blob: dfd158bfc5979c40dbe6f54a6763e9b6a93cdf6d [file] [log] [blame]
dan1da40a32009-09-19 17:00:31 +00001/*
2**
3** The author disclaims copyright to this source code. In place of
4** a legal notice, here is a blessing:
5**
6** May you do good and not evil.
7** May you find forgiveness for yourself and forgive others.
8** May you share freely, never taking more than you give.
9**
10*************************************************************************
11** This file contains code used by the compiler to add foreign key
12** support to compiled SQL statements.
13*/
14#include "sqliteInt.h"
15
16#ifndef SQLITE_OMIT_FOREIGN_KEY
dan75cbd982009-09-21 16:06:03 +000017#ifndef SQLITE_OMIT_TRIGGER
dan1da40a32009-09-19 17:00:31 +000018
19/*
20** Deferred and Immediate FKs
21** --------------------------
22**
23** Foreign keys in SQLite come in two flavours: deferred and immediate.
dan8a2fff72009-09-23 18:07:22 +000024** If an immediate foreign key constraint is violated, SQLITE_CONSTRAINT
25** is returned and the current statement transaction rolled back. If a
dan1da40a32009-09-19 17:00:31 +000026** deferred foreign key constraint is violated, no action is taken
27** immediately. However if the application attempts to commit the
28** transaction before fixing the constraint violation, the attempt fails.
29**
30** Deferred constraints are implemented using a simple counter associated
31** with the database handle. The counter is set to zero each time a
32** database transaction is opened. Each time a statement is executed
33** that causes a foreign key violation, the counter is incremented. Each
34** time a statement is executed that removes an existing violation from
35** the database, the counter is decremented. When the transaction is
36** committed, the commit fails if the current value of the counter is
37** greater than zero. This scheme has two big drawbacks:
38**
39** * When a commit fails due to a deferred foreign key constraint,
40** there is no way to tell which foreign constraint is not satisfied,
41** or which row it is not satisfied for.
42**
43** * If the database contains foreign key violations when the
44** transaction is opened, this may cause the mechanism to malfunction.
45**
46** Despite these problems, this approach is adopted as it seems simpler
47** than the alternatives.
48**
49** INSERT operations:
50**
dan8099ce62009-09-23 08:43:35 +000051** I.1) For each FK for which the table is the child table, search
dan8a2fff72009-09-23 18:07:22 +000052** the parent table for a match. If none is found increment the
53** constraint counter.
dan1da40a32009-09-19 17:00:31 +000054**
dan8a2fff72009-09-23 18:07:22 +000055** I.2) For each FK for which the table is the parent table,
dan8099ce62009-09-23 08:43:35 +000056** search the child table for rows that correspond to the new
57** row in the parent table. Decrement the counter for each row
dan1da40a32009-09-19 17:00:31 +000058** found (as the constraint is now satisfied).
59**
60** DELETE operations:
61**
dan8a2fff72009-09-23 18:07:22 +000062** D.1) For each FK for which the table is the child table,
dan8099ce62009-09-23 08:43:35 +000063** search the parent table for a row that corresponds to the
64** deleted row in the child table. If such a row is not found,
dan1da40a32009-09-19 17:00:31 +000065** decrement the counter.
66**
dan8099ce62009-09-23 08:43:35 +000067** D.2) For each FK for which the table is the parent table, search
68** the child table for rows that correspond to the deleted row
dan8a2fff72009-09-23 18:07:22 +000069** in the parent table. For each found increment the counter.
dan1da40a32009-09-19 17:00:31 +000070**
71** UPDATE operations:
72**
73** An UPDATE command requires that all 4 steps above are taken, but only
74** for FK constraints for which the affected columns are actually
75** modified (values must be compared at runtime).
76**
77** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2.
78** This simplifies the implementation a bit.
79**
80** For the purposes of immediate FK constraints, the OR REPLACE conflict
81** resolution is considered to delete rows before the new row is inserted.
82** If a delete caused by OR REPLACE violates an FK constraint, an exception
83** is thrown, even if the FK constraint would be satisfied after the new
84** row is inserted.
85**
danbd747832009-09-25 12:00:01 +000086** Immediate constraints are usually handled similarly. The only difference
87** is that the counter used is stored as part of each individual statement
88** object (struct Vdbe). If, after the statement has run, its immediate
89** constraint counter is greater than zero, it returns SQLITE_CONSTRAINT
90** and the statement transaction is rolled back. An exception is an INSERT
91** statement that inserts a single row only (no triggers). In this case,
92** instead of using a counter, an exception is thrown immediately if the
93** INSERT violates a foreign key constraint. This is necessary as such
94** an INSERT does not open a statement transaction.
95**
dan1da40a32009-09-19 17:00:31 +000096** TODO: How should dropping a table be handled? How should renaming a
97** table be handled?
dan8099ce62009-09-23 08:43:35 +000098**
99**
dan1da40a32009-09-19 17:00:31 +0000100** Query API Notes
101** ---------------
102**
103** Before coding an UPDATE or DELETE row operation, the code-generator
104** for those two operations needs to know whether or not the operation
105** requires any FK processing and, if so, which columns of the original
106** row are required by the FK processing VDBE code (i.e. if FKs were
107** implemented using triggers, which of the old.* columns would be
108** accessed). No information is required by the code-generator before
dan8099ce62009-09-23 08:43:35 +0000109** coding an INSERT operation. The functions used by the UPDATE/DELETE
110** generation code to query for this information are:
dan1da40a32009-09-19 17:00:31 +0000111**
dan8099ce62009-09-23 08:43:35 +0000112** sqlite3FkRequired() - Test to see if FK processing is required.
113** sqlite3FkOldmask() - Query for the set of required old.* columns.
114**
115**
116** Externally accessible module functions
117** --------------------------------------
118**
119** sqlite3FkCheck() - Check for foreign key violations.
120** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions.
121** sqlite3FkDelete() - Delete an FKey structure.
dan1da40a32009-09-19 17:00:31 +0000122*/
123
124/*
125** VDBE Calling Convention
126** -----------------------
127**
128** Example:
129**
130** For the following INSERT statement:
131**
132** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c);
133** INSERT INTO t1 VALUES(1, 2, 3.1);
134**
135** Register (x): 2 (type integer)
136** Register (x+1): 1 (type integer)
137** Register (x+2): NULL (type NULL)
138** Register (x+3): 3.1 (type real)
139*/
140
141/*
dan8099ce62009-09-23 08:43:35 +0000142** A foreign key constraint requires that the key columns in the parent
dan1da40a32009-09-19 17:00:31 +0000143** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
dan8099ce62009-09-23 08:43:35 +0000144** Given that pParent is the parent table for foreign key constraint pFKey,
145** search the schema a unique index on the parent key columns.
dan1da40a32009-09-19 17:00:31 +0000146**
dan8099ce62009-09-23 08:43:35 +0000147** If successful, zero is returned. If the parent key is an INTEGER PRIMARY
148** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx
149** is set to point to the unique index.
150**
151** If the parent key consists of a single column (the foreign key constraint
152** is not a composite foreign key), output variable *paiCol is set to NULL.
153** Otherwise, it is set to point to an allocated array of size N, where
154** N is the number of columns in the parent key. The first element of the
155** array is the index of the child table column that is mapped by the FK
156** constraint to the parent table column stored in the left-most column
157** of index *ppIdx. The second element of the array is the index of the
158** child table column that corresponds to the second left-most column of
159** *ppIdx, and so on.
160**
161** If the required index cannot be found, either because:
162**
163** 1) The named parent key columns do not exist, or
164**
165** 2) The named parent key columns do exist, but are not subject to a
166** UNIQUE or PRIMARY KEY constraint, or
167**
168** 3) No parent key columns were provided explicitly as part of the
169** foreign key definition, and the parent table does not have a
170** PRIMARY KEY, or
171**
172** 4) No parent key columns were provided explicitly as part of the
173** foreign key definition, and the PRIMARY KEY of the parent table
174** consists of a a different number of columns to the child key in
175** the child table.
176**
177** then non-zero is returned, and a "foreign key mismatch" error loaded
178** into pParse. If an OOM error occurs, non-zero is returned and the
179** pParse->db->mallocFailed flag is set.
dan1da40a32009-09-19 17:00:31 +0000180*/
181static int locateFkeyIndex(
182 Parse *pParse, /* Parse context to store any error in */
dan8099ce62009-09-23 08:43:35 +0000183 Table *pParent, /* Parent table of FK constraint pFKey */
dan1da40a32009-09-19 17:00:31 +0000184 FKey *pFKey, /* Foreign key to find index for */
dan8099ce62009-09-23 08:43:35 +0000185 Index **ppIdx, /* OUT: Unique index on parent table */
dan1da40a32009-09-19 17:00:31 +0000186 int **paiCol /* OUT: Map of index columns in pFKey */
187){
dan8099ce62009-09-23 08:43:35 +0000188 Index *pIdx = 0; /* Value to return via *ppIdx */
189 int *aiCol = 0; /* Value to return via *paiCol */
190 int nCol = pFKey->nCol; /* Number of columns in parent key */
191 char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */
dan1da40a32009-09-19 17:00:31 +0000192
193 /* The caller is responsible for zeroing output parameters. */
194 assert( ppIdx && *ppIdx==0 );
195 assert( !paiCol || *paiCol==0 );
196
197 /* If this is a non-composite (single column) foreign key, check if it
dan8099ce62009-09-23 08:43:35 +0000198 ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx
dan1da40a32009-09-19 17:00:31 +0000199 ** and *paiCol set to zero and return early.
200 **
201 ** Otherwise, for a composite foreign key (more than one column), allocate
202 ** space for the aiCol array (returned via output parameter *paiCol).
203 ** Non-composite foreign keys do not require the aiCol array.
204 */
205 if( nCol==1 ){
206 /* The FK maps to the IPK if any of the following are true:
207 **
dand981d442009-09-23 13:59:17 +0000208 ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly
209 ** mapped to the primary key of table pParent, or
210 ** 2) The FK is explicitly mapped to a column declared as INTEGER
dan1da40a32009-09-19 17:00:31 +0000211 ** PRIMARY KEY.
212 */
dan8099ce62009-09-23 08:43:35 +0000213 if( pParent->iPKey>=0 ){
214 if( !zKey ) return 0;
215 if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0;
dan1da40a32009-09-19 17:00:31 +0000216 }
217 }else if( paiCol ){
218 assert( nCol>1 );
219 aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int));
220 if( !aiCol ) return 1;
221 *paiCol = aiCol;
222 }
223
dan8099ce62009-09-23 08:43:35 +0000224 for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){
dan1da40a32009-09-19 17:00:31 +0000225 if( pIdx->nColumn==nCol && pIdx->onError!=OE_None ){
226 /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
227 ** of columns. If each indexed column corresponds to a foreign key
228 ** column of pFKey, then this index is a winner. */
229
dan8099ce62009-09-23 08:43:35 +0000230 if( zKey==0 ){
231 /* If zKey is NULL, then this foreign key is implicitly mapped to
232 ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be
dan1da40a32009-09-19 17:00:31 +0000233 ** identified by the test (Index.autoIndex==2). */
234 if( pIdx->autoIndex==2 ){
dan8a2fff72009-09-23 18:07:22 +0000235 if( aiCol ){
236 int i;
237 for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom;
238 }
dan1da40a32009-09-19 17:00:31 +0000239 break;
240 }
241 }else{
dan8099ce62009-09-23 08:43:35 +0000242 /* If zKey is non-NULL, then this foreign key was declared to
243 ** map to an explicit list of columns in table pParent. Check if this
dan1da40a32009-09-19 17:00:31 +0000244 ** index matches those columns. */
245 int i, j;
246 for(i=0; i<nCol; i++){
dan8099ce62009-09-23 08:43:35 +0000247 char *zIdxCol = pParent->aCol[pIdx->aiColumn[i]].zName;
dan1da40a32009-09-19 17:00:31 +0000248 for(j=0; j<nCol; j++){
249 if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){
250 if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom;
251 break;
252 }
253 }
254 if( j==nCol ) break;
255 }
256 if( i==nCol ) break; /* pIdx is usable */
257 }
258 }
259 }
260
261 if( pParse && !pIdx ){
262 sqlite3ErrorMsg(pParse, "foreign key mismatch");
263 sqlite3DbFree(pParse->db, aiCol);
264 return 1;
265 }
266
267 *ppIdx = pIdx;
268 return 0;
269}
270
dan8099ce62009-09-23 08:43:35 +0000271/*
danbd747832009-09-25 12:00:01 +0000272** This function is called when a row is inserted into or deleted from the
273** child table of foreign key constraint pFKey. If an SQL UPDATE is executed
274** on the child table of pFKey, this function is invoked twice for each row
dan8099ce62009-09-23 08:43:35 +0000275** affected - once to "delete" the old row, and then again to "insert" the
276** new row.
277**
278** Each time it is called, this function generates VDBE code to locate the
279** row in the parent table that corresponds to the row being inserted into
280** or deleted from the child table. If the parent row can be found, no
281** special action is taken. Otherwise, if the parent row can *not* be
282** found in the parent table:
283**
284** Operation | FK type | Action taken
285** --------------------------------------------------------------------------
danbd747832009-09-25 12:00:01 +0000286** INSERT immediate Increment the "immediate constraint counter".
287**
288** DELETE immediate Decrement the "immediate constraint counter".
dan8099ce62009-09-23 08:43:35 +0000289**
290** INSERT deferred Increment the "deferred constraint counter".
291**
292** DELETE deferred Decrement the "deferred constraint counter".
293**
danbd747832009-09-25 12:00:01 +0000294** These operations are identified in the comment at the top of this file
295** (fkey.c) as "I.1" and "D.1".
dan8099ce62009-09-23 08:43:35 +0000296*/
297static void fkLookupParent(
dan1da40a32009-09-19 17:00:31 +0000298 Parse *pParse, /* Parse context */
299 int iDb, /* Index of database housing pTab */
dan8099ce62009-09-23 08:43:35 +0000300 Table *pTab, /* Parent table of FK pFKey */
301 Index *pIdx, /* Unique index on parent key columns in pTab */
302 FKey *pFKey, /* Foreign key constraint */
303 int *aiCol, /* Map from parent key columns to child table columns */
304 int regData, /* Address of array containing child table row */
dan32b09f22009-09-23 17:29:59 +0000305 int nIncr /* Increment constraint counter by this */
dan1da40a32009-09-19 17:00:31 +0000306){
dan8099ce62009-09-23 08:43:35 +0000307 int i; /* Iterator variable */
308 Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */
309 int iCur = pParse->nTab - 1; /* Cursor number to use */
310 int iOk = sqlite3VdbeMakeLabel(v); /* jump here if parent key found */
dan1da40a32009-09-19 17:00:31 +0000311
dan0ff297e2009-09-25 17:03:14 +0000312 /* If nIncr is less than zero, then check at runtime if there are any
313 ** outstanding constraints to resolve. If there are not, there is no need
314 ** to check if deleting this row resolves any outstanding violations.
315 **
316 ** Check if any of the key columns in the child table row are NULL. If
317 ** any are, then the constraint is considered satisfied. No need to
318 ** search for a matching row in the parent table. */
319 if( nIncr<0 ){
320 sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk);
321 }
dan1da40a32009-09-19 17:00:31 +0000322 for(i=0; i<pFKey->nCol; i++){
dan36062642009-09-21 18:56:23 +0000323 int iReg = aiCol[i] + regData + 1;
dan1da40a32009-09-19 17:00:31 +0000324 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk);
325 }
326
327 if( pIdx==0 ){
dan8099ce62009-09-23 08:43:35 +0000328 /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY
329 ** column of the parent table (table pTab). */
dan140026b2009-09-24 18:19:41 +0000330 int regTemp = sqlite3GetTempReg(pParse);
331
332 /* Invoke MustBeInt to coerce the child key value to an integer (i.e.
333 ** apply the affinity of the parent key). If this fails, then there
334 ** is no matching parent key. Before using MustBeInt, make a copy of
335 ** the value. Otherwise, the value inserted into the child key column
336 ** will have INTEGER affinity applied to it, which may not be correct. */
337 sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp);
338 sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0);
dan1da40a32009-09-19 17:00:31 +0000339 sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
dan140026b2009-09-24 18:19:41 +0000340 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp);
dan1da40a32009-09-19 17:00:31 +0000341 sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
342 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
dan140026b2009-09-24 18:19:41 +0000343 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-4);
344 sqlite3ReleaseTempReg(pParse, regTemp);
345 assert(
346 sqlite3VdbeGetOp(v, sqlite3VdbeCurrentAddr(v)-4)->opcode==OP_MustBeInt
347 );
dan1da40a32009-09-19 17:00:31 +0000348 }else{
dan140026b2009-09-24 18:19:41 +0000349 int nCol = pFKey->nCol;
350 int regTemp = sqlite3GetTempRange(pParse, nCol);
dan1da40a32009-09-19 17:00:31 +0000351 int regRec = sqlite3GetTempReg(pParse);
352 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
353
354 sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb);
355 sqlite3VdbeChangeP4(v, -1, (char*)pKey, P4_KEYINFO_HANDOFF);
dan140026b2009-09-24 18:19:41 +0000356 for(i=0; i<nCol; i++){
357 sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[i]+1+regData, regTemp+i);
dan1da40a32009-09-19 17:00:31 +0000358 }
dan140026b2009-09-24 18:19:41 +0000359 sqlite3VdbeAddOp3(v, OP_MakeRecord, regTemp, nCol, regRec);
360 sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), 0);
dan1da40a32009-09-19 17:00:31 +0000361 sqlite3VdbeAddOp3(v, OP_Found, iCur, iOk, regRec);
362 sqlite3ReleaseTempReg(pParse, regRec);
dan140026b2009-09-24 18:19:41 +0000363 sqlite3ReleaseTempRange(pParse, regTemp, nCol);
dan1da40a32009-09-19 17:00:31 +0000364 }
365
dan32b09f22009-09-23 17:29:59 +0000366 if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
367 /* Special case: If this is an INSERT statement that will insert exactly
368 ** one row into the table, raise a constraint immediately instead of
369 ** incrementing a counter. This is necessary as the VM code is being
370 ** generated for will not open a statement transaction. */
371 assert( nIncr==1 );
dan1da40a32009-09-19 17:00:31 +0000372 sqlite3HaltConstraint(
373 pParse, OE_Abort, "foreign key constraint failed", P4_STATIC
374 );
dan32b09f22009-09-23 17:29:59 +0000375 }else{
376 if( nIncr>0 && pFKey->isDeferred==0 ){
377 sqlite3ParseToplevel(pParse)->mayAbort = 1;
378 }
dan0ff297e2009-09-25 17:03:14 +0000379 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
dan1da40a32009-09-19 17:00:31 +0000380 }
381
382 sqlite3VdbeResolveLabel(v, iOk);
383}
384
dan8099ce62009-09-23 08:43:35 +0000385/*
386** This function is called to generate code executed when a row is deleted
387** from the parent table of foreign key constraint pFKey and, if pFKey is
388** deferred, when a row is inserted into the same table. When generating
389** code for an SQL UPDATE operation, this function may be called twice -
390** once to "delete" the old row and once to "insert" the new row.
391**
392** The code generated by this function scans through the rows in the child
393** table that correspond to the parent table row being deleted or inserted.
394** For each child row found, one of the following actions is taken:
395**
396** Operation | FK type | Action taken
397** --------------------------------------------------------------------------
danbd747832009-09-25 12:00:01 +0000398** DELETE immediate Increment the "immediate constraint counter".
399** Or, if the ON (UPDATE|DELETE) action is RESTRICT,
400** throw a "foreign key constraint failed" exception.
401**
402** INSERT immediate Decrement the "immediate constraint counter".
dan8099ce62009-09-23 08:43:35 +0000403**
404** DELETE deferred Increment the "deferred constraint counter".
405** Or, if the ON (UPDATE|DELETE) action is RESTRICT,
406** throw a "foreign key constraint failed" exception.
407**
408** INSERT deferred Decrement the "deferred constraint counter".
409**
danbd747832009-09-25 12:00:01 +0000410** These operations are identified in the comment at the top of this file
411** (fkey.c) as "I.2" and "D.2".
dan8099ce62009-09-23 08:43:35 +0000412*/
413static void fkScanChildren(
dan1da40a32009-09-19 17:00:31 +0000414 Parse *pParse, /* Parse context */
415 SrcList *pSrc, /* SrcList containing the table to scan */
416 Index *pIdx, /* Foreign key index */
417 FKey *pFKey, /* Foreign key relationship */
dan8099ce62009-09-23 08:43:35 +0000418 int *aiCol, /* Map from pIdx cols to child table cols */
dan1da40a32009-09-19 17:00:31 +0000419 int regData, /* Referenced table data starts here */
420 int nIncr /* Amount to increment deferred counter by */
421){
422 sqlite3 *db = pParse->db; /* Database handle */
423 int i; /* Iterator variable */
424 Expr *pWhere = 0; /* WHERE clause to scan with */
425 NameContext sNameContext; /* Context used to resolve WHERE clause */
426 WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */
dan0ff297e2009-09-25 17:03:14 +0000427 int iFkIfZero = 0; /* Address of OP_FkIfZero */
428 Vdbe *v = sqlite3GetVdbe(pParse);
429
430 if( nIncr<0 ){
431 iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0);
432 }
dan1da40a32009-09-19 17:00:31 +0000433
danbd747832009-09-25 12:00:01 +0000434 /* Create an Expr object representing an SQL expression like:
435 **
436 ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ...
437 **
438 ** The collation sequence used for the comparison should be that of
439 ** the parent key columns. The affinity of the parent key column should
440 ** be applied to each child key value before the comparison takes place.
441 */
dan1da40a32009-09-19 17:00:31 +0000442 for(i=0; i<pFKey->nCol; i++){
dan8099ce62009-09-23 08:43:35 +0000443 Expr *pLeft; /* Value from parent table row */
444 Expr *pRight; /* Column ref to child table */
dan1da40a32009-09-19 17:00:31 +0000445 Expr *pEq; /* Expression (pLeft = pRight) */
dan8099ce62009-09-23 08:43:35 +0000446 int iCol; /* Index of column in child table */
447 const char *zCol; /* Name of column in child table */
dan1da40a32009-09-19 17:00:31 +0000448
449 pLeft = sqlite3Expr(db, TK_REGISTER, 0);
450 if( pLeft ){
danbd747832009-09-25 12:00:01 +0000451 /* Set the collation sequence and affinity of the LHS of each TK_EQ
452 ** expression to the parent key column defaults. */
dan140026b2009-09-24 18:19:41 +0000453 if( pIdx ){
454 int iCol = pIdx->aiColumn[i];
455 Column *pCol = &pIdx->pTable->aCol[iCol];
456 pLeft->iTable = regData+iCol+1;
457 pLeft->affinity = pCol->affinity;
458 pLeft->pColl = sqlite3LocateCollSeq(pParse, pCol->zColl);
459 }else{
460 pLeft->iTable = regData;
461 pLeft->affinity = SQLITE_AFF_INTEGER;
462 }
dan1da40a32009-09-19 17:00:31 +0000463 }
464 iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
dana8f0bf62009-09-23 12:06:52 +0000465 assert( iCol>=0 );
466 zCol = pFKey->pFrom->aCol[iCol].zName;
dan1da40a32009-09-19 17:00:31 +0000467 pRight = sqlite3Expr(db, TK_ID, zCol);
468 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0);
469 pWhere = sqlite3ExprAnd(db, pWhere, pEq);
470 }
471
472 /* Resolve the references in the WHERE clause. */
473 memset(&sNameContext, 0, sizeof(NameContext));
474 sNameContext.pSrcList = pSrc;
475 sNameContext.pParse = pParse;
476 sqlite3ResolveExprNames(&sNameContext, pWhere);
477
478 /* Create VDBE to loop through the entries in pSrc that match the WHERE
479 ** clause. If the constraint is not deferred, throw an exception for
480 ** each row found. Otherwise, for deferred constraints, increment the
481 ** deferred constraint counter by nIncr for each row selected. */
482 pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0);
dan32b09f22009-09-23 17:29:59 +0000483 if( nIncr==0 ){
danbd747832009-09-25 12:00:01 +0000484 /* Special case: A RESTRICT Action. Throw an error immediately if one
485 ** of these is encountered. */
dan1da40a32009-09-19 17:00:31 +0000486 sqlite3HaltConstraint(
487 pParse, OE_Abort, "foreign key constraint failed", P4_STATIC
488 );
dan32b09f22009-09-23 17:29:59 +0000489 }else{
490 if( nIncr>0 && pFKey->isDeferred==0 ){
491 sqlite3ParseToplevel(pParse)->mayAbort = 1;
492 }
dan0ff297e2009-09-25 17:03:14 +0000493 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
dan1da40a32009-09-19 17:00:31 +0000494 }
danf59c5ca2009-09-22 16:55:38 +0000495 if( pWInfo ){
496 sqlite3WhereEnd(pWInfo);
497 }
dan1da40a32009-09-19 17:00:31 +0000498
499 /* Clean up the WHERE clause constructed above. */
500 sqlite3ExprDelete(db, pWhere);
dan0ff297e2009-09-25 17:03:14 +0000501 if( iFkIfZero ){
502 sqlite3VdbeJumpHere(v, iFkIfZero);
503 }
dan1da40a32009-09-19 17:00:31 +0000504}
505
506/*
507** This function returns a pointer to the head of a linked list of FK
dan8099ce62009-09-23 08:43:35 +0000508** constraints for which table pTab is the parent table. For example,
dan1da40a32009-09-19 17:00:31 +0000509** given the following schema:
510**
511** CREATE TABLE t1(a PRIMARY KEY);
512** CREATE TABLE t2(b REFERENCES t1(a);
513**
514** Calling this function with table "t1" as an argument returns a pointer
515** to the FKey structure representing the foreign key constraint on table
516** "t2". Calling this function with "t2" as the argument would return a
dan8099ce62009-09-23 08:43:35 +0000517** NULL pointer (as there are no FK constraints for which t2 is the parent
518** table).
dan1da40a32009-09-19 17:00:31 +0000519*/
dan432cc5b2009-09-26 17:51:48 +0000520FKey *sqlite3FkReferences(Table *pTab){
dan1da40a32009-09-19 17:00:31 +0000521 int nName = sqlite3Strlen30(pTab->zName);
522 return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName, nName);
523}
524
dan8099ce62009-09-23 08:43:35 +0000525/*
526** The second argument is a Trigger structure allocated by the
527** fkActionTrigger() routine. This function deletes the Trigger structure
528** and all of its sub-components.
529**
530** The Trigger structure or any of its sub-components may be allocated from
531** the lookaside buffer belonging to database handle dbMem.
532*/
dan75cbd982009-09-21 16:06:03 +0000533static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){
534 if( p ){
535 TriggerStep *pStep = p->step_list;
536 sqlite3ExprDelete(dbMem, pStep->pWhere);
537 sqlite3ExprListDelete(dbMem, pStep->pExprList);
drh788536b2009-09-23 03:01:58 +0000538 sqlite3ExprDelete(dbMem, p->pWhen);
dan75cbd982009-09-21 16:06:03 +0000539 sqlite3DbFree(dbMem, p);
540 }
541}
542
dan8099ce62009-09-23 08:43:35 +0000543/*
544** This function is called when inserting, deleting or updating a row of
545** table pTab to generate VDBE code to perform foreign key constraint
546** processing for the operation.
547**
548** For a DELETE operation, parameter regOld is passed the index of the
549** first register in an array of (pTab->nCol+1) registers containing the
550** rowid of the row being deleted, followed by each of the column values
551** of the row being deleted, from left to right. Parameter regNew is passed
552** zero in this case.
553**
554** For an UPDATE operation, regOld is the first in an array of (pTab->nCol+1)
555** registers containing the old rowid and column values of the row being
556** updated, and regNew is the first in an array of the same size containing
557** the corresponding new values. Parameter pChanges is passed the list of
558** columns being updated by the statement.
559**
560** For an INSERT operation, regOld is passed zero and regNew is passed the
561** first register of an array of (pTab->nCol+1) registers containing the new
562** row data.
563**
564** If an error occurs, an error message is left in the pParse structure.
565*/
dan1da40a32009-09-19 17:00:31 +0000566void sqlite3FkCheck(
567 Parse *pParse, /* Parse context */
568 Table *pTab, /* Row is being deleted from this table */
569 ExprList *pChanges, /* Changed columns if this is an UPDATE */
570 int regOld, /* Previous row data is stored here */
571 int regNew /* New row data is stored here */
572){
573 sqlite3 *db = pParse->db; /* Database handle */
574 Vdbe *v; /* VM to write code to */
575 FKey *pFKey; /* Used to iterate through FKs */
576 int iDb; /* Index of database containing pTab */
577 const char *zDb; /* Name of database containing pTab */
578
579 assert( ( pChanges && regOld && regNew) /* UPDATE operation */
580 || (!pChanges && !regOld && regNew) /* INSERT operation */
581 || (!pChanges && regOld && !regNew) /* DELETE operation */
582 );
583
584 /* If foreign-keys are disabled, this function is a no-op. */
585 if( (db->flags&SQLITE_ForeignKeys)==0 ) return;
586
587 v = sqlite3GetVdbe(pParse);
588 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
589 zDb = db->aDb[iDb].zName;
590
dan8099ce62009-09-23 08:43:35 +0000591 /* Loop through all the foreign key constraints for which pTab is the
592 ** child table (the table that the foreign key definition is part of). */
dan1da40a32009-09-19 17:00:31 +0000593 for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){
dan8099ce62009-09-23 08:43:35 +0000594 Table *pTo; /* Parent table of foreign key pFKey */
dan1da40a32009-09-19 17:00:31 +0000595 Index *pIdx = 0; /* Index on key columns in pTo */
dan36062642009-09-21 18:56:23 +0000596 int *aiFree = 0;
597 int *aiCol;
598 int iCol;
599 int i;
dan1da40a32009-09-19 17:00:31 +0000600
dan8099ce62009-09-23 08:43:35 +0000601 /* Find the parent table of this foreign key. Also find a unique index
602 ** on the parent key columns in the parent table. If either of these
603 ** schema items cannot be located, set an error in pParse and return
604 ** early. */
dan1da40a32009-09-19 17:00:31 +0000605 pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
dan36062642009-09-21 18:56:23 +0000606 if( !pTo || locateFkeyIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ) return;
607 assert( pFKey->nCol==1 || (aiFree && pIdx) );
dan1da40a32009-09-19 17:00:31 +0000608
609 /* If the key does not overlap with the pChanges list, skip this FK. */
610 if( pChanges ){
611 /* TODO */
612 }
613
dan36062642009-09-21 18:56:23 +0000614 if( aiFree ){
615 aiCol = aiFree;
616 }else{
617 iCol = pFKey->aCol[0].iFrom;
618 aiCol = &iCol;
619 }
620 for(i=0; i<pFKey->nCol; i++){
621 if( aiCol[i]==pTab->iPKey ){
622 aiCol[i] = -1;
623 }
624 }
625
dan8099ce62009-09-23 08:43:35 +0000626 /* Take a shared-cache advisory read-lock on the parent table. Allocate
627 ** a cursor to use to search the unique index on the parent key columns
628 ** in the parent table. */
dan1da40a32009-09-19 17:00:31 +0000629 sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName);
630 pParse->nTab++;
631
dan32b09f22009-09-23 17:29:59 +0000632 if( regOld!=0 ){
633 /* A row is being removed from the child table. Search for the parent.
634 ** If the parent does not exist, removing the child row resolves an
635 ** outstanding foreign key constraint violation. */
dan8099ce62009-09-23 08:43:35 +0000636 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1);
dan1da40a32009-09-19 17:00:31 +0000637 }
638 if( regNew!=0 ){
dan32b09f22009-09-23 17:29:59 +0000639 /* A row is being added to the child table. If a parent row cannot
640 ** be found, adding the child row has violated the FK constraint. */
dan8099ce62009-09-23 08:43:35 +0000641 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1);
dan1da40a32009-09-19 17:00:31 +0000642 }
643
dan36062642009-09-21 18:56:23 +0000644 sqlite3DbFree(db, aiFree);
dan1da40a32009-09-19 17:00:31 +0000645 }
646
647 /* Loop through all the foreign key constraints that refer to this table */
dan432cc5b2009-09-26 17:51:48 +0000648 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
dan1da40a32009-09-19 17:00:31 +0000649 int iGoto; /* Address of OP_Goto instruction */
650 Index *pIdx = 0; /* Foreign key index for pFKey */
651 SrcList *pSrc;
652 int *aiCol = 0;
653
dan32b09f22009-09-23 17:29:59 +0000654 if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){
655 assert( regOld==0 && regNew!=0 );
656 /* Inserting a single row into a parent table cannot cause an immediate
657 ** foreign key violation. So do nothing in this case. */
658 return;
dan1da40a32009-09-19 17:00:31 +0000659 }
660
661 if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return;
662 assert( aiCol || pFKey->nCol==1 );
663
dan8099ce62009-09-23 08:43:35 +0000664 /* Check if this update statement has modified any of the child key
665 ** columns for this foreign key constraint. If it has not, there is
666 ** no need to search the child table for rows in violation. This is
dan1da40a32009-09-19 17:00:31 +0000667 ** just an optimization. Things would work fine without this check. */
668 if( pChanges ){
669 /* TODO */
670 }
671
672 /* Create a SrcList structure containing a single table (the table
673 ** the foreign key that refers to this table is attached to). This
674 ** is required for the sqlite3WhereXXX() interface. */
675 pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
danf59c5ca2009-09-22 16:55:38 +0000676 if( pSrc ){
677 pSrc->a->pTab = pFKey->pFrom;
678 pSrc->a->pTab->nRef++;
679 pSrc->a->iCursor = pParse->nTab++;
680
681 /* If this is an UPDATE, and none of the columns associated with this
dan8099ce62009-09-23 08:43:35 +0000682 ** FK have been modified, do not scan the child table. Unlike the
683 ** compile-time test implemented above, this is not just an
danf59c5ca2009-09-22 16:55:38 +0000684 ** optimization. It is required so that immediate foreign keys do not
685 ** throw exceptions when the user executes a statement like:
686 **
687 ** UPDATE refd_table SET refd_column = refd_column
688 */
689 if( pChanges ){
690 int i;
691 int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1;
692 for(i=0; i<pFKey->nCol; i++){
693 int iOff = (pIdx ? pIdx->aiColumn[i] : -1) + 1;
694 sqlite3VdbeAddOp3(v, OP_Ne, regOld+iOff, iJump, regNew+iOff);
695 }
696 iGoto = sqlite3VdbeAddOp0(v, OP_Goto);
dan1da40a32009-09-19 17:00:31 +0000697 }
danf59c5ca2009-09-22 16:55:38 +0000698
dan32b09f22009-09-23 17:29:59 +0000699 if( regNew!=0 ){
dan8099ce62009-09-23 08:43:35 +0000700 fkScanChildren(pParse, pSrc, pIdx, pFKey, aiCol, regNew, -1);
danf59c5ca2009-09-22 16:55:38 +0000701 }
702 if( regOld!=0 ){
703 /* If there is a RESTRICT action configured for the current operation
dan8099ce62009-09-23 08:43:35 +0000704 ** on the parent table of this FK, then throw an exception
danf59c5ca2009-09-22 16:55:38 +0000705 ** immediately if the FK constraint is violated, even if this is a
706 ** deferred trigger. That's what RESTRICT means. To defer checking
707 ** the constraint, the FK should specify NO ACTION (represented
708 ** using OE_None). NO ACTION is the default. */
dan8099ce62009-09-23 08:43:35 +0000709 fkScanChildren(pParse, pSrc, pIdx, pFKey, aiCol, regOld,
710 pFKey->aAction[pChanges!=0]!=OE_Restrict
danf59c5ca2009-09-22 16:55:38 +0000711 );
712 }
713
714 if( pChanges ){
715 sqlite3VdbeJumpHere(v, iGoto);
716 }
717 sqlite3SrcListDelete(db, pSrc);
dan1da40a32009-09-19 17:00:31 +0000718 }
dan1da40a32009-09-19 17:00:31 +0000719 sqlite3DbFree(db, aiCol);
720 }
721}
722
723#define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x)))
724
725/*
726** This function is called before generating code to update or delete a
727** row contained in table pTab. If the operation is an update, then
728** pChanges is a pointer to the list of columns to modify. If this is a
729** delete, then pChanges is NULL.
730*/
731u32 sqlite3FkOldmask(
732 Parse *pParse, /* Parse context */
733 Table *pTab, /* Table being modified */
734 ExprList *pChanges /* Non-NULL for UPDATE operations */
735){
736 u32 mask = 0;
737 if( pParse->db->flags&SQLITE_ForeignKeys ){
738 FKey *p;
739 int i;
740 for(p=pTab->pFKey; p; p=p->pNextFrom){
dan32b09f22009-09-23 17:29:59 +0000741 for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom);
dan1da40a32009-09-19 17:00:31 +0000742 }
dan432cc5b2009-09-26 17:51:48 +0000743 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
dan1da40a32009-09-19 17:00:31 +0000744 Index *pIdx = 0;
745 locateFkeyIndex(0, pTab, p, &pIdx, 0);
746 if( pIdx ){
747 for(i=0; i<pIdx->nColumn; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]);
748 }
749 }
750 }
751 return mask;
752}
753
754/*
755** This function is called before generating code to update or delete a
756** row contained in table pTab. If the operation is an update, then
757** pChanges is a pointer to the list of columns to modify. If this is a
758** delete, then pChanges is NULL.
759**
760** If any foreign key processing will be required, this function returns
761** true. If there is no foreign key related processing, this function
762** returns false.
763*/
764int sqlite3FkRequired(
765 Parse *pParse, /* Parse context */
766 Table *pTab, /* Table being modified */
767 ExprList *pChanges /* Non-NULL for UPDATE operations */
768){
769 if( pParse->db->flags&SQLITE_ForeignKeys ){
dan432cc5b2009-09-26 17:51:48 +0000770 if( sqlite3FkReferences(pTab) || pTab->pFKey ) return 1;
dan1da40a32009-09-19 17:00:31 +0000771 }
772 return 0;
773}
774
dan8099ce62009-09-23 08:43:35 +0000775/*
776** This function is called when an UPDATE or DELETE operation is being
777** compiled on table pTab, which is the parent table of foreign-key pFKey.
778** If the current operation is an UPDATE, then the pChanges parameter is
779** passed a pointer to the list of columns being modified. If it is a
780** DELETE, pChanges is passed a NULL pointer.
781**
782** It returns a pointer to a Trigger structure containing a trigger
783** equivalent to the ON UPDATE or ON DELETE action specified by pFKey.
784** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is
785** returned (these actions require no special handling by the triggers
786** sub-system, code for them is created by fkScanChildren()).
787**
788** For example, if pFKey is the foreign key and pTab is table "p" in
789** the following schema:
790**
791** CREATE TABLE p(pk PRIMARY KEY);
792** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE);
793**
794** then the returned trigger structure is equivalent to:
795**
796** CREATE TRIGGER ... DELETE ON p BEGIN
797** DELETE FROM c WHERE ck = old.pk;
798** END;
799**
800** The returned pointer is cached as part of the foreign key object. It
801** is eventually freed along with the rest of the foreign key object by
802** sqlite3FkDelete().
803*/
dan1da40a32009-09-19 17:00:31 +0000804static Trigger *fkActionTrigger(
dan8099ce62009-09-23 08:43:35 +0000805 Parse *pParse, /* Parse context */
dan1da40a32009-09-19 17:00:31 +0000806 Table *pTab, /* Table being updated or deleted from */
807 FKey *pFKey, /* Foreign key to get action for */
808 ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */
809){
810 sqlite3 *db = pParse->db; /* Database handle */
dan29c7f9c2009-09-22 15:53:47 +0000811 int action; /* One of OE_None, OE_Cascade etc. */
812 Trigger *pTrigger; /* Trigger definition to return */
dan8099ce62009-09-23 08:43:35 +0000813 int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */
dan1da40a32009-09-19 17:00:31 +0000814
dan8099ce62009-09-23 08:43:35 +0000815 action = pFKey->aAction[iAction];
816 pTrigger = pFKey->apTrigger[iAction];
dan1da40a32009-09-19 17:00:31 +0000817
818 assert( OE_SetNull>OE_Restrict && OE_SetDflt>OE_Restrict );
819 assert( OE_Cascade>OE_Restrict && OE_None<OE_Restrict );
820
821 if( action>OE_Restrict && !pTrigger ){
dan29c7f9c2009-09-22 15:53:47 +0000822 u8 enableLookaside; /* Copy of db->lookaside.bEnabled */
dan8099ce62009-09-23 08:43:35 +0000823 char const *zFrom; /* Name of child table */
dan1da40a32009-09-19 17:00:31 +0000824 int nFrom; /* Length in bytes of zFrom */
dan29c7f9c2009-09-22 15:53:47 +0000825 Index *pIdx = 0; /* Parent key index for this FK */
826 int *aiCol = 0; /* child table cols -> parent key cols */
827 TriggerStep *pStep; /* First (only) step of trigger program */
828 Expr *pWhere = 0; /* WHERE clause of trigger step */
829 ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */
830 int i; /* Iterator variable */
drh788536b2009-09-23 03:01:58 +0000831 Expr *pWhen = 0; /* WHEN clause for the trigger */
dan1da40a32009-09-19 17:00:31 +0000832
833 if( locateFkeyIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0;
834 assert( aiCol || pFKey->nCol==1 );
835
dan1da40a32009-09-19 17:00:31 +0000836 for(i=0; i<pFKey->nCol; i++){
dan1da40a32009-09-19 17:00:31 +0000837 Token tOld = { "old", 3 }; /* Literal "old" token */
838 Token tNew = { "new", 3 }; /* Literal "new" token */
dan8099ce62009-09-23 08:43:35 +0000839 Token tFromCol; /* Name of column in child table */
840 Token tToCol; /* Name of column in parent table */
841 int iFromCol; /* Idx of column in child table */
dan29c7f9c2009-09-22 15:53:47 +0000842 Expr *pEq; /* tFromCol = OLD.tToCol */
dan1da40a32009-09-19 17:00:31 +0000843
844 iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
dana8f0bf62009-09-23 12:06:52 +0000845 assert( iFromCol>=0 );
dan1da40a32009-09-19 17:00:31 +0000846 tToCol.z = pIdx ? pTab->aCol[pIdx->aiColumn[i]].zName : "oid";
dana8f0bf62009-09-23 12:06:52 +0000847 tFromCol.z = pFKey->pFrom->aCol[iFromCol].zName;
dan1da40a32009-09-19 17:00:31 +0000848
849 tToCol.n = sqlite3Strlen30(tToCol.z);
850 tFromCol.n = sqlite3Strlen30(tFromCol.z);
851
852 /* Create the expression "zFromCol = OLD.zToCol" */
853 pEq = sqlite3PExpr(pParse, TK_EQ,
854 sqlite3PExpr(pParse, TK_ID, 0, 0, &tFromCol),
855 sqlite3PExpr(pParse, TK_DOT,
856 sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
857 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
858 , 0)
859 , 0);
dan29c7f9c2009-09-22 15:53:47 +0000860 pWhere = sqlite3ExprAnd(db, pWhere, pEq);
dan1da40a32009-09-19 17:00:31 +0000861
drh788536b2009-09-23 03:01:58 +0000862 /* For ON UPDATE, construct the next term of the WHEN clause.
863 ** The final WHEN clause will be like this:
864 **
865 ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN)
866 */
867 if( pChanges ){
868 pEq = sqlite3PExpr(pParse, TK_IS,
869 sqlite3PExpr(pParse, TK_DOT,
870 sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
871 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol),
872 0),
873 sqlite3PExpr(pParse, TK_DOT,
874 sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
875 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol),
876 0),
877 0);
878 pWhen = sqlite3ExprAnd(db, pWhen, pEq);
879 }
880
dan1da40a32009-09-19 17:00:31 +0000881 if( action!=OE_Cascade || pChanges ){
882 Expr *pNew;
883 if( action==OE_Cascade ){
884 pNew = sqlite3PExpr(pParse, TK_DOT,
885 sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
886 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
887 , 0);
888 }else if( action==OE_SetDflt ){
dan934ce302009-09-22 16:08:58 +0000889 Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt;
dan1da40a32009-09-19 17:00:31 +0000890 if( pDflt ){
891 pNew = sqlite3ExprDup(db, pDflt, 0);
892 }else{
893 pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
894 }
895 }else{
896 pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
897 }
898 pList = sqlite3ExprListAppend(pParse, pList, pNew);
899 sqlite3ExprListSetName(pParse, pList, &tFromCol, 0);
900 }
901 }
dan29c7f9c2009-09-22 15:53:47 +0000902 sqlite3DbFree(db, aiCol);
dan1da40a32009-09-19 17:00:31 +0000903
drh1f638ce2009-09-24 13:48:10 +0000904 /* In the current implementation, pTab->dbMem==0 for all tables except
905 ** for temporary tables used to describe subqueries. And temporary
906 ** tables do not have foreign key constraints. Hence, pTab->dbMem
907 ** should always be 0 there.
908 */
dan29c7f9c2009-09-22 15:53:47 +0000909 enableLookaside = db->lookaside.bEnabled;
drh46803c32009-09-24 14:27:33 +0000910 db->lookaside.bEnabled = 0;
dan29c7f9c2009-09-22 15:53:47 +0000911
912 zFrom = pFKey->pFrom->zName;
913 nFrom = sqlite3Strlen30(zFrom);
914 pTrigger = (Trigger *)sqlite3DbMallocZero(db,
915 sizeof(Trigger) + /* struct Trigger */
916 sizeof(TriggerStep) + /* Single step in trigger program */
917 nFrom + 1 /* Space for pStep->target.z */
918 );
919 if( pTrigger ){
920 pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1];
921 pStep->target.z = (char *)&pStep[1];
922 pStep->target.n = nFrom;
923 memcpy((char *)pStep->target.z, zFrom, nFrom);
924
925 pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
926 pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE);
drh788536b2009-09-23 03:01:58 +0000927 if( pWhen ){
928 pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0, 0);
929 pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
930 }
dan29c7f9c2009-09-22 15:53:47 +0000931 }
932
933 /* Re-enable the lookaside buffer, if it was disabled earlier. */
934 db->lookaside.bEnabled = enableLookaside;
935
drh788536b2009-09-23 03:01:58 +0000936 sqlite3ExprDelete(db, pWhere);
937 sqlite3ExprDelete(db, pWhen);
938 sqlite3ExprListDelete(db, pList);
dan29c7f9c2009-09-22 15:53:47 +0000939 if( db->mallocFailed==1 ){
940 fkTriggerDelete(db, pTrigger);
941 return 0;
942 }
dan1da40a32009-09-19 17:00:31 +0000943
944 pStep->op = (action!=OE_Cascade || pChanges) ? TK_UPDATE : TK_DELETE;
945 pStep->pTrig = pTrigger;
946 pTrigger->pSchema = pTab->pSchema;
947 pTrigger->pTabSchema = pTab->pSchema;
dan8099ce62009-09-23 08:43:35 +0000948 pFKey->apTrigger[iAction] = pTrigger;
949 pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE);
dan1da40a32009-09-19 17:00:31 +0000950 }
951
952 return pTrigger;
953}
954
dan1da40a32009-09-19 17:00:31 +0000955/*
956** This function is called when deleting or updating a row to implement
957** any required CASCADE, SET NULL or SET DEFAULT actions.
958*/
959void sqlite3FkActions(
960 Parse *pParse, /* Parse context */
961 Table *pTab, /* Table being updated or deleted from */
962 ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */
963 int regOld /* Address of array containing old row */
964){
965 /* If foreign-key support is enabled, iterate through all FKs that
966 ** refer to table pTab. If there is an action associated with the FK
967 ** for this operation (either update or delete), invoke the associated
968 ** trigger sub-program. */
969 if( pParse->db->flags&SQLITE_ForeignKeys ){
970 FKey *pFKey; /* Iterator variable */
dan432cc5b2009-09-26 17:51:48 +0000971 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
dan1da40a32009-09-19 17:00:31 +0000972 Trigger *pAction = fkActionTrigger(pParse, pTab, pFKey, pChanges);
973 if( pAction ){
974 sqlite3CodeRowTriggerDirect(pParse, pAction, pTab, regOld, OE_Abort, 0);
975 }
976 }
977 }
978}
979
dan75cbd982009-09-21 16:06:03 +0000980#endif /* ifndef SQLITE_OMIT_TRIGGER */
981
dan1da40a32009-09-19 17:00:31 +0000982/*
983** Free all memory associated with foreign key definitions attached to
984** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
985** hash table.
986*/
987void sqlite3FkDelete(Table *pTab){
988 FKey *pFKey; /* Iterator variable */
989 FKey *pNext; /* Copy of pFKey->pNextFrom */
990
991 for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){
992
993 /* Remove the FK from the fkeyHash hash table. */
994 if( pFKey->pPrevTo ){
995 pFKey->pPrevTo->pNextTo = pFKey->pNextTo;
996 }else{
997 void *data = (void *)pFKey->pNextTo;
998 const char *z = (data ? pFKey->pNextTo->zTo : pFKey->zTo);
999 sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, sqlite3Strlen30(z), data);
1000 }
1001 if( pFKey->pNextTo ){
1002 pFKey->pNextTo->pPrevTo = pFKey->pPrevTo;
1003 }
1004
1005 /* Delete any triggers created to implement actions for this FK. */
dan75cbd982009-09-21 16:06:03 +00001006#ifndef SQLITE_OMIT_TRIGGER
dan8099ce62009-09-23 08:43:35 +00001007 fkTriggerDelete(pTab->dbMem, pFKey->apTrigger[0]);
1008 fkTriggerDelete(pTab->dbMem, pFKey->apTrigger[1]);
dan75cbd982009-09-21 16:06:03 +00001009#endif
dan1da40a32009-09-19 17:00:31 +00001010
1011 /* Delete the memory allocated for the FK structure. */
1012 pNext = pFKey->pNextFrom;
1013 sqlite3DbFree(pTab->dbMem, pFKey);
1014 }
1015}
dan75cbd982009-09-21 16:06:03 +00001016#endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */