blob: fdb986cbdf57adfda72fdc2c517a36b113cd82ad [file] [log] [blame]
drh6f82e852015-06-06 20:12:09 +00001/*
2** 2015-06-06
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12** This module contains C code that generates VDBE code used to process
13** the WHERE clause of SQL statements.
14**
15** This file was split off from where.c on 2015-06-06 in order to reduce the
16** size of where.c and make it easier to edit. This file contains the routines
17** that actually generate the bulk of the WHERE loop code. The original where.c
18** file retains the code that does query planning and analysis.
19*/
20#include "sqliteInt.h"
21#include "whereInt.h"
22
23#ifndef SQLITE_OMIT_EXPLAIN
dan1d9bc9b2016-08-08 18:42:08 +000024
25/*
26** Return the name of the i-th column of the pIdx index.
27*/
28static const char *explainIndexColumnName(Index *pIdx, int i){
29 i = pIdx->aiColumn[i];
30 if( i==XN_EXPR ) return "<expr>";
31 if( i==XN_ROWID ) return "rowid";
32 return pIdx->pTable->aCol[i].zName;
33}
34
drh6f82e852015-06-06 20:12:09 +000035/*
36** This routine is a helper for explainIndexRange() below
37**
38** pStr holds the text of an expression that we are building up one term
39** at a time. This routine adds a new term to the end of the expression.
40** Terms are separated by AND so add the "AND" text for second and subsequent
41** terms only.
42*/
43static void explainAppendTerm(
44 StrAccum *pStr, /* The text expression being built */
dan1d9bc9b2016-08-08 18:42:08 +000045 Index *pIdx, /* Index to read column names from */
46 int nTerm, /* Number of terms */
47 int iTerm, /* Zero-based index of first term. */
48 int bAnd, /* Non-zero to append " AND " */
drh6f82e852015-06-06 20:12:09 +000049 const char *zOp /* Name of the operator */
50){
dan1d9bc9b2016-08-08 18:42:08 +000051 int i;
drh6f82e852015-06-06 20:12:09 +000052
dan1d9bc9b2016-08-08 18:42:08 +000053 assert( nTerm>=1 );
54 if( bAnd ) sqlite3StrAccumAppend(pStr, " AND ", 5);
55
56 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1);
57 for(i=0; i<nTerm; i++){
58 if( i ) sqlite3StrAccumAppend(pStr, ",", 1);
59 sqlite3StrAccumAppendAll(pStr, explainIndexColumnName(pIdx, iTerm+i));
60 }
61 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1);
62
63 sqlite3StrAccumAppend(pStr, zOp, 1);
64
65 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, "(", 1);
66 for(i=0; i<nTerm; i++){
67 if( i ) sqlite3StrAccumAppend(pStr, ",", 1);
68 sqlite3StrAccumAppend(pStr, "?", 1);
69 }
70 if( nTerm>1 ) sqlite3StrAccumAppend(pStr, ")", 1);
drhc7c46802015-08-27 20:33:38 +000071}
72
73/*
drh6f82e852015-06-06 20:12:09 +000074** Argument pLevel describes a strategy for scanning table pTab. This
75** function appends text to pStr that describes the subset of table
76** rows scanned by the strategy in the form of an SQL expression.
77**
78** For example, if the query:
79**
80** SELECT * FROM t1 WHERE a=1 AND b>2;
81**
82** is run and there is an index on (a, b), then this function returns a
83** string similar to:
84**
85** "a=? AND b>?"
86*/
drh8faee872015-09-19 18:08:13 +000087static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
drh6f82e852015-06-06 20:12:09 +000088 Index *pIndex = pLoop->u.btree.pIndex;
89 u16 nEq = pLoop->u.btree.nEq;
90 u16 nSkip = pLoop->nSkip;
91 int i, j;
drh6f82e852015-06-06 20:12:09 +000092
93 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
94 sqlite3StrAccumAppend(pStr, " (", 2);
95 for(i=0; i<nEq; i++){
drhc7c46802015-08-27 20:33:38 +000096 const char *z = explainIndexColumnName(pIndex, i);
drh2ed0d802015-09-02 16:51:37 +000097 if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5);
drh5f4a6862016-01-30 12:50:25 +000098 sqlite3XPrintf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
drh6f82e852015-06-06 20:12:09 +000099 }
100
101 j = i;
102 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
dan1d9bc9b2016-08-08 18:42:08 +0000103 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
104 i = 1;
drh6f82e852015-06-06 20:12:09 +0000105 }
106 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
dan1d9bc9b2016-08-08 18:42:08 +0000107 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
drh6f82e852015-06-06 20:12:09 +0000108 }
109 sqlite3StrAccumAppend(pStr, ")", 1);
110}
111
112/*
113** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
114** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
115** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
116** is added to the output to describe the table scan strategy in pLevel.
117**
118** If an OP_Explain opcode is added to the VM, its address is returned.
119** Otherwise, if no OP_Explain is coded, zero is returned.
120*/
121int sqlite3WhereExplainOneScan(
122 Parse *pParse, /* Parse context */
123 SrcList *pTabList, /* Table list this loop refers to */
124 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */
125 int iLevel, /* Value for "level" column of output */
126 int iFrom, /* Value for "from" column of output */
127 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */
128){
129 int ret = 0;
130#if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
131 if( pParse->explain==2 )
132#endif
133 {
134 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
135 Vdbe *v = pParse->pVdbe; /* VM being constructed */
136 sqlite3 *db = pParse->db; /* Database handle */
137 int iId = pParse->iSelectId; /* Select id (left-most output column) */
138 int isSearch; /* True for a SEARCH. False for SCAN. */
139 WhereLoop *pLoop; /* The controlling WhereLoop object */
140 u32 flags; /* Flags that describe this loop */
141 char *zMsg; /* Text to add to EQP output */
142 StrAccum str; /* EQP output string */
143 char zBuf[100]; /* Initial space for EQP output string */
144
145 pLoop = pLevel->pWLoop;
146 flags = pLoop->wsFlags;
drhce943bc2016-05-19 18:56:33 +0000147 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
drh6f82e852015-06-06 20:12:09 +0000148
149 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
150 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
151 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
152
153 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
154 sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN");
155 if( pItem->pSelect ){
drh5f4a6862016-01-30 12:50:25 +0000156 sqlite3XPrintf(&str, " SUBQUERY %d", pItem->iSelectId);
drh6f82e852015-06-06 20:12:09 +0000157 }else{
drh5f4a6862016-01-30 12:50:25 +0000158 sqlite3XPrintf(&str, " TABLE %s", pItem->zName);
drh6f82e852015-06-06 20:12:09 +0000159 }
160
161 if( pItem->zAlias ){
drh5f4a6862016-01-30 12:50:25 +0000162 sqlite3XPrintf(&str, " AS %s", pItem->zAlias);
drh6f82e852015-06-06 20:12:09 +0000163 }
164 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
165 const char *zFmt = 0;
166 Index *pIdx;
167
168 assert( pLoop->u.btree.pIndex!=0 );
169 pIdx = pLoop->u.btree.pIndex;
170 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
171 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
172 if( isSearch ){
173 zFmt = "PRIMARY KEY";
174 }
175 }else if( flags & WHERE_PARTIALIDX ){
176 zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
177 }else if( flags & WHERE_AUTO_INDEX ){
178 zFmt = "AUTOMATIC COVERING INDEX";
179 }else if( flags & WHERE_IDX_ONLY ){
180 zFmt = "COVERING INDEX %s";
181 }else{
182 zFmt = "INDEX %s";
183 }
184 if( zFmt ){
185 sqlite3StrAccumAppend(&str, " USING ", 7);
drh5f4a6862016-01-30 12:50:25 +0000186 sqlite3XPrintf(&str, zFmt, pIdx->zName);
drh8faee872015-09-19 18:08:13 +0000187 explainIndexRange(&str, pLoop);
drh6f82e852015-06-06 20:12:09 +0000188 }
189 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
drhd37bea52015-09-02 15:37:50 +0000190 const char *zRangeOp;
drh6f82e852015-06-06 20:12:09 +0000191 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
drhd37bea52015-09-02 15:37:50 +0000192 zRangeOp = "=";
drh6f82e852015-06-06 20:12:09 +0000193 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
drhd37bea52015-09-02 15:37:50 +0000194 zRangeOp = ">? AND rowid<";
drh6f82e852015-06-06 20:12:09 +0000195 }else if( flags&WHERE_BTM_LIMIT ){
drhd37bea52015-09-02 15:37:50 +0000196 zRangeOp = ">";
drh6f82e852015-06-06 20:12:09 +0000197 }else{
198 assert( flags&WHERE_TOP_LIMIT);
drhd37bea52015-09-02 15:37:50 +0000199 zRangeOp = "<";
drh6f82e852015-06-06 20:12:09 +0000200 }
drh5f4a6862016-01-30 12:50:25 +0000201 sqlite3XPrintf(&str, " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
drh6f82e852015-06-06 20:12:09 +0000202 }
203#ifndef SQLITE_OMIT_VIRTUALTABLE
204 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
drh5f4a6862016-01-30 12:50:25 +0000205 sqlite3XPrintf(&str, " VIRTUAL TABLE INDEX %d:%s",
drh6f82e852015-06-06 20:12:09 +0000206 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
207 }
208#endif
209#ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
210 if( pLoop->nOut>=10 ){
drh5f4a6862016-01-30 12:50:25 +0000211 sqlite3XPrintf(&str, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut));
drh6f82e852015-06-06 20:12:09 +0000212 }else{
213 sqlite3StrAccumAppend(&str, " (~1 row)", 9);
214 }
215#endif
216 zMsg = sqlite3StrAccumFinish(&str);
217 ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC);
218 }
219 return ret;
220}
221#endif /* SQLITE_OMIT_EXPLAIN */
222
223#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
224/*
225** Configure the VM passed as the first argument with an
226** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
227** implement level pLvl. Argument pSrclist is a pointer to the FROM
228** clause that the scan reads data from.
229**
230** If argument addrExplain is not 0, it must be the address of an
231** OP_Explain instruction that describes the same loop.
232*/
233void sqlite3WhereAddScanStatus(
234 Vdbe *v, /* Vdbe to add scanstatus entry to */
235 SrcList *pSrclist, /* FROM clause pLvl reads data from */
236 WhereLevel *pLvl, /* Level to add scanstatus() entry for */
237 int addrExplain /* Address of OP_Explain (or 0) */
238){
239 const char *zObj = 0;
240 WhereLoop *pLoop = pLvl->pWLoop;
241 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){
242 zObj = pLoop->u.btree.pIndex->zName;
243 }else{
244 zObj = pSrclist->a[pLvl->iFrom].zName;
245 }
246 sqlite3VdbeScanStatus(
247 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
248 );
249}
250#endif
251
252
253/*
254** Disable a term in the WHERE clause. Except, do not disable the term
255** if it controls a LEFT OUTER JOIN and it did not originate in the ON
256** or USING clause of that join.
257**
258** Consider the term t2.z='ok' in the following queries:
259**
260** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
261** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
262** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
263**
264** The t2.z='ok' is disabled in the in (2) because it originates
265** in the ON clause. The term is disabled in (3) because it is not part
266** of a LEFT OUTER JOIN. In (1), the term is not disabled.
267**
268** Disabling a term causes that term to not be tested in the inner loop
269** of the join. Disabling is an optimization. When terms are satisfied
270** by indices, we disable them to prevent redundant tests in the inner
271** loop. We would get the correct results if nothing were ever disabled,
272** but joins might run a little slower. The trick is to disable as much
273** as we can without disabling too much. If we disabled in (1), we'd get
274** the wrong answer. See ticket #813.
275**
276** If all the children of a term are disabled, then that term is also
277** automatically disabled. In this way, terms get disabled if derived
278** virtual terms are tested first. For example:
279**
280** x GLOB 'abc*' AND x>='abc' AND x<'acd'
281** \___________/ \______/ \_____/
282** parent child1 child2
283**
284** Only the parent term was in the original WHERE clause. The child1
285** and child2 terms were added by the LIKE optimization. If both of
286** the virtual child terms are valid, then testing of the parent can be
287** skipped.
288**
289** Usually the parent term is marked as TERM_CODED. But if the parent
290** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
291** The TERM_LIKECOND marking indicates that the term should be coded inside
292** a conditional such that is only evaluated on the second pass of a
293** LIKE-optimization loop, when scanning BLOBs instead of strings.
294*/
295static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
296 int nLoop = 0;
drh0c36fca2016-08-26 18:17:08 +0000297 while( ALWAYS(pTerm!=0)
drh6f82e852015-06-06 20:12:09 +0000298 && (pTerm->wtFlags & TERM_CODED)==0
299 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
300 && (pLevel->notReady & pTerm->prereqAll)==0
301 ){
302 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
303 pTerm->wtFlags |= TERM_LIKECOND;
304 }else{
305 pTerm->wtFlags |= TERM_CODED;
306 }
307 if( pTerm->iParent<0 ) break;
308 pTerm = &pTerm->pWC->a[pTerm->iParent];
309 pTerm->nChild--;
310 if( pTerm->nChild!=0 ) break;
311 nLoop++;
312 }
313}
314
315/*
316** Code an OP_Affinity opcode to apply the column affinity string zAff
317** to the n registers starting at base.
318**
319** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the
320** beginning and end of zAff are ignored. If all entries in zAff are
321** SQLITE_AFF_BLOB, then no code gets generated.
322**
323** This routine makes its own copy of zAff so that the caller is free
324** to modify zAff after this routine returns.
325*/
326static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
327 Vdbe *v = pParse->pVdbe;
328 if( zAff==0 ){
329 assert( pParse->db->mallocFailed );
330 return;
331 }
332 assert( v!=0 );
333
334 /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning
335 ** and end of the affinity string.
336 */
337 while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){
338 n--;
339 base++;
340 zAff++;
341 }
342 while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){
343 n--;
344 }
345
346 /* Code the OP_Affinity opcode if there is anything left to do. */
347 if( n>0 ){
drh9b34abe2016-01-16 15:12:35 +0000348 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
drh6f82e852015-06-06 20:12:09 +0000349 sqlite3ExprCacheAffinityChange(pParse, base, n);
350 }
351}
352
danb7ca2172016-08-26 17:54:46 +0000353/*
354** Expression pRight, which is the RHS of a comparison operation, is
355** either a vector of n elements or, if n==1, a scalar expression.
356** Before the comparison operation, affinity zAff is to be applied
357** to the pRight values. This function modifies characters within the
358** affinity string to SQLITE_AFF_BLOB if either:
359**
360** * the comparison will be performed with no affinity, or
361** * the affinity change in zAff is guaranteed not to change the value.
362*/
363static void updateRangeAffinityStr(
364 Parse *pParse, /* Parse context */
365 Expr *pRight, /* RHS of comparison */
366 int n, /* Number of vector elements in comparison */
367 char *zAff /* Affinity string to modify */
368){
369 int i;
370 for(i=0; i<n; i++){
371 Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
372 if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
373 || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
374 ){
375 zAff[i] = SQLITE_AFF_BLOB;
376 }
377 }
378}
drh6f82e852015-06-06 20:12:09 +0000379
380/*
381** Generate code for a single equality term of the WHERE clause. An equality
382** term can be either X=expr or X IN (...). pTerm is the term to be
383** coded.
384**
drh099a0f52016-09-06 15:25:53 +0000385** The current value for the constraint is left in a register, the index
386** of which is returned. An attempt is made store the result in iTarget but
387** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the
388** constraint is a TK_EQ or TK_IS, then the current value might be left in
389** some other register and it is the caller's responsibility to compensate.
drh6f82e852015-06-06 20:12:09 +0000390**
drh4602b8e2016-08-19 18:28:00 +0000391** For a constraint of the form X=expr, the expression is evaluated in
392** straight-line code. For constraints of the form X IN (...)
drh6f82e852015-06-06 20:12:09 +0000393** this routine sets up a loop that will iterate over all values of X.
394*/
395static int codeEqualityTerm(
396 Parse *pParse, /* The parsing context */
397 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
398 WhereLevel *pLevel, /* The level of the FROM clause we are working on */
399 int iEq, /* Index of the equality term within this level */
400 int bRev, /* True for reverse-order IN operations */
401 int iTarget /* Attempt to leave results in this register */
402){
403 Expr *pX = pTerm->pExpr;
404 Vdbe *v = pParse->pVdbe;
405 int iReg; /* Register holding results */
406
dan8da209b2016-07-26 18:06:08 +0000407 assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
drh6f82e852015-06-06 20:12:09 +0000408 assert( iTarget>0 );
409 if( pX->op==TK_EQ || pX->op==TK_IS ){
drhfc7f27b2016-08-20 00:07:01 +0000410 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
drh6f82e852015-06-06 20:12:09 +0000411 }else if( pX->op==TK_ISNULL ){
412 iReg = iTarget;
413 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
414#ifndef SQLITE_OMIT_SUBQUERY
415 }else{
drhac6b47d2016-08-24 00:51:48 +0000416 int eType = IN_INDEX_NOOP;
drh6f82e852015-06-06 20:12:09 +0000417 int iTab;
418 struct InLoop *pIn;
419 WhereLoop *pLoop = pLevel->pWLoop;
dan8da209b2016-07-26 18:06:08 +0000420 int i;
421 int nEq = 0;
422 int *aiMap = 0;
drh6f82e852015-06-06 20:12:09 +0000423
424 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
425 && pLoop->u.btree.pIndex!=0
426 && pLoop->u.btree.pIndex->aSortOrder[iEq]
427 ){
428 testcase( iEq==0 );
429 testcase( bRev );
430 bRev = !bRev;
431 }
432 assert( pX->op==TK_IN );
433 iReg = iTarget;
dan8da209b2016-07-26 18:06:08 +0000434
435 for(i=0; i<iEq; i++){
436 if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
437 disableTerm(pLevel, pTerm);
438 return iTarget;
439 }
440 }
441 for(i=iEq;i<pLoop->nLTerm; i++){
drh0c36fca2016-08-26 18:17:08 +0000442 if( ALWAYS(pLoop->aLTerm[i]) && pLoop->aLTerm[i]->pExpr==pX ) nEq++;
dan8da209b2016-07-26 18:06:08 +0000443 }
444
dan8da209b2016-07-26 18:06:08 +0000445 if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){
446 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0);
447 }else{
448 sqlite3 *db = pParse->db;
449 ExprList *pOrigRhs = pX->x.pSelect->pEList;
450 ExprList *pOrigLhs = pX->pLeft->x.pList;
451 ExprList *pRhs = 0; /* New Select.pEList for RHS */
452 ExprList *pLhs = 0; /* New pX->pLeft vector */
453
454 for(i=iEq;i<pLoop->nLTerm; i++){
455 if( pLoop->aLTerm[i]->pExpr==pX ){
456 int iField = pLoop->aLTerm[i]->iField - 1;
457 Expr *pNewRhs = sqlite3ExprDup(db, pOrigRhs->a[iField].pExpr, 0);
458 Expr *pNewLhs = sqlite3ExprDup(db, pOrigLhs->a[iField].pExpr, 0);
459
460 pRhs = sqlite3ExprListAppend(pParse, pRhs, pNewRhs);
461 pLhs = sqlite3ExprListAppend(pParse, pLhs, pNewLhs);
462 }
463 }
drhac6b47d2016-08-24 00:51:48 +0000464 if( !db->mallocFailed ){
dan83c434e2016-09-06 14:58:15 +0000465 Expr *pLeft = pX->pLeft;
466 /* Take care here not to generate a TK_VECTOR containing only a
467 ** single value. Since the parser never creates such a vector, some
468 ** of the subroutines do not handle this case. */
469 if( pLhs->nExpr==1 ){
470 pX->pLeft = pLhs->a[0].pExpr;
471 }else{
472 pLeft->x.pList = pLhs;
drhc7a77ae2016-09-06 17:13:40 +0000473 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int) * nEq);
474 testcase( aiMap==0 );
dan83c434e2016-09-06 14:58:15 +0000475 }
drhac6b47d2016-08-24 00:51:48 +0000476 pX->x.pSelect->pEList = pRhs;
drhac6b47d2016-08-24 00:51:48 +0000477 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap);
drhc7a77ae2016-09-06 17:13:40 +0000478 testcase( aiMap!=0 && aiMap[0]!=0 );
drhac6b47d2016-08-24 00:51:48 +0000479 pX->x.pSelect->pEList = pOrigRhs;
dan83c434e2016-09-06 14:58:15 +0000480 pLeft->x.pList = pOrigLhs;
481 pX->pLeft = pLeft;
drhac6b47d2016-08-24 00:51:48 +0000482 }
dan8da209b2016-07-26 18:06:08 +0000483 sqlite3ExprListDelete(pParse->db, pLhs);
484 sqlite3ExprListDelete(pParse->db, pRhs);
485 }
486
drh6f82e852015-06-06 20:12:09 +0000487 if( eType==IN_INDEX_INDEX_DESC ){
488 testcase( bRev );
489 bRev = !bRev;
490 }
491 iTab = pX->iTable;
492 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
493 VdbeCoverageIf(v, bRev);
494 VdbeCoverageIf(v, !bRev);
495 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
dan8da209b2016-07-26 18:06:08 +0000496
drh6f82e852015-06-06 20:12:09 +0000497 pLoop->wsFlags |= WHERE_IN_ABLE;
498 if( pLevel->u.in.nIn==0 ){
499 pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
500 }
dan8da209b2016-07-26 18:06:08 +0000501
502 i = pLevel->u.in.nIn;
503 pLevel->u.in.nIn += nEq;
drh6f82e852015-06-06 20:12:09 +0000504 pLevel->u.in.aInLoop =
505 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
506 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
507 pIn = pLevel->u.in.aInLoop;
508 if( pIn ){
dan8da209b2016-07-26 18:06:08 +0000509 int iMap = 0; /* Index in aiMap[] */
510 pIn += i;
dan7887d7f2016-08-24 12:22:17 +0000511 for(i=iEq;i<pLoop->nLTerm; i++){
drh03181c82016-08-18 19:04:57 +0000512 int iOut = iReg;
dan8da209b2016-07-26 18:06:08 +0000513 if( pLoop->aLTerm[i]->pExpr==pX ){
514 if( eType==IN_INDEX_ROWID ){
515 assert( nEq==1 && i==iEq );
516 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
517 }else{
518 int iCol = aiMap ? aiMap[iMap++] : 0;
drh03181c82016-08-18 19:04:57 +0000519 iOut = iReg + i - iEq;
dan8da209b2016-07-26 18:06:08 +0000520 pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
521 }
drh03181c82016-08-18 19:04:57 +0000522 sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
dan8da209b2016-07-26 18:06:08 +0000523 if( i==iEq ){
524 pIn->iCur = iTab;
525 pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen;
526 }else{
527 pIn->eEndLoopOp = OP_Noop;
528 }
dan7887d7f2016-08-24 12:22:17 +0000529 pIn++;
dan8da209b2016-07-26 18:06:08 +0000530 }
drh6f82e852015-06-06 20:12:09 +0000531 }
drh6f82e852015-06-06 20:12:09 +0000532 }else{
533 pLevel->u.in.nIn = 0;
534 }
dan8da209b2016-07-26 18:06:08 +0000535 sqlite3DbFree(pParse->db, aiMap);
drh6f82e852015-06-06 20:12:09 +0000536#endif
537 }
538 disableTerm(pLevel, pTerm);
539 return iReg;
540}
541
542/*
543** Generate code that will evaluate all == and IN constraints for an
544** index scan.
545**
546** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
547** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
548** The index has as many as three equality constraints, but in this
549** example, the third "c" value is an inequality. So only two
550** constraints are coded. This routine will generate code to evaluate
551** a==5 and b IN (1,2,3). The current values for a and b will be stored
552** in consecutive registers and the index of the first register is returned.
553**
554** In the example above nEq==2. But this subroutine works for any value
555** of nEq including 0. If nEq==0, this routine is nearly a no-op.
556** The only thing it does is allocate the pLevel->iMem memory cell and
557** compute the affinity string.
558**
559** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints
560** are == or IN and are covered by the nEq. nExtraReg is 1 if there is
561** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
562** occurs after the nEq quality constraints.
563**
564** This routine allocates a range of nEq+nExtraReg memory cells and returns
565** the index of the first memory cell in that range. The code that
566** calls this routine will use that memory range to store keys for
567** start and termination conditions of the loop.
568** key value of the loop. If one or more IN operators appear, then
569** this routine allocates an additional nEq memory cells for internal
570** use.
571**
572** Before returning, *pzAff is set to point to a buffer containing a
573** copy of the column affinity string of the index allocated using
574** sqlite3DbMalloc(). Except, entries in the copy of the string associated
575** with equality constraints that use BLOB or NONE affinity are set to
576** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
577**
578** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
579** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
580**
581** In the example above, the index on t1(a) has TEXT affinity. But since
582** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
583** no conversion should be attempted before using a t2.b value as part of
584** a key to search the index. Hence the first byte in the returned affinity
585** string in this example would be set to SQLITE_AFF_BLOB.
586*/
587static int codeAllEqualityTerms(
588 Parse *pParse, /* Parsing context */
589 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
590 int bRev, /* Reverse the order of IN operators */
591 int nExtraReg, /* Number of extra registers to allocate */
592 char **pzAff /* OUT: Set to point to affinity string */
593){
594 u16 nEq; /* The number of == or IN constraints to code */
595 u16 nSkip; /* Number of left-most columns to skip */
596 Vdbe *v = pParse->pVdbe; /* The vm under construction */
597 Index *pIdx; /* The index being used for this loop */
598 WhereTerm *pTerm; /* A single constraint term */
599 WhereLoop *pLoop; /* The WhereLoop object */
600 int j; /* Loop counter */
601 int regBase; /* Base register */
602 int nReg; /* Number of registers to allocate */
603 char *zAff; /* Affinity string to return */
604
605 /* This module is only called on query plans that use an index. */
606 pLoop = pLevel->pWLoop;
607 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
608 nEq = pLoop->u.btree.nEq;
609 nSkip = pLoop->nSkip;
610 pIdx = pLoop->u.btree.pIndex;
611 assert( pIdx!=0 );
612
613 /* Figure out how many memory cells we will need then allocate them.
614 */
615 regBase = pParse->nMem + 1;
616 nReg = pLoop->u.btree.nEq + nExtraReg;
617 pParse->nMem += nReg;
618
drhe9107692015-08-25 19:20:04 +0000619 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
drh4df86af2016-02-04 11:48:00 +0000620 assert( zAff!=0 || pParse->db->mallocFailed );
drh6f82e852015-06-06 20:12:09 +0000621
622 if( nSkip ){
623 int iIdxCur = pLevel->iIdxCur;
624 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
625 VdbeCoverageIf(v, bRev==0);
626 VdbeCoverageIf(v, bRev!=0);
627 VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
628 j = sqlite3VdbeAddOp0(v, OP_Goto);
629 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
630 iIdxCur, 0, regBase, nSkip);
631 VdbeCoverageIf(v, bRev==0);
632 VdbeCoverageIf(v, bRev!=0);
633 sqlite3VdbeJumpHere(v, j);
634 for(j=0; j<nSkip; j++){
635 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
drh4b92f982015-09-29 17:20:14 +0000636 testcase( pIdx->aiColumn[j]==XN_EXPR );
drhe63e8a62015-09-18 18:09:28 +0000637 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
drh6f82e852015-06-06 20:12:09 +0000638 }
639 }
640
641 /* Evaluate the equality constraints
642 */
643 assert( zAff==0 || (int)strlen(zAff)>=nEq );
644 for(j=nSkip; j<nEq; j++){
645 int r1;
646 pTerm = pLoop->aLTerm[j];
647 assert( pTerm!=0 );
648 /* The following testcase is true for indices with redundant columns.
649 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
650 testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
651 testcase( pTerm->wtFlags & TERM_VIRTUAL );
652 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
653 if( r1!=regBase+j ){
654 if( nReg==1 ){
655 sqlite3ReleaseTempReg(pParse, regBase);
656 regBase = r1;
657 }else{
658 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
659 }
660 }
drhc097e122016-09-07 13:30:40 +0000661 if( pTerm->eOperator & WO_IN ){
662 if( pTerm->pExpr->flags & EP_xIsSelect ){
663 /* No affinity ever needs to be (or should be) applied to a value
664 ** from the RHS of an "? IN (SELECT ...)" expression. The
665 ** sqlite3FindInIndex() routine has already ensured that the
666 ** affinity of the comparison has been applied to the value. */
667 if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
668 }
669 }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
670 Expr *pRight = pTerm->pExpr->pRight;
671 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
672 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
673 VdbeCoverage(v);
674 }
675 if( zAff ){
676 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
677 zAff[j] = SQLITE_AFF_BLOB;
dan27189602016-09-03 15:31:20 +0000678 }
drhc097e122016-09-07 13:30:40 +0000679 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
680 zAff[j] = SQLITE_AFF_BLOB;
drh6f82e852015-06-06 20:12:09 +0000681 }
682 }
683 }
684 }
685 *pzAff = zAff;
686 return regBase;
687}
688
drh41d2e662015-12-01 21:23:07 +0000689#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
drh6f82e852015-06-06 20:12:09 +0000690/*
drh44aebff2016-05-02 10:25:42 +0000691** If the most recently coded instruction is a constant range constraint
692** (a string literal) that originated from the LIKE optimization, then
693** set P3 and P5 on the OP_String opcode so that the string will be cast
694** to a BLOB at appropriate times.
drh6f82e852015-06-06 20:12:09 +0000695**
696** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
697** expression: "x>='ABC' AND x<'abd'". But this requires that the range
698** scan loop run twice, once for strings and a second time for BLOBs.
699** The OP_String opcodes on the second pass convert the upper and lower
mistachkine234cfd2016-07-10 19:35:10 +0000700** bound string constants to blobs. This routine makes the necessary changes
drh6f82e852015-06-06 20:12:09 +0000701** to the OP_String opcodes for that to happen.
drh41d2e662015-12-01 21:23:07 +0000702**
703** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
704** only the one pass through the string space is required, so this routine
705** becomes a no-op.
drh6f82e852015-06-06 20:12:09 +0000706*/
707static void whereLikeOptimizationStringFixup(
708 Vdbe *v, /* prepared statement under construction */
709 WhereLevel *pLevel, /* The loop that contains the LIKE operator */
710 WhereTerm *pTerm /* The upper or lower bound just coded */
711){
712 if( pTerm->wtFlags & TERM_LIKEOPT ){
713 VdbeOp *pOp;
714 assert( pLevel->iLikeRepCntr>0 );
715 pOp = sqlite3VdbeGetOp(v, -1);
716 assert( pOp!=0 );
717 assert( pOp->opcode==OP_String8
718 || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
drh44aebff2016-05-02 10:25:42 +0000719 pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */
720 pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */
drh6f82e852015-06-06 20:12:09 +0000721 }
722}
drh41d2e662015-12-01 21:23:07 +0000723#else
724# define whereLikeOptimizationStringFixup(A,B,C)
725#endif
drh6f82e852015-06-06 20:12:09 +0000726
drhbec24762015-08-13 20:07:13 +0000727#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh2f2b0272015-08-14 18:50:04 +0000728/*
729** Information is passed from codeCursorHint() down to individual nodes of
730** the expression tree (by sqlite3WalkExpr()) using an instance of this
731** structure.
732*/
733struct CCurHint {
734 int iTabCur; /* Cursor for the main table */
735 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */
736 Index *pIdx; /* The index used to access the table */
737};
738
739/*
740** This function is called for every node of an expression that is a candidate
741** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference
742** the table CCurHint.iTabCur, verify that the same column can be
743** accessed through the index. If it cannot, then set pWalker->eCode to 1.
744*/
745static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
746 struct CCurHint *pHint = pWalker->u.pCCurHint;
747 assert( pHint->pIdx!=0 );
748 if( pExpr->op==TK_COLUMN
749 && pExpr->iTable==pHint->iTabCur
750 && sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn)<0
751 ){
752 pWalker->eCode = 1;
753 }
754 return WRC_Continue;
755}
756
dane6912fd2016-06-17 19:27:13 +0000757/*
758** Test whether or not expression pExpr, which was part of a WHERE clause,
759** should be included in the cursor-hint for a table that is on the rhs
760** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
761** expression is not suitable.
762**
763** An expression is unsuitable if it might evaluate to non NULL even if
764** a TK_COLUMN node that does affect the value of the expression is set
765** to NULL. For example:
766**
767** col IS NULL
768** col IS NOT NULL
769** coalesce(col, 1)
770** CASE WHEN col THEN 0 ELSE 1 END
771*/
772static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
dan2b693d62016-06-20 17:22:06 +0000773 if( pExpr->op==TK_IS
dane6912fd2016-06-17 19:27:13 +0000774 || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
775 || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
776 ){
777 pWalker->eCode = 1;
dan2b693d62016-06-20 17:22:06 +0000778 }else if( pExpr->op==TK_FUNCTION ){
779 int d1;
780 char d2[3];
781 if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
782 pWalker->eCode = 1;
783 }
dane6912fd2016-06-17 19:27:13 +0000784 }
dan2b693d62016-06-20 17:22:06 +0000785
dane6912fd2016-06-17 19:27:13 +0000786 return WRC_Continue;
787}
788
drhbec24762015-08-13 20:07:13 +0000789
790/*
791** This function is called on every node of an expression tree used as an
792** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
drh2f2b0272015-08-14 18:50:04 +0000793** that accesses any table other than the one identified by
794** CCurHint.iTabCur, then do the following:
drhbec24762015-08-13 20:07:13 +0000795**
796** 1) allocate a register and code an OP_Column instruction to read
797** the specified column into the new register, and
798**
799** 2) transform the expression node to a TK_REGISTER node that reads
800** from the newly populated register.
drh2f2b0272015-08-14 18:50:04 +0000801**
802** Also, if the node is a TK_COLUMN that does access the table idenified
803** by pCCurHint.iTabCur, and an index is being used (which we will
804** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
805** an access of the index rather than the original table.
drhbec24762015-08-13 20:07:13 +0000806*/
807static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
808 int rc = WRC_Continue;
drh2f2b0272015-08-14 18:50:04 +0000809 struct CCurHint *pHint = pWalker->u.pCCurHint;
810 if( pExpr->op==TK_COLUMN ){
811 if( pExpr->iTable!=pHint->iTabCur ){
812 Vdbe *v = pWalker->pParse->pVdbe;
813 int reg = ++pWalker->pParse->nMem; /* Register for column value */
814 sqlite3ExprCodeGetColumnOfTable(
815 v, pExpr->pTab, pExpr->iTable, pExpr->iColumn, reg
816 );
817 pExpr->op = TK_REGISTER;
818 pExpr->iTable = reg;
819 }else if( pHint->pIdx!=0 ){
820 pExpr->iTable = pHint->iIdxCur;
821 pExpr->iColumn = sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn);
822 assert( pExpr->iColumn>=0 );
823 }
drhbec24762015-08-13 20:07:13 +0000824 }else if( pExpr->op==TK_AGG_FUNCTION ){
825 /* An aggregate function in the WHERE clause of a query means this must
826 ** be a correlated sub-query, and expression pExpr is an aggregate from
827 ** the parent context. Do not walk the function arguments in this case.
828 **
829 ** todo: It should be possible to replace this node with a TK_REGISTER
830 ** expression, as the result of the expression must be stored in a
831 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
832 rc = WRC_Prune;
833 }
834 return rc;
835}
836
837/*
838** Insert an OP_CursorHint instruction if it is appropriate to do so.
839*/
840static void codeCursorHint(
danb324cf72016-06-17 14:33:32 +0000841 struct SrcList_item *pTabItem, /* FROM clause item */
drhb413a542015-08-17 17:19:28 +0000842 WhereInfo *pWInfo, /* The where clause */
843 WhereLevel *pLevel, /* Which loop to provide hints for */
844 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */
drhbec24762015-08-13 20:07:13 +0000845){
846 Parse *pParse = pWInfo->pParse;
847 sqlite3 *db = pParse->db;
848 Vdbe *v = pParse->pVdbe;
drhbec24762015-08-13 20:07:13 +0000849 Expr *pExpr = 0;
drh2f2b0272015-08-14 18:50:04 +0000850 WhereLoop *pLoop = pLevel->pWLoop;
drhbec24762015-08-13 20:07:13 +0000851 int iCur;
852 WhereClause *pWC;
853 WhereTerm *pTerm;
drhb413a542015-08-17 17:19:28 +0000854 int i, j;
drh2f2b0272015-08-14 18:50:04 +0000855 struct CCurHint sHint;
856 Walker sWalker;
drhbec24762015-08-13 20:07:13 +0000857
858 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
drh2f2b0272015-08-14 18:50:04 +0000859 iCur = pLevel->iTabCur;
860 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
861 sHint.iTabCur = iCur;
862 sHint.iIdxCur = pLevel->iIdxCur;
863 sHint.pIdx = pLoop->u.btree.pIndex;
864 memset(&sWalker, 0, sizeof(sWalker));
865 sWalker.pParse = pParse;
866 sWalker.u.pCCurHint = &sHint;
drhbec24762015-08-13 20:07:13 +0000867 pWC = &pWInfo->sWC;
868 for(i=0; i<pWC->nTerm; i++){
869 pTerm = &pWC->a[i];
870 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
871 if( pTerm->prereqAll & pLevel->notReady ) continue;
danb324cf72016-06-17 14:33:32 +0000872
873 /* Any terms specified as part of the ON(...) clause for any LEFT
874 ** JOIN for which the current table is not the rhs are omitted
875 ** from the cursor-hint.
876 **
dane6912fd2016-06-17 19:27:13 +0000877 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
878 ** that were specified as part of the WHERE clause must be excluded.
879 ** This is to address the following:
danb324cf72016-06-17 14:33:32 +0000880 **
881 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
882 **
dane6912fd2016-06-17 19:27:13 +0000883 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
884 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
885 ** pushed down to the cursor, this row is filtered out, causing
886 ** SQLite to synthesize a row of NULL values. Which does match the
887 ** WHERE clause, and so the query returns a row. Which is incorrect.
888 **
889 ** For the same reason, WHERE terms such as:
890 **
891 ** WHERE 1 = (t2.c IS NULL)
892 **
893 ** are also excluded. See codeCursorHintIsOrFunction() for details.
danb324cf72016-06-17 14:33:32 +0000894 */
895 if( pTabItem->fg.jointype & JT_LEFT ){
dane6912fd2016-06-17 19:27:13 +0000896 Expr *pExpr = pTerm->pExpr;
897 if( !ExprHasProperty(pExpr, EP_FromJoin)
898 || pExpr->iRightJoinTable!=pTabItem->iCursor
danb324cf72016-06-17 14:33:32 +0000899 ){
dane6912fd2016-06-17 19:27:13 +0000900 sWalker.eCode = 0;
901 sWalker.xExprCallback = codeCursorHintIsOrFunction;
902 sqlite3WalkExpr(&sWalker, pTerm->pExpr);
903 if( sWalker.eCode ) continue;
danb324cf72016-06-17 14:33:32 +0000904 }
905 }else{
906 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;
907 }
drhb413a542015-08-17 17:19:28 +0000908
909 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
drhbcf40a72015-08-18 15:58:05 +0000910 ** the cursor. These terms are not needed as hints for a pure range
911 ** scan (that has no == terms) so omit them. */
912 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
913 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
914 if( j<pLoop->nLTerm ) continue;
drhb413a542015-08-17 17:19:28 +0000915 }
916
917 /* No subqueries or non-deterministic functions allowed */
drhbec24762015-08-13 20:07:13 +0000918 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
drhb413a542015-08-17 17:19:28 +0000919
920 /* For an index scan, make sure referenced columns are actually in
921 ** the index. */
drh2f2b0272015-08-14 18:50:04 +0000922 if( sHint.pIdx!=0 ){
923 sWalker.eCode = 0;
924 sWalker.xExprCallback = codeCursorHintCheckExpr;
925 sqlite3WalkExpr(&sWalker, pTerm->pExpr);
926 if( sWalker.eCode ) continue;
927 }
drhb413a542015-08-17 17:19:28 +0000928
929 /* If we survive all prior tests, that means this term is worth hinting */
drhbec24762015-08-13 20:07:13 +0000930 pExpr = sqlite3ExprAnd(db, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
931 }
932 if( pExpr!=0 ){
drhbec24762015-08-13 20:07:13 +0000933 sWalker.xExprCallback = codeCursorHintFixExpr;
drhbec24762015-08-13 20:07:13 +0000934 sqlite3WalkExpr(&sWalker, pExpr);
drh2f2b0272015-08-14 18:50:04 +0000935 sqlite3VdbeAddOp4(v, OP_CursorHint,
936 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
937 (const char*)pExpr, P4_EXPR);
drhbec24762015-08-13 20:07:13 +0000938 }
939}
940#else
danb324cf72016-06-17 14:33:32 +0000941# define codeCursorHint(A,B,C,D) /* No-op */
drhbec24762015-08-13 20:07:13 +0000942#endif /* SQLITE_ENABLE_CURSOR_HINTS */
drh6f82e852015-06-06 20:12:09 +0000943
944/*
dande892d92016-01-29 19:29:45 +0000945** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
946** a rowid value just read from cursor iIdxCur, open on index pIdx. This
947** function generates code to do a deferred seek of cursor iCur to the
948** rowid stored in register iRowid.
949**
950** Normally, this is just:
951**
952** OP_Seek $iCur $iRowid
953**
954** However, if the scan currently being coded is a branch of an OR-loop and
955** the statement currently being coded is a SELECT, then P3 of the OP_Seek
956** is set to iIdxCur and P4 is set to point to an array of integers
957** containing one entry for each column of the table cursor iCur is open
958** on. For each table column, if the column is the i'th column of the
959** index, then the corresponding array entry is set to (i+1). If the column
960** does not appear in the index at all, the array entry is set to 0.
961*/
962static void codeDeferredSeek(
963 WhereInfo *pWInfo, /* Where clause context */
964 Index *pIdx, /* Index scan is using */
965 int iCur, /* Cursor for IPK b-tree */
dande892d92016-01-29 19:29:45 +0000966 int iIdxCur /* Index cursor */
967){
968 Parse *pParse = pWInfo->pParse; /* Parse context */
969 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */
970
971 assert( iIdxCur>0 );
972 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
973
drh784c1b92016-01-30 16:59:56 +0000974 sqlite3VdbeAddOp3(v, OP_Seek, iIdxCur, 0, iCur);
drhce943bc2016-05-19 18:56:33 +0000975 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
dancddb6ba2016-02-01 13:58:56 +0000976 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
dande892d92016-01-29 19:29:45 +0000977 ){
978 int i;
979 Table *pTab = pIdx->pTable;
drhb1702022016-01-30 00:45:18 +0000980 int *ai = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*(pTab->nCol+1));
dande892d92016-01-29 19:29:45 +0000981 if( ai ){
drhb1702022016-01-30 00:45:18 +0000982 ai[0] = pTab->nCol;
dande892d92016-01-29 19:29:45 +0000983 for(i=0; i<pIdx->nColumn-1; i++){
984 assert( pIdx->aiColumn[i]<pTab->nCol );
drhb1702022016-01-30 00:45:18 +0000985 if( pIdx->aiColumn[i]>=0 ) ai[pIdx->aiColumn[i]+1] = i+1;
dande892d92016-01-29 19:29:45 +0000986 }
987 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
988 }
989 }
990}
991
dan553168c2016-08-01 20:14:31 +0000992/*
993** If the expression passed as the second argument is a vector, generate
994** code to write the first nReg elements of the vector into an array
995** of registers starting with iReg.
996**
997** If the expression is not a vector, then nReg must be passed 1. In
998** this case, generate code to evaluate the expression and leave the
999** result in register iReg.
1000*/
dan71c57db2016-07-09 20:23:55 +00001001static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
1002 assert( nReg>0 );
dan625015e2016-07-30 16:39:28 +00001003 if( sqlite3ExprIsVector(p) ){
danf9b2e052016-08-02 17:45:00 +00001004#ifndef SQLITE_OMIT_SUBQUERY
1005 if( (p->flags & EP_xIsSelect) ){
1006 Vdbe *v = pParse->pVdbe;
1007 int iSelect = sqlite3CodeSubselect(pParse, p, 0, 0);
1008 sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
1009 }else
1010#endif
1011 {
1012 int i;
dan71c57db2016-07-09 20:23:55 +00001013 ExprList *pList = p->x.pList;
1014 assert( nReg<=pList->nExpr );
1015 for(i=0; i<nReg; i++){
1016 sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
1017 }
dan71c57db2016-07-09 20:23:55 +00001018 }
1019 }else{
1020 assert( nReg==1 );
1021 sqlite3ExprCode(pParse, p, iReg);
1022 }
1023}
1024
dande892d92016-01-29 19:29:45 +00001025/*
drh6f82e852015-06-06 20:12:09 +00001026** Generate code for the start of the iLevel-th loop in the WHERE clause
1027** implementation described by pWInfo.
1028*/
1029Bitmask sqlite3WhereCodeOneLoopStart(
1030 WhereInfo *pWInfo, /* Complete information about the WHERE clause */
1031 int iLevel, /* Which level of pWInfo->a[] should be coded */
1032 Bitmask notReady /* Which tables are currently available */
1033){
1034 int j, k; /* Loop counters */
1035 int iCur; /* The VDBE cursor for the table */
1036 int addrNxt; /* Where to jump to continue with the next IN case */
1037 int omitTable; /* True if we use the index only */
1038 int bRev; /* True if we need to scan in reverse order */
1039 WhereLevel *pLevel; /* The where level to be coded */
1040 WhereLoop *pLoop; /* The WhereLoop object being coded */
1041 WhereClause *pWC; /* Decomposition of the entire WHERE clause */
1042 WhereTerm *pTerm; /* A WHERE clause term */
1043 Parse *pParse; /* Parsing context */
1044 sqlite3 *db; /* Database connection */
1045 Vdbe *v; /* The prepared stmt under constructions */
1046 struct SrcList_item *pTabItem; /* FROM clause term being coded */
1047 int addrBrk; /* Jump here to break out of the loop */
1048 int addrCont; /* Jump here to continue with next cycle */
1049 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */
1050 int iReleaseReg = 0; /* Temp register to free before returning */
1051
1052 pParse = pWInfo->pParse;
1053 v = pParse->pVdbe;
1054 pWC = &pWInfo->sWC;
1055 db = pParse->db;
1056 pLevel = &pWInfo->a[iLevel];
1057 pLoop = pLevel->pWLoop;
1058 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1059 iCur = pTabItem->iCursor;
1060 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
1061 bRev = (pWInfo->revMask>>iLevel)&1;
1062 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
drhce943bc2016-05-19 18:56:33 +00001063 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0;
drh6f82e852015-06-06 20:12:09 +00001064 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
1065
1066 /* Create labels for the "break" and "continue" instructions
1067 ** for the current loop. Jump to addrBrk to break out of a loop.
1068 ** Jump to cont to go immediately to the next iteration of the
1069 ** loop.
1070 **
1071 ** When there is an IN operator, we also have a "addrNxt" label that
1072 ** means to continue with the next IN value combination. When
1073 ** there are no IN operators in the constraints, the "addrNxt" label
1074 ** is the same as "addrBrk".
1075 */
1076 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
1077 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
1078
1079 /* If this is the right table of a LEFT OUTER JOIN, allocate and
1080 ** initialize a memory cell that records if this table matches any
1081 ** row of the left table of the join.
1082 */
drh8a48b9c2015-08-19 15:20:00 +00001083 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
drh6f82e852015-06-06 20:12:09 +00001084 pLevel->iLeftJoin = ++pParse->nMem;
1085 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
1086 VdbeComment((v, "init LEFT JOIN no-match flag"));
1087 }
1088
1089 /* Special case of a FROM clause subquery implemented as a co-routine */
drh8a48b9c2015-08-19 15:20:00 +00001090 if( pTabItem->fg.viaCoroutine ){
drh6f82e852015-06-06 20:12:09 +00001091 int regYield = pTabItem->regReturn;
1092 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
1093 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
1094 VdbeCoverage(v);
1095 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
1096 pLevel->op = OP_Goto;
1097 }else
1098
1099#ifndef SQLITE_OMIT_VIRTUALTABLE
1100 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
1101 /* Case 1: The table is a virtual-table. Use the VFilter and VNext
1102 ** to access the data.
1103 */
1104 int iReg; /* P3 Value for OP_VFilter */
1105 int addrNotFound;
1106 int nConstraint = pLoop->nLTerm;
drhdbc49162016-03-02 03:28:07 +00001107 int iIn; /* Counter for IN constraints */
drh6f82e852015-06-06 20:12:09 +00001108
1109 sqlite3ExprCachePush(pParse);
1110 iReg = sqlite3GetTempRange(pParse, nConstraint+2);
1111 addrNotFound = pLevel->addrBrk;
1112 for(j=0; j<nConstraint; j++){
1113 int iTarget = iReg+j+2;
1114 pTerm = pLoop->aLTerm[j];
drh599d5762016-03-08 01:11:51 +00001115 if( NEVER(pTerm==0) ) continue;
drh6f82e852015-06-06 20:12:09 +00001116 if( pTerm->eOperator & WO_IN ){
1117 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
1118 addrNotFound = pLevel->addrNxt;
1119 }else{
dan6256c1c2016-08-08 20:15:41 +00001120 Expr *pRight = pTerm->pExpr->pRight;
drhfc7f27b2016-08-20 00:07:01 +00001121 codeExprOrVector(pParse, pRight, iTarget, 1);
drh6f82e852015-06-06 20:12:09 +00001122 }
1123 }
1124 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
1125 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
1126 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
1127 pLoop->u.vtab.idxStr,
1128 pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC);
1129 VdbeCoverage(v);
1130 pLoop->u.vtab.needFree = 0;
drh6f82e852015-06-06 20:12:09 +00001131 pLevel->p1 = iCur;
dan354474a2015-09-29 10:11:26 +00001132 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
drh6f82e852015-06-06 20:12:09 +00001133 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
drhdbc49162016-03-02 03:28:07 +00001134 iIn = pLevel->u.in.nIn;
1135 for(j=nConstraint-1; j>=0; j--){
1136 pTerm = pLoop->aLTerm[j];
1137 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
1138 disableTerm(pLevel, pTerm);
1139 }else if( (pTerm->eOperator & WO_IN)!=0 ){
1140 Expr *pCompare; /* The comparison operator */
1141 Expr *pRight; /* RHS of the comparison */
1142 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */
1143
1144 /* Reload the constraint value into reg[iReg+j+2]. The same value
1145 ** was loaded into the same register prior to the OP_VFilter, but
1146 ** the xFilter implementation might have changed the datatype or
1147 ** encoding of the value in the register, so it *must* be reloaded. */
1148 assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed );
drhfb826b82016-03-08 00:39:58 +00001149 if( !db->mallocFailed ){
drhdbc49162016-03-02 03:28:07 +00001150 assert( iIn>0 );
1151 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[--iIn].addrInTop);
1152 assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid );
1153 assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 );
1154 assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 );
1155 testcase( pOp->opcode==OP_Rowid );
1156 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
1157 }
1158
1159 /* Generate code that will continue to the next row if
1160 ** the IN constraint is not satisfied */
1161 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0, 0);
1162 assert( pCompare!=0 || db->mallocFailed );
1163 if( pCompare ){
1164 pCompare->pLeft = pTerm->pExpr->pLeft;
1165 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
drh237b2b72016-03-07 19:08:27 +00001166 if( pRight ){
1167 pRight->iTable = iReg+j+2;
1168 sqlite3ExprIfFalse(pParse, pCompare, pLevel->addrCont, 0);
1169 }
drhdbc49162016-03-02 03:28:07 +00001170 pCompare->pLeft = 0;
1171 sqlite3ExprDelete(db, pCompare);
1172 }
1173 }
1174 }
drhba26faa2016-04-09 18:04:28 +00001175 /* These registers need to be preserved in case there is an IN operator
1176 ** loop. So we could deallocate the registers here (and potentially
1177 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems
1178 ** simpler and safer to simply not reuse the registers.
1179 **
1180 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
1181 */
drh6f82e852015-06-06 20:12:09 +00001182 sqlite3ExprCachePop(pParse);
1183 }else
1184#endif /* SQLITE_OMIT_VIRTUALTABLE */
1185
1186 if( (pLoop->wsFlags & WHERE_IPK)!=0
1187 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
1188 ){
1189 /* Case 2: We can directly reference a single row using an
1190 ** equality comparison against the ROWID field. Or
1191 ** we reference multiple rows using a "rowid IN (...)"
1192 ** construct.
1193 */
1194 assert( pLoop->u.btree.nEq==1 );
1195 pTerm = pLoop->aLTerm[0];
1196 assert( pTerm!=0 );
1197 assert( pTerm->pExpr!=0 );
1198 assert( omitTable==0 );
1199 testcase( pTerm->wtFlags & TERM_VIRTUAL );
1200 iReleaseReg = ++pParse->nMem;
1201 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
1202 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
1203 addrNxt = pLevel->addrNxt;
drheeb95652016-05-26 20:56:38 +00001204 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
drh6f82e852015-06-06 20:12:09 +00001205 VdbeCoverage(v);
1206 sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1);
1207 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1208 VdbeComment((v, "pk"));
1209 pLevel->op = OP_Noop;
1210 }else if( (pLoop->wsFlags & WHERE_IPK)!=0
1211 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
1212 ){
1213 /* Case 3: We have an inequality comparison against the ROWID field.
1214 */
1215 int testOp = OP_Noop;
1216 int start;
1217 int memEndValue = 0;
1218 WhereTerm *pStart, *pEnd;
1219
1220 assert( omitTable==0 );
1221 j = 0;
1222 pStart = pEnd = 0;
1223 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
1224 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
1225 assert( pStart!=0 || pEnd!=0 );
1226 if( bRev ){
1227 pTerm = pStart;
1228 pStart = pEnd;
1229 pEnd = pTerm;
1230 }
danb324cf72016-06-17 14:33:32 +00001231 codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
drh6f82e852015-06-06 20:12:09 +00001232 if( pStart ){
1233 Expr *pX; /* The expression that defines the start bound */
1234 int r1, rTemp; /* Registers for holding the start boundary */
dan19ff12d2016-07-29 20:58:19 +00001235 int op; /* Cursor seek operation */
drh6f82e852015-06-06 20:12:09 +00001236
1237 /* The following constant maps TK_xx codes into corresponding
1238 ** seek opcodes. It depends on a particular ordering of TK_xx
1239 */
1240 const u8 aMoveOp[] = {
1241 /* TK_GT */ OP_SeekGT,
1242 /* TK_LE */ OP_SeekLE,
1243 /* TK_LT */ OP_SeekLT,
1244 /* TK_GE */ OP_SeekGE
1245 };
1246 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */
1247 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */
1248 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */
1249
1250 assert( (pStart->wtFlags & TERM_VNULL)==0 );
1251 testcase( pStart->wtFlags & TERM_VIRTUAL );
1252 pX = pStart->pExpr;
1253 assert( pX!=0 );
1254 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
dan625015e2016-07-30 16:39:28 +00001255 if( sqlite3ExprIsVector(pX->pRight) ){
dan19ff12d2016-07-29 20:58:19 +00001256 r1 = rTemp = sqlite3GetTempReg(pParse);
1257 codeExprOrVector(pParse, pX->pRight, r1, 1);
1258 op = aMoveOp[(pX->op - TK_GT) | 0x0001];
1259 }else{
1260 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
1261 disableTerm(pLevel, pStart);
1262 op = aMoveOp[(pX->op - TK_GT)];
1263 }
1264 sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
drh6f82e852015-06-06 20:12:09 +00001265 VdbeComment((v, "pk"));
1266 VdbeCoverageIf(v, pX->op==TK_GT);
1267 VdbeCoverageIf(v, pX->op==TK_LE);
1268 VdbeCoverageIf(v, pX->op==TK_LT);
1269 VdbeCoverageIf(v, pX->op==TK_GE);
1270 sqlite3ExprCacheAffinityChange(pParse, r1, 1);
1271 sqlite3ReleaseTempReg(pParse, rTemp);
drh6f82e852015-06-06 20:12:09 +00001272 }else{
1273 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
1274 VdbeCoverageIf(v, bRev==0);
1275 VdbeCoverageIf(v, bRev!=0);
1276 }
1277 if( pEnd ){
1278 Expr *pX;
1279 pX = pEnd->pExpr;
1280 assert( pX!=0 );
1281 assert( (pEnd->wtFlags & TERM_VNULL)==0 );
1282 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
1283 testcase( pEnd->wtFlags & TERM_VIRTUAL );
1284 memEndValue = ++pParse->nMem;
dan19ff12d2016-07-29 20:58:19 +00001285 codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
dan625015e2016-07-30 16:39:28 +00001286 if( 0==sqlite3ExprIsVector(pX->pRight)
1287 && (pX->op==TK_LT || pX->op==TK_GT)
1288 ){
drh6f82e852015-06-06 20:12:09 +00001289 testOp = bRev ? OP_Le : OP_Ge;
1290 }else{
1291 testOp = bRev ? OP_Lt : OP_Gt;
1292 }
dan553168c2016-08-01 20:14:31 +00001293 if( 0==sqlite3ExprIsVector(pX->pRight) ){
1294 disableTerm(pLevel, pEnd);
1295 }
drh6f82e852015-06-06 20:12:09 +00001296 }
1297 start = sqlite3VdbeCurrentAddr(v);
1298 pLevel->op = bRev ? OP_Prev : OP_Next;
1299 pLevel->p1 = iCur;
1300 pLevel->p2 = start;
1301 assert( pLevel->p5==0 );
1302 if( testOp!=OP_Noop ){
1303 iRowidReg = ++pParse->nMem;
1304 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
1305 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1306 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
1307 VdbeCoverageIf(v, testOp==OP_Le);
1308 VdbeCoverageIf(v, testOp==OP_Lt);
1309 VdbeCoverageIf(v, testOp==OP_Ge);
1310 VdbeCoverageIf(v, testOp==OP_Gt);
1311 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
1312 }
1313 }else if( pLoop->wsFlags & WHERE_INDEXED ){
1314 /* Case 4: A scan using an index.
1315 **
1316 ** The WHERE clause may contain zero or more equality
1317 ** terms ("==" or "IN" operators) that refer to the N
1318 ** left-most columns of the index. It may also contain
1319 ** inequality constraints (>, <, >= or <=) on the indexed
1320 ** column that immediately follows the N equalities. Only
1321 ** the right-most column can be an inequality - the rest must
1322 ** use the "==" and "IN" operators. For example, if the
1323 ** index is on (x,y,z), then the following clauses are all
1324 ** optimized:
1325 **
1326 ** x=5
1327 ** x=5 AND y=10
1328 ** x=5 AND y<10
1329 ** x=5 AND y>5 AND y<10
1330 ** x=5 AND y=5 AND z<=10
1331 **
1332 ** The z<10 term of the following cannot be used, only
1333 ** the x=5 term:
1334 **
1335 ** x=5 AND z<10
1336 **
1337 ** N may be zero if there are inequality constraints.
1338 ** If there are no inequality constraints, then N is at
1339 ** least one.
1340 **
1341 ** This case is also used when there are no WHERE clause
1342 ** constraints but an index is selected anyway, in order
1343 ** to force the output order to conform to an ORDER BY.
1344 */
1345 static const u8 aStartOp[] = {
1346 0,
1347 0,
1348 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
1349 OP_Last, /* 3: (!start_constraints && startEq && bRev) */
1350 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */
1351 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */
1352 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */
1353 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */
1354 };
1355 static const u8 aEndOp[] = {
1356 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */
1357 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */
1358 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */
1359 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */
1360 };
1361 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */
dan71c57db2016-07-09 20:23:55 +00001362 u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */
1363 u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */
drh6f82e852015-06-06 20:12:09 +00001364 int regBase; /* Base register holding constraint values */
1365 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
1366 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
1367 int startEq; /* True if range start uses ==, >= or <= */
1368 int endEq; /* True if range end uses ==, >= or <= */
1369 int start_constraints; /* Start of range is constrained */
1370 int nConstraint; /* Number of constraint terms */
1371 Index *pIdx; /* The index we will be using */
1372 int iIdxCur; /* The VDBE cursor for the index */
1373 int nExtraReg = 0; /* Number of extra registers needed */
1374 int op; /* Instruction opcode */
1375 char *zStartAff; /* Affinity for start of range constraint */
danb7ca2172016-08-26 17:54:46 +00001376 char *zEndAff = 0; /* Affinity for end of range constraint */
drh6f82e852015-06-06 20:12:09 +00001377 u8 bSeekPastNull = 0; /* True to seek past initial nulls */
1378 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */
1379
1380 pIdx = pLoop->u.btree.pIndex;
1381 iIdxCur = pLevel->iIdxCur;
1382 assert( nEq>=pLoop->nSkip );
1383
1384 /* If this loop satisfies a sort order (pOrderBy) request that
1385 ** was passed to this function to implement a "SELECT min(x) ..."
1386 ** query, then the caller will only allow the loop to run for
1387 ** a single iteration. This means that the first row returned
1388 ** should not have a NULL value stored in 'x'. If column 'x' is
1389 ** the first one after the nEq equality constraints in the index,
1390 ** this requires some special handling.
1391 */
1392 assert( pWInfo->pOrderBy==0
1393 || pWInfo->pOrderBy->nExpr==1
1394 || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 );
1395 if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0
1396 && pWInfo->nOBSat>0
1397 && (pIdx->nKeyCol>nEq)
1398 ){
1399 assert( pLoop->nSkip==0 );
1400 bSeekPastNull = 1;
1401 nExtraReg = 1;
1402 }
1403
1404 /* Find any inequality constraint terms for the start and end
1405 ** of the range.
1406 */
1407 j = nEq;
1408 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1409 pRangeStart = pLoop->aLTerm[j++];
dan71c57db2016-07-09 20:23:55 +00001410 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
drh6f82e852015-06-06 20:12:09 +00001411 /* Like optimization range constraints always occur in pairs */
1412 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1413 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1414 }
1415 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1416 pRangeEnd = pLoop->aLTerm[j++];
dan71c57db2016-07-09 20:23:55 +00001417 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
drh41d2e662015-12-01 21:23:07 +00001418#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
drh6f82e852015-06-06 20:12:09 +00001419 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1420 assert( pRangeStart!=0 ); /* LIKE opt constraints */
1421 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */
drh44aebff2016-05-02 10:25:42 +00001422 pLevel->iLikeRepCntr = (u32)++pParse->nMem;
1423 sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
drh6f82e852015-06-06 20:12:09 +00001424 VdbeComment((v, "LIKE loop counter"));
1425 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
drh44aebff2016-05-02 10:25:42 +00001426 /* iLikeRepCntr actually stores 2x the counter register number. The
1427 ** bottom bit indicates whether the search order is ASC or DESC. */
1428 testcase( bRev );
1429 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1430 assert( (bRev & ~1)==0 );
1431 pLevel->iLikeRepCntr <<=1;
1432 pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
drh6f82e852015-06-06 20:12:09 +00001433 }
drh41d2e662015-12-01 21:23:07 +00001434#endif
drh6f82e852015-06-06 20:12:09 +00001435 if( pRangeStart==0
1436 && (j = pIdx->aiColumn[nEq])>=0
1437 && pIdx->pTable->aCol[j].notNull==0
1438 ){
1439 bSeekPastNull = 1;
1440 }
1441 }
1442 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1443
drh6f82e852015-06-06 20:12:09 +00001444 /* If we are doing a reverse order scan on an ascending index, or
1445 ** a forward order scan on a descending index, interchange the
1446 ** start and end terms (pRangeStart and pRangeEnd).
1447 */
1448 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
1449 || (bRev && pIdx->nKeyCol==nEq)
1450 ){
1451 SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1452 SWAP(u8, bSeekPastNull, bStopAtNull);
dan71c57db2016-07-09 20:23:55 +00001453 SWAP(u8, nBtm, nTop);
drh6f82e852015-06-06 20:12:09 +00001454 }
1455
drhbcf40a72015-08-18 15:58:05 +00001456 /* Generate code to evaluate all constraint terms using == or IN
1457 ** and store the values of those terms in an array of registers
1458 ** starting at regBase.
1459 */
danb324cf72016-06-17 14:33:32 +00001460 codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
drhbcf40a72015-08-18 15:58:05 +00001461 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1462 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
danb7ca2172016-08-26 17:54:46 +00001463 if( zStartAff && nTop ){
1464 zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
1465 }
drhbcf40a72015-08-18 15:58:05 +00001466 addrNxt = pLevel->addrNxt;
1467
drh6f82e852015-06-06 20:12:09 +00001468 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1469 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1470 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1471 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1472 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1473 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1474 start_constraints = pRangeStart || nEq>0;
1475
1476 /* Seek the index cursor to the start of the range. */
1477 nConstraint = nEq;
1478 if( pRangeStart ){
1479 Expr *pRight = pRangeStart->pExpr->pRight;
dan71c57db2016-07-09 20:23:55 +00001480 codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
drh6f82e852015-06-06 20:12:09 +00001481 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1482 if( (pRangeStart->wtFlags & TERM_VNULL)==0
1483 && sqlite3ExprCanBeNull(pRight)
1484 ){
1485 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1486 VdbeCoverage(v);
1487 }
1488 if( zStartAff ){
danb7ca2172016-08-26 17:54:46 +00001489 updateRangeAffinityStr(pParse, pRight, nBtm, &zStartAff[nEq]);
drh6f82e852015-06-06 20:12:09 +00001490 }
dan71c57db2016-07-09 20:23:55 +00001491 nConstraint += nBtm;
drh6f82e852015-06-06 20:12:09 +00001492 testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
dan625015e2016-07-30 16:39:28 +00001493 if( sqlite3ExprIsVector(pRight)==0 ){
dan71c57db2016-07-09 20:23:55 +00001494 disableTerm(pLevel, pRangeStart);
1495 }else{
1496 startEq = 1;
1497 }
drh426f4ab2016-07-26 04:31:14 +00001498 bSeekPastNull = 0;
drh6f82e852015-06-06 20:12:09 +00001499 }else if( bSeekPastNull ){
1500 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1501 nConstraint++;
1502 startEq = 0;
1503 start_constraints = 1;
1504 }
1505 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
drh0bf2ad62016-02-22 21:19:54 +00001506 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
1507 /* The skip-scan logic inside the call to codeAllEqualityConstraints()
1508 ** above has already left the cursor sitting on the correct row,
1509 ** so no further seeking is needed */
1510 }else{
drha6d2f8e2016-02-22 20:52:26 +00001511 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1512 assert( op!=0 );
1513 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1514 VdbeCoverage(v);
1515 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind );
1516 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last );
1517 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT );
1518 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE );
1519 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE );
1520 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT );
1521 }
drh0bf2ad62016-02-22 21:19:54 +00001522
drh6f82e852015-06-06 20:12:09 +00001523 /* Load the value for the inequality constraint at the end of the
1524 ** range (if any).
1525 */
1526 nConstraint = nEq;
1527 if( pRangeEnd ){
1528 Expr *pRight = pRangeEnd->pExpr->pRight;
1529 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
dan71c57db2016-07-09 20:23:55 +00001530 codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
drh6f82e852015-06-06 20:12:09 +00001531 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1532 if( (pRangeEnd->wtFlags & TERM_VNULL)==0
1533 && sqlite3ExprCanBeNull(pRight)
1534 ){
1535 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1536 VdbeCoverage(v);
1537 }
drh0c36fca2016-08-26 18:17:08 +00001538 if( zEndAff ){
1539 updateRangeAffinityStr(pParse, pRight, nTop, zEndAff);
1540 codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
1541 }else{
1542 assert( pParse->db->mallocFailed );
1543 }
dan71c57db2016-07-09 20:23:55 +00001544 nConstraint += nTop;
drh6f82e852015-06-06 20:12:09 +00001545 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
dan71c57db2016-07-09 20:23:55 +00001546
dan625015e2016-07-30 16:39:28 +00001547 if( sqlite3ExprIsVector(pRight)==0 ){
dan71c57db2016-07-09 20:23:55 +00001548 disableTerm(pLevel, pRangeEnd);
1549 }else{
1550 endEq = 1;
1551 }
drh6f82e852015-06-06 20:12:09 +00001552 }else if( bStopAtNull ){
1553 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1554 endEq = 0;
1555 nConstraint++;
1556 }
1557 sqlite3DbFree(db, zStartAff);
danb7ca2172016-08-26 17:54:46 +00001558 sqlite3DbFree(db, zEndAff);
drh6f82e852015-06-06 20:12:09 +00001559
1560 /* Top of the loop body */
1561 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1562
1563 /* Check if the index cursor is past the end of the range. */
1564 if( nConstraint ){
1565 op = aEndOp[bRev*2 + endEq];
1566 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1567 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT );
1568 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE );
1569 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT );
1570 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE );
1571 }
1572
1573 /* Seek the table cursor, if required */
drh6f82e852015-06-06 20:12:09 +00001574 if( omitTable ){
1575 /* pIdx is a covering index. No need to access the main table. */
1576 }else if( HasRowid(pIdx->pTable) ){
drhf09c4822016-05-06 20:23:12 +00001577 if( (pWInfo->wctrlFlags & WHERE_SEEK_TABLE)!=0 ){
drh784c1b92016-01-30 16:59:56 +00001578 iRowidReg = ++pParse->nMem;
1579 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
1580 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
danc6157e12015-09-14 09:23:47 +00001581 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg);
drh66336f32015-09-14 14:08:25 +00001582 VdbeCoverage(v);
danc6157e12015-09-14 09:23:47 +00001583 }else{
drh784c1b92016-01-30 16:59:56 +00001584 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
danc6157e12015-09-14 09:23:47 +00001585 }
drh6f82e852015-06-06 20:12:09 +00001586 }else if( iCur!=iIdxCur ){
1587 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1588 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1589 for(j=0; j<pPk->nKeyCol; j++){
1590 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
1591 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
1592 }
1593 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
1594 iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
1595 }
1596
dan71c57db2016-07-09 20:23:55 +00001597 /* Record the instruction used to terminate the loop. */
drh6f82e852015-06-06 20:12:09 +00001598 if( pLoop->wsFlags & WHERE_ONEROW ){
1599 pLevel->op = OP_Noop;
1600 }else if( bRev ){
1601 pLevel->op = OP_Prev;
1602 }else{
1603 pLevel->op = OP_Next;
1604 }
1605 pLevel->p1 = iIdxCur;
1606 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
1607 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
1608 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1609 }else{
1610 assert( pLevel->p5==0 );
1611 }
1612 }else
1613
1614#ifndef SQLITE_OMIT_OR_OPTIMIZATION
1615 if( pLoop->wsFlags & WHERE_MULTI_OR ){
1616 /* Case 5: Two or more separately indexed terms connected by OR
1617 **
1618 ** Example:
1619 **
1620 ** CREATE TABLE t1(a,b,c,d);
1621 ** CREATE INDEX i1 ON t1(a);
1622 ** CREATE INDEX i2 ON t1(b);
1623 ** CREATE INDEX i3 ON t1(c);
1624 **
1625 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
1626 **
1627 ** In the example, there are three indexed terms connected by OR.
1628 ** The top of the loop looks like this:
1629 **
1630 ** Null 1 # Zero the rowset in reg 1
1631 **
1632 ** Then, for each indexed term, the following. The arguments to
1633 ** RowSetTest are such that the rowid of the current row is inserted
1634 ** into the RowSet. If it is already present, control skips the
1635 ** Gosub opcode and jumps straight to the code generated by WhereEnd().
1636 **
1637 ** sqlite3WhereBegin(<term>)
1638 ** RowSetTest # Insert rowid into rowset
1639 ** Gosub 2 A
1640 ** sqlite3WhereEnd()
1641 **
1642 ** Following the above, code to terminate the loop. Label A, the target
1643 ** of the Gosub above, jumps to the instruction right after the Goto.
1644 **
1645 ** Null 1 # Zero the rowset in reg 1
1646 ** Goto B # The loop is finished.
1647 **
1648 ** A: <loop body> # Return data, whatever.
1649 **
1650 ** Return 2 # Jump back to the Gosub
1651 **
1652 ** B: <after the loop>
1653 **
1654 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
1655 ** use an ephemeral index instead of a RowSet to record the primary
1656 ** keys of the rows we have already seen.
1657 **
1658 */
1659 WhereClause *pOrWc; /* The OR-clause broken out into subterms */
1660 SrcList *pOrTab; /* Shortened table list or OR-clause generation */
1661 Index *pCov = 0; /* Potential covering index (or NULL) */
1662 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */
1663
1664 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */
1665 int regRowset = 0; /* Register for RowSet object */
1666 int regRowid = 0; /* Register holding rowid */
1667 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */
1668 int iRetInit; /* Address of regReturn init */
1669 int untestedTerms = 0; /* Some terms not completely tested */
1670 int ii; /* Loop counter */
1671 u16 wctrlFlags; /* Flags for sub-WHERE clause */
1672 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */
1673 Table *pTab = pTabItem->pTab;
dan145b4ea2016-07-29 18:12:12 +00001674
drh6f82e852015-06-06 20:12:09 +00001675 pTerm = pLoop->aLTerm[0];
1676 assert( pTerm!=0 );
1677 assert( pTerm->eOperator & WO_OR );
1678 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
1679 pOrWc = &pTerm->u.pOrInfo->wc;
1680 pLevel->op = OP_Return;
1681 pLevel->p1 = regReturn;
1682
1683 /* Set up a new SrcList in pOrTab containing the table being scanned
1684 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
1685 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
1686 */
1687 if( pWInfo->nLevel>1 ){
1688 int nNotReady; /* The number of notReady tables */
1689 struct SrcList_item *origSrc; /* Original list of tables */
1690 nNotReady = pWInfo->nLevel - iLevel - 1;
1691 pOrTab = sqlite3StackAllocRaw(db,
1692 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
1693 if( pOrTab==0 ) return notReady;
1694 pOrTab->nAlloc = (u8)(nNotReady + 1);
1695 pOrTab->nSrc = pOrTab->nAlloc;
1696 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
1697 origSrc = pWInfo->pTabList->a;
1698 for(k=1; k<=nNotReady; k++){
1699 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
1700 }
1701 }else{
1702 pOrTab = pWInfo->pTabList;
1703 }
1704
1705 /* Initialize the rowset register to contain NULL. An SQL NULL is
1706 ** equivalent to an empty rowset. Or, create an ephemeral index
1707 ** capable of holding primary keys in the case of a WITHOUT ROWID.
1708 **
1709 ** Also initialize regReturn to contain the address of the instruction
1710 ** immediately following the OP_Return at the bottom of the loop. This
1711 ** is required in a few obscure LEFT JOIN cases where control jumps
1712 ** over the top of the loop into the body of it. In this case the
1713 ** correct response for the end-of-loop code (the OP_Return) is to
1714 ** fall through to the next instruction, just as an OP_Next does if
1715 ** called on an uninitialized cursor.
1716 */
1717 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1718 if( HasRowid(pTab) ){
1719 regRowset = ++pParse->nMem;
1720 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
1721 }else{
1722 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1723 regRowset = pParse->nTab++;
1724 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
1725 sqlite3VdbeSetP4KeyInfo(pParse, pPk);
1726 }
1727 regRowid = ++pParse->nMem;
1728 }
1729 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
1730
1731 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y
1732 ** Then for every term xN, evaluate as the subexpression: xN AND z
1733 ** That way, terms in y that are factored into the disjunction will
1734 ** be picked up by the recursive calls to sqlite3WhereBegin() below.
1735 **
1736 ** Actually, each subexpression is converted to "xN AND w" where w is
1737 ** the "interesting" terms of z - terms that did not originate in the
1738 ** ON or USING clause of a LEFT JOIN, and terms that are usable as
1739 ** indices.
1740 **
1741 ** This optimization also only applies if the (x1 OR x2 OR ...) term
1742 ** is not contained in the ON clause of a LEFT JOIN.
1743 ** See ticket http://www.sqlite.org/src/info/f2369304e4
1744 */
1745 if( pWC->nTerm>1 ){
1746 int iTerm;
1747 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
1748 Expr *pExpr = pWC->a[iTerm].pExpr;
1749 if( &pWC->a[iTerm] == pTerm ) continue;
1750 if( ExprHasProperty(pExpr, EP_FromJoin) ) continue;
drh3b83f0c2016-01-29 16:57:06 +00001751 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
1752 testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
1753 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue;
drh6f82e852015-06-06 20:12:09 +00001754 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
1755 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
1756 pExpr = sqlite3ExprDup(db, pExpr, 0);
1757 pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr);
1758 }
1759 if( pAndExpr ){
drh1167d322015-10-28 20:01:45 +00001760 pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr, 0);
drh6f82e852015-06-06 20:12:09 +00001761 }
1762 }
1763
1764 /* Run a separate WHERE clause for each term of the OR clause. After
1765 ** eliminating duplicates from other WHERE clauses, the action for each
1766 ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
1767 */
drhce943bc2016-05-19 18:56:33 +00001768 wctrlFlags = WHERE_OR_SUBCLAUSE | (pWInfo->wctrlFlags & WHERE_SEEK_TABLE);
drh6f82e852015-06-06 20:12:09 +00001769 for(ii=0; ii<pOrWc->nTerm; ii++){
1770 WhereTerm *pOrTerm = &pOrWc->a[ii];
1771 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
1772 WhereInfo *pSubWInfo; /* Info for single OR-term scan */
1773 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
drh728e0f92015-10-10 14:41:28 +00001774 int jmp1 = 0; /* Address of jump operation */
drh6f82e852015-06-06 20:12:09 +00001775 if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){
1776 pAndExpr->pLeft = pOrExpr;
1777 pOrExpr = pAndExpr;
1778 }
1779 /* Loop through table entries that match term pOrTerm. */
1780 WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
1781 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
1782 wctrlFlags, iCovCur);
1783 assert( pSubWInfo || pParse->nErr || db->mallocFailed );
1784 if( pSubWInfo ){
1785 WhereLoop *pSubLoop;
1786 int addrExplain = sqlite3WhereExplainOneScan(
1787 pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
1788 );
1789 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
1790
1791 /* This is the sub-WHERE clause body. First skip over
1792 ** duplicate rows from prior sub-WHERE clauses, and record the
1793 ** rowid (or PRIMARY KEY) for the current row so that the same
1794 ** row will be skipped in subsequent sub-WHERE clauses.
1795 */
1796 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1797 int r;
1798 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
1799 if( HasRowid(pTab) ){
1800 r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0);
drh728e0f92015-10-10 14:41:28 +00001801 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
1802 r,iSet);
drh6f82e852015-06-06 20:12:09 +00001803 VdbeCoverage(v);
1804 }else{
1805 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1806 int nPk = pPk->nKeyCol;
1807 int iPk;
1808
1809 /* Read the PK into an array of temp registers. */
1810 r = sqlite3GetTempRange(pParse, nPk);
1811 for(iPk=0; iPk<nPk; iPk++){
1812 int iCol = pPk->aiColumn[iPk];
drhce78bc62015-10-15 19:21:51 +00001813 sqlite3ExprCodeGetColumnToReg(pParse, pTab, iCol, iCur, r+iPk);
drh6f82e852015-06-06 20:12:09 +00001814 }
1815
1816 /* Check if the temp table already contains this key. If so,
1817 ** the row has already been included in the result set and
1818 ** can be ignored (by jumping past the Gosub below). Otherwise,
1819 ** insert the key into the temp table and proceed with processing
1820 ** the row.
1821 **
1822 ** Use some of the same optimizations as OP_RowSetTest: If iSet
1823 ** is zero, assume that the key cannot already be present in
1824 ** the temp table. And if iSet is -1, assume that there is no
1825 ** need to insert the key into the temp table, as it will never
1826 ** be tested for. */
1827 if( iSet ){
drh728e0f92015-10-10 14:41:28 +00001828 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
drh6f82e852015-06-06 20:12:09 +00001829 VdbeCoverage(v);
1830 }
1831 if( iSet>=0 ){
1832 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
1833 sqlite3VdbeAddOp3(v, OP_IdxInsert, regRowset, regRowid, 0);
1834 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1835 }
1836
1837 /* Release the array of temp registers */
1838 sqlite3ReleaseTempRange(pParse, r, nPk);
1839 }
1840 }
1841
1842 /* Invoke the main loop body as a subroutine */
1843 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
1844
1845 /* Jump here (skipping the main loop body subroutine) if the
1846 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
drh728e0f92015-10-10 14:41:28 +00001847 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
drh6f82e852015-06-06 20:12:09 +00001848
1849 /* The pSubWInfo->untestedTerms flag means that this OR term
1850 ** contained one or more AND term from a notReady table. The
1851 ** terms from the notReady table could not be tested and will
1852 ** need to be tested later.
1853 */
1854 if( pSubWInfo->untestedTerms ) untestedTerms = 1;
1855
1856 /* If all of the OR-connected terms are optimized using the same
1857 ** index, and the index is opened using the same cursor number
1858 ** by each call to sqlite3WhereBegin() made by this loop, it may
1859 ** be possible to use that index as a covering index.
1860 **
1861 ** If the call to sqlite3WhereBegin() above resulted in a scan that
1862 ** uses an index, and this is either the first OR-connected term
1863 ** processed or the index is the same as that used by all previous
1864 ** terms, set pCov to the candidate covering index. Otherwise, set
1865 ** pCov to NULL to indicate that no candidate covering index will
1866 ** be available.
1867 */
1868 pSubLoop = pSubWInfo->a[0].pWLoop;
1869 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
1870 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
1871 && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
1872 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
1873 ){
1874 assert( pSubWInfo->a[0].iIdxCur==iCovCur );
1875 pCov = pSubLoop->u.btree.pIndex;
drh6f82e852015-06-06 20:12:09 +00001876 }else{
1877 pCov = 0;
1878 }
1879
1880 /* Finish the loop through table entries that match term pOrTerm. */
1881 sqlite3WhereEnd(pSubWInfo);
1882 }
1883 }
1884 }
1885 pLevel->u.pCovidx = pCov;
1886 if( pCov ) pLevel->iIdxCur = iCovCur;
1887 if( pAndExpr ){
1888 pAndExpr->pLeft = 0;
1889 sqlite3ExprDelete(db, pAndExpr);
1890 }
1891 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
drh076e85f2015-09-03 13:46:12 +00001892 sqlite3VdbeGoto(v, pLevel->addrBrk);
drh6f82e852015-06-06 20:12:09 +00001893 sqlite3VdbeResolveLabel(v, iLoopBody);
1894
1895 if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab);
1896 if( !untestedTerms ) disableTerm(pLevel, pTerm);
1897 }else
1898#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1899
1900 {
1901 /* Case 6: There is no usable index. We must do a complete
1902 ** scan of the entire table.
1903 */
1904 static const u8 aStep[] = { OP_Next, OP_Prev };
1905 static const u8 aStart[] = { OP_Rewind, OP_Last };
1906 assert( bRev==0 || bRev==1 );
drh8a48b9c2015-08-19 15:20:00 +00001907 if( pTabItem->fg.isRecursive ){
drh6f82e852015-06-06 20:12:09 +00001908 /* Tables marked isRecursive have only a single row that is stored in
1909 ** a pseudo-cursor. No need to Rewind or Next such cursors. */
1910 pLevel->op = OP_Noop;
1911 }else{
danb324cf72016-06-17 14:33:32 +00001912 codeCursorHint(pTabItem, pWInfo, pLevel, 0);
drh6f82e852015-06-06 20:12:09 +00001913 pLevel->op = aStep[bRev];
1914 pLevel->p1 = iCur;
1915 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
1916 VdbeCoverageIf(v, bRev==0);
1917 VdbeCoverageIf(v, bRev!=0);
1918 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1919 }
1920 }
1921
1922#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1923 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
1924#endif
1925
1926 /* Insert code to test every subexpression that can be completely
1927 ** computed using the current set of tables.
1928 */
1929 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
1930 Expr *pE;
1931 int skipLikeAddr = 0;
1932 testcase( pTerm->wtFlags & TERM_VIRTUAL );
1933 testcase( pTerm->wtFlags & TERM_CODED );
1934 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1935 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
1936 testcase( pWInfo->untestedTerms==0
drhce943bc2016-05-19 18:56:33 +00001937 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
drh6f82e852015-06-06 20:12:09 +00001938 pWInfo->untestedTerms = 1;
1939 continue;
1940 }
1941 pE = pTerm->pExpr;
1942 assert( pE!=0 );
1943 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
1944 continue;
1945 }
1946 if( pTerm->wtFlags & TERM_LIKECOND ){
drh44aebff2016-05-02 10:25:42 +00001947 /* If the TERM_LIKECOND flag is set, that means that the range search
1948 ** is sufficient to guarantee that the LIKE operator is true, so we
1949 ** can skip the call to the like(A,B) function. But this only works
1950 ** for strings. So do not skip the call to the function on the pass
1951 ** that compares BLOBs. */
drh41d2e662015-12-01 21:23:07 +00001952#ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1953 continue;
1954#else
drh44aebff2016-05-02 10:25:42 +00001955 u32 x = pLevel->iLikeRepCntr;
1956 assert( x>0 );
1957 skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)? OP_IfNot : OP_If, (int)(x>>1));
drh6f82e852015-06-06 20:12:09 +00001958 VdbeCoverage(v);
drh41d2e662015-12-01 21:23:07 +00001959#endif
drh6f82e852015-06-06 20:12:09 +00001960 }
1961 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
1962 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
1963 pTerm->wtFlags |= TERM_CODED;
1964 }
1965
1966 /* Insert code to test for implied constraints based on transitivity
1967 ** of the "==" operator.
1968 **
1969 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
1970 ** and we are coding the t1 loop and the t2 loop has not yet coded,
1971 ** then we cannot use the "t1.a=t2.b" constraint, but we can code
1972 ** the implied "t1.a=123" constraint.
1973 */
1974 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
1975 Expr *pE, *pEAlt;
1976 WhereTerm *pAlt;
1977 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1978 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
1979 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
1980 if( pTerm->leftCursor!=iCur ) continue;
1981 if( pLevel->iLeftJoin ) continue;
1982 pE = pTerm->pExpr;
1983 assert( !ExprHasProperty(pE, EP_FromJoin) );
1984 assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
1985 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady,
1986 WO_EQ|WO_IN|WO_IS, 0);
1987 if( pAlt==0 ) continue;
1988 if( pAlt->wtFlags & (TERM_CODED) ) continue;
1989 testcase( pAlt->eOperator & WO_EQ );
1990 testcase( pAlt->eOperator & WO_IS );
1991 testcase( pAlt->eOperator & WO_IN );
1992 VdbeModuleComment((v, "begin transitive constraint"));
1993 pEAlt = sqlite3StackAllocRaw(db, sizeof(*pEAlt));
1994 if( pEAlt ){
1995 *pEAlt = *pAlt->pExpr;
1996 pEAlt->pLeft = pE->pLeft;
1997 sqlite3ExprIfFalse(pParse, pEAlt, addrCont, SQLITE_JUMPIFNULL);
1998 sqlite3StackFree(db, pEAlt);
1999 }
2000 }
2001
2002 /* For a LEFT OUTER JOIN, generate code that will record the fact that
2003 ** at least one row of the right table has matched the left table.
2004 */
2005 if( pLevel->iLeftJoin ){
2006 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
2007 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2008 VdbeComment((v, "record LEFT JOIN hit"));
2009 sqlite3ExprCacheClear(pParse);
2010 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
2011 testcase( pTerm->wtFlags & TERM_VIRTUAL );
2012 testcase( pTerm->wtFlags & TERM_CODED );
2013 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2014 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2015 assert( pWInfo->untestedTerms );
2016 continue;
2017 }
2018 assert( pTerm->pExpr );
2019 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
2020 pTerm->wtFlags |= TERM_CODED;
2021 }
2022 }
2023
2024 return pLevel->notReady;
2025}