blob: 27bf56eb468747285967e32a03951bc42bcc5c6d [file] [log] [blame]
drh75897232000-05-29 14:26:00 +00001/*
drhb19a2bc2001-09-16 00:13:26 +00002** 2001 September 15
drh75897232000-05-29 14:26:00 +00003**
drhb19a2bc2001-09-16 00:13:26 +00004** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
drh75897232000-05-29 14:26:00 +00006**
drhb19a2bc2001-09-16 00:13:26 +00007** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
drh75897232000-05-29 14:26:00 +000010**
11*************************************************************************
drh0fd61352014-02-07 02:29:45 +000012** The code in this file implements the function that runs the
13** bytecode of a prepared statement.
drh75897232000-05-29 14:26:00 +000014**
drhac82fcf2002-09-08 17:23:41 +000015** Various scripts scan this source file in order to generate HTML
16** documentation, headers files, or other derived files. The formatting
17** of the code in this file is, therefore, important. See other comments
18** in this file for details. If in doubt, do not deviate from existing
19** commenting and indentation practices when changing or adding code.
drh75897232000-05-29 14:26:00 +000020*/
21#include "sqliteInt.h"
drh9a324642003-09-06 20:12:01 +000022#include "vdbeInt.h"
drh8f619cc2002-09-08 00:04:50 +000023
24/*
drh2b4ded92010-09-27 21:09:31 +000025** Invoke this macro on memory cells just prior to changing the
26** value of the cell. This macro verifies that shallow copies are
drh0fd61352014-02-07 02:29:45 +000027** not misused. A shallow copy of a string or blob just copies a
28** pointer to the string or blob, not the content. If the original
29** is changed while the copy is still in use, the string or blob might
30** be changed out from under the copy. This macro verifies that nothing
drhb6e8fd12014-03-06 01:56:33 +000031** like that ever happens.
drh2b4ded92010-09-27 21:09:31 +000032*/
33#ifdef SQLITE_DEBUG
drhe4c88c02012-01-04 12:57:45 +000034# define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
drh2b4ded92010-09-27 21:09:31 +000035#else
36# define memAboutToChange(P,M)
37#endif
38
39/*
drh487ab3c2001-11-08 00:45:21 +000040** The following global variable is incremented every time a cursor
drh959403f2008-12-12 17:56:16 +000041** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
drh487ab3c2001-11-08 00:45:21 +000042** procedures use this information to make sure that indices are
drhac82fcf2002-09-08 17:23:41 +000043** working correctly. This variable has no function other than to
44** help verify the correct operation of the library.
drh487ab3c2001-11-08 00:45:21 +000045*/
drh0f7eb612006-08-08 13:51:43 +000046#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000047int sqlite3_search_count = 0;
drh0f7eb612006-08-08 13:51:43 +000048#endif
drh487ab3c2001-11-08 00:45:21 +000049
drhf6038712004-02-08 18:07:34 +000050/*
51** When this global variable is positive, it gets decremented once before
drhe4c88c02012-01-04 12:57:45 +000052** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
53** field of the sqlite3 structure is set in order to simulate an interrupt.
drhf6038712004-02-08 18:07:34 +000054**
55** This facility is used for testing purposes only. It does not function
56** in an ordinary build.
57*/
drh0f7eb612006-08-08 13:51:43 +000058#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +000059int sqlite3_interrupt_count = 0;
drh0f7eb612006-08-08 13:51:43 +000060#endif
drh1350b032002-02-27 19:00:20 +000061
danielk19777e18c252004-05-25 11:47:24 +000062/*
drh6bf89572004-11-03 16:27:01 +000063** The next global variable is incremented each type the OP_Sort opcode
64** is executed. The test procedures use this information to make sure that
shane21e7feb2008-05-30 15:59:49 +000065** sorting is occurring or not occurring at appropriate times. This variable
drh6bf89572004-11-03 16:27:01 +000066** has no function other than to help verify the correct operation of the
67** library.
68*/
drh0f7eb612006-08-08 13:51:43 +000069#ifdef SQLITE_TEST
drh6bf89572004-11-03 16:27:01 +000070int sqlite3_sort_count = 0;
drh0f7eb612006-08-08 13:51:43 +000071#endif
drh6bf89572004-11-03 16:27:01 +000072
73/*
drhae7e1512007-05-02 16:51:59 +000074** The next global variable records the size of the largest MEM_Blob
drh9cbf3422008-01-17 16:22:13 +000075** or MEM_Str that has been used by a VDBE opcode. The test procedures
drhae7e1512007-05-02 16:51:59 +000076** use this information to make sure that the zero-blob functionality
77** is working correctly. This variable has no function other than to
78** help verify the correct operation of the library.
79*/
80#ifdef SQLITE_TEST
81int sqlite3_max_blobsize = 0;
drhca48c902008-01-18 14:08:24 +000082static void updateMaxBlobsize(Mem *p){
83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84 sqlite3_max_blobsize = p->n;
85 }
86}
drhae7e1512007-05-02 16:51:59 +000087#endif
88
89/*
drh9b1c62d2011-03-30 21:04:43 +000090** This macro evaluates to true if either the update hook or the preupdate
91** hook are enabled for database connect DB.
92*/
93#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
drh74c33022016-03-30 12:56:55 +000094# define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
drh9b1c62d2011-03-30 21:04:43 +000095#else
drh74c33022016-03-30 12:56:55 +000096# define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
drh9b1c62d2011-03-30 21:04:43 +000097#endif
98
99/*
drh0fd61352014-02-07 02:29:45 +0000100** The next global variable is incremented each time the OP_Found opcode
dan0ff297e2009-09-25 17:03:14 +0000101** is executed. This is used to test whether or not the foreign key
102** operation implemented using OP_FkIsZero is working. This variable
103** has no function other than to help verify the correct operation of the
104** library.
105*/
106#ifdef SQLITE_TEST
107int sqlite3_found_count = 0;
108#endif
109
110/*
drhb7654112008-01-12 12:48:07 +0000111** Test a register to see if it exceeds the current maximum blob size.
112** If it does, record the new maximum blob size.
113*/
drhd12602a2016-12-07 15:49:02 +0000114#if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
drhca48c902008-01-18 14:08:24 +0000115# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
drhb7654112008-01-12 12:48:07 +0000116#else
117# define UPDATE_MAX_BLOBSIZE(P)
118#endif
119
120/*
drh5655c542014-02-19 19:14:34 +0000121** Invoke the VDBE coverage callback, if that callback is defined. This
122** feature is used for test suite validation only and does not appear an
123** production builds.
124**
125** M is an integer, 2 or 3, that indices how many different ways the
126** branch can go. It is usually 2. "I" is the direction the branch
127** goes. 0 means falls through. 1 means branch is taken. 2 means the
128** second alternative branch is taken.
drh4336b0e2014-08-05 00:53:51 +0000129**
130** iSrcLine is the source code line (from the __LINE__ macro) that
131** generated the VDBE instruction. This instrumentation assumes that all
132** source code is in a single file (the amalgamation). Special values 1
133** and 2 for the iSrcLine parameter mean that this particular branch is
134** always taken or never taken, respectively.
drh688852a2014-02-17 22:40:43 +0000135*/
136#if !defined(SQLITE_VDBE_COVERAGE)
137# define VdbeBranchTaken(I,M)
138#else
drh5655c542014-02-19 19:14:34 +0000139# define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
140 static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
141 if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
142 M = iSrcLine;
143 /* Assert the truth of VdbeCoverageAlwaysTaken() and
144 ** VdbeCoverageNeverTaken() */
145 assert( (M & I)==I );
146 }else{
147 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/
148 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
149 iSrcLine,I,M);
150 }
151 }
drh688852a2014-02-17 22:40:43 +0000152#endif
153
154/*
drh9cbf3422008-01-17 16:22:13 +0000155** Convert the given register into a string if it isn't one
danielk1977bd7e4602004-05-24 07:34:48 +0000156** already. Return non-zero if a malloc() fails.
157*/
drhb21c8cd2007-08-21 19:33:56 +0000158#define Stringify(P, enc) \
drhbd9507c2014-08-23 17:21:37 +0000159 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \
drhf4479502004-05-27 03:12:53 +0000160 { goto no_mem; }
danielk1977bd7e4602004-05-24 07:34:48 +0000161
162/*
danielk1977bd7e4602004-05-24 07:34:48 +0000163** An ephemeral string value (signified by the MEM_Ephem flag) contains
164** a pointer to a dynamically allocated string where some other entity
drh9cbf3422008-01-17 16:22:13 +0000165** is responsible for deallocating that string. Because the register
166** does not control the string, it might be deleted without the register
167** knowing it.
danielk1977bd7e4602004-05-24 07:34:48 +0000168**
169** This routine converts an ephemeral string into a dynamically allocated
drh9cbf3422008-01-17 16:22:13 +0000170** string that the register itself controls. In other words, it
drhc91b2fd2014-03-01 18:13:23 +0000171** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
danielk1977bd7e4602004-05-24 07:34:48 +0000172*/
drhb21c8cd2007-08-21 19:33:56 +0000173#define Deephemeralize(P) \
drheb2e1762004-05-27 01:53:56 +0000174 if( ((P)->flags&MEM_Ephem)!=0 \
drhb21c8cd2007-08-21 19:33:56 +0000175 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
danielk197793d46752004-05-23 13:30:58 +0000176
dan689ab892011-08-12 15:02:00 +0000177/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
drhc960dcb2015-11-20 19:22:01 +0000178#define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
danielk19778a6b5412004-05-24 07:04:25 +0000179
180/*
drhdfe88ec2008-11-03 20:55:06 +0000181** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
drh4774b132004-06-12 20:12:51 +0000182** if we run out of memory.
drh8c74a8c2002-08-25 19:20:40 +0000183*/
drhdfe88ec2008-11-03 20:55:06 +0000184static VdbeCursor *allocateCursor(
185 Vdbe *p, /* The virtual machine */
186 int iCur, /* Index of the new VdbeCursor */
danielk1977d336e222009-02-20 10:58:41 +0000187 int nField, /* Number of fields in the table or index */
drhe4c88c02012-01-04 12:57:45 +0000188 int iDb, /* Database the cursor belongs to, or -1 */
drhc960dcb2015-11-20 19:22:01 +0000189 u8 eCurType /* Type of the new cursor */
danielk1977cd3e8f72008-03-25 09:47:35 +0000190){
191 /* Find the memory cell that will be used to store the blob of memory
drhdfe88ec2008-11-03 20:55:06 +0000192 ** required for this VdbeCursor structure. It is convenient to use a
danielk1977cd3e8f72008-03-25 09:47:35 +0000193 ** vdbe memory cell to manage the memory allocation required for a
drhdfe88ec2008-11-03 20:55:06 +0000194 ** VdbeCursor structure for the following reasons:
danielk1977cd3e8f72008-03-25 09:47:35 +0000195 **
196 ** * Sometimes cursor numbers are used for a couple of different
197 ** purposes in a vdbe program. The different uses might require
198 ** different sized allocations. Memory cells provide growable
199 ** allocations.
200 **
201 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
202 ** be freed lazily via the sqlite3_release_memory() API. This
203 ** minimizes the number of malloc calls made by the system.
204 **
drh3cdce922016-03-21 00:30:40 +0000205 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
drh9f6168b2016-03-19 23:32:58 +0000206 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1].
207 ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
danielk1977cd3e8f72008-03-25 09:47:35 +0000208 */
drh9f6168b2016-03-19 23:32:58 +0000209 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
danielk1977cd3e8f72008-03-25 09:47:35 +0000210
danielk19775f096132008-03-28 15:44:09 +0000211 int nByte;
drhdfe88ec2008-11-03 20:55:06 +0000212 VdbeCursor *pCx = 0;
danielk19775f096132008-03-28 15:44:09 +0000213 nByte =
drh5cc10232013-11-21 01:04:02 +0000214 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
drhc960dcb2015-11-20 19:22:01 +0000215 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
danielk1977cd3e8f72008-03-25 09:47:35 +0000216
drh9f6168b2016-03-19 23:32:58 +0000217 assert( iCur>=0 && iCur<p->nCursor );
drha3fa1402016-04-29 02:55:05 +0000218 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
danielk1977be718892006-06-23 08:05:19 +0000219 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
danielk1977cd3e8f72008-03-25 09:47:35 +0000220 p->apCsr[iCur] = 0;
drh8c74a8c2002-08-25 19:20:40 +0000221 }
drh322f2852014-09-19 00:43:39 +0000222 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
drhdfe88ec2008-11-03 20:55:06 +0000223 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
drhfbd8cbd2016-12-10 12:58:15 +0000224 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
drhc960dcb2015-11-20 19:22:01 +0000225 pCx->eCurType = eCurType;
danielk197794eb6a12005-12-15 15:22:08 +0000226 pCx->iDb = iDb;
danielk1977cd3e8f72008-03-25 09:47:35 +0000227 pCx->nField = nField;
drhb53a5a92014-10-12 22:37:22 +0000228 pCx->aOffset = &pCx->aType[nField];
drhc960dcb2015-11-20 19:22:01 +0000229 if( eCurType==CURTYPE_BTREE ){
230 pCx->uc.pCursor = (BtCursor*)
drh5cc10232013-11-21 01:04:02 +0000231 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
drhc960dcb2015-11-20 19:22:01 +0000232 sqlite3BtreeCursorZero(pCx->uc.pCursor);
danielk1977cd3e8f72008-03-25 09:47:35 +0000233 }
danielk197794eb6a12005-12-15 15:22:08 +0000234 }
drh4774b132004-06-12 20:12:51 +0000235 return pCx;
drh8c74a8c2002-08-25 19:20:40 +0000236}
237
danielk19773d1bfea2004-05-14 11:00:53 +0000238/*
drh29d72102006-02-09 22:13:41 +0000239** Try to convert a value into a numeric representation if we can
240** do so without loss of information. In other words, if the string
241** looks like a number, convert it into a number. If it does not
242** look like a number, leave it alone.
drhbd9507c2014-08-23 17:21:37 +0000243**
244** If the bTryForInt flag is true, then extra effort is made to give
245** an integer representation. Strings that look like floating point
246** values but which have no fractional component (example: '48.00')
247** will have a MEM_Int representation when bTryForInt is true.
248**
249** If bTryForInt is false, then if the input string contains a decimal
250** point or exponential notation, the result is only MEM_Real, even
251** if there is an exact integer representation of the quantity.
drh29d72102006-02-09 22:13:41 +0000252*/
drhbd9507c2014-08-23 17:21:37 +0000253static void applyNumericAffinity(Mem *pRec, int bTryForInt){
drh975b4c62014-07-26 16:47:23 +0000254 double rValue;
255 i64 iValue;
256 u8 enc = pRec->enc;
drh11a6eee2014-09-19 22:01:54 +0000257 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str );
drh975b4c62014-07-26 16:47:23 +0000258 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
259 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
260 pRec->u.i = iValue;
261 pRec->flags |= MEM_Int;
262 }else{
drh74eaba42014-09-18 17:52:15 +0000263 pRec->u.r = rValue;
drh975b4c62014-07-26 16:47:23 +0000264 pRec->flags |= MEM_Real;
drhbd9507c2014-08-23 17:21:37 +0000265 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
drh29d72102006-02-09 22:13:41 +0000266 }
drh06b3bd52018-02-01 01:13:33 +0000267 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the
268 ** string representation after computing a numeric equivalent, because the
269 ** string representation might not be the canonical representation for the
270 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */
271 pRec->flags &= ~MEM_Str;
drh29d72102006-02-09 22:13:41 +0000272}
273
274/*
drh8a512562005-11-14 22:29:05 +0000275** Processing is determine by the affinity parameter:
danielk19773d1bfea2004-05-14 11:00:53 +0000276**
drh8a512562005-11-14 22:29:05 +0000277** SQLITE_AFF_INTEGER:
278** SQLITE_AFF_REAL:
279** SQLITE_AFF_NUMERIC:
280** Try to convert pRec to an integer representation or a
281** floating-point representation if an integer representation
282** is not possible. Note that the integer representation is
283** always preferred, even if the affinity is REAL, because
284** an integer representation is more space efficient on disk.
285**
286** SQLITE_AFF_TEXT:
287** Convert pRec to a text representation.
288**
drh05883a32015-06-02 15:32:08 +0000289** SQLITE_AFF_BLOB:
drh8a512562005-11-14 22:29:05 +0000290** No-op. pRec is unchanged.
danielk19773d1bfea2004-05-14 11:00:53 +0000291*/
drh17435752007-08-16 04:30:38 +0000292static void applyAffinity(
drh17435752007-08-16 04:30:38 +0000293 Mem *pRec, /* The value to apply affinity to */
294 char affinity, /* The affinity to be applied */
295 u8 enc /* Use this text encoding */
296){
drh7ea31cc2014-09-18 14:36:00 +0000297 if( affinity>=SQLITE_AFF_NUMERIC ){
drh8a512562005-11-14 22:29:05 +0000298 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
299 || affinity==SQLITE_AFF_NUMERIC );
drha3fa1402016-04-29 02:55:05 +0000300 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
drhbd9507c2014-08-23 17:21:37 +0000301 if( (pRec->flags & MEM_Real)==0 ){
drh11a6eee2014-09-19 22:01:54 +0000302 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
drhbd9507c2014-08-23 17:21:37 +0000303 }else{
304 sqlite3VdbeIntegerAffinity(pRec);
305 }
drh17c40292004-07-21 02:53:29 +0000306 }
drh7ea31cc2014-09-18 14:36:00 +0000307 }else if( affinity==SQLITE_AFF_TEXT ){
danielk19773d1bfea2004-05-14 11:00:53 +0000308 /* Only attempt the conversion to TEXT if there is an integer or real
drhf4479502004-05-27 03:12:53 +0000309 ** representation (blob and NULL do not get converted) but no string
drha3fa1402016-04-29 02:55:05 +0000310 ** representation. It would be harmless to repeat the conversion if
311 ** there is already a string rep, but it is pointless to waste those
312 ** CPU cycles. */
313 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
314 if( (pRec->flags&(MEM_Real|MEM_Int)) ){
315 sqlite3VdbeMemStringify(pRec, enc, 1);
316 }
danielk19773d1bfea2004-05-14 11:00:53 +0000317 }
dandde548c2015-05-19 19:44:25 +0000318 pRec->flags &= ~(MEM_Real|MEM_Int);
danielk19773d1bfea2004-05-14 11:00:53 +0000319 }
320}
321
danielk1977aee18ef2005-03-09 12:26:50 +0000322/*
drh29d72102006-02-09 22:13:41 +0000323** Try to convert the type of a function argument or a result column
324** into a numeric representation. Use either INTEGER or REAL whichever
325** is appropriate. But only do the conversion if it is possible without
326** loss of information and return the revised type of the argument.
drh29d72102006-02-09 22:13:41 +0000327*/
328int sqlite3_value_numeric_type(sqlite3_value *pVal){
drh1b27b8c2014-02-10 03:21:57 +0000329 int eType = sqlite3_value_type(pVal);
330 if( eType==SQLITE_TEXT ){
331 Mem *pMem = (Mem*)pVal;
drhbd9507c2014-08-23 17:21:37 +0000332 applyNumericAffinity(pMem, 0);
drh1b27b8c2014-02-10 03:21:57 +0000333 eType = sqlite3_value_type(pVal);
drhe5a8a1d2010-11-18 12:31:24 +0000334 }
drh1b27b8c2014-02-10 03:21:57 +0000335 return eType;
drh29d72102006-02-09 22:13:41 +0000336}
337
338/*
danielk1977aee18ef2005-03-09 12:26:50 +0000339** Exported version of applyAffinity(). This one works on sqlite3_value*,
340** not the internal Mem* type.
341*/
danielk19771e536952007-08-16 10:09:01 +0000342void sqlite3ValueApplyAffinity(
danielk19771e536952007-08-16 10:09:01 +0000343 sqlite3_value *pVal,
344 u8 affinity,
345 u8 enc
346){
drhb21c8cd2007-08-21 19:33:56 +0000347 applyAffinity((Mem *)pVal, affinity, enc);
danielk1977aee18ef2005-03-09 12:26:50 +0000348}
349
drh3d1d90a2014-03-24 15:00:15 +0000350/*
drhf1a89ed2014-08-23 17:41:15 +0000351** pMem currently only holds a string type (or maybe a BLOB that we can
352** interpret as a string if we want to). Compute its corresponding
drh74eaba42014-09-18 17:52:15 +0000353** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
drhf1a89ed2014-08-23 17:41:15 +0000354** accordingly.
355*/
356static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
357 assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
358 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
drh74eaba42014-09-18 17:52:15 +0000359 if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){
drhf1a89ed2014-08-23 17:41:15 +0000360 return 0;
361 }
drh84d4f1a2017-09-20 10:47:10 +0000362 if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==0 ){
drhf1a89ed2014-08-23 17:41:15 +0000363 return MEM_Int;
364 }
365 return MEM_Real;
366}
367
368/*
drh3d1d90a2014-03-24 15:00:15 +0000369** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
370** none.
371**
372** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
drh74eaba42014-09-18 17:52:15 +0000373** But it does set pMem->u.r and pMem->u.i appropriately.
drh3d1d90a2014-03-24 15:00:15 +0000374*/
375static u16 numericType(Mem *pMem){
376 if( pMem->flags & (MEM_Int|MEM_Real) ){
377 return pMem->flags & (MEM_Int|MEM_Real);
378 }
379 if( pMem->flags & (MEM_Str|MEM_Blob) ){
drhf1a89ed2014-08-23 17:41:15 +0000380 return computeNumericType(pMem);
drh3d1d90a2014-03-24 15:00:15 +0000381 }
382 return 0;
383}
384
danielk1977b5402fb2005-01-12 07:15:04 +0000385#ifdef SQLITE_DEBUG
drhb6f54522004-05-20 02:42:16 +0000386/*
danielk1977ca6b2912004-05-21 10:49:47 +0000387** Write a nice string representation of the contents of cell pMem
388** into buffer zBuf, length nBuf.
389*/
drh74161702006-02-24 02:53:49 +0000390void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
danielk1977ca6b2912004-05-21 10:49:47 +0000391 char *zCsr = zBuf;
392 int f = pMem->flags;
393
drh57196282004-10-06 15:41:16 +0000394 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
danielk1977bfd6cce2004-06-18 04:24:54 +0000395
danielk1977ca6b2912004-05-21 10:49:47 +0000396 if( f&MEM_Blob ){
397 int i;
398 char c;
399 if( f & MEM_Dyn ){
400 c = 'z';
401 assert( (f & (MEM_Static|MEM_Ephem))==0 );
402 }else if( f & MEM_Static ){
403 c = 't';
404 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
405 }else if( f & MEM_Ephem ){
406 c = 'e';
407 assert( (f & (MEM_Static|MEM_Dyn))==0 );
408 }else{
409 c = 's';
410 }
drh85c2dc02017-03-16 13:30:58 +0000411 *(zCsr++) = c;
drh5bb3eb92007-05-04 13:15:55 +0000412 sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
drhea678832008-12-10 19:26:22 +0000413 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000414 for(i=0; i<16 && i<pMem->n; i++){
drh5bb3eb92007-05-04 13:15:55 +0000415 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
drhea678832008-12-10 19:26:22 +0000416 zCsr += sqlite3Strlen30(zCsr);
danielk1977ca6b2912004-05-21 10:49:47 +0000417 }
418 for(i=0; i<16 && i<pMem->n; i++){
419 char z = pMem->z[i];
420 if( z<32 || z>126 ) *zCsr++ = '.';
421 else *zCsr++ = z;
422 }
drh85c2dc02017-03-16 13:30:58 +0000423 *(zCsr++) = ']';
drhfdf972a2007-05-02 13:30:27 +0000424 if( f & MEM_Zero ){
drh8df32842008-12-09 02:51:23 +0000425 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
drhea678832008-12-10 19:26:22 +0000426 zCsr += sqlite3Strlen30(zCsr);
drhfdf972a2007-05-02 13:30:27 +0000427 }
danielk1977b1bc9532004-05-22 03:05:33 +0000428 *zCsr = '\0';
429 }else if( f & MEM_Str ){
430 int j, k;
431 zBuf[0] = ' ';
432 if( f & MEM_Dyn ){
433 zBuf[1] = 'z';
434 assert( (f & (MEM_Static|MEM_Ephem))==0 );
435 }else if( f & MEM_Static ){
436 zBuf[1] = 't';
437 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
438 }else if( f & MEM_Ephem ){
439 zBuf[1] = 'e';
440 assert( (f & (MEM_Static|MEM_Dyn))==0 );
441 }else{
442 zBuf[1] = 's';
443 }
444 k = 2;
drh5bb3eb92007-05-04 13:15:55 +0000445 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
drhea678832008-12-10 19:26:22 +0000446 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000447 zBuf[k++] = '[';
448 for(j=0; j<15 && j<pMem->n; j++){
449 u8 c = pMem->z[j];
danielk1977b1bc9532004-05-22 03:05:33 +0000450 if( c>=0x20 && c<0x7f ){
451 zBuf[k++] = c;
452 }else{
453 zBuf[k++] = '.';
454 }
455 }
456 zBuf[k++] = ']';
drh5bb3eb92007-05-04 13:15:55 +0000457 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
drhea678832008-12-10 19:26:22 +0000458 k += sqlite3Strlen30(&zBuf[k]);
danielk1977b1bc9532004-05-22 03:05:33 +0000459 zBuf[k++] = 0;
danielk1977ca6b2912004-05-21 10:49:47 +0000460 }
danielk1977ca6b2912004-05-21 10:49:47 +0000461}
462#endif
463
drh5b6afba2008-01-05 16:29:28 +0000464#ifdef SQLITE_DEBUG
465/*
466** Print the value of a register for tracing purposes:
467*/
drh84e55a82013-11-13 17:58:23 +0000468static void memTracePrint(Mem *p){
drha5750cf2014-02-07 13:20:31 +0000469 if( p->flags & MEM_Undefined ){
drh84e55a82013-11-13 17:58:23 +0000470 printf(" undefined");
drh953f7612012-12-07 22:18:54 +0000471 }else if( p->flags & MEM_Null ){
drhce2fbd12018-01-12 21:00:14 +0000472 printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL");
drh5b6afba2008-01-05 16:29:28 +0000473 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
drh84e55a82013-11-13 17:58:23 +0000474 printf(" si:%lld", p->u.i);
drh5b6afba2008-01-05 16:29:28 +0000475 }else if( p->flags & MEM_Int ){
drh84e55a82013-11-13 17:58:23 +0000476 printf(" i:%lld", p->u.i);
drh0b3bf922009-06-15 20:45:34 +0000477#ifndef SQLITE_OMIT_FLOATING_POINT
drh5b6afba2008-01-05 16:29:28 +0000478 }else if( p->flags & MEM_Real ){
drh74eaba42014-09-18 17:52:15 +0000479 printf(" r:%g", p->u.r);
drh0b3bf922009-06-15 20:45:34 +0000480#endif
drh733bf1b2009-04-22 00:47:00 +0000481 }else if( p->flags & MEM_RowSet ){
drh84e55a82013-11-13 17:58:23 +0000482 printf(" (rowset)");
drh5b6afba2008-01-05 16:29:28 +0000483 }else{
484 char zBuf[200];
485 sqlite3VdbeMemPrettyPrint(p, zBuf);
drh84e55a82013-11-13 17:58:23 +0000486 printf(" %s", zBuf);
drh5b6afba2008-01-05 16:29:28 +0000487 }
dan5b6c8e42016-01-30 15:46:03 +0000488 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
drh5b6afba2008-01-05 16:29:28 +0000489}
drh84e55a82013-11-13 17:58:23 +0000490static void registerTrace(int iReg, Mem *p){
491 printf("REG[%d] = ", iReg);
492 memTracePrint(p);
493 printf("\n");
drhe2bc6552017-04-17 20:50:34 +0000494 sqlite3VdbeCheckMemInvariants(p);
drh5b6afba2008-01-05 16:29:28 +0000495}
496#endif
497
498#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +0000499# define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
drh5b6afba2008-01-05 16:29:28 +0000500#else
501# define REGISTER_TRACE(R,M)
502#endif
503
danielk197784ac9d02004-05-18 09:58:06 +0000504
drh7b396862003-01-01 23:06:20 +0000505#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000506
507/*
508** hwtime.h contains inline assembler code for implementing
509** high-performance timing routines.
drh7b396862003-01-01 23:06:20 +0000510*/
shane9bcbdad2008-05-29 20:22:37 +0000511#include "hwtime.h"
512
drh7b396862003-01-01 23:06:20 +0000513#endif
514
danielk1977fd7f0452008-12-17 17:30:26 +0000515#ifndef NDEBUG
516/*
517** This function is only called from within an assert() expression. It
518** checks that the sqlite3.nTransaction variable is correctly set to
519** the number of non-transaction savepoints currently in the
520** linked list starting at sqlite3.pSavepoint.
521**
522** Usage:
523**
524** assert( checkSavepointCount(db) );
525*/
526static int checkSavepointCount(sqlite3 *db){
527 int n = 0;
528 Savepoint *p;
529 for(p=db->pSavepoint; p; p=p->pNext) n++;
530 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
531 return 1;
532}
533#endif
534
drh27a348c2015-04-13 19:14:06 +0000535/*
536** Return the register of pOp->p2 after first preparing it to be
537** overwritten with an integer value.
drh9eef8c62015-10-15 17:31:41 +0000538*/
539static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
540 sqlite3VdbeMemSetNull(pOut);
541 pOut->flags = MEM_Int;
542 return pOut;
543}
drh27a348c2015-04-13 19:14:06 +0000544static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
545 Mem *pOut;
546 assert( pOp->p2>0 );
drh9f6168b2016-03-19 23:32:58 +0000547 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
drh27a348c2015-04-13 19:14:06 +0000548 pOut = &p->aMem[pOp->p2];
549 memAboutToChange(p, pOut);
drha3fa1402016-04-29 02:55:05 +0000550 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
drh9eef8c62015-10-15 17:31:41 +0000551 return out2PrereleaseWithClear(pOut);
552 }else{
553 pOut->flags = MEM_Int;
554 return pOut;
555 }
drh27a348c2015-04-13 19:14:06 +0000556}
557
drhb9755982010-07-24 16:34:37 +0000558
559/*
drh0fd61352014-02-07 02:29:45 +0000560** Execute as much of a VDBE program as we can.
561** This is the core of sqlite3_step().
drhb86ccfb2003-01-28 23:13:10 +0000562*/
danielk19774adee202004-05-08 08:23:19 +0000563int sqlite3VdbeExec(
drhb86ccfb2003-01-28 23:13:10 +0000564 Vdbe *p /* The VDBE */
565){
drhbbe879d2009-11-14 18:04:35 +0000566 Op *aOp = p->aOp; /* Copy of p->aOp */
mistachkin5f7b95f2017-02-01 23:03:54 +0000567 Op *pOp = aOp; /* Current operation */
drh6dc41482015-04-16 17:31:02 +0000568#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
569 Op *pOrigOp; /* Value of pOp at the top of the loop */
570#endif
drhb89aeb62016-01-27 15:49:32 +0000571#ifdef SQLITE_DEBUG
drhdef19e32016-01-27 16:26:25 +0000572 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */
drhb89aeb62016-01-27 15:49:32 +0000573#endif
drhb86ccfb2003-01-28 23:13:10 +0000574 int rc = SQLITE_OK; /* Value to return */
drh9bb575f2004-09-06 17:24:11 +0000575 sqlite3 *db = p->db; /* The database */
drhcdf011d2011-04-04 21:25:28 +0000576 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
drh8079a0d2006-01-12 17:20:50 +0000577 u8 encoding = ENC(db); /* The database encoding */
drh0f825a72016-08-13 14:17:02 +0000578 int iCompare = 0; /* Result of last comparison */
drhbf159fa2013-06-25 22:01:22 +0000579 unsigned nVmStep = 0; /* Number of virtual machine steps */
drh49afe3a2013-07-10 03:05:14 +0000580#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
drh2ab792e2017-05-30 18:34:07 +0000581 unsigned nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */
drh49afe3a2013-07-10 03:05:14 +0000582#endif
drha6c2ed92009-11-14 23:22:23 +0000583 Mem *aMem = p->aMem; /* Copy of p->aMem */
drhb27b7f52008-12-10 18:03:45 +0000584 Mem *pIn1 = 0; /* 1st input operand */
585 Mem *pIn2 = 0; /* 2nd input operand */
586 Mem *pIn3 = 0; /* 3rd input operand */
587 Mem *pOut = 0; /* Output operand */
drhb86ccfb2003-01-28 23:13:10 +0000588#ifdef VDBE_PROFILE
shane9bcbdad2008-05-29 20:22:37 +0000589 u64 start; /* CPU clock count at start of opcode */
drhb86ccfb2003-01-28 23:13:10 +0000590#endif
drh856c1032009-06-02 15:21:42 +0000591 /*** INSERT STACK UNION HERE ***/
drhe63d9992008-08-13 19:11:48 +0000592
drhca48c902008-01-18 14:08:24 +0000593 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
drhbdaec522011-04-04 00:14:43 +0000594 sqlite3VdbeEnter(p);
danielk19772e588c72005-12-09 14:25:08 +0000595 if( p->rc==SQLITE_NOMEM ){
596 /* This happens if a malloc() inside a call to sqlite3_column_text() or
597 ** sqlite3_column_text16() failed. */
598 goto no_mem;
599 }
drhcbd8db32015-08-20 17:18:32 +0000600 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
drh1713afb2013-06-28 01:24:57 +0000601 assert( p->bIsReader || p->readOnly!=0 );
drh95a7b3e2013-09-16 12:57:19 +0000602 p->iCurrentTime = 0;
drhb86ccfb2003-01-28 23:13:10 +0000603 assert( p->explain==0 );
drhd4e70eb2008-01-02 00:34:36 +0000604 p->pResultSet = 0;
drha4afb652005-07-09 02:16:02 +0000605 db->busyHandler.nBusy = 0;
drh0fd61352014-02-07 02:29:45 +0000606 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drh602c2372007-03-01 00:29:13 +0000607 sqlite3VdbeIOTraceSql(p);
drh0d1961e2013-07-25 16:27:51 +0000608#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
609 if( db->xProgress ){
drh6cbbdb02015-06-24 14:36:27 +0000610 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
drh0d1961e2013-07-25 16:27:51 +0000611 assert( 0 < db->nProgressOps );
drh6cbbdb02015-06-24 14:36:27 +0000612 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
drh2ab792e2017-05-30 18:34:07 +0000613 }else{
614 nProgressLimit = 0xffffffff;
drh0d1961e2013-07-25 16:27:51 +0000615 }
616#endif
drh3c23a882007-01-09 14:01:13 +0000617#ifdef SQLITE_DEBUG
danielk19772d1d86f2008-06-20 14:59:51 +0000618 sqlite3BeginBenignMalloc();
drh84e55a82013-11-13 17:58:23 +0000619 if( p->pc==0
620 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
621 ){
drh3c23a882007-01-09 14:01:13 +0000622 int i;
drh84e55a82013-11-13 17:58:23 +0000623 int once = 1;
drh3c23a882007-01-09 14:01:13 +0000624 sqlite3VdbePrintSql(p);
drh84e55a82013-11-13 17:58:23 +0000625 if( p->db->flags & SQLITE_VdbeListing ){
626 printf("VDBE Program Listing:\n");
627 for(i=0; i<p->nOp; i++){
628 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
629 }
drh3c23a882007-01-09 14:01:13 +0000630 }
drh84e55a82013-11-13 17:58:23 +0000631 if( p->db->flags & SQLITE_VdbeEQP ){
632 for(i=0; i<p->nOp; i++){
633 if( aOp[i].opcode==OP_Explain ){
634 if( once ) printf("VDBE Query Plan:\n");
635 printf("%s\n", aOp[i].p4.z);
636 once = 0;
637 }
638 }
639 }
640 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n");
drh3c23a882007-01-09 14:01:13 +0000641 }
danielk19772d1d86f2008-06-20 14:59:51 +0000642 sqlite3EndBenignMalloc();
drh3c23a882007-01-09 14:01:13 +0000643#endif
drh9467abf2016-02-17 18:44:11 +0000644 for(pOp=&aOp[p->pc]; 1; pOp++){
645 /* Errors are detected by individual opcodes, with an immediate
646 ** jumps to abort_due_to_error. */
647 assert( rc==SQLITE_OK );
648
drhf56fa462015-04-13 21:39:54 +0000649 assert( pOp>=aOp && pOp<&aOp[p->nOp]);
drh7b396862003-01-01 23:06:20 +0000650#ifdef VDBE_PROFILE
drh35043cc2018-02-12 20:27:34 +0000651 start = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
drh7b396862003-01-01 23:06:20 +0000652#endif
drhbf159fa2013-06-25 22:01:22 +0000653 nVmStep++;
dan6f9702e2014-11-01 20:38:06 +0000654#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
drhf56fa462015-04-13 21:39:54 +0000655 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
dan6f9702e2014-11-01 20:38:06 +0000656#endif
drh6e142f52000-06-08 13:36:40 +0000657
danielk19778b60e0f2005-01-12 09:10:39 +0000658 /* Only allow tracing if SQLITE_DEBUG is defined.
drh6e142f52000-06-08 13:36:40 +0000659 */
danielk19778b60e0f2005-01-12 09:10:39 +0000660#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +0000661 if( db->flags & SQLITE_VdbeTrace ){
drhf56fa462015-04-13 21:39:54 +0000662 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
drh75897232000-05-29 14:26:00 +0000663 }
drh3f7d4e42004-07-24 14:35:58 +0000664#endif
665
drh6e142f52000-06-08 13:36:40 +0000666
drhf6038712004-02-08 18:07:34 +0000667 /* Check to see if we need to simulate an interrupt. This only happens
668 ** if we have a special test build.
669 */
670#ifdef SQLITE_TEST
danielk19776f8a5032004-05-10 10:34:51 +0000671 if( sqlite3_interrupt_count>0 ){
672 sqlite3_interrupt_count--;
673 if( sqlite3_interrupt_count==0 ){
674 sqlite3_interrupt(db);
drhf6038712004-02-08 18:07:34 +0000675 }
676 }
677#endif
678
drh3c657212009-11-17 23:59:58 +0000679 /* Sanity checking on other operands */
680#ifdef SQLITE_DEBUG
drh7cc84c22016-04-11 13:36:42 +0000681 {
682 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
683 if( (opProperty & OPFLG_IN1)!=0 ){
684 assert( pOp->p1>0 );
685 assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
686 assert( memIsValid(&aMem[pOp->p1]) );
687 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
688 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
689 }
690 if( (opProperty & OPFLG_IN2)!=0 ){
691 assert( pOp->p2>0 );
692 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
693 assert( memIsValid(&aMem[pOp->p2]) );
694 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
695 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
696 }
697 if( (opProperty & OPFLG_IN3)!=0 ){
698 assert( pOp->p3>0 );
699 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
700 assert( memIsValid(&aMem[pOp->p3]) );
701 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
702 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
703 }
704 if( (opProperty & OPFLG_OUT2)!=0 ){
705 assert( pOp->p2>0 );
706 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
707 memAboutToChange(p, &aMem[pOp->p2]);
708 }
709 if( (opProperty & OPFLG_OUT3)!=0 ){
710 assert( pOp->p3>0 );
711 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
712 memAboutToChange(p, &aMem[pOp->p3]);
713 }
drh3c657212009-11-17 23:59:58 +0000714 }
715#endif
drh6dc41482015-04-16 17:31:02 +0000716#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
717 pOrigOp = pOp;
718#endif
drh93952eb2009-11-13 19:43:43 +0000719
drh75897232000-05-29 14:26:00 +0000720 switch( pOp->opcode ){
drh75897232000-05-29 14:26:00 +0000721
drh5e00f6c2001-09-13 13:46:56 +0000722/*****************************************************************************
723** What follows is a massive switch statement where each case implements a
724** separate instruction in the virtual machine. If we follow the usual
725** indentation conventions, each case should be indented by 6 spaces. But
726** that is a lot of wasted space on the left margin. So the code within
727** the switch statement will break with convention and be flush-left. Another
728** big comment (similar to this one) will mark the point in the code where
729** we transition back to normal indentation.
drhac82fcf2002-09-08 17:23:41 +0000730**
731** The formatting of each case is important. The makefile for SQLite
732** generates two C files "opcodes.h" and "opcodes.c" by scanning this
733** file looking for lines that begin with "case OP_". The opcodes.h files
734** will be filled with #defines that give unique integer values to each
735** opcode and the opcodes.c file is filled with an array of strings where
drhf2bc0132004-10-04 13:19:23 +0000736** each string is the symbolic name for the corresponding opcode. If the
737** case statement is followed by a comment of the form "/# same as ... #/"
738** that comment is used to determine the particular value of the opcode.
drhac82fcf2002-09-08 17:23:41 +0000739**
drh9cbf3422008-01-17 16:22:13 +0000740** Other keywords in the comment that follows each case are used to
741** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
drh27a348c2015-04-13 19:14:06 +0000742** Keywords include: in1, in2, in3, out2, out3. See
drh9cbf3422008-01-17 16:22:13 +0000743** the mkopcodeh.awk script for additional information.
danielk1977bc04f852005-03-29 08:26:13 +0000744**
drhac82fcf2002-09-08 17:23:41 +0000745** Documentation about VDBE opcodes is generated by scanning this file
746** for lines of that contain "Opcode:". That line and all subsequent
747** comment lines are used in the generation of the opcode.html documentation
748** file.
749**
750** SUMMARY:
751**
752** Formatting is important to scripts that scan this file.
753** Do not deviate from the formatting style currently in use.
754**
drh5e00f6c2001-09-13 13:46:56 +0000755*****************************************************************************/
drh75897232000-05-29 14:26:00 +0000756
drh9cbf3422008-01-17 16:22:13 +0000757/* Opcode: Goto * P2 * * *
drh5e00f6c2001-09-13 13:46:56 +0000758**
759** An unconditional jump to address P2.
760** The next instruction executed will be
761** the one at index P2 from the beginning of
762** the program.
drhfe705102014-03-06 13:38:37 +0000763**
764** The P1 parameter is not actually used by this opcode. However, it
765** is sometimes set to 1 instead of 0 as a hint to the command-line shell
766** that this Goto is the bottom of a loop and that the lines from P2 down
767** to the current line should be indented for EXPLAIN output.
drh5e00f6c2001-09-13 13:46:56 +0000768*/
drh9cbf3422008-01-17 16:22:13 +0000769case OP_Goto: { /* jump */
drhf56fa462015-04-13 21:39:54 +0000770jump_to_p2_and_check_for_interrupt:
771 pOp = &aOp[pOp->p2 - 1];
drh49afe3a2013-07-10 03:05:14 +0000772
773 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
drhbb6783b2017-04-29 18:02:49 +0000774 ** OP_VNext, or OP_SorterNext) all jump here upon
drh49afe3a2013-07-10 03:05:14 +0000775 ** completion. Check to see if sqlite3_interrupt() has been called
776 ** or if the progress callback needs to be invoked.
777 **
778 ** This code uses unstructured "goto" statements and does not look clean.
779 ** But that is not due to sloppy coding habits. The code is written this
780 ** way for performance, to avoid having to run the interrupt and progress
781 ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
782 ** faster according to "valgrind --tool=cachegrind" */
783check_for_interrupt:
drh0fd61352014-02-07 02:29:45 +0000784 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
drh49afe3a2013-07-10 03:05:14 +0000785#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
786 /* Call the progress callback if it is configured and the required number
787 ** of VDBE ops have been executed (either since this invocation of
788 ** sqlite3VdbeExec() or since last time the progress callback was called).
789 ** If the progress callback returns non-zero, exit the virtual machine with
790 ** a return code SQLITE_ABORT.
791 */
drh2ab792e2017-05-30 18:34:07 +0000792 if( nVmStep>=nProgressLimit && db->xProgress!=0 ){
drh400fcba2013-11-14 00:09:48 +0000793 assert( db->nProgressOps!=0 );
794 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
795 if( db->xProgress(db->pProgressArg) ){
drh49afe3a2013-07-10 03:05:14 +0000796 rc = SQLITE_INTERRUPT;
drh9467abf2016-02-17 18:44:11 +0000797 goto abort_due_to_error;
drh49afe3a2013-07-10 03:05:14 +0000798 }
drh49afe3a2013-07-10 03:05:14 +0000799 }
800#endif
801
drh5e00f6c2001-09-13 13:46:56 +0000802 break;
803}
drh75897232000-05-29 14:26:00 +0000804
drh2eb95372008-06-06 15:04:36 +0000805/* Opcode: Gosub P1 P2 * * *
drh8c74a8c2002-08-25 19:20:40 +0000806**
drh2eb95372008-06-06 15:04:36 +0000807** Write the current address onto register P1
drh8c74a8c2002-08-25 19:20:40 +0000808** and then jump to address P2.
drh8c74a8c2002-08-25 19:20:40 +0000809*/
drhb8475df2011-12-09 16:21:19 +0000810case OP_Gosub: { /* jump */
drh9f6168b2016-03-19 23:32:58 +0000811 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
drh3c657212009-11-17 23:59:58 +0000812 pIn1 = &aMem[pOp->p1];
drhc91b2fd2014-03-01 18:13:23 +0000813 assert( VdbeMemDynamic(pIn1)==0 );
drh2b4ded92010-09-27 21:09:31 +0000814 memAboutToChange(p, pIn1);
drh2eb95372008-06-06 15:04:36 +0000815 pIn1->flags = MEM_Int;
drhf56fa462015-04-13 21:39:54 +0000816 pIn1->u.i = (int)(pOp-aOp);
drh2eb95372008-06-06 15:04:36 +0000817 REGISTER_TRACE(pOp->p1, pIn1);
drhf56fa462015-04-13 21:39:54 +0000818
819 /* Most jump operations do a goto to this spot in order to update
820 ** the pOp pointer. */
821jump_to_p2:
822 pOp = &aOp[pOp->p2 - 1];
drh8c74a8c2002-08-25 19:20:40 +0000823 break;
824}
825
drh2eb95372008-06-06 15:04:36 +0000826/* Opcode: Return P1 * * * *
drh8c74a8c2002-08-25 19:20:40 +0000827**
drh81cf13e2014-02-07 18:27:53 +0000828** Jump to the next instruction after the address in register P1. After
829** the jump, register P1 becomes undefined.
drh8c74a8c2002-08-25 19:20:40 +0000830*/
drh2eb95372008-06-06 15:04:36 +0000831case OP_Return: { /* in1 */
drh3c657212009-11-17 23:59:58 +0000832 pIn1 = &aMem[pOp->p1];
drh81cf13e2014-02-07 18:27:53 +0000833 assert( pIn1->flags==MEM_Int );
drhf56fa462015-04-13 21:39:54 +0000834 pOp = &aOp[pIn1->u.i];
drh81cf13e2014-02-07 18:27:53 +0000835 pIn1->flags = MEM_Undefined;
drh8c74a8c2002-08-25 19:20:40 +0000836 break;
837}
838
drhed71a832014-02-07 19:18:10 +0000839/* Opcode: InitCoroutine P1 P2 P3 * *
drh81cf13e2014-02-07 18:27:53 +0000840**
drh5dad9a32014-07-25 18:37:42 +0000841** Set up register P1 so that it will Yield to the coroutine
drhed71a832014-02-07 19:18:10 +0000842** located at address P3.
843**
drh5dad9a32014-07-25 18:37:42 +0000844** If P2!=0 then the coroutine implementation immediately follows
845** this opcode. So jump over the coroutine implementation to
drhed71a832014-02-07 19:18:10 +0000846** address P2.
drh5dad9a32014-07-25 18:37:42 +0000847**
848** See also: EndCoroutine
drh81cf13e2014-02-07 18:27:53 +0000849*/
850case OP_InitCoroutine: { /* jump */
drh9f6168b2016-03-19 23:32:58 +0000851 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
drhed71a832014-02-07 19:18:10 +0000852 assert( pOp->p2>=0 && pOp->p2<p->nOp );
853 assert( pOp->p3>=0 && pOp->p3<p->nOp );
drh81cf13e2014-02-07 18:27:53 +0000854 pOut = &aMem[pOp->p1];
drhed71a832014-02-07 19:18:10 +0000855 assert( !VdbeMemDynamic(pOut) );
856 pOut->u.i = pOp->p3 - 1;
drh81cf13e2014-02-07 18:27:53 +0000857 pOut->flags = MEM_Int;
drhf56fa462015-04-13 21:39:54 +0000858 if( pOp->p2 ) goto jump_to_p2;
drh81cf13e2014-02-07 18:27:53 +0000859 break;
860}
861
862/* Opcode: EndCoroutine P1 * * * *
863**
drhbc5cf382014-08-06 01:08:07 +0000864** The instruction at the address in register P1 is a Yield.
drh5dad9a32014-07-25 18:37:42 +0000865** Jump to the P2 parameter of that Yield.
drh81cf13e2014-02-07 18:27:53 +0000866** After the jump, register P1 becomes undefined.
drh5dad9a32014-07-25 18:37:42 +0000867**
868** See also: InitCoroutine
drh81cf13e2014-02-07 18:27:53 +0000869*/
870case OP_EndCoroutine: { /* in1 */
871 VdbeOp *pCaller;
872 pIn1 = &aMem[pOp->p1];
873 assert( pIn1->flags==MEM_Int );
874 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
875 pCaller = &aOp[pIn1->u.i];
876 assert( pCaller->opcode==OP_Yield );
877 assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
drhf56fa462015-04-13 21:39:54 +0000878 pOp = &aOp[pCaller->p2 - 1];
drh81cf13e2014-02-07 18:27:53 +0000879 pIn1->flags = MEM_Undefined;
880 break;
881}
882
883/* Opcode: Yield P1 P2 * * *
drhe00ee6e2008-06-20 15:24:01 +0000884**
drh5dad9a32014-07-25 18:37:42 +0000885** Swap the program counter with the value in register P1. This
886** has the effect of yielding to a coroutine.
drh81cf13e2014-02-07 18:27:53 +0000887**
drh5dad9a32014-07-25 18:37:42 +0000888** If the coroutine that is launched by this instruction ends with
889** Yield or Return then continue to the next instruction. But if
890** the coroutine launched by this instruction ends with
891** EndCoroutine, then jump to P2 rather than continuing with the
892** next instruction.
893**
894** See also: InitCoroutine
drhe00ee6e2008-06-20 15:24:01 +0000895*/
drh81cf13e2014-02-07 18:27:53 +0000896case OP_Yield: { /* in1, jump */
drhe00ee6e2008-06-20 15:24:01 +0000897 int pcDest;
drh3c657212009-11-17 23:59:58 +0000898 pIn1 = &aMem[pOp->p1];
drhc91b2fd2014-03-01 18:13:23 +0000899 assert( VdbeMemDynamic(pIn1)==0 );
drhe00ee6e2008-06-20 15:24:01 +0000900 pIn1->flags = MEM_Int;
drh9c1905f2008-12-10 22:32:56 +0000901 pcDest = (int)pIn1->u.i;
drhf56fa462015-04-13 21:39:54 +0000902 pIn1->u.i = (int)(pOp - aOp);
drhe00ee6e2008-06-20 15:24:01 +0000903 REGISTER_TRACE(pOp->p1, pIn1);
drhf56fa462015-04-13 21:39:54 +0000904 pOp = &aOp[pcDest];
drhe00ee6e2008-06-20 15:24:01 +0000905 break;
906}
907
drhf9c8ce32013-11-05 13:33:55 +0000908/* Opcode: HaltIfNull P1 P2 P3 P4 P5
drh72e26de2016-08-24 21:24:04 +0000909** Synopsis: if r[P3]=null halt
drh5053a792009-02-20 03:02:23 +0000910**
drhef8662b2011-06-20 21:47:58 +0000911** Check the value in register P3. If it is NULL then Halt using
drh5053a792009-02-20 03:02:23 +0000912** parameter P1, P2, and P4 as if this were a Halt instruction. If the
913** value in register P3 is not NULL, then this routine is a no-op.
drhf9c8ce32013-11-05 13:33:55 +0000914** The P5 parameter should be 1.
drh5053a792009-02-20 03:02:23 +0000915*/
916case OP_HaltIfNull: { /* in3 */
drh3c657212009-11-17 23:59:58 +0000917 pIn3 = &aMem[pOp->p3];
drh4031baf2018-05-28 17:31:20 +0000918#ifdef SQLITE_DEBUG
919 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
920#endif
drh5053a792009-02-20 03:02:23 +0000921 if( (pIn3->flags & MEM_Null)==0 ) break;
922 /* Fall through into OP_Halt */
923}
drhe00ee6e2008-06-20 15:24:01 +0000924
drhf9c8ce32013-11-05 13:33:55 +0000925/* Opcode: Halt P1 P2 * P4 P5
drh5e00f6c2001-09-13 13:46:56 +0000926**
drh3d4501e2008-12-04 20:40:10 +0000927** Exit immediately. All open cursors, etc are closed
drh5e00f6c2001-09-13 13:46:56 +0000928** automatically.
drhb19a2bc2001-09-16 00:13:26 +0000929**
drh92f02c32004-09-02 14:57:08 +0000930** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
931** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
932** For errors, it can be some other value. If P1!=0 then P2 will determine
933** whether or not to rollback the current transaction. Do not rollback
934** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
935** then back out all changes that have occurred during this execution of the
drhb798fa62002-09-03 19:43:23 +0000936** VDBE, but do not rollback the transaction.
drh9cfcf5d2002-01-29 18:41:24 +0000937**
drh66a51672008-01-03 00:01:23 +0000938** If P4 is not null then it is an error message string.
drh7f057c92005-06-24 03:53:06 +0000939**
drhf9c8ce32013-11-05 13:33:55 +0000940** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
941**
942** 0: (no change)
943** 1: NOT NULL contraint failed: P4
944** 2: UNIQUE constraint failed: P4
945** 3: CHECK constraint failed: P4
946** 4: FOREIGN KEY constraint failed: P4
947**
948** If P5 is not zero and P4 is NULL, then everything after the ":" is
949** omitted.
950**
drh9cfcf5d2002-01-29 18:41:24 +0000951** There is an implied "Halt 0 0 0" instruction inserted at the very end of
drhb19a2bc2001-09-16 00:13:26 +0000952** every program. So a jump past the last instruction of the program
953** is the same as executing Halt.
drh5e00f6c2001-09-13 13:46:56 +0000954*/
drh9cbf3422008-01-17 16:22:13 +0000955case OP_Halt: {
drhf56fa462015-04-13 21:39:54 +0000956 VdbeFrame *pFrame;
957 int pcx;
drhf9c8ce32013-11-05 13:33:55 +0000958
drhf56fa462015-04-13 21:39:54 +0000959 pcx = (int)(pOp - aOp);
drh4031baf2018-05-28 17:31:20 +0000960#ifdef SQLITE_DEBUG
961 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
962#endif
dan165921a2009-08-28 18:53:45 +0000963 if( pOp->p1==SQLITE_OK && p->pFrame ){
dan2832ad42009-08-31 15:27:27 +0000964 /* Halt the sub-program. Return control to the parent frame. */
drhf56fa462015-04-13 21:39:54 +0000965 pFrame = p->pFrame;
dan165921a2009-08-28 18:53:45 +0000966 p->pFrame = pFrame->pParent;
967 p->nFrame--;
dan2832ad42009-08-31 15:27:27 +0000968 sqlite3VdbeSetChanges(db, p->nChange);
drhf56fa462015-04-13 21:39:54 +0000969 pcx = sqlite3VdbeFrameRestore(pFrame);
dan165921a2009-08-28 18:53:45 +0000970 if( pOp->p2==OE_Ignore ){
drhf56fa462015-04-13 21:39:54 +0000971 /* Instruction pcx is the OP_Program that invoked the sub-program
dan2832ad42009-08-31 15:27:27 +0000972 ** currently being halted. If the p2 instruction of this OP_Halt
973 ** instruction is set to OE_Ignore, then the sub-program is throwing
974 ** an IGNORE exception. In this case jump to the address specified
975 ** as the p2 of the calling OP_Program. */
drhf56fa462015-04-13 21:39:54 +0000976 pcx = p->aOp[pcx].p2-1;
dan165921a2009-08-28 18:53:45 +0000977 }
drhbbe879d2009-11-14 18:04:35 +0000978 aOp = p->aOp;
drha6c2ed92009-11-14 23:22:23 +0000979 aMem = p->aMem;
drhf56fa462015-04-13 21:39:54 +0000980 pOp = &aOp[pcx];
dan165921a2009-08-28 18:53:45 +0000981 break;
982 }
drh92f02c32004-09-02 14:57:08 +0000983 p->rc = pOp->p1;
shane36840fd2009-06-26 16:32:13 +0000984 p->errorAction = (u8)pOp->p2;
drhf56fa462015-04-13 21:39:54 +0000985 p->pc = pcx;
drhfb4e3a32016-12-30 00:09:14 +0000986 assert( pOp->p5<=4 );
drhf9c8ce32013-11-05 13:33:55 +0000987 if( p->rc ){
drhd9b7ec92013-11-06 14:05:21 +0000988 if( pOp->p5 ){
989 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
990 "FOREIGN KEY" };
drhd9b7ec92013-11-06 14:05:21 +0000991 testcase( pOp->p5==1 );
992 testcase( pOp->p5==2 );
993 testcase( pOp->p5==3 );
994 testcase( pOp->p5==4 );
drh99f5de72016-04-30 02:59:15 +0000995 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
996 if( pOp->p4.z ){
997 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
998 }
drhd9b7ec92013-11-06 14:05:21 +0000999 }else{
drh22c17b82015-05-15 04:13:15 +00001000 sqlite3VdbeError(p, "%s", pOp->p4.z);
drhf9c8ce32013-11-05 13:33:55 +00001001 }
drh99f5de72016-04-30 02:59:15 +00001002 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
drh9cfcf5d2002-01-29 18:41:24 +00001003 }
drh92f02c32004-09-02 14:57:08 +00001004 rc = sqlite3VdbeHalt(p);
dan1da40a32009-09-19 17:00:31 +00001005 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
drh92f02c32004-09-02 14:57:08 +00001006 if( rc==SQLITE_BUSY ){
drh99f5de72016-04-30 02:59:15 +00001007 p->rc = SQLITE_BUSY;
drh900b31e2007-08-28 02:27:51 +00001008 }else{
drhd91c1a12013-02-09 13:58:25 +00001009 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
dancb3e4b72013-07-03 19:53:05 +00001010 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
drh900b31e2007-08-28 02:27:51 +00001011 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
drh92f02c32004-09-02 14:57:08 +00001012 }
drh900b31e2007-08-28 02:27:51 +00001013 goto vdbe_return;
drh5e00f6c2001-09-13 13:46:56 +00001014}
drhc61053b2000-06-04 12:58:36 +00001015
drh4c583122008-01-04 22:01:03 +00001016/* Opcode: Integer P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00001017** Synopsis: r[P2]=P1
drh5e00f6c2001-09-13 13:46:56 +00001018**
drh9cbf3422008-01-17 16:22:13 +00001019** The 32-bit integer value P1 is written into register P2.
drh5e00f6c2001-09-13 13:46:56 +00001020*/
drh27a348c2015-04-13 19:14:06 +00001021case OP_Integer: { /* out2 */
1022 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001023 pOut->u.i = pOp->p1;
drh29dda4a2005-07-21 18:23:20 +00001024 break;
1025}
1026
drh4c583122008-01-04 22:01:03 +00001027/* Opcode: Int64 * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001028** Synopsis: r[P2]=P4
drh29dda4a2005-07-21 18:23:20 +00001029**
drh66a51672008-01-03 00:01:23 +00001030** P4 is a pointer to a 64-bit integer value.
drh9cbf3422008-01-17 16:22:13 +00001031** Write that value into register P2.
drh29dda4a2005-07-21 18:23:20 +00001032*/
drh27a348c2015-04-13 19:14:06 +00001033case OP_Int64: { /* out2 */
1034 pOut = out2Prerelease(p, pOp);
danielk19772dca4ac2008-01-03 11:50:29 +00001035 assert( pOp->p4.pI64!=0 );
drh4c583122008-01-04 22:01:03 +00001036 pOut->u.i = *pOp->p4.pI64;
drhf4479502004-05-27 03:12:53 +00001037 break;
1038}
drh4f26d6c2004-05-26 23:25:30 +00001039
drh13573c72010-01-12 17:04:07 +00001040#ifndef SQLITE_OMIT_FLOATING_POINT
drh4c583122008-01-04 22:01:03 +00001041/* Opcode: Real * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001042** Synopsis: r[P2]=P4
drhf4479502004-05-27 03:12:53 +00001043**
drh4c583122008-01-04 22:01:03 +00001044** P4 is a pointer to a 64-bit floating point value.
drh9cbf3422008-01-17 16:22:13 +00001045** Write that value into register P2.
drhf4479502004-05-27 03:12:53 +00001046*/
drh27a348c2015-04-13 19:14:06 +00001047case OP_Real: { /* same as TK_FLOAT, out2 */
1048 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001049 pOut->flags = MEM_Real;
drh2eaf93d2008-04-29 00:15:20 +00001050 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
drh74eaba42014-09-18 17:52:15 +00001051 pOut->u.r = *pOp->p4.pReal;
drhf4479502004-05-27 03:12:53 +00001052 break;
1053}
drh13573c72010-01-12 17:04:07 +00001054#endif
danielk1977cbb18d22004-05-28 11:37:27 +00001055
drh3c84ddf2008-01-09 02:15:38 +00001056/* Opcode: String8 * P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001057** Synopsis: r[P2]='P4'
danielk1977cbb18d22004-05-28 11:37:27 +00001058**
drh66a51672008-01-03 00:01:23 +00001059** P4 points to a nul terminated UTF-8 string. This opcode is transformed
drhf07cf6e2015-03-06 16:45:16 +00001060** into a String opcode before it is executed for the first time. During
drh0fd61352014-02-07 02:29:45 +00001061** this transformation, the length of string P4 is computed and stored
1062** as the P1 parameter.
danielk1977cbb18d22004-05-28 11:37:27 +00001063*/
drh27a348c2015-04-13 19:14:06 +00001064case OP_String8: { /* same as TK_STRING, out2 */
danielk19772dca4ac2008-01-03 11:50:29 +00001065 assert( pOp->p4.z!=0 );
drh27a348c2015-04-13 19:14:06 +00001066 pOut = out2Prerelease(p, pOp);
drhed2df7f2005-11-16 04:34:32 +00001067 pOp->opcode = OP_String;
drhea678832008-12-10 19:26:22 +00001068 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
drhed2df7f2005-11-16 04:34:32 +00001069
1070#ifndef SQLITE_OMIT_UTF16
drh8079a0d2006-01-12 17:20:50 +00001071 if( encoding!=SQLITE_UTF8 ){
drh3a9cf172009-06-17 21:42:33 +00001072 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
drh2f555112016-04-30 18:10:34 +00001073 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
drh4c583122008-01-04 22:01:03 +00001074 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
drh17bcb102014-09-18 21:25:33 +00001075 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
drhc91b2fd2014-03-01 18:13:23 +00001076 assert( VdbeMemDynamic(pOut)==0 );
drh17bcb102014-09-18 21:25:33 +00001077 pOut->szMalloc = 0;
drh4c583122008-01-04 22:01:03 +00001078 pOut->flags |= MEM_Static;
drh66a51672008-01-03 00:01:23 +00001079 if( pOp->p4type==P4_DYNAMIC ){
drh633e6d52008-07-28 19:34:53 +00001080 sqlite3DbFree(db, pOp->p4.z);
danielk1977e0048402004-06-15 16:51:01 +00001081 }
drh66a51672008-01-03 00:01:23 +00001082 pOp->p4type = P4_DYNAMIC;
drh4c583122008-01-04 22:01:03 +00001083 pOp->p4.z = pOut->z;
1084 pOp->p1 = pOut->n;
danielk19770f69c1e2004-05-29 11:24:50 +00001085 }
drh2f555112016-04-30 18:10:34 +00001086 testcase( rc==SQLITE_TOOBIG );
danielk197793758c82005-01-21 08:13:14 +00001087#endif
drhbb4957f2008-03-20 14:03:29 +00001088 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drhcbd2da92007-12-17 16:20:06 +00001089 goto too_big;
1090 }
drh2f555112016-04-30 18:10:34 +00001091 assert( rc==SQLITE_OK );
drhcbd2da92007-12-17 16:20:06 +00001092 /* Fall through to the next case, OP_String */
danielk1977cbb18d22004-05-28 11:37:27 +00001093}
drhf4479502004-05-27 03:12:53 +00001094
drhf07cf6e2015-03-06 16:45:16 +00001095/* Opcode: String P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00001096** Synopsis: r[P2]='P4' (len=P1)
drhf4479502004-05-27 03:12:53 +00001097**
drh9cbf3422008-01-17 16:22:13 +00001098** The string value P4 of length P1 (bytes) is stored in register P2.
drhf07cf6e2015-03-06 16:45:16 +00001099**
drh44aebff2016-05-02 10:25:42 +00001100** If P3 is not zero and the content of register P3 is equal to P5, then
drha9c18a92015-03-06 20:49:52 +00001101** the datatype of the register P2 is converted to BLOB. The content is
1102** the same sequence of bytes, it is merely interpreted as a BLOB instead
drh44aebff2016-05-02 10:25:42 +00001103** of a string, as if it had been CAST. In other words:
1104**
1105** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
drhf4479502004-05-27 03:12:53 +00001106*/
drh27a348c2015-04-13 19:14:06 +00001107case OP_String: { /* out2 */
danielk19772dca4ac2008-01-03 11:50:29 +00001108 assert( pOp->p4.z!=0 );
drh27a348c2015-04-13 19:14:06 +00001109 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001110 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1111 pOut->z = pOp->p4.z;
1112 pOut->n = pOp->p1;
1113 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001114 UPDATE_MAX_BLOBSIZE(pOut);
drh41d2e662015-12-01 21:23:07 +00001115#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
drh44aebff2016-05-02 10:25:42 +00001116 if( pOp->p3>0 ){
drh9f6168b2016-03-19 23:32:58 +00001117 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
drhf07cf6e2015-03-06 16:45:16 +00001118 pIn3 = &aMem[pOp->p3];
1119 assert( pIn3->flags & MEM_Int );
drh44aebff2016-05-02 10:25:42 +00001120 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
drhf07cf6e2015-03-06 16:45:16 +00001121 }
drh41d2e662015-12-01 21:23:07 +00001122#endif
danielk1977c572ef72004-05-27 09:28:41 +00001123 break;
1124}
1125
drh053a1282012-09-19 21:15:46 +00001126/* Opcode: Null P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001127** Synopsis: r[P2..P3]=NULL
drhf0863fe2005-06-12 21:35:51 +00001128**
drhb8475df2011-12-09 16:21:19 +00001129** Write a NULL into registers P2. If P3 greater than P2, then also write
drh053a1282012-09-19 21:15:46 +00001130** NULL into register P3 and every register in between P2 and P3. If P3
drhb8475df2011-12-09 16:21:19 +00001131** is less than P2 (typically P3 is zero) then only register P2 is
drh053a1282012-09-19 21:15:46 +00001132** set to NULL.
1133**
1134** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1135** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1136** OP_Ne or OP_Eq.
drhf0863fe2005-06-12 21:35:51 +00001137*/
drh27a348c2015-04-13 19:14:06 +00001138case OP_Null: { /* out2 */
drhb8475df2011-12-09 16:21:19 +00001139 int cnt;
drh053a1282012-09-19 21:15:46 +00001140 u16 nullFlag;
drh27a348c2015-04-13 19:14:06 +00001141 pOut = out2Prerelease(p, pOp);
drhb8475df2011-12-09 16:21:19 +00001142 cnt = pOp->p3-pOp->p2;
drh9f6168b2016-03-19 23:32:58 +00001143 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
drh053a1282012-09-19 21:15:46 +00001144 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
drh2a1df932016-09-30 17:46:44 +00001145 pOut->n = 0;
drhb8475df2011-12-09 16:21:19 +00001146 while( cnt>0 ){
1147 pOut++;
1148 memAboutToChange(p, pOut);
drh0725cab2014-09-17 14:52:46 +00001149 sqlite3VdbeMemSetNull(pOut);
drh053a1282012-09-19 21:15:46 +00001150 pOut->flags = nullFlag;
drh2a1df932016-09-30 17:46:44 +00001151 pOut->n = 0;
drhb8475df2011-12-09 16:21:19 +00001152 cnt--;
1153 }
drhf0863fe2005-06-12 21:35:51 +00001154 break;
1155}
1156
drh05a86c52014-02-16 01:55:49 +00001157/* Opcode: SoftNull P1 * * * *
drh72e26de2016-08-24 21:24:04 +00001158** Synopsis: r[P1]=NULL
drh05a86c52014-02-16 01:55:49 +00001159**
1160** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1161** instruction, but do not free any string or blob memory associated with
1162** the register, so that if the value was a string or blob that was
1163** previously copied using OP_SCopy, the copies will continue to be valid.
1164*/
1165case OP_SoftNull: {
drh9f6168b2016-03-19 23:32:58 +00001166 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
drh05a86c52014-02-16 01:55:49 +00001167 pOut = &aMem[pOp->p1];
drhe2bc6552017-04-17 20:50:34 +00001168 pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
drh05a86c52014-02-16 01:55:49 +00001169 break;
1170}
drhf0863fe2005-06-12 21:35:51 +00001171
drha5750cf2014-02-07 13:20:31 +00001172/* Opcode: Blob P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001173** Synopsis: r[P2]=P4 (len=P1)
danielk1977c572ef72004-05-27 09:28:41 +00001174**
drh9de221d2008-01-05 06:51:30 +00001175** P4 points to a blob of data P1 bytes long. Store this
drh710c4842010-08-30 01:17:20 +00001176** blob in register P2.
danielk1977c572ef72004-05-27 09:28:41 +00001177*/
drh27a348c2015-04-13 19:14:06 +00001178case OP_Blob: { /* out2 */
drhcbd2da92007-12-17 16:20:06 +00001179 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
drh27a348c2015-04-13 19:14:06 +00001180 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00001181 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
drh9de221d2008-01-05 06:51:30 +00001182 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001183 UPDATE_MAX_BLOBSIZE(pOut);
danielk1977a37cdde2004-05-16 11:15:36 +00001184 break;
1185}
1186
drheaf52d82010-05-12 13:50:23 +00001187/* Opcode: Variable P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00001188** Synopsis: r[P2]=parameter(P1,P4)
drh50457892003-09-06 01:10:47 +00001189**
drheaf52d82010-05-12 13:50:23 +00001190** Transfer the values of bound parameter P1 into register P2
drh08de1492009-02-20 03:55:05 +00001191**
drh0fd61352014-02-07 02:29:45 +00001192** If the parameter is named, then its name appears in P4.
drh08de1492009-02-20 03:55:05 +00001193** The P4 value is used by sqlite3_bind_parameter_name().
drh50457892003-09-06 01:10:47 +00001194*/
drh27a348c2015-04-13 19:14:06 +00001195case OP_Variable: { /* out2 */
drh856c1032009-06-02 15:21:42 +00001196 Mem *pVar; /* Value being transferred */
1197
drheaf52d82010-05-12 13:50:23 +00001198 assert( pOp->p1>0 && pOp->p1<=p->nVar );
drh9bf755c2016-12-23 03:59:31 +00001199 assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
drheaf52d82010-05-12 13:50:23 +00001200 pVar = &p->aVar[pOp->p1 - 1];
1201 if( sqlite3VdbeMemTooBig(pVar) ){
1202 goto too_big;
drh023ae032007-05-08 12:12:16 +00001203 }
drh7441df72017-01-09 19:27:04 +00001204 pOut = &aMem[pOp->p2];
drheaf52d82010-05-12 13:50:23 +00001205 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1206 UPDATE_MAX_BLOBSIZE(pOut);
danielk197793d46752004-05-23 13:30:58 +00001207 break;
1208}
danielk1977295ba552004-05-19 10:34:51 +00001209
drhb21e7c72008-06-22 12:37:57 +00001210/* Opcode: Move P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001211** Synopsis: r[P2@P3]=r[P1@P3]
drh5e00f6c2001-09-13 13:46:56 +00001212**
drh079a3072014-03-19 14:10:55 +00001213** Move the P3 values in register P1..P1+P3-1 over into
1214** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
drhb21e7c72008-06-22 12:37:57 +00001215** left holding a NULL. It is an error for register ranges
drh079a3072014-03-19 14:10:55 +00001216** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
1217** for P3 to be less than 1.
drh5e00f6c2001-09-13 13:46:56 +00001218*/
drhe1349cb2008-04-01 00:36:10 +00001219case OP_Move: {
drh856c1032009-06-02 15:21:42 +00001220 int n; /* Number of registers left to copy */
1221 int p1; /* Register to copy from */
1222 int p2; /* Register to copy to */
1223
drhe09f43f2013-11-21 04:18:31 +00001224 n = pOp->p3;
drh856c1032009-06-02 15:21:42 +00001225 p1 = pOp->p1;
1226 p2 = pOp->p2;
drh079a3072014-03-19 14:10:55 +00001227 assert( n>0 && p1>0 && p2>0 );
drhb21e7c72008-06-22 12:37:57 +00001228 assert( p1+n<=p2 || p2+n<=p1 );
danielk19776ab3a2e2009-02-19 14:39:25 +00001229
drha6c2ed92009-11-14 23:22:23 +00001230 pIn1 = &aMem[p1];
1231 pOut = &aMem[p2];
drhe09f43f2013-11-21 04:18:31 +00001232 do{
drh9f6168b2016-03-19 23:32:58 +00001233 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
1234 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
drh2b4ded92010-09-27 21:09:31 +00001235 assert( memIsValid(pIn1) );
1236 memAboutToChange(p, pOut);
drh17bcb102014-09-18 21:25:33 +00001237 sqlite3VdbeMemMove(pOut, pIn1);
drh52043d72011-08-03 16:40:15 +00001238#ifdef SQLITE_DEBUG
drhbd6789e2015-04-28 14:00:02 +00001239 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){
drh5fb71252015-04-28 12:44:55 +00001240 pOut->pScopyFrom += pOp->p2 - p1;
drh52043d72011-08-03 16:40:15 +00001241 }
1242#endif
drhbd6789e2015-04-28 14:00:02 +00001243 Deephemeralize(pOut);
drhb21e7c72008-06-22 12:37:57 +00001244 REGISTER_TRACE(p2++, pOut);
1245 pIn1++;
1246 pOut++;
drh079a3072014-03-19 14:10:55 +00001247 }while( --n );
drhe1349cb2008-04-01 00:36:10 +00001248 break;
1249}
1250
drhe8e4af72012-09-21 00:04:28 +00001251/* Opcode: Copy P1 P2 P3 * *
drh4eded602013-12-20 15:59:20 +00001252** Synopsis: r[P2@P3+1]=r[P1@P3+1]
drhb1fdb2a2008-01-05 04:06:03 +00001253**
drhe8e4af72012-09-21 00:04:28 +00001254** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
drhb1fdb2a2008-01-05 04:06:03 +00001255**
1256** This instruction makes a deep copy of the value. A duplicate
1257** is made of any string or blob constant. See also OP_SCopy.
1258*/
drhe8e4af72012-09-21 00:04:28 +00001259case OP_Copy: {
1260 int n;
1261
1262 n = pOp->p3;
drh3c657212009-11-17 23:59:58 +00001263 pIn1 = &aMem[pOp->p1];
1264 pOut = &aMem[pOp->p2];
drhe1349cb2008-04-01 00:36:10 +00001265 assert( pOut!=pIn1 );
drhe8e4af72012-09-21 00:04:28 +00001266 while( 1 ){
1267 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1268 Deephemeralize(pOut);
drh953f7612012-12-07 22:18:54 +00001269#ifdef SQLITE_DEBUG
1270 pOut->pScopyFrom = 0;
1271#endif
drhe8e4af72012-09-21 00:04:28 +00001272 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1273 if( (n--)==0 ) break;
1274 pOut++;
1275 pIn1++;
1276 }
drhe1349cb2008-04-01 00:36:10 +00001277 break;
1278}
1279
drhb1fdb2a2008-01-05 04:06:03 +00001280/* Opcode: SCopy P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00001281** Synopsis: r[P2]=r[P1]
drhb1fdb2a2008-01-05 04:06:03 +00001282**
drh9cbf3422008-01-17 16:22:13 +00001283** Make a shallow copy of register P1 into register P2.
drhb1fdb2a2008-01-05 04:06:03 +00001284**
1285** This instruction makes a shallow copy of the value. If the value
1286** is a string or blob, then the copy is only a pointer to the
1287** original and hence if the original changes so will the copy.
1288** Worse, if the original is deallocated, the copy becomes invalid.
1289** Thus the program must guarantee that the original will not change
1290** during the lifetime of the copy. Use OP_Copy to make a complete
1291** copy.
1292*/
drh26198bb2013-10-31 11:15:09 +00001293case OP_SCopy: { /* out2 */
drh3c657212009-11-17 23:59:58 +00001294 pIn1 = &aMem[pOp->p1];
1295 pOut = &aMem[pOp->p2];
drh2d401ab2008-01-10 23:50:11 +00001296 assert( pOut!=pIn1 );
drhe1349cb2008-04-01 00:36:10 +00001297 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
drh2b4ded92010-09-27 21:09:31 +00001298#ifdef SQLITE_DEBUG
1299 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1300#endif
drh5e00f6c2001-09-13 13:46:56 +00001301 break;
1302}
drh75897232000-05-29 14:26:00 +00001303
drhfed7ac62015-10-15 18:04:59 +00001304/* Opcode: IntCopy P1 P2 * * *
1305** Synopsis: r[P2]=r[P1]
1306**
1307** Transfer the integer value held in register P1 into register P2.
1308**
1309** This is an optimized version of SCopy that works only for integer
1310** values.
1311*/
1312case OP_IntCopy: { /* out2 */
1313 pIn1 = &aMem[pOp->p1];
1314 assert( (pIn1->flags & MEM_Int)!=0 );
1315 pOut = &aMem[pOp->p2];
1316 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1317 break;
1318}
1319
drh9cbf3422008-01-17 16:22:13 +00001320/* Opcode: ResultRow P1 P2 * * *
drh72e26de2016-08-24 21:24:04 +00001321** Synopsis: output=r[P1@P2]
drhd4e70eb2008-01-02 00:34:36 +00001322**
shane21e7feb2008-05-30 15:59:49 +00001323** The registers P1 through P1+P2-1 contain a single row of
drhd4e70eb2008-01-02 00:34:36 +00001324** results. This opcode causes the sqlite3_step() call to terminate
1325** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
drh4d87aae2014-02-20 19:42:00 +00001326** structure to provide access to the r(P1)..r(P1+P2-1) values as
drh0fd61352014-02-07 02:29:45 +00001327** the result row.
drhd4e70eb2008-01-02 00:34:36 +00001328*/
drh9cbf3422008-01-17 16:22:13 +00001329case OP_ResultRow: {
drhd4e70eb2008-01-02 00:34:36 +00001330 Mem *pMem;
1331 int i;
1332 assert( p->nResColumn==pOp->p2 );
drh0a07c102008-01-03 18:03:08 +00001333 assert( pOp->p1>0 );
drh9f6168b2016-03-19 23:32:58 +00001334 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
drhd4e70eb2008-01-02 00:34:36 +00001335
drhe6400b92013-11-13 23:48:46 +00001336#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1337 /* Run the progress counter just before returning.
1338 */
1339 if( db->xProgress!=0
drh2ab792e2017-05-30 18:34:07 +00001340 && nVmStep>=nProgressLimit
drhe6400b92013-11-13 23:48:46 +00001341 && db->xProgress(db->pProgressArg)!=0
1342 ){
1343 rc = SQLITE_INTERRUPT;
drh9467abf2016-02-17 18:44:11 +00001344 goto abort_due_to_error;
drhe6400b92013-11-13 23:48:46 +00001345 }
1346#endif
1347
dan32b09f22009-09-23 17:29:59 +00001348 /* If this statement has violated immediate foreign key constraints, do
1349 ** not return the number of rows modified. And do not RELEASE the statement
1350 ** transaction. It needs to be rolled back. */
1351 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1352 assert( db->flags&SQLITE_CountRows );
1353 assert( p->usesStmtJournal );
drh9467abf2016-02-17 18:44:11 +00001354 goto abort_due_to_error;
dan32b09f22009-09-23 17:29:59 +00001355 }
1356
danielk1977bd434552009-03-18 10:33:00 +00001357 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1358 ** DML statements invoke this opcode to return the number of rows
1359 ** modified to the user. This is the only way that a VM that
1360 ** opens a statement transaction may invoke this opcode.
1361 **
1362 ** In case this is such a statement, close any statement transaction
1363 ** opened by this VM before returning control to the user. This is to
1364 ** ensure that statement-transactions are always nested, not overlapping.
1365 ** If the open statement-transaction is not closed here, then the user
1366 ** may step another VM that opens its own statement transaction. This
1367 ** may lead to overlapping statement transactions.
drhaa736092009-06-22 00:55:30 +00001368 **
1369 ** The statement transaction is never a top-level transaction. Hence
1370 ** the RELEASE call below can never fail.
danielk1977bd434552009-03-18 10:33:00 +00001371 */
1372 assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
drhaa736092009-06-22 00:55:30 +00001373 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
drh9467abf2016-02-17 18:44:11 +00001374 assert( rc==SQLITE_OK );
danielk1977bd434552009-03-18 10:33:00 +00001375
drhd4e70eb2008-01-02 00:34:36 +00001376 /* Invalidate all ephemeral cursor row caches */
1377 p->cacheCtr = (p->cacheCtr + 2)|1;
1378
1379 /* Make sure the results of the current row are \000 terminated
shane21e7feb2008-05-30 15:59:49 +00001380 ** and have an assigned type. The results are de-ephemeralized as
drhb8a45bb2011-12-31 21:51:55 +00001381 ** a side effect.
drhd4e70eb2008-01-02 00:34:36 +00001382 */
drha6c2ed92009-11-14 23:22:23 +00001383 pMem = p->pResultSet = &aMem[pOp->p1];
drhd4e70eb2008-01-02 00:34:36 +00001384 for(i=0; i<pOp->p2; i++){
drh2b4ded92010-09-27 21:09:31 +00001385 assert( memIsValid(&pMem[i]) );
drhebc16712010-09-28 00:25:58 +00001386 Deephemeralize(&pMem[i]);
drh746fd9c2010-09-28 06:00:47 +00001387 assert( (pMem[i].flags & MEM_Ephem)==0
1388 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
drhd4e70eb2008-01-02 00:34:36 +00001389 sqlite3VdbeMemNulTerminate(&pMem[i]);
drh0acb7e42008-06-25 00:12:41 +00001390 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
drhd4e70eb2008-01-02 00:34:36 +00001391 }
drh28039692008-03-17 16:54:01 +00001392 if( db->mallocFailed ) goto no_mem;
drhd4e70eb2008-01-02 00:34:36 +00001393
drh3d2a5292016-07-13 22:55:01 +00001394 if( db->mTrace & SQLITE_TRACE_ROW ){
1395 db->xTrace(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
1396 }
1397
drhd4e70eb2008-01-02 00:34:36 +00001398 /* Return SQLITE_ROW
1399 */
drhf56fa462015-04-13 21:39:54 +00001400 p->pc = (int)(pOp - aOp) + 1;
drhd4e70eb2008-01-02 00:34:36 +00001401 rc = SQLITE_ROW;
1402 goto vdbe_return;
1403}
1404
drh5b6afba2008-01-05 16:29:28 +00001405/* Opcode: Concat P1 P2 P3 * *
drh313619f2013-10-31 20:34:06 +00001406** Synopsis: r[P3]=r[P2]+r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001407**
drh5b6afba2008-01-05 16:29:28 +00001408** Add the text in register P1 onto the end of the text in
1409** register P2 and store the result in register P3.
1410** If either the P1 or P2 text are NULL then store NULL in P3.
danielk1977a7a8e142008-02-13 18:25:27 +00001411**
1412** P3 = P2 || P1
1413**
1414** It is illegal for P1 and P3 to be the same register. Sometimes,
1415** if P3 is the same register as P2, the implementation is able
1416** to avoid a memcpy().
drh5e00f6c2001-09-13 13:46:56 +00001417*/
drh5b6afba2008-01-05 16:29:28 +00001418case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
drh023ae032007-05-08 12:12:16 +00001419 i64 nByte;
danielk19778a6b5412004-05-24 07:04:25 +00001420
drh3c657212009-11-17 23:59:58 +00001421 pIn1 = &aMem[pOp->p1];
1422 pIn2 = &aMem[pOp->p2];
1423 pOut = &aMem[pOp->p3];
danielk1977a7a8e142008-02-13 18:25:27 +00001424 assert( pIn1!=pOut );
drh5b6afba2008-01-05 16:29:28 +00001425 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
danielk1977a7a8e142008-02-13 18:25:27 +00001426 sqlite3VdbeMemSetNull(pOut);
drh5b6afba2008-01-05 16:29:28 +00001427 break;
drh5e00f6c2001-09-13 13:46:56 +00001428 }
drha0c06522009-06-17 22:50:41 +00001429 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
drh5b6afba2008-01-05 16:29:28 +00001430 Stringify(pIn1, encoding);
drh5b6afba2008-01-05 16:29:28 +00001431 Stringify(pIn2, encoding);
1432 nByte = pIn1->n + pIn2->n;
drhbb4957f2008-03-20 14:03:29 +00001433 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh5b6afba2008-01-05 16:29:28 +00001434 goto too_big;
drh5e00f6c2001-09-13 13:46:56 +00001435 }
drh9c1905f2008-12-10 22:32:56 +00001436 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
drh5b6afba2008-01-05 16:29:28 +00001437 goto no_mem;
1438 }
drhc91b2fd2014-03-01 18:13:23 +00001439 MemSetTypeFlag(pOut, MEM_Str);
danielk1977a7a8e142008-02-13 18:25:27 +00001440 if( pOut!=pIn2 ){
1441 memcpy(pOut->z, pIn2->z, pIn2->n);
1442 }
1443 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
drh81316f82013-10-29 20:40:47 +00001444 pOut->z[nByte]=0;
danielk1977a7a8e142008-02-13 18:25:27 +00001445 pOut->z[nByte+1] = 0;
1446 pOut->flags |= MEM_Term;
drh9c1905f2008-12-10 22:32:56 +00001447 pOut->n = (int)nByte;
drh5b6afba2008-01-05 16:29:28 +00001448 pOut->enc = encoding;
drhb7654112008-01-12 12:48:07 +00001449 UPDATE_MAX_BLOBSIZE(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001450 break;
1451}
drh75897232000-05-29 14:26:00 +00001452
drh3c84ddf2008-01-09 02:15:38 +00001453/* Opcode: Add P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001454** Synopsis: r[P3]=r[P1]+r[P2]
drh5e00f6c2001-09-13 13:46:56 +00001455**
drh60a713c2008-01-21 16:22:45 +00001456** Add the value in register P1 to the value in register P2
shane21e7feb2008-05-30 15:59:49 +00001457** and store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001458** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001459*/
drh3c84ddf2008-01-09 02:15:38 +00001460/* Opcode: Multiply P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001461** Synopsis: r[P3]=r[P1]*r[P2]
drh5e00f6c2001-09-13 13:46:56 +00001462**
drh3c84ddf2008-01-09 02:15:38 +00001463**
shane21e7feb2008-05-30 15:59:49 +00001464** Multiply the value in register P1 by the value in register P2
drh60a713c2008-01-21 16:22:45 +00001465** and store the result in register P3.
1466** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001467*/
drh3c84ddf2008-01-09 02:15:38 +00001468/* Opcode: Subtract P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001469** Synopsis: r[P3]=r[P2]-r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001470**
drh60a713c2008-01-21 16:22:45 +00001471** Subtract the value in register P1 from the value in register P2
1472** and store the result in register P3.
1473** If either input is NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001474*/
drh9cbf3422008-01-17 16:22:13 +00001475/* Opcode: Divide P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001476** Synopsis: r[P3]=r[P2]/r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001477**
drh60a713c2008-01-21 16:22:45 +00001478** Divide the value in register P1 by the value in register P2
dane275dc32009-08-18 16:24:58 +00001479** and store the result in register P3 (P3=P2/P1). If the value in
1480** register P1 is zero, then the result is NULL. If either input is
1481** NULL, the result is NULL.
drh5e00f6c2001-09-13 13:46:56 +00001482*/
drh9cbf3422008-01-17 16:22:13 +00001483/* Opcode: Remainder P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001484** Synopsis: r[P3]=r[P2]%r[P1]
drhbf4133c2001-10-13 02:59:08 +00001485**
drh40864a12013-11-15 18:58:37 +00001486** Compute the remainder after integer register P2 is divided by
1487** register P1 and store the result in register P3.
1488** If the value in register P1 is zero the result is NULL.
drhf5905aa2002-05-26 20:54:33 +00001489** If either operand is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001490*/
drh5b6afba2008-01-05 16:29:28 +00001491case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1492case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1493case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1494case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1495case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
drhbe707b32012-12-10 22:19:14 +00001496 char bIntint; /* Started out as two integer operands */
drh3d1d90a2014-03-24 15:00:15 +00001497 u16 flags; /* Combined MEM_* flags from both inputs */
1498 u16 type1; /* Numeric type of left operand */
1499 u16 type2; /* Numeric type of right operand */
drh856c1032009-06-02 15:21:42 +00001500 i64 iA; /* Integer value of left operand */
1501 i64 iB; /* Integer value of right operand */
1502 double rA; /* Real value of left operand */
1503 double rB; /* Real value of right operand */
1504
drh3c657212009-11-17 23:59:58 +00001505 pIn1 = &aMem[pOp->p1];
drh3d1d90a2014-03-24 15:00:15 +00001506 type1 = numericType(pIn1);
drh3c657212009-11-17 23:59:58 +00001507 pIn2 = &aMem[pOp->p2];
drh3d1d90a2014-03-24 15:00:15 +00001508 type2 = numericType(pIn2);
drh3c657212009-11-17 23:59:58 +00001509 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001510 flags = pIn1->flags | pIn2->flags;
drh3d1d90a2014-03-24 15:00:15 +00001511 if( (type1 & type2 & MEM_Int)!=0 ){
drh856c1032009-06-02 15:21:42 +00001512 iA = pIn1->u.i;
1513 iB = pIn2->u.i;
drhbe707b32012-12-10 22:19:14 +00001514 bIntint = 1;
drh5e00f6c2001-09-13 13:46:56 +00001515 switch( pOp->opcode ){
drh158b9cb2011-03-05 20:59:46 +00001516 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
1517 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
1518 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
drhbf4133c2001-10-13 02:59:08 +00001519 case OP_Divide: {
drh856c1032009-06-02 15:21:42 +00001520 if( iA==0 ) goto arithmetic_result_is_null;
drh158b9cb2011-03-05 20:59:46 +00001521 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
drh856c1032009-06-02 15:21:42 +00001522 iB /= iA;
drh75897232000-05-29 14:26:00 +00001523 break;
1524 }
drhbf4133c2001-10-13 02:59:08 +00001525 default: {
drh856c1032009-06-02 15:21:42 +00001526 if( iA==0 ) goto arithmetic_result_is_null;
1527 if( iA==-1 ) iA = 1;
1528 iB %= iA;
drhbf4133c2001-10-13 02:59:08 +00001529 break;
1530 }
drh75897232000-05-29 14:26:00 +00001531 }
drh856c1032009-06-02 15:21:42 +00001532 pOut->u.i = iB;
danielk1977a7a8e142008-02-13 18:25:27 +00001533 MemSetTypeFlag(pOut, MEM_Int);
drhcfcca022017-04-17 23:23:17 +00001534 }else if( (flags & MEM_Null)!=0 ){
1535 goto arithmetic_result_is_null;
drh5e00f6c2001-09-13 13:46:56 +00001536 }else{
drhbe707b32012-12-10 22:19:14 +00001537 bIntint = 0;
drh158b9cb2011-03-05 20:59:46 +00001538fp_math:
drh856c1032009-06-02 15:21:42 +00001539 rA = sqlite3VdbeRealValue(pIn1);
1540 rB = sqlite3VdbeRealValue(pIn2);
drh5e00f6c2001-09-13 13:46:56 +00001541 switch( pOp->opcode ){
drh856c1032009-06-02 15:21:42 +00001542 case OP_Add: rB += rA; break;
1543 case OP_Subtract: rB -= rA; break;
1544 case OP_Multiply: rB *= rA; break;
drhbf4133c2001-10-13 02:59:08 +00001545 case OP_Divide: {
shanefbd60f82009-02-04 03:59:25 +00001546 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
drh856c1032009-06-02 15:21:42 +00001547 if( rA==(double)0 ) goto arithmetic_result_is_null;
1548 rB /= rA;
drh5e00f6c2001-09-13 13:46:56 +00001549 break;
1550 }
drhbf4133c2001-10-13 02:59:08 +00001551 default: {
shane75ac1de2009-06-09 18:58:52 +00001552 iA = (i64)rA;
1553 iB = (i64)rB;
drh856c1032009-06-02 15:21:42 +00001554 if( iA==0 ) goto arithmetic_result_is_null;
1555 if( iA==-1 ) iA = 1;
1556 rB = (double)(iB % iA);
drhbf4133c2001-10-13 02:59:08 +00001557 break;
1558 }
drh5e00f6c2001-09-13 13:46:56 +00001559 }
drhc5a7b512010-01-13 16:25:42 +00001560#ifdef SQLITE_OMIT_FLOATING_POINT
1561 pOut->u.i = rB;
1562 MemSetTypeFlag(pOut, MEM_Int);
1563#else
drh856c1032009-06-02 15:21:42 +00001564 if( sqlite3IsNaN(rB) ){
drha05a7222008-01-19 03:35:58 +00001565 goto arithmetic_result_is_null;
drh53c14022007-05-10 17:23:11 +00001566 }
drh74eaba42014-09-18 17:52:15 +00001567 pOut->u.r = rB;
danielk1977a7a8e142008-02-13 18:25:27 +00001568 MemSetTypeFlag(pOut, MEM_Real);
drh3d1d90a2014-03-24 15:00:15 +00001569 if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
drh5b6afba2008-01-05 16:29:28 +00001570 sqlite3VdbeIntegerAffinity(pOut);
drh8a512562005-11-14 22:29:05 +00001571 }
drhc5a7b512010-01-13 16:25:42 +00001572#endif
drh5e00f6c2001-09-13 13:46:56 +00001573 }
1574 break;
1575
drha05a7222008-01-19 03:35:58 +00001576arithmetic_result_is_null:
1577 sqlite3VdbeMemSetNull(pOut);
drh5e00f6c2001-09-13 13:46:56 +00001578 break;
1579}
1580
drh7a957892012-02-02 17:35:43 +00001581/* Opcode: CollSeq P1 * * P4
danielk1977dc1bdc42004-06-11 10:51:27 +00001582**
drhbb6783b2017-04-29 18:02:49 +00001583** P4 is a pointer to a CollSeq object. If the next call to a user function
danielk1977dc1bdc42004-06-11 10:51:27 +00001584** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1585** be returned. This is used by the built-in min(), max() and nullif()
drhe6f85e72004-12-25 01:03:13 +00001586** functions.
danielk1977dc1bdc42004-06-11 10:51:27 +00001587**
drh7a957892012-02-02 17:35:43 +00001588** If P1 is not zero, then it is a register that a subsequent min() or
1589** max() aggregate will set to 1 if the current row is not the minimum or
1590** maximum. The P1 register is initialized to 0 by this instruction.
1591**
danielk1977dc1bdc42004-06-11 10:51:27 +00001592** The interface used by the implementation of the aforementioned functions
1593** to retrieve the collation sequence set by this opcode is not available
drh0a0d0562015-03-12 05:08:34 +00001594** publicly. Only built-in functions have access to this feature.
danielk1977dc1bdc42004-06-11 10:51:27 +00001595*/
drh9cbf3422008-01-17 16:22:13 +00001596case OP_CollSeq: {
drh66a51672008-01-03 00:01:23 +00001597 assert( pOp->p4type==P4_COLLSEQ );
drh7a957892012-02-02 17:35:43 +00001598 if( pOp->p1 ){
1599 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1600 }
danielk1977dc1bdc42004-06-11 10:51:27 +00001601 break;
1602}
1603
drh98757152008-01-09 23:04:12 +00001604/* Opcode: BitAnd P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001605** Synopsis: r[P3]=r[P1]&r[P2]
drhbf4133c2001-10-13 02:59:08 +00001606**
drh98757152008-01-09 23:04:12 +00001607** Take the bit-wise AND of the values in register P1 and P2 and
1608** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001609** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001610*/
drh98757152008-01-09 23:04:12 +00001611/* Opcode: BitOr P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001612** Synopsis: r[P3]=r[P1]|r[P2]
drhbf4133c2001-10-13 02:59:08 +00001613**
drh98757152008-01-09 23:04:12 +00001614** Take the bit-wise OR of the values in register P1 and P2 and
1615** store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001616** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001617*/
drh98757152008-01-09 23:04:12 +00001618/* Opcode: ShiftLeft P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001619** Synopsis: r[P3]=r[P2]<<r[P1]
drhbf4133c2001-10-13 02:59:08 +00001620**
drh98757152008-01-09 23:04:12 +00001621** Shift the integer value in register P2 to the left by the
drh710c4842010-08-30 01:17:20 +00001622** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001623** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001624** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001625*/
drh98757152008-01-09 23:04:12 +00001626/* Opcode: ShiftRight P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00001627** Synopsis: r[P3]=r[P2]>>r[P1]
drhbf4133c2001-10-13 02:59:08 +00001628**
drh98757152008-01-09 23:04:12 +00001629** Shift the integer value in register P2 to the right by the
drh60a713c2008-01-21 16:22:45 +00001630** number of bits specified by the integer in register P1.
drh98757152008-01-09 23:04:12 +00001631** Store the result in register P3.
drh60a713c2008-01-21 16:22:45 +00001632** If either input is NULL, the result is NULL.
drhbf4133c2001-10-13 02:59:08 +00001633*/
drh5b6afba2008-01-05 16:29:28 +00001634case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1635case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1636case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1637case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
drh158b9cb2011-03-05 20:59:46 +00001638 i64 iA;
1639 u64 uA;
1640 i64 iB;
1641 u8 op;
drh6810ce62004-01-31 19:22:56 +00001642
drh3c657212009-11-17 23:59:58 +00001643 pIn1 = &aMem[pOp->p1];
1644 pIn2 = &aMem[pOp->p2];
1645 pOut = &aMem[pOp->p3];
drh5b6afba2008-01-05 16:29:28 +00001646 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
drha05a7222008-01-19 03:35:58 +00001647 sqlite3VdbeMemSetNull(pOut);
drhf5905aa2002-05-26 20:54:33 +00001648 break;
1649 }
drh158b9cb2011-03-05 20:59:46 +00001650 iA = sqlite3VdbeIntValue(pIn2);
1651 iB = sqlite3VdbeIntValue(pIn1);
1652 op = pOp->opcode;
1653 if( op==OP_BitAnd ){
1654 iA &= iB;
1655 }else if( op==OP_BitOr ){
1656 iA |= iB;
1657 }else if( iB!=0 ){
1658 assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1659
1660 /* If shifting by a negative amount, shift in the other direction */
1661 if( iB<0 ){
1662 assert( OP_ShiftRight==OP_ShiftLeft+1 );
1663 op = 2*OP_ShiftLeft + 1 - op;
1664 iB = iB>(-64) ? -iB : 64;
1665 }
1666
1667 if( iB>=64 ){
1668 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1669 }else{
1670 memcpy(&uA, &iA, sizeof(uA));
1671 if( op==OP_ShiftLeft ){
1672 uA <<= iB;
1673 }else{
1674 uA >>= iB;
1675 /* Sign-extend on a right shift of a negative number */
1676 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1677 }
1678 memcpy(&iA, &uA, sizeof(iA));
1679 }
drhbf4133c2001-10-13 02:59:08 +00001680 }
drh158b9cb2011-03-05 20:59:46 +00001681 pOut->u.i = iA;
danielk1977a7a8e142008-02-13 18:25:27 +00001682 MemSetTypeFlag(pOut, MEM_Int);
drhbf4133c2001-10-13 02:59:08 +00001683 break;
1684}
1685
drh8558cde2008-01-05 05:20:10 +00001686/* Opcode: AddImm P1 P2 * * *
drh72e26de2016-08-24 21:24:04 +00001687** Synopsis: r[P1]=r[P1]+P2
drh5e00f6c2001-09-13 13:46:56 +00001688**
danielk19770cdc0222008-06-26 18:04:03 +00001689** Add the constant P2 to the value in register P1.
drh8558cde2008-01-05 05:20:10 +00001690** The result is always an integer.
drh4a324312001-12-21 14:30:42 +00001691**
drh8558cde2008-01-05 05:20:10 +00001692** To force any register to be an integer, just add 0.
drh5e00f6c2001-09-13 13:46:56 +00001693*/
drh9cbf3422008-01-17 16:22:13 +00001694case OP_AddImm: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001695 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001696 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001697 sqlite3VdbeMemIntegerify(pIn1);
1698 pIn1->u.i += pOp->p2;
drh5e00f6c2001-09-13 13:46:56 +00001699 break;
1700}
1701
drh9cbf3422008-01-17 16:22:13 +00001702/* Opcode: MustBeInt P1 P2 * * *
drh8aff1012001-12-22 14:49:24 +00001703**
drh9cbf3422008-01-17 16:22:13 +00001704** Force the value in register P1 to be an integer. If the value
1705** in P1 is not an integer and cannot be converted into an integer
danielk19779a96b662007-11-29 17:05:18 +00001706** without data loss, then jump immediately to P2, or if P2==0
drh8aff1012001-12-22 14:49:24 +00001707** raise an SQLITE_MISMATCH exception.
1708*/
drh9cbf3422008-01-17 16:22:13 +00001709case OP_MustBeInt: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00001710 pIn1 = &aMem[pOp->p1];
drh3c84ddf2008-01-09 02:15:38 +00001711 if( (pIn1->flags & MEM_Int)==0 ){
drh83b301b2013-11-20 00:59:02 +00001712 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
drh688852a2014-02-17 22:40:43 +00001713 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
drh83b301b2013-11-20 00:59:02 +00001714 if( (pIn1->flags & MEM_Int)==0 ){
1715 if( pOp->p2==0 ){
1716 rc = SQLITE_MISMATCH;
1717 goto abort_due_to_error;
1718 }else{
drhf56fa462015-04-13 21:39:54 +00001719 goto jump_to_p2;
drh83b301b2013-11-20 00:59:02 +00001720 }
drh8aff1012001-12-22 14:49:24 +00001721 }
drh8aff1012001-12-22 14:49:24 +00001722 }
drh83b301b2013-11-20 00:59:02 +00001723 MemSetTypeFlag(pIn1, MEM_Int);
drh8aff1012001-12-22 14:49:24 +00001724 break;
1725}
1726
drh13573c72010-01-12 17:04:07 +00001727#ifndef SQLITE_OMIT_FLOATING_POINT
drh8558cde2008-01-05 05:20:10 +00001728/* Opcode: RealAffinity P1 * * * *
drh487e2622005-06-25 18:42:14 +00001729**
drh2133d822008-01-03 18:44:59 +00001730** If register P1 holds an integer convert it to a real value.
drh487e2622005-06-25 18:42:14 +00001731**
drh8a512562005-11-14 22:29:05 +00001732** This opcode is used when extracting information from a column that
1733** has REAL affinity. Such column values may still be stored as
1734** integers, for space efficiency, but after extraction we want them
1735** to have only a real value.
drh487e2622005-06-25 18:42:14 +00001736*/
drh9cbf3422008-01-17 16:22:13 +00001737case OP_RealAffinity: { /* in1 */
drh3c657212009-11-17 23:59:58 +00001738 pIn1 = &aMem[pOp->p1];
drh8558cde2008-01-05 05:20:10 +00001739 if( pIn1->flags & MEM_Int ){
1740 sqlite3VdbeMemRealify(pIn1);
drh8a512562005-11-14 22:29:05 +00001741 }
drh487e2622005-06-25 18:42:14 +00001742 break;
1743}
drh13573c72010-01-12 17:04:07 +00001744#endif
drh487e2622005-06-25 18:42:14 +00001745
drh8df447f2005-11-01 15:48:24 +00001746#ifndef SQLITE_OMIT_CAST
drh4169e432014-08-25 20:11:52 +00001747/* Opcode: Cast P1 P2 * * *
mistachkina1dc42a2014-08-27 17:53:40 +00001748** Synopsis: affinity(r[P1])
drh487e2622005-06-25 18:42:14 +00001749**
drh4169e432014-08-25 20:11:52 +00001750** Force the value in register P1 to be the type defined by P2.
1751**
1752** <ul>
drhbb6783b2017-04-29 18:02:49 +00001753** <li> P2=='A' &rarr; BLOB
1754** <li> P2=='B' &rarr; TEXT
1755** <li> P2=='C' &rarr; NUMERIC
1756** <li> P2=='D' &rarr; INTEGER
1757** <li> P2=='E' &rarr; REAL
drh4169e432014-08-25 20:11:52 +00001758** </ul>
drh487e2622005-06-25 18:42:14 +00001759**
1760** A NULL value is not changed by this routine. It remains NULL.
1761*/
drh4169e432014-08-25 20:11:52 +00001762case OP_Cast: { /* in1 */
drh05883a32015-06-02 15:32:08 +00001763 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
drh05bbb2e2014-08-25 22:37:19 +00001764 testcase( pOp->p2==SQLITE_AFF_TEXT );
drh05883a32015-06-02 15:32:08 +00001765 testcase( pOp->p2==SQLITE_AFF_BLOB );
drh05bbb2e2014-08-25 22:37:19 +00001766 testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1767 testcase( pOp->p2==SQLITE_AFF_INTEGER );
1768 testcase( pOp->p2==SQLITE_AFF_REAL );
drh3c657212009-11-17 23:59:58 +00001769 pIn1 = &aMem[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00001770 memAboutToChange(p, pIn1);
drh8558cde2008-01-05 05:20:10 +00001771 rc = ExpandBlob(pIn1);
drh4169e432014-08-25 20:11:52 +00001772 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
drhb7654112008-01-12 12:48:07 +00001773 UPDATE_MAX_BLOBSIZE(pIn1);
drh9467abf2016-02-17 18:44:11 +00001774 if( rc ) goto abort_due_to_error;
drh487e2622005-06-25 18:42:14 +00001775 break;
1776}
drh8a512562005-11-14 22:29:05 +00001777#endif /* SQLITE_OMIT_CAST */
1778
drh79752b62016-08-13 10:02:17 +00001779/* Opcode: Eq P1 P2 P3 P4 P5
drh88e665f2016-08-27 01:41:53 +00001780** Synopsis: IF r[P3]==r[P1]
drh79752b62016-08-13 10:02:17 +00001781**
1782** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then
1783** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5, then
1784** store the result of comparison in register P2.
1785**
1786** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1787** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1788** to coerce both inputs according to this affinity before the
1789** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1790** affinity is used. Note that the affinity conversions are stored
1791** back into the input registers P1 and P3. So this opcode can cause
1792** persistent changes to registers P1 and P3.
1793**
1794** Once any conversions have taken place, and neither value is NULL,
1795** the values are compared. If both values are blobs then memcmp() is
1796** used to determine the results of the comparison. If both values
1797** are text, then the appropriate collating function specified in
1798** P4 is used to do the comparison. If P4 is not specified then
1799** memcmp() is used to compare text string. If both values are
1800** numeric, then a numeric comparison is used. If the two values
1801** are of different types, then numbers are considered less than
1802** strings and strings are considered less than blobs.
1803**
1804** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1805** true or false and is never NULL. If both operands are NULL then the result
1806** of comparison is true. If either operand is NULL then the result is false.
1807** If neither operand is NULL the result is the same as it would be if
1808** the SQLITE_NULLEQ flag were omitted from P5.
1809**
1810** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
drh3fffbf92016-09-05 15:02:41 +00001811** content of r[P2] is only changed if the new value is NULL or 0 (false).
1812** In other words, a prior r[P2] value will not be overwritten by 1 (true).
drh79752b62016-08-13 10:02:17 +00001813*/
1814/* Opcode: Ne P1 P2 P3 P4 P5
drh88e665f2016-08-27 01:41:53 +00001815** Synopsis: IF r[P3]!=r[P1]
drh79752b62016-08-13 10:02:17 +00001816**
1817** This works just like the Eq opcode except that the jump is taken if
1818** the operands in registers P1 and P3 are not equal. See the Eq opcode for
1819** additional information.
1820**
1821** If both SQLITE_STOREP2 and SQLITE_KEEPNULL flags are set then the
drh3fffbf92016-09-05 15:02:41 +00001822** content of r[P2] is only changed if the new value is NULL or 1 (true).
1823** In other words, a prior r[P2] value will not be overwritten by 0 (false).
drh79752b62016-08-13 10:02:17 +00001824*/
drh35573352008-01-08 23:54:25 +00001825/* Opcode: Lt P1 P2 P3 P4 P5
drh88e665f2016-08-27 01:41:53 +00001826** Synopsis: IF r[P3]<r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001827**
drh35573352008-01-08 23:54:25 +00001828** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
drh79752b62016-08-13 10:02:17 +00001829** jump to address P2. Or if the SQLITE_STOREP2 flag is set in P5 store
1830** the result of comparison (0 or 1 or NULL) into register P2.
drhf5905aa2002-05-26 20:54:33 +00001831**
drh35573352008-01-08 23:54:25 +00001832** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
drh79752b62016-08-13 10:02:17 +00001833** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL
drh710c4842010-08-30 01:17:20 +00001834** bit is clear then fall through if either operand is NULL.
drh4f686232005-09-20 13:55:18 +00001835**
drh35573352008-01-08 23:54:25 +00001836** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
drh8a512562005-11-14 22:29:05 +00001837** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
drh60a713c2008-01-21 16:22:45 +00001838** to coerce both inputs according to this affinity before the
drh35573352008-01-08 23:54:25 +00001839** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
drh60a713c2008-01-21 16:22:45 +00001840** affinity is used. Note that the affinity conversions are stored
1841** back into the input registers P1 and P3. So this opcode can cause
1842** persistent changes to registers P1 and P3.
danielk1977a37cdde2004-05-16 11:15:36 +00001843**
1844** Once any conversions have taken place, and neither value is NULL,
drh35573352008-01-08 23:54:25 +00001845** the values are compared. If both values are blobs then memcmp() is
1846** used to determine the results of the comparison. If both values
1847** are text, then the appropriate collating function specified in
1848** P4 is used to do the comparison. If P4 is not specified then
1849** memcmp() is used to compare text string. If both values are
1850** numeric, then a numeric comparison is used. If the two values
1851** are of different types, then numbers are considered less than
1852** strings and strings are considered less than blobs.
drh5e00f6c2001-09-13 13:46:56 +00001853*/
drh9cbf3422008-01-17 16:22:13 +00001854/* Opcode: Le P1 P2 P3 P4 P5
drh88e665f2016-08-27 01:41:53 +00001855** Synopsis: IF r[P3]<=r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001856**
drh35573352008-01-08 23:54:25 +00001857** This works just like the Lt opcode except that the jump is taken if
1858** the content of register P3 is less than or equal to the content of
1859** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001860*/
drh9cbf3422008-01-17 16:22:13 +00001861/* Opcode: Gt P1 P2 P3 P4 P5
drh88e665f2016-08-27 01:41:53 +00001862** Synopsis: IF r[P3]>r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001863**
drh35573352008-01-08 23:54:25 +00001864** This works just like the Lt opcode except that the jump is taken if
1865** the content of register P3 is greater than the content of
1866** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001867*/
drh9cbf3422008-01-17 16:22:13 +00001868/* Opcode: Ge P1 P2 P3 P4 P5
drh88e665f2016-08-27 01:41:53 +00001869** Synopsis: IF r[P3]>=r[P1]
drh5e00f6c2001-09-13 13:46:56 +00001870**
drh35573352008-01-08 23:54:25 +00001871** This works just like the Lt opcode except that the jump is taken if
1872** the content of register P3 is greater than or equal to the content of
1873** register P1. See the Lt opcode for additional information.
drh5e00f6c2001-09-13 13:46:56 +00001874*/
drh9cbf3422008-01-17 16:22:13 +00001875case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
1876case OP_Ne: /* same as TK_NE, jump, in1, in3 */
1877case OP_Lt: /* same as TK_LT, jump, in1, in3 */
1878case OP_Le: /* same as TK_LE, jump, in1, in3 */
1879case OP_Gt: /* same as TK_GT, jump, in1, in3 */
1880case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
drh4910a762016-09-03 01:46:15 +00001881 int res, res2; /* Result of the comparison of pIn1 against pIn3 */
drh6a2fe092009-09-23 02:29:36 +00001882 char affinity; /* Affinity to use for comparison */
danb7dca7d2010-03-05 16:32:12 +00001883 u16 flags1; /* Copy of initial value of pIn1->flags */
1884 u16 flags3; /* Copy of initial value of pIn3->flags */
danielk1977a37cdde2004-05-16 11:15:36 +00001885
drh3c657212009-11-17 23:59:58 +00001886 pIn1 = &aMem[pOp->p1];
1887 pIn3 = &aMem[pOp->p3];
danb7dca7d2010-03-05 16:32:12 +00001888 flags1 = pIn1->flags;
1889 flags3 = pIn3->flags;
drhc3f1d5f2011-05-30 23:42:16 +00001890 if( (flags1 | flags3)&MEM_Null ){
drh6a2fe092009-09-23 02:29:36 +00001891 /* One or both operands are NULL */
1892 if( pOp->p5 & SQLITE_NULLEQ ){
1893 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1894 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1895 ** or not both operands are null.
1896 */
1897 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
drh053a1282012-09-19 21:15:46 +00001898 assert( (flags1 & MEM_Cleared)==0 );
drh3d77dee2014-02-19 14:20:49 +00001899 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
drhc3191d22016-10-18 16:36:15 +00001900 if( (flags1&flags3&MEM_Null)!=0
drh053a1282012-09-19 21:15:46 +00001901 && (flags3&MEM_Cleared)==0
1902 ){
drh4910a762016-09-03 01:46:15 +00001903 res = 0; /* Operands are equal */
drh053a1282012-09-19 21:15:46 +00001904 }else{
drh4910a762016-09-03 01:46:15 +00001905 res = 1; /* Operands are not equal */
drh053a1282012-09-19 21:15:46 +00001906 }
drh6a2fe092009-09-23 02:29:36 +00001907 }else{
1908 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1909 ** then the result is always NULL.
1910 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1911 */
drh688852a2014-02-17 22:40:43 +00001912 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001913 pOut = &aMem[pOp->p2];
drh4910a762016-09-03 01:46:15 +00001914 iCompare = 1; /* Operands are not equal */
danb1d6b532015-12-14 19:42:19 +00001915 memAboutToChange(p, pOut);
drh6a2fe092009-09-23 02:29:36 +00001916 MemSetTypeFlag(pOut, MEM_Null);
1917 REGISTER_TRACE(pOp->p2, pOut);
drh688852a2014-02-17 22:40:43 +00001918 }else{
drhf4345e42014-02-18 11:31:59 +00001919 VdbeBranchTaken(2,3);
drh688852a2014-02-17 22:40:43 +00001920 if( pOp->p5 & SQLITE_JUMPIFNULL ){
drhf56fa462015-04-13 21:39:54 +00001921 goto jump_to_p2;
drh688852a2014-02-17 22:40:43 +00001922 }
drh6a2fe092009-09-23 02:29:36 +00001923 }
1924 break;
danielk1977a37cdde2004-05-16 11:15:36 +00001925 }
drh6a2fe092009-09-23 02:29:36 +00001926 }else{
1927 /* Neither operand is NULL. Do a comparison. */
1928 affinity = pOp->p5 & SQLITE_AFF_MASK;
drh24a09622014-09-18 16:28:59 +00001929 if( affinity>=SQLITE_AFF_NUMERIC ){
drh5fd0c122016-04-04 13:46:24 +00001930 if( (flags1 | flags3)&MEM_Str ){
1931 if( (flags1 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
1932 applyNumericAffinity(pIn1,0);
drh64caee42016-09-09 19:33:00 +00001933 testcase( flags3!=pIn3->flags ); /* Possible if pIn1==pIn3 */
drh4b37cd42016-06-25 11:43:47 +00001934 flags3 = pIn3->flags;
drh5fd0c122016-04-04 13:46:24 +00001935 }
1936 if( (flags3 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
1937 applyNumericAffinity(pIn3,0);
1938 }
drh24a09622014-09-18 16:28:59 +00001939 }
drh64caee42016-09-09 19:33:00 +00001940 /* Handle the common case of integer comparison here, as an
1941 ** optimization, to avoid a call to sqlite3MemCompare() */
1942 if( (pIn1->flags & pIn3->flags & MEM_Int)!=0 ){
1943 if( pIn3->u.i > pIn1->u.i ){ res = +1; goto compare_op; }
1944 if( pIn3->u.i < pIn1->u.i ){ res = -1; goto compare_op; }
1945 res = 0;
1946 goto compare_op;
1947 }
drh24a09622014-09-18 16:28:59 +00001948 }else if( affinity==SQLITE_AFF_TEXT ){
drhe5520e22015-12-31 04:34:26 +00001949 if( (flags1 & MEM_Str)==0 && (flags1 & (MEM_Int|MEM_Real))!=0 ){
drhe7a34662014-09-19 22:44:20 +00001950 testcase( pIn1->flags & MEM_Int );
1951 testcase( pIn1->flags & MEM_Real );
drh24a09622014-09-18 16:28:59 +00001952 sqlite3VdbeMemStringify(pIn1, encoding, 1);
drhbc8a6b32015-03-31 11:42:23 +00001953 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
1954 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
drh21e19b42016-09-15 14:54:51 +00001955 assert( pIn1!=pIn3 );
drh24a09622014-09-18 16:28:59 +00001956 }
drhe5520e22015-12-31 04:34:26 +00001957 if( (flags3 & MEM_Str)==0 && (flags3 & (MEM_Int|MEM_Real))!=0 ){
drhe7a34662014-09-19 22:44:20 +00001958 testcase( pIn3->flags & MEM_Int );
1959 testcase( pIn3->flags & MEM_Real );
drh24a09622014-09-18 16:28:59 +00001960 sqlite3VdbeMemStringify(pIn3, encoding, 1);
drhbc8a6b32015-03-31 11:42:23 +00001961 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
1962 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
drh24a09622014-09-18 16:28:59 +00001963 }
drh6a2fe092009-09-23 02:29:36 +00001964 }
drh6a2fe092009-09-23 02:29:36 +00001965 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
drh4910a762016-09-03 01:46:15 +00001966 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
drhe51c44f2004-05-30 20:46:09 +00001967 }
drh64caee42016-09-09 19:33:00 +00001968compare_op:
drh58596362017-08-03 00:29:23 +00001969 /* At this point, res is negative, zero, or positive if reg[P1] is
1970 ** less than, equal to, or greater than reg[P3], respectively. Compute
1971 ** the answer to this operator in res2, depending on what the comparison
1972 ** operator actually is. The next block of code depends on the fact
1973 ** that the 6 comparison operators are consecutive integers in this
1974 ** order: NE, EQ, GT, LE, LT, GE */
1975 assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 );
1976 assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 );
1977 if( res<0 ){ /* ne, eq, gt, le, lt, ge */
1978 static const unsigned char aLTb[] = { 1, 0, 0, 1, 1, 0 };
1979 res2 = aLTb[pOp->opcode - OP_Ne];
1980 }else if( res==0 ){
1981 static const unsigned char aEQb[] = { 0, 1, 0, 1, 0, 1 };
1982 res2 = aEQb[pOp->opcode - OP_Ne];
1983 }else{
1984 static const unsigned char aGTb[] = { 1, 0, 1, 0, 0, 1 };
1985 res2 = aGTb[pOp->opcode - OP_Ne];
danielk1977a37cdde2004-05-16 11:15:36 +00001986 }
1987
drhf56fa462015-04-13 21:39:54 +00001988 /* Undo any changes made by applyAffinity() to the input registers. */
1989 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
1990 pIn1->flags = flags1;
1991 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
1992 pIn3->flags = flags3;
1993
drh35573352008-01-08 23:54:25 +00001994 if( pOp->p5 & SQLITE_STOREP2 ){
drha6c2ed92009-11-14 23:22:23 +00001995 pOut = &aMem[pOp->p2];
drh4910a762016-09-03 01:46:15 +00001996 iCompare = res;
drh3fffbf92016-09-05 15:02:41 +00001997 if( (pOp->p5 & SQLITE_KEEPNULL)!=0 ){
drh79752b62016-08-13 10:02:17 +00001998 /* The KEEPNULL flag prevents OP_Eq from overwriting a NULL with 1
drh3fffbf92016-09-05 15:02:41 +00001999 ** and prevents OP_Ne from overwriting NULL with 0. This flag
2000 ** is only used in contexts where either:
2001 ** (1) op==OP_Eq && (r[P2]==NULL || r[P2]==0)
2002 ** (2) op==OP_Ne && (r[P2]==NULL || r[P2]==1)
2003 ** Therefore it is not necessary to check the content of r[P2] for
2004 ** NULL. */
drh79752b62016-08-13 10:02:17 +00002005 assert( pOp->opcode==OP_Ne || pOp->opcode==OP_Eq );
drh4910a762016-09-03 01:46:15 +00002006 assert( res2==0 || res2==1 );
drh3fffbf92016-09-05 15:02:41 +00002007 testcase( res2==0 && pOp->opcode==OP_Eq );
2008 testcase( res2==1 && pOp->opcode==OP_Eq );
2009 testcase( res2==0 && pOp->opcode==OP_Ne );
2010 testcase( res2==1 && pOp->opcode==OP_Ne );
drh4910a762016-09-03 01:46:15 +00002011 if( (pOp->opcode==OP_Eq)==res2 ) break;
drh79752b62016-08-13 10:02:17 +00002012 }
drh2b4ded92010-09-27 21:09:31 +00002013 memAboutToChange(p, pOut);
danielk1977a7a8e142008-02-13 18:25:27 +00002014 MemSetTypeFlag(pOut, MEM_Int);
drh4910a762016-09-03 01:46:15 +00002015 pOut->u.i = res2;
drh35573352008-01-08 23:54:25 +00002016 REGISTER_TRACE(pOp->p2, pOut);
drh688852a2014-02-17 22:40:43 +00002017 }else{
drhf4345e42014-02-18 11:31:59 +00002018 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
drh4910a762016-09-03 01:46:15 +00002019 if( res2 ){
drhf56fa462015-04-13 21:39:54 +00002020 goto jump_to_p2;
drh688852a2014-02-17 22:40:43 +00002021 }
danielk1977a37cdde2004-05-16 11:15:36 +00002022 }
2023 break;
2024}
drhc9b84a12002-06-20 11:36:48 +00002025
drh79752b62016-08-13 10:02:17 +00002026/* Opcode: ElseNotEq * P2 * * *
2027**
drhfd7459e2016-09-17 17:39:01 +00002028** This opcode must immediately follow an OP_Lt or OP_Gt comparison operator.
2029** If result of an OP_Eq comparison on the same two operands
2030** would have be NULL or false (0), then then jump to P2.
2031** If the result of an OP_Eq comparison on the two previous operands
2032** would have been true (1), then fall through.
drh79752b62016-08-13 10:02:17 +00002033*/
2034case OP_ElseNotEq: { /* same as TK_ESCAPE, jump */
2035 assert( pOp>aOp );
2036 assert( pOp[-1].opcode==OP_Lt || pOp[-1].opcode==OP_Gt );
drh4910a762016-09-03 01:46:15 +00002037 assert( pOp[-1].p5 & SQLITE_STOREP2 );
drh0f825a72016-08-13 14:17:02 +00002038 VdbeBranchTaken(iCompare!=0, 2);
2039 if( iCompare!=0 ) goto jump_to_p2;
drh79752b62016-08-13 10:02:17 +00002040 break;
2041}
2042
2043
drh0acb7e42008-06-25 00:12:41 +00002044/* Opcode: Permutation * * * P4 *
2045**
drhb7dab702017-01-26 18:00:00 +00002046** Set the permutation used by the OP_Compare operator in the next
2047** instruction. The permutation is stored in the P4 operand.
drh0acb7e42008-06-25 00:12:41 +00002048**
drh953f7612012-12-07 22:18:54 +00002049** The permutation is only valid until the next OP_Compare that has
2050** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
2051** occur immediately prior to the OP_Compare.
drhb1702022016-01-30 00:45:18 +00002052**
2053** The first integer in the P4 integer array is the length of the array
2054** and does not become part of the permutation.
drh0acb7e42008-06-25 00:12:41 +00002055*/
2056case OP_Permutation: {
2057 assert( pOp->p4type==P4_INTARRAY );
2058 assert( pOp->p4.ai );
drhb7dab702017-01-26 18:00:00 +00002059 assert( pOp[1].opcode==OP_Compare );
2060 assert( pOp[1].p5 & OPFLAG_PERMUTE );
drh0acb7e42008-06-25 00:12:41 +00002061 break;
2062}
2063
drh953f7612012-12-07 22:18:54 +00002064/* Opcode: Compare P1 P2 P3 P4 P5
drh079a3072014-03-19 14:10:55 +00002065** Synopsis: r[P1@P3] <-> r[P2@P3]
drh16ee60f2008-06-20 18:13:25 +00002066**
drh710c4842010-08-30 01:17:20 +00002067** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2068** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
drh16ee60f2008-06-20 18:13:25 +00002069** the comparison for use by the next OP_Jump instruct.
2070**
drh0ca10df2012-12-08 13:26:23 +00002071** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2072** determined by the most recent OP_Permutation operator. If the
2073** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2074** order.
2075**
drh0acb7e42008-06-25 00:12:41 +00002076** P4 is a KeyInfo structure that defines collating sequences and sort
2077** orders for the comparison. The permutation applies to registers
2078** only. The KeyInfo elements are used sequentially.
2079**
2080** The comparison is a sort comparison, so NULLs compare equal,
2081** NULLs are less than numbers, numbers are less than strings,
drh16ee60f2008-06-20 18:13:25 +00002082** and strings are less than blobs.
2083*/
2084case OP_Compare: {
drh856c1032009-06-02 15:21:42 +00002085 int n;
2086 int i;
2087 int p1;
2088 int p2;
2089 const KeyInfo *pKeyInfo;
2090 int idx;
2091 CollSeq *pColl; /* Collating sequence to use on this term */
2092 int bRev; /* True for DESCENDING sort order */
drhb7dab702017-01-26 18:00:00 +00002093 int *aPermute; /* The permutation */
drh856c1032009-06-02 15:21:42 +00002094
drhb7dab702017-01-26 18:00:00 +00002095 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
2096 aPermute = 0;
2097 }else{
2098 assert( pOp>aOp );
2099 assert( pOp[-1].opcode==OP_Permutation );
2100 assert( pOp[-1].p4type==P4_INTARRAY );
2101 aPermute = pOp[-1].p4.ai + 1;
2102 assert( aPermute!=0 );
2103 }
drh856c1032009-06-02 15:21:42 +00002104 n = pOp->p3;
2105 pKeyInfo = pOp->p4.pKeyInfo;
drh16ee60f2008-06-20 18:13:25 +00002106 assert( n>0 );
drh93a960a2008-07-10 00:32:42 +00002107 assert( pKeyInfo!=0 );
drh16ee60f2008-06-20 18:13:25 +00002108 p1 = pOp->p1;
drh16ee60f2008-06-20 18:13:25 +00002109 p2 = pOp->p2;
drhd879e3e2017-02-13 13:35:55 +00002110#ifdef SQLITE_DEBUG
drh6a2fe092009-09-23 02:29:36 +00002111 if( aPermute ){
2112 int k, mx = 0;
2113 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
drh9f6168b2016-03-19 23:32:58 +00002114 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
2115 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
drh6a2fe092009-09-23 02:29:36 +00002116 }else{
drh9f6168b2016-03-19 23:32:58 +00002117 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
2118 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
drh6a2fe092009-09-23 02:29:36 +00002119 }
2120#endif /* SQLITE_DEBUG */
drh0acb7e42008-06-25 00:12:41 +00002121 for(i=0; i<n; i++){
drh856c1032009-06-02 15:21:42 +00002122 idx = aPermute ? aPermute[i] : i;
drh2b4ded92010-09-27 21:09:31 +00002123 assert( memIsValid(&aMem[p1+idx]) );
2124 assert( memIsValid(&aMem[p2+idx]) );
drha6c2ed92009-11-14 23:22:23 +00002125 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2126 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
drha485ad12017-08-02 22:43:14 +00002127 assert( i<pKeyInfo->nKeyField );
drh93a960a2008-07-10 00:32:42 +00002128 pColl = pKeyInfo->aColl[i];
2129 bRev = pKeyInfo->aSortOrder[i];
drha6c2ed92009-11-14 23:22:23 +00002130 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
drh0acb7e42008-06-25 00:12:41 +00002131 if( iCompare ){
2132 if( bRev ) iCompare = -iCompare;
2133 break;
2134 }
drh16ee60f2008-06-20 18:13:25 +00002135 }
2136 break;
2137}
2138
2139/* Opcode: Jump P1 P2 P3 * *
2140**
2141** Jump to the instruction at address P1, P2, or P3 depending on whether
2142** in the most recent OP_Compare instruction the P1 vector was less than
2143** equal to, or greater than the P2 vector, respectively.
2144*/
drh0acb7e42008-06-25 00:12:41 +00002145case OP_Jump: { /* jump */
2146 if( iCompare<0 ){
drhf56fa462015-04-13 21:39:54 +00002147 VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1];
drh0acb7e42008-06-25 00:12:41 +00002148 }else if( iCompare==0 ){
drhf56fa462015-04-13 21:39:54 +00002149 VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1];
drh16ee60f2008-06-20 18:13:25 +00002150 }else{
drhf56fa462015-04-13 21:39:54 +00002151 VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1];
drh16ee60f2008-06-20 18:13:25 +00002152 }
2153 break;
2154}
2155
drh5b6afba2008-01-05 16:29:28 +00002156/* Opcode: And P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00002157** Synopsis: r[P3]=(r[P1] && r[P2])
drh5e00f6c2001-09-13 13:46:56 +00002158**
drh5b6afba2008-01-05 16:29:28 +00002159** Take the logical AND of the values in registers P1 and P2 and
2160** write the result into register P3.
drh5e00f6c2001-09-13 13:46:56 +00002161**
drh5b6afba2008-01-05 16:29:28 +00002162** If either P1 or P2 is 0 (false) then the result is 0 even if
2163** the other input is NULL. A NULL and true or two NULLs give
2164** a NULL output.
drh5e00f6c2001-09-13 13:46:56 +00002165*/
drh5b6afba2008-01-05 16:29:28 +00002166/* Opcode: Or P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00002167** Synopsis: r[P3]=(r[P1] || r[P2])
drh5b6afba2008-01-05 16:29:28 +00002168**
2169** Take the logical OR of the values in register P1 and P2 and
2170** store the answer in register P3.
2171**
2172** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2173** even if the other input is NULL. A NULL and false or two NULLs
2174** give a NULL output.
2175*/
2176case OP_And: /* same as TK_AND, in1, in2, out3 */
2177case OP_Or: { /* same as TK_OR, in1, in2, out3 */
drh856c1032009-06-02 15:21:42 +00002178 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2179 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
drhbb113512002-05-27 01:04:51 +00002180
drh1fcfa722018-02-26 15:27:31 +00002181 v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2);
2182 v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2);
drhbb113512002-05-27 01:04:51 +00002183 if( pOp->opcode==OP_And ){
drh5b6afba2008-01-05 16:29:28 +00002184 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
drhbb113512002-05-27 01:04:51 +00002185 v1 = and_logic[v1*3+v2];
2186 }else{
drh5b6afba2008-01-05 16:29:28 +00002187 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
drhbb113512002-05-27 01:04:51 +00002188 v1 = or_logic[v1*3+v2];
drh5e00f6c2001-09-13 13:46:56 +00002189 }
drh3c657212009-11-17 23:59:58 +00002190 pOut = &aMem[pOp->p3];
drhbb113512002-05-27 01:04:51 +00002191 if( v1==2 ){
danielk1977a7a8e142008-02-13 18:25:27 +00002192 MemSetTypeFlag(pOut, MEM_Null);
drhbb113512002-05-27 01:04:51 +00002193 }else{
drh5b6afba2008-01-05 16:29:28 +00002194 pOut->u.i = v1;
danielk1977a7a8e142008-02-13 18:25:27 +00002195 MemSetTypeFlag(pOut, MEM_Int);
drhbb113512002-05-27 01:04:51 +00002196 }
drh5e00f6c2001-09-13 13:46:56 +00002197 break;
2198}
2199
drh8abed7b2018-02-26 18:49:05 +00002200/* Opcode: IsTrue P1 P2 P3 P4 *
2201** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
2202**
2203** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
2204** IS NOT FALSE operators.
2205**
drh96acafb2018-02-27 14:49:25 +00002206** Interpret the value in register P1 as a boolean value. Store that
drh8abed7b2018-02-26 18:49:05 +00002207** boolean (a 0 or 1) in register P2. Or if the value in register P1 is
2208** NULL, then the P3 is stored in register P2. Invert the answer if P4
2209** is 1.
2210**
2211** The logic is summarized like this:
2212**
2213** <ul>
drh96acafb2018-02-27 14:49:25 +00002214** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE
2215** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE
2216** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE
2217** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE
drh8abed7b2018-02-26 18:49:05 +00002218** </ul>
2219*/
2220case OP_IsTrue: { /* in1, out2 */
2221 assert( pOp->p4type==P4_INT32 );
2222 assert( pOp->p4.i==0 || pOp->p4.i==1 );
drh96acafb2018-02-27 14:49:25 +00002223 assert( pOp->p3==0 || pOp->p3==1 );
drh8abed7b2018-02-26 18:49:05 +00002224 sqlite3VdbeMemSetInt64(&aMem[pOp->p2],
2225 sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i);
2226 break;
2227}
2228
drhe99fa2a2008-12-15 15:27:51 +00002229/* Opcode: Not P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002230** Synopsis: r[P2]= !r[P1]
drh5e00f6c2001-09-13 13:46:56 +00002231**
drhe99fa2a2008-12-15 15:27:51 +00002232** Interpret the value in register P1 as a boolean value. Store the
2233** boolean complement in register P2. If the value in register P1 is
2234** NULL, then a NULL is stored in P2.
drh5e00f6c2001-09-13 13:46:56 +00002235*/
drh93952eb2009-11-13 19:43:43 +00002236case OP_Not: { /* same as TK_NOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002237 pIn1 = &aMem[pOp->p1];
2238 pOut = &aMem[pOp->p2];
drh0725cab2014-09-17 14:52:46 +00002239 if( (pIn1->flags & MEM_Null)==0 ){
drhbc8f68a2018-02-26 15:31:39 +00002240 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0));
drh007c8432018-02-26 03:20:18 +00002241 }else{
2242 sqlite3VdbeMemSetNull(pOut);
drhe99fa2a2008-12-15 15:27:51 +00002243 }
drh5e00f6c2001-09-13 13:46:56 +00002244 break;
2245}
2246
drhe99fa2a2008-12-15 15:27:51 +00002247/* Opcode: BitNot P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002248** Synopsis: r[P1]= ~r[P1]
drhbf4133c2001-10-13 02:59:08 +00002249**
drhe99fa2a2008-12-15 15:27:51 +00002250** Interpret the content of register P1 as an integer. Store the
2251** ones-complement of the P1 value into register P2. If P1 holds
2252** a NULL then store a NULL in P2.
drhbf4133c2001-10-13 02:59:08 +00002253*/
drh93952eb2009-11-13 19:43:43 +00002254case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
drh3c657212009-11-17 23:59:58 +00002255 pIn1 = &aMem[pOp->p1];
2256 pOut = &aMem[pOp->p2];
drh0725cab2014-09-17 14:52:46 +00002257 sqlite3VdbeMemSetNull(pOut);
2258 if( (pIn1->flags & MEM_Null)==0 ){
2259 pOut->flags = MEM_Int;
2260 pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
drhe99fa2a2008-12-15 15:27:51 +00002261 }
drhbf4133c2001-10-13 02:59:08 +00002262 break;
2263}
2264
drh48f2d3b2011-09-16 01:34:43 +00002265/* Opcode: Once P1 P2 * * *
2266**
drhab087d42017-03-24 17:59:56 +00002267** Fall through to the next instruction the first time this opcode is
2268** encountered on each invocation of the byte-code program. Jump to P2
2269** on the second and all subsequent encounters during the same invocation.
2270**
2271** Top-level programs determine first invocation by comparing the P1
2272** operand against the P1 operand on the OP_Init opcode at the beginning
2273** of the program. If the P1 values differ, then fall through and make
2274** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are
2275** the same then take the jump.
2276**
2277** For subprograms, there is a bitmask in the VdbeFrame that determines
2278** whether or not the jump should be taken. The bitmask is necessary
2279** because the self-altering code trick does not work for recursive
2280** triggers.
drh48f2d3b2011-09-16 01:34:43 +00002281*/
dan1d8cb212011-12-09 13:24:16 +00002282case OP_Once: { /* jump */
drhab087d42017-03-24 17:59:56 +00002283 u32 iAddr; /* Address of this instruction */
drh9e5eb9c2016-09-18 16:08:10 +00002284 assert( p->aOp[0].opcode==OP_Init );
drhab087d42017-03-24 17:59:56 +00002285 if( p->pFrame ){
2286 iAddr = (int)(pOp - p->aOp);
2287 if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){
2288 VdbeBranchTaken(1, 2);
drhab087d42017-03-24 17:59:56 +00002289 goto jump_to_p2;
2290 }
drh18333ef2017-03-24 18:38:41 +00002291 p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7);
dan1d8cb212011-12-09 13:24:16 +00002292 }else{
drhab087d42017-03-24 17:59:56 +00002293 if( p->aOp[0].p1==pOp->p1 ){
2294 VdbeBranchTaken(1, 2);
2295 goto jump_to_p2;
2296 }
dan1d8cb212011-12-09 13:24:16 +00002297 }
drhab087d42017-03-24 17:59:56 +00002298 VdbeBranchTaken(0, 2);
2299 pOp->p1 = p->aOp[0].p1;
dan1d8cb212011-12-09 13:24:16 +00002300 break;
2301}
2302
drh3c84ddf2008-01-09 02:15:38 +00002303/* Opcode: If P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00002304**
drhef8662b2011-06-20 21:47:58 +00002305** Jump to P2 if the value in register P1 is true. The value
drh3c84ddf2008-01-09 02:15:38 +00002306** is considered true if it is numeric and non-zero. If the value
drhe21a6e12014-08-01 18:00:24 +00002307** in P1 is NULL then take the jump if and only if P3 is non-zero.
drh5e00f6c2001-09-13 13:46:56 +00002308*/
drh1fcfa722018-02-26 15:27:31 +00002309case OP_If: { /* jump, in1 */
2310 int c;
2311 c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3);
2312 VdbeBranchTaken(c!=0, 2);
2313 if( c ) goto jump_to_p2;
2314 break;
2315}
2316
drh3c84ddf2008-01-09 02:15:38 +00002317/* Opcode: IfNot P1 P2 P3 * *
drhf5905aa2002-05-26 20:54:33 +00002318**
drhef8662b2011-06-20 21:47:58 +00002319** Jump to P2 if the value in register P1 is False. The value
drhb8475df2011-12-09 16:21:19 +00002320** is considered false if it has a numeric value of zero. If the value
drhe21a6e12014-08-01 18:00:24 +00002321** in P1 is NULL then take the jump if and only if P3 is non-zero.
drhf5905aa2002-05-26 20:54:33 +00002322*/
drh9cbf3422008-01-17 16:22:13 +00002323case OP_IfNot: { /* jump, in1 */
drh5e00f6c2001-09-13 13:46:56 +00002324 int c;
drh1fcfa722018-02-26 15:27:31 +00002325 c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3);
drh688852a2014-02-17 22:40:43 +00002326 VdbeBranchTaken(c!=0, 2);
drh1fcfa722018-02-26 15:27:31 +00002327 if( c ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00002328 break;
2329}
2330
drh830ecf92009-06-18 00:41:55 +00002331/* Opcode: IsNull P1 P2 * * *
drh72e26de2016-08-24 21:24:04 +00002332** Synopsis: if r[P1]==NULL goto P2
drh477df4b2008-01-05 18:48:24 +00002333**
drh830ecf92009-06-18 00:41:55 +00002334** Jump to P2 if the value in register P1 is NULL.
drh477df4b2008-01-05 18:48:24 +00002335*/
drh9cbf3422008-01-17 16:22:13 +00002336case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002337 pIn1 = &aMem[pOp->p1];
drh688852a2014-02-17 22:40:43 +00002338 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
drh830ecf92009-06-18 00:41:55 +00002339 if( (pIn1->flags & MEM_Null)!=0 ){
drhf56fa462015-04-13 21:39:54 +00002340 goto jump_to_p2;
drh830ecf92009-06-18 00:41:55 +00002341 }
drh477df4b2008-01-05 18:48:24 +00002342 break;
2343}
2344
drh98757152008-01-09 23:04:12 +00002345/* Opcode: NotNull P1 P2 * * *
drhfc8d4f92013-11-08 15:19:46 +00002346** Synopsis: if r[P1]!=NULL goto P2
drh5e00f6c2001-09-13 13:46:56 +00002347**
drh6a288a32008-01-07 19:20:24 +00002348** Jump to P2 if the value in register P1 is not NULL.
drh5e00f6c2001-09-13 13:46:56 +00002349*/
drh9cbf3422008-01-17 16:22:13 +00002350case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
drh3c657212009-11-17 23:59:58 +00002351 pIn1 = &aMem[pOp->p1];
drh688852a2014-02-17 22:40:43 +00002352 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
drh6a288a32008-01-07 19:20:24 +00002353 if( (pIn1->flags & MEM_Null)==0 ){
drhf56fa462015-04-13 21:39:54 +00002354 goto jump_to_p2;
drh6a288a32008-01-07 19:20:24 +00002355 }
drh5e00f6c2001-09-13 13:46:56 +00002356 break;
2357}
2358
drh31d6fd52017-04-14 19:03:10 +00002359/* Opcode: IfNullRow P1 P2 P3 * *
2360** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
2361**
2362** Check the cursor P1 to see if it is currently pointing at a NULL row.
2363** If it is, then set register P3 to NULL and jump immediately to P2.
2364** If P1 is not on a NULL row, then fall through without making any
2365** changes.
2366*/
2367case OP_IfNullRow: { /* jump */
2368 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh3f1e9e02017-05-23 01:21:07 +00002369 assert( p->apCsr[pOp->p1]!=0 );
drh31d6fd52017-04-14 19:03:10 +00002370 if( p->apCsr[pOp->p1]->nullRow ){
2371 sqlite3VdbeMemSetNull(aMem + pOp->p3);
2372 goto jump_to_p2;
2373 }
2374 break;
2375}
2376
drh092457b2017-12-29 15:04:49 +00002377#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
2378/* Opcode: Offset P1 P2 P3 * *
2379** Synopsis: r[P3] = sqlite_offset(P1)
drh2fc865c2017-12-16 20:20:37 +00002380**
drh092457b2017-12-29 15:04:49 +00002381** Store in register r[P3] the byte offset into the database file that is the
drh2fc865c2017-12-16 20:20:37 +00002382** start of the payload for the record at which that cursor P1 is currently
2383** pointing.
drhfe6d20e2017-12-29 14:33:54 +00002384**
drh092457b2017-12-29 15:04:49 +00002385** P2 is the column number for the argument to the sqlite_offset() function.
drhfe6d20e2017-12-29 14:33:54 +00002386** This opcode does not use P2 itself, but the P2 value is used by the
2387** code generator. The P1, P2, and P3 operands to this opcode are the
mistachkin5e9825e2018-03-01 18:09:02 +00002388** same as for OP_Column.
drh092457b2017-12-29 15:04:49 +00002389**
2390** This opcode is only available if SQLite is compiled with the
2391** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
drh2fc865c2017-12-16 20:20:37 +00002392*/
drh092457b2017-12-29 15:04:49 +00002393case OP_Offset: { /* out3 */
drh2fc865c2017-12-16 20:20:37 +00002394 VdbeCursor *pC; /* The VDBE cursor */
2395 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2396 pC = p->apCsr[pOp->p1];
drhfe6d20e2017-12-29 14:33:54 +00002397 pOut = &p->aMem[pOp->p3];
drhc64487b2017-12-29 17:21:21 +00002398 if( NEVER(pC==0) || pC->eCurType!=CURTYPE_BTREE ){
drhfe6d20e2017-12-29 14:33:54 +00002399 sqlite3VdbeMemSetNull(pOut);
drh2fc865c2017-12-16 20:20:37 +00002400 }else{
drh092457b2017-12-29 15:04:49 +00002401 sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor));
drh2fc865c2017-12-16 20:20:37 +00002402 }
2403 break;
2404}
drh092457b2017-12-29 15:04:49 +00002405#endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
drh2fc865c2017-12-16 20:20:37 +00002406
drh3e9ca092009-09-08 01:14:48 +00002407/* Opcode: Column P1 P2 P3 P4 P5
drh72e26de2016-08-24 21:24:04 +00002408** Synopsis: r[P3]=PX
danielk1977192ac1d2004-05-10 07:17:30 +00002409**
danielk1977cfcdaef2004-05-12 07:33:33 +00002410** Interpret the data that cursor P1 points to as a structure built using
2411** the MakeRecord instruction. (See the MakeRecord opcode for additional
drhd4e70eb2008-01-02 00:34:36 +00002412** information about the format of the data.) Extract the P2-th column
2413** from this record. If there are less that (P2+1)
2414** values in the record, extract a NULL.
2415**
drh9cbf3422008-01-17 16:22:13 +00002416** The value extracted is stored in register P3.
danielk1977192ac1d2004-05-10 07:17:30 +00002417**
drh1cc3a362017-04-03 13:17:31 +00002418** If the record contains fewer than P2 fields, then extract a NULL. Or,
danielk19771f4aa332008-01-03 09:51:55 +00002419** if the P4 argument is a P4_MEM use the value of the P4 argument as
2420** the result.
drh3e9ca092009-09-08 01:14:48 +00002421**
2422** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2423** then the cache of the cursor is reset prior to extracting the column.
2424** The first OP_Column against a pseudo-table after the value of the content
2425** register has changed should have this bit set.
drha748fdc2012-03-28 01:34:47 +00002426**
drh1cc3a362017-04-03 13:17:31 +00002427** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 then
drhdda5c082012-03-28 13:41:10 +00002428** the result is guaranteed to only be used as the argument of a length()
2429** or typeof() function, respectively. The loading of large blobs can be
2430** skipped for length() and all content loading can be skipped for typeof().
danielk1977192ac1d2004-05-10 07:17:30 +00002431*/
danielk1977cfcdaef2004-05-12 07:33:33 +00002432case OP_Column: {
drh856c1032009-06-02 15:21:42 +00002433 int p2; /* column number to retrieve */
2434 VdbeCursor *pC; /* The VDBE cursor */
drhd3194f52004-05-27 19:59:32 +00002435 BtCursor *pCrsr; /* The BTree cursor */
drhd3194f52004-05-27 19:59:32 +00002436 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
danielk1977cfcdaef2004-05-12 07:33:33 +00002437 int len; /* The length of the serialized data for the column */
drhd3194f52004-05-27 19:59:32 +00002438 int i; /* Loop counter */
drhd4e70eb2008-01-02 00:34:36 +00002439 Mem *pDest; /* Where to write the extracted value */
drhd3194f52004-05-27 19:59:32 +00002440 Mem sMem; /* For storing the record being decoded */
drh399af1d2013-11-20 17:25:55 +00002441 const u8 *zData; /* Part of the record being decoded */
2442 const u8 *zHdr; /* Next unparsed byte of the header */
2443 const u8 *zEndHdr; /* Pointer to first byte after the header */
drhc6ce38832015-10-15 21:30:24 +00002444 u64 offset64; /* 64-bit offset */
drh5a077b72011-08-29 02:16:18 +00002445 u32 t; /* A type code from the record header */
drh3e9ca092009-09-08 01:14:48 +00002446 Mem *pReg; /* PseudoTable input register */
danielk1977192ac1d2004-05-10 07:17:30 +00002447
dande892d92016-01-29 19:29:45 +00002448 pC = p->apCsr[pOp->p1];
drh856c1032009-06-02 15:21:42 +00002449 p2 = pOp->p2;
dande892d92016-01-29 19:29:45 +00002450
drh170ad682017-06-02 15:44:22 +00002451 /* If the cursor cache is stale (meaning it is not currently point at
2452 ** the correct row) then bring it up-to-date by doing the necessary
2453 ** B-Tree seek. */
dande892d92016-01-29 19:29:45 +00002454 rc = sqlite3VdbeCursorMoveto(&pC, &p2);
drh4ca239f2016-05-19 11:12:43 +00002455 if( rc ) goto abort_due_to_error;
dande892d92016-01-29 19:29:45 +00002456
drh9f6168b2016-03-19 23:32:58 +00002457 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00002458 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00002459 memAboutToChange(p, pDest);
drhc8606e42013-11-20 19:28:03 +00002460 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
danielk19776c924092007-11-12 08:09:34 +00002461 assert( pC!=0 );
drhc8606e42013-11-20 19:28:03 +00002462 assert( p2<pC->nField );
drhb53a5a92014-10-12 22:37:22 +00002463 aOffset = pC->aOffset;
drh62aaa6c2015-11-21 17:27:42 +00002464 assert( pC->eCurType!=CURTYPE_VTAB );
drhc960dcb2015-11-20 19:22:01 +00002465 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2466 assert( pC->eCurType!=CURTYPE_SORTER );
drh399af1d2013-11-20 17:25:55 +00002467
drha43a02e2016-05-19 17:51:19 +00002468 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/
danielk1977192ac1d2004-05-10 07:17:30 +00002469 if( pC->nullRow ){
drhc960dcb2015-11-20 19:22:01 +00002470 if( pC->eCurType==CURTYPE_PSEUDO ){
drhfe0cf7a2017-08-16 19:20:20 +00002471 /* For the special case of as pseudo-cursor, the seekResult field
2472 ** identifies the register that holds the record */
2473 assert( pC->seekResult>0 );
2474 pReg = &aMem[pC->seekResult];
drhc8606e42013-11-20 19:28:03 +00002475 assert( pReg->flags & MEM_Blob );
2476 assert( memIsValid(pReg) );
drh6cd8c8c2017-08-15 14:14:36 +00002477 pC->payloadSize = pC->szRow = pReg->n;
drhc8606e42013-11-20 19:28:03 +00002478 pC->aRow = (u8*)pReg->z;
2479 }else{
drh6b5631e2014-11-05 15:57:39 +00002480 sqlite3VdbeMemSetNull(pDest);
drh399af1d2013-11-20 17:25:55 +00002481 goto op_column_out;
2482 }
danielk1977192ac1d2004-05-10 07:17:30 +00002483 }else{
drh06a09a82016-11-25 17:03:03 +00002484 pCrsr = pC->uc.pCursor;
drhc960dcb2015-11-20 19:22:01 +00002485 assert( pC->eCurType==CURTYPE_BTREE );
drhc8606e42013-11-20 19:28:03 +00002486 assert( pCrsr );
drha7c90c42016-06-04 20:37:10 +00002487 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2488 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
drh6cd8c8c2017-08-15 14:14:36 +00002489 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow);
2490 assert( pC->szRow<=pC->payloadSize );
2491 assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */
2492 if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh5f7dacb2015-11-20 13:33:56 +00002493 goto too_big;
drh399af1d2013-11-20 17:25:55 +00002494 }
danielk1977192ac1d2004-05-10 07:17:30 +00002495 }
drhb73857f2006-03-17 00:25:59 +00002496 pC->cacheStatus = p->cacheCtr;
drh1f613c42017-08-16 14:16:19 +00002497 pC->iHdrOffset = getVarint32(pC->aRow, aOffset[0]);
drh399af1d2013-11-20 17:25:55 +00002498 pC->nHdrParsed = 0;
drh35cd6432009-06-05 14:17:21 +00002499
drhc81aa2e2014-10-11 23:31:52 +00002500
drh1f613c42017-08-16 14:16:19 +00002501 if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/
drhc81aa2e2014-10-11 23:31:52 +00002502 /* pC->aRow does not have to hold the entire row, but it does at least
2503 ** need to cover the header of the record. If pC->aRow does not contain
2504 ** the complete header, then set it to zero, forcing the header to be
2505 ** dynamically allocated. */
2506 pC->aRow = 0;
2507 pC->szRow = 0;
drh848a3322015-10-16 12:53:47 +00002508
2509 /* Make sure a corrupt database has not given us an oversize header.
2510 ** Do this now to avoid an oversize memory allocation.
2511 **
2512 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2513 ** types use so much data space that there can only be 4096 and 32 of
2514 ** them, respectively. So the maximum header length results from a
2515 ** 3-byte type for each of the maximum of 32768 columns plus three
2516 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2517 */
drh1f613c42017-08-16 14:16:19 +00002518 if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){
drh74588ce2017-09-13 00:13:05 +00002519 goto op_column_corrupt;
drh848a3322015-10-16 12:53:47 +00002520 }
drh95b225a2017-08-16 11:04:22 +00002521 }else{
2522 /* This is an optimization. By skipping over the first few tests
2523 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
2524 ** measurable performance gain.
2525 **
drh1f613c42017-08-16 14:16:19 +00002526 ** This branch is taken even if aOffset[0]==0. Such a record is never
drh95b225a2017-08-16 11:04:22 +00002527 ** generated by SQLite, and could be considered corruption, but we
drh1f613c42017-08-16 14:16:19 +00002528 ** accept it for historical reasons. When aOffset[0]==0, the code this
drh95b225a2017-08-16 11:04:22 +00002529 ** branch jumps to reads past the end of the record, but never more
2530 ** than a few bytes. Even if the record occurs at the end of the page
2531 ** content area, the "page header" comes after the page content and so
2532 ** this overread is harmless. Similar overreads can occur for a corrupt
2533 ** database file.
drh0eda6cd2016-05-19 16:58:42 +00002534 */
2535 zData = pC->aRow;
2536 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */
drh1f613c42017-08-16 14:16:19 +00002537 testcase( aOffset[0]==0 );
drh0eda6cd2016-05-19 16:58:42 +00002538 goto op_column_read_header;
drhc81aa2e2014-10-11 23:31:52 +00002539 }
drh399af1d2013-11-20 17:25:55 +00002540 }
drh35cd6432009-06-05 14:17:21 +00002541
drh399af1d2013-11-20 17:25:55 +00002542 /* Make sure at least the first p2+1 entries of the header have been
drh0c8f7602014-09-19 16:56:45 +00002543 ** parsed and valid information is in aOffset[] and pC->aType[].
drh399af1d2013-11-20 17:25:55 +00002544 */
drhc8606e42013-11-20 19:28:03 +00002545 if( pC->nHdrParsed<=p2 ){
drh380d6852013-11-20 20:58:00 +00002546 /* If there is more header available for parsing in the record, try
2547 ** to extract additional fields up through the p2+1-th field
drh35cd6432009-06-05 14:17:21 +00002548 */
drhc8606e42013-11-20 19:28:03 +00002549 if( pC->iHdrOffset<aOffset[0] ){
2550 /* Make sure zData points to enough of the record to cover the header. */
2551 if( pC->aRow==0 ){
2552 memset(&sMem, 0, sizeof(sMem));
drhcb3cabd2016-11-25 19:18:28 +00002553 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, 0, aOffset[0], &sMem);
drh9467abf2016-02-17 18:44:11 +00002554 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drhc8606e42013-11-20 19:28:03 +00002555 zData = (u8*)sMem.z;
2556 }else{
2557 zData = pC->aRow;
drh9188b382004-05-14 21:12:22 +00002558 }
drhc8606e42013-11-20 19:28:03 +00002559
drh0c8f7602014-09-19 16:56:45 +00002560 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
drh0eda6cd2016-05-19 16:58:42 +00002561 op_column_read_header:
drhc8606e42013-11-20 19:28:03 +00002562 i = pC->nHdrParsed;
drhc6ce38832015-10-15 21:30:24 +00002563 offset64 = aOffset[i];
drhc8606e42013-11-20 19:28:03 +00002564 zHdr = zData + pC->iHdrOffset;
2565 zEndHdr = zData + aOffset[0];
drh95b225a2017-08-16 11:04:22 +00002566 testcase( zHdr>=zEndHdr );
drhc8606e42013-11-20 19:28:03 +00002567 do{
drh95fa6062015-10-16 13:50:08 +00002568 if( (t = zHdr[0])<0x80 ){
drhc8606e42013-11-20 19:28:03 +00002569 zHdr++;
drhfaf37272015-10-16 14:23:42 +00002570 offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
drh5a077b72011-08-29 02:16:18 +00002571 }else{
drhc8606e42013-11-20 19:28:03 +00002572 zHdr += sqlite3GetVarint32(zHdr, &t);
drhfaf37272015-10-16 14:23:42 +00002573 offset64 += sqlite3VdbeSerialTypeLen(t);
drh5a077b72011-08-29 02:16:18 +00002574 }
drhfaf37272015-10-16 14:23:42 +00002575 pC->aType[i++] = t;
drhc6ce38832015-10-15 21:30:24 +00002576 aOffset[i] = (u32)(offset64 & 0xffffffff);
drhc8606e42013-11-20 19:28:03 +00002577 }while( i<=p2 && zHdr<zEndHdr );
drh170c2762016-05-20 21:40:11 +00002578
drh8dd83622014-10-13 23:39:02 +00002579 /* The record is corrupt if any of the following are true:
2580 ** (1) the bytes of the header extend past the declared header size
drh8dd83622014-10-13 23:39:02 +00002581 ** (2) the entire header was used but not all data was used
drh8dd83622014-10-13 23:39:02 +00002582 ** (3) the end of the data extends beyond the end of the record.
drhc8606e42013-11-20 19:28:03 +00002583 */
drhc6ce38832015-10-15 21:30:24 +00002584 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2585 || (offset64 > pC->payloadSize)
drhc8606e42013-11-20 19:28:03 +00002586 ){
drh95b225a2017-08-16 11:04:22 +00002587 if( aOffset[0]==0 ){
2588 i = 0;
2589 zHdr = zEndHdr;
2590 }else{
2591 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
drh74588ce2017-09-13 00:13:05 +00002592 goto op_column_corrupt;
drh95b225a2017-08-16 11:04:22 +00002593 }
danielk1977dedf45b2006-01-13 17:12:01 +00002594 }
drhddb2b4a2016-03-25 12:10:32 +00002595
drh170c2762016-05-20 21:40:11 +00002596 pC->nHdrParsed = i;
2597 pC->iHdrOffset = (u32)(zHdr - zData);
2598 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
mistachkin8c7cd6a2015-12-16 21:09:53 +00002599 }else{
drh9fbc8852016-01-04 03:48:46 +00002600 t = 0;
drh9188b382004-05-14 21:12:22 +00002601 }
drhd3194f52004-05-27 19:59:32 +00002602
drhf2db3382015-04-30 20:33:25 +00002603 /* If after trying to extract new entries from the header, nHdrParsed is
drh380d6852013-11-20 20:58:00 +00002604 ** still not up to p2, that means that the record has fewer than p2
2605 ** columns. So the result will be either the default value or a NULL.
drhd3194f52004-05-27 19:59:32 +00002606 */
drhc8606e42013-11-20 19:28:03 +00002607 if( pC->nHdrParsed<=p2 ){
2608 if( pOp->p4type==P4_MEM ){
2609 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2610 }else{
drh22e8d832014-10-29 00:58:38 +00002611 sqlite3VdbeMemSetNull(pDest);
drhc8606e42013-11-20 19:28:03 +00002612 }
danielk19773c9cc8d2005-01-17 03:40:08 +00002613 goto op_column_out;
drhd3194f52004-05-27 19:59:32 +00002614 }
drh95fa6062015-10-16 13:50:08 +00002615 }else{
2616 t = pC->aType[p2];
danielk1977cfcdaef2004-05-12 07:33:33 +00002617 }
danielk1977192ac1d2004-05-10 07:17:30 +00002618
drh380d6852013-11-20 20:58:00 +00002619 /* Extract the content for the p2+1-th column. Control can only
drh0c8f7602014-09-19 16:56:45 +00002620 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
drh380d6852013-11-20 20:58:00 +00002621 ** all valid.
drh9188b382004-05-14 21:12:22 +00002622 */
drhc8606e42013-11-20 19:28:03 +00002623 assert( p2<pC->nHdrParsed );
2624 assert( rc==SQLITE_OK );
drh75fd0542014-03-01 16:24:44 +00002625 assert( sqlite3VdbeCheckMemInvariants(pDest) );
drha1851ef2016-05-20 19:51:28 +00002626 if( VdbeMemDynamic(pDest) ){
2627 sqlite3VdbeMemSetNull(pDest);
2628 }
drh95fa6062015-10-16 13:50:08 +00002629 assert( t==pC->aType[p2] );
drhc8606e42013-11-20 19:28:03 +00002630 if( pC->szRow>=aOffset[p2+1] ){
drh380d6852013-11-20 20:58:00 +00002631 /* This is the common case where the desired content fits on the original
2632 ** page - where the content is not on an overflow page */
drh69f6e252016-01-11 18:05:00 +00002633 zData = pC->aRow + aOffset[p2];
2634 if( t<12 ){
2635 sqlite3VdbeSerialGet(zData, t, pDest);
2636 }else{
2637 /* If the column value is a string, we need a persistent value, not
2638 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent
2639 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
2640 */
2641 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
2642 pDest->n = len = (t-12)/2;
drha1851ef2016-05-20 19:51:28 +00002643 pDest->enc = encoding;
drh69f6e252016-01-11 18:05:00 +00002644 if( pDest->szMalloc < len+2 ){
2645 pDest->flags = MEM_Null;
2646 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
2647 }else{
2648 pDest->z = pDest->zMalloc;
2649 }
2650 memcpy(pDest->z, zData, len);
2651 pDest->z[len] = 0;
2652 pDest->z[len+1] = 0;
2653 pDest->flags = aFlag[t&1];
2654 }
danielk197736963fd2005-02-19 08:18:05 +00002655 }else{
drha1851ef2016-05-20 19:51:28 +00002656 pDest->enc = encoding;
drh58c96082013-12-23 11:33:32 +00002657 /* This branch happens only when content is on overflow pages */
drh380d6852013-11-20 20:58:00 +00002658 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2659 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2660 || (len = sqlite3VdbeSerialTypeLen(t))==0
drhc8606e42013-11-20 19:28:03 +00002661 ){
drh2a2a6962014-09-16 18:22:44 +00002662 /* Content is irrelevant for
2663 ** 1. the typeof() function,
2664 ** 2. the length(X) function if X is a blob, and
2665 ** 3. if the content length is zero.
2666 ** So we might as well use bogus content rather than reading
dan1f9144e2017-03-17 13:59:06 +00002667 ** content from disk.
2668 **
2669 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
2670 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
2671 ** read up to 16. So 16 bytes of bogus content is supplied.
2672 */
2673 static u8 aZero[16]; /* This is the bogus content */
drh69f6e252016-01-11 18:05:00 +00002674 sqlite3VdbeSerialGet(aZero, t, pDest);
danielk1977aee18ef2005-03-09 12:26:50 +00002675 }else{
drhcb3cabd2016-11-25 19:18:28 +00002676 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, aOffset[p2], len, pDest);
drh9467abf2016-02-17 18:44:11 +00002677 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2678 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2679 pDest->flags &= ~MEM_Ephem;
danielk1977aee18ef2005-03-09 12:26:50 +00002680 }
danielk1977cfcdaef2004-05-12 07:33:33 +00002681 }
drhd3194f52004-05-27 19:59:32 +00002682
danielk19773c9cc8d2005-01-17 03:40:08 +00002683op_column_out:
drhb7654112008-01-12 12:48:07 +00002684 UPDATE_MAX_BLOBSIZE(pDest);
drh5b6afba2008-01-05 16:29:28 +00002685 REGISTER_TRACE(pOp->p3, pDest);
danielk1977192ac1d2004-05-10 07:17:30 +00002686 break;
drh74588ce2017-09-13 00:13:05 +00002687
2688op_column_corrupt:
2689 if( aOp[0].p3>0 ){
2690 pOp = &aOp[aOp[0].p3-1];
2691 break;
2692 }else{
2693 rc = SQLITE_CORRUPT_BKPT;
2694 goto abort_due_to_error;
2695 }
danielk1977192ac1d2004-05-10 07:17:30 +00002696}
2697
danielk1977751de562008-04-18 09:01:15 +00002698/* Opcode: Affinity P1 P2 * P4 *
drhf63552b2013-10-30 00:25:03 +00002699** Synopsis: affinity(r[P1@P2])
danielk1977751de562008-04-18 09:01:15 +00002700**
2701** Apply affinities to a range of P2 registers starting with P1.
2702**
drhbb6783b2017-04-29 18:02:49 +00002703** P4 is a string that is P2 characters long. The N-th character of the
2704** string indicates the column affinity that should be used for the N-th
danielk1977751de562008-04-18 09:01:15 +00002705** memory cell in the range.
2706*/
2707case OP_Affinity: {
drh039fc322009-11-17 18:31:47 +00002708 const char *zAffinity; /* The affinity to be applied */
danielk1977751de562008-04-18 09:01:15 +00002709
drh856c1032009-06-02 15:21:42 +00002710 zAffinity = pOp->p4.z;
drh039fc322009-11-17 18:31:47 +00002711 assert( zAffinity!=0 );
drh662c50e2017-04-01 20:14:01 +00002712 assert( pOp->p2>0 );
drh039fc322009-11-17 18:31:47 +00002713 assert( zAffinity[pOp->p2]==0 );
2714 pIn1 = &aMem[pOp->p1];
drh662c50e2017-04-01 20:14:01 +00002715 do{
drh9f6168b2016-03-19 23:32:58 +00002716 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
drh2b4ded92010-09-27 21:09:31 +00002717 assert( memIsValid(pIn1) );
drh662c50e2017-04-01 20:14:01 +00002718 applyAffinity(pIn1, *(zAffinity++), encoding);
drh039fc322009-11-17 18:31:47 +00002719 pIn1++;
drh662c50e2017-04-01 20:14:01 +00002720 }while( zAffinity[0] );
danielk1977751de562008-04-18 09:01:15 +00002721 break;
2722}
2723
drh1db639c2008-01-17 02:36:28 +00002724/* Opcode: MakeRecord P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00002725** Synopsis: r[P3]=mkrec(r[P1@P2])
drh7a224de2004-06-02 01:22:02 +00002726**
drh710c4842010-08-30 01:17:20 +00002727** Convert P2 registers beginning with P1 into the [record format]
2728** use as a data record in a database table or as a key
2729** in an index. The OP_Column opcode can decode the record later.
drh7a224de2004-06-02 01:22:02 +00002730**
drhbb6783b2017-04-29 18:02:49 +00002731** P4 may be a string that is P2 characters long. The N-th character of the
2732** string indicates the column affinity that should be used for the N-th
drh9cbf3422008-01-17 16:22:13 +00002733** field of the index key.
drh7a224de2004-06-02 01:22:02 +00002734**
drh8a512562005-11-14 22:29:05 +00002735** The mapping from character to affinity is given by the SQLITE_AFF_
2736** macros defined in sqliteInt.h.
drh7a224de2004-06-02 01:22:02 +00002737**
drh05883a32015-06-02 15:32:08 +00002738** If P4 is NULL then all index fields have the affinity BLOB.
drh7f057c92005-06-24 03:53:06 +00002739*/
drh1db639c2008-01-17 02:36:28 +00002740case OP_MakeRecord: {
drh856c1032009-06-02 15:21:42 +00002741 u8 *zNewRecord; /* A buffer to hold the data for the new record */
2742 Mem *pRec; /* The new record */
2743 u64 nData; /* Number of bytes of data space */
2744 int nHdr; /* Number of bytes of header space */
2745 i64 nByte; /* Data space required for this record */
drh4a335072015-04-11 02:08:48 +00002746 i64 nZero; /* Number of zero bytes at the end of the record */
drh856c1032009-06-02 15:21:42 +00002747 int nVarint; /* Number of bytes in a varint */
2748 u32 serial_type; /* Type field */
2749 Mem *pData0; /* First field to be combined into the record */
2750 Mem *pLast; /* Last field of the record */
2751 int nField; /* Number of fields in the record */
2752 char *zAffinity; /* The affinity string for the record */
2753 int file_format; /* File format to use for encoding */
drh59bf00c2013-12-08 23:33:28 +00002754 int i; /* Space used in zNewRecord[] header */
2755 int j; /* Space used in zNewRecord[] content */
drhbe37c122015-10-16 14:54:17 +00002756 u32 len; /* Length of a field */
drh856c1032009-06-02 15:21:42 +00002757
drhf3218fe2004-05-28 08:21:02 +00002758 /* Assuming the record contains N fields, the record format looks
2759 ** like this:
2760 **
drh7a224de2004-06-02 01:22:02 +00002761 ** ------------------------------------------------------------------------
2762 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2763 ** ------------------------------------------------------------------------
drhf3218fe2004-05-28 08:21:02 +00002764 **
drh9cbf3422008-01-17 16:22:13 +00002765 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
peter.d.reid60ec9142014-09-06 16:39:46 +00002766 ** and so forth.
drhf3218fe2004-05-28 08:21:02 +00002767 **
2768 ** Each type field is a varint representing the serial type of the
2769 ** corresponding data element (see sqlite3VdbeSerialType()). The
drh7a224de2004-06-02 01:22:02 +00002770 ** hdr-size field is also a varint which is the offset from the beginning
2771 ** of the record to data0.
drhf3218fe2004-05-28 08:21:02 +00002772 */
drh856c1032009-06-02 15:21:42 +00002773 nData = 0; /* Number of bytes of data space */
2774 nHdr = 0; /* Number of bytes of header space */
drh856c1032009-06-02 15:21:42 +00002775 nZero = 0; /* Number of zero bytes at the end of the record */
drh1db639c2008-01-17 02:36:28 +00002776 nField = pOp->p1;
danielk19772dca4ac2008-01-03 11:50:29 +00002777 zAffinity = pOp->p4.z;
drh9f6168b2016-03-19 23:32:58 +00002778 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
drha6c2ed92009-11-14 23:22:23 +00002779 pData0 = &aMem[nField];
drh1db639c2008-01-17 02:36:28 +00002780 nField = pOp->p2;
2781 pLast = &pData0[nField-1];
drhd946db02005-12-29 19:23:06 +00002782 file_format = p->minWriteFileFormat;
danielk19778d059842004-05-12 11:24:02 +00002783
drh2b4ded92010-09-27 21:09:31 +00002784 /* Identify the output register */
2785 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2786 pOut = &aMem[pOp->p3];
2787 memAboutToChange(p, pOut);
2788
drh3e6c0602013-12-10 20:53:01 +00002789 /* Apply the requested affinity to all inputs
2790 */
2791 assert( pData0<=pLast );
2792 if( zAffinity ){
2793 pRec = pData0;
2794 do{
drh57bf4a82014-02-17 14:59:22 +00002795 applyAffinity(pRec++, *(zAffinity++), encoding);
2796 assert( zAffinity[0]==0 || pRec<=pLast );
2797 }while( zAffinity[0] );
drh3e6c0602013-12-10 20:53:01 +00002798 }
2799
drhd447dce2017-01-25 20:55:11 +00002800#ifdef SQLITE_ENABLE_NULL_TRIM
drh585ce192017-01-25 14:58:27 +00002801 /* NULLs can be safely trimmed from the end of the record, as long as
2802 ** as the schema format is 2 or more and none of the omitted columns
2803 ** have a non-NULL default value. Also, the record must be left with
2804 ** at least one field. If P5>0 then it will be one more than the
2805 ** index of the right-most column with a non-NULL default value */
2806 if( pOp->p5 ){
2807 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
2808 pLast--;
2809 nField--;
2810 }
2811 }
drhd447dce2017-01-25 20:55:11 +00002812#endif
drh585ce192017-01-25 14:58:27 +00002813
drhf3218fe2004-05-28 08:21:02 +00002814 /* Loop through the elements that will make up the record to figure
2815 ** out how much space is required for the new record.
danielk19778d059842004-05-12 11:24:02 +00002816 */
drh038b7bc2013-12-09 23:17:22 +00002817 pRec = pLast;
drh59bf00c2013-12-08 23:33:28 +00002818 do{
drh2b4ded92010-09-27 21:09:31 +00002819 assert( memIsValid(pRec) );
drh41fb3672018-01-12 23:18:38 +00002820 serial_type = sqlite3VdbeSerialType(pRec, file_format, &len);
drhfdf972a2007-05-02 13:30:27 +00002821 if( pRec->flags & MEM_Zero ){
drhce2fbd12018-01-12 21:00:14 +00002822 if( serial_type==0 ){
drh41fb3672018-01-12 23:18:38 +00002823 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
2824 ** table methods that never invoke sqlite3_result_xxxxx() while
2825 ** computing an unchanging column value in an UPDATE statement.
2826 ** Give such values a special internal-use-only serial-type of 10
2827 ** so that they can be passed through to xUpdate and have
2828 ** a true sqlite3_value_nochange(). */
2829 assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB );
2830 serial_type = 10;
drhce2fbd12018-01-12 21:00:14 +00002831 }else if( nData ){
drh53e66c32015-07-24 15:49:23 +00002832 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
drh038b7bc2013-12-09 23:17:22 +00002833 }else{
2834 nZero += pRec->u.nZero;
2835 len -= pRec->u.nZero;
2836 }
drhfdf972a2007-05-02 13:30:27 +00002837 }
drh8079a0d2006-01-12 17:20:50 +00002838 nData += len;
drh59bf00c2013-12-08 23:33:28 +00002839 testcase( serial_type==127 );
2840 testcase( serial_type==128 );
drh2a242872013-12-08 22:59:29 +00002841 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
drh41fb3672018-01-12 23:18:38 +00002842 pRec->uTemp = serial_type;
drh45c3c662016-04-07 14:16:16 +00002843 if( pRec==pData0 ) break;
2844 pRec--;
2845 }while(1);
danielk19773d1bfea2004-05-14 11:00:53 +00002846
drh654858d2014-11-20 02:18:14 +00002847 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
2848 ** which determines the total number of bytes in the header. The varint
2849 ** value is the size of the header in bytes including the size varint
2850 ** itself. */
drh59bf00c2013-12-08 23:33:28 +00002851 testcase( nHdr==126 );
2852 testcase( nHdr==127 );
drh2a242872013-12-08 22:59:29 +00002853 if( nHdr<=126 ){
2854 /* The common case */
2855 nHdr += 1;
2856 }else{
2857 /* Rare case of a really large header */
2858 nVarint = sqlite3VarintLen(nHdr);
2859 nHdr += nVarint;
2860 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
drhcb9882a2005-03-17 03:15:40 +00002861 }
drh038b7bc2013-12-09 23:17:22 +00002862 nByte = nHdr+nData;
drh4a335072015-04-11 02:08:48 +00002863 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
drh023ae032007-05-08 12:12:16 +00002864 goto too_big;
2865 }
drhf3218fe2004-05-28 08:21:02 +00002866
danielk1977a7a8e142008-02-13 18:25:27 +00002867 /* Make sure the output register has a buffer large enough to store
2868 ** the new record. The output register (pOp->p3) is not allowed to
2869 ** be one of the input registers (because the following call to
drh322f2852014-09-19 00:43:39 +00002870 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
danielk1977a7a8e142008-02-13 18:25:27 +00002871 */
drh322f2852014-09-19 00:43:39 +00002872 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
danielk1977a7a8e142008-02-13 18:25:27 +00002873 goto no_mem;
danielk19778d059842004-05-12 11:24:02 +00002874 }
danielk1977a7a8e142008-02-13 18:25:27 +00002875 zNewRecord = (u8 *)pOut->z;
drhf3218fe2004-05-28 08:21:02 +00002876
2877 /* Write the record */
shane3f8d5cf2008-04-24 19:15:09 +00002878 i = putVarint32(zNewRecord, nHdr);
drh59bf00c2013-12-08 23:33:28 +00002879 j = nHdr;
2880 assert( pData0<=pLast );
2881 pRec = pData0;
2882 do{
drhfacf47a2014-10-13 20:12:47 +00002883 serial_type = pRec->uTemp;
drh654858d2014-11-20 02:18:14 +00002884 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
2885 ** additional varints, one per column. */
drh038b7bc2013-12-09 23:17:22 +00002886 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
drh654858d2014-11-20 02:18:14 +00002887 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
2888 ** immediately follow the header. */
drha9ab4812013-12-11 11:00:44 +00002889 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
drh59bf00c2013-12-08 23:33:28 +00002890 }while( (++pRec)<=pLast );
2891 assert( i==nHdr );
2892 assert( j==nByte );
drhf3218fe2004-05-28 08:21:02 +00002893
drh9f6168b2016-03-19 23:32:58 +00002894 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
drh9c1905f2008-12-10 22:32:56 +00002895 pOut->n = (int)nByte;
drhc91b2fd2014-03-01 18:13:23 +00002896 pOut->flags = MEM_Blob;
drhfdf972a2007-05-02 13:30:27 +00002897 if( nZero ){
drh8df32842008-12-09 02:51:23 +00002898 pOut->u.nZero = nZero;
drh477df4b2008-01-05 18:48:24 +00002899 pOut->flags |= MEM_Zero;
drhfdf972a2007-05-02 13:30:27 +00002900 }
drh1013c932008-01-06 00:25:21 +00002901 REGISTER_TRACE(pOp->p3, pOut);
drhb7654112008-01-12 12:48:07 +00002902 UPDATE_MAX_BLOBSIZE(pOut);
danielk19778d059842004-05-12 11:24:02 +00002903 break;
2904}
2905
danielk1977a5533162009-02-24 10:01:51 +00002906/* Opcode: Count P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00002907** Synopsis: r[P2]=count()
danielk1977a5533162009-02-24 10:01:51 +00002908**
2909** Store the number of entries (an integer value) in the table or index
2910** opened by cursor P1 in register P2
2911*/
2912#ifndef SQLITE_OMIT_BTREECOUNT
drh27a348c2015-04-13 19:14:06 +00002913case OP_Count: { /* out2 */
danielk1977a5533162009-02-24 10:01:51 +00002914 i64 nEntry;
drhc54a6172009-06-02 16:06:03 +00002915 BtCursor *pCrsr;
2916
drhc960dcb2015-11-20 19:22:01 +00002917 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
2918 pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
drh3da046d2013-11-11 03:24:11 +00002919 assert( pCrsr );
drh2dc06482013-12-11 00:59:10 +00002920 nEntry = 0; /* Not needed. Only used to silence a warning. */
drh3da046d2013-11-11 03:24:11 +00002921 rc = sqlite3BtreeCount(pCrsr, &nEntry);
drh9467abf2016-02-17 18:44:11 +00002922 if( rc ) goto abort_due_to_error;
drh27a348c2015-04-13 19:14:06 +00002923 pOut = out2Prerelease(p, pOp);
danielk1977a5533162009-02-24 10:01:51 +00002924 pOut->u.i = nEntry;
2925 break;
2926}
2927#endif
2928
danielk1977fd7f0452008-12-17 17:30:26 +00002929/* Opcode: Savepoint P1 * * P4 *
2930**
2931** Open, release or rollback the savepoint named by parameter P4, depending
2932** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2933** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2934*/
2935case OP_Savepoint: {
drh856c1032009-06-02 15:21:42 +00002936 int p1; /* Value of P1 operand */
2937 char *zName; /* Name of savepoint */
2938 int nName;
2939 Savepoint *pNew;
2940 Savepoint *pSavepoint;
2941 Savepoint *pTmp;
2942 int iSavepoint;
2943 int ii;
2944
2945 p1 = pOp->p1;
2946 zName = pOp->p4.z;
danielk1977fd7f0452008-12-17 17:30:26 +00002947
2948 /* Assert that the p1 parameter is valid. Also that if there is no open
2949 ** transaction, then there cannot be any savepoints.
2950 */
2951 assert( db->pSavepoint==0 || db->autoCommit==0 );
2952 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2953 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2954 assert( checkSavepointCount(db) );
danc0537fe2013-06-28 19:41:43 +00002955 assert( p->bIsReader );
danielk1977fd7f0452008-12-17 17:30:26 +00002956
2957 if( p1==SAVEPOINT_BEGIN ){
drh4f7d3a52013-06-27 23:54:02 +00002958 if( db->nVdbeWrite>0 ){
danielk1977fd7f0452008-12-17 17:30:26 +00002959 /* A new savepoint cannot be created if there are active write
2960 ** statements (i.e. open read/write incremental blob handles).
2961 */
drh22c17b82015-05-15 04:13:15 +00002962 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
danielk1977fd7f0452008-12-17 17:30:26 +00002963 rc = SQLITE_BUSY;
2964 }else{
drh856c1032009-06-02 15:21:42 +00002965 nName = sqlite3Strlen30(zName);
danielk1977fd7f0452008-12-17 17:30:26 +00002966
drhbe07ec52011-06-03 12:15:26 +00002967#ifndef SQLITE_OMIT_VIRTUALTABLE
dand9495cd2011-04-27 12:08:04 +00002968 /* This call is Ok even if this savepoint is actually a transaction
2969 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2970 ** If this is a transaction savepoint being opened, it is guaranteed
2971 ** that the db->aVTrans[] array is empty. */
2972 assert( db->autoCommit==0 || db->nVTrans==0 );
drha24bc9c2011-05-24 00:35:56 +00002973 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2974 db->nStatement+db->nSavepoint);
dand9495cd2011-04-27 12:08:04 +00002975 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh305ebab2011-05-26 14:19:14 +00002976#endif
dand9495cd2011-04-27 12:08:04 +00002977
danielk1977fd7f0452008-12-17 17:30:26 +00002978 /* Create a new savepoint structure. */
drh575fad62016-02-05 13:38:36 +00002979 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
danielk1977fd7f0452008-12-17 17:30:26 +00002980 if( pNew ){
2981 pNew->zName = (char *)&pNew[1];
2982 memcpy(pNew->zName, zName, nName+1);
2983
2984 /* If there is no open transaction, then mark this as a special
2985 ** "transaction savepoint". */
2986 if( db->autoCommit ){
2987 db->autoCommit = 0;
2988 db->isTransactionSavepoint = 1;
2989 }else{
2990 db->nSavepoint++;
danielk1977d8293352009-04-30 09:10:37 +00002991 }
dan21e8d012011-03-03 20:05:59 +00002992
danielk1977fd7f0452008-12-17 17:30:26 +00002993 /* Link the new savepoint into the database handle's list. */
2994 pNew->pNext = db->pSavepoint;
2995 db->pSavepoint = pNew;
danba9108b2009-09-22 07:13:42 +00002996 pNew->nDeferredCons = db->nDeferredCons;
dancb3e4b72013-07-03 19:53:05 +00002997 pNew->nDeferredImmCons = db->nDeferredImmCons;
danielk1977fd7f0452008-12-17 17:30:26 +00002998 }
2999 }
3000 }else{
drh856c1032009-06-02 15:21:42 +00003001 iSavepoint = 0;
danielk1977fd7f0452008-12-17 17:30:26 +00003002
3003 /* Find the named savepoint. If there is no such savepoint, then an
3004 ** an error is returned to the user. */
3005 for(
drh856c1032009-06-02 15:21:42 +00003006 pSavepoint = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00003007 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
drh856c1032009-06-02 15:21:42 +00003008 pSavepoint = pSavepoint->pNext
danielk1977fd7f0452008-12-17 17:30:26 +00003009 ){
3010 iSavepoint++;
3011 }
3012 if( !pSavepoint ){
drh22c17b82015-05-15 04:13:15 +00003013 sqlite3VdbeError(p, "no such savepoint: %s", zName);
danielk1977fd7f0452008-12-17 17:30:26 +00003014 rc = SQLITE_ERROR;
drh4f7d3a52013-06-27 23:54:02 +00003015 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
danielk1977fd7f0452008-12-17 17:30:26 +00003016 /* It is not possible to release (commit) a savepoint if there are
drh0f198a72012-02-13 16:43:16 +00003017 ** active write statements.
danielk1977fd7f0452008-12-17 17:30:26 +00003018 */
drh22c17b82015-05-15 04:13:15 +00003019 sqlite3VdbeError(p, "cannot release savepoint - "
3020 "SQL statements in progress");
danielk1977fd7f0452008-12-17 17:30:26 +00003021 rc = SQLITE_BUSY;
3022 }else{
3023
3024 /* Determine whether or not this is a transaction savepoint. If so,
danielk197734cf35d2008-12-18 18:31:38 +00003025 ** and this is a RELEASE command, then the current transaction
3026 ** is committed.
danielk1977fd7f0452008-12-17 17:30:26 +00003027 */
3028 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
3029 if( isTransaction && p1==SAVEPOINT_RELEASE ){
dan32b09f22009-09-23 17:29:59 +00003030 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00003031 goto vdbe_return;
3032 }
danielk1977fd7f0452008-12-17 17:30:26 +00003033 db->autoCommit = 1;
3034 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
drhf56fa462015-04-13 21:39:54 +00003035 p->pc = (int)(pOp - aOp);
danielk1977fd7f0452008-12-17 17:30:26 +00003036 db->autoCommit = 0;
3037 p->rc = rc = SQLITE_BUSY;
3038 goto vdbe_return;
3039 }
danielk197734cf35d2008-12-18 18:31:38 +00003040 db->isTransactionSavepoint = 0;
3041 rc = p->rc;
danielk1977fd7f0452008-12-17 17:30:26 +00003042 }else{
drh47b7fc72014-11-11 01:33:57 +00003043 int isSchemaChange;
danielk1977fd7f0452008-12-17 17:30:26 +00003044 iSavepoint = db->nSavepoint - iSavepoint - 1;
drh31f10052012-03-31 17:17:26 +00003045 if( p1==SAVEPOINT_ROLLBACK ){
drh8257aa82017-07-26 19:59:13 +00003046 isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0;
drh31f10052012-03-31 17:17:26 +00003047 for(ii=0; ii<db->nDb; ii++){
drh77b1dee2014-11-17 17:13:06 +00003048 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
3049 SQLITE_ABORT_ROLLBACK,
drh47b7fc72014-11-11 01:33:57 +00003050 isSchemaChange==0);
dan80231042014-11-12 14:56:02 +00003051 if( rc!=SQLITE_OK ) goto abort_due_to_error;
drh31f10052012-03-31 17:17:26 +00003052 }
drh47b7fc72014-11-11 01:33:57 +00003053 }else{
3054 isSchemaChange = 0;
drh0f198a72012-02-13 16:43:16 +00003055 }
3056 for(ii=0; ii<db->nDb; ii++){
danielk1977fd7f0452008-12-17 17:30:26 +00003057 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
3058 if( rc!=SQLITE_OK ){
3059 goto abort_due_to_error;
danielk1977bd434552009-03-18 10:33:00 +00003060 }
danielk1977fd7f0452008-12-17 17:30:26 +00003061 }
drh47b7fc72014-11-11 01:33:57 +00003062 if( isSchemaChange ){
danielk1977fd7f0452008-12-17 17:30:26 +00003063 sqlite3ExpirePreparedStatements(db);
drh81028a42012-05-15 18:28:27 +00003064 sqlite3ResetAllSchemasOfConnection(db);
drh8257aa82017-07-26 19:59:13 +00003065 db->mDbFlags |= DBFLAG_SchemaChange;
danielk1977fd7f0452008-12-17 17:30:26 +00003066 }
3067 }
3068
3069 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
3070 ** savepoints nested inside of the savepoint being operated on. */
3071 while( db->pSavepoint!=pSavepoint ){
drh856c1032009-06-02 15:21:42 +00003072 pTmp = db->pSavepoint;
danielk1977fd7f0452008-12-17 17:30:26 +00003073 db->pSavepoint = pTmp->pNext;
3074 sqlite3DbFree(db, pTmp);
3075 db->nSavepoint--;
3076 }
3077
dan1da40a32009-09-19 17:00:31 +00003078 /* If it is a RELEASE, then destroy the savepoint being operated on
3079 ** too. If it is a ROLLBACK TO, then set the number of deferred
3080 ** constraint violations present in the database to the value stored
3081 ** when the savepoint was created. */
danielk1977fd7f0452008-12-17 17:30:26 +00003082 if( p1==SAVEPOINT_RELEASE ){
3083 assert( pSavepoint==db->pSavepoint );
3084 db->pSavepoint = pSavepoint->pNext;
3085 sqlite3DbFree(db, pSavepoint);
3086 if( !isTransaction ){
3087 db->nSavepoint--;
3088 }
dan1da40a32009-09-19 17:00:31 +00003089 }else{
3090 db->nDeferredCons = pSavepoint->nDeferredCons;
dancb3e4b72013-07-03 19:53:05 +00003091 db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
danielk1977fd7f0452008-12-17 17:30:26 +00003092 }
dand9495cd2011-04-27 12:08:04 +00003093
danea8562e2015-04-18 16:25:54 +00003094 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
dand9495cd2011-04-27 12:08:04 +00003095 rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
3096 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3097 }
danielk1977fd7f0452008-12-17 17:30:26 +00003098 }
3099 }
drh9467abf2016-02-17 18:44:11 +00003100 if( rc ) goto abort_due_to_error;
danielk1977fd7f0452008-12-17 17:30:26 +00003101
3102 break;
3103}
3104
drh98757152008-01-09 23:04:12 +00003105/* Opcode: AutoCommit P1 P2 * * *
danielk19771d850a72004-05-31 08:26:49 +00003106**
3107** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
danielk197746c43ed2004-06-30 06:30:25 +00003108** back any currently active btree transactions. If there are any active
drhc25eabe2009-02-24 18:57:31 +00003109** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
3110** there are active writing VMs or active VMs that use shared cache.
drh92f02c32004-09-02 14:57:08 +00003111**
3112** This instruction causes the VM to halt.
danielk19771d850a72004-05-31 08:26:49 +00003113*/
drh9cbf3422008-01-17 16:22:13 +00003114case OP_AutoCommit: {
drh856c1032009-06-02 15:21:42 +00003115 int desiredAutoCommit;
shane68c02732009-06-09 18:14:18 +00003116 int iRollback;
danielk19771d850a72004-05-31 08:26:49 +00003117
drh856c1032009-06-02 15:21:42 +00003118 desiredAutoCommit = pOp->p1;
shane68c02732009-06-09 18:14:18 +00003119 iRollback = pOp->p2;
drhad4a4b82008-11-05 16:37:34 +00003120 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
shane68c02732009-06-09 18:14:18 +00003121 assert( desiredAutoCommit==1 || iRollback==0 );
drh4f7d3a52013-06-27 23:54:02 +00003122 assert( db->nVdbeActive>0 ); /* At least this one VM is active */
danc0537fe2013-06-28 19:41:43 +00003123 assert( p->bIsReader );
danielk197746c43ed2004-06-30 06:30:25 +00003124
drhb0c88652016-02-01 13:21:13 +00003125 if( desiredAutoCommit!=db->autoCommit ){
shane68c02732009-06-09 18:14:18 +00003126 if( iRollback ){
drhad4a4b82008-11-05 16:37:34 +00003127 assert( desiredAutoCommit==1 );
drh21021a52012-02-13 17:01:51 +00003128 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
danielk1977f3f06bb2005-12-16 15:24:28 +00003129 db->autoCommit = 1;
drhb0c88652016-02-01 13:21:13 +00003130 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
3131 /* If this instruction implements a COMMIT and other VMs are writing
3132 ** return an error indicating that the other VMs must complete first.
3133 */
3134 sqlite3VdbeError(p, "cannot commit transaction - "
3135 "SQL statements in progress");
3136 rc = SQLITE_BUSY;
drh9467abf2016-02-17 18:44:11 +00003137 goto abort_due_to_error;
dan32b09f22009-09-23 17:29:59 +00003138 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
dan1da40a32009-09-19 17:00:31 +00003139 goto vdbe_return;
danielk1977f3f06bb2005-12-16 15:24:28 +00003140 }else{
shane7d3846a2008-12-11 02:58:26 +00003141 db->autoCommit = (u8)desiredAutoCommit;
drh8ff25872015-07-31 18:59:56 +00003142 }
3143 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3144 p->pc = (int)(pOp - aOp);
3145 db->autoCommit = (u8)(1-desiredAutoCommit);
3146 p->rc = rc = SQLITE_BUSY;
3147 goto vdbe_return;
danielk19771d850a72004-05-31 08:26:49 +00003148 }
danielk1977bd434552009-03-18 10:33:00 +00003149 assert( db->nStatement==0 );
danielk1977fd7f0452008-12-17 17:30:26 +00003150 sqlite3CloseSavepoints(db);
drh83968c42007-04-18 16:45:24 +00003151 if( p->rc==SQLITE_OK ){
drh900b31e2007-08-28 02:27:51 +00003152 rc = SQLITE_DONE;
drh83968c42007-04-18 16:45:24 +00003153 }else{
drh900b31e2007-08-28 02:27:51 +00003154 rc = SQLITE_ERROR;
drh83968c42007-04-18 16:45:24 +00003155 }
drh900b31e2007-08-28 02:27:51 +00003156 goto vdbe_return;
danielk19771d850a72004-05-31 08:26:49 +00003157 }else{
drh22c17b82015-05-15 04:13:15 +00003158 sqlite3VdbeError(p,
drhad4a4b82008-11-05 16:37:34 +00003159 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
shane68c02732009-06-09 18:14:18 +00003160 (iRollback)?"cannot rollback - no transaction is active":
drhf089aa42008-07-08 19:34:06 +00003161 "cannot commit - no transaction is active"));
danielk19771d850a72004-05-31 08:26:49 +00003162
3163 rc = SQLITE_ERROR;
drh9467abf2016-02-17 18:44:11 +00003164 goto abort_due_to_error;
drh663fc632002-02-02 18:49:19 +00003165 }
3166 break;
3167}
3168
drhb22f7c82014-02-06 23:56:27 +00003169/* Opcode: Transaction P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00003170**
drh05a86c52014-02-16 01:55:49 +00003171** Begin a transaction on database P1 if a transaction is not already
3172** active.
3173** If P2 is non-zero, then a write-transaction is started, or if a
3174** read-transaction is already active, it is upgraded to a write-transaction.
3175** If P2 is zero, then a read-transaction is started.
drh5e00f6c2001-09-13 13:46:56 +00003176**
drh001bbcb2003-03-19 03:14:00 +00003177** P1 is the index of the database file on which the transaction is
3178** started. Index 0 is the main database file and index 1 is the
drh60a713c2008-01-21 16:22:45 +00003179** file used for temporary tables. Indices of 2 or more are used for
3180** attached databases.
drhcabb0812002-09-14 13:47:32 +00003181**
dane0af83a2009-09-08 19:15:01 +00003182** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3183** true (this flag is set if the Vdbe may modify more than one row and may
3184** throw an ABORT exception), a statement transaction may also be opened.
3185** More specifically, a statement transaction is opened iff the database
3186** connection is currently not in autocommit mode, or if there are other
drha4510172012-02-02 15:50:17 +00003187** active statements. A statement transaction allows the changes made by this
dane0af83a2009-09-08 19:15:01 +00003188** VDBE to be rolled back after an error without having to roll back the
3189** entire transaction. If no error is encountered, the statement transaction
3190** will automatically commit when the VDBE halts.
3191**
drhb22f7c82014-02-06 23:56:27 +00003192** If P5!=0 then this opcode also checks the schema cookie against P3
3193** and the schema generation counter against P4.
3194** The cookie changes its value whenever the database schema changes.
3195** This operation is used to detect when that the cookie has changed
drh05a86c52014-02-16 01:55:49 +00003196** and that the current process needs to reread the schema. If the schema
3197** cookie in P3 differs from the schema cookie in the database header or
3198** if the schema generation counter in P4 differs from the current
3199** generation counter, then an SQLITE_SCHEMA error is raised and execution
3200** halts. The sqlite3_step() wrapper function might then reprepare the
3201** statement and rerun it from the beginning.
drh5e00f6c2001-09-13 13:46:56 +00003202*/
drh9cbf3422008-01-17 16:22:13 +00003203case OP_Transaction: {
danielk19771d850a72004-05-31 08:26:49 +00003204 Btree *pBt;
drhb22f7c82014-02-06 23:56:27 +00003205 int iMeta;
3206 int iGen;
danielk19771d850a72004-05-31 08:26:49 +00003207
drh1713afb2013-06-28 01:24:57 +00003208 assert( p->bIsReader );
drh9e92a472013-06-27 17:40:30 +00003209 assert( p->readOnly==0 || pOp->p2==0 );
drh653b82a2009-06-22 11:10:47 +00003210 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003211 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh13447bf2013-07-10 13:33:49 +00003212 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3213 rc = SQLITE_READONLY;
3214 goto abort_due_to_error;
3215 }
drh653b82a2009-06-22 11:10:47 +00003216 pBt = db->aDb[pOp->p1].pBt;
danielk19771d850a72004-05-31 08:26:49 +00003217
danielk197724162fe2004-06-04 06:22:00 +00003218 if( pBt ){
danielk197740b38dc2004-06-26 08:38:24 +00003219 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
drhcbd8db32015-08-20 17:18:32 +00003220 testcase( rc==SQLITE_BUSY_SNAPSHOT );
3221 testcase( rc==SQLITE_BUSY_RECOVERY );
drh9e9f1bd2009-10-13 15:36:51 +00003222 if( rc!=SQLITE_OK ){
drhfadd2b12016-09-19 23:39:34 +00003223 if( (rc&0xff)==SQLITE_BUSY ){
3224 p->pc = (int)(pOp - aOp);
3225 p->rc = rc;
3226 goto vdbe_return;
3227 }
danielk197724162fe2004-06-04 06:22:00 +00003228 goto abort_due_to_error;
drh90bfcda2001-09-23 19:46:51 +00003229 }
dane0af83a2009-09-08 19:15:01 +00003230
3231 if( pOp->p2 && p->usesStmtJournal
danc0537fe2013-06-28 19:41:43 +00003232 && (db->autoCommit==0 || db->nVdbeRead>1)
dane0af83a2009-09-08 19:15:01 +00003233 ){
3234 assert( sqlite3BtreeIsInTrans(pBt) );
3235 if( p->iStatement==0 ){
3236 assert( db->nStatement>=0 && db->nSavepoint>=0 );
3237 db->nStatement++;
3238 p->iStatement = db->nSavepoint + db->nStatement;
3239 }
dana311b802011-04-26 19:21:34 +00003240
drh346506f2011-05-25 01:16:42 +00003241 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
dana311b802011-04-26 19:21:34 +00003242 if( rc==SQLITE_OK ){
3243 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3244 }
dan1da40a32009-09-19 17:00:31 +00003245
3246 /* Store the current value of the database handles deferred constraint
3247 ** counter. If the statement transaction needs to be rolled back,
3248 ** the value of this counter needs to be restored too. */
3249 p->nStmtDefCons = db->nDeferredCons;
dancb3e4b72013-07-03 19:53:05 +00003250 p->nStmtDefImmCons = db->nDeferredImmCons;
dane0af83a2009-09-08 19:15:01 +00003251 }
drhb22f7c82014-02-06 23:56:27 +00003252
drh51a74d42015-02-28 01:04:27 +00003253 /* Gather the schema version number for checking:
drh96fdcb42016-09-27 00:09:33 +00003254 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
3255 ** version is checked to ensure that the schema has not changed since the
3256 ** SQL statement was prepared.
drh51a74d42015-02-28 01:04:27 +00003257 */
drhb22f7c82014-02-06 23:56:27 +00003258 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
3259 iGen = db->aDb[pOp->p1].pSchema->iGeneration;
3260 }else{
3261 iGen = iMeta = 0;
3262 }
3263 assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3264 if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
3265 sqlite3DbFree(db, p->zErrMsg);
3266 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3267 /* If the schema-cookie from the database file matches the cookie
3268 ** stored with the in-memory representation of the schema, do
3269 ** not reload the schema from the database file.
3270 **
3271 ** If virtual-tables are in use, this is not just an optimization.
3272 ** Often, v-tables store their data in other SQLite tables, which
3273 ** are queried from within xNext() and other v-table methods using
3274 ** prepared queries. If such a query is out-of-date, we do not want to
3275 ** discard the database schema, as the user code implementing the
3276 ** v-table would have to be ready for the sqlite3_vtab structure itself
3277 ** to be invalidated whenever sqlite3_step() is called from within
3278 ** a v-table method.
3279 */
3280 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3281 sqlite3ResetOneSchema(db, pOp->p1);
3282 }
3283 p->expired = 1;
3284 rc = SQLITE_SCHEMA;
drhb86ccfb2003-01-28 23:13:10 +00003285 }
drh9467abf2016-02-17 18:44:11 +00003286 if( rc ) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00003287 break;
3288}
3289
drhb1fdb2a2008-01-05 04:06:03 +00003290/* Opcode: ReadCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003291**
drh9cbf3422008-01-17 16:22:13 +00003292** Read cookie number P3 from database P1 and write it into register P2.
danielk19770d19f7a2009-06-03 11:25:07 +00003293** P3==1 is the schema version. P3==2 is the database format.
3294** P3==3 is the recommended pager cache size, and so forth. P1==0 is
drh001bbcb2003-03-19 03:14:00 +00003295** the main database file and P1==1 is the database file used to store
3296** temporary tables.
drh4a324312001-12-21 14:30:42 +00003297**
drh50e5dad2001-09-15 00:57:28 +00003298** There must be a read-lock on the database (either a transaction
drhb19a2bc2001-09-16 00:13:26 +00003299** must be started or there must be an open cursor) before
drh50e5dad2001-09-15 00:57:28 +00003300** executing this instruction.
3301*/
drh27a348c2015-04-13 19:14:06 +00003302case OP_ReadCookie: { /* out2 */
drhf328bc82004-05-10 23:29:49 +00003303 int iMeta;
drh856c1032009-06-02 15:21:42 +00003304 int iDb;
3305 int iCookie;
danielk1977180b56a2007-06-24 08:00:42 +00003306
drh1713afb2013-06-28 01:24:57 +00003307 assert( p->bIsReader );
drh856c1032009-06-02 15:21:42 +00003308 iDb = pOp->p1;
3309 iCookie = pOp->p3;
drhb7654112008-01-12 12:48:07 +00003310 assert( pOp->p3<SQLITE_N_BTREE_META );
danielk1977180b56a2007-06-24 08:00:42 +00003311 assert( iDb>=0 && iDb<db->nDb );
3312 assert( db->aDb[iDb].pBt!=0 );
drha7ab6d82014-07-21 15:44:39 +00003313 assert( DbMaskTest(p->btreeMask, iDb) );
danielk19770d19f7a2009-06-03 11:25:07 +00003314
danielk1977602b4662009-07-02 07:47:33 +00003315 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
drh27a348c2015-04-13 19:14:06 +00003316 pOut = out2Prerelease(p, pOp);
drh4c583122008-01-04 22:01:03 +00003317 pOut->u.i = iMeta;
drh50e5dad2001-09-15 00:57:28 +00003318 break;
3319}
3320
drh98757152008-01-09 23:04:12 +00003321/* Opcode: SetCookie P1 P2 P3 * *
drh50e5dad2001-09-15 00:57:28 +00003322**
drh1861afc2016-02-01 21:48:34 +00003323** Write the integer value P3 into cookie number P2 of database P1.
3324** P2==1 is the schema version. P2==2 is the database format.
3325** P2==3 is the recommended pager cache
danielk19770d19f7a2009-06-03 11:25:07 +00003326** size, and so forth. P1==0 is the main database file and P1==1 is the
3327** database file used to store temporary tables.
drh50e5dad2001-09-15 00:57:28 +00003328**
3329** A transaction must be started before executing this opcode.
3330*/
drh1861afc2016-02-01 21:48:34 +00003331case OP_SetCookie: {
drh3f7d4e42004-07-24 14:35:58 +00003332 Db *pDb;
drh4031baf2018-05-28 17:31:20 +00003333
3334 sqlite3VdbeIncrWriteCounter(p, 0);
drh4a324312001-12-21 14:30:42 +00003335 assert( pOp->p2<SQLITE_N_BTREE_META );
drh001bbcb2003-03-19 03:14:00 +00003336 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003337 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00003338 assert( p->readOnly==0 );
drh3f7d4e42004-07-24 14:35:58 +00003339 pDb = &db->aDb[pOp->p1];
3340 assert( pDb->pBt!=0 );
drh21206082011-04-04 18:22:02 +00003341 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
drha3b321d2004-05-11 09:31:31 +00003342 /* See note about index shifting on OP_ReadCookie */
drh1861afc2016-02-01 21:48:34 +00003343 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
danielk19770d19f7a2009-06-03 11:25:07 +00003344 if( pOp->p2==BTREE_SCHEMA_VERSION ){
drh3f7d4e42004-07-24 14:35:58 +00003345 /* When the schema cookie changes, record the new cookie internally */
drh1861afc2016-02-01 21:48:34 +00003346 pDb->pSchema->schema_cookie = pOp->p3;
drh8257aa82017-07-26 19:59:13 +00003347 db->mDbFlags |= DBFLAG_SchemaChange;
danielk19770d19f7a2009-06-03 11:25:07 +00003348 }else if( pOp->p2==BTREE_FILE_FORMAT ){
drhd28bcb32005-12-21 14:43:11 +00003349 /* Record changes in the file format */
drh1861afc2016-02-01 21:48:34 +00003350 pDb->pSchema->file_format = pOp->p3;
drh3f7d4e42004-07-24 14:35:58 +00003351 }
drhfd426c62006-01-30 15:34:22 +00003352 if( pOp->p1==1 ){
3353 /* Invalidate all prepared statements whenever the TEMP database
3354 ** schema is changed. Ticket #1644 */
3355 sqlite3ExpirePreparedStatements(db);
danfa401de2009-10-16 14:55:03 +00003356 p->expired = 0;
drhfd426c62006-01-30 15:34:22 +00003357 }
drh9467abf2016-02-17 18:44:11 +00003358 if( rc ) goto abort_due_to_error;
drh50e5dad2001-09-15 00:57:28 +00003359 break;
3360}
3361
drh98757152008-01-09 23:04:12 +00003362/* Opcode: OpenRead P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00003363** Synopsis: root=P2 iDb=P3
drh5e00f6c2001-09-13 13:46:56 +00003364**
drhecdc7532001-09-23 02:35:53 +00003365** Open a read-only cursor for the database table whose root page is
danielk1977207872a2008-01-03 07:54:23 +00003366** P2 in a database file. The database file is determined by P3.
drh60a713c2008-01-21 16:22:45 +00003367** P3==0 means the main database, P3==1 means the database used for
3368** temporary tables, and P3>1 means used the corresponding attached
3369** database. Give the new cursor an identifier of P1. The P1
danielk1977207872a2008-01-03 07:54:23 +00003370** values need not be contiguous but all P1 values should be small integers.
3371** It is an error for P1 to be negative.
drh5e00f6c2001-09-13 13:46:56 +00003372**
drh8e9deb62018-06-05 13:43:02 +00003373** Allowed P5 bits:
3374** <ul>
3375** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3376** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3377** of OP_SeekLE/OP_IdxGT)
3378** </ul>
drhb19a2bc2001-09-16 00:13:26 +00003379**
danielk1977d336e222009-02-20 10:58:41 +00003380** The P4 value may be either an integer (P4_INT32) or a pointer to
3381** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
drh8e9deb62018-06-05 13:43:02 +00003382** object, then table being opened must be an [index b-tree] where the
3383** KeyInfo object defines the content and collating
3384** sequence of that index b-tree. Otherwise, if P4 is an integer
3385** value, then the table being opened must be a [table b-tree] with a
3386** number of columns no less than the value of P4.
drhf57b3392001-10-08 13:22:32 +00003387**
drh35263192014-07-22 20:02:19 +00003388** See also: OpenWrite, ReopenIdx
3389*/
3390/* Opcode: ReopenIdx P1 P2 P3 P4 P5
3391** Synopsis: root=P2 iDb=P3
3392**
drh8e9deb62018-06-05 13:43:02 +00003393** The ReopenIdx opcode works like OP_OpenRead except that it first
3394** checks to see if the cursor on P1 is already open on the same
3395** b-tree and if it is this opcode becomes a no-op. In other words,
drh35263192014-07-22 20:02:19 +00003396** if the cursor is already open, do not reopen it.
3397**
drh8e9deb62018-06-05 13:43:02 +00003398** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
3399** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must
3400** be the same as every other ReopenIdx or OpenRead for the same cursor
3401** number.
drh35263192014-07-22 20:02:19 +00003402**
drh8e9deb62018-06-05 13:43:02 +00003403** Allowed P5 bits:
3404** <ul>
3405** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3406** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3407** of OP_SeekLE/OP_IdxGT)
3408** </ul>
3409**
3410** See also: OP_OpenRead, OP_OpenWrite
drh5e00f6c2001-09-13 13:46:56 +00003411*/
drh98757152008-01-09 23:04:12 +00003412/* Opcode: OpenWrite P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00003413** Synopsis: root=P2 iDb=P3
drhecdc7532001-09-23 02:35:53 +00003414**
3415** Open a read/write cursor named P1 on the table or index whose root
drh8e9deb62018-06-05 13:43:02 +00003416** page is P2 (or whose root page is held in register P2 if the
3417** OPFLAG_P2ISREG bit is set in P5 - see below).
drhecdc7532001-09-23 02:35:53 +00003418**
danielk1977d336e222009-02-20 10:58:41 +00003419** The P4 value may be either an integer (P4_INT32) or a pointer to
3420** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
drh8e9deb62018-06-05 13:43:02 +00003421** object, then table being opened must be an [index b-tree] where the
3422** KeyInfo object defines the content and collating
3423** sequence of that index b-tree. Otherwise, if P4 is an integer
3424** value, then the table being opened must be a [table b-tree] with a
3425** number of columns no less than the value of P4.
jplyon5a564222003-06-02 06:15:58 +00003426**
drh8e9deb62018-06-05 13:43:02 +00003427** Allowed P5 bits:
3428** <ul>
3429** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
3430** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
3431** of OP_SeekLE/OP_IdxGT)
3432** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
3433** and subsequently delete entries in an index btree. This is a
3434** hint to the storage engine that the storage engine is allowed to
3435** ignore. The hint is not used by the official SQLite b*tree storage
3436** engine, but is used by COMDB2.
3437** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
3438** as the root page, not the value of P2 itself.
3439** </ul>
drhf57b3392001-10-08 13:22:32 +00003440**
drh8e9deb62018-06-05 13:43:02 +00003441** This instruction works like OpenRead except that it opens the cursor
3442** in read/write mode.
3443**
3444** See also: OP_OpenRead, OP_ReopenIdx
drhecdc7532001-09-23 02:35:53 +00003445*/
drh35263192014-07-22 20:02:19 +00003446case OP_ReopenIdx: {
drh856c1032009-06-02 15:21:42 +00003447 int nField;
3448 KeyInfo *pKeyInfo;
drh856c1032009-06-02 15:21:42 +00003449 int p2;
3450 int iDb;
drhf57b3392001-10-08 13:22:32 +00003451 int wrFlag;
3452 Btree *pX;
drhdfe88ec2008-11-03 20:55:06 +00003453 VdbeCursor *pCur;
drhd946db02005-12-29 19:23:06 +00003454 Db *pDb;
drh856c1032009-06-02 15:21:42 +00003455
drhe0997b32015-03-20 14:57:50 +00003456 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
drh35263192014-07-22 20:02:19 +00003457 assert( pOp->p4type==P4_KEYINFO );
3458 pCur = p->apCsr[pOp->p1];
drhe8f2c9d2014-08-06 17:49:13 +00003459 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
drh35263192014-07-22 20:02:19 +00003460 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */
drhe0997b32015-03-20 14:57:50 +00003461 goto open_cursor_set_hints;
drh35263192014-07-22 20:02:19 +00003462 }
3463 /* If the cursor is not currently open or is open on a different
3464 ** index, then fall through into OP_OpenRead to force a reopen */
drh5e00f6c2001-09-13 13:46:56 +00003465case OP_OpenRead:
drh1fa509a2015-03-20 16:34:49 +00003466case OP_OpenWrite:
drh856c1032009-06-02 15:21:42 +00003467
drhe0997b32015-03-20 14:57:50 +00003468 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
drh1713afb2013-06-28 01:24:57 +00003469 assert( p->bIsReader );
drh35263192014-07-22 20:02:19 +00003470 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3471 || p->readOnly==0 );
dan428c2182012-08-06 18:50:11 +00003472
danfa401de2009-10-16 14:55:03 +00003473 if( p->expired ){
drh47b7fc72014-11-11 01:33:57 +00003474 rc = SQLITE_ABORT_ROLLBACK;
drh9467abf2016-02-17 18:44:11 +00003475 goto abort_due_to_error;
danfa401de2009-10-16 14:55:03 +00003476 }
3477
drh856c1032009-06-02 15:21:42 +00003478 nField = 0;
3479 pKeyInfo = 0;
drh856c1032009-06-02 15:21:42 +00003480 p2 = pOp->p2;
3481 iDb = pOp->p3;
drh6810ce62004-01-31 19:22:56 +00003482 assert( iDb>=0 && iDb<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00003483 assert( DbMaskTest(p->btreeMask, iDb) );
drhd946db02005-12-29 19:23:06 +00003484 pDb = &db->aDb[iDb];
3485 pX = pDb->pBt;
drh6810ce62004-01-31 19:22:56 +00003486 assert( pX!=0 );
drhd946db02005-12-29 19:23:06 +00003487 if( pOp->opcode==OP_OpenWrite ){
danfd261ec2015-10-22 20:54:33 +00003488 assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
3489 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
drh21206082011-04-04 18:22:02 +00003490 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
danielk1977da184232006-01-05 11:34:32 +00003491 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3492 p->minWriteFileFormat = pDb->pSchema->file_format;
drhd946db02005-12-29 19:23:06 +00003493 }
3494 }else{
3495 wrFlag = 0;
3496 }
dan428c2182012-08-06 18:50:11 +00003497 if( pOp->p5 & OPFLAG_P2ISREG ){
drh9cbf3422008-01-17 16:22:13 +00003498 assert( p2>0 );
drh9f6168b2016-03-19 23:32:58 +00003499 assert( p2<=(p->nMem+1 - p->nCursor) );
drh8e9deb62018-06-05 13:43:02 +00003500 assert( pOp->opcode==OP_OpenWrite );
drha6c2ed92009-11-14 23:22:23 +00003501 pIn2 = &aMem[p2];
drh2b4ded92010-09-27 21:09:31 +00003502 assert( memIsValid(pIn2) );
3503 assert( (pIn2->flags & MEM_Int)!=0 );
drh9cbf3422008-01-17 16:22:13 +00003504 sqlite3VdbeMemIntegerify(pIn2);
drh9c1905f2008-12-10 22:32:56 +00003505 p2 = (int)pIn2->u.i;
drh0f3f7662017-08-18 14:34:28 +00003506 /* The p2 value always comes from a prior OP_CreateBtree opcode and
drh9a65f2c2009-06-22 19:05:40 +00003507 ** that opcode will always set the p2 value to 2 or more or else fail.
3508 ** If there were a failure, the prepared statement would have halted
3509 ** before reaching this instruction. */
drh9467abf2016-02-17 18:44:11 +00003510 assert( p2>=2 );
drh5edc3122001-09-13 21:53:09 +00003511 }
danielk1977d336e222009-02-20 10:58:41 +00003512 if( pOp->p4type==P4_KEYINFO ){
3513 pKeyInfo = pOp->p4.pKeyInfo;
drh41e13e12013-11-07 14:09:39 +00003514 assert( pKeyInfo->enc==ENC(db) );
3515 assert( pKeyInfo->db==db );
drha485ad12017-08-02 22:43:14 +00003516 nField = pKeyInfo->nAllField;
danielk1977d336e222009-02-20 10:58:41 +00003517 }else if( pOp->p4type==P4_INT32 ){
3518 nField = pOp->p4.i;
3519 }
drh653b82a2009-06-22 11:10:47 +00003520 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003521 assert( nField>=0 );
3522 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
drhc960dcb2015-11-20 19:22:01 +00003523 pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE);
drh4774b132004-06-12 20:12:51 +00003524 if( pCur==0 ) goto no_mem;
drhf328bc82004-05-10 23:29:49 +00003525 pCur->nullRow = 1;
drhd4187c72010-08-30 22:15:45 +00003526 pCur->isOrdered = 1;
drh35263192014-07-22 20:02:19 +00003527 pCur->pgnoRoot = p2;
drhb89aeb62016-01-27 15:49:32 +00003528#ifdef SQLITE_DEBUG
3529 pCur->wrFlag = wrFlag;
3530#endif
drhc960dcb2015-11-20 19:22:01 +00003531 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
danielk1977d336e222009-02-20 10:58:41 +00003532 pCur->pKeyInfo = pKeyInfo;
drh14da87f2013-11-20 21:51:33 +00003533 /* Set the VdbeCursor.isTable variable. Previous versions of
danielk1977172114a2009-07-07 15:47:12 +00003534 ** SQLite used to check if the root-page flags were sane at this point
3535 ** and report database corruption if they were not, but this check has
3536 ** since moved into the btree layer. */
3537 pCur->isTable = pOp->p4type!=P4_KEYINFO;
drhe0997b32015-03-20 14:57:50 +00003538
3539open_cursor_set_hints:
3540 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3541 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
drh0403cb32015-08-14 23:57:04 +00003542 testcase( pOp->p5 & OPFLAG_BULKCSR );
drh9abe8412016-01-02 05:00:31 +00003543#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh0403cb32015-08-14 23:57:04 +00003544 testcase( pOp->p2 & OPFLAG_SEEKEQ );
3545#endif
drhc960dcb2015-11-20 19:22:01 +00003546 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
drhf7854c72015-10-27 13:24:37 +00003547 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
drh9467abf2016-02-17 18:44:11 +00003548 if( rc ) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00003549 break;
3550}
3551
drhe08e8d62017-05-01 15:15:41 +00003552/* Opcode: OpenDup P1 P2 * * *
3553**
3554** Open a new cursor P1 that points to the same ephemeral table as
3555** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral
3556** opcode. Only ephemeral cursors may be duplicated.
3557**
3558** Duplicate ephemeral cursors are used for self-joins of materialized views.
3559*/
3560case OP_OpenDup: {
3561 VdbeCursor *pOrig; /* The original cursor to be duplicated */
3562 VdbeCursor *pCx; /* The new cursor */
3563
3564 pOrig = p->apCsr[pOp->p2];
3565 assert( pOrig->pBtx!=0 ); /* Only ephemeral cursors can be duplicated */
3566
3567 pCx = allocateCursor(p, pOp->p1, pOrig->nField, -1, CURTYPE_BTREE);
3568 if( pCx==0 ) goto no_mem;
3569 pCx->nullRow = 1;
3570 pCx->isEphemeral = 1;
3571 pCx->pKeyInfo = pOrig->pKeyInfo;
3572 pCx->isTable = pOrig->isTable;
3573 rc = sqlite3BtreeCursor(pOrig->pBtx, MASTER_ROOT, BTREE_WRCSR,
3574 pCx->pKeyInfo, pCx->uc.pCursor);
drh3f4df4c2017-05-02 17:54:19 +00003575 /* The sqlite3BtreeCursor() routine can only fail for the first cursor
3576 ** opened for a database. Since there is already an open cursor when this
3577 ** opcode is run, the sqlite3BtreeCursor() cannot fail */
3578 assert( rc==SQLITE_OK );
drhe08e8d62017-05-01 15:15:41 +00003579 break;
3580}
3581
3582
drh2a5d9902011-08-26 00:34:45 +00003583/* Opcode: OpenEphemeral P1 P2 * P4 P5
drh81316f82013-10-29 20:40:47 +00003584** Synopsis: nColumn=P2
drh5e00f6c2001-09-13 13:46:56 +00003585**
drhb9bb7c12006-06-11 23:41:55 +00003586** Open a new cursor P1 to a transient table.
drh9170dd72005-07-08 17:13:46 +00003587** The cursor is always opened read/write even if
drh25d3adb2010-04-05 15:11:08 +00003588** the main database is read-only. The ephemeral
drh9170dd72005-07-08 17:13:46 +00003589** table is deleted automatically when the cursor is closed.
drhc6b52df2002-01-04 03:09:29 +00003590**
drh25d3adb2010-04-05 15:11:08 +00003591** P2 is the number of columns in the ephemeral table.
drh66a51672008-01-03 00:01:23 +00003592** The cursor points to a BTree table if P4==0 and to a BTree index
3593** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
drhd3d39e92004-05-20 22:16:29 +00003594** that defines the format of keys in the index.
drhb9bb7c12006-06-11 23:41:55 +00003595**
drh2a5d9902011-08-26 00:34:45 +00003596** The P5 parameter can be a mask of the BTREE_* flags defined
3597** in btree.h. These flags control aspects of the operation of
3598** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3599** added automatically.
drh5e00f6c2001-09-13 13:46:56 +00003600*/
drha21a64d2010-04-06 22:33:55 +00003601/* Opcode: OpenAutoindex P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00003602** Synopsis: nColumn=P2
drha21a64d2010-04-06 22:33:55 +00003603**
3604** This opcode works the same as OP_OpenEphemeral. It has a
3605** different name to distinguish its use. Tables created using
3606** by this opcode will be used for automatically created transient
3607** indices in joins.
3608*/
3609case OP_OpenAutoindex:
drh9cbf3422008-01-17 16:22:13 +00003610case OP_OpenEphemeral: {
drhdfe88ec2008-11-03 20:55:06 +00003611 VdbeCursor *pCx;
drh41e13e12013-11-07 14:09:39 +00003612 KeyInfo *pKeyInfo;
3613
drhd4187c72010-08-30 22:15:45 +00003614 static const int vfsFlags =
drh33f4e022007-09-03 15:19:34 +00003615 SQLITE_OPEN_READWRITE |
3616 SQLITE_OPEN_CREATE |
3617 SQLITE_OPEN_EXCLUSIVE |
3618 SQLITE_OPEN_DELETEONCLOSE |
3619 SQLITE_OPEN_TRANSIENT_DB;
drh653b82a2009-06-22 11:10:47 +00003620 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003621 assert( pOp->p2>=0 );
drhc960dcb2015-11-20 19:22:01 +00003622 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE);
drh4774b132004-06-12 20:12:51 +00003623 if( pCx==0 ) goto no_mem;
drh17f71932002-02-21 12:01:27 +00003624 pCx->nullRow = 1;
drh079a3072014-03-19 14:10:55 +00003625 pCx->isEphemeral = 1;
drhfbd8cbd2016-12-10 12:58:15 +00003626 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBtx,
drhd4187c72010-08-30 22:15:45 +00003627 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
drh5e00f6c2001-09-13 13:46:56 +00003628 if( rc==SQLITE_OK ){
drhfbd8cbd2016-12-10 12:58:15 +00003629 rc = sqlite3BtreeBeginTrans(pCx->pBtx, 1);
drh5e00f6c2001-09-13 13:46:56 +00003630 }
3631 if( rc==SQLITE_OK ){
danielk19774adee202004-05-08 08:23:19 +00003632 /* If a transient index is required, create it by calling
drhd4187c72010-08-30 22:15:45 +00003633 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
danielk19774adee202004-05-08 08:23:19 +00003634 ** opening it. If a transient table is required, just use the
drhd4187c72010-08-30 22:15:45 +00003635 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
danielk19774adee202004-05-08 08:23:19 +00003636 */
drhfbd8cbd2016-12-10 12:58:15 +00003637 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
drhc6b52df2002-01-04 03:09:29 +00003638 int pgno;
drh66a51672008-01-03 00:01:23 +00003639 assert( pOp->p4type==P4_KEYINFO );
drhfbd8cbd2016-12-10 12:58:15 +00003640 rc = sqlite3BtreeCreateTable(pCx->pBtx, &pgno, BTREE_BLOBKEY | pOp->p5);
drhc6b52df2002-01-04 03:09:29 +00003641 if( rc==SQLITE_OK ){
drhf328bc82004-05-10 23:29:49 +00003642 assert( pgno==MASTER_ROOT+1 );
drh41e13e12013-11-07 14:09:39 +00003643 assert( pKeyInfo->db==db );
3644 assert( pKeyInfo->enc==ENC(db) );
drhfbd8cbd2016-12-10 12:58:15 +00003645 rc = sqlite3BtreeCursor(pCx->pBtx, pgno, BTREE_WRCSR,
drh62aaa6c2015-11-21 17:27:42 +00003646 pKeyInfo, pCx->uc.pCursor);
drhc6b52df2002-01-04 03:09:29 +00003647 }
drhf0863fe2005-06-12 21:35:51 +00003648 pCx->isTable = 0;
drhc6b52df2002-01-04 03:09:29 +00003649 }else{
drhfbd8cbd2016-12-10 12:58:15 +00003650 rc = sqlite3BtreeCursor(pCx->pBtx, MASTER_ROOT, BTREE_WRCSR,
drh62aaa6c2015-11-21 17:27:42 +00003651 0, pCx->uc.pCursor);
drhf0863fe2005-06-12 21:35:51 +00003652 pCx->isTable = 1;
drhc6b52df2002-01-04 03:09:29 +00003653 }
drh5e00f6c2001-09-13 13:46:56 +00003654 }
drh9467abf2016-02-17 18:44:11 +00003655 if( rc ) goto abort_due_to_error;
drhd4187c72010-08-30 22:15:45 +00003656 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
dan5134d132011-09-02 10:31:11 +00003657 break;
3658}
3659
danfad9f9a2014-04-01 18:41:51 +00003660/* Opcode: SorterOpen P1 P2 P3 P4 *
dan5134d132011-09-02 10:31:11 +00003661**
3662** This opcode works like OP_OpenEphemeral except that it opens
3663** a transient index that is specifically designed to sort large
3664** tables using an external merge-sort algorithm.
danfad9f9a2014-04-01 18:41:51 +00003665**
3666** If argument P3 is non-zero, then it indicates that the sorter may
3667** assume that a stable sort considering the first P3 fields of each
3668** key is sufficient to produce the required results.
dan5134d132011-09-02 10:31:11 +00003669*/
drhca892a72011-09-03 00:17:51 +00003670case OP_SorterOpen: {
dan5134d132011-09-02 10:31:11 +00003671 VdbeCursor *pCx;
drh3a949872012-09-18 13:20:13 +00003672
drh399af1d2013-11-20 17:25:55 +00003673 assert( pOp->p1>=0 );
3674 assert( pOp->p2>=0 );
drhc960dcb2015-11-20 19:22:01 +00003675 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER);
dan5134d132011-09-02 10:31:11 +00003676 if( pCx==0 ) goto no_mem;
3677 pCx->pKeyInfo = pOp->p4.pKeyInfo;
drh41e13e12013-11-07 14:09:39 +00003678 assert( pCx->pKeyInfo->db==db );
3679 assert( pCx->pKeyInfo->enc==ENC(db) );
danfad9f9a2014-04-01 18:41:51 +00003680 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
drh9467abf2016-02-17 18:44:11 +00003681 if( rc ) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00003682 break;
3683}
3684
dan78d58432014-03-25 15:04:07 +00003685/* Opcode: SequenceTest P1 P2 * * *
3686** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3687**
3688** P1 is a sorter cursor. If the sequence counter is currently zero, jump
3689** to P2. Regardless of whether or not the jump is taken, increment the
3690** the sequence value.
3691*/
3692case OP_SequenceTest: {
3693 VdbeCursor *pC;
3694 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3695 pC = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00003696 assert( isSorter(pC) );
dan78d58432014-03-25 15:04:07 +00003697 if( (pC->seqCount++)==0 ){
drhf56fa462015-04-13 21:39:54 +00003698 goto jump_to_p2;
dan78d58432014-03-25 15:04:07 +00003699 }
drh5e00f6c2001-09-13 13:46:56 +00003700 break;
3701}
3702
drh5f612292014-02-08 23:20:32 +00003703/* Opcode: OpenPseudo P1 P2 P3 * *
drh60830e32014-02-10 15:56:34 +00003704** Synopsis: P3 columns in r[P2]
drh70ce3f02003-04-15 19:22:22 +00003705**
3706** Open a new cursor that points to a fake table that contains a single
drh5f612292014-02-08 23:20:32 +00003707** row of data. The content of that one row is the content of memory
3708** register P2. In other words, cursor P1 becomes an alias for the
3709** MEM_Blob content contained in register P2.
drh70ce3f02003-04-15 19:22:22 +00003710**
drh2d8d7ce2010-02-15 15:17:05 +00003711** A pseudo-table created by this opcode is used to hold a single
drhcdd536f2006-03-17 00:04:03 +00003712** row output from the sorter so that the row can be decomposed into
drh3e9ca092009-09-08 01:14:48 +00003713** individual columns using the OP_Column opcode. The OP_Column opcode
3714** is the only cursor opcode that works with a pseudo-table.
danielk1977d336e222009-02-20 10:58:41 +00003715**
3716** P3 is the number of fields in the records that will be stored by
3717** the pseudo-table.
drh70ce3f02003-04-15 19:22:22 +00003718*/
drh9cbf3422008-01-17 16:22:13 +00003719case OP_OpenPseudo: {
drhdfe88ec2008-11-03 20:55:06 +00003720 VdbeCursor *pCx;
drh856c1032009-06-02 15:21:42 +00003721
drh653b82a2009-06-22 11:10:47 +00003722 assert( pOp->p1>=0 );
drh399af1d2013-11-20 17:25:55 +00003723 assert( pOp->p3>=0 );
drhc960dcb2015-11-20 19:22:01 +00003724 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO);
drh4774b132004-06-12 20:12:51 +00003725 if( pCx==0 ) goto no_mem;
drh70ce3f02003-04-15 19:22:22 +00003726 pCx->nullRow = 1;
drhfe0cf7a2017-08-16 19:20:20 +00003727 pCx->seekResult = pOp->p2;
drhf0863fe2005-06-12 21:35:51 +00003728 pCx->isTable = 1;
drhfe0cf7a2017-08-16 19:20:20 +00003729 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
3730 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test
3731 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
3732 ** which is a performance optimization */
3733 pCx->uc.pCursor = sqlite3BtreeFakeValidCursor();
drh5f612292014-02-08 23:20:32 +00003734 assert( pOp->p5==0 );
drh70ce3f02003-04-15 19:22:22 +00003735 break;
3736}
3737
drh98757152008-01-09 23:04:12 +00003738/* Opcode: Close P1 * * * *
drh5e00f6c2001-09-13 13:46:56 +00003739**
3740** Close a cursor previously opened as P1. If P1 is not
3741** currently open, this instruction is a no-op.
3742*/
drh9cbf3422008-01-17 16:22:13 +00003743case OP_Close: {
drh653b82a2009-06-22 11:10:47 +00003744 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3745 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3746 p->apCsr[pOp->p1] = 0;
drh5e00f6c2001-09-13 13:46:56 +00003747 break;
3748}
3749
drh97bae792015-06-05 15:59:57 +00003750#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
3751/* Opcode: ColumnsUsed P1 * * P4 *
3752**
3753** This opcode (which only exists if SQLite was compiled with
3754** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
3755** table or index for cursor P1 are used. P4 is a 64-bit integer
3756** (P4_INT64) in which the first 63 bits are one for each of the
3757** first 63 columns of the table or index that are actually used
3758** by the cursor. The high-order bit is set if any column after
3759** the 64th is used.
3760*/
3761case OP_ColumnsUsed: {
3762 VdbeCursor *pC;
3763 pC = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00003764 assert( pC->eCurType==CURTYPE_BTREE );
drh97bae792015-06-05 15:59:57 +00003765 pC->maskUsed = *(u64*)pOp->p4.pI64;
3766 break;
3767}
3768#endif
3769
drh8af3f772014-07-25 18:01:06 +00003770/* Opcode: SeekGE P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003771** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00003772**
danielk1977b790c6c2008-04-18 10:25:24 +00003773** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003774** use the value in register P3 as the key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003775** to an SQL index, then P3 is the first in an array of P4 registers
3776** that are used as an unpacked index key.
3777**
3778** Reposition cursor P1 so that it points to the smallest entry that
3779** is greater than or equal to the key value. If there are no records
3780** greater than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003781**
drhb1d607d2015-11-05 22:30:54 +00003782** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3783** opcode will always land on a record that equally equals the key, or
3784** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this
3785** opcode must be followed by an IdxLE opcode with the same arguments.
3786** The IdxLE opcode will be skipped if this opcode succeeds, but the
3787** IdxLE opcode will be used on subsequent loop iterations.
3788**
drh8af3f772014-07-25 18:01:06 +00003789** This opcode leaves the cursor configured to move in forward order,
drhbc5cf382014-08-06 01:08:07 +00003790** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003791** configured to use Next, not Prev.
drh8af3f772014-07-25 18:01:06 +00003792**
drh935850e2014-05-24 17:15:15 +00003793** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003794*/
drh8af3f772014-07-25 18:01:06 +00003795/* Opcode: SeekGT P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003796** Synopsis: key=r[P3@P4]
drh7cf6e4d2004-05-19 14:56:55 +00003797**
danielk1977b790c6c2008-04-18 10:25:24 +00003798** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003799** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003800** to an SQL index, then P3 is the first in an array of P4 registers
3801** that are used as an unpacked index key.
3802**
3803** Reposition cursor P1 so that it points to the smallest entry that
3804** is greater than the key value. If there are no records greater than
3805** the key and P2 is not zero, then jump to P2.
drhb19a2bc2001-09-16 00:13:26 +00003806**
drh8af3f772014-07-25 18:01:06 +00003807** This opcode leaves the cursor configured to move in forward order,
drh4ed2fb92014-08-14 13:06:25 +00003808** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003809** configured to use Next, not Prev.
drh8af3f772014-07-25 18:01:06 +00003810**
drh935850e2014-05-24 17:15:15 +00003811** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
drh5e00f6c2001-09-13 13:46:56 +00003812*/
drh8af3f772014-07-25 18:01:06 +00003813/* Opcode: SeekLT P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003814** Synopsis: key=r[P3@P4]
drhc045ec52002-12-04 20:01:06 +00003815**
danielk1977b790c6c2008-04-18 10:25:24 +00003816** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003817** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003818** to an SQL index, then P3 is the first in an array of P4 registers
3819** that are used as an unpacked index key.
3820**
3821** Reposition cursor P1 so that it points to the largest entry that
3822** is less than the key value. If there are no records less than
3823** the key and P2 is not zero, then jump to P2.
drhc045ec52002-12-04 20:01:06 +00003824**
drh8af3f772014-07-25 18:01:06 +00003825** This opcode leaves the cursor configured to move in reverse order,
3826** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003827** configured to use Prev, not Next.
drh8af3f772014-07-25 18:01:06 +00003828**
drh935850e2014-05-24 17:15:15 +00003829** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
drh7cf6e4d2004-05-19 14:56:55 +00003830*/
drh8af3f772014-07-25 18:01:06 +00003831/* Opcode: SeekLE P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00003832** Synopsis: key=r[P3@P4]
danielk19773d1bfea2004-05-14 11:00:53 +00003833**
danielk1977b790c6c2008-04-18 10:25:24 +00003834** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
drh959403f2008-12-12 17:56:16 +00003835** use the value in register P3 as a key. If cursor P1 refers
danielk1977b790c6c2008-04-18 10:25:24 +00003836** to an SQL index, then P3 is the first in an array of P4 registers
3837** that are used as an unpacked index key.
danielk1977751de562008-04-18 09:01:15 +00003838**
danielk1977b790c6c2008-04-18 10:25:24 +00003839** Reposition cursor P1 so that it points to the largest entry that
3840** is less than or equal to the key value. If there are no records
3841** less than or equal to the key and P2 is not zero, then jump to P2.
drh7cf6e4d2004-05-19 14:56:55 +00003842**
drh8af3f772014-07-25 18:01:06 +00003843** This opcode leaves the cursor configured to move in reverse order,
3844** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00003845** configured to use Prev, not Next.
drh8af3f772014-07-25 18:01:06 +00003846**
drhb1d607d2015-11-05 22:30:54 +00003847** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3848** opcode will always land on a record that equally equals the key, or
3849** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this
3850** opcode must be followed by an IdxGE opcode with the same arguments.
3851** The IdxGE opcode will be skipped if this opcode succeeds, but the
3852** IdxGE opcode will be used on subsequent loop iterations.
3853**
drh935850e2014-05-24 17:15:15 +00003854** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
drhc045ec52002-12-04 20:01:06 +00003855*/
drh4a1d3652014-02-14 15:13:36 +00003856case OP_SeekLT: /* jump, in3 */
3857case OP_SeekLE: /* jump, in3 */
3858case OP_SeekGE: /* jump, in3 */
3859case OP_SeekGT: { /* jump, in3 */
drhb1d607d2015-11-05 22:30:54 +00003860 int res; /* Comparison result */
3861 int oc; /* Opcode */
3862 VdbeCursor *pC; /* The cursor to seek */
3863 UnpackedRecord r; /* The key to seek for */
3864 int nField; /* Number of columns or fields in the key */
3865 i64 iKey; /* The rowid we are to seek to */
drhd6b79462015-11-07 01:19:00 +00003866 int eqOnly; /* Only interested in == results */
drh80ff32f2001-11-04 18:32:46 +00003867
drh653b82a2009-06-22 11:10:47 +00003868 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh959403f2008-12-12 17:56:16 +00003869 assert( pOp->p2!=0 );
drh653b82a2009-06-22 11:10:47 +00003870 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00003871 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00003872 assert( pC->eCurType==CURTYPE_BTREE );
drh4a1d3652014-02-14 15:13:36 +00003873 assert( OP_SeekLE == OP_SeekLT+1 );
3874 assert( OP_SeekGE == OP_SeekLT+2 );
3875 assert( OP_SeekGT == OP_SeekLT+3 );
drhd4187c72010-08-30 22:15:45 +00003876 assert( pC->isOrdered );
drhc960dcb2015-11-20 19:22:01 +00003877 assert( pC->uc.pCursor!=0 );
drh3da046d2013-11-11 03:24:11 +00003878 oc = pOp->opcode;
drhd6b79462015-11-07 01:19:00 +00003879 eqOnly = 0;
drh3da046d2013-11-11 03:24:11 +00003880 pC->nullRow = 0;
drh8af3f772014-07-25 18:01:06 +00003881#ifdef SQLITE_DEBUG
3882 pC->seekOp = pOp->opcode;
3883#endif
drhe0997b32015-03-20 14:57:50 +00003884
drh3da046d2013-11-11 03:24:11 +00003885 if( pC->isTable ){
drhd6b79462015-11-07 01:19:00 +00003886 /* The BTREE_SEEK_EQ flag is only set on index cursors */
drh218c66e2016-12-27 12:35:36 +00003887 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
3888 || CORRUPT_DB );
drhd6b79462015-11-07 01:19:00 +00003889
drh3da046d2013-11-11 03:24:11 +00003890 /* The input value in P3 might be of any type: integer, real, string,
3891 ** blob, or NULL. But it needs to be an integer before we can do
peter.d.reid60ec9142014-09-06 16:39:46 +00003892 ** the seek, so convert it. */
drh3da046d2013-11-11 03:24:11 +00003893 pIn3 = &aMem[pOp->p3];
drh11a6eee2014-09-19 22:01:54 +00003894 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
drhbd9507c2014-08-23 17:21:37 +00003895 applyNumericAffinity(pIn3, 0);
3896 }
drh3da046d2013-11-11 03:24:11 +00003897 iKey = sqlite3VdbeIntValue(pIn3);
drh959403f2008-12-12 17:56:16 +00003898
drh3da046d2013-11-11 03:24:11 +00003899 /* If the P3 value could not be converted into an integer without
3900 ** loss of information, then special processing is required... */
3901 if( (pIn3->flags & MEM_Int)==0 ){
3902 if( (pIn3->flags & MEM_Real)==0 ){
3903 /* If the P3 value cannot be converted into any kind of a number,
3904 ** then the seek is not possible, so jump to P2 */
drhf56fa462015-04-13 21:39:54 +00003905 VdbeBranchTaken(1,2); goto jump_to_p2;
drh3da046d2013-11-11 03:24:11 +00003906 break;
3907 }
drh959403f2008-12-12 17:56:16 +00003908
danaa1776f2013-11-26 18:22:59 +00003909 /* If the approximation iKey is larger than the actual real search
3910 ** term, substitute >= for > and < for <=. e.g. if the search term
3911 ** is 4.9 and the integer approximation 5:
3912 **
3913 ** (x > 4.9) -> (x >= 5)
3914 ** (x <= 4.9) -> (x < 5)
3915 */
drh74eaba42014-09-18 17:52:15 +00003916 if( pIn3->u.r<(double)iKey ){
drh4a1d3652014-02-14 15:13:36 +00003917 assert( OP_SeekGE==(OP_SeekGT-1) );
3918 assert( OP_SeekLT==(OP_SeekLE-1) );
3919 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
3920 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
danaa1776f2013-11-26 18:22:59 +00003921 }
3922
3923 /* If the approximation iKey is smaller than the actual real search
3924 ** term, substitute <= for < and > for >=. */
drh74eaba42014-09-18 17:52:15 +00003925 else if( pIn3->u.r>(double)iKey ){
drh4a1d3652014-02-14 15:13:36 +00003926 assert( OP_SeekLE==(OP_SeekLT+1) );
3927 assert( OP_SeekGT==(OP_SeekGE+1) );
3928 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
3929 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
drh8721ce42001-11-07 14:22:00 +00003930 }
drh3da046d2013-11-11 03:24:11 +00003931 }
drhc960dcb2015-11-20 19:22:01 +00003932 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res);
drhb53a5a92014-10-12 22:37:22 +00003933 pC->movetoTarget = iKey; /* Used by OP_Delete */
drh3da046d2013-11-11 03:24:11 +00003934 if( rc!=SQLITE_OK ){
3935 goto abort_due_to_error;
drh1af3fdb2004-07-18 21:33:01 +00003936 }
drhaa736092009-06-22 00:55:30 +00003937 }else{
drhd6b79462015-11-07 01:19:00 +00003938 /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
3939 ** OP_SeekLE opcodes are allowed, and these must be immediately followed
3940 ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
3941 */
drhc960dcb2015-11-20 19:22:01 +00003942 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
drhd6b79462015-11-07 01:19:00 +00003943 eqOnly = 1;
3944 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
3945 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3946 assert( pOp[1].p1==pOp[0].p1 );
3947 assert( pOp[1].p2==pOp[0].p2 );
3948 assert( pOp[1].p3==pOp[0].p3 );
3949 assert( pOp[1].p4.i==pOp[0].p4.i );
3950 }
3951
drh3da046d2013-11-11 03:24:11 +00003952 nField = pOp->p4.i;
3953 assert( pOp->p4type==P4_INT32 );
3954 assert( nField>0 );
3955 r.pKeyInfo = pC->pKeyInfo;
3956 r.nField = (u16)nField;
3957
3958 /* The next line of code computes as follows, only faster:
drh4a1d3652014-02-14 15:13:36 +00003959 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
dan1fed5da2014-02-25 21:01:25 +00003960 ** r.default_rc = -1;
drh3da046d2013-11-11 03:24:11 +00003961 ** }else{
dan1fed5da2014-02-25 21:01:25 +00003962 ** r.default_rc = +1;
drh3da046d2013-11-11 03:24:11 +00003963 ** }
danielk1977f7b9d662008-06-23 18:49:43 +00003964 */
dan1fed5da2014-02-25 21:01:25 +00003965 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
3966 assert( oc!=OP_SeekGT || r.default_rc==-1 );
3967 assert( oc!=OP_SeekLE || r.default_rc==-1 );
3968 assert( oc!=OP_SeekGE || r.default_rc==+1 );
3969 assert( oc!=OP_SeekLT || r.default_rc==+1 );
drh3da046d2013-11-11 03:24:11 +00003970
3971 r.aMem = &aMem[pOp->p3];
3972#ifdef SQLITE_DEBUG
3973 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3974#endif
drh70528d72015-11-05 20:25:09 +00003975 r.eqSeen = 0;
drhc960dcb2015-11-20 19:22:01 +00003976 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res);
drh3da046d2013-11-11 03:24:11 +00003977 if( rc!=SQLITE_OK ){
3978 goto abort_due_to_error;
3979 }
drhb1d607d2015-11-05 22:30:54 +00003980 if( eqOnly && r.eqSeen==0 ){
3981 assert( res!=0 );
3982 goto seek_not_found;
drh70528d72015-11-05 20:25:09 +00003983 }
drh3da046d2013-11-11 03:24:11 +00003984 }
3985 pC->deferredMoveto = 0;
3986 pC->cacheStatus = CACHE_STALE;
3987#ifdef SQLITE_TEST
3988 sqlite3_search_count++;
3989#endif
drh4a1d3652014-02-14 15:13:36 +00003990 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT );
3991 if( res<0 || (res==0 && oc==OP_SeekGT) ){
drhe39a7322014-02-03 14:04:11 +00003992 res = 0;
drh2ab792e2017-05-30 18:34:07 +00003993 rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
3994 if( rc!=SQLITE_OK ){
3995 if( rc==SQLITE_DONE ){
3996 rc = SQLITE_OK;
3997 res = 1;
3998 }else{
3999 goto abort_due_to_error;
4000 }
4001 }
drh3da046d2013-11-11 03:24:11 +00004002 }else{
4003 res = 0;
4004 }
4005 }else{
drh4a1d3652014-02-14 15:13:36 +00004006 assert( oc==OP_SeekLT || oc==OP_SeekLE );
4007 if( res>0 || (res==0 && oc==OP_SeekLT) ){
drhe39a7322014-02-03 14:04:11 +00004008 res = 0;
drh2ab792e2017-05-30 18:34:07 +00004009 rc = sqlite3BtreePrevious(pC->uc.pCursor, 0);
4010 if( rc!=SQLITE_OK ){
4011 if( rc==SQLITE_DONE ){
4012 rc = SQLITE_OK;
4013 res = 1;
4014 }else{
4015 goto abort_due_to_error;
4016 }
4017 }
drh3da046d2013-11-11 03:24:11 +00004018 }else{
4019 /* res might be negative because the table is empty. Check to
4020 ** see if this is the case.
4021 */
drhc960dcb2015-11-20 19:22:01 +00004022 res = sqlite3BtreeEof(pC->uc.pCursor);
drh3da046d2013-11-11 03:24:11 +00004023 }
4024 }
drhb1d607d2015-11-05 22:30:54 +00004025seek_not_found:
drh3da046d2013-11-11 03:24:11 +00004026 assert( pOp->p2>0 );
drh688852a2014-02-17 22:40:43 +00004027 VdbeBranchTaken(res!=0,2);
drh3da046d2013-11-11 03:24:11 +00004028 if( res ){
drhf56fa462015-04-13 21:39:54 +00004029 goto jump_to_p2;
drhb1d607d2015-11-05 22:30:54 +00004030 }else if( eqOnly ){
4031 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4032 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
drh5e00f6c2001-09-13 13:46:56 +00004033 }
drh5e00f6c2001-09-13 13:46:56 +00004034 break;
4035}
dan71c57db2016-07-09 20:23:55 +00004036
drh8cff69d2009-11-12 19:59:44 +00004037/* Opcode: Found P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00004038** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00004039**
drh8cff69d2009-11-12 19:59:44 +00004040** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
4041** P4>0 then register P3 is the first of P4 registers that form an unpacked
4042** record.
4043**
4044** Cursor P1 is on an index btree. If the record identified by P3 and P4
4045** is a prefix of any entry in P1 then a jump is made to P2 and
drhe3365e62009-11-12 17:52:24 +00004046** P1 is left pointing at the matching entry.
drh6f225d02013-10-26 13:36:51 +00004047**
drhcefc87f2014-08-01 01:40:33 +00004048** This operation leaves the cursor in a state where it can be
4049** advanced in the forward direction. The Next instruction will work,
4050** but not the Prev instruction.
drh8af3f772014-07-25 18:01:06 +00004051**
drh6f225d02013-10-26 13:36:51 +00004052** See also: NotFound, NoConflict, NotExists. SeekGe
drh5e00f6c2001-09-13 13:46:56 +00004053*/
drh8cff69d2009-11-12 19:59:44 +00004054/* Opcode: NotFound P1 P2 P3 P4 *
drhf63552b2013-10-30 00:25:03 +00004055** Synopsis: key=r[P3@P4]
drh5e00f6c2001-09-13 13:46:56 +00004056**
drh8cff69d2009-11-12 19:59:44 +00004057** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
4058** P4>0 then register P3 is the first of P4 registers that form an unpacked
4059** record.
4060**
4061** Cursor P1 is on an index btree. If the record identified by P3 and P4
4062** is not the prefix of any entry in P1 then a jump is made to P2. If P1
4063** does contain an entry whose prefix matches the P3/P4 record then control
4064** falls through to the next instruction and P1 is left pointing at the
4065** matching entry.
drh5e00f6c2001-09-13 13:46:56 +00004066**
drh8af3f772014-07-25 18:01:06 +00004067** This operation leaves the cursor in a state where it cannot be
4068** advanced in either direction. In other words, the Next and Prev
4069** opcodes do not work after this operation.
4070**
drh6f225d02013-10-26 13:36:51 +00004071** See also: Found, NotExists, NoConflict
drh5e00f6c2001-09-13 13:46:56 +00004072*/
drh6f225d02013-10-26 13:36:51 +00004073/* Opcode: NoConflict P1 P2 P3 P4 *
drh4af5bee2013-10-30 02:37:50 +00004074** Synopsis: key=r[P3@P4]
drh6f225d02013-10-26 13:36:51 +00004075**
4076** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
4077** P4>0 then register P3 is the first of P4 registers that form an unpacked
4078** record.
4079**
4080** Cursor P1 is on an index btree. If the record identified by P3 and P4
4081** contains any NULL value, jump immediately to P2. If all terms of the
4082** record are not-NULL then a check is done to determine if any row in the
4083** P1 index btree has a matching key prefix. If there are no matches, jump
4084** immediately to P2. If there is a match, fall through and leave the P1
4085** cursor pointing to the matching row.
4086**
4087** This opcode is similar to OP_NotFound with the exceptions that the
4088** branch is always taken if any part of the search key input is NULL.
4089**
drh8af3f772014-07-25 18:01:06 +00004090** This operation leaves the cursor in a state where it cannot be
4091** advanced in either direction. In other words, the Next and Prev
4092** opcodes do not work after this operation.
4093**
drh6f225d02013-10-26 13:36:51 +00004094** See also: NotFound, Found, NotExists
4095*/
4096case OP_NoConflict: /* jump, in3 */
drh9cbf3422008-01-17 16:22:13 +00004097case OP_NotFound: /* jump, in3 */
4098case OP_Found: { /* jump, in3 */
drh856c1032009-06-02 15:21:42 +00004099 int alreadyExists;
drhf56fa462015-04-13 21:39:54 +00004100 int takeJump;
drh6f225d02013-10-26 13:36:51 +00004101 int ii;
drhdfe88ec2008-11-03 20:55:06 +00004102 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00004103 int res;
drha582b012016-12-21 19:45:54 +00004104 UnpackedRecord *pFree;
drh856c1032009-06-02 15:21:42 +00004105 UnpackedRecord *pIdxKey;
drh8cff69d2009-11-12 19:59:44 +00004106 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00004107
dan0ff297e2009-09-25 17:03:14 +00004108#ifdef SQLITE_TEST
drh6f225d02013-10-26 13:36:51 +00004109 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
dan0ff297e2009-09-25 17:03:14 +00004110#endif
4111
drhaa736092009-06-22 00:55:30 +00004112 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh8cff69d2009-11-12 19:59:44 +00004113 assert( pOp->p4type==P4_INT32 );
drhaa736092009-06-22 00:55:30 +00004114 pC = p->apCsr[pOp->p1];
4115 assert( pC!=0 );
drh8af3f772014-07-25 18:01:06 +00004116#ifdef SQLITE_DEBUG
drhcefc87f2014-08-01 01:40:33 +00004117 pC->seekOp = pOp->opcode;
drh8af3f772014-07-25 18:01:06 +00004118#endif
drh3c657212009-11-17 23:59:58 +00004119 pIn3 = &aMem[pOp->p3];
drhc960dcb2015-11-20 19:22:01 +00004120 assert( pC->eCurType==CURTYPE_BTREE );
4121 assert( pC->uc.pCursor!=0 );
drh3da046d2013-11-11 03:24:11 +00004122 assert( pC->isTable==0 );
4123 if( pOp->p4.i>0 ){
4124 r.pKeyInfo = pC->pKeyInfo;
4125 r.nField = (u16)pOp->p4.i;
4126 r.aMem = pIn3;
drh8aaf7bc2016-09-20 01:19:18 +00004127#ifdef SQLITE_DEBUG
drh826af372014-02-08 19:12:21 +00004128 for(ii=0; ii<r.nField; ii++){
4129 assert( memIsValid(&r.aMem[ii]) );
drh8aaf7bc2016-09-20 01:19:18 +00004130 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
drh826af372014-02-08 19:12:21 +00004131 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
drh826af372014-02-08 19:12:21 +00004132 }
drh8aaf7bc2016-09-20 01:19:18 +00004133#endif
drh3da046d2013-11-11 03:24:11 +00004134 pIdxKey = &r;
drha582b012016-12-21 19:45:54 +00004135 pFree = 0;
drh3da046d2013-11-11 03:24:11 +00004136 }else{
drhe46515b2017-05-19 22:51:00 +00004137 assert( pIn3->flags & MEM_Blob );
4138 rc = ExpandBlob(pIn3);
4139 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
4140 if( rc ) goto no_mem;
drha582b012016-12-21 19:45:54 +00004141 pFree = pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
drh3da046d2013-11-11 03:24:11 +00004142 if( pIdxKey==0 ) goto no_mem;
drh3da046d2013-11-11 03:24:11 +00004143 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
drh5e00f6c2001-09-13 13:46:56 +00004144 }
dan1fed5da2014-02-25 21:01:25 +00004145 pIdxKey->default_rc = 0;
drhf56fa462015-04-13 21:39:54 +00004146 takeJump = 0;
drh3da046d2013-11-11 03:24:11 +00004147 if( pOp->opcode==OP_NoConflict ){
4148 /* For the OP_NoConflict opcode, take the jump if any of the
4149 ** input fields are NULL, since any key with a NULL will not
4150 ** conflict */
mistachkin7bb6e8e2015-01-12 18:52:41 +00004151 for(ii=0; ii<pIdxKey->nField; ii++){
4152 if( pIdxKey->aMem[ii].flags & MEM_Null ){
drhf56fa462015-04-13 21:39:54 +00004153 takeJump = 1;
drh3da046d2013-11-11 03:24:11 +00004154 break;
drh6f225d02013-10-26 13:36:51 +00004155 }
4156 }
drh5e00f6c2001-09-13 13:46:56 +00004157 }
drhc960dcb2015-11-20 19:22:01 +00004158 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res);
drhdbd6a7d2017-04-05 12:39:49 +00004159 if( pFree ) sqlite3DbFreeNN(db, pFree);
drh3da046d2013-11-11 03:24:11 +00004160 if( rc!=SQLITE_OK ){
drh9467abf2016-02-17 18:44:11 +00004161 goto abort_due_to_error;
drh3da046d2013-11-11 03:24:11 +00004162 }
4163 pC->seekResult = res;
4164 alreadyExists = (res==0);
4165 pC->nullRow = 1-alreadyExists;
4166 pC->deferredMoveto = 0;
4167 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004168 if( pOp->opcode==OP_Found ){
drh688852a2014-02-17 22:40:43 +00004169 VdbeBranchTaken(alreadyExists!=0,2);
drhf56fa462015-04-13 21:39:54 +00004170 if( alreadyExists ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00004171 }else{
drhf56fa462015-04-13 21:39:54 +00004172 VdbeBranchTaken(takeJump||alreadyExists==0,2);
4173 if( takeJump || !alreadyExists ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00004174 }
drh5e00f6c2001-09-13 13:46:56 +00004175 break;
4176}
4177
drheeb95652016-05-26 20:56:38 +00004178/* Opcode: SeekRowid P1 P2 P3 * *
4179** Synopsis: intkey=r[P3]
4180**
4181** P1 is the index of a cursor open on an SQL table btree (with integer
4182** keys). If register P3 does not contain an integer or if P1 does not
4183** contain a record with rowid P3 then jump immediately to P2.
4184** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
4185** a record with rowid P3 then
4186** leave the cursor pointing at that record and fall through to the next
4187** instruction.
4188**
4189** The OP_NotExists opcode performs the same operation, but with OP_NotExists
4190** the P3 register must be guaranteed to contain an integer value. With this
4191** opcode, register P3 might not contain an integer.
4192**
4193** The OP_NotFound opcode performs the same operation on index btrees
4194** (with arbitrary multi-value keys).
4195**
4196** This opcode leaves the cursor in a state where it cannot be advanced
4197** in either direction. In other words, the Next and Prev opcodes will
4198** not work following this opcode.
4199**
4200** See also: Found, NotFound, NoConflict, SeekRowid
4201*/
drh9cbf3422008-01-17 16:22:13 +00004202/* Opcode: NotExists P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00004203** Synopsis: intkey=r[P3]
drh6b125452002-01-28 15:53:03 +00004204**
drh261c02d2013-10-25 14:46:15 +00004205** P1 is the index of a cursor open on an SQL table btree (with integer
4206** keys). P3 is an integer rowid. If P1 does not contain a record with
danc6157e12015-09-14 09:23:47 +00004207** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an
4208** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
4209** leave the cursor pointing at that record and fall through to the next
4210** instruction.
drh6b125452002-01-28 15:53:03 +00004211**
drheeb95652016-05-26 20:56:38 +00004212** The OP_SeekRowid opcode performs the same operation but also allows the
4213** P3 register to contain a non-integer value, in which case the jump is
4214** always taken. This opcode requires that P3 always contain an integer.
4215**
drh261c02d2013-10-25 14:46:15 +00004216** The OP_NotFound opcode performs the same operation on index btrees
4217** (with arbitrary multi-value keys).
drh6b125452002-01-28 15:53:03 +00004218**
drh8af3f772014-07-25 18:01:06 +00004219** This opcode leaves the cursor in a state where it cannot be advanced
4220** in either direction. In other words, the Next and Prev opcodes will
4221** not work following this opcode.
4222**
drheeb95652016-05-26 20:56:38 +00004223** See also: Found, NotFound, NoConflict, SeekRowid
drh6b125452002-01-28 15:53:03 +00004224*/
drheeb95652016-05-26 20:56:38 +00004225case OP_SeekRowid: { /* jump, in3 */
drhdfe88ec2008-11-03 20:55:06 +00004226 VdbeCursor *pC;
drh0ca3e242002-01-29 23:07:02 +00004227 BtCursor *pCrsr;
drh856c1032009-06-02 15:21:42 +00004228 int res;
4229 u64 iKey;
4230
drh3c657212009-11-17 23:59:58 +00004231 pIn3 = &aMem[pOp->p3];
drheeb95652016-05-26 20:56:38 +00004232 if( (pIn3->flags & MEM_Int)==0 ){
4233 applyAffinity(pIn3, SQLITE_AFF_NUMERIC, encoding);
4234 if( (pIn3->flags & MEM_Int)==0 ) goto jump_to_p2;
4235 }
4236 /* Fall through into OP_NotExists */
4237case OP_NotExists: /* jump, in3 */
4238 pIn3 = &aMem[pOp->p3];
drhaa736092009-06-22 00:55:30 +00004239 assert( pIn3->flags & MEM_Int );
4240 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4241 pC = p->apCsr[pOp->p1];
4242 assert( pC!=0 );
drh8af3f772014-07-25 18:01:06 +00004243#ifdef SQLITE_DEBUG
4244 pC->seekOp = 0;
4245#endif
drhaa736092009-06-22 00:55:30 +00004246 assert( pC->isTable );
drhc960dcb2015-11-20 19:22:01 +00004247 assert( pC->eCurType==CURTYPE_BTREE );
4248 pCrsr = pC->uc.pCursor;
drh3da046d2013-11-11 03:24:11 +00004249 assert( pCrsr!=0 );
4250 res = 0;
4251 iKey = pIn3->u.i;
4252 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
drhb79d5522015-09-14 19:26:37 +00004253 assert( rc==SQLITE_OK || res==0 );
drhb53a5a92014-10-12 22:37:22 +00004254 pC->movetoTarget = iKey; /* Used by OP_Delete */
drh3da046d2013-11-11 03:24:11 +00004255 pC->nullRow = 0;
4256 pC->cacheStatus = CACHE_STALE;
4257 pC->deferredMoveto = 0;
drh688852a2014-02-17 22:40:43 +00004258 VdbeBranchTaken(res!=0,2);
drh3da046d2013-11-11 03:24:11 +00004259 pC->seekResult = res;
danc6157e12015-09-14 09:23:47 +00004260 if( res!=0 ){
drhb79d5522015-09-14 19:26:37 +00004261 assert( rc==SQLITE_OK );
4262 if( pOp->p2==0 ){
4263 rc = SQLITE_CORRUPT_BKPT;
4264 }else{
4265 goto jump_to_p2;
4266 }
danc6157e12015-09-14 09:23:47 +00004267 }
drh9467abf2016-02-17 18:44:11 +00004268 if( rc ) goto abort_due_to_error;
drh6b125452002-01-28 15:53:03 +00004269 break;
4270}
4271
drh4c583122008-01-04 22:01:03 +00004272/* Opcode: Sequence P1 P2 * * *
drh079a3072014-03-19 14:10:55 +00004273** Synopsis: r[P2]=cursor[P1].ctr++
drh4db38a72005-09-01 12:16:28 +00004274**
drh4c583122008-01-04 22:01:03 +00004275** Find the next available sequence number for cursor P1.
drh9cbf3422008-01-17 16:22:13 +00004276** Write the sequence number into register P2.
drh4c583122008-01-04 22:01:03 +00004277** The sequence number on the cursor is incremented after this
4278** instruction.
drh4db38a72005-09-01 12:16:28 +00004279*/
drh27a348c2015-04-13 19:14:06 +00004280case OP_Sequence: { /* out2 */
drh653b82a2009-06-22 11:10:47 +00004281 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4282 assert( p->apCsr[pOp->p1]!=0 );
drhc960dcb2015-11-20 19:22:01 +00004283 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
drh27a348c2015-04-13 19:14:06 +00004284 pOut = out2Prerelease(p, pOp);
drh653b82a2009-06-22 11:10:47 +00004285 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
drh4db38a72005-09-01 12:16:28 +00004286 break;
4287}
4288
4289
drh98757152008-01-09 23:04:12 +00004290/* Opcode: NewRowid P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00004291** Synopsis: r[P2]=rowid
drh5e00f6c2001-09-13 13:46:56 +00004292**
drhf0863fe2005-06-12 21:35:51 +00004293** Get a new integer record number (a.k.a "rowid") used as the key to a table.
drhb19a2bc2001-09-16 00:13:26 +00004294** The record number is not previously used as a key in the database
drh9cbf3422008-01-17 16:22:13 +00004295** table that cursor P1 points to. The new record number is written
4296** written to register P2.
drh205f48e2004-11-05 00:43:11 +00004297**
dan76d462e2009-08-30 11:42:51 +00004298** If P3>0 then P3 is a register in the root frame of this VDBE that holds
4299** the largest previously generated record number. No new record numbers are
4300** allowed to be less than this value. When this value reaches its maximum,
drhef8662b2011-06-20 21:47:58 +00004301** an SQLITE_FULL error is generated. The P3 register is updated with the '
dan76d462e2009-08-30 11:42:51 +00004302** generated record number. This P3 mechanism is used to help implement the
drh205f48e2004-11-05 00:43:11 +00004303** AUTOINCREMENT feature.
drh5e00f6c2001-09-13 13:46:56 +00004304*/
drh27a348c2015-04-13 19:14:06 +00004305case OP_NewRowid: { /* out2 */
drhaa736092009-06-22 00:55:30 +00004306 i64 v; /* The new rowid */
4307 VdbeCursor *pC; /* Cursor of table to get the new rowid */
4308 int res; /* Result of an sqlite3BtreeLast() */
4309 int cnt; /* Counter to limit the number of searches */
4310 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
dan76d462e2009-08-30 11:42:51 +00004311 VdbeFrame *pFrame; /* Root frame of VDBE */
drh856c1032009-06-02 15:21:42 +00004312
drh856c1032009-06-02 15:21:42 +00004313 v = 0;
4314 res = 0;
drh27a348c2015-04-13 19:14:06 +00004315 pOut = out2Prerelease(p, pOp);
drhaa736092009-06-22 00:55:30 +00004316 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4317 pC = p->apCsr[pOp->p1];
4318 assert( pC!=0 );
drh4c57e322018-05-23 17:53:07 +00004319 assert( pC->isTable );
drhc960dcb2015-11-20 19:22:01 +00004320 assert( pC->eCurType==CURTYPE_BTREE );
4321 assert( pC->uc.pCursor!=0 );
drh98ef0f62015-06-30 01:25:52 +00004322 {
drh5cf8e8c2002-02-19 22:42:05 +00004323 /* The next rowid or record number (different terms for the same
4324 ** thing) is obtained in a two-step algorithm.
4325 **
4326 ** First we attempt to find the largest existing rowid and add one
4327 ** to that. But if the largest existing rowid is already the maximum
4328 ** positive integer, we have to fall through to the second
4329 ** probabilistic algorithm
4330 **
4331 ** The second algorithm is to select a rowid at random and see if
4332 ** it already exists in the table. If it does not exist, we have
4333 ** succeeded. If the random rowid does exist, we select a new one
drhaa736092009-06-22 00:55:30 +00004334 ** and try again, up to 100 times.
drhdb5ed6d2001-09-18 22:17:44 +00004335 */
drhaa736092009-06-22 00:55:30 +00004336 assert( pC->isTable );
drhfe2093d2005-01-20 22:48:47 +00004337
drh75f86a42005-02-17 00:03:06 +00004338#ifdef SQLITE_32BIT_ROWID
4339# define MAX_ROWID 0x7fffffff
4340#else
drhfe2093d2005-01-20 22:48:47 +00004341 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
4342 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
4343 ** to provide the constant while making all compilers happy.
4344 */
danielk197764202cf2008-11-17 15:31:47 +00004345# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
drh75f86a42005-02-17 00:03:06 +00004346#endif
drhfe2093d2005-01-20 22:48:47 +00004347
drh5cf8e8c2002-02-19 22:42:05 +00004348 if( !pC->useRandomRowid ){
drhc960dcb2015-11-20 19:22:01 +00004349 rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
drhe0670b62014-02-12 21:31:12 +00004350 if( rc!=SQLITE_OK ){
4351 goto abort_due_to_error;
4352 }
4353 if( res ){
4354 v = 1; /* IMP: R-61914-48074 */
4355 }else{
drhc960dcb2015-11-20 19:22:01 +00004356 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
drha7c90c42016-06-04 20:37:10 +00004357 v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
drhe0670b62014-02-12 21:31:12 +00004358 if( v>=MAX_ROWID ){
4359 pC->useRandomRowid = 1;
drh5cf8e8c2002-02-19 22:42:05 +00004360 }else{
drhe0670b62014-02-12 21:31:12 +00004361 v++; /* IMP: R-29538-34987 */
drh5cf8e8c2002-02-19 22:42:05 +00004362 }
drh3fc190c2001-09-14 03:24:23 +00004363 }
drhe0670b62014-02-12 21:31:12 +00004364 }
drh205f48e2004-11-05 00:43:11 +00004365
4366#ifndef SQLITE_OMIT_AUTOINCREMENT
drhe0670b62014-02-12 21:31:12 +00004367 if( pOp->p3 ){
4368 /* Assert that P3 is a valid memory cell. */
4369 assert( pOp->p3>0 );
4370 if( p->pFrame ){
4371 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
shaneabc6b892009-09-10 19:09:03 +00004372 /* Assert that P3 is a valid memory cell. */
drhe0670b62014-02-12 21:31:12 +00004373 assert( pOp->p3<=pFrame->nMem );
4374 pMem = &pFrame->aMem[pOp->p3];
4375 }else{
4376 /* Assert that P3 is a valid memory cell. */
drh9f6168b2016-03-19 23:32:58 +00004377 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
drhe0670b62014-02-12 21:31:12 +00004378 pMem = &aMem[pOp->p3];
4379 memAboutToChange(p, pMem);
drh205f48e2004-11-05 00:43:11 +00004380 }
drhe0670b62014-02-12 21:31:12 +00004381 assert( memIsValid(pMem) );
drh205f48e2004-11-05 00:43:11 +00004382
drhe0670b62014-02-12 21:31:12 +00004383 REGISTER_TRACE(pOp->p3, pMem);
4384 sqlite3VdbeMemIntegerify(pMem);
4385 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
4386 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
drhe77caa12016-11-02 13:18:46 +00004387 rc = SQLITE_FULL; /* IMP: R-17817-00630 */
drhe0670b62014-02-12 21:31:12 +00004388 goto abort_due_to_error;
4389 }
4390 if( v<pMem->u.i+1 ){
4391 v = pMem->u.i + 1;
4392 }
4393 pMem->u.i = v;
drh5cf8e8c2002-02-19 22:42:05 +00004394 }
drhe0670b62014-02-12 21:31:12 +00004395#endif
drh5cf8e8c2002-02-19 22:42:05 +00004396 if( pC->useRandomRowid ){
drh748a52c2010-09-01 11:50:08 +00004397 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
drhc79c7612010-01-01 18:57:48 +00004398 ** largest possible integer (9223372036854775807) then the database
drh748a52c2010-09-01 11:50:08 +00004399 ** engine starts picking positive candidate ROWIDs at random until
4400 ** it finds one that is not previously used. */
drhaa736092009-06-22 00:55:30 +00004401 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
4402 ** an AUTOINCREMENT table. */
drh5cf8e8c2002-02-19 22:42:05 +00004403 cnt = 0;
drh2c4dc632014-09-25 12:31:28 +00004404 do{
4405 sqlite3_randomness(sizeof(v), &v);
drhd8633462014-09-25 17:42:41 +00004406 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */
drhc960dcb2015-11-20 19:22:01 +00004407 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v,
drh748a52c2010-09-01 11:50:08 +00004408 0, &res))==SQLITE_OK)
shanehc4d340a2010-09-01 02:37:56 +00004409 && (res==0)
drh2c4dc632014-09-25 12:31:28 +00004410 && (++cnt<100));
drh9467abf2016-02-17 18:44:11 +00004411 if( rc ) goto abort_due_to_error;
4412 if( res==0 ){
drhc79c7612010-01-01 18:57:48 +00004413 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
drh5cf8e8c2002-02-19 22:42:05 +00004414 goto abort_due_to_error;
4415 }
drh748a52c2010-09-01 11:50:08 +00004416 assert( v>0 ); /* EV: R-40812-03570 */
drh1eaa2692001-09-18 02:02:23 +00004417 }
drha11846b2004-01-07 18:52:56 +00004418 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00004419 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00004420 }
drh4c583122008-01-04 22:01:03 +00004421 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004422 break;
4423}
4424
danielk19771f4aa332008-01-03 09:51:55 +00004425/* Opcode: Insert P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00004426** Synopsis: intkey=r[P3] data=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00004427**
jplyon5a564222003-06-02 06:15:58 +00004428** Write an entry into the table of cursor P1. A new entry is
drhb19a2bc2001-09-16 00:13:26 +00004429** created if it doesn't already exist or the data for an existing
drh3e9ca092009-09-08 01:14:48 +00004430** entry is overwritten. The data is the value MEM_Blob stored in register
danielk19771f4aa332008-01-03 09:51:55 +00004431** number P2. The key is stored in register P3. The key must
drh3e9ca092009-09-08 01:14:48 +00004432** be a MEM_Int.
drh4a324312001-12-21 14:30:42 +00004433**
danielk19771f4aa332008-01-03 09:51:55 +00004434** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4435** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
danielk1977b28af712004-06-21 06:50:26 +00004436** then rowid is stored for subsequent return by the
drh85b623f2007-12-13 21:54:09 +00004437** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
drh6b125452002-01-28 15:53:03 +00004438**
drheaf6ae22016-11-09 20:14:34 +00004439** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
4440** run faster by avoiding an unnecessary seek on cursor P1. However,
4441** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
4442** seeks on the cursor or if the most recent seek used a key equal to P3.
drh3e9ca092009-09-08 01:14:48 +00004443**
4444** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4445** UPDATE operation. Otherwise (if the flag is clear) then this opcode
4446** is part of an INSERT operation. The difference is only important to
4447** the update hook.
4448**
dan319eeb72011-03-19 08:38:50 +00004449** Parameter P4 may point to a Table structure, or may be NULL. If it is
4450** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
4451** following a successful insert.
danielk19771f6eec52006-06-16 06:17:47 +00004452**
drh93aed5a2008-01-16 17:46:38 +00004453** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4454** allocated, then ownership of P2 is transferred to the pseudo-cursor
4455** and register P2 becomes ephemeral. If the cursor is changed, the
4456** value of register P2 will then change. Make sure this does not
4457** cause any problems.)
4458**
drhf0863fe2005-06-12 21:35:51 +00004459** This instruction only works on tables. The equivalent instruction
4460** for indices is OP_IdxInsert.
drh6b125452002-01-28 15:53:03 +00004461*/
drhe05c9292009-10-29 13:48:10 +00004462/* Opcode: InsertInt P1 P2 P3 P4 P5
drh72e26de2016-08-24 21:24:04 +00004463** Synopsis: intkey=P3 data=r[P2]
drhe05c9292009-10-29 13:48:10 +00004464**
4465** This works exactly like OP_Insert except that the key is the
4466** integer value P3, not the value of the integer stored in register P3.
4467*/
4468case OP_Insert:
4469case OP_InsertInt: {
drh3e9ca092009-09-08 01:14:48 +00004470 Mem *pData; /* MEM cell holding data for the record to be inserted */
4471 Mem *pKey; /* MEM cell holding key for the record */
drh3e9ca092009-09-08 01:14:48 +00004472 VdbeCursor *pC; /* Cursor to table into which insert is written */
drh3e9ca092009-09-08 01:14:48 +00004473 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
4474 const char *zDb; /* database name - used by the update hook */
dan319eeb72011-03-19 08:38:50 +00004475 Table *pTab; /* Table structure - used by update and pre-update hooks */
drh8eeb4462016-05-21 20:03:42 +00004476 BtreePayload x; /* Payload to be inserted */
drh856c1032009-06-02 15:21:42 +00004477
drha6c2ed92009-11-14 23:22:23 +00004478 pData = &aMem[pOp->p2];
drh653b82a2009-06-22 11:10:47 +00004479 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh2b4ded92010-09-27 21:09:31 +00004480 assert( memIsValid(pData) );
drh653b82a2009-06-22 11:10:47 +00004481 pC = p->apCsr[pOp->p1];
drha05a7222008-01-19 03:35:58 +00004482 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00004483 assert( pC->eCurType==CURTYPE_BTREE );
4484 assert( pC->uc.pCursor!=0 );
dancb9a3642017-01-30 19:44:53 +00004485 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
drhcbf1b8e2013-11-11 22:55:26 +00004486 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
drh5b6afba2008-01-05 16:29:28 +00004487 REGISTER_TRACE(pOp->p2, pData);
drh4031baf2018-05-28 17:31:20 +00004488 sqlite3VdbeIncrWriteCounter(p, pC);
danielk19775f8d8a82004-05-11 00:28:42 +00004489
drhe05c9292009-10-29 13:48:10 +00004490 if( pOp->opcode==OP_Insert ){
drha6c2ed92009-11-14 23:22:23 +00004491 pKey = &aMem[pOp->p3];
drhe05c9292009-10-29 13:48:10 +00004492 assert( pKey->flags & MEM_Int );
drh2b4ded92010-09-27 21:09:31 +00004493 assert( memIsValid(pKey) );
drhe05c9292009-10-29 13:48:10 +00004494 REGISTER_TRACE(pOp->p3, pKey);
drh8eeb4462016-05-21 20:03:42 +00004495 x.nKey = pKey->u.i;
drhe05c9292009-10-29 13:48:10 +00004496 }else{
4497 assert( pOp->opcode==OP_InsertInt );
drh8eeb4462016-05-21 20:03:42 +00004498 x.nKey = pOp->p3;
drhe05c9292009-10-29 13:48:10 +00004499 }
4500
drh9b1c62d2011-03-30 21:04:43 +00004501 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
dan46c47d42011-03-01 18:42:07 +00004502 assert( pC->iDb>=0 );
drh69c33822016-08-18 14:33:11 +00004503 zDb = db->aDb[pC->iDb].zDbSName;
dan319eeb72011-03-19 08:38:50 +00004504 pTab = pOp->p4.pTab;
dancb9a3642017-01-30 19:44:53 +00004505 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
drh74c33022016-03-30 12:56:55 +00004506 }else{
drh4ec6f3a2018-01-12 19:33:18 +00004507 pTab = 0;
drh74c33022016-03-30 12:56:55 +00004508 zDb = 0; /* Not needed. Silence a compiler warning. */
dan46c47d42011-03-01 18:42:07 +00004509 }
4510
drh9b1c62d2011-03-30 21:04:43 +00004511#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
dan46c47d42011-03-01 18:42:07 +00004512 /* Invoke the pre-update hook, if any */
drh4ec6f3a2018-01-12 19:33:18 +00004513 if( pTab ){
drh84ebe2b2018-01-12 18:46:52 +00004514 if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){
4515 sqlite3VdbePreUpdateHook(p, pC, SQLITE_INSERT, zDb, pTab, x.nKey,pOp->p2);
4516 }
drh4ec6f3a2018-01-12 19:33:18 +00004517 if( db->xUpdateCallback==0 || pTab->aCol==0 ){
4518 /* Prevent post-update hook from running in cases when it should not */
4519 pTab = 0;
drh84ebe2b2018-01-12 18:46:52 +00004520 }
dan46c47d42011-03-01 18:42:07 +00004521 }
dancb9a3642017-01-30 19:44:53 +00004522 if( pOp->p5 & OPFLAG_ISNOOP ) break;
drh9b1c62d2011-03-30 21:04:43 +00004523#endif
dan46c47d42011-03-01 18:42:07 +00004524
drha05a7222008-01-19 03:35:58 +00004525 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drhfae58d52017-01-26 17:26:44 +00004526 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
dan21cd29a2017-10-23 16:03:54 +00004527 assert( pData->flags & (MEM_Blob|MEM_Str) );
4528 x.pData = pData->z;
4529 x.nData = pData->n;
drh3e9ca092009-09-08 01:14:48 +00004530 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4531 if( pData->flags & MEM_Zero ){
drh8eeb4462016-05-21 20:03:42 +00004532 x.nZero = pData->u.nZero;
drha05a7222008-01-19 03:35:58 +00004533 }else{
drh8eeb4462016-05-21 20:03:42 +00004534 x.nZero = 0;
drha05a7222008-01-19 03:35:58 +00004535 }
drh8eeb4462016-05-21 20:03:42 +00004536 x.pKey = 0;
4537 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
danf91c1312017-01-10 20:04:38 +00004538 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)), seekResult
drh3e9ca092009-09-08 01:14:48 +00004539 );
drha05a7222008-01-19 03:35:58 +00004540 pC->deferredMoveto = 0;
4541 pC->cacheStatus = CACHE_STALE;
danielk197794eb6a12005-12-15 15:22:08 +00004542
drha05a7222008-01-19 03:35:58 +00004543 /* Invoke the update-hook if required. */
drh9467abf2016-02-17 18:44:11 +00004544 if( rc ) goto abort_due_to_error;
drh4ec6f3a2018-01-12 19:33:18 +00004545 if( pTab ){
4546 assert( db->xUpdateCallback!=0 );
4547 assert( pTab->aCol!=0 );
4548 db->xUpdateCallback(db->pUpdateArg,
4549 (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT,
4550 zDb, pTab->zName, x.nKey);
drha05a7222008-01-19 03:35:58 +00004551 }
drh5e00f6c2001-09-13 13:46:56 +00004552 break;
4553}
4554
dan438b8812015-09-15 15:55:15 +00004555/* Opcode: Delete P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00004556**
drh5edc3122001-09-13 21:53:09 +00004557** Delete the record at which the P1 cursor is currently pointing.
4558**
drhe807bdb2016-01-21 17:06:33 +00004559** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
4560** the cursor will be left pointing at either the next or the previous
4561** record in the table. If it is left pointing at the next record, then
4562** the next Next instruction will be a no-op. As a result, in this case
4563** it is ok to delete a record from within a Next loop. If
4564** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
4565** left in an undefined state.
drhc8d30ac2002-04-12 10:08:59 +00004566**
drhdef19e32016-01-27 16:26:25 +00004567** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
4568** delete one of several associated with deleting a table row and all its
4569** associated index entries. Exactly one of those deletes is the "primary"
4570** delete. The others are all on OPFLAG_FORDELETE cursors or else are
4571** marked with the AUXDELETE flag.
drhe807bdb2016-01-21 17:06:33 +00004572**
4573** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
4574** change count is incremented (otherwise not).
drh70ce3f02003-04-15 19:22:22 +00004575**
drh91fd4d42008-01-19 20:11:25 +00004576** P1 must not be pseudo-table. It has to be a real table with
4577** multiple rows.
4578**
drh5e769a52016-09-28 16:05:53 +00004579** If P4 is not NULL then it points to a Table object. In this case either
dan319eeb72011-03-19 08:38:50 +00004580** the update or pre-update hook, or both, may be invoked. The P1 cursor must
4581** have been positioned using OP_NotFound prior to invoking this opcode in
4582** this case. Specifically, if one is configured, the pre-update hook is
4583** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
4584** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
dan46c47d42011-03-01 18:42:07 +00004585**
4586** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
4587** of the memory cell that contains the value that the rowid of the row will
4588** be set to by the update.
drh5e00f6c2001-09-13 13:46:56 +00004589*/
drh9cbf3422008-01-17 16:22:13 +00004590case OP_Delete: {
drhdfe88ec2008-11-03 20:55:06 +00004591 VdbeCursor *pC;
dan46c47d42011-03-01 18:42:07 +00004592 const char *zDb;
dan319eeb72011-03-19 08:38:50 +00004593 Table *pTab;
dan46c47d42011-03-01 18:42:07 +00004594 int opflags;
drh91fd4d42008-01-19 20:11:25 +00004595
dan46c47d42011-03-01 18:42:07 +00004596 opflags = pOp->p2;
drh653b82a2009-06-22 11:10:47 +00004597 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4598 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004599 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00004600 assert( pC->eCurType==CURTYPE_BTREE );
4601 assert( pC->uc.pCursor!=0 );
drh9a65f2c2009-06-22 19:05:40 +00004602 assert( pC->deferredMoveto==0 );
drh4031baf2018-05-28 17:31:20 +00004603 sqlite3VdbeIncrWriteCounter(p, pC);
drh9a65f2c2009-06-22 19:05:40 +00004604
drhb53a5a92014-10-12 22:37:22 +00004605#ifdef SQLITE_DEBUG
dan438b8812015-09-15 15:55:15 +00004606 if( pOp->p4type==P4_TABLE && HasRowid(pOp->p4.pTab) && pOp->p5==0 ){
4607 /* If p5 is zero, the seek operation that positioned the cursor prior to
4608 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
4609 ** the row that is being deleted */
drha7c90c42016-06-04 20:37:10 +00004610 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
drh92fe38e2014-10-14 13:41:32 +00004611 assert( pC->movetoTarget==iKey );
drhb53a5a92014-10-12 22:37:22 +00004612 }
4613#endif
drh91fd4d42008-01-19 20:11:25 +00004614
dan438b8812015-09-15 15:55:15 +00004615 /* If the update-hook or pre-update-hook will be invoked, set zDb to
4616 ** the name of the db to pass as to it. Also set local pTab to a copy
4617 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
4618 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
4619 ** VdbeCursor.movetoTarget to the current rowid. */
drhc556f3c2016-03-30 15:30:07 +00004620 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
dan46c47d42011-03-01 18:42:07 +00004621 assert( pC->iDb>=0 );
drhc556f3c2016-03-30 15:30:07 +00004622 assert( pOp->p4.pTab!=0 );
drh69c33822016-08-18 14:33:11 +00004623 zDb = db->aDb[pC->iDb].zDbSName;
dan319eeb72011-03-19 08:38:50 +00004624 pTab = pOp->p4.pTab;
drhc556f3c2016-03-30 15:30:07 +00004625 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
drha7c90c42016-06-04 20:37:10 +00004626 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
dan438b8812015-09-15 15:55:15 +00004627 }
drh74c33022016-03-30 12:56:55 +00004628 }else{
4629 zDb = 0; /* Not needed. Silence a compiler warning. */
4630 pTab = 0; /* Not needed. Silence a compiler warning. */
drh92fe38e2014-10-14 13:41:32 +00004631 }
dan46c47d42011-03-01 18:42:07 +00004632
drh9b1c62d2011-03-30 21:04:43 +00004633#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
dan46c47d42011-03-01 18:42:07 +00004634 /* Invoke the pre-update-hook if required. */
dancb9a3642017-01-30 19:44:53 +00004635 if( db->xPreUpdateCallback && pOp->p4.pTab ){
4636 assert( !(opflags & OPFLAG_ISUPDATE)
4637 || HasRowid(pTab)==0
4638 || (aMem[pOp->p3].flags & MEM_Int)
4639 );
dan46c47d42011-03-01 18:42:07 +00004640 sqlite3VdbePreUpdateHook(p, pC,
4641 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
drh92fe38e2014-10-14 13:41:32 +00004642 zDb, pTab, pC->movetoTarget,
dan37db03b2011-03-16 19:59:18 +00004643 pOp->p3
dan46c47d42011-03-01 18:42:07 +00004644 );
4645 }
dan46c47d42011-03-01 18:42:07 +00004646 if( opflags & OPFLAG_ISNOOP ) break;
drhc556f3c2016-03-30 15:30:07 +00004647#endif
drhb53a5a92014-10-12 22:37:22 +00004648
drhdef19e32016-01-27 16:26:25 +00004649 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
4650 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
drhe807bdb2016-01-21 17:06:33 +00004651 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
drhdef19e32016-01-27 16:26:25 +00004652 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
drhb89aeb62016-01-27 15:49:32 +00004653
4654#ifdef SQLITE_DEBUG
dane61bbf42016-01-28 17:06:17 +00004655 if( p->pFrame==0 ){
4656 if( pC->isEphemeral==0
4657 && (pOp->p5 & OPFLAG_AUXDELETE)==0
4658 && (pC->wrFlag & OPFLAG_FORDELETE)==0
4659 ){
4660 nExtraDelete++;
4661 }
4662 if( pOp->p2 & OPFLAG_NCHANGE ){
4663 nExtraDelete--;
4664 }
drhb89aeb62016-01-27 15:49:32 +00004665 }
4666#endif
4667
drhc960dcb2015-11-20 19:22:01 +00004668 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
drh91fd4d42008-01-19 20:11:25 +00004669 pC->cacheStatus = CACHE_STALE;
dan3b908d42016-11-08 19:22:32 +00004670 pC->seekResult = 0;
drhd3e1af42016-02-25 18:54:30 +00004671 if( rc ) goto abort_due_to_error;
danielk197794eb6a12005-12-15 15:22:08 +00004672
drh91fd4d42008-01-19 20:11:25 +00004673 /* Invoke the update-hook if required. */
dan46c47d42011-03-01 18:42:07 +00004674 if( opflags & OPFLAG_NCHANGE ){
4675 p->nChange++;
drhc556f3c2016-03-30 15:30:07 +00004676 if( db->xUpdateCallback && HasRowid(pTab) ){
drh92fe38e2014-10-14 13:41:32 +00004677 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
dan438b8812015-09-15 15:55:15 +00004678 pC->movetoTarget);
4679 assert( pC->iDb>=0 );
dan46c47d42011-03-01 18:42:07 +00004680 }
drh5e00f6c2001-09-13 13:46:56 +00004681 }
dan438b8812015-09-15 15:55:15 +00004682
rdcb0c374f2004-02-20 22:53:38 +00004683 break;
4684}
drhb7f1d9a2009-09-08 02:27:58 +00004685/* Opcode: ResetCount * * * * *
rdcb0c374f2004-02-20 22:53:38 +00004686**
drhb7f1d9a2009-09-08 02:27:58 +00004687** The value of the change counter is copied to the database handle
4688** change counter (returned by subsequent calls to sqlite3_changes()).
4689** Then the VMs internal change counter resets to 0.
4690** This is used by trigger programs.
rdcb0c374f2004-02-20 22:53:38 +00004691*/
drh9cbf3422008-01-17 16:22:13 +00004692case OP_ResetCount: {
drhb7f1d9a2009-09-08 02:27:58 +00004693 sqlite3VdbeSetChanges(db, p->nChange);
danielk1977b28af712004-06-21 06:50:26 +00004694 p->nChange = 0;
drh5e00f6c2001-09-13 13:46:56 +00004695 break;
4696}
4697
drh1153c7b2013-11-01 22:02:56 +00004698/* Opcode: SorterCompare P1 P2 P3 P4
drh72e26de2016-08-24 21:24:04 +00004699** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
dan5134d132011-09-02 10:31:11 +00004700**
drh1153c7b2013-11-01 22:02:56 +00004701** P1 is a sorter cursor. This instruction compares a prefix of the
drhbc5cf382014-08-06 01:08:07 +00004702** record blob in register P3 against a prefix of the entry that
drhac502322014-07-30 13:56:48 +00004703** the sorter cursor currently points to. Only the first P4 fields
4704** of r[P3] and the sorter record are compared.
drh1153c7b2013-11-01 22:02:56 +00004705**
4706** If either P3 or the sorter contains a NULL in one of their significant
4707** fields (not counting the P4 fields at the end which are ignored) then
4708** the comparison is assumed to be equal.
4709**
4710** Fall through to next instruction if the two records compare equal to
4711** each other. Jump to P2 if they are different.
dan5134d132011-09-02 10:31:11 +00004712*/
4713case OP_SorterCompare: {
4714 VdbeCursor *pC;
4715 int res;
drhac502322014-07-30 13:56:48 +00004716 int nKeyCol;
dan5134d132011-09-02 10:31:11 +00004717
4718 pC = p->apCsr[pOp->p1];
4719 assert( isSorter(pC) );
drh1153c7b2013-11-01 22:02:56 +00004720 assert( pOp->p4type==P4_INT32 );
dan5134d132011-09-02 10:31:11 +00004721 pIn3 = &aMem[pOp->p3];
drhac502322014-07-30 13:56:48 +00004722 nKeyCol = pOp->p4.i;
drh958d2612014-04-18 13:40:07 +00004723 res = 0;
drhac502322014-07-30 13:56:48 +00004724 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
drh688852a2014-02-17 22:40:43 +00004725 VdbeBranchTaken(res!=0,2);
drh9467abf2016-02-17 18:44:11 +00004726 if( rc ) goto abort_due_to_error;
drhf56fa462015-04-13 21:39:54 +00004727 if( res ) goto jump_to_p2;
dan5134d132011-09-02 10:31:11 +00004728 break;
4729};
4730
drh6cf4a7d2014-10-13 13:00:58 +00004731/* Opcode: SorterData P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00004732** Synopsis: r[P2]=data
dan5134d132011-09-02 10:31:11 +00004733**
4734** Write into register P2 the current sorter data for sorter cursor P1.
drh6cf4a7d2014-10-13 13:00:58 +00004735** Then clear the column header cache on cursor P3.
4736**
4737** This opcode is normally use to move a record out of the sorter and into
4738** a register that is the source for a pseudo-table cursor created using
4739** OpenPseudo. That pseudo-table cursor is the one that is identified by
4740** parameter P3. Clearing the P3 column cache as part of this opcode saves
4741** us from having to issue a separate NullRow instruction to clear that cache.
dan5134d132011-09-02 10:31:11 +00004742*/
4743case OP_SorterData: {
4744 VdbeCursor *pC;
drh3a949872012-09-18 13:20:13 +00004745
dan5134d132011-09-02 10:31:11 +00004746 pOut = &aMem[pOp->p2];
4747 pC = p->apCsr[pOp->p1];
drh14da87f2013-11-20 21:51:33 +00004748 assert( isSorter(pC) );
dan5134d132011-09-02 10:31:11 +00004749 rc = sqlite3VdbeSorterRowkey(pC, pOut);
dan38524132014-05-01 20:26:48 +00004750 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
drh6cf4a7d2014-10-13 13:00:58 +00004751 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh9467abf2016-02-17 18:44:11 +00004752 if( rc ) goto abort_due_to_error;
drh6cf4a7d2014-10-13 13:00:58 +00004753 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
dan5134d132011-09-02 10:31:11 +00004754 break;
4755}
4756
drhe7b554d2017-01-09 15:44:25 +00004757/* Opcode: RowData P1 P2 P3 * *
drh81316f82013-10-29 20:40:47 +00004758** Synopsis: r[P2]=data
drh70ce3f02003-04-15 19:22:22 +00004759**
drh9057fc72016-11-25 19:32:32 +00004760** Write into register P2 the complete row content for the row at
4761** which cursor P1 is currently pointing.
drh98757152008-01-09 23:04:12 +00004762** There is no interpretation of the data.
4763** It is just copied onto the P2 register exactly as
danielk197796cb76f2008-01-04 13:24:28 +00004764** it is found in the database file.
drh70ce3f02003-04-15 19:22:22 +00004765**
drh9057fc72016-11-25 19:32:32 +00004766** If cursor P1 is an index, then the content is the key of the row.
4767** If cursor P2 is a table, then the content extracted is the data.
drh143f3c42004-01-07 20:37:52 +00004768**
drhde4fcfd2008-01-19 23:50:26 +00004769** If the P1 cursor must be pointing to a valid row (not a NULL row)
4770** of a real table, not a pseudo-table.
drhe7b554d2017-01-09 15:44:25 +00004771**
drh8cdafc32018-05-31 19:00:20 +00004772** If P3!=0 then this opcode is allowed to make an ephemeral pointer
drhe7b554d2017-01-09 15:44:25 +00004773** into the database page. That means that the content of the output
4774** register will be invalidated as soon as the cursor moves - including
drh416a8012018-05-31 19:14:52 +00004775** moves caused by other cursors that "save" the current cursors
drhe7b554d2017-01-09 15:44:25 +00004776** position in order that they can write to the same table. If P3==0
4777** then a copy of the data is made into memory. P3!=0 is faster, but
4778** P3==0 is safer.
4779**
4780** If P3!=0 then the content of the P2 register is unsuitable for use
4781** in OP_Result and any OP_Result will invalidate the P2 register content.
mistachkinab61cf72017-01-09 18:22:54 +00004782** The P2 register content is invalidated by opcodes like OP_Function or
drhe7b554d2017-01-09 15:44:25 +00004783** by any use of another cursor pointing to the same table.
drh143f3c42004-01-07 20:37:52 +00004784*/
danielk1977a7a8e142008-02-13 18:25:27 +00004785case OP_RowData: {
drhdfe88ec2008-11-03 20:55:06 +00004786 VdbeCursor *pC;
drhde4fcfd2008-01-19 23:50:26 +00004787 BtCursor *pCrsr;
danielk1977e0d4b062004-06-28 01:11:46 +00004788 u32 n;
drh70ce3f02003-04-15 19:22:22 +00004789
drhe7b554d2017-01-09 15:44:25 +00004790 pOut = out2Prerelease(p, pOp);
danielk1977a7a8e142008-02-13 18:25:27 +00004791
drh653b82a2009-06-22 11:10:47 +00004792 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4793 pC = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00004794 assert( pC!=0 );
4795 assert( pC->eCurType==CURTYPE_BTREE );
drh14da87f2013-11-20 21:51:33 +00004796 assert( isSorter(pC)==0 );
drhde4fcfd2008-01-19 23:50:26 +00004797 assert( pC->nullRow==0 );
drhc960dcb2015-11-20 19:22:01 +00004798 assert( pC->uc.pCursor!=0 );
4799 pCrsr = pC->uc.pCursor;
drh9a65f2c2009-06-22 19:05:40 +00004800
drh9057fc72016-11-25 19:32:32 +00004801 /* The OP_RowData opcodes always follow OP_NotExists or
drheeb95652016-05-26 20:56:38 +00004802 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
4803 ** that might invalidate the cursor.
4804 ** If this where not the case, on of the following assert()s
drhc22284f2014-10-13 16:02:20 +00004805 ** would fail. Should this ever change (because of changes in the code
4806 ** generator) then the fix would be to insert a call to
4807 ** sqlite3VdbeCursorMoveto().
drh9a65f2c2009-06-22 19:05:40 +00004808 */
4809 assert( pC->deferredMoveto==0 );
drhc22284f2014-10-13 16:02:20 +00004810 assert( sqlite3BtreeCursorIsValid(pCrsr) );
4811#if 0 /* Not required due to the previous to assert() statements */
drhde4fcfd2008-01-19 23:50:26 +00004812 rc = sqlite3VdbeCursorMoveto(pC);
drhc22284f2014-10-13 16:02:20 +00004813 if( rc!=SQLITE_OK ) goto abort_due_to_error;
4814#endif
drh9a65f2c2009-06-22 19:05:40 +00004815
drha7c90c42016-06-04 20:37:10 +00004816 n = sqlite3BtreePayloadSize(pCrsr);
drhd66c4f82016-06-04 20:58:35 +00004817 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
drha7c90c42016-06-04 20:37:10 +00004818 goto too_big;
drhde4fcfd2008-01-19 23:50:26 +00004819 }
drh722246e2014-10-07 23:02:24 +00004820 testcase( n==0 );
drhe7b554d2017-01-09 15:44:25 +00004821 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, n, pOut);
drh9467abf2016-02-17 18:44:11 +00004822 if( rc ) goto abort_due_to_error;
drhe7b554d2017-01-09 15:44:25 +00004823 if( !pOp->p3 ) Deephemeralize(pOut);
drhb7654112008-01-12 12:48:07 +00004824 UPDATE_MAX_BLOBSIZE(pOut);
drhee0ec8e2013-10-31 17:38:01 +00004825 REGISTER_TRACE(pOp->p2, pOut);
drh5e00f6c2001-09-13 13:46:56 +00004826 break;
4827}
4828
drh2133d822008-01-03 18:44:59 +00004829/* Opcode: Rowid P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00004830** Synopsis: r[P2]=rowid
drh5e00f6c2001-09-13 13:46:56 +00004831**
drh2133d822008-01-03 18:44:59 +00004832** Store in register P2 an integer which is the key of the table entry that
drhbfdc7542008-05-29 03:12:54 +00004833** P1 is currently point to.
drh044925b2009-04-22 17:15:02 +00004834**
4835** P1 can be either an ordinary table or a virtual table. There used to
4836** be a separate OP_VRowid opcode for use with virtual tables, but this
4837** one opcode now works for both table types.
drh5e00f6c2001-09-13 13:46:56 +00004838*/
drh27a348c2015-04-13 19:14:06 +00004839case OP_Rowid: { /* out2 */
drhdfe88ec2008-11-03 20:55:06 +00004840 VdbeCursor *pC;
drhf328bc82004-05-10 23:29:49 +00004841 i64 v;
drh856c1032009-06-02 15:21:42 +00004842 sqlite3_vtab *pVtab;
4843 const sqlite3_module *pModule;
drh5e00f6c2001-09-13 13:46:56 +00004844
drh27a348c2015-04-13 19:14:06 +00004845 pOut = out2Prerelease(p, pOp);
drh653b82a2009-06-22 11:10:47 +00004846 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4847 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004848 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00004849 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
drh044925b2009-04-22 17:15:02 +00004850 if( pC->nullRow ){
drh3c657212009-11-17 23:59:58 +00004851 pOut->flags = MEM_Null;
drh044925b2009-04-22 17:15:02 +00004852 break;
4853 }else if( pC->deferredMoveto ){
drh61495262009-04-22 15:32:59 +00004854 v = pC->movetoTarget;
drh044925b2009-04-22 17:15:02 +00004855#ifndef SQLITE_OMIT_VIRTUALTABLE
drhc960dcb2015-11-20 19:22:01 +00004856 }else if( pC->eCurType==CURTYPE_VTAB ){
4857 assert( pC->uc.pVCur!=0 );
4858 pVtab = pC->uc.pVCur->pVtab;
drh044925b2009-04-22 17:15:02 +00004859 pModule = pVtab->pModule;
4860 assert( pModule->xRowid );
drhc960dcb2015-11-20 19:22:01 +00004861 rc = pModule->xRowid(pC->uc.pVCur, &v);
dan016f7812013-08-21 17:35:48 +00004862 sqlite3VtabImportErrmsg(p, pVtab);
drh9467abf2016-02-17 18:44:11 +00004863 if( rc ) goto abort_due_to_error;
drh044925b2009-04-22 17:15:02 +00004864#endif /* SQLITE_OMIT_VIRTUALTABLE */
drh70ce3f02003-04-15 19:22:22 +00004865 }else{
drhc960dcb2015-11-20 19:22:01 +00004866 assert( pC->eCurType==CURTYPE_BTREE );
4867 assert( pC->uc.pCursor!=0 );
drhc22284f2014-10-13 16:02:20 +00004868 rc = sqlite3VdbeCursorRestore(pC);
drh61495262009-04-22 15:32:59 +00004869 if( rc ) goto abort_due_to_error;
dan2b8669a2014-11-17 19:42:48 +00004870 if( pC->nullRow ){
4871 pOut->flags = MEM_Null;
4872 break;
4873 }
drha7c90c42016-06-04 20:37:10 +00004874 v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
drh5e00f6c2001-09-13 13:46:56 +00004875 }
drh4c583122008-01-04 22:01:03 +00004876 pOut->u.i = v;
drh5e00f6c2001-09-13 13:46:56 +00004877 break;
4878}
4879
drh9cbf3422008-01-17 16:22:13 +00004880/* Opcode: NullRow P1 * * * *
drh17f71932002-02-21 12:01:27 +00004881**
4882** Move the cursor P1 to a null row. Any OP_Column operations
drh9cbf3422008-01-17 16:22:13 +00004883** that occur while the cursor is on the null row will always
4884** write a NULL.
drh17f71932002-02-21 12:01:27 +00004885*/
drh9cbf3422008-01-17 16:22:13 +00004886case OP_NullRow: {
drhdfe88ec2008-11-03 20:55:06 +00004887 VdbeCursor *pC;
drh17f71932002-02-21 12:01:27 +00004888
drh653b82a2009-06-22 11:10:47 +00004889 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4890 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004891 assert( pC!=0 );
drhd7556d22004-05-14 21:59:40 +00004892 pC->nullRow = 1;
drh399af1d2013-11-20 17:25:55 +00004893 pC->cacheStatus = CACHE_STALE;
drhc960dcb2015-11-20 19:22:01 +00004894 if( pC->eCurType==CURTYPE_BTREE ){
4895 assert( pC->uc.pCursor!=0 );
4896 sqlite3BtreeClearCursor(pC->uc.pCursor);
danielk1977be51a652008-10-08 17:58:48 +00004897 }
drh17f71932002-02-21 12:01:27 +00004898 break;
4899}
4900
drh86b40df2017-08-01 19:53:43 +00004901/* Opcode: SeekEnd P1 * * * *
4902**
4903** Position cursor P1 at the end of the btree for the purpose of
4904** appending a new entry onto the btree.
4905**
4906** It is assumed that the cursor is used only for appending and so
4907** if the cursor is valid, then the cursor must already be pointing
4908** at the end of the btree and so no changes are made to
4909** the cursor.
4910*/
4911/* Opcode: Last P1 P2 * * *
drh9562b552002-02-19 15:00:07 +00004912**
drh8af3f772014-07-25 18:01:06 +00004913** The next use of the Rowid or Column or Prev instruction for P1
drh9562b552002-02-19 15:00:07 +00004914** will refer to the last entry in the database table or index.
4915** If the table or index is empty and P2>0, then jump immediately to P2.
4916** If P2 is 0 or if the table or index is not empty, fall through
4917** to the following instruction.
drh8af3f772014-07-25 18:01:06 +00004918**
4919** This opcode leaves the cursor configured to move in reverse order,
4920** from the end toward the beginning. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00004921** configured to use Prev, not Next.
drh9562b552002-02-19 15:00:07 +00004922*/
drh86b40df2017-08-01 19:53:43 +00004923case OP_SeekEnd:
drh9cbf3422008-01-17 16:22:13 +00004924case OP_Last: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00004925 VdbeCursor *pC;
drh9562b552002-02-19 15:00:07 +00004926 BtCursor *pCrsr;
drha05a7222008-01-19 03:35:58 +00004927 int res;
drh9562b552002-02-19 15:00:07 +00004928
drh653b82a2009-06-22 11:10:47 +00004929 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4930 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00004931 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00004932 assert( pC->eCurType==CURTYPE_BTREE );
4933 pCrsr = pC->uc.pCursor;
drh7abc5402011-10-22 21:00:46 +00004934 res = 0;
drh3da046d2013-11-11 03:24:11 +00004935 assert( pCrsr!=0 );
drh8af3f772014-07-25 18:01:06 +00004936#ifdef SQLITE_DEBUG
drh86b40df2017-08-01 19:53:43 +00004937 pC->seekOp = pOp->opcode;
drh8af3f772014-07-25 18:01:06 +00004938#endif
drh86b40df2017-08-01 19:53:43 +00004939 if( pOp->opcode==OP_SeekEnd ){
drhd6ef5af2016-11-15 04:00:24 +00004940 assert( pOp->p2==0 );
drh86b40df2017-08-01 19:53:43 +00004941 pC->seekResult = -1;
4942 if( sqlite3BtreeCursorIsValidNN(pCrsr) ){
4943 break;
4944 }
4945 }
4946 rc = sqlite3BtreeLast(pCrsr, &res);
4947 pC->nullRow = (u8)res;
4948 pC->deferredMoveto = 0;
4949 pC->cacheStatus = CACHE_STALE;
4950 if( rc ) goto abort_due_to_error;
4951 if( pOp->p2>0 ){
4952 VdbeBranchTaken(res!=0,2);
4953 if( res ) goto jump_to_p2;
drh9562b552002-02-19 15:00:07 +00004954 }
4955 break;
4956}
4957
drh5e98e832017-02-17 19:24:06 +00004958/* Opcode: IfSmaller P1 P2 P3 * *
4959**
4960** Estimate the number of rows in the table P1. Jump to P2 if that
4961** estimate is less than approximately 2**(0.1*P3).
4962*/
4963case OP_IfSmaller: { /* jump */
4964 VdbeCursor *pC;
4965 BtCursor *pCrsr;
4966 int res;
4967 i64 sz;
4968
4969 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4970 pC = p->apCsr[pOp->p1];
4971 assert( pC!=0 );
4972 pCrsr = pC->uc.pCursor;
4973 assert( pCrsr );
4974 rc = sqlite3BtreeFirst(pCrsr, &res);
4975 if( rc ) goto abort_due_to_error;
4976 if( res==0 ){
4977 sz = sqlite3BtreeRowCountEst(pCrsr);
4978 if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1;
4979 }
4980 VdbeBranchTaken(res!=0,2);
4981 if( res ) goto jump_to_p2;
4982 break;
4983}
4984
drh0342b1f2005-09-01 03:07:44 +00004985
drh6bd4dc62016-12-23 16:05:22 +00004986/* Opcode: SorterSort P1 P2 * * *
4987**
4988** After all records have been inserted into the Sorter object
4989** identified by P1, invoke this opcode to actually do the sorting.
4990** Jump to P2 if there are no records to be sorted.
4991**
4992** This opcode is an alias for OP_Sort and OP_Rewind that is used
4993** for Sorter objects.
4994*/
drh9cbf3422008-01-17 16:22:13 +00004995/* Opcode: Sort P1 P2 * * *
drh0342b1f2005-09-01 03:07:44 +00004996**
4997** This opcode does exactly the same thing as OP_Rewind except that
4998** it increments an undocumented global variable used for testing.
4999**
5000** Sorting is accomplished by writing records into a sorting index,
5001** then rewinding that index and playing it back from beginning to
5002** end. We use the OP_Sort opcode instead of OP_Rewind to do the
5003** rewinding so that the global variable will be incremented and
5004** regression tests can determine whether or not the optimizer is
5005** correctly optimizing out sorts.
5006*/
drhc6aff302011-09-01 15:32:47 +00005007case OP_SorterSort: /* jump */
drh9cbf3422008-01-17 16:22:13 +00005008case OP_Sort: { /* jump */
drh0f7eb612006-08-08 13:51:43 +00005009#ifdef SQLITE_TEST
drh0342b1f2005-09-01 03:07:44 +00005010 sqlite3_sort_count++;
drh4db38a72005-09-01 12:16:28 +00005011 sqlite3_search_count--;
drh0f7eb612006-08-08 13:51:43 +00005012#endif
drh9b47ee32013-08-20 03:13:51 +00005013 p->aCounter[SQLITE_STMTSTATUS_SORT]++;
drh0342b1f2005-09-01 03:07:44 +00005014 /* Fall through into OP_Rewind */
5015}
drh9cbf3422008-01-17 16:22:13 +00005016/* Opcode: Rewind P1 P2 * * *
drh5e00f6c2001-09-13 13:46:56 +00005017**
drhf0863fe2005-06-12 21:35:51 +00005018** The next use of the Rowid or Column or Next instruction for P1
drh8721ce42001-11-07 14:22:00 +00005019** will refer to the first entry in the database table or index.
dan04489b62014-10-31 20:11:32 +00005020** If the table or index is empty, jump immediately to P2.
5021** If the table or index is not empty, fall through to the following
5022** instruction.
drh8af3f772014-07-25 18:01:06 +00005023**
5024** This opcode leaves the cursor configured to move in forward order,
drh4ed2fb92014-08-14 13:06:25 +00005025** from the beginning toward the end. In other words, the cursor is
drh5dad9a32014-07-25 18:37:42 +00005026** configured to use Next, not Prev.
drh5e00f6c2001-09-13 13:46:56 +00005027*/
drh9cbf3422008-01-17 16:22:13 +00005028case OP_Rewind: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00005029 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00005030 BtCursor *pCrsr;
drhf4dada72004-05-11 09:57:35 +00005031 int res;
drh5e00f6c2001-09-13 13:46:56 +00005032
drh653b82a2009-06-22 11:10:47 +00005033 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5034 pC = p->apCsr[pOp->p1];
drh4774b132004-06-12 20:12:51 +00005035 assert( pC!=0 );
drh14da87f2013-11-20 21:51:33 +00005036 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
dan2411dea2010-07-03 05:56:09 +00005037 res = 1;
drh8af3f772014-07-25 18:01:06 +00005038#ifdef SQLITE_DEBUG
5039 pC->seekOp = OP_Rewind;
5040#endif
dan689ab892011-08-12 15:02:00 +00005041 if( isSorter(pC) ){
drh958d2612014-04-18 13:40:07 +00005042 rc = sqlite3VdbeSorterRewind(pC, &res);
dana205a482011-08-27 18:48:57 +00005043 }else{
drhc960dcb2015-11-20 19:22:01 +00005044 assert( pC->eCurType==CURTYPE_BTREE );
5045 pCrsr = pC->uc.pCursor;
dana205a482011-08-27 18:48:57 +00005046 assert( pCrsr );
danielk19774adee202004-05-08 08:23:19 +00005047 rc = sqlite3BtreeFirst(pCrsr, &res);
drha11846b2004-01-07 18:52:56 +00005048 pC->deferredMoveto = 0;
drh76873ab2006-01-07 18:48:26 +00005049 pC->cacheStatus = CACHE_STALE;
drhf4dada72004-05-11 09:57:35 +00005050 }
drh9467abf2016-02-17 18:44:11 +00005051 if( rc ) goto abort_due_to_error;
drh9c1905f2008-12-10 22:32:56 +00005052 pC->nullRow = (u8)res;
drha05a7222008-01-19 03:35:58 +00005053 assert( pOp->p2>0 && pOp->p2<p->nOp );
drh688852a2014-02-17 22:40:43 +00005054 VdbeBranchTaken(res!=0,2);
drhf56fa462015-04-13 21:39:54 +00005055 if( res ) goto jump_to_p2;
drh5e00f6c2001-09-13 13:46:56 +00005056 break;
5057}
5058
drh0fd61352014-02-07 02:29:45 +00005059/* Opcode: Next P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00005060**
5061** Advance cursor P1 so that it points to the next key/data pair in its
drh8721ce42001-11-07 14:22:00 +00005062** table or index. If there are no more key/value pairs then fall through
5063** to the following instruction. But if the cursor advance was successful,
5064** jump immediately to P2.
drhc045ec52002-12-04 20:01:06 +00005065**
drh5dad9a32014-07-25 18:37:42 +00005066** The Next opcode is only valid following an SeekGT, SeekGE, or
5067** OP_Rewind opcode used to position the cursor. Next is not allowed
5068** to follow SeekLT, SeekLE, or OP_Last.
drh8af3f772014-07-25 18:01:06 +00005069**
drhf93cd942013-11-21 03:12:25 +00005070** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
5071** been opened prior to this opcode or the program will segfault.
drh60a713c2008-01-21 16:22:45 +00005072**
drhe39a7322014-02-03 14:04:11 +00005073** The P3 value is a hint to the btree implementation. If P3==1, that
5074** means P1 is an SQL index and that this instruction could have been
5075** omitted if that index had been unique. P3 is usually 0. P3 is
5076** always either 0 or 1.
5077**
dana205a482011-08-27 18:48:57 +00005078** P4 is always of type P4_ADVANCE. The function pointer points to
5079** sqlite3BtreeNext().
5080**
drhafc266a2010-03-31 17:47:44 +00005081** If P5 is positive and the jump is taken, then event counter
5082** number P5-1 in the prepared statement is incremented.
5083**
drhf93cd942013-11-21 03:12:25 +00005084** See also: Prev, NextIfOpen
5085*/
drh0fd61352014-02-07 02:29:45 +00005086/* Opcode: NextIfOpen P1 P2 P3 P4 P5
drhf93cd942013-11-21 03:12:25 +00005087**
drh5dad9a32014-07-25 18:37:42 +00005088** This opcode works just like Next except that if cursor P1 is not
drhf93cd942013-11-21 03:12:25 +00005089** open it behaves a no-op.
drh8721ce42001-11-07 14:22:00 +00005090*/
drh0fd61352014-02-07 02:29:45 +00005091/* Opcode: Prev P1 P2 P3 P4 P5
drhc045ec52002-12-04 20:01:06 +00005092**
5093** Back up cursor P1 so that it points to the previous key/data pair in its
5094** table or index. If there is no previous key/value pairs then fall through
5095** to the following instruction. But if the cursor backup was successful,
5096** jump immediately to P2.
drh60a713c2008-01-21 16:22:45 +00005097**
drh8af3f772014-07-25 18:01:06 +00005098**
drh5dad9a32014-07-25 18:37:42 +00005099** The Prev opcode is only valid following an SeekLT, SeekLE, or
5100** OP_Last opcode used to position the cursor. Prev is not allowed
5101** to follow SeekGT, SeekGE, or OP_Rewind.
drh8af3f772014-07-25 18:01:06 +00005102**
drhf93cd942013-11-21 03:12:25 +00005103** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
5104** not open then the behavior is undefined.
drhafc266a2010-03-31 17:47:44 +00005105**
drhe39a7322014-02-03 14:04:11 +00005106** The P3 value is a hint to the btree implementation. If P3==1, that
5107** means P1 is an SQL index and that this instruction could have been
5108** omitted if that index had been unique. P3 is usually 0. P3 is
5109** always either 0 or 1.
5110**
dana205a482011-08-27 18:48:57 +00005111** P4 is always of type P4_ADVANCE. The function pointer points to
5112** sqlite3BtreePrevious().
5113**
drhafc266a2010-03-31 17:47:44 +00005114** If P5 is positive and the jump is taken, then event counter
5115** number P5-1 in the prepared statement is incremented.
drhc045ec52002-12-04 20:01:06 +00005116*/
drh0fd61352014-02-07 02:29:45 +00005117/* Opcode: PrevIfOpen P1 P2 P3 P4 P5
drhf93cd942013-11-21 03:12:25 +00005118**
drh5dad9a32014-07-25 18:37:42 +00005119** This opcode works just like Prev except that if cursor P1 is not
drhf93cd942013-11-21 03:12:25 +00005120** open it behaves a no-op.
5121*/
drh6bd4dc62016-12-23 16:05:22 +00005122/* Opcode: SorterNext P1 P2 * * P5
5123**
5124** This opcode works just like OP_Next except that P1 must be a
5125** sorter object for which the OP_SorterSort opcode has been
5126** invoked. This opcode advances the cursor to the next sorted
5127** record, or jumps to P2 if there are no more sorted records.
5128*/
drhf93cd942013-11-21 03:12:25 +00005129case OP_SorterNext: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00005130 VdbeCursor *pC;
drh8721ce42001-11-07 14:22:00 +00005131
drhf93cd942013-11-21 03:12:25 +00005132 pC = p->apCsr[pOp->p1];
5133 assert( isSorter(pC) );
drh2ab792e2017-05-30 18:34:07 +00005134 rc = sqlite3VdbeSorterNext(db, pC);
drhf93cd942013-11-21 03:12:25 +00005135 goto next_tail;
5136case OP_PrevIfOpen: /* jump */
5137case OP_NextIfOpen: /* jump */
5138 if( p->apCsr[pOp->p1]==0 ) break;
5139 /* Fall through */
5140case OP_Prev: /* jump */
5141case OP_Next: /* jump */
drh70ce3f02003-04-15 19:22:22 +00005142 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
drh9b47ee32013-08-20 03:13:51 +00005143 assert( pOp->p5<ArraySize(p->aCounter) );
drhd7556d22004-05-14 21:59:40 +00005144 pC = p->apCsr[pOp->p1];
drhf93cd942013-11-21 03:12:25 +00005145 assert( pC!=0 );
5146 assert( pC->deferredMoveto==0 );
drhc960dcb2015-11-20 19:22:01 +00005147 assert( pC->eCurType==CURTYPE_BTREE );
drhf93cd942013-11-21 03:12:25 +00005148 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
5149 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
5150 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
5151 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
drh8af3f772014-07-25 18:01:06 +00005152
5153 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
5154 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
5155 assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
5156 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
drhcefc87f2014-08-01 01:40:33 +00005157 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
drh8af3f772014-07-25 18:01:06 +00005158 assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
5159 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
5160 || pC->seekOp==OP_Last );
5161
drh2ab792e2017-05-30 18:34:07 +00005162 rc = pOp->p4.xAdvance(pC->uc.pCursor, pOp->p3);
drhf93cd942013-11-21 03:12:25 +00005163next_tail:
drha3460582008-07-11 21:02:53 +00005164 pC->cacheStatus = CACHE_STALE;
drh2ab792e2017-05-30 18:34:07 +00005165 VdbeBranchTaken(rc==SQLITE_OK,2);
5166 if( rc==SQLITE_OK ){
drhf93cd942013-11-21 03:12:25 +00005167 pC->nullRow = 0;
drh9b47ee32013-08-20 03:13:51 +00005168 p->aCounter[pOp->p5]++;
drh0f7eb612006-08-08 13:51:43 +00005169#ifdef SQLITE_TEST
drha3460582008-07-11 21:02:53 +00005170 sqlite3_search_count++;
drh0f7eb612006-08-08 13:51:43 +00005171#endif
drhf56fa462015-04-13 21:39:54 +00005172 goto jump_to_p2_and_check_for_interrupt;
drh8721ce42001-11-07 14:22:00 +00005173 }
drh2ab792e2017-05-30 18:34:07 +00005174 if( rc!=SQLITE_DONE ) goto abort_due_to_error;
5175 rc = SQLITE_OK;
5176 pC->nullRow = 1;
drh49afe3a2013-07-10 03:05:14 +00005177 goto check_for_interrupt;
drh8721ce42001-11-07 14:22:00 +00005178}
5179
drh9b4eaeb2016-11-09 00:10:33 +00005180/* Opcode: IdxInsert P1 P2 P3 P4 P5
drh81316f82013-10-29 20:40:47 +00005181** Synopsis: key=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00005182**
drhef8662b2011-06-20 21:47:58 +00005183** Register P2 holds an SQL index key made using the
drh9437bd22009-02-01 00:29:56 +00005184** MakeRecord instructions. This opcode writes that key
drhee32e0a2006-01-10 19:45:49 +00005185** into the index P1. Data for the entry is nil.
drh717e6402001-09-27 03:22:32 +00005186**
drhfb8c56f2016-11-09 01:19:25 +00005187** If P4 is not zero, then it is the number of values in the unpacked
drh9b4eaeb2016-11-09 00:10:33 +00005188** key of reg(P2). In that case, P3 is the index of the first register
5189** for the unpacked key. The availability of the unpacked key can sometimes
5190** be an optimization.
5191**
5192** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
5193** that this insert is likely to be an append.
drhe4d90812007-03-29 05:51:49 +00005194**
mistachkin21a919f2014-02-07 03:28:02 +00005195** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
5196** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
5197** then the change counter is unchanged.
drh0fd61352014-02-07 02:29:45 +00005198**
drheaf6ae22016-11-09 20:14:34 +00005199** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
5200** run faster by avoiding an unnecessary seek on cursor P1. However,
5201** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
5202** seeks on the cursor or if the most recent seek used a key equivalent
5203** to P2.
drh0fd61352014-02-07 02:29:45 +00005204**
drhf0863fe2005-06-12 21:35:51 +00005205** This instruction only works for indices. The equivalent instruction
5206** for tables is OP_Insert.
drh5e00f6c2001-09-13 13:46:56 +00005207*/
drhf013e202016-10-15 18:37:05 +00005208/* Opcode: SorterInsert P1 P2 * * *
5209** Synopsis: key=r[P2]
5210**
5211** Register P2 holds an SQL index key made using the
5212** MakeRecord instructions. This opcode writes that key
5213** into the sorter P1. Data for the entry is nil.
5214*/
drhca892a72011-09-03 00:17:51 +00005215case OP_SorterInsert: /* in2 */
drh9cbf3422008-01-17 16:22:13 +00005216case OP_IdxInsert: { /* in2 */
drhdfe88ec2008-11-03 20:55:06 +00005217 VdbeCursor *pC;
drh8eeb4462016-05-21 20:03:42 +00005218 BtreePayload x;
drh856c1032009-06-02 15:21:42 +00005219
drh653b82a2009-06-22 11:10:47 +00005220 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5221 pC = p->apCsr[pOp->p1];
drh4031baf2018-05-28 17:31:20 +00005222 sqlite3VdbeIncrWriteCounter(p, pC);
drh653b82a2009-06-22 11:10:47 +00005223 assert( pC!=0 );
drh14da87f2013-11-20 21:51:33 +00005224 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
drh3c657212009-11-17 23:59:58 +00005225 pIn2 = &aMem[pOp->p2];
drhaa9b8962008-01-08 02:57:55 +00005226 assert( pIn2->flags & MEM_Blob );
drh6546af12013-11-04 15:23:25 +00005227 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
drhc960dcb2015-11-20 19:22:01 +00005228 assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert );
drh3da046d2013-11-11 03:24:11 +00005229 assert( pC->isTable==0 );
5230 rc = ExpandBlob(pIn2);
drh9467abf2016-02-17 18:44:11 +00005231 if( rc ) goto abort_due_to_error;
5232 if( pOp->opcode==OP_SorterInsert ){
5233 rc = sqlite3VdbeSorterWrite(pC, pIn2);
5234 }else{
drh8eeb4462016-05-21 20:03:42 +00005235 x.nKey = pIn2->n;
5236 x.pKey = pIn2->z;
drh9b4eaeb2016-11-09 00:10:33 +00005237 x.aMem = aMem + pOp->p3;
5238 x.nMem = (u16)pOp->p4.i;
5239 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
danf91c1312017-01-10 20:04:38 +00005240 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION)),
drh9467abf2016-02-17 18:44:11 +00005241 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
5242 );
5243 assert( pC->deferredMoveto==0 );
5244 pC->cacheStatus = CACHE_STALE;
drh5e00f6c2001-09-13 13:46:56 +00005245 }
drh9467abf2016-02-17 18:44:11 +00005246 if( rc) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00005247 break;
5248}
5249
drhd1d38482008-10-07 23:46:38 +00005250/* Opcode: IdxDelete P1 P2 P3 * *
drhf63552b2013-10-30 00:25:03 +00005251** Synopsis: key=r[P2@P3]
drh5e00f6c2001-09-13 13:46:56 +00005252**
drhe14006d2008-03-25 17:23:32 +00005253** The content of P3 registers starting at register P2 form
5254** an unpacked index key. This opcode removes that entry from the
danielk1977a7a8e142008-02-13 18:25:27 +00005255** index opened by cursor P1.
drh5e00f6c2001-09-13 13:46:56 +00005256*/
drhe14006d2008-03-25 17:23:32 +00005257case OP_IdxDelete: {
drhdfe88ec2008-11-03 20:55:06 +00005258 VdbeCursor *pC;
drh5e00f6c2001-09-13 13:46:56 +00005259 BtCursor *pCrsr;
drh9a65f2c2009-06-22 19:05:40 +00005260 int res;
5261 UnpackedRecord r;
drh856c1032009-06-02 15:21:42 +00005262
drhe14006d2008-03-25 17:23:32 +00005263 assert( pOp->p3>0 );
drh9f6168b2016-03-19 23:32:58 +00005264 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
drh653b82a2009-06-22 11:10:47 +00005265 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5266 pC = p->apCsr[pOp->p1];
5267 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00005268 assert( pC->eCurType==CURTYPE_BTREE );
drh4031baf2018-05-28 17:31:20 +00005269 sqlite3VdbeIncrWriteCounter(p, pC);
drhc960dcb2015-11-20 19:22:01 +00005270 pCrsr = pC->uc.pCursor;
drh3da046d2013-11-11 03:24:11 +00005271 assert( pCrsr!=0 );
drh4308e342013-11-11 16:55:52 +00005272 assert( pOp->p5==0 );
drh3da046d2013-11-11 03:24:11 +00005273 r.pKeyInfo = pC->pKeyInfo;
5274 r.nField = (u16)pOp->p3;
dan1fed5da2014-02-25 21:01:25 +00005275 r.default_rc = 0;
drh3da046d2013-11-11 03:24:11 +00005276 r.aMem = &aMem[pOp->p2];
drh3da046d2013-11-11 03:24:11 +00005277 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
drh9467abf2016-02-17 18:44:11 +00005278 if( rc ) goto abort_due_to_error;
5279 if( res==0 ){
dane61bbf42016-01-28 17:06:17 +00005280 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
drh9467abf2016-02-17 18:44:11 +00005281 if( rc ) goto abort_due_to_error;
drh5e00f6c2001-09-13 13:46:56 +00005282 }
drh3da046d2013-11-11 03:24:11 +00005283 assert( pC->deferredMoveto==0 );
5284 pC->cacheStatus = CACHE_STALE;
dan3b908d42016-11-08 19:22:32 +00005285 pC->seekResult = 0;
drh5e00f6c2001-09-13 13:46:56 +00005286 break;
5287}
5288
drh170ad682017-06-02 15:44:22 +00005289/* Opcode: DeferredSeek P1 * P3 P4 *
5290** Synopsis: Move P3 to P1.rowid if needed
drh784c1b92016-01-30 16:59:56 +00005291**
5292** P1 is an open index cursor and P3 is a cursor on the corresponding
5293** table. This opcode does a deferred seek of the P3 table cursor
5294** to the row that corresponds to the current row of P1.
5295**
5296** This is a deferred seek. Nothing actually happens until
5297** the cursor is used to read a record. That way, if no reads
5298** occur, no unnecessary I/O happens.
5299**
5300** P4 may be an array of integers (type P4_INTARRAY) containing
drh19d720d2016-02-03 19:52:06 +00005301** one entry for each column in the P3 table. If array entry a(i)
5302** is non-zero, then reading column a(i)-1 from cursor P3 is
drh784c1b92016-01-30 16:59:56 +00005303** equivalent to performing the deferred seek and then reading column i
5304** from P1. This information is stored in P3 and used to redirect
5305** reads against P3 over to P1, thus possibly avoiding the need to
5306** seek and read cursor P3.
5307*/
drh2133d822008-01-03 18:44:59 +00005308/* Opcode: IdxRowid P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00005309** Synopsis: r[P2]=rowid
drh8721ce42001-11-07 14:22:00 +00005310**
drh2133d822008-01-03 18:44:59 +00005311** Write into register P2 an integer which is the last entry in the record at
drhf0863fe2005-06-12 21:35:51 +00005312** the end of the index key pointed to by cursor P1. This integer should be
5313** the rowid of the table entry to which this index entry points.
drh8721ce42001-11-07 14:22:00 +00005314**
drh9437bd22009-02-01 00:29:56 +00005315** See also: Rowid, MakeRecord.
drh8721ce42001-11-07 14:22:00 +00005316*/
drh170ad682017-06-02 15:44:22 +00005317case OP_DeferredSeek:
5318case OP_IdxRowid: { /* out2 */
5319 VdbeCursor *pC; /* The P1 index cursor */
5320 VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */
5321 i64 rowid; /* Rowid that P1 current points to */
drh8721ce42001-11-07 14:22:00 +00005322
drh653b82a2009-06-22 11:10:47 +00005323 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5324 pC = p->apCsr[pOp->p1];
5325 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00005326 assert( pC->eCurType==CURTYPE_BTREE );
drh784c1b92016-01-30 16:59:56 +00005327 assert( pC->uc.pCursor!=0 );
drh3da046d2013-11-11 03:24:11 +00005328 assert( pC->isTable==0 );
drhc22284f2014-10-13 16:02:20 +00005329 assert( pC->deferredMoveto==0 );
drh784c1b92016-01-30 16:59:56 +00005330 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
5331
5332 /* The IdxRowid and Seek opcodes are combined because of the commonality
5333 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
5334 rc = sqlite3VdbeCursorRestore(pC);
drhc22284f2014-10-13 16:02:20 +00005335
5336 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
drh784c1b92016-01-30 16:59:56 +00005337 ** out from under the cursor. That will never happens for an IdxRowid
5338 ** or Seek opcode */
drhc22284f2014-10-13 16:02:20 +00005339 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
5340
drh3da046d2013-11-11 03:24:11 +00005341 if( !pC->nullRow ){
drh2dc06482013-12-11 00:59:10 +00005342 rowid = 0; /* Not needed. Only used to silence a warning. */
drh784c1b92016-01-30 16:59:56 +00005343 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
drh3da046d2013-11-11 03:24:11 +00005344 if( rc!=SQLITE_OK ){
5345 goto abort_due_to_error;
danielk19773d1bfea2004-05-14 11:00:53 +00005346 }
drh170ad682017-06-02 15:44:22 +00005347 if( pOp->opcode==OP_DeferredSeek ){
drh784c1b92016-01-30 16:59:56 +00005348 assert( pOp->p3>=0 && pOp->p3<p->nCursor );
5349 pTabCur = p->apCsr[pOp->p3];
5350 assert( pTabCur!=0 );
5351 assert( pTabCur->eCurType==CURTYPE_BTREE );
5352 assert( pTabCur->uc.pCursor!=0 );
5353 assert( pTabCur->isTable );
5354 pTabCur->nullRow = 0;
5355 pTabCur->movetoTarget = rowid;
5356 pTabCur->deferredMoveto = 1;
5357 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
5358 pTabCur->aAltMap = pOp->p4.ai;
5359 pTabCur->pAltCursor = pC;
5360 }else{
5361 pOut = out2Prerelease(p, pOp);
5362 pOut->u.i = rowid;
drh784c1b92016-01-30 16:59:56 +00005363 }
5364 }else{
5365 assert( pOp->opcode==OP_IdxRowid );
5366 sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
drh8721ce42001-11-07 14:22:00 +00005367 }
5368 break;
5369}
5370
danielk197761dd5832008-04-18 11:31:12 +00005371/* Opcode: IdxGE P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00005372** Synopsis: key=r[P3@P4]
drh8721ce42001-11-07 14:22:00 +00005373**
danielk197761dd5832008-04-18 11:31:12 +00005374** The P4 register values beginning with P3 form an unpacked index
drh4a1d3652014-02-14 15:13:36 +00005375** key that omits the PRIMARY KEY. Compare this key value against the index
5376** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5377** fields at the end.
drhf3218fe2004-05-28 08:21:02 +00005378**
danielk197761dd5832008-04-18 11:31:12 +00005379** If the P1 index entry is greater than or equal to the key value
5380** then jump to P2. Otherwise fall through to the next instruction.
drh4a1d3652014-02-14 15:13:36 +00005381*/
5382/* Opcode: IdxGT P1 P2 P3 P4 P5
5383** Synopsis: key=r[P3@P4]
drh772ae622004-05-19 13:13:08 +00005384**
drh4a1d3652014-02-14 15:13:36 +00005385** The P4 register values beginning with P3 form an unpacked index
5386** key that omits the PRIMARY KEY. Compare this key value against the index
5387** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5388** fields at the end.
5389**
5390** If the P1 index entry is greater than the key value
5391** then jump to P2. Otherwise fall through to the next instruction.
drh8721ce42001-11-07 14:22:00 +00005392*/
drh3bb9b932010-08-06 02:10:00 +00005393/* Opcode: IdxLT P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00005394** Synopsis: key=r[P3@P4]
drhc045ec52002-12-04 20:01:06 +00005395**
danielk197761dd5832008-04-18 11:31:12 +00005396** The P4 register values beginning with P3 form an unpacked index
drh4a1d3652014-02-14 15:13:36 +00005397** key that omits the PRIMARY KEY or ROWID. Compare this key value against
5398** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5399** ROWID on the P1 index.
drhf3218fe2004-05-28 08:21:02 +00005400**
danielk197761dd5832008-04-18 11:31:12 +00005401** If the P1 index entry is less than the key value then jump to P2.
5402** Otherwise fall through to the next instruction.
drhc045ec52002-12-04 20:01:06 +00005403*/
drh4a1d3652014-02-14 15:13:36 +00005404/* Opcode: IdxLE P1 P2 P3 P4 P5
5405** Synopsis: key=r[P3@P4]
5406**
5407** The P4 register values beginning with P3 form an unpacked index
5408** key that omits the PRIMARY KEY or ROWID. Compare this key value against
5409** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5410** ROWID on the P1 index.
5411**
5412** If the P1 index entry is less than or equal to the key value then jump
5413** to P2. Otherwise fall through to the next instruction.
5414*/
5415case OP_IdxLE: /* jump */
5416case OP_IdxGT: /* jump */
drh93952eb2009-11-13 19:43:43 +00005417case OP_IdxLT: /* jump */
drh4a1d3652014-02-14 15:13:36 +00005418case OP_IdxGE: { /* jump */
drhdfe88ec2008-11-03 20:55:06 +00005419 VdbeCursor *pC;
drh856c1032009-06-02 15:21:42 +00005420 int res;
5421 UnpackedRecord r;
drh8721ce42001-11-07 14:22:00 +00005422
drh653b82a2009-06-22 11:10:47 +00005423 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5424 pC = p->apCsr[pOp->p1];
5425 assert( pC!=0 );
drhd4187c72010-08-30 22:15:45 +00005426 assert( pC->isOrdered );
drhc960dcb2015-11-20 19:22:01 +00005427 assert( pC->eCurType==CURTYPE_BTREE );
5428 assert( pC->uc.pCursor!=0);
drh3da046d2013-11-11 03:24:11 +00005429 assert( pC->deferredMoveto==0 );
5430 assert( pOp->p5==0 || pOp->p5==1 );
5431 assert( pOp->p4type==P4_INT32 );
5432 r.pKeyInfo = pC->pKeyInfo;
5433 r.nField = (u16)pOp->p4.i;
drh4a1d3652014-02-14 15:13:36 +00005434 if( pOp->opcode<OP_IdxLT ){
5435 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
dan1fed5da2014-02-25 21:01:25 +00005436 r.default_rc = -1;
drh3da046d2013-11-11 03:24:11 +00005437 }else{
drh4a1d3652014-02-14 15:13:36 +00005438 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
dan1fed5da2014-02-25 21:01:25 +00005439 r.default_rc = 0;
drh3da046d2013-11-11 03:24:11 +00005440 }
5441 r.aMem = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00005442#ifdef SQLITE_DEBUG
drh3da046d2013-11-11 03:24:11 +00005443 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
drh2b4ded92010-09-27 21:09:31 +00005444#endif
drh2dc06482013-12-11 00:59:10 +00005445 res = 0; /* Not needed. Only used to silence a warning. */
drhd3b74202014-09-17 16:41:15 +00005446 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
drh4a1d3652014-02-14 15:13:36 +00005447 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
5448 if( (pOp->opcode&1)==(OP_IdxLT&1) ){
5449 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
drh3da046d2013-11-11 03:24:11 +00005450 res = -res;
5451 }else{
drh4a1d3652014-02-14 15:13:36 +00005452 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
drh3da046d2013-11-11 03:24:11 +00005453 res++;
5454 }
drh688852a2014-02-17 22:40:43 +00005455 VdbeBranchTaken(res>0,2);
drh9467abf2016-02-17 18:44:11 +00005456 if( rc ) goto abort_due_to_error;
drhf56fa462015-04-13 21:39:54 +00005457 if( res>0 ) goto jump_to_p2;
drh8721ce42001-11-07 14:22:00 +00005458 break;
5459}
5460
drh98757152008-01-09 23:04:12 +00005461/* Opcode: Destroy P1 P2 P3 * *
drh5e00f6c2001-09-13 13:46:56 +00005462**
5463** Delete an entire database table or index whose root page in the database
5464** file is given by P1.
drhb19a2bc2001-09-16 00:13:26 +00005465**
drh98757152008-01-09 23:04:12 +00005466** The table being destroyed is in the main database file if P3==0. If
5467** P3==1 then the table to be clear is in the auxiliary database file
drhf57b3392001-10-08 13:22:32 +00005468** that is used to store tables create using CREATE TEMPORARY TABLE.
5469**
drh205f48e2004-11-05 00:43:11 +00005470** If AUTOVACUUM is enabled then it is possible that another root page
5471** might be moved into the newly deleted root page in order to keep all
5472** root pages contiguous at the beginning of the database. The former
5473** value of the root page that moved - its value before the move occurred -
dana34adaf2017-04-08 14:11:47 +00005474** is stored in register P2. If no page movement was required (because the
5475** table being dropped was already the last one in the database) then a
5476** zero is stored in register P2. If AUTOVACUUM is disabled then a zero
5477** is stored in register P2.
5478**
5479** This opcode throws an error if there are any active reader VMs when
5480** it is invoked. This is done to avoid the difficulty associated with
5481** updating existing cursors when a root page is moved in an AUTOVACUUM
5482** database. This error is thrown even if the database is not an AUTOVACUUM
5483** db in order to avoid introducing an incompatibility between autovacuum
5484** and non-autovacuum modes.
drh205f48e2004-11-05 00:43:11 +00005485**
drhb19a2bc2001-09-16 00:13:26 +00005486** See also: Clear
drh5e00f6c2001-09-13 13:46:56 +00005487*/
drh27a348c2015-04-13 19:14:06 +00005488case OP_Destroy: { /* out2 */
danielk1977a0bf2652004-11-04 14:30:04 +00005489 int iMoved;
drh856c1032009-06-02 15:21:42 +00005490 int iDb;
drh3a949872012-09-18 13:20:13 +00005491
drh4031baf2018-05-28 17:31:20 +00005492 sqlite3VdbeIncrWriteCounter(p, 0);
drh9e92a472013-06-27 17:40:30 +00005493 assert( p->readOnly==0 );
drh055f2982016-01-15 15:06:41 +00005494 assert( pOp->p1>1 );
drh27a348c2015-04-13 19:14:06 +00005495 pOut = out2Prerelease(p, pOp);
drh3c657212009-11-17 23:59:58 +00005496 pOut->flags = MEM_Null;
drh086723a2015-03-24 12:51:52 +00005497 if( db->nVdbeRead > db->nVDestroy+1 ){
danielk1977e6efa742004-11-10 11:55:10 +00005498 rc = SQLITE_LOCKED;
drh77658e22007-12-04 16:54:52 +00005499 p->errorAction = OE_Abort;
drh9467abf2016-02-17 18:44:11 +00005500 goto abort_due_to_error;
danielk1977e6efa742004-11-10 11:55:10 +00005501 }else{
drh856c1032009-06-02 15:21:42 +00005502 iDb = pOp->p3;
drha7ab6d82014-07-21 15:44:39 +00005503 assert( DbMaskTest(p->btreeMask, iDb) );
drh2dc06482013-12-11 00:59:10 +00005504 iMoved = 0; /* Not needed. Only to silence a warning. */
drh98757152008-01-09 23:04:12 +00005505 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
drh3c657212009-11-17 23:59:58 +00005506 pOut->flags = MEM_Int;
drh98757152008-01-09 23:04:12 +00005507 pOut->u.i = iMoved;
drh9467abf2016-02-17 18:44:11 +00005508 if( rc ) goto abort_due_to_error;
drh3765df42006-06-28 18:18:09 +00005509#ifndef SQLITE_OMIT_AUTOVACUUM
drh9467abf2016-02-17 18:44:11 +00005510 if( iMoved!=0 ){
drhcdf011d2011-04-04 21:25:28 +00005511 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
5512 /* All OP_Destroy operations occur on the same btree */
5513 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
5514 resetSchemaOnFault = iDb+1;
danielk1977e6efa742004-11-10 11:55:10 +00005515 }
drh3765df42006-06-28 18:18:09 +00005516#endif
danielk1977a0bf2652004-11-04 14:30:04 +00005517 }
drh5e00f6c2001-09-13 13:46:56 +00005518 break;
5519}
5520
danielk1977c7af4842008-10-27 13:59:33 +00005521/* Opcode: Clear P1 P2 P3
drh5edc3122001-09-13 21:53:09 +00005522**
5523** Delete all contents of the database table or index whose root page
drhb19a2bc2001-09-16 00:13:26 +00005524** in the database file is given by P1. But, unlike Destroy, do not
drh5edc3122001-09-13 21:53:09 +00005525** remove the table or index from the database file.
drhb19a2bc2001-09-16 00:13:26 +00005526**
drhf57b3392001-10-08 13:22:32 +00005527** The table being clear is in the main database file if P2==0. If
5528** P2==1 then the table to be clear is in the auxiliary database file
5529** that is used to store tables create using CREATE TEMPORARY TABLE.
5530**
shanebe217792009-03-05 04:20:31 +00005531** If the P3 value is non-zero, then the table referred to must be an
danielk1977c7af4842008-10-27 13:59:33 +00005532** intkey table (an SQL table, not an index). In this case the row change
5533** count is incremented by the number of rows in the table being cleared.
5534** If P3 is greater than zero, then the value stored in register P3 is
5535** also incremented by the number of rows in the table being cleared.
5536**
drhb19a2bc2001-09-16 00:13:26 +00005537** See also: Destroy
drh5edc3122001-09-13 21:53:09 +00005538*/
drh9cbf3422008-01-17 16:22:13 +00005539case OP_Clear: {
drh856c1032009-06-02 15:21:42 +00005540 int nChange;
5541
drh4031baf2018-05-28 17:31:20 +00005542 sqlite3VdbeIncrWriteCounter(p, 0);
drh856c1032009-06-02 15:21:42 +00005543 nChange = 0;
drh9e92a472013-06-27 17:40:30 +00005544 assert( p->readOnly==0 );
drha7ab6d82014-07-21 15:44:39 +00005545 assert( DbMaskTest(p->btreeMask, pOp->p2) );
danielk1977c7af4842008-10-27 13:59:33 +00005546 rc = sqlite3BtreeClearTable(
5547 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
5548 );
5549 if( pOp->p3 ){
5550 p->nChange += nChange;
5551 if( pOp->p3>0 ){
drh2b4ded92010-09-27 21:09:31 +00005552 assert( memIsValid(&aMem[pOp->p3]) );
5553 memAboutToChange(p, &aMem[pOp->p3]);
drha6c2ed92009-11-14 23:22:23 +00005554 aMem[pOp->p3].u.i += nChange;
danielk1977c7af4842008-10-27 13:59:33 +00005555 }
5556 }
drh9467abf2016-02-17 18:44:11 +00005557 if( rc ) goto abort_due_to_error;
drh5edc3122001-09-13 21:53:09 +00005558 break;
5559}
5560
drh65ea12c2014-03-19 17:41:36 +00005561/* Opcode: ResetSorter P1 * * * *
drh079a3072014-03-19 14:10:55 +00005562**
drh65ea12c2014-03-19 17:41:36 +00005563** Delete all contents from the ephemeral table or sorter
5564** that is open on cursor P1.
drh079a3072014-03-19 14:10:55 +00005565**
drh65ea12c2014-03-19 17:41:36 +00005566** This opcode only works for cursors used for sorting and
5567** opened with OP_OpenEphemeral or OP_SorterOpen.
drh079a3072014-03-19 14:10:55 +00005568*/
drh65ea12c2014-03-19 17:41:36 +00005569case OP_ResetSorter: {
drh079a3072014-03-19 14:10:55 +00005570 VdbeCursor *pC;
5571
5572 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5573 pC = p->apCsr[pOp->p1];
5574 assert( pC!=0 );
drhc960dcb2015-11-20 19:22:01 +00005575 if( isSorter(pC) ){
5576 sqlite3VdbeSorterReset(db, pC->uc.pSorter);
drh65ea12c2014-03-19 17:41:36 +00005577 }else{
drhc960dcb2015-11-20 19:22:01 +00005578 assert( pC->eCurType==CURTYPE_BTREE );
drh65ea12c2014-03-19 17:41:36 +00005579 assert( pC->isEphemeral );
drhc960dcb2015-11-20 19:22:01 +00005580 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
drh9467abf2016-02-17 18:44:11 +00005581 if( rc ) goto abort_due_to_error;
drh65ea12c2014-03-19 17:41:36 +00005582 }
drh079a3072014-03-19 14:10:55 +00005583 break;
5584}
5585
drh0f3f7662017-08-18 14:34:28 +00005586/* Opcode: CreateBtree P1 P2 P3 * *
5587** Synopsis: r[P2]=root iDb=P1 flags=P3
drh5b2fd562001-09-13 15:21:31 +00005588**
drh0f3f7662017-08-18 14:34:28 +00005589** Allocate a new b-tree in the main database file if P1==0 or in the
5590** TEMP database file if P1==1 or in an attached database if
5591** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
drh416a8012018-05-31 19:14:52 +00005592** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
drh0f3f7662017-08-18 14:34:28 +00005593** The root page number of the new b-tree is stored in register P2.
drh5b2fd562001-09-13 15:21:31 +00005594*/
drh0f3f7662017-08-18 14:34:28 +00005595case OP_CreateBtree: { /* out2 */
drh856c1032009-06-02 15:21:42 +00005596 int pgno;
drh234c39d2004-07-24 03:30:47 +00005597 Db *pDb;
drh856c1032009-06-02 15:21:42 +00005598
drh4031baf2018-05-28 17:31:20 +00005599 sqlite3VdbeIncrWriteCounter(p, 0);
drh27a348c2015-04-13 19:14:06 +00005600 pOut = out2Prerelease(p, pOp);
drh856c1032009-06-02 15:21:42 +00005601 pgno = 0;
drh0f3f7662017-08-18 14:34:28 +00005602 assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
drh234c39d2004-07-24 03:30:47 +00005603 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005604 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00005605 assert( p->readOnly==0 );
drh234c39d2004-07-24 03:30:47 +00005606 pDb = &db->aDb[pOp->p1];
5607 assert( pDb->pBt!=0 );
drh0f3f7662017-08-18 14:34:28 +00005608 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
drh9467abf2016-02-17 18:44:11 +00005609 if( rc ) goto abort_due_to_error;
drh88a003e2008-12-11 16:17:03 +00005610 pOut->u.i = pgno;
drh5b2fd562001-09-13 15:21:31 +00005611 break;
5612}
5613
drh4a54bb52017-02-18 15:58:52 +00005614/* Opcode: SqlExec * * * P4 *
5615**
5616** Run the SQL statement or statements specified in the P4 string.
5617*/
5618case OP_SqlExec: {
drh4031baf2018-05-28 17:31:20 +00005619 sqlite3VdbeIncrWriteCounter(p, 0);
drhbce04142017-02-23 00:58:36 +00005620 db->nSqlExec++;
drh4a54bb52017-02-18 15:58:52 +00005621 rc = sqlite3_exec(db, pOp->p4.z, 0, 0, 0);
drhbce04142017-02-23 00:58:36 +00005622 db->nSqlExec--;
drh4a54bb52017-02-18 15:58:52 +00005623 if( rc ) goto abort_due_to_error;
5624 break;
5625}
5626
drh22645842011-03-24 01:34:03 +00005627/* Opcode: ParseSchema P1 * * P4 *
drh234c39d2004-07-24 03:30:47 +00005628**
5629** Read and parse all entries from the SQLITE_MASTER table of database P1
drh22645842011-03-24 01:34:03 +00005630** that match the WHERE clause P4.
drh234c39d2004-07-24 03:30:47 +00005631**
5632** This opcode invokes the parser to create a new virtual machine,
shane21e7feb2008-05-30 15:59:49 +00005633** then runs the new virtual machine. It is thus a re-entrant opcode.
drh234c39d2004-07-24 03:30:47 +00005634*/
drh9cbf3422008-01-17 16:22:13 +00005635case OP_ParseSchema: {
drh856c1032009-06-02 15:21:42 +00005636 int iDb;
5637 const char *zMaster;
5638 char *zSql;
5639 InitData initData;
5640
drhbdaec522011-04-04 00:14:43 +00005641 /* Any prepared statement that invokes this opcode will hold mutexes
5642 ** on every btree. This is a prerequisite for invoking
5643 ** sqlite3InitCallback().
5644 */
5645#ifdef SQLITE_DEBUG
5646 for(iDb=0; iDb<db->nDb; iDb++){
5647 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
5648 }
5649#endif
drhbdaec522011-04-04 00:14:43 +00005650
drh856c1032009-06-02 15:21:42 +00005651 iDb = pOp->p1;
drh234c39d2004-07-24 03:30:47 +00005652 assert( iDb>=0 && iDb<db->nDb );
dan6c154872011-04-02 09:44:43 +00005653 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
drhbdaec522011-04-04 00:14:43 +00005654 /* Used to be a conditional */ {
drhe0a04a32016-12-16 01:00:21 +00005655 zMaster = MASTER_NAME;
danielk1977a8bbef82009-03-23 17:11:26 +00005656 initData.db = db;
5657 initData.iDb = pOp->p1;
5658 initData.pzErrMsg = &p->zErrMsg;
5659 zSql = sqlite3MPrintf(db,
drh6a9c64b2010-01-12 23:54:14 +00005660 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
drh69c33822016-08-18 14:33:11 +00005661 db->aDb[iDb].zDbSName, zMaster, pOp->p4.z);
danielk1977a8bbef82009-03-23 17:11:26 +00005662 if( zSql==0 ){
mistachkinfad30392016-02-13 23:43:46 +00005663 rc = SQLITE_NOMEM_BKPT;
danielk1977a8bbef82009-03-23 17:11:26 +00005664 }else{
danielk1977a8bbef82009-03-23 17:11:26 +00005665 assert( db->init.busy==0 );
5666 db->init.busy = 1;
5667 initData.rc = SQLITE_OK;
5668 assert( !db->mallocFailed );
5669 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
5670 if( rc==SQLITE_OK ) rc = initData.rc;
drhdbd6a7d2017-04-05 12:39:49 +00005671 sqlite3DbFreeNN(db, zSql);
danielk1977a8bbef82009-03-23 17:11:26 +00005672 db->init.busy = 0;
danielk1977a8bbef82009-03-23 17:11:26 +00005673 }
drh3c23a882007-01-09 14:01:13 +00005674 }
drh9467abf2016-02-17 18:44:11 +00005675 if( rc ){
5676 sqlite3ResetAllSchemasOfConnection(db);
5677 if( rc==SQLITE_NOMEM ){
5678 goto no_mem;
5679 }
5680 goto abort_due_to_error;
danielk1977261919c2005-12-06 12:52:59 +00005681 }
drh234c39d2004-07-24 03:30:47 +00005682 break;
5683}
5684
drh8bfdf722009-06-19 14:06:03 +00005685#if !defined(SQLITE_OMIT_ANALYZE)
drh98757152008-01-09 23:04:12 +00005686/* Opcode: LoadAnalysis P1 * * * *
drh497e4462005-07-23 03:18:40 +00005687**
5688** Read the sqlite_stat1 table for database P1 and load the content
5689** of that table into the internal index hash table. This will cause
5690** the analysis to be used when preparing all subsequent queries.
5691*/
drh9cbf3422008-01-17 16:22:13 +00005692case OP_LoadAnalysis: {
drh856c1032009-06-02 15:21:42 +00005693 assert( pOp->p1>=0 && pOp->p1<db->nDb );
5694 rc = sqlite3AnalysisLoad(db, pOp->p1);
drh9467abf2016-02-17 18:44:11 +00005695 if( rc ) goto abort_due_to_error;
drh497e4462005-07-23 03:18:40 +00005696 break;
5697}
drh8bfdf722009-06-19 14:06:03 +00005698#endif /* !defined(SQLITE_OMIT_ANALYZE) */
drh497e4462005-07-23 03:18:40 +00005699
drh98757152008-01-09 23:04:12 +00005700/* Opcode: DropTable P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005701**
5702** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005703** the table named P4 in database P1. This is called after a table
drh5dad9a32014-07-25 18:37:42 +00005704** is dropped from disk (using the Destroy opcode) in order to keep
5705** the internal representation of the
drh956bc922004-07-24 17:38:29 +00005706** schema consistent with what is on disk.
5707*/
drh9cbf3422008-01-17 16:22:13 +00005708case OP_DropTable: {
drh4031baf2018-05-28 17:31:20 +00005709 sqlite3VdbeIncrWriteCounter(p, 0);
danielk19772dca4ac2008-01-03 11:50:29 +00005710 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005711 break;
5712}
5713
drh98757152008-01-09 23:04:12 +00005714/* Opcode: DropIndex P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005715**
5716** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005717** the index named P4 in database P1. This is called after an index
drh5dad9a32014-07-25 18:37:42 +00005718** is dropped from disk (using the Destroy opcode)
5719** in order to keep the internal representation of the
drh956bc922004-07-24 17:38:29 +00005720** schema consistent with what is on disk.
5721*/
drh9cbf3422008-01-17 16:22:13 +00005722case OP_DropIndex: {
drh4031baf2018-05-28 17:31:20 +00005723 sqlite3VdbeIncrWriteCounter(p, 0);
danielk19772dca4ac2008-01-03 11:50:29 +00005724 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005725 break;
5726}
5727
drh98757152008-01-09 23:04:12 +00005728/* Opcode: DropTrigger P1 * * P4 *
drh956bc922004-07-24 17:38:29 +00005729**
5730** Remove the internal (in-memory) data structures that describe
drh66a51672008-01-03 00:01:23 +00005731** the trigger named P4 in database P1. This is called after a trigger
drh5dad9a32014-07-25 18:37:42 +00005732** is dropped from disk (using the Destroy opcode) in order to keep
5733** the internal representation of the
drh956bc922004-07-24 17:38:29 +00005734** schema consistent with what is on disk.
5735*/
drh9cbf3422008-01-17 16:22:13 +00005736case OP_DropTrigger: {
drh4031baf2018-05-28 17:31:20 +00005737 sqlite3VdbeIncrWriteCounter(p, 0);
danielk19772dca4ac2008-01-03 11:50:29 +00005738 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
drh956bc922004-07-24 17:38:29 +00005739 break;
5740}
5741
drh234c39d2004-07-24 03:30:47 +00005742
drhb7f91642004-10-31 02:22:47 +00005743#ifndef SQLITE_OMIT_INTEGRITY_CHECK
drh98968b22016-03-15 22:00:39 +00005744/* Opcode: IntegrityCk P1 P2 P3 P4 P5
drh5e00f6c2001-09-13 13:46:56 +00005745**
drh98757152008-01-09 23:04:12 +00005746** Do an analysis of the currently open database. Store in
5747** register P1 the text of an error message describing any problems.
5748** If no problems are found, store a NULL in register P1.
drh1dcdbc02007-01-27 02:24:54 +00005749**
drh66accfc2017-02-22 18:04:42 +00005750** The register P3 contains one less than the maximum number of allowed errors.
drh60a713c2008-01-21 16:22:45 +00005751** At most reg(P3) errors will be reported.
5752** In other words, the analysis stops as soon as reg(P1) errors are
5753** seen. Reg(P1) is updated with the number of errors remaining.
drhb19a2bc2001-09-16 00:13:26 +00005754**
drh98968b22016-03-15 22:00:39 +00005755** The root page numbers of all tables in the database are integers
5756** stored in P4_INTARRAY argument.
drh21504322002-06-25 13:16:02 +00005757**
drh98757152008-01-09 23:04:12 +00005758** If P5 is not zero, the check is done on the auxiliary database
drh21504322002-06-25 13:16:02 +00005759** file, not the main database file.
drh1dd397f2002-02-03 03:34:07 +00005760**
drh1dcdbc02007-01-27 02:24:54 +00005761** This opcode is used to implement the integrity_check pragma.
drh5e00f6c2001-09-13 13:46:56 +00005762*/
drhaaab5722002-02-19 13:39:21 +00005763case OP_IntegrityCk: {
drh98757152008-01-09 23:04:12 +00005764 int nRoot; /* Number of tables to check. (Number of root pages.) */
5765 int *aRoot; /* Array of rootpage numbers for tables to be checked */
drh98757152008-01-09 23:04:12 +00005766 int nErr; /* Number of errors reported */
5767 char *z; /* Text of the error report */
5768 Mem *pnErr; /* Register keeping track of errors remaining */
drh9e92a472013-06-27 17:40:30 +00005769
drh1713afb2013-06-28 01:24:57 +00005770 assert( p->bIsReader );
drh98757152008-01-09 23:04:12 +00005771 nRoot = pOp->p2;
drh98968b22016-03-15 22:00:39 +00005772 aRoot = pOp->p4.ai;
drh79069752004-05-22 21:30:40 +00005773 assert( nRoot>0 );
drhb5c10632017-09-21 00:49:15 +00005774 assert( aRoot[0]==nRoot );
drh9f6168b2016-03-19 23:32:58 +00005775 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00005776 pnErr = &aMem[pOp->p3];
drh1dcdbc02007-01-27 02:24:54 +00005777 assert( (pnErr->flags & MEM_Int)!=0 );
drh98757152008-01-09 23:04:12 +00005778 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
drha6c2ed92009-11-14 23:22:23 +00005779 pIn1 = &aMem[pOp->p1];
drh98757152008-01-09 23:04:12 +00005780 assert( pOp->p5<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00005781 assert( DbMaskTest(p->btreeMask, pOp->p5) );
drhb5c10632017-09-21 00:49:15 +00005782 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, &aRoot[1], nRoot,
drh66accfc2017-02-22 18:04:42 +00005783 (int)pnErr->u.i+1, &nErr);
drha05a7222008-01-19 03:35:58 +00005784 sqlite3VdbeMemSetNull(pIn1);
drh1dcdbc02007-01-27 02:24:54 +00005785 if( nErr==0 ){
5786 assert( z==0 );
drhc890fec2008-08-01 20:10:08 +00005787 }else if( z==0 ){
5788 goto no_mem;
drh1dd397f2002-02-03 03:34:07 +00005789 }else{
drh66accfc2017-02-22 18:04:42 +00005790 pnErr->u.i -= nErr-1;
danielk1977a7a8e142008-02-13 18:25:27 +00005791 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
danielk19778a6b5412004-05-24 07:04:25 +00005792 }
drhb7654112008-01-12 12:48:07 +00005793 UPDATE_MAX_BLOBSIZE(pIn1);
drh98757152008-01-09 23:04:12 +00005794 sqlite3VdbeChangeEncoding(pIn1, encoding);
drh5e00f6c2001-09-13 13:46:56 +00005795 break;
5796}
drhb7f91642004-10-31 02:22:47 +00005797#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
drh5e00f6c2001-09-13 13:46:56 +00005798
drh3d4501e2008-12-04 20:40:10 +00005799/* Opcode: RowSetAdd P1 P2 * * *
drh72e26de2016-08-24 21:24:04 +00005800** Synopsis: rowset(P1)=r[P2]
drh5e00f6c2001-09-13 13:46:56 +00005801**
drhbb6783b2017-04-29 18:02:49 +00005802** Insert the integer value held by register P2 into a RowSet object
drh3d4501e2008-12-04 20:40:10 +00005803** held in register P1.
5804**
5805** An assertion fails if P2 is not an integer.
drh5e00f6c2001-09-13 13:46:56 +00005806*/
drh93952eb2009-11-13 19:43:43 +00005807case OP_RowSetAdd: { /* in1, in2 */
drh3c657212009-11-17 23:59:58 +00005808 pIn1 = &aMem[pOp->p1];
5809 pIn2 = &aMem[pOp->p2];
drh93952eb2009-11-13 19:43:43 +00005810 assert( (pIn2->flags & MEM_Int)!=0 );
5811 if( (pIn1->flags & MEM_RowSet)==0 ){
5812 sqlite3VdbeMemSetRowSet(pIn1);
5813 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
drh3d4501e2008-12-04 20:40:10 +00005814 }
drh93952eb2009-11-13 19:43:43 +00005815 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
drh3d4501e2008-12-04 20:40:10 +00005816 break;
5817}
5818
5819/* Opcode: RowSetRead P1 P2 P3 * *
drh72e26de2016-08-24 21:24:04 +00005820** Synopsis: r[P3]=rowset(P1)
drh3d4501e2008-12-04 20:40:10 +00005821**
drhbb6783b2017-04-29 18:02:49 +00005822** Extract the smallest value from the RowSet object in P1
5823** and put that value into register P3.
5824** Or, if RowSet object P1 is initially empty, leave P3
drh3d4501e2008-12-04 20:40:10 +00005825** unchanged and jump to instruction P2.
5826*/
drh93952eb2009-11-13 19:43:43 +00005827case OP_RowSetRead: { /* jump, in1, out3 */
drh3d4501e2008-12-04 20:40:10 +00005828 i64 val;
drh49afe3a2013-07-10 03:05:14 +00005829
drh3c657212009-11-17 23:59:58 +00005830 pIn1 = &aMem[pOp->p1];
drh93952eb2009-11-13 19:43:43 +00005831 if( (pIn1->flags & MEM_RowSet)==0
5832 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
drh3d4501e2008-12-04 20:40:10 +00005833 ){
5834 /* The boolean index is empty */
drh93952eb2009-11-13 19:43:43 +00005835 sqlite3VdbeMemSetNull(pIn1);
drh688852a2014-02-17 22:40:43 +00005836 VdbeBranchTaken(1,2);
drhf56fa462015-04-13 21:39:54 +00005837 goto jump_to_p2_and_check_for_interrupt;
drh3d4501e2008-12-04 20:40:10 +00005838 }else{
5839 /* A value was pulled from the index */
drh688852a2014-02-17 22:40:43 +00005840 VdbeBranchTaken(0,2);
drhf56fa462015-04-13 21:39:54 +00005841 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
drh17435752007-08-16 04:30:38 +00005842 }
drh49afe3a2013-07-10 03:05:14 +00005843 goto check_for_interrupt;
drh5e00f6c2001-09-13 13:46:56 +00005844}
5845
drh1b26c7c2009-04-22 02:15:47 +00005846/* Opcode: RowSetTest P1 P2 P3 P4
drh81316f82013-10-29 20:40:47 +00005847** Synopsis: if r[P3] in rowset(P1) goto P2
danielk19771d461462009-04-21 09:02:45 +00005848**
drhade97602009-04-21 15:05:18 +00005849** Register P3 is assumed to hold a 64-bit integer value. If register P1
drh1b26c7c2009-04-22 02:15:47 +00005850** contains a RowSet object and that RowSet object contains
danielk19771d461462009-04-21 09:02:45 +00005851** the value held in P3, jump to register P2. Otherwise, insert the
drh1b26c7c2009-04-22 02:15:47 +00005852** integer in P3 into the RowSet and continue on to the
drhade97602009-04-21 15:05:18 +00005853** next opcode.
danielk19771d461462009-04-21 09:02:45 +00005854**
drhbb6783b2017-04-29 18:02:49 +00005855** The RowSet object is optimized for the case where sets of integers
5856** are inserted in distinct phases, which each set contains no duplicates.
5857** Each set is identified by a unique P4 value. The first set
5858** must have P4==0, the final set must have P4==-1, and for all other sets
5859** must have P4>0.
danielk19771d461462009-04-21 09:02:45 +00005860**
5861** This allows optimizations: (a) when P4==0 there is no need to test
drhbb6783b2017-04-29 18:02:49 +00005862** the RowSet object for P3, as it is guaranteed not to contain it,
danielk19771d461462009-04-21 09:02:45 +00005863** (b) when P4==-1 there is no need to insert the value, as it will
5864** never be tested for, and (c) when a value that is part of set X is
5865** inserted, there is no need to search to see if the same value was
5866** previously inserted as part of set X (only if it was previously
5867** inserted as part of some other set).
5868*/
drh1b26c7c2009-04-22 02:15:47 +00005869case OP_RowSetTest: { /* jump, in1, in3 */
drh856c1032009-06-02 15:21:42 +00005870 int iSet;
5871 int exists;
5872
drh3c657212009-11-17 23:59:58 +00005873 pIn1 = &aMem[pOp->p1];
5874 pIn3 = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00005875 iSet = pOp->p4.i;
danielk19771d461462009-04-21 09:02:45 +00005876 assert( pIn3->flags&MEM_Int );
5877
drh1b26c7c2009-04-22 02:15:47 +00005878 /* If there is anything other than a rowset object in memory cell P1,
5879 ** delete it now and initialize P1 with an empty rowset
danielk19771d461462009-04-21 09:02:45 +00005880 */
drh733bf1b2009-04-22 00:47:00 +00005881 if( (pIn1->flags & MEM_RowSet)==0 ){
5882 sqlite3VdbeMemSetRowSet(pIn1);
5883 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
danielk19771d461462009-04-21 09:02:45 +00005884 }
5885
5886 assert( pOp->p4type==P4_INT32 );
drh1b26c7c2009-04-22 02:15:47 +00005887 assert( iSet==-1 || iSet>=0 );
danielk19771d461462009-04-21 09:02:45 +00005888 if( iSet ){
drhd83cad22014-04-10 02:24:48 +00005889 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
drh688852a2014-02-17 22:40:43 +00005890 VdbeBranchTaken(exists!=0,2);
drhf56fa462015-04-13 21:39:54 +00005891 if( exists ) goto jump_to_p2;
danielk19771d461462009-04-21 09:02:45 +00005892 }
5893 if( iSet>=0 ){
drh733bf1b2009-04-22 00:47:00 +00005894 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
danielk19771d461462009-04-21 09:02:45 +00005895 }
5896 break;
5897}
5898
drh5e00f6c2001-09-13 13:46:56 +00005899
danielk197793758c82005-01-21 08:13:14 +00005900#ifndef SQLITE_OMIT_TRIGGER
dan165921a2009-08-28 18:53:45 +00005901
drh0fd61352014-02-07 02:29:45 +00005902/* Opcode: Program P1 P2 P3 P4 P5
dan165921a2009-08-28 18:53:45 +00005903**
dan76d462e2009-08-30 11:42:51 +00005904** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
dan165921a2009-08-28 18:53:45 +00005905**
dan76d462e2009-08-30 11:42:51 +00005906** P1 contains the address of the memory cell that contains the first memory
5907** cell in an array of values used as arguments to the sub-program. P2
5908** contains the address to jump to if the sub-program throws an IGNORE
5909** exception using the RAISE() function. Register P3 contains the address
5910** of a memory cell in this (the parent) VM that is used to allocate the
5911** memory required by the sub-vdbe at runtime.
dan165921a2009-08-28 18:53:45 +00005912**
5913** P4 is a pointer to the VM containing the trigger program.
drh0fd61352014-02-07 02:29:45 +00005914**
5915** If P5 is non-zero, then recursive program invocation is enabled.
dan165921a2009-08-28 18:53:45 +00005916*/
dan76d462e2009-08-30 11:42:51 +00005917case OP_Program: { /* jump */
dan65a7cd12009-09-01 12:16:01 +00005918 int nMem; /* Number of memory registers for sub-program */
5919 int nByte; /* Bytes of runtime space required for sub-program */
5920 Mem *pRt; /* Register to allocate runtime space */
5921 Mem *pMem; /* Used to iterate through memory cells */
5922 Mem *pEnd; /* Last memory cell in new array */
5923 VdbeFrame *pFrame; /* New vdbe frame to execute in */
5924 SubProgram *pProgram; /* Sub-program to execute */
5925 void *t; /* Token identifying trigger */
5926
5927 pProgram = pOp->p4.pProgram;
drha6c2ed92009-11-14 23:22:23 +00005928 pRt = &aMem[pOp->p3];
dan165921a2009-08-28 18:53:45 +00005929 assert( pProgram->nOp>0 );
5930
dan1da40a32009-09-19 17:00:31 +00005931 /* If the p5 flag is clear, then recursive invocation of triggers is
5932 ** disabled for backwards compatibility (p5 is set if this sub-program
5933 ** is really a trigger, not a foreign key action, and the flag set
5934 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
dan165921a2009-08-28 18:53:45 +00005935 **
5936 ** It is recursive invocation of triggers, at the SQL level, that is
5937 ** disabled. In some cases a single trigger may generate more than one
5938 ** SubProgram (if the trigger may be executed with more than one different
5939 ** ON CONFLICT algorithm). SubProgram structures associated with a
5940 ** single trigger all have the same value for the SubProgram.token
dan1da40a32009-09-19 17:00:31 +00005941 ** variable. */
5942 if( pOp->p5 ){
dan65a7cd12009-09-01 12:16:01 +00005943 t = pProgram->token;
dan165921a2009-08-28 18:53:45 +00005944 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5945 if( pFrame ) break;
5946 }
5947
danf5894502009-10-07 18:41:19 +00005948 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
dan165921a2009-08-28 18:53:45 +00005949 rc = SQLITE_ERROR;
drh22c17b82015-05-15 04:13:15 +00005950 sqlite3VdbeError(p, "too many levels of trigger recursion");
drh9467abf2016-02-17 18:44:11 +00005951 goto abort_due_to_error;
dan165921a2009-08-28 18:53:45 +00005952 }
5953
5954 /* Register pRt is used to store the memory required to save the state
5955 ** of the current program, and the memory required at runtime to execute
5956 ** the trigger program. If this trigger has been fired before, then pRt
5957 ** is already allocated. Otherwise, it must be initialized. */
5958 if( (pRt->flags&MEM_Frame)==0 ){
dan165921a2009-08-28 18:53:45 +00005959 /* SubProgram.nMem is set to the number of memory cells used by the
5960 ** program stored in SubProgram.aOp. As well as these, one memory
5961 ** cell is required for each cursor used by the program. Set local
5962 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5963 */
dan65a7cd12009-09-01 12:16:01 +00005964 nMem = pProgram->nMem + pProgram->nCsr;
drh3cdce922016-03-21 00:30:40 +00005965 assert( nMem>0 );
5966 if( pProgram->nCsr==0 ) nMem++;
dan65a7cd12009-09-01 12:16:01 +00005967 nByte = ROUND8(sizeof(VdbeFrame))
dan165921a2009-08-28 18:53:45 +00005968 + nMem * sizeof(Mem)
drhab087d42017-03-24 17:59:56 +00005969 + pProgram->nCsr * sizeof(VdbeCursor*)
5970 + (pProgram->nOp + 7)/8;
dan165921a2009-08-28 18:53:45 +00005971 pFrame = sqlite3DbMallocZero(db, nByte);
5972 if( !pFrame ){
5973 goto no_mem;
5974 }
5975 sqlite3VdbeMemRelease(pRt);
5976 pRt->flags = MEM_Frame;
5977 pRt->u.pFrame = pFrame;
5978
5979 pFrame->v = p;
5980 pFrame->nChildMem = nMem;
5981 pFrame->nChildCsr = pProgram->nCsr;
drhf56fa462015-04-13 21:39:54 +00005982 pFrame->pc = (int)(pOp - aOp);
dan165921a2009-08-28 18:53:45 +00005983 pFrame->aMem = p->aMem;
5984 pFrame->nMem = p->nMem;
5985 pFrame->apCsr = p->apCsr;
5986 pFrame->nCursor = p->nCursor;
5987 pFrame->aOp = p->aOp;
5988 pFrame->nOp = p->nOp;
5989 pFrame->token = pProgram->token;
dane2f771b2014-11-03 15:33:17 +00005990#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00005991 pFrame->anExec = p->anExec;
dane2f771b2014-11-03 15:33:17 +00005992#endif
dan165921a2009-08-28 18:53:45 +00005993
5994 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5995 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
drha5750cf2014-02-07 13:20:31 +00005996 pMem->flags = MEM_Undefined;
dan165921a2009-08-28 18:53:45 +00005997 pMem->db = db;
5998 }
5999 }else{
6000 pFrame = pRt->u.pFrame;
drh9f6168b2016-03-19 23:32:58 +00006001 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
6002 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
dan165921a2009-08-28 18:53:45 +00006003 assert( pProgram->nCsr==pFrame->nChildCsr );
drhf56fa462015-04-13 21:39:54 +00006004 assert( (int)(pOp - aOp)==pFrame->pc );
dan165921a2009-08-28 18:53:45 +00006005 }
6006
6007 p->nFrame++;
6008 pFrame->pParent = p->pFrame;
drhfae58d52017-01-26 17:26:44 +00006009 pFrame->lastRowid = db->lastRowid;
dan76d462e2009-08-30 11:42:51 +00006010 pFrame->nChange = p->nChange;
danc3da6672014-10-28 18:24:16 +00006011 pFrame->nDbChange = p->db->nChange;
dan32001322016-02-19 18:54:29 +00006012 assert( pFrame->pAuxData==0 );
6013 pFrame->pAuxData = p->pAuxData;
6014 p->pAuxData = 0;
dan2832ad42009-08-31 15:27:27 +00006015 p->nChange = 0;
dan165921a2009-08-28 18:53:45 +00006016 p->pFrame = pFrame;
drh9f6168b2016-03-19 23:32:58 +00006017 p->aMem = aMem = VdbeFrameMem(pFrame);
dan165921a2009-08-28 18:53:45 +00006018 p->nMem = pFrame->nChildMem;
shanecea72b22009-09-07 04:38:36 +00006019 p->nCursor = (u16)pFrame->nChildCsr;
drh9f6168b2016-03-19 23:32:58 +00006020 p->apCsr = (VdbeCursor **)&aMem[p->nMem];
drhab087d42017-03-24 17:59:56 +00006021 pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr];
drh18333ef2017-03-24 18:38:41 +00006022 memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8);
drhbbe879d2009-11-14 18:04:35 +00006023 p->aOp = aOp = pProgram->aOp;
dan165921a2009-08-28 18:53:45 +00006024 p->nOp = pProgram->nOp;
dane2f771b2014-11-03 15:33:17 +00006025#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
dan43764a82014-11-01 21:00:04 +00006026 p->anExec = 0;
dane2f771b2014-11-03 15:33:17 +00006027#endif
drhf56fa462015-04-13 21:39:54 +00006028 pOp = &aOp[-1];
dan165921a2009-08-28 18:53:45 +00006029
6030 break;
6031}
6032
dan76d462e2009-08-30 11:42:51 +00006033/* Opcode: Param P1 P2 * * *
dan165921a2009-08-28 18:53:45 +00006034**
dan76d462e2009-08-30 11:42:51 +00006035** This opcode is only ever present in sub-programs called via the
6036** OP_Program instruction. Copy a value currently stored in a memory
6037** cell of the calling (parent) frame to cell P2 in the current frames
6038** address space. This is used by trigger programs to access the new.*
6039** and old.* values.
dan165921a2009-08-28 18:53:45 +00006040**
dan76d462e2009-08-30 11:42:51 +00006041** The address of the cell in the parent frame is determined by adding
6042** the value of the P1 argument to the value of the P1 argument to the
6043** calling OP_Program instruction.
dan165921a2009-08-28 18:53:45 +00006044*/
drh27a348c2015-04-13 19:14:06 +00006045case OP_Param: { /* out2 */
dan65a7cd12009-09-01 12:16:01 +00006046 VdbeFrame *pFrame;
6047 Mem *pIn;
drh27a348c2015-04-13 19:14:06 +00006048 pOut = out2Prerelease(p, pOp);
dan65a7cd12009-09-01 12:16:01 +00006049 pFrame = p->pFrame;
6050 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
dan165921a2009-08-28 18:53:45 +00006051 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
6052 break;
6053}
6054
danielk197793758c82005-01-21 08:13:14 +00006055#endif /* #ifndef SQLITE_OMIT_TRIGGER */
rdcb0c374f2004-02-20 22:53:38 +00006056
dan1da40a32009-09-19 17:00:31 +00006057#ifndef SQLITE_OMIT_FOREIGN_KEY
dan32b09f22009-09-23 17:29:59 +00006058/* Opcode: FkCounter P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00006059** Synopsis: fkctr[P1]+=P2
dan1da40a32009-09-19 17:00:31 +00006060**
dan0ff297e2009-09-25 17:03:14 +00006061** Increment a "constraint counter" by P2 (P2 may be negative or positive).
6062** If P1 is non-zero, the database constraint counter is incremented
6063** (deferred foreign key constraints). Otherwise, if P1 is zero, the
dan32b09f22009-09-23 17:29:59 +00006064** statement counter is incremented (immediate foreign key constraints).
dan1da40a32009-09-19 17:00:31 +00006065*/
dan32b09f22009-09-23 17:29:59 +00006066case OP_FkCounter: {
drh963c74d2013-07-11 12:19:12 +00006067 if( db->flags & SQLITE_DeferFKs ){
dancb3e4b72013-07-03 19:53:05 +00006068 db->nDeferredImmCons += pOp->p2;
6069 }else if( pOp->p1 ){
dan0ff297e2009-09-25 17:03:14 +00006070 db->nDeferredCons += pOp->p2;
dan32b09f22009-09-23 17:29:59 +00006071 }else{
dan0ff297e2009-09-25 17:03:14 +00006072 p->nFkConstraint += pOp->p2;
6073 }
6074 break;
6075}
6076
6077/* Opcode: FkIfZero P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00006078** Synopsis: if fkctr[P1]==0 goto P2
dan0ff297e2009-09-25 17:03:14 +00006079**
6080** This opcode tests if a foreign key constraint-counter is currently zero.
6081** If so, jump to instruction P2. Otherwise, fall through to the next
6082** instruction.
6083**
6084** If P1 is non-zero, then the jump is taken if the database constraint-counter
6085** is zero (the one that counts deferred constraint violations). If P1 is
6086** zero, the jump is taken if the statement constraint-counter is zero
6087** (immediate foreign key constraint violations).
6088*/
6089case OP_FkIfZero: { /* jump */
6090 if( pOp->p1 ){
drh688852a2014-02-17 22:40:43 +00006091 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
drhf56fa462015-04-13 21:39:54 +00006092 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
dan0ff297e2009-09-25 17:03:14 +00006093 }else{
drh688852a2014-02-17 22:40:43 +00006094 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
drhf56fa462015-04-13 21:39:54 +00006095 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
dan32b09f22009-09-23 17:29:59 +00006096 }
dan1da40a32009-09-19 17:00:31 +00006097 break;
6098}
6099#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
6100
drh205f48e2004-11-05 00:43:11 +00006101#ifndef SQLITE_OMIT_AUTOINCREMENT
drh98757152008-01-09 23:04:12 +00006102/* Opcode: MemMax P1 P2 * * *
drh81316f82013-10-29 20:40:47 +00006103** Synopsis: r[P1]=max(r[P1],r[P2])
drh205f48e2004-11-05 00:43:11 +00006104**
dan76d462e2009-08-30 11:42:51 +00006105** P1 is a register in the root frame of this VM (the root frame is
6106** different from the current frame if this instruction is being executed
6107** within a sub-program). Set the value of register P1 to the maximum of
6108** its current value and the value in register P2.
drh205f48e2004-11-05 00:43:11 +00006109**
6110** This instruction throws an error if the memory cell is not initially
6111** an integer.
6112*/
dan76d462e2009-08-30 11:42:51 +00006113case OP_MemMax: { /* in2 */
dan76d462e2009-08-30 11:42:51 +00006114 VdbeFrame *pFrame;
6115 if( p->pFrame ){
6116 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
6117 pIn1 = &pFrame->aMem[pOp->p1];
6118 }else{
drha6c2ed92009-11-14 23:22:23 +00006119 pIn1 = &aMem[pOp->p1];
dan76d462e2009-08-30 11:42:51 +00006120 }
drh2b4ded92010-09-27 21:09:31 +00006121 assert( memIsValid(pIn1) );
drh98757152008-01-09 23:04:12 +00006122 sqlite3VdbeMemIntegerify(pIn1);
drh3c657212009-11-17 23:59:58 +00006123 pIn2 = &aMem[pOp->p2];
drh98757152008-01-09 23:04:12 +00006124 sqlite3VdbeMemIntegerify(pIn2);
6125 if( pIn1->u.i<pIn2->u.i){
6126 pIn1->u.i = pIn2->u.i;
drh205f48e2004-11-05 00:43:11 +00006127 }
6128 break;
6129}
6130#endif /* SQLITE_OMIT_AUTOINCREMENT */
6131
drh8b0cf382015-10-06 21:07:06 +00006132/* Opcode: IfPos P1 P2 P3 * *
6133** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
danielk1977a2dc3b12005-02-05 12:48:48 +00006134**
drh16897072015-03-07 00:57:37 +00006135** Register P1 must contain an integer.
mistachkin91a3ecb2015-10-06 21:49:55 +00006136** If the value of register P1 is 1 or greater, subtract P3 from the
drh8b0cf382015-10-06 21:07:06 +00006137** value in P1 and jump to P2.
drh6f58f702006-01-08 05:26:41 +00006138**
drh16897072015-03-07 00:57:37 +00006139** If the initial value of register P1 is less than 1, then the
6140** value is unchanged and control passes through to the next instruction.
danielk1977a2dc3b12005-02-05 12:48:48 +00006141*/
drh9cbf3422008-01-17 16:22:13 +00006142case OP_IfPos: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00006143 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00006144 assert( pIn1->flags&MEM_Int );
drh688852a2014-02-17 22:40:43 +00006145 VdbeBranchTaken( pIn1->u.i>0, 2);
drh8b0cf382015-10-06 21:07:06 +00006146 if( pIn1->u.i>0 ){
6147 pIn1->u.i -= pOp->p3;
6148 goto jump_to_p2;
6149 }
drhec7429a2005-10-06 16:53:14 +00006150 break;
6151}
6152
drhcc2fa4c2016-01-25 15:57:29 +00006153/* Opcode: OffsetLimit P1 P2 P3 * *
6154** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
drh15007a92006-01-08 18:10:17 +00006155**
drhcc2fa4c2016-01-25 15:57:29 +00006156** This opcode performs a commonly used computation associated with
6157** LIMIT and OFFSET process. r[P1] holds the limit counter. r[P3]
6158** holds the offset counter. The opcode computes the combined value
6159** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2]
6160** value computed is the total number of rows that will need to be
6161** visited in order to complete the query.
6162**
6163** If r[P3] is zero or negative, that means there is no OFFSET
6164** and r[P2] is set to be the value of the LIMIT, r[P1].
6165**
6166** if r[P1] is zero or negative, that means there is no LIMIT
6167** and r[P2] is set to -1.
6168**
6169** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
drh15007a92006-01-08 18:10:17 +00006170*/
drhcc2fa4c2016-01-25 15:57:29 +00006171case OP_OffsetLimit: { /* in1, out2, in3 */
drh719da302016-12-10 04:06:49 +00006172 i64 x;
drh3c657212009-11-17 23:59:58 +00006173 pIn1 = &aMem[pOp->p1];
drhcc2fa4c2016-01-25 15:57:29 +00006174 pIn3 = &aMem[pOp->p3];
6175 pOut = out2Prerelease(p, pOp);
6176 assert( pIn1->flags & MEM_Int );
6177 assert( pIn3->flags & MEM_Int );
drh719da302016-12-10 04:06:49 +00006178 x = pIn1->u.i;
6179 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
6180 /* If the LIMIT is less than or equal to zero, loop forever. This
6181 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then
6182 ** also loop forever. This is undocumented. In fact, one could argue
6183 ** that the loop should terminate. But assuming 1 billion iterations
6184 ** per second (far exceeding the capabilities of any current hardware)
6185 ** it would take nearly 300 years to actually reach the limit. So
6186 ** looping forever is a reasonable approximation. */
6187 pOut->u.i = -1;
6188 }else{
6189 pOut->u.i = x;
6190 }
drh15007a92006-01-08 18:10:17 +00006191 break;
6192}
6193
drhf99dd352016-12-18 17:42:00 +00006194/* Opcode: IfNotZero P1 P2 * * *
6195** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
drhec7429a2005-10-06 16:53:14 +00006196**
drh16897072015-03-07 00:57:37 +00006197** Register P1 must contain an integer. If the content of register P1 is
drhf99dd352016-12-18 17:42:00 +00006198** initially greater than zero, then decrement the value in register P1.
6199** If it is non-zero (negative or positive) and then also jump to P2.
6200** If register P1 is initially zero, leave it unchanged and fall through.
drhec7429a2005-10-06 16:53:14 +00006201*/
drh16897072015-03-07 00:57:37 +00006202case OP_IfNotZero: { /* jump, in1 */
drh3c657212009-11-17 23:59:58 +00006203 pIn1 = &aMem[pOp->p1];
danielk1977a7a8e142008-02-13 18:25:27 +00006204 assert( pIn1->flags&MEM_Int );
drh16897072015-03-07 00:57:37 +00006205 VdbeBranchTaken(pIn1->u.i<0, 2);
6206 if( pIn1->u.i ){
drhf99dd352016-12-18 17:42:00 +00006207 if( pIn1->u.i>0 ) pIn1->u.i--;
drhf56fa462015-04-13 21:39:54 +00006208 goto jump_to_p2;
drh16897072015-03-07 00:57:37 +00006209 }
6210 break;
6211}
6212
6213/* Opcode: DecrJumpZero P1 P2 * * *
6214** Synopsis: if (--r[P1])==0 goto P2
6215**
drhab5be2e2016-11-30 05:08:59 +00006216** Register P1 must hold an integer. Decrement the value in P1
6217** and jump to P2 if the new value is exactly zero.
drh16897072015-03-07 00:57:37 +00006218*/
6219case OP_DecrJumpZero: { /* jump, in1 */
6220 pIn1 = &aMem[pOp->p1];
6221 assert( pIn1->flags&MEM_Int );
drhab5be2e2016-11-30 05:08:59 +00006222 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
6223 VdbeBranchTaken(pIn1->u.i==0, 2);
6224 if( pIn1->u.i==0 ) goto jump_to_p2;
drha2a49dc2008-01-02 14:28:13 +00006225 break;
6226}
6227
drh16897072015-03-07 00:57:37 +00006228
drhe2d9e7c2015-06-26 18:47:53 +00006229/* Opcode: AggStep0 * P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00006230** Synopsis: accum=r[P3] step(r[P2@P5])
drhe5095352002-02-24 03:25:14 +00006231**
drh0bce8352002-02-28 00:41:10 +00006232** Execute the step function for an aggregate. The
drh98757152008-01-09 23:04:12 +00006233** function has P5 arguments. P4 is a pointer to the FuncDef
drhe2d9e7c2015-06-26 18:47:53 +00006234** structure that specifies the function. Register P3 is the
6235** accumulator.
drhe5095352002-02-24 03:25:14 +00006236**
drh98757152008-01-09 23:04:12 +00006237** The P5 arguments are taken from register P2 and its
6238** successors.
drhe5095352002-02-24 03:25:14 +00006239*/
drhe2d9e7c2015-06-26 18:47:53 +00006240/* Opcode: AggStep * P2 P3 P4 P5
6241** Synopsis: accum=r[P3] step(r[P2@P5])
6242**
6243** Execute the step function for an aggregate. The
6244** function has P5 arguments. P4 is a pointer to an sqlite3_context
6245** object that is used to run the function. Register P3 is
6246** as the accumulator.
6247**
6248** The P5 arguments are taken from register P2 and its
6249** successors.
6250**
6251** This opcode is initially coded as OP_AggStep0. On first evaluation,
6252** the FuncDef stored in P4 is converted into an sqlite3_context and
6253** the opcode is changed. In this way, the initialization of the
6254** sqlite3_context only happens once, instead of on each call to the
6255** step function.
6256*/
drh9c7c9132015-06-26 18:16:52 +00006257case OP_AggStep0: {
drh856c1032009-06-02 15:21:42 +00006258 int n;
drh9c7c9132015-06-26 18:16:52 +00006259 sqlite3_context *pCtx;
drhe5095352002-02-24 03:25:14 +00006260
drh9c7c9132015-06-26 18:16:52 +00006261 assert( pOp->p4type==P4_FUNCDEF );
drh856c1032009-06-02 15:21:42 +00006262 n = pOp->p5;
drh9f6168b2016-03-19 23:32:58 +00006263 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
6264 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
drh9c7c9132015-06-26 18:16:52 +00006265 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
drhf09ac0b2018-01-23 03:44:06 +00006266 pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) +
6267 (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*)));
drh9c7c9132015-06-26 18:16:52 +00006268 if( pCtx==0 ) goto no_mem;
6269 pCtx->pMem = 0;
drhf09ac0b2018-01-23 03:44:06 +00006270 pCtx->pOut = (Mem*)&(pCtx->argv[n]);
6271 sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null);
drh9c7c9132015-06-26 18:16:52 +00006272 pCtx->pFunc = pOp->p4.pFunc;
6273 pCtx->iOp = (int)(pOp - aOp);
6274 pCtx->pVdbe = p;
drhf09ac0b2018-01-23 03:44:06 +00006275 pCtx->skipFlag = 0;
6276 pCtx->isError = 0;
drh9c7c9132015-06-26 18:16:52 +00006277 pCtx->argc = n;
6278 pOp->p4type = P4_FUNCCTX;
6279 pOp->p4.pCtx = pCtx;
6280 pOp->opcode = OP_AggStep;
6281 /* Fall through into OP_AggStep */
6282}
6283case OP_AggStep: {
6284 int i;
6285 sqlite3_context *pCtx;
6286 Mem *pMem;
drh9c7c9132015-06-26 18:16:52 +00006287
6288 assert( pOp->p4type==P4_FUNCCTX );
6289 pCtx = pOp->p4.pCtx;
6290 pMem = &aMem[pOp->p3];
6291
6292 /* If this function is inside of a trigger, the register array in aMem[]
6293 ** might change from one evaluation to the next. The next block of code
6294 ** checks to see if the register array has changed, and if so it
6295 ** reinitializes the relavant parts of the sqlite3_context object */
6296 if( pCtx->pMem != pMem ){
6297 pCtx->pMem = pMem;
6298 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
6299 }
6300
6301#ifdef SQLITE_DEBUG
6302 for(i=0; i<pCtx->argc; i++){
6303 assert( memIsValid(pCtx->argv[i]) );
6304 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
6305 }
6306#endif
6307
drhabfcea22005-09-06 20:36:48 +00006308 pMem->n++;
drhf09ac0b2018-01-23 03:44:06 +00006309 assert( pCtx->pOut->flags==MEM_Null );
6310 assert( pCtx->isError==0 );
6311 assert( pCtx->skipFlag==0 );
drh2d801512016-01-14 22:19:58 +00006312 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
drhf09ac0b2018-01-23 03:44:06 +00006313 if( pCtx->isError ){
6314 if( pCtx->isError>0 ){
6315 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
drh9c7c9132015-06-26 18:16:52 +00006316 rc = pCtx->isError;
6317 }
drhf09ac0b2018-01-23 03:44:06 +00006318 if( pCtx->skipFlag ){
6319 assert( pOp[-1].opcode==OP_CollSeq );
6320 i = pOp[-1].p1;
6321 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
6322 pCtx->skipFlag = 0;
6323 }
6324 sqlite3VdbeMemRelease(pCtx->pOut);
6325 pCtx->pOut->flags = MEM_Null;
6326 pCtx->isError = 0;
drh9467abf2016-02-17 18:44:11 +00006327 if( rc ) goto abort_due_to_error;
drh1350b032002-02-27 19:00:20 +00006328 }
drhf09ac0b2018-01-23 03:44:06 +00006329 assert( pCtx->pOut->flags==MEM_Null );
6330 assert( pCtx->skipFlag==0 );
drh5e00f6c2001-09-13 13:46:56 +00006331 break;
6332}
6333
drh98757152008-01-09 23:04:12 +00006334/* Opcode: AggFinal P1 P2 * P4 *
drh81316f82013-10-29 20:40:47 +00006335** Synopsis: accum=r[P1] N=P2
drh5e00f6c2001-09-13 13:46:56 +00006336**
drh13449892005-09-07 21:22:45 +00006337** Execute the finalizer function for an aggregate. P1 is
6338** the memory location that is the accumulator for the aggregate.
drha10a34b2005-09-07 22:09:48 +00006339**
6340** P2 is the number of arguments that the step function takes and
drh66a51672008-01-03 00:01:23 +00006341** P4 is a pointer to the FuncDef for this function. The P2
drha10a34b2005-09-07 22:09:48 +00006342** argument is not used by this opcode. It is only there to disambiguate
6343** functions that can take varying numbers of arguments. The
drh66a51672008-01-03 00:01:23 +00006344** P4 argument is only needed for the degenerate case where
drha10a34b2005-09-07 22:09:48 +00006345** the step function was not previously called.
drh5e00f6c2001-09-13 13:46:56 +00006346*/
drh9cbf3422008-01-17 16:22:13 +00006347case OP_AggFinal: {
drh13449892005-09-07 21:22:45 +00006348 Mem *pMem;
drh9f6168b2016-03-19 23:32:58 +00006349 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00006350 pMem = &aMem[pOp->p1];
drha10a34b2005-09-07 22:09:48 +00006351 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
danielk19772dca4ac2008-01-03 11:50:29 +00006352 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
drh4c8555f2009-06-25 01:47:11 +00006353 if( rc ){
drh22c17b82015-05-15 04:13:15 +00006354 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
drh9467abf2016-02-17 18:44:11 +00006355 goto abort_due_to_error;
drh90669c12006-01-20 15:45:36 +00006356 }
drh2dca8682008-03-21 17:13:13 +00006357 sqlite3VdbeChangeEncoding(pMem, encoding);
drhb7654112008-01-12 12:48:07 +00006358 UPDATE_MAX_BLOBSIZE(pMem);
drh023ae032007-05-08 12:12:16 +00006359 if( sqlite3VdbeMemTooBig(pMem) ){
6360 goto too_big;
6361 }
drh5e00f6c2001-09-13 13:46:56 +00006362 break;
6363}
6364
dan5cf53532010-05-01 16:40:20 +00006365#ifndef SQLITE_OMIT_WAL
dancdc1f042010-11-18 12:11:05 +00006366/* Opcode: Checkpoint P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00006367**
6368** Checkpoint database P1. This is a no-op if P1 is not currently in
drha25165f2014-12-04 04:50:59 +00006369** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
6370** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns
drh30aa3b92011-02-07 23:56:01 +00006371** SQLITE_BUSY or not, respectively. Write the number of pages in the
6372** WAL after the checkpoint into mem[P3+1] and the number of pages
6373** in the WAL that have been checkpointed after the checkpoint
6374** completes into mem[P3+2]. However on an error, mem[P3+1] and
6375** mem[P3+2] are initialized to -1.
dan7c246102010-04-12 19:00:29 +00006376*/
6377case OP_Checkpoint: {
drh30aa3b92011-02-07 23:56:01 +00006378 int i; /* Loop counter */
6379 int aRes[3]; /* Results */
6380 Mem *pMem; /* Write results here */
6381
drh9e92a472013-06-27 17:40:30 +00006382 assert( p->readOnly==0 );
drh30aa3b92011-02-07 23:56:01 +00006383 aRes[0] = 0;
6384 aRes[1] = aRes[2] = -1;
dancdc1f042010-11-18 12:11:05 +00006385 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
6386 || pOp->p2==SQLITE_CHECKPOINT_FULL
6387 || pOp->p2==SQLITE_CHECKPOINT_RESTART
danf26a1542014-12-02 19:04:54 +00006388 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
dancdc1f042010-11-18 12:11:05 +00006389 );
drh30aa3b92011-02-07 23:56:01 +00006390 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
drh9467abf2016-02-17 18:44:11 +00006391 if( rc ){
6392 if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
dancdc1f042010-11-18 12:11:05 +00006393 rc = SQLITE_OK;
drh30aa3b92011-02-07 23:56:01 +00006394 aRes[0] = 1;
dancdc1f042010-11-18 12:11:05 +00006395 }
drh30aa3b92011-02-07 23:56:01 +00006396 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
6397 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
6398 }
dan7c246102010-04-12 19:00:29 +00006399 break;
6400};
dan5cf53532010-05-01 16:40:20 +00006401#endif
drh5e00f6c2001-09-13 13:46:56 +00006402
drhcac29a62010-07-02 19:36:52 +00006403#ifndef SQLITE_OMIT_PRAGMA
drh0fd61352014-02-07 02:29:45 +00006404/* Opcode: JournalMode P1 P2 P3 * *
dane04dc882010-04-20 18:53:15 +00006405**
6406** Change the journal mode of database P1 to P3. P3 must be one of the
6407** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
6408** modes (delete, truncate, persist, off and memory), this is a simple
6409** operation. No IO is required.
6410**
6411** If changing into or out of WAL mode the procedure is more complicated.
6412**
6413** Write a string containing the final journal-mode to register P2.
6414*/
drh27a348c2015-04-13 19:14:06 +00006415case OP_JournalMode: { /* out2 */
dane04dc882010-04-20 18:53:15 +00006416 Btree *pBt; /* Btree to change journal mode of */
6417 Pager *pPager; /* Pager associated with pBt */
drhd80b2332010-05-01 00:59:37 +00006418 int eNew; /* New journal mode */
6419 int eOld; /* The old journal mode */
mistachkin59ee77c2012-09-13 15:26:44 +00006420#ifndef SQLITE_OMIT_WAL
drhd80b2332010-05-01 00:59:37 +00006421 const char *zFilename; /* Name of database file for pPager */
mistachkin59ee77c2012-09-13 15:26:44 +00006422#endif
dane04dc882010-04-20 18:53:15 +00006423
drh27a348c2015-04-13 19:14:06 +00006424 pOut = out2Prerelease(p, pOp);
drhd80b2332010-05-01 00:59:37 +00006425 eNew = pOp->p3;
dane04dc882010-04-20 18:53:15 +00006426 assert( eNew==PAGER_JOURNALMODE_DELETE
6427 || eNew==PAGER_JOURNALMODE_TRUNCATE
6428 || eNew==PAGER_JOURNALMODE_PERSIST
6429 || eNew==PAGER_JOURNALMODE_OFF
6430 || eNew==PAGER_JOURNALMODE_MEMORY
6431 || eNew==PAGER_JOURNALMODE_WAL
6432 || eNew==PAGER_JOURNALMODE_QUERY
6433 );
6434 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drh9e92a472013-06-27 17:40:30 +00006435 assert( p->readOnly==0 );
drh3ebaee92010-05-06 21:37:22 +00006436
dane04dc882010-04-20 18:53:15 +00006437 pBt = db->aDb[pOp->p1].pBt;
6438 pPager = sqlite3BtreePager(pBt);
drh0b9b4302010-06-11 17:01:24 +00006439 eOld = sqlite3PagerGetJournalMode(pPager);
6440 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
6441 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
dan5cf53532010-05-01 16:40:20 +00006442
6443#ifndef SQLITE_OMIT_WAL
drhd4e0bb02012-05-27 01:19:04 +00006444 zFilename = sqlite3PagerFilename(pPager, 1);
dane04dc882010-04-20 18:53:15 +00006445
drhd80b2332010-05-01 00:59:37 +00006446 /* Do not allow a transition to journal_mode=WAL for a database
drh6e1f4822010-07-13 23:41:40 +00006447 ** in temporary storage or if the VFS does not support shared memory
drhd80b2332010-05-01 00:59:37 +00006448 */
6449 if( eNew==PAGER_JOURNALMODE_WAL
drh057fc812011-10-17 23:15:31 +00006450 && (sqlite3Strlen30(zFilename)==0 /* Temp file */
drh6e1f4822010-07-13 23:41:40 +00006451 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
dane180c292010-04-26 17:42:56 +00006452 ){
drh0b9b4302010-06-11 17:01:24 +00006453 eNew = eOld;
dane180c292010-04-26 17:42:56 +00006454 }
6455
drh0b9b4302010-06-11 17:01:24 +00006456 if( (eNew!=eOld)
6457 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
6458 ){
danc0537fe2013-06-28 19:41:43 +00006459 if( !db->autoCommit || db->nVdbeRead>1 ){
drh0b9b4302010-06-11 17:01:24 +00006460 rc = SQLITE_ERROR;
drh22c17b82015-05-15 04:13:15 +00006461 sqlite3VdbeError(p,
drh0b9b4302010-06-11 17:01:24 +00006462 "cannot change %s wal mode from within a transaction",
6463 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
6464 );
drh9467abf2016-02-17 18:44:11 +00006465 goto abort_due_to_error;
drh0b9b4302010-06-11 17:01:24 +00006466 }else{
6467
6468 if( eOld==PAGER_JOURNALMODE_WAL ){
6469 /* If leaving WAL mode, close the log file. If successful, the call
6470 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
6471 ** file. An EXCLUSIVE lock may still be held on the database file
6472 ** after a successful return.
dane04dc882010-04-20 18:53:15 +00006473 */
dan7fb89902016-08-12 16:21:15 +00006474 rc = sqlite3PagerCloseWal(pPager, db);
drhab9b7442010-05-10 11:20:05 +00006475 if( rc==SQLITE_OK ){
drh0b9b4302010-06-11 17:01:24 +00006476 sqlite3PagerSetJournalMode(pPager, eNew);
drh89c3f2f2010-05-15 01:09:38 +00006477 }
drh242c4f72010-06-22 14:49:39 +00006478 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
6479 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
6480 ** as an intermediate */
6481 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
drh0b9b4302010-06-11 17:01:24 +00006482 }
6483
6484 /* Open a transaction on the database file. Regardless of the journal
6485 ** mode, this transaction always uses a rollback journal.
6486 */
6487 assert( sqlite3BtreeIsInTrans(pBt)==0 );
6488 if( rc==SQLITE_OK ){
dan731bf5b2010-06-17 16:44:21 +00006489 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
dane04dc882010-04-20 18:53:15 +00006490 }
6491 }
6492 }
dan5cf53532010-05-01 16:40:20 +00006493#endif /* ifndef SQLITE_OMIT_WAL */
dane04dc882010-04-20 18:53:15 +00006494
drh9467abf2016-02-17 18:44:11 +00006495 if( rc ) eNew = eOld;
drh0b9b4302010-06-11 17:01:24 +00006496 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
dan731bf5b2010-06-17 16:44:21 +00006497
dane04dc882010-04-20 18:53:15 +00006498 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
danb9780022010-04-21 18:37:57 +00006499 pOut->z = (char *)sqlite3JournalModename(eNew);
dane04dc882010-04-20 18:53:15 +00006500 pOut->n = sqlite3Strlen30(pOut->z);
6501 pOut->enc = SQLITE_UTF8;
6502 sqlite3VdbeChangeEncoding(pOut, encoding);
drh9467abf2016-02-17 18:44:11 +00006503 if( rc ) goto abort_due_to_error;
dane04dc882010-04-20 18:53:15 +00006504 break;
drhcac29a62010-07-02 19:36:52 +00006505};
6506#endif /* SQLITE_OMIT_PRAGMA */
dane04dc882010-04-20 18:53:15 +00006507
drhfdbcdee2007-03-27 14:44:50 +00006508#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
drh9ef5e772016-08-19 14:20:56 +00006509/* Opcode: Vacuum P1 * * * *
drh6f8c91c2003-12-07 00:24:35 +00006510**
drh9ef5e772016-08-19 14:20:56 +00006511** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more
6512** for an attached database. The "temp" database may not be vacuumed.
drh6f8c91c2003-12-07 00:24:35 +00006513*/
drh9cbf3422008-01-17 16:22:13 +00006514case OP_Vacuum: {
drh9e92a472013-06-27 17:40:30 +00006515 assert( p->readOnly==0 );
drh9ef5e772016-08-19 14:20:56 +00006516 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1);
drh9467abf2016-02-17 18:44:11 +00006517 if( rc ) goto abort_due_to_error;
drh6f8c91c2003-12-07 00:24:35 +00006518 break;
6519}
drh154d4b22006-09-21 11:02:16 +00006520#endif
drh6f8c91c2003-12-07 00:24:35 +00006521
danielk1977dddbcdc2007-04-26 14:42:34 +00006522#if !defined(SQLITE_OMIT_AUTOVACUUM)
drh98757152008-01-09 23:04:12 +00006523/* Opcode: IncrVacuum P1 P2 * * *
danielk1977dddbcdc2007-04-26 14:42:34 +00006524**
6525** Perform a single step of the incremental vacuum procedure on
drhca5557f2007-05-04 18:30:40 +00006526** the P1 database. If the vacuum has finished, jump to instruction
danielk1977dddbcdc2007-04-26 14:42:34 +00006527** P2. Otherwise, fall through to the next instruction.
6528*/
drh9cbf3422008-01-17 16:22:13 +00006529case OP_IncrVacuum: { /* jump */
drhca5557f2007-05-04 18:30:40 +00006530 Btree *pBt;
6531
6532 assert( pOp->p1>=0 && pOp->p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00006533 assert( DbMaskTest(p->btreeMask, pOp->p1) );
drh9e92a472013-06-27 17:40:30 +00006534 assert( p->readOnly==0 );
drhca5557f2007-05-04 18:30:40 +00006535 pBt = db->aDb[pOp->p1].pBt;
danielk1977dddbcdc2007-04-26 14:42:34 +00006536 rc = sqlite3BtreeIncrVacuum(pBt);
drh688852a2014-02-17 22:40:43 +00006537 VdbeBranchTaken(rc==SQLITE_DONE,2);
drh9467abf2016-02-17 18:44:11 +00006538 if( rc ){
6539 if( rc!=SQLITE_DONE ) goto abort_due_to_error;
danielk1977dddbcdc2007-04-26 14:42:34 +00006540 rc = SQLITE_OK;
drhf56fa462015-04-13 21:39:54 +00006541 goto jump_to_p2;
danielk1977dddbcdc2007-04-26 14:42:34 +00006542 }
6543 break;
6544}
6545#endif
6546
drh98757152008-01-09 23:04:12 +00006547/* Opcode: Expire P1 * * * *
danielk1977a21c6b62005-01-24 10:25:59 +00006548**
drh25df48d2014-07-22 14:58:12 +00006549** Cause precompiled statements to expire. When an expired statement
6550** is executed using sqlite3_step() it will either automatically
6551** reprepare itself (if it was originally created using sqlite3_prepare_v2())
6552** or it will fail with SQLITE_SCHEMA.
danielk1977a21c6b62005-01-24 10:25:59 +00006553**
6554** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
drh25df48d2014-07-22 14:58:12 +00006555** then only the currently executing statement is expired.
danielk1977a21c6b62005-01-24 10:25:59 +00006556*/
drh9cbf3422008-01-17 16:22:13 +00006557case OP_Expire: {
danielk1977a21c6b62005-01-24 10:25:59 +00006558 if( !pOp->p1 ){
6559 sqlite3ExpirePreparedStatements(db);
6560 }else{
6561 p->expired = 1;
6562 }
6563 break;
6564}
6565
danielk1977c00da102006-01-07 13:21:04 +00006566#ifndef SQLITE_OMIT_SHARED_CACHE
drh6a9ad3d2008-04-02 16:29:30 +00006567/* Opcode: TableLock P1 P2 P3 P4 *
drh81316f82013-10-29 20:40:47 +00006568** Synopsis: iDb=P1 root=P2 write=P3
danielk1977c00da102006-01-07 13:21:04 +00006569**
6570** Obtain a lock on a particular table. This instruction is only used when
6571** the shared-cache feature is enabled.
6572**
danielk197796d48e92009-06-29 06:00:37 +00006573** P1 is the index of the database in sqlite3.aDb[] of the database
drh6a9ad3d2008-04-02 16:29:30 +00006574** on which the lock is acquired. A readlock is obtained if P3==0 or
6575** a write lock if P3==1.
danielk1977c00da102006-01-07 13:21:04 +00006576**
6577** P2 contains the root-page of the table to lock.
6578**
drh66a51672008-01-03 00:01:23 +00006579** P4 contains a pointer to the name of the table being locked. This is only
danielk1977c00da102006-01-07 13:21:04 +00006580** used to generate an error message if the lock cannot be obtained.
6581*/
drh9cbf3422008-01-17 16:22:13 +00006582case OP_TableLock: {
danielk1977e0d9e6f2009-07-03 16:25:06 +00006583 u8 isWriteLock = (u8)pOp->p3;
drh169dd922017-06-26 13:57:49 +00006584 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){
danielk1977e0d9e6f2009-07-03 16:25:06 +00006585 int p1 = pOp->p1;
6586 assert( p1>=0 && p1<db->nDb );
drha7ab6d82014-07-21 15:44:39 +00006587 assert( DbMaskTest(p->btreeMask, p1) );
danielk1977e0d9e6f2009-07-03 16:25:06 +00006588 assert( isWriteLock==0 || isWriteLock==1 );
6589 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
drh9467abf2016-02-17 18:44:11 +00006590 if( rc ){
6591 if( (rc&0xFF)==SQLITE_LOCKED ){
6592 const char *z = pOp->p4.z;
6593 sqlite3VdbeError(p, "database table is locked: %s", z);
6594 }
6595 goto abort_due_to_error;
danielk1977e0d9e6f2009-07-03 16:25:06 +00006596 }
danielk1977c00da102006-01-07 13:21:04 +00006597 }
6598 break;
6599}
drhb9bb7c12006-06-11 23:41:55 +00006600#endif /* SQLITE_OMIT_SHARED_CACHE */
6601
6602#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006603/* Opcode: VBegin * * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00006604**
danielk19773e3a84d2008-08-01 17:37:40 +00006605** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
6606** xBegin method for that table.
6607**
6608** Also, whether or not P4 is set, check that this is not being called from
danielk1977404ca072009-03-16 13:19:36 +00006609** within a callback to a virtual table xSync() method. If it is, the error
6610** code will be set to SQLITE_LOCKED.
drhb9bb7c12006-06-11 23:41:55 +00006611*/
drh9cbf3422008-01-17 16:22:13 +00006612case OP_VBegin: {
danielk1977595a5232009-07-24 17:58:53 +00006613 VTable *pVTab;
6614 pVTab = pOp->p4.pVtab;
6615 rc = sqlite3VtabBegin(db, pVTab);
dan016f7812013-08-21 17:35:48 +00006616 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
drh9467abf2016-02-17 18:44:11 +00006617 if( rc ) goto abort_due_to_error;
danielk1977f9e7dda2006-06-16 16:08:53 +00006618 break;
6619}
6620#endif /* SQLITE_OMIT_VIRTUALTABLE */
6621
6622#ifndef SQLITE_OMIT_VIRTUALTABLE
dan73779452015-03-19 18:56:17 +00006623/* Opcode: VCreate P1 P2 * * *
danielk1977f9e7dda2006-06-16 16:08:53 +00006624**
dan73779452015-03-19 18:56:17 +00006625** P2 is a register that holds the name of a virtual table in database
6626** P1. Call the xCreate method for that table.
danielk1977f9e7dda2006-06-16 16:08:53 +00006627*/
drh9cbf3422008-01-17 16:22:13 +00006628case OP_VCreate: {
dan73779452015-03-19 18:56:17 +00006629 Mem sMem; /* For storing the record being decoded */
drh47464062015-03-21 12:22:16 +00006630 const char *zTab; /* Name of the virtual table */
6631
dan73779452015-03-19 18:56:17 +00006632 memset(&sMem, 0, sizeof(sMem));
6633 sMem.db = db;
drh47464062015-03-21 12:22:16 +00006634 /* Because P2 is always a static string, it is impossible for the
6635 ** sqlite3VdbeMemCopy() to fail */
6636 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
6637 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
dan73779452015-03-19 18:56:17 +00006638 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
drh47464062015-03-21 12:22:16 +00006639 assert( rc==SQLITE_OK );
6640 zTab = (const char*)sqlite3_value_text(&sMem);
6641 assert( zTab || db->mallocFailed );
6642 if( zTab ){
6643 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
dan73779452015-03-19 18:56:17 +00006644 }
6645 sqlite3VdbeMemRelease(&sMem);
drh9467abf2016-02-17 18:44:11 +00006646 if( rc ) goto abort_due_to_error;
drhb9bb7c12006-06-11 23:41:55 +00006647 break;
6648}
6649#endif /* SQLITE_OMIT_VIRTUALTABLE */
6650
6651#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006652/* Opcode: VDestroy P1 * * P4 *
drhb9bb7c12006-06-11 23:41:55 +00006653**
drh66a51672008-01-03 00:01:23 +00006654** P4 is the name of a virtual table in database P1. Call the xDestroy method
danielk19779e39ce82006-06-12 16:01:21 +00006655** of that table.
drhb9bb7c12006-06-11 23:41:55 +00006656*/
drh9cbf3422008-01-17 16:22:13 +00006657case OP_VDestroy: {
drh086723a2015-03-24 12:51:52 +00006658 db->nVDestroy++;
danielk19772dca4ac2008-01-03 11:50:29 +00006659 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
drh086723a2015-03-24 12:51:52 +00006660 db->nVDestroy--;
drh9467abf2016-02-17 18:44:11 +00006661 if( rc ) goto abort_due_to_error;
drhb9bb7c12006-06-11 23:41:55 +00006662 break;
6663}
6664#endif /* SQLITE_OMIT_VIRTUALTABLE */
danielk1977c00da102006-01-07 13:21:04 +00006665
drh9eff6162006-06-12 21:59:13 +00006666#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006667/* Opcode: VOpen P1 * * P4 *
drh9eff6162006-06-12 21:59:13 +00006668**
drh66a51672008-01-03 00:01:23 +00006669** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
drh9eff6162006-06-12 21:59:13 +00006670** P1 is a cursor number. This opcode opens a cursor to the virtual
6671** table and stores that cursor in P1.
6672*/
drh9cbf3422008-01-17 16:22:13 +00006673case OP_VOpen: {
drh856c1032009-06-02 15:21:42 +00006674 VdbeCursor *pCur;
drhc960dcb2015-11-20 19:22:01 +00006675 sqlite3_vtab_cursor *pVCur;
drh856c1032009-06-02 15:21:42 +00006676 sqlite3_vtab *pVtab;
drhf496a7d2015-03-24 14:05:50 +00006677 const sqlite3_module *pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006678
drh1713afb2013-06-28 01:24:57 +00006679 assert( p->bIsReader );
drh856c1032009-06-02 15:21:42 +00006680 pCur = 0;
drhc960dcb2015-11-20 19:22:01 +00006681 pVCur = 0;
danielk1977595a5232009-07-24 17:58:53 +00006682 pVtab = pOp->p4.pVtab->pVtab;
drhf496a7d2015-03-24 14:05:50 +00006683 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6684 rc = SQLITE_LOCKED;
drh9467abf2016-02-17 18:44:11 +00006685 goto abort_due_to_error;
drhf496a7d2015-03-24 14:05:50 +00006686 }
6687 pModule = pVtab->pModule;
drhc960dcb2015-11-20 19:22:01 +00006688 rc = pModule->xOpen(pVtab, &pVCur);
dan016f7812013-08-21 17:35:48 +00006689 sqlite3VtabImportErrmsg(p, pVtab);
drh9467abf2016-02-17 18:44:11 +00006690 if( rc ) goto abort_due_to_error;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006691
drh9467abf2016-02-17 18:44:11 +00006692 /* Initialize sqlite3_vtab_cursor base class */
6693 pVCur->pVtab = pVtab;
6694
6695 /* Initialize vdbe cursor object */
6696 pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB);
6697 if( pCur ){
6698 pCur->uc.pVCur = pVCur;
6699 pVtab->nRef++;
6700 }else{
6701 assert( db->mallocFailed );
6702 pModule->xClose(pVCur);
6703 goto no_mem;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006704 }
drh9eff6162006-06-12 21:59:13 +00006705 break;
6706}
6707#endif /* SQLITE_OMIT_VIRTUALTABLE */
6708
6709#ifndef SQLITE_OMIT_VIRTUALTABLE
danielk19776dbee812008-01-03 18:39:41 +00006710/* Opcode: VFilter P1 P2 P3 P4 *
drh831116d2014-04-03 14:31:00 +00006711** Synopsis: iplan=r[P3] zplan='P4'
drh9eff6162006-06-12 21:59:13 +00006712**
6713** P1 is a cursor opened using VOpen. P2 is an address to jump to if
6714** the filtered result set is empty.
6715**
drh66a51672008-01-03 00:01:23 +00006716** P4 is either NULL or a string that was generated by the xBestIndex
6717** method of the module. The interpretation of the P4 string is left
drh4be8b512006-06-13 23:51:34 +00006718** to the module implementation.
danielk19775fac9f82006-06-13 14:16:58 +00006719**
drh9eff6162006-06-12 21:59:13 +00006720** This opcode invokes the xFilter method on the virtual table specified
danielk19776dbee812008-01-03 18:39:41 +00006721** by P1. The integer query plan parameter to xFilter is stored in register
6722** P3. Register P3+1 stores the argc parameter to be passed to the
drh174edc62008-05-29 05:23:41 +00006723** xFilter method. Registers P3+2..P3+1+argc are the argc
6724** additional parameters which are passed to
danielk19776dbee812008-01-03 18:39:41 +00006725** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
danielk1977b7a7b9a2006-06-13 10:24:42 +00006726**
danielk19776dbee812008-01-03 18:39:41 +00006727** A jump is made to P2 if the result set after filtering would be empty.
drh9eff6162006-06-12 21:59:13 +00006728*/
drh9cbf3422008-01-17 16:22:13 +00006729case OP_VFilter: { /* jump */
danielk1977b7a7b9a2006-06-13 10:24:42 +00006730 int nArg;
danielk19776dbee812008-01-03 18:39:41 +00006731 int iQuery;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006732 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00006733 Mem *pQuery;
6734 Mem *pArgc;
drhc960dcb2015-11-20 19:22:01 +00006735 sqlite3_vtab_cursor *pVCur;
drh4dc754d2008-07-23 18:17:32 +00006736 sqlite3_vtab *pVtab;
drh856c1032009-06-02 15:21:42 +00006737 VdbeCursor *pCur;
6738 int res;
6739 int i;
6740 Mem **apArg;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006741
drha6c2ed92009-11-14 23:22:23 +00006742 pQuery = &aMem[pOp->p3];
drh856c1032009-06-02 15:21:42 +00006743 pArgc = &pQuery[1];
6744 pCur = p->apCsr[pOp->p1];
drh2b4ded92010-09-27 21:09:31 +00006745 assert( memIsValid(pQuery) );
drh5b6afba2008-01-05 16:29:28 +00006746 REGISTER_TRACE(pOp->p3, pQuery);
drhc960dcb2015-11-20 19:22:01 +00006747 assert( pCur->eCurType==CURTYPE_VTAB );
6748 pVCur = pCur->uc.pVCur;
6749 pVtab = pVCur->pVtab;
drh4dc754d2008-07-23 18:17:32 +00006750 pModule = pVtab->pModule;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006751
drh9cbf3422008-01-17 16:22:13 +00006752 /* Grab the index number and argc parameters */
danielk19776dbee812008-01-03 18:39:41 +00006753 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
drh9c1905f2008-12-10 22:32:56 +00006754 nArg = (int)pArgc->u.i;
6755 iQuery = (int)pQuery->u.i;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006756
drh644a5292006-12-20 14:53:38 +00006757 /* Invoke the xFilter method */
drhf56fa462015-04-13 21:39:54 +00006758 res = 0;
6759 apArg = p->apArg;
6760 for(i = 0; i<nArg; i++){
6761 apArg[i] = &pArgc[i+1];
6762 }
drhc960dcb2015-11-20 19:22:01 +00006763 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
drhf56fa462015-04-13 21:39:54 +00006764 sqlite3VtabImportErrmsg(p, pVtab);
drh9467abf2016-02-17 18:44:11 +00006765 if( rc ) goto abort_due_to_error;
6766 res = pModule->xEof(pVCur);
drh1d454a32008-01-31 19:34:51 +00006767 pCur->nullRow = 0;
drhf56fa462015-04-13 21:39:54 +00006768 VdbeBranchTaken(res!=0,2);
6769 if( res ) goto jump_to_p2;
drh9eff6162006-06-12 21:59:13 +00006770 break;
6771}
6772#endif /* SQLITE_OMIT_VIRTUALTABLE */
6773
6774#ifndef SQLITE_OMIT_VIRTUALTABLE
drhce2fbd12018-01-12 21:00:14 +00006775/* Opcode: VColumn P1 P2 P3 * P5
drh81316f82013-10-29 20:40:47 +00006776** Synopsis: r[P3]=vcolumn(P2)
drh9eff6162006-06-12 21:59:13 +00006777**
drh6f390be2018-01-11 17:04:26 +00006778** Store in register P3 the value of the P2-th column of
6779** the current row of the virtual-table of cursor P1.
6780**
6781** If the VColumn opcode is being used to fetch the value of
drhce2fbd12018-01-12 21:00:14 +00006782** an unchanging column during an UPDATE operation, then the P5
6783** value is 1. Otherwise, P5 is 0. The P5 value is returned
drhbbd574b2018-05-24 17:25:35 +00006784** by sqlite3_vtab_nochange() routine and can be used
drh6f390be2018-01-11 17:04:26 +00006785** by virtual table implementations to return special "no-change"
6786** marks which can be more efficient, depending on the virtual table.
drh9eff6162006-06-12 21:59:13 +00006787*/
6788case OP_VColumn: {
danielk19773e3a84d2008-08-01 17:37:40 +00006789 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006790 const sqlite3_module *pModule;
drhde4fcfd2008-01-19 23:50:26 +00006791 Mem *pDest;
6792 sqlite3_context sContext;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006793
drhdfe88ec2008-11-03 20:55:06 +00006794 VdbeCursor *pCur = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00006795 assert( pCur->eCurType==CURTYPE_VTAB );
drh9f6168b2016-03-19 23:32:58 +00006796 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
drha6c2ed92009-11-14 23:22:23 +00006797 pDest = &aMem[pOp->p3];
drh2b4ded92010-09-27 21:09:31 +00006798 memAboutToChange(p, pDest);
drh2945b4a2008-01-31 15:53:45 +00006799 if( pCur->nullRow ){
6800 sqlite3VdbeMemSetNull(pDest);
6801 break;
6802 }
drhc960dcb2015-11-20 19:22:01 +00006803 pVtab = pCur->uc.pVCur->pVtab;
danielk19773e3a84d2008-08-01 17:37:40 +00006804 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00006805 assert( pModule->xColumn );
6806 memset(&sContext, 0, sizeof(sContext));
drh9bd038f2014-08-27 14:14:06 +00006807 sContext.pOut = pDest;
drhce2fbd12018-01-12 21:00:14 +00006808 if( pOp->p5 ){
6809 sqlite3VdbeMemSetNull(pDest);
6810 pDest->flags = MEM_Null|MEM_Zero;
6811 pDest->u.nZero = 0;
6812 }else{
6813 MemSetTypeFlag(pDest, MEM_Null);
6814 }
drhc960dcb2015-11-20 19:22:01 +00006815 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
dan016f7812013-08-21 17:35:48 +00006816 sqlite3VtabImportErrmsg(p, pVtab);
drhf09ac0b2018-01-23 03:44:06 +00006817 if( sContext.isError>0 ){
dan099fa842018-01-30 18:33:23 +00006818 sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest));
drh4c8555f2009-06-25 01:47:11 +00006819 rc = sContext.isError;
6820 }
drh9bd038f2014-08-27 14:14:06 +00006821 sqlite3VdbeChangeEncoding(pDest, encoding);
drh5ff44372009-11-24 16:26:17 +00006822 REGISTER_TRACE(pOp->p3, pDest);
drhde4fcfd2008-01-19 23:50:26 +00006823 UPDATE_MAX_BLOBSIZE(pDest);
danielk1977b7a7b9a2006-06-13 10:24:42 +00006824
drhde4fcfd2008-01-19 23:50:26 +00006825 if( sqlite3VdbeMemTooBig(pDest) ){
6826 goto too_big;
6827 }
drh9467abf2016-02-17 18:44:11 +00006828 if( rc ) goto abort_due_to_error;
drh9eff6162006-06-12 21:59:13 +00006829 break;
6830}
6831#endif /* SQLITE_OMIT_VIRTUALTABLE */
6832
6833#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006834/* Opcode: VNext P1 P2 * * *
drh9eff6162006-06-12 21:59:13 +00006835**
6836** Advance virtual table P1 to the next row in its result set and
6837** jump to instruction P2. Or, if the virtual table has reached
6838** the end of its result set, then fall through to the next instruction.
6839*/
drh9cbf3422008-01-17 16:22:13 +00006840case OP_VNext: { /* jump */
danielk19773e3a84d2008-08-01 17:37:40 +00006841 sqlite3_vtab *pVtab;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006842 const sqlite3_module *pModule;
drhc54a6172009-06-02 16:06:03 +00006843 int res;
drh856c1032009-06-02 15:21:42 +00006844 VdbeCursor *pCur;
danielk1977b7a7b9a2006-06-13 10:24:42 +00006845
drhc54a6172009-06-02 16:06:03 +00006846 res = 0;
drh856c1032009-06-02 15:21:42 +00006847 pCur = p->apCsr[pOp->p1];
drhc960dcb2015-11-20 19:22:01 +00006848 assert( pCur->eCurType==CURTYPE_VTAB );
drh2945b4a2008-01-31 15:53:45 +00006849 if( pCur->nullRow ){
6850 break;
6851 }
drhc960dcb2015-11-20 19:22:01 +00006852 pVtab = pCur->uc.pVCur->pVtab;
danielk19773e3a84d2008-08-01 17:37:40 +00006853 pModule = pVtab->pModule;
drhde4fcfd2008-01-19 23:50:26 +00006854 assert( pModule->xNext );
danielk1977b7a7b9a2006-06-13 10:24:42 +00006855
drhde4fcfd2008-01-19 23:50:26 +00006856 /* Invoke the xNext() method of the module. There is no way for the
6857 ** underlying implementation to return an error if one occurs during
6858 ** xNext(). Instead, if an error occurs, true is returned (indicating that
6859 ** data is available) and the error code returned when xColumn or
6860 ** some other method is next invoked on the save virtual table cursor.
6861 */
drhc960dcb2015-11-20 19:22:01 +00006862 rc = pModule->xNext(pCur->uc.pVCur);
dan016f7812013-08-21 17:35:48 +00006863 sqlite3VtabImportErrmsg(p, pVtab);
drh9467abf2016-02-17 18:44:11 +00006864 if( rc ) goto abort_due_to_error;
6865 res = pModule->xEof(pCur->uc.pVCur);
drh688852a2014-02-17 22:40:43 +00006866 VdbeBranchTaken(!res,2);
drhde4fcfd2008-01-19 23:50:26 +00006867 if( !res ){
6868 /* If there is data, jump to P2 */
drhf56fa462015-04-13 21:39:54 +00006869 goto jump_to_p2_and_check_for_interrupt;
drhde4fcfd2008-01-19 23:50:26 +00006870 }
drh49afe3a2013-07-10 03:05:14 +00006871 goto check_for_interrupt;
drh9eff6162006-06-12 21:59:13 +00006872}
6873#endif /* SQLITE_OMIT_VIRTUALTABLE */
6874
danielk1977182c4ba2007-06-27 15:53:34 +00006875#ifndef SQLITE_OMIT_VIRTUALTABLE
drh98757152008-01-09 23:04:12 +00006876/* Opcode: VRename P1 * * P4 *
danielk1977182c4ba2007-06-27 15:53:34 +00006877**
drh66a51672008-01-03 00:01:23 +00006878** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977182c4ba2007-06-27 15:53:34 +00006879** This opcode invokes the corresponding xRename method. The value
danielk19776dbee812008-01-03 18:39:41 +00006880** in register P1 is passed as the zName argument to the xRename method.
danielk1977182c4ba2007-06-27 15:53:34 +00006881*/
drh9cbf3422008-01-17 16:22:13 +00006882case OP_VRename: {
drh856c1032009-06-02 15:21:42 +00006883 sqlite3_vtab *pVtab;
6884 Mem *pName;
6885
danielk1977595a5232009-07-24 17:58:53 +00006886 pVtab = pOp->p4.pVtab->pVtab;
drha6c2ed92009-11-14 23:22:23 +00006887 pName = &aMem[pOp->p1];
danielk1977182c4ba2007-06-27 15:53:34 +00006888 assert( pVtab->pModule->xRename );
drh2b4ded92010-09-27 21:09:31 +00006889 assert( memIsValid(pName) );
drh9e92a472013-06-27 17:40:30 +00006890 assert( p->readOnly==0 );
drh5b6afba2008-01-05 16:29:28 +00006891 REGISTER_TRACE(pOp->p1, pName);
drh35f6b932009-06-23 14:15:04 +00006892 assert( pName->flags & MEM_Str );
drh98655a62011-10-18 22:07:47 +00006893 testcase( pName->enc==SQLITE_UTF8 );
6894 testcase( pName->enc==SQLITE_UTF16BE );
6895 testcase( pName->enc==SQLITE_UTF16LE );
6896 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
drh9467abf2016-02-17 18:44:11 +00006897 if( rc ) goto abort_due_to_error;
6898 rc = pVtab->pModule->xRename(pVtab, pName->z);
6899 sqlite3VtabImportErrmsg(p, pVtab);
6900 p->expired = 0;
6901 if( rc ) goto abort_due_to_error;
danielk1977182c4ba2007-06-27 15:53:34 +00006902 break;
6903}
6904#endif
drh4cbdda92006-06-14 19:00:20 +00006905
6906#ifndef SQLITE_OMIT_VIRTUALTABLE
drh0fd61352014-02-07 02:29:45 +00006907/* Opcode: VUpdate P1 P2 P3 P4 P5
drhf63552b2013-10-30 00:25:03 +00006908** Synopsis: data=r[P3@P2]
danielk1977399918f2006-06-14 13:03:23 +00006909**
drh66a51672008-01-03 00:01:23 +00006910** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
danielk1977399918f2006-06-14 13:03:23 +00006911** This opcode invokes the corresponding xUpdate method. P2 values
danielk19772a339ff2008-01-03 17:31:44 +00006912** are contiguous memory cells starting at P3 to pass to the xUpdate
6913** invocation. The value in register (P3+P2-1) corresponds to the
6914** p2th element of the argv array passed to xUpdate.
drh4cbdda92006-06-14 19:00:20 +00006915**
6916** The xUpdate method will do a DELETE or an INSERT or both.
danielk19772a339ff2008-01-03 17:31:44 +00006917** The argv[0] element (which corresponds to memory cell P3)
6918** is the rowid of a row to delete. If argv[0] is NULL then no
6919** deletion occurs. The argv[1] element is the rowid of the new
6920** row. This can be NULL to have the virtual table select the new
6921** rowid for itself. The subsequent elements in the array are
6922** the values of columns in the new row.
drh4cbdda92006-06-14 19:00:20 +00006923**
6924** If P2==1 then no insert is performed. argv[0] is the rowid of
6925** a row to delete.
danielk19771f6eec52006-06-16 06:17:47 +00006926**
6927** P1 is a boolean flag. If it is set to true and the xUpdate call
6928** is successful, then the value returned by sqlite3_last_insert_rowid()
6929** is set to the value of the rowid for the row just inserted.
drh0fd61352014-02-07 02:29:45 +00006930**
6931** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
6932** apply in the case of a constraint failure on an insert or update.
danielk1977399918f2006-06-14 13:03:23 +00006933*/
drh9cbf3422008-01-17 16:22:13 +00006934case OP_VUpdate: {
drh856c1032009-06-02 15:21:42 +00006935 sqlite3_vtab *pVtab;
drhf496a7d2015-03-24 14:05:50 +00006936 const sqlite3_module *pModule;
drh856c1032009-06-02 15:21:42 +00006937 int nArg;
6938 int i;
6939 sqlite_int64 rowid;
6940 Mem **apArg;
6941 Mem *pX;
6942
danb061d052011-04-25 18:49:57 +00006943 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
6944 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
6945 );
drh9e92a472013-06-27 17:40:30 +00006946 assert( p->readOnly==0 );
drh4031baf2018-05-28 17:31:20 +00006947 sqlite3VdbeIncrWriteCounter(p, 0);
danielk1977595a5232009-07-24 17:58:53 +00006948 pVtab = pOp->p4.pVtab->pVtab;
drhf496a7d2015-03-24 14:05:50 +00006949 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6950 rc = SQLITE_LOCKED;
drh9467abf2016-02-17 18:44:11 +00006951 goto abort_due_to_error;
drhf496a7d2015-03-24 14:05:50 +00006952 }
6953 pModule = pVtab->pModule;
drh856c1032009-06-02 15:21:42 +00006954 nArg = pOp->p2;
drh66a51672008-01-03 00:01:23 +00006955 assert( pOp->p4type==P4_VTAB );
drh35f6b932009-06-23 14:15:04 +00006956 if( ALWAYS(pModule->xUpdate) ){
danb061d052011-04-25 18:49:57 +00006957 u8 vtabOnConflict = db->vtabOnConflict;
drh856c1032009-06-02 15:21:42 +00006958 apArg = p->apArg;
drha6c2ed92009-11-14 23:22:23 +00006959 pX = &aMem[pOp->p3];
danielk19772a339ff2008-01-03 17:31:44 +00006960 for(i=0; i<nArg; i++){
drh2b4ded92010-09-27 21:09:31 +00006961 assert( memIsValid(pX) );
6962 memAboutToChange(p, pX);
drh9c419382006-06-16 21:13:21 +00006963 apArg[i] = pX;
danielk19772a339ff2008-01-03 17:31:44 +00006964 pX++;
danielk1977399918f2006-06-14 13:03:23 +00006965 }
danb061d052011-04-25 18:49:57 +00006966 db->vtabOnConflict = pOp->p5;
danielk19771f6eec52006-06-16 06:17:47 +00006967 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
danb061d052011-04-25 18:49:57 +00006968 db->vtabOnConflict = vtabOnConflict;
dan016f7812013-08-21 17:35:48 +00006969 sqlite3VtabImportErrmsg(p, pVtab);
drh35f6b932009-06-23 14:15:04 +00006970 if( rc==SQLITE_OK && pOp->p1 ){
danielk19771f6eec52006-06-16 06:17:47 +00006971 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
drhfae58d52017-01-26 17:26:44 +00006972 db->lastRowid = rowid;
danielk19771f6eec52006-06-16 06:17:47 +00006973 }
drhd91c1a12013-02-09 13:58:25 +00006974 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
danb061d052011-04-25 18:49:57 +00006975 if( pOp->p5==OE_Ignore ){
6976 rc = SQLITE_OK;
6977 }else{
6978 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
6979 }
6980 }else{
6981 p->nChange++;
6982 }
drh9467abf2016-02-17 18:44:11 +00006983 if( rc ) goto abort_due_to_error;
danielk1977399918f2006-06-14 13:03:23 +00006984 }
drh4cbdda92006-06-14 19:00:20 +00006985 break;
danielk1977399918f2006-06-14 13:03:23 +00006986}
6987#endif /* SQLITE_OMIT_VIRTUALTABLE */
6988
danielk197759a93792008-05-15 17:48:20 +00006989#ifndef SQLITE_OMIT_PAGER_PRAGMAS
6990/* Opcode: Pagecount P1 P2 * * *
6991**
6992** Write the current number of pages in database P1 to memory cell P2.
6993*/
drh27a348c2015-04-13 19:14:06 +00006994case OP_Pagecount: { /* out2 */
6995 pOut = out2Prerelease(p, pOp);
drhb1299152010-03-30 22:58:33 +00006996 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
danielk197759a93792008-05-15 17:48:20 +00006997 break;
6998}
6999#endif
7000
drh60ac3f42010-11-23 18:59:27 +00007001
7002#ifndef SQLITE_OMIT_PAGER_PRAGMAS
7003/* Opcode: MaxPgcnt P1 P2 P3 * *
7004**
7005** Try to set the maximum page count for database P1 to the value in P3.
drhc84e0332010-11-23 20:25:08 +00007006** Do not let the maximum page count fall below the current page count and
7007** do not change the maximum page count value if P3==0.
7008**
drh60ac3f42010-11-23 18:59:27 +00007009** Store the maximum page count after the change in register P2.
7010*/
drh27a348c2015-04-13 19:14:06 +00007011case OP_MaxPgcnt: { /* out2 */
drhc84e0332010-11-23 20:25:08 +00007012 unsigned int newMax;
drh60ac3f42010-11-23 18:59:27 +00007013 Btree *pBt;
7014
drh27a348c2015-04-13 19:14:06 +00007015 pOut = out2Prerelease(p, pOp);
drh60ac3f42010-11-23 18:59:27 +00007016 pBt = db->aDb[pOp->p1].pBt;
drhc84e0332010-11-23 20:25:08 +00007017 newMax = 0;
7018 if( pOp->p3 ){
7019 newMax = sqlite3BtreeLastPage(pBt);
drh6ea28d62010-11-26 16:49:59 +00007020 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
drhc84e0332010-11-23 20:25:08 +00007021 }
7022 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
drh60ac3f42010-11-23 18:59:27 +00007023 break;
7024}
7025#endif
7026
drh3e34eab2017-07-19 19:48:40 +00007027/* Opcode: Function0 P1 P2 P3 P4 P5
7028** Synopsis: r[P3]=func(r[P2@P5])
7029**
7030** Invoke a user function (P4 is a pointer to a FuncDef object that
7031** defines the function) with P5 arguments taken from register P2 and
7032** successors. The result of the function is stored in register P3.
7033** Register P3 must not be one of the function inputs.
7034**
7035** P1 is a 32-bit bitmask indicating whether or not each argument to the
7036** function was determined to be constant at compile time. If the first
7037** argument was constant then bit 0 of P1 is set. This is used to determine
7038** whether meta data associated with a user function argument using the
7039** sqlite3_set_auxdata() API may be safely retained until the next
7040** invocation of this opcode.
7041**
7042** See also: Function, AggStep, AggFinal
7043*/
7044/* Opcode: Function P1 P2 P3 P4 P5
7045** Synopsis: r[P3]=func(r[P2@P5])
7046**
7047** Invoke a user function (P4 is a pointer to an sqlite3_context object that
7048** contains a pointer to the function to be run) with P5 arguments taken
7049** from register P2 and successors. The result of the function is stored
7050** in register P3. Register P3 must not be one of the function inputs.
7051**
7052** P1 is a 32-bit bitmask indicating whether or not each argument to the
7053** function was determined to be constant at compile time. If the first
7054** argument was constant then bit 0 of P1 is set. This is used to determine
7055** whether meta data associated with a user function argument using the
7056** sqlite3_set_auxdata() API may be safely retained until the next
7057** invocation of this opcode.
7058**
7059** SQL functions are initially coded as OP_Function0 with P4 pointing
7060** to a FuncDef object. But on first evaluation, the P4 operand is
7061** automatically converted into an sqlite3_context object and the operation
7062** changed to this OP_Function opcode. In this way, the initialization of
7063** the sqlite3_context object occurs only once, rather than once for each
7064** evaluation of the function.
7065**
7066** See also: Function0, AggStep, AggFinal
7067*/
7068case OP_PureFunc0:
7069case OP_Function0: {
7070 int n;
7071 sqlite3_context *pCtx;
7072
7073 assert( pOp->p4type==P4_FUNCDEF );
7074 n = pOp->p5;
7075 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
7076 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
7077 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
7078 pCtx = sqlite3DbMallocRawNN(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
7079 if( pCtx==0 ) goto no_mem;
7080 pCtx->pOut = 0;
7081 pCtx->pFunc = pOp->p4.pFunc;
7082 pCtx->iOp = (int)(pOp - aOp);
7083 pCtx->pVdbe = p;
drhf09ac0b2018-01-23 03:44:06 +00007084 pCtx->isError = 0;
drh3e34eab2017-07-19 19:48:40 +00007085 pCtx->argc = n;
7086 pOp->p4type = P4_FUNCCTX;
7087 pOp->p4.pCtx = pCtx;
7088 assert( OP_PureFunc == OP_PureFunc0+2 );
7089 assert( OP_Function == OP_Function0+2 );
7090 pOp->opcode += 2;
7091 /* Fall through into OP_Function */
7092}
7093case OP_PureFunc:
7094case OP_Function: {
7095 int i;
7096 sqlite3_context *pCtx;
7097
7098 assert( pOp->p4type==P4_FUNCCTX );
7099 pCtx = pOp->p4.pCtx;
7100
7101 /* If this function is inside of a trigger, the register array in aMem[]
7102 ** might change from one evaluation to the next. The next block of code
7103 ** checks to see if the register array has changed, and if so it
7104 ** reinitializes the relavant parts of the sqlite3_context object */
7105 pOut = &aMem[pOp->p3];
7106 if( pCtx->pOut != pOut ){
7107 pCtx->pOut = pOut;
7108 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
7109 }
7110
7111 memAboutToChange(p, pOut);
7112#ifdef SQLITE_DEBUG
7113 for(i=0; i<pCtx->argc; i++){
7114 assert( memIsValid(pCtx->argv[i]) );
7115 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
7116 }
7117#endif
7118 MemSetTypeFlag(pOut, MEM_Null);
drhf09ac0b2018-01-23 03:44:06 +00007119 assert( pCtx->isError==0 );
drh3e34eab2017-07-19 19:48:40 +00007120 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
7121
7122 /* If the function returned an error, throw an exception */
drhf09ac0b2018-01-23 03:44:06 +00007123 if( pCtx->isError ){
7124 if( pCtx->isError>0 ){
drh3e34eab2017-07-19 19:48:40 +00007125 sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut));
7126 rc = pCtx->isError;
7127 }
7128 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
drhf09ac0b2018-01-23 03:44:06 +00007129 pCtx->isError = 0;
drh3e34eab2017-07-19 19:48:40 +00007130 if( rc ) goto abort_due_to_error;
7131 }
7132
7133 /* Copy the result of the function into register P3 */
7134 if( pOut->flags & (MEM_Str|MEM_Blob) ){
7135 sqlite3VdbeChangeEncoding(pOut, encoding);
7136 if( sqlite3VdbeMemTooBig(pOut) ) goto too_big;
7137 }
7138
7139 REGISTER_TRACE(pOp->p3, pOut);
7140 UPDATE_MAX_BLOBSIZE(pOut);
7141 break;
7142}
7143
drhf259df52017-12-27 20:38:35 +00007144/* Opcode: Trace P1 P2 * P4 *
7145**
7146** Write P4 on the statement trace output if statement tracing is
7147** enabled.
7148**
7149** Operand P1 must be 0x7fffffff and P2 must positive.
7150*/
drh74588ce2017-09-13 00:13:05 +00007151/* Opcode: Init P1 P2 P3 P4 *
drh72e26de2016-08-24 21:24:04 +00007152** Synopsis: Start at P2
drhaceb31b2014-02-08 01:40:27 +00007153**
7154** Programs contain a single instance of this opcode as the very first
7155** opcode.
drh949f9cd2008-01-12 21:35:57 +00007156**
7157** If tracing is enabled (by the sqlite3_trace()) interface, then
7158** the UTF-8 string contained in P4 is emitted on the trace callback.
drhaceb31b2014-02-08 01:40:27 +00007159** Or if P4 is blank, use the string returned by sqlite3_sql().
7160**
7161** If P2 is not zero, jump to instruction P2.
drh9e5eb9c2016-09-18 16:08:10 +00007162**
7163** Increment the value of P1 so that OP_Once opcodes will jump the
7164** first time they are evaluated for this run.
drh74588ce2017-09-13 00:13:05 +00007165**
7166** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
7167** error is encountered.
drh949f9cd2008-01-12 21:35:57 +00007168*/
drhf259df52017-12-27 20:38:35 +00007169case OP_Trace:
drhaceb31b2014-02-08 01:40:27 +00007170case OP_Init: { /* jump */
drh9e5eb9c2016-09-18 16:08:10 +00007171 int i;
drhb9f47992018-01-24 12:14:43 +00007172#ifndef SQLITE_OMIT_TRACE
7173 char *zTrace;
7174#endif
drh5fe63bf2016-07-25 02:42:22 +00007175
7176 /* If the P4 argument is not NULL, then it must be an SQL comment string.
7177 ** The "--" string is broken up to prevent false-positives with srcck1.c.
7178 **
7179 ** This assert() provides evidence for:
7180 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
7181 ** would have been returned by the legacy sqlite3_trace() interface by
7182 ** using the X argument when X begins with "--" and invoking
7183 ** sqlite3_expanded_sql(P) otherwise.
7184 */
7185 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
drhf259df52017-12-27 20:38:35 +00007186
7187 /* OP_Init is always instruction 0 */
7188 assert( pOp==p->aOp || pOp->opcode==OP_Trace );
drh856c1032009-06-02 15:21:42 +00007189
drhaceb31b2014-02-08 01:40:27 +00007190#ifndef SQLITE_OMIT_TRACE
drhfca760c2016-07-14 01:09:08 +00007191 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
drh37f58e92012-09-04 21:34:26 +00007192 && !p->doingRerun
7193 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
7194 ){
drh3d2a5292016-07-13 22:55:01 +00007195#ifndef SQLITE_OMIT_DEPRECATED
drhfca760c2016-07-14 01:09:08 +00007196 if( db->mTrace & SQLITE_TRACE_LEGACY ){
7197 void (*x)(void*,const char*) = (void(*)(void*,const char*))db->xTrace;
drh5fe63bf2016-07-25 02:42:22 +00007198 char *z = sqlite3VdbeExpandSql(p, zTrace);
drhfca760c2016-07-14 01:09:08 +00007199 x(db->pTraceArg, z);
drhbd441f72016-07-25 02:31:48 +00007200 sqlite3_free(z);
drhfca760c2016-07-14 01:09:08 +00007201 }else
drh3d2a5292016-07-13 22:55:01 +00007202#endif
drh7adbcff2017-03-20 15:29:28 +00007203 if( db->nVdbeExec>1 ){
7204 char *z = sqlite3MPrintf(db, "-- %s", zTrace);
7205 (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, z);
7206 sqlite3DbFree(db, z);
7207 }else{
drhbd441f72016-07-25 02:31:48 +00007208 (void)db->xTrace(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
drh3d2a5292016-07-13 22:55:01 +00007209 }
drh949f9cd2008-01-12 21:35:57 +00007210 }
drh8f8b2312013-10-18 20:03:43 +00007211#ifdef SQLITE_USE_FCNTL_TRACE
7212 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
7213 if( zTrace ){
mistachkind8992ce2016-09-20 17:49:01 +00007214 int j;
7215 for(j=0; j<db->nDb; j++){
7216 if( DbMaskTest(p->btreeMask, j)==0 ) continue;
7217 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
drh8f8b2312013-10-18 20:03:43 +00007218 }
7219 }
7220#endif /* SQLITE_USE_FCNTL_TRACE */
drhc3f1d5f2011-05-30 23:42:16 +00007221#ifdef SQLITE_DEBUG
7222 if( (db->flags & SQLITE_SqlTrace)!=0
7223 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
7224 ){
7225 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
7226 }
7227#endif /* SQLITE_DEBUG */
drhaceb31b2014-02-08 01:40:27 +00007228#endif /* SQLITE_OMIT_TRACE */
drh4910a762016-09-03 01:46:15 +00007229 assert( pOp->p2>0 );
drh9e5eb9c2016-09-18 16:08:10 +00007230 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
drhf259df52017-12-27 20:38:35 +00007231 if( pOp->opcode==OP_Trace ) break;
drh9e5eb9c2016-09-18 16:08:10 +00007232 for(i=1; i<p->nOp; i++){
7233 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
7234 }
7235 pOp->p1 = 0;
7236 }
7237 pOp->p1++;
drh00d11d42017-06-29 12:49:18 +00007238 p->aCounter[SQLITE_STMTSTATUS_RUN]++;
drh4910a762016-09-03 01:46:15 +00007239 goto jump_to_p2;
drh949f9cd2008-01-12 21:35:57 +00007240}
drh949f9cd2008-01-12 21:35:57 +00007241
drh28935362013-12-07 20:39:19 +00007242#ifdef SQLITE_ENABLE_CURSOR_HINTS
drh0df57012015-08-14 15:05:55 +00007243/* Opcode: CursorHint P1 * * P4 *
drh28935362013-12-07 20:39:19 +00007244**
7245** Provide a hint to cursor P1 that it only needs to return rows that
drh0df57012015-08-14 15:05:55 +00007246** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer
7247** to values currently held in registers. TK_COLUMN terms in the P4
7248** expression refer to columns in the b-tree to which cursor P1 is pointing.
drh28935362013-12-07 20:39:19 +00007249*/
7250case OP_CursorHint: {
7251 VdbeCursor *pC;
7252
7253 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
7254 assert( pOp->p4type==P4_EXPR );
7255 pC = p->apCsr[pOp->p1];
dan91d3a612014-07-15 11:59:44 +00007256 if( pC ){
drhc960dcb2015-11-20 19:22:01 +00007257 assert( pC->eCurType==CURTYPE_BTREE );
drh62aaa6c2015-11-21 17:27:42 +00007258 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
7259 pOp->p4.pExpr, aMem);
dan91d3a612014-07-15 11:59:44 +00007260 }
drh28935362013-12-07 20:39:19 +00007261 break;
7262}
7263#endif /* SQLITE_ENABLE_CURSOR_HINTS */
drh91fd4d42008-01-19 20:11:25 +00007264
drh4031baf2018-05-28 17:31:20 +00007265#ifdef SQLITE_DEBUG
7266/* Opcode: Abortable * * * * *
7267**
7268** Verify that an Abort can happen. Assert if an Abort at this point
7269** might cause database corruption. This opcode only appears in debugging
7270** builds.
7271**
7272** An Abort is safe if either there have been no writes, or if there is
7273** an active statement journal.
7274*/
7275case OP_Abortable: {
7276 sqlite3VdbeAssertAbortable(p);
7277 break;
7278}
7279#endif
7280
drh91fd4d42008-01-19 20:11:25 +00007281/* Opcode: Noop * * * * *
7282**
7283** Do nothing. This instruction is often useful as a jump
7284** destination.
drh5e00f6c2001-09-13 13:46:56 +00007285*/
drh91fd4d42008-01-19 20:11:25 +00007286/*
7287** The magic Explain opcode are only inserted when explain==2 (which
7288** is to say when the EXPLAIN QUERY PLAN syntax is used.)
7289** This opcode records information from the optimizer. It is the
7290** the same as a no-op. This opcodesnever appears in a real VM program.
7291*/
drh4031baf2018-05-28 17:31:20 +00007292default: { /* This is really OP_Noop, OP_Explain */
drh13573c72010-01-12 17:04:07 +00007293 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
drh4031baf2018-05-28 17:31:20 +00007294
drh5e00f6c2001-09-13 13:46:56 +00007295 break;
7296}
7297
7298/*****************************************************************************
7299** The cases of the switch statement above this line should all be indented
7300** by 6 spaces. But the left-most 6 spaces have been removed to improve the
7301** readability. From this point on down, the normal indentation rules are
7302** restored.
7303*****************************************************************************/
7304 }
drh6e142f52000-06-08 13:36:40 +00007305
drh7b396862003-01-01 23:06:20 +00007306#ifdef VDBE_PROFILE
drh8178a752003-01-05 21:41:40 +00007307 {
drh35043cc2018-02-12 20:27:34 +00007308 u64 endTime = sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
drh6dc41482015-04-16 17:31:02 +00007309 if( endTime>start ) pOrigOp->cycles += endTime - start;
7310 pOrigOp->cnt++;
drh8178a752003-01-05 21:41:40 +00007311 }
drh7b396862003-01-01 23:06:20 +00007312#endif
7313
drh6e142f52000-06-08 13:36:40 +00007314 /* The following code adds nothing to the actual functionality
7315 ** of the program. It is only here for testing and debugging.
7316 ** On the other hand, it does burn CPU cycles every time through
7317 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
7318 */
7319#ifndef NDEBUG
drh6dc41482015-04-16 17:31:02 +00007320 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
drhae7e1512007-05-02 16:51:59 +00007321
drhcf1023c2007-05-08 20:59:49 +00007322#ifdef SQLITE_DEBUG
drh84e55a82013-11-13 17:58:23 +00007323 if( db->flags & SQLITE_VdbeTrace ){
drh7cc84c22016-04-11 13:36:42 +00007324 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
drh84e55a82013-11-13 17:58:23 +00007325 if( rc!=0 ) printf("rc=%d\n",rc);
drh7cc84c22016-04-11 13:36:42 +00007326 if( opProperty & (OPFLG_OUT2) ){
drh6dc41482015-04-16 17:31:02 +00007327 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
drh75897232000-05-29 14:26:00 +00007328 }
drh7cc84c22016-04-11 13:36:42 +00007329 if( opProperty & OPFLG_OUT3 ){
drh6dc41482015-04-16 17:31:02 +00007330 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
drh5b6afba2008-01-05 16:29:28 +00007331 }
drh75897232000-05-29 14:26:00 +00007332 }
danielk1977b5402fb2005-01-12 07:15:04 +00007333#endif /* SQLITE_DEBUG */
7334#endif /* NDEBUG */
drhb86ccfb2003-01-28 23:13:10 +00007335 } /* The end of the for(;;) loop the loops through opcodes */
drh75897232000-05-29 14:26:00 +00007336
drha05a7222008-01-19 03:35:58 +00007337 /* If we reach this point, it means that execution is finished with
7338 ** an error of some kind.
drhb86ccfb2003-01-28 23:13:10 +00007339 */
drh9467abf2016-02-17 18:44:11 +00007340abort_due_to_error:
7341 if( db->mallocFailed ) rc = SQLITE_NOMEM_BKPT;
drha05a7222008-01-19 03:35:58 +00007342 assert( rc );
drh9467abf2016-02-17 18:44:11 +00007343 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
7344 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
7345 }
drha05a7222008-01-19 03:35:58 +00007346 p->rc = rc;
drhf68521c2016-03-21 12:28:02 +00007347 sqlite3SystemError(db, rc);
drha64fa912010-03-04 00:53:32 +00007348 testcase( sqlite3GlobalConfig.xLog!=0 );
7349 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
drhf56fa462015-04-13 21:39:54 +00007350 (int)(pOp - aOp), p->zSql, p->zErrMsg);
drh92f02c32004-09-02 14:57:08 +00007351 sqlite3VdbeHalt(p);
drh4a642b62016-02-05 01:55:27 +00007352 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
danielk19777eaabcd2008-07-07 14:56:56 +00007353 rc = SQLITE_ERROR;
drhcdf011d2011-04-04 21:25:28 +00007354 if( resetSchemaOnFault>0 ){
drh81028a42012-05-15 18:28:27 +00007355 sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
drhbdaec522011-04-04 00:14:43 +00007356 }
drh900b31e2007-08-28 02:27:51 +00007357
7358 /* This is the only way out of this procedure. We have to
7359 ** release the mutexes on btrees that were acquired at the
7360 ** top. */
7361vdbe_return:
drh77dfd5b2013-08-19 11:15:48 +00007362 testcase( nVmStep>0 );
drh9b47ee32013-08-20 03:13:51 +00007363 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
drhbdaec522011-04-04 00:14:43 +00007364 sqlite3VdbeLeave(p);
dan83f0ab82016-01-29 18:04:31 +00007365 assert( rc!=SQLITE_OK || nExtraDelete==0
7366 || sqlite3_strlike("DELETE%",p->zSql,0)!=0
7367 );
drhb86ccfb2003-01-28 23:13:10 +00007368 return rc;
7369
drh023ae032007-05-08 12:12:16 +00007370 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
7371 ** is encountered.
7372 */
7373too_big:
drh22c17b82015-05-15 04:13:15 +00007374 sqlite3VdbeError(p, "string or blob too big");
drh023ae032007-05-08 12:12:16 +00007375 rc = SQLITE_TOOBIG;
drh9467abf2016-02-17 18:44:11 +00007376 goto abort_due_to_error;
drh023ae032007-05-08 12:12:16 +00007377
drh98640a32007-06-07 19:08:32 +00007378 /* Jump to here if a malloc() fails.
drhb86ccfb2003-01-28 23:13:10 +00007379 */
7380no_mem:
drh4a642b62016-02-05 01:55:27 +00007381 sqlite3OomFault(db);
drh22c17b82015-05-15 04:13:15 +00007382 sqlite3VdbeError(p, "out of memory");
mistachkinfad30392016-02-13 23:43:46 +00007383 rc = SQLITE_NOMEM_BKPT;
drh9467abf2016-02-17 18:44:11 +00007384 goto abort_due_to_error;
drhb86ccfb2003-01-28 23:13:10 +00007385
danielk19776f8a5032004-05-10 10:34:51 +00007386 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
drhb86ccfb2003-01-28 23:13:10 +00007387 ** flag.
7388 */
7389abort_due_to_interrupt:
drh881feaa2006-07-26 01:39:30 +00007390 assert( db->u1.isInterrupted );
mistachkinfad30392016-02-13 23:43:46 +00007391 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
danielk1977026d2702004-06-14 13:14:59 +00007392 p->rc = rc;
drh22c17b82015-05-15 04:13:15 +00007393 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
drh9467abf2016-02-17 18:44:11 +00007394 goto abort_due_to_error;
drhb86ccfb2003-01-28 23:13:10 +00007395}