blob: abe2f5cc1ab7707614294e06f80c71695aa94b03 [file] [log] [blame]
dan1da40a32009-09-19 17:00:31 +00001/*
2**
3** The author disclaims copyright to this source code. In place of
4** a legal notice, here is a blessing:
5**
6** May you do good and not evil.
7** May you find forgiveness for yourself and forgive others.
8** May you share freely, never taking more than you give.
9**
10*************************************************************************
11** This file contains code used by the compiler to add foreign key
12** support to compiled SQL statements.
13*/
14#include "sqliteInt.h"
15
16#ifndef SQLITE_OMIT_FOREIGN_KEY
dan75cbd982009-09-21 16:06:03 +000017#ifndef SQLITE_OMIT_TRIGGER
dan1da40a32009-09-19 17:00:31 +000018
19/*
20** Deferred and Immediate FKs
21** --------------------------
22**
23** Foreign keys in SQLite come in two flavours: deferred and immediate.
dan8a2fff72009-09-23 18:07:22 +000024** If an immediate foreign key constraint is violated, SQLITE_CONSTRAINT
25** is returned and the current statement transaction rolled back. If a
dan1da40a32009-09-19 17:00:31 +000026** deferred foreign key constraint is violated, no action is taken
27** immediately. However if the application attempts to commit the
28** transaction before fixing the constraint violation, the attempt fails.
29**
30** Deferred constraints are implemented using a simple counter associated
31** with the database handle. The counter is set to zero each time a
32** database transaction is opened. Each time a statement is executed
33** that causes a foreign key violation, the counter is incremented. Each
34** time a statement is executed that removes an existing violation from
35** the database, the counter is decremented. When the transaction is
36** committed, the commit fails if the current value of the counter is
37** greater than zero. This scheme has two big drawbacks:
38**
39** * When a commit fails due to a deferred foreign key constraint,
40** there is no way to tell which foreign constraint is not satisfied,
41** or which row it is not satisfied for.
42**
43** * If the database contains foreign key violations when the
44** transaction is opened, this may cause the mechanism to malfunction.
45**
46** Despite these problems, this approach is adopted as it seems simpler
47** than the alternatives.
48**
49** INSERT operations:
50**
dan8099ce62009-09-23 08:43:35 +000051** I.1) For each FK for which the table is the child table, search
dan8a2fff72009-09-23 18:07:22 +000052** the parent table for a match. If none is found increment the
53** constraint counter.
dan1da40a32009-09-19 17:00:31 +000054**
dan8a2fff72009-09-23 18:07:22 +000055** I.2) For each FK for which the table is the parent table,
dan8099ce62009-09-23 08:43:35 +000056** search the child table for rows that correspond to the new
57** row in the parent table. Decrement the counter for each row
dan1da40a32009-09-19 17:00:31 +000058** found (as the constraint is now satisfied).
59**
60** DELETE operations:
61**
dan8a2fff72009-09-23 18:07:22 +000062** D.1) For each FK for which the table is the child table,
dan8099ce62009-09-23 08:43:35 +000063** search the parent table for a row that corresponds to the
64** deleted row in the child table. If such a row is not found,
dan1da40a32009-09-19 17:00:31 +000065** decrement the counter.
66**
dan8099ce62009-09-23 08:43:35 +000067** D.2) For each FK for which the table is the parent table, search
68** the child table for rows that correspond to the deleted row
dan8a2fff72009-09-23 18:07:22 +000069** in the parent table. For each found increment the counter.
dan1da40a32009-09-19 17:00:31 +000070**
71** UPDATE operations:
72**
73** An UPDATE command requires that all 4 steps above are taken, but only
74** for FK constraints for which the affected columns are actually
75** modified (values must be compared at runtime).
76**
77** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2.
78** This simplifies the implementation a bit.
79**
80** For the purposes of immediate FK constraints, the OR REPLACE conflict
81** resolution is considered to delete rows before the new row is inserted.
82** If a delete caused by OR REPLACE violates an FK constraint, an exception
83** is thrown, even if the FK constraint would be satisfied after the new
84** row is inserted.
85**
danbd747832009-09-25 12:00:01 +000086** Immediate constraints are usually handled similarly. The only difference
87** is that the counter used is stored as part of each individual statement
88** object (struct Vdbe). If, after the statement has run, its immediate
89** constraint counter is greater than zero, it returns SQLITE_CONSTRAINT
90** and the statement transaction is rolled back. An exception is an INSERT
91** statement that inserts a single row only (no triggers). In this case,
92** instead of using a counter, an exception is thrown immediately if the
93** INSERT violates a foreign key constraint. This is necessary as such
94** an INSERT does not open a statement transaction.
95**
dan1da40a32009-09-19 17:00:31 +000096** TODO: How should dropping a table be handled? How should renaming a
97** table be handled?
dan8099ce62009-09-23 08:43:35 +000098**
99**
dan1da40a32009-09-19 17:00:31 +0000100** Query API Notes
101** ---------------
102**
103** Before coding an UPDATE or DELETE row operation, the code-generator
104** for those two operations needs to know whether or not the operation
105** requires any FK processing and, if so, which columns of the original
106** row are required by the FK processing VDBE code (i.e. if FKs were
107** implemented using triggers, which of the old.* columns would be
108** accessed). No information is required by the code-generator before
dan8099ce62009-09-23 08:43:35 +0000109** coding an INSERT operation. The functions used by the UPDATE/DELETE
110** generation code to query for this information are:
dan1da40a32009-09-19 17:00:31 +0000111**
dan8099ce62009-09-23 08:43:35 +0000112** sqlite3FkRequired() - Test to see if FK processing is required.
113** sqlite3FkOldmask() - Query for the set of required old.* columns.
114**
115**
116** Externally accessible module functions
117** --------------------------------------
118**
119** sqlite3FkCheck() - Check for foreign key violations.
120** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions.
121** sqlite3FkDelete() - Delete an FKey structure.
dan1da40a32009-09-19 17:00:31 +0000122*/
123
124/*
125** VDBE Calling Convention
126** -----------------------
127**
128** Example:
129**
130** For the following INSERT statement:
131**
132** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c);
133** INSERT INTO t1 VALUES(1, 2, 3.1);
134**
135** Register (x): 2 (type integer)
136** Register (x+1): 1 (type integer)
137** Register (x+2): NULL (type NULL)
138** Register (x+3): 3.1 (type real)
139*/
140
141/*
dan8099ce62009-09-23 08:43:35 +0000142** A foreign key constraint requires that the key columns in the parent
dan1da40a32009-09-19 17:00:31 +0000143** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
dan8099ce62009-09-23 08:43:35 +0000144** Given that pParent is the parent table for foreign key constraint pFKey,
145** search the schema a unique index on the parent key columns.
dan1da40a32009-09-19 17:00:31 +0000146**
dan8099ce62009-09-23 08:43:35 +0000147** If successful, zero is returned. If the parent key is an INTEGER PRIMARY
148** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx
149** is set to point to the unique index.
150**
151** If the parent key consists of a single column (the foreign key constraint
152** is not a composite foreign key), output variable *paiCol is set to NULL.
153** Otherwise, it is set to point to an allocated array of size N, where
154** N is the number of columns in the parent key. The first element of the
155** array is the index of the child table column that is mapped by the FK
156** constraint to the parent table column stored in the left-most column
157** of index *ppIdx. The second element of the array is the index of the
158** child table column that corresponds to the second left-most column of
159** *ppIdx, and so on.
160**
161** If the required index cannot be found, either because:
162**
163** 1) The named parent key columns do not exist, or
164**
165** 2) The named parent key columns do exist, but are not subject to a
166** UNIQUE or PRIMARY KEY constraint, or
167**
168** 3) No parent key columns were provided explicitly as part of the
169** foreign key definition, and the parent table does not have a
170** PRIMARY KEY, or
171**
172** 4) No parent key columns were provided explicitly as part of the
173** foreign key definition, and the PRIMARY KEY of the parent table
174** consists of a a different number of columns to the child key in
175** the child table.
176**
177** then non-zero is returned, and a "foreign key mismatch" error loaded
178** into pParse. If an OOM error occurs, non-zero is returned and the
179** pParse->db->mallocFailed flag is set.
dan1da40a32009-09-19 17:00:31 +0000180*/
181static int locateFkeyIndex(
182 Parse *pParse, /* Parse context to store any error in */
dan8099ce62009-09-23 08:43:35 +0000183 Table *pParent, /* Parent table of FK constraint pFKey */
dan1da40a32009-09-19 17:00:31 +0000184 FKey *pFKey, /* Foreign key to find index for */
dan8099ce62009-09-23 08:43:35 +0000185 Index **ppIdx, /* OUT: Unique index on parent table */
dan1da40a32009-09-19 17:00:31 +0000186 int **paiCol /* OUT: Map of index columns in pFKey */
187){
dan8099ce62009-09-23 08:43:35 +0000188 Index *pIdx = 0; /* Value to return via *ppIdx */
189 int *aiCol = 0; /* Value to return via *paiCol */
190 int nCol = pFKey->nCol; /* Number of columns in parent key */
191 char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */
dan1da40a32009-09-19 17:00:31 +0000192
193 /* The caller is responsible for zeroing output parameters. */
194 assert( ppIdx && *ppIdx==0 );
195 assert( !paiCol || *paiCol==0 );
danf7a94542009-09-30 08:11:07 +0000196 assert( pParse );
dan1da40a32009-09-19 17:00:31 +0000197
198 /* If this is a non-composite (single column) foreign key, check if it
dan8099ce62009-09-23 08:43:35 +0000199 ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx
dan1da40a32009-09-19 17:00:31 +0000200 ** and *paiCol set to zero and return early.
201 **
202 ** Otherwise, for a composite foreign key (more than one column), allocate
203 ** space for the aiCol array (returned via output parameter *paiCol).
204 ** Non-composite foreign keys do not require the aiCol array.
205 */
206 if( nCol==1 ){
207 /* The FK maps to the IPK if any of the following are true:
208 **
dand981d442009-09-23 13:59:17 +0000209 ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly
210 ** mapped to the primary key of table pParent, or
211 ** 2) The FK is explicitly mapped to a column declared as INTEGER
dan1da40a32009-09-19 17:00:31 +0000212 ** PRIMARY KEY.
213 */
dan8099ce62009-09-23 08:43:35 +0000214 if( pParent->iPKey>=0 ){
215 if( !zKey ) return 0;
216 if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0;
dan1da40a32009-09-19 17:00:31 +0000217 }
218 }else if( paiCol ){
219 assert( nCol>1 );
220 aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int));
221 if( !aiCol ) return 1;
222 *paiCol = aiCol;
223 }
224
dan8099ce62009-09-23 08:43:35 +0000225 for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){
dan1da40a32009-09-19 17:00:31 +0000226 if( pIdx->nColumn==nCol && pIdx->onError!=OE_None ){
227 /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
228 ** of columns. If each indexed column corresponds to a foreign key
229 ** column of pFKey, then this index is a winner. */
230
dan8099ce62009-09-23 08:43:35 +0000231 if( zKey==0 ){
232 /* If zKey is NULL, then this foreign key is implicitly mapped to
233 ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be
dan1da40a32009-09-19 17:00:31 +0000234 ** identified by the test (Index.autoIndex==2). */
235 if( pIdx->autoIndex==2 ){
dan8a2fff72009-09-23 18:07:22 +0000236 if( aiCol ){
237 int i;
238 for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom;
239 }
dan1da40a32009-09-19 17:00:31 +0000240 break;
241 }
242 }else{
dan8099ce62009-09-23 08:43:35 +0000243 /* If zKey is non-NULL, then this foreign key was declared to
244 ** map to an explicit list of columns in table pParent. Check if this
dan9707c7b2009-09-29 15:41:57 +0000245 ** index matches those columns. Also, check that the index uses
246 ** the default collation sequences for each column. */
dan1da40a32009-09-19 17:00:31 +0000247 int i, j;
248 for(i=0; i<nCol; i++){
dan9707c7b2009-09-29 15:41:57 +0000249 int iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */
250 char *zDfltColl; /* Def. collation for column */
251 char *zIdxCol; /* Name of indexed column */
252
253 /* If the index uses a collation sequence that is different from
254 ** the default collation sequence for the column, this index is
255 ** unusable. Bail out early in this case. */
256 zDfltColl = pParent->aCol[iCol].zColl;
257 if( !zDfltColl ){
258 zDfltColl = "BINARY";
259 }
260 if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break;
261
262 zIdxCol = pParent->aCol[iCol].zName;
dan1da40a32009-09-19 17:00:31 +0000263 for(j=0; j<nCol; j++){
264 if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){
265 if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom;
266 break;
267 }
268 }
269 if( j==nCol ) break;
270 }
271 if( i==nCol ) break; /* pIdx is usable */
272 }
273 }
274 }
275
danf7a94542009-09-30 08:11:07 +0000276 if( !pIdx ){
danf0662562009-09-28 18:52:11 +0000277 if( !pParse->disableTriggers ){
278 sqlite3ErrorMsg(pParse, "foreign key mismatch");
279 }
dan1da40a32009-09-19 17:00:31 +0000280 sqlite3DbFree(pParse->db, aiCol);
281 return 1;
282 }
283
284 *ppIdx = pIdx;
285 return 0;
286}
287
dan8099ce62009-09-23 08:43:35 +0000288/*
danbd747832009-09-25 12:00:01 +0000289** This function is called when a row is inserted into or deleted from the
290** child table of foreign key constraint pFKey. If an SQL UPDATE is executed
291** on the child table of pFKey, this function is invoked twice for each row
dan8099ce62009-09-23 08:43:35 +0000292** affected - once to "delete" the old row, and then again to "insert" the
293** new row.
294**
295** Each time it is called, this function generates VDBE code to locate the
296** row in the parent table that corresponds to the row being inserted into
297** or deleted from the child table. If the parent row can be found, no
298** special action is taken. Otherwise, if the parent row can *not* be
299** found in the parent table:
300**
301** Operation | FK type | Action taken
302** --------------------------------------------------------------------------
danbd747832009-09-25 12:00:01 +0000303** INSERT immediate Increment the "immediate constraint counter".
304**
305** DELETE immediate Decrement the "immediate constraint counter".
dan8099ce62009-09-23 08:43:35 +0000306**
307** INSERT deferred Increment the "deferred constraint counter".
308**
309** DELETE deferred Decrement the "deferred constraint counter".
310**
danbd747832009-09-25 12:00:01 +0000311** These operations are identified in the comment at the top of this file
312** (fkey.c) as "I.1" and "D.1".
dan8099ce62009-09-23 08:43:35 +0000313*/
314static void fkLookupParent(
dan1da40a32009-09-19 17:00:31 +0000315 Parse *pParse, /* Parse context */
316 int iDb, /* Index of database housing pTab */
dan8099ce62009-09-23 08:43:35 +0000317 Table *pTab, /* Parent table of FK pFKey */
318 Index *pIdx, /* Unique index on parent key columns in pTab */
319 FKey *pFKey, /* Foreign key constraint */
320 int *aiCol, /* Map from parent key columns to child table columns */
321 int regData, /* Address of array containing child table row */
dan02470b22009-10-03 07:04:11 +0000322 int nIncr, /* Increment constraint counter by this */
323 int isIgnore /* If true, pretend pTab contains all NULL values */
dan1da40a32009-09-19 17:00:31 +0000324){
dan8099ce62009-09-23 08:43:35 +0000325 int i; /* Iterator variable */
326 Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */
327 int iCur = pParse->nTab - 1; /* Cursor number to use */
328 int iOk = sqlite3VdbeMakeLabel(v); /* jump here if parent key found */
dan1da40a32009-09-19 17:00:31 +0000329
dan0ff297e2009-09-25 17:03:14 +0000330 /* If nIncr is less than zero, then check at runtime if there are any
331 ** outstanding constraints to resolve. If there are not, there is no need
332 ** to check if deleting this row resolves any outstanding violations.
333 **
334 ** Check if any of the key columns in the child table row are NULL. If
335 ** any are, then the constraint is considered satisfied. No need to
336 ** search for a matching row in the parent table. */
337 if( nIncr<0 ){
338 sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk);
339 }
dan1da40a32009-09-19 17:00:31 +0000340 for(i=0; i<pFKey->nCol; i++){
dan36062642009-09-21 18:56:23 +0000341 int iReg = aiCol[i] + regData + 1;
dan1da40a32009-09-19 17:00:31 +0000342 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk);
343 }
344
dan02470b22009-10-03 07:04:11 +0000345 if( isIgnore==0 ){
346 if( pIdx==0 ){
347 /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY
348 ** column of the parent table (table pTab). */
349 int iMustBeInt; /* Address of MustBeInt instruction */
350 int regTemp = sqlite3GetTempReg(pParse);
351
352 /* Invoke MustBeInt to coerce the child key value to an integer (i.e.
353 ** apply the affinity of the parent key). If this fails, then there
354 ** is no matching parent key. Before using MustBeInt, make a copy of
355 ** the value. Otherwise, the value inserted into the child key column
356 ** will have INTEGER affinity applied to it, which may not be correct. */
357 sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp);
358 iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0);
359
360 /* If the parent table is the same as the child table, and we are about
361 ** to increment the constraint-counter (i.e. this is an INSERT operation),
362 ** then check if the row being inserted matches itself. If so, do not
363 ** increment the constraint-counter. */
364 if( pTab==pFKey->pFrom && nIncr==1 ){
365 sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp);
dan9277efa2009-09-28 11:54:21 +0000366 }
dan02470b22009-10-03 07:04:11 +0000367
368 sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
369 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp);
dan9277efa2009-09-28 11:54:21 +0000370 sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
dan02470b22009-10-03 07:04:11 +0000371 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
372 sqlite3VdbeJumpHere(v, iMustBeInt);
373 sqlite3ReleaseTempReg(pParse, regTemp);
374 }else{
375 int nCol = pFKey->nCol;
376 int regTemp = sqlite3GetTempRange(pParse, nCol);
377 int regRec = sqlite3GetTempReg(pParse);
378 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
379
380 sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb);
381 sqlite3VdbeChangeP4(v, -1, (char*)pKey, P4_KEYINFO_HANDOFF);
382 for(i=0; i<nCol; i++){
383 sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[i]+1+regData, regTemp+i);
384 }
385
386 /* If the parent table is the same as the child table, and we are about
387 ** to increment the constraint-counter (i.e. this is an INSERT operation),
388 ** then check if the row being inserted matches itself. If so, do not
389 ** increment the constraint-counter. */
390 if( pTab==pFKey->pFrom && nIncr==1 ){
391 int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1;
392 for(i=0; i<nCol; i++){
393 int iChild = aiCol[i]+1+regData;
394 int iParent = pIdx->aiColumn[i]+1+regData;
395 sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent);
396 }
397 sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
398 }
399
400 sqlite3VdbeAddOp3(v, OP_MakeRecord, regTemp, nCol, regRec);
401 sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), 0);
402 sqlite3VdbeAddOp3(v, OP_Found, iCur, iOk, regRec);
403
404 sqlite3ReleaseTempReg(pParse, regRec);
405 sqlite3ReleaseTempRange(pParse, regTemp, nCol);
dan9277efa2009-09-28 11:54:21 +0000406 }
dan1da40a32009-09-19 17:00:31 +0000407 }
408
dan32b09f22009-09-23 17:29:59 +0000409 if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
410 /* Special case: If this is an INSERT statement that will insert exactly
411 ** one row into the table, raise a constraint immediately instead of
412 ** incrementing a counter. This is necessary as the VM code is being
413 ** generated for will not open a statement transaction. */
414 assert( nIncr==1 );
dan1da40a32009-09-19 17:00:31 +0000415 sqlite3HaltConstraint(
416 pParse, OE_Abort, "foreign key constraint failed", P4_STATIC
417 );
dan32b09f22009-09-23 17:29:59 +0000418 }else{
419 if( nIncr>0 && pFKey->isDeferred==0 ){
420 sqlite3ParseToplevel(pParse)->mayAbort = 1;
421 }
dan0ff297e2009-09-25 17:03:14 +0000422 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
dan1da40a32009-09-19 17:00:31 +0000423 }
424
425 sqlite3VdbeResolveLabel(v, iOk);
daned81bf62009-10-07 16:04:46 +0000426 sqlite3VdbeAddOp1(v, OP_Close, iCur);
dan1da40a32009-09-19 17:00:31 +0000427}
428
dan8099ce62009-09-23 08:43:35 +0000429/*
430** This function is called to generate code executed when a row is deleted
431** from the parent table of foreign key constraint pFKey and, if pFKey is
432** deferred, when a row is inserted into the same table. When generating
433** code for an SQL UPDATE operation, this function may be called twice -
434** once to "delete" the old row and once to "insert" the new row.
435**
436** The code generated by this function scans through the rows in the child
437** table that correspond to the parent table row being deleted or inserted.
438** For each child row found, one of the following actions is taken:
439**
440** Operation | FK type | Action taken
441** --------------------------------------------------------------------------
danbd747832009-09-25 12:00:01 +0000442** DELETE immediate Increment the "immediate constraint counter".
443** Or, if the ON (UPDATE|DELETE) action is RESTRICT,
444** throw a "foreign key constraint failed" exception.
445**
446** INSERT immediate Decrement the "immediate constraint counter".
dan8099ce62009-09-23 08:43:35 +0000447**
448** DELETE deferred Increment the "deferred constraint counter".
449** Or, if the ON (UPDATE|DELETE) action is RESTRICT,
450** throw a "foreign key constraint failed" exception.
451**
452** INSERT deferred Decrement the "deferred constraint counter".
453**
danbd747832009-09-25 12:00:01 +0000454** These operations are identified in the comment at the top of this file
455** (fkey.c) as "I.2" and "D.2".
dan8099ce62009-09-23 08:43:35 +0000456*/
457static void fkScanChildren(
dan1da40a32009-09-19 17:00:31 +0000458 Parse *pParse, /* Parse context */
459 SrcList *pSrc, /* SrcList containing the table to scan */
dan9277efa2009-09-28 11:54:21 +0000460 Table *pTab,
dan1da40a32009-09-19 17:00:31 +0000461 Index *pIdx, /* Foreign key index */
462 FKey *pFKey, /* Foreign key relationship */
dan8099ce62009-09-23 08:43:35 +0000463 int *aiCol, /* Map from pIdx cols to child table cols */
dan1da40a32009-09-19 17:00:31 +0000464 int regData, /* Referenced table data starts here */
465 int nIncr /* Amount to increment deferred counter by */
466){
467 sqlite3 *db = pParse->db; /* Database handle */
468 int i; /* Iterator variable */
469 Expr *pWhere = 0; /* WHERE clause to scan with */
470 NameContext sNameContext; /* Context used to resolve WHERE clause */
471 WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */
dan0ff297e2009-09-25 17:03:14 +0000472 int iFkIfZero = 0; /* Address of OP_FkIfZero */
473 Vdbe *v = sqlite3GetVdbe(pParse);
474
dan9277efa2009-09-28 11:54:21 +0000475 assert( !pIdx || pIdx->pTable==pTab );
476
dan0ff297e2009-09-25 17:03:14 +0000477 if( nIncr<0 ){
478 iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0);
479 }
dan1da40a32009-09-19 17:00:31 +0000480
danbd747832009-09-25 12:00:01 +0000481 /* Create an Expr object representing an SQL expression like:
482 **
483 ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ...
484 **
485 ** The collation sequence used for the comparison should be that of
486 ** the parent key columns. The affinity of the parent key column should
487 ** be applied to each child key value before the comparison takes place.
488 */
dan1da40a32009-09-19 17:00:31 +0000489 for(i=0; i<pFKey->nCol; i++){
dan8099ce62009-09-23 08:43:35 +0000490 Expr *pLeft; /* Value from parent table row */
491 Expr *pRight; /* Column ref to child table */
dan1da40a32009-09-19 17:00:31 +0000492 Expr *pEq; /* Expression (pLeft = pRight) */
dan8099ce62009-09-23 08:43:35 +0000493 int iCol; /* Index of column in child table */
494 const char *zCol; /* Name of column in child table */
dan1da40a32009-09-19 17:00:31 +0000495
496 pLeft = sqlite3Expr(db, TK_REGISTER, 0);
497 if( pLeft ){
danbd747832009-09-25 12:00:01 +0000498 /* Set the collation sequence and affinity of the LHS of each TK_EQ
499 ** expression to the parent key column defaults. */
dan140026b2009-09-24 18:19:41 +0000500 if( pIdx ){
501 int iCol = pIdx->aiColumn[i];
502 Column *pCol = &pIdx->pTable->aCol[iCol];
503 pLeft->iTable = regData+iCol+1;
504 pLeft->affinity = pCol->affinity;
505 pLeft->pColl = sqlite3LocateCollSeq(pParse, pCol->zColl);
506 }else{
507 pLeft->iTable = regData;
508 pLeft->affinity = SQLITE_AFF_INTEGER;
509 }
dan1da40a32009-09-19 17:00:31 +0000510 }
511 iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
dana8f0bf62009-09-23 12:06:52 +0000512 assert( iCol>=0 );
513 zCol = pFKey->pFrom->aCol[iCol].zName;
dan1da40a32009-09-19 17:00:31 +0000514 pRight = sqlite3Expr(db, TK_ID, zCol);
515 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0);
516 pWhere = sqlite3ExprAnd(db, pWhere, pEq);
517 }
518
dan9277efa2009-09-28 11:54:21 +0000519 /* If the child table is the same as the parent table, and this scan
520 ** is taking place as part of a DELETE operation (operation D.2), omit the
521 ** row being deleted from the scan by adding ($rowid != rowid) to the WHERE
522 ** clause, where $rowid is the rowid of the row being deleted. */
523 if( pTab==pFKey->pFrom && nIncr>0 ){
524 Expr *pEq; /* Expression (pLeft = pRight) */
525 Expr *pLeft; /* Value from parent table row */
526 Expr *pRight; /* Column ref to child table */
527 pLeft = sqlite3Expr(db, TK_REGISTER, 0);
528 pRight = sqlite3Expr(db, TK_COLUMN, 0);
529 if( pLeft && pRight ){
530 pLeft->iTable = regData;
531 pLeft->affinity = SQLITE_AFF_INTEGER;
532 pRight->iTable = pSrc->a[0].iCursor;
533 pRight->iColumn = -1;
534 }
535 pEq = sqlite3PExpr(pParse, TK_NE, pLeft, pRight, 0);
536 pWhere = sqlite3ExprAnd(db, pWhere, pEq);
537 }
538
dan1da40a32009-09-19 17:00:31 +0000539 /* Resolve the references in the WHERE clause. */
540 memset(&sNameContext, 0, sizeof(NameContext));
541 sNameContext.pSrcList = pSrc;
542 sNameContext.pParse = pParse;
543 sqlite3ResolveExprNames(&sNameContext, pWhere);
544
545 /* Create VDBE to loop through the entries in pSrc that match the WHERE
546 ** clause. If the constraint is not deferred, throw an exception for
547 ** each row found. Otherwise, for deferred constraints, increment the
548 ** deferred constraint counter by nIncr for each row selected. */
549 pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0);
danf7a94542009-09-30 08:11:07 +0000550 if( nIncr>0 && pFKey->isDeferred==0 ){
551 sqlite3ParseToplevel(pParse)->mayAbort = 1;
dan1da40a32009-09-19 17:00:31 +0000552 }
danf7a94542009-09-30 08:11:07 +0000553 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
danf59c5ca2009-09-22 16:55:38 +0000554 if( pWInfo ){
555 sqlite3WhereEnd(pWInfo);
556 }
dan1da40a32009-09-19 17:00:31 +0000557
558 /* Clean up the WHERE clause constructed above. */
559 sqlite3ExprDelete(db, pWhere);
dan0ff297e2009-09-25 17:03:14 +0000560 if( iFkIfZero ){
561 sqlite3VdbeJumpHere(v, iFkIfZero);
562 }
dan1da40a32009-09-19 17:00:31 +0000563}
564
565/*
566** This function returns a pointer to the head of a linked list of FK
dan8099ce62009-09-23 08:43:35 +0000567** constraints for which table pTab is the parent table. For example,
dan1da40a32009-09-19 17:00:31 +0000568** given the following schema:
569**
570** CREATE TABLE t1(a PRIMARY KEY);
571** CREATE TABLE t2(b REFERENCES t1(a);
572**
573** Calling this function with table "t1" as an argument returns a pointer
574** to the FKey structure representing the foreign key constraint on table
575** "t2". Calling this function with "t2" as the argument would return a
dan8099ce62009-09-23 08:43:35 +0000576** NULL pointer (as there are no FK constraints for which t2 is the parent
577** table).
dan1da40a32009-09-19 17:00:31 +0000578*/
dan432cc5b2009-09-26 17:51:48 +0000579FKey *sqlite3FkReferences(Table *pTab){
dan1da40a32009-09-19 17:00:31 +0000580 int nName = sqlite3Strlen30(pTab->zName);
581 return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName, nName);
582}
583
dan8099ce62009-09-23 08:43:35 +0000584/*
585** The second argument is a Trigger structure allocated by the
586** fkActionTrigger() routine. This function deletes the Trigger structure
587** and all of its sub-components.
588**
589** The Trigger structure or any of its sub-components may be allocated from
590** the lookaside buffer belonging to database handle dbMem.
591*/
dan75cbd982009-09-21 16:06:03 +0000592static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){
593 if( p ){
594 TriggerStep *pStep = p->step_list;
595 sqlite3ExprDelete(dbMem, pStep->pWhere);
596 sqlite3ExprListDelete(dbMem, pStep->pExprList);
dan9277efa2009-09-28 11:54:21 +0000597 sqlite3SelectDelete(dbMem, pStep->pSelect);
drh788536b2009-09-23 03:01:58 +0000598 sqlite3ExprDelete(dbMem, p->pWhen);
dan75cbd982009-09-21 16:06:03 +0000599 sqlite3DbFree(dbMem, p);
600 }
601}
602
dan8099ce62009-09-23 08:43:35 +0000603/*
dand66c8302009-09-28 14:49:01 +0000604** This function is called to generate code that runs when table pTab is
605** being dropped from the database. The SrcList passed as the second argument
606** to this function contains a single entry guaranteed to resolve to
607** table pTab.
608**
609** Normally, no code is required. However, if either
610**
611** (a) The table is the parent table of a FK constraint, or
612** (b) The table is the child table of a deferred FK constraint and it is
613** determined at runtime that there are outstanding deferred FK
614** constraint violations in the database,
615**
616** then the equivalent of "DELETE FROM <tbl>" is executed before dropping
617** the table from the database. Triggers are disabled while running this
618** DELETE, but foreign key actions are not.
619*/
620void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){
621 sqlite3 *db = pParse->db;
622 if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) && !pTab->pSelect ){
623 int iSkip = 0;
624 Vdbe *v = sqlite3GetVdbe(pParse);
625
626 assert( v ); /* VDBE has already been allocated */
627 if( sqlite3FkReferences(pTab)==0 ){
628 /* Search for a deferred foreign key constraint for which this table
629 ** is the child table. If one cannot be found, return without
630 ** generating any VDBE code. If one can be found, then jump over
631 ** the entire DELETE if there are no outstanding deferred constraints
632 ** when this statement is run. */
633 FKey *p;
634 for(p=pTab->pFKey; p; p=p->pNextFrom){
635 if( p->isDeferred ) break;
636 }
637 if( !p ) return;
638 iSkip = sqlite3VdbeMakeLabel(v);
639 sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip);
640 }
641
642 pParse->disableTriggers = 1;
643 sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0);
644 pParse->disableTriggers = 0;
645
646 /* If the DELETE has generated immediate foreign key constraint
647 ** violations, halt the VDBE and return an error at this point, before
648 ** any modifications to the schema are made. This is because statement
649 ** transactions are not able to rollback schema changes. */
650 sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2);
651 sqlite3HaltConstraint(
652 pParse, OE_Abort, "foreign key constraint failed", P4_STATIC
653 );
654
655 if( iSkip ){
656 sqlite3VdbeResolveLabel(v, iSkip);
657 }
658 }
659}
660
661/*
dan8099ce62009-09-23 08:43:35 +0000662** This function is called when inserting, deleting or updating a row of
663** table pTab to generate VDBE code to perform foreign key constraint
664** processing for the operation.
665**
666** For a DELETE operation, parameter regOld is passed the index of the
667** first register in an array of (pTab->nCol+1) registers containing the
668** rowid of the row being deleted, followed by each of the column values
669** of the row being deleted, from left to right. Parameter regNew is passed
670** zero in this case.
671**
dan8099ce62009-09-23 08:43:35 +0000672** For an INSERT operation, regOld is passed zero and regNew is passed the
673** first register of an array of (pTab->nCol+1) registers containing the new
674** row data.
675**
dan9277efa2009-09-28 11:54:21 +0000676** For an UPDATE operation, this function is called twice. Once before
677** the original record is deleted from the table using the calling convention
678** described for DELETE. Then again after the original record is deleted
dane7a94d82009-10-01 16:09:04 +0000679** but before the new record is inserted using the INSERT convention.
dan8099ce62009-09-23 08:43:35 +0000680*/
dan1da40a32009-09-19 17:00:31 +0000681void sqlite3FkCheck(
682 Parse *pParse, /* Parse context */
683 Table *pTab, /* Row is being deleted from this table */
dan1da40a32009-09-19 17:00:31 +0000684 int regOld, /* Previous row data is stored here */
685 int regNew /* New row data is stored here */
686){
687 sqlite3 *db = pParse->db; /* Database handle */
688 Vdbe *v; /* VM to write code to */
689 FKey *pFKey; /* Used to iterate through FKs */
690 int iDb; /* Index of database containing pTab */
691 const char *zDb; /* Name of database containing pTab */
danf0662562009-09-28 18:52:11 +0000692 int isIgnoreErrors = pParse->disableTriggers;
dan1da40a32009-09-19 17:00:31 +0000693
dan792e9202009-09-29 11:28:51 +0000694 /* Exactly one of regOld and regNew should be non-zero. */
695 assert( (regOld==0)!=(regNew==0) );
dan1da40a32009-09-19 17:00:31 +0000696
697 /* If foreign-keys are disabled, this function is a no-op. */
698 if( (db->flags&SQLITE_ForeignKeys)==0 ) return;
699
700 v = sqlite3GetVdbe(pParse);
701 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
702 zDb = db->aDb[iDb].zName;
703
dan8099ce62009-09-23 08:43:35 +0000704 /* Loop through all the foreign key constraints for which pTab is the
705 ** child table (the table that the foreign key definition is part of). */
dan1da40a32009-09-19 17:00:31 +0000706 for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){
dan8099ce62009-09-23 08:43:35 +0000707 Table *pTo; /* Parent table of foreign key pFKey */
dan1da40a32009-09-19 17:00:31 +0000708 Index *pIdx = 0; /* Index on key columns in pTo */
dan36062642009-09-21 18:56:23 +0000709 int *aiFree = 0;
710 int *aiCol;
711 int iCol;
712 int i;
dan02470b22009-10-03 07:04:11 +0000713 int isIgnore = 0;
dan1da40a32009-09-19 17:00:31 +0000714
dan8099ce62009-09-23 08:43:35 +0000715 /* Find the parent table of this foreign key. Also find a unique index
716 ** on the parent key columns in the parent table. If either of these
717 ** schema items cannot be located, set an error in pParse and return
718 ** early. */
danf0662562009-09-28 18:52:11 +0000719 if( pParse->disableTriggers ){
720 pTo = sqlite3FindTable(db, pFKey->zTo, zDb);
721 }else{
722 pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
723 }
724 if( !pTo || locateFkeyIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){
725 if( !isIgnoreErrors || db->mallocFailed ) return;
726 continue;
727 }
dan36062642009-09-21 18:56:23 +0000728 assert( pFKey->nCol==1 || (aiFree && pIdx) );
dan1da40a32009-09-19 17:00:31 +0000729
dan36062642009-09-21 18:56:23 +0000730 if( aiFree ){
731 aiCol = aiFree;
732 }else{
733 iCol = pFKey->aCol[0].iFrom;
734 aiCol = &iCol;
735 }
736 for(i=0; i<pFKey->nCol; i++){
737 if( aiCol[i]==pTab->iPKey ){
738 aiCol[i] = -1;
739 }
dan47a06342009-10-02 14:23:41 +0000740#ifndef SQLITE_OMIT_AUTHORIZATION
dan02470b22009-10-03 07:04:11 +0000741 /* Request permission to read the parent key columns. If the
742 ** authorization callback returns SQLITE_IGNORE, behave as if any
743 ** values read from the parent table are NULL. */
dan47a06342009-10-02 14:23:41 +0000744 if( db->xAuth ){
dan02470b22009-10-03 07:04:11 +0000745 int rcauth;
dan47a06342009-10-02 14:23:41 +0000746 char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName;
dan02470b22009-10-03 07:04:11 +0000747 rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb);
748 isIgnore = (rcauth==SQLITE_IGNORE);
dan47a06342009-10-02 14:23:41 +0000749 }
750#endif
dan36062642009-09-21 18:56:23 +0000751 }
752
dan8099ce62009-09-23 08:43:35 +0000753 /* Take a shared-cache advisory read-lock on the parent table. Allocate
754 ** a cursor to use to search the unique index on the parent key columns
755 ** in the parent table. */
dan1da40a32009-09-19 17:00:31 +0000756 sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName);
757 pParse->nTab++;
758
dan32b09f22009-09-23 17:29:59 +0000759 if( regOld!=0 ){
760 /* A row is being removed from the child table. Search for the parent.
761 ** If the parent does not exist, removing the child row resolves an
762 ** outstanding foreign key constraint violation. */
dan02470b22009-10-03 07:04:11 +0000763 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1,isIgnore);
dan1da40a32009-09-19 17:00:31 +0000764 }
765 if( regNew!=0 ){
dan32b09f22009-09-23 17:29:59 +0000766 /* A row is being added to the child table. If a parent row cannot
767 ** be found, adding the child row has violated the FK constraint. */
dan02470b22009-10-03 07:04:11 +0000768 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1,isIgnore);
dan1da40a32009-09-19 17:00:31 +0000769 }
770
dan36062642009-09-21 18:56:23 +0000771 sqlite3DbFree(db, aiFree);
dan1da40a32009-09-19 17:00:31 +0000772 }
773
774 /* Loop through all the foreign key constraints that refer to this table */
dan432cc5b2009-09-26 17:51:48 +0000775 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
dan1da40a32009-09-19 17:00:31 +0000776 Index *pIdx = 0; /* Foreign key index for pFKey */
777 SrcList *pSrc;
778 int *aiCol = 0;
779
dan32b09f22009-09-23 17:29:59 +0000780 if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
781 assert( regOld==0 && regNew!=0 );
782 /* Inserting a single row into a parent table cannot cause an immediate
783 ** foreign key violation. So do nothing in this case. */
danf0662562009-09-28 18:52:11 +0000784 continue;
dan1da40a32009-09-19 17:00:31 +0000785 }
786
danf0662562009-09-28 18:52:11 +0000787 if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){
788 if( !isIgnoreErrors || db->mallocFailed ) return;
789 continue;
790 }
dan1da40a32009-09-19 17:00:31 +0000791 assert( aiCol || pFKey->nCol==1 );
792
dan1da40a32009-09-19 17:00:31 +0000793 /* Create a SrcList structure containing a single table (the table
794 ** the foreign key that refers to this table is attached to). This
795 ** is required for the sqlite3WhereXXX() interface. */
796 pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
danf59c5ca2009-09-22 16:55:38 +0000797 if( pSrc ){
798 pSrc->a->pTab = pFKey->pFrom;
799 pSrc->a->pTab->nRef++;
800 pSrc->a->iCursor = pParse->nTab++;
801
dan32b09f22009-09-23 17:29:59 +0000802 if( regNew!=0 ){
dan9277efa2009-09-28 11:54:21 +0000803 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1);
danf59c5ca2009-09-22 16:55:38 +0000804 }
805 if( regOld!=0 ){
806 /* If there is a RESTRICT action configured for the current operation
dan8099ce62009-09-23 08:43:35 +0000807 ** on the parent table of this FK, then throw an exception
danf59c5ca2009-09-22 16:55:38 +0000808 ** immediately if the FK constraint is violated, even if this is a
809 ** deferred trigger. That's what RESTRICT means. To defer checking
810 ** the constraint, the FK should specify NO ACTION (represented
811 ** using OE_None). NO ACTION is the default. */
dan9277efa2009-09-28 11:54:21 +0000812 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1);
danf59c5ca2009-09-22 16:55:38 +0000813 }
814
danf59c5ca2009-09-22 16:55:38 +0000815 sqlite3SrcListDelete(db, pSrc);
dan1da40a32009-09-19 17:00:31 +0000816 }
dan1da40a32009-09-19 17:00:31 +0000817 sqlite3DbFree(db, aiCol);
818 }
819}
820
821#define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x)))
822
823/*
824** This function is called before generating code to update or delete a
dane7a94d82009-10-01 16:09:04 +0000825** row contained in table pTab.
dan1da40a32009-09-19 17:00:31 +0000826*/
827u32 sqlite3FkOldmask(
828 Parse *pParse, /* Parse context */
dane7a94d82009-10-01 16:09:04 +0000829 Table *pTab /* Table being modified */
dan1da40a32009-09-19 17:00:31 +0000830){
831 u32 mask = 0;
832 if( pParse->db->flags&SQLITE_ForeignKeys ){
833 FKey *p;
834 int i;
835 for(p=pTab->pFKey; p; p=p->pNextFrom){
dan32b09f22009-09-23 17:29:59 +0000836 for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom);
dan1da40a32009-09-19 17:00:31 +0000837 }
dan432cc5b2009-09-26 17:51:48 +0000838 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
dan1da40a32009-09-19 17:00:31 +0000839 Index *pIdx = 0;
danf0662562009-09-28 18:52:11 +0000840 locateFkeyIndex(pParse, pTab, p, &pIdx, 0);
dan1da40a32009-09-19 17:00:31 +0000841 if( pIdx ){
842 for(i=0; i<pIdx->nColumn; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]);
843 }
844 }
845 }
846 return mask;
847}
848
849/*
850** This function is called before generating code to update or delete a
dane7a94d82009-10-01 16:09:04 +0000851** row contained in table pTab. If the operation is a DELETE, then
852** parameter aChange is passed a NULL value. For an UPDATE, aChange points
853** to an array of size N, where N is the number of columns in table pTab.
854** If the i'th column is not modified by the UPDATE, then the corresponding
855** entry in the aChange[] array is set to -1. If the column is modified,
856** the value is 0 or greater. Parameter chngRowid is set to true if the
857** UPDATE statement modifies the rowid fields of the table.
dan1da40a32009-09-19 17:00:31 +0000858**
859** If any foreign key processing will be required, this function returns
860** true. If there is no foreign key related processing, this function
861** returns false.
862*/
863int sqlite3FkRequired(
864 Parse *pParse, /* Parse context */
865 Table *pTab, /* Table being modified */
dane7a94d82009-10-01 16:09:04 +0000866 int *aChange, /* Non-NULL for UPDATE operations */
867 int chngRowid /* True for UPDATE that affects rowid */
dan1da40a32009-09-19 17:00:31 +0000868){
869 if( pParse->db->flags&SQLITE_ForeignKeys ){
dane7a94d82009-10-01 16:09:04 +0000870 if( !aChange ){
871 /* A DELETE operation. Foreign key processing is required if the
872 ** table in question is either the child or parent table for any
873 ** foreign key constraint. */
874 return (sqlite3FkReferences(pTab) || pTab->pFKey);
875 }else{
876 /* This is an UPDATE. Foreign key processing is only required if the
877 ** operation modifies one or more child or parent key columns. */
878 int i;
879 FKey *p;
880
881 /* Check if any child key columns are being modified. */
882 for(p=pTab->pFKey; p; p=p->pNextFrom){
883 for(i=0; i<p->nCol; i++){
884 int iChildKey = p->aCol[i].iFrom;
885 if( aChange[iChildKey]>=0 ) return 1;
886 if( iChildKey==pTab->iPKey && chngRowid ) return 1;
887 }
888 }
889
890 /* Check if any parent key columns are being modified. */
891 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
892 for(i=0; i<p->nCol; i++){
893 char *zKey = p->aCol[i].zCol;
894 int iKey;
895 for(iKey=0; iKey<pTab->nCol; iKey++){
896 Column *pCol = &pTab->aCol[iKey];
897 if( (zKey ? !sqlite3StrICmp(pCol->zName, zKey) : pCol->isPrimKey) ){
898 if( aChange[iKey]>=0 ) return 1;
899 if( iKey==pTab->iPKey && chngRowid ) return 1;
900 }
901 }
902 }
903 }
904 }
dan1da40a32009-09-19 17:00:31 +0000905 }
906 return 0;
907}
908
dan8099ce62009-09-23 08:43:35 +0000909/*
910** This function is called when an UPDATE or DELETE operation is being
911** compiled on table pTab, which is the parent table of foreign-key pFKey.
912** If the current operation is an UPDATE, then the pChanges parameter is
913** passed a pointer to the list of columns being modified. If it is a
914** DELETE, pChanges is passed a NULL pointer.
915**
916** It returns a pointer to a Trigger structure containing a trigger
917** equivalent to the ON UPDATE or ON DELETE action specified by pFKey.
918** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is
919** returned (these actions require no special handling by the triggers
920** sub-system, code for them is created by fkScanChildren()).
921**
922** For example, if pFKey is the foreign key and pTab is table "p" in
923** the following schema:
924**
925** CREATE TABLE p(pk PRIMARY KEY);
926** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE);
927**
928** then the returned trigger structure is equivalent to:
929**
930** CREATE TRIGGER ... DELETE ON p BEGIN
931** DELETE FROM c WHERE ck = old.pk;
932** END;
933**
934** The returned pointer is cached as part of the foreign key object. It
935** is eventually freed along with the rest of the foreign key object by
936** sqlite3FkDelete().
937*/
dan1da40a32009-09-19 17:00:31 +0000938static Trigger *fkActionTrigger(
dan8099ce62009-09-23 08:43:35 +0000939 Parse *pParse, /* Parse context */
dan1da40a32009-09-19 17:00:31 +0000940 Table *pTab, /* Table being updated or deleted from */
941 FKey *pFKey, /* Foreign key to get action for */
942 ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */
943){
944 sqlite3 *db = pParse->db; /* Database handle */
dan29c7f9c2009-09-22 15:53:47 +0000945 int action; /* One of OE_None, OE_Cascade etc. */
946 Trigger *pTrigger; /* Trigger definition to return */
dan8099ce62009-09-23 08:43:35 +0000947 int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */
dan1da40a32009-09-19 17:00:31 +0000948
dan8099ce62009-09-23 08:43:35 +0000949 action = pFKey->aAction[iAction];
950 pTrigger = pFKey->apTrigger[iAction];
dan1da40a32009-09-19 17:00:31 +0000951
dan9277efa2009-09-28 11:54:21 +0000952 if( action!=OE_None && !pTrigger ){
dan29c7f9c2009-09-22 15:53:47 +0000953 u8 enableLookaside; /* Copy of db->lookaside.bEnabled */
dan8099ce62009-09-23 08:43:35 +0000954 char const *zFrom; /* Name of child table */
dan1da40a32009-09-19 17:00:31 +0000955 int nFrom; /* Length in bytes of zFrom */
dan29c7f9c2009-09-22 15:53:47 +0000956 Index *pIdx = 0; /* Parent key index for this FK */
957 int *aiCol = 0; /* child table cols -> parent key cols */
958 TriggerStep *pStep; /* First (only) step of trigger program */
959 Expr *pWhere = 0; /* WHERE clause of trigger step */
960 ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */
dan9277efa2009-09-28 11:54:21 +0000961 Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */
dan29c7f9c2009-09-22 15:53:47 +0000962 int i; /* Iterator variable */
drh788536b2009-09-23 03:01:58 +0000963 Expr *pWhen = 0; /* WHEN clause for the trigger */
dan1da40a32009-09-19 17:00:31 +0000964
965 if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0;
966 assert( aiCol || pFKey->nCol==1 );
967
dan1da40a32009-09-19 17:00:31 +0000968 for(i=0; i<pFKey->nCol; i++){
dan1da40a32009-09-19 17:00:31 +0000969 Token tOld = { "old", 3 }; /* Literal "old" token */
970 Token tNew = { "new", 3 }; /* Literal "new" token */
dan8099ce62009-09-23 08:43:35 +0000971 Token tFromCol; /* Name of column in child table */
972 Token tToCol; /* Name of column in parent table */
973 int iFromCol; /* Idx of column in child table */
dan29c7f9c2009-09-22 15:53:47 +0000974 Expr *pEq; /* tFromCol = OLD.tToCol */
dan1da40a32009-09-19 17:00:31 +0000975
976 iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
dana8f0bf62009-09-23 12:06:52 +0000977 assert( iFromCol>=0 );
dan1da40a32009-09-19 17:00:31 +0000978 tToCol.z = pIdx ? pTab->aCol[pIdx->aiColumn[i]].zName : "oid";
dana8f0bf62009-09-23 12:06:52 +0000979 tFromCol.z = pFKey->pFrom->aCol[iFromCol].zName;
dan1da40a32009-09-19 17:00:31 +0000980
981 tToCol.n = sqlite3Strlen30(tToCol.z);
982 tFromCol.n = sqlite3Strlen30(tFromCol.z);
983
dan652ac1d2009-09-29 16:38:59 +0000984 /* Create the expression "OLD.zToCol = zFromCol". It is important
985 ** that the "OLD.zToCol" term is on the LHS of the = operator, so
986 ** that the affinity and collation sequence associated with the
987 ** parent table are used for the comparison. */
dan1da40a32009-09-19 17:00:31 +0000988 pEq = sqlite3PExpr(pParse, TK_EQ,
dan1da40a32009-09-19 17:00:31 +0000989 sqlite3PExpr(pParse, TK_DOT,
990 sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
991 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
dan652ac1d2009-09-29 16:38:59 +0000992 , 0),
993 sqlite3PExpr(pParse, TK_ID, 0, 0, &tFromCol)
dan1da40a32009-09-19 17:00:31 +0000994 , 0);
dan29c7f9c2009-09-22 15:53:47 +0000995 pWhere = sqlite3ExprAnd(db, pWhere, pEq);
dan1da40a32009-09-19 17:00:31 +0000996
drh788536b2009-09-23 03:01:58 +0000997 /* For ON UPDATE, construct the next term of the WHEN clause.
998 ** The final WHEN clause will be like this:
999 **
1000 ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN)
1001 */
1002 if( pChanges ){
1003 pEq = sqlite3PExpr(pParse, TK_IS,
1004 sqlite3PExpr(pParse, TK_DOT,
1005 sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
1006 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol),
1007 0),
1008 sqlite3PExpr(pParse, TK_DOT,
1009 sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
1010 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol),
1011 0),
1012 0);
1013 pWhen = sqlite3ExprAnd(db, pWhen, pEq);
1014 }
1015
dan9277efa2009-09-28 11:54:21 +00001016 if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){
dan1da40a32009-09-19 17:00:31 +00001017 Expr *pNew;
1018 if( action==OE_Cascade ){
1019 pNew = sqlite3PExpr(pParse, TK_DOT,
1020 sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
1021 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
1022 , 0);
1023 }else if( action==OE_SetDflt ){
dan934ce302009-09-22 16:08:58 +00001024 Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt;
dan1da40a32009-09-19 17:00:31 +00001025 if( pDflt ){
1026 pNew = sqlite3ExprDup(db, pDflt, 0);
1027 }else{
1028 pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
1029 }
1030 }else{
1031 pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
1032 }
1033 pList = sqlite3ExprListAppend(pParse, pList, pNew);
1034 sqlite3ExprListSetName(pParse, pList, &tFromCol, 0);
1035 }
1036 }
dan29c7f9c2009-09-22 15:53:47 +00001037 sqlite3DbFree(db, aiCol);
dan1da40a32009-09-19 17:00:31 +00001038
dan9277efa2009-09-28 11:54:21 +00001039 zFrom = pFKey->pFrom->zName;
1040 nFrom = sqlite3Strlen30(zFrom);
1041
1042 if( action==OE_Restrict ){
1043 Token tFrom;
1044 Expr *pRaise;
1045
1046 tFrom.z = zFrom;
1047 tFrom.n = nFrom;
1048 pRaise = sqlite3Expr(db, TK_RAISE, "foreign key constraint failed");
1049 if( pRaise ){
1050 pRaise->affinity = OE_Abort;
1051 }
1052 pSelect = sqlite3SelectNew(pParse,
1053 sqlite3ExprListAppend(pParse, 0, pRaise),
1054 sqlite3SrcListAppend(db, 0, &tFrom, 0),
1055 pWhere,
1056 0, 0, 0, 0, 0, 0
1057 );
1058 pWhere = 0;
1059 }
1060
drh1f638ce2009-09-24 13:48:10 +00001061 /* In the current implementation, pTab->dbMem==0 for all tables except
1062 ** for temporary tables used to describe subqueries. And temporary
1063 ** tables do not have foreign key constraints. Hence, pTab->dbMem
1064 ** should always be 0 there.
1065 */
dan29c7f9c2009-09-22 15:53:47 +00001066 enableLookaside = db->lookaside.bEnabled;
drh46803c32009-09-24 14:27:33 +00001067 db->lookaside.bEnabled = 0;
dan29c7f9c2009-09-22 15:53:47 +00001068
dan29c7f9c2009-09-22 15:53:47 +00001069 pTrigger = (Trigger *)sqlite3DbMallocZero(db,
1070 sizeof(Trigger) + /* struct Trigger */
1071 sizeof(TriggerStep) + /* Single step in trigger program */
1072 nFrom + 1 /* Space for pStep->target.z */
1073 );
1074 if( pTrigger ){
1075 pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1];
1076 pStep->target.z = (char *)&pStep[1];
1077 pStep->target.n = nFrom;
1078 memcpy((char *)pStep->target.z, zFrom, nFrom);
1079
1080 pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
1081 pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE);
dan9277efa2009-09-28 11:54:21 +00001082 pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
drh788536b2009-09-23 03:01:58 +00001083 if( pWhen ){
1084 pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0, 0);
1085 pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
1086 }
dan29c7f9c2009-09-22 15:53:47 +00001087 }
1088
1089 /* Re-enable the lookaside buffer, if it was disabled earlier. */
1090 db->lookaside.bEnabled = enableLookaside;
1091
drh788536b2009-09-23 03:01:58 +00001092 sqlite3ExprDelete(db, pWhere);
1093 sqlite3ExprDelete(db, pWhen);
1094 sqlite3ExprListDelete(db, pList);
dan9277efa2009-09-28 11:54:21 +00001095 sqlite3SelectDelete(db, pSelect);
dan29c7f9c2009-09-22 15:53:47 +00001096 if( db->mallocFailed==1 ){
1097 fkTriggerDelete(db, pTrigger);
1098 return 0;
1099 }
dan1da40a32009-09-19 17:00:31 +00001100
dan9277efa2009-09-28 11:54:21 +00001101 switch( action ){
1102 case OE_Restrict:
1103 pStep->op = TK_SELECT;
1104 break;
1105 case OE_Cascade:
1106 if( !pChanges ){
1107 pStep->op = TK_DELETE;
1108 break;
1109 }
1110 default:
1111 pStep->op = TK_UPDATE;
1112 }
dan1da40a32009-09-19 17:00:31 +00001113 pStep->pTrig = pTrigger;
1114 pTrigger->pSchema = pTab->pSchema;
1115 pTrigger->pTabSchema = pTab->pSchema;
dan8099ce62009-09-23 08:43:35 +00001116 pFKey->apTrigger[iAction] = pTrigger;
1117 pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE);
dan1da40a32009-09-19 17:00:31 +00001118 }
1119
1120 return pTrigger;
1121}
1122
dan1da40a32009-09-19 17:00:31 +00001123/*
1124** This function is called when deleting or updating a row to implement
1125** any required CASCADE, SET NULL or SET DEFAULT actions.
1126*/
1127void sqlite3FkActions(
1128 Parse *pParse, /* Parse context */
1129 Table *pTab, /* Table being updated or deleted from */
1130 ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */
1131 int regOld /* Address of array containing old row */
1132){
1133 /* If foreign-key support is enabled, iterate through all FKs that
1134 ** refer to table pTab. If there is an action associated with the FK
1135 ** for this operation (either update or delete), invoke the associated
1136 ** trigger sub-program. */
1137 if( pParse->db->flags&SQLITE_ForeignKeys ){
1138 FKey *pFKey; /* Iterator variable */
dan432cc5b2009-09-26 17:51:48 +00001139 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
dan1da40a32009-09-19 17:00:31 +00001140 Trigger *pAction = fkActionTrigger(pParse, pTab, pFKey, pChanges);
1141 if( pAction ){
1142 sqlite3CodeRowTriggerDirect(pParse, pAction, pTab, regOld, OE_Abort, 0);
1143 }
1144 }
1145 }
1146}
1147
dan75cbd982009-09-21 16:06:03 +00001148#endif /* ifndef SQLITE_OMIT_TRIGGER */
1149
dan1da40a32009-09-19 17:00:31 +00001150/*
1151** Free all memory associated with foreign key definitions attached to
1152** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
1153** hash table.
1154*/
1155void sqlite3FkDelete(Table *pTab){
1156 FKey *pFKey; /* Iterator variable */
1157 FKey *pNext; /* Copy of pFKey->pNextFrom */
1158
1159 for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){
1160
1161 /* Remove the FK from the fkeyHash hash table. */
1162 if( pFKey->pPrevTo ){
1163 pFKey->pPrevTo->pNextTo = pFKey->pNextTo;
1164 }else{
1165 void *data = (void *)pFKey->pNextTo;
1166 const char *z = (data ? pFKey->pNextTo->zTo : pFKey->zTo);
1167 sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, sqlite3Strlen30(z), data);
1168 }
1169 if( pFKey->pNextTo ){
1170 pFKey->pNextTo->pPrevTo = pFKey->pPrevTo;
1171 }
1172
1173 /* Delete any triggers created to implement actions for this FK. */
dan75cbd982009-09-21 16:06:03 +00001174#ifndef SQLITE_OMIT_TRIGGER
dan8099ce62009-09-23 08:43:35 +00001175 fkTriggerDelete(pTab->dbMem, pFKey->apTrigger[0]);
1176 fkTriggerDelete(pTab->dbMem, pFKey->apTrigger[1]);
dan75cbd982009-09-21 16:06:03 +00001177#endif
dan1da40a32009-09-19 17:00:31 +00001178
1179 /* Delete the memory allocated for the FK structure. */
1180 pNext = pFKey->pNextFrom;
1181 sqlite3DbFree(pTab->dbMem, pFKey);
1182 }
1183}
dan75cbd982009-09-21 16:06:03 +00001184#endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */