blob: 159da1eea6693ddc0a8da686580858f8f3d7a8cc [file] [log] [blame]
drhc81c11f2009-11-10 01:30:52 +00001/*
2** 2001 September 15
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11*************************************************************************
12** Utility functions used throughout sqlite.
13**
14** This file contains functions for allocating memory, comparing
15** strings, and stuff like that.
16**
17*/
18#include "sqliteInt.h"
19#include <stdarg.h>
20#ifdef SQLITE_HAVE_ISNAN
21# include <math.h>
22#endif
23
24/*
25** Routine needed to support the testcase() macro.
26*/
27#ifdef SQLITE_COVERAGE_TEST
28void sqlite3Coverage(int x){
29 static int dummy = 0;
30 dummy += x;
31}
32#endif
33
drh85c8f292010-01-13 17:39:53 +000034#ifndef SQLITE_OMIT_FLOATING_POINT
drhc81c11f2009-11-10 01:30:52 +000035/*
36** Return true if the floating point value is Not a Number (NaN).
37**
38** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
39** Otherwise, we have our own implementation that works on most systems.
40*/
41int sqlite3IsNaN(double x){
42 int rc; /* The value return */
43#if !defined(SQLITE_HAVE_ISNAN)
44 /*
45 ** Systems that support the isnan() library function should probably
46 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have
47 ** found that many systems do not have a working isnan() function so
48 ** this implementation is provided as an alternative.
49 **
50 ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
51 ** On the other hand, the use of -ffast-math comes with the following
52 ** warning:
53 **
54 ** This option [-ffast-math] should never be turned on by any
55 ** -O option since it can result in incorrect output for programs
56 ** which depend on an exact implementation of IEEE or ISO
57 ** rules/specifications for math functions.
58 **
59 ** Under MSVC, this NaN test may fail if compiled with a floating-
60 ** point precision mode other than /fp:precise. From the MSDN
61 ** documentation:
62 **
63 ** The compiler [with /fp:precise] will properly handle comparisons
64 ** involving NaN. For example, x != x evaluates to true if x is NaN
65 ** ...
66 */
67#ifdef __FAST_MATH__
68# error SQLite will not work correctly with the -ffast-math option of GCC.
69#endif
70 volatile double y = x;
71 volatile double z = y;
72 rc = (y!=z);
73#else /* if defined(SQLITE_HAVE_ISNAN) */
74 rc = isnan(x);
75#endif /* SQLITE_HAVE_ISNAN */
76 testcase( rc );
77 return rc;
78}
drh85c8f292010-01-13 17:39:53 +000079#endif /* SQLITE_OMIT_FLOATING_POINT */
drhc81c11f2009-11-10 01:30:52 +000080
81/*
82** Compute a string length that is limited to what can be stored in
83** lower 30 bits of a 32-bit signed integer.
84**
85** The value returned will never be negative. Nor will it ever be greater
86** than the actual length of the string. For very long strings (greater
87** than 1GiB) the value returned might be less than the true string length.
88*/
89int sqlite3Strlen30(const char *z){
90 const char *z2 = z;
91 if( z==0 ) return 0;
92 while( *z2 ){ z2++; }
93 return 0x3fffffff & (int)(z2 - z);
94}
95
96/*
97** Set the most recent error code and error string for the sqlite
98** handle "db". The error code is set to "err_code".
99**
100** If it is not NULL, string zFormat specifies the format of the
101** error string in the style of the printf functions: The following
102** format characters are allowed:
103**
104** %s Insert a string
105** %z A string that should be freed after use
106** %d Insert an integer
107** %T Insert a token
108** %S Insert the first element of a SrcList
109**
110** zFormat and any string tokens that follow it are assumed to be
111** encoded in UTF-8.
112**
113** To clear the most recent error for sqlite handle "db", sqlite3Error
114** should be called with err_code set to SQLITE_OK and zFormat set
115** to NULL.
116*/
117void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){
118 if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){
119 db->errCode = err_code;
120 if( zFormat ){
121 char *z;
122 va_list ap;
123 va_start(ap, zFormat);
124 z = sqlite3VMPrintf(db, zFormat, ap);
125 va_end(ap);
126 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
127 }else{
128 sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
129 }
130 }
131}
132
133/*
134** Add an error message to pParse->zErrMsg and increment pParse->nErr.
135** The following formatting characters are allowed:
136**
137** %s Insert a string
138** %z A string that should be freed after use
139** %d Insert an integer
140** %T Insert a token
141** %S Insert the first element of a SrcList
142**
143** This function should be used to report any error that occurs whilst
144** compiling an SQL statement (i.e. within sqlite3_prepare()). The
145** last thing the sqlite3_prepare() function does is copy the error
146** stored by this function into the database handle using sqlite3Error().
147** Function sqlite3Error() should be used during statement execution
148** (sqlite3_step() etc.).
149*/
150void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
drha7564662010-02-22 19:32:31 +0000151 char *zMsg;
drhc81c11f2009-11-10 01:30:52 +0000152 va_list ap;
153 sqlite3 *db = pParse->db;
drhc81c11f2009-11-10 01:30:52 +0000154 va_start(ap, zFormat);
drha7564662010-02-22 19:32:31 +0000155 zMsg = sqlite3VMPrintf(db, zFormat, ap);
drhc81c11f2009-11-10 01:30:52 +0000156 va_end(ap);
drha7564662010-02-22 19:32:31 +0000157 if( db->suppressErr ){
158 sqlite3DbFree(db, zMsg);
159 }else{
160 pParse->nErr++;
161 sqlite3DbFree(db, pParse->zErrMsg);
162 pParse->zErrMsg = zMsg;
163 pParse->rc = SQLITE_ERROR;
drha7564662010-02-22 19:32:31 +0000164 }
drhc81c11f2009-11-10 01:30:52 +0000165}
166
167/*
168** Convert an SQL-style quoted string into a normal string by removing
169** the quote characters. The conversion is done in-place. If the
170** input does not begin with a quote character, then this routine
171** is a no-op.
172**
173** The input string must be zero-terminated. A new zero-terminator
174** is added to the dequoted string.
175**
176** The return value is -1 if no dequoting occurs or the length of the
177** dequoted string, exclusive of the zero terminator, if dequoting does
178** occur.
179**
180** 2002-Feb-14: This routine is extended to remove MS-Access style
181** brackets from around identifers. For example: "[a-b-c]" becomes
182** "a-b-c".
183*/
184int sqlite3Dequote(char *z){
185 char quote;
186 int i, j;
187 if( z==0 ) return -1;
188 quote = z[0];
189 switch( quote ){
190 case '\'': break;
191 case '"': break;
192 case '`': break; /* For MySQL compatibility */
193 case '[': quote = ']'; break; /* For MS SqlServer compatibility */
194 default: return -1;
195 }
196 for(i=1, j=0; ALWAYS(z[i]); i++){
197 if( z[i]==quote ){
198 if( z[i+1]==quote ){
199 z[j++] = quote;
200 i++;
201 }else{
202 break;
203 }
204 }else{
205 z[j++] = z[i];
206 }
207 }
208 z[j] = 0;
209 return j;
210}
211
212/* Convenient short-hand */
213#define UpperToLower sqlite3UpperToLower
214
215/*
216** Some systems have stricmp(). Others have strcasecmp(). Because
217** there is no consistency, we will define our own.
218*/
219int sqlite3StrICmp(const char *zLeft, const char *zRight){
220 register unsigned char *a, *b;
221 a = (unsigned char *)zLeft;
222 b = (unsigned char *)zRight;
223 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
224 return UpperToLower[*a] - UpperToLower[*b];
225}
226int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
227 register unsigned char *a, *b;
228 a = (unsigned char *)zLeft;
229 b = (unsigned char *)zRight;
230 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
231 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
232}
233
234/*
235** Return TRUE if z is a pure numeric string. Return FALSE and leave
236** *realnum unchanged if the string contains any character which is not
237** part of a number.
238**
239** If the string is pure numeric, set *realnum to TRUE if the string
240** contains the '.' character or an "E+000" style exponentiation suffix.
241** Otherwise set *realnum to FALSE. Note that just becaue *realnum is
242** false does not mean that the number can be successfully converted into
243** an integer - it might be too big.
244**
245** An empty string is considered non-numeric.
246*/
247int sqlite3IsNumber(const char *z, int *realnum, u8 enc){
248 int incr = (enc==SQLITE_UTF8?1:2);
249 if( enc==SQLITE_UTF16BE ) z++;
250 if( *z=='-' || *z=='+' ) z += incr;
251 if( !sqlite3Isdigit(*z) ){
252 return 0;
253 }
254 z += incr;
255 *realnum = 0;
256 while( sqlite3Isdigit(*z) ){ z += incr; }
drh44dbca82010-01-13 04:22:20 +0000257#ifndef SQLITE_OMIT_FLOATING_POINT
drhc81c11f2009-11-10 01:30:52 +0000258 if( *z=='.' ){
259 z += incr;
260 if( !sqlite3Isdigit(*z) ) return 0;
261 while( sqlite3Isdigit(*z) ){ z += incr; }
262 *realnum = 1;
263 }
264 if( *z=='e' || *z=='E' ){
265 z += incr;
266 if( *z=='+' || *z=='-' ) z += incr;
267 if( !sqlite3Isdigit(*z) ) return 0;
268 while( sqlite3Isdigit(*z) ){ z += incr; }
269 *realnum = 1;
270 }
drh44dbca82010-01-13 04:22:20 +0000271#endif
drhc81c11f2009-11-10 01:30:52 +0000272 return *z==0;
273}
274
275/*
276** The string z[] is an ASCII representation of a real number.
277** Convert this string to a double.
278**
279** This routine assumes that z[] really is a valid number. If it
280** is not, the result is undefined.
281**
282** This routine is used instead of the library atof() function because
283** the library atof() might want to use "," as the decimal point instead
284** of "." depending on how locale is set. But that would cause problems
285** for SQL. So this routine always uses "." regardless of locale.
286*/
287int sqlite3AtoF(const char *z, double *pResult){
288#ifndef SQLITE_OMIT_FLOATING_POINT
289 const char *zBegin = z;
290 /* sign * significand * (10 ^ (esign * exponent)) */
291 int sign = 1; /* sign of significand */
292 i64 s = 0; /* significand */
293 int d = 0; /* adjust exponent for shifting decimal point */
294 int esign = 1; /* sign of exponent */
295 int e = 0; /* exponent */
296 double result;
297 int nDigits = 0;
298
299 /* skip leading spaces */
300 while( sqlite3Isspace(*z) ) z++;
301 /* get sign of significand */
302 if( *z=='-' ){
303 sign = -1;
304 z++;
305 }else if( *z=='+' ){
306 z++;
307 }
308 /* skip leading zeroes */
309 while( z[0]=='0' ) z++, nDigits++;
310
311 /* copy max significant digits to significand */
312 while( sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
313 s = s*10 + (*z - '0');
314 z++, nDigits++;
315 }
316 /* skip non-significant significand digits
317 ** (increase exponent by d to shift decimal left) */
318 while( sqlite3Isdigit(*z) ) z++, nDigits++, d++;
319
320 /* if decimal point is present */
321 if( *z=='.' ){
322 z++;
323 /* copy digits from after decimal to significand
324 ** (decrease exponent by d to shift decimal right) */
325 while( sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
326 s = s*10 + (*z - '0');
327 z++, nDigits++, d--;
328 }
329 /* skip non-significant digits */
330 while( sqlite3Isdigit(*z) ) z++, nDigits++;
331 }
332
333 /* if exponent is present */
334 if( *z=='e' || *z=='E' ){
335 z++;
336 /* get sign of exponent */
337 if( *z=='-' ){
338 esign = -1;
339 z++;
340 }else if( *z=='+' ){
341 z++;
342 }
343 /* copy digits to exponent */
344 while( sqlite3Isdigit(*z) ){
345 e = e*10 + (*z - '0');
346 z++;
347 }
348 }
349
350 /* adjust exponent by d, and update sign */
351 e = (e*esign) + d;
352 if( e<0 ) {
353 esign = -1;
354 e *= -1;
355 } else {
356 esign = 1;
357 }
358
359 /* if 0 significand */
360 if( !s ) {
361 /* In the IEEE 754 standard, zero is signed.
362 ** Add the sign if we've seen at least one digit */
363 result = (sign<0 && nDigits) ? -(double)0 : (double)0;
364 } else {
365 /* attempt to reduce exponent */
366 if( esign>0 ){
367 while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10;
368 }else{
369 while( !(s%10) && e>0 ) e--,s/=10;
370 }
371
372 /* adjust the sign of significand */
373 s = sign<0 ? -s : s;
374
375 /* if exponent, scale significand as appropriate
376 ** and store in result. */
377 if( e ){
378 double scale = 1.0;
379 /* attempt to handle extremely small/large numbers better */
380 if( e>307 && e<342 ){
381 while( e%308 ) { scale *= 1.0e+1; e -= 1; }
382 if( esign<0 ){
383 result = s / scale;
384 result /= 1.0e+308;
385 }else{
386 result = s * scale;
387 result *= 1.0e+308;
388 }
389 }else{
390 /* 1.0e+22 is the largest power of 10 than can be
391 ** represented exactly. */
392 while( e%22 ) { scale *= 1.0e+1; e -= 1; }
393 while( e>0 ) { scale *= 1.0e+22; e -= 22; }
394 if( esign<0 ){
395 result = s / scale;
396 }else{
397 result = s * scale;
398 }
399 }
400 } else {
401 result = (double)s;
402 }
403 }
404
405 /* store the result */
406 *pResult = result;
407
408 /* return number of characters used */
409 return (int)(z - zBegin);
410#else
411 return sqlite3Atoi64(z, pResult);
412#endif /* SQLITE_OMIT_FLOATING_POINT */
413}
414
415/*
416** Compare the 19-character string zNum against the text representation
417** value 2^63: 9223372036854775808. Return negative, zero, or positive
418** if zNum is less than, equal to, or greater than the string.
419**
420** Unlike memcmp() this routine is guaranteed to return the difference
421** in the values of the last digit if the only difference is in the
422** last digit. So, for example,
423**
424** compare2pow63("9223372036854775800")
425**
426** will return -8.
427*/
428static int compare2pow63(const char *zNum){
429 int c;
430 c = memcmp(zNum,"922337203685477580",18)*10;
431 if( c==0 ){
432 c = zNum[18] - '8';
drh44dbca82010-01-13 04:22:20 +0000433 testcase( c==(-1) );
434 testcase( c==0 );
435 testcase( c==(+1) );
drhc81c11f2009-11-10 01:30:52 +0000436 }
437 return c;
438}
439
440
441/*
442** Return TRUE if zNum is a 64-bit signed integer and write
443** the value of the integer into *pNum. If zNum is not an integer
444** or is an integer that is too large to be expressed with 64 bits,
445** then return false.
446**
447** When this routine was originally written it dealt with only
448** 32-bit numbers. At that time, it was much faster than the
449** atoi() library routine in RedHat 7.2.
450*/
451int sqlite3Atoi64(const char *zNum, i64 *pNum){
452 i64 v = 0;
453 int neg;
454 int i, c;
455 const char *zStart;
456 while( sqlite3Isspace(*zNum) ) zNum++;
457 if( *zNum=='-' ){
458 neg = 1;
459 zNum++;
460 }else if( *zNum=='+' ){
461 neg = 0;
462 zNum++;
463 }else{
464 neg = 0;
465 }
466 zStart = zNum;
467 while( zNum[0]=='0' ){ zNum++; } /* Skip over leading zeros. Ticket #2454 */
468 for(i=0; (c=zNum[i])>='0' && c<='9'; i++){
469 v = v*10 + c - '0';
470 }
471 *pNum = neg ? -v : v;
drh44dbca82010-01-13 04:22:20 +0000472 testcase( i==18 );
473 testcase( i==19 );
474 testcase( i==20 );
drhc81c11f2009-11-10 01:30:52 +0000475 if( c!=0 || (i==0 && zStart==zNum) || i>19 ){
476 /* zNum is empty or contains non-numeric text or is longer
477 ** than 19 digits (thus guaranting that it is too large) */
478 return 0;
479 }else if( i<19 ){
480 /* Less than 19 digits, so we know that it fits in 64 bits */
481 return 1;
482 }else{
483 /* 19-digit numbers must be no larger than 9223372036854775807 if positive
484 ** or 9223372036854775808 if negative. Note that 9223372036854665808
485 ** is 2^63. */
486 return compare2pow63(zNum)<neg;
487 }
488}
489
490/*
491** The string zNum represents an unsigned integer. The zNum string
492** consists of one or more digit characters and is terminated by
493** a zero character. Any stray characters in zNum result in undefined
494** behavior.
495**
496** If the unsigned integer that zNum represents will fit in a
497** 64-bit signed integer, return TRUE. Otherwise return FALSE.
498**
499** If the negFlag parameter is true, that means that zNum really represents
500** a negative number. (The leading "-" is omitted from zNum.) This
501** parameter is needed to determine a boundary case. A string
502** of "9223373036854775808" returns false if negFlag is false or true
503** if negFlag is true.
504**
505** Leading zeros are ignored.
506*/
507int sqlite3FitsIn64Bits(const char *zNum, int negFlag){
508 int i;
509 int neg = 0;
510
511 assert( zNum[0]>='0' && zNum[0]<='9' ); /* zNum is an unsigned number */
512
513 if( negFlag ) neg = 1-neg;
514 while( *zNum=='0' ){
515 zNum++; /* Skip leading zeros. Ticket #2454 */
516 }
517 for(i=0; zNum[i]; i++){ assert( zNum[i]>='0' && zNum[i]<='9' ); }
drh44dbca82010-01-13 04:22:20 +0000518 testcase( i==18 );
519 testcase( i==19 );
520 testcase( i==20 );
drhc81c11f2009-11-10 01:30:52 +0000521 if( i<19 ){
522 /* Guaranteed to fit if less than 19 digits */
523 return 1;
524 }else if( i>19 ){
525 /* Guaranteed to be too big if greater than 19 digits */
526 return 0;
527 }else{
528 /* Compare against 2^63. */
529 return compare2pow63(zNum)<neg;
530 }
531}
532
533/*
534** If zNum represents an integer that will fit in 32-bits, then set
535** *pValue to that integer and return true. Otherwise return false.
536**
537** Any non-numeric characters that following zNum are ignored.
538** This is different from sqlite3Atoi64() which requires the
539** input number to be zero-terminated.
540*/
541int sqlite3GetInt32(const char *zNum, int *pValue){
542 sqlite_int64 v = 0;
543 int i, c;
544 int neg = 0;
545 if( zNum[0]=='-' ){
546 neg = 1;
547 zNum++;
548 }else if( zNum[0]=='+' ){
549 zNum++;
550 }
551 while( zNum[0]=='0' ) zNum++;
552 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
553 v = v*10 + c;
554 }
555
556 /* The longest decimal representation of a 32 bit integer is 10 digits:
557 **
558 ** 1234567890
559 ** 2^31 -> 2147483648
560 */
drh44dbca82010-01-13 04:22:20 +0000561 testcase( i==10 );
drhc81c11f2009-11-10 01:30:52 +0000562 if( i>10 ){
563 return 0;
564 }
drh44dbca82010-01-13 04:22:20 +0000565 testcase( v-neg==2147483647 );
drhc81c11f2009-11-10 01:30:52 +0000566 if( v-neg>2147483647 ){
567 return 0;
568 }
569 if( neg ){
570 v = -v;
571 }
572 *pValue = (int)v;
573 return 1;
574}
575
576/*
577** The variable-length integer encoding is as follows:
578**
579** KEY:
580** A = 0xxxxxxx 7 bits of data and one flag bit
581** B = 1xxxxxxx 7 bits of data and one flag bit
582** C = xxxxxxxx 8 bits of data
583**
584** 7 bits - A
585** 14 bits - BA
586** 21 bits - BBA
587** 28 bits - BBBA
588** 35 bits - BBBBA
589** 42 bits - BBBBBA
590** 49 bits - BBBBBBA
591** 56 bits - BBBBBBBA
592** 64 bits - BBBBBBBBC
593*/
594
595/*
596** Write a 64-bit variable-length integer to memory starting at p[0].
597** The length of data write will be between 1 and 9 bytes. The number
598** of bytes written is returned.
599**
600** A variable-length integer consists of the lower 7 bits of each byte
601** for all bytes that have the 8th bit set and one byte with the 8th
602** bit clear. Except, if we get to the 9th byte, it stores the full
603** 8 bits and is the last byte.
604*/
605int sqlite3PutVarint(unsigned char *p, u64 v){
606 int i, j, n;
607 u8 buf[10];
608 if( v & (((u64)0xff000000)<<32) ){
609 p[8] = (u8)v;
610 v >>= 8;
611 for(i=7; i>=0; i--){
612 p[i] = (u8)((v & 0x7f) | 0x80);
613 v >>= 7;
614 }
615 return 9;
616 }
617 n = 0;
618 do{
619 buf[n++] = (u8)((v & 0x7f) | 0x80);
620 v >>= 7;
621 }while( v!=0 );
622 buf[0] &= 0x7f;
623 assert( n<=9 );
624 for(i=0, j=n-1; j>=0; j--, i++){
625 p[i] = buf[j];
626 }
627 return n;
628}
629
630/*
631** This routine is a faster version of sqlite3PutVarint() that only
632** works for 32-bit positive integers and which is optimized for
633** the common case of small integers. A MACRO version, putVarint32,
634** is provided which inlines the single-byte case. All code should use
635** the MACRO version as this function assumes the single-byte case has
636** already been handled.
637*/
638int sqlite3PutVarint32(unsigned char *p, u32 v){
639#ifndef putVarint32
640 if( (v & ~0x7f)==0 ){
641 p[0] = v;
642 return 1;
643 }
644#endif
645 if( (v & ~0x3fff)==0 ){
646 p[0] = (u8)((v>>7) | 0x80);
647 p[1] = (u8)(v & 0x7f);
648 return 2;
649 }
650 return sqlite3PutVarint(p, v);
651}
652
653/*
654** Read a 64-bit variable-length integer from memory starting at p[0].
655** Return the number of bytes read. The value is stored in *v.
656*/
657u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
658 u32 a,b,s;
659
660 a = *p;
661 /* a: p0 (unmasked) */
662 if (!(a&0x80))
663 {
664 *v = a;
665 return 1;
666 }
667
668 p++;
669 b = *p;
670 /* b: p1 (unmasked) */
671 if (!(b&0x80))
672 {
673 a &= 0x7f;
674 a = a<<7;
675 a |= b;
676 *v = a;
677 return 2;
678 }
679
680 p++;
681 a = a<<14;
682 a |= *p;
683 /* a: p0<<14 | p2 (unmasked) */
684 if (!(a&0x80))
685 {
686 a &= (0x7f<<14)|(0x7f);
687 b &= 0x7f;
688 b = b<<7;
689 a |= b;
690 *v = a;
691 return 3;
692 }
693
694 /* CSE1 from below */
695 a &= (0x7f<<14)|(0x7f);
696 p++;
697 b = b<<14;
698 b |= *p;
699 /* b: p1<<14 | p3 (unmasked) */
700 if (!(b&0x80))
701 {
702 b &= (0x7f<<14)|(0x7f);
703 /* moved CSE1 up */
704 /* a &= (0x7f<<14)|(0x7f); */
705 a = a<<7;
706 a |= b;
707 *v = a;
708 return 4;
709 }
710
711 /* a: p0<<14 | p2 (masked) */
712 /* b: p1<<14 | p3 (unmasked) */
713 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
714 /* moved CSE1 up */
715 /* a &= (0x7f<<14)|(0x7f); */
716 b &= (0x7f<<14)|(0x7f);
717 s = a;
718 /* s: p0<<14 | p2 (masked) */
719
720 p++;
721 a = a<<14;
722 a |= *p;
723 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
724 if (!(a&0x80))
725 {
726 /* we can skip these cause they were (effectively) done above in calc'ing s */
727 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
728 /* b &= (0x7f<<14)|(0x7f); */
729 b = b<<7;
730 a |= b;
731 s = s>>18;
732 *v = ((u64)s)<<32 | a;
733 return 5;
734 }
735
736 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
737 s = s<<7;
738 s |= b;
739 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
740
741 p++;
742 b = b<<14;
743 b |= *p;
744 /* b: p1<<28 | p3<<14 | p5 (unmasked) */
745 if (!(b&0x80))
746 {
747 /* we can skip this cause it was (effectively) done above in calc'ing s */
748 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
749 a &= (0x7f<<14)|(0x7f);
750 a = a<<7;
751 a |= b;
752 s = s>>18;
753 *v = ((u64)s)<<32 | a;
754 return 6;
755 }
756
757 p++;
758 a = a<<14;
759 a |= *p;
760 /* a: p2<<28 | p4<<14 | p6 (unmasked) */
761 if (!(a&0x80))
762 {
763 a &= (0x1f<<28)|(0x7f<<14)|(0x7f);
764 b &= (0x7f<<14)|(0x7f);
765 b = b<<7;
766 a |= b;
767 s = s>>11;
768 *v = ((u64)s)<<32 | a;
769 return 7;
770 }
771
772 /* CSE2 from below */
773 a &= (0x7f<<14)|(0x7f);
774 p++;
775 b = b<<14;
776 b |= *p;
777 /* b: p3<<28 | p5<<14 | p7 (unmasked) */
778 if (!(b&0x80))
779 {
780 b &= (0x1f<<28)|(0x7f<<14)|(0x7f);
781 /* moved CSE2 up */
782 /* a &= (0x7f<<14)|(0x7f); */
783 a = a<<7;
784 a |= b;
785 s = s>>4;
786 *v = ((u64)s)<<32 | a;
787 return 8;
788 }
789
790 p++;
791 a = a<<15;
792 a |= *p;
793 /* a: p4<<29 | p6<<15 | p8 (unmasked) */
794
795 /* moved CSE2 up */
796 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
797 b &= (0x7f<<14)|(0x7f);
798 b = b<<8;
799 a |= b;
800
801 s = s<<4;
802 b = p[-4];
803 b &= 0x7f;
804 b = b>>3;
805 s |= b;
806
807 *v = ((u64)s)<<32 | a;
808
809 return 9;
810}
811
812/*
813** Read a 32-bit variable-length integer from memory starting at p[0].
814** Return the number of bytes read. The value is stored in *v.
815**
816** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
817** integer, then set *v to 0xffffffff.
818**
819** A MACRO version, getVarint32, is provided which inlines the
820** single-byte case. All code should use the MACRO version as
821** this function assumes the single-byte case has already been handled.
822*/
823u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
824 u32 a,b;
825
826 /* The 1-byte case. Overwhelmingly the most common. Handled inline
827 ** by the getVarin32() macro */
828 a = *p;
829 /* a: p0 (unmasked) */
830#ifndef getVarint32
831 if (!(a&0x80))
832 {
833 /* Values between 0 and 127 */
834 *v = a;
835 return 1;
836 }
837#endif
838
839 /* The 2-byte case */
840 p++;
841 b = *p;
842 /* b: p1 (unmasked) */
843 if (!(b&0x80))
844 {
845 /* Values between 128 and 16383 */
846 a &= 0x7f;
847 a = a<<7;
848 *v = a | b;
849 return 2;
850 }
851
852 /* The 3-byte case */
853 p++;
854 a = a<<14;
855 a |= *p;
856 /* a: p0<<14 | p2 (unmasked) */
857 if (!(a&0x80))
858 {
859 /* Values between 16384 and 2097151 */
860 a &= (0x7f<<14)|(0x7f);
861 b &= 0x7f;
862 b = b<<7;
863 *v = a | b;
864 return 3;
865 }
866
867 /* A 32-bit varint is used to store size information in btrees.
868 ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
869 ** A 3-byte varint is sufficient, for example, to record the size
870 ** of a 1048569-byte BLOB or string.
871 **
872 ** We only unroll the first 1-, 2-, and 3- byte cases. The very
873 ** rare larger cases can be handled by the slower 64-bit varint
874 ** routine.
875 */
876#if 1
877 {
878 u64 v64;
879 u8 n;
880
881 p -= 2;
882 n = sqlite3GetVarint(p, &v64);
883 assert( n>3 && n<=9 );
884 if( (v64 & SQLITE_MAX_U32)!=v64 ){
885 *v = 0xffffffff;
886 }else{
887 *v = (u32)v64;
888 }
889 return n;
890 }
891
892#else
893 /* For following code (kept for historical record only) shows an
894 ** unrolling for the 3- and 4-byte varint cases. This code is
895 ** slightly faster, but it is also larger and much harder to test.
896 */
897 p++;
898 b = b<<14;
899 b |= *p;
900 /* b: p1<<14 | p3 (unmasked) */
901 if (!(b&0x80))
902 {
903 /* Values between 2097152 and 268435455 */
904 b &= (0x7f<<14)|(0x7f);
905 a &= (0x7f<<14)|(0x7f);
906 a = a<<7;
907 *v = a | b;
908 return 4;
909 }
910
911 p++;
912 a = a<<14;
913 a |= *p;
914 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
915 if (!(a&0x80))
916 {
917 /* Walues between 268435456 and 34359738367 */
918 a &= (0x1f<<28)|(0x7f<<14)|(0x7f);
919 b &= (0x1f<<28)|(0x7f<<14)|(0x7f);
920 b = b<<7;
921 *v = a | b;
922 return 5;
923 }
924
925 /* We can only reach this point when reading a corrupt database
926 ** file. In that case we are not in any hurry. Use the (relatively
927 ** slow) general-purpose sqlite3GetVarint() routine to extract the
928 ** value. */
929 {
930 u64 v64;
931 u8 n;
932
933 p -= 4;
934 n = sqlite3GetVarint(p, &v64);
935 assert( n>5 && n<=9 );
936 *v = (u32)v64;
937 return n;
938 }
939#endif
940}
941
942/*
943** Return the number of bytes that will be needed to store the given
944** 64-bit integer.
945*/
946int sqlite3VarintLen(u64 v){
947 int i = 0;
948 do{
949 i++;
950 v >>= 7;
951 }while( v!=0 && ALWAYS(i<9) );
952 return i;
953}
954
955
956/*
957** Read or write a four-byte big-endian integer value.
958*/
959u32 sqlite3Get4byte(const u8 *p){
960 return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
961}
962void sqlite3Put4byte(unsigned char *p, u32 v){
963 p[0] = (u8)(v>>24);
964 p[1] = (u8)(v>>16);
965 p[2] = (u8)(v>>8);
966 p[3] = (u8)v;
967}
968
969
970
971#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
972/*
973** Translate a single byte of Hex into an integer.
974** This routine only works if h really is a valid hexadecimal
975** character: 0..9a..fA..F
976*/
977static u8 hexToInt(int h){
978 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
979#ifdef SQLITE_ASCII
980 h += 9*(1&(h>>6));
981#endif
982#ifdef SQLITE_EBCDIC
983 h += 9*(1&~(h>>4));
984#endif
985 return (u8)(h & 0xf);
986}
987#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
988
989#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
990/*
991** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
992** value. Return a pointer to its binary value. Space to hold the
993** binary value has been obtained from malloc and must be freed by
994** the calling routine.
995*/
996void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
997 char *zBlob;
998 int i;
999
1000 zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1);
1001 n--;
1002 if( zBlob ){
1003 for(i=0; i<n; i+=2){
1004 zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]);
1005 }
1006 zBlob[i/2] = 0;
1007 }
1008 return zBlob;
1009}
1010#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1011
drh413c3d32010-02-23 20:11:56 +00001012/*
1013** Log an error that is an API call on a connection pointer that should
1014** not have been used. The "type" of connection pointer is given as the
1015** argument. The zType is a word like "NULL" or "closed" or "invalid".
1016*/
1017static void logBadConnection(const char *zType){
1018 sqlite3_log(SQLITE_MISUSE,
1019 "API call with %s database connection pointer",
1020 zType
1021 );
1022}
drhc81c11f2009-11-10 01:30:52 +00001023
1024/*
drhc81c11f2009-11-10 01:30:52 +00001025** Check to make sure we have a valid db pointer. This test is not
1026** foolproof but it does provide some measure of protection against
1027** misuse of the interface such as passing in db pointers that are
1028** NULL or which have been previously closed. If this routine returns
1029** 1 it means that the db pointer is valid and 0 if it should not be
1030** dereferenced for any reason. The calling function should invoke
1031** SQLITE_MISUSE immediately.
1032**
1033** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1034** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1035** open properly and is not fit for general use but which can be
1036** used as an argument to sqlite3_errmsg() or sqlite3_close().
1037*/
1038int sqlite3SafetyCheckOk(sqlite3 *db){
1039 u32 magic;
drh413c3d32010-02-23 20:11:56 +00001040 if( db==0 ){
1041 logBadConnection("NULL");
1042 return 0;
1043 }
drhc81c11f2009-11-10 01:30:52 +00001044 magic = db->magic;
drh9978c972010-02-23 17:36:32 +00001045 if( magic!=SQLITE_MAGIC_OPEN ){
drh413c3d32010-02-23 20:11:56 +00001046 if( !sqlite3SafetyCheckSickOrOk(db) ){
1047 logBadConnection("unopened");
1048 }
drhc81c11f2009-11-10 01:30:52 +00001049 return 0;
1050 }else{
1051 return 1;
1052 }
1053}
1054int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1055 u32 magic;
1056 magic = db->magic;
1057 if( magic!=SQLITE_MAGIC_SICK &&
1058 magic!=SQLITE_MAGIC_OPEN &&
drh413c3d32010-02-23 20:11:56 +00001059 magic!=SQLITE_MAGIC_BUSY ){
1060 logBadConnection( magic==SQLITE_MAGIC_CLOSED ? "closed" : "invalid" );
1061 return 0;
1062 }else{
1063 return 1;
1064 }
drhc81c11f2009-11-10 01:30:52 +00001065}