbf3422008-01-17 16:22:13 +00001519case OP_MustBeInt: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00001520 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00001521 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1522 if( (pIn1->flags & MEM_Int)==0 ){
drh17c40292004-07-21 02:53:29 +00001523 if( pOp->p2==0 ){
1524 rc = SQLITE_MISMATCH;
1525 goto abort_due_to_error;
drh3c84ddf2008-01-09 02:15:38 +00001526 }else{
drh17c40292004-07-21 02:53:29 +00001527 pc = pOp->p2 - 1;
drh8aff1012001-12-22 14:49:24 +00001528 }
drh8aff1012001-12-22 14:49:24 +00001529 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00001530 MemSetTypeFlag(pIn1, MEM_Int);
drh8aff1012001-12-22 14:49:24 +00001531 }
1532 break;
1533}
1534
drh13573c72010-01-12 17:04:07 +00001535#ifndef SQLITE_OMIT_FLOATING_POINT
drh8558cde2008-01-05 05:20:10 +00001536/* Opcode: RealAffinity P1 * * * *
drh487e2622005-06-25 18:42:14 +00001537**
drh2133d822008-01-03 18:44:59 +00001538** If register P1 holds an integer convert it to a real value.
drh487e2622005-06-25 18:42:14 +00001539**
drh8a512562005-11-14 22:29:05 +00001540** This opcode is used when extracting information from a column that
1541** has REAL affinity. Such column values may still be stored as
1542** integers, for space efficiency, but after extraction we want them
1543** to have only a real value.
drh487e2622005-06-25 18:42:14 +00001544*/
drh9cbf3422008-01-17 16:22:13 +00001545case OP_RealAffinity: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001546 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001547 if( pIn1->flags & MEM_Int ){
1548 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001549 }
drh487e2622005-06-25 18:42:14 +00001550 break;
1551}
drh13573c72010-01-12 17:04:07 +00001552#endif
drh487e2622005-06-25 18:42:14 +00001553
drh8df447f2005-11-01 15:48:24 +00001554#ifndef SQLITE_OMIT_CAST
drh8558cde2008-01-05 05:20:10 +00001555/* Opcode: ToText P1 * * * *
drh487e2622005-06-25 18:42:14 +00001556**
drh8558cde2008-01-05 05:20:10 +00001557** Force the value in register P1 to be text.
drh31beae92005-11-24 14:34:36 +00001558** If the value is numeric, convert it to a string using the
drh487e2622005-06-25 18:42:14 +00001559** equivalent of printf(). Blob values are unchanged and
1560** are afterwards simply interpreted as text.
1561**
1562** A NULL value is not changed by this routine. It remains NULL.
1563*/
drh9cbf3422008-01-17 16:22:13 +00001564case OP_ToText: { /* same as TK_TO_TEXT, in1 */
drh3c657212009-11-17 23:59:58 +00001565 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001566 if( pIn1->flags & MEM_Null ) break;
drh487e2622005-06-25 18:42:14 +00001567 assert( MEM_Str==(MEM_Blob>>3) );
drh8558cde2008-01-05 05:20:10 +00001568 pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
1569 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
1570 rc = ExpandBlob(pIn1);
danielk1977a7a8e142008-02-13 18:25:27 +00001571 assert( pIn1->flags & MEM_Str || db->mallocFailed );
drh68ac65e2009-01-05 18:02:27 +00001572 pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
drhb7654112008-01-12 12:48:07 +00001573 UPDATE_MAX_BLOBSIZE(pIn1);
drh487e2622005-06-25 18:42:14 +00001574 break;
1575}
1576
drh8558cde2008-01-05 05:20:10 +00001577/* Opcode: ToBlob P1 * * * *
drh487e2622005-06-25 18:42:14 +00001578**
drh8558cde2008-01-05 05:20:10 +00001579** Force the value in register P1 to be a BLOB.
drh487e2622005-06-25 18:42:14 +00001580** If the value is numeric, convert it to a string first.
1581** Strings are simply reinterpreted as blobs with no change
1582** to the underlying data.
1583**
1584** A NULL value is not changed by this routine. It remains NULL.
1585*/
drh9cbf3422008-01-17 16:22:13 +00001586case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */
drh3c657212009-11-17 23:59:58 +00001587 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001588 if( pIn1->flags & MEM_Null ) break;
1589 if( (pIn1->flags & MEM_Blob)==0 ){
1590 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
danielk1977a7a8e142008-02-13 18:25:27 +00001591 assert( pIn1->flags & MEM_Str || db->mallocFailed );
drhde58ddb2009-01-05 22:30:38 +00001592 MemSetTypeFlag(pIn1, MEM_Blob);
1593 }else{
1594 pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob);
drh487e2622005-06-25 18:42:14 +00001595 }
drhb7654112008-01-12 12:48:07 +00001596 UPDATE_MAX_BLOBSIZE(pIn1);
drh487e2622005-06-25 18:42:14 +00001597 break;
1598}
drh8a512562005-11-14 22:29:05 +00001599
drh8558cde2008-01-05 05:20:10 +00001600/* Opcode: ToNumeric P1 * * * *
drh8a512562005-11-14 22:29:05 +00001601**
drh8558cde2008-01-05 05:20:10 +00001602** Force the value in register P1 to be numeric (either an
drh8a512562005-11-14 22:29:05 +00001603** integer or a floating-point number.)
1604** If the value is text or blob, try to convert it to an using the
1605** equivalent of atoi() or atof() and store 0 if no such conversion
1606** is possible.
1607**
1608** A NULL value is not changed by this routine. It remains NULL.
1609*/
drh9cbf3422008-01-17 16:22:13 +00001610case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */
drh3c657212009-11-17 23:59:58 +00001611 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001612 if( (pIn1->flags & (MEM_Null|MEM_Int|MEM_Real))==0 ){
1613 sqlite3VdbeMemNumerify(pIn1);
drh8a512562005-11-14 22:29:05 +00001614 }
1615 break;
1616}
1617#endif /* SQLITE_OMIT_CAST */
1618
drh8558cde2008-01-05 05:20:10 +00001619/* Opcode: ToInt P1 * * * *
drh8a512562005-11-14 22:29:05 +00001620**
drh8558cde2008-01-05 05:20:10 +00001621** Force the value in register P1 be an integer. If
drh8a512562005-11-14 22:29:05 +00001622** The value is currently a real number, drop its fractional part.
1623** If the value is text or blob, try to convert it to an integer using the
1624** equivalent of atoi() and store 0 if no such conversion is possible.
1625**
1626** A NULL value is not changed by this routine. It remains NULL.
1627*/
drh9cbf3422008-01-17 16:22:13 +00001628case OP_ToInt: { /* same as TK_TO_INT, in1 */
drh3c657212009-11-17 23:59:58 +00001629 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001630 if( (pIn1->flags & MEM_Null)==0 ){
1631 sqlite3VdbeMemIntegerify(pIn1);
drh8a512562005-11-14 22:29:05 +00001632 }
1633 break;
1634}
1635
drh13573c72010-01-12 17:04:07 +00001636#if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT)
drh8558cde2008-01-05 05:20:10 +00001637/* Opcode: ToReal P1 * * * *
drh8a512562005-11-14 22:29:05 +00001638**
drh8558cde2008-01-05 05:20:10 +00001639** Force the value in register P1 to be a floating point number.
drh8a512562005-11-14 22:29:05 +00001640** If The value is currently an integer, convert it.
1641** If the value is text or blob, try to convert it to an integer using the
drh60a713c2008-01-21 16:22:45 +00001642** equivalent of atoi() and store 0.0 if no such conversion is possible.
drh8a512562005-11-14 22:29:05 +00001643**
1644** A NULL value is not changed by this routine. It remains NULL.
1645*/
drh9cbf3422008-01-17 16:22:13 +00001646case OP_ToReal: { /* same as TK_TO_REAL, in1 */
drh3c657212009-11-17 23:59:58 +00001647 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001648 if( (pIn1->flags & MEM_Null)==0 ){
1649 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001650 }
1651 break;
1652}
drh13573c72010-01-12 17:04:07 +00001653#endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */
drh487e2622005-06-25 18:42:14 +00001654
drh35573352008-01-08 23:54:25 +00001655/* Opcode: Lt P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001656**
drh35573352008-01-08 23:54:25 +00001657** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
1658** jump to address P2.
drhf5905aa2002-05-26 20:54:33 +00001659**
drh35573352008-01-08 23:54:25 +00001660** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1661** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
1662** bit is clear then fall thru if either operand is NULL.
drh4f686232005-09-20 13:55:18 +00001663**
drh35573352008-01-08 23:54:25 +00001664** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
drh8a512562005-11-14 22:29:05 +00001665** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
drh60a713c2008-01-21 16:22:45 +00001666** to coerce both inputs according to this affinity before the
drh35573352008-01-08 23:54:25 +00001667** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
drh60a713c2008-01-21 16:22:45 +00001668** affinity is used. Note that the affinity conversions are stored
1669** back into the input registers P1 and P3. So this opcode can cause
1670** persistent changes to registers P1 and P3.
danielk1977a37cdde2004-05-16 11:15:36 +00001671**
1672** Once any conversions have taken place, and neither value is NULL,
drh35573352008-01-08 23:54:25 +00001673** the values are compared. If both values are blobs then memcmp() is
1674** used to determine the results of the comparison. If both values
1675** are text, then the appropriate collating function specified in
1676** P4 is used to do the comparison. If P4 is not specified then
1677** memcmp() is used to compare text string. If both values are
1678** numeric, then a numeric comparison is used. If the two values
1679** are of different types, then numbers are considered less than
1680** strings and strings are considered less than blobs.
drhc9b84a12002-06-20 11:36:48 +00001681**
drh35573352008-01-08 23:54:25 +00001682** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
1683** store a boolean result (either 0, or 1, or NULL) in register P2.
drh5e00f6c2001-09-13 13:46:56 +00001684*/
drh9cbf3422008-01-17 16:22:13 +00001685/* Opcode: Ne P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001686**
drh35573352008-01-08 23:54:25 +00001687** This works just like the Lt opcode except that the jump is taken if
1688** the operands in registers P1 and P3 are not equal. See the Lt opcode for
drh53db1452004-05-20 13:54:53 +00001689** additional information.
drh6a2fe092009-09-23 02:29:36 +00001690**
1691** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1692** true or false and is never NULL. If both operands are NULL then the result
1693** of comparison is false. If either operand is NULL then the result is true.
1694** If neither operand is NULL the the result is the same as it would be if
1695** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001696*/
drh9cbf3422008-01-17 16:22:13 +00001697/* Opcode: Eq P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001698**
drh35573352008-01-08 23:54:25 +00001699** This works just like the Lt opcode except that the jump is taken if
1700** the operands in registers P1 and P3 are equal.
1701** See the Lt opcode for additional information.
drh6a2fe092009-09-23 02:29:36 +00001702**
1703** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1704** true or false and is never NULL. If both operands are NULL then the result
1705** of comparison is true. If either operand is NULL then the result is false.
1706** If neither operand is NULL the the result is the same as it would be if
1707** the SQLITE_NULLEQ flag were omitted from P5.
drh5e00f6c2001-09-13 13:46:56 +00001708*/
drh9cbf3422008-01-17 16:22:13 +00001709/* Opcode: Le P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001710**
drh35573352008-01-08 23:54:25 +00001711** This works just like the Lt opcode except that the jump is taken if
1712** the content of register P3 is less than or equal to the content of
1713** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001714*/
drh9cbf3422008-01-17 16:22:13 +00001715/* Opcode: Gt P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001716**
drh35573352008-01-08 23:54:25 +00001717** This works just like the Lt opcode except that the jump is taken if
1718** the content of register P3 is greater than the content of
1719** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001720*/
drh9cbf3422008-01-17 16:22:13 +00001721/* Opcode: Ge P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00001722**
drh35573352008-01-08 23:54:25 +00001723** This works just like the Lt opcode except that the jump is taken if
1724** the content of register P3 is greater than or equal to the content of
1725** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001726*/
drh9cbf3422008-01-17 16:22:13 +00001727case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
1728case OP_Ne: /* same as TK_NE, jump, in1, in3 */
1729case OP_Lt: /* same as TK_LT, jump, in1, in3 */
1730case OP_Le: /* same as TK_LE, jump, in1, in3 */
1731case OP_Gt: /* same as TK_GT, jump, in1, in3 */
1732case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
drh6a2fe092009-09-23 02:29:36 +00001733 int res; /* Result of the comparison of pIn1 against pIn3 */
1734 char affinity; /* Affinity to use for comparison */
danielk1977a37cdde2004-05-16 11:15:36 +00001735
drh3c657212009-11-17 23:59:58 +00001736 pIn1 = &aMem[pOp->p1];
1737 pIn3 = &aMem[pOp->p3];
drh6a2fe092009-09-23 02:29:36 +00001738 if( (pIn1->flags | pIn3->flags)&MEM_Null ){
1739 /* One or both operands are NULL */
1740 if( pOp->p5 & SQLITE_NULLEQ ){
1741 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1742 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1743 ** or not both operands are null.
1744 */
1745 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
1746 res = (pIn1->flags & pIn3->flags & MEM_Null)==0;
1747 }else{
1748 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1749 ** then the result is always NULL.
1750 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1751 */
1752 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001753 pOut = &aMem[pOp->p2];
drh6a2fe092009-09-23 02:29:36 +00001754 MemSetTypeFlag(pOut, MEM_Null);
1755 REGISTER_TRACE(pOp->p2, pOut);
1756 }else if( pOp->p5 & SQLITE_JUMPIFNULL ){
1757 pc = pOp->p2-1;
1758 }
1759 break;
danielk1977a37cdde2004-05-16 11:15:36 +00001760 }
drh6a2fe092009-09-23 02:29:36 +00001761 }else{
1762 /* Neither operand is NULL. Do a comparison. */
1763 affinity = pOp->p5 & SQLITE_AFF_MASK;
1764 if( affinity ){
1765 applyAffinity(pIn1, affinity, encoding);
1766 applyAffinity(pIn3, affinity, encoding);
1767 if( db->mallocFailed ) goto no_mem;
1768 }
danielk1977a37cdde2004-05-16 11:15:36 +00001769
drh6a2fe092009-09-23 02:29:36 +00001770 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
1771 ExpandBlob(pIn1);
1772 ExpandBlob(pIn3);
1773 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
drhe51c44f2004-05-30 20:46:09 +00001774 }
danielk1977a37cdde2004-05-16 11:15:36 +00001775 switch( pOp->opcode ){
1776 case OP_Eq: res = res==0; break;
1777 case OP_Ne: res = res!=0; break;
1778 case OP_Lt: res = res<0; break;
1779 case OP_Le: res = res<=0; break;
1780 case OP_Gt: res = res>0; break;
1781 default: res = res>=0; break;
1782 }
1783
drh35573352008-01-08 23:54:25 +00001784 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001785 pOut = &aMem[pOp->p2];
danielk1977a7a8e142008-02-13 18:25:27 +00001786 MemSetTypeFlag(pOut, MEM_Int);
drh35573352008-01-08 23:54:25 +00001787 pOut->u.i = res;
1788 REGISTER_TRACE(pOp->p2, pOut);
1789 }else if( res ){
1790 pc = pOp->p2-1;
danielk1977a37cdde2004-05-16 11:15:36 +00001791 }
1792 break;
1793}
drhc9b84a12002-06-20 11:36:48 +00001794
drh0acb7e42008-06-25 00:12:41 +00001795/* Opcode: Permutation * * * P4 *
1796**
shanebe217792009-03-05 04:20:31 +00001797** Set the permutation used by the OP_Compare operator to be the array
drh0acb7e42008-06-25 00:12:41 +00001798** of integers in P4.
1799**
1800** The permutation is only valid until the next OP_Permutation, OP_Compare,
1801** OP_Halt, or OP_ResultRow. Typically the OP_Permutation should occur
1802** immediately prior to the OP_Compare.
1803*/
1804case OP_Permutation: {
1805 assert( pOp->p4type==P4_INTARRAY );
1806 assert( pOp->p4.ai );
1807 aPermute = pOp->p4.ai;
1808 break;
1809}
1810
drh16ee60f2008-06-20 18:13:25 +00001811/* Opcode: Compare P1 P2 P3 P4 *
1812**
1813** Compare to vectors of registers in reg(P1)..reg(P1+P3-1) (all this
1814** one "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
1815** the comparison for use by the next OP_Jump instruct.
1816**
drh0acb7e42008-06-25 00:12:41 +00001817** P4 is a KeyInfo structure that defines collating sequences and sort
1818** orders for the comparison. The permutation applies to registers
1819** only. The KeyInfo elements are used sequentially.
1820**
1821** The comparison is a sort comparison, so NULLs compare equal,
1822** NULLs are less than numbers, numbers are less than strings,
drh16ee60f2008-06-20 18:13:25 +00001823** and strings are less than blobs.
1824*/
1825case OP_Compare: {
drh856c1032009-06-02 15:21:42 +00001826 int n;
1827 int i;
1828 int p1;
1829 int p2;
1830 const KeyInfo *pKeyInfo;
1831 int idx;
1832 CollSeq *pColl; /* Collating sequence to use on this term */
1833 int bRev; /* True for DESCENDING sort order */
1834
1835 n = pOp->p3;
1836 pKeyInfo = pOp->p4.pKeyInfo;
drh16ee60f2008-06-20 18:13:25 +00001837 assert( n>0 );
drh93a960a2008-07-10 00:32:42 +00001838 assert( pKeyInfo!=0 );
drh16ee60f2008-06-20 18:13:25 +00001839 p1 = pOp->p1;
drh16ee60f2008-06-20 18:13:25 +00001840 p2 = pOp->p2;
drh6a2fe092009-09-23 02:29:36 +00001841#if SQLITE_DEBUG
1842 if( aPermute ){
1843 int k, mx = 0;
1844 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
1845 assert( p1>0 && p1+mx<=p->nMem+1 );
1846 assert( p2>0 && p2+mx<=p->nMem+1 );
1847 }else{
1848 assert( p1>0 && p1+n<=p->nMem+1 );
1849 assert( p2>0 && p2+n<=p->nMem+1 );
1850 }
1851#endif /* SQLITE_DEBUG */
drh0acb7e42008-06-25 00:12:41 +00001852 for(i=0; i<n; i++){
drh856c1032009-06-02 15:21:42 +00001853 idx = aPermute ? aPermute[i] : i;
drha6c2ed92009-11-14 23:22:23 +00001854 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
1855 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
drh93a960a2008-07-10 00:32:42 +00001856 assert( i<pKeyInfo->nField );
1857 pColl = pKeyInfo->aColl[i];
1858 bRev = pKeyInfo->aSortOrder[i];
drha6c2ed92009-11-14 23:22:23 +00001859 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
drh0acb7e42008-06-25 00:12:41 +00001860 if( iCompare ){
1861 if( bRev ) iCompare = -iCompare;
1862 break;
1863 }
drh16ee60f2008-06-20 18:13:25 +00001864 }
drh0acb7e42008-06-25 00:12:41 +00001865 aPermute = 0;
drh16ee60f2008-06-20 18:13:25 +00001866 break;
1867}
1868
1869/* Opcode: Jump P1 P2 P3 * *
1870**
1871** Jump to the instruction at address P1, P2, or P3 depending on whether
1872** in the most recent OP_Compare instruction the P1 vector was less than
1873** equal to, or greater than the P2 vector, respectively.
1874*/
drh0acb7e42008-06-25 00:12:41 +00001875case OP_Jump: { /* jump */
1876 if( iCompare<0 ){
drh16ee60f2008-06-20 18:13:25 +00001877 pc = pOp->p1 - 1;
drh0acb7e42008-06-25 00:12:41 +00001878 }else if( iCompare==0 ){
drh16ee60f2008-06-20 18:13:25 +00001879 pc = pOp->p2 - 1;
1880 }else{
1881 pc = pOp->p3 - 1;
1882 }
1883 break;
1884}
1885
drh5b6afba2008-01-05 16:29:28 +00001886/* Opcode: And P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001887**
drh5b6afba2008-01-05 16:29:28 +00001888** Take the logical AND of the values in registers P1 and P2 and
1889** write the result into register P3.
drh5e00f6c2001-09-13 13:46:56 +00001890**
drh5b6afba2008-01-05 16:29:28 +00001891** If either P1 or P2 is 0 (false) then the result is 0 even if
1892** the other input is NULL. A NULL and true or two NULLs give
1893** a NULL output.
drh5e00f6c2001-09-13 13:46:56 +00001894*/
drh5b6afba2008-01-05 16:29:28 +00001895/* Opcode: Or P1 P2 P3 * *
1896**
1897** Take the logical OR of the values in register P1 and P2 and
1898** store the answer in register P3.
1899**
1900** If either P1 or P2 is nonzero (true) then the result is 1 (true)
1901** even if the other input is NULL. A NULL and false or two NULLs
1902** give a NULL output.
1903*/
1904case OP_And: /* same as TK_AND, in1, in2, out3 */
1905case OP_Or: { /* same as TK_OR, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00001906 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
1907 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
drhbb113512002-05-27 01:04:51 +00001908
drh3c657212009-11-17 23:59:58 +00001909 pIn1 = &aMem[pOp->p1];
drh5b6afba2008-01-05 16:29:28 +00001910 if( pIn1->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00001911 v1 = 2;
drh5e00f6c2001-09-13 13:46:56 +00001912 }else{
drh5b6afba2008-01-05 16:29:28 +00001913 v1 = sqlite3VdbeIntValue(pIn1)!=0;
drhbb113512002-05-27 01:04:51 +00001914 }
drh3c657212009-11-17 23:59:58 +00001915 pIn2 = &aMem[pOp->p2];
drh5b6afba2008-01-05 16:29:28 +00001916 if( pIn2->flags & MEM_Null ){
drhbb113512002-05-27 01:04:51 +00001917 v2 = 2;
1918 }else{
drh5b6afba2008-01-05 16:29:28 +00001919 v2 = sqlite3VdbeIntValue(pIn2)!=0;
drhbb113512002-05-27 01:04:51 +00001920 }
1921 if( pOp->opcode==OP_And ){
drh5b6afba2008-01-05 16:29:28 +00001922 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
drhbb113512002-05-27 01:04:51 +00001923 v1 = and_logic[v1*3+v2];
1924 }else{
drh5b6afba2008-01-05 16:29:28 +00001925 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
drhbb113512002-05-27 01:04:51 +00001926 v1 = or_logic[v1*3+v2];
drh5e00f6c2001-09-13 13:46:56 +00001927 }
drh3c657212009-11-17 23:59:58 +00001928 pOut = &aMem[pOp->p3];
drhbb113512002-05-27 01:04:51 +00001929 if( v1==2 ){
danielk1977a7a8e142008-02-13 18:25:27 +00001930 MemSetTypeFlag(pOut, MEM_Null);
drhbb113512002-05-27 01:04:51 +00001931 }else{
drh5b6afba2008-01-05 16:29:28 +00001932 pOut->u.i = v1;
danielk1977a7a8e142008-02-13 18:25:27 +00001933 MemSetTypeFlag(pOut, MEM_Int);
drhbb113512002-05-27 01:04:51 +00001934 }
drh5e00f6c2001-09-13 13:46:56 +00001935 break;
1936}
1937
drhe99fa2a2008-12-15 15:27:51 +00001938/* Opcode: Not P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00001939**
drhe99fa2a2008-12-15 15:27:51 +00001940** Interpret the value in register P1 as a boolean value. Store the
1941** boolean complement in register P2. If the value in register P1 is
1942** NULL, then a NULL is stored in P2.
drh5e00f6c2001-09-13 13:46:56 +00001943*/
drh93952eb2009-11-13 19:43:43 +00001944case OP_Not: { /* same as TK_NOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00001945 pIn1 = &aMem[pOp->p1];
1946 pOut = &aMem[pOp->p2];
drhe99fa2a2008-12-15 15:27:51 +00001947 if( pIn1->flags & MEM_Null ){
1948 sqlite3VdbeMemSetNull(pOut);
1949 }else{
1950 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1));
1951 }
drh5e00f6c2001-09-13 13:46:56 +00001952 break;
1953}
1954
drhe99fa2a2008-12-15 15:27:51 +00001955/* Opcode: BitNot P1 P2 * * *
drhbf4133c2001-10-13 02:59:08 +00001956**
drhe99fa2a2008-12-15 15:27:51 +00001957** Interpret the content of register P1 as an integer. Store the
1958** ones-complement of the P1 value into register P2. If P1 holds
1959** a NULL then store a NULL in P2.
drhbf4133c2001-10-13 02:59:08 +00001960*/
drh93952eb2009-11-13 19:43:43 +00001961case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00001962 pIn1 = &aMem[pOp->p1];
1963 pOut = &aMem[pOp->p2];
drhe99fa2a2008-12-15 15:27:51 +00001964 if( pIn1->flags & MEM_Null ){
1965 sqlite3VdbeMemSetNull(pOut);
1966 }else{
1967 sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1));
1968 }
drhbf4133c2001-10-13 02:59:08 +00001969 break;
1970}
1971
drh3c84ddf2008-01-09 02:15:38 +00001972/* Opcode: If P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00001973**
drh3c84ddf2008-01-09 02:15:38 +00001974** Jump to P2 if the value in register P1 is true. The value is
1975** is considered true if it is numeric and non-zero. If the value
1976** in P1 is NULL then take the jump if P3 is true.
drh5e00f6c2001-09-13 13:46:56 +00001977*/
drh3c84ddf2008-01-09 02:15:38 +00001978/* Opcode: IfNot P1 P2 P3 * *
drhf5905aa2002-05-26 20:54:33 +00001979**
drh3c84ddf2008-01-09 02:15:38 +00001980** Jump to P2 if the value in register P1 is False. The value is
1981** is considered true if it has a numeric value of zero. If the value
1982** in P1 is NULL then take the jump if P3 is true.
drhf5905aa2002-05-26 20:54:33 +00001983*/
drh9cbf3422008-01-17 16:22:13 +00001984case OP_If: /* jump, in1 */
1985case OP_IfNot: { /* jump, in1 */
drh5e00f6c2001-09-13 13:46:56 +00001986 int c;
drh3c657212009-11-17 23:59:58 +00001987 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00001988 if( pIn1->flags & MEM_Null ){
1989 c = pOp->p3;
drhf5905aa2002-05-26 20:54:33 +00001990 }else{
drhba0232a2005-06-06 17:27:19 +00001991#ifdef SQLITE_OMIT_FLOATING_POINT
shanefbd60f82009-02-04 03:59:25 +00001992 c = sqlite3VdbeIntValue(pIn1)!=0;
drhba0232a2005-06-06 17:27:19 +00001993#else
drh3c84ddf2008-01-09 02:15:38 +00001994 c = sqlite3VdbeRealValue(pIn1)!=0.0;
drhba0232a2005-06-06 17:27:19 +00001995#endif
drhf5905aa2002-05-26 20:54:33 +00001996 if( pOp->opcode==OP_IfNot ) c = !c;
1997 }
drh3c84ddf2008-01-09 02:15:38 +00001998 if( c ){
1999 pc = pOp->p2-1;
2000 }
drh5e00f6c2001-09-13 13:46:56 +00002001 break;
2002}
2003
drh830ecf92009-06-18 00:41:55 +00002004/* Opcode: IsNull P1 P2 * * *
drh477df4b2008-01-05 18:48:24 +00002005**
drh830ecf92009-06-18 00:41:55 +00002006** Jump to P2 if the value in register P1 is NULL.
drh477df4b2008-01-05 18:48:24 +00002007*/
drh9cbf3422008-01-17 16:22:13 +00002008case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002009 pIn1 = &aMem[pOp->p1];
drh830ecf92009-06-18 00:41:55 +00002010 if( (pIn1->flags & MEM_Null)!=0 ){
2011 pc = pOp->p2 - 1;
2012 }
drh477df4b2008-01-05 18:48:24 +00002013 break;
2014}
2015
drh98757152008-01-09 23:04:12 +00002016/* Opcode: NotNull P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00002017**
drh6a288a32008-01-07 19:20:24 +00002018** Jump to P2 if the value in register P1 is not NULL.
drh5e00f6c2001-09-13 13:46:56 +00002019*/
drh9cbf3422008-01-17 16:22:13 +00002020case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002021 pIn1 = &aMem[pOp->p1];
drh6a288a32008-01-07 19:20:24 +00002022 if( (pIn1->flags & MEM_Null)==0 ){
2023 pc = pOp->p2 - 1;
2024 }
drh5e00f6c2001-09-13 13:46:56 +00002025 break;
2026}
2027
drh3e9ca092009-09-08 01:14:48 +00002028/* Opcode: Column P1 P2 P3 P4 P5
danielk1977192ac1d2004-05-10 07:17:30 +00002029**
danielk1977cfcdaef2004-05-12 07:33:33 +00002030** Interpret the data that cursor P1 points to as a structure built using
2031** the MakeRecord instruction. (See the MakeRecord opcode for additional
drhd4e70eb2008-01-02 00:34:36 +00002032** information about the format of the data.) Extract the P2-th column
2033** from this record. If there are less that (P2+1)
2034** values in the record, extract a NULL.
2035**
drh9cbf3422008-01-17 16:22:13 +00002036** The value extracted is stored in register P3.
danielk1977192ac1d2004-05-10 07:17:30 +00002037**
danielk19771f4aa332008-01-03 09:51:55 +00002038** If the column contains fewer than P2 fields, then extract a NULL. Or,
2039** if the P4 argument is a P4_MEM use the value of the P4 argument as
2040** the result.
drh3e9ca092009-09-08 01:14:48 +00002041**
2042** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2043** then the cache of the cursor is reset prior to extracting the column.
2044** The first OP_Column against a pseudo-table after the value of the content
2045** register has changed should have this bit set.
danielk1977192ac1d2004-05-10 07:17:30 +00002046*/
danielk1977cfcdaef2004-05-12 07:33:33 +00002047case OP_Column: {
drh35cd6432009-06-05 14:17:21 +00002048 u32 payloadSize; /* Number of bytes in the record */
drh856c1032009-06-02 15:21:42 +00002049 i64 payloadSize64; /* Number of bytes in the record */
2050 int p1; /* P1 value of the opcode */
2051 int p2; /* column number to retrieve */
2052 VdbeCursor *pC; /* The VDBE cursor */
drhe61cffc2004-06-12 18:12:15 +00002053 char *zRec; /* Pointer to complete record-data */
drhd3194f52004-05-27 19:59:32 +00002054 BtCursor *pCrsr; /* The BTree cursor */
2055 u32 *aType; /* aType[i] holds the numeric type of the i-th column */
2056 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
danielk197764202cf2008-11-17 15:31:47 +00002057 int nField; /* number of fields in the record */
danielk1977cfcdaef2004-05-12 07:33:33 +00002058 int len; /* The length of the serialized data for the column */
drhd3194f52004-05-27 19:59:32 +00002059 int i; /* Loop counter */
2060 char *zData; /* Part of the record being decoded */
drhd4e70eb2008-01-02 00:34:36 +00002061 Mem *pDest; /* Where to write the extracted value */
drhd3194f52004-05-27 19:59:32 +00002062 Mem sMem; /* For storing the record being decoded */
drh35cd6432009-06-05 14:17:21 +00002063 u8 *zIdx; /* Index into header */
2064 u8 *zEndHdr; /* Pointer to first byte after the header */
2065 u32 offset; /* Offset into the data */
2066 u64 offset64; /* 64-bit offset. 64 bits needed to catch overflow */
2067 int szHdr; /* Size of the header size field at start of record */
2068 int avail; /* Number of bytes of available data */
drh3e9ca092009-09-08 01:14:48 +00002069 Mem *pReg; /* PseudoTable input register */
danielk1977192ac1d2004-05-10 07:17:30 +00002070
drh856c1032009-06-02 15:21:42 +00002071
2072 p1 = pOp->p1;
2073 p2 = pOp->p2;
2074 pC = 0;
drhb27b7f52008-12-10 18:03:45 +00002075 memset(&sMem, 0, sizeof(sMem));
drhd3194f52004-05-27 19:59:32 +00002076 assert( p1<p->nCursor );
drh9cbf3422008-01-17 16:22:13 +00002077 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00002078 pDest = &aMem[pOp->p3];
danielk1977a7a8e142008-02-13 18:25:27 +00002079 MemSetTypeFlag(pDest, MEM_Null);
shane36840fd2009-06-26 16:32:13 +00002080 zRec = 0;
danielk1977cfcdaef2004-05-12 07:33:33 +00002081
drhe61cffc2004-06-12 18:12:15 +00002082 /* This block sets the variable payloadSize to be the total number of
2083 ** bytes in the record.
2084 **
2085 ** zRec is set to be the complete text of the record if it is available.
drhb73857f2006-03-17 00:25:59 +00002086 ** The complete record text is always available for pseudo-tables
2087 ** If the record is stored in a cursor, the complete record text
2088 ** might be available in the pC->aRow cache. Or it might not be.
2089 ** If the data is unavailable, zRec is set to NULL.
drhd3194f52004-05-27 19:59:32 +00002090 **
2091 ** We also compute the number of columns in the record. For cursors,
drhdfe88ec2008-11-03 20:55:06 +00002092 ** the number of columns is stored in the VdbeCursor.nField element.
danielk1977cfcdaef2004-05-12 07:33:33 +00002093 */
drhb73857f2006-03-17 00:25:59 +00002094 pC = p->apCsr[p1];
danielk19776c924092007-11-12 08:09:34 +00002095 assert( pC!=0 );
danielk19770817d0d2007-02-14 09:19:36 +00002096#ifndef SQLITE_OMIT_VIRTUALTABLE
2097 assert( pC->pVtabCursor==0 );
2098#endif
shane36840fd2009-06-26 16:32:13 +00002099 pCrsr = pC->pCursor;
2100 if( pCrsr!=0 ){
drhe61cffc2004-06-12 18:12:15 +00002101 /* The record is stored in a B-Tree */
drh536065a2005-01-26 21:55:31 +00002102 rc = sqlite3VdbeCursorMoveto(pC);
drh52f159e2005-01-27 00:33:21 +00002103 if( rc ) goto abort_due_to_error;
danielk1977192ac1d2004-05-10 07:17:30 +00002104 if( pC->nullRow ){
2105 payloadSize = 0;
drh76873ab2006-01-07 18:48:26 +00002106 }else if( pC->cacheStatus==p->cacheCtr ){
drh9188b382004-05-14 21:12:22 +00002107 payloadSize = pC->payloadSize;
drh2646da72005-12-09 20:02:05 +00002108 zRec = (char*)pC->aRow;
drhf0863fe2005-06-12 21:35:51 +00002109 }else if( pC->isIndex ){
drhea8ffdf2009-07-22 00:35:23 +00002110 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drhc27ae612009-07-14 18:35:44 +00002111 rc = sqlite3BtreeKeySize(pCrsr, &payloadSize64);
2112 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
drhaa736092009-06-22 00:55:30 +00002113 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2114 ** payload size, so it is impossible for payloadSize64 to be
2115 ** larger than 32 bits. */
2116 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
drh35cd6432009-06-05 14:17:21 +00002117 payloadSize = (u32)payloadSize64;
danielk1977192ac1d2004-05-10 07:17:30 +00002118 }else{
drhea8ffdf2009-07-22 00:35:23 +00002119 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drhc27ae612009-07-14 18:35:44 +00002120 rc = sqlite3BtreeDataSize(pCrsr, &payloadSize);
drhea8ffdf2009-07-22 00:35:23 +00002121 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
danielk1977192ac1d2004-05-10 07:17:30 +00002122 }
drh3e9ca092009-09-08 01:14:48 +00002123 }else if( pC->pseudoTableReg>0 ){
drha6c2ed92009-11-14 23:22:23 +00002124 pReg = &aMem[pC->pseudoTableReg];
drh3e9ca092009-09-08 01:14:48 +00002125 assert( pReg->flags & MEM_Blob );
2126 payloadSize = pReg->n;
2127 zRec = pReg->z;
2128 pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
danielk1977192ac1d2004-05-10 07:17:30 +00002129 assert( payloadSize==0 || zRec!=0 );
drh9a65f2c2009-06-22 19:05:40 +00002130 }else{
2131 /* Consider the row to be NULL */
2132 payloadSize = 0;
danielk1977192ac1d2004-05-10 07:17:30 +00002133 }
2134
drh9cbf3422008-01-17 16:22:13 +00002135 /* If payloadSize is 0, then just store a NULL */
danielk1977192ac1d2004-05-10 07:17:30 +00002136 if( payloadSize==0 ){
danielk1977a7a8e142008-02-13 18:25:27 +00002137 assert( pDest->flags&MEM_Null );
drhd4e70eb2008-01-02 00:34:36 +00002138 goto op_column_out;
danielk1977192ac1d2004-05-10 07:17:30 +00002139 }
drh35cd6432009-06-05 14:17:21 +00002140 assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 );
2141 if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002142 goto too_big;
2143 }
danielk1977192ac1d2004-05-10 07:17:30 +00002144
shane36840fd2009-06-26 16:32:13 +00002145 nField = pC->nField;
drhd3194f52004-05-27 19:59:32 +00002146 assert( p2<nField );
danielk1977b4964b72004-05-18 01:23:38 +00002147
drh9188b382004-05-14 21:12:22 +00002148 /* Read and parse the table header. Store the results of the parse
2149 ** into the record header cache fields of the cursor.
danielk1977192ac1d2004-05-10 07:17:30 +00002150 */
danielk1977cd3e8f72008-03-25 09:47:35 +00002151 aType = pC->aType;
drha05a7222008-01-19 03:35:58 +00002152 if( pC->cacheStatus==p->cacheCtr ){
drhd3194f52004-05-27 19:59:32 +00002153 aOffset = pC->aOffset;
2154 }else{
danielk1977cd3e8f72008-03-25 09:47:35 +00002155 assert(aType);
drh856c1032009-06-02 15:21:42 +00002156 avail = 0;
drhb73857f2006-03-17 00:25:59 +00002157 pC->aOffset = aOffset = &aType[nField];
2158 pC->payloadSize = payloadSize;
2159 pC->cacheStatus = p->cacheCtr;
danielk1977192ac1d2004-05-10 07:17:30 +00002160
drhd3194f52004-05-27 19:59:32 +00002161 /* Figure out how many bytes are in the header */
danielk197784ac9d02004-05-18 09:58:06 +00002162 if( zRec ){
2163 zData = zRec;
2164 }else{
drhf0863fe2005-06-12 21:35:51 +00002165 if( pC->isIndex ){
drhe51c44f2004-05-30 20:46:09 +00002166 zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
drhd3194f52004-05-27 19:59:32 +00002167 }else{
drhe51c44f2004-05-30 20:46:09 +00002168 zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
drh9188b382004-05-14 21:12:22 +00002169 }
drhe61cffc2004-06-12 18:12:15 +00002170 /* If KeyFetch()/DataFetch() managed to get the entire payload,
2171 ** save the payload in the pC->aRow cache. That will save us from
2172 ** having to make additional calls to fetch the content portion of
2173 ** the record.
2174 */
drh35cd6432009-06-05 14:17:21 +00002175 assert( avail>=0 );
2176 if( payloadSize <= (u32)avail ){
drh2646da72005-12-09 20:02:05 +00002177 zRec = zData;
2178 pC->aRow = (u8*)zData;
drhe61cffc2004-06-12 18:12:15 +00002179 }else{
2180 pC->aRow = 0;
2181 }
drhd3194f52004-05-27 19:59:32 +00002182 }
drh588f5bc2007-01-02 18:41:54 +00002183 /* The following assert is true in all cases accept when
2184 ** the database file has been corrupted externally.
2185 ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
drh35cd6432009-06-05 14:17:21 +00002186 szHdr = getVarint32((u8*)zData, offset);
2187
2188 /* Make sure a corrupt database has not given us an oversize header.
2189 ** Do this now to avoid an oversize memory allocation.
2190 **
2191 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2192 ** types use so much data space that there can only be 4096 and 32 of
2193 ** them, respectively. So the maximum header length results from a
2194 ** 3-byte type for each of the maximum of 32768 columns plus three
2195 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2196 */
2197 if( offset > 98307 ){
2198 rc = SQLITE_CORRUPT_BKPT;
2199 goto op_column_out;
2200 }
2201
2202 /* Compute in len the number of bytes of data we need to read in order
2203 ** to get nField type values. offset is an upper bound on this. But
2204 ** nField might be significantly less than the true number of columns
2205 ** in the table, and in that case, 5*nField+3 might be smaller than offset.
2206 ** We want to minimize len in order to limit the size of the memory
2207 ** allocation, especially if a corrupt database file has caused offset
2208 ** to be oversized. Offset is limited to 98307 above. But 98307 might
2209 ** still exceed Robson memory allocation limits on some configurations.
2210 ** On systems that cannot tolerate large memory allocations, nField*5+3
2211 ** will likely be much smaller since nField will likely be less than
2212 ** 20 or so. This insures that Robson memory allocation limits are
2213 ** not exceeded even for corrupt database files.
2214 */
2215 len = nField*5 + 3;
shane75ac1de2009-06-09 18:58:52 +00002216 if( len > (int)offset ) len = (int)offset;
drhe61cffc2004-06-12 18:12:15 +00002217
2218 /* The KeyFetch() or DataFetch() above are fast and will get the entire
2219 ** record header in most cases. But they will fail to get the complete
2220 ** record header if the record header does not fit on a single page
2221 ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
2222 ** acquire the complete header text.
2223 */
drh35cd6432009-06-05 14:17:21 +00002224 if( !zRec && avail<len ){
danielk1977a7a8e142008-02-13 18:25:27 +00002225 sMem.flags = 0;
2226 sMem.db = 0;
drh35cd6432009-06-05 14:17:21 +00002227 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, len, pC->isIndex, &sMem);
danielk197784ac9d02004-05-18 09:58:06 +00002228 if( rc!=SQLITE_OK ){
danielk19773c9cc8d2005-01-17 03:40:08 +00002229 goto op_column_out;
drh9188b382004-05-14 21:12:22 +00002230 }
drhb6f54522004-05-20 02:42:16 +00002231 zData = sMem.z;
drh9188b382004-05-14 21:12:22 +00002232 }
drh35cd6432009-06-05 14:17:21 +00002233 zEndHdr = (u8 *)&zData[len];
2234 zIdx = (u8 *)&zData[szHdr];
drh9188b382004-05-14 21:12:22 +00002235
drhd3194f52004-05-27 19:59:32 +00002236 /* Scan the header and use it to fill in the aType[] and aOffset[]
2237 ** arrays. aType[i] will contain the type integer for the i-th
2238 ** column and aOffset[i] will contain the offset from the beginning
2239 ** of the record to the start of the data for the i-th column
drh9188b382004-05-14 21:12:22 +00002240 */
drh35cd6432009-06-05 14:17:21 +00002241 offset64 = offset;
danielk1977dedf45b2006-01-13 17:12:01 +00002242 for(i=0; i<nField; i++){
2243 if( zIdx<zEndHdr ){
drh35cd6432009-06-05 14:17:21 +00002244 aOffset[i] = (u32)offset64;
shane3f8d5cf2008-04-24 19:15:09 +00002245 zIdx += getVarint32(zIdx, aType[i]);
drh35cd6432009-06-05 14:17:21 +00002246 offset64 += sqlite3VdbeSerialTypeLen(aType[i]);
danielk1977dedf45b2006-01-13 17:12:01 +00002247 }else{
2248 /* If i is less that nField, then there are less fields in this
2249 ** record than SetNumColumns indicated there are columns in the
2250 ** table. Set the offset for any extra columns not present in
drh9cbf3422008-01-17 16:22:13 +00002251 ** the record to 0. This tells code below to store a NULL
2252 ** instead of deserializing a value from the record.
danielk1977dedf45b2006-01-13 17:12:01 +00002253 */
2254 aOffset[i] = 0;
2255 }
drh9188b382004-05-14 21:12:22 +00002256 }
danielk19775f096132008-03-28 15:44:09 +00002257 sqlite3VdbeMemRelease(&sMem);
drhd3194f52004-05-27 19:59:32 +00002258 sMem.flags = MEM_Null;
2259
danielk19779792eef2006-01-13 15:58:43 +00002260 /* If we have read more header data than was contained in the header,
2261 ** or if the end of the last field appears to be past the end of the
shane2ca8bc02008-05-07 18:59:28 +00002262 ** record, or if the end of the last field appears to be before the end
2263 ** of the record (when all fields present), then we must be dealing
2264 ** with a corrupt database.
drhd3194f52004-05-27 19:59:32 +00002265 */
drh35cd6432009-06-05 14:17:21 +00002266 if( (zIdx > zEndHdr)|| (offset64 > payloadSize)
2267 || (zIdx==zEndHdr && offset64!=(u64)payloadSize) ){
drh49285702005-09-17 15:20:26 +00002268 rc = SQLITE_CORRUPT_BKPT;
danielk19773c9cc8d2005-01-17 03:40:08 +00002269 goto op_column_out;
drhd3194f52004-05-27 19:59:32 +00002270 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002271 }
danielk1977192ac1d2004-05-10 07:17:30 +00002272
danielk197736963fd2005-02-19 08:18:05 +00002273 /* Get the column information. If aOffset[p2] is non-zero, then
2274 ** deserialize the value from the record. If aOffset[p2] is zero,
2275 ** then there are not enough fields in the record to satisfy the
drh66a51672008-01-03 00:01:23 +00002276 ** request. In this case, set the value NULL or to P4 if P4 is
drh29dda4a2005-07-21 18:23:20 +00002277 ** a pointer to a Mem object.
drh9188b382004-05-14 21:12:22 +00002278 */
danielk197736963fd2005-02-19 08:18:05 +00002279 if( aOffset[p2] ){
2280 assert( rc==SQLITE_OK );
2281 if( zRec ){
danielk1977808ec7c2008-07-29 10:18:57 +00002282 sqlite3VdbeMemReleaseExternal(pDest);
2283 sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
danielk197736963fd2005-02-19 08:18:05 +00002284 }else{
2285 len = sqlite3VdbeSerialTypeLen(aType[p2]);
danielk1977a7a8e142008-02-13 18:25:27 +00002286 sqlite3VdbeMemMove(&sMem, pDest);
drhb21c8cd2007-08-21 19:33:56 +00002287 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem);
danielk197736963fd2005-02-19 08:18:05 +00002288 if( rc!=SQLITE_OK ){
2289 goto op_column_out;
2290 }
2291 zData = sMem.z;
danielk1977a7a8e142008-02-13 18:25:27 +00002292 sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest);
danielk19777701e812005-01-10 12:59:51 +00002293 }
drhd4e70eb2008-01-02 00:34:36 +00002294 pDest->enc = encoding;
danielk197736963fd2005-02-19 08:18:05 +00002295 }else{
danielk197760585dd2008-01-03 08:08:40 +00002296 if( pOp->p4type==P4_MEM ){
danielk19772dca4ac2008-01-03 11:50:29 +00002297 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
danielk1977aee18ef2005-03-09 12:26:50 +00002298 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00002299 assert( pDest->flags&MEM_Null );
danielk1977aee18ef2005-03-09 12:26:50 +00002300 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002301 }
drhfebe1062004-08-28 18:17:48 +00002302
2303 /* If we dynamically allocated space to hold the data (in the
2304 ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
drhd4e70eb2008-01-02 00:34:36 +00002305 ** dynamically allocated space over to the pDest structure.
drhfebe1062004-08-28 18:17:48 +00002306 ** This prevents a memory copy.
2307 */
danielk19775f096132008-03-28 15:44:09 +00002308 if( sMem.zMalloc ){
2309 assert( sMem.z==sMem.zMalloc );
danielk1977a7a8e142008-02-13 18:25:27 +00002310 assert( !(pDest->flags & MEM_Dyn) );
2311 assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
2312 pDest->flags &= ~(MEM_Ephem|MEM_Static);
danielk19775f096132008-03-28 15:44:09 +00002313 pDest->flags |= MEM_Term;
danielk1977a7a8e142008-02-13 18:25:27 +00002314 pDest->z = sMem.z;
danielk19775f096132008-03-28 15:44:09 +00002315 pDest->zMalloc = sMem.zMalloc;
danielk1977b1bc9532004-05-22 03:05:33 +00002316 }
drhfebe1062004-08-28 18:17:48 +00002317
drhd4e70eb2008-01-02 00:34:36 +00002318 rc = sqlite3VdbeMemMakeWriteable(pDest);
drhd3194f52004-05-27 19:59:32 +00002319
danielk19773c9cc8d2005-01-17 03:40:08 +00002320op_column_out:
drhb7654112008-01-12 12:48:07 +00002321 UPDATE_MAX_BLOBSIZE(pDest);
drh5b6afba2008-01-05 16:29:28 +00002322 REGISTER_TRACE(pOp->p3, pDest);
danielk1977192ac1d2004-05-10 07:17:30 +00002323 break;
2324}
2325
danielk1977751de562008-04-18 09:01:15 +00002326/* Opcode: Affinity P1 P2 * P4 *
2327**
2328** Apply affinities to a range of P2 registers starting with P1.
2329**
2330** P4 is a string that is P2 characters long. The nth character of the
2331** string indicates the column affinity that should be used for the nth
2332** memory cell in the range.
2333*/
2334case OP_Affinity: {
drh039fc322009-11-17 18:31:47 +00002335 const char *zAffinity; /* The affinity to be applied */
2336 char cAff; /* A single character of affinity */
danielk1977751de562008-04-18 09:01:15 +00002337
drh856c1032009-06-02 15:21:42 +00002338 zAffinity = pOp->p4.z;
drh039fc322009-11-17 18:31:47 +00002339 assert( zAffinity!=0 );
2340 assert( zAffinity[pOp->p2]==0 );
2341 pIn1 = &aMem[pOp->p1];
2342 while( (cAff = *(zAffinity++))!=0 ){
2343 assert( pIn1 <= &p->aMem[p->nMem] );
2344 ExpandBlob(pIn1);
2345 applyAffinity(pIn1, cAff, encoding);
2346 pIn1++;
danielk1977751de562008-04-18 09:01:15 +00002347 }
2348 break;
2349}
2350
drh1db639c2008-01-17 02:36:28 +00002351/* Opcode: MakeRecord P1 P2 P3 P4 *
drh7a224de2004-06-02 01:22:02 +00002352**
drh1db639c2008-01-17 02:36:28 +00002353** Convert P2 registers beginning with P1 into a single entry
drh7a224de2004-06-02 01:22:02 +00002354** suitable for use as a data record in a database table or as a key
shane21e7feb2008-05-30 15:59:49 +00002355** in an index. The details of the format are irrelevant as long as
drh1e968a02008-03-25 00:22:21 +00002356** the OP_Column opcode can decode the record later.
2357** Refer to source code comments for the details of the record
drh7a224de2004-06-02 01:22:02 +00002358** format.
2359**
danielk1977751de562008-04-18 09:01:15 +00002360** P4 may be a string that is P2 characters long. The nth character of the
drh7a224de2004-06-02 01:22:02 +00002361** string indicates the column affinity that should be used for the nth
drh9cbf3422008-01-17 16:22:13 +00002362** field of the index key.
drh7a224de2004-06-02 01:22:02 +00002363**
drh8a512562005-11-14 22:29:05 +00002364** The mapping from character to affinity is given by the SQLITE_AFF_
2365** macros defined in sqliteInt.h.
drh7a224de2004-06-02 01:22:02 +00002366**
drh66a51672008-01-03 00:01:23 +00002367** If P4 is NULL then all index fields have the affinity NONE.
drh7f057c92005-06-24 03:53:06 +00002368*/
drh1db639c2008-01-17 02:36:28 +00002369case OP_MakeRecord: {
drh856c1032009-06-02 15:21:42 +00002370 u8 *zNewRecord; /* A buffer to hold the data for the new record */
2371 Mem *pRec; /* The new record */
2372 u64 nData; /* Number of bytes of data space */
2373 int nHdr; /* Number of bytes of header space */
2374 i64 nByte; /* Data space required for this record */
2375 int nZero; /* Number of zero bytes at the end of the record */
2376 int nVarint; /* Number of bytes in a varint */
2377 u32 serial_type; /* Type field */
2378 Mem *pData0; /* First field to be combined into the record */
2379 Mem *pLast; /* Last field of the record */
2380 int nField; /* Number of fields in the record */
2381 char *zAffinity; /* The affinity string for the record */
2382 int file_format; /* File format to use for encoding */
2383 int i; /* Space used in zNewRecord[] */
2384 int len; /* Length of a field */
2385
drhf3218fe2004-05-28 08:21:02 +00002386 /* Assuming the record contains N fields, the record format looks
2387 ** like this:
2388 **
drh7a224de2004-06-02 01:22:02 +00002389 ** ------------------------------------------------------------------------
2390 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2391 ** ------------------------------------------------------------------------
drhf3218fe2004-05-28 08:21:02 +00002392 **
drh9cbf3422008-01-17 16:22:13 +00002393 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
2394 ** and so froth.
drhf3218fe2004-05-28 08:21:02 +00002395 **
2396 ** Each type field is a varint representing the serial type of the
2397 ** corresponding data element (see sqlite3VdbeSerialType()). The
drh7a224de2004-06-02 01:22:02 +00002398 ** hdr-size field is also a varint which is the offset from the beginning
2399 ** of the record to data0.
drhf3218fe2004-05-28 08:21:02 +00002400 */
drh856c1032009-06-02 15:21:42 +00002401 nData = 0; /* Number of bytes of data space */
2402 nHdr = 0; /* Number of bytes of header space */
2403 nByte = 0; /* Data space required for this record */
2404 nZero = 0; /* Number of zero bytes at the end of the record */
drh1db639c2008-01-17 02:36:28 +00002405 nField = pOp->p1;
danielk19772dca4ac2008-01-03 11:50:29 +00002406 zAffinity = pOp->p4.z;
danielk19776ab3a2e2009-02-19 14:39:25 +00002407 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 );
drha6c2ed92009-11-14 23:22:23 +00002408 pData0 = &aMem[nField];
drh1db639c2008-01-17 02:36:28 +00002409 nField = pOp->p2;
2410 pLast = &pData0[nField-1];
drhd946db02005-12-29 19:23:06 +00002411 file_format = p->minWriteFileFormat;
danielk19778d059842004-05-12 11:24:02 +00002412
drhf3218fe2004-05-28 08:21:02 +00002413 /* Loop through the elements that will make up the record to figure
2414 ** out how much space is required for the new record.
danielk19778d059842004-05-12 11:24:02 +00002415 */
drha2a49dc2008-01-02 14:28:13 +00002416 for(pRec=pData0; pRec<=pLast; pRec++){
drhd3d39e92004-05-20 22:16:29 +00002417 if( zAffinity ){
drhb21c8cd2007-08-21 19:33:56 +00002418 applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
drhd3d39e92004-05-20 22:16:29 +00002419 }
danielk1977d908f5a2007-05-11 07:08:28 +00002420 if( pRec->flags&MEM_Zero && pRec->n>0 ){
drha05a7222008-01-19 03:35:58 +00002421 sqlite3VdbeMemExpandBlob(pRec);
danielk1977d908f5a2007-05-11 07:08:28 +00002422 }
drhd946db02005-12-29 19:23:06 +00002423 serial_type = sqlite3VdbeSerialType(pRec, file_format);
drhae7e1512007-05-02 16:51:59 +00002424 len = sqlite3VdbeSerialTypeLen(serial_type);
2425 nData += len;
drhf3218fe2004-05-28 08:21:02 +00002426 nHdr += sqlite3VarintLen(serial_type);
drhfdf972a2007-05-02 13:30:27 +00002427 if( pRec->flags & MEM_Zero ){
2428 /* Only pure zero-filled BLOBs can be input to this Opcode.
2429 ** We do not allow blobs with a prefix and a zero-filled tail. */
drh8df32842008-12-09 02:51:23 +00002430 nZero += pRec->u.nZero;
drhae7e1512007-05-02 16:51:59 +00002431 }else if( len ){
drhfdf972a2007-05-02 13:30:27 +00002432 nZero = 0;
2433 }
danielk19778d059842004-05-12 11:24:02 +00002434 }
danielk19773d1bfea2004-05-14 11:00:53 +00002435
drhf3218fe2004-05-28 08:21:02 +00002436 /* Add the initial header varint and total the size */
drhcb9882a2005-03-17 03:15:40 +00002437 nHdr += nVarint = sqlite3VarintLen(nHdr);
2438 if( nVarint<sqlite3VarintLen(nHdr) ){
2439 nHdr++;
2440 }
drhfdf972a2007-05-02 13:30:27 +00002441 nByte = nHdr+nData-nZero;
drhbb4957f2008-03-20 14:03:29 +00002442 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002443 goto too_big;
2444 }
drhf3218fe2004-05-28 08:21:02 +00002445
danielk1977a7a8e142008-02-13 18:25:27 +00002446 /* Make sure the output register has a buffer large enough to store
2447 ** the new record. The output register (pOp->p3) is not allowed to
2448 ** be one of the input registers (because the following call to
2449 ** sqlite3VdbeMemGrow() could clobber the value before it is used).
2450 */
2451 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
drha6c2ed92009-11-14 23:22:23 +00002452 pOut = &aMem[pOp->p3];
drh9c1905f2008-12-10 22:32:56 +00002453 if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){
danielk1977a7a8e142008-02-13 18:25:27 +00002454 goto no_mem;
danielk19778d059842004-05-12 11:24:02 +00002455 }
danielk1977a7a8e142008-02-13 18:25:27 +00002456 zNewRecord = (u8 *)pOut->z;
drhf3218fe2004-05-28 08:21:02 +00002457
2458 /* Write the record */
shane3f8d5cf2008-04-24 19:15:09 +00002459 i = putVarint32(zNewRecord, nHdr);
drha2a49dc2008-01-02 14:28:13 +00002460 for(pRec=pData0; pRec<=pLast; pRec++){
drhd946db02005-12-29 19:23:06 +00002461 serial_type = sqlite3VdbeSerialType(pRec, file_format);
shane3f8d5cf2008-04-24 19:15:09 +00002462 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
danielk19778d059842004-05-12 11:24:02 +00002463 }
drha2a49dc2008-01-02 14:28:13 +00002464 for(pRec=pData0; pRec<=pLast; pRec++){ /* serial data */
drh9c1905f2008-12-10 22:32:56 +00002465 i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format);
drhf3218fe2004-05-28 08:21:02 +00002466 }
drhfdf972a2007-05-02 13:30:27 +00002467 assert( i==nByte );
drhf3218fe2004-05-28 08:21:02 +00002468
drh9cbf3422008-01-17 16:22:13 +00002469 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drh9c1905f2008-12-10 22:32:56 +00002470 pOut->n = (int)nByte;
danielk1977a7a8e142008-02-13 18:25:27 +00002471 pOut->flags = MEM_Blob | MEM_Dyn;
2472 pOut->xDel = 0;
drhfdf972a2007-05-02 13:30:27 +00002473 if( nZero ){
drh8df32842008-12-09 02:51:23 +00002474 pOut->u.nZero = nZero;
drh477df4b2008-01-05 18:48:24 +00002475 pOut->flags |= MEM_Zero;
drhfdf972a2007-05-02 13:30:27 +00002476 }
drh477df4b2008-01-05 18:48:24 +00002477 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
drh1013c932008-01-06 00:25:21 +00002478 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00002479 UPDATE_MAX_BLOBSIZE(pOut);
danielk19778d059842004-05-12 11:24:02 +00002480 break;
2481}
2482
danielk1977a5533162009-02-24 10:01:51 +00002483/* Opcode: Count P1 P2 * * *
2484**
2485** Store the number of entries (an integer value) in the table or index
2486** opened by cursor P1 in register P2
2487*/
2488#ifndef SQLITE_OMIT_BTREECOUNT
2489case OP_Count: { /* out2-prerelease */
2490 i64 nEntry;
drhc54a6172009-06-02 16:06:03 +00002491 BtCursor *pCrsr;
2492
2493 pCrsr = p->apCsr[pOp->p1]->pCursor;
drh818e39a2009-04-02 20:27:28 +00002494 if( pCrsr ){
2495 rc = sqlite3BtreeCount(pCrsr, &nEntry);
2496 }else{
2497 nEntry = 0;
2498 }
danielk1977a5533162009-02-24 10:01:51 +00002499 pOut->u.i = nEntry;
2500 break;
2501}
2502#endif
2503
danielk1977fd7f0452008-12-17 17:30:26 +00002504/* Opcode: Savepoint P1 * * P4 *
2505**
2506** Open, release or rollback the savepoint named by parameter P4, depending
2507** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2508** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2509*/
2510case OP_Savepoint: {
drh856c1032009-06-02 15:21:42 +00002511 int p1; /* Value of P1 operand */
2512 char *zName; /* Name of savepoint */
2513 int nName;
2514 Savepoint *pNew;
2515 Savepoint *pSavepoint;
2516 Savepoint *pTmp;
2517 int iSavepoint;
2518 int ii;
2519
2520 p1 = pOp->p1;
2521 zName = pOp->p4.z;
danielk1977fd7f0452008-12-17 17:30:26 +00002522
2523 /* Assert that the p1 parameter is valid. Also that if there is no open
2524 ** transaction, then there cannot be any savepoints.
2525 */
2526 assert( db->pSavepoint==0 || db->autoCommit==0 );
2527 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2528 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2529 assert( checkSavepointCount(db) );
2530
2531 if( p1==SAVEPOINT_BEGIN ){
danielk197734cf35d2008-12-18 18:31:38 +00002532 if( db->writeVdbeCnt>0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002533 /* A new savepoint cannot be created if there are active write
2534 ** statements (i.e. open read/write incremental blob handles).
2535 */
2536 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
2537 "SQL statements in progress");
2538 rc = SQLITE_BUSY;
2539 }else{
drh856c1032009-06-02 15:21:42 +00002540 nName = sqlite3Strlen30(zName);
danielk1977fd7f0452008-12-17 17:30:26 +00002541
2542 /* Create a new savepoint structure. */
2543 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
2544 if( pNew ){
2545 pNew->zName = (char *)&pNew[1];
2546 memcpy(pNew->zName, zName, nName+1);
2547
2548 /* If there is no open transaction, then mark this as a special
2549 ** "transaction savepoint". */
2550 if( db->autoCommit ){
2551 db->autoCommit = 0;
2552 db->isTransactionSavepoint = 1;
2553 }else{
2554 db->nSavepoint++;
danielk1977d8293352009-04-30 09:10:37 +00002555 }
danielk1977fd7f0452008-12-17 17:30:26 +00002556
2557 /* Link the new savepoint into the database handle's list. */
2558 pNew->pNext = db->pSavepoint;
2559 db->pSavepoint = pNew;
danba9108b2009-09-22 07:13:42 +00002560 pNew->nDeferredCons = db->nDeferredCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002561 }
2562 }
2563 }else{
drh856c1032009-06-02 15:21:42 +00002564 iSavepoint = 0;
danielk1977fd7f0452008-12-17 17:30:26 +00002565
2566 /* Find the named savepoint. If there is no such savepoint, then an
2567 ** an error is returned to the user. */
2568 for(
drh856c1032009-06-02 15:21:42 +00002569 pSavepoint = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002570 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
drh856c1032009-06-02 15:21:42 +00002571 pSavepoint = pSavepoint->pNext
danielk1977fd7f0452008-12-17 17:30:26 +00002572 ){
2573 iSavepoint++;
2574 }
2575 if( !pSavepoint ){
2576 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
2577 rc = SQLITE_ERROR;
2578 }else if(
2579 db->writeVdbeCnt>0 || (p1==SAVEPOINT_ROLLBACK && db->activeVdbeCnt>1)
2580 ){
2581 /* It is not possible to release (commit) a savepoint if there are
2582 ** active write statements. It is not possible to rollback a savepoint
2583 ** if there are any active statements at all.
2584 */
2585 sqlite3SetString(&p->zErrMsg, db,
2586 "cannot %s savepoint - SQL statements in progress",
2587 (p1==SAVEPOINT_ROLLBACK ? "rollback": "release")
2588 );
2589 rc = SQLITE_BUSY;
2590 }else{
2591
2592 /* Determine whether or not this is a transaction savepoint. If so,
danielk197734cf35d2008-12-18 18:31:38 +00002593 ** and this is a RELEASE command, then the current transaction
2594 ** is committed.
danielk1977fd7f0452008-12-17 17:30:26 +00002595 */
2596 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2597 if( isTransaction && p1==SAVEPOINT_RELEASE ){
dan32b09f22009-09-23 17:29:59 +00002598 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002599 goto vdbe_return;
2600 }
danielk1977fd7f0452008-12-17 17:30:26 +00002601 db->autoCommit = 1;
2602 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2603 p->pc = pc;
2604 db->autoCommit = 0;
2605 p->rc = rc = SQLITE_BUSY;
2606 goto vdbe_return;
2607 }
danielk197734cf35d2008-12-18 18:31:38 +00002608 db->isTransactionSavepoint = 0;
2609 rc = p->rc;
danielk1977fd7f0452008-12-17 17:30:26 +00002610 }else{
danielk1977fd7f0452008-12-17 17:30:26 +00002611 iSavepoint = db->nSavepoint - iSavepoint - 1;
2612 for(ii=0; ii<db->nDb; ii++){
2613 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2614 if( rc!=SQLITE_OK ){
2615 goto abort_due_to_error;
danielk1977bd434552009-03-18 10:33:00 +00002616 }
danielk1977fd7f0452008-12-17 17:30:26 +00002617 }
drh9f0bbf92009-01-02 21:08:09 +00002618 if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002619 sqlite3ExpirePreparedStatements(db);
2620 sqlite3ResetInternalSchema(db, 0);
2621 }
2622 }
2623
2624 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2625 ** savepoints nested inside of the savepoint being operated on. */
2626 while( db->pSavepoint!=pSavepoint ){
drh856c1032009-06-02 15:21:42 +00002627 pTmp = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00002628 db->pSavepoint = pTmp->pNext;
2629 sqlite3DbFree(db, pTmp);
2630 db->nSavepoint--;
2631 }
2632
dan1da40a32009-09-19 17:00:31 +00002633 /* If it is a RELEASE, then destroy the savepoint being operated on
2634 ** too. If it is a ROLLBACK TO, then set the number of deferred
2635 ** constraint violations present in the database to the value stored
2636 ** when the savepoint was created. */
danielk1977fd7f0452008-12-17 17:30:26 +00002637 if( p1==SAVEPOINT_RELEASE ){
2638 assert( pSavepoint==db->pSavepoint );
2639 db->pSavepoint = pSavepoint->pNext;
2640 sqlite3DbFree(db, pSavepoint);
2641 if( !isTransaction ){
2642 db->nSavepoint--;
2643 }
dan1da40a32009-09-19 17:00:31 +00002644 }else{
2645 db->nDeferredCons = pSavepoint->nDeferredCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002646 }
2647 }
2648 }
2649
2650 break;
2651}
2652
drh98757152008-01-09 23:04:12 +00002653/* Opcode: AutoCommit P1 P2 * * *
danielk19771d850a72004-05-31 08:26:49 +00002654**
2655** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
danielk197746c43ed2004-06-30 06:30:25 +00002656** back any currently active btree transactions. If there are any active
drhc25eabe2009-02-24 18:57:31 +00002657** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
2658** there are active writing VMs or active VMs that use shared cache.
drh92f02c32004-09-02 14:57:08 +00002659**
2660** This instruction causes the VM to halt.
danielk19771d850a72004-05-31 08:26:49 +00002661*/
drh9cbf3422008-01-17 16:22:13 +00002662case OP_AutoCommit: {
drh856c1032009-06-02 15:21:42 +00002663 int desiredAutoCommit;
shane68c02732009-06-09 18:14:18 +00002664 int iRollback;
drh856c1032009-06-02 15:21:42 +00002665 int turnOnAC;
danielk19771d850a72004-05-31 08:26:49 +00002666
drh856c1032009-06-02 15:21:42 +00002667 desiredAutoCommit = pOp->p1;
shane68c02732009-06-09 18:14:18 +00002668 iRollback = pOp->p2;
drh856c1032009-06-02 15:21:42 +00002669 turnOnAC = desiredAutoCommit && !db->autoCommit;
drhad4a4b82008-11-05 16:37:34 +00002670 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
shane68c02732009-06-09 18:14:18 +00002671 assert( desiredAutoCommit==1 || iRollback==0 );
drh92f02c32004-09-02 14:57:08 +00002672 assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */
danielk197746c43ed2004-06-30 06:30:25 +00002673
shane68c02732009-06-09 18:14:18 +00002674 if( turnOnAC && iRollback && db->activeVdbeCnt>1 ){
drhad4a4b82008-11-05 16:37:34 +00002675 /* If this instruction implements a ROLLBACK and other VMs are
danielk197746c43ed2004-06-30 06:30:25 +00002676 ** still running, and a transaction is active, return an error indicating
2677 ** that the other VMs must complete first.
2678 */
drhad4a4b82008-11-05 16:37:34 +00002679 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
2680 "SQL statements in progress");
drh99dfe5e2008-10-30 15:03:15 +00002681 rc = SQLITE_BUSY;
drh9eb8cbe2009-06-19 22:23:41 +00002682 }else if( turnOnAC && !iRollback && db->writeVdbeCnt>0 ){
drhad4a4b82008-11-05 16:37:34 +00002683 /* If this instruction implements a COMMIT and other VMs are writing
2684 ** return an error indicating that the other VMs must complete first.
2685 */
2686 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
2687 "SQL statements in progress");
2688 rc = SQLITE_BUSY;
2689 }else if( desiredAutoCommit!=db->autoCommit ){
shane68c02732009-06-09 18:14:18 +00002690 if( iRollback ){
drhad4a4b82008-11-05 16:37:34 +00002691 assert( desiredAutoCommit==1 );
danielk19771d850a72004-05-31 08:26:49 +00002692 sqlite3RollbackAll(db);
danielk1977f3f06bb2005-12-16 15:24:28 +00002693 db->autoCommit = 1;
dan32b09f22009-09-23 17:29:59 +00002694 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00002695 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00002696 }else{
shane7d3846a2008-12-11 02:58:26 +00002697 db->autoCommit = (u8)desiredAutoCommit;
danielk1977f3f06bb2005-12-16 15:24:28 +00002698 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
danielk1977f3f06bb2005-12-16 15:24:28 +00002699 p->pc = pc;
drh9c1905f2008-12-10 22:32:56 +00002700 db->autoCommit = (u8)(1-desiredAutoCommit);
drh900b31e2007-08-28 02:27:51 +00002701 p->rc = rc = SQLITE_BUSY;
2702 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00002703 }
danielk19771d850a72004-05-31 08:26:49 +00002704 }
danielk1977bd434552009-03-18 10:33:00 +00002705 assert( db->nStatement==0 );
danielk1977fd7f0452008-12-17 17:30:26 +00002706 sqlite3CloseSavepoints(db);
drh83968c42007-04-18 16:45:24 +00002707 if( p->rc==SQLITE_OK ){
drh900b31e2007-08-28 02:27:51 +00002708 rc = SQLITE_DONE;
drh83968c42007-04-18 16:45:24 +00002709 }else{
drh900b31e2007-08-28 02:27:51 +00002710 rc = SQLITE_ERROR;
drh83968c42007-04-18 16:45:24 +00002711 }
drh900b31e2007-08-28 02:27:51 +00002712 goto vdbe_return;
danielk19771d850a72004-05-31 08:26:49 +00002713 }else{
drhf089aa42008-07-08 19:34:06 +00002714 sqlite3SetString(&p->zErrMsg, db,
drhad4a4b82008-11-05 16:37:34 +00002715 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
shane68c02732009-06-09 18:14:18 +00002716 (iRollback)?"cannot rollback - no transaction is active":
drhf089aa42008-07-08 19:34:06 +00002717 "cannot commit - no transaction is active"));
danielk19771d850a72004-05-31 08:26:49 +00002718
2719 rc = SQLITE_ERROR;
drh663fc632002-02-02 18:49:19 +00002720 }
2721 break;
2722}
2723
drh98757152008-01-09 23:04:12 +00002724/* Opcode: Transaction P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00002725**
2726** Begin a transaction. The transaction ends when a Commit or Rollback
drh663fc632002-02-02 18:49:19 +00002727** opcode is encountered. Depending on the ON CONFLICT setting, the
2728** transaction might also be rolled back if an error is encountered.
drh5e00f6c2001-09-13 13:46:56 +00002729**
drh001bbcb2003-03-19 03:14:00 +00002730** P1 is the index of the database file on which the transaction is
2731** started. Index 0 is the main database file and index 1 is the
drh60a713c2008-01-21 16:22:45 +00002732** file used for temporary tables. Indices of 2 or more are used for
2733** attached databases.
drhcabb0812002-09-14 13:47:32 +00002734**
drh80242052004-06-09 00:48:12 +00002735** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
danielk1977ee5741e2004-05-31 10:01:34 +00002736** obtained on the database file when a write-transaction is started. No
drh80242052004-06-09 00:48:12 +00002737** other process can start another write transaction while this transaction is
2738** underway. Starting a write transaction also creates a rollback journal. A
2739** write transaction must be started before any changes can be made to the
drh684917c2004-10-05 02:41:42 +00002740** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
2741** on the file.
danielk1977ee5741e2004-05-31 10:01:34 +00002742**
dane0af83a2009-09-08 19:15:01 +00002743** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
2744** true (this flag is set if the Vdbe may modify more than one row and may
2745** throw an ABORT exception), a statement transaction may also be opened.
2746** More specifically, a statement transaction is opened iff the database
2747** connection is currently not in autocommit mode, or if there are other
2748** active statements. A statement transaction allows the affects of this
2749** VDBE to be rolled back after an error without having to roll back the
2750** entire transaction. If no error is encountered, the statement transaction
2751** will automatically commit when the VDBE halts.
2752**
danielk1977ee5741e2004-05-31 10:01:34 +00002753** If P2 is zero, then a read-lock is obtained on the database file.
drh5e00f6c2001-09-13 13:46:56 +00002754*/
drh9cbf3422008-01-17 16:22:13 +00002755case OP_Transaction: {
danielk19771d850a72004-05-31 08:26:49 +00002756 Btree *pBt;
2757
drh653b82a2009-06-22 11:10:47 +00002758 assert( pOp->p1>=0 && pOp->p1<db->nDb );
2759 assert( (p->btreeMask & (1<<pOp->p1))!=0 );
2760 pBt = db->aDb[pOp->p1].pBt;
danielk19771d850a72004-05-31 08:26:49 +00002761
danielk197724162fe2004-06-04 06:22:00 +00002762 if( pBt ){
danielk197740b38dc2004-06-26 08:38:24 +00002763 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
danielk197724162fe2004-06-04 06:22:00 +00002764 if( rc==SQLITE_BUSY ){
danielk19772a764eb2004-06-12 01:43:26 +00002765 p->pc = pc;
drh900b31e2007-08-28 02:27:51 +00002766 p->rc = rc = SQLITE_BUSY;
drh900b31e2007-08-28 02:27:51 +00002767 goto vdbe_return;
danielk197724162fe2004-06-04 06:22:00 +00002768 }
drh9e9f1bd2009-10-13 15:36:51 +00002769 if( rc!=SQLITE_OK ){
danielk197724162fe2004-06-04 06:22:00 +00002770 goto abort_due_to_error;
drh90bfcda2001-09-23 19:46:51 +00002771 }
dane0af83a2009-09-08 19:15:01 +00002772
2773 if( pOp->p2 && p->usesStmtJournal
2774 && (db->autoCommit==0 || db->activeVdbeCnt>1)
2775 ){
2776 assert( sqlite3BtreeIsInTrans(pBt) );
2777 if( p->iStatement==0 ){
2778 assert( db->nStatement>=0 && db->nSavepoint>=0 );
2779 db->nStatement++;
2780 p->iStatement = db->nSavepoint + db->nStatement;
2781 }
2782 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
dan1da40a32009-09-19 17:00:31 +00002783
2784 /* Store the current value of the database handles deferred constraint
2785 ** counter. If the statement transaction needs to be rolled back,
2786 ** the value of this counter needs to be restored too. */
2787 p->nStmtDefCons = db->nDeferredCons;
dane0af83a2009-09-08 19:15:01 +00002788 }
drhb86ccfb2003-01-28 23:13:10 +00002789 }
drh5e00f6c2001-09-13 13:46:56 +00002790 break;
2791}
2792
drhb1fdb2a2008-01-05 04:06:03 +00002793/* Opcode: ReadCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00002794**
drh9cbf3422008-01-17 16:22:13 +00002795** Read cookie number P3 from database P1 and write it into register P2.
danielk19770d19f7a2009-06-03 11:25:07 +00002796** P3==1 is the schema version. P3==2 is the database format.
2797** P3==3 is the recommended pager cache size, and so forth. P1==0 is
drh001bbcb2003-03-19 03:14:00 +00002798** the main database file and P1==1 is the database file used to store
2799** temporary tables.
drh4a324312001-12-21 14:30:42 +00002800**
drh50e5dad2001-09-15 00:57:28 +00002801** There must be a read-lock on the database (either a transaction
drhb19a2bc2001-09-16 00:13:26 +00002802** must be started or there must be an open cursor) before
drh50e5dad2001-09-15 00:57:28 +00002803** executing this instruction.
2804*/
drh4c583122008-01-04 22:01:03 +00002805case OP_ReadCookie: { /* out2-prerelease */
drhf328bc82004-05-10 23:29:49 +00002806 int iMeta;
drh856c1032009-06-02 15:21:42 +00002807 int iDb;
2808 int iCookie;
danielk1977180b56a2007-06-24 08:00:42 +00002809
drh856c1032009-06-02 15:21:42 +00002810 iDb = pOp->p1;
2811 iCookie = pOp->p3;
drhb7654112008-01-12 12:48:07 +00002812 assert( pOp->p3<SQLITE_N_BTREE_META );
danielk1977180b56a2007-06-24 08:00:42 +00002813 assert( iDb>=0 && iDb<db->nDb );
2814 assert( db->aDb[iDb].pBt!=0 );
drhfb982642007-08-30 01:19:59 +00002815 assert( (p->btreeMask & (1<<iDb))!=0 );
danielk19770d19f7a2009-06-03 11:25:07 +00002816
danielk1977602b4662009-07-02 07:47:33 +00002817 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
drh4c583122008-01-04 22:01:03 +00002818 pOut->u.i = iMeta;
drh50e5dad2001-09-15 00:57:28 +00002819 break;
2820}
2821
drh98757152008-01-09 23:04:12 +00002822/* Opcode: SetCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00002823**
drh98757152008-01-09 23:04:12 +00002824** Write the content of register P3 (interpreted as an integer)
danielk19770d19f7a2009-06-03 11:25:07 +00002825** into cookie number P2 of database P1. P2==1 is the schema version.
2826** P2==2 is the database format. P2==3 is the recommended pager cache
2827** size, and so forth. P1==0 is the main database file and P1==1 is the
2828** database file used to store temporary tables.
drh50e5dad2001-09-15 00:57:28 +00002829**
2830** A transaction must be started before executing this opcode.
2831*/
drh9cbf3422008-01-17 16:22:13 +00002832case OP_SetCookie: { /* in3 */
drh3f7d4e42004-07-24 14:35:58 +00002833 Db *pDb;
drh4a324312001-12-21 14:30:42 +00002834 assert( pOp->p2<SQLITE_N_BTREE_META );
drh001bbcb2003-03-19 03:14:00 +00002835 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhfb982642007-08-30 01:19:59 +00002836 assert( (p->btreeMask & (1<<pOp->p1))!=0 );
drh3f7d4e42004-07-24 14:35:58 +00002837 pDb = &db->aDb[pOp->p1];
2838 assert( pDb->pBt!=0 );
drh3c657212009-11-17 23:59:58 +00002839 pIn3 = &aMem[pOp->p3];
drh98757152008-01-09 23:04:12 +00002840 sqlite3VdbeMemIntegerify(pIn3);
drha3b321d2004-05-11 09:31:31 +00002841 /* See note about index shifting on OP_ReadCookie */
danielk19770d19f7a2009-06-03 11:25:07 +00002842 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
2843 if( pOp->p2==BTREE_SCHEMA_VERSION ){
drh3f7d4e42004-07-24 14:35:58 +00002844 /* When the schema cookie changes, record the new cookie internally */
drh9c1905f2008-12-10 22:32:56 +00002845 pDb->pSchema->schema_cookie = (int)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00002846 db->flags |= SQLITE_InternChanges;
danielk19770d19f7a2009-06-03 11:25:07 +00002847 }else if( pOp->p2==BTREE_FILE_FORMAT ){
drhd28bcb32005-12-21 14:43:11 +00002848 /* Record changes in the file format */
drh9c1905f2008-12-10 22:32:56 +00002849 pDb->pSchema->file_format = (u8)pIn3->u.i;
drh3f7d4e42004-07-24 14:35:58 +00002850 }
drhfd426c62006-01-30 15:34:22 +00002851 if( pOp->p1==1 ){
2852 /* Invalidate all prepared statements whenever the TEMP database
2853 ** schema is changed. Ticket #1644 */
2854 sqlite3ExpirePreparedStatements(db);
danfa401de2009-10-16 14:55:03 +00002855 p->expired = 0;
drhfd426c62006-01-30 15:34:22 +00002856 }
drh50e5dad2001-09-15 00:57:28 +00002857 break;
2858}
2859
drh4a324312001-12-21 14:30:42 +00002860/* Opcode: VerifyCookie P1 P2 *
drh50e5dad2001-09-15 00:57:28 +00002861**
drh001bbcb2003-03-19 03:14:00 +00002862** Check the value of global database parameter number 0 (the
2863** schema version) and make sure it is equal to P2.
2864** P1 is the database number which is 0 for the main database file
2865** and 1 for the file holding temporary tables and some higher number
2866** for auxiliary databases.
drh50e5dad2001-09-15 00:57:28 +00002867**
2868** The cookie changes its value whenever the database schema changes.
drhb19a2bc2001-09-16 00:13:26 +00002869** This operation is used to detect when that the cookie has changed
drh50e5dad2001-09-15 00:57:28 +00002870** and that the current process needs to reread the schema.
2871**
2872** Either a transaction needs to have been started or an OP_Open needs
2873** to be executed (to establish a read lock) before this opcode is
2874** invoked.
2875*/
drh9cbf3422008-01-17 16:22:13 +00002876case OP_VerifyCookie: {
drhf328bc82004-05-10 23:29:49 +00002877 int iMeta;
drhc275b4e2004-07-19 17:25:24 +00002878 Btree *pBt;
drh001bbcb2003-03-19 03:14:00 +00002879 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhfb982642007-08-30 01:19:59 +00002880 assert( (p->btreeMask & (1<<pOp->p1))!=0 );
drhc275b4e2004-07-19 17:25:24 +00002881 pBt = db->aDb[pOp->p1].pBt;
2882 if( pBt ){
danielk1977602b4662009-07-02 07:47:33 +00002883 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
drhc275b4e2004-07-19 17:25:24 +00002884 }else{
drhc275b4e2004-07-19 17:25:24 +00002885 iMeta = 0;
2886 }
danielk1977602b4662009-07-02 07:47:33 +00002887 if( iMeta!=pOp->p2 ){
drh633e6d52008-07-28 19:34:53 +00002888 sqlite3DbFree(db, p->zErrMsg);
danielk1977a1644fd2007-08-29 12:31:25 +00002889 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
danielk1977896e7922007-04-17 08:32:33 +00002890 /* If the schema-cookie from the database file matches the cookie
2891 ** stored with the in-memory representation of the schema, do
2892 ** not reload the schema from the database file.
2893 **
shane21e7feb2008-05-30 15:59:49 +00002894 ** If virtual-tables are in use, this is not just an optimization.
danielk1977896e7922007-04-17 08:32:33 +00002895 ** Often, v-tables store their data in other SQLite tables, which
2896 ** are queried from within xNext() and other v-table methods using
2897 ** prepared queries. If such a query is out-of-date, we do not want to
2898 ** discard the database schema, as the user code implementing the
2899 ** v-table would have to be ready for the sqlite3_vtab structure itself
2900 ** to be invalidated whenever sqlite3_step() is called from within
2901 ** a v-table method.
2902 */
2903 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
2904 sqlite3ResetInternalSchema(db, pOp->p1);
2905 }
2906
drhf6d8ab82007-01-12 23:43:42 +00002907 sqlite3ExpirePreparedStatements(db);
drh50e5dad2001-09-15 00:57:28 +00002908 rc = SQLITE_SCHEMA;
2909 }
2910 break;
2911}
2912
drh98757152008-01-09 23:04:12 +00002913/* Opcode: OpenRead P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00002914**
drhecdc7532001-09-23 02:35:53 +00002915** Open a read-only cursor for the database table whose root page is
danielk1977207872a2008-01-03 07:54:23 +00002916** P2 in a database file. The database file is determined by P3.
drh60a713c2008-01-21 16:22:45 +00002917** P3==0 means the main database, P3==1 means the database used for
2918** temporary tables, and P3>1 means used the corresponding attached
2919** database. Give the new cursor an identifier of P1. The P1
danielk1977207872a2008-01-03 07:54:23 +00002920** values need not be contiguous but all P1 values should be small integers.
2921** It is an error for P1 to be negative.
drh5e00f6c2001-09-13 13:46:56 +00002922**
drh98757152008-01-09 23:04:12 +00002923** If P5!=0 then use the content of register P2 as the root page, not
2924** the value of P2 itself.
drh5edc3122001-09-13 21:53:09 +00002925**
drhb19a2bc2001-09-16 00:13:26 +00002926** There will be a read lock on the database whenever there is an
2927** open cursor. If the database was unlocked prior to this instruction
2928** then a read lock is acquired as part of this instruction. A read
2929** lock allows other processes to read the database but prohibits
2930** any other process from modifying the database. The read lock is
2931** released when all cursors are closed. If this instruction attempts
2932** to get a read lock but fails, the script terminates with an
2933** SQLITE_BUSY error code.
2934**
danielk1977d336e222009-02-20 10:58:41 +00002935** The P4 value may be either an integer (P4_INT32) or a pointer to
2936** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
2937** structure, then said structure defines the content and collating
2938** sequence of the index being opened. Otherwise, if P4 is an integer
2939** value, it is set to the number of columns in the table.
drhf57b3392001-10-08 13:22:32 +00002940**
drh001bbcb2003-03-19 03:14:00 +00002941** See also OpenWrite.
drh5e00f6c2001-09-13 13:46:56 +00002942*/
drh98757152008-01-09 23:04:12 +00002943/* Opcode: OpenWrite P1 P2 P3 P4 P5
drhecdc7532001-09-23 02:35:53 +00002944**
2945** Open a read/write cursor named P1 on the table or index whose root
drh98757152008-01-09 23:04:12 +00002946** page is P2. Or if P5!=0 use the content of register P2 to find the
2947** root page.
drhecdc7532001-09-23 02:35:53 +00002948**
danielk1977d336e222009-02-20 10:58:41 +00002949** The P4 value may be either an integer (P4_INT32) or a pointer to
2950** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
2951** structure, then said structure defines the content and collating
2952** sequence of the index being opened. Otherwise, if P4 is an integer
drh35cd6432009-06-05 14:17:21 +00002953** value, it is set to the number of columns in the table, or to the
2954** largest index of any column of the table that is actually used.
jplyon5a564222003-06-02 06:15:58 +00002955**
drh001bbcb2003-03-19 03:14:00 +00002956** This instruction works just like OpenRead except that it opens the cursor
drhecdc7532001-09-23 02:35:53 +00002957** in read/write mode. For a given table, there can be one or more read-only
2958** cursors or a single read/write cursor but not both.
drhf57b3392001-10-08 13:22:32 +00002959**
drh001bbcb2003-03-19 03:14:00 +00002960** See also OpenRead.
drhecdc7532001-09-23 02:35:53 +00002961*/
drh9cbf3422008-01-17 16:22:13 +00002962case OP_OpenRead:
2963case OP_OpenWrite: {
drh856c1032009-06-02 15:21:42 +00002964 int nField;
2965 KeyInfo *pKeyInfo;
drh856c1032009-06-02 15:21:42 +00002966 int p2;
2967 int iDb;
drhf57b3392001-10-08 13:22:32 +00002968 int wrFlag;
2969 Btree *pX;
drhdfe88ec2008-11-03 20:55:06 +00002970 VdbeCursor *pCur;
drhd946db02005-12-29 19:23:06 +00002971 Db *pDb;
drh856c1032009-06-02 15:21:42 +00002972
danfa401de2009-10-16 14:55:03 +00002973 if( p->expired ){
2974 rc = SQLITE_ABORT;
2975 break;
2976 }
2977
drh856c1032009-06-02 15:21:42 +00002978 nField = 0;
2979 pKeyInfo = 0;
drh856c1032009-06-02 15:21:42 +00002980 p2 = pOp->p2;
2981 iDb = pOp->p3;
drh6810ce62004-01-31 19:22:56 +00002982 assert( iDb>=0 && iDb<db->nDb );
drhfb982642007-08-30 01:19:59 +00002983 assert( (p->btreeMask & (1<<iDb))!=0 );
drhd946db02005-12-29 19:23:06 +00002984 pDb = &db->aDb[iDb];
2985 pX = pDb->pBt;
drh6810ce62004-01-31 19:22:56 +00002986 assert( pX!=0 );
drhd946db02005-12-29 19:23:06 +00002987 if( pOp->opcode==OP_OpenWrite ){
2988 wrFlag = 1;
danielk1977da184232006-01-05 11:34:32 +00002989 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
2990 p->minWriteFileFormat = pDb->pSchema->file_format;
drhd946db02005-12-29 19:23:06 +00002991 }
2992 }else{
2993 wrFlag = 0;
2994 }
drh98757152008-01-09 23:04:12 +00002995 if( pOp->p5 ){
drh9cbf3422008-01-17 16:22:13 +00002996 assert( p2>0 );
2997 assert( p2<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00002998 pIn2 = &aMem[p2];
drh9cbf3422008-01-17 16:22:13 +00002999 sqlite3VdbeMemIntegerify(pIn2);
drh9c1905f2008-12-10 22:32:56 +00003000 p2 = (int)pIn2->u.i;
drh9a65f2c2009-06-22 19:05:40 +00003001 /* The p2 value always comes from a prior OP_CreateTable opcode and
3002 ** that opcode will always set the p2 value to 2 or more or else fail.
3003 ** If there were a failure, the prepared statement would have halted
3004 ** before reaching this instruction. */
drh27731d72009-06-22 12:05:10 +00003005 if( NEVER(p2<2) ) {
shanedcc50b72008-11-13 18:29:50 +00003006 rc = SQLITE_CORRUPT_BKPT;
3007 goto abort_due_to_error;
3008 }
drh5edc3122001-09-13 21:53:09 +00003009 }
danielk1977d336e222009-02-20 10:58:41 +00003010 if( pOp->p4type==P4_KEYINFO ){
3011 pKeyInfo = pOp->p4.pKeyInfo;
3012 pKeyInfo->enc = ENC(p->db);
3013 nField = pKeyInfo->nField+1;
3014 }else if( pOp->p4type==P4_INT32 ){
3015 nField = pOp->p4.i;
3016 }
drh653b82a2009-06-22 11:10:47 +00003017 assert( pOp->p1>=0 );
3018 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
drh4774b132004-06-12 20:12:51 +00003019 if( pCur==0 ) goto no_mem;
drhf328bc82004-05-10 23:29:49 +00003020 pCur->nullRow = 1;
danielk1977d336e222009-02-20 10:58:41 +00003021 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
3022 pCur->pKeyInfo = pKeyInfo;
3023
danielk1977172114a2009-07-07 15:47:12 +00003024 /* Since it performs no memory allocation or IO, the only values that
3025 ** sqlite3BtreeCursor() may return are SQLITE_EMPTY and SQLITE_OK.
3026 ** SQLITE_EMPTY is only returned when attempting to open the table
3027 ** rooted at page 1 of a zero-byte database. */
3028 assert( rc==SQLITE_EMPTY || rc==SQLITE_OK );
3029 if( rc==SQLITE_EMPTY ){
3030 pCur->pCursor = 0;
3031 rc = SQLITE_OK;
danielk197724162fe2004-06-04 06:22:00 +00003032 }
danielk1977172114a2009-07-07 15:47:12 +00003033
3034 /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
3035 ** SQLite used to check if the root-page flags were sane at this point
3036 ** and report database corruption if they were not, but this check has
3037 ** since moved into the btree layer. */
3038 pCur->isTable = pOp->p4type!=P4_KEYINFO;
3039 pCur->isIndex = !pCur->isTable;
drh5e00f6c2001-09-13 13:46:56 +00003040 break;
3041}
3042
drh98757152008-01-09 23:04:12 +00003043/* Opcode: OpenEphemeral P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +00003044**
drhb9bb7c12006-06-11 23:41:55 +00003045** Open a new cursor P1 to a transient table.
drh9170dd72005-07-08 17:13:46 +00003046** The cursor is always opened read/write even if
3047** the main database is read-only. The transient or virtual
3048** table is deleted automatically when the cursor is closed.
drhc6b52df2002-01-04 03:09:29 +00003049**
drh0342b1f2005-09-01 03:07:44 +00003050** P2 is the number of columns in the virtual table.
drh66a51672008-01-03 00:01:23 +00003051** The cursor points to a BTree table if P4==0 and to a BTree index
3052** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
drhd3d39e92004-05-20 22:16:29 +00003053** that defines the format of keys in the index.
drhb9bb7c12006-06-11 23:41:55 +00003054**
3055** This opcode was once called OpenTemp. But that created
3056** confusion because the term "temp table", might refer either
3057** to a TEMP table at the SQL level, or to a table opened by
3058** this opcode. Then this opcode was call OpenVirtual. But
3059** that created confusion with the whole virtual-table idea.
drh5e00f6c2001-09-13 13:46:56 +00003060*/
drh9cbf3422008-01-17 16:22:13 +00003061case OP_OpenEphemeral: {
drhdfe88ec2008-11-03 20:55:06 +00003062 VdbeCursor *pCx;
drh33f4e022007-09-03 15:19:34 +00003063 static const int openFlags =
3064 SQLITE_OPEN_READWRITE |
3065 SQLITE_OPEN_CREATE |
3066 SQLITE_OPEN_EXCLUSIVE |
3067 SQLITE_OPEN_DELETEONCLOSE |
3068 SQLITE_OPEN_TRANSIENT_DB;
3069
drh653b82a2009-06-22 11:10:47 +00003070 assert( pOp->p1>=0 );
3071 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
drh4774b132004-06-12 20:12:51 +00003072 if( pCx==0 ) goto no_mem;
drh17f71932002-02-21 12:01:27 +00003073 pCx->nullRow = 1;
drh33f4e022007-09-03 15:19:34 +00003074 rc = sqlite3BtreeFactory(db, 0, 1, SQLITE_DEFAULT_TEMP_CACHE_SIZE, openFlags,
3075 &pCx->pBt);
drh5e00f6c2001-09-13 13:46:56 +00003076 if( rc==SQLITE_OK ){
danielk197740b38dc2004-06-26 08:38:24 +00003077 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
drh5e00f6c2001-09-13 13:46:56 +00003078 }
3079 if( rc==SQLITE_OK ){
danielk19774adee202004-05-08 08:23:19 +00003080 /* If a transient index is required, create it by calling
3081 ** sqlite3BtreeCreateTable() with the BTREE_ZERODATA flag before
3082 ** opening it. If a transient table is required, just use the
danielk19770dbe72b2004-05-11 04:54:49 +00003083 ** automatically created table with root-page 1 (an INTKEY table).
danielk19774adee202004-05-08 08:23:19 +00003084 */
danielk19772dca4ac2008-01-03 11:50:29 +00003085 if( pOp->p4.pKeyInfo ){
drhc6b52df2002-01-04 03:09:29 +00003086 int pgno;
drh66a51672008-01-03 00:01:23 +00003087 assert( pOp->p4type==P4_KEYINFO );
danielk19774adee202004-05-08 08:23:19 +00003088 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_ZERODATA);
drhc6b52df2002-01-04 03:09:29 +00003089 if( rc==SQLITE_OK ){
drhf328bc82004-05-10 23:29:49 +00003090 assert( pgno==MASTER_ROOT+1 );
drh1e968a02008-03-25 00:22:21 +00003091 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1,
danielk1977cd3e8f72008-03-25 09:47:35 +00003092 (KeyInfo*)pOp->p4.z, pCx->pCursor);
danielk19772dca4ac2008-01-03 11:50:29 +00003093 pCx->pKeyInfo = pOp->p4.pKeyInfo;
danielk197714db2662006-01-09 16:12:04 +00003094 pCx->pKeyInfo->enc = ENC(p->db);
drhc6b52df2002-01-04 03:09:29 +00003095 }
drhf0863fe2005-06-12 21:35:51 +00003096 pCx->isTable = 0;
drhc6b52df2002-01-04 03:09:29 +00003097 }else{
danielk1977cd3e8f72008-03-25 09:47:35 +00003098 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
drhf0863fe2005-06-12 21:35:51 +00003099 pCx->isTable = 1;
drhc6b52df2002-01-04 03:09:29 +00003100 }
drh5e00f6c2001-09-13 13:46:56 +00003101 }
drhf0863fe2005-06-12 21:35:51 +00003102 pCx->isIndex = !pCx->isTable;
drh5e00f6c2001-09-13 13:46:56 +00003103 break;
3104}
3105
danielk1977d336e222009-02-20 10:58:41 +00003106/* Opcode: OpenPseudo P1 P2 P3 * *
drh70ce3f02003-04-15 19:22:22 +00003107**
3108** Open a new cursor that points to a fake table that contains a single
drh3e9ca092009-09-08 01:14:48 +00003109** row of data. The content of that one row in the content of memory
3110** register P2. In other words, cursor P1 becomes an alias for the
3111** MEM_Blob content contained in register P2.
drh70ce3f02003-04-15 19:22:22 +00003112**
drh3e9ca092009-09-08 01:14:48 +00003113** A pseudo-table created by this opcode is used to hold the a single
drhcdd536f2006-03-17 00:04:03 +00003114** row output from the sorter so that the row can be decomposed into
drh3e9ca092009-09-08 01:14:48 +00003115** individual columns using the OP_Column opcode. The OP_Column opcode
3116** is the only cursor opcode that works with a pseudo-table.
danielk1977d336e222009-02-20 10:58:41 +00003117**
3118** P3 is the number of fields in the records that will be stored by
3119** the pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00003120*/
drh9cbf3422008-01-17 16:22:13 +00003121case OP_OpenPseudo: {
drhdfe88ec2008-11-03 20:55:06 +00003122 VdbeCursor *pCx;
drh856c1032009-06-02 15:21:42 +00003123
drh653b82a2009-06-22 11:10:47 +00003124 assert( pOp->p1>=0 );
3125 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
drh4774b132004-06-12 20:12:51 +00003126 if( pCx==0 ) goto no_mem;
drh70ce3f02003-04-15 19:22:22 +00003127 pCx->nullRow = 1;
drh3e9ca092009-09-08 01:14:48 +00003128 pCx->pseudoTableReg = pOp->p2;
drhf0863fe2005-06-12 21:35:51 +00003129 pCx->isTable = 1;
3130 pCx->isIndex = 0;
drh70ce3f02003-04-15 19:22:22 +00003131 break;
3132}
3133
drh98757152008-01-09 23:04:12 +00003134/* Opcode: Close P1 * * * *
drh5e00f6c2001-09-13 13:46:56 +00003135**
3136** Close a cursor previously opened as P1. If P1 is not
3137** currently open, this instruction is a no-op.
3138*/
drh9cbf3422008-01-17 16:22:13 +00003139case OP_Close: {
drh653b82a2009-06-22 11:10:47 +00003140 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3141 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3142 p->apCsr[pOp->p1] = 0;
drh5e00f6c2001-09-13 13:46:56 +00003143 break;
3144}
3145
drh959403f2008-12-12 17:56:16 +00003146/* Opcode: SeekGe P1 P2 P3 P4 *
drh5e00f6c2001-09-13 13:46:56 +00003147**
danielk1977b790c6c2008-04-18 10:25:24 +00003148** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003149** use the value in register P3 as the key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003150** to an SQL index, then P3 is the first in an array of P4 registers
3151** that are used as an unpacked index key.
3152**
3153** Reposition cursor P1 so that it points to the smallest entry that
3154** is greater than or equal to the key value. If there are no records
3155** greater than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003156**
drh959403f2008-12-12 17:56:16 +00003157** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003158*/
drh959403f2008-12-12 17:56:16 +00003159/* Opcode: SeekGt P1 P2 P3 P4 *
drh7cf6e4d2004-05-19 14:56:55 +00003160**
danielk1977b790c6c2008-04-18 10:25:24 +00003161** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003162** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003163** to an SQL index, then P3 is the first in an array of P4 registers
3164** that are used as an unpacked index key.
3165**
3166** Reposition cursor P1 so that it points to the smallest entry that
3167** is greater than the key value. If there are no records greater than
3168** the key and P2 is not zero, then jump to P2.
drhb19a2bc2001-09-16 00:13:26 +00003169**
drh959403f2008-12-12 17:56:16 +00003170** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
drh5e00f6c2001-09-13 13:46:56 +00003171*/
drh959403f2008-12-12 17:56:16 +00003172/* Opcode: SeekLt P1 P2 P3 P4 *
drhc045ec52002-12-04 20:01:06 +00003173**
danielk1977b790c6c2008-04-18 10:25:24 +00003174** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003175** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003176** to an SQL index, then P3 is the first in an array of P4 registers
3177** that are used as an unpacked index key.
3178**
3179** Reposition cursor P1 so that it points to the largest entry that
3180** is less than the key value. If there are no records less than
3181** the key and P2 is not zero, then jump to P2.
drhc045ec52002-12-04 20:01:06 +00003182**
drh959403f2008-12-12 17:56:16 +00003183** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003184*/
drh959403f2008-12-12 17:56:16 +00003185/* Opcode: SeekLe P1 P2 P3 P4 *
danielk19773d1bfea2004-05-14 11:00:53 +00003186**
danielk1977b790c6c2008-04-18 10:25:24 +00003187** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003188** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003189** to an SQL index, then P3 is the first in an array of P4 registers
3190** that are used as an unpacked index key.
danielk1977751de562008-04-18 09:01:15 +00003191**
danielk1977b790c6c2008-04-18 10:25:24 +00003192** Reposition cursor P1 so that it points to the largest entry that
3193** is less than or equal to the key value. If there are no records
3194** less than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003195**
drh959403f2008-12-12 17:56:16 +00003196** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
drhc045ec52002-12-04 20:01:06 +00003197*/
drh959403f2008-12-12 17:56:16 +00003198case OP_SeekLt: /* jump, in3 */
3199case OP_SeekLe: /* jump, in3 */
3200case OP_SeekGe: /* jump, in3 */
3201case OP_SeekGt: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003202 int res;
3203 int oc;
drhdfe88ec2008-11-03 20:55:06 +00003204 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003205 UnpackedRecord r;
3206 int nField;
3207 i64 iKey; /* The rowid we are to seek to */
drh80ff32f2001-11-04 18:32:46 +00003208
drh653b82a2009-06-22 11:10:47 +00003209 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh959403f2008-12-12 17:56:16 +00003210 assert( pOp->p2!=0 );
drh653b82a2009-06-22 11:10:47 +00003211 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00003212 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00003213 assert( pC->pseudoTableReg==0 );
drh1f350122009-11-13 20:52:43 +00003214 assert( OP_SeekLe == OP_SeekLt+1 );
3215 assert( OP_SeekGe == OP_SeekLt+2 );
3216 assert( OP_SeekGt == OP_SeekLt+3 );
drh70ce3f02003-04-15 19:22:22 +00003217 if( pC->pCursor!=0 ){
drh7cf6e4d2004-05-19 14:56:55 +00003218 oc = pOp->opcode;
drha11846b2004-01-07 18:52:56 +00003219 pC->nullRow = 0;
drhf0863fe2005-06-12 21:35:51 +00003220 if( pC->isTable ){
drh959403f2008-12-12 17:56:16 +00003221 /* The input value in P3 might be of any type: integer, real, string,
3222 ** blob, or NULL. But it needs to be an integer before we can do
3223 ** the seek, so covert it. */
drh3c657212009-11-17 23:59:58 +00003224 pIn3 = &aMem[pOp->p3];
drh959403f2008-12-12 17:56:16 +00003225 applyNumericAffinity(pIn3);
3226 iKey = sqlite3VdbeIntValue(pIn3);
3227 pC->rowidIsValid = 0;
3228
3229 /* If the P3 value could not be converted into an integer without
3230 ** loss of information, then special processing is required... */
3231 if( (pIn3->flags & MEM_Int)==0 ){
3232 if( (pIn3->flags & MEM_Real)==0 ){
3233 /* If the P3 value cannot be converted into any kind of a number,
3234 ** then the seek is not possible, so jump to P2 */
3235 pc = pOp->p2 - 1;
3236 break;
3237 }
3238 /* If we reach this point, then the P3 value must be a floating
3239 ** point number. */
3240 assert( (pIn3->flags & MEM_Real)!=0 );
3241
3242 if( iKey==SMALLEST_INT64 && (pIn3->r<(double)iKey || pIn3->r>0) ){
drhaa736092009-06-22 00:55:30 +00003243 /* The P3 value is too large in magnitude to be expressed as an
drh959403f2008-12-12 17:56:16 +00003244 ** integer. */
3245 res = 1;
3246 if( pIn3->r<0 ){
drh1f350122009-11-13 20:52:43 +00003247 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
drh959403f2008-12-12 17:56:16 +00003248 rc = sqlite3BtreeFirst(pC->pCursor, &res);
3249 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3250 }
3251 }else{
drh1f350122009-11-13 20:52:43 +00003252 if( oc<=OP_SeekLe ){ assert( oc==OP_SeekLt || oc==OP_SeekLe );
drh959403f2008-12-12 17:56:16 +00003253 rc = sqlite3BtreeLast(pC->pCursor, &res);
3254 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3255 }
3256 }
3257 if( res ){
3258 pc = pOp->p2 - 1;
3259 }
3260 break;
3261 }else if( oc==OP_SeekLt || oc==OP_SeekGe ){
3262 /* Use the ceiling() function to convert real->int */
3263 if( pIn3->r > (double)iKey ) iKey++;
3264 }else{
3265 /* Use the floor() function to convert real->int */
3266 assert( oc==OP_SeekLe || oc==OP_SeekGt );
3267 if( pIn3->r < (double)iKey ) iKey--;
3268 }
3269 }
drhe63d9992008-08-13 19:11:48 +00003270 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
danielk197728129562005-01-11 10:25:06 +00003271 if( rc!=SQLITE_OK ){
3272 goto abort_due_to_error;
3273 }
drh959403f2008-12-12 17:56:16 +00003274 if( res==0 ){
3275 pC->rowidIsValid = 1;
3276 pC->lastRowid = iKey;
3277 }
drh5e00f6c2001-09-13 13:46:56 +00003278 }else{
drh856c1032009-06-02 15:21:42 +00003279 nField = pOp->p4.i;
danielk1977b790c6c2008-04-18 10:25:24 +00003280 assert( pOp->p4type==P4_INT32 );
3281 assert( nField>0 );
3282 r.pKeyInfo = pC->pKeyInfo;
drh9c1905f2008-12-10 22:32:56 +00003283 r.nField = (u16)nField;
drh1f350122009-11-13 20:52:43 +00003284
3285 /* The next line of code computes as follows, only faster:
3286 ** if( oc==OP_SeekGt || oc==OP_SeekLe ){
3287 ** r.flags = UNPACKED_INCRKEY;
3288 ** }else{
3289 ** r.flags = 0;
3290 ** }
3291 */
shaneh5e17e8b2009-12-03 04:40:47 +00003292 r.flags = (u16)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt)));
drh1f350122009-11-13 20:52:43 +00003293 assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY );
3294 assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY );
3295 assert( oc!=OP_SeekGe || r.flags==0 );
3296 assert( oc!=OP_SeekLt || r.flags==0 );
3297
drha6c2ed92009-11-14 23:22:23 +00003298 r.aMem = &aMem[pOp->p3];
drh039fc322009-11-17 18:31:47 +00003299 ExpandBlob(r.aMem);
drhe63d9992008-08-13 19:11:48 +00003300 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
danielk197728129562005-01-11 10:25:06 +00003301 if( rc!=SQLITE_OK ){
3302 goto abort_due_to_error;
3303 }
drhf0863fe2005-06-12 21:35:51 +00003304 pC->rowidIsValid = 0;
drh5e00f6c2001-09-13 13:46:56 +00003305 }
drha11846b2004-01-07 18:52:56 +00003306 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00003307 pC->cacheStatus = CACHE_STALE;
drh0f7eb612006-08-08 13:51:43 +00003308#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +00003309 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00003310#endif
drh1f350122009-11-13 20:52:43 +00003311 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
drh959403f2008-12-12 17:56:16 +00003312 if( res<0 || (res==0 && oc==OP_SeekGt) ){
danielk197728129562005-01-11 10:25:06 +00003313 rc = sqlite3BtreeNext(pC->pCursor, &res);
danielk197701427a62005-01-11 13:02:33 +00003314 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drhf0863fe2005-06-12 21:35:51 +00003315 pC->rowidIsValid = 0;
drh1af3fdb2004-07-18 21:33:01 +00003316 }else{
3317 res = 0;
drh8721ce42001-11-07 14:22:00 +00003318 }
drh7cf6e4d2004-05-19 14:56:55 +00003319 }else{
drh959403f2008-12-12 17:56:16 +00003320 assert( oc==OP_SeekLt || oc==OP_SeekLe );
3321 if( res>0 || (res==0 && oc==OP_SeekLt) ){
danielk197701427a62005-01-11 13:02:33 +00003322 rc = sqlite3BtreePrevious(pC->pCursor, &res);
3323 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drhf0863fe2005-06-12 21:35:51 +00003324 pC->rowidIsValid = 0;
drh1a844c32002-12-04 22:29:28 +00003325 }else{
3326 /* res might be negative because the table is empty. Check to
3327 ** see if this is the case.
3328 */
drhf328bc82004-05-10 23:29:49 +00003329 res = sqlite3BtreeEof(pC->pCursor);
drh1a844c32002-12-04 22:29:28 +00003330 }
drh1af3fdb2004-07-18 21:33:01 +00003331 }
drh91fd4d42008-01-19 20:11:25 +00003332 assert( pOp->p2>0 );
drh1af3fdb2004-07-18 21:33:01 +00003333 if( res ){
drh91fd4d42008-01-19 20:11:25 +00003334 pc = pOp->p2 - 1;
drh8721ce42001-11-07 14:22:00 +00003335 }
drhaa736092009-06-22 00:55:30 +00003336 }else{
danielk1977f7b9d662008-06-23 18:49:43 +00003337 /* This happens when attempting to open the sqlite3_master table
3338 ** for read access returns SQLITE_EMPTY. In this case always
3339 ** take the jump (since there are no records in the table).
3340 */
3341 pc = pOp->p2 - 1;
drh5e00f6c2001-09-13 13:46:56 +00003342 }
drh5e00f6c2001-09-13 13:46:56 +00003343 break;
3344}
3345
drh959403f2008-12-12 17:56:16 +00003346/* Opcode: Seek P1 P2 * * *
3347**
3348** P1 is an open table cursor and P2 is a rowid integer. Arrange
3349** for P1 to move so that it points to the rowid given by P2.
3350**
3351** This is actually a deferred seek. Nothing actually happens until
3352** the cursor is used to read a record. That way, if no reads
3353** occur, no unnecessary I/O happens.
3354*/
3355case OP_Seek: { /* in2 */
drh959403f2008-12-12 17:56:16 +00003356 VdbeCursor *pC;
3357
drh653b82a2009-06-22 11:10:47 +00003358 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3359 pC = p->apCsr[pOp->p1];
drh959403f2008-12-12 17:56:16 +00003360 assert( pC!=0 );
drhaa736092009-06-22 00:55:30 +00003361 if( ALWAYS(pC->pCursor!=0) ){
drh959403f2008-12-12 17:56:16 +00003362 assert( pC->isTable );
3363 pC->nullRow = 0;
drh3c657212009-11-17 23:59:58 +00003364 pIn2 = &aMem[pOp->p2];
drh959403f2008-12-12 17:56:16 +00003365 pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
3366 pC->rowidIsValid = 0;
3367 pC->deferredMoveto = 1;
3368 }
3369 break;
3370}
3371
3372
drh8cff69d2009-11-12 19:59:44 +00003373/* Opcode: Found P1 P2 P3 P4 *
drh5e00f6c2001-09-13 13:46:56 +00003374**
drh8cff69d2009-11-12 19:59:44 +00003375** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3376** P4>0 then register P3 is the first of P4 registers that form an unpacked
3377** record.
3378**
3379** Cursor P1 is on an index btree. If the record identified by P3 and P4
3380** is a prefix of any entry in P1 then a jump is made to P2 and
drhe3365e62009-11-12 17:52:24 +00003381** P1 is left pointing at the matching entry.
drh5e00f6c2001-09-13 13:46:56 +00003382*/
drh8cff69d2009-11-12 19:59:44 +00003383/* Opcode: NotFound P1 P2 P3 P4 *
drh5e00f6c2001-09-13 13:46:56 +00003384**
drh8cff69d2009-11-12 19:59:44 +00003385** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3386** P4>0 then register P3 is the first of P4 registers that form an unpacked
3387** record.
3388**
3389** Cursor P1 is on an index btree. If the record identified by P3 and P4
3390** is not the prefix of any entry in P1 then a jump is made to P2. If P1
3391** does contain an entry whose prefix matches the P3/P4 record then control
3392** falls through to the next instruction and P1 is left pointing at the
3393** matching entry.
drh5e00f6c2001-09-13 13:46:56 +00003394**
drhcb6d50e2008-08-21 19:28:30 +00003395** See also: Found, NotExists, IsUnique
drh5e00f6c2001-09-13 13:46:56 +00003396*/
drh9cbf3422008-01-17 16:22:13 +00003397case OP_NotFound: /* jump, in3 */
3398case OP_Found: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00003399 int alreadyExists;
drhdfe88ec2008-11-03 20:55:06 +00003400 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00003401 int res;
3402 UnpackedRecord *pIdxKey;
drh8cff69d2009-11-12 19:59:44 +00003403 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00003404 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];
3405
dan0ff297e2009-09-25 17:03:14 +00003406#ifdef SQLITE_TEST
3407 sqlite3_found_count++;
3408#endif
3409
drh856c1032009-06-02 15:21:42 +00003410 alreadyExists = 0;
drhaa736092009-06-22 00:55:30 +00003411 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh8cff69d2009-11-12 19:59:44 +00003412 assert( pOp->p4type==P4_INT32 );
drhaa736092009-06-22 00:55:30 +00003413 pC = p->apCsr[pOp->p1];
3414 assert( pC!=0 );
drh3c657212009-11-17 23:59:58 +00003415 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00003416 if( ALWAYS(pC->pCursor!=0) ){
drhe63d9992008-08-13 19:11:48 +00003417
drhf0863fe2005-06-12 21:35:51 +00003418 assert( pC->isTable==0 );
drh8cff69d2009-11-12 19:59:44 +00003419 if( pOp->p4.i>0 ){
3420 r.pKeyInfo = pC->pKeyInfo;
shaneh5e17e8b2009-12-03 04:40:47 +00003421 r.nField = (u16)pOp->p4.i;
drh8cff69d2009-11-12 19:59:44 +00003422 r.aMem = pIn3;
3423 r.flags = UNPACKED_PREFIX_MATCH;
3424 pIdxKey = &r;
3425 }else{
3426 assert( pIn3->flags & MEM_Blob );
3427 ExpandBlob(pIn3);
3428 pIdxKey = sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z,
3429 aTempRec, sizeof(aTempRec));
3430 if( pIdxKey==0 ){
3431 goto no_mem;
3432 }
3433 pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
danielk19779a96b662007-11-29 17:05:18 +00003434 }
drhe63d9992008-08-13 19:11:48 +00003435 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
drh8cff69d2009-11-12 19:59:44 +00003436 if( pOp->p4.i==0 ){
3437 sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
3438 }
danielk197777519402007-08-30 11:48:31 +00003439 if( rc!=SQLITE_OK ){
3440 break;
3441 }
3442 alreadyExists = (res==0);
drha11846b2004-01-07 18:52:56 +00003443 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00003444 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00003445 }
3446 if( pOp->opcode==OP_Found ){
3447 if( alreadyExists ) pc = pOp->p2 - 1;
3448 }else{
3449 if( !alreadyExists ) pc = pOp->p2 - 1;
3450 }
drh5e00f6c2001-09-13 13:46:56 +00003451 break;
3452}
3453
drh98757152008-01-09 23:04:12 +00003454/* Opcode: IsUnique P1 P2 P3 P4 *
drh9cfcf5d2002-01-29 18:41:24 +00003455**
drh8cff69d2009-11-12 19:59:44 +00003456** Cursor P1 is open on an index b-tree - that is to say, a btree which
3457** no data and where the key are records generated by OP_MakeRecord with
3458** the list field being the integer ROWID of the entry that the index
3459** entry refers to.
danielk1977de630352009-05-04 11:42:29 +00003460**
3461** The P3 register contains an integer record number. Call this record
3462** number R. Register P4 is the first in a set of N contiguous registers
3463** that make up an unpacked index key that can be used with cursor P1.
3464** The value of N can be inferred from the cursor. N includes the rowid
3465** value appended to the end of the index record. This rowid value may
3466** or may not be the same as R.
3467**
3468** If any of the N registers beginning with register P4 contains a NULL
3469** value, jump immediately to P2.
3470**
3471** Otherwise, this instruction checks if cursor P1 contains an entry
3472** where the first (N-1) fields match but the rowid value at the end
3473** of the index entry is not R. If there is no such entry, control jumps
3474** to instruction P2. Otherwise, the rowid of the conflicting index
3475** entry is copied to register P3 and control falls through to the next
3476** instruction.
drh9cfcf5d2002-01-29 18:41:24 +00003477**
drh9cbf3422008-01-17 16:22:13 +00003478** See also: NotFound, NotExists, Found
drh9cfcf5d2002-01-29 18:41:24 +00003479*/
drh9cbf3422008-01-17 16:22:13 +00003480case OP_IsUnique: { /* jump, in3 */
shane60a4b532009-05-06 18:57:09 +00003481 u16 ii;
drhdfe88ec2008-11-03 20:55:06 +00003482 VdbeCursor *pCx;
drh9cfcf5d2002-01-29 18:41:24 +00003483 BtCursor *pCrsr;
shane60a4b532009-05-06 18:57:09 +00003484 u16 nField;
drha6c2ed92009-11-14 23:22:23 +00003485 Mem *aMx;
drh856c1032009-06-02 15:21:42 +00003486 UnpackedRecord r; /* B-Tree index search key */
3487 i64 R; /* Rowid stored in register P3 */
drh9cfcf5d2002-01-29 18:41:24 +00003488
drh3c657212009-11-17 23:59:58 +00003489 pIn3 = &aMem[pOp->p3];
drha6c2ed92009-11-14 23:22:23 +00003490 aMx = &aMem[pOp->p4.i];
danielk1977de630352009-05-04 11:42:29 +00003491 /* Assert that the values of parameters P1 and P4 are in range. */
drh98757152008-01-09 23:04:12 +00003492 assert( pOp->p4type==P4_INT32 );
drh9cbf3422008-01-17 16:22:13 +00003493 assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
danielk1977de630352009-05-04 11:42:29 +00003494 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3495
3496 /* Find the index cursor. */
3497 pCx = p->apCsr[pOp->p1];
3498 assert( pCx->deferredMoveto==0 );
3499 pCx->seekResult = 0;
3500 pCx->cacheStatus = CACHE_STALE;
drhf328bc82004-05-10 23:29:49 +00003501 pCrsr = pCx->pCursor;
danielk1977de630352009-05-04 11:42:29 +00003502
3503 /* If any of the values are NULL, take the jump. */
3504 nField = pCx->pKeyInfo->nField;
3505 for(ii=0; ii<nField; ii++){
drha6c2ed92009-11-14 23:22:23 +00003506 if( aMx[ii].flags & MEM_Null ){
danielk1977de630352009-05-04 11:42:29 +00003507 pc = pOp->p2 - 1;
3508 pCrsr = 0;
3509 break;
3510 }
3511 }
drha6c2ed92009-11-14 23:22:23 +00003512 assert( (aMx[nField].flags & MEM_Null)==0 );
danielk1977de630352009-05-04 11:42:29 +00003513
drhf328bc82004-05-10 23:29:49 +00003514 if( pCrsr!=0 ){
danielk1977de630352009-05-04 11:42:29 +00003515 /* Populate the index search key. */
3516 r.pKeyInfo = pCx->pKeyInfo;
3517 r.nField = nField + 1;
3518 r.flags = UNPACKED_PREFIX_SEARCH;
drha6c2ed92009-11-14 23:22:23 +00003519 r.aMem = aMx;
danielk1977452c9892004-05-13 05:16:15 +00003520
danielk1977de630352009-05-04 11:42:29 +00003521 /* Extract the value of R from register P3. */
3522 sqlite3VdbeMemIntegerify(pIn3);
3523 R = pIn3->u.i;
3524
3525 /* Search the B-Tree index. If no conflicting record is found, jump
3526 ** to P2. Otherwise, copy the rowid of the conflicting record to
3527 ** register P3 and fall through to the next instruction. */
3528 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &pCx->seekResult);
3529 if( (r.flags & UNPACKED_PREFIX_SEARCH) || r.rowid==R ){
drh9cfcf5d2002-01-29 18:41:24 +00003530 pc = pOp->p2 - 1;
danielk1977de630352009-05-04 11:42:29 +00003531 }else{
3532 pIn3->u.i = r.rowid;
drh9cfcf5d2002-01-29 18:41:24 +00003533 }
drh9cfcf5d2002-01-29 18:41:24 +00003534 }
3535 break;
3536}
3537
drh9cbf3422008-01-17 16:22:13 +00003538/* Opcode: NotExists P1 P2 P3 * *
drh6b125452002-01-28 15:53:03 +00003539**
drh9cbf3422008-01-17 16:22:13 +00003540** Use the content of register P3 as a integer key. If a record
danielk197796cb76f2008-01-04 13:24:28 +00003541** with that key does not exist in table of P1, then jump to P2.
3542** If the record does exist, then fall thru. The cursor is left
drh9cbf3422008-01-17 16:22:13 +00003543** pointing to the record if it exists.
drh6b125452002-01-28 15:53:03 +00003544**
3545** The difference between this operation and NotFound is that this
drhf0863fe2005-06-12 21:35:51 +00003546** operation assumes the key is an integer and that P1 is a table whereas
3547** NotFound assumes key is a blob constructed from MakeRecord and
3548** P1 is an index.
drh6b125452002-01-28 15:53:03 +00003549**
drhcb6d50e2008-08-21 19:28:30 +00003550** See also: Found, NotFound, IsUnique
drh6b125452002-01-28 15:53:03 +00003551*/
drh9cbf3422008-01-17 16:22:13 +00003552case OP_NotExists: { /* jump, in3 */
drhdfe88ec2008-11-03 20:55:06 +00003553 VdbeCursor *pC;
drh0ca3e242002-01-29 23:07:02 +00003554 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00003555 int res;
3556 u64 iKey;
3557
drh3c657212009-11-17 23:59:58 +00003558 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00003559 assert( pIn3->flags & MEM_Int );
3560 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3561 pC = p->apCsr[pOp->p1];
3562 assert( pC!=0 );
3563 assert( pC->isTable );
drh3e9ca092009-09-08 01:14:48 +00003564 assert( pC->pseudoTableReg==0 );
drhaa736092009-06-22 00:55:30 +00003565 pCrsr = pC->pCursor;
3566 if( pCrsr!=0 ){
drh856c1032009-06-02 15:21:42 +00003567 res = 0;
drhaa736092009-06-22 00:55:30 +00003568 iKey = pIn3->u.i;
danielk1977de630352009-05-04 11:42:29 +00003569 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
drh98757152008-01-09 23:04:12 +00003570 pC->lastRowid = pIn3->u.i;
drh9c1905f2008-12-10 22:32:56 +00003571 pC->rowidIsValid = res==0 ?1:0;
drh9188b382004-05-14 21:12:22 +00003572 pC->nullRow = 0;
drh76873ab2006-01-07 18:48:26 +00003573 pC->cacheStatus = CACHE_STALE;
danielk19771d461462009-04-21 09:02:45 +00003574 pC->deferredMoveto = 0;
danielk197728129562005-01-11 10:25:06 +00003575 if( res!=0 ){
drh17f71932002-02-21 12:01:27 +00003576 pc = pOp->p2 - 1;
drh91fd4d42008-01-19 20:11:25 +00003577 assert( pC->rowidIsValid==0 );
drh6b125452002-01-28 15:53:03 +00003578 }
danielk1977de630352009-05-04 11:42:29 +00003579 pC->seekResult = res;
drhaa736092009-06-22 00:55:30 +00003580 }else{
danielk1977f7b9d662008-06-23 18:49:43 +00003581 /* This happens when an attempt to open a read cursor on the
3582 ** sqlite_master table returns SQLITE_EMPTY.
3583 */
danielk1977f7b9d662008-06-23 18:49:43 +00003584 pc = pOp->p2 - 1;
3585 assert( pC->rowidIsValid==0 );
danielk1977de630352009-05-04 11:42:29 +00003586 pC->seekResult = 0;
drh6b125452002-01-28 15:53:03 +00003587 }
drh6b125452002-01-28 15:53:03 +00003588 break;
3589}
3590
drh4c583122008-01-04 22:01:03 +00003591/* Opcode: Sequence P1 P2 * * *
drh4db38a72005-09-01 12:16:28 +00003592**
drh4c583122008-01-04 22:01:03 +00003593** Find the next available sequence number for cursor P1.
drh9cbf3422008-01-17 16:22:13 +00003594** Write the sequence number into register P2.
drh4c583122008-01-04 22:01:03 +00003595** The sequence number on the cursor is incremented after this
3596** instruction.
drh4db38a72005-09-01 12:16:28 +00003597*/
drh4c583122008-01-04 22:01:03 +00003598case OP_Sequence: { /* out2-prerelease */
drh653b82a2009-06-22 11:10:47 +00003599 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3600 assert( p->apCsr[pOp->p1]!=0 );
3601 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
drh4db38a72005-09-01 12:16:28 +00003602 break;
3603}
3604
3605
drh98757152008-01-09 23:04:12 +00003606/* Opcode: NewRowid P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00003607**
drhf0863fe2005-06-12 21:35:51 +00003608** Get a new integer record number (a.k.a "rowid") used as the key to a table.
drhb19a2bc2001-09-16 00:13:26 +00003609** The record number is not previously used as a key in the database
drh9cbf3422008-01-17 16:22:13 +00003610** table that cursor P1 points to. The new record number is written
3611** written to register P2.
drh205f48e2004-11-05 00:43:11 +00003612**
dan76d462e2009-08-30 11:42:51 +00003613** If P3>0 then P3 is a register in the root frame of this VDBE that holds
3614** the largest previously generated record number. No new record numbers are
3615** allowed to be less than this value. When this value reaches its maximum,
3616** a SQLITE_FULL error is generated. The P3 register is updated with the '
3617** generated record number. This P3 mechanism is used to help implement the
drh205f48e2004-11-05 00:43:11 +00003618** AUTOINCREMENT feature.
drh5e00f6c2001-09-13 13:46:56 +00003619*/
drh4c583122008-01-04 22:01:03 +00003620case OP_NewRowid: { /* out2-prerelease */
drhaa736092009-06-22 00:55:30 +00003621 i64 v; /* The new rowid */
3622 VdbeCursor *pC; /* Cursor of table to get the new rowid */
3623 int res; /* Result of an sqlite3BtreeLast() */
3624 int cnt; /* Counter to limit the number of searches */
3625 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
dan76d462e2009-08-30 11:42:51 +00003626 VdbeFrame *pFrame; /* Root frame of VDBE */
drh856c1032009-06-02 15:21:42 +00003627
drh856c1032009-06-02 15:21:42 +00003628 v = 0;
3629 res = 0;
drhaa736092009-06-22 00:55:30 +00003630 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3631 pC = p->apCsr[pOp->p1];
3632 assert( pC!=0 );
3633 if( NEVER(pC->pCursor==0) ){
drhf328bc82004-05-10 23:29:49 +00003634 /* The zero initialization above is all that is needed */
drh5e00f6c2001-09-13 13:46:56 +00003635 }else{
drh5cf8e8c2002-02-19 22:42:05 +00003636 /* The next rowid or record number (different terms for the same
3637 ** thing) is obtained in a two-step algorithm.
3638 **
3639 ** First we attempt to find the largest existing rowid and add one
3640 ** to that. But if the largest existing rowid is already the maximum
3641 ** positive integer, we have to fall through to the second
3642 ** probabilistic algorithm
3643 **
3644 ** The second algorithm is to select a rowid at random and see if
3645 ** it already exists in the table. If it does not exist, we have
3646 ** succeeded. If the random rowid does exist, we select a new one
drhaa736092009-06-22 00:55:30 +00003647 ** and try again, up to 100 times.
drhdb5ed6d2001-09-18 22:17:44 +00003648 */
drhaa736092009-06-22 00:55:30 +00003649 assert( pC->isTable );
drh5e00f6c2001-09-13 13:46:56 +00003650 cnt = 0;
drhfe2093d2005-01-20 22:48:47 +00003651
drh75f86a42005-02-17 00:03:06 +00003652#ifdef SQLITE_32BIT_ROWID
3653# define MAX_ROWID 0x7fffffff
3654#else
drhfe2093d2005-01-20 22:48:47 +00003655 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
3656 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
3657 ** to provide the constant while making all compilers happy.
3658 */
danielk197764202cf2008-11-17 15:31:47 +00003659# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
drh75f86a42005-02-17 00:03:06 +00003660#endif
drhfe2093d2005-01-20 22:48:47 +00003661
drh5cf8e8c2002-02-19 22:42:05 +00003662 if( !pC->useRandomRowid ){
drh7f751222009-03-17 22:33:00 +00003663 v = sqlite3BtreeGetCachedRowid(pC->pCursor);
3664 if( v==0 ){
danielk1977261919c2005-12-06 12:52:59 +00003665 rc = sqlite3BtreeLast(pC->pCursor, &res);
3666 if( rc!=SQLITE_OK ){
3667 goto abort_due_to_error;
3668 }
drh32fbe342002-10-19 20:16:37 +00003669 if( res ){
drhc79c7612010-01-01 18:57:48 +00003670 v = 1; /* IMP: R-61914-48074 */
drh5cf8e8c2002-02-19 22:42:05 +00003671 }else{
drhea8ffdf2009-07-22 00:35:23 +00003672 assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
drhc27ae612009-07-14 18:35:44 +00003673 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
3674 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
drh75f86a42005-02-17 00:03:06 +00003675 if( v==MAX_ROWID ){
drh32fbe342002-10-19 20:16:37 +00003676 pC->useRandomRowid = 1;
3677 }else{
drhc79c7612010-01-01 18:57:48 +00003678 v++; /* IMP: R-29538-34987 */
drh32fbe342002-10-19 20:16:37 +00003679 }
drh5cf8e8c2002-02-19 22:42:05 +00003680 }
drh3fc190c2001-09-14 03:24:23 +00003681 }
drh205f48e2004-11-05 00:43:11 +00003682
3683#ifndef SQLITE_OMIT_AUTOINCREMENT
drh4c583122008-01-04 22:01:03 +00003684 if( pOp->p3 ){
shaneabc6b892009-09-10 19:09:03 +00003685 /* Assert that P3 is a valid memory cell. */
3686 assert( pOp->p3>0 );
dan76d462e2009-08-30 11:42:51 +00003687 if( p->pFrame ){
3688 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
shaneabc6b892009-09-10 19:09:03 +00003689 /* Assert that P3 is a valid memory cell. */
3690 assert( pOp->p3<=pFrame->nMem );
dan76d462e2009-08-30 11:42:51 +00003691 pMem = &pFrame->aMem[pOp->p3];
3692 }else{
shaneabc6b892009-09-10 19:09:03 +00003693 /* Assert that P3 is a valid memory cell. */
3694 assert( pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00003695 pMem = &aMem[pOp->p3];
dan76d462e2009-08-30 11:42:51 +00003696 }
dan76d462e2009-08-30 11:42:51 +00003697
3698 REGISTER_TRACE(pOp->p3, pMem);
drh8a512562005-11-14 22:29:05 +00003699 sqlite3VdbeMemIntegerify(pMem);
drh4c583122008-01-04 22:01:03 +00003700 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
drh3c024d62007-03-30 11:23:45 +00003701 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
drhc79c7612010-01-01 18:57:48 +00003702 rc = SQLITE_FULL; /* IMP: R-12275-61338 */
drh205f48e2004-11-05 00:43:11 +00003703 goto abort_due_to_error;
3704 }
drh3c024d62007-03-30 11:23:45 +00003705 if( v<pMem->u.i+1 ){
3706 v = pMem->u.i + 1;
drh205f48e2004-11-05 00:43:11 +00003707 }
drh3c024d62007-03-30 11:23:45 +00003708 pMem->u.i = v;
drh205f48e2004-11-05 00:43:11 +00003709 }
3710#endif
3711
drh7f751222009-03-17 22:33:00 +00003712 sqlite3BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0);
drh5cf8e8c2002-02-19 22:42:05 +00003713 }
3714 if( pC->useRandomRowid ){
drhc79c7612010-01-01 18:57:48 +00003715 /* IMPLEMENTATION-OF: R-48598-02938 If the largest ROWID is equal to the
3716 ** largest possible integer (9223372036854775807) then the database
3717 ** engine starts picking candidate ROWIDs at random until it finds one
3718 ** that is not previously used.
3719 */
drhaa736092009-06-22 00:55:30 +00003720 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
3721 ** an AUTOINCREMENT table. */
drh9ed7a992009-06-26 15:14:55 +00003722 v = db->lastRowid;
drh5cf8e8c2002-02-19 22:42:05 +00003723 cnt = 0;
3724 do{
drh91fd4d42008-01-19 20:11:25 +00003725 if( cnt==0 && (v&0xffffff)==v ){
3726 v++;
3727 }else{
drh2fa18682008-03-19 14:15:34 +00003728 sqlite3_randomness(sizeof(v), &v);
drh5cf8e8c2002-02-19 22:42:05 +00003729 if( cnt<5 ) v &= 0xffffff;
drh5cf8e8c2002-02-19 22:42:05 +00003730 }
drhaa736092009-06-22 00:55:30 +00003731 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v, 0, &res);
drh5cf8e8c2002-02-19 22:42:05 +00003732 cnt++;
drhaa736092009-06-22 00:55:30 +00003733 }while( cnt<100 && rc==SQLITE_OK && res==0 );
drhaa736092009-06-22 00:55:30 +00003734 if( rc==SQLITE_OK && res==0 ){
drhc79c7612010-01-01 18:57:48 +00003735 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
drh5cf8e8c2002-02-19 22:42:05 +00003736 goto abort_due_to_error;
3737 }
drh1eaa2692001-09-18 02:02:23 +00003738 }
drhf0863fe2005-06-12 21:35:51 +00003739 pC->rowidIsValid = 0;
drha11846b2004-01-07 18:52:56 +00003740 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00003741 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00003742 }
drh4c583122008-01-04 22:01:03 +00003743 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00003744 break;
3745}
3746
danielk19771f4aa332008-01-03 09:51:55 +00003747/* Opcode: Insert P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00003748**
jplyon5a564222003-06-02 06:15:58 +00003749** Write an entry into the table of cursor P1. A new entry is
drhb19a2bc2001-09-16 00:13:26 +00003750** created if it doesn't already exist or the data for an existing
drh3e9ca092009-09-08 01:14:48 +00003751** entry is overwritten. The data is the value MEM_Blob stored in register
danielk19771f4aa332008-01-03 09:51:55 +00003752** number P2. The key is stored in register P3. The key must
drh3e9ca092009-09-08 01:14:48 +00003753** be a MEM_Int.
drh4a324312001-12-21 14:30:42 +00003754**
danielk19771f4aa332008-01-03 09:51:55 +00003755** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
3756** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
danielk1977b28af712004-06-21 06:50:26 +00003757** then rowid is stored for subsequent return by the
drh85b623f2007-12-13 21:54:09 +00003758** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
drh6b125452002-01-28 15:53:03 +00003759**
drh3e9ca092009-09-08 01:14:48 +00003760** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
3761** the last seek operation (OP_NotExists) was a success, then this
3762** operation will not attempt to find the appropriate row before doing
3763** the insert but will instead overwrite the row that the cursor is
3764** currently pointing to. Presumably, the prior OP_NotExists opcode
3765** has already positioned the cursor correctly. This is an optimization
3766** that boosts performance by avoiding redundant seeks.
3767**
3768** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
3769** UPDATE operation. Otherwise (if the flag is clear) then this opcode
3770** is part of an INSERT operation. The difference is only important to
3771** the update hook.
3772**
drh66a51672008-01-03 00:01:23 +00003773** Parameter P4 may point to a string containing the table-name, or
danielk19771f6eec52006-06-16 06:17:47 +00003774** may be NULL. If it is not NULL, then the update-hook
3775** (sqlite3.xUpdateCallback) is invoked following a successful insert.
3776**
drh93aed5a2008-01-16 17:46:38 +00003777** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
3778** allocated, then ownership of P2 is transferred to the pseudo-cursor
3779** and register P2 becomes ephemeral. If the cursor is changed, the
3780** value of register P2 will then change. Make sure this does not
3781** cause any problems.)
3782**
drhf0863fe2005-06-12 21:35:51 +00003783** This instruction only works on tables. The equivalent instruction
3784** for indices is OP_IdxInsert.
drh6b125452002-01-28 15:53:03 +00003785*/
drhe05c9292009-10-29 13:48:10 +00003786/* Opcode: InsertInt P1 P2 P3 P4 P5
3787**
3788** This works exactly like OP_Insert except that the key is the
3789** integer value P3, not the value of the integer stored in register P3.
3790*/
3791case OP_Insert:
3792case OP_InsertInt: {
drh3e9ca092009-09-08 01:14:48 +00003793 Mem *pData; /* MEM cell holding data for the record to be inserted */
3794 Mem *pKey; /* MEM cell holding key for the record */
3795 i64 iKey; /* The integer ROWID or key for the record to be inserted */
3796 VdbeCursor *pC; /* Cursor to table into which insert is written */
3797 int nZero; /* Number of zero-bytes to append */
3798 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
3799 const char *zDb; /* database name - used by the update hook */
3800 const char *zTbl; /* Table name - used by the opdate hook */
3801 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
drh856c1032009-06-02 15:21:42 +00003802
drha6c2ed92009-11-14 23:22:23 +00003803 pData = &aMem[pOp->p2];
drh653b82a2009-06-22 11:10:47 +00003804 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3805 pC = p->apCsr[pOp->p1];
drha05a7222008-01-19 03:35:58 +00003806 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00003807 assert( pC->pCursor!=0 );
3808 assert( pC->pseudoTableReg==0 );
drha05a7222008-01-19 03:35:58 +00003809 assert( pC->isTable );
drh5b6afba2008-01-05 16:29:28 +00003810 REGISTER_TRACE(pOp->p2, pData);
danielk19775f8d8a82004-05-11 00:28:42 +00003811
drhe05c9292009-10-29 13:48:10 +00003812 if( pOp->opcode==OP_Insert ){
drha6c2ed92009-11-14 23:22:23 +00003813 pKey = &aMem[pOp->p3];
drhe05c9292009-10-29 13:48:10 +00003814 assert( pKey->flags & MEM_Int );
3815 REGISTER_TRACE(pOp->p3, pKey);
3816 iKey = pKey->u.i;
3817 }else{
3818 assert( pOp->opcode==OP_InsertInt );
3819 iKey = pOp->p3;
3820 }
3821
drha05a7222008-01-19 03:35:58 +00003822 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drhe05c9292009-10-29 13:48:10 +00003823 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = iKey;
drha05a7222008-01-19 03:35:58 +00003824 if( pData->flags & MEM_Null ){
3825 pData->z = 0;
3826 pData->n = 0;
3827 }else{
3828 assert( pData->flags & (MEM_Blob|MEM_Str) );
3829 }
drh3e9ca092009-09-08 01:14:48 +00003830 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
3831 if( pData->flags & MEM_Zero ){
3832 nZero = pData->u.nZero;
drha05a7222008-01-19 03:35:58 +00003833 }else{
drh3e9ca092009-09-08 01:14:48 +00003834 nZero = 0;
drha05a7222008-01-19 03:35:58 +00003835 }
drh3e9ca092009-09-08 01:14:48 +00003836 sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
3837 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
3838 pData->z, pData->n, nZero,
3839 pOp->p5 & OPFLAG_APPEND, seekResult
3840 );
drha05a7222008-01-19 03:35:58 +00003841 pC->rowidIsValid = 0;
3842 pC->deferredMoveto = 0;
3843 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00003844
drha05a7222008-01-19 03:35:58 +00003845 /* Invoke the update-hook if required. */
3846 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
drh856c1032009-06-02 15:21:42 +00003847 zDb = db->aDb[pC->iDb].zName;
3848 zTbl = pOp->p4.z;
3849 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
drha05a7222008-01-19 03:35:58 +00003850 assert( pC->isTable );
3851 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
3852 assert( pC->iDb>=0 );
3853 }
drh5e00f6c2001-09-13 13:46:56 +00003854 break;
3855}
3856
drh98757152008-01-09 23:04:12 +00003857/* Opcode: Delete P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +00003858**
drh5edc3122001-09-13 21:53:09 +00003859** Delete the record at which the P1 cursor is currently pointing.
3860**
3861** The cursor will be left pointing at either the next or the previous
3862** record in the table. If it is left pointing at the next record, then
drhb19a2bc2001-09-16 00:13:26 +00003863** the next Next instruction will be a no-op. Hence it is OK to delete
3864** a record from within an Next loop.
drhc8d30ac2002-04-12 10:08:59 +00003865**
rdcb0c374f2004-02-20 22:53:38 +00003866** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
danielk1977b28af712004-06-21 06:50:26 +00003867** incremented (otherwise not).
drh70ce3f02003-04-15 19:22:22 +00003868**
drh91fd4d42008-01-19 20:11:25 +00003869** P1 must not be pseudo-table. It has to be a real table with
3870** multiple rows.
3871**
3872** If P4 is not NULL, then it is the name of the table that P1 is
3873** pointing to. The update hook will be invoked, if it exists.
3874** If P4 is not NULL then the P1 cursor must have been positioned
3875** using OP_NotFound prior to invoking this opcode.
drh5e00f6c2001-09-13 13:46:56 +00003876*/
drh9cbf3422008-01-17 16:22:13 +00003877case OP_Delete: {
drh856c1032009-06-02 15:21:42 +00003878 i64 iKey;
drhdfe88ec2008-11-03 20:55:06 +00003879 VdbeCursor *pC;
drh91fd4d42008-01-19 20:11:25 +00003880
drh856c1032009-06-02 15:21:42 +00003881 iKey = 0;
drh653b82a2009-06-22 11:10:47 +00003882 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3883 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00003884 assert( pC!=0 );
drh91fd4d42008-01-19 20:11:25 +00003885 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
danielk197794eb6a12005-12-15 15:22:08 +00003886
drh91fd4d42008-01-19 20:11:25 +00003887 /* If the update-hook will be invoked, set iKey to the rowid of the
3888 ** row being deleted.
3889 */
3890 if( db->xUpdateCallback && pOp->p4.z ){
3891 assert( pC->isTable );
3892 assert( pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */
3893 iKey = pC->lastRowid;
3894 }
danielk197794eb6a12005-12-15 15:22:08 +00003895
drh9a65f2c2009-06-22 19:05:40 +00003896 /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
3897 ** OP_Column on the same table without any intervening operations that
3898 ** might move or invalidate the cursor. Hence cursor pC is always pointing
3899 ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
3900 ** below is always a no-op and cannot fail. We will run it anyhow, though,
3901 ** to guard against future changes to the code generator.
3902 **/
3903 assert( pC->deferredMoveto==0 );
drh91fd4d42008-01-19 20:11:25 +00003904 rc = sqlite3VdbeCursorMoveto(pC);
drh9a65f2c2009-06-22 19:05:40 +00003905 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
3906
drh7f751222009-03-17 22:33:00 +00003907 sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
drh91fd4d42008-01-19 20:11:25 +00003908 rc = sqlite3BtreeDelete(pC->pCursor);
drh91fd4d42008-01-19 20:11:25 +00003909 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00003910
drh91fd4d42008-01-19 20:11:25 +00003911 /* Invoke the update-hook if required. */
3912 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
3913 const char *zDb = db->aDb[pC->iDb].zName;
3914 const char *zTbl = pOp->p4.z;
3915 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
3916 assert( pC->iDb>=0 );
drh5e00f6c2001-09-13 13:46:56 +00003917 }
danielk1977b28af712004-06-21 06:50:26 +00003918 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
rdcb0c374f2004-02-20 22:53:38 +00003919 break;
3920}
drhb7f1d9a2009-09-08 02:27:58 +00003921/* Opcode: ResetCount * * * * *
rdcb0c374f2004-02-20 22:53:38 +00003922**
drhb7f1d9a2009-09-08 02:27:58 +00003923** The value of the change counter is copied to the database handle
3924** change counter (returned by subsequent calls to sqlite3_changes()).
3925** Then the VMs internal change counter resets to 0.
3926** This is used by trigger programs.
rdcb0c374f2004-02-20 22:53:38 +00003927*/
drh9cbf3422008-01-17 16:22:13 +00003928case OP_ResetCount: {
drhb7f1d9a2009-09-08 02:27:58 +00003929 sqlite3VdbeSetChanges(db, p->nChange);
danielk1977b28af712004-06-21 06:50:26 +00003930 p->nChange = 0;
drh5e00f6c2001-09-13 13:46:56 +00003931 break;
3932}
3933
drh98757152008-01-09 23:04:12 +00003934/* Opcode: RowData P1 P2 * * *
drh70ce3f02003-04-15 19:22:22 +00003935**
drh98757152008-01-09 23:04:12 +00003936** Write into register P2 the complete row data for cursor P1.
3937** There is no interpretation of the data.
3938** It is just copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00003939** it is found in the database file.
drh70ce3f02003-04-15 19:22:22 +00003940**
drhde4fcfd2008-01-19 23:50:26 +00003941** If the P1 cursor must be pointing to a valid row (not a NULL row)
3942** of a real table, not a pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00003943*/
drh98757152008-01-09 23:04:12 +00003944/* Opcode: RowKey P1 P2 * * *
drh143f3c42004-01-07 20:37:52 +00003945**
drh98757152008-01-09 23:04:12 +00003946** Write into register P2 the complete row key for cursor P1.
3947** There is no interpretation of the data.
drh9cbf3422008-01-17 16:22:13 +00003948** The key is copied onto the P3 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00003949** it is found in the database file.
drh143f3c42004-01-07 20:37:52 +00003950**
drhde4fcfd2008-01-19 23:50:26 +00003951** If the P1 cursor must be pointing to a valid row (not a NULL row)
3952** of a real table, not a pseudo-table.
drh143f3c42004-01-07 20:37:52 +00003953*/
danielk1977a7a8e142008-02-13 18:25:27 +00003954case OP_RowKey:
3955case OP_RowData: {
drhdfe88ec2008-11-03 20:55:06 +00003956 VdbeCursor *pC;
drhde4fcfd2008-01-19 23:50:26 +00003957 BtCursor *pCrsr;
danielk1977e0d4b062004-06-28 01:11:46 +00003958 u32 n;
drh856c1032009-06-02 15:21:42 +00003959 i64 n64;
drh70ce3f02003-04-15 19:22:22 +00003960
drha6c2ed92009-11-14 23:22:23 +00003961 pOut = &aMem[pOp->p2];
danielk1977a7a8e142008-02-13 18:25:27 +00003962
drhf0863fe2005-06-12 21:35:51 +00003963 /* Note that RowKey and RowData are really exactly the same instruction */
drh653b82a2009-06-22 11:10:47 +00003964 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3965 pC = p->apCsr[pOp->p1];
drhf0863fe2005-06-12 21:35:51 +00003966 assert( pC->isTable || pOp->opcode==OP_RowKey );
3967 assert( pC->isIndex || pOp->opcode==OP_RowData );
drh4774b132004-06-12 20:12:51 +00003968 assert( pC!=0 );
drhde4fcfd2008-01-19 23:50:26 +00003969 assert( pC->nullRow==0 );
drh3e9ca092009-09-08 01:14:48 +00003970 assert( pC->pseudoTableReg==0 );
drhde4fcfd2008-01-19 23:50:26 +00003971 assert( pC->pCursor!=0 );
3972 pCrsr = pC->pCursor;
drhea8ffdf2009-07-22 00:35:23 +00003973 assert( sqlite3BtreeCursorIsValid(pCrsr) );
drh9a65f2c2009-06-22 19:05:40 +00003974
3975 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
3976 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
3977 ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always
3978 ** a no-op and can never fail. But we leave it in place as a safety.
3979 */
3980 assert( pC->deferredMoveto==0 );
drhde4fcfd2008-01-19 23:50:26 +00003981 rc = sqlite3VdbeCursorMoveto(pC);
drh9a65f2c2009-06-22 19:05:40 +00003982 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
3983
drhde4fcfd2008-01-19 23:50:26 +00003984 if( pC->isIndex ){
drhde4fcfd2008-01-19 23:50:26 +00003985 assert( !pC->isTable );
drhc27ae612009-07-14 18:35:44 +00003986 rc = sqlite3BtreeKeySize(pCrsr, &n64);
3987 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
drhbb4957f2008-03-20 14:03:29 +00003988 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhde4fcfd2008-01-19 23:50:26 +00003989 goto too_big;
drh70ce3f02003-04-15 19:22:22 +00003990 }
drhbfb19dc2009-06-05 16:46:53 +00003991 n = (u32)n64;
drhde4fcfd2008-01-19 23:50:26 +00003992 }else{
drhc27ae612009-07-14 18:35:44 +00003993 rc = sqlite3BtreeDataSize(pCrsr, &n);
drhea8ffdf2009-07-22 00:35:23 +00003994 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
shane75ac1de2009-06-09 18:58:52 +00003995 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00003996 goto too_big;
3997 }
drhde4fcfd2008-01-19 23:50:26 +00003998 }
danielk1977a7a8e142008-02-13 18:25:27 +00003999 if( sqlite3VdbeMemGrow(pOut, n, 0) ){
4000 goto no_mem;
drhde4fcfd2008-01-19 23:50:26 +00004001 }
danielk1977a7a8e142008-02-13 18:25:27 +00004002 pOut->n = n;
4003 MemSetTypeFlag(pOut, MEM_Blob);
drhde4fcfd2008-01-19 23:50:26 +00004004 if( pC->isIndex ){
4005 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4006 }else{
4007 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
drh5e00f6c2001-09-13 13:46:56 +00004008 }
danielk197796cb76f2008-01-04 13:24:28 +00004009 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
drhb7654112008-01-12 12:48:07 +00004010 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00004011 break;
4012}
4013
drh2133d822008-01-03 18:44:59 +00004014/* Opcode: Rowid P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004015**
drh2133d822008-01-03 18:44:59 +00004016** Store in register P2 an integer which is the key of the table entry that
drhbfdc7542008-05-29 03:12:54 +00004017** P1 is currently point to.
drh044925b2009-04-22 17:15:02 +00004018**
4019** P1 can be either an ordinary table or a virtual table. There used to
4020** be a separate OP_VRowid opcode for use with virtual tables, but this
4021** one opcode now works for both table types.
drh5e00f6c2001-09-13 13:46:56 +00004022*/
drh4c583122008-01-04 22:01:03 +00004023case OP_Rowid: { /* out2-prerelease */
drhdfe88ec2008-11-03 20:55:06 +00004024 VdbeCursor *pC;
drhf328bc82004-05-10 23:29:49 +00004025 i64 v;
drh856c1032009-06-02 15:21:42 +00004026 sqlite3_vtab *pVtab;
4027 const sqlite3_module *pModule;
drh5e00f6c2001-09-13 13:46:56 +00004028
drh653b82a2009-06-22 11:10:47 +00004029 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4030 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004031 assert( pC!=0 );
drh3e9ca092009-09-08 01:14:48 +00004032 assert( pC->pseudoTableReg==0 );
drh044925b2009-04-22 17:15:02 +00004033 if( pC->nullRow ){
drh3c657212009-11-17 23:59:58 +00004034 pOut->flags = MEM_Null;
drh044925b2009-04-22 17:15:02 +00004035 break;
4036 }else if( pC->deferredMoveto ){
drh61495262009-04-22 15:32:59 +00004037 v = pC->movetoTarget;
drh044925b2009-04-22 17:15:02 +00004038#ifndef SQLITE_OMIT_VIRTUALTABLE
4039 }else if( pC->pVtabCursor ){
drh044925b2009-04-22 17:15:02 +00004040 pVtab = pC->pVtabCursor->pVtab;
4041 pModule = pVtab->pModule;
4042 assert( pModule->xRowid );
4043 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
4044 rc = pModule->xRowid(pC->pVtabCursor, &v);
4045 sqlite3DbFree(db, p->zErrMsg);
4046 p->zErrMsg = pVtab->zErrMsg;
4047 pVtab->zErrMsg = 0;
4048 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
4049#endif /* SQLITE_OMIT_VIRTUALTABLE */
drh70ce3f02003-04-15 19:22:22 +00004050 }else{
drh6be240e2009-07-14 02:33:02 +00004051 assert( pC->pCursor!=0 );
drh61495262009-04-22 15:32:59 +00004052 rc = sqlite3VdbeCursorMoveto(pC);
4053 if( rc ) goto abort_due_to_error;
4054 if( pC->rowidIsValid ){
4055 v = pC->lastRowid;
drh61495262009-04-22 15:32:59 +00004056 }else{
drhc27ae612009-07-14 18:35:44 +00004057 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
4058 assert( rc==SQLITE_OK ); /* Always so because of CursorMoveto() above */
drh61495262009-04-22 15:32:59 +00004059 }
drh5e00f6c2001-09-13 13:46:56 +00004060 }
drh4c583122008-01-04 22:01:03 +00004061 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004062 break;
4063}
4064
drh9cbf3422008-01-17 16:22:13 +00004065/* Opcode: NullRow P1 * * * *
drh17f71932002-02-21 12:01:27 +00004066**
4067** Move the cursor P1 to a null row. Any OP_Column operations
drh9cbf3422008-01-17 16:22:13 +00004068** that occur while the cursor is on the null row will always
4069** write a NULL.
drh17f71932002-02-21 12:01:27 +00004070*/
drh9cbf3422008-01-17 16:22:13 +00004071case OP_NullRow: {
drhdfe88ec2008-11-03 20:55:06 +00004072 VdbeCursor *pC;
drh17f71932002-02-21 12:01:27 +00004073
drh653b82a2009-06-22 11:10:47 +00004074 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4075 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004076 assert( pC!=0 );
drhd7556d22004-05-14 21:59:40 +00004077 pC->nullRow = 1;
drhf0863fe2005-06-12 21:35:51 +00004078 pC->rowidIsValid = 0;
danielk1977be51a652008-10-08 17:58:48 +00004079 if( pC->pCursor ){
4080 sqlite3BtreeClearCursor(pC->pCursor);
4081 }
drh17f71932002-02-21 12:01:27 +00004082 break;
4083}
4084
drh9cbf3422008-01-17 16:22:13 +00004085/* Opcode: Last P1 P2 * * *
drh9562b552002-02-19 15:00:07 +00004086**
drhf0863fe2005-06-12 21:35:51 +00004087** The next use of the Rowid or Column or Next instruction for P1
drh9562b552002-02-19 15:00:07 +00004088** will refer to the last entry in the database table or index.
4089** If the table or index is empty and P2>0, then jump immediately to P2.
4090** If P2 is 0 or if the table or index is not empty, fall through
4091** to the following instruction.
4092*/
drh9cbf3422008-01-17 16:22:13 +00004093case OP_Last: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004094 VdbeCursor *pC;
drh9562b552002-02-19 15:00:07 +00004095 BtCursor *pCrsr;
drha05a7222008-01-19 03:35:58 +00004096 int res;
drh9562b552002-02-19 15:00:07 +00004097
drh653b82a2009-06-22 11:10:47 +00004098 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4099 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004100 assert( pC!=0 );
drha05a7222008-01-19 03:35:58 +00004101 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004102 if( pCrsr==0 ){
4103 res = 1;
4104 }else{
4105 rc = sqlite3BtreeLast(pCrsr, &res);
4106 }
drh9c1905f2008-12-10 22:32:56 +00004107 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004108 pC->deferredMoveto = 0;
drha7e77062009-01-14 00:55:09 +00004109 pC->rowidIsValid = 0;
drha05a7222008-01-19 03:35:58 +00004110 pC->cacheStatus = CACHE_STALE;
drh9a65f2c2009-06-22 19:05:40 +00004111 if( pOp->p2>0 && res ){
drha05a7222008-01-19 03:35:58 +00004112 pc = pOp->p2 - 1;
drh9562b552002-02-19 15:00:07 +00004113 }
4114 break;
4115}
4116
drh0342b1f2005-09-01 03:07:44 +00004117
drh9cbf3422008-01-17 16:22:13 +00004118/* Opcode: Sort P1 P2 * * *
drh0342b1f2005-09-01 03:07:44 +00004119**
4120** This opcode does exactly the same thing as OP_Rewind except that
4121** it increments an undocumented global variable used for testing.
4122**
4123** Sorting is accomplished by writing records into a sorting index,
4124** then rewinding that index and playing it back from beginning to
4125** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4126** rewinding so that the global variable will be incremented and
4127** regression tests can determine whether or not the optimizer is
4128** correctly optimizing out sorts.
4129*/
drh9cbf3422008-01-17 16:22:13 +00004130case OP_Sort: { /* jump */
drh0f7eb612006-08-08 13:51:43 +00004131#ifdef SQLITE_TEST
drh0342b1f2005-09-01 03:07:44 +00004132 sqlite3_sort_count++;
drh4db38a72005-09-01 12:16:28 +00004133 sqlite3_search_count--;
drh0f7eb612006-08-08 13:51:43 +00004134#endif
drhd1d38482008-10-07 23:46:38 +00004135 p->aCounter[SQLITE_STMTSTATUS_SORT-1]++;
drh0342b1f2005-09-01 03:07:44 +00004136 /* Fall through into OP_Rewind */
4137}
drh9cbf3422008-01-17 16:22:13 +00004138/* Opcode: Rewind P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004139**
drhf0863fe2005-06-12 21:35:51 +00004140** The next use of the Rowid or Column or Next instruction for P1
drh8721ce42001-11-07 14:22:00 +00004141** will refer to the first entry in the database table or index.
4142** If the table or index is empty and P2>0, then jump immediately to P2.
4143** If P2 is 0 or if the table or index is not empty, fall through
4144** to the following instruction.
drh5e00f6c2001-09-13 13:46:56 +00004145*/
drh9cbf3422008-01-17 16:22:13 +00004146case OP_Rewind: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004147 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004148 BtCursor *pCrsr;
drhf4dada72004-05-11 09:57:35 +00004149 int res;
drh5e00f6c2001-09-13 13:46:56 +00004150
drh653b82a2009-06-22 11:10:47 +00004151 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4152 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004153 assert( pC!=0 );
drh70ce3f02003-04-15 19:22:22 +00004154 if( (pCrsr = pC->pCursor)!=0 ){
danielk19774adee202004-05-08 08:23:19 +00004155 rc = sqlite3BtreeFirst(pCrsr, &res);
drh9c1905f2008-12-10 22:32:56 +00004156 pC->atFirst = res==0 ?1:0;
drha11846b2004-01-07 18:52:56 +00004157 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004158 pC->cacheStatus = CACHE_STALE;
drha7e77062009-01-14 00:55:09 +00004159 pC->rowidIsValid = 0;
drh70ce3f02003-04-15 19:22:22 +00004160 }else{
drhf4dada72004-05-11 09:57:35 +00004161 res = 1;
4162 }
drh9c1905f2008-12-10 22:32:56 +00004163 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00004164 assert( pOp->p2>0 && pOp->p2<p->nOp );
4165 if( res ){
drhf4dada72004-05-11 09:57:35 +00004166 pc = pOp->p2 - 1;
drh5e00f6c2001-09-13 13:46:56 +00004167 }
4168 break;
4169}
4170
drh9cbf3422008-01-17 16:22:13 +00004171/* Opcode: Next P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004172**
4173** Advance cursor P1 so that it points to the next key/data pair in its
drh8721ce42001-11-07 14:22:00 +00004174** table or index. If there are no more key/value pairs then fall through
4175** to the following instruction. But if the cursor advance was successful,
4176** jump immediately to P2.
drhc045ec52002-12-04 20:01:06 +00004177**
drh60a713c2008-01-21 16:22:45 +00004178** The P1 cursor must be for a real table, not a pseudo-table.
4179**
drhc045ec52002-12-04 20:01:06 +00004180** See also: Prev
drh8721ce42001-11-07 14:22:00 +00004181*/
drh9cbf3422008-01-17 16:22:13 +00004182/* Opcode: Prev P1 P2 * * *
drhc045ec52002-12-04 20:01:06 +00004183**
4184** Back up cursor P1 so that it points to the previous key/data pair in its
4185** table or index. If there is no previous key/value pairs then fall through
4186** to the following instruction. But if the cursor backup was successful,
4187** jump immediately to P2.
drh60a713c2008-01-21 16:22:45 +00004188**
4189** The P1 cursor must be for a real table, not a pseudo-table.
drhc045ec52002-12-04 20:01:06 +00004190*/
drh9cbf3422008-01-17 16:22:13 +00004191case OP_Prev: /* jump */
4192case OP_Next: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004193 VdbeCursor *pC;
drh8721ce42001-11-07 14:22:00 +00004194 BtCursor *pCrsr;
drha3460582008-07-11 21:02:53 +00004195 int res;
drh8721ce42001-11-07 14:22:00 +00004196
drhcaec2f12003-01-07 02:47:47 +00004197 CHECK_FOR_INTERRUPT;
drh70ce3f02003-04-15 19:22:22 +00004198 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drhd7556d22004-05-14 21:59:40 +00004199 pC = p->apCsr[pOp->p1];
drh72e8fa42007-03-28 14:30:06 +00004200 if( pC==0 ){
4201 break; /* See ticket #2273 */
4202 }
drh60a713c2008-01-21 16:22:45 +00004203 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004204 if( pCrsr==0 ){
4205 pC->nullRow = 1;
4206 break;
4207 }
drha3460582008-07-11 21:02:53 +00004208 res = 1;
4209 assert( pC->deferredMoveto==0 );
4210 rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) :
4211 sqlite3BtreePrevious(pCrsr, &res);
drh9c1905f2008-12-10 22:32:56 +00004212 pC->nullRow = (u8)res;
drha3460582008-07-11 21:02:53 +00004213 pC->cacheStatus = CACHE_STALE;
4214 if( res==0 ){
4215 pc = pOp->p2 - 1;
drhd1d38482008-10-07 23:46:38 +00004216 if( pOp->p5 ) p->aCounter[pOp->p5-1]++;
drh0f7eb612006-08-08 13:51:43 +00004217#ifdef SQLITE_TEST
drha3460582008-07-11 21:02:53 +00004218 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00004219#endif
drh8721ce42001-11-07 14:22:00 +00004220 }
drhf0863fe2005-06-12 21:35:51 +00004221 pC->rowidIsValid = 0;
drh8721ce42001-11-07 14:22:00 +00004222 break;
4223}
4224
danielk1977de630352009-05-04 11:42:29 +00004225/* Opcode: IdxInsert P1 P2 P3 * P5
drh5e00f6c2001-09-13 13:46:56 +00004226**
drhaa9b8962008-01-08 02:57:55 +00004227** Register P2 holds a SQL index key made using the
drh9437bd22009-02-01 00:29:56 +00004228** MakeRecord instructions. This opcode writes that key
drhee32e0a2006-01-10 19:45:49 +00004229** into the index P1. Data for the entry is nil.
drh717e6402001-09-27 03:22:32 +00004230**
drhaa9b8962008-01-08 02:57:55 +00004231** P3 is a flag that provides a hint to the b-tree layer that this
drhe4d90812007-03-29 05:51:49 +00004232** insert is likely to be an append.
4233**
drhf0863fe2005-06-12 21:35:51 +00004234** This instruction only works for indices. The equivalent instruction
4235** for tables is OP_Insert.
drh5e00f6c2001-09-13 13:46:56 +00004236*/
drh9cbf3422008-01-17 16:22:13 +00004237case OP_IdxInsert: { /* in2 */
drhdfe88ec2008-11-03 20:55:06 +00004238 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004239 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00004240 int nKey;
4241 const char *zKey;
4242
drh653b82a2009-06-22 11:10:47 +00004243 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4244 pC = p->apCsr[pOp->p1];
4245 assert( pC!=0 );
drh3c657212009-11-17 23:59:58 +00004246 pIn2 = &aMem[pOp->p2];
drhaa9b8962008-01-08 02:57:55 +00004247 assert( pIn2->flags & MEM_Blob );
drh653b82a2009-06-22 11:10:47 +00004248 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004249 if( ALWAYS(pCrsr!=0) ){
drhf0863fe2005-06-12 21:35:51 +00004250 assert( pC->isTable==0 );
drhaa9b8962008-01-08 02:57:55 +00004251 rc = ExpandBlob(pIn2);
danielk1977d908f5a2007-05-11 07:08:28 +00004252 if( rc==SQLITE_OK ){
drh856c1032009-06-02 15:21:42 +00004253 nKey = pIn2->n;
4254 zKey = pIn2->z;
danielk1977de630352009-05-04 11:42:29 +00004255 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3,
4256 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
4257 );
danielk1977d908f5a2007-05-11 07:08:28 +00004258 assert( pC->deferredMoveto==0 );
4259 pC->cacheStatus = CACHE_STALE;
4260 }
drh5e00f6c2001-09-13 13:46:56 +00004261 }
drh5e00f6c2001-09-13 13:46:56 +00004262 break;
4263}
4264
drhd1d38482008-10-07 23:46:38 +00004265/* Opcode: IdxDelete P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00004266**
drhe14006d2008-03-25 17:23:32 +00004267** The content of P3 registers starting at register P2 form
4268** an unpacked index key. This opcode removes that entry from the
danielk1977a7a8e142008-02-13 18:25:27 +00004269** index opened by cursor P1.
drh5e00f6c2001-09-13 13:46:56 +00004270*/
drhe14006d2008-03-25 17:23:32 +00004271case OP_IdxDelete: {
drhdfe88ec2008-11-03 20:55:06 +00004272 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00004273 BtCursor *pCrsr;
drh9a65f2c2009-06-22 19:05:40 +00004274 int res;
4275 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00004276
drhe14006d2008-03-25 17:23:32 +00004277 assert( pOp->p3>0 );
danielk19776ab3a2e2009-02-19 14:39:25 +00004278 assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 );
drh653b82a2009-06-22 11:10:47 +00004279 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4280 pC = p->apCsr[pOp->p1];
4281 assert( pC!=0 );
4282 pCrsr = pC->pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004283 if( ALWAYS(pCrsr!=0) ){
drhe14006d2008-03-25 17:23:32 +00004284 r.pKeyInfo = pC->pKeyInfo;
drh9c1905f2008-12-10 22:32:56 +00004285 r.nField = (u16)pOp->p3;
drhe63d9992008-08-13 19:11:48 +00004286 r.flags = 0;
drha6c2ed92009-11-14 23:22:23 +00004287 r.aMem = &aMem[pOp->p2];
drhe63d9992008-08-13 19:11:48 +00004288 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
danielk197775bab7d2006-01-23 13:09:45 +00004289 if( rc==SQLITE_OK && res==0 ){
danielk19774adee202004-05-08 08:23:19 +00004290 rc = sqlite3BtreeDelete(pCrsr);
drh5e00f6c2001-09-13 13:46:56 +00004291 }
drh9188b382004-05-14 21:12:22 +00004292 assert( pC->deferredMoveto==0 );
drh76873ab2006-01-07 18:48:26 +00004293 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004294 }
drh5e00f6c2001-09-13 13:46:56 +00004295 break;
4296}
4297
drh2133d822008-01-03 18:44:59 +00004298/* Opcode: IdxRowid P1 P2 * * *
drh8721ce42001-11-07 14:22:00 +00004299**
drh2133d822008-01-03 18:44:59 +00004300** Write into register P2 an integer which is the last entry in the record at
drhf0863fe2005-06-12 21:35:51 +00004301** the end of the index key pointed to by cursor P1. This integer should be
4302** the rowid of the table entry to which this index entry points.
drh8721ce42001-11-07 14:22:00 +00004303**
drh9437bd22009-02-01 00:29:56 +00004304** See also: Rowid, MakeRecord.
drh8721ce42001-11-07 14:22:00 +00004305*/
drh4c583122008-01-04 22:01:03 +00004306case OP_IdxRowid: { /* out2-prerelease */
drh8721ce42001-11-07 14:22:00 +00004307 BtCursor *pCrsr;
drhdfe88ec2008-11-03 20:55:06 +00004308 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004309 i64 rowid;
drh8721ce42001-11-07 14:22:00 +00004310
drh653b82a2009-06-22 11:10:47 +00004311 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4312 pC = p->apCsr[pOp->p1];
4313 assert( pC!=0 );
4314 pCrsr = pC->pCursor;
drh3c657212009-11-17 23:59:58 +00004315 pOut->flags = MEM_Null;
drh9a65f2c2009-06-22 19:05:40 +00004316 if( ALWAYS(pCrsr!=0) ){
danielk1977c4d201c2009-04-07 09:16:56 +00004317 rc = sqlite3VdbeCursorMoveto(pC);
drh9a65f2c2009-06-22 19:05:40 +00004318 if( NEVER(rc) ) goto abort_due_to_error;
drhd7556d22004-05-14 21:59:40 +00004319 assert( pC->deferredMoveto==0 );
drhf0863fe2005-06-12 21:35:51 +00004320 assert( pC->isTable==0 );
drh4c583122008-01-04 22:01:03 +00004321 if( !pC->nullRow ){
drh35f6b932009-06-23 14:15:04 +00004322 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
danielk19771d850a72004-05-31 08:26:49 +00004323 if( rc!=SQLITE_OK ){
4324 goto abort_due_to_error;
4325 }
drh4c583122008-01-04 22:01:03 +00004326 pOut->u.i = rowid;
drh3c657212009-11-17 23:59:58 +00004327 pOut->flags = MEM_Int;
danielk19773d1bfea2004-05-14 11:00:53 +00004328 }
drh8721ce42001-11-07 14:22:00 +00004329 }
4330 break;
4331}
4332
danielk197761dd5832008-04-18 11:31:12 +00004333/* Opcode: IdxGE P1 P2 P3 P4 P5
drh8721ce42001-11-07 14:22:00 +00004334**
danielk197761dd5832008-04-18 11:31:12 +00004335** The P4 register values beginning with P3 form an unpacked index
4336** key that omits the ROWID. Compare this key value against the index
4337** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00004338**
danielk197761dd5832008-04-18 11:31:12 +00004339** If the P1 index entry is greater than or equal to the key value
4340** then jump to P2. Otherwise fall through to the next instruction.
drh772ae622004-05-19 13:13:08 +00004341**
danielk197761dd5832008-04-18 11:31:12 +00004342** If P5 is non-zero then the key value is increased by an epsilon
4343** prior to the comparison. This make the opcode work like IdxGT except
4344** that if the key from register P3 is a prefix of the key in the cursor,
4345** the result is false whereas it would be true with IdxGT.
drh8721ce42001-11-07 14:22:00 +00004346*/
drh98757152008-01-09 23:04:12 +00004347/* Opcode: IdxLT P1 P2 P3 * P5
drhc045ec52002-12-04 20:01:06 +00004348**
danielk197761dd5832008-04-18 11:31:12 +00004349** The P4 register values beginning with P3 form an unpacked index
4350** key that omits the ROWID. Compare this key value against the index
4351** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00004352**
danielk197761dd5832008-04-18 11:31:12 +00004353** If the P1 index entry is less than the key value then jump to P2.
4354** Otherwise fall through to the next instruction.
drh772ae622004-05-19 13:13:08 +00004355**
danielk197761dd5832008-04-18 11:31:12 +00004356** If P5 is non-zero then the key value is increased by an epsilon prior
4357** to the comparison. This makes the opcode work like IdxLE.
drhc045ec52002-12-04 20:01:06 +00004358*/
drh93952eb2009-11-13 19:43:43 +00004359case OP_IdxLT: /* jump */
4360case OP_IdxGE: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004361 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004362 int res;
4363 UnpackedRecord r;
drh8721ce42001-11-07 14:22:00 +00004364
drh653b82a2009-06-22 11:10:47 +00004365 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4366 pC = p->apCsr[pOp->p1];
4367 assert( pC!=0 );
drh9a65f2c2009-06-22 19:05:40 +00004368 if( ALWAYS(pC->pCursor!=0) ){
drhd7556d22004-05-14 21:59:40 +00004369 assert( pC->deferredMoveto==0 );
drha05a7222008-01-19 03:35:58 +00004370 assert( pOp->p5==0 || pOp->p5==1 );
danielk197761dd5832008-04-18 11:31:12 +00004371 assert( pOp->p4type==P4_INT32 );
4372 r.pKeyInfo = pC->pKeyInfo;
drh9c1905f2008-12-10 22:32:56 +00004373 r.nField = (u16)pOp->p4.i;
drhe63d9992008-08-13 19:11:48 +00004374 if( pOp->p5 ){
4375 r.flags = UNPACKED_INCRKEY | UNPACKED_IGNORE_ROWID;
4376 }else{
4377 r.flags = UNPACKED_IGNORE_ROWID;
4378 }
drha6c2ed92009-11-14 23:22:23 +00004379 r.aMem = &aMem[pOp->p3];
drhe63d9992008-08-13 19:11:48 +00004380 rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res);
drhc045ec52002-12-04 20:01:06 +00004381 if( pOp->opcode==OP_IdxLT ){
4382 res = -res;
drha05a7222008-01-19 03:35:58 +00004383 }else{
4384 assert( pOp->opcode==OP_IdxGE );
drh8721ce42001-11-07 14:22:00 +00004385 res++;
4386 }
4387 if( res>0 ){
4388 pc = pOp->p2 - 1 ;
4389 }
4390 }
4391 break;
4392}
4393
drh98757152008-01-09 23:04:12 +00004394/* Opcode: Destroy P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00004395**
4396** Delete an entire database table or index whose root page in the database
4397** file is given by P1.
drhb19a2bc2001-09-16 00:13:26 +00004398**
drh98757152008-01-09 23:04:12 +00004399** The table being destroyed is in the main database file if P3==0. If
4400** P3==1 then the table to be clear is in the auxiliary database file
drhf57b3392001-10-08 13:22:32 +00004401** that is used to store tables create using CREATE TEMPORARY TABLE.
4402**
drh205f48e2004-11-05 00:43:11 +00004403** If AUTOVACUUM is enabled then it is possible that another root page
4404** might be moved into the newly deleted root page in order to keep all
4405** root pages contiguous at the beginning of the database. The former
4406** value of the root page that moved - its value before the move occurred -
drh9cbf3422008-01-17 16:22:13 +00004407** is stored in register P2. If no page
drh98757152008-01-09 23:04:12 +00004408** movement was required (because the table being dropped was already
4409** the last one in the database) then a zero is stored in register P2.
4410** If AUTOVACUUM is disabled then a zero is stored in register P2.
drh205f48e2004-11-05 00:43:11 +00004411**
drhb19a2bc2001-09-16 00:13:26 +00004412** See also: Clear
drh5e00f6c2001-09-13 13:46:56 +00004413*/
drh98757152008-01-09 23:04:12 +00004414case OP_Destroy: { /* out2-prerelease */
danielk1977a0bf2652004-11-04 14:30:04 +00004415 int iMoved;
drh3765df42006-06-28 18:18:09 +00004416 int iCnt;
drh5a91a532007-01-05 16:39:43 +00004417 Vdbe *pVdbe;
drh856c1032009-06-02 15:21:42 +00004418 int iDb;
4419#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk1977212b2182006-06-23 14:32:08 +00004420 iCnt = 0;
drh856c1032009-06-02 15:21:42 +00004421 for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
danielk1977212b2182006-06-23 14:32:08 +00004422 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
4423 iCnt++;
4424 }
4425 }
drh3765df42006-06-28 18:18:09 +00004426#else
4427 iCnt = db->activeVdbeCnt;
danielk1977212b2182006-06-23 14:32:08 +00004428#endif
drh3c657212009-11-17 23:59:58 +00004429 pOut->flags = MEM_Null;
danielk1977212b2182006-06-23 14:32:08 +00004430 if( iCnt>1 ){
danielk1977e6efa742004-11-10 11:55:10 +00004431 rc = SQLITE_LOCKED;
drh77658e22007-12-04 16:54:52 +00004432 p->errorAction = OE_Abort;
danielk1977e6efa742004-11-10 11:55:10 +00004433 }else{
drh856c1032009-06-02 15:21:42 +00004434 iDb = pOp->p3;
danielk1977212b2182006-06-23 14:32:08 +00004435 assert( iCnt==1 );
drh98757152008-01-09 23:04:12 +00004436 assert( (p->btreeMask & (1<<iDb))!=0 );
4437 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
drh3c657212009-11-17 23:59:58 +00004438 pOut->flags = MEM_Int;
drh98757152008-01-09 23:04:12 +00004439 pOut->u.i = iMoved;
drh3765df42006-06-28 18:18:09 +00004440#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977e6efa742004-11-10 11:55:10 +00004441 if( rc==SQLITE_OK && iMoved!=0 ){
drh98757152008-01-09 23:04:12 +00004442 sqlite3RootPageMoved(&db->aDb[iDb], iMoved, pOp->p1);
drh32783152009-11-20 15:02:34 +00004443 resetSchemaOnFault = 1;
danielk1977e6efa742004-11-10 11:55:10 +00004444 }
drh3765df42006-06-28 18:18:09 +00004445#endif
danielk1977a0bf2652004-11-04 14:30:04 +00004446 }
drh5e00f6c2001-09-13 13:46:56 +00004447 break;
4448}
4449
danielk1977c7af4842008-10-27 13:59:33 +00004450/* Opcode: Clear P1 P2 P3
drh5edc3122001-09-13 21:53:09 +00004451**
4452** Delete all contents of the database table or index whose root page
drhb19a2bc2001-09-16 00:13:26 +00004453** in the database file is given by P1. But, unlike Destroy, do not
drh5edc3122001-09-13 21:53:09 +00004454** remove the table or index from the database file.
drhb19a2bc2001-09-16 00:13:26 +00004455**
drhf57b3392001-10-08 13:22:32 +00004456** The table being clear is in the main database file if P2==0. If
4457** P2==1 then the table to be clear is in the auxiliary database file
4458** that is used to store tables create using CREATE TEMPORARY TABLE.
4459**
shanebe217792009-03-05 04:20:31 +00004460** If the P3 value is non-zero, then the table referred to must be an
danielk1977c7af4842008-10-27 13:59:33 +00004461** intkey table (an SQL table, not an index). In this case the row change
4462** count is incremented by the number of rows in the table being cleared.
4463** If P3 is greater than zero, then the value stored in register P3 is
4464** also incremented by the number of rows in the table being cleared.
4465**
drhb19a2bc2001-09-16 00:13:26 +00004466** See also: Destroy
drh5edc3122001-09-13 21:53:09 +00004467*/
drh9cbf3422008-01-17 16:22:13 +00004468case OP_Clear: {
drh856c1032009-06-02 15:21:42 +00004469 int nChange;
4470
4471 nChange = 0;
drhfb982642007-08-30 01:19:59 +00004472 assert( (p->btreeMask & (1<<pOp->p2))!=0 );
danielk1977c7af4842008-10-27 13:59:33 +00004473 rc = sqlite3BtreeClearTable(
4474 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
4475 );
4476 if( pOp->p3 ){
4477 p->nChange += nChange;
4478 if( pOp->p3>0 ){
drha6c2ed92009-11-14 23:22:23 +00004479 aMem[pOp->p3].u.i += nChange;
danielk1977c7af4842008-10-27 13:59:33 +00004480 }
4481 }
drh5edc3122001-09-13 21:53:09 +00004482 break;
4483}
4484
drh4c583122008-01-04 22:01:03 +00004485/* Opcode: CreateTable P1 P2 * * *
drh5b2fd562001-09-13 15:21:31 +00004486**
drh4c583122008-01-04 22:01:03 +00004487** Allocate a new table in the main database file if P1==0 or in the
4488** auxiliary database file if P1==1 or in an attached database if
4489** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00004490** register P2
drh5b2fd562001-09-13 15:21:31 +00004491**
drhc6b52df2002-01-04 03:09:29 +00004492** The difference between a table and an index is this: A table must
4493** have a 4-byte integer key and can have arbitrary data. An index
4494** has an arbitrary key but no data.
4495**
drhb19a2bc2001-09-16 00:13:26 +00004496** See also: CreateIndex
drh5b2fd562001-09-13 15:21:31 +00004497*/
drh4c583122008-01-04 22:01:03 +00004498/* Opcode: CreateIndex P1 P2 * * *
drhf57b3392001-10-08 13:22:32 +00004499**
drh4c583122008-01-04 22:01:03 +00004500** Allocate a new index in the main database file if P1==0 or in the
4501** auxiliary database file if P1==1 or in an attached database if
4502** P1>1. Write the root page number of the new table into
drh9cbf3422008-01-17 16:22:13 +00004503** register P2.
drhf57b3392001-10-08 13:22:32 +00004504**
drhc6b52df2002-01-04 03:09:29 +00004505** See documentation on OP_CreateTable for additional information.
drhf57b3392001-10-08 13:22:32 +00004506*/
drh4c583122008-01-04 22:01:03 +00004507case OP_CreateIndex: /* out2-prerelease */
4508case OP_CreateTable: { /* out2-prerelease */
drh856c1032009-06-02 15:21:42 +00004509 int pgno;
drhf328bc82004-05-10 23:29:49 +00004510 int flags;
drh234c39d2004-07-24 03:30:47 +00004511 Db *pDb;
drh856c1032009-06-02 15:21:42 +00004512
4513 pgno = 0;
drh234c39d2004-07-24 03:30:47 +00004514 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhfb982642007-08-30 01:19:59 +00004515 assert( (p->btreeMask & (1<<pOp->p1))!=0 );
drh234c39d2004-07-24 03:30:47 +00004516 pDb = &db->aDb[pOp->p1];
4517 assert( pDb->pBt!=0 );
drhc6b52df2002-01-04 03:09:29 +00004518 if( pOp->opcode==OP_CreateTable ){
danielk197794076252004-05-14 12:16:11 +00004519 /* flags = BTREE_INTKEY; */
4520 flags = BTREE_LEAFDATA|BTREE_INTKEY;
drhc6b52df2002-01-04 03:09:29 +00004521 }else{
drhf328bc82004-05-10 23:29:49 +00004522 flags = BTREE_ZERODATA;
drhc6b52df2002-01-04 03:09:29 +00004523 }
drh234c39d2004-07-24 03:30:47 +00004524 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
drh88a003e2008-12-11 16:17:03 +00004525 pOut->u.i = pgno;
drh5b2fd562001-09-13 15:21:31 +00004526 break;
4527}
4528
drh98757152008-01-09 23:04:12 +00004529/* Opcode: ParseSchema P1 P2 * P4 *
drh234c39d2004-07-24 03:30:47 +00004530**
4531** Read and parse all entries from the SQLITE_MASTER table of database P1
drh66a51672008-01-03 00:01:23 +00004532** that match the WHERE clause P4. P2 is the "force" flag. Always do
drh3c23a882007-01-09 14:01:13 +00004533** the parsing if P2 is true. If P2 is false, then this routine is a
4534** no-op if the schema is not currently loaded. In other words, if P2
4535** is false, the SQLITE_MASTER table is only parsed if the rest of the
4536** schema is already loaded into the symbol table.
drh234c39d2004-07-24 03:30:47 +00004537**
4538** This opcode invokes the parser to create a new virtual machine,
shane21e7feb2008-05-30 15:59:49 +00004539** then runs the new virtual machine. It is thus a re-entrant opcode.
drh234c39d2004-07-24 03:30:47 +00004540*/
drh9cbf3422008-01-17 16:22:13 +00004541case OP_ParseSchema: {
drh856c1032009-06-02 15:21:42 +00004542 int iDb;
4543 const char *zMaster;
4544 char *zSql;
4545 InitData initData;
4546
4547 iDb = pOp->p1;
drh234c39d2004-07-24 03:30:47 +00004548 assert( iDb>=0 && iDb<db->nDb );
danielk1977a8bbef82009-03-23 17:11:26 +00004549
4550 /* If pOp->p2 is 0, then this opcode is being executed to read a
4551 ** single row, for example the row corresponding to a new index
4552 ** created by this VDBE, from the sqlite_master table. It only
4553 ** does this if the corresponding in-memory schema is currently
4554 ** loaded. Otherwise, the new index definition can be loaded along
4555 ** with the rest of the schema when it is required.
4556 **
4557 ** Although the mutex on the BtShared object that corresponds to
4558 ** database iDb (the database containing the sqlite_master table
4559 ** read by this instruction) is currently held, it is necessary to
4560 ** obtain the mutexes on all attached databases before checking if
4561 ** the schema of iDb is loaded. This is because, at the start of
4562 ** the sqlite3_exec() call below, SQLite will invoke
4563 ** sqlite3BtreeEnterAll(). If all mutexes are not already held, the
4564 ** iDb mutex may be temporarily released to avoid deadlock. If
4565 ** this happens, then some other thread may delete the in-memory
4566 ** schema of database iDb before the SQL statement runs. The schema
4567 ** will not be reloaded becuase the db->init.busy flag is set. This
4568 ** can result in a "no such table: sqlite_master" or "malformed
4569 ** database schema" error being returned to the user.
4570 */
4571 assert( sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
4572 sqlite3BtreeEnterAll(db);
drh46bbabd2009-06-24 13:16:03 +00004573 if( pOp->p2 || DbHasProperty(db, iDb, DB_SchemaLoaded) ){
drh856c1032009-06-02 15:21:42 +00004574 zMaster = SCHEMA_TABLE(iDb);
danielk1977a8bbef82009-03-23 17:11:26 +00004575 initData.db = db;
4576 initData.iDb = pOp->p1;
4577 initData.pzErrMsg = &p->zErrMsg;
4578 zSql = sqlite3MPrintf(db,
drh6a9c64b2010-01-12 23:54:14 +00004579 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
danielk1977a8bbef82009-03-23 17:11:26 +00004580 db->aDb[iDb].zName, zMaster, pOp->p4.z);
4581 if( zSql==0 ){
4582 rc = SQLITE_NOMEM;
4583 }else{
4584 (void)sqlite3SafetyOff(db);
4585 assert( db->init.busy==0 );
4586 db->init.busy = 1;
4587 initData.rc = SQLITE_OK;
4588 assert( !db->mallocFailed );
4589 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
4590 if( rc==SQLITE_OK ) rc = initData.rc;
4591 sqlite3DbFree(db, zSql);
4592 db->init.busy = 0;
4593 (void)sqlite3SafetyOn(db);
4594 }
drh3c23a882007-01-09 14:01:13 +00004595 }
danielk1977a8bbef82009-03-23 17:11:26 +00004596 sqlite3BtreeLeaveAll(db);
danielk1977261919c2005-12-06 12:52:59 +00004597 if( rc==SQLITE_NOMEM ){
danielk1977261919c2005-12-06 12:52:59 +00004598 goto no_mem;
4599 }
drh234c39d2004-07-24 03:30:47 +00004600 break;
4601}
4602
drh8bfdf722009-06-19 14:06:03 +00004603#if !defined(SQLITE_OMIT_ANALYZE)
drh98757152008-01-09 23:04:12 +00004604/* Opcode: LoadAnalysis P1 * * * *
drh497e4462005-07-23 03:18:40 +00004605**
4606** Read the sqlite_stat1 table for database P1 and load the content
4607** of that table into the internal index hash table. This will cause
4608** the analysis to be used when preparing all subsequent queries.
4609*/
drh9cbf3422008-01-17 16:22:13 +00004610case OP_LoadAnalysis: {
drh856c1032009-06-02 15:21:42 +00004611 assert( pOp->p1>=0 && pOp->p1<db->nDb );
4612 rc = sqlite3AnalysisLoad(db, pOp->p1);
drh497e4462005-07-23 03:18:40 +00004613 break;
4614}
drh8bfdf722009-06-19 14:06:03 +00004615#endif /* !defined(SQLITE_OMIT_ANALYZE) */
drh497e4462005-07-23 03:18:40 +00004616
drh98757152008-01-09 23:04:12 +00004617/* Opcode: DropTable P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00004618**
4619** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00004620** the table named P4 in database P1. This is called after a table
drh956bc922004-07-24 17:38:29 +00004621** is dropped in order to keep the internal representation of the
4622** schema consistent with what is on disk.
4623*/
drh9cbf3422008-01-17 16:22:13 +00004624case OP_DropTable: {
danielk19772dca4ac2008-01-03 11:50:29 +00004625 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00004626 break;
4627}
4628
drh98757152008-01-09 23:04:12 +00004629/* Opcode: DropIndex P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00004630**
4631** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00004632** the index named P4 in database P1. This is called after an index
drh956bc922004-07-24 17:38:29 +00004633** is dropped in order to keep the internal representation of the
4634** schema consistent with what is on disk.
4635*/
drh9cbf3422008-01-17 16:22:13 +00004636case OP_DropIndex: {
danielk19772dca4ac2008-01-03 11:50:29 +00004637 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00004638 break;
4639}
4640
drh98757152008-01-09 23:04:12 +00004641/* Opcode: DropTrigger P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00004642**
4643** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00004644** the trigger named P4 in database P1. This is called after a trigger
drh956bc922004-07-24 17:38:29 +00004645** is dropped in order to keep the internal representation of the
4646** schema consistent with what is on disk.
4647*/
drh9cbf3422008-01-17 16:22:13 +00004648case OP_DropTrigger: {
danielk19772dca4ac2008-01-03 11:50:29 +00004649 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00004650 break;
4651}
4652
drh234c39d2004-07-24 03:30:47 +00004653
drhb7f91642004-10-31 02:22:47 +00004654#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh98757152008-01-09 23:04:12 +00004655/* Opcode: IntegrityCk P1 P2 P3 * P5
drh5e00f6c2001-09-13 13:46:56 +00004656**
drh98757152008-01-09 23:04:12 +00004657** Do an analysis of the currently open database. Store in
4658** register P1 the text of an error message describing any problems.
4659** If no problems are found, store a NULL in register P1.
drh1dcdbc02007-01-27 02:24:54 +00004660**
drh98757152008-01-09 23:04:12 +00004661** The register P3 contains the maximum number of allowed errors.
drh60a713c2008-01-21 16:22:45 +00004662** At most reg(P3) errors will be reported.
4663** In other words, the analysis stops as soon as reg(P1) errors are
4664** seen. Reg(P1) is updated with the number of errors remaining.
drhb19a2bc2001-09-16 00:13:26 +00004665**
drh79069752004-05-22 21:30:40 +00004666** The root page numbers of all tables in the database are integer
drh60a713c2008-01-21 16:22:45 +00004667** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
drh98757152008-01-09 23:04:12 +00004668** total.
drh21504322002-06-25 13:16:02 +00004669**
drh98757152008-01-09 23:04:12 +00004670** If P5 is not zero, the check is done on the auxiliary database
drh21504322002-06-25 13:16:02 +00004671** file, not the main database file.
drh1dd397f2002-02-03 03:34:07 +00004672**
drh1dcdbc02007-01-27 02:24:54 +00004673** This opcode is used to implement the integrity_check pragma.
drh5e00f6c2001-09-13 13:46:56 +00004674*/
drhaaab5722002-02-19 13:39:21 +00004675case OP_IntegrityCk: {
drh98757152008-01-09 23:04:12 +00004676 int nRoot; /* Number of tables to check. (Number of root pages.) */
4677 int *aRoot; /* Array of rootpage numbers for tables to be checked */
4678 int j; /* Loop counter */
4679 int nErr; /* Number of errors reported */
4680 char *z; /* Text of the error report */
4681 Mem *pnErr; /* Register keeping track of errors remaining */
4682
4683 nRoot = pOp->p2;
drh79069752004-05-22 21:30:40 +00004684 assert( nRoot>0 );
drh633e6d52008-07-28 19:34:53 +00004685 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
drhcaec2f12003-01-07 02:47:47 +00004686 if( aRoot==0 ) goto no_mem;
drh98757152008-01-09 23:04:12 +00004687 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00004688 pnErr = &aMem[pOp->p3];
drh1dcdbc02007-01-27 02:24:54 +00004689 assert( (pnErr->flags & MEM_Int)!=0 );
drh98757152008-01-09 23:04:12 +00004690 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
drha6c2ed92009-11-14 23:22:23 +00004691 pIn1 = &aMem[pOp->p1];
drh79069752004-05-22 21:30:40 +00004692 for(j=0; j<nRoot; j++){
drh9c1905f2008-12-10 22:32:56 +00004693 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
drh1dd397f2002-02-03 03:34:07 +00004694 }
4695 aRoot[j] = 0;
drh98757152008-01-09 23:04:12 +00004696 assert( pOp->p5<db->nDb );
4697 assert( (p->btreeMask & (1<<pOp->p5))!=0 );
4698 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
drh9c1905f2008-12-10 22:32:56 +00004699 (int)pnErr->u.i, &nErr);
drhc890fec2008-08-01 20:10:08 +00004700 sqlite3DbFree(db, aRoot);
drh3c024d62007-03-30 11:23:45 +00004701 pnErr->u.i -= nErr;
drha05a7222008-01-19 03:35:58 +00004702 sqlite3VdbeMemSetNull(pIn1);
drh1dcdbc02007-01-27 02:24:54 +00004703 if( nErr==0 ){
4704 assert( z==0 );
drhc890fec2008-08-01 20:10:08 +00004705 }else if( z==0 ){
4706 goto no_mem;
drh1dd397f2002-02-03 03:34:07 +00004707 }else{
danielk1977a7a8e142008-02-13 18:25:27 +00004708 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
danielk19778a6b5412004-05-24 07:04:25 +00004709 }
drhb7654112008-01-12 12:48:07 +00004710 UPDATE_MAX_BLOBSIZE(pIn1);
drh98757152008-01-09 23:04:12 +00004711 sqlite3VdbeChangeEncoding(pIn1, encoding);
drh5e00f6c2001-09-13 13:46:56 +00004712 break;
4713}
drhb7f91642004-10-31 02:22:47 +00004714#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5e00f6c2001-09-13 13:46:56 +00004715
drh3d4501e2008-12-04 20:40:10 +00004716/* Opcode: RowSetAdd P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00004717**
drh3d4501e2008-12-04 20:40:10 +00004718** Insert the integer value held by register P2 into a boolean index
4719** held in register P1.
4720**
4721** An assertion fails if P2 is not an integer.
drh5e00f6c2001-09-13 13:46:56 +00004722*/
drh93952eb2009-11-13 19:43:43 +00004723case OP_RowSetAdd: { /* in1, in2 */
drh3c657212009-11-17 23:59:58 +00004724 pIn1 = &aMem[pOp->p1];
4725 pIn2 = &aMem[pOp->p2];
drh93952eb2009-11-13 19:43:43 +00004726 assert( (pIn2->flags & MEM_Int)!=0 );
4727 if( (pIn1->flags & MEM_RowSet)==0 ){
4728 sqlite3VdbeMemSetRowSet(pIn1);
4729 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
drh3d4501e2008-12-04 20:40:10 +00004730 }
drh93952eb2009-11-13 19:43:43 +00004731 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
drh3d4501e2008-12-04 20:40:10 +00004732 break;
4733}
4734
4735/* Opcode: RowSetRead P1 P2 P3 * *
4736**
4737** Extract the smallest value from boolean index P1 and put that value into
4738** register P3. Or, if boolean index P1 is initially empty, leave P3
4739** unchanged and jump to instruction P2.
4740*/
drh93952eb2009-11-13 19:43:43 +00004741case OP_RowSetRead: { /* jump, in1, out3 */
drh3d4501e2008-12-04 20:40:10 +00004742 i64 val;
drh3d4501e2008-12-04 20:40:10 +00004743 CHECK_FOR_INTERRUPT;
drh3c657212009-11-17 23:59:58 +00004744 pIn1 = &aMem[pOp->p1];
drh93952eb2009-11-13 19:43:43 +00004745 if( (pIn1->flags & MEM_RowSet)==0
4746 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
drh3d4501e2008-12-04 20:40:10 +00004747 ){
4748 /* The boolean index is empty */
drh93952eb2009-11-13 19:43:43 +00004749 sqlite3VdbeMemSetNull(pIn1);
drh3d4501e2008-12-04 20:40:10 +00004750 pc = pOp->p2 - 1;
4751 }else{
4752 /* A value was pulled from the index */
drh3c657212009-11-17 23:59:58 +00004753 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
drh17435752007-08-16 04:30:38 +00004754 }
drh5e00f6c2001-09-13 13:46:56 +00004755 break;
4756}
4757
drh1b26c7c2009-04-22 02:15:47 +00004758/* Opcode: RowSetTest P1 P2 P3 P4
danielk19771d461462009-04-21 09:02:45 +00004759**
drhade97602009-04-21 15:05:18 +00004760** Register P3 is assumed to hold a 64-bit integer value. If register P1
drh1b26c7c2009-04-22 02:15:47 +00004761** contains a RowSet object and that RowSet object contains
danielk19771d461462009-04-21 09:02:45 +00004762** the value held in P3, jump to register P2. Otherwise, insert the
drh1b26c7c2009-04-22 02:15:47 +00004763** integer in P3 into the RowSet and continue on to the
drhade97602009-04-21 15:05:18 +00004764** next opcode.
danielk19771d461462009-04-21 09:02:45 +00004765**
drh1b26c7c2009-04-22 02:15:47 +00004766** The RowSet object is optimized for the case where successive sets
danielk19771d461462009-04-21 09:02:45 +00004767** of integers, where each set contains no duplicates. Each set
4768** of values is identified by a unique P4 value. The first set
drh1b26c7c2009-04-22 02:15:47 +00004769** must have P4==0, the final set P4=-1. P4 must be either -1 or
4770** non-negative. For non-negative values of P4 only the lower 4
4771** bits are significant.
danielk19771d461462009-04-21 09:02:45 +00004772**
4773** This allows optimizations: (a) when P4==0 there is no need to test
drh1b26c7c2009-04-22 02:15:47 +00004774** the rowset object for P3, as it is guaranteed not to contain it,
danielk19771d461462009-04-21 09:02:45 +00004775** (b) when P4==-1 there is no need to insert the value, as it will
4776** never be tested for, and (c) when a value that is part of set X is
4777** inserted, there is no need to search to see if the same value was
4778** previously inserted as part of set X (only if it was previously
4779** inserted as part of some other set).
4780*/
drh1b26c7c2009-04-22 02:15:47 +00004781case OP_RowSetTest: { /* jump, in1, in3 */
drh856c1032009-06-02 15:21:42 +00004782 int iSet;
4783 int exists;
4784
drh3c657212009-11-17 23:59:58 +00004785 pIn1 = &aMem[pOp->p1];
4786 pIn3 = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00004787 iSet = pOp->p4.i;
danielk19771d461462009-04-21 09:02:45 +00004788 assert( pIn3->flags&MEM_Int );
4789
drh1b26c7c2009-04-22 02:15:47 +00004790 /* If there is anything other than a rowset object in memory cell P1,
4791 ** delete it now and initialize P1 with an empty rowset
danielk19771d461462009-04-21 09:02:45 +00004792 */
drh733bf1b2009-04-22 00:47:00 +00004793 if( (pIn1->flags & MEM_RowSet)==0 ){
4794 sqlite3VdbeMemSetRowSet(pIn1);
4795 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
danielk19771d461462009-04-21 09:02:45 +00004796 }
4797
4798 assert( pOp->p4type==P4_INT32 );
drh1b26c7c2009-04-22 02:15:47 +00004799 assert( iSet==-1 || iSet>=0 );
danielk19771d461462009-04-21 09:02:45 +00004800 if( iSet ){
shane60a4b532009-05-06 18:57:09 +00004801 exists = sqlite3RowSetTest(pIn1->u.pRowSet,
4802 (u8)(iSet>=0 ? iSet & 0xf : 0xff),
drh733bf1b2009-04-22 00:47:00 +00004803 pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00004804 if( exists ){
4805 pc = pOp->p2 - 1;
4806 break;
4807 }
4808 }
4809 if( iSet>=0 ){
drh733bf1b2009-04-22 00:47:00 +00004810 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00004811 }
4812 break;
4813}
4814
drh5e00f6c2001-09-13 13:46:56 +00004815
danielk197793758c82005-01-21 08:13:14 +00004816#ifndef SQLITE_OMIT_TRIGGER
dan165921a2009-08-28 18:53:45 +00004817
4818/* Opcode: Program P1 P2 P3 P4 *
4819**
dan76d462e2009-08-30 11:42:51 +00004820** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
dan165921a2009-08-28 18:53:45 +00004821**
dan76d462e2009-08-30 11:42:51 +00004822** P1 contains the address of the memory cell that contains the first memory
4823** cell in an array of values used as arguments to the sub-program. P2
4824** contains the address to jump to if the sub-program throws an IGNORE
4825** exception using the RAISE() function. Register P3 contains the address
4826** of a memory cell in this (the parent) VM that is used to allocate the
4827** memory required by the sub-vdbe at runtime.
dan165921a2009-08-28 18:53:45 +00004828**
4829** P4 is a pointer to the VM containing the trigger program.
4830*/
dan76d462e2009-08-30 11:42:51 +00004831case OP_Program: { /* jump */
dan65a7cd12009-09-01 12:16:01 +00004832 int nMem; /* Number of memory registers for sub-program */
4833 int nByte; /* Bytes of runtime space required for sub-program */
4834 Mem *pRt; /* Register to allocate runtime space */
4835 Mem *pMem; /* Used to iterate through memory cells */
4836 Mem *pEnd; /* Last memory cell in new array */
4837 VdbeFrame *pFrame; /* New vdbe frame to execute in */
4838 SubProgram *pProgram; /* Sub-program to execute */
4839 void *t; /* Token identifying trigger */
4840
4841 pProgram = pOp->p4.pProgram;
drha6c2ed92009-11-14 23:22:23 +00004842 pRt = &aMem[pOp->p3];
dan165921a2009-08-28 18:53:45 +00004843 assert( pProgram->nOp>0 );
4844
dan1da40a32009-09-19 17:00:31 +00004845 /* If the p5 flag is clear, then recursive invocation of triggers is
4846 ** disabled for backwards compatibility (p5 is set if this sub-program
4847 ** is really a trigger, not a foreign key action, and the flag set
4848 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
dan165921a2009-08-28 18:53:45 +00004849 **
4850 ** It is recursive invocation of triggers, at the SQL level, that is
4851 ** disabled. In some cases a single trigger may generate more than one
4852 ** SubProgram (if the trigger may be executed with more than one different
4853 ** ON CONFLICT algorithm). SubProgram structures associated with a
4854 ** single trigger all have the same value for the SubProgram.token
dan1da40a32009-09-19 17:00:31 +00004855 ** variable. */
4856 if( pOp->p5 ){
dan65a7cd12009-09-01 12:16:01 +00004857 t = pProgram->token;
dan165921a2009-08-28 18:53:45 +00004858 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
4859 if( pFrame ) break;
4860 }
4861
danf5894502009-10-07 18:41:19 +00004862 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
dan165921a2009-08-28 18:53:45 +00004863 rc = SQLITE_ERROR;
4864 sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
4865 break;
4866 }
4867
4868 /* Register pRt is used to store the memory required to save the state
4869 ** of the current program, and the memory required at runtime to execute
4870 ** the trigger program. If this trigger has been fired before, then pRt
4871 ** is already allocated. Otherwise, it must be initialized. */
4872 if( (pRt->flags&MEM_Frame)==0 ){
dan165921a2009-08-28 18:53:45 +00004873 /* SubProgram.nMem is set to the number of memory cells used by the
4874 ** program stored in SubProgram.aOp. As well as these, one memory
4875 ** cell is required for each cursor used by the program. Set local
4876 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
4877 */
dan65a7cd12009-09-01 12:16:01 +00004878 nMem = pProgram->nMem + pProgram->nCsr;
4879 nByte = ROUND8(sizeof(VdbeFrame))
dan165921a2009-08-28 18:53:45 +00004880 + nMem * sizeof(Mem)
4881 + pProgram->nCsr * sizeof(VdbeCursor *);
4882 pFrame = sqlite3DbMallocZero(db, nByte);
4883 if( !pFrame ){
4884 goto no_mem;
4885 }
4886 sqlite3VdbeMemRelease(pRt);
4887 pRt->flags = MEM_Frame;
4888 pRt->u.pFrame = pFrame;
4889
4890 pFrame->v = p;
4891 pFrame->nChildMem = nMem;
4892 pFrame->nChildCsr = pProgram->nCsr;
4893 pFrame->pc = pc;
4894 pFrame->aMem = p->aMem;
4895 pFrame->nMem = p->nMem;
4896 pFrame->apCsr = p->apCsr;
4897 pFrame->nCursor = p->nCursor;
4898 pFrame->aOp = p->aOp;
4899 pFrame->nOp = p->nOp;
4900 pFrame->token = pProgram->token;
4901
4902 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
4903 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
4904 pMem->flags = MEM_Null;
4905 pMem->db = db;
4906 }
4907 }else{
4908 pFrame = pRt->u.pFrame;
4909 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
4910 assert( pProgram->nCsr==pFrame->nChildCsr );
4911 assert( pc==pFrame->pc );
4912 }
4913
4914 p->nFrame++;
4915 pFrame->pParent = p->pFrame;
dan76d462e2009-08-30 11:42:51 +00004916 pFrame->lastRowid = db->lastRowid;
4917 pFrame->nChange = p->nChange;
dan2832ad42009-08-31 15:27:27 +00004918 p->nChange = 0;
dan165921a2009-08-28 18:53:45 +00004919 p->pFrame = pFrame;
drha6c2ed92009-11-14 23:22:23 +00004920 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
dan165921a2009-08-28 18:53:45 +00004921 p->nMem = pFrame->nChildMem;
shanecea72b22009-09-07 04:38:36 +00004922 p->nCursor = (u16)pFrame->nChildCsr;
drha6c2ed92009-11-14 23:22:23 +00004923 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
drhbbe879d2009-11-14 18:04:35 +00004924 p->aOp = aOp = pProgram->aOp;
dan165921a2009-08-28 18:53:45 +00004925 p->nOp = pProgram->nOp;
4926 pc = -1;
4927
4928 break;
4929}
4930
dan76d462e2009-08-30 11:42:51 +00004931/* Opcode: Param P1 P2 * * *
dan165921a2009-08-28 18:53:45 +00004932**
dan76d462e2009-08-30 11:42:51 +00004933** This opcode is only ever present in sub-programs called via the
4934** OP_Program instruction. Copy a value currently stored in a memory
4935** cell of the calling (parent) frame to cell P2 in the current frames
4936** address space. This is used by trigger programs to access the new.*
4937** and old.* values.
dan165921a2009-08-28 18:53:45 +00004938**
dan76d462e2009-08-30 11:42:51 +00004939** The address of the cell in the parent frame is determined by adding
4940** the value of the P1 argument to the value of the P1 argument to the
4941** calling OP_Program instruction.
dan165921a2009-08-28 18:53:45 +00004942*/
dan76d462e2009-08-30 11:42:51 +00004943case OP_Param: { /* out2-prerelease */
dan65a7cd12009-09-01 12:16:01 +00004944 VdbeFrame *pFrame;
4945 Mem *pIn;
4946 pFrame = p->pFrame;
4947 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
dan165921a2009-08-28 18:53:45 +00004948 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
4949 break;
4950}
4951
danielk197793758c82005-01-21 08:13:14 +00004952#endif /* #ifndef SQLITE_OMIT_TRIGGER */
rdcb0c374f2004-02-20 22:53:38 +00004953
dan1da40a32009-09-19 17:00:31 +00004954#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00004955/* Opcode: FkCounter P1 P2 * * *
dan1da40a32009-09-19 17:00:31 +00004956**
dan0ff297e2009-09-25 17:03:14 +00004957** Increment a "constraint counter" by P2 (P2 may be negative or positive).
4958** If P1 is non-zero, the database constraint counter is incremented
4959** (deferred foreign key constraints). Otherwise, if P1 is zero, the
dan32b09f22009-09-23 17:29:59 +00004960** statement counter is incremented (immediate foreign key constraints).
dan1da40a32009-09-19 17:00:31 +00004961*/
dan32b09f22009-09-23 17:29:59 +00004962case OP_FkCounter: {
dan0ff297e2009-09-25 17:03:14 +00004963 if( pOp->p1 ){
4964 db->nDeferredCons += pOp->p2;
dan32b09f22009-09-23 17:29:59 +00004965 }else{
dan0ff297e2009-09-25 17:03:14 +00004966 p->nFkConstraint += pOp->p2;
4967 }
4968 break;
4969}
4970
4971/* Opcode: FkIfZero P1 P2 * * *
4972**
4973** This opcode tests if a foreign key constraint-counter is currently zero.
4974** If so, jump to instruction P2. Otherwise, fall through to the next
4975** instruction.
4976**
4977** If P1 is non-zero, then the jump is taken if the database constraint-counter
4978** is zero (the one that counts deferred constraint violations). If P1 is
4979** zero, the jump is taken if the statement constraint-counter is zero
4980** (immediate foreign key constraint violations).
4981*/
4982case OP_FkIfZero: { /* jump */
4983 if( pOp->p1 ){
4984 if( db->nDeferredCons==0 ) pc = pOp->p2-1;
4985 }else{
4986 if( p->nFkConstraint==0 ) pc = pOp->p2-1;
dan32b09f22009-09-23 17:29:59 +00004987 }
dan1da40a32009-09-19 17:00:31 +00004988 break;
4989}
4990#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
4991
drh205f48e2004-11-05 00:43:11 +00004992#ifndef SQLITE_OMIT_AUTOINCREMENT
drh98757152008-01-09 23:04:12 +00004993/* Opcode: MemMax P1 P2 * * *
drh205f48e2004-11-05 00:43:11 +00004994**
dan76d462e2009-08-30 11:42:51 +00004995** P1 is a register in the root frame of this VM (the root frame is
4996** different from the current frame if this instruction is being executed
4997** within a sub-program). Set the value of register P1 to the maximum of
4998** its current value and the value in register P2.
drh205f48e2004-11-05 00:43:11 +00004999**
5000** This instruction throws an error if the memory cell is not initially
5001** an integer.
5002*/
dan76d462e2009-08-30 11:42:51 +00005003case OP_MemMax: { /* in2 */
5004 Mem *pIn1;
5005 VdbeFrame *pFrame;
5006 if( p->pFrame ){
5007 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5008 pIn1 = &pFrame->aMem[pOp->p1];
5009 }else{
drha6c2ed92009-11-14 23:22:23 +00005010 pIn1 = &aMem[pOp->p1];
dan76d462e2009-08-30 11:42:51 +00005011 }
drh98757152008-01-09 23:04:12 +00005012 sqlite3VdbeMemIntegerify(pIn1);
drh3c657212009-11-17 23:59:58 +00005013 pIn2 = &aMem[pOp->p2];
drh98757152008-01-09 23:04:12 +00005014 sqlite3VdbeMemIntegerify(pIn2);
5015 if( pIn1->u.i<pIn2->u.i){
5016 pIn1->u.i = pIn2->u.i;
drh205f48e2004-11-05 00:43:11 +00005017 }
5018 break;
5019}
5020#endif /* SQLITE_OMIT_AUTOINCREMENT */
5021
drh98757152008-01-09 23:04:12 +00005022/* Opcode: IfPos P1 P2 * * *
danielk1977a2dc3b12005-02-05 12:48:48 +00005023**
drh98757152008-01-09 23:04:12 +00005024** If the value of register P1 is 1 or greater, jump to P2.
drh6f58f702006-01-08 05:26:41 +00005025**
drh98757152008-01-09 23:04:12 +00005026** It is illegal to use this instruction on a register that does
drh6f58f702006-01-08 05:26:41 +00005027** not contain an integer. An assertion fault will result if you try.
danielk1977a2dc3b12005-02-05 12:48:48 +00005028*/
drh9cbf3422008-01-17 16:22:13 +00005029case OP_IfPos: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005030 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005031 assert( pIn1->flags&MEM_Int );
drh3c84ddf2008-01-09 02:15:38 +00005032 if( pIn1->u.i>0 ){
drhec7429a2005-10-06 16:53:14 +00005033 pc = pOp->p2 - 1;
5034 }
5035 break;
5036}
5037
drh98757152008-01-09 23:04:12 +00005038/* Opcode: IfNeg P1 P2 * * *
drh15007a92006-01-08 18:10:17 +00005039**
drh98757152008-01-09 23:04:12 +00005040** If the value of register P1 is less than zero, jump to P2.
drh15007a92006-01-08 18:10:17 +00005041**
drh98757152008-01-09 23:04:12 +00005042** It is illegal to use this instruction on a register that does
drh15007a92006-01-08 18:10:17 +00005043** not contain an integer. An assertion fault will result if you try.
5044*/
drh9cbf3422008-01-17 16:22:13 +00005045case OP_IfNeg: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005046 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005047 assert( pIn1->flags&MEM_Int );
drh3c84ddf2008-01-09 02:15:38 +00005048 if( pIn1->u.i<0 ){
drh15007a92006-01-08 18:10:17 +00005049 pc = pOp->p2 - 1;
5050 }
5051 break;
5052}
5053
drh9b918ed2009-11-12 03:13:26 +00005054/* Opcode: IfZero P1 P2 P3 * *
drhec7429a2005-10-06 16:53:14 +00005055**
drh9b918ed2009-11-12 03:13:26 +00005056** The register P1 must contain an integer. Add literal P3 to the
5057** value in register P1. If the result is exactly 0, jump to P2.
drh6f58f702006-01-08 05:26:41 +00005058**
drh98757152008-01-09 23:04:12 +00005059** It is illegal to use this instruction on a register that does
drh6f58f702006-01-08 05:26:41 +00005060** not contain an integer. An assertion fault will result if you try.
drhec7429a2005-10-06 16:53:14 +00005061*/
drh9cbf3422008-01-17 16:22:13 +00005062case OP_IfZero: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00005063 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00005064 assert( pIn1->flags&MEM_Int );
drh9b918ed2009-11-12 03:13:26 +00005065 pIn1->u.i += pOp->p3;
drh3c84ddf2008-01-09 02:15:38 +00005066 if( pIn1->u.i==0 ){
drha2a49dc2008-01-02 14:28:13 +00005067 pc = pOp->p2 - 1;
5068 }
5069 break;
5070}
5071
drh98757152008-01-09 23:04:12 +00005072/* Opcode: AggStep * P2 P3 P4 P5
drhe5095352002-02-24 03:25:14 +00005073**
drh0bce8352002-02-28 00:41:10 +00005074** Execute the step function for an aggregate. The
drh98757152008-01-09 23:04:12 +00005075** function has P5 arguments. P4 is a pointer to the FuncDef
5076** structure that specifies the function. Use register
5077** P3 as the accumulator.
drhe5095352002-02-24 03:25:14 +00005078**
drh98757152008-01-09 23:04:12 +00005079** The P5 arguments are taken from register P2 and its
5080** successors.
drhe5095352002-02-24 03:25:14 +00005081*/
drh9cbf3422008-01-17 16:22:13 +00005082case OP_AggStep: {
drh856c1032009-06-02 15:21:42 +00005083 int n;
drhe5095352002-02-24 03:25:14 +00005084 int i;
drhc54a6172009-06-02 16:06:03 +00005085 Mem *pMem;
5086 Mem *pRec;
danielk197722322fd2004-05-25 23:35:17 +00005087 sqlite3_context ctx;
danielk19776ddcca52004-05-24 23:48:25 +00005088 sqlite3_value **apVal;
drhe5095352002-02-24 03:25:14 +00005089
drh856c1032009-06-02 15:21:42 +00005090 n = pOp->p5;
drh6810ce62004-01-31 19:22:56 +00005091 assert( n>=0 );
drha6c2ed92009-11-14 23:22:23 +00005092 pRec = &aMem[pOp->p2];
danielk19776ddcca52004-05-24 23:48:25 +00005093 apVal = p->apArg;
5094 assert( apVal || n==0 );
drh6810ce62004-01-31 19:22:56 +00005095 for(i=0; i<n; i++, pRec++){
danielk1977c572ef72004-05-27 09:28:41 +00005096 apVal[i] = pRec;
dan937d0de2009-10-15 18:35:38 +00005097 sqlite3VdbeMemStoreType(pRec);
drhe5095352002-02-24 03:25:14 +00005098 }
danielk19772dca4ac2008-01-03 11:50:29 +00005099 ctx.pFunc = pOp->p4.pFunc;
drh98757152008-01-09 23:04:12 +00005100 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00005101 ctx.pMem = pMem = &aMem[pOp->p3];
drhabfcea22005-09-06 20:36:48 +00005102 pMem->n++;
drh90669c12006-01-20 15:45:36 +00005103 ctx.s.flags = MEM_Null;
5104 ctx.s.z = 0;
danielk19775f096132008-03-28 15:44:09 +00005105 ctx.s.zMalloc = 0;
drh90669c12006-01-20 15:45:36 +00005106 ctx.s.xDel = 0;
drhb21c8cd2007-08-21 19:33:56 +00005107 ctx.s.db = db;
drh1350b032002-02-27 19:00:20 +00005108 ctx.isError = 0;
danielk1977dc1bdc42004-06-11 10:51:27 +00005109 ctx.pColl = 0;
drhe82f5d02008-10-07 19:53:14 +00005110 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
danielk1977dc1bdc42004-06-11 10:51:27 +00005111 assert( pOp>p->aOp );
drh66a51672008-01-03 00:01:23 +00005112 assert( pOp[-1].p4type==P4_COLLSEQ );
danielk1977dc1bdc42004-06-11 10:51:27 +00005113 assert( pOp[-1].opcode==OP_CollSeq );
danielk19772dca4ac2008-01-03 11:50:29 +00005114 ctx.pColl = pOp[-1].p4.pColl;
danielk1977dc1bdc42004-06-11 10:51:27 +00005115 }
danielk19776ddcca52004-05-24 23:48:25 +00005116 (ctx.pFunc->xStep)(&ctx, n, apVal);
drh1350b032002-02-27 19:00:20 +00005117 if( ctx.isError ){
drhf089aa42008-07-08 19:34:06 +00005118 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
drh69544ec2008-02-06 14:11:34 +00005119 rc = ctx.isError;
drh1350b032002-02-27 19:00:20 +00005120 }
drh90669c12006-01-20 15:45:36 +00005121 sqlite3VdbeMemRelease(&ctx.s);
drh5e00f6c2001-09-13 13:46:56 +00005122 break;
5123}
5124
drh98757152008-01-09 23:04:12 +00005125/* Opcode: AggFinal P1 P2 * P4 *
drh5e00f6c2001-09-13 13:46:56 +00005126**
drh13449892005-09-07 21:22:45 +00005127** Execute the finalizer function for an aggregate. P1 is
5128** the memory location that is the accumulator for the aggregate.
drha10a34b2005-09-07 22:09:48 +00005129**
5130** P2 is the number of arguments that the step function takes and
drh66a51672008-01-03 00:01:23 +00005131** P4 is a pointer to the FuncDef for this function. The P2
drha10a34b2005-09-07 22:09:48 +00005132** argument is not used by this opcode. It is only there to disambiguate
5133** functions that can take varying numbers of arguments. The
drh66a51672008-01-03 00:01:23 +00005134** P4 argument is only needed for the degenerate case where
drha10a34b2005-09-07 22:09:48 +00005135** the step function was not previously called.
drh5e00f6c2001-09-13 13:46:56 +00005136*/
drh9cbf3422008-01-17 16:22:13 +00005137case OP_AggFinal: {
drh13449892005-09-07 21:22:45 +00005138 Mem *pMem;
drh0a07c102008-01-03 18:03:08 +00005139 assert( pOp->p1>0 && pOp->p1<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00005140 pMem = &aMem[pOp->p1];
drha10a34b2005-09-07 22:09:48 +00005141 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
danielk19772dca4ac2008-01-03 11:50:29 +00005142 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
drh4c8555f2009-06-25 01:47:11 +00005143 if( rc ){
drhf089aa42008-07-08 19:34:06 +00005144 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
drh90669c12006-01-20 15:45:36 +00005145 }
drh2dca8682008-03-21 17:13:13 +00005146 sqlite3VdbeChangeEncoding(pMem, encoding);
drhb7654112008-01-12 12:48:07 +00005147 UPDATE_MAX_BLOBSIZE(pMem);
drh023ae032007-05-08 12:12:16 +00005148 if( sqlite3VdbeMemTooBig(pMem) ){
5149 goto too_big;
5150 }
drh5e00f6c2001-09-13 13:46:56 +00005151 break;
5152}
5153
drh5e00f6c2001-09-13 13:46:56 +00005154
drhfdbcdee2007-03-27 14:44:50 +00005155#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
drh98757152008-01-09 23:04:12 +00005156/* Opcode: Vacuum * * * * *
drh6f8c91c2003-12-07 00:24:35 +00005157**
5158** Vacuum the entire database. This opcode will cause other virtual
5159** machines to be created and run. It may not be called from within
5160** a transaction.
5161*/
drh9cbf3422008-01-17 16:22:13 +00005162case OP_Vacuum: {
danielk19774adee202004-05-08 08:23:19 +00005163 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
5164 rc = sqlite3RunVacuum(&p->zErrMsg, db);
5165 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
drh6f8c91c2003-12-07 00:24:35 +00005166 break;
5167}
drh154d4b22006-09-21 11:02:16 +00005168#endif
drh6f8c91c2003-12-07 00:24:35 +00005169
danielk1977dddbcdc2007-04-26 14:42:34 +00005170#if !defined(SQLITE_OMIT_AUTOVACUUM)
drh98757152008-01-09 23:04:12 +00005171/* Opcode: IncrVacuum P1 P2 * * *
danielk1977dddbcdc2007-04-26 14:42:34 +00005172**
5173** Perform a single step of the incremental vacuum procedure on
drhca5557f2007-05-04 18:30:40 +00005174** the P1 database. If the vacuum has finished, jump to instruction
danielk1977dddbcdc2007-04-26 14:42:34 +00005175** P2. Otherwise, fall through to the next instruction.
5176*/
drh9cbf3422008-01-17 16:22:13 +00005177case OP_IncrVacuum: { /* jump */
drhca5557f2007-05-04 18:30:40 +00005178 Btree *pBt;
5179
5180 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drhfb982642007-08-30 01:19:59 +00005181 assert( (p->btreeMask & (1<<pOp->p1))!=0 );
drhca5557f2007-05-04 18:30:40 +00005182 pBt = db->aDb[pOp->p1].pBt;
danielk1977dddbcdc2007-04-26 14:42:34 +00005183 rc = sqlite3BtreeIncrVacuum(pBt);
5184 if( rc==SQLITE_DONE ){
5185 pc = pOp->p2 - 1;
5186 rc = SQLITE_OK;
5187 }
5188 break;
5189}
5190#endif
5191
drh98757152008-01-09 23:04:12 +00005192/* Opcode: Expire P1 * * * *
danielk1977a21c6b62005-01-24 10:25:59 +00005193**
5194** Cause precompiled statements to become expired. An expired statement
5195** fails with an error code of SQLITE_SCHEMA if it is ever executed
5196** (via sqlite3_step()).
5197**
5198** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
5199** then only the currently executing statement is affected.
5200*/
drh9cbf3422008-01-17 16:22:13 +00005201case OP_Expire: {
danielk1977a21c6b62005-01-24 10:25:59 +00005202 if( !pOp->p1 ){
5203 sqlite3ExpirePreparedStatements(db);
5204 }else{
5205 p->expired = 1;
5206 }
5207 break;
5208}
5209
danielk1977c00da102006-01-07 13:21:04 +00005210#ifndef SQLITE_OMIT_SHARED_CACHE
drh6a9ad3d2008-04-02 16:29:30 +00005211/* Opcode: TableLock P1 P2 P3 P4 *
danielk1977c00da102006-01-07 13:21:04 +00005212**
5213** Obtain a lock on a particular table. This instruction is only used when
5214** the shared-cache feature is enabled.
5215**
danielk197796d48e92009-06-29 06:00:37 +00005216** P1 is the index of the database in sqlite3.aDb[] of the database
drh6a9ad3d2008-04-02 16:29:30 +00005217** on which the lock is acquired. A readlock is obtained if P3==0 or
5218** a write lock if P3==1.
danielk1977c00da102006-01-07 13:21:04 +00005219**
5220** P2 contains the root-page of the table to lock.
5221**
drh66a51672008-01-03 00:01:23 +00005222** P4 contains a pointer to the name of the table being locked. This is only
danielk1977c00da102006-01-07 13:21:04 +00005223** used to generate an error message if the lock cannot be obtained.
5224*/
drh9cbf3422008-01-17 16:22:13 +00005225case OP_TableLock: {
danielk1977e0d9e6f2009-07-03 16:25:06 +00005226 u8 isWriteLock = (u8)pOp->p3;
5227 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
5228 int p1 = pOp->p1;
5229 assert( p1>=0 && p1<db->nDb );
5230 assert( (p->btreeMask & (1<<p1))!=0 );
5231 assert( isWriteLock==0 || isWriteLock==1 );
5232 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
5233 if( (rc&0xFF)==SQLITE_LOCKED ){
5234 const char *z = pOp->p4.z;
5235 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
5236 }
danielk1977c00da102006-01-07 13:21:04 +00005237 }
5238 break;
5239}
drhb9bb7c12006-06-11 23:41:55 +00005240#endif /* SQLITE_OMIT_SHARED_CACHE */
5241
5242#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005243/* Opcode: VBegin * * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00005244**
danielk19773e3a84d2008-08-01 17:37:40 +00005245** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
5246** xBegin method for that table.
5247**
5248** Also, whether or not P4 is set, check that this is not being called from
danielk1977404ca072009-03-16 13:19:36 +00005249** within a callback to a virtual table xSync() method. If it is, the error
5250** code will be set to SQLITE_LOCKED.
drhb9bb7c12006-06-11 23:41:55 +00005251*/
drh9cbf3422008-01-17 16:22:13 +00005252case OP_VBegin: {
danielk1977595a5232009-07-24 17:58:53 +00005253 VTable *pVTab;
5254 pVTab = pOp->p4.pVtab;
5255 rc = sqlite3VtabBegin(db, pVTab);
5256 if( pVTab ){
danielk19773e3a84d2008-08-01 17:37:40 +00005257 sqlite3DbFree(db, p->zErrMsg);
danielk1977595a5232009-07-24 17:58:53 +00005258 p->zErrMsg = pVTab->pVtab->zErrMsg;
5259 pVTab->pVtab->zErrMsg = 0;
danielk19773e3a84d2008-08-01 17:37:40 +00005260 }
danielk1977f9e7dda2006-06-16 16:08:53 +00005261 break;
5262}
5263#endif /* SQLITE_OMIT_VIRTUALTABLE */
5264
5265#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005266/* Opcode: VCreate P1 * * P4 *
danielk1977f9e7dda2006-06-16 16:08:53 +00005267**
drh66a51672008-01-03 00:01:23 +00005268** P4 is the name of a virtual table in database P1. Call the xCreate method
danielk1977f9e7dda2006-06-16 16:08:53 +00005269** for that table.
5270*/
drh9cbf3422008-01-17 16:22:13 +00005271case OP_VCreate: {
danielk19772dca4ac2008-01-03 11:50:29 +00005272 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
drhb9bb7c12006-06-11 23:41:55 +00005273 break;
5274}
5275#endif /* SQLITE_OMIT_VIRTUALTABLE */
5276
5277#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005278/* Opcode: VDestroy P1 * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00005279**
drh66a51672008-01-03 00:01:23 +00005280** P4 is the name of a virtual table in database P1. Call the xDestroy method
danielk19779e39ce82006-06-12 16:01:21 +00005281** of that table.
drhb9bb7c12006-06-11 23:41:55 +00005282*/
drh9cbf3422008-01-17 16:22:13 +00005283case OP_VDestroy: {
danielk1977212b2182006-06-23 14:32:08 +00005284 p->inVtabMethod = 2;
danielk19772dca4ac2008-01-03 11:50:29 +00005285 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
danielk1977212b2182006-06-23 14:32:08 +00005286 p->inVtabMethod = 0;
drhb9bb7c12006-06-11 23:41:55 +00005287 break;
5288}
5289#endif /* SQLITE_OMIT_VIRTUALTABLE */
danielk1977c00da102006-01-07 13:21:04 +00005290
drh9eff6162006-06-12 21:59:13 +00005291#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005292/* Opcode: VOpen P1 * * P4 *
drh9eff6162006-06-12 21:59:13 +00005293**
drh66a51672008-01-03 00:01:23 +00005294** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
drh9eff6162006-06-12 21:59:13 +00005295** P1 is a cursor number. This opcode opens a cursor to the virtual
5296** table and stores that cursor in P1.
5297*/
drh9cbf3422008-01-17 16:22:13 +00005298case OP_VOpen: {
drh856c1032009-06-02 15:21:42 +00005299 VdbeCursor *pCur;
5300 sqlite3_vtab_cursor *pVtabCursor;
5301 sqlite3_vtab *pVtab;
5302 sqlite3_module *pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005303
drh856c1032009-06-02 15:21:42 +00005304 pCur = 0;
5305 pVtabCursor = 0;
danielk1977595a5232009-07-24 17:58:53 +00005306 pVtab = pOp->p4.pVtab->pVtab;
drh856c1032009-06-02 15:21:42 +00005307 pModule = (sqlite3_module *)pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005308 assert(pVtab && pModule);
5309 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
5310 rc = pModule->xOpen(pVtab, &pVtabCursor);
drh633e6d52008-07-28 19:34:53 +00005311 sqlite3DbFree(db, p->zErrMsg);
drh80cc85b2008-07-23 21:07:25 +00005312 p->zErrMsg = pVtab->zErrMsg;
5313 pVtab->zErrMsg = 0;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005314 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
5315 if( SQLITE_OK==rc ){
shane21e7feb2008-05-30 15:59:49 +00005316 /* Initialize sqlite3_vtab_cursor base class */
danielk1977b7a7b9a2006-06-13 10:24:42 +00005317 pVtabCursor->pVtab = pVtab;
5318
5319 /* Initialise vdbe cursor object */
danielk1977d336e222009-02-20 10:58:41 +00005320 pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
danielk1977be718892006-06-23 08:05:19 +00005321 if( pCur ){
5322 pCur->pVtabCursor = pVtabCursor;
5323 pCur->pModule = pVtabCursor->pVtab->pModule;
danielk1977b7a2f2e2006-06-23 11:34:54 +00005324 }else{
drh17435752007-08-16 04:30:38 +00005325 db->mallocFailed = 1;
danielk1977b7a2f2e2006-06-23 11:34:54 +00005326 pModule->xClose(pVtabCursor);
danielk1977be718892006-06-23 08:05:19 +00005327 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005328 }
drh9eff6162006-06-12 21:59:13 +00005329 break;
5330}
5331#endif /* SQLITE_OMIT_VIRTUALTABLE */
5332
5333#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk19776dbee812008-01-03 18:39:41 +00005334/* Opcode: VFilter P1 P2 P3 P4 *
drh9eff6162006-06-12 21:59:13 +00005335**
5336** P1 is a cursor opened using VOpen. P2 is an address to jump to if
5337** the filtered result set is empty.
5338**
drh66a51672008-01-03 00:01:23 +00005339** P4 is either NULL or a string that was generated by the xBestIndex
5340** method of the module. The interpretation of the P4 string is left
drh4be8b512006-06-13 23:51:34 +00005341** to the module implementation.
danielk19775fac9f82006-06-13 14:16:58 +00005342**
drh9eff6162006-06-12 21:59:13 +00005343** This opcode invokes the xFilter method on the virtual table specified
danielk19776dbee812008-01-03 18:39:41 +00005344** by P1. The integer query plan parameter to xFilter is stored in register
5345** P3. Register P3+1 stores the argc parameter to be passed to the
drh174edc62008-05-29 05:23:41 +00005346** xFilter method. Registers P3+2..P3+1+argc are the argc
5347** additional parameters which are passed to
danielk19776dbee812008-01-03 18:39:41 +00005348** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
danielk1977b7a7b9a2006-06-13 10:24:42 +00005349**
danielk19776dbee812008-01-03 18:39:41 +00005350** A jump is made to P2 if the result set after filtering would be empty.
drh9eff6162006-06-12 21:59:13 +00005351*/
drh9cbf3422008-01-17 16:22:13 +00005352case OP_VFilter: { /* jump */
danielk1977b7a7b9a2006-06-13 10:24:42 +00005353 int nArg;
danielk19776dbee812008-01-03 18:39:41 +00005354 int iQuery;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005355 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00005356 Mem *pQuery;
5357 Mem *pArgc;
drh4dc754d2008-07-23 18:17:32 +00005358 sqlite3_vtab_cursor *pVtabCursor;
5359 sqlite3_vtab *pVtab;
drh856c1032009-06-02 15:21:42 +00005360 VdbeCursor *pCur;
5361 int res;
5362 int i;
5363 Mem **apArg;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005364
drha6c2ed92009-11-14 23:22:23 +00005365 pQuery = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00005366 pArgc = &pQuery[1];
5367 pCur = p->apCsr[pOp->p1];
drh5b6afba2008-01-05 16:29:28 +00005368 REGISTER_TRACE(pOp->p3, pQuery);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005369 assert( pCur->pVtabCursor );
drh4dc754d2008-07-23 18:17:32 +00005370 pVtabCursor = pCur->pVtabCursor;
5371 pVtab = pVtabCursor->pVtab;
5372 pModule = pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005373
drh9cbf3422008-01-17 16:22:13 +00005374 /* Grab the index number and argc parameters */
danielk19776dbee812008-01-03 18:39:41 +00005375 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
drh9c1905f2008-12-10 22:32:56 +00005376 nArg = (int)pArgc->u.i;
5377 iQuery = (int)pQuery->u.i;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005378
drh644a5292006-12-20 14:53:38 +00005379 /* Invoke the xFilter method */
5380 {
drh856c1032009-06-02 15:21:42 +00005381 res = 0;
5382 apArg = p->apArg;
drh4be8b512006-06-13 23:51:34 +00005383 for(i = 0; i<nArg; i++){
danielk19776dbee812008-01-03 18:39:41 +00005384 apArg[i] = &pArgc[i+1];
dan937d0de2009-10-15 18:35:38 +00005385 sqlite3VdbeMemStoreType(apArg[i]);
danielk19775fac9f82006-06-13 14:16:58 +00005386 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005387
5388 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
danielk1977be718892006-06-23 08:05:19 +00005389 p->inVtabMethod = 1;
drh4dc754d2008-07-23 18:17:32 +00005390 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
danielk1977be718892006-06-23 08:05:19 +00005391 p->inVtabMethod = 0;
danielk19773e3a84d2008-08-01 17:37:40 +00005392 sqlite3DbFree(db, p->zErrMsg);
5393 p->zErrMsg = pVtab->zErrMsg;
5394 pVtab->zErrMsg = 0;
danielk1977a298e902006-06-22 09:53:48 +00005395 if( rc==SQLITE_OK ){
drh4dc754d2008-07-23 18:17:32 +00005396 res = pModule->xEof(pVtabCursor);
danielk1977a298e902006-06-22 09:53:48 +00005397 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005398 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
5399
danielk1977a298e902006-06-22 09:53:48 +00005400 if( res ){
danielk1977b7a7b9a2006-06-13 10:24:42 +00005401 pc = pOp->p2 - 1;
5402 }
5403 }
drh1d454a32008-01-31 19:34:51 +00005404 pCur->nullRow = 0;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005405
drh9eff6162006-06-12 21:59:13 +00005406 break;
5407}
5408#endif /* SQLITE_OMIT_VIRTUALTABLE */
5409
5410#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005411/* Opcode: VColumn P1 P2 P3 * *
drh9eff6162006-06-12 21:59:13 +00005412**
drh2133d822008-01-03 18:44:59 +00005413** Store the value of the P2-th column of
5414** the row of the virtual-table that the
5415** P1 cursor is pointing to into register P3.
drh9eff6162006-06-12 21:59:13 +00005416*/
5417case OP_VColumn: {
danielk19773e3a84d2008-08-01 17:37:40 +00005418 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005419 const sqlite3_module *pModule;
drhde4fcfd2008-01-19 23:50:26 +00005420 Mem *pDest;
5421 sqlite3_context sContext;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005422
drhdfe88ec2008-11-03 20:55:06 +00005423 VdbeCursor *pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00005424 assert( pCur->pVtabCursor );
drh2945b4a2008-01-31 15:53:45 +00005425 assert( pOp->p3>0 && pOp->p3<=p->nMem );
drha6c2ed92009-11-14 23:22:23 +00005426 pDest = &aMem[pOp->p3];
drh2945b4a2008-01-31 15:53:45 +00005427 if( pCur->nullRow ){
5428 sqlite3VdbeMemSetNull(pDest);
5429 break;
5430 }
danielk19773e3a84d2008-08-01 17:37:40 +00005431 pVtab = pCur->pVtabCursor->pVtab;
5432 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00005433 assert( pModule->xColumn );
5434 memset(&sContext, 0, sizeof(sContext));
danielk1977a7a8e142008-02-13 18:25:27 +00005435
5436 /* The output cell may already have a buffer allocated. Move
5437 ** the current contents to sContext.s so in case the user-function
5438 ** can use the already allocated buffer instead of allocating a
5439 ** new one.
5440 */
5441 sqlite3VdbeMemMove(&sContext.s, pDest);
5442 MemSetTypeFlag(&sContext.s, MEM_Null);
5443
drhde4fcfd2008-01-19 23:50:26 +00005444 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
5445 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
danielk19773e3a84d2008-08-01 17:37:40 +00005446 sqlite3DbFree(db, p->zErrMsg);
5447 p->zErrMsg = pVtab->zErrMsg;
5448 pVtab->zErrMsg = 0;
drh4c8555f2009-06-25 01:47:11 +00005449 if( sContext.isError ){
5450 rc = sContext.isError;
5451 }
danielk1977b7a7b9a2006-06-13 10:24:42 +00005452
drhde4fcfd2008-01-19 23:50:26 +00005453 /* Copy the result of the function to the P3 register. We
shanebe217792009-03-05 04:20:31 +00005454 ** do this regardless of whether or not an error occurred to ensure any
drhde4fcfd2008-01-19 23:50:26 +00005455 ** dynamic allocation in sContext.s (a Mem struct) is released.
5456 */
5457 sqlite3VdbeChangeEncoding(&sContext.s, encoding);
drhde4fcfd2008-01-19 23:50:26 +00005458 sqlite3VdbeMemMove(pDest, &sContext.s);
drh5ff44372009-11-24 16:26:17 +00005459 REGISTER_TRACE(pOp->p3, pDest);
drhde4fcfd2008-01-19 23:50:26 +00005460 UPDATE_MAX_BLOBSIZE(pDest);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005461
drhde4fcfd2008-01-19 23:50:26 +00005462 if( sqlite3SafetyOn(db) ){
5463 goto abort_due_to_misuse;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005464 }
drhde4fcfd2008-01-19 23:50:26 +00005465 if( sqlite3VdbeMemTooBig(pDest) ){
5466 goto too_big;
5467 }
drh9eff6162006-06-12 21:59:13 +00005468 break;
5469}
5470#endif /* SQLITE_OMIT_VIRTUALTABLE */
5471
5472#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005473/* Opcode: VNext P1 P2 * * *
drh9eff6162006-06-12 21:59:13 +00005474**
5475** Advance virtual table P1 to the next row in its result set and
5476** jump to instruction P2. Or, if the virtual table has reached
5477** the end of its result set, then fall through to the next instruction.
5478*/
drh9cbf3422008-01-17 16:22:13 +00005479case OP_VNext: { /* jump */
danielk19773e3a84d2008-08-01 17:37:40 +00005480 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005481 const sqlite3_module *pModule;
drhc54a6172009-06-02 16:06:03 +00005482 int res;
drh856c1032009-06-02 15:21:42 +00005483 VdbeCursor *pCur;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005484
drhc54a6172009-06-02 16:06:03 +00005485 res = 0;
drh856c1032009-06-02 15:21:42 +00005486 pCur = p->apCsr[pOp->p1];
danielk1977b7a7b9a2006-06-13 10:24:42 +00005487 assert( pCur->pVtabCursor );
drh2945b4a2008-01-31 15:53:45 +00005488 if( pCur->nullRow ){
5489 break;
5490 }
danielk19773e3a84d2008-08-01 17:37:40 +00005491 pVtab = pCur->pVtabCursor->pVtab;
5492 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00005493 assert( pModule->xNext );
danielk1977b7a7b9a2006-06-13 10:24:42 +00005494
drhde4fcfd2008-01-19 23:50:26 +00005495 /* Invoke the xNext() method of the module. There is no way for the
5496 ** underlying implementation to return an error if one occurs during
5497 ** xNext(). Instead, if an error occurs, true is returned (indicating that
5498 ** data is available) and the error code returned when xColumn or
5499 ** some other method is next invoked on the save virtual table cursor.
5500 */
5501 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
5502 p->inVtabMethod = 1;
5503 rc = pModule->xNext(pCur->pVtabCursor);
5504 p->inVtabMethod = 0;
danielk19773e3a84d2008-08-01 17:37:40 +00005505 sqlite3DbFree(db, p->zErrMsg);
5506 p->zErrMsg = pVtab->zErrMsg;
5507 pVtab->zErrMsg = 0;
drhde4fcfd2008-01-19 23:50:26 +00005508 if( rc==SQLITE_OK ){
5509 res = pModule->xEof(pCur->pVtabCursor);
danielk1977b7a7b9a2006-06-13 10:24:42 +00005510 }
drhde4fcfd2008-01-19 23:50:26 +00005511 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
danielk1977b7a7b9a2006-06-13 10:24:42 +00005512
drhde4fcfd2008-01-19 23:50:26 +00005513 if( !res ){
5514 /* If there is data, jump to P2 */
5515 pc = pOp->p2 - 1;
5516 }
drh9eff6162006-06-12 21:59:13 +00005517 break;
5518}
5519#endif /* SQLITE_OMIT_VIRTUALTABLE */
5520
danielk1977182c4ba2007-06-27 15:53:34 +00005521#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005522/* Opcode: VRename P1 * * P4 *
danielk1977182c4ba2007-06-27 15:53:34 +00005523**
drh66a51672008-01-03 00:01:23 +00005524** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977182c4ba2007-06-27 15:53:34 +00005525** This opcode invokes the corresponding xRename method. The value
danielk19776dbee812008-01-03 18:39:41 +00005526** in register P1 is passed as the zName argument to the xRename method.
danielk1977182c4ba2007-06-27 15:53:34 +00005527*/
drh9cbf3422008-01-17 16:22:13 +00005528case OP_VRename: {
drh856c1032009-06-02 15:21:42 +00005529 sqlite3_vtab *pVtab;
5530 Mem *pName;
5531
danielk1977595a5232009-07-24 17:58:53 +00005532 pVtab = pOp->p4.pVtab->pVtab;
drha6c2ed92009-11-14 23:22:23 +00005533 pName = &aMem[pOp->p1];
danielk1977182c4ba2007-06-27 15:53:34 +00005534 assert( pVtab->pModule->xRename );
drh5b6afba2008-01-05 16:29:28 +00005535 REGISTER_TRACE(pOp->p1, pName);
drh35f6b932009-06-23 14:15:04 +00005536 assert( pName->flags & MEM_Str );
danielk1977182c4ba2007-06-27 15:53:34 +00005537 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
danielk19776dbee812008-01-03 18:39:41 +00005538 rc = pVtab->pModule->xRename(pVtab, pName->z);
drh633e6d52008-07-28 19:34:53 +00005539 sqlite3DbFree(db, p->zErrMsg);
drh80cc85b2008-07-23 21:07:25 +00005540 p->zErrMsg = pVtab->zErrMsg;
5541 pVtab->zErrMsg = 0;
danielk1977182c4ba2007-06-27 15:53:34 +00005542 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
5543
danielk1977182c4ba2007-06-27 15:53:34 +00005544 break;
5545}
5546#endif
drh4cbdda92006-06-14 19:00:20 +00005547
5548#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00005549/* Opcode: VUpdate P1 P2 P3 P4 *
danielk1977399918f2006-06-14 13:03:23 +00005550**
drh66a51672008-01-03 00:01:23 +00005551** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977399918f2006-06-14 13:03:23 +00005552** This opcode invokes the corresponding xUpdate method. P2 values
danielk19772a339ff2008-01-03 17:31:44 +00005553** are contiguous memory cells starting at P3 to pass to the xUpdate
5554** invocation. The value in register (P3+P2-1) corresponds to the
5555** p2th element of the argv array passed to xUpdate.
drh4cbdda92006-06-14 19:00:20 +00005556**
5557** The xUpdate method will do a DELETE or an INSERT or both.
danielk19772a339ff2008-01-03 17:31:44 +00005558** The argv[0] element (which corresponds to memory cell P3)
5559** is the rowid of a row to delete. If argv[0] is NULL then no
5560** deletion occurs. The argv[1] element is the rowid of the new
5561** row. This can be NULL to have the virtual table select the new
5562** rowid for itself. The subsequent elements in the array are
5563** the values of columns in the new row.
drh4cbdda92006-06-14 19:00:20 +00005564**
5565** If P2==1 then no insert is performed. argv[0] is the rowid of
5566** a row to delete.
danielk19771f6eec52006-06-16 06:17:47 +00005567**
5568** P1 is a boolean flag. If it is set to true and the xUpdate call
5569** is successful, then the value returned by sqlite3_last_insert_rowid()
5570** is set to the value of the rowid for the row just inserted.
danielk1977399918f2006-06-14 13:03:23 +00005571*/
drh9cbf3422008-01-17 16:22:13 +00005572case OP_VUpdate: {
drh856c1032009-06-02 15:21:42 +00005573 sqlite3_vtab *pVtab;
5574 sqlite3_module *pModule;
5575 int nArg;
5576 int i;
5577 sqlite_int64 rowid;
5578 Mem **apArg;
5579 Mem *pX;
5580
danielk1977595a5232009-07-24 17:58:53 +00005581 pVtab = pOp->p4.pVtab->pVtab;
drh856c1032009-06-02 15:21:42 +00005582 pModule = (sqlite3_module *)pVtab->pModule;
5583 nArg = pOp->p2;
drh66a51672008-01-03 00:01:23 +00005584 assert( pOp->p4type==P4_VTAB );
drh35f6b932009-06-23 14:15:04 +00005585 if( ALWAYS(pModule->xUpdate) ){
drh856c1032009-06-02 15:21:42 +00005586 apArg = p->apArg;
drha6c2ed92009-11-14 23:22:23 +00005587 pX = &aMem[pOp->p3];
danielk19772a339ff2008-01-03 17:31:44 +00005588 for(i=0; i<nArg; i++){
dan937d0de2009-10-15 18:35:38 +00005589 sqlite3VdbeMemStoreType(pX);
drh9c419382006-06-16 21:13:21 +00005590 apArg[i] = pX;
danielk19772a339ff2008-01-03 17:31:44 +00005591 pX++;
danielk1977399918f2006-06-14 13:03:23 +00005592 }
danielk1977c7d54102006-06-15 07:29:00 +00005593 if( sqlite3SafetyOff(db) ) goto abort_due_to_misuse;
danielk19771f6eec52006-06-16 06:17:47 +00005594 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
drh633e6d52008-07-28 19:34:53 +00005595 sqlite3DbFree(db, p->zErrMsg);
drh80cc85b2008-07-23 21:07:25 +00005596 p->zErrMsg = pVtab->zErrMsg;
5597 pVtab->zErrMsg = 0;
danielk1977c7d54102006-06-15 07:29:00 +00005598 if( sqlite3SafetyOn(db) ) goto abort_due_to_misuse;
drh35f6b932009-06-23 14:15:04 +00005599 if( rc==SQLITE_OK && pOp->p1 ){
danielk19771f6eec52006-06-16 06:17:47 +00005600 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
5601 db->lastRowid = rowid;
5602 }
drhb5df1442008-04-10 14:00:09 +00005603 p->nChange++;
danielk1977399918f2006-06-14 13:03:23 +00005604 }
drh4cbdda92006-06-14 19:00:20 +00005605 break;
danielk1977399918f2006-06-14 13:03:23 +00005606}
5607#endif /* SQLITE_OMIT_VIRTUALTABLE */
5608
danielk197759a93792008-05-15 17:48:20 +00005609#ifndef SQLITE_OMIT_PAGER_PRAGMAS
5610/* Opcode: Pagecount P1 P2 * * *
5611**
5612** Write the current number of pages in database P1 to memory cell P2.
5613*/
5614case OP_Pagecount: { /* out2-prerelease */
drh856c1032009-06-02 15:21:42 +00005615 int p1;
danielk197759a93792008-05-15 17:48:20 +00005616 int nPage;
drh856c1032009-06-02 15:21:42 +00005617 Pager *pPager;
danielk197759a93792008-05-15 17:48:20 +00005618
drh856c1032009-06-02 15:21:42 +00005619 p1 = pOp->p1;
5620 pPager = sqlite3BtreePager(db->aDb[p1].pBt);
danielk1977ad0132d2008-06-07 08:58:22 +00005621 rc = sqlite3PagerPagecount(pPager, &nPage);
drh35f6b932009-06-23 14:15:04 +00005622 /* OP_Pagecount is always called from within a read transaction. The
5623 ** page count has already been successfully read and cached. So the
5624 ** sqlite3PagerPagecount() call above cannot fail. */
5625 if( ALWAYS(rc==SQLITE_OK) ){
danielk197759a93792008-05-15 17:48:20 +00005626 pOut->u.i = nPage;
5627 }
5628 break;
5629}
5630#endif
5631
drh949f9cd2008-01-12 21:35:57 +00005632#ifndef SQLITE_OMIT_TRACE
5633/* Opcode: Trace * * * P4 *
5634**
5635** If tracing is enabled (by the sqlite3_trace()) interface, then
5636** the UTF-8 string contained in P4 is emitted on the trace callback.
5637*/
5638case OP_Trace: {
drh856c1032009-06-02 15:21:42 +00005639 char *zTrace;
5640
5641 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
danielk19776ab3a2e2009-02-19 14:39:25 +00005642 if( zTrace ){
drh949f9cd2008-01-12 21:35:57 +00005643 if( db->xTrace ){
drhc7bc4fd2009-11-25 18:03:42 +00005644 char *z = sqlite3VdbeExpandSql(p, zTrace);
5645 db->xTrace(db->pTraceArg, z);
5646 sqlite3DbFree(db, z);
drh949f9cd2008-01-12 21:35:57 +00005647 }
5648#ifdef SQLITE_DEBUG
5649 if( (db->flags & SQLITE_SqlTrace)!=0 ){
danielk19776ab3a2e2009-02-19 14:39:25 +00005650 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
drh949f9cd2008-01-12 21:35:57 +00005651 }
5652#endif /* SQLITE_DEBUG */
5653 }
5654 break;
5655}
5656#endif
5657
drh91fd4d42008-01-19 20:11:25 +00005658
5659/* Opcode: Noop * * * * *
5660**
5661** Do nothing. This instruction is often useful as a jump
5662** destination.
drh5e00f6c2001-09-13 13:46:56 +00005663*/
drh91fd4d42008-01-19 20:11:25 +00005664/*
5665** The magic Explain opcode are only inserted when explain==2 (which
5666** is to say when the EXPLAIN QUERY PLAN syntax is used.)
5667** This opcode records information from the optimizer. It is the
5668** the same as a no-op. This opcodesnever appears in a real VM program.
5669*/
5670default: { /* This is really OP_Noop and OP_Explain */
drh13573c72010-01-12 17:04:07 +00005671 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
drh5e00f6c2001-09-13 13:46:56 +00005672 break;
5673}
5674
5675/*****************************************************************************
5676** The cases of the switch statement above this line should all be indented
5677** by 6 spaces. But the left-most 6 spaces have been removed to improve the
5678** readability. From this point on down, the normal indentation rules are
5679** restored.
5680*****************************************************************************/
5681 }
drh6e142f52000-06-08 13:36:40 +00005682
drh7b396862003-01-01 23:06:20 +00005683#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +00005684 {
shane9bcbdad2008-05-29 20:22:37 +00005685 u64 elapsed = sqlite3Hwtime() - start;
5686 pOp->cycles += elapsed;
drh8178a752003-01-05 21:41:40 +00005687 pOp->cnt++;
5688#if 0
shane9bcbdad2008-05-29 20:22:37 +00005689 fprintf(stdout, "%10llu ", elapsed);
drhbbe879d2009-11-14 18:04:35 +00005690 sqlite3VdbePrintOp(stdout, origPc, &aOp[origPc]);
drh8178a752003-01-05 21:41:40 +00005691#endif
5692 }
drh7b396862003-01-01 23:06:20 +00005693#endif
5694
drh6e142f52000-06-08 13:36:40 +00005695 /* The following code adds nothing to the actual functionality
5696 ** of the program. It is only here for testing and debugging.
5697 ** On the other hand, it does burn CPU cycles every time through
5698 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
5699 */
5700#ifndef NDEBUG
drha6110402005-07-28 20:51:19 +00005701 assert( pc>=-1 && pc<p->nOp );
drhae7e1512007-05-02 16:51:59 +00005702
drhcf1023c2007-05-08 20:59:49 +00005703#ifdef SQLITE_DEBUG
drh5b6afba2008-01-05 16:29:28 +00005704 if( p->trace ){
5705 if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
drh3c657212009-11-17 23:59:58 +00005706 if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){
5707 registerTrace(p->trace, pOp->p2, &aMem[pOp->p2]);
drh75897232000-05-29 14:26:00 +00005708 }
drh3c657212009-11-17 23:59:58 +00005709 if( pOp->opflags & OPFLG_OUT3 ){
5710 registerTrace(p->trace, pOp->p3, &aMem[pOp->p3]);
drh5b6afba2008-01-05 16:29:28 +00005711 }
drh75897232000-05-29 14:26:00 +00005712 }
danielk1977b5402fb2005-01-12 07:15:04 +00005713#endif /* SQLITE_DEBUG */
5714#endif /* NDEBUG */
drhb86ccfb2003-01-28 23:13:10 +00005715 } /* The end of the for(;;) loop the loops through opcodes */
drh75897232000-05-29 14:26:00 +00005716
drha05a7222008-01-19 03:35:58 +00005717 /* If we reach this point, it means that execution is finished with
5718 ** an error of some kind.
drhb86ccfb2003-01-28 23:13:10 +00005719 */
drha05a7222008-01-19 03:35:58 +00005720vdbe_error_halt:
5721 assert( rc );
5722 p->rc = rc;
drh92f02c32004-09-02 14:57:08 +00005723 sqlite3VdbeHalt(p);
danielk19777eaabcd2008-07-07 14:56:56 +00005724 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
5725 rc = SQLITE_ERROR;
drh32783152009-11-20 15:02:34 +00005726 if( resetSchemaOnFault ) sqlite3ResetInternalSchema(db, 0);
drh900b31e2007-08-28 02:27:51 +00005727
5728 /* This is the only way out of this procedure. We have to
5729 ** release the mutexes on btrees that were acquired at the
5730 ** top. */
5731vdbe_return:
drh4cf7c7f2007-08-28 23:28:07 +00005732 sqlite3BtreeMutexArrayLeave(&p->aMutex);
drhb86ccfb2003-01-28 23:13:10 +00005733 return rc;
5734
drh023ae032007-05-08 12:12:16 +00005735 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
5736 ** is encountered.
5737 */
5738too_big:
drhf089aa42008-07-08 19:34:06 +00005739 sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
drh023ae032007-05-08 12:12:16 +00005740 rc = SQLITE_TOOBIG;
drha05a7222008-01-19 03:35:58 +00005741 goto vdbe_error_halt;
drh023ae032007-05-08 12:12:16 +00005742
drh98640a32007-06-07 19:08:32 +00005743 /* Jump to here if a malloc() fails.
drhb86ccfb2003-01-28 23:13:10 +00005744 */
5745no_mem:
drh17435752007-08-16 04:30:38 +00005746 db->mallocFailed = 1;
drhf089aa42008-07-08 19:34:06 +00005747 sqlite3SetString(&p->zErrMsg, db, "out of memory");
drhb86ccfb2003-01-28 23:13:10 +00005748 rc = SQLITE_NOMEM;
drha05a7222008-01-19 03:35:58 +00005749 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00005750
5751 /* Jump to here for an SQLITE_MISUSE error.
5752 */
5753abort_due_to_misuse:
5754 rc = SQLITE_MISUSE;
5755 /* Fall thru into abort_due_to_error */
5756
5757 /* Jump to here for any other kind of fatal error. The "rc" variable
5758 ** should hold the error number.
5759 */
5760abort_due_to_error:
drha05a7222008-01-19 03:35:58 +00005761 assert( p->zErrMsg==0 );
5762 if( db->mallocFailed ) rc = SQLITE_NOMEM;
danielk19777eaabcd2008-07-07 14:56:56 +00005763 if( rc!=SQLITE_IOERR_NOMEM ){
drhf089aa42008-07-08 19:34:06 +00005764 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
danielk19777eaabcd2008-07-07 14:56:56 +00005765 }
drha05a7222008-01-19 03:35:58 +00005766 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00005767
danielk19776f8a5032004-05-10 10:34:51 +00005768 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
drhb86ccfb2003-01-28 23:13:10 +00005769 ** flag.
5770 */
5771abort_due_to_interrupt:
drh881feaa2006-07-26 01:39:30 +00005772 assert( db->u1.isInterrupted );
drh7e8b8482008-01-23 03:03:05 +00005773 rc = SQLITE_INTERRUPT;
danielk1977026d2702004-06-14 13:14:59 +00005774 p->rc = rc;
drhf089aa42008-07-08 19:34:06 +00005775 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
drha05a7222008-01-19 03:35:58 +00005776 goto vdbe_error_halt;
drhb86ccfb2003-01-28 23:13:10 +00005777}