drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 1 | /* |
| 2 | ** 2004 April 13 |
| 3 | ** |
| 4 | ** The author disclaims copyright to this source code. In place of |
| 5 | ** a legal notice, here is a blessing: |
| 6 | ** |
| 7 | ** May you do good and not evil. |
| 8 | ** May you find forgiveness for yourself and forgive others. |
| 9 | ** May you share freely, never taking more than you give. |
| 10 | ** |
| 11 | ************************************************************************* |
| 12 | ** This file contains routines used to translate between UTF-8, |
| 13 | ** UTF-16, UTF-16BE, and UTF-16LE. |
| 14 | ** |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame^] | 15 | ** $Id: utf.c,v 1.2 2004/05/06 23:37:53 danielk1977 Exp $ |
drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 16 | ** |
| 17 | ** Notes on UTF-8: |
| 18 | ** |
| 19 | ** Byte-0 Byte-1 Byte-2 Byte-3 Value |
| 20 | ** 0xxxxxxx 00000000 00000000 0xxxxxxx |
| 21 | ** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx |
| 22 | ** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx |
| 23 | ** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx |
| 24 | ** |
| 25 | ** |
| 26 | ** Notes on UTF-16: (with wwww+1==uuuuu) |
| 27 | ** |
| 28 | ** Word-0 Word-1 Value |
| 29 | ** 110110wwwwxxxxxx 110111yyyyyyyyyy 000uuuuu xxxxxxyy yyyyyyyy |
| 30 | ** xxxxxxxxyyyyyyyy 00000000 xxxxxxxx yyyyyyyy |
| 31 | ** |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame^] | 32 | ** |
drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 33 | ** BOM or Byte Order Mark: |
| 34 | ** 0xff 0xfe little-endian utf-16 follows |
| 35 | ** 0xfe 0xff big-endian utf-16 follows |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame^] | 36 | ** |
| 37 | ** |
| 38 | ** Handling of malformed strings: |
| 39 | ** |
| 40 | ** SQLite accepts and processes malformed strings without an error wherever |
| 41 | ** possible. However this is not possible when converting between UTF-8 and |
| 42 | ** UTF-16. |
| 43 | ** |
| 44 | ** When converting malformed UTF-8 strings to UTF-16, one instance of the |
| 45 | ** replacement character U+FFFD for each byte that cannot be interpeted as |
| 46 | ** part of a valid unicode character. |
| 47 | ** |
| 48 | ** When converting malformed UTF-16 strings to UTF-8, one instance of the |
| 49 | ** replacement character U+FFFD for each pair of bytes that cannot be |
| 50 | ** interpeted as part of a valid unicode character. |
drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 51 | */ |
| 52 | |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame^] | 53 | #include <assert.h> |
| 54 | #include <unistd.h> |
| 55 | #include "sqliteInt.h" |
| 56 | |
| 57 | typedef struct UtfString UtfString; |
| 58 | struct UtfString { |
| 59 | unsigned char *pZ; /* Raw string data */ |
| 60 | int n; /* Allocated length of pZ in bytes */ |
| 61 | int c; /* Number of pZ bytes already read or written */ |
| 62 | }; |
| 63 | |
| 64 | /* TODO: Implement this macro in os.h. It should be 1 on big-endian |
| 65 | ** machines, and 0 on little-endian. |
| 66 | */ |
| 67 | #define SQLITE3_NATIVE_BIGENDIAN 0 |
| 68 | |
| 69 | #if SQLITE3_NATIVE_BIGENDIAN == 1 |
| 70 | #define BOM_BIGENDIAN 0x0000FFFE |
| 71 | #define BOM_LITTLEENDIAN 0x0000FEFF |
| 72 | #else |
| 73 | #define BOM_BIGENDIAN 0x0000FEFF |
| 74 | #define BOM_LITTLEENDIAN 0x0000FFFE |
| 75 | #endif |
| 76 | |
| 77 | /* |
| 78 | ** These two macros are used to interpret the first two bytes of the |
| 79 | ** unsigned char array pZ as a 16-bit unsigned int. BE16() for a big-endian |
| 80 | ** interpretation, LE16() for little-endian. |
| 81 | */ |
| 82 | #define BE16(pZ) (((u16)((pZ)[0])<<8) + (u16)((pZ)[1])) |
| 83 | #define LE16(pZ) (((u16)((pZ)[1])<<8) + (u16)((pZ)[0])) |
| 84 | |
| 85 | /* |
| 86 | ** READ_16 interprets the first two bytes of the unsigned char array pZ |
| 87 | ** as a 16-bit unsigned int. If big_endian is non-zero the intepretation |
| 88 | ** is big-endian, otherwise little-endian. |
| 89 | */ |
| 90 | #define READ_16(pZ,big_endian) (big_endian?BE16(pZ):LE16(pZ)) |
| 91 | |
| 92 | /* |
| 93 | ** Read the BOM from the start of *pStr, if one is present. Return zero |
| 94 | ** for little-endian, non-zero for big-endian. If no BOM is present, return |
| 95 | ** the machines native byte order. |
| 96 | ** |
| 97 | ** Return values: |
| 98 | ** 1 -> big-endian string |
| 99 | ** 0 -> little-endian string |
| 100 | */ |
| 101 | static int readUtf16Bom(UtfString *pStr){ |
| 102 | /* The BOM must be the first thing read from the string */ |
| 103 | assert( pStr->c==0 ); |
| 104 | |
| 105 | /* If the string data consists of 1 byte or less, the BOM will make no |
| 106 | ** difference anyway. In this case just fall through to the default case |
| 107 | ** and return the native byte-order for this machine. |
| 108 | ** |
| 109 | ** Otherwise, check the first 2 bytes of the string to see if a BOM is |
| 110 | ** present. |
| 111 | */ |
| 112 | if( pStr->n>1 ){ |
| 113 | u32 bom = BE16(pStr->pZ); |
| 114 | if( bom==BOM_BIGENDIAN ){ |
| 115 | pStr->c = 2; |
| 116 | return 1; |
| 117 | } |
| 118 | if( bom==BOM_LITTLEENDIAN ){ |
| 119 | pStr->c = 2; |
| 120 | return 0; |
| 121 | } |
| 122 | } |
| 123 | |
| 124 | return SQLITE3_NATIVE_BIGENDIAN; |
| 125 | } |
| 126 | |
| 127 | |
| 128 | /* |
| 129 | ** Read a single unicode character from the UTF-8 encoded string *pStr. The |
| 130 | ** value returned is a unicode scalar value. In the case of malformed |
| 131 | ** strings, the unicode replacement character U+FFFD may be returned. |
| 132 | */ |
| 133 | static u32 readUtf8(UtfString *pStr){ |
| 134 | struct Utf8TblRow { |
| 135 | u8 b1_mask; |
| 136 | u8 b1_masked_val; |
| 137 | u8 b1_value_mask; |
| 138 | int trailing_bytes; |
| 139 | }; |
| 140 | static const struct Utf8TblRow utf8tbl[] = { |
| 141 | { 0x80, 0x00, 0x7F, 0 }, |
| 142 | { 0xE0, 0xC0, 0x1F, 1 }, |
| 143 | { 0xF0, 0xE0, 0x0F, 2 }, |
| 144 | { 0xF8, 0xF0, 0x0E, 3 }, |
| 145 | { 0, 0, 0, 0} |
| 146 | }; |
| 147 | |
| 148 | u8 b1; /* First byte of the potentially multi-byte utf-8 character */ |
| 149 | u32 ret = 0; /* Return value */ |
| 150 | int ii; |
| 151 | struct Utf8TblRow const *pRow; |
| 152 | |
| 153 | pRow = &(utf8tbl[0]); |
| 154 | |
| 155 | b1 = pStr->pZ[pStr->c]; |
| 156 | pStr->c++; |
| 157 | while( pRow->b1_mask && (b1&pRow->b1_mask)!=pRow->b1_masked_val ){ |
| 158 | pRow++; |
| 159 | } |
| 160 | if( !pRow->b1_mask ){ |
| 161 | return 0xFFFD; |
| 162 | } |
| 163 | |
| 164 | ret = (u32)(b1&pRow->b1_value_mask); |
| 165 | for( ii=0; ii<pRow->trailing_bytes; ii++ ){ |
| 166 | u8 b = pStr->pZ[pStr->c+ii]; |
| 167 | if( (b&0xC0)!=0x80 ){ |
| 168 | return 0xFFFD; |
| 169 | } |
| 170 | ret = (ret<<6) + (u32)(b&0x3F); |
| 171 | } |
| 172 | |
| 173 | pStr->c += pRow->trailing_bytes; |
| 174 | return ret; |
| 175 | } |
| 176 | |
| 177 | /* |
| 178 | ** Write the unicode character 'code' to the string pStr using UTF-8 |
| 179 | ** encoding. SQLITE_NOMEM may be returned if sqlite3Malloc() fails. |
| 180 | */ |
| 181 | static int writeUtf8(UtfString *pStr, u32 code){ |
| 182 | struct Utf8WriteTblRow { |
| 183 | u32 max_code; |
| 184 | int trailing_bytes; |
| 185 | u8 b1_and_mask; |
| 186 | u8 b1_or_mask; |
| 187 | }; |
| 188 | static const struct Utf8WriteTblRow utf8tbl[] = { |
| 189 | {0x0000007F, 0, 0x7F, 0x00}, |
| 190 | {0x000007FF, 1, 0xDF, 0xC0}, |
| 191 | {0x0000FFFF, 2, 0xEF, 0xE0}, |
| 192 | {0x0010FFFF, 3, 0xF7, 0xF0}, |
| 193 | {0x00000000, 0, 0x00, 0x00} |
| 194 | }; |
| 195 | static const struct Utf8WriteTblRow *pRow = &utf8tbl[0]; |
| 196 | |
| 197 | while( code<=pRow->max_code ){ |
| 198 | assert( pRow->max_code ); |
| 199 | pRow++; |
| 200 | } |
| 201 | |
| 202 | /* Ensure there is enough room left in the output buffer to write |
| 203 | ** this UTF-8 character. |
| 204 | */ |
| 205 | assert( (pStr->n-pStr->c)>=(pRow->trailing_bytes+1) ); |
| 206 | |
| 207 | /* Write the UTF-8 encoded character to pStr. All cases below are |
| 208 | ** intentionally fall-through. |
| 209 | */ |
| 210 | switch( pRow->trailing_bytes ){ |
| 211 | case 3: |
| 212 | pStr->pZ[pStr->c+3] = (((u8)code)&0x3F)|0x80; |
| 213 | code = code>>6; |
| 214 | case 2: |
| 215 | pStr->pZ[pStr->c+2] = (((u8)code)&0x3F)|0x80; |
| 216 | code = code>>6; |
| 217 | case 1: |
| 218 | pStr->pZ[pStr->c+1] = (((u8)code)&0x3F)|0x80; |
| 219 | code = code>>6; |
| 220 | case 0: |
| 221 | pStr->pZ[pStr->c] = (((u8)code)&(pRow->b1_and_mask))|(pRow->b1_or_mask); |
| 222 | } |
| 223 | pStr->c += (pRow->trailing_bytes + 1); |
| 224 | |
| 225 | return 0; |
| 226 | } |
| 227 | |
| 228 | /* |
| 229 | ** Read a single unicode character from the UTF-16 encoded string *pStr. The |
| 230 | ** value returned is a unicode scalar value. In the case of malformed |
| 231 | ** strings, the unicode replacement character U+FFFD may be returned. |
| 232 | ** |
| 233 | ** If big_endian is true, the string is assumed to be UTF-16BE encoded. |
| 234 | ** Otherwise, it is UTF-16LE encoded. |
| 235 | */ |
| 236 | static u32 readUtf16(UtfString *pStr, int big_endian){ |
| 237 | u32 code_point; /* the first code-point in the character */ |
| 238 | |
| 239 | /* If there is only one byte of data left in the string, return the |
| 240 | ** replacement character. |
| 241 | */ |
| 242 | if( (pStr->n-pStr->c)==1 ){ |
| 243 | pStr->c++; |
| 244 | return (int)0xFFFD; |
| 245 | } |
| 246 | |
| 247 | code_point = READ_16(&(pStr->pZ[pStr->c]), big_endian); |
| 248 | pStr->c += 2; |
| 249 | |
| 250 | /* If this is a non-surrogate code-point, just cast it to an int and |
| 251 | ** return the code-point value. |
| 252 | */ |
| 253 | if( code_point<0xD800 || code_point>0xE000 ){ |
| 254 | return code_point; |
| 255 | } |
| 256 | |
| 257 | /* If this is a trailing surrogate code-point, then the string is |
| 258 | ** malformed; return the replacement character. |
| 259 | */ |
| 260 | if( code_point>0xDBFF ){ |
| 261 | return 0xFFFD; |
| 262 | } |
| 263 | |
| 264 | /* The code-point just read is a leading surrogate code-point. If their |
| 265 | ** is not enough data left or the next code-point is not a trailing |
| 266 | ** surrogate, return the replacement character. |
| 267 | */ |
| 268 | if( (pStr->n-pStr->c)>1 ){ |
| 269 | u32 code_point2 = READ_16(&pStr->pZ[pStr->c], big_endian); |
| 270 | if( code_point2<0xDC00 || code_point>0xDFFF ){ |
| 271 | return 0xFFFD; |
| 272 | } |
| 273 | pStr->c += 2; |
| 274 | |
| 275 | return ( |
| 276 | (((code_point&0x03C0)+0x0040)<<16) + /* uuuuu */ |
| 277 | ((code_point&0x003F)<<10) + /* xxxxxx */ |
| 278 | (code_point2&0x03FF) /* yy yyyyyyyy */ |
| 279 | ); |
| 280 | |
| 281 | }else{ |
| 282 | return (int)0xFFFD; |
| 283 | } |
| 284 | |
| 285 | /* not reached */ |
| 286 | } |
| 287 | |
| 288 | static int writeUtf16(UtfString *pStr, int code, int big_endian){ |
| 289 | int bytes; |
| 290 | unsigned char *hi_byte; |
| 291 | unsigned char *lo_byte; |
| 292 | |
| 293 | bytes = (code>0x0000FFFF?4:2); |
| 294 | |
| 295 | /* Ensure there is enough room left in the output buffer to write |
| 296 | ** this UTF-8 character. |
| 297 | */ |
| 298 | assert( (pStr->n-pStr->c)>=bytes ); |
| 299 | |
| 300 | /* Initialise hi_byte and lo_byte to point at the locations into which |
| 301 | ** the MSB and LSB of the (first) 16-bit unicode code-point written for |
| 302 | ** this character. |
| 303 | */ |
| 304 | hi_byte = (big_endian?&pStr->pZ[pStr->c]:&pStr->pZ[pStr->c+1]); |
| 305 | lo_byte = (big_endian?&pStr->pZ[pStr->c+1]:&pStr->pZ[pStr->c]); |
| 306 | |
| 307 | if( bytes==2 ){ |
| 308 | *hi_byte = (u8)((code&0x0000FF00)>>8); |
| 309 | *lo_byte = (u8)(code&0x000000FF); |
| 310 | }else{ |
| 311 | u32 wrd; |
| 312 | wrd = ((((code&0x001F0000)-0x00010000)+(code&0x0000FC00))>>10)|0x0000D800; |
| 313 | *hi_byte = (u8)((wrd&0x0000FF00)>>8); |
| 314 | *lo_byte = (u8)(wrd&0x000000FF); |
| 315 | |
| 316 | wrd = (code&0x000003FF)|0x0000DC00; |
| 317 | *(hi_byte+2) = (u8)((wrd&0x0000FF00)>>8); |
| 318 | *(lo_byte+2) = (u8)(wrd&0x000000FF); |
| 319 | } |
| 320 | |
| 321 | pStr->c += bytes; |
| 322 | |
| 323 | return 0; |
| 324 | } |
| 325 | |
| 326 | /* |
| 327 | ** Return the number of bytes up to (but not including) the first \u0000 |
| 328 | ** character in *pStr. |
| 329 | */ |
| 330 | static int utf16Bytelen(const unsigned char *pZ){ |
| 331 | const unsigned char *pC1 = pZ; |
| 332 | const unsigned char *pC2 = pZ+1; |
| 333 | while( *pC1 || *pC2 ){ |
| 334 | pC1 += 2; |
| 335 | pC2 += 2; |
| 336 | } |
| 337 | return pC1-pZ; |
| 338 | } |
| 339 | |
drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 340 | /* |
| 341 | ** Convert a string in UTF-16 native byte (or with a Byte-order-mark or |
| 342 | ** "BOM") into a UTF-8 string. The UTF-8 string is written into space |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame^] | 343 | ** obtained from sqlite3Malloc() and must be released by the calling function. |
drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 344 | ** |
| 345 | ** The parameter N is the number of bytes in the UTF-16 string. If N is |
| 346 | ** negative, the entire string up to the first \u0000 character is translated. |
| 347 | ** |
| 348 | ** The returned UTF-8 string is always \000 terminated. |
| 349 | */ |
| 350 | unsigned char *sqlite3utf16to8(const void *pData, int N){ |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame^] | 351 | UtfString in; |
| 352 | UtfString out; |
| 353 | int big_endian; |
| 354 | |
| 355 | out.pZ = 0; |
| 356 | |
| 357 | in.pZ = (unsigned char *)pData; |
| 358 | in.n = N; |
| 359 | in.c = 0; |
| 360 | |
| 361 | if( in.n<0 ){ |
| 362 | in.n = utf16Bytelen(in.pZ); |
| 363 | } |
| 364 | |
| 365 | /* A UTF-8 encoding of a unicode string can require at most 1.5 times as |
| 366 | ** much space to store as the same string encoded using UTF-16. Allocate |
| 367 | ** this now. |
| 368 | */ |
| 369 | out.n = (in.n*1.5) + 1; |
| 370 | out.pZ = sqliteMalloc(in.n); |
| 371 | if( !out.pZ ){ |
| 372 | return 0; |
| 373 | } |
| 374 | out.c = 0; |
| 375 | |
| 376 | big_endian = readUtf16Bom(&in); |
| 377 | while( in.c<in.n ){ |
| 378 | writeUtf8(&out, readUtf16(&in, big_endian)); |
| 379 | } |
| 380 | |
| 381 | /* Add the NULL-terminator character */ |
| 382 | assert( out.c<out.n ); |
| 383 | out.pZ[out.c] = 0x00; |
| 384 | |
| 385 | return out.pZ; |
| 386 | } |
| 387 | |
| 388 | static void *utf8toUtf16(const unsigned char *pIn, int N, int big_endian){ |
| 389 | UtfString in; |
| 390 | UtfString out; |
| 391 | |
| 392 | in.pZ = (unsigned char *)pIn; |
| 393 | in.n = N; |
| 394 | in.c = 0; |
| 395 | |
| 396 | if( in.n<0 ){ |
| 397 | in.n = strlen(in.pZ); |
| 398 | } |
| 399 | |
| 400 | /* A UTF-16 encoding of a unicode string can require at most twice as |
| 401 | ** much space to store as the same string encoded using UTF-8. Allocate |
| 402 | ** this now. |
| 403 | */ |
| 404 | out.n = (in.n*2) + 2; |
| 405 | out.pZ = sqliteMalloc(in.n); |
| 406 | if( !out.pZ ){ |
| 407 | return 0; |
| 408 | } |
| 409 | out.c = 0; |
| 410 | |
| 411 | while( in.c<in.n ){ |
| 412 | writeUtf16(&out, readUtf8(&in), big_endian); |
| 413 | } |
| 414 | |
| 415 | /* Add the NULL-terminator character */ |
| 416 | assert( (out.c+1)<out.n ); |
| 417 | out.pZ[out.c] = 0x00; |
| 418 | out.pZ[out.c+1] = 0x00; |
| 419 | |
| 420 | return out.pZ; |
| 421 | } |
| 422 | |
| 423 | /* |
| 424 | ** Translate UTF-8 to UTF-16BE or UTF-16LE |
| 425 | */ |
| 426 | void *sqlite3utf8to16be(const unsigned char *pIn, int N){ |
| 427 | return utf8toUtf16(pIn, N, 1); |
| 428 | } |
| 429 | |
| 430 | void *sqlite3utf8to16le(const unsigned char *pIn, int N){ |
| 431 | return utf8toUtf16(pIn, N, 0); |
| 432 | } |
| 433 | |
| 434 | /* |
| 435 | ** This routine does the work for sqlite3utf16to16le() and |
| 436 | ** sqlite3utf16to16be(). If big_endian is 1 the input string is |
| 437 | ** transformed in place to UTF-16BE encoding. If big_endian is 0 then |
| 438 | ** the input is transformed to UTF-16LE. |
| 439 | ** |
| 440 | ** Unless the first two bytes of the input string is a BOM, the input is |
| 441 | ** assumed to be UTF-16 encoded using the machines native byte ordering. |
| 442 | */ |
| 443 | static void utf16to16(void *pData, int N, int big_endian){ |
| 444 | UtfString inout; |
| 445 | inout.pZ = (unsigned char *)pData; |
| 446 | inout.c = 0; |
| 447 | inout.n = N; |
| 448 | |
| 449 | if( inout.n<0 ){ |
| 450 | inout.n = utf16Bytelen(inout.pZ); |
| 451 | } |
| 452 | |
| 453 | if( readUtf16Bom(&inout)!=big_endian ){ |
| 454 | swab(&inout.pZ[inout.c], inout.pZ, inout.n-inout.c); |
| 455 | }else if( inout.c ){ |
| 456 | memmove(inout.pZ, &inout.pZ[inout.c], inout.n-inout.c); |
| 457 | } |
drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 458 | } |
| 459 | |
| 460 | /* |
| 461 | ** Convert a string in UTF-16 native byte or with a BOM into a UTF-16LE |
| 462 | ** string. The conversion occurs in-place. The output overwrites the |
| 463 | ** input. N bytes are converted. If N is negative everything is converted |
| 464 | ** up to the first \u0000 character. |
| 465 | ** |
| 466 | ** If the native byte order is little-endian and there is no BOM, then |
| 467 | ** this routine is a no-op. If there is a BOM at the start of the string, |
| 468 | ** it is removed. |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame^] | 469 | ** |
drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 470 | ** Translation from UTF-16LE to UTF-16BE and back again is accomplished |
| 471 | ** using the library function swab(). |
| 472 | */ |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame^] | 473 | void sqlite3utf16to16le(void *pData, int N){ |
| 474 | utf16to16(pData, N, 0); |
| 475 | } |
drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 476 | |
| 477 | /* |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame^] | 478 | ** Convert a string in UTF-16 native byte or with a BOM into a UTF-16BE |
| 479 | ** string. The conversion occurs in-place. The output overwrites the |
| 480 | ** input. N bytes are converted. If N is negative everything is converted |
| 481 | ** up to the first \u0000 character. |
| 482 | ** |
| 483 | ** If the native byte order is little-endian and there is no BOM, then |
| 484 | ** this routine is a no-op. If there is a BOM at the start of the string, |
| 485 | ** it is removed. |
| 486 | ** |
| 487 | ** Translation from UTF-16LE to UTF-16BE and back again is accomplished |
| 488 | ** using the library function swab(). |
drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 489 | */ |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame^] | 490 | void sqlite3utf16to16be(void *pData, int N){ |
| 491 | utf16to16(pData, N, 1); |
drh | a5d14fe | 2004-05-04 15:00:46 +0000 | [diff] [blame] | 492 | } |
danielk1977 | 998b56c | 2004-05-06 23:37:52 +0000 | [diff] [blame^] | 493 | |