blob: 2fd3fedc1e47f2f1a798214a7377a1560c2fa6f1 [file] [log] [blame]
drha059ad02001-04-17 20:09:11 +00001/*
drh9e572e62004-04-23 23:43:10 +00002** 2004 April 6
drha059ad02001-04-17 20:09:11 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drha059ad02001-04-17 20:09:11 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drha059ad02001-04-17 20:09:11 +000010**
11*************************************************************************
drh8b2f49b2001-06-08 00:21:52 +000012** This file implements a external (disk-based) database using BTrees.
drha3152892007-05-05 11:48:52 +000013** See the header comment on "btreeInt.h" for additional information.
14** Including a description of file format and an overview of operation.
drha059ad02001-04-17 20:09:11 +000015*/
drha3152892007-05-05 11:48:52 +000016#include "btreeInt.h"
paulb95a8862003-04-01 21:16:41 +000017
drh8c42ca92001-06-22 19:15:00 +000018/*
drha3152892007-05-05 11:48:52 +000019** The header string that appears at the beginning of every
20** SQLite database.
drh556b2a22005-06-14 16:04:05 +000021*/
drh556b2a22005-06-14 16:04:05 +000022static const char zMagicHeader[] = SQLITE_FILE_HEADER;
drh08ed44e2001-04-29 23:32:55 +000023
drh8c42ca92001-06-22 19:15:00 +000024/*
drha3152892007-05-05 11:48:52 +000025** Set this global variable to 1 to enable tracing using the TRACE
26** macro.
drh615ae552005-01-16 23:21:00 +000027*/
drhe8f52c52008-07-12 14:52:20 +000028#if 0
danielk1977a50d9aa2009-06-08 14:49:45 +000029int sqlite3BtreeTrace=1; /* True to enable tracing */
drhe8f52c52008-07-12 14:52:20 +000030# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31#else
32# define TRACE(X)
drh615ae552005-01-16 23:21:00 +000033#endif
drh615ae552005-01-16 23:21:00 +000034
drh86f8c192007-08-22 00:39:19 +000035
36
drhe53831d2007-08-17 01:14:38 +000037#ifndef SQLITE_OMIT_SHARED_CACHE
38/*
danielk1977502b4e02008-09-02 14:07:24 +000039** A list of BtShared objects that are eligible for participation
40** in shared cache. This variable has file scope during normal builds,
41** but the test harness needs to access it so we make it global for
42** test builds.
drh7555d8e2009-03-20 13:15:30 +000043**
44** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
drhe53831d2007-08-17 01:14:38 +000045*/
46#ifdef SQLITE_TEST
drh78f82d12008-09-02 00:52:52 +000047BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000048#else
drh78f82d12008-09-02 00:52:52 +000049static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
drhe53831d2007-08-17 01:14:38 +000050#endif
drhe53831d2007-08-17 01:14:38 +000051#endif /* SQLITE_OMIT_SHARED_CACHE */
52
53#ifndef SQLITE_OMIT_SHARED_CACHE
54/*
55** Enable or disable the shared pager and schema features.
56**
57** This routine has no effect on existing database connections.
58** The shared cache setting effects only future calls to
59** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
60*/
61int sqlite3_enable_shared_cache(int enable){
danielk1977502b4e02008-09-02 14:07:24 +000062 sqlite3GlobalConfig.sharedCacheEnabled = enable;
drhe53831d2007-08-17 01:14:38 +000063 return SQLITE_OK;
64}
65#endif
66
drhd677b3d2007-08-20 22:48:41 +000067
danielk1977aef0bf62005-12-30 16:28:01 +000068
69#ifdef SQLITE_OMIT_SHARED_CACHE
70 /*
drhc25eabe2009-02-24 18:57:31 +000071 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
72 ** and clearAllSharedCacheTableLocks()
danielk1977aef0bf62005-12-30 16:28:01 +000073 ** manipulate entries in the BtShared.pLock linked list used to store
74 ** shared-cache table level locks. If the library is compiled with the
75 ** shared-cache feature disabled, then there is only ever one user
danielk1977da184232006-01-05 11:34:32 +000076 ** of each BtShared structure and so this locking is not necessary.
77 ** So define the lock related functions as no-ops.
danielk1977aef0bf62005-12-30 16:28:01 +000078 */
drhc25eabe2009-02-24 18:57:31 +000079 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
80 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
81 #define clearAllSharedCacheTableLocks(a)
danielk197794b30732009-07-02 17:21:57 +000082 #define downgradeAllSharedCacheTableLocks(a)
danielk197796d48e92009-06-29 06:00:37 +000083 #define hasSharedCacheTableLock(a,b,c,d) 1
84 #define hasReadConflicts(a, b) 0
drhe53831d2007-08-17 01:14:38 +000085#endif
danielk1977aef0bf62005-12-30 16:28:01 +000086
drhe53831d2007-08-17 01:14:38 +000087#ifndef SQLITE_OMIT_SHARED_CACHE
danielk197796d48e92009-06-29 06:00:37 +000088
89#ifdef SQLITE_DEBUG
90/*
drh0ee3dbe2009-10-16 15:05:18 +000091**** This function is only used as part of an assert() statement. ***
92**
93** Check to see if pBtree holds the required locks to read or write to the
94** table with root page iRoot. Return 1 if it does and 0 if not.
95**
96** For example, when writing to a table with root-page iRoot via
danielk197796d48e92009-06-29 06:00:37 +000097** Btree connection pBtree:
98**
99** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
100**
drh0ee3dbe2009-10-16 15:05:18 +0000101** When writing to an index that resides in a sharable database, the
danielk197796d48e92009-06-29 06:00:37 +0000102** caller should have first obtained a lock specifying the root page of
drh0ee3dbe2009-10-16 15:05:18 +0000103** the corresponding table. This makes things a bit more complicated,
104** as this module treats each table as a separate structure. To determine
105** the table corresponding to the index being written, this
danielk197796d48e92009-06-29 06:00:37 +0000106** function has to search through the database schema.
107**
drh0ee3dbe2009-10-16 15:05:18 +0000108** Instead of a lock on the table/index rooted at page iRoot, the caller may
danielk197796d48e92009-06-29 06:00:37 +0000109** hold a write-lock on the schema table (root page 1). This is also
110** acceptable.
111*/
112static int hasSharedCacheTableLock(
113 Btree *pBtree, /* Handle that must hold lock */
114 Pgno iRoot, /* Root page of b-tree */
115 int isIndex, /* True if iRoot is the root of an index b-tree */
116 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
117){
118 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
119 Pgno iTab = 0;
120 BtLock *pLock;
121
drh0ee3dbe2009-10-16 15:05:18 +0000122 /* If this database is not shareable, or if the client is reading
danielk197796d48e92009-06-29 06:00:37 +0000123 ** and has the read-uncommitted flag set, then no lock is required.
drh0ee3dbe2009-10-16 15:05:18 +0000124 ** Return true immediately.
125 */
danielk197796d48e92009-06-29 06:00:37 +0000126 if( (pBtree->sharable==0)
127 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
danielk197796d48e92009-06-29 06:00:37 +0000128 ){
129 return 1;
130 }
131
drh0ee3dbe2009-10-16 15:05:18 +0000132 /* If the client is reading or writing an index and the schema is
133 ** not loaded, then it is too difficult to actually check to see if
134 ** the correct locks are held. So do not bother - just return true.
135 ** This case does not come up very often anyhow.
136 */
137 if( isIndex && (!pSchema || (pSchema->flags&DB_SchemaLoaded)==0) ){
138 return 1;
139 }
140
danielk197796d48e92009-06-29 06:00:37 +0000141 /* Figure out the root-page that the lock should be held on. For table
142 ** b-trees, this is just the root page of the b-tree being read or
143 ** written. For index b-trees, it is the root page of the associated
144 ** table. */
145 if( isIndex ){
146 HashElem *p;
147 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
148 Index *pIdx = (Index *)sqliteHashData(p);
shane5eff7cf2009-08-10 03:57:58 +0000149 if( pIdx->tnum==(int)iRoot ){
150 iTab = pIdx->pTable->tnum;
danielk197796d48e92009-06-29 06:00:37 +0000151 }
152 }
153 }else{
154 iTab = iRoot;
155 }
156
157 /* Search for the required lock. Either a write-lock on root-page iTab, a
158 ** write-lock on the schema table, or (if the client is reading) a
159 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
160 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
161 if( pLock->pBtree==pBtree
162 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
163 && pLock->eLock>=eLockType
164 ){
165 return 1;
166 }
167 }
168
169 /* Failed to find the required lock. */
170 return 0;
171}
drh0ee3dbe2009-10-16 15:05:18 +0000172#endif /* SQLITE_DEBUG */
danielk197796d48e92009-06-29 06:00:37 +0000173
drh0ee3dbe2009-10-16 15:05:18 +0000174#ifdef SQLITE_DEBUG
danielk197796d48e92009-06-29 06:00:37 +0000175/*
drh0ee3dbe2009-10-16 15:05:18 +0000176**** This function may be used as part of assert() statements only. ****
danielk197796d48e92009-06-29 06:00:37 +0000177**
drh0ee3dbe2009-10-16 15:05:18 +0000178** Return true if it would be illegal for pBtree to write into the
179** table or index rooted at iRoot because other shared connections are
180** simultaneously reading that same table or index.
181**
182** It is illegal for pBtree to write if some other Btree object that
183** shares the same BtShared object is currently reading or writing
184** the iRoot table. Except, if the other Btree object has the
185** read-uncommitted flag set, then it is OK for the other object to
186** have a read cursor.
187**
188** For example, before writing to any part of the table or index
189** rooted at page iRoot, one should call:
danielk197796d48e92009-06-29 06:00:37 +0000190**
191** assert( !hasReadConflicts(pBtree, iRoot) );
192*/
193static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
194 BtCursor *p;
195 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
196 if( p->pgnoRoot==iRoot
197 && p->pBtree!=pBtree
198 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
199 ){
200 return 1;
201 }
202 }
203 return 0;
204}
205#endif /* #ifdef SQLITE_DEBUG */
206
danielk1977da184232006-01-05 11:34:32 +0000207/*
drh0ee3dbe2009-10-16 15:05:18 +0000208** Query to see if Btree handle p may obtain a lock of type eLock
danielk1977aef0bf62005-12-30 16:28:01 +0000209** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
drhc25eabe2009-02-24 18:57:31 +0000210** SQLITE_OK if the lock may be obtained (by calling
211** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
danielk1977aef0bf62005-12-30 16:28:01 +0000212*/
drhc25eabe2009-02-24 18:57:31 +0000213static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000214 BtShared *pBt = p->pBt;
215 BtLock *pIter;
216
drh1fee73e2007-08-29 04:00:57 +0000217 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000218 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
219 assert( p->db!=0 );
danielk1977e0d9e6f2009-07-03 16:25:06 +0000220 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
drhd677b3d2007-08-20 22:48:41 +0000221
danielk19775b413d72009-04-01 09:41:54 +0000222 /* If requesting a write-lock, then the Btree must have an open write
223 ** transaction on this file. And, obviously, for this to be so there
224 ** must be an open write transaction on the file itself.
225 */
226 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
227 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
228
drh0ee3dbe2009-10-16 15:05:18 +0000229 /* This routine is a no-op if the shared-cache is not enabled */
drhe53831d2007-08-17 01:14:38 +0000230 if( !p->sharable ){
danielk1977da184232006-01-05 11:34:32 +0000231 return SQLITE_OK;
232 }
233
danielk1977641b0f42007-12-21 04:47:25 +0000234 /* If some other connection is holding an exclusive lock, the
235 ** requested lock may not be obtained.
236 */
danielk1977404ca072009-03-16 13:19:36 +0000237 if( pBt->pWriter!=p && pBt->isExclusive ){
238 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
239 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977641b0f42007-12-21 04:47:25 +0000240 }
241
danielk1977e0d9e6f2009-07-03 16:25:06 +0000242 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
243 /* The condition (pIter->eLock!=eLock) in the following if(...)
244 ** statement is a simplification of:
245 **
246 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
247 **
248 ** since we know that if eLock==WRITE_LOCK, then no other connection
249 ** may hold a WRITE_LOCK on any table in this file (since there can
250 ** only be a single writer).
251 */
252 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
253 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
254 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
255 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
256 if( eLock==WRITE_LOCK ){
257 assert( p==pBt->pWriter );
258 pBt->isPending = 1;
danielk1977da184232006-01-05 11:34:32 +0000259 }
danielk1977e0d9e6f2009-07-03 16:25:06 +0000260 return SQLITE_LOCKED_SHAREDCACHE;
danielk1977aef0bf62005-12-30 16:28:01 +0000261 }
262 }
263 return SQLITE_OK;
264}
drhe53831d2007-08-17 01:14:38 +0000265#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000266
drhe53831d2007-08-17 01:14:38 +0000267#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000268/*
269** Add a lock on the table with root-page iTable to the shared-btree used
270** by Btree handle p. Parameter eLock must be either READ_LOCK or
271** WRITE_LOCK.
272**
danielk19779d104862009-07-09 08:27:14 +0000273** This function assumes the following:
274**
drh0ee3dbe2009-10-16 15:05:18 +0000275** (a) The specified Btree object p is connected to a sharable
276** database (one with the BtShared.sharable flag set), and
danielk19779d104862009-07-09 08:27:14 +0000277**
drh0ee3dbe2009-10-16 15:05:18 +0000278** (b) No other Btree objects hold a lock that conflicts
danielk19779d104862009-07-09 08:27:14 +0000279** with the requested lock (i.e. querySharedCacheTableLock() has
280** already been called and returned SQLITE_OK).
281**
282** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
283** is returned if a malloc attempt fails.
danielk1977aef0bf62005-12-30 16:28:01 +0000284*/
drhc25eabe2009-02-24 18:57:31 +0000285static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
danielk1977aef0bf62005-12-30 16:28:01 +0000286 BtShared *pBt = p->pBt;
287 BtLock *pLock = 0;
288 BtLock *pIter;
289
drh1fee73e2007-08-29 04:00:57 +0000290 assert( sqlite3BtreeHoldsMutex(p) );
drhfa67c3c2008-07-11 02:21:40 +0000291 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
292 assert( p->db!=0 );
drhd677b3d2007-08-20 22:48:41 +0000293
danielk1977e0d9e6f2009-07-03 16:25:06 +0000294 /* A connection with the read-uncommitted flag set will never try to
295 ** obtain a read-lock using this function. The only read-lock obtained
296 ** by a connection in read-uncommitted mode is on the sqlite_master
297 ** table, and that lock is obtained in BtreeBeginTrans(). */
298 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
299
danielk19779d104862009-07-09 08:27:14 +0000300 /* This function should only be called on a sharable b-tree after it
301 ** has been determined that no other b-tree holds a conflicting lock. */
302 assert( p->sharable );
drhc25eabe2009-02-24 18:57:31 +0000303 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
danielk1977aef0bf62005-12-30 16:28:01 +0000304
305 /* First search the list for an existing lock on this table. */
306 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
307 if( pIter->iTable==iTable && pIter->pBtree==p ){
308 pLock = pIter;
309 break;
310 }
311 }
312
313 /* If the above search did not find a BtLock struct associating Btree p
314 ** with table iTable, allocate one and link it into the list.
315 */
316 if( !pLock ){
drh17435752007-08-16 04:30:38 +0000317 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
danielk1977aef0bf62005-12-30 16:28:01 +0000318 if( !pLock ){
319 return SQLITE_NOMEM;
320 }
321 pLock->iTable = iTable;
322 pLock->pBtree = p;
323 pLock->pNext = pBt->pLock;
324 pBt->pLock = pLock;
325 }
326
327 /* Set the BtLock.eLock variable to the maximum of the current lock
328 ** and the requested lock. This means if a write-lock was already held
329 ** and a read-lock requested, we don't incorrectly downgrade the lock.
330 */
331 assert( WRITE_LOCK>READ_LOCK );
danielk19775118b912005-12-30 16:31:53 +0000332 if( eLock>pLock->eLock ){
333 pLock->eLock = eLock;
334 }
danielk1977aef0bf62005-12-30 16:28:01 +0000335
336 return SQLITE_OK;
337}
drhe53831d2007-08-17 01:14:38 +0000338#endif /* !SQLITE_OMIT_SHARED_CACHE */
danielk1977aef0bf62005-12-30 16:28:01 +0000339
drhe53831d2007-08-17 01:14:38 +0000340#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +0000341/*
drhc25eabe2009-02-24 18:57:31 +0000342** Release all the table locks (locks obtained via calls to
drh0ee3dbe2009-10-16 15:05:18 +0000343** the setSharedCacheTableLock() procedure) held by Btree object p.
danielk1977fa542f12009-04-02 18:28:08 +0000344**
drh0ee3dbe2009-10-16 15:05:18 +0000345** This function assumes that Btree p has an open read or write
danielk1977fa542f12009-04-02 18:28:08 +0000346** transaction. If it does not, then the BtShared.isPending variable
347** may be incorrectly cleared.
danielk1977aef0bf62005-12-30 16:28:01 +0000348*/
drhc25eabe2009-02-24 18:57:31 +0000349static void clearAllSharedCacheTableLocks(Btree *p){
danielk1977641b0f42007-12-21 04:47:25 +0000350 BtShared *pBt = p->pBt;
351 BtLock **ppIter = &pBt->pLock;
danielk1977da184232006-01-05 11:34:32 +0000352
drh1fee73e2007-08-29 04:00:57 +0000353 assert( sqlite3BtreeHoldsMutex(p) );
drhe53831d2007-08-17 01:14:38 +0000354 assert( p->sharable || 0==*ppIter );
danielk1977fa542f12009-04-02 18:28:08 +0000355 assert( p->inTrans>0 );
danielk1977da184232006-01-05 11:34:32 +0000356
danielk1977aef0bf62005-12-30 16:28:01 +0000357 while( *ppIter ){
358 BtLock *pLock = *ppIter;
danielk1977404ca072009-03-16 13:19:36 +0000359 assert( pBt->isExclusive==0 || pBt->pWriter==pLock->pBtree );
danielk1977fa542f12009-04-02 18:28:08 +0000360 assert( pLock->pBtree->inTrans>=pLock->eLock );
danielk1977aef0bf62005-12-30 16:28:01 +0000361 if( pLock->pBtree==p ){
362 *ppIter = pLock->pNext;
danielk1977602b4662009-07-02 07:47:33 +0000363 assert( pLock->iTable!=1 || pLock==&p->lock );
364 if( pLock->iTable!=1 ){
365 sqlite3_free(pLock);
366 }
danielk1977aef0bf62005-12-30 16:28:01 +0000367 }else{
368 ppIter = &pLock->pNext;
369 }
370 }
danielk1977641b0f42007-12-21 04:47:25 +0000371
danielk1977404ca072009-03-16 13:19:36 +0000372 assert( pBt->isPending==0 || pBt->pWriter );
373 if( pBt->pWriter==p ){
374 pBt->pWriter = 0;
375 pBt->isExclusive = 0;
376 pBt->isPending = 0;
377 }else if( pBt->nTransaction==2 ){
drh0ee3dbe2009-10-16 15:05:18 +0000378 /* This function is called when Btree p is concluding its
danielk1977404ca072009-03-16 13:19:36 +0000379 ** transaction. If there currently exists a writer, and p is not
380 ** that writer, then the number of locks held by connections other
381 ** than the writer must be about to drop to zero. In this case
382 ** set the isPending flag to 0.
383 **
384 ** If there is not currently a writer, then BtShared.isPending must
385 ** be zero already. So this next line is harmless in that case.
386 */
387 pBt->isPending = 0;
danielk1977641b0f42007-12-21 04:47:25 +0000388 }
danielk1977aef0bf62005-12-30 16:28:01 +0000389}
danielk197794b30732009-07-02 17:21:57 +0000390
danielk1977e0d9e6f2009-07-03 16:25:06 +0000391/*
drh0ee3dbe2009-10-16 15:05:18 +0000392** This function changes all write-locks held by Btree p into read-locks.
danielk1977e0d9e6f2009-07-03 16:25:06 +0000393*/
danielk197794b30732009-07-02 17:21:57 +0000394static void downgradeAllSharedCacheTableLocks(Btree *p){
395 BtShared *pBt = p->pBt;
396 if( pBt->pWriter==p ){
397 BtLock *pLock;
398 pBt->pWriter = 0;
399 pBt->isExclusive = 0;
400 pBt->isPending = 0;
401 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
402 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
403 pLock->eLock = READ_LOCK;
404 }
405 }
406}
407
danielk1977aef0bf62005-12-30 16:28:01 +0000408#endif /* SQLITE_OMIT_SHARED_CACHE */
409
drh980b1a72006-08-16 16:42:48 +0000410static void releasePage(MemPage *pPage); /* Forward reference */
411
drh1fee73e2007-08-29 04:00:57 +0000412/*
drh0ee3dbe2009-10-16 15:05:18 +0000413***** This routine is used inside of assert() only ****
414**
415** Verify that the cursor holds the mutex on its BtShared
drh1fee73e2007-08-29 04:00:57 +0000416*/
drh0ee3dbe2009-10-16 15:05:18 +0000417#ifdef SQLITE_DEBUG
drh1fee73e2007-08-29 04:00:57 +0000418static int cursorHoldsMutex(BtCursor *p){
drhff0587c2007-08-29 17:43:19 +0000419 return sqlite3_mutex_held(p->pBt->mutex);
drh1fee73e2007-08-29 04:00:57 +0000420}
421#endif
422
423
danielk197792d4d7a2007-05-04 12:05:56 +0000424#ifndef SQLITE_OMIT_INCRBLOB
425/*
426** Invalidate the overflow page-list cache for cursor pCur, if any.
427*/
428static void invalidateOverflowCache(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000429 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000430 sqlite3_free(pCur->aOverflow);
danielk197792d4d7a2007-05-04 12:05:56 +0000431 pCur->aOverflow = 0;
432}
433
434/*
435** Invalidate the overflow page-list cache for all cursors opened
436** on the shared btree structure pBt.
437*/
438static void invalidateAllOverflowCache(BtShared *pBt){
439 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000440 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +0000441 for(p=pBt->pCursor; p; p=p->pNext){
442 invalidateOverflowCache(p);
443 }
444}
danielk197796d48e92009-06-29 06:00:37 +0000445
446/*
447** This function is called before modifying the contents of a table
drh0ee3dbe2009-10-16 15:05:18 +0000448** to invalidate any incrblob cursors that are open on the
drheeb844a2009-08-08 18:01:07 +0000449** row or one of the rows being modified.
danielk197796d48e92009-06-29 06:00:37 +0000450**
451** If argument isClearTable is true, then the entire contents of the
452** table is about to be deleted. In this case invalidate all incrblob
453** cursors open on any row within the table with root-page pgnoRoot.
454**
455** Otherwise, if argument isClearTable is false, then the row with
456** rowid iRow is being replaced or deleted. In this case invalidate
drh0ee3dbe2009-10-16 15:05:18 +0000457** only those incrblob cursors open on that specific row.
danielk197796d48e92009-06-29 06:00:37 +0000458*/
459static void invalidateIncrblobCursors(
460 Btree *pBtree, /* The database file to check */
danielk197796d48e92009-06-29 06:00:37 +0000461 i64 iRow, /* The rowid that might be changing */
462 int isClearTable /* True if all rows are being deleted */
463){
464 BtCursor *p;
465 BtShared *pBt = pBtree->pBt;
466 assert( sqlite3BtreeHoldsMutex(pBtree) );
467 for(p=pBt->pCursor; p; p=p->pNext){
468 if( p->isIncrblobHandle && (isClearTable || p->info.nKey==iRow) ){
469 p->eState = CURSOR_INVALID;
470 }
471 }
472}
473
danielk197792d4d7a2007-05-04 12:05:56 +0000474#else
drh0ee3dbe2009-10-16 15:05:18 +0000475 /* Stub functions when INCRBLOB is omitted */
danielk197792d4d7a2007-05-04 12:05:56 +0000476 #define invalidateOverflowCache(x)
477 #define invalidateAllOverflowCache(x)
drheeb844a2009-08-08 18:01:07 +0000478 #define invalidateIncrblobCursors(x,y,z)
drh0ee3dbe2009-10-16 15:05:18 +0000479#endif /* SQLITE_OMIT_INCRBLOB */
danielk197792d4d7a2007-05-04 12:05:56 +0000480
drh980b1a72006-08-16 16:42:48 +0000481/*
danielk1977bea2a942009-01-20 17:06:27 +0000482** Set bit pgno of the BtShared.pHasContent bitvec. This is called
483** when a page that previously contained data becomes a free-list leaf
484** page.
485**
486** The BtShared.pHasContent bitvec exists to work around an obscure
487** bug caused by the interaction of two useful IO optimizations surrounding
488** free-list leaf pages:
489**
490** 1) When all data is deleted from a page and the page becomes
491** a free-list leaf page, the page is not written to the database
492** (as free-list leaf pages contain no meaningful data). Sometimes
493** such a page is not even journalled (as it will not be modified,
494** why bother journalling it?).
495**
496** 2) When a free-list leaf page is reused, its content is not read
497** from the database or written to the journal file (why should it
498** be, if it is not at all meaningful?).
499**
500** By themselves, these optimizations work fine and provide a handy
501** performance boost to bulk delete or insert operations. However, if
502** a page is moved to the free-list and then reused within the same
503** transaction, a problem comes up. If the page is not journalled when
504** it is moved to the free-list and it is also not journalled when it
505** is extracted from the free-list and reused, then the original data
506** may be lost. In the event of a rollback, it may not be possible
507** to restore the database to its original configuration.
508**
509** The solution is the BtShared.pHasContent bitvec. Whenever a page is
510** moved to become a free-list leaf page, the corresponding bit is
511** set in the bitvec. Whenever a leaf page is extracted from the free-list,
drh0ee3dbe2009-10-16 15:05:18 +0000512** optimization 2 above is omitted if the corresponding bit is already
danielk1977bea2a942009-01-20 17:06:27 +0000513** set in BtShared.pHasContent. The contents of the bitvec are cleared
514** at the end of every transaction.
515*/
516static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
517 int rc = SQLITE_OK;
518 if( !pBt->pHasContent ){
drhdd3cd972010-03-27 17:12:36 +0000519 assert( pgno<=pBt->nPage );
520 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
drh4c301aa2009-07-15 17:25:45 +0000521 if( !pBt->pHasContent ){
522 rc = SQLITE_NOMEM;
danielk1977bea2a942009-01-20 17:06:27 +0000523 }
524 }
525 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
526 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
527 }
528 return rc;
529}
530
531/*
532** Query the BtShared.pHasContent vector.
533**
534** This function is called when a free-list leaf page is removed from the
535** free-list for reuse. It returns false if it is safe to retrieve the
536** page from the pager layer with the 'no-content' flag set. True otherwise.
537*/
538static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
539 Bitvec *p = pBt->pHasContent;
540 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
541}
542
543/*
544** Clear (destroy) the BtShared.pHasContent bitvec. This should be
545** invoked at the conclusion of each write-transaction.
546*/
547static void btreeClearHasContent(BtShared *pBt){
548 sqlite3BitvecDestroy(pBt->pHasContent);
549 pBt->pHasContent = 0;
550}
551
552/*
drh980b1a72006-08-16 16:42:48 +0000553** Save the current cursor position in the variables BtCursor.nKey
554** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
drhea8ffdf2009-07-22 00:35:23 +0000555**
556** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
557** prior to calling this routine.
drh980b1a72006-08-16 16:42:48 +0000558*/
559static int saveCursorPosition(BtCursor *pCur){
560 int rc;
561
562 assert( CURSOR_VALID==pCur->eState );
563 assert( 0==pCur->pKey );
drh1fee73e2007-08-29 04:00:57 +0000564 assert( cursorHoldsMutex(pCur) );
drh980b1a72006-08-16 16:42:48 +0000565
566 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
drhea8ffdf2009-07-22 00:35:23 +0000567 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
drh980b1a72006-08-16 16:42:48 +0000568
569 /* If this is an intKey table, then the above call to BtreeKeySize()
570 ** stores the integer key in pCur->nKey. In this case this value is
571 ** all that is required. Otherwise, if pCur is not open on an intKey
572 ** table, then malloc space for and store the pCur->nKey bytes of key
573 ** data.
574 */
drh4c301aa2009-07-15 17:25:45 +0000575 if( 0==pCur->apPage[0]->intKey ){
drhf49661a2008-12-10 16:45:50 +0000576 void *pKey = sqlite3Malloc( (int)pCur->nKey );
drh980b1a72006-08-16 16:42:48 +0000577 if( pKey ){
drhf49661a2008-12-10 16:45:50 +0000578 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
drh980b1a72006-08-16 16:42:48 +0000579 if( rc==SQLITE_OK ){
580 pCur->pKey = pKey;
581 }else{
drh17435752007-08-16 04:30:38 +0000582 sqlite3_free(pKey);
drh980b1a72006-08-16 16:42:48 +0000583 }
584 }else{
585 rc = SQLITE_NOMEM;
586 }
587 }
danielk197771d5d2c2008-09-29 11:49:47 +0000588 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
drh980b1a72006-08-16 16:42:48 +0000589
590 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +0000591 int i;
592 for(i=0; i<=pCur->iPage; i++){
593 releasePage(pCur->apPage[i]);
594 pCur->apPage[i] = 0;
595 }
596 pCur->iPage = -1;
drh980b1a72006-08-16 16:42:48 +0000597 pCur->eState = CURSOR_REQUIRESEEK;
598 }
599
danielk197792d4d7a2007-05-04 12:05:56 +0000600 invalidateOverflowCache(pCur);
drh980b1a72006-08-16 16:42:48 +0000601 return rc;
602}
603
604/*
drh0ee3dbe2009-10-16 15:05:18 +0000605** Save the positions of all cursors (except pExcept) that are open on
606** the table with root-page iRoot. Usually, this is called just before cursor
drh980b1a72006-08-16 16:42:48 +0000607** pExcept is used to modify the table (BtreeDelete() or BtreeInsert()).
608*/
609static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
610 BtCursor *p;
drh1fee73e2007-08-29 04:00:57 +0000611 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +0000612 assert( pExcept==0 || pExcept->pBt==pBt );
drh980b1a72006-08-16 16:42:48 +0000613 for(p=pBt->pCursor; p; p=p->pNext){
614 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) &&
615 p->eState==CURSOR_VALID ){
616 int rc = saveCursorPosition(p);
617 if( SQLITE_OK!=rc ){
618 return rc;
619 }
620 }
621 }
622 return SQLITE_OK;
623}
624
625/*
drhbf700f32007-03-31 02:36:44 +0000626** Clear the current cursor position.
627*/
danielk1977be51a652008-10-08 17:58:48 +0000628void sqlite3BtreeClearCursor(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +0000629 assert( cursorHoldsMutex(pCur) );
drh17435752007-08-16 04:30:38 +0000630 sqlite3_free(pCur->pKey);
drhbf700f32007-03-31 02:36:44 +0000631 pCur->pKey = 0;
632 pCur->eState = CURSOR_INVALID;
633}
634
635/*
danielk19773509a652009-07-06 18:56:13 +0000636** In this version of BtreeMoveto, pKey is a packed index record
637** such as is generated by the OP_MakeRecord opcode. Unpack the
638** record and then call BtreeMovetoUnpacked() to do the work.
639*/
640static int btreeMoveto(
641 BtCursor *pCur, /* Cursor open on the btree to be searched */
642 const void *pKey, /* Packed key if the btree is an index */
643 i64 nKey, /* Integer key for tables. Size of pKey for indices */
644 int bias, /* Bias search to the high end */
645 int *pRes /* Write search results here */
646){
647 int rc; /* Status code */
648 UnpackedRecord *pIdxKey; /* Unpacked index key */
649 char aSpace[150]; /* Temp space for pIdxKey - to avoid a malloc */
650
651 if( pKey ){
652 assert( nKey==(i64)(int)nKey );
653 pIdxKey = sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey,
654 aSpace, sizeof(aSpace));
655 if( pIdxKey==0 ) return SQLITE_NOMEM;
656 }else{
657 pIdxKey = 0;
658 }
659 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
660 if( pKey ){
661 sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
662 }
663 return rc;
664}
665
666/*
drh980b1a72006-08-16 16:42:48 +0000667** Restore the cursor to the position it was in (or as close to as possible)
668** when saveCursorPosition() was called. Note that this call deletes the
669** saved position info stored by saveCursorPosition(), so there can be
drha3460582008-07-11 21:02:53 +0000670** at most one effective restoreCursorPosition() call after each
drh980b1a72006-08-16 16:42:48 +0000671** saveCursorPosition().
drh980b1a72006-08-16 16:42:48 +0000672*/
danielk197730548662009-07-09 05:07:37 +0000673static int btreeRestoreCursorPosition(BtCursor *pCur){
drhbf700f32007-03-31 02:36:44 +0000674 int rc;
drh1fee73e2007-08-29 04:00:57 +0000675 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +0000676 assert( pCur->eState>=CURSOR_REQUIRESEEK );
677 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +0000678 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +0000679 }
drh980b1a72006-08-16 16:42:48 +0000680 pCur->eState = CURSOR_INVALID;
drh4c301aa2009-07-15 17:25:45 +0000681 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
drh980b1a72006-08-16 16:42:48 +0000682 if( rc==SQLITE_OK ){
drh17435752007-08-16 04:30:38 +0000683 sqlite3_free(pCur->pKey);
drh980b1a72006-08-16 16:42:48 +0000684 pCur->pKey = 0;
drhbf700f32007-03-31 02:36:44 +0000685 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
drh980b1a72006-08-16 16:42:48 +0000686 }
687 return rc;
688}
689
drha3460582008-07-11 21:02:53 +0000690#define restoreCursorPosition(p) \
drhfb982642007-08-30 01:19:59 +0000691 (p->eState>=CURSOR_REQUIRESEEK ? \
danielk197730548662009-07-09 05:07:37 +0000692 btreeRestoreCursorPosition(p) : \
drh16a9b832007-05-05 18:39:25 +0000693 SQLITE_OK)
drh980b1a72006-08-16 16:42:48 +0000694
drha3460582008-07-11 21:02:53 +0000695/*
696** Determine whether or not a cursor has moved from the position it
drhdfe88ec2008-11-03 20:55:06 +0000697** was last placed at. Cursors can move when the row they are pointing
drha3460582008-07-11 21:02:53 +0000698** at is deleted out from under them.
699**
700** This routine returns an error code if something goes wrong. The
701** integer *pHasMoved is set to one if the cursor has moved and 0 if not.
702*/
703int sqlite3BtreeCursorHasMoved(BtCursor *pCur, int *pHasMoved){
704 int rc;
705
706 rc = restoreCursorPosition(pCur);
707 if( rc ){
708 *pHasMoved = 1;
709 return rc;
710 }
drh4c301aa2009-07-15 17:25:45 +0000711 if( pCur->eState!=CURSOR_VALID || pCur->skipNext!=0 ){
drha3460582008-07-11 21:02:53 +0000712 *pHasMoved = 1;
713 }else{
714 *pHasMoved = 0;
715 }
716 return SQLITE_OK;
717}
718
danielk1977599fcba2004-11-08 07:13:13 +0000719#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977afcdd022004-10-31 16:25:42 +0000720/*
drha3152892007-05-05 11:48:52 +0000721** Given a page number of a regular database page, return the page
722** number for the pointer-map page that contains the entry for the
723** input page number.
danielk1977afcdd022004-10-31 16:25:42 +0000724*/
danielk1977266664d2006-02-10 08:24:21 +0000725static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
danielk197789d40042008-11-17 14:20:56 +0000726 int nPagesPerMapPage;
727 Pgno iPtrMap, ret;
drh1fee73e2007-08-29 04:00:57 +0000728 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000729 nPagesPerMapPage = (pBt->usableSize/5)+1;
730 iPtrMap = (pgno-2)/nPagesPerMapPage;
731 ret = (iPtrMap*nPagesPerMapPage) + 2;
danielk1977266664d2006-02-10 08:24:21 +0000732 if( ret==PENDING_BYTE_PAGE(pBt) ){
733 ret++;
734 }
735 return ret;
736}
danielk1977a19df672004-11-03 11:37:07 +0000737
danielk1977afcdd022004-10-31 16:25:42 +0000738/*
danielk1977afcdd022004-10-31 16:25:42 +0000739** Write an entry into the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000740**
741** This routine updates the pointer map entry for page number 'key'
742** so that it maps to type 'eType' and parent page number 'pgno'.
drh98add2e2009-07-20 17:11:49 +0000743**
744** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
745** a no-op. If an error occurs, the appropriate error code is written
746** into *pRC.
danielk1977afcdd022004-10-31 16:25:42 +0000747*/
drh98add2e2009-07-20 17:11:49 +0000748static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
danielk19773b8a05f2007-03-19 17:44:26 +0000749 DbPage *pDbPage; /* The pointer map page */
750 u8 *pPtrmap; /* The pointer map data */
751 Pgno iPtrmap; /* The pointer map page number */
752 int offset; /* Offset in pointer map page */
drh98add2e2009-07-20 17:11:49 +0000753 int rc; /* Return code from subfunctions */
754
755 if( *pRC ) return;
danielk1977afcdd022004-10-31 16:25:42 +0000756
drh1fee73e2007-08-29 04:00:57 +0000757 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977266664d2006-02-10 08:24:21 +0000758 /* The master-journal page number must never be used as a pointer map page */
759 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
760
danielk1977ac11ee62005-01-15 12:45:51 +0000761 assert( pBt->autoVacuum );
danielk1977fdb7cdb2005-01-17 02:12:18 +0000762 if( key==0 ){
drh98add2e2009-07-20 17:11:49 +0000763 *pRC = SQLITE_CORRUPT_BKPT;
764 return;
danielk1977fdb7cdb2005-01-17 02:12:18 +0000765 }
danielk1977266664d2006-02-10 08:24:21 +0000766 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000767 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977687566d2004-11-02 12:56:41 +0000768 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +0000769 *pRC = rc;
770 return;
danielk1977afcdd022004-10-31 16:25:42 +0000771 }
danielk19778c666b12008-07-18 09:34:57 +0000772 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drhacfc72b2009-06-05 18:44:15 +0000773 if( offset<0 ){
drh98add2e2009-07-20 17:11:49 +0000774 *pRC = SQLITE_CORRUPT_BKPT;
drh4925a552009-07-07 11:39:58 +0000775 goto ptrmap_exit;
drhacfc72b2009-06-05 18:44:15 +0000776 }
danielk19773b8a05f2007-03-19 17:44:26 +0000777 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000778
drh615ae552005-01-16 23:21:00 +0000779 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
780 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
drh98add2e2009-07-20 17:11:49 +0000781 *pRC= rc = sqlite3PagerWrite(pDbPage);
danielk19775558a8a2005-01-17 07:53:44 +0000782 if( rc==SQLITE_OK ){
783 pPtrmap[offset] = eType;
784 put4byte(&pPtrmap[offset+1], parent);
danielk1977afcdd022004-10-31 16:25:42 +0000785 }
danielk1977afcdd022004-10-31 16:25:42 +0000786 }
787
drh4925a552009-07-07 11:39:58 +0000788ptrmap_exit:
danielk19773b8a05f2007-03-19 17:44:26 +0000789 sqlite3PagerUnref(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000790}
791
792/*
793** Read an entry from the pointer map.
danielk1977687566d2004-11-02 12:56:41 +0000794**
795** This routine retrieves the pointer map entry for page 'key', writing
796** the type and parent page number to *pEType and *pPgno respectively.
797** An error code is returned if something goes wrong, otherwise SQLITE_OK.
danielk1977afcdd022004-10-31 16:25:42 +0000798*/
danielk1977aef0bf62005-12-30 16:28:01 +0000799static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
danielk19773b8a05f2007-03-19 17:44:26 +0000800 DbPage *pDbPage; /* The pointer map page */
danielk1977afcdd022004-10-31 16:25:42 +0000801 int iPtrmap; /* Pointer map page index */
802 u8 *pPtrmap; /* Pointer map page data */
803 int offset; /* Offset of entry in pointer map */
804 int rc;
805
drh1fee73e2007-08-29 04:00:57 +0000806 assert( sqlite3_mutex_held(pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000807
danielk1977266664d2006-02-10 08:24:21 +0000808 iPtrmap = PTRMAP_PAGENO(pBt, key);
danielk19773b8a05f2007-03-19 17:44:26 +0000809 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000810 if( rc!=0 ){
811 return rc;
812 }
danielk19773b8a05f2007-03-19 17:44:26 +0000813 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
danielk1977afcdd022004-10-31 16:25:42 +0000814
danielk19778c666b12008-07-18 09:34:57 +0000815 offset = PTRMAP_PTROFFSET(iPtrmap, key);
drh43617e92006-03-06 20:55:46 +0000816 assert( pEType!=0 );
817 *pEType = pPtrmap[offset];
danielk1977687566d2004-11-02 12:56:41 +0000818 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
danielk1977afcdd022004-10-31 16:25:42 +0000819
danielk19773b8a05f2007-03-19 17:44:26 +0000820 sqlite3PagerUnref(pDbPage);
drh49285702005-09-17 15:20:26 +0000821 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
danielk1977afcdd022004-10-31 16:25:42 +0000822 return SQLITE_OK;
823}
824
danielk197785d90ca2008-07-19 14:25:15 +0000825#else /* if defined SQLITE_OMIT_AUTOVACUUM */
drh98add2e2009-07-20 17:11:49 +0000826 #define ptrmapPut(w,x,y,z,rc)
danielk197785d90ca2008-07-19 14:25:15 +0000827 #define ptrmapGet(w,x,y,z) SQLITE_OK
drh98add2e2009-07-20 17:11:49 +0000828 #define ptrmapPutOvflPtr(x, y, rc)
danielk197785d90ca2008-07-19 14:25:15 +0000829#endif
danielk1977afcdd022004-10-31 16:25:42 +0000830
drh0d316a42002-08-11 20:10:47 +0000831/*
drh271efa52004-05-30 19:19:05 +0000832** Given a btree page and a cell index (0 means the first cell on
833** the page, 1 means the second cell, and so forth) return a pointer
834** to the cell content.
835**
836** This routine works only for pages that do not contain overflow cells.
drh3aac2dd2004-04-26 14:10:20 +0000837*/
drh1688c862008-07-18 02:44:17 +0000838#define findCell(P,I) \
839 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aData[(P)->cellOffset+2*(I)])))
drh43605152004-05-29 21:46:49 +0000840
841/*
drh93a960a2008-07-10 00:32:42 +0000842** This a more complex version of findCell() that works for
drh0a45c272009-07-08 01:49:11 +0000843** pages that do contain overflow cells.
drh43605152004-05-29 21:46:49 +0000844*/
845static u8 *findOverflowCell(MemPage *pPage, int iCell){
846 int i;
drh1fee73e2007-08-29 04:00:57 +0000847 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh43605152004-05-29 21:46:49 +0000848 for(i=pPage->nOverflow-1; i>=0; i--){
drh6d08b4d2004-07-20 12:45:22 +0000849 int k;
850 struct _OvflCell *pOvfl;
851 pOvfl = &pPage->aOvfl[i];
852 k = pOvfl->idx;
853 if( k<=iCell ){
854 if( k==iCell ){
855 return pOvfl->pCell;
drh43605152004-05-29 21:46:49 +0000856 }
857 iCell--;
858 }
859 }
danielk19771cc5ed82007-05-16 17:28:43 +0000860 return findCell(pPage, iCell);
drh43605152004-05-29 21:46:49 +0000861}
862
863/*
864** Parse a cell content block and fill in the CellInfo structure. There
danielk197730548662009-07-09 05:07:37 +0000865** are two versions of this function. btreeParseCell() takes a
866** cell index as the second argument and btreeParseCellPtr()
drh16a9b832007-05-05 18:39:25 +0000867** takes a pointer to the body of the cell as its second argument.
danielk19771cc5ed82007-05-16 17:28:43 +0000868**
869** Within this file, the parseCell() macro can be called instead of
danielk197730548662009-07-09 05:07:37 +0000870** btreeParseCellPtr(). Using some compilers, this will be faster.
drh43605152004-05-29 21:46:49 +0000871*/
danielk197730548662009-07-09 05:07:37 +0000872static void btreeParseCellPtr(
drh3aac2dd2004-04-26 14:10:20 +0000873 MemPage *pPage, /* Page containing the cell */
drh43605152004-05-29 21:46:49 +0000874 u8 *pCell, /* Pointer to the cell text. */
drh6f11bef2004-05-13 01:12:56 +0000875 CellInfo *pInfo /* Fill in this structure */
drh3aac2dd2004-04-26 14:10:20 +0000876){
drhf49661a2008-12-10 16:45:50 +0000877 u16 n; /* Number bytes in cell content header */
drh271efa52004-05-30 19:19:05 +0000878 u32 nPayload; /* Number of bytes of cell payload */
drh43605152004-05-29 21:46:49 +0000879
drh1fee73e2007-08-29 04:00:57 +0000880 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +0000881
drh43605152004-05-29 21:46:49 +0000882 pInfo->pCell = pCell;
drhab01f612004-05-22 02:55:23 +0000883 assert( pPage->leaf==0 || pPage->leaf==1 );
drh271efa52004-05-30 19:19:05 +0000884 n = pPage->childPtrSize;
885 assert( n==4-4*pPage->leaf );
drh504b6982006-01-22 21:52:56 +0000886 if( pPage->intKey ){
drh79df1f42008-07-18 00:57:33 +0000887 if( pPage->hasData ){
888 n += getVarint32(&pCell[n], nPayload);
889 }else{
890 nPayload = 0;
891 }
drh1bd10f82008-12-10 21:19:56 +0000892 n += getVarint(&pCell[n], (u64*)&pInfo->nKey);
drh79df1f42008-07-18 00:57:33 +0000893 pInfo->nData = nPayload;
drh504b6982006-01-22 21:52:56 +0000894 }else{
drh79df1f42008-07-18 00:57:33 +0000895 pInfo->nData = 0;
896 n += getVarint32(&pCell[n], nPayload);
897 pInfo->nKey = nPayload;
drh6f11bef2004-05-13 01:12:56 +0000898 }
drh72365832007-03-06 15:53:44 +0000899 pInfo->nPayload = nPayload;
drh504b6982006-01-22 21:52:56 +0000900 pInfo->nHeader = n;
drh0a45c272009-07-08 01:49:11 +0000901 testcase( nPayload==pPage->maxLocal );
902 testcase( nPayload==pPage->maxLocal+1 );
drh79df1f42008-07-18 00:57:33 +0000903 if( likely(nPayload<=pPage->maxLocal) ){
drh271efa52004-05-30 19:19:05 +0000904 /* This is the (easy) common case where the entire payload fits
905 ** on the local page. No overflow is required.
906 */
907 int nSize; /* Total size of cell content in bytes */
drh79df1f42008-07-18 00:57:33 +0000908 nSize = nPayload + n;
drhf49661a2008-12-10 16:45:50 +0000909 pInfo->nLocal = (u16)nPayload;
drh6f11bef2004-05-13 01:12:56 +0000910 pInfo->iOverflow = 0;
drh79df1f42008-07-18 00:57:33 +0000911 if( (nSize & ~3)==0 ){
drh271efa52004-05-30 19:19:05 +0000912 nSize = 4; /* Minimum cell size is 4 */
drh43605152004-05-29 21:46:49 +0000913 }
drh1bd10f82008-12-10 21:19:56 +0000914 pInfo->nSize = (u16)nSize;
drh6f11bef2004-05-13 01:12:56 +0000915 }else{
drh271efa52004-05-30 19:19:05 +0000916 /* If the payload will not fit completely on the local page, we have
917 ** to decide how much to store locally and how much to spill onto
918 ** overflow pages. The strategy is to minimize the amount of unused
919 ** space on overflow pages while keeping the amount of local storage
920 ** in between minLocal and maxLocal.
921 **
922 ** Warning: changing the way overflow payload is distributed in any
923 ** way will result in an incompatible file format.
924 */
925 int minLocal; /* Minimum amount of payload held locally */
926 int maxLocal; /* Maximum amount of payload held locally */
927 int surplus; /* Overflow payload available for local storage */
928
929 minLocal = pPage->minLocal;
930 maxLocal = pPage->maxLocal;
931 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000932 testcase( surplus==maxLocal );
933 testcase( surplus==maxLocal+1 );
drh6f11bef2004-05-13 01:12:56 +0000934 if( surplus <= maxLocal ){
drhf49661a2008-12-10 16:45:50 +0000935 pInfo->nLocal = (u16)surplus;
drh6f11bef2004-05-13 01:12:56 +0000936 }else{
drhf49661a2008-12-10 16:45:50 +0000937 pInfo->nLocal = (u16)minLocal;
drh6f11bef2004-05-13 01:12:56 +0000938 }
drhf49661a2008-12-10 16:45:50 +0000939 pInfo->iOverflow = (u16)(pInfo->nLocal + n);
drh6f11bef2004-05-13 01:12:56 +0000940 pInfo->nSize = pInfo->iOverflow + 4;
941 }
drh3aac2dd2004-04-26 14:10:20 +0000942}
danielk19771cc5ed82007-05-16 17:28:43 +0000943#define parseCell(pPage, iCell, pInfo) \
danielk197730548662009-07-09 05:07:37 +0000944 btreeParseCellPtr((pPage), findCell((pPage), (iCell)), (pInfo))
945static void btreeParseCell(
drh43605152004-05-29 21:46:49 +0000946 MemPage *pPage, /* Page containing the cell */
947 int iCell, /* The cell index. First cell is 0 */
948 CellInfo *pInfo /* Fill in this structure */
949){
danielk19771cc5ed82007-05-16 17:28:43 +0000950 parseCell(pPage, iCell, pInfo);
drh43605152004-05-29 21:46:49 +0000951}
drh3aac2dd2004-04-26 14:10:20 +0000952
953/*
drh43605152004-05-29 21:46:49 +0000954** Compute the total number of bytes that a Cell needs in the cell
955** data area of the btree-page. The return number includes the cell
956** data header and the local payload, but not any overflow page or
957** the space used by the cell pointer.
drh3b7511c2001-05-26 13:15:44 +0000958*/
danielk1977ae5558b2009-04-29 11:31:47 +0000959static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
960 u8 *pIter = &pCell[pPage->childPtrSize];
961 u32 nSize;
962
963#ifdef SQLITE_DEBUG
964 /* The value returned by this function should always be the same as
965 ** the (CellInfo.nSize) value found by doing a full parse of the
966 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
967 ** this function verifies that this invariant is not violated. */
968 CellInfo debuginfo;
danielk197730548662009-07-09 05:07:37 +0000969 btreeParseCellPtr(pPage, pCell, &debuginfo);
danielk1977ae5558b2009-04-29 11:31:47 +0000970#endif
971
972 if( pPage->intKey ){
973 u8 *pEnd;
974 if( pPage->hasData ){
975 pIter += getVarint32(pIter, nSize);
976 }else{
977 nSize = 0;
978 }
979
980 /* pIter now points at the 64-bit integer key value, a variable length
981 ** integer. The following block moves pIter to point at the first byte
982 ** past the end of the key value. */
983 pEnd = &pIter[9];
984 while( (*pIter++)&0x80 && pIter<pEnd );
985 }else{
986 pIter += getVarint32(pIter, nSize);
987 }
988
drh0a45c272009-07-08 01:49:11 +0000989 testcase( nSize==pPage->maxLocal );
990 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +0000991 if( nSize>pPage->maxLocal ){
992 int minLocal = pPage->minLocal;
993 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
drh0a45c272009-07-08 01:49:11 +0000994 testcase( nSize==pPage->maxLocal );
995 testcase( nSize==pPage->maxLocal+1 );
danielk1977ae5558b2009-04-29 11:31:47 +0000996 if( nSize>pPage->maxLocal ){
997 nSize = minLocal;
998 }
999 nSize += 4;
1000 }
shane75ac1de2009-06-09 18:58:52 +00001001 nSize += (u32)(pIter - pCell);
danielk1977ae5558b2009-04-29 11:31:47 +00001002
1003 /* The minimum size of any cell is 4 bytes. */
1004 if( nSize<4 ){
1005 nSize = 4;
1006 }
1007
1008 assert( nSize==debuginfo.nSize );
shane60a4b532009-05-06 18:57:09 +00001009 return (u16)nSize;
danielk1977ae5558b2009-04-29 11:31:47 +00001010}
drh0ee3dbe2009-10-16 15:05:18 +00001011
1012#ifdef SQLITE_DEBUG
1013/* This variation on cellSizePtr() is used inside of assert() statements
1014** only. */
drha9121e42008-02-19 14:59:35 +00001015static u16 cellSize(MemPage *pPage, int iCell){
danielk1977ae5558b2009-04-29 11:31:47 +00001016 return cellSizePtr(pPage, findCell(pPage, iCell));
drh43605152004-05-29 21:46:49 +00001017}
danielk1977bc6ada42004-06-30 08:20:16 +00001018#endif
drh3b7511c2001-05-26 13:15:44 +00001019
danielk197779a40da2005-01-16 08:00:01 +00001020#ifndef SQLITE_OMIT_AUTOVACUUM
drh3b7511c2001-05-26 13:15:44 +00001021/*
danielk197726836652005-01-17 01:33:13 +00001022** If the cell pCell, part of page pPage contains a pointer
danielk197779a40da2005-01-16 08:00:01 +00001023** to an overflow page, insert an entry into the pointer-map
1024** for the overflow page.
danielk1977ac11ee62005-01-15 12:45:51 +00001025*/
drh98add2e2009-07-20 17:11:49 +00001026static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
drhfa67c3c2008-07-11 02:21:40 +00001027 CellInfo info;
drh98add2e2009-07-20 17:11:49 +00001028 if( *pRC ) return;
drhfa67c3c2008-07-11 02:21:40 +00001029 assert( pCell!=0 );
danielk197730548662009-07-09 05:07:37 +00001030 btreeParseCellPtr(pPage, pCell, &info);
drhfa67c3c2008-07-11 02:21:40 +00001031 assert( (info.nData+(pPage->intKey?0:info.nKey))==info.nPayload );
danielk19774dbaa892009-06-16 16:50:22 +00001032 if( info.iOverflow ){
drhfa67c3c2008-07-11 02:21:40 +00001033 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
drh98add2e2009-07-20 17:11:49 +00001034 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
danielk1977ac11ee62005-01-15 12:45:51 +00001035 }
danielk1977ac11ee62005-01-15 12:45:51 +00001036}
danielk197779a40da2005-01-16 08:00:01 +00001037#endif
1038
danielk1977ac11ee62005-01-15 12:45:51 +00001039
drhda200cc2004-05-09 11:51:38 +00001040/*
drh72f82862001-05-24 21:06:34 +00001041** Defragment the page given. All Cells are moved to the
drh3a4a2d42005-11-24 14:24:28 +00001042** end of the page and all free space is collected into one
1043** big FreeBlk that occurs in between the header and cell
drh31beae92005-11-24 14:34:36 +00001044** pointer array and the cell content area.
drh365d68f2001-05-11 11:02:46 +00001045*/
shane0af3f892008-11-12 04:55:34 +00001046static int defragmentPage(MemPage *pPage){
drh43605152004-05-29 21:46:49 +00001047 int i; /* Loop counter */
1048 int pc; /* Address of a i-th cell */
drh43605152004-05-29 21:46:49 +00001049 int hdr; /* Offset to the page header */
1050 int size; /* Size of a cell */
1051 int usableSize; /* Number of usable bytes on a page */
1052 int cellOffset; /* Offset to the cell pointer array */
drh281b21d2008-08-22 12:57:08 +00001053 int cbrk; /* Offset to the cell content area */
drh43605152004-05-29 21:46:49 +00001054 int nCell; /* Number of cells on the page */
drh2e38c322004-09-03 18:38:44 +00001055 unsigned char *data; /* The page data */
1056 unsigned char *temp; /* Temp area for cell content */
drh17146622009-07-07 17:38:38 +00001057 int iCellFirst; /* First allowable cell index */
1058 int iCellLast; /* Last possible cell index */
1059
drh2af926b2001-05-15 00:39:25 +00001060
danielk19773b8a05f2007-03-19 17:44:26 +00001061 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001062 assert( pPage->pBt!=0 );
drh90f5ecb2004-07-22 01:19:35 +00001063 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
drh43605152004-05-29 21:46:49 +00001064 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00001065 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh26b79942007-11-28 16:19:56 +00001066 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
drh43605152004-05-29 21:46:49 +00001067 data = pPage->aData;
drh9e572e62004-04-23 23:43:10 +00001068 hdr = pPage->hdrOffset;
drh43605152004-05-29 21:46:49 +00001069 cellOffset = pPage->cellOffset;
1070 nCell = pPage->nCell;
1071 assert( nCell==get2byte(&data[hdr+3]) );
1072 usableSize = pPage->pBt->usableSize;
drh281b21d2008-08-22 12:57:08 +00001073 cbrk = get2byte(&data[hdr+5]);
1074 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1075 cbrk = usableSize;
drh17146622009-07-07 17:38:38 +00001076 iCellFirst = cellOffset + 2*nCell;
1077 iCellLast = usableSize - 4;
drh43605152004-05-29 21:46:49 +00001078 for(i=0; i<nCell; i++){
1079 u8 *pAddr; /* The i-th cell pointer */
1080 pAddr = &data[cellOffset + i*2];
1081 pc = get2byte(pAddr);
drh0a45c272009-07-08 01:49:11 +00001082 testcase( pc==iCellFirst );
1083 testcase( pc==iCellLast );
drh17146622009-07-07 17:38:38 +00001084#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
danielk197730548662009-07-09 05:07:37 +00001085 /* These conditions have already been verified in btreeInitPage()
drh17146622009-07-07 17:38:38 +00001086 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1087 */
1088 if( pc<iCellFirst || pc>iCellLast ){
shane0af3f892008-11-12 04:55:34 +00001089 return SQLITE_CORRUPT_BKPT;
1090 }
drh17146622009-07-07 17:38:38 +00001091#endif
1092 assert( pc>=iCellFirst && pc<=iCellLast );
drh43605152004-05-29 21:46:49 +00001093 size = cellSizePtr(pPage, &temp[pc]);
drh281b21d2008-08-22 12:57:08 +00001094 cbrk -= size;
drh17146622009-07-07 17:38:38 +00001095#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1096 if( cbrk<iCellFirst ){
shane0af3f892008-11-12 04:55:34 +00001097 return SQLITE_CORRUPT_BKPT;
1098 }
drh17146622009-07-07 17:38:38 +00001099#else
1100 if( cbrk<iCellFirst || pc+size>usableSize ){
1101 return SQLITE_CORRUPT_BKPT;
1102 }
1103#endif
drh7157e1d2009-07-09 13:25:32 +00001104 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
drh0a45c272009-07-08 01:49:11 +00001105 testcase( cbrk+size==usableSize );
drh0a45c272009-07-08 01:49:11 +00001106 testcase( pc+size==usableSize );
drh281b21d2008-08-22 12:57:08 +00001107 memcpy(&data[cbrk], &temp[pc], size);
1108 put2byte(pAddr, cbrk);
drh2af926b2001-05-15 00:39:25 +00001109 }
drh17146622009-07-07 17:38:38 +00001110 assert( cbrk>=iCellFirst );
drh281b21d2008-08-22 12:57:08 +00001111 put2byte(&data[hdr+5], cbrk);
drh43605152004-05-29 21:46:49 +00001112 data[hdr+1] = 0;
1113 data[hdr+2] = 0;
1114 data[hdr+7] = 0;
drh17146622009-07-07 17:38:38 +00001115 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
drhc5053fb2008-11-27 02:22:10 +00001116 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh17146622009-07-07 17:38:38 +00001117 if( cbrk-iCellFirst!=pPage->nFree ){
danielk1977360e6342008-11-12 08:49:51 +00001118 return SQLITE_CORRUPT_BKPT;
1119 }
shane0af3f892008-11-12 04:55:34 +00001120 return SQLITE_OK;
drh365d68f2001-05-11 11:02:46 +00001121}
1122
drha059ad02001-04-17 20:09:11 +00001123/*
danielk19776011a752009-04-01 16:25:32 +00001124** Allocate nByte bytes of space from within the B-Tree page passed
drh0a45c272009-07-08 01:49:11 +00001125** as the first argument. Write into *pIdx the index into pPage->aData[]
1126** of the first byte of allocated space. Return either SQLITE_OK or
1127** an error code (usually SQLITE_CORRUPT).
drhbd03cae2001-06-02 02:40:57 +00001128**
drh0a45c272009-07-08 01:49:11 +00001129** The caller guarantees that there is sufficient space to make the
1130** allocation. This routine might need to defragment in order to bring
1131** all the space together, however. This routine will avoid using
1132** the first two bytes past the cell pointer area since presumably this
1133** allocation is being made in order to insert a new cell, so we will
1134** also end up needing a new cell pointer.
drh7e3b0a02001-04-28 16:52:40 +00001135*/
drh0a45c272009-07-08 01:49:11 +00001136static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
danielk19776011a752009-04-01 16:25:32 +00001137 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1138 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1139 int nFrag; /* Number of fragmented bytes on pPage */
drh0a45c272009-07-08 01:49:11 +00001140 int top; /* First byte of cell content area */
1141 int gap; /* First byte of gap between cell pointers and cell content */
1142 int rc; /* Integer return code */
drh00ce3942009-12-06 03:35:51 +00001143 int usableSize; /* Usable size of the page */
drh43605152004-05-29 21:46:49 +00001144
danielk19773b8a05f2007-03-19 17:44:26 +00001145 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh9e572e62004-04-23 23:43:10 +00001146 assert( pPage->pBt );
drh1fee73e2007-08-29 04:00:57 +00001147 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhfa67c3c2008-07-11 02:21:40 +00001148 assert( nByte>=0 ); /* Minimum cell size is 4 */
1149 assert( pPage->nFree>=nByte );
1150 assert( pPage->nOverflow==0 );
drh00ce3942009-12-06 03:35:51 +00001151 usableSize = pPage->pBt->usableSize;
1152 assert( nByte < usableSize-8 );
drh43605152004-05-29 21:46:49 +00001153
1154 nFrag = data[hdr+7];
drh0a45c272009-07-08 01:49:11 +00001155 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1156 gap = pPage->cellOffset + 2*pPage->nCell;
1157 top = get2byte(&data[hdr+5]);
drh7157e1d2009-07-09 13:25:32 +00001158 if( gap>top ) return SQLITE_CORRUPT_BKPT;
drh0a45c272009-07-08 01:49:11 +00001159 testcase( gap+2==top );
1160 testcase( gap+1==top );
1161 testcase( gap==top );
1162
danielk19776011a752009-04-01 16:25:32 +00001163 if( nFrag>=60 ){
drh0a45c272009-07-08 01:49:11 +00001164 /* Always defragment highly fragmented pages */
1165 rc = defragmentPage(pPage);
1166 if( rc ) return rc;
1167 top = get2byte(&data[hdr+5]);
1168 }else if( gap+2<=top ){
danielk19776011a752009-04-01 16:25:32 +00001169 /* Search the freelist looking for a free slot big enough to satisfy
1170 ** the request. The allocation is made from the first free slot in
1171 ** the list that is large enough to accomadate it.
1172 */
1173 int pc, addr;
1174 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
drh00ce3942009-12-06 03:35:51 +00001175 int size; /* Size of the free slot */
1176 if( pc>usableSize-4 || pc<addr+4 ){
1177 return SQLITE_CORRUPT_BKPT;
1178 }
1179 size = get2byte(&data[pc+2]);
drh43605152004-05-29 21:46:49 +00001180 if( size>=nByte ){
drhf49661a2008-12-10 16:45:50 +00001181 int x = size - nByte;
drh0a45c272009-07-08 01:49:11 +00001182 testcase( x==4 );
1183 testcase( x==3 );
danielk19776011a752009-04-01 16:25:32 +00001184 if( x<4 ){
danielk1977fad91942009-04-29 17:49:59 +00001185 /* Remove the slot from the free-list. Update the number of
1186 ** fragmented bytes within the page. */
drh43605152004-05-29 21:46:49 +00001187 memcpy(&data[addr], &data[pc], 2);
drhf49661a2008-12-10 16:45:50 +00001188 data[hdr+7] = (u8)(nFrag + x);
drh00ce3942009-12-06 03:35:51 +00001189 }else if( size+pc > usableSize ){
1190 return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00001191 }else{
danielk1977fad91942009-04-29 17:49:59 +00001192 /* The slot remains on the free-list. Reduce its size to account
1193 ** for the portion used by the new allocation. */
drhf49661a2008-12-10 16:45:50 +00001194 put2byte(&data[pc+2], x);
drh43605152004-05-29 21:46:49 +00001195 }
drh0a45c272009-07-08 01:49:11 +00001196 *pIdx = pc + x;
1197 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00001198 }
drh9e572e62004-04-23 23:43:10 +00001199 }
1200 }
drh43605152004-05-29 21:46:49 +00001201
drh0a45c272009-07-08 01:49:11 +00001202 /* Check to make sure there is enough space in the gap to satisfy
1203 ** the allocation. If not, defragment.
1204 */
1205 testcase( gap+2+nByte==top );
1206 if( gap+2+nByte>top ){
1207 rc = defragmentPage(pPage);
1208 if( rc ) return rc;
1209 top = get2byte(&data[hdr+5]);
1210 assert( gap+nByte<=top );
1211 }
1212
1213
drh43605152004-05-29 21:46:49 +00001214 /* Allocate memory from the gap in between the cell pointer array
drhc314dc72009-07-21 11:52:34 +00001215 ** and the cell content area. The btreeInitPage() call has already
1216 ** validated the freelist. Given that the freelist is valid, there
1217 ** is no way that the allocation can extend off the end of the page.
1218 ** The assert() below verifies the previous sentence.
drh43605152004-05-29 21:46:49 +00001219 */
drh0a45c272009-07-08 01:49:11 +00001220 top -= nByte;
drh43605152004-05-29 21:46:49 +00001221 put2byte(&data[hdr+5], top);
drhc314dc72009-07-21 11:52:34 +00001222 assert( top+nByte <= pPage->pBt->usableSize );
drh0a45c272009-07-08 01:49:11 +00001223 *pIdx = top;
1224 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001225}
1226
1227/*
drh9e572e62004-04-23 23:43:10 +00001228** Return a section of the pPage->aData to the freelist.
1229** The first byte of the new free block is pPage->aDisk[start]
1230** and the size of the block is "size" bytes.
drh306dc212001-05-21 13:45:10 +00001231**
1232** Most of the effort here is involved in coalesing adjacent
1233** free blocks into a single big free block.
drh7e3b0a02001-04-28 16:52:40 +00001234*/
shanedcc50b72008-11-13 18:29:50 +00001235static int freeSpace(MemPage *pPage, int start, int size){
drh43605152004-05-29 21:46:49 +00001236 int addr, pbegin, hdr;
drh0a45c272009-07-08 01:49:11 +00001237 int iLast; /* Largest possible freeblock offset */
drh9e572e62004-04-23 23:43:10 +00001238 unsigned char *data = pPage->aData;
drh2af926b2001-05-15 00:39:25 +00001239
drh9e572e62004-04-23 23:43:10 +00001240 assert( pPage->pBt!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00001241 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drhc046e3e2009-07-15 11:26:44 +00001242 assert( start>=pPage->hdrOffset+6+pPage->childPtrSize );
danielk1977bc6ada42004-06-30 08:20:16 +00001243 assert( (start + size)<=pPage->pBt->usableSize );
drh1fee73e2007-08-29 04:00:57 +00001244 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drh34004ce2008-07-11 16:15:17 +00001245 assert( size>=0 ); /* Minimum cell size is 4 */
drh9e572e62004-04-23 23:43:10 +00001246
drh5b47efa2010-02-12 18:18:39 +00001247 if( pPage->pBt->secureDelete ){
1248 /* Overwrite deleted information with zeros when the secure_delete
1249 ** option is enabled */
1250 memset(&data[start], 0, size);
1251 }
drhfcce93f2006-02-22 03:08:32 +00001252
drh0a45c272009-07-08 01:49:11 +00001253 /* Add the space back into the linked list of freeblocks. Note that
danielk197730548662009-07-09 05:07:37 +00001254 ** even though the freeblock list was checked by btreeInitPage(),
1255 ** btreeInitPage() did not detect overlapping cells or
drhb908d762009-07-08 16:54:40 +00001256 ** freeblocks that overlapped cells. Nor does it detect when the
1257 ** cell content area exceeds the value in the page header. If these
1258 ** situations arise, then subsequent insert operations might corrupt
1259 ** the freelist. So we do need to check for corruption while scanning
1260 ** the freelist.
drh0a45c272009-07-08 01:49:11 +00001261 */
drh43605152004-05-29 21:46:49 +00001262 hdr = pPage->hdrOffset;
1263 addr = hdr + 1;
drh0a45c272009-07-08 01:49:11 +00001264 iLast = pPage->pBt->usableSize - 4;
drh35a25da2009-07-08 15:14:50 +00001265 assert( start<=iLast );
drh3aac2dd2004-04-26 14:10:20 +00001266 while( (pbegin = get2byte(&data[addr]))<start && pbegin>0 ){
drh35a25da2009-07-08 15:14:50 +00001267 if( pbegin<addr+4 ){
shanedcc50b72008-11-13 18:29:50 +00001268 return SQLITE_CORRUPT_BKPT;
1269 }
drh3aac2dd2004-04-26 14:10:20 +00001270 addr = pbegin;
drh2af926b2001-05-15 00:39:25 +00001271 }
drh0a45c272009-07-08 01:49:11 +00001272 if( pbegin>iLast ){
shanedcc50b72008-11-13 18:29:50 +00001273 return SQLITE_CORRUPT_BKPT;
1274 }
drh3aac2dd2004-04-26 14:10:20 +00001275 assert( pbegin>addr || pbegin==0 );
drha34b6762004-05-07 13:30:42 +00001276 put2byte(&data[addr], start);
1277 put2byte(&data[start], pbegin);
1278 put2byte(&data[start+2], size);
shane36840fd2009-06-26 16:32:13 +00001279 pPage->nFree = pPage->nFree + (u16)size;
drh9e572e62004-04-23 23:43:10 +00001280
1281 /* Coalesce adjacent free blocks */
drh0a45c272009-07-08 01:49:11 +00001282 addr = hdr + 1;
drh3aac2dd2004-04-26 14:10:20 +00001283 while( (pbegin = get2byte(&data[addr]))>0 ){
drhf49661a2008-12-10 16:45:50 +00001284 int pnext, psize, x;
drh3aac2dd2004-04-26 14:10:20 +00001285 assert( pbegin>addr );
drh43605152004-05-29 21:46:49 +00001286 assert( pbegin<=pPage->pBt->usableSize-4 );
drh9e572e62004-04-23 23:43:10 +00001287 pnext = get2byte(&data[pbegin]);
1288 psize = get2byte(&data[pbegin+2]);
1289 if( pbegin + psize + 3 >= pnext && pnext>0 ){
1290 int frag = pnext - (pbegin+psize);
drh0a45c272009-07-08 01:49:11 +00001291 if( (frag<0) || (frag>(int)data[hdr+7]) ){
shanedcc50b72008-11-13 18:29:50 +00001292 return SQLITE_CORRUPT_BKPT;
1293 }
drh0a45c272009-07-08 01:49:11 +00001294 data[hdr+7] -= (u8)frag;
drhf49661a2008-12-10 16:45:50 +00001295 x = get2byte(&data[pnext]);
1296 put2byte(&data[pbegin], x);
1297 x = pnext + get2byte(&data[pnext+2]) - pbegin;
1298 put2byte(&data[pbegin+2], x);
drh9e572e62004-04-23 23:43:10 +00001299 }else{
drh3aac2dd2004-04-26 14:10:20 +00001300 addr = pbegin;
drh9e572e62004-04-23 23:43:10 +00001301 }
1302 }
drh7e3b0a02001-04-28 16:52:40 +00001303
drh43605152004-05-29 21:46:49 +00001304 /* If the cell content area begins with a freeblock, remove it. */
1305 if( data[hdr+1]==data[hdr+5] && data[hdr+2]==data[hdr+6] ){
1306 int top;
1307 pbegin = get2byte(&data[hdr+1]);
1308 memcpy(&data[hdr+1], &data[pbegin], 2);
drhf49661a2008-12-10 16:45:50 +00001309 top = get2byte(&data[hdr+5]) + get2byte(&data[pbegin+2]);
1310 put2byte(&data[hdr+5], top);
drh4b70f112004-05-02 21:12:19 +00001311 }
drhc5053fb2008-11-27 02:22:10 +00001312 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
shanedcc50b72008-11-13 18:29:50 +00001313 return SQLITE_OK;
drh4b70f112004-05-02 21:12:19 +00001314}
1315
1316/*
drh271efa52004-05-30 19:19:05 +00001317** Decode the flags byte (the first byte of the header) for a page
1318** and initialize fields of the MemPage structure accordingly.
drh44845222008-07-17 18:39:57 +00001319**
1320** Only the following combinations are supported. Anything different
1321** indicates a corrupt database files:
1322**
1323** PTF_ZERODATA
1324** PTF_ZERODATA | PTF_LEAF
1325** PTF_LEAFDATA | PTF_INTKEY
1326** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
drh271efa52004-05-30 19:19:05 +00001327*/
drh44845222008-07-17 18:39:57 +00001328static int decodeFlags(MemPage *pPage, int flagByte){
danielk1977aef0bf62005-12-30 16:28:01 +00001329 BtShared *pBt; /* A copy of pPage->pBt */
drh271efa52004-05-30 19:19:05 +00001330
1331 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
drh1fee73e2007-08-29 04:00:57 +00001332 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00001333 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
drh44845222008-07-17 18:39:57 +00001334 flagByte &= ~PTF_LEAF;
1335 pPage->childPtrSize = 4-4*pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001336 pBt = pPage->pBt;
drh44845222008-07-17 18:39:57 +00001337 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1338 pPage->intKey = 1;
1339 pPage->hasData = pPage->leaf;
drh271efa52004-05-30 19:19:05 +00001340 pPage->maxLocal = pBt->maxLeaf;
1341 pPage->minLocal = pBt->minLeaf;
drh44845222008-07-17 18:39:57 +00001342 }else if( flagByte==PTF_ZERODATA ){
1343 pPage->intKey = 0;
1344 pPage->hasData = 0;
drh271efa52004-05-30 19:19:05 +00001345 pPage->maxLocal = pBt->maxLocal;
1346 pPage->minLocal = pBt->minLocal;
drh44845222008-07-17 18:39:57 +00001347 }else{
1348 return SQLITE_CORRUPT_BKPT;
drh271efa52004-05-30 19:19:05 +00001349 }
drh44845222008-07-17 18:39:57 +00001350 return SQLITE_OK;
drh271efa52004-05-30 19:19:05 +00001351}
1352
1353/*
drh7e3b0a02001-04-28 16:52:40 +00001354** Initialize the auxiliary information for a disk block.
drh72f82862001-05-24 21:06:34 +00001355**
1356** Return SQLITE_OK on success. If we see that the page does
drhda47d772002-12-02 04:25:19 +00001357** not contain a well-formed database page, then return
drh72f82862001-05-24 21:06:34 +00001358** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1359** guarantee that the page is well-formed. It only shows that
1360** we failed to detect any corruption.
drh7e3b0a02001-04-28 16:52:40 +00001361*/
danielk197730548662009-07-09 05:07:37 +00001362static int btreeInitPage(MemPage *pPage){
drh2af926b2001-05-15 00:39:25 +00001363
danielk197771d5d2c2008-09-29 11:49:47 +00001364 assert( pPage->pBt!=0 );
1365 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001366 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
drhbf4bca52007-09-06 22:19:14 +00001367 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1368 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
danielk197771d5d2c2008-09-29 11:49:47 +00001369
1370 if( !pPage->isInit ){
drhf49661a2008-12-10 16:45:50 +00001371 u16 pc; /* Address of a freeblock within pPage->aData[] */
1372 u8 hdr; /* Offset to beginning of page header */
danielk197771d5d2c2008-09-29 11:49:47 +00001373 u8 *data; /* Equal to pPage->aData */
1374 BtShared *pBt; /* The main btree structure */
drhf49661a2008-12-10 16:45:50 +00001375 u16 usableSize; /* Amount of usable space on each page */
1376 u16 cellOffset; /* Offset from start of page to first cell pointer */
1377 u16 nFree; /* Number of unused bytes on the page */
1378 u16 top; /* First byte of the cell content area */
drh0a45c272009-07-08 01:49:11 +00001379 int iCellFirst; /* First allowable cell or freeblock offset */
1380 int iCellLast; /* Last possible cell or freeblock offset */
danielk197771d5d2c2008-09-29 11:49:47 +00001381
1382 pBt = pPage->pBt;
1383
danielk1977eaa06f62008-09-18 17:34:44 +00001384 hdr = pPage->hdrOffset;
1385 data = pPage->aData;
1386 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
1387 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1388 pPage->maskPage = pBt->pageSize - 1;
1389 pPage->nOverflow = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00001390 usableSize = pBt->usableSize;
1391 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
1392 top = get2byte(&data[hdr+5]);
1393 pPage->nCell = get2byte(&data[hdr+3]);
1394 if( pPage->nCell>MX_CELL(pBt) ){
1395 /* To many cells for a single page. The page must be corrupt */
1396 return SQLITE_CORRUPT_BKPT;
1397 }
drhb908d762009-07-08 16:54:40 +00001398 testcase( pPage->nCell==MX_CELL(pBt) );
drh69e931e2009-06-03 21:04:35 +00001399
shane5eff7cf2009-08-10 03:57:58 +00001400 /* A malformed database page might cause us to read past the end
drh69e931e2009-06-03 21:04:35 +00001401 ** of page when parsing a cell.
1402 **
1403 ** The following block of code checks early to see if a cell extends
1404 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1405 ** returned if it does.
1406 */
drh0a45c272009-07-08 01:49:11 +00001407 iCellFirst = cellOffset + 2*pPage->nCell;
1408 iCellLast = usableSize - 4;
drh3b2a3fa2009-06-09 13:42:24 +00001409#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
drh69e931e2009-06-03 21:04:35 +00001410 {
drh69e931e2009-06-03 21:04:35 +00001411 int i; /* Index into the cell pointer array */
1412 int sz; /* Size of a cell */
1413
drh69e931e2009-06-03 21:04:35 +00001414 if( !pPage->leaf ) iCellLast--;
1415 for(i=0; i<pPage->nCell; i++){
1416 pc = get2byte(&data[cellOffset+i*2]);
drh0a45c272009-07-08 01:49:11 +00001417 testcase( pc==iCellFirst );
1418 testcase( pc==iCellLast );
drh69e931e2009-06-03 21:04:35 +00001419 if( pc<iCellFirst || pc>iCellLast ){
1420 return SQLITE_CORRUPT_BKPT;
1421 }
1422 sz = cellSizePtr(pPage, &data[pc]);
drh0a45c272009-07-08 01:49:11 +00001423 testcase( pc+sz==usableSize );
drh69e931e2009-06-03 21:04:35 +00001424 if( pc+sz>usableSize ){
1425 return SQLITE_CORRUPT_BKPT;
1426 }
1427 }
drh0a45c272009-07-08 01:49:11 +00001428 if( !pPage->leaf ) iCellLast++;
drh69e931e2009-06-03 21:04:35 +00001429 }
1430#endif
1431
danielk1977eaa06f62008-09-18 17:34:44 +00001432 /* Compute the total free space on the page */
1433 pc = get2byte(&data[hdr+1]);
danielk197793c829c2009-06-03 17:26:17 +00001434 nFree = data[hdr+7] + top;
danielk1977eaa06f62008-09-18 17:34:44 +00001435 while( pc>0 ){
drh1bd10f82008-12-10 21:19:56 +00001436 u16 next, size;
drh0a45c272009-07-08 01:49:11 +00001437 if( pc<iCellFirst || pc>iCellLast ){
dan4361e792009-08-14 17:01:22 +00001438 /* Start of free block is off the page */
danielk1977eaa06f62008-09-18 17:34:44 +00001439 return SQLITE_CORRUPT_BKPT;
1440 }
1441 next = get2byte(&data[pc]);
1442 size = get2byte(&data[pc+2]);
dan4361e792009-08-14 17:01:22 +00001443 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1444 /* Free blocks must be in ascending order. And the last byte of
1445 ** the free-block must lie on the database page. */
danielk1977eaa06f62008-09-18 17:34:44 +00001446 return SQLITE_CORRUPT_BKPT;
1447 }
shane85095702009-06-15 16:27:08 +00001448 nFree = nFree + size;
danielk1977eaa06f62008-09-18 17:34:44 +00001449 pc = next;
1450 }
danielk197793c829c2009-06-03 17:26:17 +00001451
1452 /* At this point, nFree contains the sum of the offset to the start
1453 ** of the cell-content area plus the number of free bytes within
1454 ** the cell-content area. If this is greater than the usable-size
1455 ** of the page, then the page must be corrupted. This check also
1456 ** serves to verify that the offset to the start of the cell-content
1457 ** area, according to the page header, lies within the page.
1458 */
1459 if( nFree>usableSize ){
drh49285702005-09-17 15:20:26 +00001460 return SQLITE_CORRUPT_BKPT;
drhee696e22004-08-30 16:52:17 +00001461 }
shane5eff7cf2009-08-10 03:57:58 +00001462 pPage->nFree = (u16)(nFree - iCellFirst);
danielk197771d5d2c2008-09-29 11:49:47 +00001463 pPage->isInit = 1;
1464 }
drh9e572e62004-04-23 23:43:10 +00001465 return SQLITE_OK;
drh7e3b0a02001-04-28 16:52:40 +00001466}
1467
1468/*
drh8b2f49b2001-06-08 00:21:52 +00001469** Set up a raw page so that it looks like a database page holding
1470** no entries.
drhbd03cae2001-06-02 02:40:57 +00001471*/
drh9e572e62004-04-23 23:43:10 +00001472static void zeroPage(MemPage *pPage, int flags){
1473 unsigned char *data = pPage->aData;
danielk1977aef0bf62005-12-30 16:28:01 +00001474 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00001475 u8 hdr = pPage->hdrOffset;
1476 u16 first;
drh9e572e62004-04-23 23:43:10 +00001477
danielk19773b8a05f2007-03-19 17:44:26 +00001478 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
drhbf4bca52007-09-06 22:19:14 +00001479 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1480 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
danielk19773b8a05f2007-03-19 17:44:26 +00001481 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00001482 assert( sqlite3_mutex_held(pBt->mutex) );
drh5b47efa2010-02-12 18:18:39 +00001483 if( pBt->secureDelete ){
1484 memset(&data[hdr], 0, pBt->usableSize - hdr);
1485 }
drh1bd10f82008-12-10 21:19:56 +00001486 data[hdr] = (char)flags;
1487 first = hdr + 8 + 4*((flags&PTF_LEAF)==0 ?1:0);
drh43605152004-05-29 21:46:49 +00001488 memset(&data[hdr+1], 0, 4);
1489 data[hdr+7] = 0;
1490 put2byte(&data[hdr+5], pBt->usableSize);
drhb6f41482004-05-14 01:58:11 +00001491 pPage->nFree = pBt->usableSize - first;
drh271efa52004-05-30 19:19:05 +00001492 decodeFlags(pPage, flags);
drh9e572e62004-04-23 23:43:10 +00001493 pPage->hdrOffset = hdr;
drh43605152004-05-29 21:46:49 +00001494 pPage->cellOffset = first;
1495 pPage->nOverflow = 0;
drh1688c862008-07-18 02:44:17 +00001496 assert( pBt->pageSize>=512 && pBt->pageSize<=32768 );
1497 pPage->maskPage = pBt->pageSize - 1;
drh43605152004-05-29 21:46:49 +00001498 pPage->nCell = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00001499 pPage->isInit = 1;
drhbd03cae2001-06-02 02:40:57 +00001500}
1501
drh897a8202008-09-18 01:08:15 +00001502
1503/*
1504** Convert a DbPage obtained from the pager into a MemPage used by
1505** the btree layer.
1506*/
1507static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1508 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1509 pPage->aData = sqlite3PagerGetData(pDbPage);
1510 pPage->pDbPage = pDbPage;
1511 pPage->pBt = pBt;
1512 pPage->pgno = pgno;
1513 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1514 return pPage;
1515}
1516
drhbd03cae2001-06-02 02:40:57 +00001517/*
drh3aac2dd2004-04-26 14:10:20 +00001518** Get a page from the pager. Initialize the MemPage.pBt and
1519** MemPage.aData elements if needed.
drh538f5702007-04-13 02:14:30 +00001520**
1521** If the noContent flag is set, it means that we do not care about
1522** the content of the page at this time. So do not go to the disk
1523** to fetch the content. Just fill in the content with zeros for now.
1524** If in the future we call sqlite3PagerWrite() on this page, that
1525** means we have started to be concerned about content and the disk
1526** read should occur at that point.
drh3aac2dd2004-04-26 14:10:20 +00001527*/
danielk197730548662009-07-09 05:07:37 +00001528static int btreeGetPage(
drh16a9b832007-05-05 18:39:25 +00001529 BtShared *pBt, /* The btree */
1530 Pgno pgno, /* Number of the page to fetch */
1531 MemPage **ppPage, /* Return the page in this parameter */
1532 int noContent /* Do not load page content if true */
1533){
drh3aac2dd2004-04-26 14:10:20 +00001534 int rc;
danielk19773b8a05f2007-03-19 17:44:26 +00001535 DbPage *pDbPage;
1536
drh1fee73e2007-08-29 04:00:57 +00001537 assert( sqlite3_mutex_held(pBt->mutex) );
drh538f5702007-04-13 02:14:30 +00001538 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, noContent);
drh3aac2dd2004-04-26 14:10:20 +00001539 if( rc ) return rc;
drh897a8202008-09-18 01:08:15 +00001540 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
drh3aac2dd2004-04-26 14:10:20 +00001541 return SQLITE_OK;
1542}
1543
1544/*
danielk1977bea2a942009-01-20 17:06:27 +00001545** Retrieve a page from the pager cache. If the requested page is not
1546** already in the pager cache return NULL. Initialize the MemPage.pBt and
1547** MemPage.aData elements if needed.
1548*/
1549static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1550 DbPage *pDbPage;
1551 assert( sqlite3_mutex_held(pBt->mutex) );
1552 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1553 if( pDbPage ){
1554 return btreePageFromDbPage(pDbPage, pgno, pBt);
1555 }
1556 return 0;
1557}
1558
1559/*
danielk197789d40042008-11-17 14:20:56 +00001560** Return the size of the database file in pages. If there is any kind of
1561** error, return ((unsigned int)-1).
danielk197767fd7a92008-09-10 17:53:35 +00001562*/
drhb1299152010-03-30 22:58:33 +00001563static Pgno btreePagecount(BtShared *pBt){
1564 return pBt->nPage;
1565}
1566u32 sqlite3BtreeLastPage(Btree *p){
1567 assert( sqlite3BtreeHoldsMutex(p) );
1568 assert( ((p->pBt->nPage)&0x8000000)==0 );
1569 return (int)btreePagecount(p->pBt);
danielk197767fd7a92008-09-10 17:53:35 +00001570}
1571
1572/*
danielk197789bc4bc2009-07-21 19:25:24 +00001573** Get a page from the pager and initialize it. This routine is just a
1574** convenience wrapper around separate calls to btreeGetPage() and
1575** btreeInitPage().
1576**
1577** If an error occurs, then the value *ppPage is set to is undefined. It
1578** may remain unchanged, or it may be set to an invalid value.
drhde647132004-05-07 17:57:49 +00001579*/
1580static int getAndInitPage(
danielk1977aef0bf62005-12-30 16:28:01 +00001581 BtShared *pBt, /* The database file */
drhde647132004-05-07 17:57:49 +00001582 Pgno pgno, /* Number of the page to get */
danielk197771d5d2c2008-09-29 11:49:47 +00001583 MemPage **ppPage /* Write the page pointer here */
drhde647132004-05-07 17:57:49 +00001584){
1585 int rc;
drh1fee73e2007-08-29 04:00:57 +00001586 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197789bc4bc2009-07-21 19:25:24 +00001587
drh8d8626f2010-03-31 20:29:06 +00001588 if( pgno<=0 || pgno>btreePagecount(pBt) ){
1589 return SQLITE_CORRUPT_BKPT;
1590 }
danielk197789bc4bc2009-07-21 19:25:24 +00001591 rc = btreeGetPage(pBt, pgno, ppPage, 0);
1592 if( rc==SQLITE_OK ){
1593 rc = btreeInitPage(*ppPage);
1594 if( rc!=SQLITE_OK ){
1595 releasePage(*ppPage);
1596 }
drhee696e22004-08-30 16:52:17 +00001597 }
drhde647132004-05-07 17:57:49 +00001598 return rc;
1599}
1600
1601/*
drh3aac2dd2004-04-26 14:10:20 +00001602** Release a MemPage. This should be called once for each prior
danielk197730548662009-07-09 05:07:37 +00001603** call to btreeGetPage.
drh3aac2dd2004-04-26 14:10:20 +00001604*/
drh4b70f112004-05-02 21:12:19 +00001605static void releasePage(MemPage *pPage){
drh3aac2dd2004-04-26 14:10:20 +00001606 if( pPage ){
1607 assert( pPage->aData );
1608 assert( pPage->pBt );
drhbf4bca52007-09-06 22:19:14 +00001609 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1610 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
drh1fee73e2007-08-29 04:00:57 +00001611 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk19773b8a05f2007-03-19 17:44:26 +00001612 sqlite3PagerUnref(pPage->pDbPage);
drh3aac2dd2004-04-26 14:10:20 +00001613 }
1614}
1615
1616/*
drha6abd042004-06-09 17:37:22 +00001617** During a rollback, when the pager reloads information into the cache
1618** so that the cache is restored to its original state at the start of
1619** the transaction, for each page restored this routine is called.
1620**
1621** This routine needs to reset the extra data section at the end of the
1622** page to agree with the restored data.
1623*/
danielk1977eaa06f62008-09-18 17:34:44 +00001624static void pageReinit(DbPage *pData){
drh07d183d2005-05-01 22:52:42 +00001625 MemPage *pPage;
danielk19773b8a05f2007-03-19 17:44:26 +00001626 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
danielk1977d217e6f2009-04-01 17:13:51 +00001627 assert( sqlite3PagerPageRefcount(pData)>0 );
danielk197771d5d2c2008-09-29 11:49:47 +00001628 if( pPage->isInit ){
drh1fee73e2007-08-29 04:00:57 +00001629 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drha6abd042004-06-09 17:37:22 +00001630 pPage->isInit = 0;
danielk1977d217e6f2009-04-01 17:13:51 +00001631 if( sqlite3PagerPageRefcount(pData)>1 ){
drh5e8d8872009-03-30 17:19:48 +00001632 /* pPage might not be a btree page; it might be an overflow page
1633 ** or ptrmap page or a free page. In those cases, the following
danielk197730548662009-07-09 05:07:37 +00001634 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
drh5e8d8872009-03-30 17:19:48 +00001635 ** But no harm is done by this. And it is very important that
danielk197730548662009-07-09 05:07:37 +00001636 ** btreeInitPage() be called on every btree page so we make
drh5e8d8872009-03-30 17:19:48 +00001637 ** the call for every page that comes in for re-initing. */
danielk197730548662009-07-09 05:07:37 +00001638 btreeInitPage(pPage);
danielk197771d5d2c2008-09-29 11:49:47 +00001639 }
drha6abd042004-06-09 17:37:22 +00001640 }
1641}
1642
1643/*
drhe5fe6902007-12-07 18:55:28 +00001644** Invoke the busy handler for a btree.
1645*/
danielk19771ceedd32008-11-19 10:22:33 +00001646static int btreeInvokeBusyHandler(void *pArg){
drhe5fe6902007-12-07 18:55:28 +00001647 BtShared *pBt = (BtShared*)pArg;
1648 assert( pBt->db );
1649 assert( sqlite3_mutex_held(pBt->db->mutex) );
1650 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1651}
1652
1653/*
drhad3e0102004-09-03 23:32:18 +00001654** Open a database file.
1655**
drh382c0242001-10-06 16:33:02 +00001656** zFilename is the name of the database file. If zFilename is NULL
drh1bee3d72001-10-15 00:44:35 +00001657** a new database with a random name is created. This randomly named
drh23e11ca2004-05-04 17:27:28 +00001658** database file will be deleted when sqlite3BtreeClose() is called.
drhe53831d2007-08-17 01:14:38 +00001659** If zFilename is ":memory:" then an in-memory database is created
1660** that is automatically destroyed when it is closed.
drhc47fd8e2009-04-30 13:30:32 +00001661**
1662** If the database is already opened in the same database connection
1663** and we are in shared cache mode, then the open will fail with an
1664** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1665** objects in the same database connection since doing so will lead
1666** to problems with locking.
drha059ad02001-04-17 20:09:11 +00001667*/
drh23e11ca2004-05-04 17:27:28 +00001668int sqlite3BtreeOpen(
drh3aac2dd2004-04-26 14:10:20 +00001669 const char *zFilename, /* Name of the file containing the BTree database */
drhe5fe6902007-12-07 18:55:28 +00001670 sqlite3 *db, /* Associated database handle */
drh3aac2dd2004-04-26 14:10:20 +00001671 Btree **ppBtree, /* Pointer to new Btree object written here */
drh33f4e022007-09-03 15:19:34 +00001672 int flags, /* Options */
1673 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
drh6019e162001-07-02 17:51:45 +00001674){
drh7555d8e2009-03-20 13:15:30 +00001675 sqlite3_vfs *pVfs; /* The VFS to use for this btree */
1676 BtShared *pBt = 0; /* Shared part of btree structure */
1677 Btree *p; /* Handle to return */
1678 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1679 int rc = SQLITE_OK; /* Result code from this function */
1680 u8 nReserve; /* Byte of unused space on each page */
1681 unsigned char zDbHeader[100]; /* Database header content */
danielk1977aef0bf62005-12-30 16:28:01 +00001682
1683 /* Set the variable isMemdb to true for an in-memory database, or
1684 ** false for a file-based database. This symbol is only required if
1685 ** either of the shared-data or autovacuum features are compiled
1686 ** into the library.
1687 */
1688#if !defined(SQLITE_OMIT_SHARED_CACHE) || !defined(SQLITE_OMIT_AUTOVACUUM)
1689 #ifdef SQLITE_OMIT_MEMORYDB
drh980b1a72006-08-16 16:42:48 +00001690 const int isMemdb = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00001691 #else
drh980b1a72006-08-16 16:42:48 +00001692 const int isMemdb = zFilename && !strcmp(zFilename, ":memory:");
danielk1977aef0bf62005-12-30 16:28:01 +00001693 #endif
1694#endif
1695
drhe5fe6902007-12-07 18:55:28 +00001696 assert( db!=0 );
1697 assert( sqlite3_mutex_held(db->mutex) );
drh153c62c2007-08-24 03:51:33 +00001698
drhe5fe6902007-12-07 18:55:28 +00001699 pVfs = db->pVfs;
drh17435752007-08-16 04:30:38 +00001700 p = sqlite3MallocZero(sizeof(Btree));
danielk1977aef0bf62005-12-30 16:28:01 +00001701 if( !p ){
1702 return SQLITE_NOMEM;
1703 }
1704 p->inTrans = TRANS_NONE;
drhe5fe6902007-12-07 18:55:28 +00001705 p->db = db;
danielk1977602b4662009-07-02 07:47:33 +00001706#ifndef SQLITE_OMIT_SHARED_CACHE
1707 p->lock.pBtree = p;
1708 p->lock.iTable = 1;
1709#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001710
drh198bf392006-01-06 21:52:49 +00001711#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001712 /*
1713 ** If this Btree is a candidate for shared cache, try to find an
1714 ** existing BtShared object that we can share with
1715 */
danielk197720c6cc22009-04-01 18:03:00 +00001716 if( isMemdb==0 && zFilename && zFilename[0] ){
drhf1f12682009-09-09 14:17:52 +00001717 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
danielk1977adfb9b02007-09-17 07:02:56 +00001718 int nFullPathname = pVfs->mxPathname+1;
drhe5ae5732008-06-15 02:51:47 +00001719 char *zFullPathname = sqlite3Malloc(nFullPathname);
drhff0587c2007-08-29 17:43:19 +00001720 sqlite3_mutex *mutexShared;
1721 p->sharable = 1;
drhff0587c2007-08-29 17:43:19 +00001722 if( !zFullPathname ){
1723 sqlite3_free(p);
1724 return SQLITE_NOMEM;
1725 }
danielk1977adfb9b02007-09-17 07:02:56 +00001726 sqlite3OsFullPathname(pVfs, zFilename, nFullPathname, zFullPathname);
drh7555d8e2009-03-20 13:15:30 +00001727 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1728 sqlite3_mutex_enter(mutexOpen);
danielk197759f8c082008-06-18 17:09:10 +00001729 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhff0587c2007-08-29 17:43:19 +00001730 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001731 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
drhff0587c2007-08-29 17:43:19 +00001732 assert( pBt->nRef>0 );
1733 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager))
1734 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
drhc47fd8e2009-04-30 13:30:32 +00001735 int iDb;
1736 for(iDb=db->nDb-1; iDb>=0; iDb--){
1737 Btree *pExisting = db->aDb[iDb].pBt;
1738 if( pExisting && pExisting->pBt==pBt ){
1739 sqlite3_mutex_leave(mutexShared);
1740 sqlite3_mutex_leave(mutexOpen);
1741 sqlite3_free(zFullPathname);
1742 sqlite3_free(p);
1743 return SQLITE_CONSTRAINT;
1744 }
1745 }
drhff0587c2007-08-29 17:43:19 +00001746 p->pBt = pBt;
1747 pBt->nRef++;
1748 break;
1749 }
1750 }
1751 sqlite3_mutex_leave(mutexShared);
1752 sqlite3_free(zFullPathname);
danielk1977aef0bf62005-12-30 16:28:01 +00001753 }
drhff0587c2007-08-29 17:43:19 +00001754#ifdef SQLITE_DEBUG
1755 else{
1756 /* In debug mode, we mark all persistent databases as sharable
1757 ** even when they are not. This exercises the locking code and
1758 ** gives more opportunity for asserts(sqlite3_mutex_held())
1759 ** statements to find locking problems.
1760 */
1761 p->sharable = 1;
1762 }
1763#endif
danielk1977aef0bf62005-12-30 16:28:01 +00001764 }
1765#endif
drha059ad02001-04-17 20:09:11 +00001766 if( pBt==0 ){
drhe53831d2007-08-17 01:14:38 +00001767 /*
1768 ** The following asserts make sure that structures used by the btree are
1769 ** the right size. This is to guard against size changes that result
1770 ** when compiling on a different architecture.
danielk197703aded42004-11-22 05:26:27 +00001771 */
drhe53831d2007-08-17 01:14:38 +00001772 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1773 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1774 assert( sizeof(u32)==4 );
1775 assert( sizeof(u16)==2 );
1776 assert( sizeof(Pgno)==4 );
1777
1778 pBt = sqlite3MallocZero( sizeof(*pBt) );
1779 if( pBt==0 ){
1780 rc = SQLITE_NOMEM;
1781 goto btree_open_out;
1782 }
danielk197771d5d2c2008-09-29 11:49:47 +00001783 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
drh4775ecd2009-07-24 19:01:19 +00001784 EXTRA_SIZE, flags, vfsFlags, pageReinit);
drhe53831d2007-08-17 01:14:38 +00001785 if( rc==SQLITE_OK ){
1786 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1787 }
1788 if( rc!=SQLITE_OK ){
1789 goto btree_open_out;
1790 }
danielk19772a50ff02009-04-10 09:47:06 +00001791 pBt->db = db;
danielk19771ceedd32008-11-19 10:22:33 +00001792 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
drhe53831d2007-08-17 01:14:38 +00001793 p->pBt = pBt;
1794
drhe53831d2007-08-17 01:14:38 +00001795 pBt->pCursor = 0;
1796 pBt->pPage1 = 0;
1797 pBt->readOnly = sqlite3PagerIsreadonly(pBt->pPager);
drh5b47efa2010-02-12 18:18:39 +00001798#ifdef SQLITE_SECURE_DELETE
1799 pBt->secureDelete = 1;
1800#endif
drhe53831d2007-08-17 01:14:38 +00001801 pBt->pageSize = get2byte(&zDbHeader[16]);
1802 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1803 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
danielk1977a1644fd2007-08-29 12:31:25 +00001804 pBt->pageSize = 0;
drhe53831d2007-08-17 01:14:38 +00001805#ifndef SQLITE_OMIT_AUTOVACUUM
1806 /* If the magic name ":memory:" will create an in-memory database, then
1807 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1808 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1809 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1810 ** regular file-name. In this case the auto-vacuum applies as per normal.
1811 */
1812 if( zFilename && !isMemdb ){
1813 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1814 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1815 }
1816#endif
1817 nReserve = 0;
1818 }else{
1819 nReserve = zDbHeader[20];
drhe53831d2007-08-17 01:14:38 +00001820 pBt->pageSizeFixed = 1;
1821#ifndef SQLITE_OMIT_AUTOVACUUM
1822 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1823 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1824#endif
1825 }
drhfa9601a2009-06-18 17:22:39 +00001826 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhc0b61812009-04-30 01:22:41 +00001827 if( rc ) goto btree_open_out;
drhe53831d2007-08-17 01:14:38 +00001828 pBt->usableSize = pBt->pageSize - nReserve;
1829 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
drhe53831d2007-08-17 01:14:38 +00001830
1831#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1832 /* Add the new BtShared object to the linked list sharable BtShareds.
1833 */
1834 if( p->sharable ){
1835 sqlite3_mutex *mutexShared;
1836 pBt->nRef = 1;
danielk197759f8c082008-06-18 17:09:10 +00001837 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
danielk1977075c23a2008-09-01 18:34:20 +00001838 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
danielk197759f8c082008-06-18 17:09:10 +00001839 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
drh3285db22007-09-03 22:00:39 +00001840 if( pBt->mutex==0 ){
1841 rc = SQLITE_NOMEM;
drhe5fe6902007-12-07 18:55:28 +00001842 db->mallocFailed = 0;
drh3285db22007-09-03 22:00:39 +00001843 goto btree_open_out;
1844 }
drhff0587c2007-08-29 17:43:19 +00001845 }
drhe53831d2007-08-17 01:14:38 +00001846 sqlite3_mutex_enter(mutexShared);
drh78f82d12008-09-02 00:52:52 +00001847 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
1848 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
drhe53831d2007-08-17 01:14:38 +00001849 sqlite3_mutex_leave(mutexShared);
danielk1977951af802004-11-05 15:45:09 +00001850 }
drheee46cf2004-11-06 00:02:48 +00001851#endif
drh90f5ecb2004-07-22 01:19:35 +00001852 }
danielk1977aef0bf62005-12-30 16:28:01 +00001853
drhcfed7bc2006-03-13 14:28:05 +00001854#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
drhe53831d2007-08-17 01:14:38 +00001855 /* If the new Btree uses a sharable pBtShared, then link the new
1856 ** Btree into the list of all sharable Btrees for the same connection.
drhabddb0c2007-08-20 13:14:28 +00001857 ** The list is kept in ascending order by pBt address.
danielk197754f01982006-01-18 15:25:17 +00001858 */
drhe53831d2007-08-17 01:14:38 +00001859 if( p->sharable ){
1860 int i;
1861 Btree *pSib;
drhe5fe6902007-12-07 18:55:28 +00001862 for(i=0; i<db->nDb; i++){
1863 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
drhe53831d2007-08-17 01:14:38 +00001864 while( pSib->pPrev ){ pSib = pSib->pPrev; }
1865 if( p->pBt<pSib->pBt ){
1866 p->pNext = pSib;
1867 p->pPrev = 0;
1868 pSib->pPrev = p;
1869 }else{
drhabddb0c2007-08-20 13:14:28 +00001870 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
drhe53831d2007-08-17 01:14:38 +00001871 pSib = pSib->pNext;
1872 }
1873 p->pNext = pSib->pNext;
1874 p->pPrev = pSib;
1875 if( p->pNext ){
1876 p->pNext->pPrev = p;
1877 }
1878 pSib->pNext = p;
1879 }
1880 break;
1881 }
1882 }
danielk1977aef0bf62005-12-30 16:28:01 +00001883 }
danielk1977aef0bf62005-12-30 16:28:01 +00001884#endif
1885 *ppBtree = p;
danielk1977dddbcdc2007-04-26 14:42:34 +00001886
1887btree_open_out:
1888 if( rc!=SQLITE_OK ){
1889 if( pBt && pBt->pPager ){
1890 sqlite3PagerClose(pBt->pPager);
1891 }
drh17435752007-08-16 04:30:38 +00001892 sqlite3_free(pBt);
1893 sqlite3_free(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00001894 *ppBtree = 0;
1895 }
drh7555d8e2009-03-20 13:15:30 +00001896 if( mutexOpen ){
1897 assert( sqlite3_mutex_held(mutexOpen) );
1898 sqlite3_mutex_leave(mutexOpen);
1899 }
danielk1977dddbcdc2007-04-26 14:42:34 +00001900 return rc;
drha059ad02001-04-17 20:09:11 +00001901}
1902
1903/*
drhe53831d2007-08-17 01:14:38 +00001904** Decrement the BtShared.nRef counter. When it reaches zero,
1905** remove the BtShared structure from the sharing list. Return
1906** true if the BtShared.nRef counter reaches zero and return
1907** false if it is still positive.
1908*/
1909static int removeFromSharingList(BtShared *pBt){
1910#ifndef SQLITE_OMIT_SHARED_CACHE
1911 sqlite3_mutex *pMaster;
1912 BtShared *pList;
1913 int removed = 0;
1914
drhd677b3d2007-08-20 22:48:41 +00001915 assert( sqlite3_mutex_notheld(pBt->mutex) );
danielk197759f8c082008-06-18 17:09:10 +00001916 pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
drhe53831d2007-08-17 01:14:38 +00001917 sqlite3_mutex_enter(pMaster);
1918 pBt->nRef--;
1919 if( pBt->nRef<=0 ){
drh78f82d12008-09-02 00:52:52 +00001920 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
1921 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
drhe53831d2007-08-17 01:14:38 +00001922 }else{
drh78f82d12008-09-02 00:52:52 +00001923 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
drh34004ce2008-07-11 16:15:17 +00001924 while( ALWAYS(pList) && pList->pNext!=pBt ){
drhe53831d2007-08-17 01:14:38 +00001925 pList=pList->pNext;
1926 }
drh34004ce2008-07-11 16:15:17 +00001927 if( ALWAYS(pList) ){
drhe53831d2007-08-17 01:14:38 +00001928 pList->pNext = pBt->pNext;
1929 }
1930 }
drh3285db22007-09-03 22:00:39 +00001931 if( SQLITE_THREADSAFE ){
1932 sqlite3_mutex_free(pBt->mutex);
1933 }
drhe53831d2007-08-17 01:14:38 +00001934 removed = 1;
1935 }
1936 sqlite3_mutex_leave(pMaster);
1937 return removed;
1938#else
1939 return 1;
1940#endif
1941}
1942
1943/*
drhf7141992008-06-19 00:16:08 +00001944** Make sure pBt->pTmpSpace points to an allocation of
1945** MX_CELL_SIZE(pBt) bytes.
1946*/
1947static void allocateTempSpace(BtShared *pBt){
1948 if( !pBt->pTmpSpace ){
1949 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
1950 }
1951}
1952
1953/*
1954** Free the pBt->pTmpSpace allocation
1955*/
1956static void freeTempSpace(BtShared *pBt){
1957 sqlite3PageFree( pBt->pTmpSpace);
1958 pBt->pTmpSpace = 0;
1959}
1960
1961/*
drha059ad02001-04-17 20:09:11 +00001962** Close an open database and invalidate all cursors.
1963*/
danielk1977aef0bf62005-12-30 16:28:01 +00001964int sqlite3BtreeClose(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00001965 BtShared *pBt = p->pBt;
1966 BtCursor *pCur;
1967
danielk1977aef0bf62005-12-30 16:28:01 +00001968 /* Close all cursors opened via this handle. */
drhe5fe6902007-12-07 18:55:28 +00001969 assert( sqlite3_mutex_held(p->db->mutex) );
drhe53831d2007-08-17 01:14:38 +00001970 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001971 pCur = pBt->pCursor;
1972 while( pCur ){
1973 BtCursor *pTmp = pCur;
1974 pCur = pCur->pNext;
1975 if( pTmp->pBtree==p ){
1976 sqlite3BtreeCloseCursor(pTmp);
1977 }
drha059ad02001-04-17 20:09:11 +00001978 }
danielk1977aef0bf62005-12-30 16:28:01 +00001979
danielk19778d34dfd2006-01-24 16:37:57 +00001980 /* Rollback any active transaction and free the handle structure.
1981 ** The call to sqlite3BtreeRollback() drops any table-locks held by
1982 ** this handle.
1983 */
danielk1977b597f742006-01-15 11:39:18 +00001984 sqlite3BtreeRollback(p);
drhe53831d2007-08-17 01:14:38 +00001985 sqlite3BtreeLeave(p);
danielk1977aef0bf62005-12-30 16:28:01 +00001986
danielk1977aef0bf62005-12-30 16:28:01 +00001987 /* If there are still other outstanding references to the shared-btree
1988 ** structure, return now. The remainder of this procedure cleans
1989 ** up the shared-btree.
1990 */
drhe53831d2007-08-17 01:14:38 +00001991 assert( p->wantToLock==0 && p->locked==0 );
1992 if( !p->sharable || removeFromSharingList(pBt) ){
1993 /* The pBt is no longer on the sharing list, so we can access
1994 ** it without having to hold the mutex.
1995 **
1996 ** Clean out and delete the BtShared object.
1997 */
1998 assert( !pBt->pCursor );
drhe53831d2007-08-17 01:14:38 +00001999 sqlite3PagerClose(pBt->pPager);
2000 if( pBt->xFreeSchema && pBt->pSchema ){
2001 pBt->xFreeSchema(pBt->pSchema);
2002 }
2003 sqlite3_free(pBt->pSchema);
drhf7141992008-06-19 00:16:08 +00002004 freeTempSpace(pBt);
drh65bbf292008-06-19 01:03:17 +00002005 sqlite3_free(pBt);
danielk1977aef0bf62005-12-30 16:28:01 +00002006 }
2007
drhe53831d2007-08-17 01:14:38 +00002008#ifndef SQLITE_OMIT_SHARED_CACHE
drhcab5ed72007-08-22 11:41:18 +00002009 assert( p->wantToLock==0 );
2010 assert( p->locked==0 );
2011 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2012 if( p->pNext ) p->pNext->pPrev = p->pPrev;
danielk1977aef0bf62005-12-30 16:28:01 +00002013#endif
2014
drhe53831d2007-08-17 01:14:38 +00002015 sqlite3_free(p);
drha059ad02001-04-17 20:09:11 +00002016 return SQLITE_OK;
2017}
2018
2019/*
drhda47d772002-12-02 04:25:19 +00002020** Change the limit on the number of pages allowed in the cache.
drhcd61c282002-03-06 22:01:34 +00002021**
2022** The maximum number of cache pages is set to the absolute
2023** value of mxPage. If mxPage is negative, the pager will
2024** operate asynchronously - it will not stop to do fsync()s
2025** to insure data is written to the disk surface before
2026** continuing. Transactions still work if synchronous is off,
2027** and the database cannot be corrupted if this program
2028** crashes. But if the operating system crashes or there is
2029** an abrupt power failure when synchronous is off, the database
2030** could be left in an inconsistent and unrecoverable state.
2031** Synchronous is on by default so database corruption is not
2032** normally a worry.
drhf57b14a2001-09-14 18:54:08 +00002033*/
danielk1977aef0bf62005-12-30 16:28:01 +00002034int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2035 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002036 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002037 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002038 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
drhd677b3d2007-08-20 22:48:41 +00002039 sqlite3BtreeLeave(p);
drhf57b14a2001-09-14 18:54:08 +00002040 return SQLITE_OK;
2041}
2042
2043/*
drh973b6e32003-02-12 14:09:42 +00002044** Change the way data is synced to disk in order to increase or decrease
2045** how well the database resists damage due to OS crashes and power
2046** failures. Level 1 is the same as asynchronous (no syncs() occur and
2047** there is a high probability of damage) Level 2 is the default. There
2048** is a very low but non-zero probability of damage. Level 3 reduces the
2049** probability of damage to near zero but with a write performance reduction.
2050*/
danielk197793758c82005-01-21 08:13:14 +00002051#ifndef SQLITE_OMIT_PAGER_PRAGMAS
drhac530b12006-02-11 01:25:50 +00002052int sqlite3BtreeSetSafetyLevel(Btree *p, int level, int fullSync){
danielk1977aef0bf62005-12-30 16:28:01 +00002053 BtShared *pBt = p->pBt;
drhe5fe6902007-12-07 18:55:28 +00002054 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002055 sqlite3BtreeEnter(p);
danielk19773b8a05f2007-03-19 17:44:26 +00002056 sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync);
drhd677b3d2007-08-20 22:48:41 +00002057 sqlite3BtreeLeave(p);
drh973b6e32003-02-12 14:09:42 +00002058 return SQLITE_OK;
2059}
danielk197793758c82005-01-21 08:13:14 +00002060#endif
drh973b6e32003-02-12 14:09:42 +00002061
drh2c8997b2005-08-27 16:36:48 +00002062/*
2063** Return TRUE if the given btree is set to safety level 1. In other
2064** words, return TRUE if no sync() occurs on the disk files.
2065*/
danielk1977aef0bf62005-12-30 16:28:01 +00002066int sqlite3BtreeSyncDisabled(Btree *p){
2067 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002068 int rc;
drhe5fe6902007-12-07 18:55:28 +00002069 assert( sqlite3_mutex_held(p->db->mutex) );
drhd677b3d2007-08-20 22:48:41 +00002070 sqlite3BtreeEnter(p);
drhd0679ed2007-08-28 22:24:34 +00002071 assert( pBt && pBt->pPager );
drhd677b3d2007-08-20 22:48:41 +00002072 rc = sqlite3PagerNosync(pBt->pPager);
2073 sqlite3BtreeLeave(p);
2074 return rc;
drh2c8997b2005-08-27 16:36:48 +00002075}
2076
danielk1977576ec6b2005-01-21 11:55:25 +00002077#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
drh973b6e32003-02-12 14:09:42 +00002078/*
drh90f5ecb2004-07-22 01:19:35 +00002079** Change the default pages size and the number of reserved bytes per page.
drhce4869f2009-04-02 20:16:58 +00002080** Or, if the page size has already been fixed, return SQLITE_READONLY
2081** without changing anything.
drh06f50212004-11-02 14:24:33 +00002082**
2083** The page size must be a power of 2 between 512 and 65536. If the page
2084** size supplied does not meet this constraint then the page size is not
2085** changed.
2086**
2087** Page sizes are constrained to be a power of two so that the region
2088** of the database file used for locking (beginning at PENDING_BYTE,
2089** the first byte past the 1GB boundary, 0x40000000) needs to occur
2090** at the beginning of a page.
danielk197728129562005-01-11 10:25:06 +00002091**
2092** If parameter nReserve is less than zero, then the number of reserved
2093** bytes per page is left unchanged.
drhce4869f2009-04-02 20:16:58 +00002094**
2095** If the iFix!=0 then the pageSizeFixed flag is set so that the page size
2096** and autovacuum mode can no longer be changed.
drh90f5ecb2004-07-22 01:19:35 +00002097*/
drhce4869f2009-04-02 20:16:58 +00002098int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
danielk1977a1644fd2007-08-29 12:31:25 +00002099 int rc = SQLITE_OK;
danielk1977aef0bf62005-12-30 16:28:01 +00002100 BtShared *pBt = p->pBt;
drhf49661a2008-12-10 16:45:50 +00002101 assert( nReserve>=-1 && nReserve<=255 );
drhd677b3d2007-08-20 22:48:41 +00002102 sqlite3BtreeEnter(p);
drh90f5ecb2004-07-22 01:19:35 +00002103 if( pBt->pageSizeFixed ){
drhd677b3d2007-08-20 22:48:41 +00002104 sqlite3BtreeLeave(p);
drh90f5ecb2004-07-22 01:19:35 +00002105 return SQLITE_READONLY;
2106 }
2107 if( nReserve<0 ){
2108 nReserve = pBt->pageSize - pBt->usableSize;
2109 }
drhf49661a2008-12-10 16:45:50 +00002110 assert( nReserve>=0 && nReserve<=255 );
drh06f50212004-11-02 14:24:33 +00002111 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2112 ((pageSize-1)&pageSize)==0 ){
drh07d183d2005-05-01 22:52:42 +00002113 assert( (pageSize & 7)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00002114 assert( !pBt->pPage1 && !pBt->pCursor );
drh1bd10f82008-12-10 21:19:56 +00002115 pBt->pageSize = (u16)pageSize;
drhf7141992008-06-19 00:16:08 +00002116 freeTempSpace(pBt);
drh90f5ecb2004-07-22 01:19:35 +00002117 }
drhfa9601a2009-06-18 17:22:39 +00002118 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
drhf49661a2008-12-10 16:45:50 +00002119 pBt->usableSize = pBt->pageSize - (u16)nReserve;
drhce4869f2009-04-02 20:16:58 +00002120 if( iFix ) pBt->pageSizeFixed = 1;
drhd677b3d2007-08-20 22:48:41 +00002121 sqlite3BtreeLeave(p);
danielk1977a1644fd2007-08-29 12:31:25 +00002122 return rc;
drh90f5ecb2004-07-22 01:19:35 +00002123}
2124
2125/*
2126** Return the currently defined page size
2127*/
danielk1977aef0bf62005-12-30 16:28:01 +00002128int sqlite3BtreeGetPageSize(Btree *p){
2129 return p->pBt->pageSize;
drh90f5ecb2004-07-22 01:19:35 +00002130}
drh7f751222009-03-17 22:33:00 +00002131
2132/*
2133** Return the number of bytes of space at the end of every page that
2134** are intentually left unused. This is the "reserved" space that is
2135** sometimes used by extensions.
2136*/
danielk1977aef0bf62005-12-30 16:28:01 +00002137int sqlite3BtreeGetReserve(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002138 int n;
2139 sqlite3BtreeEnter(p);
2140 n = p->pBt->pageSize - p->pBt->usableSize;
2141 sqlite3BtreeLeave(p);
2142 return n;
drh2011d5f2004-07-22 02:40:37 +00002143}
drhf8e632b2007-05-08 14:51:36 +00002144
2145/*
2146** Set the maximum page count for a database if mxPage is positive.
2147** No changes are made if mxPage is 0 or negative.
2148** Regardless of the value of mxPage, return the maximum page count.
2149*/
2150int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
drhd677b3d2007-08-20 22:48:41 +00002151 int n;
2152 sqlite3BtreeEnter(p);
2153 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2154 sqlite3BtreeLeave(p);
2155 return n;
drhf8e632b2007-05-08 14:51:36 +00002156}
drh5b47efa2010-02-12 18:18:39 +00002157
2158/*
2159** Set the secureDelete flag if newFlag is 0 or 1. If newFlag is -1,
2160** then make no changes. Always return the value of the secureDelete
2161** setting after the change.
2162*/
2163int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2164 int b;
drhaf034ed2010-02-12 19:46:26 +00002165 if( p==0 ) return 0;
drh5b47efa2010-02-12 18:18:39 +00002166 sqlite3BtreeEnter(p);
2167 if( newFlag>=0 ){
2168 p->pBt->secureDelete = (newFlag!=0) ? 1 : 0;
2169 }
2170 b = p->pBt->secureDelete;
2171 sqlite3BtreeLeave(p);
2172 return b;
2173}
danielk1977576ec6b2005-01-21 11:55:25 +00002174#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
drh90f5ecb2004-07-22 01:19:35 +00002175
2176/*
danielk1977951af802004-11-05 15:45:09 +00002177** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2178** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2179** is disabled. The default value for the auto-vacuum property is
2180** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2181*/
danielk1977aef0bf62005-12-30 16:28:01 +00002182int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
danielk1977951af802004-11-05 15:45:09 +00002183#ifdef SQLITE_OMIT_AUTOVACUUM
drheee46cf2004-11-06 00:02:48 +00002184 return SQLITE_READONLY;
danielk1977951af802004-11-05 15:45:09 +00002185#else
danielk1977dddbcdc2007-04-26 14:42:34 +00002186 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002187 int rc = SQLITE_OK;
drh076d4662009-02-18 20:31:18 +00002188 u8 av = (u8)autoVacuum;
drhd677b3d2007-08-20 22:48:41 +00002189
2190 sqlite3BtreeEnter(p);
drh076d4662009-02-18 20:31:18 +00002191 if( pBt->pageSizeFixed && (av ?1:0)!=pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002192 rc = SQLITE_READONLY;
2193 }else{
drh076d4662009-02-18 20:31:18 +00002194 pBt->autoVacuum = av ?1:0;
2195 pBt->incrVacuum = av==2 ?1:0;
danielk1977951af802004-11-05 15:45:09 +00002196 }
drhd677b3d2007-08-20 22:48:41 +00002197 sqlite3BtreeLeave(p);
2198 return rc;
danielk1977951af802004-11-05 15:45:09 +00002199#endif
2200}
2201
2202/*
2203** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2204** enabled 1 is returned. Otherwise 0.
2205*/
danielk1977aef0bf62005-12-30 16:28:01 +00002206int sqlite3BtreeGetAutoVacuum(Btree *p){
danielk1977951af802004-11-05 15:45:09 +00002207#ifdef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002208 return BTREE_AUTOVACUUM_NONE;
danielk1977951af802004-11-05 15:45:09 +00002209#else
drhd677b3d2007-08-20 22:48:41 +00002210 int rc;
2211 sqlite3BtreeEnter(p);
2212 rc = (
danielk1977dddbcdc2007-04-26 14:42:34 +00002213 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2214 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2215 BTREE_AUTOVACUUM_INCR
2216 );
drhd677b3d2007-08-20 22:48:41 +00002217 sqlite3BtreeLeave(p);
2218 return rc;
danielk1977951af802004-11-05 15:45:09 +00002219#endif
2220}
2221
2222
2223/*
drha34b6762004-05-07 13:30:42 +00002224** Get a reference to pPage1 of the database file. This will
drh306dc212001-05-21 13:45:10 +00002225** also acquire a readlock on that file.
2226**
2227** SQLITE_OK is returned on success. If the file is not a
2228** well-formed database file, then SQLITE_CORRUPT is returned.
2229** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
drh4f0ee682007-03-30 20:43:40 +00002230** is returned if we run out of memory.
drh306dc212001-05-21 13:45:10 +00002231*/
danielk1977aef0bf62005-12-30 16:28:01 +00002232static int lockBtree(BtShared *pBt){
drhc2a4bab2010-04-02 12:46:45 +00002233 int rc; /* Result code from subfunctions */
2234 MemPage *pPage1; /* Page 1 of the database file */
2235 int nPage; /* Number of pages in the database */
2236 int nPageFile = 0; /* Number of pages in the database file */
2237 int nPageHeader; /* Number of pages in the database according to hdr */
drhd677b3d2007-08-20 22:48:41 +00002238
drh1fee73e2007-08-29 04:00:57 +00002239 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977295dc102009-04-01 19:07:03 +00002240 assert( pBt->pPage1==0 );
danielk197789bc4bc2009-07-21 19:25:24 +00002241 rc = sqlite3PagerSharedLock(pBt->pPager);
2242 if( rc!=SQLITE_OK ) return rc;
danielk197730548662009-07-09 05:07:37 +00002243 rc = btreeGetPage(pBt, 1, &pPage1, 0);
drh306dc212001-05-21 13:45:10 +00002244 if( rc!=SQLITE_OK ) return rc;
drh306dc212001-05-21 13:45:10 +00002245
2246 /* Do some checking to help insure the file we opened really is
2247 ** a valid database file.
2248 */
drhc2a4bab2010-04-02 12:46:45 +00002249 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
2250 if( (rc = sqlite3PagerPagecount(pBt->pPager, &nPageFile))!=SQLITE_OK ){;
2251 goto page1_init_failed;
2252 }
drh97b59a52010-03-31 02:31:33 +00002253 if( nPage==0 ){
drhc2a4bab2010-04-02 12:46:45 +00002254 nPage = nPageFile;
drh97b59a52010-03-31 02:31:33 +00002255 }
2256 if( nPage>0 ){
danielk1977f653d782008-03-20 11:04:21 +00002257 int pageSize;
2258 int usableSize;
drhb6f41482004-05-14 01:58:11 +00002259 u8 *page1 = pPage1->aData;
danielk1977ad0132d2008-06-07 08:58:22 +00002260 rc = SQLITE_NOTADB;
drhb6f41482004-05-14 01:58:11 +00002261 if( memcmp(page1, zMagicHeader, 16)!=0 ){
drh72f82862001-05-24 21:06:34 +00002262 goto page1_init_failed;
drh306dc212001-05-21 13:45:10 +00002263 }
dane04dc882010-04-20 18:53:15 +00002264 if( page1[18]>2 ){
drh309169a2007-04-24 17:27:51 +00002265 pBt->readOnly = 1;
2266 }
dane04dc882010-04-20 18:53:15 +00002267 if( page1[19]>2 ){
drhb6f41482004-05-14 01:58:11 +00002268 goto page1_init_failed;
2269 }
drhe5ae5732008-06-15 02:51:47 +00002270
dana470aeb2010-04-21 11:43:38 +00002271 /* If the write version is set to 2, this database should be accessed
2272 ** in WAL mode. If the log is not already open, open it now. Then
2273 ** return SQLITE_OK and return without populating BtShared.pPage1.
2274 ** The caller detects this and calls this function again. This is
2275 ** required as the version of page 1 currently in the page1 buffer
2276 ** may not be the latest version - there may be a newer one in the log
2277 ** file.
2278 */
danb9780022010-04-21 18:37:57 +00002279 if( page1[19]==2 && pBt->doNotUseWAL==0 ){
dane04dc882010-04-20 18:53:15 +00002280 int isOpen = 0;
2281 rc = sqlite3PagerOpenLog(pBt->pPager, &isOpen);
2282 if( rc!=SQLITE_OK ){
2283 goto page1_init_failed;
2284 }else if( isOpen==0 ){
2285 releasePage(pPage1);
2286 return SQLITE_OK;
2287 }
2288 }
2289
drhe5ae5732008-06-15 02:51:47 +00002290 /* The maximum embedded fraction must be exactly 25%. And the minimum
2291 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2292 ** The original design allowed these amounts to vary, but as of
2293 ** version 3.6.0, we require them to be fixed.
2294 */
2295 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2296 goto page1_init_failed;
2297 }
drh07d183d2005-05-01 22:52:42 +00002298 pageSize = get2byte(&page1[16]);
drh7dc385e2007-09-06 23:39:36 +00002299 if( ((pageSize-1)&pageSize)!=0 || pageSize<512 ||
2300 (SQLITE_MAX_PAGE_SIZE<32768 && pageSize>SQLITE_MAX_PAGE_SIZE)
2301 ){
drh07d183d2005-05-01 22:52:42 +00002302 goto page1_init_failed;
2303 }
2304 assert( (pageSize & 7)==0 );
danielk1977f653d782008-03-20 11:04:21 +00002305 usableSize = pageSize - page1[20];
2306 if( pageSize!=pBt->pageSize ){
2307 /* After reading the first page of the database assuming a page size
2308 ** of BtShared.pageSize, we have discovered that the page-size is
2309 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2310 ** zero and return SQLITE_OK. The caller will call this function
2311 ** again with the correct page-size.
2312 */
2313 releasePage(pPage1);
drhf49661a2008-12-10 16:45:50 +00002314 pBt->usableSize = (u16)usableSize;
2315 pBt->pageSize = (u16)pageSize;
drhf7141992008-06-19 00:16:08 +00002316 freeTempSpace(pBt);
drhfa9601a2009-06-18 17:22:39 +00002317 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2318 pageSize-usableSize);
drh5e483932009-07-10 16:51:30 +00002319 return rc;
danielk1977f653d782008-03-20 11:04:21 +00002320 }
drhc2a4bab2010-04-02 12:46:45 +00002321 if( nPageHeader>nPageFile ){
2322 rc = SQLITE_CORRUPT_BKPT;
2323 goto page1_init_failed;
2324 }
drhb33e1b92009-06-18 11:29:20 +00002325 if( usableSize<480 ){
drhb6f41482004-05-14 01:58:11 +00002326 goto page1_init_failed;
2327 }
drh1bd10f82008-12-10 21:19:56 +00002328 pBt->pageSize = (u16)pageSize;
2329 pBt->usableSize = (u16)usableSize;
drh057cd3a2005-02-15 16:23:02 +00002330#ifndef SQLITE_OMIT_AUTOVACUUM
2331 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
danielk197727b1f952007-06-25 08:16:58 +00002332 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
drh057cd3a2005-02-15 16:23:02 +00002333#endif
drh306dc212001-05-21 13:45:10 +00002334 }
drhb6f41482004-05-14 01:58:11 +00002335
2336 /* maxLocal is the maximum amount of payload to store locally for
2337 ** a cell. Make sure it is small enough so that at least minFanout
2338 ** cells can will fit on one page. We assume a 10-byte page header.
2339 ** Besides the payload, the cell must store:
drh43605152004-05-29 21:46:49 +00002340 ** 2-byte pointer to the cell
drhb6f41482004-05-14 01:58:11 +00002341 ** 4-byte child pointer
2342 ** 9-byte nKey value
2343 ** 4-byte nData value
2344 ** 4-byte overflow page pointer
drh43605152004-05-29 21:46:49 +00002345 ** So a cell consists of a 2-byte poiner, a header which is as much as
2346 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2347 ** page pointer.
drhb6f41482004-05-14 01:58:11 +00002348 */
drhe5ae5732008-06-15 02:51:47 +00002349 pBt->maxLocal = (pBt->usableSize-12)*64/255 - 23;
2350 pBt->minLocal = (pBt->usableSize-12)*32/255 - 23;
drh43605152004-05-29 21:46:49 +00002351 pBt->maxLeaf = pBt->usableSize - 35;
drhe5ae5732008-06-15 02:51:47 +00002352 pBt->minLeaf = (pBt->usableSize-12)*32/255 - 23;
drh2e38c322004-09-03 18:38:44 +00002353 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
drh3aac2dd2004-04-26 14:10:20 +00002354 pBt->pPage1 = pPage1;
drhdd3cd972010-03-27 17:12:36 +00002355 pBt->nPage = nPage;
drhb6f41482004-05-14 01:58:11 +00002356 return SQLITE_OK;
drh306dc212001-05-21 13:45:10 +00002357
drh72f82862001-05-24 21:06:34 +00002358page1_init_failed:
drh3aac2dd2004-04-26 14:10:20 +00002359 releasePage(pPage1);
2360 pBt->pPage1 = 0;
drh72f82862001-05-24 21:06:34 +00002361 return rc;
drh306dc212001-05-21 13:45:10 +00002362}
2363
2364/*
drhb8ca3072001-12-05 00:21:20 +00002365** If there are no outstanding cursors and we are not in the middle
2366** of a transaction but there is a read lock on the database, then
2367** this routine unrefs the first page of the database file which
2368** has the effect of releasing the read lock.
2369**
drhb8ca3072001-12-05 00:21:20 +00002370** If there is a transaction in progress, this routine is a no-op.
2371*/
danielk1977aef0bf62005-12-30 16:28:01 +00002372static void unlockBtreeIfUnused(BtShared *pBt){
drh1fee73e2007-08-29 04:00:57 +00002373 assert( sqlite3_mutex_held(pBt->mutex) );
danielk19771bc9ee92009-07-04 15:41:02 +00002374 assert( pBt->pCursor==0 || pBt->inTransaction>TRANS_NONE );
2375 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
danielk1977c1761e82009-06-25 09:40:03 +00002376 assert( pBt->pPage1->aData );
2377 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2378 assert( pBt->pPage1->aData );
2379 releasePage(pBt->pPage1);
drh3aac2dd2004-04-26 14:10:20 +00002380 pBt->pPage1 = 0;
drhb8ca3072001-12-05 00:21:20 +00002381 }
2382}
2383
2384/*
drhe39f2f92009-07-23 01:43:59 +00002385** If pBt points to an empty file then convert that empty file
2386** into a new empty database by initializing the first page of
2387** the database.
drh8b2f49b2001-06-08 00:21:52 +00002388*/
danielk1977aef0bf62005-12-30 16:28:01 +00002389static int newDatabase(BtShared *pBt){
drh9e572e62004-04-23 23:43:10 +00002390 MemPage *pP1;
2391 unsigned char *data;
drh8c42ca92001-06-22 19:15:00 +00002392 int rc;
drhd677b3d2007-08-20 22:48:41 +00002393
drh1fee73e2007-08-29 04:00:57 +00002394 assert( sqlite3_mutex_held(pBt->mutex) );
drhdd3cd972010-03-27 17:12:36 +00002395 if( pBt->nPage>0 ){
2396 return SQLITE_OK;
danielk1977ad0132d2008-06-07 08:58:22 +00002397 }
drh3aac2dd2004-04-26 14:10:20 +00002398 pP1 = pBt->pPage1;
drh9e572e62004-04-23 23:43:10 +00002399 assert( pP1!=0 );
2400 data = pP1->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00002401 rc = sqlite3PagerWrite(pP1->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00002402 if( rc ) return rc;
drh9e572e62004-04-23 23:43:10 +00002403 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2404 assert( sizeof(zMagicHeader)==16 );
drhb6f41482004-05-14 01:58:11 +00002405 put2byte(&data[16], pBt->pageSize);
drh9e572e62004-04-23 23:43:10 +00002406 data[18] = 1;
2407 data[19] = 1;
drhf49661a2008-12-10 16:45:50 +00002408 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2409 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
drhe5ae5732008-06-15 02:51:47 +00002410 data[21] = 64;
2411 data[22] = 32;
2412 data[23] = 32;
drhb6f41482004-05-14 01:58:11 +00002413 memset(&data[24], 0, 100-24);
drhe6c43812004-05-14 12:17:46 +00002414 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
drhf2a611c2004-09-05 00:33:43 +00002415 pBt->pageSizeFixed = 1;
danielk1977003ba062004-11-04 02:57:33 +00002416#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977dddbcdc2007-04-26 14:42:34 +00002417 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
danielk1977418899a2007-06-24 10:14:00 +00002418 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
danielk1977dddbcdc2007-04-26 14:42:34 +00002419 put4byte(&data[36 + 4*4], pBt->autoVacuum);
danielk1977418899a2007-06-24 10:14:00 +00002420 put4byte(&data[36 + 7*4], pBt->incrVacuum);
danielk1977003ba062004-11-04 02:57:33 +00002421#endif
drhdd3cd972010-03-27 17:12:36 +00002422 pBt->nPage = 1;
2423 data[31] = 1;
drh8b2f49b2001-06-08 00:21:52 +00002424 return SQLITE_OK;
2425}
2426
2427/*
danielk1977ee5741e2004-05-31 10:01:34 +00002428** Attempt to start a new transaction. A write-transaction
drh684917c2004-10-05 02:41:42 +00002429** is started if the second argument is nonzero, otherwise a read-
2430** transaction. If the second argument is 2 or more and exclusive
2431** transaction is started, meaning that no other process is allowed
2432** to access the database. A preexisting transaction may not be
drhb8ef32c2005-03-14 02:01:49 +00002433** upgraded to exclusive by calling this routine a second time - the
drh684917c2004-10-05 02:41:42 +00002434** exclusivity flag only works for a new transaction.
drh8b2f49b2001-06-08 00:21:52 +00002435**
danielk1977ee5741e2004-05-31 10:01:34 +00002436** A write-transaction must be started before attempting any
2437** changes to the database. None of the following routines
2438** will work unless a transaction is started first:
drh8b2f49b2001-06-08 00:21:52 +00002439**
drh23e11ca2004-05-04 17:27:28 +00002440** sqlite3BtreeCreateTable()
2441** sqlite3BtreeCreateIndex()
2442** sqlite3BtreeClearTable()
2443** sqlite3BtreeDropTable()
2444** sqlite3BtreeInsert()
2445** sqlite3BtreeDelete()
2446** sqlite3BtreeUpdateMeta()
danielk197713adf8a2004-06-03 16:08:41 +00002447**
drhb8ef32c2005-03-14 02:01:49 +00002448** If an initial attempt to acquire the lock fails because of lock contention
2449** and the database was previously unlocked, then invoke the busy handler
2450** if there is one. But if there was previously a read-lock, do not
2451** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2452** returned when there is already a read-lock in order to avoid a deadlock.
2453**
2454** Suppose there are two processes A and B. A has a read lock and B has
2455** a reserved lock. B tries to promote to exclusive but is blocked because
2456** of A's read lock. A tries to promote to reserved but is blocked by B.
2457** One or the other of the two processes must give way or there can be
2458** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2459** when A already has a read lock, we encourage A to give up and let B
2460** proceed.
drha059ad02001-04-17 20:09:11 +00002461*/
danielk1977aef0bf62005-12-30 16:28:01 +00002462int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
danielk1977404ca072009-03-16 13:19:36 +00002463 sqlite3 *pBlock = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00002464 BtShared *pBt = p->pBt;
danielk1977ee5741e2004-05-31 10:01:34 +00002465 int rc = SQLITE_OK;
2466
drhd677b3d2007-08-20 22:48:41 +00002467 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00002468 btreeIntegrity(p);
2469
danielk1977ee5741e2004-05-31 10:01:34 +00002470 /* If the btree is already in a write-transaction, or it
2471 ** is already in a read-transaction and a read-transaction
2472 ** is requested, this is a no-op.
2473 */
danielk1977aef0bf62005-12-30 16:28:01 +00002474 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
drhd677b3d2007-08-20 22:48:41 +00002475 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002476 }
drhb8ef32c2005-03-14 02:01:49 +00002477
2478 /* Write transactions are not possible on a read-only database */
danielk1977ee5741e2004-05-31 10:01:34 +00002479 if( pBt->readOnly && wrflag ){
drhd677b3d2007-08-20 22:48:41 +00002480 rc = SQLITE_READONLY;
2481 goto trans_begun;
danielk1977ee5741e2004-05-31 10:01:34 +00002482 }
2483
danielk1977404ca072009-03-16 13:19:36 +00002484#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977aef0bf62005-12-30 16:28:01 +00002485 /* If another database handle has already opened a write transaction
2486 ** on this shared-btree structure and a second write transaction is
danielk1977404ca072009-03-16 13:19:36 +00002487 ** requested, return SQLITE_LOCKED.
danielk1977aef0bf62005-12-30 16:28:01 +00002488 */
danielk1977404ca072009-03-16 13:19:36 +00002489 if( (wrflag && pBt->inTransaction==TRANS_WRITE) || pBt->isPending ){
2490 pBlock = pBt->pWriter->db;
2491 }else if( wrflag>1 ){
danielk1977641b0f42007-12-21 04:47:25 +00002492 BtLock *pIter;
2493 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2494 if( pIter->pBtree!=p ){
danielk1977404ca072009-03-16 13:19:36 +00002495 pBlock = pIter->pBtree->db;
2496 break;
danielk1977641b0f42007-12-21 04:47:25 +00002497 }
2498 }
2499 }
danielk1977404ca072009-03-16 13:19:36 +00002500 if( pBlock ){
2501 sqlite3ConnectionBlocked(p->db, pBlock);
2502 rc = SQLITE_LOCKED_SHAREDCACHE;
2503 goto trans_begun;
2504 }
danielk1977641b0f42007-12-21 04:47:25 +00002505#endif
2506
danielk1977602b4662009-07-02 07:47:33 +00002507 /* Any read-only or read-write transaction implies a read-lock on
2508 ** page 1. So if some other shared-cache client already has a write-lock
2509 ** on page 1, the transaction cannot be opened. */
drh4c301aa2009-07-15 17:25:45 +00002510 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2511 if( SQLITE_OK!=rc ) goto trans_begun;
danielk1977602b4662009-07-02 07:47:33 +00002512
drh25a80ad2010-03-29 21:13:12 +00002513 pBt->initiallyEmpty = pBt->nPage==0;
drhb8ef32c2005-03-14 02:01:49 +00002514 do {
danielk1977295dc102009-04-01 19:07:03 +00002515 /* Call lockBtree() until either pBt->pPage1 is populated or
2516 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2517 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2518 ** reading page 1 it discovers that the page-size of the database
2519 ** file is not pBt->pageSize. In this case lockBtree() will update
2520 ** pBt->pageSize to the page-size of the file on disk.
2521 */
2522 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
drh309169a2007-04-24 17:27:51 +00002523
drhb8ef32c2005-03-14 02:01:49 +00002524 if( rc==SQLITE_OK && wrflag ){
drh309169a2007-04-24 17:27:51 +00002525 if( pBt->readOnly ){
2526 rc = SQLITE_READONLY;
2527 }else{
danielk1977d8293352009-04-30 09:10:37 +00002528 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
drh309169a2007-04-24 17:27:51 +00002529 if( rc==SQLITE_OK ){
2530 rc = newDatabase(pBt);
2531 }
drhb8ef32c2005-03-14 02:01:49 +00002532 }
2533 }
2534
danielk1977bd434552009-03-18 10:33:00 +00002535 if( rc!=SQLITE_OK ){
drhb8ef32c2005-03-14 02:01:49 +00002536 unlockBtreeIfUnused(pBt);
2537 }
danielk1977aef0bf62005-12-30 16:28:01 +00002538 }while( rc==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
danielk19771ceedd32008-11-19 10:22:33 +00002539 btreeInvokeBusyHandler(pBt) );
danielk1977aef0bf62005-12-30 16:28:01 +00002540
2541 if( rc==SQLITE_OK ){
2542 if( p->inTrans==TRANS_NONE ){
2543 pBt->nTransaction++;
danielk1977602b4662009-07-02 07:47:33 +00002544#ifndef SQLITE_OMIT_SHARED_CACHE
2545 if( p->sharable ){
2546 assert( p->lock.pBtree==p && p->lock.iTable==1 );
2547 p->lock.eLock = READ_LOCK;
2548 p->lock.pNext = pBt->pLock;
2549 pBt->pLock = &p->lock;
2550 }
2551#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002552 }
2553 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2554 if( p->inTrans>pBt->inTransaction ){
2555 pBt->inTransaction = p->inTrans;
2556 }
danielk1977641b0f42007-12-21 04:47:25 +00002557#ifndef SQLITE_OMIT_SHARED_CACHE
danielk1977404ca072009-03-16 13:19:36 +00002558 if( wrflag ){
2559 assert( !pBt->pWriter );
2560 pBt->pWriter = p;
shaneca18d202009-03-23 02:34:32 +00002561 pBt->isExclusive = (u8)(wrflag>1);
danielk1977641b0f42007-12-21 04:47:25 +00002562 }
2563#endif
danielk1977aef0bf62005-12-30 16:28:01 +00002564 }
2565
drhd677b3d2007-08-20 22:48:41 +00002566
2567trans_begun:
danielk1977fd7f0452008-12-17 17:30:26 +00002568 if( rc==SQLITE_OK && wrflag ){
danielk197712dd5492008-12-18 15:45:07 +00002569 /* This call makes sure that the pager has the correct number of
2570 ** open savepoints. If the second parameter is greater than 0 and
2571 ** the sub-journal is not already open, then it will be opened here.
2572 */
danielk1977fd7f0452008-12-17 17:30:26 +00002573 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2574 }
danielk197712dd5492008-12-18 15:45:07 +00002575
danielk1977aef0bf62005-12-30 16:28:01 +00002576 btreeIntegrity(p);
drhd677b3d2007-08-20 22:48:41 +00002577 sqlite3BtreeLeave(p);
drhb8ca3072001-12-05 00:21:20 +00002578 return rc;
drha059ad02001-04-17 20:09:11 +00002579}
2580
danielk1977687566d2004-11-02 12:56:41 +00002581#ifndef SQLITE_OMIT_AUTOVACUUM
2582
2583/*
2584** Set the pointer-map entries for all children of page pPage. Also, if
2585** pPage contains cells that point to overflow pages, set the pointer
2586** map entries for the overflow pages as well.
2587*/
2588static int setChildPtrmaps(MemPage *pPage){
2589 int i; /* Counter variable */
2590 int nCell; /* Number of cells in page pPage */
danielk19772df71c72007-05-24 07:22:42 +00002591 int rc; /* Return code */
danielk1977aef0bf62005-12-30 16:28:01 +00002592 BtShared *pBt = pPage->pBt;
drhf49661a2008-12-10 16:45:50 +00002593 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002594 Pgno pgno = pPage->pgno;
2595
drh1fee73e2007-08-29 04:00:57 +00002596 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00002597 rc = btreeInitPage(pPage);
danielk19772df71c72007-05-24 07:22:42 +00002598 if( rc!=SQLITE_OK ){
2599 goto set_child_ptrmaps_out;
2600 }
danielk1977687566d2004-11-02 12:56:41 +00002601 nCell = pPage->nCell;
2602
2603 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002604 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002605
drh98add2e2009-07-20 17:11:49 +00002606 ptrmapPutOvflPtr(pPage, pCell, &rc);
danielk197726836652005-01-17 01:33:13 +00002607
danielk1977687566d2004-11-02 12:56:41 +00002608 if( !pPage->leaf ){
2609 Pgno childPgno = get4byte(pCell);
drh98add2e2009-07-20 17:11:49 +00002610 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002611 }
2612 }
2613
2614 if( !pPage->leaf ){
2615 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh98add2e2009-07-20 17:11:49 +00002616 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
danielk1977687566d2004-11-02 12:56:41 +00002617 }
2618
2619set_child_ptrmaps_out:
2620 pPage->isInit = isInitOrig;
2621 return rc;
2622}
2623
2624/*
drhf3aed592009-07-08 18:12:49 +00002625** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2626** that it points to iTo. Parameter eType describes the type of pointer to
2627** be modified, as follows:
danielk1977687566d2004-11-02 12:56:41 +00002628**
2629** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2630** page of pPage.
2631**
2632** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2633** page pointed to by one of the cells on pPage.
2634**
2635** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2636** overflow page in the list.
2637*/
danielk1977fdb7cdb2005-01-17 02:12:18 +00002638static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
drh1fee73e2007-08-29 04:00:57 +00002639 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc5053fb2008-11-27 02:22:10 +00002640 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977687566d2004-11-02 12:56:41 +00002641 if( eType==PTRMAP_OVERFLOW2 ){
danielk1977f78fc082004-11-02 14:40:32 +00002642 /* The pointer is always the first 4 bytes of the page in this case. */
danielk1977fdb7cdb2005-01-17 02:12:18 +00002643 if( get4byte(pPage->aData)!=iFrom ){
drh49285702005-09-17 15:20:26 +00002644 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002645 }
danielk1977f78fc082004-11-02 14:40:32 +00002646 put4byte(pPage->aData, iTo);
danielk1977687566d2004-11-02 12:56:41 +00002647 }else{
drhf49661a2008-12-10 16:45:50 +00002648 u8 isInitOrig = pPage->isInit;
danielk1977687566d2004-11-02 12:56:41 +00002649 int i;
2650 int nCell;
2651
danielk197730548662009-07-09 05:07:37 +00002652 btreeInitPage(pPage);
danielk1977687566d2004-11-02 12:56:41 +00002653 nCell = pPage->nCell;
2654
danielk1977687566d2004-11-02 12:56:41 +00002655 for(i=0; i<nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00002656 u8 *pCell = findCell(pPage, i);
danielk1977687566d2004-11-02 12:56:41 +00002657 if( eType==PTRMAP_OVERFLOW1 ){
2658 CellInfo info;
danielk197730548662009-07-09 05:07:37 +00002659 btreeParseCellPtr(pPage, pCell, &info);
danielk1977687566d2004-11-02 12:56:41 +00002660 if( info.iOverflow ){
2661 if( iFrom==get4byte(&pCell[info.iOverflow]) ){
2662 put4byte(&pCell[info.iOverflow], iTo);
2663 break;
2664 }
2665 }
2666 }else{
2667 if( get4byte(pCell)==iFrom ){
2668 put4byte(pCell, iTo);
2669 break;
2670 }
2671 }
2672 }
2673
2674 if( i==nCell ){
danielk1977fdb7cdb2005-01-17 02:12:18 +00002675 if( eType!=PTRMAP_BTREE ||
2676 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
drh49285702005-09-17 15:20:26 +00002677 return SQLITE_CORRUPT_BKPT;
danielk1977fdb7cdb2005-01-17 02:12:18 +00002678 }
danielk1977687566d2004-11-02 12:56:41 +00002679 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2680 }
2681
2682 pPage->isInit = isInitOrig;
2683 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002684 return SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002685}
2686
danielk1977003ba062004-11-04 02:57:33 +00002687
danielk19777701e812005-01-10 12:59:51 +00002688/*
2689** Move the open database page pDbPage to location iFreePage in the
2690** database. The pDbPage reference remains valid.
drhe64ca7b2009-07-16 18:21:17 +00002691**
2692** The isCommit flag indicates that there is no need to remember that
2693** the journal needs to be sync()ed before database page pDbPage->pgno
2694** can be written to. The caller has already promised not to write to that
2695** page.
danielk19777701e812005-01-10 12:59:51 +00002696*/
danielk1977003ba062004-11-04 02:57:33 +00002697static int relocatePage(
danielk1977aef0bf62005-12-30 16:28:01 +00002698 BtShared *pBt, /* Btree */
danielk19777701e812005-01-10 12:59:51 +00002699 MemPage *pDbPage, /* Open page to move */
2700 u8 eType, /* Pointer map 'type' entry for pDbPage */
2701 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
danielk19774c999992008-07-16 18:17:55 +00002702 Pgno iFreePage, /* The location to move pDbPage to */
drhe64ca7b2009-07-16 18:21:17 +00002703 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
danielk1977003ba062004-11-04 02:57:33 +00002704){
2705 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
2706 Pgno iDbPage = pDbPage->pgno;
2707 Pager *pPager = pBt->pPager;
2708 int rc;
2709
danielk1977a0bf2652004-11-04 14:30:04 +00002710 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
2711 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
drh1fee73e2007-08-29 04:00:57 +00002712 assert( sqlite3_mutex_held(pBt->mutex) );
drhd0679ed2007-08-28 22:24:34 +00002713 assert( pDbPage->pBt==pBt );
danielk1977003ba062004-11-04 02:57:33 +00002714
drh85b623f2007-12-13 21:54:09 +00002715 /* Move page iDbPage from its current location to page number iFreePage */
danielk1977003ba062004-11-04 02:57:33 +00002716 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
2717 iDbPage, iFreePage, iPtrPage, eType));
danielk19774c999992008-07-16 18:17:55 +00002718 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
danielk1977003ba062004-11-04 02:57:33 +00002719 if( rc!=SQLITE_OK ){
2720 return rc;
2721 }
2722 pDbPage->pgno = iFreePage;
2723
2724 /* If pDbPage was a btree-page, then it may have child pages and/or cells
2725 ** that point to overflow pages. The pointer map entries for all these
2726 ** pages need to be changed.
2727 **
2728 ** If pDbPage is an overflow page, then the first 4 bytes may store a
2729 ** pointer to a subsequent overflow page. If this is the case, then
2730 ** the pointer map needs to be updated for the subsequent overflow page.
2731 */
danielk1977a0bf2652004-11-04 14:30:04 +00002732 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
danielk1977003ba062004-11-04 02:57:33 +00002733 rc = setChildPtrmaps(pDbPage);
2734 if( rc!=SQLITE_OK ){
2735 return rc;
2736 }
2737 }else{
2738 Pgno nextOvfl = get4byte(pDbPage->aData);
2739 if( nextOvfl!=0 ){
drh98add2e2009-07-20 17:11:49 +00002740 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
danielk1977003ba062004-11-04 02:57:33 +00002741 if( rc!=SQLITE_OK ){
2742 return rc;
2743 }
2744 }
2745 }
2746
2747 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
2748 ** that it points at iFreePage. Also fix the pointer map entry for
2749 ** iPtrPage.
2750 */
danielk1977a0bf2652004-11-04 14:30:04 +00002751 if( eType!=PTRMAP_ROOTPAGE ){
danielk197730548662009-07-09 05:07:37 +00002752 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00002753 if( rc!=SQLITE_OK ){
2754 return rc;
2755 }
danielk19773b8a05f2007-03-19 17:44:26 +00002756 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
danielk1977a0bf2652004-11-04 14:30:04 +00002757 if( rc!=SQLITE_OK ){
2758 releasePage(pPtrPage);
2759 return rc;
2760 }
danielk1977fdb7cdb2005-01-17 02:12:18 +00002761 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
danielk1977003ba062004-11-04 02:57:33 +00002762 releasePage(pPtrPage);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002763 if( rc==SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00002764 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
danielk1977fdb7cdb2005-01-17 02:12:18 +00002765 }
danielk1977003ba062004-11-04 02:57:33 +00002766 }
danielk1977003ba062004-11-04 02:57:33 +00002767 return rc;
2768}
2769
danielk1977dddbcdc2007-04-26 14:42:34 +00002770/* Forward declaration required by incrVacuumStep(). */
drh4f0c5872007-03-26 22:05:01 +00002771static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
danielk1977687566d2004-11-02 12:56:41 +00002772
2773/*
danielk1977dddbcdc2007-04-26 14:42:34 +00002774** Perform a single step of an incremental-vacuum. If successful,
2775** return SQLITE_OK. If there is no work to do (and therefore no
2776** point in calling this function again), return SQLITE_DONE.
2777**
2778** More specificly, this function attempts to re-organize the
2779** database so that the last page of the file currently in use
2780** is no longer in use.
2781**
drhea8ffdf2009-07-22 00:35:23 +00002782** If the nFin parameter is non-zero, this function assumes
danielk1977dddbcdc2007-04-26 14:42:34 +00002783** that the caller will keep calling incrVacuumStep() until
2784** it returns SQLITE_DONE or an error, and that nFin is the
2785** number of pages the database file will contain after this
drhea8ffdf2009-07-22 00:35:23 +00002786** process is complete. If nFin is zero, it is assumed that
2787** incrVacuumStep() will be called a finite amount of times
2788** which may or may not empty the freelist. A full autovacuum
2789** has nFin>0. A "PRAGMA incremental_vacuum" has nFin==0.
danielk1977dddbcdc2007-04-26 14:42:34 +00002790*/
danielk19773460d192008-12-27 15:23:13 +00002791static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg){
danielk1977dddbcdc2007-04-26 14:42:34 +00002792 Pgno nFreeList; /* Number of pages still on the free-list */
drhdd3cd972010-03-27 17:12:36 +00002793 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002794
drh1fee73e2007-08-29 04:00:57 +00002795 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977fa542f12009-04-02 18:28:08 +00002796 assert( iLastPg>nFin );
danielk1977dddbcdc2007-04-26 14:42:34 +00002797
2798 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002799 u8 eType;
2800 Pgno iPtrPage;
2801
2802 nFreeList = get4byte(&pBt->pPage1->aData[36]);
danielk1977fa542f12009-04-02 18:28:08 +00002803 if( nFreeList==0 ){
danielk1977dddbcdc2007-04-26 14:42:34 +00002804 return SQLITE_DONE;
2805 }
2806
2807 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
2808 if( rc!=SQLITE_OK ){
2809 return rc;
2810 }
2811 if( eType==PTRMAP_ROOTPAGE ){
2812 return SQLITE_CORRUPT_BKPT;
2813 }
2814
2815 if( eType==PTRMAP_FREEPAGE ){
2816 if( nFin==0 ){
2817 /* Remove the page from the files free-list. This is not required
danielk19774ef24492007-05-23 09:52:41 +00002818 ** if nFin is non-zero. In that case, the free-list will be
danielk1977dddbcdc2007-04-26 14:42:34 +00002819 ** truncated to zero after this function returns, so it doesn't
2820 ** matter if it still contains some garbage entries.
2821 */
2822 Pgno iFreePg;
2823 MemPage *pFreePg;
2824 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, 1);
2825 if( rc!=SQLITE_OK ){
2826 return rc;
2827 }
2828 assert( iFreePg==iLastPg );
2829 releasePage(pFreePg);
2830 }
2831 } else {
2832 Pgno iFreePg; /* Index of free page to move pLastPg to */
2833 MemPage *pLastPg;
2834
danielk197730548662009-07-09 05:07:37 +00002835 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
danielk1977dddbcdc2007-04-26 14:42:34 +00002836 if( rc!=SQLITE_OK ){
2837 return rc;
2838 }
2839
danielk1977b4626a32007-04-28 15:47:43 +00002840 /* If nFin is zero, this loop runs exactly once and page pLastPg
2841 ** is swapped with the first free page pulled off the free list.
2842 **
2843 ** On the other hand, if nFin is greater than zero, then keep
2844 ** looping until a free-page located within the first nFin pages
2845 ** of the file is found.
2846 */
danielk1977dddbcdc2007-04-26 14:42:34 +00002847 do {
2848 MemPage *pFreePg;
2849 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, 0, 0);
2850 if( rc!=SQLITE_OK ){
2851 releasePage(pLastPg);
2852 return rc;
2853 }
2854 releasePage(pFreePg);
2855 }while( nFin!=0 && iFreePg>nFin );
2856 assert( iFreePg<iLastPg );
danielk1977b4626a32007-04-28 15:47:43 +00002857
2858 rc = sqlite3PagerWrite(pLastPg->pDbPage);
danielk1977662278e2007-11-05 15:30:12 +00002859 if( rc==SQLITE_OK ){
danielk19774c999992008-07-16 18:17:55 +00002860 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, nFin!=0);
danielk1977662278e2007-11-05 15:30:12 +00002861 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002862 releasePage(pLastPg);
2863 if( rc!=SQLITE_OK ){
2864 return rc;
danielk1977662278e2007-11-05 15:30:12 +00002865 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002866 }
2867 }
2868
danielk19773460d192008-12-27 15:23:13 +00002869 if( nFin==0 ){
2870 iLastPg--;
2871 while( iLastPg==PENDING_BYTE_PAGE(pBt)||PTRMAP_ISPAGE(pBt, iLastPg) ){
danielk1977f4027782009-03-30 18:50:04 +00002872 if( PTRMAP_ISPAGE(pBt, iLastPg) ){
2873 MemPage *pPg;
drhdd3cd972010-03-27 17:12:36 +00002874 rc = btreeGetPage(pBt, iLastPg, &pPg, 0);
danielk1977f4027782009-03-30 18:50:04 +00002875 if( rc!=SQLITE_OK ){
2876 return rc;
2877 }
2878 rc = sqlite3PagerWrite(pPg->pDbPage);
2879 releasePage(pPg);
2880 if( rc!=SQLITE_OK ){
2881 return rc;
2882 }
2883 }
danielk19773460d192008-12-27 15:23:13 +00002884 iLastPg--;
2885 }
2886 sqlite3PagerTruncateImage(pBt->pPager, iLastPg);
drhdd3cd972010-03-27 17:12:36 +00002887 pBt->nPage = iLastPg;
danielk1977dddbcdc2007-04-26 14:42:34 +00002888 }
2889 return SQLITE_OK;
2890}
2891
2892/*
2893** A write-transaction must be opened before calling this function.
2894** It performs a single unit of work towards an incremental vacuum.
2895**
2896** If the incremental vacuum is finished after this function has run,
shanebe217792009-03-05 04:20:31 +00002897** SQLITE_DONE is returned. If it is not finished, but no error occurred,
danielk1977dddbcdc2007-04-26 14:42:34 +00002898** SQLITE_OK is returned. Otherwise an SQLite error code.
2899*/
2900int sqlite3BtreeIncrVacuum(Btree *p){
drhd677b3d2007-08-20 22:48:41 +00002901 int rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002902 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00002903
2904 sqlite3BtreeEnter(p);
danielk1977dddbcdc2007-04-26 14:42:34 +00002905 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
2906 if( !pBt->autoVacuum ){
drhd677b3d2007-08-20 22:48:41 +00002907 rc = SQLITE_DONE;
2908 }else{
2909 invalidateAllOverflowCache(pBt);
drhb1299152010-03-30 22:58:33 +00002910 rc = incrVacuumStep(pBt, 0, btreePagecount(pBt));
drhdd3cd972010-03-27 17:12:36 +00002911 if( rc==SQLITE_OK ){
2912 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
2913 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
2914 }
danielk1977dddbcdc2007-04-26 14:42:34 +00002915 }
drhd677b3d2007-08-20 22:48:41 +00002916 sqlite3BtreeLeave(p);
2917 return rc;
danielk1977dddbcdc2007-04-26 14:42:34 +00002918}
2919
2920/*
danielk19773b8a05f2007-03-19 17:44:26 +00002921** This routine is called prior to sqlite3PagerCommit when a transaction
danielk1977687566d2004-11-02 12:56:41 +00002922** is commited for an auto-vacuum database.
danielk197724168722007-04-02 05:07:47 +00002923**
2924** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
2925** the database file should be truncated to during the commit process.
2926** i.e. the database has been reorganized so that only the first *pnTrunc
2927** pages are in use.
danielk1977687566d2004-11-02 12:56:41 +00002928*/
danielk19773460d192008-12-27 15:23:13 +00002929static int autoVacuumCommit(BtShared *pBt){
danielk1977dddbcdc2007-04-26 14:42:34 +00002930 int rc = SQLITE_OK;
danielk1977687566d2004-11-02 12:56:41 +00002931 Pager *pPager = pBt->pPager;
drhf94a1732008-09-30 17:18:17 +00002932 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002933
drh1fee73e2007-08-29 04:00:57 +00002934 assert( sqlite3_mutex_held(pBt->mutex) );
danielk197792d4d7a2007-05-04 12:05:56 +00002935 invalidateAllOverflowCache(pBt);
danielk1977dddbcdc2007-04-26 14:42:34 +00002936 assert(pBt->autoVacuum);
2937 if( !pBt->incrVacuum ){
drhea8ffdf2009-07-22 00:35:23 +00002938 Pgno nFin; /* Number of pages in database after autovacuuming */
2939 Pgno nFree; /* Number of pages on the freelist initially */
drh41d628c2009-07-11 17:04:08 +00002940 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
2941 Pgno iFree; /* The next page to be freed */
2942 int nEntry; /* Number of entries on one ptrmap page */
2943 Pgno nOrig; /* Database size before freeing */
danielk1977687566d2004-11-02 12:56:41 +00002944
drhb1299152010-03-30 22:58:33 +00002945 nOrig = btreePagecount(pBt);
danielk1977ef165ce2009-04-06 17:50:03 +00002946 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
2947 /* It is not possible to create a database for which the final page
2948 ** is either a pointer-map page or the pending-byte page. If one
2949 ** is encountered, this indicates corruption.
2950 */
danielk19773460d192008-12-27 15:23:13 +00002951 return SQLITE_CORRUPT_BKPT;
2952 }
danielk1977ef165ce2009-04-06 17:50:03 +00002953
danielk19773460d192008-12-27 15:23:13 +00002954 nFree = get4byte(&pBt->pPage1->aData[36]);
drh41d628c2009-07-11 17:04:08 +00002955 nEntry = pBt->usableSize/5;
2956 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
danielk19773460d192008-12-27 15:23:13 +00002957 nFin = nOrig - nFree - nPtrmap;
danielk1977ef165ce2009-04-06 17:50:03 +00002958 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
danielk19773460d192008-12-27 15:23:13 +00002959 nFin--;
2960 }
2961 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
2962 nFin--;
danielk1977dddbcdc2007-04-26 14:42:34 +00002963 }
drhc5e47ac2009-06-04 00:11:56 +00002964 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
danielk1977687566d2004-11-02 12:56:41 +00002965
danielk19773460d192008-12-27 15:23:13 +00002966 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
2967 rc = incrVacuumStep(pBt, nFin, iFree);
danielk1977dddbcdc2007-04-26 14:42:34 +00002968 }
danielk19773460d192008-12-27 15:23:13 +00002969 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
danielk19773460d192008-12-27 15:23:13 +00002970 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
2971 put4byte(&pBt->pPage1->aData[32], 0);
2972 put4byte(&pBt->pPage1->aData[36], 0);
drhdd3cd972010-03-27 17:12:36 +00002973 put4byte(&pBt->pPage1->aData[28], nFin);
danielk19773460d192008-12-27 15:23:13 +00002974 sqlite3PagerTruncateImage(pBt->pPager, nFin);
drhdd3cd972010-03-27 17:12:36 +00002975 pBt->nPage = nFin;
danielk1977dddbcdc2007-04-26 14:42:34 +00002976 }
2977 if( rc!=SQLITE_OK ){
2978 sqlite3PagerRollback(pPager);
2979 }
danielk1977687566d2004-11-02 12:56:41 +00002980 }
2981
danielk19773b8a05f2007-03-19 17:44:26 +00002982 assert( nRef==sqlite3PagerRefcount(pPager) );
danielk1977687566d2004-11-02 12:56:41 +00002983 return rc;
2984}
danielk1977dddbcdc2007-04-26 14:42:34 +00002985
danielk1977a50d9aa2009-06-08 14:49:45 +00002986#else /* ifndef SQLITE_OMIT_AUTOVACUUM */
2987# define setChildPtrmaps(x) SQLITE_OK
2988#endif
danielk1977687566d2004-11-02 12:56:41 +00002989
2990/*
drh80e35f42007-03-30 14:06:34 +00002991** This routine does the first phase of a two-phase commit. This routine
2992** causes a rollback journal to be created (if it does not already exist)
2993** and populated with enough information so that if a power loss occurs
2994** the database can be restored to its original state by playing back
2995** the journal. Then the contents of the journal are flushed out to
2996** the disk. After the journal is safely on oxide, the changes to the
2997** database are written into the database file and flushed to oxide.
2998** At the end of this call, the rollback journal still exists on the
2999** disk and we are still holding all locks, so the transaction has not
drh51898cf2009-04-19 20:51:06 +00003000** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
drh80e35f42007-03-30 14:06:34 +00003001** commit process.
3002**
3003** This call is a no-op if no write-transaction is currently active on pBt.
3004**
3005** Otherwise, sync the database file for the btree pBt. zMaster points to
3006** the name of a master journal file that should be written into the
3007** individual journal file, or is NULL, indicating no master journal file
3008** (single database transaction).
3009**
3010** When this is called, the master journal should already have been
3011** created, populated with this journal pointer and synced to disk.
3012**
3013** Once this is routine has returned, the only thing required to commit
3014** the write-transaction for this database file is to delete the journal.
3015*/
3016int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3017 int rc = SQLITE_OK;
3018 if( p->inTrans==TRANS_WRITE ){
3019 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003020 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003021#ifndef SQLITE_OMIT_AUTOVACUUM
3022 if( pBt->autoVacuum ){
danielk19773460d192008-12-27 15:23:13 +00003023 rc = autoVacuumCommit(pBt);
drh80e35f42007-03-30 14:06:34 +00003024 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003025 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003026 return rc;
3027 }
3028 }
3029#endif
drh49b9d332009-01-02 18:10:42 +00003030 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
drhd677b3d2007-08-20 22:48:41 +00003031 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003032 }
3033 return rc;
3034}
3035
3036/*
danielk197794b30732009-07-02 17:21:57 +00003037** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3038** at the conclusion of a transaction.
3039*/
3040static void btreeEndTransaction(Btree *p){
3041 BtShared *pBt = p->pBt;
danielk197794b30732009-07-02 17:21:57 +00003042 assert( sqlite3BtreeHoldsMutex(p) );
3043
danielk197794b30732009-07-02 17:21:57 +00003044 btreeClearHasContent(pBt);
danfa401de2009-10-16 14:55:03 +00003045 if( p->inTrans>TRANS_NONE && p->db->activeVdbeCnt>1 ){
3046 /* If there are other active statements that belong to this database
3047 ** handle, downgrade to a read-only transaction. The other statements
3048 ** may still be reading from the database. */
danielk197794b30732009-07-02 17:21:57 +00003049 downgradeAllSharedCacheTableLocks(p);
3050 p->inTrans = TRANS_READ;
3051 }else{
3052 /* If the handle had any kind of transaction open, decrement the
3053 ** transaction count of the shared btree. If the transaction count
3054 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3055 ** call below will unlock the pager. */
3056 if( p->inTrans!=TRANS_NONE ){
3057 clearAllSharedCacheTableLocks(p);
3058 pBt->nTransaction--;
3059 if( 0==pBt->nTransaction ){
3060 pBt->inTransaction = TRANS_NONE;
3061 }
3062 }
3063
3064 /* Set the current transaction state to TRANS_NONE and unlock the
3065 ** pager if this call closed the only read or write transaction. */
3066 p->inTrans = TRANS_NONE;
3067 unlockBtreeIfUnused(pBt);
3068 }
3069
3070 btreeIntegrity(p);
3071}
3072
3073/*
drh2aa679f2001-06-25 02:11:07 +00003074** Commit the transaction currently in progress.
drh5e00f6c2001-09-13 13:46:56 +00003075**
drh6e345992007-03-30 11:12:08 +00003076** This routine implements the second phase of a 2-phase commit. The
drh51898cf2009-04-19 20:51:06 +00003077** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3078** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3079** routine did all the work of writing information out to disk and flushing the
drh6e345992007-03-30 11:12:08 +00003080** contents so that they are written onto the disk platter. All this
drh51898cf2009-04-19 20:51:06 +00003081** routine has to do is delete or truncate or zero the header in the
3082** the rollback journal (which causes the transaction to commit) and
3083** drop locks.
drh6e345992007-03-30 11:12:08 +00003084**
drh5e00f6c2001-09-13 13:46:56 +00003085** This will release the write lock on the database file. If there
3086** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003087*/
drh80e35f42007-03-30 14:06:34 +00003088int sqlite3BtreeCommitPhaseTwo(Btree *p){
danielk1977aef0bf62005-12-30 16:28:01 +00003089 BtShared *pBt = p->pBt;
3090
drhd677b3d2007-08-20 22:48:41 +00003091 sqlite3BtreeEnter(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003092 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003093
3094 /* If the handle has a write-transaction open, commit the shared-btrees
3095 ** transaction and set the shared state to TRANS_READ.
3096 */
3097 if( p->inTrans==TRANS_WRITE ){
danielk19777f7bc662006-01-23 13:47:47 +00003098 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003099 assert( pBt->inTransaction==TRANS_WRITE );
3100 assert( pBt->nTransaction>0 );
drh80e35f42007-03-30 14:06:34 +00003101 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
danielk19777f7bc662006-01-23 13:47:47 +00003102 if( rc!=SQLITE_OK ){
drhd677b3d2007-08-20 22:48:41 +00003103 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003104 return rc;
3105 }
danielk1977aef0bf62005-12-30 16:28:01 +00003106 pBt->inTransaction = TRANS_READ;
danielk1977ee5741e2004-05-31 10:01:34 +00003107 }
danielk1977aef0bf62005-12-30 16:28:01 +00003108
danielk197794b30732009-07-02 17:21:57 +00003109 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003110 sqlite3BtreeLeave(p);
danielk19777f7bc662006-01-23 13:47:47 +00003111 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003112}
3113
drh80e35f42007-03-30 14:06:34 +00003114/*
3115** Do both phases of a commit.
3116*/
3117int sqlite3BtreeCommit(Btree *p){
3118 int rc;
drhd677b3d2007-08-20 22:48:41 +00003119 sqlite3BtreeEnter(p);
drh80e35f42007-03-30 14:06:34 +00003120 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3121 if( rc==SQLITE_OK ){
3122 rc = sqlite3BtreeCommitPhaseTwo(p);
3123 }
drhd677b3d2007-08-20 22:48:41 +00003124 sqlite3BtreeLeave(p);
drh80e35f42007-03-30 14:06:34 +00003125 return rc;
3126}
3127
danielk1977fbcd5852004-06-15 02:44:18 +00003128#ifndef NDEBUG
3129/*
3130** Return the number of write-cursors open on this handle. This is for use
3131** in assert() expressions, so it is only compiled if NDEBUG is not
3132** defined.
drhfb982642007-08-30 01:19:59 +00003133**
3134** For the purposes of this routine, a write-cursor is any cursor that
3135** is capable of writing to the databse. That means the cursor was
3136** originally opened for writing and the cursor has not be disabled
3137** by having its state changed to CURSOR_FAULT.
danielk1977fbcd5852004-06-15 02:44:18 +00003138*/
danielk1977aef0bf62005-12-30 16:28:01 +00003139static int countWriteCursors(BtShared *pBt){
danielk1977fbcd5852004-06-15 02:44:18 +00003140 BtCursor *pCur;
3141 int r = 0;
3142 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
drhfb982642007-08-30 01:19:59 +00003143 if( pCur->wrFlag && pCur->eState!=CURSOR_FAULT ) r++;
danielk1977fbcd5852004-06-15 02:44:18 +00003144 }
3145 return r;
3146}
3147#endif
3148
drhc39e0002004-05-07 23:50:57 +00003149/*
drhfb982642007-08-30 01:19:59 +00003150** This routine sets the state to CURSOR_FAULT and the error
3151** code to errCode for every cursor on BtShared that pBtree
3152** references.
3153**
3154** Every cursor is tripped, including cursors that belong
3155** to other database connections that happen to be sharing
3156** the cache with pBtree.
3157**
3158** This routine gets called when a rollback occurs.
3159** All cursors using the same cache must be tripped
3160** to prevent them from trying to use the btree after
3161** the rollback. The rollback may have deleted tables
3162** or moved root pages, so it is not sufficient to
3163** save the state of the cursor. The cursor must be
3164** invalidated.
3165*/
3166void sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode){
3167 BtCursor *p;
3168 sqlite3BtreeEnter(pBtree);
3169 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
danielk1977bc2ca9e2008-11-13 14:28:28 +00003170 int i;
danielk1977be51a652008-10-08 17:58:48 +00003171 sqlite3BtreeClearCursor(p);
drhfb982642007-08-30 01:19:59 +00003172 p->eState = CURSOR_FAULT;
drh4c301aa2009-07-15 17:25:45 +00003173 p->skipNext = errCode;
danielk1977bc2ca9e2008-11-13 14:28:28 +00003174 for(i=0; i<=p->iPage; i++){
3175 releasePage(p->apPage[i]);
3176 p->apPage[i] = 0;
3177 }
drhfb982642007-08-30 01:19:59 +00003178 }
3179 sqlite3BtreeLeave(pBtree);
3180}
3181
3182/*
drhecdc7532001-09-23 02:35:53 +00003183** Rollback the transaction in progress. All cursors will be
3184** invalided by this operation. Any attempt to use a cursor
3185** that was open at the beginning of this operation will result
3186** in an error.
drh5e00f6c2001-09-13 13:46:56 +00003187**
3188** This will release the write lock on the database file. If there
3189** are no active cursors, it also releases the read lock.
drha059ad02001-04-17 20:09:11 +00003190*/
danielk1977aef0bf62005-12-30 16:28:01 +00003191int sqlite3BtreeRollback(Btree *p){
danielk19778d34dfd2006-01-24 16:37:57 +00003192 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003193 BtShared *pBt = p->pBt;
drh24cd67e2004-05-10 16:18:47 +00003194 MemPage *pPage1;
danielk1977aef0bf62005-12-30 16:28:01 +00003195
drhd677b3d2007-08-20 22:48:41 +00003196 sqlite3BtreeEnter(p);
danielk19772b8c13e2006-01-24 14:21:24 +00003197 rc = saveAllCursors(pBt, 0, 0);
danielk19778d34dfd2006-01-24 16:37:57 +00003198#ifndef SQLITE_OMIT_SHARED_CACHE
danielk19772b8c13e2006-01-24 14:21:24 +00003199 if( rc!=SQLITE_OK ){
shanebe217792009-03-05 04:20:31 +00003200 /* This is a horrible situation. An IO or malloc() error occurred whilst
danielk19778d34dfd2006-01-24 16:37:57 +00003201 ** trying to save cursor positions. If this is an automatic rollback (as
3202 ** the result of a constraint, malloc() failure or IO error) then
3203 ** the cache may be internally inconsistent (not contain valid trees) so
3204 ** we cannot simply return the error to the caller. Instead, abort
3205 ** all queries that may be using any of the cursors that failed to save.
3206 */
drhfb982642007-08-30 01:19:59 +00003207 sqlite3BtreeTripAllCursors(p, rc);
danielk19772b8c13e2006-01-24 14:21:24 +00003208 }
danielk19778d34dfd2006-01-24 16:37:57 +00003209#endif
danielk1977aef0bf62005-12-30 16:28:01 +00003210 btreeIntegrity(p);
danielk1977aef0bf62005-12-30 16:28:01 +00003211
3212 if( p->inTrans==TRANS_WRITE ){
danielk19778d34dfd2006-01-24 16:37:57 +00003213 int rc2;
danielk1977aef0bf62005-12-30 16:28:01 +00003214
danielk19778d34dfd2006-01-24 16:37:57 +00003215 assert( TRANS_WRITE==pBt->inTransaction );
danielk19773b8a05f2007-03-19 17:44:26 +00003216 rc2 = sqlite3PagerRollback(pBt->pPager);
danielk19778d34dfd2006-01-24 16:37:57 +00003217 if( rc2!=SQLITE_OK ){
3218 rc = rc2;
3219 }
3220
drh24cd67e2004-05-10 16:18:47 +00003221 /* The rollback may have destroyed the pPage1->aData value. So
danielk197730548662009-07-09 05:07:37 +00003222 ** call btreeGetPage() on page 1 again to make
drh16a9b832007-05-05 18:39:25 +00003223 ** sure pPage1->aData is set correctly. */
danielk197730548662009-07-09 05:07:37 +00003224 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
drh1f5b4672010-04-01 02:22:19 +00003225 int nPage = get4byte(28+(u8*)pPage1->aData);
3226 testcase( nPage==0 );
3227 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3228 testcase( pBt->nPage!=nPage );
3229 pBt->nPage = nPage;
drh24cd67e2004-05-10 16:18:47 +00003230 releasePage(pPage1);
3231 }
danielk1977fbcd5852004-06-15 02:44:18 +00003232 assert( countWriteCursors(pBt)==0 );
danielk1977aef0bf62005-12-30 16:28:01 +00003233 pBt->inTransaction = TRANS_READ;
drh24cd67e2004-05-10 16:18:47 +00003234 }
danielk1977aef0bf62005-12-30 16:28:01 +00003235
danielk197794b30732009-07-02 17:21:57 +00003236 btreeEndTransaction(p);
drhd677b3d2007-08-20 22:48:41 +00003237 sqlite3BtreeLeave(p);
drha059ad02001-04-17 20:09:11 +00003238 return rc;
3239}
3240
3241/*
danielk1977bd434552009-03-18 10:33:00 +00003242** Start a statement subtransaction. The subtransaction can can be rolled
3243** back independently of the main transaction. You must start a transaction
3244** before starting a subtransaction. The subtransaction is ended automatically
3245** if the main transaction commits or rolls back.
drhab01f612004-05-22 02:55:23 +00003246**
3247** Statement subtransactions are used around individual SQL statements
3248** that are contained within a BEGIN...COMMIT block. If a constraint
3249** error occurs within the statement, the effect of that one statement
3250** can be rolled back without having to rollback the entire transaction.
danielk1977bd434552009-03-18 10:33:00 +00003251**
3252** A statement sub-transaction is implemented as an anonymous savepoint. The
3253** value passed as the second parameter is the total number of savepoints,
3254** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3255** are no active savepoints and no other statement-transactions open,
3256** iStatement is 1. This anonymous savepoint can be released or rolled back
3257** using the sqlite3BtreeSavepoint() function.
drh663fc632002-02-02 18:49:19 +00003258*/
danielk1977bd434552009-03-18 10:33:00 +00003259int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
drh663fc632002-02-02 18:49:19 +00003260 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00003261 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00003262 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00003263 assert( p->inTrans==TRANS_WRITE );
drh64022502009-01-09 14:11:04 +00003264 assert( pBt->readOnly==0 );
danielk1977bd434552009-03-18 10:33:00 +00003265 assert( iStatement>0 );
3266 assert( iStatement>p->db->nSavepoint );
drh5e0ccc22010-03-29 19:36:52 +00003267 assert( pBt->inTransaction==TRANS_WRITE );
3268 /* At the pager level, a statement transaction is a savepoint with
3269 ** an index greater than all savepoints created explicitly using
3270 ** SQL statements. It is illegal to open, release or rollback any
3271 ** such savepoints while the statement transaction savepoint is active.
3272 */
3273 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
drhd677b3d2007-08-20 22:48:41 +00003274 sqlite3BtreeLeave(p);
drh663fc632002-02-02 18:49:19 +00003275 return rc;
3276}
3277
3278/*
danielk1977fd7f0452008-12-17 17:30:26 +00003279** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3280** or SAVEPOINT_RELEASE. This function either releases or rolls back the
danielk197712dd5492008-12-18 15:45:07 +00003281** savepoint identified by parameter iSavepoint, depending on the value
3282** of op.
3283**
3284** Normally, iSavepoint is greater than or equal to zero. However, if op is
3285** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3286** contents of the entire transaction are rolled back. This is different
3287** from a normal transaction rollback, as no locks are released and the
3288** transaction remains open.
danielk1977fd7f0452008-12-17 17:30:26 +00003289*/
3290int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3291 int rc = SQLITE_OK;
3292 if( p && p->inTrans==TRANS_WRITE ){
3293 BtShared *pBt = p->pBt;
danielk1977fd7f0452008-12-17 17:30:26 +00003294 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3295 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3296 sqlite3BtreeEnter(p);
danielk1977fd7f0452008-12-17 17:30:26 +00003297 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
drh9f0bbf92009-01-02 21:08:09 +00003298 if( rc==SQLITE_OK ){
drh25a80ad2010-03-29 21:13:12 +00003299 if( iSavepoint<0 && pBt->initiallyEmpty ) pBt->nPage = 0;
drh9f0bbf92009-01-02 21:08:09 +00003300 rc = newDatabase(pBt);
drhdd3cd972010-03-27 17:12:36 +00003301 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
drhd14133e2010-04-07 20:29:56 +00003302 if( pBt->nPage==0 ){
3303 sqlite3PagerPagecount(pBt->pPager, (int*)&pBt->nPage);
3304 }
drh9f0bbf92009-01-02 21:08:09 +00003305 }
danielk1977fd7f0452008-12-17 17:30:26 +00003306 sqlite3BtreeLeave(p);
3307 }
3308 return rc;
3309}
3310
3311/*
drh8b2f49b2001-06-08 00:21:52 +00003312** Create a new cursor for the BTree whose root is on the page
danielk19773e8add92009-07-04 17:16:00 +00003313** iTable. If a read-only cursor is requested, it is assumed that
3314** the caller already has at least a read-only transaction open
3315** on the database already. If a write-cursor is requested, then
3316** the caller is assumed to have an open write transaction.
drh1bee3d72001-10-15 00:44:35 +00003317**
3318** If wrFlag==0, then the cursor can only be used for reading.
drhf74b8d92002-09-01 23:20:45 +00003319** If wrFlag==1, then the cursor can be used for reading or for
3320** writing if other conditions for writing are also met. These
3321** are the conditions that must be met in order for writing to
3322** be allowed:
drh6446c4d2001-12-15 14:22:18 +00003323**
drhf74b8d92002-09-01 23:20:45 +00003324** 1: The cursor must have been opened with wrFlag==1
3325**
drhfe5d71d2007-03-19 11:54:10 +00003326** 2: Other database connections that share the same pager cache
3327** but which are not in the READ_UNCOMMITTED state may not have
3328** cursors open with wrFlag==0 on the same table. Otherwise
3329** the changes made by this write cursor would be visible to
3330** the read cursors in the other database connection.
drhf74b8d92002-09-01 23:20:45 +00003331**
3332** 3: The database must be writable (not on read-only media)
3333**
3334** 4: There must be an active transaction.
3335**
drh6446c4d2001-12-15 14:22:18 +00003336** No checking is done to make sure that page iTable really is the
3337** root page of a b-tree. If it is not, then the cursor acquired
3338** will not work correctly.
danielk197771d5d2c2008-09-29 11:49:47 +00003339**
drhf25a5072009-11-18 23:01:25 +00003340** It is assumed that the sqlite3BtreeCursorZero() has been called
3341** on pCur to initialize the memory space prior to invoking this routine.
drha059ad02001-04-17 20:09:11 +00003342*/
drhd677b3d2007-08-20 22:48:41 +00003343static int btreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003344 Btree *p, /* The btree */
3345 int iTable, /* Root page of table to open */
3346 int wrFlag, /* 1 to write. 0 read-only */
3347 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3348 BtCursor *pCur /* Space for new cursor */
drh3aac2dd2004-04-26 14:10:20 +00003349){
danielk19773e8add92009-07-04 17:16:00 +00003350 BtShared *pBt = p->pBt; /* Shared b-tree handle */
drhecdc7532001-09-23 02:35:53 +00003351
drh1fee73e2007-08-29 04:00:57 +00003352 assert( sqlite3BtreeHoldsMutex(p) );
drhf49661a2008-12-10 16:45:50 +00003353 assert( wrFlag==0 || wrFlag==1 );
danielk197796d48e92009-06-29 06:00:37 +00003354
danielk1977602b4662009-07-02 07:47:33 +00003355 /* The following assert statements verify that if this is a sharable
3356 ** b-tree database, the connection is holding the required table locks,
3357 ** and that no other connection has any open cursor that conflicts with
3358 ** this lock. */
3359 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
danielk197796d48e92009-06-29 06:00:37 +00003360 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3361
danielk19773e8add92009-07-04 17:16:00 +00003362 /* Assert that the caller has opened the required transaction. */
3363 assert( p->inTrans>TRANS_NONE );
3364 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3365 assert( pBt->pPage1 && pBt->pPage1->aData );
3366
danielk197796d48e92009-06-29 06:00:37 +00003367 if( NEVER(wrFlag && pBt->readOnly) ){
3368 return SQLITE_READONLY;
drha0c9a112004-03-10 13:42:37 +00003369 }
drhb1299152010-03-30 22:58:33 +00003370 if( iTable==1 && btreePagecount(pBt)==0 ){
danielk19773e8add92009-07-04 17:16:00 +00003371 return SQLITE_EMPTY;
3372 }
danielk1977aef0bf62005-12-30 16:28:01 +00003373
danielk1977aef0bf62005-12-30 16:28:01 +00003374 /* Now that no other errors can occur, finish filling in the BtCursor
danielk19773e8add92009-07-04 17:16:00 +00003375 ** variables and link the cursor into the BtShared list. */
danielk1977172114a2009-07-07 15:47:12 +00003376 pCur->pgnoRoot = (Pgno)iTable;
3377 pCur->iPage = -1;
drh1e968a02008-03-25 00:22:21 +00003378 pCur->pKeyInfo = pKeyInfo;
danielk1977aef0bf62005-12-30 16:28:01 +00003379 pCur->pBtree = p;
drhd0679ed2007-08-28 22:24:34 +00003380 pCur->pBt = pBt;
drhf49661a2008-12-10 16:45:50 +00003381 pCur->wrFlag = (u8)wrFlag;
drha059ad02001-04-17 20:09:11 +00003382 pCur->pNext = pBt->pCursor;
3383 if( pCur->pNext ){
3384 pCur->pNext->pPrev = pCur;
3385 }
3386 pBt->pCursor = pCur;
danielk1977da184232006-01-05 11:34:32 +00003387 pCur->eState = CURSOR_INVALID;
drh7f751222009-03-17 22:33:00 +00003388 pCur->cachedRowid = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00003389 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003390}
drhd677b3d2007-08-20 22:48:41 +00003391int sqlite3BtreeCursor(
danielk1977cd3e8f72008-03-25 09:47:35 +00003392 Btree *p, /* The btree */
3393 int iTable, /* Root page of table to open */
3394 int wrFlag, /* 1 to write. 0 read-only */
3395 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3396 BtCursor *pCur /* Write new cursor here */
drhd677b3d2007-08-20 22:48:41 +00003397){
3398 int rc;
3399 sqlite3BtreeEnter(p);
danielk1977cd3e8f72008-03-25 09:47:35 +00003400 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
drhd677b3d2007-08-20 22:48:41 +00003401 sqlite3BtreeLeave(p);
3402 return rc;
3403}
drh7f751222009-03-17 22:33:00 +00003404
3405/*
3406** Return the size of a BtCursor object in bytes.
3407**
3408** This interfaces is needed so that users of cursors can preallocate
3409** sufficient storage to hold a cursor. The BtCursor object is opaque
3410** to users so they cannot do the sizeof() themselves - they must call
3411** this routine.
3412*/
3413int sqlite3BtreeCursorSize(void){
drhc54055b2009-11-13 17:05:53 +00003414 return ROUND8(sizeof(BtCursor));
danielk1977cd3e8f72008-03-25 09:47:35 +00003415}
3416
drh7f751222009-03-17 22:33:00 +00003417/*
drhf25a5072009-11-18 23:01:25 +00003418** Initialize memory that will be converted into a BtCursor object.
3419**
3420** The simple approach here would be to memset() the entire object
3421** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3422** do not need to be zeroed and they are large, so we can save a lot
3423** of run-time by skipping the initialization of those elements.
3424*/
3425void sqlite3BtreeCursorZero(BtCursor *p){
3426 memset(p, 0, offsetof(BtCursor, iPage));
3427}
3428
3429/*
drh7f751222009-03-17 22:33:00 +00003430** Set the cached rowid value of every cursor in the same database file
3431** as pCur and having the same root page number as pCur. The value is
3432** set to iRowid.
3433**
3434** Only positive rowid values are considered valid for this cache.
3435** The cache is initialized to zero, indicating an invalid cache.
3436** A btree will work fine with zero or negative rowids. We just cannot
3437** cache zero or negative rowids, which means tables that use zero or
3438** negative rowids might run a little slower. But in practice, zero
3439** or negative rowids are very uncommon so this should not be a problem.
3440*/
3441void sqlite3BtreeSetCachedRowid(BtCursor *pCur, sqlite3_int64 iRowid){
3442 BtCursor *p;
3443 for(p=pCur->pBt->pCursor; p; p=p->pNext){
3444 if( p->pgnoRoot==pCur->pgnoRoot ) p->cachedRowid = iRowid;
3445 }
3446 assert( pCur->cachedRowid==iRowid );
3447}
drhd677b3d2007-08-20 22:48:41 +00003448
drh7f751222009-03-17 22:33:00 +00003449/*
3450** Return the cached rowid for the given cursor. A negative or zero
3451** return value indicates that the rowid cache is invalid and should be
3452** ignored. If the rowid cache has never before been set, then a
3453** zero is returned.
3454*/
3455sqlite3_int64 sqlite3BtreeGetCachedRowid(BtCursor *pCur){
3456 return pCur->cachedRowid;
3457}
drha059ad02001-04-17 20:09:11 +00003458
3459/*
drh5e00f6c2001-09-13 13:46:56 +00003460** Close a cursor. The read lock on the database file is released
drhbd03cae2001-06-02 02:40:57 +00003461** when the last cursor is closed.
drha059ad02001-04-17 20:09:11 +00003462*/
drh3aac2dd2004-04-26 14:10:20 +00003463int sqlite3BtreeCloseCursor(BtCursor *pCur){
drhff0587c2007-08-29 17:43:19 +00003464 Btree *pBtree = pCur->pBtree;
danielk1977cd3e8f72008-03-25 09:47:35 +00003465 if( pBtree ){
danielk197771d5d2c2008-09-29 11:49:47 +00003466 int i;
danielk1977cd3e8f72008-03-25 09:47:35 +00003467 BtShared *pBt = pCur->pBt;
3468 sqlite3BtreeEnter(pBtree);
danielk1977be51a652008-10-08 17:58:48 +00003469 sqlite3BtreeClearCursor(pCur);
danielk1977cd3e8f72008-03-25 09:47:35 +00003470 if( pCur->pPrev ){
3471 pCur->pPrev->pNext = pCur->pNext;
3472 }else{
3473 pBt->pCursor = pCur->pNext;
3474 }
3475 if( pCur->pNext ){
3476 pCur->pNext->pPrev = pCur->pPrev;
3477 }
danielk197771d5d2c2008-09-29 11:49:47 +00003478 for(i=0; i<=pCur->iPage; i++){
3479 releasePage(pCur->apPage[i]);
3480 }
danielk1977cd3e8f72008-03-25 09:47:35 +00003481 unlockBtreeIfUnused(pBt);
3482 invalidateOverflowCache(pCur);
3483 /* sqlite3_free(pCur); */
3484 sqlite3BtreeLeave(pBtree);
drha059ad02001-04-17 20:09:11 +00003485 }
drh8c42ca92001-06-22 19:15:00 +00003486 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003487}
3488
drh5e2f8b92001-05-28 00:41:15 +00003489/*
drh86057612007-06-26 01:04:48 +00003490** Make sure the BtCursor* given in the argument has a valid
3491** BtCursor.info structure. If it is not already valid, call
danielk197730548662009-07-09 05:07:37 +00003492** btreeParseCell() to fill it in.
drhab01f612004-05-22 02:55:23 +00003493**
3494** BtCursor.info is a cache of the information in the current cell.
danielk197730548662009-07-09 05:07:37 +00003495** Using this cache reduces the number of calls to btreeParseCell().
drh86057612007-06-26 01:04:48 +00003496**
3497** 2007-06-25: There is a bug in some versions of MSVC that cause the
3498** compiler to crash when getCellInfo() is implemented as a macro.
3499** But there is a measureable speed advantage to using the macro on gcc
3500** (when less compiler optimizations like -Os or -O0 are used and the
3501** compiler is not doing agressive inlining.) So we use a real function
3502** for MSVC and a macro for everything else. Ticket #2457.
drh9188b382004-05-14 21:12:22 +00003503*/
drh9188b382004-05-14 21:12:22 +00003504#ifndef NDEBUG
danielk19771cc5ed82007-05-16 17:28:43 +00003505 static void assertCellInfo(BtCursor *pCur){
drh9188b382004-05-14 21:12:22 +00003506 CellInfo info;
danielk197771d5d2c2008-09-29 11:49:47 +00003507 int iPage = pCur->iPage;
drh51c6d962004-06-06 00:42:25 +00003508 memset(&info, 0, sizeof(info));
danielk197730548662009-07-09 05:07:37 +00003509 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
drh9188b382004-05-14 21:12:22 +00003510 assert( memcmp(&info, &pCur->info, sizeof(info))==0 );
drh9188b382004-05-14 21:12:22 +00003511 }
danielk19771cc5ed82007-05-16 17:28:43 +00003512#else
3513 #define assertCellInfo(x)
3514#endif
drh86057612007-06-26 01:04:48 +00003515#ifdef _MSC_VER
3516 /* Use a real function in MSVC to work around bugs in that compiler. */
3517 static void getCellInfo(BtCursor *pCur){
3518 if( pCur->info.nSize==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00003519 int iPage = pCur->iPage;
danielk197730548662009-07-09 05:07:37 +00003520 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
drha2c20e42008-03-29 16:01:04 +00003521 pCur->validNKey = 1;
drh86057612007-06-26 01:04:48 +00003522 }else{
3523 assertCellInfo(pCur);
3524 }
3525 }
3526#else /* if not _MSC_VER */
3527 /* Use a macro in all other compilers so that the function is inlined */
danielk197771d5d2c2008-09-29 11:49:47 +00003528#define getCellInfo(pCur) \
3529 if( pCur->info.nSize==0 ){ \
3530 int iPage = pCur->iPage; \
danielk197730548662009-07-09 05:07:37 +00003531 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
danielk197771d5d2c2008-09-29 11:49:47 +00003532 pCur->validNKey = 1; \
3533 }else{ \
3534 assertCellInfo(pCur); \
drh86057612007-06-26 01:04:48 +00003535 }
3536#endif /* _MSC_VER */
drh9188b382004-05-14 21:12:22 +00003537
drhea8ffdf2009-07-22 00:35:23 +00003538#ifndef NDEBUG /* The next routine used only within assert() statements */
3539/*
3540** Return true if the given BtCursor is valid. A valid cursor is one
3541** that is currently pointing to a row in a (non-empty) table.
3542** This is a verification routine is used only within assert() statements.
3543*/
3544int sqlite3BtreeCursorIsValid(BtCursor *pCur){
3545 return pCur && pCur->eState==CURSOR_VALID;
3546}
3547#endif /* NDEBUG */
3548
drh9188b382004-05-14 21:12:22 +00003549/*
drh3aac2dd2004-04-26 14:10:20 +00003550** Set *pSize to the size of the buffer needed to hold the value of
3551** the key for the current entry. If the cursor is not pointing
3552** to a valid entry, *pSize is set to 0.
3553**
drh4b70f112004-05-02 21:12:19 +00003554** For a table with the INTKEY flag set, this routine returns the key
drh3aac2dd2004-04-26 14:10:20 +00003555** itself, not the number of bytes in the key.
drhea8ffdf2009-07-22 00:35:23 +00003556**
3557** The caller must position the cursor prior to invoking this routine.
3558**
3559** This routine cannot fail. It always returns SQLITE_OK.
drh7e3b0a02001-04-28 16:52:40 +00003560*/
drh4a1c3802004-05-12 15:15:47 +00003561int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003562 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003563 assert( pCur->eState==CURSOR_INVALID || pCur->eState==CURSOR_VALID );
3564 if( pCur->eState!=CURSOR_VALID ){
3565 *pSize = 0;
3566 }else{
3567 getCellInfo(pCur);
3568 *pSize = pCur->info.nKey;
drh72f82862001-05-24 21:06:34 +00003569 }
drhea8ffdf2009-07-22 00:35:23 +00003570 return SQLITE_OK;
drha059ad02001-04-17 20:09:11 +00003571}
drh2af926b2001-05-15 00:39:25 +00003572
drh72f82862001-05-24 21:06:34 +00003573/*
drh0e1c19e2004-05-11 00:58:56 +00003574** Set *pSize to the number of bytes of data in the entry the
drhea8ffdf2009-07-22 00:35:23 +00003575** cursor currently points to.
3576**
3577** The caller must guarantee that the cursor is pointing to a non-NULL
3578** valid entry. In other words, the calling procedure must guarantee
3579** that the cursor has Cursor.eState==CURSOR_VALID.
3580**
3581** Failure is not possible. This function always returns SQLITE_OK.
3582** It might just as well be a procedure (returning void) but we continue
3583** to return an integer result code for historical reasons.
drh0e1c19e2004-05-11 00:58:56 +00003584*/
3585int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
drh1fee73e2007-08-29 04:00:57 +00003586 assert( cursorHoldsMutex(pCur) );
drhea8ffdf2009-07-22 00:35:23 +00003587 assert( pCur->eState==CURSOR_VALID );
3588 getCellInfo(pCur);
3589 *pSize = pCur->info.nData;
3590 return SQLITE_OK;
drh0e1c19e2004-05-11 00:58:56 +00003591}
3592
3593/*
danielk1977d04417962007-05-02 13:16:30 +00003594** Given the page number of an overflow page in the database (parameter
3595** ovfl), this function finds the page number of the next page in the
3596** linked list of overflow pages. If possible, it uses the auto-vacuum
3597** pointer-map data instead of reading the content of page ovfl to do so.
3598**
3599** If an error occurs an SQLite error code is returned. Otherwise:
3600**
danielk1977bea2a942009-01-20 17:06:27 +00003601** The page number of the next overflow page in the linked list is
3602** written to *pPgnoNext. If page ovfl is the last page in its linked
3603** list, *pPgnoNext is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003604**
danielk1977bea2a942009-01-20 17:06:27 +00003605** If ppPage is not NULL, and a reference to the MemPage object corresponding
3606** to page number pOvfl was obtained, then *ppPage is set to point to that
3607** reference. It is the responsibility of the caller to call releasePage()
3608** on *ppPage to free the reference. In no reference was obtained (because
3609** the pointer-map was used to obtain the value for *pPgnoNext), then
3610** *ppPage is set to zero.
danielk1977d04417962007-05-02 13:16:30 +00003611*/
3612static int getOverflowPage(
drhfa3be902009-07-07 02:44:07 +00003613 BtShared *pBt, /* The database file */
3614 Pgno ovfl, /* Current overflow page number */
danielk1977bea2a942009-01-20 17:06:27 +00003615 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
danielk1977d04417962007-05-02 13:16:30 +00003616 Pgno *pPgnoNext /* OUT: Next overflow page number */
3617){
3618 Pgno next = 0;
danielk1977bea2a942009-01-20 17:06:27 +00003619 MemPage *pPage = 0;
drh1bd10f82008-12-10 21:19:56 +00003620 int rc = SQLITE_OK;
danielk1977d04417962007-05-02 13:16:30 +00003621
drh1fee73e2007-08-29 04:00:57 +00003622 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bea2a942009-01-20 17:06:27 +00003623 assert(pPgnoNext);
danielk1977d04417962007-05-02 13:16:30 +00003624
3625#ifndef SQLITE_OMIT_AUTOVACUUM
3626 /* Try to find the next page in the overflow list using the
3627 ** autovacuum pointer-map pages. Guess that the next page in
3628 ** the overflow list is page number (ovfl+1). If that guess turns
3629 ** out to be wrong, fall back to loading the data of page
3630 ** number ovfl to determine the next page number.
3631 */
3632 if( pBt->autoVacuum ){
3633 Pgno pgno;
3634 Pgno iGuess = ovfl+1;
3635 u8 eType;
3636
3637 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3638 iGuess++;
3639 }
3640
drhb1299152010-03-30 22:58:33 +00003641 if( iGuess<=btreePagecount(pBt) ){
danielk1977d04417962007-05-02 13:16:30 +00003642 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
danielk1977bea2a942009-01-20 17:06:27 +00003643 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
danielk1977d04417962007-05-02 13:16:30 +00003644 next = iGuess;
danielk1977bea2a942009-01-20 17:06:27 +00003645 rc = SQLITE_DONE;
danielk1977d04417962007-05-02 13:16:30 +00003646 }
3647 }
3648 }
3649#endif
3650
danielk1977d8a3f3d2009-07-11 11:45:23 +00003651 assert( next==0 || rc==SQLITE_DONE );
danielk1977bea2a942009-01-20 17:06:27 +00003652 if( rc==SQLITE_OK ){
danielk197730548662009-07-09 05:07:37 +00003653 rc = btreeGetPage(pBt, ovfl, &pPage, 0);
danielk1977d8a3f3d2009-07-11 11:45:23 +00003654 assert( rc==SQLITE_OK || pPage==0 );
3655 if( rc==SQLITE_OK ){
danielk1977d04417962007-05-02 13:16:30 +00003656 next = get4byte(pPage->aData);
3657 }
danielk1977443c0592009-01-16 15:21:05 +00003658 }
danielk197745d68822009-01-16 16:23:38 +00003659
danielk1977bea2a942009-01-20 17:06:27 +00003660 *pPgnoNext = next;
3661 if( ppPage ){
3662 *ppPage = pPage;
3663 }else{
3664 releasePage(pPage);
3665 }
3666 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
danielk1977d04417962007-05-02 13:16:30 +00003667}
3668
danielk1977da107192007-05-04 08:32:13 +00003669/*
3670** Copy data from a buffer to a page, or from a page to a buffer.
3671**
3672** pPayload is a pointer to data stored on database page pDbPage.
3673** If argument eOp is false, then nByte bytes of data are copied
3674** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3675** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3676** of data are copied from the buffer pBuf to pPayload.
3677**
3678** SQLITE_OK is returned on success, otherwise an error code.
3679*/
3680static int copyPayload(
3681 void *pPayload, /* Pointer to page data */
3682 void *pBuf, /* Pointer to buffer */
3683 int nByte, /* Number of bytes to copy */
3684 int eOp, /* 0 -> copy from page, 1 -> copy to page */
3685 DbPage *pDbPage /* Page containing pPayload */
3686){
3687 if( eOp ){
3688 /* Copy data from buffer to page (a write operation) */
3689 int rc = sqlite3PagerWrite(pDbPage);
3690 if( rc!=SQLITE_OK ){
3691 return rc;
3692 }
3693 memcpy(pPayload, pBuf, nByte);
3694 }else{
3695 /* Copy data from page to buffer (a read operation) */
3696 memcpy(pBuf, pPayload, nByte);
3697 }
3698 return SQLITE_OK;
3699}
danielk1977d04417962007-05-02 13:16:30 +00003700
3701/*
danielk19779f8d6402007-05-02 17:48:45 +00003702** This function is used to read or overwrite payload information
3703** for the entry that the pCur cursor is pointing to. If the eOp
3704** parameter is 0, this is a read operation (data copied into
3705** buffer pBuf). If it is non-zero, a write (data copied from
3706** buffer pBuf).
3707**
3708** A total of "amt" bytes are read or written beginning at "offset".
3709** Data is read to or from the buffer pBuf.
drh72f82862001-05-24 21:06:34 +00003710**
drh3bcdfd22009-07-12 02:32:21 +00003711** The content being read or written might appear on the main page
3712** or be scattered out on multiple overflow pages.
danielk1977da107192007-05-04 08:32:13 +00003713**
danielk1977dcbb5d32007-05-04 18:36:44 +00003714** If the BtCursor.isIncrblobHandle flag is set, and the current
danielk1977da107192007-05-04 08:32:13 +00003715** cursor entry uses one or more overflow pages, this function
3716** allocates space for and lazily popluates the overflow page-list
3717** cache array (BtCursor.aOverflow). Subsequent calls use this
3718** cache to make seeking to the supplied offset more efficient.
3719**
3720** Once an overflow page-list cache has been allocated, it may be
3721** invalidated if some other cursor writes to the same table, or if
3722** the cursor is moved to a different row. Additionally, in auto-vacuum
3723** mode, the following events may invalidate an overflow page-list cache.
3724**
3725** * An incremental vacuum,
3726** * A commit in auto_vacuum="full" mode,
3727** * Creating a table (may require moving an overflow page).
drh72f82862001-05-24 21:06:34 +00003728*/
danielk19779f8d6402007-05-02 17:48:45 +00003729static int accessPayload(
drh3aac2dd2004-04-26 14:10:20 +00003730 BtCursor *pCur, /* Cursor pointing to entry to read from */
danielk197789d40042008-11-17 14:20:56 +00003731 u32 offset, /* Begin reading this far into payload */
3732 u32 amt, /* Read this many bytes */
drh3aac2dd2004-04-26 14:10:20 +00003733 unsigned char *pBuf, /* Write the bytes into this buffer */
danielk19779f8d6402007-05-02 17:48:45 +00003734 int eOp /* zero to read. non-zero to write. */
drh3aac2dd2004-04-26 14:10:20 +00003735){
3736 unsigned char *aPayload;
danielk1977da107192007-05-04 08:32:13 +00003737 int rc = SQLITE_OK;
drhfa1a98a2004-05-14 19:08:17 +00003738 u32 nKey;
danielk19772dec9702007-05-02 16:48:37 +00003739 int iIdx = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00003740 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
danielk19770d065412008-11-12 18:21:36 +00003741 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
drh3aac2dd2004-04-26 14:10:20 +00003742
danielk1977da107192007-05-04 08:32:13 +00003743 assert( pPage );
danielk1977da184232006-01-05 11:34:32 +00003744 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003745 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drh1fee73e2007-08-29 04:00:57 +00003746 assert( cursorHoldsMutex(pCur) );
danielk1977da107192007-05-04 08:32:13 +00003747
drh86057612007-06-26 01:04:48 +00003748 getCellInfo(pCur);
drh366fda62006-01-13 02:35:09 +00003749 aPayload = pCur->info.pCell + pCur->info.nHeader;
drhf49661a2008-12-10 16:45:50 +00003750 nKey = (pPage->intKey ? 0 : (int)pCur->info.nKey);
danielk1977da107192007-05-04 08:32:13 +00003751
drh3bcdfd22009-07-12 02:32:21 +00003752 if( NEVER(offset+amt > nKey+pCur->info.nData)
danielk19770d065412008-11-12 18:21:36 +00003753 || &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
3754 ){
danielk1977da107192007-05-04 08:32:13 +00003755 /* Trying to read or write past the end of the data is an error */
danielk197767fd7a92008-09-10 17:53:35 +00003756 return SQLITE_CORRUPT_BKPT;
drh3aac2dd2004-04-26 14:10:20 +00003757 }
danielk1977da107192007-05-04 08:32:13 +00003758
3759 /* Check if data must be read/written to/from the btree page itself. */
drhfa1a98a2004-05-14 19:08:17 +00003760 if( offset<pCur->info.nLocal ){
drh2af926b2001-05-15 00:39:25 +00003761 int a = amt;
drhfa1a98a2004-05-14 19:08:17 +00003762 if( a+offset>pCur->info.nLocal ){
3763 a = pCur->info.nLocal - offset;
drh2af926b2001-05-15 00:39:25 +00003764 }
danielk1977da107192007-05-04 08:32:13 +00003765 rc = copyPayload(&aPayload[offset], pBuf, a, eOp, pPage->pDbPage);
drh2aa679f2001-06-25 02:11:07 +00003766 offset = 0;
drha34b6762004-05-07 13:30:42 +00003767 pBuf += a;
drh2af926b2001-05-15 00:39:25 +00003768 amt -= a;
drhdd793422001-06-28 01:54:48 +00003769 }else{
drhfa1a98a2004-05-14 19:08:17 +00003770 offset -= pCur->info.nLocal;
drhbd03cae2001-06-02 02:40:57 +00003771 }
danielk1977da107192007-05-04 08:32:13 +00003772
3773 if( rc==SQLITE_OK && amt>0 ){
danielk197789d40042008-11-17 14:20:56 +00003774 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
danielk1977da107192007-05-04 08:32:13 +00003775 Pgno nextPage;
3776
drhfa1a98a2004-05-14 19:08:17 +00003777 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
danielk1977da107192007-05-04 08:32:13 +00003778
danielk19772dec9702007-05-02 16:48:37 +00003779#ifndef SQLITE_OMIT_INCRBLOB
danielk1977dcbb5d32007-05-04 18:36:44 +00003780 /* If the isIncrblobHandle flag is set and the BtCursor.aOverflow[]
danielk1977da107192007-05-04 08:32:13 +00003781 ** has not been allocated, allocate it now. The array is sized at
3782 ** one entry for each overflow page in the overflow chain. The
3783 ** page number of the first overflow page is stored in aOverflow[0],
3784 ** etc. A value of 0 in the aOverflow[] array means "not yet known"
3785 ** (the cache is lazily populated).
3786 */
danielk1977dcbb5d32007-05-04 18:36:44 +00003787 if( pCur->isIncrblobHandle && !pCur->aOverflow ){
danielk19772dec9702007-05-02 16:48:37 +00003788 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
drh17435752007-08-16 04:30:38 +00003789 pCur->aOverflow = (Pgno *)sqlite3MallocZero(sizeof(Pgno)*nOvfl);
drh3bcdfd22009-07-12 02:32:21 +00003790 /* nOvfl is always positive. If it were zero, fetchPayload would have
3791 ** been used instead of this routine. */
3792 if( ALWAYS(nOvfl) && !pCur->aOverflow ){
danielk1977da107192007-05-04 08:32:13 +00003793 rc = SQLITE_NOMEM;
danielk19772dec9702007-05-02 16:48:37 +00003794 }
3795 }
danielk1977da107192007-05-04 08:32:13 +00003796
3797 /* If the overflow page-list cache has been allocated and the
3798 ** entry for the first required overflow page is valid, skip
3799 ** directly to it.
3800 */
danielk19772dec9702007-05-02 16:48:37 +00003801 if( pCur->aOverflow && pCur->aOverflow[offset/ovflSize] ){
3802 iIdx = (offset/ovflSize);
3803 nextPage = pCur->aOverflow[iIdx];
3804 offset = (offset%ovflSize);
3805 }
3806#endif
danielk1977da107192007-05-04 08:32:13 +00003807
3808 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
3809
3810#ifndef SQLITE_OMIT_INCRBLOB
3811 /* If required, populate the overflow page-list cache. */
3812 if( pCur->aOverflow ){
3813 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
3814 pCur->aOverflow[iIdx] = nextPage;
3815 }
3816#endif
3817
danielk1977d04417962007-05-02 13:16:30 +00003818 if( offset>=ovflSize ){
3819 /* The only reason to read this page is to obtain the page
danielk1977da107192007-05-04 08:32:13 +00003820 ** number for the next page in the overflow chain. The page
drhfd131da2007-08-07 17:13:03 +00003821 ** data is not required. So first try to lookup the overflow
3822 ** page-list cache, if any, then fall back to the getOverflowPage()
danielk1977da107192007-05-04 08:32:13 +00003823 ** function.
danielk1977d04417962007-05-02 13:16:30 +00003824 */
danielk19772dec9702007-05-02 16:48:37 +00003825#ifndef SQLITE_OMIT_INCRBLOB
danielk1977da107192007-05-04 08:32:13 +00003826 if( pCur->aOverflow && pCur->aOverflow[iIdx+1] ){
3827 nextPage = pCur->aOverflow[iIdx+1];
3828 } else
danielk19772dec9702007-05-02 16:48:37 +00003829#endif
danielk1977da107192007-05-04 08:32:13 +00003830 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
danielk1977da107192007-05-04 08:32:13 +00003831 offset -= ovflSize;
danielk1977d04417962007-05-02 13:16:30 +00003832 }else{
danielk19779f8d6402007-05-02 17:48:45 +00003833 /* Need to read this page properly. It contains some of the
3834 ** range of data that is being read (eOp==0) or written (eOp!=0).
danielk1977d04417962007-05-02 13:16:30 +00003835 */
3836 DbPage *pDbPage;
danielk1977cfe9a692004-06-16 12:00:29 +00003837 int a = amt;
danielk1977d04417962007-05-02 13:16:30 +00003838 rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage);
danielk1977da107192007-05-04 08:32:13 +00003839 if( rc==SQLITE_OK ){
3840 aPayload = sqlite3PagerGetData(pDbPage);
3841 nextPage = get4byte(aPayload);
3842 if( a + offset > ovflSize ){
3843 a = ovflSize - offset;
danielk19779f8d6402007-05-02 17:48:45 +00003844 }
danielk1977da107192007-05-04 08:32:13 +00003845 rc = copyPayload(&aPayload[offset+4], pBuf, a, eOp, pDbPage);
3846 sqlite3PagerUnref(pDbPage);
3847 offset = 0;
3848 amt -= a;
3849 pBuf += a;
danielk19779f8d6402007-05-02 17:48:45 +00003850 }
danielk1977cfe9a692004-06-16 12:00:29 +00003851 }
drh2af926b2001-05-15 00:39:25 +00003852 }
drh2af926b2001-05-15 00:39:25 +00003853 }
danielk1977cfe9a692004-06-16 12:00:29 +00003854
danielk1977da107192007-05-04 08:32:13 +00003855 if( rc==SQLITE_OK && amt>0 ){
drh49285702005-09-17 15:20:26 +00003856 return SQLITE_CORRUPT_BKPT;
drha7fcb052001-12-14 15:09:55 +00003857 }
danielk1977da107192007-05-04 08:32:13 +00003858 return rc;
drh2af926b2001-05-15 00:39:25 +00003859}
3860
drh72f82862001-05-24 21:06:34 +00003861/*
drh3aac2dd2004-04-26 14:10:20 +00003862** Read part of the key associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003863** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003864** begins at "offset".
drh8c1238a2003-01-02 14:43:55 +00003865**
drh5d1a8722009-07-22 18:07:40 +00003866** The caller must ensure that pCur is pointing to a valid row
3867** in the table.
3868**
drh3aac2dd2004-04-26 14:10:20 +00003869** Return SQLITE_OK on success or an error code if anything goes
3870** wrong. An error is returned if "offset+amt" is larger than
3871** the available payload.
drh72f82862001-05-24 21:06:34 +00003872*/
drha34b6762004-05-07 13:30:42 +00003873int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drh1fee73e2007-08-29 04:00:57 +00003874 assert( cursorHoldsMutex(pCur) );
drh5d1a8722009-07-22 18:07:40 +00003875 assert( pCur->eState==CURSOR_VALID );
3876 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3877 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
3878 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
drh3aac2dd2004-04-26 14:10:20 +00003879}
3880
3881/*
drh3aac2dd2004-04-26 14:10:20 +00003882** Read part of the data associated with cursor pCur. Exactly
drha34b6762004-05-07 13:30:42 +00003883** "amt" bytes will be transfered into pBuf[]. The transfer
drh3aac2dd2004-04-26 14:10:20 +00003884** begins at "offset".
3885**
3886** Return SQLITE_OK on success or an error code if anything goes
3887** wrong. An error is returned if "offset+amt" is larger than
3888** the available payload.
drh72f82862001-05-24 21:06:34 +00003889*/
drh3aac2dd2004-04-26 14:10:20 +00003890int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
drhd677b3d2007-08-20 22:48:41 +00003891 int rc;
3892
danielk19773588ceb2008-06-10 17:30:26 +00003893#ifndef SQLITE_OMIT_INCRBLOB
3894 if ( pCur->eState==CURSOR_INVALID ){
3895 return SQLITE_ABORT;
3896 }
3897#endif
3898
drh1fee73e2007-08-29 04:00:57 +00003899 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00003900 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00003901 if( rc==SQLITE_OK ){
3902 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00003903 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
3904 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
drhfb192682009-07-11 18:26:28 +00003905 rc = accessPayload(pCur, offset, amt, pBuf, 0);
danielk1977da184232006-01-05 11:34:32 +00003906 }
3907 return rc;
drh2af926b2001-05-15 00:39:25 +00003908}
3909
drh72f82862001-05-24 21:06:34 +00003910/*
drh0e1c19e2004-05-11 00:58:56 +00003911** Return a pointer to payload information from the entry that the
3912** pCur cursor is pointing to. The pointer is to the beginning of
3913** the key if skipKey==0 and it points to the beginning of data if
drhe51c44f2004-05-30 20:46:09 +00003914** skipKey==1. The number of bytes of available key/data is written
3915** into *pAmt. If *pAmt==0, then the value returned will not be
3916** a valid pointer.
drh0e1c19e2004-05-11 00:58:56 +00003917**
3918** This routine is an optimization. It is common for the entire key
3919** and data to fit on the local page and for there to be no overflow
3920** pages. When that is so, this routine can be used to access the
3921** key and data without making a copy. If the key and/or data spills
drh7f751222009-03-17 22:33:00 +00003922** onto overflow pages, then accessPayload() must be used to reassemble
drh0e1c19e2004-05-11 00:58:56 +00003923** the key/data and copy it into a preallocated buffer.
3924**
3925** The pointer returned by this routine looks directly into the cached
3926** page of the database. The data might change or move the next time
3927** any btree routine is called.
3928*/
3929static const unsigned char *fetchPayload(
3930 BtCursor *pCur, /* Cursor pointing to entry to read from */
drhe51c44f2004-05-30 20:46:09 +00003931 int *pAmt, /* Write the number of available bytes here */
drh0e1c19e2004-05-11 00:58:56 +00003932 int skipKey /* read beginning at data if this is true */
3933){
3934 unsigned char *aPayload;
3935 MemPage *pPage;
drhfa1a98a2004-05-14 19:08:17 +00003936 u32 nKey;
danielk197789d40042008-11-17 14:20:56 +00003937 u32 nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003938
danielk197771d5d2c2008-09-29 11:49:47 +00003939 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
danielk1977da184232006-01-05 11:34:32 +00003940 assert( pCur->eState==CURSOR_VALID );
drh1fee73e2007-08-29 04:00:57 +00003941 assert( cursorHoldsMutex(pCur) );
danielk197771d5d2c2008-09-29 11:49:47 +00003942 pPage = pCur->apPage[pCur->iPage];
3943 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
drhfe3313f2009-07-21 19:02:20 +00003944 if( NEVER(pCur->info.nSize==0) ){
3945 btreeParseCell(pCur->apPage[pCur->iPage], pCur->aiIdx[pCur->iPage],
3946 &pCur->info);
3947 }
drh43605152004-05-29 21:46:49 +00003948 aPayload = pCur->info.pCell;
drhfa1a98a2004-05-14 19:08:17 +00003949 aPayload += pCur->info.nHeader;
drh0e1c19e2004-05-11 00:58:56 +00003950 if( pPage->intKey ){
drhfa1a98a2004-05-14 19:08:17 +00003951 nKey = 0;
3952 }else{
drhf49661a2008-12-10 16:45:50 +00003953 nKey = (int)pCur->info.nKey;
drh0e1c19e2004-05-11 00:58:56 +00003954 }
drh0e1c19e2004-05-11 00:58:56 +00003955 if( skipKey ){
drhfa1a98a2004-05-14 19:08:17 +00003956 aPayload += nKey;
3957 nLocal = pCur->info.nLocal - nKey;
drh0e1c19e2004-05-11 00:58:56 +00003958 }else{
drhfa1a98a2004-05-14 19:08:17 +00003959 nLocal = pCur->info.nLocal;
drhfe3313f2009-07-21 19:02:20 +00003960 assert( nLocal<=nKey );
drh0e1c19e2004-05-11 00:58:56 +00003961 }
drhe51c44f2004-05-30 20:46:09 +00003962 *pAmt = nLocal;
drh0e1c19e2004-05-11 00:58:56 +00003963 return aPayload;
3964}
3965
3966
3967/*
drhe51c44f2004-05-30 20:46:09 +00003968** For the entry that cursor pCur is point to, return as
3969** many bytes of the key or data as are available on the local
3970** b-tree page. Write the number of available bytes into *pAmt.
drh0e1c19e2004-05-11 00:58:56 +00003971**
3972** The pointer returned is ephemeral. The key/data may move
drhd677b3d2007-08-20 22:48:41 +00003973** or be destroyed on the next call to any Btree routine,
3974** including calls from other threads against the same cache.
3975** Hence, a mutex on the BtShared should be held prior to calling
3976** this routine.
drh0e1c19e2004-05-11 00:58:56 +00003977**
3978** These routines is used to get quick access to key and data
3979** in the common case where no overflow pages are used.
drh0e1c19e2004-05-11 00:58:56 +00003980*/
drhe51c44f2004-05-30 20:46:09 +00003981const void *sqlite3BtreeKeyFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00003982 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00003983 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00003984 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00003985 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
3986 p = (const void*)fetchPayload(pCur, pAmt, 0);
danielk1977da184232006-01-05 11:34:32 +00003987 }
drhfe3313f2009-07-21 19:02:20 +00003988 return p;
drh0e1c19e2004-05-11 00:58:56 +00003989}
drhe51c44f2004-05-30 20:46:09 +00003990const void *sqlite3BtreeDataFetch(BtCursor *pCur, int *pAmt){
drhfe3313f2009-07-21 19:02:20 +00003991 const void *p = 0;
danielk19774b0aa4c2009-05-28 11:05:57 +00003992 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh1fee73e2007-08-29 04:00:57 +00003993 assert( cursorHoldsMutex(pCur) );
drhfe3313f2009-07-21 19:02:20 +00003994 if( ALWAYS(pCur->eState==CURSOR_VALID) ){
3995 p = (const void*)fetchPayload(pCur, pAmt, 1);
danielk1977da184232006-01-05 11:34:32 +00003996 }
drhfe3313f2009-07-21 19:02:20 +00003997 return p;
drh0e1c19e2004-05-11 00:58:56 +00003998}
3999
4000
4001/*
drh8178a752003-01-05 21:41:40 +00004002** Move the cursor down to a new child page. The newPgno argument is the
drhab01f612004-05-22 02:55:23 +00004003** page number of the child page to move to.
danielk1977a299d612009-07-13 11:22:10 +00004004**
4005** This function returns SQLITE_CORRUPT if the page-header flags field of
4006** the new child page does not match the flags field of the parent (i.e.
4007** if an intkey page appears to be the parent of a non-intkey page, or
4008** vice-versa).
drh72f82862001-05-24 21:06:34 +00004009*/
drh3aac2dd2004-04-26 14:10:20 +00004010static int moveToChild(BtCursor *pCur, u32 newPgno){
drh72f82862001-05-24 21:06:34 +00004011 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004012 int i = pCur->iPage;
drh72f82862001-05-24 21:06:34 +00004013 MemPage *pNewPage;
drhd0679ed2007-08-28 22:24:34 +00004014 BtShared *pBt = pCur->pBt;
drh72f82862001-05-24 21:06:34 +00004015
drh1fee73e2007-08-29 04:00:57 +00004016 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004017 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004018 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
4019 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4020 return SQLITE_CORRUPT_BKPT;
4021 }
4022 rc = getAndInitPage(pBt, newPgno, &pNewPage);
drh6019e162001-07-02 17:51:45 +00004023 if( rc ) return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004024 pCur->apPage[i+1] = pNewPage;
4025 pCur->aiIdx[i+1] = 0;
4026 pCur->iPage++;
4027
drh271efa52004-05-30 19:19:05 +00004028 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004029 pCur->validNKey = 0;
danielk1977bd5969a2009-07-11 17:39:42 +00004030 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
drh49285702005-09-17 15:20:26 +00004031 return SQLITE_CORRUPT_BKPT;
drh4be295b2003-12-16 03:44:47 +00004032 }
drh72f82862001-05-24 21:06:34 +00004033 return SQLITE_OK;
4034}
4035
danielk1977bf93c562008-09-29 15:53:25 +00004036#ifndef NDEBUG
4037/*
4038** Page pParent is an internal (non-leaf) tree page. This function
4039** asserts that page number iChild is the left-child if the iIdx'th
4040** cell in page pParent. Or, if iIdx is equal to the total number of
4041** cells in pParent, that page number iChild is the right-child of
4042** the page.
4043*/
4044static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4045 assert( iIdx<=pParent->nCell );
4046 if( iIdx==pParent->nCell ){
4047 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4048 }else{
4049 assert( get4byte(findCell(pParent, iIdx))==iChild );
4050 }
4051}
4052#else
4053# define assertParentIndex(x,y,z)
4054#endif
4055
drh72f82862001-05-24 21:06:34 +00004056/*
drh5e2f8b92001-05-28 00:41:15 +00004057** Move the cursor up to the parent page.
4058**
4059** pCur->idx is set to the cell index that contains the pointer
4060** to the page we are coming from. If we are coming from the
4061** right-most child page then pCur->idx is set to one more than
drhbd03cae2001-06-02 02:40:57 +00004062** the largest cell index.
drh72f82862001-05-24 21:06:34 +00004063*/
danielk197730548662009-07-09 05:07:37 +00004064static void moveToParent(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00004065 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004066 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004067 assert( pCur->iPage>0 );
4068 assert( pCur->apPage[pCur->iPage] );
danielk1977bf93c562008-09-29 15:53:25 +00004069 assertParentIndex(
4070 pCur->apPage[pCur->iPage-1],
4071 pCur->aiIdx[pCur->iPage-1],
4072 pCur->apPage[pCur->iPage]->pgno
4073 );
danielk197771d5d2c2008-09-29 11:49:47 +00004074 releasePage(pCur->apPage[pCur->iPage]);
4075 pCur->iPage--;
drh271efa52004-05-30 19:19:05 +00004076 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004077 pCur->validNKey = 0;
drh72f82862001-05-24 21:06:34 +00004078}
4079
4080/*
danielk19778f880a82009-07-13 09:41:45 +00004081** Move the cursor to point to the root page of its b-tree structure.
4082**
4083** If the table has a virtual root page, then the cursor is moved to point
4084** to the virtual root page instead of the actual root page. A table has a
4085** virtual root page when the actual root page contains no cells and a
4086** single child page. This can only happen with the table rooted at page 1.
4087**
4088** If the b-tree structure is empty, the cursor state is set to
4089** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4090** cell located on the root (or virtual root) page and the cursor state
4091** is set to CURSOR_VALID.
4092**
4093** If this function returns successfully, it may be assumed that the
4094** page-header flags indicate that the [virtual] root-page is the expected
4095** kind of b-tree page (i.e. if when opening the cursor the caller did not
4096** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4097** indicating a table b-tree, or if the caller did specify a KeyInfo
4098** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4099** b-tree).
drh72f82862001-05-24 21:06:34 +00004100*/
drh5e2f8b92001-05-28 00:41:15 +00004101static int moveToRoot(BtCursor *pCur){
drh3aac2dd2004-04-26 14:10:20 +00004102 MemPage *pRoot;
drh777e4c42006-01-13 04:31:58 +00004103 int rc = SQLITE_OK;
drhd677b3d2007-08-20 22:48:41 +00004104 Btree *p = pCur->pBtree;
4105 BtShared *pBt = p->pBt;
drhbd03cae2001-06-02 02:40:57 +00004106
drh1fee73e2007-08-29 04:00:57 +00004107 assert( cursorHoldsMutex(pCur) );
drhfb982642007-08-30 01:19:59 +00004108 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4109 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4110 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4111 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4112 if( pCur->eState==CURSOR_FAULT ){
drh4c301aa2009-07-15 17:25:45 +00004113 assert( pCur->skipNext!=SQLITE_OK );
4114 return pCur->skipNext;
drhfb982642007-08-30 01:19:59 +00004115 }
danielk1977be51a652008-10-08 17:58:48 +00004116 sqlite3BtreeClearCursor(pCur);
drhbf700f32007-03-31 02:36:44 +00004117 }
danielk197771d5d2c2008-09-29 11:49:47 +00004118
4119 if( pCur->iPage>=0 ){
4120 int i;
4121 for(i=1; i<=pCur->iPage; i++){
4122 releasePage(pCur->apPage[i]);
danielk1977d9f6c532008-09-19 16:39:38 +00004123 }
danielk1977172114a2009-07-07 15:47:12 +00004124 pCur->iPage = 0;
drh777e4c42006-01-13 04:31:58 +00004125 }else{
drh4c301aa2009-07-15 17:25:45 +00004126 rc = getAndInitPage(pBt, pCur->pgnoRoot, &pCur->apPage[0]);
4127 if( rc!=SQLITE_OK ){
drh777e4c42006-01-13 04:31:58 +00004128 pCur->eState = CURSOR_INVALID;
4129 return rc;
4130 }
danielk1977172114a2009-07-07 15:47:12 +00004131 pCur->iPage = 0;
4132
4133 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4134 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4135 ** NULL, the caller expects a table b-tree. If this is not the case,
4136 ** return an SQLITE_CORRUPT error. */
4137 assert( pCur->apPage[0]->intKey==1 || pCur->apPage[0]->intKey==0 );
4138 if( (pCur->pKeyInfo==0)!=pCur->apPage[0]->intKey ){
4139 return SQLITE_CORRUPT_BKPT;
4140 }
drhc39e0002004-05-07 23:50:57 +00004141 }
danielk197771d5d2c2008-09-29 11:49:47 +00004142
danielk19778f880a82009-07-13 09:41:45 +00004143 /* Assert that the root page is of the correct type. This must be the
4144 ** case as the call to this function that loaded the root-page (either
4145 ** this call or a previous invocation) would have detected corruption
4146 ** if the assumption were not true, and it is not possible for the flags
4147 ** byte to have been modified while this cursor is holding a reference
4148 ** to the page. */
danielk197771d5d2c2008-09-29 11:49:47 +00004149 pRoot = pCur->apPage[0];
4150 assert( pRoot->pgno==pCur->pgnoRoot );
danielk19778f880a82009-07-13 09:41:45 +00004151 assert( pRoot->isInit && (pCur->pKeyInfo==0)==pRoot->intKey );
4152
danielk197771d5d2c2008-09-29 11:49:47 +00004153 pCur->aiIdx[0] = 0;
drh271efa52004-05-30 19:19:05 +00004154 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004155 pCur->atLast = 0;
4156 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004157
drh8856d6a2004-04-29 14:42:46 +00004158 if( pRoot->nCell==0 && !pRoot->leaf ){
4159 Pgno subpage;
drhc85240d2009-06-04 16:14:33 +00004160 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
drh43605152004-05-29 21:46:49 +00004161 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
danielk1977da184232006-01-05 11:34:32 +00004162 pCur->eState = CURSOR_VALID;
drh4b70f112004-05-02 21:12:19 +00004163 rc = moveToChild(pCur, subpage);
danielk197771d5d2c2008-09-29 11:49:47 +00004164 }else{
4165 pCur->eState = ((pRoot->nCell>0)?CURSOR_VALID:CURSOR_INVALID);
drh8856d6a2004-04-29 14:42:46 +00004166 }
4167 return rc;
drh72f82862001-05-24 21:06:34 +00004168}
drh2af926b2001-05-15 00:39:25 +00004169
drh5e2f8b92001-05-28 00:41:15 +00004170/*
4171** Move the cursor down to the left-most leaf entry beneath the
4172** entry to which it is currently pointing.
drh777e4c42006-01-13 04:31:58 +00004173**
4174** The left-most leaf is the one with the smallest key - the first
4175** in ascending order.
drh5e2f8b92001-05-28 00:41:15 +00004176*/
4177static int moveToLeftmost(BtCursor *pCur){
4178 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004179 int rc = SQLITE_OK;
drh3aac2dd2004-04-26 14:10:20 +00004180 MemPage *pPage;
drh5e2f8b92001-05-28 00:41:15 +00004181
drh1fee73e2007-08-29 04:00:57 +00004182 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004183 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004184 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4185 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4186 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
drh8178a752003-01-05 21:41:40 +00004187 rc = moveToChild(pCur, pgno);
drh5e2f8b92001-05-28 00:41:15 +00004188 }
drhd677b3d2007-08-20 22:48:41 +00004189 return rc;
drh5e2f8b92001-05-28 00:41:15 +00004190}
4191
drh2dcc9aa2002-12-04 13:40:25 +00004192/*
4193** Move the cursor down to the right-most leaf entry beneath the
4194** page to which it is currently pointing. Notice the difference
4195** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4196** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4197** finds the right-most entry beneath the *page*.
drh777e4c42006-01-13 04:31:58 +00004198**
4199** The right-most entry is the one with the largest key - the last
4200** key in ascending order.
drh2dcc9aa2002-12-04 13:40:25 +00004201*/
4202static int moveToRightmost(BtCursor *pCur){
4203 Pgno pgno;
drhd677b3d2007-08-20 22:48:41 +00004204 int rc = SQLITE_OK;
drh1bd10f82008-12-10 21:19:56 +00004205 MemPage *pPage = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004206
drh1fee73e2007-08-29 04:00:57 +00004207 assert( cursorHoldsMutex(pCur) );
danielk1977da184232006-01-05 11:34:32 +00004208 assert( pCur->eState==CURSOR_VALID );
danielk197771d5d2c2008-09-29 11:49:47 +00004209 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
drh43605152004-05-29 21:46:49 +00004210 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
danielk197771d5d2c2008-09-29 11:49:47 +00004211 pCur->aiIdx[pCur->iPage] = pPage->nCell;
drh8178a752003-01-05 21:41:40 +00004212 rc = moveToChild(pCur, pgno);
drh2dcc9aa2002-12-04 13:40:25 +00004213 }
drhd677b3d2007-08-20 22:48:41 +00004214 if( rc==SQLITE_OK ){
danielk197771d5d2c2008-09-29 11:49:47 +00004215 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
drhd677b3d2007-08-20 22:48:41 +00004216 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004217 pCur->validNKey = 0;
drhd677b3d2007-08-20 22:48:41 +00004218 }
danielk1977518002e2008-09-05 05:02:46 +00004219 return rc;
drh2dcc9aa2002-12-04 13:40:25 +00004220}
4221
drh5e00f6c2001-09-13 13:46:56 +00004222/* Move the cursor to the first entry in the table. Return SQLITE_OK
4223** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004224** or set *pRes to 1 if the table is empty.
drh5e00f6c2001-09-13 13:46:56 +00004225*/
drh3aac2dd2004-04-26 14:10:20 +00004226int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
drh5e00f6c2001-09-13 13:46:56 +00004227 int rc;
drhd677b3d2007-08-20 22:48:41 +00004228
drh1fee73e2007-08-29 04:00:57 +00004229 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004230 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
drh5e00f6c2001-09-13 13:46:56 +00004231 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004232 if( rc==SQLITE_OK ){
4233 if( pCur->eState==CURSOR_INVALID ){
danielk197771d5d2c2008-09-29 11:49:47 +00004234 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004235 *pRes = 1;
4236 rc = SQLITE_OK;
4237 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004238 assert( pCur->apPage[pCur->iPage]->nCell>0 );
drhd677b3d2007-08-20 22:48:41 +00004239 *pRes = 0;
4240 rc = moveToLeftmost(pCur);
4241 }
drh5e00f6c2001-09-13 13:46:56 +00004242 }
drh5e00f6c2001-09-13 13:46:56 +00004243 return rc;
4244}
drh5e2f8b92001-05-28 00:41:15 +00004245
drh9562b552002-02-19 15:00:07 +00004246/* Move the cursor to the last entry in the table. Return SQLITE_OK
4247** on success. Set *pRes to 0 if the cursor actually points to something
drh77c679c2002-02-19 22:43:58 +00004248** or set *pRes to 1 if the table is empty.
drh9562b552002-02-19 15:00:07 +00004249*/
drh3aac2dd2004-04-26 14:10:20 +00004250int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
drh9562b552002-02-19 15:00:07 +00004251 int rc;
drhd677b3d2007-08-20 22:48:41 +00004252
drh1fee73e2007-08-29 04:00:57 +00004253 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004254 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19773f632d52009-05-02 10:03:09 +00004255
4256 /* If the cursor already points to the last entry, this is a no-op. */
4257 if( CURSOR_VALID==pCur->eState && pCur->atLast ){
4258#ifdef SQLITE_DEBUG
4259 /* This block serves to assert() that the cursor really does point
4260 ** to the last entry in the b-tree. */
4261 int ii;
4262 for(ii=0; ii<pCur->iPage; ii++){
4263 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4264 }
4265 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4266 assert( pCur->apPage[pCur->iPage]->leaf );
4267#endif
4268 return SQLITE_OK;
4269 }
4270
drh9562b552002-02-19 15:00:07 +00004271 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004272 if( rc==SQLITE_OK ){
4273 if( CURSOR_INVALID==pCur->eState ){
danielk197771d5d2c2008-09-29 11:49:47 +00004274 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhd677b3d2007-08-20 22:48:41 +00004275 *pRes = 1;
4276 }else{
4277 assert( pCur->eState==CURSOR_VALID );
4278 *pRes = 0;
4279 rc = moveToRightmost(pCur);
drhf49661a2008-12-10 16:45:50 +00004280 pCur->atLast = rc==SQLITE_OK ?1:0;
drhd677b3d2007-08-20 22:48:41 +00004281 }
drh9562b552002-02-19 15:00:07 +00004282 }
drh9562b552002-02-19 15:00:07 +00004283 return rc;
4284}
4285
drhe14006d2008-03-25 17:23:32 +00004286/* Move the cursor so that it points to an entry near the key
drhe63d9992008-08-13 19:11:48 +00004287** specified by pIdxKey or intKey. Return a success code.
drh72f82862001-05-24 21:06:34 +00004288**
drhe63d9992008-08-13 19:11:48 +00004289** For INTKEY tables, the intKey parameter is used. pIdxKey
4290** must be NULL. For index tables, pIdxKey is used and intKey
4291** is ignored.
drh3aac2dd2004-04-26 14:10:20 +00004292**
drh5e2f8b92001-05-28 00:41:15 +00004293** If an exact match is not found, then the cursor is always
drhbd03cae2001-06-02 02:40:57 +00004294** left pointing at a leaf page which would hold the entry if it
drh5e2f8b92001-05-28 00:41:15 +00004295** were present. The cursor might point to an entry that comes
4296** before or after the key.
4297**
drh64022502009-01-09 14:11:04 +00004298** An integer is written into *pRes which is the result of
4299** comparing the key with the entry to which the cursor is
4300** pointing. The meaning of the integer written into
4301** *pRes is as follows:
drhbd03cae2001-06-02 02:40:57 +00004302**
4303** *pRes<0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004304** is smaller than intKey/pIdxKey or if the table is empty
drh1a844c32002-12-04 22:29:28 +00004305** and the cursor is therefore left point to nothing.
drhbd03cae2001-06-02 02:40:57 +00004306**
4307** *pRes==0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004308** exactly matches intKey/pIdxKey.
drhbd03cae2001-06-02 02:40:57 +00004309**
4310** *pRes>0 The cursor is left pointing at an entry that
drh64022502009-01-09 14:11:04 +00004311** is larger than intKey/pIdxKey.
drhd677b3d2007-08-20 22:48:41 +00004312**
drha059ad02001-04-17 20:09:11 +00004313*/
drhe63d9992008-08-13 19:11:48 +00004314int sqlite3BtreeMovetoUnpacked(
4315 BtCursor *pCur, /* The cursor to be moved */
4316 UnpackedRecord *pIdxKey, /* Unpacked index key */
4317 i64 intKey, /* The table key */
4318 int biasRight, /* If true, bias the search to the high end */
4319 int *pRes /* Write search results here */
drhe4d90812007-03-29 05:51:49 +00004320){
drh72f82862001-05-24 21:06:34 +00004321 int rc;
drhd677b3d2007-08-20 22:48:41 +00004322
drh1fee73e2007-08-29 04:00:57 +00004323 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00004324 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk19775cb09632009-07-09 11:36:01 +00004325 assert( pRes );
danielk19773fd7cf52009-07-13 07:30:52 +00004326 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
drha2c20e42008-03-29 16:01:04 +00004327
4328 /* If the cursor is already positioned at the point we are trying
4329 ** to move to, then just return without doing any work */
danielk197771d5d2c2008-09-29 11:49:47 +00004330 if( pCur->eState==CURSOR_VALID && pCur->validNKey
4331 && pCur->apPage[0]->intKey
4332 ){
drhe63d9992008-08-13 19:11:48 +00004333 if( pCur->info.nKey==intKey ){
drha2c20e42008-03-29 16:01:04 +00004334 *pRes = 0;
4335 return SQLITE_OK;
4336 }
drhe63d9992008-08-13 19:11:48 +00004337 if( pCur->atLast && pCur->info.nKey<intKey ){
drha2c20e42008-03-29 16:01:04 +00004338 *pRes = -1;
4339 return SQLITE_OK;
4340 }
4341 }
4342
drh5e2f8b92001-05-28 00:41:15 +00004343 rc = moveToRoot(pCur);
drhd677b3d2007-08-20 22:48:41 +00004344 if( rc ){
4345 return rc;
4346 }
danielk197771d5d2c2008-09-29 11:49:47 +00004347 assert( pCur->apPage[pCur->iPage] );
4348 assert( pCur->apPage[pCur->iPage]->isInit );
danielk1977171fff32009-07-11 05:06:51 +00004349 assert( pCur->apPage[pCur->iPage]->nCell>0 || pCur->eState==CURSOR_INVALID );
danielk1977da184232006-01-05 11:34:32 +00004350 if( pCur->eState==CURSOR_INVALID ){
drhf328bc82004-05-10 23:29:49 +00004351 *pRes = -1;
danielk197771d5d2c2008-09-29 11:49:47 +00004352 assert( pCur->apPage[pCur->iPage]->nCell==0 );
drhc39e0002004-05-07 23:50:57 +00004353 return SQLITE_OK;
4354 }
danielk197771d5d2c2008-09-29 11:49:47 +00004355 assert( pCur->apPage[0]->intKey || pIdxKey );
drh14684382006-11-30 13:05:29 +00004356 for(;;){
drh72f82862001-05-24 21:06:34 +00004357 int lwr, upr;
4358 Pgno chldPg;
danielk197771d5d2c2008-09-29 11:49:47 +00004359 MemPage *pPage = pCur->apPage[pCur->iPage];
danielk1977171fff32009-07-11 05:06:51 +00004360 int c;
4361
4362 /* pPage->nCell must be greater than zero. If this is the root-page
4363 ** the cursor would have been INVALID above and this for(;;) loop
4364 ** not run. If this is not the root-page, then the moveToChild() routine
danielk19773fd7cf52009-07-13 07:30:52 +00004365 ** would have already detected db corruption. Similarly, pPage must
4366 ** be the right kind (index or table) of b-tree page. Otherwise
4367 ** a moveToChild() or moveToRoot() call would have detected corruption. */
danielk1977171fff32009-07-11 05:06:51 +00004368 assert( pPage->nCell>0 );
danielk19773fd7cf52009-07-13 07:30:52 +00004369 assert( pPage->intKey==(pIdxKey==0) );
drh72f82862001-05-24 21:06:34 +00004370 lwr = 0;
4371 upr = pPage->nCell-1;
drhe4d90812007-03-29 05:51:49 +00004372 if( biasRight ){
drhf49661a2008-12-10 16:45:50 +00004373 pCur->aiIdx[pCur->iPage] = (u16)upr;
drhe4d90812007-03-29 05:51:49 +00004374 }else{
drhf49661a2008-12-10 16:45:50 +00004375 pCur->aiIdx[pCur->iPage] = (u16)((upr+lwr)/2);
drhe4d90812007-03-29 05:51:49 +00004376 }
drh64022502009-01-09 14:11:04 +00004377 for(;;){
danielk197711c327a2009-05-04 19:01:26 +00004378 int idx = pCur->aiIdx[pCur->iPage]; /* Index of current cell in pPage */
4379 u8 *pCell; /* Pointer to current cell in pPage */
4380
drh366fda62006-01-13 02:35:09 +00004381 pCur->info.nSize = 0;
danielk197711c327a2009-05-04 19:01:26 +00004382 pCell = findCell(pPage, idx) + pPage->childPtrSize;
drh3aac2dd2004-04-26 14:10:20 +00004383 if( pPage->intKey ){
danielk197711c327a2009-05-04 19:01:26 +00004384 i64 nCellKey;
drhd172f862006-01-12 15:01:15 +00004385 if( pPage->hasData ){
danielk1977bab45c62006-01-16 15:14:27 +00004386 u32 dummy;
shane3f8d5cf2008-04-24 19:15:09 +00004387 pCell += getVarint32(pCell, dummy);
drhd172f862006-01-12 15:01:15 +00004388 }
drha2c20e42008-03-29 16:01:04 +00004389 getVarint(pCell, (u64*)&nCellKey);
drhe63d9992008-08-13 19:11:48 +00004390 if( nCellKey==intKey ){
drh3aac2dd2004-04-26 14:10:20 +00004391 c = 0;
drhe63d9992008-08-13 19:11:48 +00004392 }else if( nCellKey<intKey ){
drh41eb9e92008-04-02 18:33:07 +00004393 c = -1;
4394 }else{
drhe63d9992008-08-13 19:11:48 +00004395 assert( nCellKey>intKey );
drh41eb9e92008-04-02 18:33:07 +00004396 c = +1;
drh3aac2dd2004-04-26 14:10:20 +00004397 }
danielk197711c327a2009-05-04 19:01:26 +00004398 pCur->validNKey = 1;
4399 pCur->info.nKey = nCellKey;
drh3aac2dd2004-04-26 14:10:20 +00004400 }else{
danielk197711c327a2009-05-04 19:01:26 +00004401 /* The maximum supported page-size is 32768 bytes. This means that
4402 ** the maximum number of record bytes stored on an index B-Tree
4403 ** page is at most 8198 bytes, which may be stored as a 2-byte
4404 ** varint. This information is used to attempt to avoid parsing
4405 ** the entire cell by checking for the cases where the record is
4406 ** stored entirely within the b-tree page by inspecting the first
4407 ** 2 bytes of the cell.
4408 */
4409 int nCell = pCell[0];
4410 if( !(nCell & 0x80) && nCell<=pPage->maxLocal ){
4411 /* This branch runs if the record-size field of the cell is a
4412 ** single byte varint and the record fits entirely on the main
4413 ** b-tree page. */
4414 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4415 }else if( !(pCell[1] & 0x80)
4416 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4417 ){
4418 /* The record-size field is a 2 byte varint and the record
4419 ** fits entirely on the main b-tree page. */
4420 c = sqlite3VdbeRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
drhe51c44f2004-05-30 20:46:09 +00004421 }else{
danielk197711c327a2009-05-04 19:01:26 +00004422 /* The record flows over onto one or more overflow pages. In
4423 ** this case the whole cell needs to be parsed, a buffer allocated
4424 ** and accessPayload() used to retrieve the record into the
4425 ** buffer before VdbeRecordCompare() can be called. */
4426 void *pCellKey;
4427 u8 * const pCellBody = pCell - pPage->childPtrSize;
danielk197730548662009-07-09 05:07:37 +00004428 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
shane60a4b532009-05-06 18:57:09 +00004429 nCell = (int)pCur->info.nKey;
danielk197711c327a2009-05-04 19:01:26 +00004430 pCellKey = sqlite3Malloc( nCell );
danielk19776507ecb2008-03-25 09:56:44 +00004431 if( pCellKey==0 ){
4432 rc = SQLITE_NOMEM;
4433 goto moveto_finish;
4434 }
drhfb192682009-07-11 18:26:28 +00004435 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 0);
drhec9b31f2009-08-25 13:53:49 +00004436 if( rc ){
4437 sqlite3_free(pCellKey);
4438 goto moveto_finish;
4439 }
danielk197711c327a2009-05-04 19:01:26 +00004440 c = sqlite3VdbeRecordCompare(nCell, pCellKey, pIdxKey);
drhfacf0302008-06-17 15:12:00 +00004441 sqlite3_free(pCellKey);
drhe51c44f2004-05-30 20:46:09 +00004442 }
drh3aac2dd2004-04-26 14:10:20 +00004443 }
drh72f82862001-05-24 21:06:34 +00004444 if( c==0 ){
drh44845222008-07-17 18:39:57 +00004445 if( pPage->intKey && !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004446 lwr = idx;
drhfc70e6f2004-05-12 21:11:27 +00004447 upr = lwr - 1;
drh8b18dd42004-05-12 19:18:15 +00004448 break;
4449 }else{
drh64022502009-01-09 14:11:04 +00004450 *pRes = 0;
drh1e968a02008-03-25 00:22:21 +00004451 rc = SQLITE_OK;
4452 goto moveto_finish;
drh8b18dd42004-05-12 19:18:15 +00004453 }
drh72f82862001-05-24 21:06:34 +00004454 }
4455 if( c<0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004456 lwr = idx+1;
drh72f82862001-05-24 21:06:34 +00004457 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004458 upr = idx-1;
drh72f82862001-05-24 21:06:34 +00004459 }
drhf1d68b32007-03-29 04:43:26 +00004460 if( lwr>upr ){
4461 break;
4462 }
drhf49661a2008-12-10 16:45:50 +00004463 pCur->aiIdx[pCur->iPage] = (u16)((lwr+upr)/2);
drh72f82862001-05-24 21:06:34 +00004464 }
4465 assert( lwr==upr+1 );
danielk197771d5d2c2008-09-29 11:49:47 +00004466 assert( pPage->isInit );
drh3aac2dd2004-04-26 14:10:20 +00004467 if( pPage->leaf ){
drha34b6762004-05-07 13:30:42 +00004468 chldPg = 0;
drh3aac2dd2004-04-26 14:10:20 +00004469 }else if( lwr>=pPage->nCell ){
drh43605152004-05-29 21:46:49 +00004470 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh72f82862001-05-24 21:06:34 +00004471 }else{
danielk19771cc5ed82007-05-16 17:28:43 +00004472 chldPg = get4byte(findCell(pPage, lwr));
drh72f82862001-05-24 21:06:34 +00004473 }
4474 if( chldPg==0 ){
danielk197771d5d2c2008-09-29 11:49:47 +00004475 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
danielk19775cb09632009-07-09 11:36:01 +00004476 *pRes = c;
drh1e968a02008-03-25 00:22:21 +00004477 rc = SQLITE_OK;
4478 goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004479 }
drhf49661a2008-12-10 16:45:50 +00004480 pCur->aiIdx[pCur->iPage] = (u16)lwr;
drh271efa52004-05-30 19:19:05 +00004481 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004482 pCur->validNKey = 0;
drh8178a752003-01-05 21:41:40 +00004483 rc = moveToChild(pCur, chldPg);
drh1e968a02008-03-25 00:22:21 +00004484 if( rc ) goto moveto_finish;
drh72f82862001-05-24 21:06:34 +00004485 }
drh1e968a02008-03-25 00:22:21 +00004486moveto_finish:
drhe63d9992008-08-13 19:11:48 +00004487 return rc;
4488}
4489
drhd677b3d2007-08-20 22:48:41 +00004490
drh72f82862001-05-24 21:06:34 +00004491/*
drhc39e0002004-05-07 23:50:57 +00004492** Return TRUE if the cursor is not pointing at an entry of the table.
4493**
4494** TRUE will be returned after a call to sqlite3BtreeNext() moves
4495** past the last entry in the table or sqlite3BtreePrev() moves past
4496** the first entry. TRUE is also returned if the table is empty.
4497*/
4498int sqlite3BtreeEof(BtCursor *pCur){
danielk1977da184232006-01-05 11:34:32 +00004499 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4500 ** have been deleted? This API will need to change to return an error code
4501 ** as well as the boolean result value.
4502 */
4503 return (CURSOR_VALID!=pCur->eState);
drhc39e0002004-05-07 23:50:57 +00004504}
4505
4506/*
drhbd03cae2001-06-02 02:40:57 +00004507** Advance the cursor to the next entry in the database. If
drh8c1238a2003-01-02 14:43:55 +00004508** successful then set *pRes=0. If the cursor
drhbd03cae2001-06-02 02:40:57 +00004509** was already pointing to the last entry in the database before
drh8c1238a2003-01-02 14:43:55 +00004510** this routine was called, then set *pRes=1.
drh72f82862001-05-24 21:06:34 +00004511*/
drhd094db12008-04-03 21:46:57 +00004512int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
drh72f82862001-05-24 21:06:34 +00004513 int rc;
danielk197771d5d2c2008-09-29 11:49:47 +00004514 int idx;
danielk197797a227c2006-01-20 16:32:04 +00004515 MemPage *pPage;
drh8b18dd42004-05-12 19:18:15 +00004516
drh1fee73e2007-08-29 04:00:57 +00004517 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004518 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004519 if( rc!=SQLITE_OK ){
4520 return rc;
4521 }
drh8c4d3a62007-04-06 01:03:32 +00004522 assert( pRes!=0 );
drh8c4d3a62007-04-06 01:03:32 +00004523 if( CURSOR_INVALID==pCur->eState ){
4524 *pRes = 1;
4525 return SQLITE_OK;
4526 }
drh4c301aa2009-07-15 17:25:45 +00004527 if( pCur->skipNext>0 ){
4528 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004529 *pRes = 0;
4530 return SQLITE_OK;
4531 }
drh4c301aa2009-07-15 17:25:45 +00004532 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004533
danielk197771d5d2c2008-09-29 11:49:47 +00004534 pPage = pCur->apPage[pCur->iPage];
4535 idx = ++pCur->aiIdx[pCur->iPage];
4536 assert( pPage->isInit );
4537 assert( idx<=pPage->nCell );
danielk19776a43f9b2004-11-16 04:57:24 +00004538
drh271efa52004-05-30 19:19:05 +00004539 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004540 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004541 if( idx>=pPage->nCell ){
drha34b6762004-05-07 13:30:42 +00004542 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00004543 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
drh5e2f8b92001-05-28 00:41:15 +00004544 if( rc ) return rc;
4545 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004546 *pRes = 0;
4547 return rc;
drh72f82862001-05-24 21:06:34 +00004548 }
drh5e2f8b92001-05-28 00:41:15 +00004549 do{
danielk197771d5d2c2008-09-29 11:49:47 +00004550 if( pCur->iPage==0 ){
drh8c1238a2003-01-02 14:43:55 +00004551 *pRes = 1;
danielk1977da184232006-01-05 11:34:32 +00004552 pCur->eState = CURSOR_INVALID;
drh5e2f8b92001-05-28 00:41:15 +00004553 return SQLITE_OK;
4554 }
danielk197730548662009-07-09 05:07:37 +00004555 moveToParent(pCur);
danielk197771d5d2c2008-09-29 11:49:47 +00004556 pPage = pCur->apPage[pCur->iPage];
4557 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
drh8c1238a2003-01-02 14:43:55 +00004558 *pRes = 0;
drh44845222008-07-17 18:39:57 +00004559 if( pPage->intKey ){
drh8b18dd42004-05-12 19:18:15 +00004560 rc = sqlite3BtreeNext(pCur, pRes);
4561 }else{
4562 rc = SQLITE_OK;
4563 }
4564 return rc;
drh8178a752003-01-05 21:41:40 +00004565 }
4566 *pRes = 0;
drh3aac2dd2004-04-26 14:10:20 +00004567 if( pPage->leaf ){
drh8178a752003-01-05 21:41:40 +00004568 return SQLITE_OK;
drh72f82862001-05-24 21:06:34 +00004569 }
drh5e2f8b92001-05-28 00:41:15 +00004570 rc = moveToLeftmost(pCur);
drh8c1238a2003-01-02 14:43:55 +00004571 return rc;
drh72f82862001-05-24 21:06:34 +00004572}
drhd677b3d2007-08-20 22:48:41 +00004573
drh72f82862001-05-24 21:06:34 +00004574
drh3b7511c2001-05-26 13:15:44 +00004575/*
drh2dcc9aa2002-12-04 13:40:25 +00004576** Step the cursor to the back to the previous entry in the database. If
drh8178a752003-01-05 21:41:40 +00004577** successful then set *pRes=0. If the cursor
drh2dcc9aa2002-12-04 13:40:25 +00004578** was already pointing to the first entry in the database before
drh8178a752003-01-05 21:41:40 +00004579** this routine was called, then set *pRes=1.
drh2dcc9aa2002-12-04 13:40:25 +00004580*/
drhd094db12008-04-03 21:46:57 +00004581int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
drh2dcc9aa2002-12-04 13:40:25 +00004582 int rc;
drh8178a752003-01-05 21:41:40 +00004583 MemPage *pPage;
danielk1977da184232006-01-05 11:34:32 +00004584
drh1fee73e2007-08-29 04:00:57 +00004585 assert( cursorHoldsMutex(pCur) );
drha3460582008-07-11 21:02:53 +00004586 rc = restoreCursorPosition(pCur);
danielk1977da184232006-01-05 11:34:32 +00004587 if( rc!=SQLITE_OK ){
4588 return rc;
4589 }
drha2c20e42008-03-29 16:01:04 +00004590 pCur->atLast = 0;
drh8c4d3a62007-04-06 01:03:32 +00004591 if( CURSOR_INVALID==pCur->eState ){
4592 *pRes = 1;
4593 return SQLITE_OK;
4594 }
drh4c301aa2009-07-15 17:25:45 +00004595 if( pCur->skipNext<0 ){
4596 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004597 *pRes = 0;
4598 return SQLITE_OK;
4599 }
drh4c301aa2009-07-15 17:25:45 +00004600 pCur->skipNext = 0;
danielk1977da184232006-01-05 11:34:32 +00004601
danielk197771d5d2c2008-09-29 11:49:47 +00004602 pPage = pCur->apPage[pCur->iPage];
4603 assert( pPage->isInit );
drha34b6762004-05-07 13:30:42 +00004604 if( !pPage->leaf ){
danielk197771d5d2c2008-09-29 11:49:47 +00004605 int idx = pCur->aiIdx[pCur->iPage];
4606 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
drhd677b3d2007-08-20 22:48:41 +00004607 if( rc ){
4608 return rc;
4609 }
drh2dcc9aa2002-12-04 13:40:25 +00004610 rc = moveToRightmost(pCur);
4611 }else{
danielk197771d5d2c2008-09-29 11:49:47 +00004612 while( pCur->aiIdx[pCur->iPage]==0 ){
4613 if( pCur->iPage==0 ){
danielk1977da184232006-01-05 11:34:32 +00004614 pCur->eState = CURSOR_INVALID;
drhc39e0002004-05-07 23:50:57 +00004615 *pRes = 1;
drh2dcc9aa2002-12-04 13:40:25 +00004616 return SQLITE_OK;
4617 }
danielk197730548662009-07-09 05:07:37 +00004618 moveToParent(pCur);
drh2dcc9aa2002-12-04 13:40:25 +00004619 }
drh271efa52004-05-30 19:19:05 +00004620 pCur->info.nSize = 0;
drha2c20e42008-03-29 16:01:04 +00004621 pCur->validNKey = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00004622
4623 pCur->aiIdx[pCur->iPage]--;
4624 pPage = pCur->apPage[pCur->iPage];
drh44845222008-07-17 18:39:57 +00004625 if( pPage->intKey && !pPage->leaf ){
drh8b18dd42004-05-12 19:18:15 +00004626 rc = sqlite3BtreePrevious(pCur, pRes);
4627 }else{
4628 rc = SQLITE_OK;
4629 }
drh2dcc9aa2002-12-04 13:40:25 +00004630 }
drh8178a752003-01-05 21:41:40 +00004631 *pRes = 0;
drh2dcc9aa2002-12-04 13:40:25 +00004632 return rc;
4633}
4634
4635/*
drh3b7511c2001-05-26 13:15:44 +00004636** Allocate a new page from the database file.
4637**
danielk19773b8a05f2007-03-19 17:44:26 +00004638** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
drh3b7511c2001-05-26 13:15:44 +00004639** has already been called on the new page.) The new page has also
4640** been referenced and the calling routine is responsible for calling
danielk19773b8a05f2007-03-19 17:44:26 +00004641** sqlite3PagerUnref() on the new page when it is done.
drh3b7511c2001-05-26 13:15:44 +00004642**
4643** SQLITE_OK is returned on success. Any other return value indicates
4644** an error. *ppPage and *pPgno are undefined in the event of an error.
danielk19773b8a05f2007-03-19 17:44:26 +00004645** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
drhbea00b92002-07-08 10:59:50 +00004646**
drh199e3cf2002-07-18 11:01:47 +00004647** If the "nearby" parameter is not 0, then a (feeble) effort is made to
4648** locate a page close to the page number "nearby". This can be used in an
drhbea00b92002-07-08 10:59:50 +00004649** attempt to keep related pages close to each other in the database file,
4650** which in turn can make database access faster.
danielk1977cb1a7eb2004-11-05 12:27:02 +00004651**
4652** If the "exact" parameter is not 0, and the page-number nearby exists
4653** anywhere on the free-list, then it is guarenteed to be returned. This
4654** is only used by auto-vacuum databases when allocating a new table.
drh3b7511c2001-05-26 13:15:44 +00004655*/
drh4f0c5872007-03-26 22:05:01 +00004656static int allocateBtreePage(
danielk1977aef0bf62005-12-30 16:28:01 +00004657 BtShared *pBt,
danielk1977cb1a7eb2004-11-05 12:27:02 +00004658 MemPage **ppPage,
4659 Pgno *pPgno,
4660 Pgno nearby,
4661 u8 exact
4662){
drh3aac2dd2004-04-26 14:10:20 +00004663 MemPage *pPage1;
drh8c42ca92001-06-22 19:15:00 +00004664 int rc;
drh35cd6432009-06-05 14:17:21 +00004665 u32 n; /* Number of pages on the freelist */
drh042d6a12009-06-17 13:57:16 +00004666 u32 k; /* Number of leaves on the trunk of the freelist */
drhd3627af2006-12-18 18:34:51 +00004667 MemPage *pTrunk = 0;
4668 MemPage *pPrevTrunk = 0;
drh1662b5a2009-06-04 19:06:09 +00004669 Pgno mxPage; /* Total size of the database file */
drh30e58752002-03-02 20:41:57 +00004670
drh1fee73e2007-08-29 04:00:57 +00004671 assert( sqlite3_mutex_held(pBt->mutex) );
drh3aac2dd2004-04-26 14:10:20 +00004672 pPage1 = pBt->pPage1;
drhb1299152010-03-30 22:58:33 +00004673 mxPage = btreePagecount(pBt);
drh3aac2dd2004-04-26 14:10:20 +00004674 n = get4byte(&pPage1->aData[36]);
drhdf35a082009-07-09 02:24:35 +00004675 testcase( n==mxPage-1 );
4676 if( n>=mxPage ){
drh1662b5a2009-06-04 19:06:09 +00004677 return SQLITE_CORRUPT_BKPT;
4678 }
drh3aac2dd2004-04-26 14:10:20 +00004679 if( n>0 ){
drh91025292004-05-03 19:49:32 +00004680 /* There are pages on the freelist. Reuse one of those pages. */
danielk1977cb1a7eb2004-11-05 12:27:02 +00004681 Pgno iTrunk;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004682 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
4683
4684 /* If the 'exact' parameter was true and a query of the pointer-map
4685 ** shows that the page 'nearby' is somewhere on the free-list, then
4686 ** the entire-list will be searched for that page.
4687 */
4688#ifndef SQLITE_OMIT_AUTOVACUUM
drh1662b5a2009-06-04 19:06:09 +00004689 if( exact && nearby<=mxPage ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004690 u8 eType;
4691 assert( nearby>0 );
4692 assert( pBt->autoVacuum );
4693 rc = ptrmapGet(pBt, nearby, &eType, 0);
4694 if( rc ) return rc;
4695 if( eType==PTRMAP_FREEPAGE ){
4696 searchList = 1;
4697 }
4698 *pPgno = nearby;
4699 }
4700#endif
4701
4702 /* Decrement the free-list count by 1. Set iTrunk to the index of the
4703 ** first free-list trunk page. iPrevTrunk is initially 1.
4704 */
danielk19773b8a05f2007-03-19 17:44:26 +00004705 rc = sqlite3PagerWrite(pPage1->pDbPage);
drh3b7511c2001-05-26 13:15:44 +00004706 if( rc ) return rc;
drh3aac2dd2004-04-26 14:10:20 +00004707 put4byte(&pPage1->aData[36], n-1);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004708
4709 /* The code within this loop is run only once if the 'searchList' variable
4710 ** is not true. Otherwise, it runs once for each trunk-page on the
4711 ** free-list until the page 'nearby' is located.
4712 */
4713 do {
4714 pPrevTrunk = pTrunk;
4715 if( pPrevTrunk ){
4716 iTrunk = get4byte(&pPrevTrunk->aData[0]);
drhbea00b92002-07-08 10:59:50 +00004717 }else{
danielk1977cb1a7eb2004-11-05 12:27:02 +00004718 iTrunk = get4byte(&pPage1->aData[32]);
drhbea00b92002-07-08 10:59:50 +00004719 }
drhdf35a082009-07-09 02:24:35 +00004720 testcase( iTrunk==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004721 if( iTrunk>mxPage ){
4722 rc = SQLITE_CORRUPT_BKPT;
4723 }else{
danielk197730548662009-07-09 05:07:37 +00004724 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
drh1662b5a2009-06-04 19:06:09 +00004725 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004726 if( rc ){
drhd3627af2006-12-18 18:34:51 +00004727 pTrunk = 0;
4728 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004729 }
4730
4731 k = get4byte(&pTrunk->aData[4]);
4732 if( k==0 && !searchList ){
4733 /* The trunk has no leaves and the list is not being searched.
4734 ** So extract the trunk page itself and use it as the newly
4735 ** allocated page */
4736 assert( pPrevTrunk==0 );
danielk19773b8a05f2007-03-19 17:44:26 +00004737 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004738 if( rc ){
4739 goto end_allocate_page;
4740 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004741 *pPgno = iTrunk;
4742 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4743 *ppPage = pTrunk;
4744 pTrunk = 0;
4745 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
drh042d6a12009-06-17 13:57:16 +00004746 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004747 /* Value of k is out of range. Database corruption */
drhd3627af2006-12-18 18:34:51 +00004748 rc = SQLITE_CORRUPT_BKPT;
4749 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004750#ifndef SQLITE_OMIT_AUTOVACUUM
4751 }else if( searchList && nearby==iTrunk ){
4752 /* The list is being searched and this trunk page is the page
4753 ** to allocate, regardless of whether it has leaves.
4754 */
4755 assert( *pPgno==iTrunk );
4756 *ppPage = pTrunk;
4757 searchList = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00004758 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004759 if( rc ){
4760 goto end_allocate_page;
4761 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004762 if( k==0 ){
4763 if( !pPrevTrunk ){
4764 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
4765 }else{
4766 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
4767 }
4768 }else{
4769 /* The trunk page is required by the caller but it contains
4770 ** pointers to free-list leaves. The first leaf becomes a trunk
4771 ** page in this case.
4772 */
4773 MemPage *pNewTrunk;
4774 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
drh1662b5a2009-06-04 19:06:09 +00004775 if( iNewTrunk>mxPage ){
4776 rc = SQLITE_CORRUPT_BKPT;
4777 goto end_allocate_page;
4778 }
drhdf35a082009-07-09 02:24:35 +00004779 testcase( iNewTrunk==mxPage );
danielk197730548662009-07-09 05:07:37 +00004780 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004781 if( rc!=SQLITE_OK ){
drhd3627af2006-12-18 18:34:51 +00004782 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004783 }
danielk19773b8a05f2007-03-19 17:44:26 +00004784 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004785 if( rc!=SQLITE_OK ){
4786 releasePage(pNewTrunk);
drhd3627af2006-12-18 18:34:51 +00004787 goto end_allocate_page;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004788 }
4789 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
4790 put4byte(&pNewTrunk->aData[4], k-1);
4791 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
drhd3627af2006-12-18 18:34:51 +00004792 releasePage(pNewTrunk);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004793 if( !pPrevTrunk ){
drhc5053fb2008-11-27 02:22:10 +00004794 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004795 put4byte(&pPage1->aData[32], iNewTrunk);
4796 }else{
danielk19773b8a05f2007-03-19 17:44:26 +00004797 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004798 if( rc ){
4799 goto end_allocate_page;
4800 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004801 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
4802 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004803 }
4804 pTrunk = 0;
4805 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
4806#endif
danielk1977e5765212009-06-17 11:13:28 +00004807 }else if( k>0 ){
danielk1977cb1a7eb2004-11-05 12:27:02 +00004808 /* Extract a leaf from the trunk */
drh042d6a12009-06-17 13:57:16 +00004809 u32 closest;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004810 Pgno iPage;
4811 unsigned char *aData = pTrunk->aData;
danielk19773b8a05f2007-03-19 17:44:26 +00004812 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhd3627af2006-12-18 18:34:51 +00004813 if( rc ){
4814 goto end_allocate_page;
4815 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004816 if( nearby>0 ){
drh042d6a12009-06-17 13:57:16 +00004817 u32 i;
4818 int dist;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004819 closest = 0;
4820 dist = get4byte(&aData[8]) - nearby;
4821 if( dist<0 ) dist = -dist;
4822 for(i=1; i<k; i++){
4823 int d2 = get4byte(&aData[8+i*4]) - nearby;
4824 if( d2<0 ) d2 = -d2;
4825 if( d2<dist ){
4826 closest = i;
4827 dist = d2;
4828 }
4829 }
4830 }else{
4831 closest = 0;
4832 }
4833
4834 iPage = get4byte(&aData[8+closest*4]);
drhdf35a082009-07-09 02:24:35 +00004835 testcase( iPage==mxPage );
drh1662b5a2009-06-04 19:06:09 +00004836 if( iPage>mxPage ){
4837 rc = SQLITE_CORRUPT_BKPT;
4838 goto end_allocate_page;
4839 }
drhdf35a082009-07-09 02:24:35 +00004840 testcase( iPage==mxPage );
danielk1977cb1a7eb2004-11-05 12:27:02 +00004841 if( !searchList || iPage==nearby ){
danielk1977bea2a942009-01-20 17:06:27 +00004842 int noContent;
shane1f9e6aa2008-06-09 19:27:11 +00004843 *pPgno = iPage;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004844 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
4845 ": %d more free pages\n",
4846 *pPgno, closest+1, k, pTrunk->pgno, n-1));
4847 if( closest<k-1 ){
4848 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
4849 }
4850 put4byte(&aData[4], k-1);
drhc5053fb2008-11-27 02:22:10 +00004851 assert( sqlite3PagerIswriteable(pTrunk->pDbPage) );
danielk1977bea2a942009-01-20 17:06:27 +00004852 noContent = !btreeGetHasContent(pBt, *pPgno);
danielk197730548662009-07-09 05:07:37 +00004853 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
danielk1977cb1a7eb2004-11-05 12:27:02 +00004854 if( rc==SQLITE_OK ){
danielk19773b8a05f2007-03-19 17:44:26 +00004855 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004856 if( rc!=SQLITE_OK ){
4857 releasePage(*ppPage);
4858 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004859 }
4860 searchList = 0;
4861 }
drhee696e22004-08-30 16:52:17 +00004862 }
danielk1977cb1a7eb2004-11-05 12:27:02 +00004863 releasePage(pPrevTrunk);
drhd3627af2006-12-18 18:34:51 +00004864 pPrevTrunk = 0;
danielk1977cb1a7eb2004-11-05 12:27:02 +00004865 }while( searchList );
drh3b7511c2001-05-26 13:15:44 +00004866 }else{
drh3aac2dd2004-04-26 14:10:20 +00004867 /* There are no pages on the freelist, so create a new page at the
4868 ** end of the file */
drhdd3cd972010-03-27 17:12:36 +00004869 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
4870 if( rc ) return rc;
4871 pBt->nPage++;
4872 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
danielk1977bea2a942009-01-20 17:06:27 +00004873
danielk1977afcdd022004-10-31 16:25:42 +00004874#ifndef SQLITE_OMIT_AUTOVACUUM
drhdd3cd972010-03-27 17:12:36 +00004875 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
danielk1977afcdd022004-10-31 16:25:42 +00004876 /* If *pPgno refers to a pointer-map page, allocate two new pages
4877 ** at the end of the file instead of one. The first allocated page
4878 ** becomes a new pointer-map page, the second is used by the caller.
4879 */
danielk1977ac861692009-03-28 10:54:22 +00004880 MemPage *pPg = 0;
drhdd3cd972010-03-27 17:12:36 +00004881 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
4882 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
drh5e0ccc22010-03-29 19:36:52 +00004883 rc = btreeGetPage(pBt, pBt->nPage, &pPg, 1);
danielk1977ac861692009-03-28 10:54:22 +00004884 if( rc==SQLITE_OK ){
4885 rc = sqlite3PagerWrite(pPg->pDbPage);
4886 releasePage(pPg);
4887 }
4888 if( rc ) return rc;
drhdd3cd972010-03-27 17:12:36 +00004889 pBt->nPage++;
4890 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
danielk1977afcdd022004-10-31 16:25:42 +00004891 }
4892#endif
drhdd3cd972010-03-27 17:12:36 +00004893 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
4894 *pPgno = pBt->nPage;
danielk1977afcdd022004-10-31 16:25:42 +00004895
danielk1977599fcba2004-11-08 07:13:13 +00004896 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drh5e0ccc22010-03-29 19:36:52 +00004897 rc = btreeGetPage(pBt, *pPgno, ppPage, 1);
drh3b7511c2001-05-26 13:15:44 +00004898 if( rc ) return rc;
danielk19773b8a05f2007-03-19 17:44:26 +00004899 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
danielk1977aac0a382005-01-16 11:07:06 +00004900 if( rc!=SQLITE_OK ){
4901 releasePage(*ppPage);
4902 }
drh3a4c1412004-05-09 20:40:11 +00004903 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
drh3b7511c2001-05-26 13:15:44 +00004904 }
danielk1977599fcba2004-11-08 07:13:13 +00004905
4906 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
drhd3627af2006-12-18 18:34:51 +00004907
4908end_allocate_page:
4909 releasePage(pTrunk);
4910 releasePage(pPrevTrunk);
danielk1977b247c212008-11-21 09:09:01 +00004911 if( rc==SQLITE_OK ){
4912 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
4913 releasePage(*ppPage);
4914 return SQLITE_CORRUPT_BKPT;
4915 }
4916 (*ppPage)->isInit = 0;
danielk1977a50d9aa2009-06-08 14:49:45 +00004917 }else{
4918 *ppPage = 0;
danielk1977eaa06f62008-09-18 17:34:44 +00004919 }
drh3b7511c2001-05-26 13:15:44 +00004920 return rc;
4921}
4922
4923/*
danielk1977bea2a942009-01-20 17:06:27 +00004924** This function is used to add page iPage to the database file free-list.
4925** It is assumed that the page is not already a part of the free-list.
drh5e2f8b92001-05-28 00:41:15 +00004926**
danielk1977bea2a942009-01-20 17:06:27 +00004927** The value passed as the second argument to this function is optional.
4928** If the caller happens to have a pointer to the MemPage object
4929** corresponding to page iPage handy, it may pass it as the second value.
4930** Otherwise, it may pass NULL.
4931**
4932** If a pointer to a MemPage object is passed as the second argument,
4933** its reference count is not altered by this function.
drh3b7511c2001-05-26 13:15:44 +00004934*/
danielk1977bea2a942009-01-20 17:06:27 +00004935static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
4936 MemPage *pTrunk = 0; /* Free-list trunk page */
4937 Pgno iTrunk = 0; /* Page number of free-list trunk page */
4938 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
4939 MemPage *pPage; /* Page being freed. May be NULL. */
4940 int rc; /* Return Code */
4941 int nFree; /* Initial number of pages on free-list */
drh8b2f49b2001-06-08 00:21:52 +00004942
danielk1977bea2a942009-01-20 17:06:27 +00004943 assert( sqlite3_mutex_held(pBt->mutex) );
4944 assert( iPage>1 );
4945 assert( !pMemPage || pMemPage->pgno==iPage );
4946
4947 if( pMemPage ){
4948 pPage = pMemPage;
4949 sqlite3PagerRef(pPage->pDbPage);
4950 }else{
4951 pPage = btreePageLookup(pBt, iPage);
4952 }
drh3aac2dd2004-04-26 14:10:20 +00004953
drha34b6762004-05-07 13:30:42 +00004954 /* Increment the free page count on pPage1 */
danielk19773b8a05f2007-03-19 17:44:26 +00004955 rc = sqlite3PagerWrite(pPage1->pDbPage);
danielk1977bea2a942009-01-20 17:06:27 +00004956 if( rc ) goto freepage_out;
4957 nFree = get4byte(&pPage1->aData[36]);
4958 put4byte(&pPage1->aData[36], nFree+1);
drh3aac2dd2004-04-26 14:10:20 +00004959
drh5b47efa2010-02-12 18:18:39 +00004960 if( pBt->secureDelete ){
4961 /* If the secure_delete option is enabled, then
4962 ** always fully overwrite deleted information with zeros.
4963 */
shaneh84f4b2f2010-02-26 01:46:54 +00004964 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
4965 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
drh5b47efa2010-02-12 18:18:39 +00004966 ){
4967 goto freepage_out;
4968 }
4969 memset(pPage->aData, 0, pPage->pBt->pageSize);
danielk1977bea2a942009-01-20 17:06:27 +00004970 }
drhfcce93f2006-02-22 03:08:32 +00004971
danielk1977687566d2004-11-02 12:56:41 +00004972 /* If the database supports auto-vacuum, write an entry in the pointer-map
danielk1977cb1a7eb2004-11-05 12:27:02 +00004973 ** to indicate that the page is free.
danielk1977687566d2004-11-02 12:56:41 +00004974 */
danielk197785d90ca2008-07-19 14:25:15 +00004975 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00004976 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
danielk1977bea2a942009-01-20 17:06:27 +00004977 if( rc ) goto freepage_out;
danielk1977687566d2004-11-02 12:56:41 +00004978 }
danielk1977687566d2004-11-02 12:56:41 +00004979
danielk1977bea2a942009-01-20 17:06:27 +00004980 /* Now manipulate the actual database free-list structure. There are two
4981 ** possibilities. If the free-list is currently empty, or if the first
4982 ** trunk page in the free-list is full, then this page will become a
4983 ** new free-list trunk page. Otherwise, it will become a leaf of the
4984 ** first trunk page in the current free-list. This block tests if it
4985 ** is possible to add the page as a new free-list leaf.
4986 */
4987 if( nFree!=0 ){
drhc046e3e2009-07-15 11:26:44 +00004988 u32 nLeaf; /* Initial number of leaf cells on trunk page */
danielk1977bea2a942009-01-20 17:06:27 +00004989
4990 iTrunk = get4byte(&pPage1->aData[32]);
danielk197730548662009-07-09 05:07:37 +00004991 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
danielk1977bea2a942009-01-20 17:06:27 +00004992 if( rc!=SQLITE_OK ){
4993 goto freepage_out;
4994 }
4995
4996 nLeaf = get4byte(&pTrunk->aData[4]);
drheeb844a2009-08-08 18:01:07 +00004997 assert( pBt->usableSize>32 );
4998 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
danielk1977bea2a942009-01-20 17:06:27 +00004999 rc = SQLITE_CORRUPT_BKPT;
5000 goto freepage_out;
5001 }
drheeb844a2009-08-08 18:01:07 +00005002 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
danielk1977bea2a942009-01-20 17:06:27 +00005003 /* In this case there is room on the trunk page to insert the page
5004 ** being freed as a new leaf.
drh45b1fac2008-07-04 17:52:42 +00005005 **
5006 ** Note that the trunk page is not really full until it contains
5007 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5008 ** coded. But due to a coding error in versions of SQLite prior to
5009 ** 3.6.0, databases with freelist trunk pages holding more than
5010 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5011 ** to maintain backwards compatibility with older versions of SQLite,
drhc046e3e2009-07-15 11:26:44 +00005012 ** we will continue to restrict the number of entries to usableSize/4 - 8
drh45b1fac2008-07-04 17:52:42 +00005013 ** for now. At some point in the future (once everyone has upgraded
5014 ** to 3.6.0 or later) we should consider fixing the conditional above
5015 ** to read "usableSize/4-2" instead of "usableSize/4-8".
5016 */
danielk19773b8a05f2007-03-19 17:44:26 +00005017 rc = sqlite3PagerWrite(pTrunk->pDbPage);
drhf5345442007-04-09 12:45:02 +00005018 if( rc==SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005019 put4byte(&pTrunk->aData[4], nLeaf+1);
5020 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
drh5b47efa2010-02-12 18:18:39 +00005021 if( pPage && !pBt->secureDelete ){
danielk1977bea2a942009-01-20 17:06:27 +00005022 sqlite3PagerDontWrite(pPage->pDbPage);
5023 }
danielk1977bea2a942009-01-20 17:06:27 +00005024 rc = btreeSetHasContent(pBt, iPage);
drhf5345442007-04-09 12:45:02 +00005025 }
drh3a4c1412004-05-09 20:40:11 +00005026 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
danielk1977bea2a942009-01-20 17:06:27 +00005027 goto freepage_out;
drh3aac2dd2004-04-26 14:10:20 +00005028 }
drh3b7511c2001-05-26 13:15:44 +00005029 }
danielk1977bea2a942009-01-20 17:06:27 +00005030
5031 /* If control flows to this point, then it was not possible to add the
5032 ** the page being freed as a leaf page of the first trunk in the free-list.
5033 ** Possibly because the free-list is empty, or possibly because the
5034 ** first trunk in the free-list is full. Either way, the page being freed
5035 ** will become the new first trunk page in the free-list.
5036 */
drhc046e3e2009-07-15 11:26:44 +00005037 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
5038 goto freepage_out;
5039 }
5040 rc = sqlite3PagerWrite(pPage->pDbPage);
5041 if( rc!=SQLITE_OK ){
danielk1977bea2a942009-01-20 17:06:27 +00005042 goto freepage_out;
5043 }
5044 put4byte(pPage->aData, iTrunk);
5045 put4byte(&pPage->aData[4], 0);
5046 put4byte(&pPage1->aData[32], iPage);
5047 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5048
5049freepage_out:
5050 if( pPage ){
5051 pPage->isInit = 0;
5052 }
5053 releasePage(pPage);
5054 releasePage(pTrunk);
drh3b7511c2001-05-26 13:15:44 +00005055 return rc;
5056}
drhc314dc72009-07-21 11:52:34 +00005057static void freePage(MemPage *pPage, int *pRC){
5058 if( (*pRC)==SQLITE_OK ){
5059 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5060 }
danielk1977bea2a942009-01-20 17:06:27 +00005061}
drh3b7511c2001-05-26 13:15:44 +00005062
5063/*
drh3aac2dd2004-04-26 14:10:20 +00005064** Free any overflow pages associated with the given Cell.
drh3b7511c2001-05-26 13:15:44 +00005065*/
drh3aac2dd2004-04-26 14:10:20 +00005066static int clearCell(MemPage *pPage, unsigned char *pCell){
danielk1977aef0bf62005-12-30 16:28:01 +00005067 BtShared *pBt = pPage->pBt;
drh6f11bef2004-05-13 01:12:56 +00005068 CellInfo info;
drh3aac2dd2004-04-26 14:10:20 +00005069 Pgno ovflPgno;
drh6f11bef2004-05-13 01:12:56 +00005070 int rc;
drh94440812007-03-06 11:42:19 +00005071 int nOvfl;
shane63207ab2009-02-04 01:49:30 +00005072 u16 ovflPageSize;
drh3b7511c2001-05-26 13:15:44 +00005073
drh1fee73e2007-08-29 04:00:57 +00005074 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk197730548662009-07-09 05:07:37 +00005075 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005076 if( info.iOverflow==0 ){
drha34b6762004-05-07 13:30:42 +00005077 return SQLITE_OK; /* No overflow pages. Return without doing anything */
drh3aac2dd2004-04-26 14:10:20 +00005078 }
drh6f11bef2004-05-13 01:12:56 +00005079 ovflPgno = get4byte(&pCell[info.iOverflow]);
shane63207ab2009-02-04 01:49:30 +00005080 assert( pBt->usableSize > 4 );
drh94440812007-03-06 11:42:19 +00005081 ovflPageSize = pBt->usableSize - 4;
drh72365832007-03-06 15:53:44 +00005082 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5083 assert( ovflPgno==0 || nOvfl>0 );
5084 while( nOvfl-- ){
shane63207ab2009-02-04 01:49:30 +00005085 Pgno iNext = 0;
danielk1977bea2a942009-01-20 17:06:27 +00005086 MemPage *pOvfl = 0;
drhb1299152010-03-30 22:58:33 +00005087 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
danielk1977e589a672009-04-11 16:06:15 +00005088 /* 0 is not a legal page number and page 1 cannot be an
5089 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5090 ** file the database must be corrupt. */
drh49285702005-09-17 15:20:26 +00005091 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00005092 }
danielk1977bea2a942009-01-20 17:06:27 +00005093 if( nOvfl ){
5094 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5095 if( rc ) return rc;
5096 }
dan887d4b22010-02-25 12:09:16 +00005097
shaneh1da207e2010-03-09 14:41:12 +00005098 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
dan887d4b22010-02-25 12:09:16 +00005099 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5100 ){
5101 /* There is no reason any cursor should have an outstanding reference
5102 ** to an overflow page belonging to a cell that is being deleted/updated.
5103 ** So if there exists more than one reference to this page, then it
5104 ** must not really be an overflow page and the database must be corrupt.
5105 ** It is helpful to detect this before calling freePage2(), as
5106 ** freePage2() may zero the page contents if secure-delete mode is
5107 ** enabled. If this 'overflow' page happens to be a page that the
5108 ** caller is iterating through or using in some other way, this
5109 ** can be problematic.
5110 */
5111 rc = SQLITE_CORRUPT_BKPT;
5112 }else{
5113 rc = freePage2(pBt, pOvfl, ovflPgno);
5114 }
5115
danielk1977bea2a942009-01-20 17:06:27 +00005116 if( pOvfl ){
5117 sqlite3PagerUnref(pOvfl->pDbPage);
5118 }
drh3b7511c2001-05-26 13:15:44 +00005119 if( rc ) return rc;
danielk1977bea2a942009-01-20 17:06:27 +00005120 ovflPgno = iNext;
drh3b7511c2001-05-26 13:15:44 +00005121 }
drh5e2f8b92001-05-28 00:41:15 +00005122 return SQLITE_OK;
drh3b7511c2001-05-26 13:15:44 +00005123}
5124
5125/*
drh91025292004-05-03 19:49:32 +00005126** Create the byte sequence used to represent a cell on page pPage
5127** and write that byte sequence into pCell[]. Overflow pages are
5128** allocated and filled in as necessary. The calling procedure
5129** is responsible for making sure sufficient space has been allocated
5130** for pCell[].
5131**
5132** Note that pCell does not necessary need to point to the pPage->aData
5133** area. pCell might point to some temporary storage. The cell will
5134** be constructed in this temporary area then copied into pPage->aData
5135** later.
drh3b7511c2001-05-26 13:15:44 +00005136*/
5137static int fillInCell(
drh3aac2dd2004-04-26 14:10:20 +00005138 MemPage *pPage, /* The page that contains the cell */
drh4b70f112004-05-02 21:12:19 +00005139 unsigned char *pCell, /* Complete text of the cell */
drh4a1c3802004-05-12 15:15:47 +00005140 const void *pKey, i64 nKey, /* The key */
drh4b70f112004-05-02 21:12:19 +00005141 const void *pData,int nData, /* The data */
drhb026e052007-05-02 01:34:31 +00005142 int nZero, /* Extra zero bytes to append to pData */
drh4b70f112004-05-02 21:12:19 +00005143 int *pnSize /* Write cell size here */
drh3b7511c2001-05-26 13:15:44 +00005144){
drh3b7511c2001-05-26 13:15:44 +00005145 int nPayload;
drh8c6fa9b2004-05-26 00:01:53 +00005146 const u8 *pSrc;
drha34b6762004-05-07 13:30:42 +00005147 int nSrc, n, rc;
drh3aac2dd2004-04-26 14:10:20 +00005148 int spaceLeft;
5149 MemPage *pOvfl = 0;
drh9b171272004-05-08 02:03:22 +00005150 MemPage *pToRelease = 0;
drh3aac2dd2004-04-26 14:10:20 +00005151 unsigned char *pPrior;
5152 unsigned char *pPayload;
danielk1977aef0bf62005-12-30 16:28:01 +00005153 BtShared *pBt = pPage->pBt;
drh3aac2dd2004-04-26 14:10:20 +00005154 Pgno pgnoOvfl = 0;
drh4b70f112004-05-02 21:12:19 +00005155 int nHeader;
drh6f11bef2004-05-13 01:12:56 +00005156 CellInfo info;
drh3b7511c2001-05-26 13:15:44 +00005157
drh1fee73e2007-08-29 04:00:57 +00005158 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhd677b3d2007-08-20 22:48:41 +00005159
drhc5053fb2008-11-27 02:22:10 +00005160 /* pPage is not necessarily writeable since pCell might be auxiliary
5161 ** buffer space that is separate from the pPage buffer area */
5162 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5163 || sqlite3PagerIswriteable(pPage->pDbPage) );
5164
drh91025292004-05-03 19:49:32 +00005165 /* Fill in the header. */
drh43605152004-05-29 21:46:49 +00005166 nHeader = 0;
drh91025292004-05-03 19:49:32 +00005167 if( !pPage->leaf ){
5168 nHeader += 4;
5169 }
drh8b18dd42004-05-12 19:18:15 +00005170 if( pPage->hasData ){
drhb026e052007-05-02 01:34:31 +00005171 nHeader += putVarint(&pCell[nHeader], nData+nZero);
drh6f11bef2004-05-13 01:12:56 +00005172 }else{
drhb026e052007-05-02 01:34:31 +00005173 nData = nZero = 0;
drh91025292004-05-03 19:49:32 +00005174 }
drh6f11bef2004-05-13 01:12:56 +00005175 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
danielk197730548662009-07-09 05:07:37 +00005176 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00005177 assert( info.nHeader==nHeader );
5178 assert( info.nKey==nKey );
danielk197789d40042008-11-17 14:20:56 +00005179 assert( info.nData==(u32)(nData+nZero) );
drh6f11bef2004-05-13 01:12:56 +00005180
5181 /* Fill in the payload */
drhb026e052007-05-02 01:34:31 +00005182 nPayload = nData + nZero;
drh3aac2dd2004-04-26 14:10:20 +00005183 if( pPage->intKey ){
5184 pSrc = pData;
5185 nSrc = nData;
drh91025292004-05-03 19:49:32 +00005186 nData = 0;
drhf49661a2008-12-10 16:45:50 +00005187 }else{
danielk197731d31b82009-07-13 13:18:07 +00005188 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5189 return SQLITE_CORRUPT_BKPT;
drh20abac22009-01-28 20:21:17 +00005190 }
drhf49661a2008-12-10 16:45:50 +00005191 nPayload += (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005192 pSrc = pKey;
drhf49661a2008-12-10 16:45:50 +00005193 nSrc = (int)nKey;
drh3aac2dd2004-04-26 14:10:20 +00005194 }
drh6f11bef2004-05-13 01:12:56 +00005195 *pnSize = info.nSize;
5196 spaceLeft = info.nLocal;
drh3aac2dd2004-04-26 14:10:20 +00005197 pPayload = &pCell[nHeader];
drh6f11bef2004-05-13 01:12:56 +00005198 pPrior = &pCell[info.iOverflow];
drh3b7511c2001-05-26 13:15:44 +00005199
drh3b7511c2001-05-26 13:15:44 +00005200 while( nPayload>0 ){
5201 if( spaceLeft==0 ){
danielk1977afcdd022004-10-31 16:25:42 +00005202#ifndef SQLITE_OMIT_AUTOVACUUM
5203 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
danielk1977b39f70b2007-05-17 18:28:11 +00005204 if( pBt->autoVacuum ){
5205 do{
5206 pgnoOvfl++;
5207 } while(
5208 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5209 );
danielk1977b39f70b2007-05-17 18:28:11 +00005210 }
danielk1977afcdd022004-10-31 16:25:42 +00005211#endif
drhf49661a2008-12-10 16:45:50 +00005212 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
danielk1977afcdd022004-10-31 16:25:42 +00005213#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977a19df672004-11-03 11:37:07 +00005214 /* If the database supports auto-vacuum, and the second or subsequent
5215 ** overflow page is being allocated, add an entry to the pointer-map
danielk19774ef24492007-05-23 09:52:41 +00005216 ** for that page now.
5217 **
5218 ** If this is the first overflow page, then write a partial entry
5219 ** to the pointer-map. If we write nothing to this pointer-map slot,
5220 ** then the optimistic overflow chain processing in clearCell()
5221 ** may misinterpret the uninitialised values and delete the
5222 ** wrong pages from the database.
danielk1977afcdd022004-10-31 16:25:42 +00005223 */
danielk19774ef24492007-05-23 09:52:41 +00005224 if( pBt->autoVacuum && rc==SQLITE_OK ){
5225 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
drh98add2e2009-07-20 17:11:49 +00005226 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
danielk197789a4be82007-05-23 13:34:32 +00005227 if( rc ){
5228 releasePage(pOvfl);
5229 }
danielk1977afcdd022004-10-31 16:25:42 +00005230 }
5231#endif
drh3b7511c2001-05-26 13:15:44 +00005232 if( rc ){
drh9b171272004-05-08 02:03:22 +00005233 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005234 return rc;
5235 }
drhc5053fb2008-11-27 02:22:10 +00005236
5237 /* If pToRelease is not zero than pPrior points into the data area
5238 ** of pToRelease. Make sure pToRelease is still writeable. */
5239 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5240
5241 /* If pPrior is part of the data area of pPage, then make sure pPage
5242 ** is still writeable */
5243 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5244 || sqlite3PagerIswriteable(pPage->pDbPage) );
5245
drh3aac2dd2004-04-26 14:10:20 +00005246 put4byte(pPrior, pgnoOvfl);
drh9b171272004-05-08 02:03:22 +00005247 releasePage(pToRelease);
5248 pToRelease = pOvfl;
drh3aac2dd2004-04-26 14:10:20 +00005249 pPrior = pOvfl->aData;
5250 put4byte(pPrior, 0);
5251 pPayload = &pOvfl->aData[4];
drhb6f41482004-05-14 01:58:11 +00005252 spaceLeft = pBt->usableSize - 4;
drh3b7511c2001-05-26 13:15:44 +00005253 }
5254 n = nPayload;
5255 if( n>spaceLeft ) n = spaceLeft;
drhc5053fb2008-11-27 02:22:10 +00005256
5257 /* If pToRelease is not zero than pPayload points into the data area
5258 ** of pToRelease. Make sure pToRelease is still writeable. */
5259 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5260
5261 /* If pPayload is part of the data area of pPage, then make sure pPage
5262 ** is still writeable */
5263 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5264 || sqlite3PagerIswriteable(pPage->pDbPage) );
5265
drhb026e052007-05-02 01:34:31 +00005266 if( nSrc>0 ){
5267 if( n>nSrc ) n = nSrc;
5268 assert( pSrc );
5269 memcpy(pPayload, pSrc, n);
5270 }else{
5271 memset(pPayload, 0, n);
5272 }
drh3b7511c2001-05-26 13:15:44 +00005273 nPayload -= n;
drhde647132004-05-07 17:57:49 +00005274 pPayload += n;
drh9b171272004-05-08 02:03:22 +00005275 pSrc += n;
drh3aac2dd2004-04-26 14:10:20 +00005276 nSrc -= n;
drh3b7511c2001-05-26 13:15:44 +00005277 spaceLeft -= n;
drh3aac2dd2004-04-26 14:10:20 +00005278 if( nSrc==0 ){
5279 nSrc = nData;
5280 pSrc = pData;
5281 }
drhdd793422001-06-28 01:54:48 +00005282 }
drh9b171272004-05-08 02:03:22 +00005283 releasePage(pToRelease);
drh3b7511c2001-05-26 13:15:44 +00005284 return SQLITE_OK;
5285}
5286
drh14acc042001-06-10 19:56:58 +00005287/*
5288** Remove the i-th cell from pPage. This routine effects pPage only.
5289** The cell content is not freed or deallocated. It is assumed that
5290** the cell content has been copied someplace else. This routine just
5291** removes the reference to the cell from pPage.
5292**
5293** "sz" must be the number of bytes in the cell.
drh14acc042001-06-10 19:56:58 +00005294*/
drh98add2e2009-07-20 17:11:49 +00005295static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
drh43605152004-05-29 21:46:49 +00005296 int i; /* Loop counter */
5297 int pc; /* Offset to cell content of cell being deleted */
5298 u8 *data; /* pPage->aData */
5299 u8 *ptr; /* Used to move bytes around within data[] */
shanedcc50b72008-11-13 18:29:50 +00005300 int rc; /* The return code */
drhc314dc72009-07-21 11:52:34 +00005301 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
drh43605152004-05-29 21:46:49 +00005302
drh98add2e2009-07-20 17:11:49 +00005303 if( *pRC ) return;
5304
drh8c42ca92001-06-22 19:15:00 +00005305 assert( idx>=0 && idx<pPage->nCell );
drh43605152004-05-29 21:46:49 +00005306 assert( sz==cellSize(pPage, idx) );
danielk19773b8a05f2007-03-19 17:44:26 +00005307 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh1fee73e2007-08-29 04:00:57 +00005308 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhda200cc2004-05-09 11:51:38 +00005309 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005310 ptr = &data[pPage->cellOffset + 2*idx];
shane0af3f892008-11-12 04:55:34 +00005311 pc = get2byte(ptr);
drhc314dc72009-07-21 11:52:34 +00005312 hdr = pPage->hdrOffset;
5313 testcase( pc==get2byte(&data[hdr+5]) );
5314 testcase( pc+sz==pPage->pBt->usableSize );
5315 if( pc < get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
drh98add2e2009-07-20 17:11:49 +00005316 *pRC = SQLITE_CORRUPT_BKPT;
5317 return;
shane0af3f892008-11-12 04:55:34 +00005318 }
shanedcc50b72008-11-13 18:29:50 +00005319 rc = freeSpace(pPage, pc, sz);
drh98add2e2009-07-20 17:11:49 +00005320 if( rc ){
5321 *pRC = rc;
5322 return;
shanedcc50b72008-11-13 18:29:50 +00005323 }
drh43605152004-05-29 21:46:49 +00005324 for(i=idx+1; i<pPage->nCell; i++, ptr+=2){
5325 ptr[0] = ptr[2];
5326 ptr[1] = ptr[3];
drh14acc042001-06-10 19:56:58 +00005327 }
5328 pPage->nCell--;
drhc314dc72009-07-21 11:52:34 +00005329 put2byte(&data[hdr+3], pPage->nCell);
drh43605152004-05-29 21:46:49 +00005330 pPage->nFree += 2;
drh14acc042001-06-10 19:56:58 +00005331}
5332
5333/*
5334** Insert a new cell on pPage at cell index "i". pCell points to the
5335** content of the cell.
5336**
5337** If the cell content will fit on the page, then put it there. If it
drh43605152004-05-29 21:46:49 +00005338** will not fit, then make a copy of the cell content into pTemp if
5339** pTemp is not null. Regardless of pTemp, allocate a new entry
5340** in pPage->aOvfl[] and make it point to the cell content (either
5341** in pTemp or the original pCell) and also record its index.
5342** Allocating a new entry in pPage->aCell[] implies that
5343** pPage->nOverflow is incremented.
danielk1977a3ad5e72005-01-07 08:56:44 +00005344**
5345** If nSkip is non-zero, then do not copy the first nSkip bytes of the
5346** cell. The caller will overwrite them after this function returns. If
drh4b238df2005-01-08 15:43:18 +00005347** nSkip is non-zero, then pCell may not point to an invalid memory location
danielk1977a3ad5e72005-01-07 08:56:44 +00005348** (but pCell+nSkip is always valid).
drh14acc042001-06-10 19:56:58 +00005349*/
drh98add2e2009-07-20 17:11:49 +00005350static void insertCell(
drh24cd67e2004-05-10 16:18:47 +00005351 MemPage *pPage, /* Page into which we are copying */
drh43605152004-05-29 21:46:49 +00005352 int i, /* New cell becomes the i-th cell of the page */
5353 u8 *pCell, /* Content of the new cell */
5354 int sz, /* Bytes of content in pCell */
danielk1977a3ad5e72005-01-07 08:56:44 +00005355 u8 *pTemp, /* Temp storage space for pCell, if needed */
drh98add2e2009-07-20 17:11:49 +00005356 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
5357 int *pRC /* Read and write return code from here */
drh24cd67e2004-05-10 16:18:47 +00005358){
drh383d30f2010-02-26 13:07:37 +00005359 int idx = 0; /* Where to write new cell content in data[] */
drh43605152004-05-29 21:46:49 +00005360 int j; /* Loop counter */
drh43605152004-05-29 21:46:49 +00005361 int end; /* First byte past the last cell pointer in data[] */
5362 int ins; /* Index in data[] where new cell pointer is inserted */
drh43605152004-05-29 21:46:49 +00005363 int cellOffset; /* Address of first cell pointer in data[] */
5364 u8 *data; /* The content of the whole page */
5365 u8 *ptr; /* Used for moving information around in data[] */
5366
danielk19774dbaa892009-06-16 16:50:22 +00005367 int nSkip = (iChild ? 4 : 0);
5368
drh98add2e2009-07-20 17:11:49 +00005369 if( *pRC ) return;
5370
drh43605152004-05-29 21:46:49 +00005371 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
drhf49661a2008-12-10 16:45:50 +00005372 assert( pPage->nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
5373 assert( pPage->nOverflow<=ArraySize(pPage->aOvfl) );
drh1fee73e2007-08-29 04:00:57 +00005374 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhc9b9b8a2009-12-03 21:26:52 +00005375 /* The cell should normally be sized correctly. However, when moving a
5376 ** malformed cell from a leaf page to an interior page, if the cell size
5377 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5378 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5379 ** the term after the || in the following assert(). */
5380 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
drh43605152004-05-29 21:46:49 +00005381 if( pPage->nOverflow || sz+2>pPage->nFree ){
drh24cd67e2004-05-10 16:18:47 +00005382 if( pTemp ){
danielk1977a3ad5e72005-01-07 08:56:44 +00005383 memcpy(pTemp+nSkip, pCell+nSkip, sz-nSkip);
drh43605152004-05-29 21:46:49 +00005384 pCell = pTemp;
drh24cd67e2004-05-10 16:18:47 +00005385 }
danielk19774dbaa892009-06-16 16:50:22 +00005386 if( iChild ){
5387 put4byte(pCell, iChild);
5388 }
drh43605152004-05-29 21:46:49 +00005389 j = pPage->nOverflow++;
danielk197789d40042008-11-17 14:20:56 +00005390 assert( j<(int)(sizeof(pPage->aOvfl)/sizeof(pPage->aOvfl[0])) );
drh43605152004-05-29 21:46:49 +00005391 pPage->aOvfl[j].pCell = pCell;
drhf49661a2008-12-10 16:45:50 +00005392 pPage->aOvfl[j].idx = (u16)i;
drh14acc042001-06-10 19:56:58 +00005393 }else{
danielk19776e465eb2007-08-21 13:11:00 +00005394 int rc = sqlite3PagerWrite(pPage->pDbPage);
5395 if( rc!=SQLITE_OK ){
drh98add2e2009-07-20 17:11:49 +00005396 *pRC = rc;
5397 return;
danielk19776e465eb2007-08-21 13:11:00 +00005398 }
5399 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
drh43605152004-05-29 21:46:49 +00005400 data = pPage->aData;
drh43605152004-05-29 21:46:49 +00005401 cellOffset = pPage->cellOffset;
drh0a45c272009-07-08 01:49:11 +00005402 end = cellOffset + 2*pPage->nCell;
drh43605152004-05-29 21:46:49 +00005403 ins = cellOffset + 2*i;
drh0a45c272009-07-08 01:49:11 +00005404 rc = allocateSpace(pPage, sz, &idx);
drh98add2e2009-07-20 17:11:49 +00005405 if( rc ){ *pRC = rc; return; }
drhc314dc72009-07-21 11:52:34 +00005406 /* The allocateSpace() routine guarantees the following two properties
5407 ** if it returns success */
5408 assert( idx >= end+2 );
5409 assert( idx+sz <= pPage->pBt->usableSize );
drh43605152004-05-29 21:46:49 +00005410 pPage->nCell++;
drh0a45c272009-07-08 01:49:11 +00005411 pPage->nFree -= (u16)(2 + sz);
danielk1977a3ad5e72005-01-07 08:56:44 +00005412 memcpy(&data[idx+nSkip], pCell+nSkip, sz-nSkip);
danielk19774dbaa892009-06-16 16:50:22 +00005413 if( iChild ){
5414 put4byte(&data[idx], iChild);
5415 }
drh0a45c272009-07-08 01:49:11 +00005416 for(j=end, ptr=&data[j]; j>ins; j-=2, ptr-=2){
drh43605152004-05-29 21:46:49 +00005417 ptr[0] = ptr[-2];
5418 ptr[1] = ptr[-1];
drhda200cc2004-05-09 11:51:38 +00005419 }
drh43605152004-05-29 21:46:49 +00005420 put2byte(&data[ins], idx);
drh0a45c272009-07-08 01:49:11 +00005421 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
danielk1977a19df672004-11-03 11:37:07 +00005422#ifndef SQLITE_OMIT_AUTOVACUUM
5423 if( pPage->pBt->autoVacuum ){
5424 /* The cell may contain a pointer to an overflow page. If so, write
5425 ** the entry for the overflow page into the pointer map.
5426 */
drh98add2e2009-07-20 17:11:49 +00005427 ptrmapPutOvflPtr(pPage, pCell, pRC);
danielk1977a19df672004-11-03 11:37:07 +00005428 }
5429#endif
drh14acc042001-06-10 19:56:58 +00005430 }
5431}
5432
5433/*
drhfa1a98a2004-05-14 19:08:17 +00005434** Add a list of cells to a page. The page should be initially empty.
5435** The cells are guaranteed to fit on the page.
5436*/
5437static void assemblePage(
5438 MemPage *pPage, /* The page to be assemblied */
5439 int nCell, /* The number of cells to add to this page */
drh43605152004-05-29 21:46:49 +00005440 u8 **apCell, /* Pointers to cell bodies */
drha9121e42008-02-19 14:59:35 +00005441 u16 *aSize /* Sizes of the cells */
drhfa1a98a2004-05-14 19:08:17 +00005442){
5443 int i; /* Loop counter */
danielk1977fad91942009-04-29 17:49:59 +00005444 u8 *pCellptr; /* Address of next cell pointer */
drh43605152004-05-29 21:46:49 +00005445 int cellbody; /* Address of next cell body */
danielk1977fad91942009-04-29 17:49:59 +00005446 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5447 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5448 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
drhfa1a98a2004-05-14 19:08:17 +00005449
drh43605152004-05-29 21:46:49 +00005450 assert( pPage->nOverflow==0 );
drh1fee73e2007-08-29 04:00:57 +00005451 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
drhf49661a2008-12-10 16:45:50 +00005452 assert( nCell>=0 && nCell<=MX_CELL(pPage->pBt) && MX_CELL(pPage->pBt)<=5460 );
drhc5053fb2008-11-27 02:22:10 +00005453 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
danielk1977fad91942009-04-29 17:49:59 +00005454
5455 /* Check that the page has just been zeroed by zeroPage() */
5456 assert( pPage->nCell==0 );
5457 assert( get2byte(&data[hdr+5])==nUsable );
5458
5459 pCellptr = &data[pPage->cellOffset + nCell*2];
5460 cellbody = nUsable;
5461 for(i=nCell-1; i>=0; i--){
5462 pCellptr -= 2;
5463 cellbody -= aSize[i];
5464 put2byte(pCellptr, cellbody);
5465 memcpy(&data[cellbody], apCell[i], aSize[i]);
drhfa1a98a2004-05-14 19:08:17 +00005466 }
danielk1977fad91942009-04-29 17:49:59 +00005467 put2byte(&data[hdr+3], nCell);
5468 put2byte(&data[hdr+5], cellbody);
5469 pPage->nFree -= (nCell*2 + nUsable - cellbody);
drhf49661a2008-12-10 16:45:50 +00005470 pPage->nCell = (u16)nCell;
drhfa1a98a2004-05-14 19:08:17 +00005471}
5472
drh14acc042001-06-10 19:56:58 +00005473/*
drhc3b70572003-01-04 19:44:07 +00005474** The following parameters determine how many adjacent pages get involved
5475** in a balancing operation. NN is the number of neighbors on either side
5476** of the page that participate in the balancing operation. NB is the
5477** total number of pages that participate, including the target page and
5478** NN neighbors on either side.
5479**
5480** The minimum value of NN is 1 (of course). Increasing NN above 1
5481** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
5482** in exchange for a larger degradation in INSERT and UPDATE performance.
5483** The value of NN appears to give the best results overall.
5484*/
5485#define NN 1 /* Number of neighbors on either side of pPage */
5486#define NB (NN*2+1) /* Total pages involved in the balance */
5487
danielk1977ac245ec2005-01-14 13:50:11 +00005488
drh615ae552005-01-16 23:21:00 +00005489#ifndef SQLITE_OMIT_QUICKBALANCE
drhf222e712005-01-14 22:55:49 +00005490/*
5491** This version of balance() handles the common special case where
5492** a new entry is being inserted on the extreme right-end of the
5493** tree, in other words, when the new entry will become the largest
5494** entry in the tree.
5495**
drhc314dc72009-07-21 11:52:34 +00005496** Instead of trying to balance the 3 right-most leaf pages, just add
drhf222e712005-01-14 22:55:49 +00005497** a new page to the right-hand side and put the one new entry in
5498** that page. This leaves the right side of the tree somewhat
5499** unbalanced. But odds are that we will be inserting new entries
5500** at the end soon afterwards so the nearly empty page will quickly
5501** fill up. On average.
5502**
5503** pPage is the leaf page which is the right-most page in the tree.
5504** pParent is its parent. pPage must have a single overflow entry
5505** which is also the right-most entry on the page.
danielk1977a50d9aa2009-06-08 14:49:45 +00005506**
5507** The pSpace buffer is used to store a temporary copy of the divider
5508** cell that will be inserted into pParent. Such a cell consists of a 4
5509** byte page number followed by a variable length integer. In other
5510** words, at most 13 bytes. Hence the pSpace buffer must be at
5511** least 13 bytes in size.
drhf222e712005-01-14 22:55:49 +00005512*/
danielk1977a50d9aa2009-06-08 14:49:45 +00005513static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
5514 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
danielk19774dbaa892009-06-16 16:50:22 +00005515 MemPage *pNew; /* Newly allocated page */
danielk19776f235cc2009-06-04 14:46:08 +00005516 int rc; /* Return Code */
5517 Pgno pgnoNew; /* Page number of pNew */
danielk1977ac245ec2005-01-14 13:50:11 +00005518
drh1fee73e2007-08-29 04:00:57 +00005519 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
danielk1977a50d9aa2009-06-08 14:49:45 +00005520 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005521 assert( pPage->nOverflow==1 );
5522
drh5d1a8722009-07-22 18:07:40 +00005523 if( pPage->nCell<=0 ) return SQLITE_CORRUPT_BKPT;
drhd677b3d2007-08-20 22:48:41 +00005524
danielk1977a50d9aa2009-06-08 14:49:45 +00005525 /* Allocate a new page. This page will become the right-sibling of
5526 ** pPage. Make the parent page writable, so that the new divider cell
5527 ** may be inserted. If both these operations are successful, proceed.
5528 */
drh4f0c5872007-03-26 22:05:01 +00005529 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
danielk19774dbaa892009-06-16 16:50:22 +00005530
danielk1977eaa06f62008-09-18 17:34:44 +00005531 if( rc==SQLITE_OK ){
danielk1977a50d9aa2009-06-08 14:49:45 +00005532
5533 u8 *pOut = &pSpace[4];
danielk19776f235cc2009-06-04 14:46:08 +00005534 u8 *pCell = pPage->aOvfl[0].pCell;
5535 u16 szCell = cellSizePtr(pPage, pCell);
5536 u8 *pStop;
5537
drhc5053fb2008-11-27 02:22:10 +00005538 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
danielk1977e56b60e2009-06-10 09:11:06 +00005539 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
5540 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
danielk1977eaa06f62008-09-18 17:34:44 +00005541 assemblePage(pNew, 1, &pCell, &szCell);
danielk19774dbaa892009-06-16 16:50:22 +00005542
5543 /* If this is an auto-vacuum database, update the pointer map
5544 ** with entries for the new page, and any pointer from the
5545 ** cell on the page to an overflow page. If either of these
5546 ** operations fails, the return code is set, but the contents
5547 ** of the parent page are still manipulated by thh code below.
5548 ** That is Ok, at this point the parent page is guaranteed to
5549 ** be marked as dirty. Returning an error code will cause a
5550 ** rollback, undoing any changes made to the parent page.
5551 */
5552 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00005553 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
5554 if( szCell>pNew->minLocal ){
5555 ptrmapPutOvflPtr(pNew, pCell, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005556 }
5557 }
danielk1977eaa06f62008-09-18 17:34:44 +00005558
danielk19776f235cc2009-06-04 14:46:08 +00005559 /* Create a divider cell to insert into pParent. The divider cell
5560 ** consists of a 4-byte page number (the page number of pPage) and
5561 ** a variable length key value (which must be the same value as the
5562 ** largest key on pPage).
danielk1977eaa06f62008-09-18 17:34:44 +00005563 **
danielk19776f235cc2009-06-04 14:46:08 +00005564 ** To find the largest key value on pPage, first find the right-most
5565 ** cell on pPage. The first two fields of this cell are the
5566 ** record-length (a variable length integer at most 32-bits in size)
5567 ** and the key value (a variable length integer, may have any value).
5568 ** The first of the while(...) loops below skips over the record-length
5569 ** field. The second while(...) loop copies the key value from the
danielk1977a50d9aa2009-06-08 14:49:45 +00005570 ** cell on pPage into the pSpace buffer.
danielk1977eaa06f62008-09-18 17:34:44 +00005571 */
danielk1977eaa06f62008-09-18 17:34:44 +00005572 pCell = findCell(pPage, pPage->nCell-1);
danielk19776f235cc2009-06-04 14:46:08 +00005573 pStop = &pCell[9];
5574 while( (*(pCell++)&0x80) && pCell<pStop );
5575 pStop = &pCell[9];
5576 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
5577
danielk19774dbaa892009-06-16 16:50:22 +00005578 /* Insert the new divider cell into pParent. */
drh98add2e2009-07-20 17:11:49 +00005579 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
5580 0, pPage->pgno, &rc);
danielk19776f235cc2009-06-04 14:46:08 +00005581
5582 /* Set the right-child pointer of pParent to point to the new page. */
danielk1977eaa06f62008-09-18 17:34:44 +00005583 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
5584
danielk1977e08a3c42008-09-18 18:17:03 +00005585 /* Release the reference to the new page. */
5586 releasePage(pNew);
danielk1977ac11ee62005-01-15 12:45:51 +00005587 }
5588
danielk1977eaa06f62008-09-18 17:34:44 +00005589 return rc;
danielk1977ac245ec2005-01-14 13:50:11 +00005590}
drh615ae552005-01-16 23:21:00 +00005591#endif /* SQLITE_OMIT_QUICKBALANCE */
drh43605152004-05-29 21:46:49 +00005592
danielk19774dbaa892009-06-16 16:50:22 +00005593#if 0
drhc3b70572003-01-04 19:44:07 +00005594/*
danielk19774dbaa892009-06-16 16:50:22 +00005595** This function does not contribute anything to the operation of SQLite.
5596** it is sometimes activated temporarily while debugging code responsible
5597** for setting pointer-map entries.
5598*/
5599static int ptrmapCheckPages(MemPage **apPage, int nPage){
5600 int i, j;
5601 for(i=0; i<nPage; i++){
5602 Pgno n;
5603 u8 e;
5604 MemPage *pPage = apPage[i];
5605 BtShared *pBt = pPage->pBt;
5606 assert( pPage->isInit );
5607
5608 for(j=0; j<pPage->nCell; j++){
5609 CellInfo info;
5610 u8 *z;
5611
5612 z = findCell(pPage, j);
danielk197730548662009-07-09 05:07:37 +00005613 btreeParseCellPtr(pPage, z, &info);
danielk19774dbaa892009-06-16 16:50:22 +00005614 if( info.iOverflow ){
5615 Pgno ovfl = get4byte(&z[info.iOverflow]);
5616 ptrmapGet(pBt, ovfl, &e, &n);
5617 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
5618 }
5619 if( !pPage->leaf ){
5620 Pgno child = get4byte(z);
5621 ptrmapGet(pBt, child, &e, &n);
5622 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5623 }
5624 }
5625 if( !pPage->leaf ){
5626 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
5627 ptrmapGet(pBt, child, &e, &n);
5628 assert( n==pPage->pgno && e==PTRMAP_BTREE );
5629 }
5630 }
5631 return 1;
5632}
5633#endif
5634
danielk1977cd581a72009-06-23 15:43:39 +00005635/*
5636** This function is used to copy the contents of the b-tree node stored
5637** on page pFrom to page pTo. If page pFrom was not a leaf page, then
5638** the pointer-map entries for each child page are updated so that the
5639** parent page stored in the pointer map is page pTo. If pFrom contained
5640** any cells with overflow page pointers, then the corresponding pointer
5641** map entries are also updated so that the parent page is page pTo.
5642**
5643** If pFrom is currently carrying any overflow cells (entries in the
5644** MemPage.aOvfl[] array), they are not copied to pTo.
5645**
danielk197730548662009-07-09 05:07:37 +00005646** Before returning, page pTo is reinitialized using btreeInitPage().
danielk1977cd581a72009-06-23 15:43:39 +00005647**
5648** The performance of this function is not critical. It is only used by
5649** the balance_shallower() and balance_deeper() procedures, neither of
5650** which are called often under normal circumstances.
5651*/
drhc314dc72009-07-21 11:52:34 +00005652static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
5653 if( (*pRC)==SQLITE_OK ){
5654 BtShared * const pBt = pFrom->pBt;
5655 u8 * const aFrom = pFrom->aData;
5656 u8 * const aTo = pTo->aData;
5657 int const iFromHdr = pFrom->hdrOffset;
5658 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
drhdc9b5f82009-12-05 18:34:08 +00005659 int rc;
drhc314dc72009-07-21 11:52:34 +00005660 int iData;
5661
5662
5663 assert( pFrom->isInit );
5664 assert( pFrom->nFree>=iToHdr );
5665 assert( get2byte(&aFrom[iFromHdr+5])<=pBt->usableSize );
5666
5667 /* Copy the b-tree node content from page pFrom to page pTo. */
5668 iData = get2byte(&aFrom[iFromHdr+5]);
5669 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
5670 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
5671
5672 /* Reinitialize page pTo so that the contents of the MemPage structure
dan89e060e2009-12-05 18:03:50 +00005673 ** match the new data. The initialization of pTo can actually fail under
5674 ** fairly obscure circumstances, even though it is a copy of initialized
5675 ** page pFrom.
5676 */
drhc314dc72009-07-21 11:52:34 +00005677 pTo->isInit = 0;
dan89e060e2009-12-05 18:03:50 +00005678 rc = btreeInitPage(pTo);
5679 if( rc!=SQLITE_OK ){
5680 *pRC = rc;
5681 return;
5682 }
drhc314dc72009-07-21 11:52:34 +00005683
5684 /* If this is an auto-vacuum database, update the pointer-map entries
5685 ** for any b-tree or overflow pages that pTo now contains the pointers to.
5686 */
5687 if( ISAUTOVACUUM ){
5688 *pRC = setChildPtrmaps(pTo);
5689 }
danielk1977cd581a72009-06-23 15:43:39 +00005690 }
danielk1977cd581a72009-06-23 15:43:39 +00005691}
5692
5693/*
danielk19774dbaa892009-06-16 16:50:22 +00005694** This routine redistributes cells on the iParentIdx'th child of pParent
5695** (hereafter "the page") and up to 2 siblings so that all pages have about the
5696** same amount of free space. Usually a single sibling on either side of the
5697** page are used in the balancing, though both siblings might come from one
5698** side if the page is the first or last child of its parent. If the page
5699** has fewer than 2 siblings (something which can only happen if the page
5700** is a root page or a child of a root page) then all available siblings
5701** participate in the balancing.
drh8b2f49b2001-06-08 00:21:52 +00005702**
danielk19774dbaa892009-06-16 16:50:22 +00005703** The number of siblings of the page might be increased or decreased by
5704** one or two in an effort to keep pages nearly full but not over full.
drh14acc042001-06-10 19:56:58 +00005705**
danielk19774dbaa892009-06-16 16:50:22 +00005706** Note that when this routine is called, some of the cells on the page
5707** might not actually be stored in MemPage.aData[]. This can happen
5708** if the page is overfull. This routine ensures that all cells allocated
5709** to the page and its siblings fit into MemPage.aData[] before returning.
drh14acc042001-06-10 19:56:58 +00005710**
danielk19774dbaa892009-06-16 16:50:22 +00005711** In the course of balancing the page and its siblings, cells may be
5712** inserted into or removed from the parent page (pParent). Doing so
5713** may cause the parent page to become overfull or underfull. If this
5714** happens, it is the responsibility of the caller to invoke the correct
5715** balancing routine to fix this problem (see the balance() routine).
drh8c42ca92001-06-22 19:15:00 +00005716**
drh5e00f6c2001-09-13 13:46:56 +00005717** If this routine fails for any reason, it might leave the database
danielk19776067a9b2009-06-09 09:41:00 +00005718** in a corrupted state. So if this routine fails, the database should
drh5e00f6c2001-09-13 13:46:56 +00005719** be rolled back.
danielk19774dbaa892009-06-16 16:50:22 +00005720**
5721** The third argument to this function, aOvflSpace, is a pointer to a
drhcd09c532009-07-20 19:30:00 +00005722** buffer big enough to hold one page. If while inserting cells into the parent
5723** page (pParent) the parent page becomes overfull, this buffer is
5724** used to store the parent's overflow cells. Because this function inserts
danielk19774dbaa892009-06-16 16:50:22 +00005725** a maximum of four divider cells into the parent page, and the maximum
5726** size of a cell stored within an internal node is always less than 1/4
5727** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
5728** enough for all overflow cells.
5729**
5730** If aOvflSpace is set to a null pointer, this function returns
5731** SQLITE_NOMEM.
drh8b2f49b2001-06-08 00:21:52 +00005732*/
danielk19774dbaa892009-06-16 16:50:22 +00005733static int balance_nonroot(
5734 MemPage *pParent, /* Parent page of siblings being balanced */
5735 int iParentIdx, /* Index of "the page" in pParent */
danielk1977cd581a72009-06-23 15:43:39 +00005736 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
5737 int isRoot /* True if pParent is a root-page */
danielk19774dbaa892009-06-16 16:50:22 +00005738){
drh16a9b832007-05-05 18:39:25 +00005739 BtShared *pBt; /* The whole database */
danielk1977634f2982005-03-28 08:44:07 +00005740 int nCell = 0; /* Number of cells in apCell[] */
5741 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
danielk1977a4124bd2008-12-23 10:37:47 +00005742 int nNew = 0; /* Number of pages in apNew[] */
danielk19774dbaa892009-06-16 16:50:22 +00005743 int nOld; /* Number of pages in apOld[] */
drh14acc042001-06-10 19:56:58 +00005744 int i, j, k; /* Loop counters */
drha34b6762004-05-07 13:30:42 +00005745 int nxDiv; /* Next divider slot in pParent->aCell[] */
shane85095702009-06-15 16:27:08 +00005746 int rc = SQLITE_OK; /* The return code */
shane36840fd2009-06-26 16:32:13 +00005747 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
drh8b18dd42004-05-12 19:18:15 +00005748 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
drh91025292004-05-03 19:49:32 +00005749 int usableSpace; /* Bytes in pPage beyond the header */
5750 int pageFlags; /* Value of pPage->aData[0] */
drh6019e162001-07-02 17:51:45 +00005751 int subtotal; /* Subtotal of bytes in cells on one page */
drhe5ae5732008-06-15 02:51:47 +00005752 int iSpace1 = 0; /* First unused byte of aSpace1[] */
danielk19776067a9b2009-06-09 09:41:00 +00005753 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
drhfacf0302008-06-17 15:12:00 +00005754 int szScratch; /* Size of scratch memory requested */
drhc3b70572003-01-04 19:44:07 +00005755 MemPage *apOld[NB]; /* pPage and up to two siblings */
drh4b70f112004-05-02 21:12:19 +00005756 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
drha2fce642004-06-05 00:01:44 +00005757 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
danielk19774dbaa892009-06-16 16:50:22 +00005758 u8 *pRight; /* Location in parent of right-sibling pointer */
5759 u8 *apDiv[NB-1]; /* Divider cells in pParent */
drha2fce642004-06-05 00:01:44 +00005760 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
5761 int szNew[NB+2]; /* Combined size of cells place on i-th page */
danielk197750f059b2005-03-29 02:54:03 +00005762 u8 **apCell = 0; /* All cells begin balanced */
drha9121e42008-02-19 14:59:35 +00005763 u16 *szCell; /* Local size of all cells in apCell[] */
danielk19774dbaa892009-06-16 16:50:22 +00005764 u8 *aSpace1; /* Space for copies of dividers cells */
5765 Pgno pgno; /* Temp var to store a page number in */
drh8b2f49b2001-06-08 00:21:52 +00005766
danielk1977a50d9aa2009-06-08 14:49:45 +00005767 pBt = pParent->pBt;
5768 assert( sqlite3_mutex_held(pBt->mutex) );
5769 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk1977474b7cc2008-07-09 11:49:46 +00005770
danielk1977e5765212009-06-17 11:13:28 +00005771#if 0
drh43605152004-05-29 21:46:49 +00005772 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
danielk1977e5765212009-06-17 11:13:28 +00005773#endif
drh2e38c322004-09-03 18:38:44 +00005774
danielk19774dbaa892009-06-16 16:50:22 +00005775 /* At this point pParent may have at most one overflow cell. And if
5776 ** this overflow cell is present, it must be the cell with
5777 ** index iParentIdx. This scenario comes about when this function
drhcd09c532009-07-20 19:30:00 +00005778 ** is called (indirectly) from sqlite3BtreeDelete().
5779 */
danielk19774dbaa892009-06-16 16:50:22 +00005780 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
5781 assert( pParent->nOverflow==0 || pParent->aOvfl[0].idx==iParentIdx );
5782
danielk197711a8a862009-06-17 11:49:52 +00005783 if( !aOvflSpace ){
5784 return SQLITE_NOMEM;
5785 }
5786
danielk1977a50d9aa2009-06-08 14:49:45 +00005787 /* Find the sibling pages to balance. Also locate the cells in pParent
5788 ** that divide the siblings. An attempt is made to find NN siblings on
5789 ** either side of pPage. More siblings are taken from one side, however,
5790 ** if there are fewer than NN siblings on the other side. If pParent
danielk19774dbaa892009-06-16 16:50:22 +00005791 ** has NB or fewer children then all children of pParent are taken.
5792 **
5793 ** This loop also drops the divider cells from the parent page. This
5794 ** way, the remainder of the function does not have to deal with any
drhcd09c532009-07-20 19:30:00 +00005795 ** overflow cells in the parent page, since if any existed they will
5796 ** have already been removed.
5797 */
danielk19774dbaa892009-06-16 16:50:22 +00005798 i = pParent->nOverflow + pParent->nCell;
5799 if( i<2 ){
drhc3b70572003-01-04 19:44:07 +00005800 nxDiv = 0;
danielk19774dbaa892009-06-16 16:50:22 +00005801 nOld = i+1;
5802 }else{
5803 nOld = 3;
5804 if( iParentIdx==0 ){
5805 nxDiv = 0;
5806 }else if( iParentIdx==i ){
5807 nxDiv = i-2;
drh14acc042001-06-10 19:56:58 +00005808 }else{
danielk19774dbaa892009-06-16 16:50:22 +00005809 nxDiv = iParentIdx-1;
drh8b2f49b2001-06-08 00:21:52 +00005810 }
danielk19774dbaa892009-06-16 16:50:22 +00005811 i = 2;
5812 }
5813 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
5814 pRight = &pParent->aData[pParent->hdrOffset+8];
5815 }else{
5816 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
5817 }
5818 pgno = get4byte(pRight);
5819 while( 1 ){
5820 rc = getAndInitPage(pBt, pgno, &apOld[i]);
5821 if( rc ){
danielk197789bc4bc2009-07-21 19:25:24 +00005822 memset(apOld, 0, (i+1)*sizeof(MemPage*));
danielk19774dbaa892009-06-16 16:50:22 +00005823 goto balance_cleanup;
5824 }
danielk1977634f2982005-03-28 08:44:07 +00005825 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
danielk19774dbaa892009-06-16 16:50:22 +00005826 if( (i--)==0 ) break;
5827
drhcd09c532009-07-20 19:30:00 +00005828 if( i+nxDiv==pParent->aOvfl[0].idx && pParent->nOverflow ){
danielk19774dbaa892009-06-16 16:50:22 +00005829 apDiv[i] = pParent->aOvfl[0].pCell;
5830 pgno = get4byte(apDiv[i]);
5831 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5832 pParent->nOverflow = 0;
5833 }else{
5834 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
5835 pgno = get4byte(apDiv[i]);
5836 szNew[i] = cellSizePtr(pParent, apDiv[i]);
5837
5838 /* Drop the cell from the parent page. apDiv[i] still points to
5839 ** the cell within the parent, even though it has been dropped.
5840 ** This is safe because dropping a cell only overwrites the first
5841 ** four bytes of it, and this function does not need the first
5842 ** four bytes of the divider cell. So the pointer is safe to use
danielk197711a8a862009-06-17 11:49:52 +00005843 ** later on.
5844 **
5845 ** Unless SQLite is compiled in secure-delete mode. In this case,
5846 ** the dropCell() routine will overwrite the entire cell with zeroes.
5847 ** In this case, temporarily copy the cell into the aOvflSpace[]
5848 ** buffer. It will be copied out again as soon as the aSpace[] buffer
5849 ** is allocated. */
drh5b47efa2010-02-12 18:18:39 +00005850 if( pBt->secureDelete ){
shaneh1da207e2010-03-09 14:41:12 +00005851 int iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
dan2ed11e72010-02-26 15:09:19 +00005852 if( (iOff+szNew[i])>pBt->usableSize ){
5853 rc = SQLITE_CORRUPT_BKPT;
5854 memset(apOld, 0, (i+1)*sizeof(MemPage*));
5855 goto balance_cleanup;
5856 }else{
5857 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
5858 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
5859 }
drh5b47efa2010-02-12 18:18:39 +00005860 }
drh98add2e2009-07-20 17:11:49 +00005861 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00005862 }
drh8b2f49b2001-06-08 00:21:52 +00005863 }
5864
drha9121e42008-02-19 14:59:35 +00005865 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
drh8d97f1f2005-05-05 18:14:13 +00005866 ** alignment */
drha9121e42008-02-19 14:59:35 +00005867 nMaxCells = (nMaxCells + 3)&~3;
drh8d97f1f2005-05-05 18:14:13 +00005868
drh8b2f49b2001-06-08 00:21:52 +00005869 /*
danielk1977634f2982005-03-28 08:44:07 +00005870 ** Allocate space for memory structures
5871 */
danielk19774dbaa892009-06-16 16:50:22 +00005872 k = pBt->pageSize + ROUND8(sizeof(MemPage));
drhfacf0302008-06-17 15:12:00 +00005873 szScratch =
drha9121e42008-02-19 14:59:35 +00005874 nMaxCells*sizeof(u8*) /* apCell */
5875 + nMaxCells*sizeof(u16) /* szCell */
drhe5ae5732008-06-15 02:51:47 +00005876 + pBt->pageSize /* aSpace1 */
danielk19774dbaa892009-06-16 16:50:22 +00005877 + k*nOld; /* Page copies (apCopy) */
drhfacf0302008-06-17 15:12:00 +00005878 apCell = sqlite3ScratchMalloc( szScratch );
danielk197711a8a862009-06-17 11:49:52 +00005879 if( apCell==0 ){
danielk1977634f2982005-03-28 08:44:07 +00005880 rc = SQLITE_NOMEM;
5881 goto balance_cleanup;
5882 }
drha9121e42008-02-19 14:59:35 +00005883 szCell = (u16*)&apCell[nMaxCells];
danielk19774dbaa892009-06-16 16:50:22 +00005884 aSpace1 = (u8*)&szCell[nMaxCells];
drhea598cb2009-04-05 12:22:08 +00005885 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
drh14acc042001-06-10 19:56:58 +00005886
5887 /*
5888 ** Load pointers to all cells on sibling pages and the divider cells
5889 ** into the local apCell[] array. Make copies of the divider cells
danielk19774dbaa892009-06-16 16:50:22 +00005890 ** into space obtained from aSpace1[] and remove the the divider Cells
drhb6f41482004-05-14 01:58:11 +00005891 ** from pParent.
drh4b70f112004-05-02 21:12:19 +00005892 **
5893 ** If the siblings are on leaf pages, then the child pointers of the
5894 ** divider cells are stripped from the cells before they are copied
drhe5ae5732008-06-15 02:51:47 +00005895 ** into aSpace1[]. In this way, all cells in apCell[] are without
drh4b70f112004-05-02 21:12:19 +00005896 ** child pointers. If siblings are not leaves, then all cell in
5897 ** apCell[] include child pointers. Either way, all cells in apCell[]
5898 ** are alike.
drh96f5b762004-05-16 16:24:36 +00005899 **
5900 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
5901 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
drh8b2f49b2001-06-08 00:21:52 +00005902 */
danielk1977a50d9aa2009-06-08 14:49:45 +00005903 leafCorrection = apOld[0]->leaf*4;
5904 leafData = apOld[0]->hasData;
drh8b2f49b2001-06-08 00:21:52 +00005905 for(i=0; i<nOld; i++){
danielk19774dbaa892009-06-16 16:50:22 +00005906 int limit;
5907
5908 /* Before doing anything else, take a copy of the i'th original sibling
5909 ** The rest of this function will use data from the copies rather
5910 ** that the original pages since the original pages will be in the
5911 ** process of being overwritten. */
5912 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
5913 memcpy(pOld, apOld[i], sizeof(MemPage));
5914 pOld->aData = (void*)&pOld[1];
5915 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
5916
5917 limit = pOld->nCell+pOld->nOverflow;
drh43605152004-05-29 21:46:49 +00005918 for(j=0; j<limit; j++){
danielk1977634f2982005-03-28 08:44:07 +00005919 assert( nCell<nMaxCells );
drh43605152004-05-29 21:46:49 +00005920 apCell[nCell] = findOverflowCell(pOld, j);
5921 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
danielk19774dbaa892009-06-16 16:50:22 +00005922 nCell++;
5923 }
5924 if( i<nOld-1 && !leafData){
shane36840fd2009-06-26 16:32:13 +00005925 u16 sz = (u16)szNew[i];
danielk19774dbaa892009-06-16 16:50:22 +00005926 u8 *pTemp;
5927 assert( nCell<nMaxCells );
5928 szCell[nCell] = sz;
5929 pTemp = &aSpace1[iSpace1];
5930 iSpace1 += sz;
5931 assert( sz<=pBt->pageSize/4 );
5932 assert( iSpace1<=pBt->pageSize );
5933 memcpy(pTemp, apDiv[i], sz);
5934 apCell[nCell] = pTemp+leafCorrection;
5935 assert( leafCorrection==0 || leafCorrection==4 );
shane36840fd2009-06-26 16:32:13 +00005936 szCell[nCell] = szCell[nCell] - leafCorrection;
danielk19774dbaa892009-06-16 16:50:22 +00005937 if( !pOld->leaf ){
5938 assert( leafCorrection==0 );
5939 assert( pOld->hdrOffset==0 );
5940 /* The right pointer of the child page pOld becomes the left
5941 ** pointer of the divider cell */
5942 memcpy(apCell[nCell], &pOld->aData[8], 4);
5943 }else{
5944 assert( leafCorrection==4 );
5945 if( szCell[nCell]<4 ){
5946 /* Do not allow any cells smaller than 4 bytes. */
5947 szCell[nCell] = 4;
danielk1977ac11ee62005-01-15 12:45:51 +00005948 }
5949 }
drh14acc042001-06-10 19:56:58 +00005950 nCell++;
drh8b2f49b2001-06-08 00:21:52 +00005951 }
drh8b2f49b2001-06-08 00:21:52 +00005952 }
5953
5954 /*
drh6019e162001-07-02 17:51:45 +00005955 ** Figure out the number of pages needed to hold all nCell cells.
5956 ** Store this number in "k". Also compute szNew[] which is the total
5957 ** size of all cells on the i-th page and cntNew[] which is the index
drh4b70f112004-05-02 21:12:19 +00005958 ** in apCell[] of the cell that divides page i from page i+1.
drh6019e162001-07-02 17:51:45 +00005959 ** cntNew[k] should equal nCell.
5960 **
drh96f5b762004-05-16 16:24:36 +00005961 ** Values computed by this block:
5962 **
5963 ** k: The total number of sibling pages
5964 ** szNew[i]: Spaced used on the i-th sibling page.
5965 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
5966 ** the right of the i-th sibling page.
5967 ** usableSpace: Number of bytes of space available on each sibling.
5968 **
drh8b2f49b2001-06-08 00:21:52 +00005969 */
drh43605152004-05-29 21:46:49 +00005970 usableSpace = pBt->usableSize - 12 + leafCorrection;
drh6019e162001-07-02 17:51:45 +00005971 for(subtotal=k=i=0; i<nCell; i++){
danielk1977634f2982005-03-28 08:44:07 +00005972 assert( i<nMaxCells );
drh43605152004-05-29 21:46:49 +00005973 subtotal += szCell[i] + 2;
drh4b70f112004-05-02 21:12:19 +00005974 if( subtotal > usableSpace ){
drh6019e162001-07-02 17:51:45 +00005975 szNew[k] = subtotal - szCell[i];
5976 cntNew[k] = i;
drh8b18dd42004-05-12 19:18:15 +00005977 if( leafData ){ i--; }
drh6019e162001-07-02 17:51:45 +00005978 subtotal = 0;
5979 k++;
drh9978c972010-02-23 17:36:32 +00005980 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
drh6019e162001-07-02 17:51:45 +00005981 }
5982 }
5983 szNew[k] = subtotal;
5984 cntNew[k] = nCell;
5985 k++;
drh96f5b762004-05-16 16:24:36 +00005986
5987 /*
5988 ** The packing computed by the previous block is biased toward the siblings
5989 ** on the left side. The left siblings are always nearly full, while the
5990 ** right-most sibling might be nearly empty. This block of code attempts
5991 ** to adjust the packing of siblings to get a better balance.
5992 **
5993 ** This adjustment is more than an optimization. The packing above might
5994 ** be so out of balance as to be illegal. For example, the right-most
5995 ** sibling might be completely empty. This adjustment is not optional.
5996 */
drh6019e162001-07-02 17:51:45 +00005997 for(i=k-1; i>0; i--){
drh96f5b762004-05-16 16:24:36 +00005998 int szRight = szNew[i]; /* Size of sibling on the right */
5999 int szLeft = szNew[i-1]; /* Size of sibling on the left */
6000 int r; /* Index of right-most cell in left sibling */
6001 int d; /* Index of first cell to the left of right sibling */
6002
6003 r = cntNew[i-1] - 1;
6004 d = r + 1 - leafData;
danielk1977634f2982005-03-28 08:44:07 +00006005 assert( d<nMaxCells );
6006 assert( r<nMaxCells );
drh43605152004-05-29 21:46:49 +00006007 while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){
6008 szRight += szCell[d] + 2;
6009 szLeft -= szCell[r] + 2;
drh6019e162001-07-02 17:51:45 +00006010 cntNew[i-1]--;
drh96f5b762004-05-16 16:24:36 +00006011 r = cntNew[i-1] - 1;
6012 d = r + 1 - leafData;
drh6019e162001-07-02 17:51:45 +00006013 }
drh96f5b762004-05-16 16:24:36 +00006014 szNew[i] = szRight;
6015 szNew[i-1] = szLeft;
drh6019e162001-07-02 17:51:45 +00006016 }
drh09d0deb2005-08-02 17:13:09 +00006017
danielk19776f235cc2009-06-04 14:46:08 +00006018 /* Either we found one or more cells (cntnew[0])>0) or pPage is
drh09d0deb2005-08-02 17:13:09 +00006019 ** a virtual root page. A virtual root page is when the real root
6020 ** page is page 1 and we are the only child of that page.
6021 */
6022 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
drh8b2f49b2001-06-08 00:21:52 +00006023
danielk1977e5765212009-06-17 11:13:28 +00006024 TRACE(("BALANCE: old: %d %d %d ",
6025 apOld[0]->pgno,
6026 nOld>=2 ? apOld[1]->pgno : 0,
6027 nOld>=3 ? apOld[2]->pgno : 0
6028 ));
6029
drh8b2f49b2001-06-08 00:21:52 +00006030 /*
drh6b308672002-07-08 02:16:37 +00006031 ** Allocate k new pages. Reuse old pages where possible.
drh8b2f49b2001-06-08 00:21:52 +00006032 */
drheac74422009-06-14 12:47:11 +00006033 if( apOld[0]->pgno<=1 ){
drh9978c972010-02-23 17:36:32 +00006034 rc = SQLITE_CORRUPT_BKPT;
drheac74422009-06-14 12:47:11 +00006035 goto balance_cleanup;
6036 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006037 pageFlags = apOld[0]->aData[0];
drh14acc042001-06-10 19:56:58 +00006038 for(i=0; i<k; i++){
drhda200cc2004-05-09 11:51:38 +00006039 MemPage *pNew;
drh6b308672002-07-08 02:16:37 +00006040 if( i<nOld ){
drhda200cc2004-05-09 11:51:38 +00006041 pNew = apNew[i] = apOld[i];
drh6b308672002-07-08 02:16:37 +00006042 apOld[i] = 0;
danielk19773b8a05f2007-03-19 17:44:26 +00006043 rc = sqlite3PagerWrite(pNew->pDbPage);
drhf5345442007-04-09 12:45:02 +00006044 nNew++;
danielk197728129562005-01-11 10:25:06 +00006045 if( rc ) goto balance_cleanup;
drh6b308672002-07-08 02:16:37 +00006046 }else{
drh7aa8f852006-03-28 00:24:44 +00006047 assert( i>0 );
danielk19774dbaa892009-06-16 16:50:22 +00006048 rc = allocateBtreePage(pBt, &pNew, &pgno, pgno, 0);
drh6b308672002-07-08 02:16:37 +00006049 if( rc ) goto balance_cleanup;
drhda200cc2004-05-09 11:51:38 +00006050 apNew[i] = pNew;
drhf5345442007-04-09 12:45:02 +00006051 nNew++;
danielk19774dbaa892009-06-16 16:50:22 +00006052
6053 /* Set the pointer-map entry for the new sibling page. */
6054 if( ISAUTOVACUUM ){
drh98add2e2009-07-20 17:11:49 +00006055 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006056 if( rc!=SQLITE_OK ){
6057 goto balance_cleanup;
6058 }
6059 }
drh6b308672002-07-08 02:16:37 +00006060 }
drh8b2f49b2001-06-08 00:21:52 +00006061 }
6062
danielk1977299b1872004-11-22 10:02:10 +00006063 /* Free any old pages that were not reused as new pages.
6064 */
6065 while( i<nOld ){
drhc314dc72009-07-21 11:52:34 +00006066 freePage(apOld[i], &rc);
danielk1977299b1872004-11-22 10:02:10 +00006067 if( rc ) goto balance_cleanup;
6068 releasePage(apOld[i]);
6069 apOld[i] = 0;
6070 i++;
6071 }
6072
drh8b2f49b2001-06-08 00:21:52 +00006073 /*
drhf9ffac92002-03-02 19:00:31 +00006074 ** Put the new pages in accending order. This helps to
6075 ** keep entries in the disk file in order so that a scan
6076 ** of the table is a linear scan through the file. That
6077 ** in turn helps the operating system to deliver pages
6078 ** from the disk more rapidly.
6079 **
6080 ** An O(n^2) insertion sort algorithm is used, but since
drhc3b70572003-01-04 19:44:07 +00006081 ** n is never more than NB (a small constant), that should
6082 ** not be a problem.
drhf9ffac92002-03-02 19:00:31 +00006083 **
drhc3b70572003-01-04 19:44:07 +00006084 ** When NB==3, this one optimization makes the database
6085 ** about 25% faster for large insertions and deletions.
drhf9ffac92002-03-02 19:00:31 +00006086 */
6087 for(i=0; i<k-1; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006088 int minV = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006089 int minI = i;
6090 for(j=i+1; j<k; j++){
danielk19774dbaa892009-06-16 16:50:22 +00006091 if( apNew[j]->pgno<(unsigned)minV ){
drhf9ffac92002-03-02 19:00:31 +00006092 minI = j;
danielk19774dbaa892009-06-16 16:50:22 +00006093 minV = apNew[j]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006094 }
6095 }
6096 if( minI>i ){
6097 int t;
6098 MemPage *pT;
danielk19774dbaa892009-06-16 16:50:22 +00006099 t = apNew[i]->pgno;
drhf9ffac92002-03-02 19:00:31 +00006100 pT = apNew[i];
drhf9ffac92002-03-02 19:00:31 +00006101 apNew[i] = apNew[minI];
drhf9ffac92002-03-02 19:00:31 +00006102 apNew[minI] = pT;
6103 }
6104 }
danielk1977e5765212009-06-17 11:13:28 +00006105 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
danielk19774dbaa892009-06-16 16:50:22 +00006106 apNew[0]->pgno, szNew[0],
6107 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
6108 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
6109 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
6110 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
6111
6112 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6113 put4byte(pRight, apNew[nNew-1]->pgno);
drh24cd67e2004-05-10 16:18:47 +00006114
drhf9ffac92002-03-02 19:00:31 +00006115 /*
drh14acc042001-06-10 19:56:58 +00006116 ** Evenly distribute the data in apCell[] across the new pages.
6117 ** Insert divider cells into pParent as necessary.
6118 */
6119 j = 0;
6120 for(i=0; i<nNew; i++){
danielk1977ac11ee62005-01-15 12:45:51 +00006121 /* Assemble the new sibling page. */
drh14acc042001-06-10 19:56:58 +00006122 MemPage *pNew = apNew[i];
drh19642e52005-03-29 13:17:45 +00006123 assert( j<nMaxCells );
drh10131482008-07-11 03:34:09 +00006124 zeroPage(pNew, pageFlags);
drhfa1a98a2004-05-14 19:08:17 +00006125 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
drh09d0deb2005-08-02 17:13:09 +00006126 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
drh43605152004-05-29 21:46:49 +00006127 assert( pNew->nOverflow==0 );
danielk1977ac11ee62005-01-15 12:45:51 +00006128
danielk1977ac11ee62005-01-15 12:45:51 +00006129 j = cntNew[i];
6130
6131 /* If the sibling page assembled above was not the right-most sibling,
6132 ** insert a divider cell into the parent page.
6133 */
danielk19771c3d2bf2009-06-23 16:40:17 +00006134 assert( i<nNew-1 || j==nCell );
6135 if( j<nCell ){
drh8b18dd42004-05-12 19:18:15 +00006136 u8 *pCell;
drh24cd67e2004-05-10 16:18:47 +00006137 u8 *pTemp;
drh8b18dd42004-05-12 19:18:15 +00006138 int sz;
danielk1977634f2982005-03-28 08:44:07 +00006139
6140 assert( j<nMaxCells );
drh8b18dd42004-05-12 19:18:15 +00006141 pCell = apCell[j];
6142 sz = szCell[j] + leafCorrection;
danielk19776067a9b2009-06-09 09:41:00 +00006143 pTemp = &aOvflSpace[iOvflSpace];
drh4b70f112004-05-02 21:12:19 +00006144 if( !pNew->leaf ){
drh43605152004-05-29 21:46:49 +00006145 memcpy(&pNew->aData[8], pCell, 4);
drh8b18dd42004-05-12 19:18:15 +00006146 }else if( leafData ){
drhfd131da2007-08-07 17:13:03 +00006147 /* If the tree is a leaf-data tree, and the siblings are leaves,
danielk1977ac11ee62005-01-15 12:45:51 +00006148 ** then there is no divider cell in apCell[]. Instead, the divider
6149 ** cell consists of the integer key for the right-most cell of
6150 ** the sibling-page assembled above only.
6151 */
drh6f11bef2004-05-13 01:12:56 +00006152 CellInfo info;
drh8b18dd42004-05-12 19:18:15 +00006153 j--;
danielk197730548662009-07-09 05:07:37 +00006154 btreeParseCellPtr(pNew, apCell[j], &info);
drhe5ae5732008-06-15 02:51:47 +00006155 pCell = pTemp;
danielk19774dbaa892009-06-16 16:50:22 +00006156 sz = 4 + putVarint(&pCell[4], info.nKey);
drh8b18dd42004-05-12 19:18:15 +00006157 pTemp = 0;
drh4b70f112004-05-02 21:12:19 +00006158 }else{
6159 pCell -= 4;
danielk19774aeff622007-05-12 09:30:47 +00006160 /* Obscure case for non-leaf-data trees: If the cell at pCell was
drh85b623f2007-12-13 21:54:09 +00006161 ** previously stored on a leaf node, and its reported size was 4
danielk19774aeff622007-05-12 09:30:47 +00006162 ** bytes, then it may actually be smaller than this
danielk197730548662009-07-09 05:07:37 +00006163 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
drh85b623f2007-12-13 21:54:09 +00006164 ** any cell). But it is important to pass the correct size to
danielk19774aeff622007-05-12 09:30:47 +00006165 ** insertCell(), so reparse the cell now.
6166 **
6167 ** Note that this can never happen in an SQLite data file, as all
6168 ** cells are at least 4 bytes. It only happens in b-trees used
6169 ** to evaluate "IN (SELECT ...)" and similar clauses.
6170 */
6171 if( szCell[j]==4 ){
6172 assert(leafCorrection==4);
6173 sz = cellSizePtr(pParent, pCell);
6174 }
drh4b70f112004-05-02 21:12:19 +00006175 }
danielk19776067a9b2009-06-09 09:41:00 +00006176 iOvflSpace += sz;
drhe5ae5732008-06-15 02:51:47 +00006177 assert( sz<=pBt->pageSize/4 );
danielk19776067a9b2009-06-09 09:41:00 +00006178 assert( iOvflSpace<=pBt->pageSize );
drh98add2e2009-07-20 17:11:49 +00006179 insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
danielk1977e80463b2004-11-03 03:01:16 +00006180 if( rc!=SQLITE_OK ) goto balance_cleanup;
drhc5053fb2008-11-27 02:22:10 +00006181 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
danielk197785d90ca2008-07-19 14:25:15 +00006182
drh14acc042001-06-10 19:56:58 +00006183 j++;
6184 nxDiv++;
6185 }
6186 }
drh6019e162001-07-02 17:51:45 +00006187 assert( j==nCell );
drh7aa8f852006-03-28 00:24:44 +00006188 assert( nOld>0 );
6189 assert( nNew>0 );
drh4b70f112004-05-02 21:12:19 +00006190 if( (pageFlags & PTF_LEAF)==0 ){
danielk197787c52b52008-07-19 11:49:07 +00006191 u8 *zChild = &apCopy[nOld-1]->aData[8];
6192 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
drh14acc042001-06-10 19:56:58 +00006193 }
6194
danielk197713bd99f2009-06-24 05:40:34 +00006195 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6196 /* The root page of the b-tree now contains no cells. The only sibling
6197 ** page is the right-child of the parent. Copy the contents of the
6198 ** child page into the parent, decreasing the overall height of the
6199 ** b-tree structure by one. This is described as the "balance-shallower"
6200 ** sub-algorithm in some documentation.
6201 **
6202 ** If this is an auto-vacuum database, the call to copyNodeContent()
6203 ** sets all pointer-map entries corresponding to database image pages
6204 ** for which the pointer is stored within the content being copied.
6205 **
6206 ** The second assert below verifies that the child page is defragmented
6207 ** (it must be, as it was just reconstructed using assemblePage()). This
6208 ** is important if the parent page happens to be page 1 of the database
6209 ** image. */
6210 assert( nNew==1 );
6211 assert( apNew[0]->nFree ==
6212 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6213 );
drhc314dc72009-07-21 11:52:34 +00006214 copyNodeContent(apNew[0], pParent, &rc);
6215 freePage(apNew[0], &rc);
danielk197713bd99f2009-06-24 05:40:34 +00006216 }else if( ISAUTOVACUUM ){
6217 /* Fix the pointer-map entries for all the cells that were shifted around.
6218 ** There are several different types of pointer-map entries that need to
6219 ** be dealt with by this routine. Some of these have been set already, but
6220 ** many have not. The following is a summary:
6221 **
6222 ** 1) The entries associated with new sibling pages that were not
6223 ** siblings when this function was called. These have already
6224 ** been set. We don't need to worry about old siblings that were
6225 ** moved to the free-list - the freePage() code has taken care
6226 ** of those.
6227 **
6228 ** 2) The pointer-map entries associated with the first overflow
6229 ** page in any overflow chains used by new divider cells. These
6230 ** have also already been taken care of by the insertCell() code.
6231 **
6232 ** 3) If the sibling pages are not leaves, then the child pages of
6233 ** cells stored on the sibling pages may need to be updated.
6234 **
6235 ** 4) If the sibling pages are not internal intkey nodes, then any
6236 ** overflow pages used by these cells may need to be updated
6237 ** (internal intkey nodes never contain pointers to overflow pages).
6238 **
6239 ** 5) If the sibling pages are not leaves, then the pointer-map
6240 ** entries for the right-child pages of each sibling may need
6241 ** to be updated.
6242 **
6243 ** Cases 1 and 2 are dealt with above by other code. The next
6244 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6245 ** setting a pointer map entry is a relatively expensive operation, this
6246 ** code only sets pointer map entries for child or overflow pages that have
6247 ** actually moved between pages. */
danielk19774dbaa892009-06-16 16:50:22 +00006248 MemPage *pNew = apNew[0];
6249 MemPage *pOld = apCopy[0];
6250 int nOverflow = pOld->nOverflow;
6251 int iNextOld = pOld->nCell + nOverflow;
6252 int iOverflow = (nOverflow ? pOld->aOvfl[0].idx : -1);
6253 j = 0; /* Current 'old' sibling page */
6254 k = 0; /* Current 'new' sibling page */
drhc314dc72009-07-21 11:52:34 +00006255 for(i=0; i<nCell; i++){
danielk19774dbaa892009-06-16 16:50:22 +00006256 int isDivider = 0;
6257 while( i==iNextOld ){
6258 /* Cell i is the cell immediately following the last cell on old
6259 ** sibling page j. If the siblings are not leaf pages of an
6260 ** intkey b-tree, then cell i was a divider cell. */
6261 pOld = apCopy[++j];
6262 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6263 if( pOld->nOverflow ){
6264 nOverflow = pOld->nOverflow;
6265 iOverflow = i + !leafData + pOld->aOvfl[0].idx;
6266 }
6267 isDivider = !leafData;
6268 }
6269
6270 assert(nOverflow>0 || iOverflow<i );
6271 assert(nOverflow<2 || pOld->aOvfl[0].idx==pOld->aOvfl[1].idx-1);
6272 assert(nOverflow<3 || pOld->aOvfl[1].idx==pOld->aOvfl[2].idx-1);
6273 if( i==iOverflow ){
6274 isDivider = 1;
6275 if( (--nOverflow)>0 ){
6276 iOverflow++;
6277 }
6278 }
6279
6280 if( i==cntNew[k] ){
6281 /* Cell i is the cell immediately following the last cell on new
6282 ** sibling page k. If the siblings are not leaf pages of an
6283 ** intkey b-tree, then cell i is a divider cell. */
6284 pNew = apNew[++k];
6285 if( !leafData ) continue;
6286 }
danielk19774dbaa892009-06-16 16:50:22 +00006287 assert( j<nOld );
6288 assert( k<nNew );
6289
6290 /* If the cell was originally divider cell (and is not now) or
6291 ** an overflow cell, or if the cell was located on a different sibling
6292 ** page before the balancing, then the pointer map entries associated
6293 ** with any child or overflow pages need to be updated. */
6294 if( isDivider || pOld->pgno!=pNew->pgno ){
6295 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006296 ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006297 }
drh98add2e2009-07-20 17:11:49 +00006298 if( szCell[i]>pNew->minLocal ){
6299 ptrmapPutOvflPtr(pNew, apCell[i], &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006300 }
6301 }
6302 }
6303
6304 if( !leafCorrection ){
drh98add2e2009-07-20 17:11:49 +00006305 for(i=0; i<nNew; i++){
6306 u32 key = get4byte(&apNew[i]->aData[8]);
6307 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
danielk19774dbaa892009-06-16 16:50:22 +00006308 }
6309 }
6310
6311#if 0
6312 /* The ptrmapCheckPages() contains assert() statements that verify that
6313 ** all pointer map pages are set correctly. This is helpful while
6314 ** debugging. This is usually disabled because a corrupt database may
6315 ** cause an assert() statement to fail. */
6316 ptrmapCheckPages(apNew, nNew);
6317 ptrmapCheckPages(&pParent, 1);
6318#endif
6319 }
6320
danielk197771d5d2c2008-09-29 11:49:47 +00006321 assert( pParent->isInit );
danielk1977e5765212009-06-17 11:13:28 +00006322 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6323 nOld, nNew, nCell));
danielk1977cd581a72009-06-23 15:43:39 +00006324
drh8b2f49b2001-06-08 00:21:52 +00006325 /*
drh14acc042001-06-10 19:56:58 +00006326 ** Cleanup before returning.
drh8b2f49b2001-06-08 00:21:52 +00006327 */
drh14acc042001-06-10 19:56:58 +00006328balance_cleanup:
drhfacf0302008-06-17 15:12:00 +00006329 sqlite3ScratchFree(apCell);
drh8b2f49b2001-06-08 00:21:52 +00006330 for(i=0; i<nOld; i++){
drh91025292004-05-03 19:49:32 +00006331 releasePage(apOld[i]);
drh8b2f49b2001-06-08 00:21:52 +00006332 }
drh14acc042001-06-10 19:56:58 +00006333 for(i=0; i<nNew; i++){
drh91025292004-05-03 19:49:32 +00006334 releasePage(apNew[i]);
drh8b2f49b2001-06-08 00:21:52 +00006335 }
danielk1977eaa06f62008-09-18 17:34:44 +00006336
drh8b2f49b2001-06-08 00:21:52 +00006337 return rc;
6338}
6339
drh43605152004-05-29 21:46:49 +00006340
6341/*
danielk1977a50d9aa2009-06-08 14:49:45 +00006342** This function is called when the root page of a b-tree structure is
6343** overfull (has one or more overflow pages).
drh43605152004-05-29 21:46:49 +00006344**
danielk1977a50d9aa2009-06-08 14:49:45 +00006345** A new child page is allocated and the contents of the current root
6346** page, including overflow cells, are copied into the child. The root
6347** page is then overwritten to make it an empty page with the right-child
6348** pointer pointing to the new page.
6349**
6350** Before returning, all pointer-map entries corresponding to pages
6351** that the new child-page now contains pointers to are updated. The
6352** entry corresponding to the new right-child pointer of the root
6353** page is also updated.
6354**
6355** If successful, *ppChild is set to contain a reference to the child
6356** page and SQLITE_OK is returned. In this case the caller is required
6357** to call releasePage() on *ppChild exactly once. If an error occurs,
6358** an error code is returned and *ppChild is set to 0.
drh43605152004-05-29 21:46:49 +00006359*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006360static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6361 int rc; /* Return value from subprocedures */
6362 MemPage *pChild = 0; /* Pointer to a new child page */
shane5eff7cf2009-08-10 03:57:58 +00006363 Pgno pgnoChild = 0; /* Page number of the new child page */
danielk1977a50d9aa2009-06-08 14:49:45 +00006364 BtShared *pBt = pRoot->pBt; /* The BTree */
drh43605152004-05-29 21:46:49 +00006365
danielk1977a50d9aa2009-06-08 14:49:45 +00006366 assert( pRoot->nOverflow>0 );
drh1fee73e2007-08-29 04:00:57 +00006367 assert( sqlite3_mutex_held(pBt->mutex) );
danielk1977bc2ca9e2008-11-13 14:28:28 +00006368
danielk1977a50d9aa2009-06-08 14:49:45 +00006369 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6370 ** page that will become the new right-child of pPage. Copy the contents
6371 ** of the node stored on pRoot into the new child page.
6372 */
drh98add2e2009-07-20 17:11:49 +00006373 rc = sqlite3PagerWrite(pRoot->pDbPage);
6374 if( rc==SQLITE_OK ){
6375 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
drhc314dc72009-07-21 11:52:34 +00006376 copyNodeContent(pRoot, pChild, &rc);
6377 if( ISAUTOVACUUM ){
6378 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
drh98add2e2009-07-20 17:11:49 +00006379 }
6380 }
6381 if( rc ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006382 *ppChild = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006383 releasePage(pChild);
danielk1977a50d9aa2009-06-08 14:49:45 +00006384 return rc;
danielk197771d5d2c2008-09-29 11:49:47 +00006385 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006386 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6387 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6388 assert( pChild->nCell==pRoot->nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006389
danielk1977a50d9aa2009-06-08 14:49:45 +00006390 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6391
6392 /* Copy the overflow cells from pRoot to pChild */
6393 memcpy(pChild->aOvfl, pRoot->aOvfl, pRoot->nOverflow*sizeof(pRoot->aOvfl[0]));
6394 pChild->nOverflow = pRoot->nOverflow;
danielk1977a50d9aa2009-06-08 14:49:45 +00006395
6396 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6397 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6398 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6399
6400 *ppChild = pChild;
6401 return SQLITE_OK;
drh43605152004-05-29 21:46:49 +00006402}
6403
6404/*
danielk197771d5d2c2008-09-29 11:49:47 +00006405** The page that pCur currently points to has just been modified in
6406** some way. This function figures out if this modification means the
6407** tree needs to be balanced, and if so calls the appropriate balancing
danielk1977a50d9aa2009-06-08 14:49:45 +00006408** routine. Balancing routines are:
6409**
6410** balance_quick()
danielk1977a50d9aa2009-06-08 14:49:45 +00006411** balance_deeper()
6412** balance_nonroot()
drh43605152004-05-29 21:46:49 +00006413*/
danielk1977a50d9aa2009-06-08 14:49:45 +00006414static int balance(BtCursor *pCur){
drh43605152004-05-29 21:46:49 +00006415 int rc = SQLITE_OK;
danielk1977a50d9aa2009-06-08 14:49:45 +00006416 const int nMin = pCur->pBt->usableSize * 2 / 3;
6417 u8 aBalanceQuickSpace[13];
6418 u8 *pFree = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006419
shane75ac1de2009-06-09 18:58:52 +00006420 TESTONLY( int balance_quick_called = 0 );
6421 TESTONLY( int balance_deeper_called = 0 );
danielk1977a50d9aa2009-06-08 14:49:45 +00006422
6423 do {
6424 int iPage = pCur->iPage;
6425 MemPage *pPage = pCur->apPage[iPage];
6426
6427 if( iPage==0 ){
6428 if( pPage->nOverflow ){
6429 /* The root page of the b-tree is overfull. In this case call the
6430 ** balance_deeper() function to create a new child for the root-page
6431 ** and copy the current contents of the root-page to it. The
6432 ** next iteration of the do-loop will balance the child page.
6433 */
6434 assert( (balance_deeper_called++)==0 );
6435 rc = balance_deeper(pPage, &pCur->apPage[1]);
6436 if( rc==SQLITE_OK ){
6437 pCur->iPage = 1;
6438 pCur->aiIdx[0] = 0;
6439 pCur->aiIdx[1] = 0;
6440 assert( pCur->apPage[1]->nOverflow );
6441 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006442 }else{
danielk1977a50d9aa2009-06-08 14:49:45 +00006443 break;
6444 }
6445 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
6446 break;
6447 }else{
6448 MemPage * const pParent = pCur->apPage[iPage-1];
6449 int const iIdx = pCur->aiIdx[iPage-1];
6450
6451 rc = sqlite3PagerWrite(pParent->pDbPage);
6452 if( rc==SQLITE_OK ){
6453#ifndef SQLITE_OMIT_QUICKBALANCE
6454 if( pPage->hasData
6455 && pPage->nOverflow==1
6456 && pPage->aOvfl[0].idx==pPage->nCell
6457 && pParent->pgno!=1
6458 && pParent->nCell==iIdx
6459 ){
6460 /* Call balance_quick() to create a new sibling of pPage on which
6461 ** to store the overflow cell. balance_quick() inserts a new cell
6462 ** into pParent, which may cause pParent overflow. If this
6463 ** happens, the next interation of the do-loop will balance pParent
6464 ** use either balance_nonroot() or balance_deeper(). Until this
6465 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
6466 ** buffer.
6467 **
6468 ** The purpose of the following assert() is to check that only a
6469 ** single call to balance_quick() is made for each call to this
6470 ** function. If this were not verified, a subtle bug involving reuse
6471 ** of the aBalanceQuickSpace[] might sneak in.
6472 */
6473 assert( (balance_quick_called++)==0 );
6474 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
6475 }else
6476#endif
6477 {
6478 /* In this case, call balance_nonroot() to redistribute cells
6479 ** between pPage and up to 2 of its sibling pages. This involves
6480 ** modifying the contents of pParent, which may cause pParent to
6481 ** become overfull or underfull. The next iteration of the do-loop
6482 ** will balance the parent page to correct this.
6483 **
6484 ** If the parent page becomes overfull, the overflow cell or cells
6485 ** are stored in the pSpace buffer allocated immediately below.
6486 ** A subsequent iteration of the do-loop will deal with this by
6487 ** calling balance_nonroot() (balance_deeper() may be called first,
6488 ** but it doesn't deal with overflow cells - just moves them to a
6489 ** different page). Once this subsequent call to balance_nonroot()
6490 ** has completed, it is safe to release the pSpace buffer used by
6491 ** the previous call, as the overflow cell data will have been
6492 ** copied either into the body of a database page or into the new
6493 ** pSpace buffer passed to the latter call to balance_nonroot().
6494 */
6495 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
danielk1977cd581a72009-06-23 15:43:39 +00006496 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1);
danielk1977a50d9aa2009-06-08 14:49:45 +00006497 if( pFree ){
6498 /* If pFree is not NULL, it points to the pSpace buffer used
6499 ** by a previous call to balance_nonroot(). Its contents are
6500 ** now stored either on real database pages or within the
6501 ** new pSpace buffer, so it may be safely freed here. */
6502 sqlite3PageFree(pFree);
6503 }
6504
danielk19774dbaa892009-06-16 16:50:22 +00006505 /* The pSpace buffer will be freed after the next call to
6506 ** balance_nonroot(), or just before this function returns, whichever
6507 ** comes first. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006508 pFree = pSpace;
danielk1977a50d9aa2009-06-08 14:49:45 +00006509 }
6510 }
6511
6512 pPage->nOverflow = 0;
6513
6514 /* The next iteration of the do-loop balances the parent page. */
6515 releasePage(pPage);
6516 pCur->iPage--;
drh43605152004-05-29 21:46:49 +00006517 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006518 }while( rc==SQLITE_OK );
6519
6520 if( pFree ){
6521 sqlite3PageFree(pFree);
drh43605152004-05-29 21:46:49 +00006522 }
6523 return rc;
6524}
6525
drhf74b8d92002-09-01 23:20:45 +00006526
6527/*
drh3b7511c2001-05-26 13:15:44 +00006528** Insert a new record into the BTree. The key is given by (pKey,nKey)
6529** and the data is given by (pData,nData). The cursor is used only to
drh91025292004-05-03 19:49:32 +00006530** define what table the record should be inserted into. The cursor
drh4b70f112004-05-02 21:12:19 +00006531** is left pointing at a random location.
6532**
6533** For an INTKEY table, only the nKey value of the key is used. pKey is
6534** ignored. For a ZERODATA table, the pData and nData are both ignored.
danielk1977de630352009-05-04 11:42:29 +00006535**
6536** If the seekResult parameter is non-zero, then a successful call to
danielk19773509a652009-07-06 18:56:13 +00006537** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
danielk1977de630352009-05-04 11:42:29 +00006538** been performed. seekResult is the search result returned (a negative
6539** number if pCur points at an entry that is smaller than (pKey, nKey), or
6540** a positive value if pCur points at an etry that is larger than
6541** (pKey, nKey)).
6542**
drh3e9ca092009-09-08 01:14:48 +00006543** If the seekResult parameter is non-zero, then the caller guarantees that
6544** cursor pCur is pointing at the existing copy of a row that is to be
6545** overwritten. If the seekResult parameter is 0, then cursor pCur may
6546** point to any entry or to no entry at all and so this function has to seek
danielk1977de630352009-05-04 11:42:29 +00006547** the cursor before the new key can be inserted.
drh3b7511c2001-05-26 13:15:44 +00006548*/
drh3aac2dd2004-04-26 14:10:20 +00006549int sqlite3BtreeInsert(
drh5c4d9702001-08-20 00:33:58 +00006550 BtCursor *pCur, /* Insert data into the table of this cursor */
drh4a1c3802004-05-12 15:15:47 +00006551 const void *pKey, i64 nKey, /* The key of the new record */
drhe4d90812007-03-29 05:51:49 +00006552 const void *pData, int nData, /* The data of the new record */
drhb026e052007-05-02 01:34:31 +00006553 int nZero, /* Number of extra 0 bytes to append to data */
danielk1977de630352009-05-04 11:42:29 +00006554 int appendBias, /* True if this is likely an append */
danielk19773509a652009-07-06 18:56:13 +00006555 int seekResult /* Result of prior MovetoUnpacked() call */
drh3b7511c2001-05-26 13:15:44 +00006556){
drh3b7511c2001-05-26 13:15:44 +00006557 int rc;
drh3e9ca092009-09-08 01:14:48 +00006558 int loc = seekResult; /* -1: before desired location +1: after */
drh1d452e12009-11-01 19:26:59 +00006559 int szNew = 0;
danielk197771d5d2c2008-09-29 11:49:47 +00006560 int idx;
drh3b7511c2001-05-26 13:15:44 +00006561 MemPage *pPage;
drhd677b3d2007-08-20 22:48:41 +00006562 Btree *p = pCur->pBtree;
6563 BtShared *pBt = p->pBt;
drha34b6762004-05-07 13:30:42 +00006564 unsigned char *oldCell;
drh2e38c322004-09-03 18:38:44 +00006565 unsigned char *newCell = 0;
drh3b7511c2001-05-26 13:15:44 +00006566
drh98add2e2009-07-20 17:11:49 +00006567 if( pCur->eState==CURSOR_FAULT ){
6568 assert( pCur->skipNext!=SQLITE_OK );
6569 return pCur->skipNext;
6570 }
6571
drh1fee73e2007-08-29 04:00:57 +00006572 assert( cursorHoldsMutex(pCur) );
danielk197731d31b82009-07-13 13:18:07 +00006573 assert( pCur->wrFlag && pBt->inTransaction==TRANS_WRITE && !pBt->readOnly );
danielk197796d48e92009-06-29 06:00:37 +00006574 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6575
danielk197731d31b82009-07-13 13:18:07 +00006576 /* Assert that the caller has been consistent. If this cursor was opened
6577 ** expecting an index b-tree, then the caller should be inserting blob
6578 ** keys with no associated data. If the cursor was opened expecting an
6579 ** intkey table, the caller should be inserting integer keys with a
6580 ** blob of associated data. */
6581 assert( (pKey==0)==(pCur->pKeyInfo==0) );
6582
danielk197796d48e92009-06-29 06:00:37 +00006583 /* If this is an insert into a table b-tree, invalidate any incrblob
6584 ** cursors open on the row being replaced (assuming this is a replace
6585 ** operation - if it is not, the following is a no-op). */
6586 if( pCur->pKeyInfo==0 ){
drheeb844a2009-08-08 18:01:07 +00006587 invalidateIncrblobCursors(p, nKey, 0);
drhf74b8d92002-09-01 23:20:45 +00006588 }
danielk197796d48e92009-06-29 06:00:37 +00006589
danielk19779c3acf32009-05-02 07:36:49 +00006590 /* Save the positions of any other cursors open on this table.
6591 **
danielk19773509a652009-07-06 18:56:13 +00006592 ** In some cases, the call to btreeMoveto() below is a no-op. For
danielk19779c3acf32009-05-02 07:36:49 +00006593 ** example, when inserting data into a table with auto-generated integer
6594 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
6595 ** integer key to use. It then calls this function to actually insert the
danielk19773509a652009-07-06 18:56:13 +00006596 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
danielk19779c3acf32009-05-02 07:36:49 +00006597 ** that the cursor is already where it needs to be and returns without
6598 ** doing any work. To avoid thwarting these optimizations, it is important
6599 ** not to clear the cursor here.
6600 */
drh4c301aa2009-07-15 17:25:45 +00006601 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6602 if( rc ) return rc;
6603 if( !loc ){
6604 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
6605 if( rc ) return rc;
danielk1977da184232006-01-05 11:34:32 +00006606 }
danielk1977b980d2212009-06-22 18:03:51 +00006607 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
danielk1977da184232006-01-05 11:34:32 +00006608
danielk197771d5d2c2008-09-29 11:49:47 +00006609 pPage = pCur->apPage[pCur->iPage];
drh4a1c3802004-05-12 15:15:47 +00006610 assert( pPage->intKey || nKey>=0 );
drh44845222008-07-17 18:39:57 +00006611 assert( pPage->leaf || !pPage->intKey );
danielk19778f880a82009-07-13 09:41:45 +00006612
drh3a4c1412004-05-09 20:40:11 +00006613 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
6614 pCur->pgnoRoot, nKey, nData, pPage->pgno,
6615 loc==0 ? "overwrite" : "new entry"));
danielk197771d5d2c2008-09-29 11:49:47 +00006616 assert( pPage->isInit );
danielk197752ae7242008-03-25 14:24:56 +00006617 allocateTempSpace(pBt);
6618 newCell = pBt->pTmpSpace;
drh2e38c322004-09-03 18:38:44 +00006619 if( newCell==0 ) return SQLITE_NOMEM;
drhb026e052007-05-02 01:34:31 +00006620 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
drh2e38c322004-09-03 18:38:44 +00006621 if( rc ) goto end_insert;
drh43605152004-05-29 21:46:49 +00006622 assert( szNew==cellSizePtr(pPage, newCell) );
drh2e38c322004-09-03 18:38:44 +00006623 assert( szNew<=MX_CELL_SIZE(pBt) );
danielk197771d5d2c2008-09-29 11:49:47 +00006624 idx = pCur->aiIdx[pCur->iPage];
danielk1977b980d2212009-06-22 18:03:51 +00006625 if( loc==0 ){
drha9121e42008-02-19 14:59:35 +00006626 u16 szOld;
danielk197771d5d2c2008-09-29 11:49:47 +00006627 assert( idx<pPage->nCell );
danielk19776e465eb2007-08-21 13:11:00 +00006628 rc = sqlite3PagerWrite(pPage->pDbPage);
6629 if( rc ){
6630 goto end_insert;
6631 }
danielk197771d5d2c2008-09-29 11:49:47 +00006632 oldCell = findCell(pPage, idx);
drh4b70f112004-05-02 21:12:19 +00006633 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00006634 memcpy(newCell, oldCell, 4);
drh4b70f112004-05-02 21:12:19 +00006635 }
drh43605152004-05-29 21:46:49 +00006636 szOld = cellSizePtr(pPage, oldCell);
drh4b70f112004-05-02 21:12:19 +00006637 rc = clearCell(pPage, oldCell);
drh98add2e2009-07-20 17:11:49 +00006638 dropCell(pPage, idx, szOld, &rc);
drh2e38c322004-09-03 18:38:44 +00006639 if( rc ) goto end_insert;
drh7c717f72001-06-24 20:39:41 +00006640 }else if( loc<0 && pPage->nCell>0 ){
drh4b70f112004-05-02 21:12:19 +00006641 assert( pPage->leaf );
danielk197771d5d2c2008-09-29 11:49:47 +00006642 idx = ++pCur->aiIdx[pCur->iPage];
drh14acc042001-06-10 19:56:58 +00006643 }else{
drh4b70f112004-05-02 21:12:19 +00006644 assert( pPage->leaf );
drh3b7511c2001-05-26 13:15:44 +00006645 }
drh98add2e2009-07-20 17:11:49 +00006646 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
danielk19773f632d52009-05-02 10:03:09 +00006647 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
drh9bf9e9c2008-12-05 20:01:43 +00006648
danielk1977a50d9aa2009-06-08 14:49:45 +00006649 /* If no error has occured and pPage has an overflow cell, call balance()
6650 ** to redistribute the cells within the tree. Since balance() may move
6651 ** the cursor, zero the BtCursor.info.nSize and BtCursor.validNKey
6652 ** variables.
danielk19773f632d52009-05-02 10:03:09 +00006653 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006654 ** Previous versions of SQLite called moveToRoot() to move the cursor
6655 ** back to the root page as balance() used to invalidate the contents
danielk197754109bb2009-06-23 11:22:29 +00006656 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
6657 ** set the cursor state to "invalid". This makes common insert operations
6658 ** slightly faster.
danielk19773f632d52009-05-02 10:03:09 +00006659 **
danielk1977a50d9aa2009-06-08 14:49:45 +00006660 ** There is a subtle but important optimization here too. When inserting
6661 ** multiple records into an intkey b-tree using a single cursor (as can
6662 ** happen while processing an "INSERT INTO ... SELECT" statement), it
6663 ** is advantageous to leave the cursor pointing to the last entry in
6664 ** the b-tree if possible. If the cursor is left pointing to the last
6665 ** entry in the table, and the next row inserted has an integer key
6666 ** larger than the largest existing key, it is possible to insert the
6667 ** row without seeking the cursor. This can be a big performance boost.
danielk19773f632d52009-05-02 10:03:09 +00006668 */
danielk1977a50d9aa2009-06-08 14:49:45 +00006669 pCur->info.nSize = 0;
6670 pCur->validNKey = 0;
6671 if( rc==SQLITE_OK && pPage->nOverflow ){
danielk1977a50d9aa2009-06-08 14:49:45 +00006672 rc = balance(pCur);
6673
6674 /* Must make sure nOverflow is reset to zero even if the balance()
danielk197754109bb2009-06-23 11:22:29 +00006675 ** fails. Internal data structure corruption will result otherwise.
6676 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
6677 ** from trying to save the current position of the cursor. */
danielk1977a50d9aa2009-06-08 14:49:45 +00006678 pCur->apPage[pCur->iPage]->nOverflow = 0;
danielk197754109bb2009-06-23 11:22:29 +00006679 pCur->eState = CURSOR_INVALID;
danielk19773f632d52009-05-02 10:03:09 +00006680 }
danielk1977a50d9aa2009-06-08 14:49:45 +00006681 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
drh9bf9e9c2008-12-05 20:01:43 +00006682
drh2e38c322004-09-03 18:38:44 +00006683end_insert:
drh5e2f8b92001-05-28 00:41:15 +00006684 return rc;
6685}
6686
6687/*
drh4b70f112004-05-02 21:12:19 +00006688** Delete the entry that the cursor is pointing to. The cursor
drhf94a1732008-09-30 17:18:17 +00006689** is left pointing at a arbitrary location.
drh3b7511c2001-05-26 13:15:44 +00006690*/
drh3aac2dd2004-04-26 14:10:20 +00006691int sqlite3BtreeDelete(BtCursor *pCur){
drhd677b3d2007-08-20 22:48:41 +00006692 Btree *p = pCur->pBtree;
danielk19774dbaa892009-06-16 16:50:22 +00006693 BtShared *pBt = p->pBt;
6694 int rc; /* Return code */
6695 MemPage *pPage; /* Page to delete cell from */
6696 unsigned char *pCell; /* Pointer to cell to delete */
6697 int iCellIdx; /* Index of cell to delete */
6698 int iCellDepth; /* Depth of node containing pCell */
drh8b2f49b2001-06-08 00:21:52 +00006699
drh1fee73e2007-08-29 04:00:57 +00006700 assert( cursorHoldsMutex(pCur) );
drh64022502009-01-09 14:11:04 +00006701 assert( pBt->inTransaction==TRANS_WRITE );
drhf74b8d92002-09-01 23:20:45 +00006702 assert( !pBt->readOnly );
drh64022502009-01-09 14:11:04 +00006703 assert( pCur->wrFlag );
danielk197796d48e92009-06-29 06:00:37 +00006704 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
6705 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
6706
danielk19774dbaa892009-06-16 16:50:22 +00006707 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
6708 || NEVER(pCur->eState!=CURSOR_VALID)
6709 ){
6710 return SQLITE_ERROR; /* Something has gone awry. */
drhf74b8d92002-09-01 23:20:45 +00006711 }
danielk1977da184232006-01-05 11:34:32 +00006712
danielk197796d48e92009-06-29 06:00:37 +00006713 /* If this is a delete operation to remove a row from a table b-tree,
6714 ** invalidate any incrblob cursors open on the row being deleted. */
6715 if( pCur->pKeyInfo==0 ){
drheeb844a2009-08-08 18:01:07 +00006716 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
danielk19774dbaa892009-06-16 16:50:22 +00006717 }
6718
6719 iCellDepth = pCur->iPage;
6720 iCellIdx = pCur->aiIdx[iCellDepth];
6721 pPage = pCur->apPage[iCellDepth];
6722 pCell = findCell(pPage, iCellIdx);
6723
6724 /* If the page containing the entry to delete is not a leaf page, move
6725 ** the cursor to the largest entry in the tree that is smaller than
6726 ** the entry being deleted. This cell will replace the cell being deleted
6727 ** from the internal node. The 'previous' entry is used for this instead
6728 ** of the 'next' entry, as the previous entry is always a part of the
6729 ** sub-tree headed by the child page of the cell being deleted. This makes
6730 ** balancing the tree following the delete operation easier. */
6731 if( !pPage->leaf ){
6732 int notUsed;
drh4c301aa2009-07-15 17:25:45 +00006733 rc = sqlite3BtreePrevious(pCur, &notUsed);
6734 if( rc ) return rc;
danielk19774dbaa892009-06-16 16:50:22 +00006735 }
6736
6737 /* Save the positions of any other cursors open on this table before
6738 ** making any modifications. Make the page containing the entry to be
6739 ** deleted writable. Then free any overflow pages associated with the
drha4ec1d42009-07-11 13:13:11 +00006740 ** entry and finally remove the cell itself from within the page.
6741 */
6742 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
6743 if( rc ) return rc;
6744 rc = sqlite3PagerWrite(pPage->pDbPage);
6745 if( rc ) return rc;
6746 rc = clearCell(pPage, pCell);
drh98add2e2009-07-20 17:11:49 +00006747 dropCell(pPage, iCellIdx, cellSizePtr(pPage, pCell), &rc);
drha4ec1d42009-07-11 13:13:11 +00006748 if( rc ) return rc;
danielk1977e6efa742004-11-10 11:55:10 +00006749
danielk19774dbaa892009-06-16 16:50:22 +00006750 /* If the cell deleted was not located on a leaf page, then the cursor
6751 ** is currently pointing to the largest entry in the sub-tree headed
6752 ** by the child-page of the cell that was just deleted from an internal
6753 ** node. The cell from the leaf node needs to be moved to the internal
6754 ** node to replace the deleted cell. */
drh4b70f112004-05-02 21:12:19 +00006755 if( !pPage->leaf ){
danielk19774dbaa892009-06-16 16:50:22 +00006756 MemPage *pLeaf = pCur->apPage[pCur->iPage];
6757 int nCell;
6758 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
6759 unsigned char *pTmp;
danielk1977e6efa742004-11-10 11:55:10 +00006760
danielk19774dbaa892009-06-16 16:50:22 +00006761 pCell = findCell(pLeaf, pLeaf->nCell-1);
6762 nCell = cellSizePtr(pLeaf, pCell);
6763 assert( MX_CELL_SIZE(pBt)>=nCell );
danielk197771d5d2c2008-09-29 11:49:47 +00006764
danielk19774dbaa892009-06-16 16:50:22 +00006765 allocateTempSpace(pBt);
6766 pTmp = pBt->pTmpSpace;
danielk19772f78fc62008-09-30 09:31:45 +00006767
drha4ec1d42009-07-11 13:13:11 +00006768 rc = sqlite3PagerWrite(pLeaf->pDbPage);
drh98add2e2009-07-20 17:11:49 +00006769 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
6770 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
drha4ec1d42009-07-11 13:13:11 +00006771 if( rc ) return rc;
drh5e2f8b92001-05-28 00:41:15 +00006772 }
danielk19774dbaa892009-06-16 16:50:22 +00006773
6774 /* Balance the tree. If the entry deleted was located on a leaf page,
6775 ** then the cursor still points to that page. In this case the first
6776 ** call to balance() repairs the tree, and the if(...) condition is
6777 ** never true.
6778 **
6779 ** Otherwise, if the entry deleted was on an internal node page, then
6780 ** pCur is pointing to the leaf page from which a cell was removed to
6781 ** replace the cell deleted from the internal node. This is slightly
6782 ** tricky as the leaf node may be underfull, and the internal node may
6783 ** be either under or overfull. In this case run the balancing algorithm
6784 ** on the leaf node first. If the balance proceeds far enough up the
6785 ** tree that we can be sure that any problem in the internal node has
6786 ** been corrected, so be it. Otherwise, after balancing the leaf node,
6787 ** walk the cursor up the tree to the internal node and balance it as
6788 ** well. */
6789 rc = balance(pCur);
6790 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
6791 while( pCur->iPage>iCellDepth ){
6792 releasePage(pCur->apPage[pCur->iPage--]);
6793 }
6794 rc = balance(pCur);
6795 }
6796
danielk19776b456a22005-03-21 04:04:02 +00006797 if( rc==SQLITE_OK ){
6798 moveToRoot(pCur);
6799 }
drh5e2f8b92001-05-28 00:41:15 +00006800 return rc;
drh3b7511c2001-05-26 13:15:44 +00006801}
drh8b2f49b2001-06-08 00:21:52 +00006802
6803/*
drhc6b52df2002-01-04 03:09:29 +00006804** Create a new BTree table. Write into *piTable the page
6805** number for the root page of the new table.
6806**
drhab01f612004-05-22 02:55:23 +00006807** The type of type is determined by the flags parameter. Only the
6808** following values of flags are currently in use. Other values for
6809** flags might not work:
6810**
6811** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
6812** BTREE_ZERODATA Used for SQL indices
drh8b2f49b2001-06-08 00:21:52 +00006813*/
drhd677b3d2007-08-20 22:48:41 +00006814static int btreeCreateTable(Btree *p, int *piTable, int flags){
danielk1977aef0bf62005-12-30 16:28:01 +00006815 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00006816 MemPage *pRoot;
6817 Pgno pgnoRoot;
6818 int rc;
drhd677b3d2007-08-20 22:48:41 +00006819
drh1fee73e2007-08-29 04:00:57 +00006820 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00006821 assert( pBt->inTransaction==TRANS_WRITE );
danielk197728129562005-01-11 10:25:06 +00006822 assert( !pBt->readOnly );
danielk1977e6efa742004-11-10 11:55:10 +00006823
danielk1977003ba062004-11-04 02:57:33 +00006824#ifdef SQLITE_OMIT_AUTOVACUUM
drh4f0c5872007-03-26 22:05:01 +00006825 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
drhd677b3d2007-08-20 22:48:41 +00006826 if( rc ){
6827 return rc;
6828 }
danielk1977003ba062004-11-04 02:57:33 +00006829#else
danielk1977687566d2004-11-02 12:56:41 +00006830 if( pBt->autoVacuum ){
danielk1977003ba062004-11-04 02:57:33 +00006831 Pgno pgnoMove; /* Move a page here to make room for the root-page */
6832 MemPage *pPageMove; /* The page to move to. */
6833
danielk197720713f32007-05-03 11:43:33 +00006834 /* Creating a new table may probably require moving an existing database
6835 ** to make room for the new tables root page. In case this page turns
6836 ** out to be an overflow page, delete all overflow page-map caches
6837 ** held by open cursors.
6838 */
danielk197792d4d7a2007-05-04 12:05:56 +00006839 invalidateAllOverflowCache(pBt);
danielk197720713f32007-05-03 11:43:33 +00006840
danielk1977003ba062004-11-04 02:57:33 +00006841 /* Read the value of meta[3] from the database to determine where the
6842 ** root page of the new table should go. meta[3] is the largest root-page
6843 ** created so far, so the new root-page is (meta[3]+1).
6844 */
danielk1977602b4662009-07-02 07:47:33 +00006845 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
danielk1977003ba062004-11-04 02:57:33 +00006846 pgnoRoot++;
6847
danielk1977599fcba2004-11-08 07:13:13 +00006848 /* The new root-page may not be allocated on a pointer-map page, or the
6849 ** PENDING_BYTE page.
6850 */
drh72190432008-01-31 14:54:43 +00006851 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
danielk1977599fcba2004-11-08 07:13:13 +00006852 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
danielk1977003ba062004-11-04 02:57:33 +00006853 pgnoRoot++;
6854 }
6855 assert( pgnoRoot>=3 );
6856
6857 /* Allocate a page. The page that currently resides at pgnoRoot will
6858 ** be moved to the allocated page (unless the allocated page happens
6859 ** to reside at pgnoRoot).
6860 */
drh4f0c5872007-03-26 22:05:01 +00006861 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, 1);
danielk1977003ba062004-11-04 02:57:33 +00006862 if( rc!=SQLITE_OK ){
danielk1977687566d2004-11-02 12:56:41 +00006863 return rc;
6864 }
danielk1977003ba062004-11-04 02:57:33 +00006865
6866 if( pgnoMove!=pgnoRoot ){
danielk1977f35843b2007-04-07 15:03:17 +00006867 /* pgnoRoot is the page that will be used for the root-page of
6868 ** the new table (assuming an error did not occur). But we were
6869 ** allocated pgnoMove. If required (i.e. if it was not allocated
6870 ** by extending the file), the current page at position pgnoMove
6871 ** is already journaled.
6872 */
drheeb844a2009-08-08 18:01:07 +00006873 u8 eType = 0;
6874 Pgno iPtrPage = 0;
danielk1977003ba062004-11-04 02:57:33 +00006875
6876 releasePage(pPageMove);
danielk1977f35843b2007-04-07 15:03:17 +00006877
6878 /* Move the page currently at pgnoRoot to pgnoMove. */
danielk197730548662009-07-09 05:07:37 +00006879 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006880 if( rc!=SQLITE_OK ){
6881 return rc;
6882 }
6883 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
drh27731d72009-06-22 12:05:10 +00006884 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
6885 rc = SQLITE_CORRUPT_BKPT;
6886 }
6887 if( rc!=SQLITE_OK ){
danielk1977003ba062004-11-04 02:57:33 +00006888 releasePage(pRoot);
6889 return rc;
6890 }
drhccae6022005-02-26 17:31:26 +00006891 assert( eType!=PTRMAP_ROOTPAGE );
6892 assert( eType!=PTRMAP_FREEPAGE );
danielk19774c999992008-07-16 18:17:55 +00006893 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
danielk1977003ba062004-11-04 02:57:33 +00006894 releasePage(pRoot);
danielk1977f35843b2007-04-07 15:03:17 +00006895
6896 /* Obtain the page at pgnoRoot */
danielk1977003ba062004-11-04 02:57:33 +00006897 if( rc!=SQLITE_OK ){
6898 return rc;
6899 }
danielk197730548662009-07-09 05:07:37 +00006900 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
danielk1977003ba062004-11-04 02:57:33 +00006901 if( rc!=SQLITE_OK ){
6902 return rc;
6903 }
danielk19773b8a05f2007-03-19 17:44:26 +00006904 rc = sqlite3PagerWrite(pRoot->pDbPage);
danielk1977003ba062004-11-04 02:57:33 +00006905 if( rc!=SQLITE_OK ){
6906 releasePage(pRoot);
6907 return rc;
6908 }
6909 }else{
6910 pRoot = pPageMove;
6911 }
6912
danielk197742741be2005-01-08 12:42:39 +00006913 /* Update the pointer-map and meta-data with the new root-page number. */
drh98add2e2009-07-20 17:11:49 +00006914 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
danielk1977003ba062004-11-04 02:57:33 +00006915 if( rc ){
6916 releasePage(pRoot);
6917 return rc;
6918 }
drhbf592832010-03-30 15:51:12 +00006919
6920 /* When the new root page was allocated, page 1 was made writable in
6921 ** order either to increase the database filesize, or to decrement the
6922 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
6923 */
6924 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
danielk1977aef0bf62005-12-30 16:28:01 +00006925 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
drhbf592832010-03-30 15:51:12 +00006926 if( NEVER(rc) ){
danielk1977003ba062004-11-04 02:57:33 +00006927 releasePage(pRoot);
6928 return rc;
6929 }
danielk197742741be2005-01-08 12:42:39 +00006930
danielk1977003ba062004-11-04 02:57:33 +00006931 }else{
drh4f0c5872007-03-26 22:05:01 +00006932 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
danielk1977003ba062004-11-04 02:57:33 +00006933 if( rc ) return rc;
danielk1977687566d2004-11-02 12:56:41 +00006934 }
6935#endif
danielk19773b8a05f2007-03-19 17:44:26 +00006936 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
drhde647132004-05-07 17:57:49 +00006937 zeroPage(pRoot, flags | PTF_LEAF);
danielk19773b8a05f2007-03-19 17:44:26 +00006938 sqlite3PagerUnref(pRoot->pDbPage);
drh8b2f49b2001-06-08 00:21:52 +00006939 *piTable = (int)pgnoRoot;
6940 return SQLITE_OK;
6941}
drhd677b3d2007-08-20 22:48:41 +00006942int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
6943 int rc;
6944 sqlite3BtreeEnter(p);
6945 rc = btreeCreateTable(p, piTable, flags);
6946 sqlite3BtreeLeave(p);
6947 return rc;
6948}
drh8b2f49b2001-06-08 00:21:52 +00006949
6950/*
6951** Erase the given database page and all its children. Return
6952** the page to the freelist.
6953*/
drh4b70f112004-05-02 21:12:19 +00006954static int clearDatabasePage(
danielk1977aef0bf62005-12-30 16:28:01 +00006955 BtShared *pBt, /* The BTree that contains the table */
drh7ab641f2009-11-24 02:37:02 +00006956 Pgno pgno, /* Page number to clear */
6957 int freePageFlag, /* Deallocate page if true */
6958 int *pnChange /* Add number of Cells freed to this counter */
drh4b70f112004-05-02 21:12:19 +00006959){
danielk1977146ba992009-07-22 14:08:13 +00006960 MemPage *pPage;
drh8b2f49b2001-06-08 00:21:52 +00006961 int rc;
drh4b70f112004-05-02 21:12:19 +00006962 unsigned char *pCell;
6963 int i;
drh8b2f49b2001-06-08 00:21:52 +00006964
drh1fee73e2007-08-29 04:00:57 +00006965 assert( sqlite3_mutex_held(pBt->mutex) );
drhb1299152010-03-30 22:58:33 +00006966 if( pgno>btreePagecount(pBt) ){
drh49285702005-09-17 15:20:26 +00006967 return SQLITE_CORRUPT_BKPT;
danielk1977a1cb1832005-02-12 08:59:55 +00006968 }
6969
danielk197771d5d2c2008-09-29 11:49:47 +00006970 rc = getAndInitPage(pBt, pgno, &pPage);
danielk1977146ba992009-07-22 14:08:13 +00006971 if( rc ) return rc;
drh4b70f112004-05-02 21:12:19 +00006972 for(i=0; i<pPage->nCell; i++){
danielk19771cc5ed82007-05-16 17:28:43 +00006973 pCell = findCell(pPage, i);
drh4b70f112004-05-02 21:12:19 +00006974 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00006975 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00006976 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006977 }
drh4b70f112004-05-02 21:12:19 +00006978 rc = clearCell(pPage, pCell);
danielk19776b456a22005-03-21 04:04:02 +00006979 if( rc ) goto cleardatabasepage_out;
drh8b2f49b2001-06-08 00:21:52 +00006980 }
drha34b6762004-05-07 13:30:42 +00006981 if( !pPage->leaf ){
danielk197762c14b32008-11-19 09:05:26 +00006982 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[8]), 1, pnChange);
danielk19776b456a22005-03-21 04:04:02 +00006983 if( rc ) goto cleardatabasepage_out;
danielk1977c7af4842008-10-27 13:59:33 +00006984 }else if( pnChange ){
6985 assert( pPage->intKey );
6986 *pnChange += pPage->nCell;
drh2aa679f2001-06-25 02:11:07 +00006987 }
6988 if( freePageFlag ){
drhc314dc72009-07-21 11:52:34 +00006989 freePage(pPage, &rc);
danielk19773b8a05f2007-03-19 17:44:26 +00006990 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
drh3a4c1412004-05-09 20:40:11 +00006991 zeroPage(pPage, pPage->aData[0] | PTF_LEAF);
drh2aa679f2001-06-25 02:11:07 +00006992 }
danielk19776b456a22005-03-21 04:04:02 +00006993
6994cleardatabasepage_out:
drh4b70f112004-05-02 21:12:19 +00006995 releasePage(pPage);
drh2aa679f2001-06-25 02:11:07 +00006996 return rc;
drh8b2f49b2001-06-08 00:21:52 +00006997}
6998
6999/*
drhab01f612004-05-22 02:55:23 +00007000** Delete all information from a single table in the database. iTable is
7001** the page number of the root of the table. After this routine returns,
7002** the root page is empty, but still exists.
7003**
7004** This routine will fail with SQLITE_LOCKED if there are any open
7005** read cursors on the table. Open write cursors are moved to the
7006** root of the table.
danielk1977c7af4842008-10-27 13:59:33 +00007007**
7008** If pnChange is not NULL, then table iTable must be an intkey table. The
7009** integer value pointed to by pnChange is incremented by the number of
7010** entries in the table.
drh8b2f49b2001-06-08 00:21:52 +00007011*/
danielk1977c7af4842008-10-27 13:59:33 +00007012int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
drh8b2f49b2001-06-08 00:21:52 +00007013 int rc;
danielk1977aef0bf62005-12-30 16:28:01 +00007014 BtShared *pBt = p->pBt;
drhd677b3d2007-08-20 22:48:41 +00007015 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007016 assert( p->inTrans==TRANS_WRITE );
danielk197796d48e92009-06-29 06:00:37 +00007017
7018 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
7019 ** is the root of a table b-tree - if it is not, the following call is
7020 ** a no-op). */
drheeb844a2009-08-08 18:01:07 +00007021 invalidateIncrblobCursors(p, 0, 1);
danielk197796d48e92009-06-29 06:00:37 +00007022
drhc046e3e2009-07-15 11:26:44 +00007023 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
7024 if( SQLITE_OK==rc ){
danielk197762c14b32008-11-19 09:05:26 +00007025 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
drh8b2f49b2001-06-08 00:21:52 +00007026 }
drhd677b3d2007-08-20 22:48:41 +00007027 sqlite3BtreeLeave(p);
7028 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007029}
7030
7031/*
7032** Erase all information in a table and add the root of the table to
7033** the freelist. Except, the root of the principle table (the one on
drhab01f612004-05-22 02:55:23 +00007034** page 1) is never added to the freelist.
7035**
7036** This routine will fail with SQLITE_LOCKED if there are any open
7037** cursors on the table.
drh205f48e2004-11-05 00:43:11 +00007038**
7039** If AUTOVACUUM is enabled and the page at iTable is not the last
7040** root page in the database file, then the last root page
7041** in the database file is moved into the slot formerly occupied by
7042** iTable and that last slot formerly occupied by the last root page
7043** is added to the freelist instead of iTable. In this say, all
7044** root pages are kept at the beginning of the database file, which
7045** is necessary for AUTOVACUUM to work right. *piMoved is set to the
7046** page number that used to be the last root page in the file before
7047** the move. If no page gets moved, *piMoved is set to 0.
7048** The last root page is recorded in meta[3] and the value of
7049** meta[3] is updated by this procedure.
drh8b2f49b2001-06-08 00:21:52 +00007050*/
danielk197789d40042008-11-17 14:20:56 +00007051static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
drh8b2f49b2001-06-08 00:21:52 +00007052 int rc;
danielk1977a0bf2652004-11-04 14:30:04 +00007053 MemPage *pPage = 0;
danielk1977aef0bf62005-12-30 16:28:01 +00007054 BtShared *pBt = p->pBt;
danielk1977a0bf2652004-11-04 14:30:04 +00007055
drh1fee73e2007-08-29 04:00:57 +00007056 assert( sqlite3BtreeHoldsMutex(p) );
drh64022502009-01-09 14:11:04 +00007057 assert( p->inTrans==TRANS_WRITE );
danielk1977a0bf2652004-11-04 14:30:04 +00007058
danielk1977e6efa742004-11-10 11:55:10 +00007059 /* It is illegal to drop a table if any cursors are open on the
7060 ** database. This is because in auto-vacuum mode the backend may
7061 ** need to move another root-page to fill a gap left by the deleted
7062 ** root page. If an open cursor was using this page a problem would
7063 ** occur.
drhc046e3e2009-07-15 11:26:44 +00007064 **
7065 ** This error is caught long before control reaches this point.
danielk1977e6efa742004-11-10 11:55:10 +00007066 */
drhc046e3e2009-07-15 11:26:44 +00007067 if( NEVER(pBt->pCursor) ){
danielk1977404ca072009-03-16 13:19:36 +00007068 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
7069 return SQLITE_LOCKED_SHAREDCACHE;
drh5df72a52002-06-06 23:16:05 +00007070 }
danielk1977a0bf2652004-11-04 14:30:04 +00007071
danielk197730548662009-07-09 05:07:37 +00007072 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
drh2aa679f2001-06-25 02:11:07 +00007073 if( rc ) return rc;
danielk1977c7af4842008-10-27 13:59:33 +00007074 rc = sqlite3BtreeClearTable(p, iTable, 0);
danielk19776b456a22005-03-21 04:04:02 +00007075 if( rc ){
7076 releasePage(pPage);
7077 return rc;
7078 }
danielk1977a0bf2652004-11-04 14:30:04 +00007079
drh205f48e2004-11-05 00:43:11 +00007080 *piMoved = 0;
danielk1977a0bf2652004-11-04 14:30:04 +00007081
drh4b70f112004-05-02 21:12:19 +00007082 if( iTable>1 ){
danielk1977a0bf2652004-11-04 14:30:04 +00007083#ifdef SQLITE_OMIT_AUTOVACUUM
drhc314dc72009-07-21 11:52:34 +00007084 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007085 releasePage(pPage);
7086#else
7087 if( pBt->autoVacuum ){
7088 Pgno maxRootPgno;
danielk1977602b4662009-07-02 07:47:33 +00007089 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007090
7091 if( iTable==maxRootPgno ){
7092 /* If the table being dropped is the table with the largest root-page
7093 ** number in the database, put the root page on the free list.
7094 */
drhc314dc72009-07-21 11:52:34 +00007095 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007096 releasePage(pPage);
7097 if( rc!=SQLITE_OK ){
7098 return rc;
7099 }
7100 }else{
7101 /* The table being dropped does not have the largest root-page
7102 ** number in the database. So move the page that does into the
7103 ** gap left by the deleted root-page.
7104 */
7105 MemPage *pMove;
7106 releasePage(pPage);
danielk197730548662009-07-09 05:07:37 +00007107 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007108 if( rc!=SQLITE_OK ){
7109 return rc;
7110 }
danielk19774c999992008-07-16 18:17:55 +00007111 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
danielk1977a0bf2652004-11-04 14:30:04 +00007112 releasePage(pMove);
7113 if( rc!=SQLITE_OK ){
7114 return rc;
7115 }
drhfe3313f2009-07-21 19:02:20 +00007116 pMove = 0;
danielk197730548662009-07-09 05:07:37 +00007117 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
drhc314dc72009-07-21 11:52:34 +00007118 freePage(pMove, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007119 releasePage(pMove);
7120 if( rc!=SQLITE_OK ){
7121 return rc;
7122 }
7123 *piMoved = maxRootPgno;
7124 }
7125
danielk1977599fcba2004-11-08 07:13:13 +00007126 /* Set the new 'max-root-page' value in the database header. This
7127 ** is the old value less one, less one more if that happens to
7128 ** be a root-page number, less one again if that is the
7129 ** PENDING_BYTE_PAGE.
7130 */
danielk197787a6e732004-11-05 12:58:25 +00007131 maxRootPgno--;
drhe1849652009-07-15 18:15:22 +00007132 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
7133 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
danielk197787a6e732004-11-05 12:58:25 +00007134 maxRootPgno--;
7135 }
danielk1977599fcba2004-11-08 07:13:13 +00007136 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
7137
danielk1977aef0bf62005-12-30 16:28:01 +00007138 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
danielk1977a0bf2652004-11-04 14:30:04 +00007139 }else{
drhc314dc72009-07-21 11:52:34 +00007140 freePage(pPage, &rc);
danielk1977a0bf2652004-11-04 14:30:04 +00007141 releasePage(pPage);
7142 }
7143#endif
drh2aa679f2001-06-25 02:11:07 +00007144 }else{
drhc046e3e2009-07-15 11:26:44 +00007145 /* If sqlite3BtreeDropTable was called on page 1.
7146 ** This really never should happen except in a corrupt
7147 ** database.
7148 */
drha34b6762004-05-07 13:30:42 +00007149 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
danielk1977a0bf2652004-11-04 14:30:04 +00007150 releasePage(pPage);
drh8b2f49b2001-06-08 00:21:52 +00007151 }
drh8b2f49b2001-06-08 00:21:52 +00007152 return rc;
7153}
drhd677b3d2007-08-20 22:48:41 +00007154int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
7155 int rc;
7156 sqlite3BtreeEnter(p);
7157 rc = btreeDropTable(p, iTable, piMoved);
7158 sqlite3BtreeLeave(p);
7159 return rc;
7160}
drh8b2f49b2001-06-08 00:21:52 +00007161
drh001bbcb2003-03-19 03:14:00 +00007162
drh8b2f49b2001-06-08 00:21:52 +00007163/*
danielk1977602b4662009-07-02 07:47:33 +00007164** This function may only be called if the b-tree connection already
7165** has a read or write transaction open on the database.
7166**
drh23e11ca2004-05-04 17:27:28 +00007167** Read the meta-information out of a database file. Meta[0]
7168** is the number of free pages currently in the database. Meta[1]
drha3b321d2004-05-11 09:31:31 +00007169** through meta[15] are available for use by higher layers. Meta[0]
7170** is read-only, the others are read/write.
7171**
7172** The schema layer numbers meta values differently. At the schema
7173** layer (and the SetCookie and ReadCookie opcodes) the number of
7174** free pages is not visible. So Cookie[0] is the same as Meta[1].
drh8b2f49b2001-06-08 00:21:52 +00007175*/
danielk1977602b4662009-07-02 07:47:33 +00007176void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
danielk1977aef0bf62005-12-30 16:28:01 +00007177 BtShared *pBt = p->pBt;
drh8b2f49b2001-06-08 00:21:52 +00007178
drhd677b3d2007-08-20 22:48:41 +00007179 sqlite3BtreeEnter(p);
danielk1977602b4662009-07-02 07:47:33 +00007180 assert( p->inTrans>TRANS_NONE );
danielk1977e0d9e6f2009-07-03 16:25:06 +00007181 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
danielk1977602b4662009-07-02 07:47:33 +00007182 assert( pBt->pPage1 );
drh23e11ca2004-05-04 17:27:28 +00007183 assert( idx>=0 && idx<=15 );
danielk1977ea897302008-09-19 15:10:58 +00007184
danielk1977602b4662009-07-02 07:47:33 +00007185 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
drhae157872004-08-14 19:20:09 +00007186
danielk1977602b4662009-07-02 07:47:33 +00007187 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7188 ** database, mark the database as read-only. */
danielk1977003ba062004-11-04 02:57:33 +00007189#ifdef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007190 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ) pBt->readOnly = 1;
danielk1977003ba062004-11-04 02:57:33 +00007191#endif
drhae157872004-08-14 19:20:09 +00007192
drhd677b3d2007-08-20 22:48:41 +00007193 sqlite3BtreeLeave(p);
drh8b2f49b2001-06-08 00:21:52 +00007194}
7195
7196/*
drh23e11ca2004-05-04 17:27:28 +00007197** Write meta-information back into the database. Meta[0] is
7198** read-only and may not be written.
drh8b2f49b2001-06-08 00:21:52 +00007199*/
danielk1977aef0bf62005-12-30 16:28:01 +00007200int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7201 BtShared *pBt = p->pBt;
drh4b70f112004-05-02 21:12:19 +00007202 unsigned char *pP1;
drha34b6762004-05-07 13:30:42 +00007203 int rc;
drh23e11ca2004-05-04 17:27:28 +00007204 assert( idx>=1 && idx<=15 );
drhd677b3d2007-08-20 22:48:41 +00007205 sqlite3BtreeEnter(p);
drh64022502009-01-09 14:11:04 +00007206 assert( p->inTrans==TRANS_WRITE );
7207 assert( pBt->pPage1!=0 );
7208 pP1 = pBt->pPage1->aData;
7209 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7210 if( rc==SQLITE_OK ){
7211 put4byte(&pP1[36 + idx*4], iMeta);
danielk19774152e672007-09-12 17:01:45 +00007212#ifndef SQLITE_OMIT_AUTOVACUUM
danielk19770d19f7a2009-06-03 11:25:07 +00007213 if( idx==BTREE_INCR_VACUUM ){
drh64022502009-01-09 14:11:04 +00007214 assert( pBt->autoVacuum || iMeta==0 );
7215 assert( iMeta==0 || iMeta==1 );
7216 pBt->incrVacuum = (u8)iMeta;
drhd677b3d2007-08-20 22:48:41 +00007217 }
drh64022502009-01-09 14:11:04 +00007218#endif
drh5df72a52002-06-06 23:16:05 +00007219 }
drhd677b3d2007-08-20 22:48:41 +00007220 sqlite3BtreeLeave(p);
7221 return rc;
drh8b2f49b2001-06-08 00:21:52 +00007222}
drh8c42ca92001-06-22 19:15:00 +00007223
danielk1977a5533162009-02-24 10:01:51 +00007224#ifndef SQLITE_OMIT_BTREECOUNT
7225/*
7226** The first argument, pCur, is a cursor opened on some b-tree. Count the
7227** number of entries in the b-tree and write the result to *pnEntry.
7228**
7229** SQLITE_OK is returned if the operation is successfully executed.
7230** Otherwise, if an error is encountered (i.e. an IO error or database
7231** corruption) an SQLite error code is returned.
7232*/
7233int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7234 i64 nEntry = 0; /* Value to return in *pnEntry */
7235 int rc; /* Return code */
7236 rc = moveToRoot(pCur);
7237
7238 /* Unless an error occurs, the following loop runs one iteration for each
7239 ** page in the B-Tree structure (not including overflow pages).
7240 */
7241 while( rc==SQLITE_OK ){
7242 int iIdx; /* Index of child node in parent */
7243 MemPage *pPage; /* Current page of the b-tree */
7244
7245 /* If this is a leaf page or the tree is not an int-key tree, then
7246 ** this page contains countable entries. Increment the entry counter
7247 ** accordingly.
7248 */
7249 pPage = pCur->apPage[pCur->iPage];
7250 if( pPage->leaf || !pPage->intKey ){
7251 nEntry += pPage->nCell;
7252 }
7253
7254 /* pPage is a leaf node. This loop navigates the cursor so that it
7255 ** points to the first interior cell that it points to the parent of
7256 ** the next page in the tree that has not yet been visited. The
7257 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7258 ** of the page, or to the number of cells in the page if the next page
7259 ** to visit is the right-child of its parent.
7260 **
7261 ** If all pages in the tree have been visited, return SQLITE_OK to the
7262 ** caller.
7263 */
7264 if( pPage->leaf ){
7265 do {
7266 if( pCur->iPage==0 ){
7267 /* All pages of the b-tree have been visited. Return successfully. */
7268 *pnEntry = nEntry;
7269 return SQLITE_OK;
7270 }
danielk197730548662009-07-09 05:07:37 +00007271 moveToParent(pCur);
danielk1977a5533162009-02-24 10:01:51 +00007272 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7273
7274 pCur->aiIdx[pCur->iPage]++;
7275 pPage = pCur->apPage[pCur->iPage];
7276 }
7277
7278 /* Descend to the child node of the cell that the cursor currently
7279 ** points at. This is the right-child if (iIdx==pPage->nCell).
7280 */
7281 iIdx = pCur->aiIdx[pCur->iPage];
7282 if( iIdx==pPage->nCell ){
7283 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7284 }else{
7285 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7286 }
7287 }
7288
shanebe217792009-03-05 04:20:31 +00007289 /* An error has occurred. Return an error code. */
danielk1977a5533162009-02-24 10:01:51 +00007290 return rc;
7291}
7292#endif
drhdd793422001-06-28 01:54:48 +00007293
drhdd793422001-06-28 01:54:48 +00007294/*
drh5eddca62001-06-30 21:53:53 +00007295** Return the pager associated with a BTree. This routine is used for
7296** testing and debugging only.
drhdd793422001-06-28 01:54:48 +00007297*/
danielk1977aef0bf62005-12-30 16:28:01 +00007298Pager *sqlite3BtreePager(Btree *p){
7299 return p->pBt->pPager;
drhdd793422001-06-28 01:54:48 +00007300}
drh5eddca62001-06-30 21:53:53 +00007301
drhb7f91642004-10-31 02:22:47 +00007302#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007303/*
7304** Append a message to the error message string.
7305*/
drh2e38c322004-09-03 18:38:44 +00007306static void checkAppendMsg(
7307 IntegrityCk *pCheck,
7308 char *zMsg1,
7309 const char *zFormat,
7310 ...
7311){
7312 va_list ap;
drh1dcdbc02007-01-27 02:24:54 +00007313 if( !pCheck->mxErr ) return;
7314 pCheck->mxErr--;
7315 pCheck->nErr++;
drh2e38c322004-09-03 18:38:44 +00007316 va_start(ap, zFormat);
drhf089aa42008-07-08 19:34:06 +00007317 if( pCheck->errMsg.nChar ){
7318 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
drh5eddca62001-06-30 21:53:53 +00007319 }
drhf089aa42008-07-08 19:34:06 +00007320 if( zMsg1 ){
7321 sqlite3StrAccumAppend(&pCheck->errMsg, zMsg1, -1);
7322 }
7323 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7324 va_end(ap);
drhc890fec2008-08-01 20:10:08 +00007325 if( pCheck->errMsg.mallocFailed ){
7326 pCheck->mallocFailed = 1;
7327 }
drh5eddca62001-06-30 21:53:53 +00007328}
drhb7f91642004-10-31 02:22:47 +00007329#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007330
drhb7f91642004-10-31 02:22:47 +00007331#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007332/*
7333** Add 1 to the reference count for page iPage. If this is the second
7334** reference to the page, add an error message to pCheck->zErrMsg.
7335** Return 1 if there are 2 ore more references to the page and 0 if
7336** if this is the first reference to the page.
7337**
7338** Also check that the page number is in bounds.
7339*/
danielk197789d40042008-11-17 14:20:56 +00007340static int checkRef(IntegrityCk *pCheck, Pgno iPage, char *zContext){
drh5eddca62001-06-30 21:53:53 +00007341 if( iPage==0 ) return 1;
danielk197789d40042008-11-17 14:20:56 +00007342 if( iPage>pCheck->nPage ){
drh2e38c322004-09-03 18:38:44 +00007343 checkAppendMsg(pCheck, zContext, "invalid page number %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007344 return 1;
7345 }
7346 if( pCheck->anRef[iPage]==1 ){
drh2e38c322004-09-03 18:38:44 +00007347 checkAppendMsg(pCheck, zContext, "2nd reference to page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007348 return 1;
7349 }
7350 return (pCheck->anRef[iPage]++)>1;
7351}
7352
danielk1977afcdd022004-10-31 16:25:42 +00007353#ifndef SQLITE_OMIT_AUTOVACUUM
7354/*
7355** Check that the entry in the pointer-map for page iChild maps to
7356** page iParent, pointer type ptrType. If not, append an error message
7357** to pCheck.
7358*/
7359static void checkPtrmap(
7360 IntegrityCk *pCheck, /* Integrity check context */
7361 Pgno iChild, /* Child page number */
7362 u8 eType, /* Expected pointer map type */
7363 Pgno iParent, /* Expected pointer map parent page number */
7364 char *zContext /* Context description (used for error msg) */
7365){
7366 int rc;
7367 u8 ePtrmapType;
7368 Pgno iPtrmapParent;
7369
7370 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
7371 if( rc!=SQLITE_OK ){
drhb56cd552009-05-01 13:16:54 +00007372 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
danielk1977afcdd022004-10-31 16:25:42 +00007373 checkAppendMsg(pCheck, zContext, "Failed to read ptrmap key=%d", iChild);
7374 return;
7375 }
7376
7377 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
7378 checkAppendMsg(pCheck, zContext,
7379 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
7380 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
7381 }
7382}
7383#endif
7384
drh5eddca62001-06-30 21:53:53 +00007385/*
7386** Check the integrity of the freelist or of an overflow page list.
7387** Verify that the number of pages on the list is N.
7388*/
drh30e58752002-03-02 20:41:57 +00007389static void checkList(
7390 IntegrityCk *pCheck, /* Integrity checking context */
7391 int isFreeList, /* True for a freelist. False for overflow page list */
7392 int iPage, /* Page number for first page in the list */
7393 int N, /* Expected number of pages in the list */
7394 char *zContext /* Context for error messages */
7395){
7396 int i;
drh3a4c1412004-05-09 20:40:11 +00007397 int expected = N;
7398 int iFirst = iPage;
drh1dcdbc02007-01-27 02:24:54 +00007399 while( N-- > 0 && pCheck->mxErr ){
danielk19773b8a05f2007-03-19 17:44:26 +00007400 DbPage *pOvflPage;
7401 unsigned char *pOvflData;
drh5eddca62001-06-30 21:53:53 +00007402 if( iPage<1 ){
drh2e38c322004-09-03 18:38:44 +00007403 checkAppendMsg(pCheck, zContext,
7404 "%d of %d pages missing from overflow list starting at %d",
drh3a4c1412004-05-09 20:40:11 +00007405 N+1, expected, iFirst);
drh5eddca62001-06-30 21:53:53 +00007406 break;
7407 }
7408 if( checkRef(pCheck, iPage, zContext) ) break;
danielk19773b8a05f2007-03-19 17:44:26 +00007409 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
drh2e38c322004-09-03 18:38:44 +00007410 checkAppendMsg(pCheck, zContext, "failed to get page %d", iPage);
drh5eddca62001-06-30 21:53:53 +00007411 break;
7412 }
danielk19773b8a05f2007-03-19 17:44:26 +00007413 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
drh30e58752002-03-02 20:41:57 +00007414 if( isFreeList ){
danielk19773b8a05f2007-03-19 17:44:26 +00007415 int n = get4byte(&pOvflData[4]);
danielk1977687566d2004-11-02 12:56:41 +00007416#ifndef SQLITE_OMIT_AUTOVACUUM
7417 if( pCheck->pBt->autoVacuum ){
7418 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0, zContext);
7419 }
7420#endif
drh45b1fac2008-07-04 17:52:42 +00007421 if( n>pCheck->pBt->usableSize/4-2 ){
drh2e38c322004-09-03 18:38:44 +00007422 checkAppendMsg(pCheck, zContext,
7423 "freelist leaf count too big on page %d", iPage);
drhee696e22004-08-30 16:52:17 +00007424 N--;
7425 }else{
7426 for(i=0; i<n; i++){
danielk19773b8a05f2007-03-19 17:44:26 +00007427 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
danielk1977687566d2004-11-02 12:56:41 +00007428#ifndef SQLITE_OMIT_AUTOVACUUM
7429 if( pCheck->pBt->autoVacuum ){
7430 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0, zContext);
7431 }
7432#endif
7433 checkRef(pCheck, iFreePage, zContext);
drhee696e22004-08-30 16:52:17 +00007434 }
7435 N -= n;
drh30e58752002-03-02 20:41:57 +00007436 }
drh30e58752002-03-02 20:41:57 +00007437 }
danielk1977afcdd022004-10-31 16:25:42 +00007438#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007439 else{
7440 /* If this database supports auto-vacuum and iPage is not the last
7441 ** page in this overflow list, check that the pointer-map entry for
7442 ** the following page matches iPage.
7443 */
7444 if( pCheck->pBt->autoVacuum && N>0 ){
danielk19773b8a05f2007-03-19 17:44:26 +00007445 i = get4byte(pOvflData);
danielk1977687566d2004-11-02 12:56:41 +00007446 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage, zContext);
7447 }
danielk1977afcdd022004-10-31 16:25:42 +00007448 }
7449#endif
danielk19773b8a05f2007-03-19 17:44:26 +00007450 iPage = get4byte(pOvflData);
7451 sqlite3PagerUnref(pOvflPage);
drh5eddca62001-06-30 21:53:53 +00007452 }
7453}
drhb7f91642004-10-31 02:22:47 +00007454#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007455
drhb7f91642004-10-31 02:22:47 +00007456#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007457/*
7458** Do various sanity checks on a single page of a tree. Return
7459** the tree depth. Root pages return 0. Parents of root pages
7460** return 1, and so forth.
7461**
7462** These checks are done:
7463**
7464** 1. Make sure that cells and freeblocks do not overlap
7465** but combine to completely cover the page.
drhda200cc2004-05-09 11:51:38 +00007466** NO 2. Make sure cell keys are in order.
7467** NO 3. Make sure no key is less than or equal to zLowerBound.
7468** NO 4. Make sure no key is greater than or equal to zUpperBound.
drh5eddca62001-06-30 21:53:53 +00007469** 5. Check the integrity of overflow pages.
7470** 6. Recursively call checkTreePage on all children.
7471** 7. Verify that the depth of all children is the same.
drh6019e162001-07-02 17:51:45 +00007472** 8. Make sure this page is at least 33% full or else it is
drh5eddca62001-06-30 21:53:53 +00007473** the root of the tree.
7474*/
7475static int checkTreePage(
drhaaab5722002-02-19 13:39:21 +00007476 IntegrityCk *pCheck, /* Context for the sanity check */
drh5eddca62001-06-30 21:53:53 +00007477 int iPage, /* Page number of the page to check */
shaneh195475d2010-02-19 04:28:08 +00007478 char *zParentContext, /* Parent context */
7479 i64 *pnParentMinKey,
7480 i64 *pnParentMaxKey
drh5eddca62001-06-30 21:53:53 +00007481){
7482 MemPage *pPage;
drhda200cc2004-05-09 11:51:38 +00007483 int i, rc, depth, d2, pgno, cnt;
drh43605152004-05-29 21:46:49 +00007484 int hdr, cellStart;
7485 int nCell;
drhda200cc2004-05-09 11:51:38 +00007486 u8 *data;
danielk1977aef0bf62005-12-30 16:28:01 +00007487 BtShared *pBt;
drh4f26bb62005-09-08 14:17:20 +00007488 int usableSize;
drh5eddca62001-06-30 21:53:53 +00007489 char zContext[100];
shane0af3f892008-11-12 04:55:34 +00007490 char *hit = 0;
shaneh195475d2010-02-19 04:28:08 +00007491 i64 nMinKey = 0;
7492 i64 nMaxKey = 0;
drh5eddca62001-06-30 21:53:53 +00007493
drh5bb3eb92007-05-04 13:15:55 +00007494 sqlite3_snprintf(sizeof(zContext), zContext, "Page %d: ", iPage);
danielk1977ef73ee92004-11-06 12:26:07 +00007495
drh5eddca62001-06-30 21:53:53 +00007496 /* Check that the page exists
7497 */
drhd9cb6ac2005-10-20 07:28:17 +00007498 pBt = pCheck->pBt;
drhb6f41482004-05-14 01:58:11 +00007499 usableSize = pBt->usableSize;
drh5eddca62001-06-30 21:53:53 +00007500 if( iPage==0 ) return 0;
7501 if( checkRef(pCheck, iPage, zParentContext) ) return 0;
danielk197730548662009-07-09 05:07:37 +00007502 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
drh2e38c322004-09-03 18:38:44 +00007503 checkAppendMsg(pCheck, zContext,
7504 "unable to get the page. error code=%d", rc);
drh5eddca62001-06-30 21:53:53 +00007505 return 0;
7506 }
danielk197793caf5a2009-07-11 06:55:33 +00007507
7508 /* Clear MemPage.isInit to make sure the corruption detection code in
7509 ** btreeInitPage() is executed. */
7510 pPage->isInit = 0;
danielk197730548662009-07-09 05:07:37 +00007511 if( (rc = btreeInitPage(pPage))!=0 ){
drh64022502009-01-09 14:11:04 +00007512 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
drh16a9b832007-05-05 18:39:25 +00007513 checkAppendMsg(pCheck, zContext,
danielk197730548662009-07-09 05:07:37 +00007514 "btreeInitPage() returns error code %d", rc);
drh91025292004-05-03 19:49:32 +00007515 releasePage(pPage);
drh5eddca62001-06-30 21:53:53 +00007516 return 0;
7517 }
7518
7519 /* Check out all the cells.
7520 */
7521 depth = 0;
drh1dcdbc02007-01-27 02:24:54 +00007522 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
drh6f11bef2004-05-13 01:12:56 +00007523 u8 *pCell;
danielk197789d40042008-11-17 14:20:56 +00007524 u32 sz;
drh6f11bef2004-05-13 01:12:56 +00007525 CellInfo info;
drh5eddca62001-06-30 21:53:53 +00007526
7527 /* Check payload overflow pages
7528 */
drh5bb3eb92007-05-04 13:15:55 +00007529 sqlite3_snprintf(sizeof(zContext), zContext,
7530 "On tree page %d cell %d: ", iPage, i);
danielk19771cc5ed82007-05-16 17:28:43 +00007531 pCell = findCell(pPage,i);
danielk197730548662009-07-09 05:07:37 +00007532 btreeParseCellPtr(pPage, pCell, &info);
drh6f11bef2004-05-13 01:12:56 +00007533 sz = info.nData;
drhf49661a2008-12-10 16:45:50 +00007534 if( !pPage->intKey ) sz += (int)info.nKey;
shaneh195475d2010-02-19 04:28:08 +00007535 /* For intKey pages, check that the keys are in order.
7536 */
7537 else if( i==0 ) nMinKey = nMaxKey = info.nKey;
7538 else{
7539 if( info.nKey <= nMaxKey ){
7540 checkAppendMsg(pCheck, zContext,
7541 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
7542 }
7543 nMaxKey = info.nKey;
7544 }
drh72365832007-03-06 15:53:44 +00007545 assert( sz==info.nPayload );
danielk19775be31f52009-03-30 13:53:43 +00007546 if( (sz>info.nLocal)
7547 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
7548 ){
drhb6f41482004-05-14 01:58:11 +00007549 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
danielk1977afcdd022004-10-31 16:25:42 +00007550 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
7551#ifndef SQLITE_OMIT_AUTOVACUUM
7552 if( pBt->autoVacuum ){
danielk1977687566d2004-11-02 12:56:41 +00007553 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007554 }
7555#endif
7556 checkList(pCheck, 0, pgnoOvfl, nPage, zContext);
drh5eddca62001-06-30 21:53:53 +00007557 }
7558
7559 /* Check sanity of left child page.
7560 */
drhda200cc2004-05-09 11:51:38 +00007561 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007562 pgno = get4byte(pCell);
danielk1977afcdd022004-10-31 16:25:42 +00007563#ifndef SQLITE_OMIT_AUTOVACUUM
7564 if( pBt->autoVacuum ){
7565 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
7566 }
7567#endif
shaneh195475d2010-02-19 04:28:08 +00007568 d2 = checkTreePage(pCheck, pgno, zContext, &nMinKey, i==0 ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007569 if( i>0 && d2!=depth ){
7570 checkAppendMsg(pCheck, zContext, "Child page depth differs");
7571 }
7572 depth = d2;
drh5eddca62001-06-30 21:53:53 +00007573 }
drh5eddca62001-06-30 21:53:53 +00007574 }
shaneh195475d2010-02-19 04:28:08 +00007575
drhda200cc2004-05-09 11:51:38 +00007576 if( !pPage->leaf ){
drh43605152004-05-29 21:46:49 +00007577 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
drh5bb3eb92007-05-04 13:15:55 +00007578 sqlite3_snprintf(sizeof(zContext), zContext,
7579 "On page %d at right child: ", iPage);
danielk1977afcdd022004-10-31 16:25:42 +00007580#ifndef SQLITE_OMIT_AUTOVACUUM
7581 if( pBt->autoVacuum ){
shaneh195475d2010-02-19 04:28:08 +00007582 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage, zContext);
danielk1977afcdd022004-10-31 16:25:42 +00007583 }
7584#endif
shaneh195475d2010-02-19 04:28:08 +00007585 checkTreePage(pCheck, pgno, zContext, NULL, !pPage->nCell ? NULL : &nMaxKey);
drhda200cc2004-05-09 11:51:38 +00007586 }
drh5eddca62001-06-30 21:53:53 +00007587
shaneh195475d2010-02-19 04:28:08 +00007588 /* For intKey leaf pages, check that the min/max keys are in order
7589 ** with any left/parent/right pages.
7590 */
7591 if( pPage->leaf && pPage->intKey ){
7592 /* if we are a left child page */
7593 if( pnParentMinKey ){
7594 /* if we are the left most child page */
7595 if( !pnParentMaxKey ){
7596 if( nMaxKey > *pnParentMinKey ){
7597 checkAppendMsg(pCheck, zContext,
7598 "Rowid %lld out of order (max larger than parent min of %lld)",
7599 nMaxKey, *pnParentMinKey);
7600 }
7601 }else{
7602 if( nMinKey <= *pnParentMinKey ){
7603 checkAppendMsg(pCheck, zContext,
7604 "Rowid %lld out of order (min less than parent min of %lld)",
7605 nMinKey, *pnParentMinKey);
7606 }
7607 if( nMaxKey > *pnParentMaxKey ){
7608 checkAppendMsg(pCheck, zContext,
7609 "Rowid %lld out of order (max larger than parent max of %lld)",
7610 nMaxKey, *pnParentMaxKey);
7611 }
7612 *pnParentMinKey = nMaxKey;
7613 }
7614 /* else if we're a right child page */
7615 } else if( pnParentMaxKey ){
7616 if( nMinKey <= *pnParentMaxKey ){
7617 checkAppendMsg(pCheck, zContext,
7618 "Rowid %lld out of order (min less than parent max of %lld)",
7619 nMinKey, *pnParentMaxKey);
7620 }
7621 }
7622 }
7623
drh5eddca62001-06-30 21:53:53 +00007624 /* Check for complete coverage of the page
7625 */
drhda200cc2004-05-09 11:51:38 +00007626 data = pPage->aData;
7627 hdr = pPage->hdrOffset;
drhf7141992008-06-19 00:16:08 +00007628 hit = sqlite3PageMalloc( pBt->pageSize );
drhc890fec2008-08-01 20:10:08 +00007629 if( hit==0 ){
7630 pCheck->mallocFailed = 1;
7631 }else{
shane5780ebd2008-11-11 17:36:30 +00007632 u16 contentOffset = get2byte(&data[hdr+5]);
drhd7c7ecd2009-07-14 17:48:06 +00007633 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
shane5780ebd2008-11-11 17:36:30 +00007634 memset(hit+contentOffset, 0, usableSize-contentOffset);
7635 memset(hit, 1, contentOffset);
drh2e38c322004-09-03 18:38:44 +00007636 nCell = get2byte(&data[hdr+3]);
7637 cellStart = hdr + 12 - 4*pPage->leaf;
7638 for(i=0; i<nCell; i++){
7639 int pc = get2byte(&data[cellStart+i*2]);
danielk1977daca5432008-08-25 11:57:16 +00007640 u16 size = 1024;
drh2e38c322004-09-03 18:38:44 +00007641 int j;
drh8c2bbb62009-07-10 02:52:20 +00007642 if( pc<=usableSize-4 ){
danielk1977daca5432008-08-25 11:57:16 +00007643 size = cellSizePtr(pPage, &data[pc]);
7644 }
drhd7c7ecd2009-07-14 17:48:06 +00007645 if( (pc+size-1)>=usableSize ){
danielk19777701e812005-01-10 12:59:51 +00007646 checkAppendMsg(pCheck, 0,
shaneh195475d2010-02-19 04:28:08 +00007647 "Corruption detected in cell %d on page %d",i,iPage);
danielk19777701e812005-01-10 12:59:51 +00007648 }else{
7649 for(j=pc+size-1; j>=pc; j--) hit[j]++;
7650 }
drh2e38c322004-09-03 18:38:44 +00007651 }
drh8c2bbb62009-07-10 02:52:20 +00007652 i = get2byte(&data[hdr+1]);
7653 while( i>0 ){
7654 int size, j;
7655 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
7656 size = get2byte(&data[i+2]);
7657 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
7658 for(j=i+size-1; j>=i; j--) hit[j]++;
7659 j = get2byte(&data[i]);
7660 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
7661 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
7662 i = j;
drh2e38c322004-09-03 18:38:44 +00007663 }
7664 for(i=cnt=0; i<usableSize; i++){
7665 if( hit[i]==0 ){
7666 cnt++;
7667 }else if( hit[i]>1 ){
7668 checkAppendMsg(pCheck, 0,
7669 "Multiple uses for byte %d of page %d", i, iPage);
7670 break;
7671 }
7672 }
7673 if( cnt!=data[hdr+7] ){
7674 checkAppendMsg(pCheck, 0,
drh8c2bbb62009-07-10 02:52:20 +00007675 "Fragmentation of %d bytes reported as %d on page %d",
drh2e38c322004-09-03 18:38:44 +00007676 cnt, data[hdr+7], iPage);
drh5eddca62001-06-30 21:53:53 +00007677 }
7678 }
drh8c2bbb62009-07-10 02:52:20 +00007679 sqlite3PageFree(hit);
drh4b70f112004-05-02 21:12:19 +00007680 releasePage(pPage);
drhda200cc2004-05-09 11:51:38 +00007681 return depth+1;
drh5eddca62001-06-30 21:53:53 +00007682}
drhb7f91642004-10-31 02:22:47 +00007683#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5eddca62001-06-30 21:53:53 +00007684
drhb7f91642004-10-31 02:22:47 +00007685#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh5eddca62001-06-30 21:53:53 +00007686/*
7687** This routine does a complete check of the given BTree file. aRoot[] is
7688** an array of pages numbers were each page number is the root page of
7689** a table. nRoot is the number of entries in aRoot.
7690**
danielk19773509a652009-07-06 18:56:13 +00007691** A read-only or read-write transaction must be opened before calling
7692** this function.
7693**
drhc890fec2008-08-01 20:10:08 +00007694** Write the number of error seen in *pnErr. Except for some memory
drhe43ba702008-12-05 22:40:08 +00007695** allocation errors, an error message held in memory obtained from
drhc890fec2008-08-01 20:10:08 +00007696** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
drhe43ba702008-12-05 22:40:08 +00007697** returned. If a memory allocation error occurs, NULL is returned.
drh5eddca62001-06-30 21:53:53 +00007698*/
drh1dcdbc02007-01-27 02:24:54 +00007699char *sqlite3BtreeIntegrityCheck(
7700 Btree *p, /* The btree to be checked */
7701 int *aRoot, /* An array of root pages numbers for individual trees */
7702 int nRoot, /* Number of entries in aRoot[] */
7703 int mxErr, /* Stop reporting errors after this many */
7704 int *pnErr /* Write number of errors seen to this variable */
7705){
danielk197789d40042008-11-17 14:20:56 +00007706 Pgno i;
drh5eddca62001-06-30 21:53:53 +00007707 int nRef;
drhaaab5722002-02-19 13:39:21 +00007708 IntegrityCk sCheck;
danielk1977aef0bf62005-12-30 16:28:01 +00007709 BtShared *pBt = p->pBt;
drhf089aa42008-07-08 19:34:06 +00007710 char zErr[100];
drh5eddca62001-06-30 21:53:53 +00007711
drhd677b3d2007-08-20 22:48:41 +00007712 sqlite3BtreeEnter(p);
danielk19773509a652009-07-06 18:56:13 +00007713 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
danielk19773b8a05f2007-03-19 17:44:26 +00007714 nRef = sqlite3PagerRefcount(pBt->pPager);
drh5eddca62001-06-30 21:53:53 +00007715 sCheck.pBt = pBt;
7716 sCheck.pPager = pBt->pPager;
drhb1299152010-03-30 22:58:33 +00007717 sCheck.nPage = btreePagecount(sCheck.pBt);
drh1dcdbc02007-01-27 02:24:54 +00007718 sCheck.mxErr = mxErr;
7719 sCheck.nErr = 0;
drhc890fec2008-08-01 20:10:08 +00007720 sCheck.mallocFailed = 0;
drh1dcdbc02007-01-27 02:24:54 +00007721 *pnErr = 0;
drh0de8c112002-07-06 16:32:14 +00007722 if( sCheck.nPage==0 ){
drhd677b3d2007-08-20 22:48:41 +00007723 sqlite3BtreeLeave(p);
drh0de8c112002-07-06 16:32:14 +00007724 return 0;
7725 }
drhe5ae5732008-06-15 02:51:47 +00007726 sCheck.anRef = sqlite3Malloc( (sCheck.nPage+1)*sizeof(sCheck.anRef[0]) );
danielk1977ac245ec2005-01-14 13:50:11 +00007727 if( !sCheck.anRef ){
drh1dcdbc02007-01-27 02:24:54 +00007728 *pnErr = 1;
drhd677b3d2007-08-20 22:48:41 +00007729 sqlite3BtreeLeave(p);
drhc890fec2008-08-01 20:10:08 +00007730 return 0;
danielk1977ac245ec2005-01-14 13:50:11 +00007731 }
drhda200cc2004-05-09 11:51:38 +00007732 for(i=0; i<=sCheck.nPage; i++){ sCheck.anRef[i] = 0; }
drh42cac6d2004-11-20 20:31:11 +00007733 i = PENDING_BYTE_PAGE(pBt);
drh1f595712004-06-15 01:40:29 +00007734 if( i<=sCheck.nPage ){
7735 sCheck.anRef[i] = 1;
7736 }
drhf089aa42008-07-08 19:34:06 +00007737 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), 20000);
drh5eddca62001-06-30 21:53:53 +00007738
7739 /* Check the integrity of the freelist
7740 */
drha34b6762004-05-07 13:30:42 +00007741 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
7742 get4byte(&pBt->pPage1->aData[36]), "Main freelist: ");
drh5eddca62001-06-30 21:53:53 +00007743
7744 /* Check all the tables.
7745 */
danielk197789d40042008-11-17 14:20:56 +00007746 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
drh4ff6dfa2002-03-03 23:06:00 +00007747 if( aRoot[i]==0 ) continue;
danielk1977687566d2004-11-02 12:56:41 +00007748#ifndef SQLITE_OMIT_AUTOVACUUM
danielk1977687566d2004-11-02 12:56:41 +00007749 if( pBt->autoVacuum && aRoot[i]>1 ){
7750 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0, 0);
7751 }
7752#endif
shaneh195475d2010-02-19 04:28:08 +00007753 checkTreePage(&sCheck, aRoot[i], "List of tree roots: ", NULL, NULL);
drh5eddca62001-06-30 21:53:53 +00007754 }
7755
7756 /* Make sure every page in the file is referenced
7757 */
drh1dcdbc02007-01-27 02:24:54 +00007758 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
danielk1977afcdd022004-10-31 16:25:42 +00007759#ifdef SQLITE_OMIT_AUTOVACUUM
drh5eddca62001-06-30 21:53:53 +00007760 if( sCheck.anRef[i]==0 ){
drh2e38c322004-09-03 18:38:44 +00007761 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
drh5eddca62001-06-30 21:53:53 +00007762 }
danielk1977afcdd022004-10-31 16:25:42 +00007763#else
7764 /* If the database supports auto-vacuum, make sure no tables contain
7765 ** references to pointer-map pages.
7766 */
7767 if( sCheck.anRef[i]==0 &&
danielk1977266664d2006-02-10 08:24:21 +00007768 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007769 checkAppendMsg(&sCheck, 0, "Page %d is never used", i);
7770 }
7771 if( sCheck.anRef[i]!=0 &&
danielk1977266664d2006-02-10 08:24:21 +00007772 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
danielk1977afcdd022004-10-31 16:25:42 +00007773 checkAppendMsg(&sCheck, 0, "Pointer map page %d is referenced", i);
7774 }
7775#endif
drh5eddca62001-06-30 21:53:53 +00007776 }
7777
drh64022502009-01-09 14:11:04 +00007778 /* Make sure this analysis did not leave any unref() pages.
7779 ** This is an internal consistency check; an integrity check
7780 ** of the integrity check.
drh5eddca62001-06-30 21:53:53 +00007781 */
drh64022502009-01-09 14:11:04 +00007782 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
drh2e38c322004-09-03 18:38:44 +00007783 checkAppendMsg(&sCheck, 0,
drh5eddca62001-06-30 21:53:53 +00007784 "Outstanding page count goes from %d to %d during this analysis",
danielk19773b8a05f2007-03-19 17:44:26 +00007785 nRef, sqlite3PagerRefcount(pBt->pPager)
drh5eddca62001-06-30 21:53:53 +00007786 );
drh5eddca62001-06-30 21:53:53 +00007787 }
7788
7789 /* Clean up and report errors.
7790 */
drhd677b3d2007-08-20 22:48:41 +00007791 sqlite3BtreeLeave(p);
drh17435752007-08-16 04:30:38 +00007792 sqlite3_free(sCheck.anRef);
drhc890fec2008-08-01 20:10:08 +00007793 if( sCheck.mallocFailed ){
7794 sqlite3StrAccumReset(&sCheck.errMsg);
7795 *pnErr = sCheck.nErr+1;
7796 return 0;
7797 }
drh1dcdbc02007-01-27 02:24:54 +00007798 *pnErr = sCheck.nErr;
drhf089aa42008-07-08 19:34:06 +00007799 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
7800 return sqlite3StrAccumFinish(&sCheck.errMsg);
drh5eddca62001-06-30 21:53:53 +00007801}
drhb7f91642004-10-31 02:22:47 +00007802#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
paulb95a8862003-04-01 21:16:41 +00007803
drh73509ee2003-04-06 20:44:45 +00007804/*
7805** Return the full pathname of the underlying database file.
drhd0679ed2007-08-28 22:24:34 +00007806**
7807** The pager filename is invariant as long as the pager is
7808** open so it is safe to access without the BtShared mutex.
drh73509ee2003-04-06 20:44:45 +00007809*/
danielk1977aef0bf62005-12-30 16:28:01 +00007810const char *sqlite3BtreeGetFilename(Btree *p){
7811 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007812 return sqlite3PagerFilename(p->pBt->pPager);
drh73509ee2003-04-06 20:44:45 +00007813}
7814
7815/*
danielk19775865e3d2004-06-14 06:03:57 +00007816** Return the pathname of the journal file for this database. The return
7817** value of this routine is the same regardless of whether the journal file
7818** has been created or not.
drhd0679ed2007-08-28 22:24:34 +00007819**
7820** The pager journal filename is invariant as long as the pager is
7821** open so it is safe to access without the BtShared mutex.
danielk19775865e3d2004-06-14 06:03:57 +00007822*/
danielk1977aef0bf62005-12-30 16:28:01 +00007823const char *sqlite3BtreeGetJournalname(Btree *p){
7824 assert( p->pBt->pPager!=0 );
danielk19773b8a05f2007-03-19 17:44:26 +00007825 return sqlite3PagerJournalname(p->pBt->pPager);
danielk19775865e3d2004-06-14 06:03:57 +00007826}
7827
danielk19771d850a72004-05-31 08:26:49 +00007828/*
7829** Return non-zero if a transaction is active.
7830*/
danielk1977aef0bf62005-12-30 16:28:01 +00007831int sqlite3BtreeIsInTrans(Btree *p){
drhe5fe6902007-12-07 18:55:28 +00007832 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
danielk1977aef0bf62005-12-30 16:28:01 +00007833 return (p && (p->inTrans==TRANS_WRITE));
danielk19771d850a72004-05-31 08:26:49 +00007834}
7835
7836/*
danielk19772372c2b2006-06-27 16:34:56 +00007837** Return non-zero if a read (or write) transaction is active.
7838*/
7839int sqlite3BtreeIsInReadTrans(Btree *p){
drh64022502009-01-09 14:11:04 +00007840 assert( p );
drhe5fe6902007-12-07 18:55:28 +00007841 assert( sqlite3_mutex_held(p->db->mutex) );
drh64022502009-01-09 14:11:04 +00007842 return p->inTrans!=TRANS_NONE;
danielk19772372c2b2006-06-27 16:34:56 +00007843}
7844
danielk197704103022009-02-03 16:51:24 +00007845int sqlite3BtreeIsInBackup(Btree *p){
7846 assert( p );
7847 assert( sqlite3_mutex_held(p->db->mutex) );
7848 return p->nBackup!=0;
7849}
7850
danielk19772372c2b2006-06-27 16:34:56 +00007851/*
danielk1977da184232006-01-05 11:34:32 +00007852** This function returns a pointer to a blob of memory associated with
drh85b623f2007-12-13 21:54:09 +00007853** a single shared-btree. The memory is used by client code for its own
danielk1977da184232006-01-05 11:34:32 +00007854** purposes (for example, to store a high-level schema associated with
7855** the shared-btree). The btree layer manages reference counting issues.
7856**
7857** The first time this is called on a shared-btree, nBytes bytes of memory
7858** are allocated, zeroed, and returned to the caller. For each subsequent
7859** call the nBytes parameter is ignored and a pointer to the same blob
7860** of memory returned.
7861**
danielk1977171bfed2008-06-23 09:50:50 +00007862** If the nBytes parameter is 0 and the blob of memory has not yet been
7863** allocated, a null pointer is returned. If the blob has already been
7864** allocated, it is returned as normal.
7865**
danielk1977da184232006-01-05 11:34:32 +00007866** Just before the shared-btree is closed, the function passed as the
7867** xFree argument when the memory allocation was made is invoked on the
drh17435752007-08-16 04:30:38 +00007868** blob of allocated memory. This function should not call sqlite3_free()
danielk1977da184232006-01-05 11:34:32 +00007869** on the memory, the btree layer does that.
7870*/
7871void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
7872 BtShared *pBt = p->pBt;
drh27641702007-08-22 02:56:42 +00007873 sqlite3BtreeEnter(p);
danielk1977171bfed2008-06-23 09:50:50 +00007874 if( !pBt->pSchema && nBytes ){
drh17435752007-08-16 04:30:38 +00007875 pBt->pSchema = sqlite3MallocZero(nBytes);
danielk1977da184232006-01-05 11:34:32 +00007876 pBt->xFreeSchema = xFree;
7877 }
drh27641702007-08-22 02:56:42 +00007878 sqlite3BtreeLeave(p);
danielk1977da184232006-01-05 11:34:32 +00007879 return pBt->pSchema;
7880}
7881
danielk1977c87d34d2006-01-06 13:00:28 +00007882/*
danielk1977404ca072009-03-16 13:19:36 +00007883** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
7884** btree as the argument handle holds an exclusive lock on the
7885** sqlite_master table. Otherwise SQLITE_OK.
danielk1977c87d34d2006-01-06 13:00:28 +00007886*/
7887int sqlite3BtreeSchemaLocked(Btree *p){
drh27641702007-08-22 02:56:42 +00007888 int rc;
drhe5fe6902007-12-07 18:55:28 +00007889 assert( sqlite3_mutex_held(p->db->mutex) );
drh27641702007-08-22 02:56:42 +00007890 sqlite3BtreeEnter(p);
danielk1977404ca072009-03-16 13:19:36 +00007891 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
7892 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
drh27641702007-08-22 02:56:42 +00007893 sqlite3BtreeLeave(p);
7894 return rc;
danielk1977c87d34d2006-01-06 13:00:28 +00007895}
7896
drha154dcd2006-03-22 22:10:07 +00007897
7898#ifndef SQLITE_OMIT_SHARED_CACHE
7899/*
7900** Obtain a lock on the table whose root page is iTab. The
7901** lock is a write lock if isWritelock is true or a read lock
7902** if it is false.
7903*/
danielk1977c00da102006-01-07 13:21:04 +00007904int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
danielk19772e94d4d2006-01-09 05:36:27 +00007905 int rc = SQLITE_OK;
danielk1977602b4662009-07-02 07:47:33 +00007906 assert( p->inTrans!=TRANS_NONE );
drh6a9ad3d2008-04-02 16:29:30 +00007907 if( p->sharable ){
7908 u8 lockType = READ_LOCK + isWriteLock;
7909 assert( READ_LOCK+1==WRITE_LOCK );
7910 assert( isWriteLock==0 || isWriteLock==1 );
danielk1977602b4662009-07-02 07:47:33 +00007911
drh6a9ad3d2008-04-02 16:29:30 +00007912 sqlite3BtreeEnter(p);
drhc25eabe2009-02-24 18:57:31 +00007913 rc = querySharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007914 if( rc==SQLITE_OK ){
drhc25eabe2009-02-24 18:57:31 +00007915 rc = setSharedCacheTableLock(p, iTab, lockType);
drh6a9ad3d2008-04-02 16:29:30 +00007916 }
7917 sqlite3BtreeLeave(p);
danielk1977c00da102006-01-07 13:21:04 +00007918 }
7919 return rc;
7920}
drha154dcd2006-03-22 22:10:07 +00007921#endif
danielk1977b82e7ed2006-01-11 14:09:31 +00007922
danielk1977b4e9af92007-05-01 17:49:49 +00007923#ifndef SQLITE_OMIT_INCRBLOB
7924/*
7925** Argument pCsr must be a cursor opened for writing on an
7926** INTKEY table currently pointing at a valid table entry.
7927** This function modifies the data stored as part of that entry.
danielk1977ecaecf92009-07-08 08:05:35 +00007928**
7929** Only the data content may only be modified, it is not possible to
7930** change the length of the data stored. If this function is called with
7931** parameters that attempt to write past the end of the existing data,
7932** no modifications are made and SQLITE_CORRUPT is returned.
danielk1977b4e9af92007-05-01 17:49:49 +00007933*/
danielk1977dcbb5d32007-05-04 18:36:44 +00007934int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
danielk1977c9000e62009-07-08 13:55:28 +00007935 int rc;
drh1fee73e2007-08-29 04:00:57 +00007936 assert( cursorHoldsMutex(pCsr) );
drhe5fe6902007-12-07 18:55:28 +00007937 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
danielk197796d48e92009-06-29 06:00:37 +00007938 assert( pCsr->isIncrblobHandle );
danielk19773588ceb2008-06-10 17:30:26 +00007939
danielk1977c9000e62009-07-08 13:55:28 +00007940 rc = restoreCursorPosition(pCsr);
7941 if( rc!=SQLITE_OK ){
7942 return rc;
7943 }
danielk19773588ceb2008-06-10 17:30:26 +00007944 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
7945 if( pCsr->eState!=CURSOR_VALID ){
7946 return SQLITE_ABORT;
danielk1977dcbb5d32007-05-04 18:36:44 +00007947 }
7948
danielk1977c9000e62009-07-08 13:55:28 +00007949 /* Check some assumptions:
danielk1977dcbb5d32007-05-04 18:36:44 +00007950 ** (a) the cursor is open for writing,
danielk1977c9000e62009-07-08 13:55:28 +00007951 ** (b) there is a read/write transaction open,
7952 ** (c) the connection holds a write-lock on the table (if required),
7953 ** (d) there are no conflicting read-locks, and
7954 ** (e) the cursor points at a valid row of an intKey table.
danielk1977d04417962007-05-02 13:16:30 +00007955 */
danielk19774f029602009-07-08 18:45:37 +00007956 if( !pCsr->wrFlag ){
7957 return SQLITE_READONLY;
7958 }
danielk197796d48e92009-06-29 06:00:37 +00007959 assert( !pCsr->pBt->readOnly && pCsr->pBt->inTransaction==TRANS_WRITE );
7960 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
7961 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
danielk1977c9000e62009-07-08 13:55:28 +00007962 assert( pCsr->apPage[pCsr->iPage]->intKey );
danielk1977b4e9af92007-05-01 17:49:49 +00007963
drhfb192682009-07-11 18:26:28 +00007964 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
danielk1977b4e9af92007-05-01 17:49:49 +00007965}
danielk19772dec9702007-05-02 16:48:37 +00007966
7967/*
7968** Set a flag on this cursor to cache the locations of pages from the
danielk1977da107192007-05-04 08:32:13 +00007969** overflow list for the current row. This is used by cursors opened
7970** for incremental blob IO only.
7971**
7972** This function sets a flag only. The actual page location cache
7973** (stored in BtCursor.aOverflow[]) is allocated and used by function
7974** accessPayload() (the worker function for sqlite3BtreeData() and
7975** sqlite3BtreePutData()).
danielk19772dec9702007-05-02 16:48:37 +00007976*/
7977void sqlite3BtreeCacheOverflow(BtCursor *pCur){
drh1fee73e2007-08-29 04:00:57 +00007978 assert( cursorHoldsMutex(pCur) );
drhe5fe6902007-12-07 18:55:28 +00007979 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
danielk1977dcbb5d32007-05-04 18:36:44 +00007980 assert(!pCur->isIncrblobHandle);
danielk19772dec9702007-05-02 16:48:37 +00007981 assert(!pCur->aOverflow);
danielk1977dcbb5d32007-05-04 18:36:44 +00007982 pCur->isIncrblobHandle = 1;
danielk19772dec9702007-05-02 16:48:37 +00007983}
danielk1977b4e9af92007-05-01 17:49:49 +00007984#endif
dane04dc882010-04-20 18:53:15 +00007985
7986/*
7987** Set both the "read version" (single byte at byte offset 18) and
7988** "write version" (single byte at byte offset 19) fields in the database
7989** header to iVersion.
7990*/
7991int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
7992 BtShared *pBt = pBtree->pBt;
7993 int rc; /* Return code */
7994
danb9780022010-04-21 18:37:57 +00007995 assert( pBtree->inTrans==TRANS_NONE );
dane04dc882010-04-20 18:53:15 +00007996 assert( iVersion==1 || iVersion==2 );
7997
danb9780022010-04-21 18:37:57 +00007998 /* If setting the version fields to 1, do not automatically open the
7999 ** WAL connection, even if the version fields are currently set to 2.
8000 */
8001 pBt->doNotUseWAL = (iVersion==1);
8002
8003 rc = sqlite3BtreeBeginTrans(pBtree, 0);
dane04dc882010-04-20 18:53:15 +00008004 if( rc==SQLITE_OK ){
8005 u8 *aData = pBt->pPage1->aData;
danb9780022010-04-21 18:37:57 +00008006 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
danede6eb82010-04-22 06:27:04 +00008007 rc = sqlite3BtreeBeginTrans(pBtree, 2);
danb9780022010-04-21 18:37:57 +00008008 if( rc==SQLITE_OK ){
8009 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8010 if( rc==SQLITE_OK ){
8011 aData[18] = (u8)iVersion;
8012 aData[19] = (u8)iVersion;
8013 }
8014 }
8015 }
dane04dc882010-04-20 18:53:15 +00008016 }
8017
danb9780022010-04-21 18:37:57 +00008018 pBt->doNotUseWAL = 0;
dane04dc882010-04-20 18:53:15 +00008019 return rc;
8020}