blob: e6c6f31595325240067efe398d6fe606c68f33d2 [file] [log] [blame]
drhbbd42a62004-05-22 17:41:58 +00001/*
2** 2004 May 22
3**
4** The author disclaims copyright to this source code. In place of
5** a legal notice, here is a blessing:
6**
7** May you do good and not evil.
8** May you find forgiveness for yourself and forgive others.
9** May you share freely, never taking more than you give.
10**
11******************************************************************************
12**
13** This file contains code that is specific to Unix systems.
14*/
15#include "os.h" /* Must be first to enable large file support */
16#if OS_UNIX /* This file is used on unix only */
17#include "sqliteInt.h"
18
19
20#include <time.h>
21#include <errno.h>
22#include <unistd.h>
23#ifndef O_LARGEFILE
24# define O_LARGEFILE 0
25#endif
26#ifdef SQLITE_DISABLE_LFS
27# undef O_LARGEFILE
28# define O_LARGEFILE 0
29#endif
30#ifndef O_NOFOLLOW
31# define O_NOFOLLOW 0
32#endif
33#ifndef O_BINARY
34# define O_BINARY 0
35#endif
36
37/*
38** The DJGPP compiler environment looks mostly like Unix, but it
39** lacks the fcntl() system call. So redefine fcntl() to be something
40** that always succeeds. This means that locking does not occur under
41** DJGPP. But its DOS - what did you expect?
42*/
43#ifdef __DJGPP__
44# define fcntl(A,B,C) 0
45#endif
46
47/*
48** Macros used to determine whether or not to use threads. The
49** SQLITE_UNIX_THREADS macro is defined if we are synchronizing for
50** Posix threads and SQLITE_W32_THREADS is defined if we are
51** synchronizing using Win32 threads.
52*/
53#if defined(THREADSAFE) && THREADSAFE
54# include <pthread.h>
55# define SQLITE_UNIX_THREADS 1
56#endif
57
58
59/*
60** Include code that is common to all os_*.c files
61*/
62#include "os_common.h"
63
64
65/*
66** Here is the dirt on POSIX advisory locks: ANSI STD 1003.1 (1996)
67** section 6.5.2.2 lines 483 through 490 specify that when a process
68** sets or clears a lock, that operation overrides any prior locks set
69** by the same process. It does not explicitly say so, but this implies
70** that it overrides locks set by the same process using a different
71** file descriptor. Consider this test case:
72**
73** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
74** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
75**
76** Suppose ./file1 and ./file2 are really the same file (because
77** one is a hard or symbolic link to the other) then if you set
78** an exclusive lock on fd1, then try to get an exclusive lock
79** on fd2, it works. I would have expected the second lock to
80** fail since there was already a lock on the file due to fd1.
81** But not so. Since both locks came from the same process, the
82** second overrides the first, even though they were on different
83** file descriptors opened on different file names.
84**
85** Bummer. If you ask me, this is broken. Badly broken. It means
86** that we cannot use POSIX locks to synchronize file access among
87** competing threads of the same process. POSIX locks will work fine
88** to synchronize access for threads in separate processes, but not
89** threads within the same process.
90**
91** To work around the problem, SQLite has to manage file locks internally
92** on its own. Whenever a new database is opened, we have to find the
93** specific inode of the database file (the inode is determined by the
94** st_dev and st_ino fields of the stat structure that fstat() fills in)
95** and check for locks already existing on that inode. When locks are
96** created or removed, we have to look at our own internal record of the
97** locks to see if another thread has previously set a lock on that same
98** inode.
99**
100** The OsFile structure for POSIX is no longer just an integer file
101** descriptor. It is now a structure that holds the integer file
102** descriptor and a pointer to a structure that describes the internal
103** locks on the corresponding inode. There is one locking structure
104** per inode, so if the same inode is opened twice, both OsFile structures
105** point to the same locking structure. The locking structure keeps
106** a reference count (so we will know when to delete it) and a "cnt"
107** field that tells us its internal lock status. cnt==0 means the
108** file is unlocked. cnt==-1 means the file has an exclusive lock.
109** cnt>0 means there are cnt shared locks on the file.
110**
111** Any attempt to lock or unlock a file first checks the locking
112** structure. The fcntl() system call is only invoked to set a
113** POSIX lock if the internal lock structure transitions between
114** a locked and an unlocked state.
115**
116** 2004-Jan-11:
117** More recent discoveries about POSIX advisory locks. (The more
118** I discover, the more I realize the a POSIX advisory locks are
119** an abomination.)
120**
121** If you close a file descriptor that points to a file that has locks,
122** all locks on that file that are owned by the current process are
123** released. To work around this problem, each OsFile structure contains
124** a pointer to an openCnt structure. There is one openCnt structure
125** per open inode, which means that multiple OsFiles can point to a single
126** openCnt. When an attempt is made to close an OsFile, if there are
127** other OsFiles open on the same inode that are holding locks, the call
128** to close() the file descriptor is deferred until all of the locks clear.
129** The openCnt structure keeps a list of file descriptors that need to
130** be closed and that list is walked (and cleared) when the last lock
131** clears.
132**
133** First, under Linux threads, because each thread has a separate
134** process ID, lock operations in one thread do not override locks
135** to the same file in other threads. Linux threads behave like
136** separate processes in this respect. But, if you close a file
137** descriptor in linux threads, all locks are cleared, even locks
138** on other threads and even though the other threads have different
139** process IDs. Linux threads is inconsistent in this respect.
140** (I'm beginning to think that linux threads is an abomination too.)
141** The consequence of this all is that the hash table for the lockInfo
142** structure has to include the process id as part of its key because
143** locks in different threads are treated as distinct. But the
144** openCnt structure should not include the process id in its
145** key because close() clears lock on all threads, not just the current
146** thread. Were it not for this goofiness in linux threads, we could
147** combine the lockInfo and openCnt structures into a single structure.
148*/
149
150/*
151** An instance of the following structure serves as the key used
152** to locate a particular lockInfo structure given its inode. Note
153** that we have to include the process ID as part of the key. On some
154** threading implementations (ex: linux), each thread has a separate
155** process ID.
156*/
157struct lockKey {
158 dev_t dev; /* Device number */
159 ino_t ino; /* Inode number */
160 pid_t pid; /* Process ID */
161};
162
163/*
164** An instance of the following structure is allocated for each open
165** inode on each thread with a different process ID. (Threads have
166** different process IDs on linux, but not on most other unixes.)
167**
168** A single inode can have multiple file descriptors, so each OsFile
169** structure contains a pointer to an instance of this object and this
170** object keeps a count of the number of OsFiles pointing to it.
171*/
172struct lockInfo {
173 struct lockKey key; /* The lookup key */
174 int cnt; /* 0: unlocked. -1: write lock. 1...: read lock. */
175 int nRef; /* Number of pointers to this structure */
176};
177
178/*
179** An instance of the following structure serves as the key used
180** to locate a particular openCnt structure given its inode. This
181** is the same as the lockKey except that the process ID is omitted.
182*/
183struct openKey {
184 dev_t dev; /* Device number */
185 ino_t ino; /* Inode number */
186};
187
188/*
189** An instance of the following structure is allocated for each open
190** inode. This structure keeps track of the number of locks on that
191** inode. If a close is attempted against an inode that is holding
192** locks, the close is deferred until all locks clear by adding the
193** file descriptor to be closed to the pending list.
194*/
195struct openCnt {
196 struct openKey key; /* The lookup key */
197 int nRef; /* Number of pointers to this structure */
198 int nLock; /* Number of outstanding locks */
199 int nPending; /* Number of pending close() operations */
200 int *aPending; /* Malloced space holding fd's awaiting a close() */
201};
202
203/*
204** These hash table maps inodes and process IDs into lockInfo and openCnt
205** structures. Access to these hash tables must be protected by a mutex.
206*/
207static Hash lockHash = { SQLITE_HASH_BINARY, 0, 0, 0, 0, 0 };
208static Hash openHash = { SQLITE_HASH_BINARY, 0, 0, 0, 0, 0 };
209
210/*
211** Release a lockInfo structure previously allocated by findLockInfo().
212*/
213static void releaseLockInfo(struct lockInfo *pLock){
214 pLock->nRef--;
215 if( pLock->nRef==0 ){
216 sqlite3HashInsert(&lockHash, &pLock->key, sizeof(pLock->key), 0);
217 sqliteFree(pLock);
218 }
219}
220
221/*
222** Release a openCnt structure previously allocated by findLockInfo().
223*/
224static void releaseOpenCnt(struct openCnt *pOpen){
225 pOpen->nRef--;
226 if( pOpen->nRef==0 ){
227 sqlite3HashInsert(&openHash, &pOpen->key, sizeof(pOpen->key), 0);
228 sqliteFree(pOpen->aPending);
229 sqliteFree(pOpen);
230 }
231}
232
233/*
234** Given a file descriptor, locate lockInfo and openCnt structures that
235** describes that file descriptor. Create a new ones if necessary. The
236** return values might be unset if an error occurs.
237**
238** Return the number of errors.
239*/
240int findLockInfo(
241 int fd, /* The file descriptor used in the key */
242 struct lockInfo **ppLock, /* Return the lockInfo structure here */
243 struct openCnt **ppOpen /* Return the openCnt structure here */
244){
245 int rc;
246 struct lockKey key1;
247 struct openKey key2;
248 struct stat statbuf;
249 struct lockInfo *pLock;
250 struct openCnt *pOpen;
251 rc = fstat(fd, &statbuf);
252 if( rc!=0 ) return 1;
253 memset(&key1, 0, sizeof(key1));
254 key1.dev = statbuf.st_dev;
255 key1.ino = statbuf.st_ino;
256 key1.pid = getpid();
257 memset(&key2, 0, sizeof(key2));
258 key2.dev = statbuf.st_dev;
259 key2.ino = statbuf.st_ino;
260 pLock = (struct lockInfo*)sqlite3HashFind(&lockHash, &key1, sizeof(key1));
261 if( pLock==0 ){
262 struct lockInfo *pOld;
263 pLock = sqliteMallocRaw( sizeof(*pLock) );
264 if( pLock==0 ) return 1;
265 pLock->key = key1;
266 pLock->nRef = 1;
267 pLock->cnt = 0;
268 pOld = sqlite3HashInsert(&lockHash, &pLock->key, sizeof(key1), pLock);
269 if( pOld!=0 ){
270 assert( pOld==pLock );
271 sqliteFree(pLock);
272 return 1;
273 }
274 }else{
275 pLock->nRef++;
276 }
277 *ppLock = pLock;
278 pOpen = (struct openCnt*)sqlite3HashFind(&openHash, &key2, sizeof(key2));
279 if( pOpen==0 ){
280 struct openCnt *pOld;
281 pOpen = sqliteMallocRaw( sizeof(*pOpen) );
282 if( pOpen==0 ){
283 releaseLockInfo(pLock);
284 return 1;
285 }
286 pOpen->key = key2;
287 pOpen->nRef = 1;
288 pOpen->nLock = 0;
289 pOpen->nPending = 0;
290 pOpen->aPending = 0;
291 pOld = sqlite3HashInsert(&openHash, &pOpen->key, sizeof(key2), pOpen);
292 if( pOld!=0 ){
293 assert( pOld==pOpen );
294 sqliteFree(pOpen);
295 releaseLockInfo(pLock);
296 return 1;
297 }
298 }else{
299 pOpen->nRef++;
300 }
301 *ppOpen = pOpen;
302 return 0;
303}
304
305/*
306** Delete the named file
307*/
308int sqlite3OsDelete(const char *zFilename){
309 unlink(zFilename);
310 return SQLITE_OK;
311}
312
313/*
314** Return TRUE if the named file exists.
315*/
316int sqlite3OsFileExists(const char *zFilename){
317 return access(zFilename, 0)==0;
318}
319
320/*
321** Attempt to open a file for both reading and writing. If that
322** fails, try opening it read-only. If the file does not exist,
323** try to create it.
324**
325** On success, a handle for the open file is written to *id
326** and *pReadonly is set to 0 if the file was opened for reading and
327** writing or 1 if the file was opened read-only. The function returns
328** SQLITE_OK.
329**
330** On failure, the function returns SQLITE_CANTOPEN and leaves
331** *id and *pReadonly unchanged.
332*/
333int sqlite3OsOpenReadWrite(
334 const char *zFilename,
335 OsFile *id,
336 int *pReadonly
337){
338 int rc;
339 id->dirfd = -1;
340 id->fd = open(zFilename, O_RDWR|O_CREAT|O_LARGEFILE|O_BINARY, 0644);
341 if( id->fd<0 ){
342 id->fd = open(zFilename, O_RDONLY|O_LARGEFILE|O_BINARY);
343 if( id->fd<0 ){
344 return SQLITE_CANTOPEN;
345 }
346 *pReadonly = 1;
347 }else{
348 *pReadonly = 0;
349 }
350 sqlite3OsEnterMutex();
351 rc = findLockInfo(id->fd, &id->pLock, &id->pOpen);
352 sqlite3OsLeaveMutex();
353 if( rc ){
354 close(id->fd);
355 return SQLITE_NOMEM;
356 }
357 id->locked = 0;
358 TRACE3("OPEN %-3d %s\n", id->fd, zFilename);
359 OpenCounter(+1);
360 return SQLITE_OK;
361}
362
363
364/*
365** Attempt to open a new file for exclusive access by this process.
366** The file will be opened for both reading and writing. To avoid
367** a potential security problem, we do not allow the file to have
368** previously existed. Nor do we allow the file to be a symbolic
369** link.
370**
371** If delFlag is true, then make arrangements to automatically delete
372** the file when it is closed.
373**
374** On success, write the file handle into *id and return SQLITE_OK.
375**
376** On failure, return SQLITE_CANTOPEN.
377*/
378int sqlite3OsOpenExclusive(const char *zFilename, OsFile *id, int delFlag){
379 int rc;
380 if( access(zFilename, 0)==0 ){
381 return SQLITE_CANTOPEN;
382 }
383 id->dirfd = -1;
384 id->fd = open(zFilename,
385 O_RDWR|O_CREAT|O_EXCL|O_NOFOLLOW|O_LARGEFILE|O_BINARY, 0600);
386 if( id->fd<0 ){
387 return SQLITE_CANTOPEN;
388 }
389 sqlite3OsEnterMutex();
390 rc = findLockInfo(id->fd, &id->pLock, &id->pOpen);
391 sqlite3OsLeaveMutex();
392 if( rc ){
393 close(id->fd);
394 unlink(zFilename);
395 return SQLITE_NOMEM;
396 }
397 id->locked = 0;
398 if( delFlag ){
399 unlink(zFilename);
400 }
401 TRACE3("OPEN-EX %-3d %s\n", id->fd, zFilename);
402 OpenCounter(+1);
403 return SQLITE_OK;
404}
405
406/*
407** Attempt to open a new file for read-only access.
408**
409** On success, write the file handle into *id and return SQLITE_OK.
410**
411** On failure, return SQLITE_CANTOPEN.
412*/
413int sqlite3OsOpenReadOnly(const char *zFilename, OsFile *id){
414 int rc;
415 id->dirfd = -1;
416 id->fd = open(zFilename, O_RDONLY|O_LARGEFILE|O_BINARY);
417 if( id->fd<0 ){
418 return SQLITE_CANTOPEN;
419 }
420 sqlite3OsEnterMutex();
421 rc = findLockInfo(id->fd, &id->pLock, &id->pOpen);
422 sqlite3OsLeaveMutex();
423 if( rc ){
424 close(id->fd);
425 return SQLITE_NOMEM;
426 }
427 id->locked = 0;
428 TRACE3("OPEN-RO %-3d %s\n", id->fd, zFilename);
429 OpenCounter(+1);
430 return SQLITE_OK;
431}
432
433/*
434** Attempt to open a file descriptor for the directory that contains a
435** file. This file descriptor can be used to fsync() the directory
436** in order to make sure the creation of a new file is actually written
437** to disk.
438**
439** This routine is only meaningful for Unix. It is a no-op under
440** windows since windows does not support hard links.
441**
442** On success, a handle for a previously open file is at *id is
443** updated with the new directory file descriptor and SQLITE_OK is
444** returned.
445**
446** On failure, the function returns SQLITE_CANTOPEN and leaves
447** *id unchanged.
448*/
449int sqlite3OsOpenDirectory(
450 const char *zDirname,
451 OsFile *id
452){
453 if( id->fd<0 ){
454 /* Do not open the directory if the corresponding file is not already
455 ** open. */
456 return SQLITE_CANTOPEN;
457 }
458 assert( id->dirfd<0 );
459 id->dirfd = open(zDirname, O_RDONLY|O_BINARY, 0644);
460 if( id->dirfd<0 ){
461 return SQLITE_CANTOPEN;
462 }
463 TRACE3("OPENDIR %-3d %s\n", id->dirfd, zDirname);
464 return SQLITE_OK;
465}
466
467/*
468** Create a temporary file name in zBuf. zBuf must be big enough to
469** hold at least SQLITE_TEMPNAME_SIZE characters.
470*/
471int sqlite3OsTempFileName(char *zBuf){
472 static const char *azDirs[] = {
473 "/var/tmp",
474 "/usr/tmp",
475 "/tmp",
476 ".",
477 };
478 static unsigned char zChars[] =
479 "abcdefghijklmnopqrstuvwxyz"
480 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
481 "0123456789";
482 int i, j;
483 struct stat buf;
484 const char *zDir = ".";
485 for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); i++){
486 if( stat(azDirs[i], &buf) ) continue;
487 if( !S_ISDIR(buf.st_mode) ) continue;
488 if( access(azDirs[i], 07) ) continue;
489 zDir = azDirs[i];
490 break;
491 }
492 do{
493 sprintf(zBuf, "%s/"TEMP_FILE_PREFIX, zDir);
494 j = strlen(zBuf);
495 sqlite3Randomness(15, &zBuf[j]);
496 for(i=0; i<15; i++, j++){
497 zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
498 }
499 zBuf[j] = 0;
500 }while( access(zBuf,0)==0 );
501 return SQLITE_OK;
502}
503
504/*
505** Close a file.
506*/
507int sqlite3OsClose(OsFile *id){
508 sqlite3OsUnlock(id);
509 if( id->dirfd>=0 ) close(id->dirfd);
510 id->dirfd = -1;
511 sqlite3OsEnterMutex();
512 if( id->pOpen->nLock ){
513 /* If there are outstanding locks, do not actually close the file just
514 ** yet because that would clear those locks. Instead, add the file
515 ** descriptor to pOpen->aPending. It will be automatically closed when
516 ** the last lock is cleared.
517 */
518 int *aNew;
519 struct openCnt *pOpen = id->pOpen;
520 pOpen->nPending++;
521 aNew = sqliteRealloc( pOpen->aPending, pOpen->nPending*sizeof(int) );
522 if( aNew==0 ){
523 /* If a malloc fails, just leak the file descriptor */
524 }else{
525 pOpen->aPending = aNew;
526 pOpen->aPending[pOpen->nPending-1] = id->fd;
527 }
528 }else{
529 /* There are no outstanding locks so we can close the file immediately */
530 close(id->fd);
531 }
532 releaseLockInfo(id->pLock);
533 releaseOpenCnt(id->pOpen);
534 sqlite3OsLeaveMutex();
535 TRACE2("CLOSE %-3d\n", id->fd);
536 OpenCounter(-1);
537 return SQLITE_OK;
538}
539
540/*
541** Read data from a file into a buffer. Return SQLITE_OK if all
542** bytes were read successfully and SQLITE_IOERR if anything goes
543** wrong.
544*/
545int sqlite3OsRead(OsFile *id, void *pBuf, int amt){
546 int got;
547 SimulateIOError(SQLITE_IOERR);
548 TIMER_START;
549 got = read(id->fd, pBuf, amt);
550 TIMER_END;
551 TRACE4("READ %-3d %7d %d\n", id->fd, last_page, elapse);
552 SEEK(0);
553 /* if( got<0 ) got = 0; */
554 if( got==amt ){
555 return SQLITE_OK;
556 }else{
557 return SQLITE_IOERR;
558 }
559}
560
561/*
562** Write data from a buffer into a file. Return SQLITE_OK on success
563** or some other error code on failure.
564*/
565int sqlite3OsWrite(OsFile *id, const void *pBuf, int amt){
566 int wrote = 0;
567 SimulateIOError(SQLITE_IOERR);
568 TIMER_START;
569 while( amt>0 && (wrote = write(id->fd, pBuf, amt))>0 ){
570 amt -= wrote;
571 pBuf = &((char*)pBuf)[wrote];
572 }
573 TIMER_END;
574 TRACE4("WRITE %-3d %7d %d\n", id->fd, last_page, elapse);
575 SEEK(0);
576 if( amt>0 ){
577 return SQLITE_FULL;
578 }
579 return SQLITE_OK;
580}
581
582/*
583** Move the read/write pointer in a file.
584*/
585int sqlite3OsSeek(OsFile *id, off_t offset){
586 SEEK(offset/1024 + 1);
587 lseek(id->fd, offset, SEEK_SET);
588 return SQLITE_OK;
589}
590
591/*
592** Make sure all writes to a particular file are committed to disk.
593**
594** Under Unix, also make sure that the directory entry for the file
595** has been created by fsync-ing the directory that contains the file.
596** If we do not do this and we encounter a power failure, the directory
597** entry for the journal might not exist after we reboot. The next
598** SQLite to access the file will not know that the journal exists (because
599** the directory entry for the journal was never created) and the transaction
600** will not roll back - possibly leading to database corruption.
601*/
602int sqlite3OsSync(OsFile *id){
603 SimulateIOError(SQLITE_IOERR);
604 TRACE2("SYNC %-3d\n", id->fd);
605 if( fsync(id->fd) ){
606 return SQLITE_IOERR;
607 }else{
608 if( id->dirfd>=0 ){
609 TRACE2("DIRSYNC %-3d\n", id->dirfd);
610 fsync(id->dirfd);
611 close(id->dirfd); /* Only need to sync once, so close the directory */
612 id->dirfd = -1; /* when we are done. */
613 }
614 return SQLITE_OK;
615 }
616}
617
618/*
619** Truncate an open file to a specified size
620*/
621int sqlite3OsTruncate(OsFile *id, off_t nByte){
622 SimulateIOError(SQLITE_IOERR);
623 return ftruncate(id->fd, nByte)==0 ? SQLITE_OK : SQLITE_IOERR;
624}
625
626/*
627** Determine the current size of a file in bytes
628*/
629int sqlite3OsFileSize(OsFile *id, off_t *pSize){
630 struct stat buf;
631 SimulateIOError(SQLITE_IOERR);
632 if( fstat(id->fd, &buf)!=0 ){
633 return SQLITE_IOERR;
634 }
635 *pSize = buf.st_size;
636 return SQLITE_OK;
637}
638
639
640/*
641** Change the status of the lock on the file "id" to be a readlock.
642** If the file was write locked, then this reduces the lock to a read.
643** If the file was read locked, then this acquires a new read lock.
644**
645** Return SQLITE_OK on success and SQLITE_BUSY on failure. If this
646** library was compiled with large file support (LFS) but LFS is not
647** available on the host, then an SQLITE_NOLFS is returned.
648*/
649int sqlite3OsReadLock(OsFile *id){
650 int rc;
651 sqlite3OsEnterMutex();
652 if( id->pLock->cnt>0 ){
653 if( !id->locked ){
654 id->pLock->cnt++;
655 id->locked = 1;
656 id->pOpen->nLock++;
657 }
658 rc = SQLITE_OK;
659 }else if( id->locked || id->pLock->cnt==0 ){
660 struct flock lock;
661 int s;
662 lock.l_type = F_RDLCK;
663 lock.l_whence = SEEK_SET;
664 lock.l_start = lock.l_len = 0L;
665 s = fcntl(id->fd, F_SETLK, &lock);
666 if( s!=0 ){
667 rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
668 }else{
669 rc = SQLITE_OK;
670 if( !id->locked ){
671 id->pOpen->nLock++;
672 id->locked = 1;
673 }
674 id->pLock->cnt = 1;
675 }
676 }else{
677 rc = SQLITE_BUSY;
678 }
679 sqlite3OsLeaveMutex();
680 return rc;
681}
682
683/*
684** Change the lock status to be an exclusive or write lock. Return
685** SQLITE_OK on success and SQLITE_BUSY on a failure. If this
686** library was compiled with large file support (LFS) but LFS is not
687** available on the host, then an SQLITE_NOLFS is returned.
688*/
689int sqlite3OsWriteLock(OsFile *id){
690 int rc;
691 sqlite3OsEnterMutex();
692 if( id->pLock->cnt==0 || (id->pLock->cnt==1 && id->locked==1) ){
693 struct flock lock;
694 int s;
695 lock.l_type = F_WRLCK;
696 lock.l_whence = SEEK_SET;
697 lock.l_start = lock.l_len = 0L;
698 s = fcntl(id->fd, F_SETLK, &lock);
699 if( s!=0 ){
700 rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
701 }else{
702 rc = SQLITE_OK;
703 if( !id->locked ){
704 id->pOpen->nLock++;
705 id->locked = 1;
706 }
707 id->pLock->cnt = -1;
708 }
709 }else{
710 rc = SQLITE_BUSY;
711 }
712 sqlite3OsLeaveMutex();
713 return rc;
714}
715
716/*
717** Unlock the given file descriptor. If the file descriptor was
718** not previously locked, then this routine is a no-op. If this
719** library was compiled with large file support (LFS) but LFS is not
720** available on the host, then an SQLITE_NOLFS is returned.
721*/
722int sqlite3OsUnlock(OsFile *id){
723 int rc;
724 if( !id->locked ) return SQLITE_OK;
725 sqlite3OsEnterMutex();
726 assert( id->pLock->cnt!=0 );
727 if( id->pLock->cnt>1 ){
728 id->pLock->cnt--;
729 rc = SQLITE_OK;
730 }else{
731 struct flock lock;
732 int s;
733 lock.l_type = F_UNLCK;
734 lock.l_whence = SEEK_SET;
735 lock.l_start = lock.l_len = 0L;
736 s = fcntl(id->fd, F_SETLK, &lock);
737 if( s!=0 ){
738 rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
739 }else{
740 rc = SQLITE_OK;
741 id->pLock->cnt = 0;
742 }
743 }
744 if( rc==SQLITE_OK ){
745 /* Decrement the count of locks against this same file. When the
746 ** count reaches zero, close any other file descriptors whose close
747 ** was deferred because of outstanding locks.
748 */
749 struct openCnt *pOpen = id->pOpen;
750 pOpen->nLock--;
751 assert( pOpen->nLock>=0 );
752 if( pOpen->nLock==0 && pOpen->nPending>0 ){
753 int i;
754 for(i=0; i<pOpen->nPending; i++){
755 close(pOpen->aPending[i]);
756 }
757 sqliteFree(pOpen->aPending);
758 pOpen->nPending = 0;
759 pOpen->aPending = 0;
760 }
761 }
762 sqlite3OsLeaveMutex();
763 id->locked = 0;
764 return rc;
765}
766
767/*
768** Get information to seed the random number generator. The seed
769** is written into the buffer zBuf[256]. The calling function must
770** supply a sufficiently large buffer.
771*/
772int sqlite3OsRandomSeed(char *zBuf){
773 /* We have to initialize zBuf to prevent valgrind from reporting
774 ** errors. The reports issued by valgrind are incorrect - we would
775 ** prefer that the randomness be increased by making use of the
776 ** uninitialized space in zBuf - but valgrind errors tend to worry
777 ** some users. Rather than argue, it seems easier just to initialize
778 ** the whole array and silence valgrind, even if that means less randomness
779 ** in the random seed.
780 **
781 ** When testing, initializing zBuf[] to zero is all we do. That means
782 ** that we always use the same random number sequence.* This makes the
783 ** tests repeatable.
784 */
785 memset(zBuf, 0, 256);
786#if !defined(SQLITE_TEST)
787 {
788 int pid;
789 time((time_t*)zBuf);
790 pid = getpid();
791 memcpy(&zBuf[sizeof(time_t)], &pid, sizeof(pid));
792 }
793#endif
794 return SQLITE_OK;
795}
796
797/*
798** Sleep for a little while. Return the amount of time slept.
799*/
800int sqlite3OsSleep(int ms){
801#if defined(HAVE_USLEEP) && HAVE_USLEEP
802 usleep(ms*1000);
803 return ms;
804#else
805 sleep((ms+999)/1000);
806 return 1000*((ms+999)/1000);
807#endif
808}
809
810/*
811** Static variables used for thread synchronization
812*/
813static int inMutex = 0;
814static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
815
816/*
817** The following pair of routine implement mutual exclusion for
818** multi-threaded processes. Only a single thread is allowed to
819** executed code that is surrounded by EnterMutex() and LeaveMutex().
820**
821** SQLite uses only a single Mutex. There is not much critical
822** code and what little there is executes quickly and without blocking.
823*/
824void sqlite3OsEnterMutex(){
825#ifdef SQLITE_UNIX_THREADS
826 pthread_mutex_lock(&mutex);
827#endif
828 assert( !inMutex );
829 inMutex = 1;
830}
831void sqlite3OsLeaveMutex(){
832 assert( inMutex );
833 inMutex = 0;
834#ifdef SQLITE_UNIX_THREADS
835 pthread_mutex_unlock(&mutex);
836#endif
837}
838
839/*
840** Turn a relative pathname into a full pathname. Return a pointer
841** to the full pathname stored in space obtained from sqliteMalloc().
842** The calling function is responsible for freeing this space once it
843** is no longer needed.
844*/
845char *sqlite3OsFullPathname(const char *zRelative){
846 char *zFull = 0;
847 if( zRelative[0]=='/' ){
848 sqlite3SetString(&zFull, zRelative, (char*)0);
849 }else{
850 char zBuf[5000];
851 sqlite3SetString(&zFull, getcwd(zBuf, sizeof(zBuf)), "/", zRelative,
852 (char*)0);
853 }
854 return zFull;
855}
856
857/*
858** The following variable, if set to a non-zero value, becomes the result
859** returned from sqlite3OsCurrentTime(). This is used for testing.
860*/
861#ifdef SQLITE_TEST
862int sqlite3_current_time = 0;
863#endif
864
865/*
866** Find the current time (in Universal Coordinated Time). Write the
867** current time and date as a Julian Day number into *prNow and
868** return 0. Return 1 if the time and date cannot be found.
869*/
870int sqlite3OsCurrentTime(double *prNow){
871 time_t t;
872 time(&t);
873 *prNow = t/86400.0 + 2440587.5;
874#ifdef SQLITE_TEST
875 if( sqlite3_current_time ){
876 *prNow = sqlite3_current_time/86400.0 + 2440587.5;
877 }
878#endif
879 return 0;
880}
881
882#endif /* OS_UNIX */