drh | 7014aff | 2003-11-01 01:53:53 +0000 | [diff] [blame^] | 1 | /* |
| 2 | ** 2003 October 31 |
| 3 | ** |
| 4 | ** The author disclaims copyright to this source code. In place of |
| 5 | ** a legal notice, here is a blessing: |
| 6 | ** |
| 7 | ** May you do good and not evil. |
| 8 | ** May you find forgiveness for yourself and forgive others. |
| 9 | ** May you share freely, never taking more than you give. |
| 10 | ** |
| 11 | ************************************************************************* |
| 12 | ** This file contains the C functions that implement date and time |
| 13 | ** functions for SQLite. |
| 14 | ** |
| 15 | ** There is only one exported symbol in this file - the function |
| 16 | ** sqliteRegisterDateTimeFunctions() found at the bottom of the file. |
| 17 | ** All other code has file scope. |
| 18 | ** |
| 19 | ** $Id: date.c,v 1.1 2003/11/01 01:53:54 drh Exp $ |
| 20 | ** |
| 21 | ** NOTES: |
| 22 | ** |
| 23 | ** SQLite processes all times and dates as Julian Day numbers. The |
| 24 | ** dates and times are stored as the number of days since noon |
| 25 | ** in Greenwich on November 24, 4714 B.C. according to the Gregorian |
| 26 | ** calendar system. |
| 27 | ** |
| 28 | ** 1970-01-01 00:00:00 is JD 2440587.5 |
| 29 | ** 2000-01-01 00:00:00 is JD 2451544.5 |
| 30 | ** |
| 31 | ** This implemention requires years to be expressed as a 4-digit number |
| 32 | ** which means that only dates between 0000-01-01 and 9999-12-31 can |
| 33 | ** be represented, even though julian day numbers allow a much wider |
| 34 | ** range of dates. |
| 35 | ** |
| 36 | ** The Gregorian calendar system is used for all dates and times, |
| 37 | ** even those that predate the Gregorian calendar. Historians usually |
| 38 | ** use the Julian calendar for dates prior to 1582-10-15 and for some |
| 39 | ** dates afterwards, depending on locale. Beware of this difference. |
| 40 | ** |
| 41 | ** The conversion algorithms are implemented based on descriptions |
| 42 | ** in the following text: |
| 43 | ** |
| 44 | ** Jean Meeus |
| 45 | ** Astronomical Algorithms, 2nd Edition, 1998 |
| 46 | ** ISBM 0-943396-61-1 |
| 47 | ** Willmann-Bell, Inc |
| 48 | ** Richmond, Virginia (USA) |
| 49 | */ |
| 50 | #ifndef SQLITE_OMIT_DATETIME_FUNCS |
| 51 | #include <ctype.h> |
| 52 | #include <stdlib.h> |
| 53 | #include <assert.h> |
| 54 | #include "sqliteInt.h" |
| 55 | #include "os.h" |
| 56 | |
| 57 | /* |
| 58 | ** A structure for holding a single date and time. |
| 59 | */ |
| 60 | typedef struct DateTime DateTime; |
| 61 | struct DateTime { |
| 62 | double rJD; /* The julian day number */ |
| 63 | int Y, M, D; /* Year, month, and day */ |
| 64 | int h, m; /* Hour and minutes */ |
| 65 | int tz; /* Timezone offset in minutes */ |
| 66 | double s; /* Seconds */ |
| 67 | char validYMD; /* True if Y,M,D are valid */ |
| 68 | char validHMS; /* True if h,m,s are valid */ |
| 69 | char validJD; /* True if rJD is valid */ |
| 70 | char validTZ; /* True if tz is valid */ |
| 71 | }; |
| 72 | |
| 73 | |
| 74 | /* |
| 75 | ** Convert N digits from zDate into an integer. Return |
| 76 | ** -1 if zDate does not begin with N digits. |
| 77 | */ |
| 78 | static int getDigits(const char *zDate, int N){ |
| 79 | int val = 0; |
| 80 | while( N-- ){ |
| 81 | if( !isdigit(*zDate) ) return -1; |
| 82 | val = val*10 + *zDate - '0'; |
| 83 | zDate++; |
| 84 | } |
| 85 | return val; |
| 86 | } |
| 87 | |
| 88 | /* |
| 89 | ** Read text from z[] and convert into a floating point number. Return |
| 90 | ** the number of digits converted. |
| 91 | */ |
| 92 | static int getValue(const char *z, double *pR){ |
| 93 | double r = 0.0; |
| 94 | double rDivide = 1.0; |
| 95 | int isNeg = 0; |
| 96 | int nChar = 0; |
| 97 | if( *z=='+' ){ |
| 98 | z++; |
| 99 | nChar++; |
| 100 | }else if( *z=='-' ){ |
| 101 | z++; |
| 102 | isNeg = 1; |
| 103 | nChar++; |
| 104 | } |
| 105 | if( !isdigit(*z) ) return 0; |
| 106 | while( isdigit(*z) ){ |
| 107 | r = r*10.0 + *z - '0'; |
| 108 | nChar++; |
| 109 | z++; |
| 110 | } |
| 111 | if( *z=='.' && isdigit(z[1]) ){ |
| 112 | z++; |
| 113 | nChar++; |
| 114 | while( isdigit(*z) ){ |
| 115 | r = r*10.0 + *z - '0'; |
| 116 | rDivide *= 10.0; |
| 117 | nChar++; |
| 118 | z++; |
| 119 | } |
| 120 | r /= rDivide; |
| 121 | } |
| 122 | if( *z!=0 && !isspace(*z) ) return 0; |
| 123 | *pR = isNeg ? -r : r; |
| 124 | return nChar; |
| 125 | } |
| 126 | |
| 127 | /* |
| 128 | ** Parse a timezone extension on the end of a date-time. |
| 129 | ** The extension is of the form: |
| 130 | ** |
| 131 | ** (+/-)HH:MM |
| 132 | ** |
| 133 | ** If the parse is successful, write the number of minutes |
| 134 | ** of change in *pnMin and return 0. If a parser error occurs, |
| 135 | ** return 0. |
| 136 | ** |
| 137 | ** A missing specifier is not considered an error. |
| 138 | */ |
| 139 | static int parseTimezone(const char *zDate, DateTime *p){ |
| 140 | int sgn = 0; |
| 141 | int nHr, nMn; |
| 142 | while( isspace(*zDate) ){ zDate++; } |
| 143 | p->tz = 0; |
| 144 | if( *zDate=='-' ){ |
| 145 | sgn = -1; |
| 146 | }else if( *zDate=='+' ){ |
| 147 | sgn = +1; |
| 148 | }else{ |
| 149 | return *zDate!=0; |
| 150 | } |
| 151 | zDate++; |
| 152 | nHr = getDigits(zDate, 2); |
| 153 | if( nHr<0 || nHr>14 ) return 1; |
| 154 | zDate += 2; |
| 155 | if( zDate[0]!=':' ) return 1; |
| 156 | zDate++; |
| 157 | nMn = getDigits(zDate, 2); |
| 158 | if( nMn<0 || nMn>59 ) return 1; |
| 159 | zDate += 2; |
| 160 | p->tz = sgn*(nMn + nHr*60); |
| 161 | while( isspace(*zDate) ){ zDate++; } |
| 162 | return *zDate!=0; |
| 163 | } |
| 164 | |
| 165 | /* |
| 166 | ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF. |
| 167 | ** The HH, MM, and SS must each be exactly 2 digits. The |
| 168 | ** fractional seconds FFFF can be one or more digits. |
| 169 | ** |
| 170 | ** Return 1 if there is a parsing error and 0 on success. |
| 171 | */ |
| 172 | static int parseHhMmSs(const char *zDate, DateTime *p){ |
| 173 | int h, m, s; |
| 174 | double ms = 0.0; |
| 175 | h = getDigits(zDate, 2); |
| 176 | if( h<0 || zDate[2]!=':' ) return 1; |
| 177 | zDate += 3; |
| 178 | m = getDigits(zDate, 2); |
| 179 | if( m<0 || m>59 ) return 1; |
| 180 | zDate += 2; |
| 181 | if( *zDate==':' ){ |
| 182 | s = getDigits(&zDate[1], 2); |
| 183 | if( s<0 || s>59 ) return 1; |
| 184 | zDate += 3; |
| 185 | if( *zDate=='.' && isdigit(zDate[1]) ){ |
| 186 | double rScale = 1.0; |
| 187 | zDate++; |
| 188 | while( isdigit(*zDate) ){ |
| 189 | ms = ms*10.0 + *zDate - '0'; |
| 190 | rScale *= 10.0; |
| 191 | zDate++; |
| 192 | } |
| 193 | ms /= rScale; |
| 194 | } |
| 195 | }else{ |
| 196 | s = 0; |
| 197 | } |
| 198 | p->validJD = 0; |
| 199 | p->validHMS = 1; |
| 200 | p->h = h; |
| 201 | p->m = m; |
| 202 | p->s = s + ms; |
| 203 | if( parseTimezone(zDate, p) ) return 1; |
| 204 | p->validTZ = p->tz!=0; |
| 205 | return 0; |
| 206 | } |
| 207 | |
| 208 | /* |
| 209 | ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume |
| 210 | ** that the YYYY-MM-DD is according to the Gregorian calendar. |
| 211 | ** |
| 212 | ** Reference: Meeus page 61 |
| 213 | */ |
| 214 | static void computeJD(DateTime *p){ |
| 215 | int Y, M, D, A, B, X1, X2; |
| 216 | |
| 217 | if( p->validJD ) return; |
| 218 | if( p->validYMD ){ |
| 219 | Y = p->Y; |
| 220 | M = p->M; |
| 221 | D = p->D; |
| 222 | }else{ |
| 223 | Y = 2000; |
| 224 | M = 1; |
| 225 | D = 1; |
| 226 | } |
| 227 | if( M<=2 ){ |
| 228 | Y--; |
| 229 | M += 12; |
| 230 | } |
| 231 | A = Y/100; |
| 232 | B = 2 - A + (A/4); |
| 233 | X1 = 365.25*(Y+4716); |
| 234 | X2 = 30.6001*(M+1); |
| 235 | p->rJD = X1 + X2 + D + B - 1524.5; |
| 236 | p->validJD = 1; |
| 237 | p->validYMD = 0; |
| 238 | if( p->validHMS ){ |
| 239 | p->rJD += (p->h*3600.0 + p->m*60.0 + p->s)/86400.0; |
| 240 | if( p->validTZ ){ |
| 241 | p->rJD += p->tz*60/86400.0; |
| 242 | p->validHMS = 0; |
| 243 | p->validTZ = 0; |
| 244 | } |
| 245 | } |
| 246 | } |
| 247 | |
| 248 | /* |
| 249 | ** Parse dates of the form |
| 250 | ** |
| 251 | ** YYYY-MM-DD HH:MM:SS.FFF |
| 252 | ** YYYY-MM-DD HH:MM:SS |
| 253 | ** YYYY-MM-DD HH:MM |
| 254 | ** YYYY-MM-DD |
| 255 | ** |
| 256 | ** Write the result into the DateTime structure and return 0 |
| 257 | ** on success and 1 if the input string is not a well-formed |
| 258 | ** date. |
| 259 | */ |
| 260 | static int parseYyyyMmDd(const char *zDate, DateTime *p){ |
| 261 | int Y, M, D; |
| 262 | |
| 263 | Y = getDigits(zDate, 4); |
| 264 | if( Y<0 || zDate[4]!='-' ) return 1; |
| 265 | zDate += 5; |
| 266 | M = getDigits(zDate, 2); |
| 267 | if( M<=0 || M>12 || zDate[2]!='-' ) return 1; |
| 268 | zDate += 3; |
| 269 | D = getDigits(zDate, 2); |
| 270 | if( D<=0 || D>31 ) return 1; |
| 271 | zDate += 2; |
| 272 | while( isspace(*zDate) ){ zDate++; } |
| 273 | if( isdigit(*zDate) ){ |
| 274 | if( parseHhMmSs(zDate, p) ) return 1; |
| 275 | }else if( *zDate==0 ){ |
| 276 | p->validHMS = 0; |
| 277 | }else{ |
| 278 | return 1; |
| 279 | } |
| 280 | p->validJD = 0; |
| 281 | p->validYMD = 1; |
| 282 | p->Y = Y; |
| 283 | p->M = M; |
| 284 | p->D = D; |
| 285 | if( p->validTZ ){ |
| 286 | computeJD(p); |
| 287 | } |
| 288 | return 0; |
| 289 | } |
| 290 | |
| 291 | /* |
| 292 | ** Attempt to parse the given string into a Julian Day Number. Return |
| 293 | ** the number of errors. |
| 294 | ** |
| 295 | ** The following are acceptable forms for the input string: |
| 296 | ** |
| 297 | ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM |
| 298 | ** DDDD.DD |
| 299 | ** now |
| 300 | ** |
| 301 | ** In the first form, the +/-HH:MM is always optional. The fractional |
| 302 | ** seconds extension (the ".FFF") is optional. The seconds portion |
| 303 | ** (":SS.FFF") is option. The year and date can be omitted as long |
| 304 | ** as there is a time string. The time string can be omitted as long |
| 305 | ** as there is a year and date. |
| 306 | */ |
| 307 | static int parseDateOrTime(const char *zDate, DateTime *p){ |
| 308 | int i; |
| 309 | memset(p, 0, sizeof(*p)); |
| 310 | for(i=0; isdigit(zDate[i]); i++){} |
| 311 | if( i==4 && zDate[i]=='-' ){ |
| 312 | return parseYyyyMmDd(zDate, p); |
| 313 | }else if( i==2 && zDate[i]==':' ){ |
| 314 | return parseHhMmSs(zDate, p); |
| 315 | return 0; |
| 316 | }else if( i==0 && sqliteStrICmp(zDate,"now")==0 ){ |
| 317 | double r; |
| 318 | if( sqliteOsCurrentTime(&r)==0 ){ |
| 319 | p->rJD = r; |
| 320 | p->validJD = 1; |
| 321 | return 0; |
| 322 | } |
| 323 | return 1; |
| 324 | }else if( sqliteIsNumber(zDate) ){ |
| 325 | p->rJD = atof(zDate); |
| 326 | p->validJD = 1; |
| 327 | return 0; |
| 328 | } |
| 329 | return 1; |
| 330 | } |
| 331 | |
| 332 | /* |
| 333 | ** Compute the Year, Month, and Day from the julian day number. |
| 334 | */ |
| 335 | static void computeYMD(DateTime *p){ |
| 336 | int Z, A, B, C, D, E, X1; |
| 337 | if( p->validYMD ) return; |
| 338 | Z = p->rJD + 0.5; |
| 339 | A = (Z - 1867216.25)/36524.25; |
| 340 | A = Z + 1 + A - (A/4); |
| 341 | B = A + 1524; |
| 342 | C = (B - 122.1)/365.25; |
| 343 | D = 365.25*C; |
| 344 | E = (B-D)/30.6001; |
| 345 | X1 = 30.6001*E; |
| 346 | p->D = B - D - X1; |
| 347 | p->M = E<14 ? E-1 : E-13; |
| 348 | p->Y = p->M>2 ? C - 4716 : C - 4715; |
| 349 | p->validYMD = 1; |
| 350 | } |
| 351 | |
| 352 | /* |
| 353 | ** Compute the Hour, Minute, and Seconds from the julian day number. |
| 354 | */ |
| 355 | static void computeHMS(DateTime *p){ |
| 356 | int Z, s; |
| 357 | if( p->validHMS ) return; |
| 358 | Z = p->rJD + 0.5; |
| 359 | s = (p->rJD + 0.5 - Z)*86400000.0 + 0.5; |
| 360 | p->s = 0.001*s; |
| 361 | s = p->s; |
| 362 | p->s -= s; |
| 363 | p->h = s/3600; |
| 364 | s -= p->h*3600; |
| 365 | p->m = s/60; |
| 366 | p->s += s - p->m*60; |
| 367 | p->validHMS = 1; |
| 368 | } |
| 369 | |
| 370 | /* |
| 371 | ** Process a modifier to a date-time stamp. The modifiers are |
| 372 | ** as follows: |
| 373 | ** |
| 374 | ** NNN days |
| 375 | ** NNN hours |
| 376 | ** NNN minutes |
| 377 | ** NNN.NNNN seconds |
| 378 | ** NNN months |
| 379 | ** NNN years |
| 380 | ** start of month |
| 381 | ** start of year |
| 382 | ** start of week |
| 383 | ** start of day |
| 384 | ** weekday N |
| 385 | ** unixepoch |
| 386 | ** |
| 387 | ** Return 0 on success and 1 if there is any kind of error. |
| 388 | */ |
| 389 | static int parseModifier(const char *zMod, DateTime *p){ |
| 390 | int rc = 1; |
| 391 | int n; |
| 392 | double r; |
| 393 | char z[30]; |
| 394 | for(n=0; n<sizeof(z)-1; n++){ |
| 395 | z[n] = tolower(zMod[n]); |
| 396 | } |
| 397 | z[n] = 0; |
| 398 | switch( z[0] ){ |
| 399 | case 'u': { |
| 400 | /* |
| 401 | ** unixepoch |
| 402 | ** |
| 403 | ** Treat the current value of p->rJD as the number of |
| 404 | ** seconds since 1970. Convert to a real julian day number. |
| 405 | */ |
| 406 | if( strcmp(z, "unixepoch")==0 && p->validJD ){ |
| 407 | p->rJD = p->rJD/86400.0 + 2440587.5; |
| 408 | p->validYMD = 0; |
| 409 | p->validHMS = 0; |
| 410 | p->validTZ = 0; |
| 411 | rc = 0; |
| 412 | } |
| 413 | break; |
| 414 | } |
| 415 | case 'w': { |
| 416 | /* |
| 417 | ** weekday N |
| 418 | ** |
| 419 | ** Move the date to the beginning of the next occurrance of |
| 420 | ** weekday N where 0==Sunday, 1==Monday, and so forth. If the |
| 421 | ** date is already on the appropriate weekday, this is equivalent |
| 422 | ** to "start of day". |
| 423 | */ |
| 424 | if( strncmp(z, "weekday ", 8)==0 && getValue(&z[8],&r)>0 |
| 425 | && (n=r)==r && n>=0 && r<7 ){ |
| 426 | int Z; |
| 427 | computeYMD(p); |
| 428 | p->validHMS = 0; |
| 429 | p->validTZ = 0; |
| 430 | p->validJD = 0; |
| 431 | computeJD(p); |
| 432 | Z = p->rJD + 1.5; |
| 433 | Z %= 7; |
| 434 | if( Z>n ) Z -= 7; |
| 435 | p->rJD += n - Z; |
| 436 | p->validYMD = 0; |
| 437 | p->validHMS = 0; |
| 438 | rc = 0; |
| 439 | } |
| 440 | break; |
| 441 | } |
| 442 | case 's': { |
| 443 | /* |
| 444 | ** start of TTTTT |
| 445 | ** |
| 446 | ** Move the date backwards to the beginning of the current day, |
| 447 | ** or month or year. |
| 448 | */ |
| 449 | if( strncmp(z, "start of ", 9)!=0 ) break; |
| 450 | zMod = &z[9]; |
| 451 | computeYMD(p); |
| 452 | p->validHMS = 1; |
| 453 | p->h = p->m = 0; |
| 454 | p->s = 0.0; |
| 455 | p->validTZ = 0; |
| 456 | p->validJD = 0; |
| 457 | if( strcmp(zMod,"month")==0 ){ |
| 458 | p->D = 1; |
| 459 | rc = 0; |
| 460 | }else if( strcmp(zMod,"year")==0 ){ |
| 461 | computeYMD(p); |
| 462 | p->M = 1; |
| 463 | p->D = 1; |
| 464 | rc = 0; |
| 465 | }else if( strcmp(zMod,"day")==0 ){ |
| 466 | rc = 0; |
| 467 | } |
| 468 | break; |
| 469 | } |
| 470 | case '+': |
| 471 | case '-': |
| 472 | case '0': |
| 473 | case '1': |
| 474 | case '2': |
| 475 | case '3': |
| 476 | case '4': |
| 477 | case '5': |
| 478 | case '6': |
| 479 | case '7': |
| 480 | case '8': |
| 481 | case '9': { |
| 482 | n = getValue(z, &r); |
| 483 | if( n<=0 ) break; |
| 484 | zMod = &z[n]; |
| 485 | while( isspace(zMod[0]) ) zMod++; |
| 486 | n = strlen(zMod); |
| 487 | if( n>10 || n<3 ) break; |
| 488 | strcpy(z, zMod); |
| 489 | if( z[n-1]=='s' ){ z[n-1] = 0; n--; } |
| 490 | computeJD(p); |
| 491 | rc = 0; |
| 492 | if( n==3 && strcmp(z,"day")==0 ){ |
| 493 | p->rJD += r; |
| 494 | }else if( n==4 && strcmp(z,"hour")==0 ){ |
| 495 | computeJD(p); |
| 496 | p->rJD += r/24.0; |
| 497 | }else if( n==6 && strcmp(z,"minute")==0 ){ |
| 498 | computeJD(p); |
| 499 | p->rJD += r/(24.0*60.0); |
| 500 | }else if( n==6 && strcmp(z,"second")==0 ){ |
| 501 | computeJD(p); |
| 502 | p->rJD += r/(24.0*60.0*60.0); |
| 503 | }else if( n==5 && strcmp(z,"month")==0 ){ |
| 504 | int x, y; |
| 505 | computeYMD(p); |
| 506 | p->M += r; |
| 507 | x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; |
| 508 | p->Y += x; |
| 509 | p->M -= x*12; |
| 510 | p->validJD = 0; |
| 511 | computeJD(p); |
| 512 | y = r; |
| 513 | if( y!=r ){ |
| 514 | p->rJD += (r - y)*30.0; |
| 515 | } |
| 516 | }else if( n==4 && strcmp(z,"year")==0 ){ |
| 517 | computeYMD(p); |
| 518 | p->Y += r; |
| 519 | p->validJD = 0; |
| 520 | computeJD(p); |
| 521 | }else{ |
| 522 | rc = 1; |
| 523 | } |
| 524 | p->validYMD = 0; |
| 525 | p->validHMS = 0; |
| 526 | p->validTZ = 0; |
| 527 | break; |
| 528 | } |
| 529 | default: { |
| 530 | break; |
| 531 | } |
| 532 | } |
| 533 | return rc; |
| 534 | } |
| 535 | |
| 536 | /* |
| 537 | ** Process time function arguments. argv[0] is a date-time stamp. |
| 538 | ** argv[1] and following are modifiers. Parse them all and write |
| 539 | ** the resulting time into the DateTime structure p. Return 0 |
| 540 | ** on success and 1 if there are any errors. |
| 541 | */ |
| 542 | static int isDate(int argc, const char **argv, DateTime *p){ |
| 543 | int i; |
| 544 | if( argc==0 ) return 1; |
| 545 | if( parseDateOrTime(argv[0], p) ) return 1; |
| 546 | for(i=1; i<argc; i++){ |
| 547 | if( parseModifier(argv[i], p) ) return 1; |
| 548 | } |
| 549 | return 0; |
| 550 | } |
| 551 | |
| 552 | |
| 553 | /* |
| 554 | ** The following routines implement the various date and time functions |
| 555 | ** of SQLite. |
| 556 | */ |
| 557 | |
| 558 | /* |
| 559 | ** julianday( TIMESTRING, MOD, MOD, ...) |
| 560 | ** |
| 561 | ** Return the julian day number of the date specified in the arguments |
| 562 | */ |
| 563 | static void juliandayFunc(sqlite_func *context, int argc, const char **argv){ |
| 564 | DateTime x; |
| 565 | if( isDate(argc, argv, &x)==0 ){ |
| 566 | computeJD(&x); |
| 567 | sqlite_set_result_double(context, x.rJD); |
| 568 | } |
| 569 | } |
| 570 | |
| 571 | /* |
| 572 | ** datetime( TIMESTRING, MOD, MOD, ...) |
| 573 | ** |
| 574 | ** Return YYYY-MM-DD HH:MM:SS |
| 575 | */ |
| 576 | static void datetimeFunc(sqlite_func *context, int argc, const char **argv){ |
| 577 | DateTime x; |
| 578 | if( isDate(argc, argv, &x)==0 ){ |
| 579 | char zBuf[100]; |
| 580 | computeYMD(&x); |
| 581 | computeHMS(&x); |
| 582 | sprintf(zBuf, "%04d-%02d-%02d %02d:%02d:%02d",x.Y, x.M, x.D, x.h, x.m, |
| 583 | (int)(x.s)); |
| 584 | sqlite_set_result_string(context, zBuf, -1); |
| 585 | } |
| 586 | } |
| 587 | |
| 588 | /* |
| 589 | ** time( TIMESTRING, MOD, MOD, ...) |
| 590 | ** |
| 591 | ** Return HH:MM:SS |
| 592 | */ |
| 593 | static void timeFunc(sqlite_func *context, int argc, const char **argv){ |
| 594 | DateTime x; |
| 595 | if( isDate(argc, argv, &x)==0 ){ |
| 596 | char zBuf[100]; |
| 597 | computeHMS(&x); |
| 598 | sprintf(zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s); |
| 599 | sqlite_set_result_string(context, zBuf, -1); |
| 600 | } |
| 601 | } |
| 602 | |
| 603 | /* |
| 604 | ** date( TIMESTRING, MOD, MOD, ...) |
| 605 | ** |
| 606 | ** Return YYYY-MM-DD |
| 607 | */ |
| 608 | static void dateFunc(sqlite_func *context, int argc, const char **argv){ |
| 609 | DateTime x; |
| 610 | if( isDate(argc, argv, &x)==0 ){ |
| 611 | char zBuf[100]; |
| 612 | computeYMD(&x); |
| 613 | sprintf(zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D); |
| 614 | sqlite_set_result_string(context, zBuf, -1); |
| 615 | } |
| 616 | } |
| 617 | |
| 618 | /* |
| 619 | ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...) |
| 620 | ** |
| 621 | ** Return a string described by FORMAT. Conversions as follows: |
| 622 | ** |
| 623 | ** %d day of month |
| 624 | ** %f ** fractional seconds SS.SSS |
| 625 | ** %H hour 00-24 |
| 626 | ** %j day of year 000-366 |
| 627 | ** %J ** Julian day number |
| 628 | ** %m month 01-12 |
| 629 | ** %M minute 00-59 |
| 630 | ** %s seconds since 1970-01-01 |
| 631 | ** %S seconds 00-59 |
| 632 | ** %w day of week 0-6 sunday==0 |
| 633 | ** %W week of year 00-53 |
| 634 | ** %Y year 0000-9999 |
| 635 | ** %% % |
| 636 | */ |
| 637 | static void strftimeFunc(sqlite_func *context, int argc, const char **argv){ |
| 638 | DateTime x; |
| 639 | int n, i, j; |
| 640 | char *z; |
| 641 | const char *zFmt = argv[0]; |
| 642 | char zBuf[100]; |
| 643 | if( isDate(argc-1, argv+1, &x) ) return; |
| 644 | for(i=0, n=1; zFmt[i]; i++, n++){ |
| 645 | if( zFmt[i]=='%' ){ |
| 646 | switch( zFmt[i+1] ){ |
| 647 | case 'd': |
| 648 | case 'H': |
| 649 | case 'm': |
| 650 | case 'M': |
| 651 | case 'S': |
| 652 | case 'W': |
| 653 | n++; |
| 654 | /* fall thru */ |
| 655 | case 'w': |
| 656 | case '%': |
| 657 | break; |
| 658 | case 'f': |
| 659 | n += 8; |
| 660 | break; |
| 661 | case 'j': |
| 662 | n += 3; |
| 663 | break; |
| 664 | case 'Y': |
| 665 | n += 8; |
| 666 | break; |
| 667 | case 's': |
| 668 | case 'J': |
| 669 | n += 50; |
| 670 | break; |
| 671 | default: |
| 672 | return; /* ERROR. return a NULL */ |
| 673 | } |
| 674 | i++; |
| 675 | } |
| 676 | } |
| 677 | if( n<sizeof(zBuf) ){ |
| 678 | z = zBuf; |
| 679 | }else{ |
| 680 | z = sqliteMalloc( n ); |
| 681 | if( z==0 ) return; |
| 682 | } |
| 683 | computeJD(&x); |
| 684 | computeYMD(&x); |
| 685 | computeHMS(&x); |
| 686 | for(i=j=0; zFmt[i]; i++){ |
| 687 | if( zFmt[i]!='%' ){ |
| 688 | z[j++] = zFmt[i]; |
| 689 | }else{ |
| 690 | i++; |
| 691 | switch( zFmt[i] ){ |
| 692 | case 'd': sprintf(&z[j],"%02d",x.D); j+=2; break; |
| 693 | case 'f': { |
| 694 | int s = x.s; |
| 695 | int ms = (x.s - s)*1000.0; |
| 696 | sprintf(&z[j],"%02d.%03d",s,ms); |
| 697 | j += strlen(&z[j]); |
| 698 | break; |
| 699 | } |
| 700 | case 'H': sprintf(&z[j],"%02d",x.h); j+=2; break; |
| 701 | case 'W': /* Fall thru */ |
| 702 | case 'j': { |
| 703 | int n; |
| 704 | DateTime y = x; |
| 705 | y.validJD = 0; |
| 706 | y.M = 1; |
| 707 | y.D = 1; |
| 708 | computeJD(&y); |
| 709 | n = x.rJD - y.rJD + 1; |
| 710 | if( zFmt[i]=='W' ){ |
| 711 | sprintf(&z[j],"%02d",(n+6)/7); |
| 712 | j += 2; |
| 713 | }else{ |
| 714 | sprintf(&z[j],"%03d",n); |
| 715 | j += 3; |
| 716 | } |
| 717 | break; |
| 718 | } |
| 719 | case 'J': sprintf(&z[j],"%.16g",x.rJD); j+=strlen(&z[j]); break; |
| 720 | case 'm': sprintf(&z[j],"%02d",x.M); j+=2; break; |
| 721 | case 'M': sprintf(&z[j],"%02d",x.m); j+=2; break; |
| 722 | case 's': { |
| 723 | sprintf(&z[j],"%d",(int)((x.rJD-2440587.5)*86400.0)); |
| 724 | j += strlen(&z[j]); |
| 725 | break; |
| 726 | } |
| 727 | case 'S': sprintf(&z[j],"%02d",(int)x.s); j+=2; break; |
| 728 | case 'w': z[j++] = (((int)(x.rJD+1.5)) % 7) + '0'; break; |
| 729 | case 'Y': sprintf(&z[j],"%04d",x.Y); j+=strlen(&z[j]); break; |
| 730 | case '%': z[j++] = '%'; break; |
| 731 | } |
| 732 | } |
| 733 | } |
| 734 | z[j] = 0; |
| 735 | sqlite_set_result_string(context, z, -1); |
| 736 | if( z!=zBuf ){ |
| 737 | sqliteFree(z); |
| 738 | } |
| 739 | } |
| 740 | |
| 741 | |
| 742 | #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ |
| 743 | |
| 744 | /* |
| 745 | ** This function registered all of the above C functions as SQL |
| 746 | ** functions. This should be the only routine in this file with |
| 747 | ** external linkage. |
| 748 | */ |
| 749 | void sqliteRegisterDateTimeFunctions(sqlite *db){ |
| 750 | static struct { |
| 751 | char *zName; |
| 752 | int nArg; |
| 753 | int dataType; |
| 754 | void (*xFunc)(sqlite_func*,int,const char**); |
| 755 | } aFuncs[] = { |
| 756 | #ifndef SQLITE_OMIT_DATETIME_FUNCS |
| 757 | { "julianday", -1, SQLITE_NUMERIC, juliandayFunc }, |
| 758 | { "date", -1, SQLITE_TEXT, dateFunc }, |
| 759 | { "time", 1, SQLITE_TEXT, timeFunc }, |
| 760 | { "datetime", -1, SQLITE_TEXT, datetimeFunc }, |
| 761 | { "strftime", -1, SQLITE_TEXT, strftimeFunc }, |
| 762 | #endif |
| 763 | }; |
| 764 | int i; |
| 765 | |
| 766 | for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){ |
| 767 | sqlite_create_function(db, aFuncs[i].zName, |
| 768 | aFuncs[i].nArg, aFuncs[i].xFunc, 0); |
| 769 | if( aFuncs[i].xFunc ){ |
| 770 | sqlite_function_type(db, aFuncs[i].zName, aFuncs[i].dataType); |
| 771 | } |
| 772 | } |
| 773 | } |